1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34 
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/intel_lpe_audio.h>
42 
43 #include "i915_debugfs.h"
44 #include "i915_drv.h"
45 #include "i915_reg.h"
46 #include "intel_atomic.h"
47 #include "intel_connector.h"
48 #include "intel_ddi.h"
49 #include "intel_de.h"
50 #include "intel_display_types.h"
51 #include "intel_dp.h"
52 #include "intel_gmbus.h"
53 #include "intel_hdcp.h"
54 #include "intel_hdcp_regs.h"
55 #include "intel_hdmi.h"
56 #include "intel_lspcon.h"
57 #include "intel_panel.h"
58 #include "intel_snps_phy.h"
59 
60 static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
61 {
62 	return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
63 }
64 
65 static void
66 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
67 {
68 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
69 	u32 enabled_bits;
70 
71 	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
72 
73 	drm_WARN(&dev_priv->drm,
74 		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
75 		 "HDMI port enabled, expecting disabled\n");
76 }
77 
78 static void
79 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
80 				     enum transcoder cpu_transcoder)
81 {
82 	drm_WARN(&dev_priv->drm,
83 		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
84 		 TRANS_DDI_FUNC_ENABLE,
85 		 "HDMI transcoder function enabled, expecting disabled\n");
86 }
87 
88 static u32 g4x_infoframe_index(unsigned int type)
89 {
90 	switch (type) {
91 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
92 		return VIDEO_DIP_SELECT_GAMUT;
93 	case HDMI_INFOFRAME_TYPE_AVI:
94 		return VIDEO_DIP_SELECT_AVI;
95 	case HDMI_INFOFRAME_TYPE_SPD:
96 		return VIDEO_DIP_SELECT_SPD;
97 	case HDMI_INFOFRAME_TYPE_VENDOR:
98 		return VIDEO_DIP_SELECT_VENDOR;
99 	default:
100 		MISSING_CASE(type);
101 		return 0;
102 	}
103 }
104 
105 static u32 g4x_infoframe_enable(unsigned int type)
106 {
107 	switch (type) {
108 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
109 		return VIDEO_DIP_ENABLE_GCP;
110 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
111 		return VIDEO_DIP_ENABLE_GAMUT;
112 	case DP_SDP_VSC:
113 		return 0;
114 	case HDMI_INFOFRAME_TYPE_AVI:
115 		return VIDEO_DIP_ENABLE_AVI;
116 	case HDMI_INFOFRAME_TYPE_SPD:
117 		return VIDEO_DIP_ENABLE_SPD;
118 	case HDMI_INFOFRAME_TYPE_VENDOR:
119 		return VIDEO_DIP_ENABLE_VENDOR;
120 	case HDMI_INFOFRAME_TYPE_DRM:
121 		return 0;
122 	default:
123 		MISSING_CASE(type);
124 		return 0;
125 	}
126 }
127 
128 static u32 hsw_infoframe_enable(unsigned int type)
129 {
130 	switch (type) {
131 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
132 		return VIDEO_DIP_ENABLE_GCP_HSW;
133 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
134 		return VIDEO_DIP_ENABLE_GMP_HSW;
135 	case DP_SDP_VSC:
136 		return VIDEO_DIP_ENABLE_VSC_HSW;
137 	case DP_SDP_PPS:
138 		return VDIP_ENABLE_PPS;
139 	case HDMI_INFOFRAME_TYPE_AVI:
140 		return VIDEO_DIP_ENABLE_AVI_HSW;
141 	case HDMI_INFOFRAME_TYPE_SPD:
142 		return VIDEO_DIP_ENABLE_SPD_HSW;
143 	case HDMI_INFOFRAME_TYPE_VENDOR:
144 		return VIDEO_DIP_ENABLE_VS_HSW;
145 	case HDMI_INFOFRAME_TYPE_DRM:
146 		return VIDEO_DIP_ENABLE_DRM_GLK;
147 	default:
148 		MISSING_CASE(type);
149 		return 0;
150 	}
151 }
152 
153 static i915_reg_t
154 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
155 		 enum transcoder cpu_transcoder,
156 		 unsigned int type,
157 		 int i)
158 {
159 	switch (type) {
160 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
161 		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
162 	case DP_SDP_VSC:
163 		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
164 	case DP_SDP_PPS:
165 		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
166 	case HDMI_INFOFRAME_TYPE_AVI:
167 		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
168 	case HDMI_INFOFRAME_TYPE_SPD:
169 		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
170 	case HDMI_INFOFRAME_TYPE_VENDOR:
171 		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
172 	case HDMI_INFOFRAME_TYPE_DRM:
173 		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
174 	default:
175 		MISSING_CASE(type);
176 		return INVALID_MMIO_REG;
177 	}
178 }
179 
180 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
181 			     unsigned int type)
182 {
183 	switch (type) {
184 	case DP_SDP_VSC:
185 		return VIDEO_DIP_VSC_DATA_SIZE;
186 	case DP_SDP_PPS:
187 		return VIDEO_DIP_PPS_DATA_SIZE;
188 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
189 		if (DISPLAY_VER(dev_priv) >= 11)
190 			return VIDEO_DIP_GMP_DATA_SIZE;
191 		else
192 			return VIDEO_DIP_DATA_SIZE;
193 	default:
194 		return VIDEO_DIP_DATA_SIZE;
195 	}
196 }
197 
198 static void g4x_write_infoframe(struct intel_encoder *encoder,
199 				const struct intel_crtc_state *crtc_state,
200 				unsigned int type,
201 				const void *frame, ssize_t len)
202 {
203 	const u32 *data = frame;
204 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
205 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
206 	int i;
207 
208 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
209 		 "Writing DIP with CTL reg disabled\n");
210 
211 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
212 	val |= g4x_infoframe_index(type);
213 
214 	val &= ~g4x_infoframe_enable(type);
215 
216 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
217 
218 	for (i = 0; i < len; i += 4) {
219 		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
220 		data++;
221 	}
222 	/* Write every possible data byte to force correct ECC calculation. */
223 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
224 		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
225 
226 	val |= g4x_infoframe_enable(type);
227 	val &= ~VIDEO_DIP_FREQ_MASK;
228 	val |= VIDEO_DIP_FREQ_VSYNC;
229 
230 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
231 	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
232 }
233 
234 static void g4x_read_infoframe(struct intel_encoder *encoder,
235 			       const struct intel_crtc_state *crtc_state,
236 			       unsigned int type,
237 			       void *frame, ssize_t len)
238 {
239 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
240 	u32 val, *data = frame;
241 	int i;
242 
243 	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
244 
245 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
246 	val |= g4x_infoframe_index(type);
247 
248 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
249 
250 	for (i = 0; i < len; i += 4)
251 		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
252 }
253 
254 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
255 				  const struct intel_crtc_state *pipe_config)
256 {
257 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
258 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
259 
260 	if ((val & VIDEO_DIP_ENABLE) == 0)
261 		return 0;
262 
263 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
264 		return 0;
265 
266 	return val & (VIDEO_DIP_ENABLE_AVI |
267 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
268 }
269 
270 static void ibx_write_infoframe(struct intel_encoder *encoder,
271 				const struct intel_crtc_state *crtc_state,
272 				unsigned int type,
273 				const void *frame, ssize_t len)
274 {
275 	const u32 *data = frame;
276 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
277 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
278 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
279 	u32 val = intel_de_read(dev_priv, reg);
280 	int i;
281 
282 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
283 		 "Writing DIP with CTL reg disabled\n");
284 
285 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
286 	val |= g4x_infoframe_index(type);
287 
288 	val &= ~g4x_infoframe_enable(type);
289 
290 	intel_de_write(dev_priv, reg, val);
291 
292 	for (i = 0; i < len; i += 4) {
293 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
294 			       *data);
295 		data++;
296 	}
297 	/* Write every possible data byte to force correct ECC calculation. */
298 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
299 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
300 
301 	val |= g4x_infoframe_enable(type);
302 	val &= ~VIDEO_DIP_FREQ_MASK;
303 	val |= VIDEO_DIP_FREQ_VSYNC;
304 
305 	intel_de_write(dev_priv, reg, val);
306 	intel_de_posting_read(dev_priv, reg);
307 }
308 
309 static void ibx_read_infoframe(struct intel_encoder *encoder,
310 			       const struct intel_crtc_state *crtc_state,
311 			       unsigned int type,
312 			       void *frame, ssize_t len)
313 {
314 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
315 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
316 	u32 val, *data = frame;
317 	int i;
318 
319 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
320 
321 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
322 	val |= g4x_infoframe_index(type);
323 
324 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
325 
326 	for (i = 0; i < len; i += 4)
327 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
328 }
329 
330 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
331 				  const struct intel_crtc_state *pipe_config)
332 {
333 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
334 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
335 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
336 	u32 val = intel_de_read(dev_priv, reg);
337 
338 	if ((val & VIDEO_DIP_ENABLE) == 0)
339 		return 0;
340 
341 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
342 		return 0;
343 
344 	return val & (VIDEO_DIP_ENABLE_AVI |
345 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
346 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
347 }
348 
349 static void cpt_write_infoframe(struct intel_encoder *encoder,
350 				const struct intel_crtc_state *crtc_state,
351 				unsigned int type,
352 				const void *frame, ssize_t len)
353 {
354 	const u32 *data = frame;
355 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
356 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
357 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
358 	u32 val = intel_de_read(dev_priv, reg);
359 	int i;
360 
361 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
362 		 "Writing DIP with CTL reg disabled\n");
363 
364 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
365 	val |= g4x_infoframe_index(type);
366 
367 	/* The DIP control register spec says that we need to update the AVI
368 	 * infoframe without clearing its enable bit */
369 	if (type != HDMI_INFOFRAME_TYPE_AVI)
370 		val &= ~g4x_infoframe_enable(type);
371 
372 	intel_de_write(dev_priv, reg, val);
373 
374 	for (i = 0; i < len; i += 4) {
375 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
376 			       *data);
377 		data++;
378 	}
379 	/* Write every possible data byte to force correct ECC calculation. */
380 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
381 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
382 
383 	val |= g4x_infoframe_enable(type);
384 	val &= ~VIDEO_DIP_FREQ_MASK;
385 	val |= VIDEO_DIP_FREQ_VSYNC;
386 
387 	intel_de_write(dev_priv, reg, val);
388 	intel_de_posting_read(dev_priv, reg);
389 }
390 
391 static void cpt_read_infoframe(struct intel_encoder *encoder,
392 			       const struct intel_crtc_state *crtc_state,
393 			       unsigned int type,
394 			       void *frame, ssize_t len)
395 {
396 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
397 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
398 	u32 val, *data = frame;
399 	int i;
400 
401 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
402 
403 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
404 	val |= g4x_infoframe_index(type);
405 
406 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
407 
408 	for (i = 0; i < len; i += 4)
409 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
410 }
411 
412 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
413 				  const struct intel_crtc_state *pipe_config)
414 {
415 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
416 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
417 	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
418 
419 	if ((val & VIDEO_DIP_ENABLE) == 0)
420 		return 0;
421 
422 	return val & (VIDEO_DIP_ENABLE_AVI |
423 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
424 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
425 }
426 
427 static void vlv_write_infoframe(struct intel_encoder *encoder,
428 				const struct intel_crtc_state *crtc_state,
429 				unsigned int type,
430 				const void *frame, ssize_t len)
431 {
432 	const u32 *data = frame;
433 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
434 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
435 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
436 	u32 val = intel_de_read(dev_priv, reg);
437 	int i;
438 
439 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
440 		 "Writing DIP with CTL reg disabled\n");
441 
442 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
443 	val |= g4x_infoframe_index(type);
444 
445 	val &= ~g4x_infoframe_enable(type);
446 
447 	intel_de_write(dev_priv, reg, val);
448 
449 	for (i = 0; i < len; i += 4) {
450 		intel_de_write(dev_priv,
451 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
452 		data++;
453 	}
454 	/* Write every possible data byte to force correct ECC calculation. */
455 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
456 		intel_de_write(dev_priv,
457 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
458 
459 	val |= g4x_infoframe_enable(type);
460 	val &= ~VIDEO_DIP_FREQ_MASK;
461 	val |= VIDEO_DIP_FREQ_VSYNC;
462 
463 	intel_de_write(dev_priv, reg, val);
464 	intel_de_posting_read(dev_priv, reg);
465 }
466 
467 static void vlv_read_infoframe(struct intel_encoder *encoder,
468 			       const struct intel_crtc_state *crtc_state,
469 			       unsigned int type,
470 			       void *frame, ssize_t len)
471 {
472 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
473 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
474 	u32 val, *data = frame;
475 	int i;
476 
477 	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
478 
479 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
480 	val |= g4x_infoframe_index(type);
481 
482 	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
483 
484 	for (i = 0; i < len; i += 4)
485 		*data++ = intel_de_read(dev_priv,
486 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
487 }
488 
489 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
490 				  const struct intel_crtc_state *pipe_config)
491 {
492 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
493 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
494 	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
495 
496 	if ((val & VIDEO_DIP_ENABLE) == 0)
497 		return 0;
498 
499 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
500 		return 0;
501 
502 	return val & (VIDEO_DIP_ENABLE_AVI |
503 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
504 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
505 }
506 
507 void hsw_write_infoframe(struct intel_encoder *encoder,
508 			 const struct intel_crtc_state *crtc_state,
509 			 unsigned int type,
510 			 const void *frame, ssize_t len)
511 {
512 	const u32 *data = frame;
513 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
514 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
515 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
516 	int data_size;
517 	int i;
518 	u32 val = intel_de_read(dev_priv, ctl_reg);
519 
520 	data_size = hsw_dip_data_size(dev_priv, type);
521 
522 	drm_WARN_ON(&dev_priv->drm, len > data_size);
523 
524 	val &= ~hsw_infoframe_enable(type);
525 	intel_de_write(dev_priv, ctl_reg, val);
526 
527 	for (i = 0; i < len; i += 4) {
528 		intel_de_write(dev_priv,
529 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
530 			       *data);
531 		data++;
532 	}
533 	/* Write every possible data byte to force correct ECC calculation. */
534 	for (; i < data_size; i += 4)
535 		intel_de_write(dev_priv,
536 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
537 			       0);
538 
539 	/* Wa_14013475917 */
540 	if ((DISPLAY_VER(dev_priv) == 13 ||
541 	     IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) && crtc_state->has_psr &&
542 	    type == DP_SDP_VSC)
543 		return;
544 
545 	val |= hsw_infoframe_enable(type);
546 	intel_de_write(dev_priv, ctl_reg, val);
547 	intel_de_posting_read(dev_priv, ctl_reg);
548 }
549 
550 void hsw_read_infoframe(struct intel_encoder *encoder,
551 			const struct intel_crtc_state *crtc_state,
552 			unsigned int type, void *frame, ssize_t len)
553 {
554 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
555 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
556 	u32 *data = frame;
557 	int i;
558 
559 	for (i = 0; i < len; i += 4)
560 		*data++ = intel_de_read(dev_priv,
561 				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
562 }
563 
564 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
565 				  const struct intel_crtc_state *pipe_config)
566 {
567 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
568 	u32 val = intel_de_read(dev_priv,
569 				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
570 	u32 mask;
571 
572 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
573 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
574 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
575 
576 	if (DISPLAY_VER(dev_priv) >= 10)
577 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
578 
579 	return val & mask;
580 }
581 
582 static const u8 infoframe_type_to_idx[] = {
583 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
584 	HDMI_PACKET_TYPE_GAMUT_METADATA,
585 	DP_SDP_VSC,
586 	HDMI_INFOFRAME_TYPE_AVI,
587 	HDMI_INFOFRAME_TYPE_SPD,
588 	HDMI_INFOFRAME_TYPE_VENDOR,
589 	HDMI_INFOFRAME_TYPE_DRM,
590 };
591 
592 u32 intel_hdmi_infoframe_enable(unsigned int type)
593 {
594 	int i;
595 
596 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
597 		if (infoframe_type_to_idx[i] == type)
598 			return BIT(i);
599 	}
600 
601 	return 0;
602 }
603 
604 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
605 				  const struct intel_crtc_state *crtc_state)
606 {
607 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
608 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
609 	u32 val, ret = 0;
610 	int i;
611 
612 	val = dig_port->infoframes_enabled(encoder, crtc_state);
613 
614 	/* map from hardware bits to dip idx */
615 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
616 		unsigned int type = infoframe_type_to_idx[i];
617 
618 		if (HAS_DDI(dev_priv)) {
619 			if (val & hsw_infoframe_enable(type))
620 				ret |= BIT(i);
621 		} else {
622 			if (val & g4x_infoframe_enable(type))
623 				ret |= BIT(i);
624 		}
625 	}
626 
627 	return ret;
628 }
629 
630 /*
631  * The data we write to the DIP data buffer registers is 1 byte bigger than the
632  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
633  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
634  * used for both technologies.
635  *
636  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
637  * DW1:       DB3       | DB2 | DB1 | DB0
638  * DW2:       DB7       | DB6 | DB5 | DB4
639  * DW3: ...
640  *
641  * (HB is Header Byte, DB is Data Byte)
642  *
643  * The hdmi pack() functions don't know about that hardware specific hole so we
644  * trick them by giving an offset into the buffer and moving back the header
645  * bytes by one.
646  */
647 static void intel_write_infoframe(struct intel_encoder *encoder,
648 				  const struct intel_crtc_state *crtc_state,
649 				  enum hdmi_infoframe_type type,
650 				  const union hdmi_infoframe *frame)
651 {
652 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
653 	u8 buffer[VIDEO_DIP_DATA_SIZE];
654 	ssize_t len;
655 
656 	if ((crtc_state->infoframes.enable &
657 	     intel_hdmi_infoframe_enable(type)) == 0)
658 		return;
659 
660 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
661 		return;
662 
663 	/* see comment above for the reason for this offset */
664 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
665 	if (drm_WARN_ON(encoder->base.dev, len < 0))
666 		return;
667 
668 	/* Insert the 'hole' (see big comment above) at position 3 */
669 	memmove(&buffer[0], &buffer[1], 3);
670 	buffer[3] = 0;
671 	len++;
672 
673 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
674 }
675 
676 void intel_read_infoframe(struct intel_encoder *encoder,
677 			  const struct intel_crtc_state *crtc_state,
678 			  enum hdmi_infoframe_type type,
679 			  union hdmi_infoframe *frame)
680 {
681 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
682 	u8 buffer[VIDEO_DIP_DATA_SIZE];
683 	int ret;
684 
685 	if ((crtc_state->infoframes.enable &
686 	     intel_hdmi_infoframe_enable(type)) == 0)
687 		return;
688 
689 	dig_port->read_infoframe(encoder, crtc_state,
690 				       type, buffer, sizeof(buffer));
691 
692 	/* Fill the 'hole' (see big comment above) at position 3 */
693 	memmove(&buffer[1], &buffer[0], 3);
694 
695 	/* see comment above for the reason for this offset */
696 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
697 	if (ret) {
698 		drm_dbg_kms(encoder->base.dev,
699 			    "Failed to unpack infoframe type 0x%02x\n", type);
700 		return;
701 	}
702 
703 	if (frame->any.type != type)
704 		drm_dbg_kms(encoder->base.dev,
705 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
706 			    frame->any.type, type);
707 }
708 
709 static bool
710 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
711 				 struct intel_crtc_state *crtc_state,
712 				 struct drm_connector_state *conn_state)
713 {
714 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
715 	const struct drm_display_mode *adjusted_mode =
716 		&crtc_state->hw.adjusted_mode;
717 	struct drm_connector *connector = conn_state->connector;
718 	int ret;
719 
720 	if (!crtc_state->has_infoframe)
721 		return true;
722 
723 	crtc_state->infoframes.enable |=
724 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
725 
726 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
727 						       adjusted_mode);
728 	if (ret)
729 		return false;
730 
731 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
732 		frame->colorspace = HDMI_COLORSPACE_YUV420;
733 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
734 		frame->colorspace = HDMI_COLORSPACE_YUV444;
735 	else
736 		frame->colorspace = HDMI_COLORSPACE_RGB;
737 
738 	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
739 
740 	/* nonsense combination */
741 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
742 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
743 
744 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
745 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
746 						   adjusted_mode,
747 						   crtc_state->limited_color_range ?
748 						   HDMI_QUANTIZATION_RANGE_LIMITED :
749 						   HDMI_QUANTIZATION_RANGE_FULL);
750 	} else {
751 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
752 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
753 	}
754 
755 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
756 
757 	/* TODO: handle pixel repetition for YCBCR420 outputs */
758 
759 	ret = hdmi_avi_infoframe_check(frame);
760 	if (drm_WARN_ON(encoder->base.dev, ret))
761 		return false;
762 
763 	return true;
764 }
765 
766 static bool
767 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
768 				 struct intel_crtc_state *crtc_state,
769 				 struct drm_connector_state *conn_state)
770 {
771 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
772 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
773 	int ret;
774 
775 	if (!crtc_state->has_infoframe)
776 		return true;
777 
778 	crtc_state->infoframes.enable |=
779 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
780 
781 	if (IS_DGFX(i915))
782 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
783 	else
784 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
785 
786 	if (drm_WARN_ON(encoder->base.dev, ret))
787 		return false;
788 
789 	frame->sdi = HDMI_SPD_SDI_PC;
790 
791 	ret = hdmi_spd_infoframe_check(frame);
792 	if (drm_WARN_ON(encoder->base.dev, ret))
793 		return false;
794 
795 	return true;
796 }
797 
798 static bool
799 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
800 				  struct intel_crtc_state *crtc_state,
801 				  struct drm_connector_state *conn_state)
802 {
803 	struct hdmi_vendor_infoframe *frame =
804 		&crtc_state->infoframes.hdmi.vendor.hdmi;
805 	const struct drm_display_info *info =
806 		&conn_state->connector->display_info;
807 	int ret;
808 
809 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
810 		return true;
811 
812 	crtc_state->infoframes.enable |=
813 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
814 
815 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
816 							  conn_state->connector,
817 							  &crtc_state->hw.adjusted_mode);
818 	if (drm_WARN_ON(encoder->base.dev, ret))
819 		return false;
820 
821 	ret = hdmi_vendor_infoframe_check(frame);
822 	if (drm_WARN_ON(encoder->base.dev, ret))
823 		return false;
824 
825 	return true;
826 }
827 
828 static bool
829 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
830 				 struct intel_crtc_state *crtc_state,
831 				 struct drm_connector_state *conn_state)
832 {
833 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
834 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
835 	int ret;
836 
837 	if (DISPLAY_VER(dev_priv) < 10)
838 		return true;
839 
840 	if (!crtc_state->has_infoframe)
841 		return true;
842 
843 	if (!conn_state->hdr_output_metadata)
844 		return true;
845 
846 	crtc_state->infoframes.enable |=
847 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
848 
849 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
850 	if (ret < 0) {
851 		drm_dbg_kms(&dev_priv->drm,
852 			    "couldn't set HDR metadata in infoframe\n");
853 		return false;
854 	}
855 
856 	ret = hdmi_drm_infoframe_check(frame);
857 	if (drm_WARN_ON(&dev_priv->drm, ret))
858 		return false;
859 
860 	return true;
861 }
862 
863 static void g4x_set_infoframes(struct intel_encoder *encoder,
864 			       bool enable,
865 			       const struct intel_crtc_state *crtc_state,
866 			       const struct drm_connector_state *conn_state)
867 {
868 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
869 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
870 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
871 	i915_reg_t reg = VIDEO_DIP_CTL;
872 	u32 val = intel_de_read(dev_priv, reg);
873 	u32 port = VIDEO_DIP_PORT(encoder->port);
874 
875 	assert_hdmi_port_disabled(intel_hdmi);
876 
877 	/* If the registers were not initialized yet, they might be zeroes,
878 	 * which means we're selecting the AVI DIP and we're setting its
879 	 * frequency to once. This seems to really confuse the HW and make
880 	 * things stop working (the register spec says the AVI always needs to
881 	 * be sent every VSync). So here we avoid writing to the register more
882 	 * than we need and also explicitly select the AVI DIP and explicitly
883 	 * set its frequency to every VSync. Avoiding to write it twice seems to
884 	 * be enough to solve the problem, but being defensive shouldn't hurt us
885 	 * either. */
886 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
887 
888 	if (!enable) {
889 		if (!(val & VIDEO_DIP_ENABLE))
890 			return;
891 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
892 			drm_dbg_kms(&dev_priv->drm,
893 				    "video DIP still enabled on port %c\n",
894 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
895 			return;
896 		}
897 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
898 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
899 		intel_de_write(dev_priv, reg, val);
900 		intel_de_posting_read(dev_priv, reg);
901 		return;
902 	}
903 
904 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
905 		if (val & VIDEO_DIP_ENABLE) {
906 			drm_dbg_kms(&dev_priv->drm,
907 				    "video DIP already enabled on port %c\n",
908 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
909 			return;
910 		}
911 		val &= ~VIDEO_DIP_PORT_MASK;
912 		val |= port;
913 	}
914 
915 	val |= VIDEO_DIP_ENABLE;
916 	val &= ~(VIDEO_DIP_ENABLE_AVI |
917 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
918 
919 	intel_de_write(dev_priv, reg, val);
920 	intel_de_posting_read(dev_priv, reg);
921 
922 	intel_write_infoframe(encoder, crtc_state,
923 			      HDMI_INFOFRAME_TYPE_AVI,
924 			      &crtc_state->infoframes.avi);
925 	intel_write_infoframe(encoder, crtc_state,
926 			      HDMI_INFOFRAME_TYPE_SPD,
927 			      &crtc_state->infoframes.spd);
928 	intel_write_infoframe(encoder, crtc_state,
929 			      HDMI_INFOFRAME_TYPE_VENDOR,
930 			      &crtc_state->infoframes.hdmi);
931 }
932 
933 /*
934  * Determine if default_phase=1 can be indicated in the GCP infoframe.
935  *
936  * From HDMI specification 1.4a:
937  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
938  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
939  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
940  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
941  *   phase of 0
942  */
943 static bool gcp_default_phase_possible(int pipe_bpp,
944 				       const struct drm_display_mode *mode)
945 {
946 	unsigned int pixels_per_group;
947 
948 	switch (pipe_bpp) {
949 	case 30:
950 		/* 4 pixels in 5 clocks */
951 		pixels_per_group = 4;
952 		break;
953 	case 36:
954 		/* 2 pixels in 3 clocks */
955 		pixels_per_group = 2;
956 		break;
957 	case 48:
958 		/* 1 pixel in 2 clocks */
959 		pixels_per_group = 1;
960 		break;
961 	default:
962 		/* phase information not relevant for 8bpc */
963 		return false;
964 	}
965 
966 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
967 		mode->crtc_htotal % pixels_per_group == 0 &&
968 		mode->crtc_hblank_start % pixels_per_group == 0 &&
969 		mode->crtc_hblank_end % pixels_per_group == 0 &&
970 		mode->crtc_hsync_start % pixels_per_group == 0 &&
971 		mode->crtc_hsync_end % pixels_per_group == 0 &&
972 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
973 		 mode->crtc_htotal/2 % pixels_per_group == 0);
974 }
975 
976 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
977 					 const struct intel_crtc_state *crtc_state,
978 					 const struct drm_connector_state *conn_state)
979 {
980 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
981 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
982 	i915_reg_t reg;
983 
984 	if ((crtc_state->infoframes.enable &
985 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
986 		return false;
987 
988 	if (HAS_DDI(dev_priv))
989 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
990 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
991 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
992 	else if (HAS_PCH_SPLIT(dev_priv))
993 		reg = TVIDEO_DIP_GCP(crtc->pipe);
994 	else
995 		return false;
996 
997 	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
998 
999 	return true;
1000 }
1001 
1002 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
1003 				   struct intel_crtc_state *crtc_state)
1004 {
1005 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1006 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1007 	i915_reg_t reg;
1008 
1009 	if ((crtc_state->infoframes.enable &
1010 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1011 		return;
1012 
1013 	if (HAS_DDI(dev_priv))
1014 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1015 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1016 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1017 	else if (HAS_PCH_SPLIT(dev_priv))
1018 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1019 	else
1020 		return;
1021 
1022 	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1023 }
1024 
1025 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1026 					     struct intel_crtc_state *crtc_state,
1027 					     struct drm_connector_state *conn_state)
1028 {
1029 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1030 
1031 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1032 		return;
1033 
1034 	crtc_state->infoframes.enable |=
1035 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1036 
1037 	/* Indicate color indication for deep color mode */
1038 	if (crtc_state->pipe_bpp > 24)
1039 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1040 
1041 	/* Enable default_phase whenever the display mode is suitably aligned */
1042 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1043 				       &crtc_state->hw.adjusted_mode))
1044 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1045 }
1046 
1047 static void ibx_set_infoframes(struct intel_encoder *encoder,
1048 			       bool enable,
1049 			       const struct intel_crtc_state *crtc_state,
1050 			       const struct drm_connector_state *conn_state)
1051 {
1052 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1053 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1054 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1055 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1056 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1057 	u32 val = intel_de_read(dev_priv, reg);
1058 	u32 port = VIDEO_DIP_PORT(encoder->port);
1059 
1060 	assert_hdmi_port_disabled(intel_hdmi);
1061 
1062 	/* See the big comment in g4x_set_infoframes() */
1063 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1064 
1065 	if (!enable) {
1066 		if (!(val & VIDEO_DIP_ENABLE))
1067 			return;
1068 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1069 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1070 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1071 		intel_de_write(dev_priv, reg, val);
1072 		intel_de_posting_read(dev_priv, reg);
1073 		return;
1074 	}
1075 
1076 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1077 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1078 			 "DIP already enabled on port %c\n",
1079 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1080 		val &= ~VIDEO_DIP_PORT_MASK;
1081 		val |= port;
1082 	}
1083 
1084 	val |= VIDEO_DIP_ENABLE;
1085 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1086 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1087 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1088 
1089 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1090 		val |= VIDEO_DIP_ENABLE_GCP;
1091 
1092 	intel_de_write(dev_priv, reg, val);
1093 	intel_de_posting_read(dev_priv, reg);
1094 
1095 	intel_write_infoframe(encoder, crtc_state,
1096 			      HDMI_INFOFRAME_TYPE_AVI,
1097 			      &crtc_state->infoframes.avi);
1098 	intel_write_infoframe(encoder, crtc_state,
1099 			      HDMI_INFOFRAME_TYPE_SPD,
1100 			      &crtc_state->infoframes.spd);
1101 	intel_write_infoframe(encoder, crtc_state,
1102 			      HDMI_INFOFRAME_TYPE_VENDOR,
1103 			      &crtc_state->infoframes.hdmi);
1104 }
1105 
1106 static void cpt_set_infoframes(struct intel_encoder *encoder,
1107 			       bool enable,
1108 			       const struct intel_crtc_state *crtc_state,
1109 			       const struct drm_connector_state *conn_state)
1110 {
1111 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1112 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1113 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1114 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1115 	u32 val = intel_de_read(dev_priv, reg);
1116 
1117 	assert_hdmi_port_disabled(intel_hdmi);
1118 
1119 	/* See the big comment in g4x_set_infoframes() */
1120 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1121 
1122 	if (!enable) {
1123 		if (!(val & VIDEO_DIP_ENABLE))
1124 			return;
1125 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1126 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1127 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1128 		intel_de_write(dev_priv, reg, val);
1129 		intel_de_posting_read(dev_priv, reg);
1130 		return;
1131 	}
1132 
1133 	/* Set both together, unset both together: see the spec. */
1134 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1135 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1136 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1137 
1138 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1139 		val |= VIDEO_DIP_ENABLE_GCP;
1140 
1141 	intel_de_write(dev_priv, reg, val);
1142 	intel_de_posting_read(dev_priv, reg);
1143 
1144 	intel_write_infoframe(encoder, crtc_state,
1145 			      HDMI_INFOFRAME_TYPE_AVI,
1146 			      &crtc_state->infoframes.avi);
1147 	intel_write_infoframe(encoder, crtc_state,
1148 			      HDMI_INFOFRAME_TYPE_SPD,
1149 			      &crtc_state->infoframes.spd);
1150 	intel_write_infoframe(encoder, crtc_state,
1151 			      HDMI_INFOFRAME_TYPE_VENDOR,
1152 			      &crtc_state->infoframes.hdmi);
1153 }
1154 
1155 static void vlv_set_infoframes(struct intel_encoder *encoder,
1156 			       bool enable,
1157 			       const struct intel_crtc_state *crtc_state,
1158 			       const struct drm_connector_state *conn_state)
1159 {
1160 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1161 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1162 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1163 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1164 	u32 val = intel_de_read(dev_priv, reg);
1165 	u32 port = VIDEO_DIP_PORT(encoder->port);
1166 
1167 	assert_hdmi_port_disabled(intel_hdmi);
1168 
1169 	/* See the big comment in g4x_set_infoframes() */
1170 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1171 
1172 	if (!enable) {
1173 		if (!(val & VIDEO_DIP_ENABLE))
1174 			return;
1175 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1176 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1177 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1178 		intel_de_write(dev_priv, reg, val);
1179 		intel_de_posting_read(dev_priv, reg);
1180 		return;
1181 	}
1182 
1183 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1184 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1185 			 "DIP already enabled on port %c\n",
1186 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1187 		val &= ~VIDEO_DIP_PORT_MASK;
1188 		val |= port;
1189 	}
1190 
1191 	val |= VIDEO_DIP_ENABLE;
1192 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1193 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1194 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1195 
1196 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1197 		val |= VIDEO_DIP_ENABLE_GCP;
1198 
1199 	intel_de_write(dev_priv, reg, val);
1200 	intel_de_posting_read(dev_priv, reg);
1201 
1202 	intel_write_infoframe(encoder, crtc_state,
1203 			      HDMI_INFOFRAME_TYPE_AVI,
1204 			      &crtc_state->infoframes.avi);
1205 	intel_write_infoframe(encoder, crtc_state,
1206 			      HDMI_INFOFRAME_TYPE_SPD,
1207 			      &crtc_state->infoframes.spd);
1208 	intel_write_infoframe(encoder, crtc_state,
1209 			      HDMI_INFOFRAME_TYPE_VENDOR,
1210 			      &crtc_state->infoframes.hdmi);
1211 }
1212 
1213 static void hsw_set_infoframes(struct intel_encoder *encoder,
1214 			       bool enable,
1215 			       const struct intel_crtc_state *crtc_state,
1216 			       const struct drm_connector_state *conn_state)
1217 {
1218 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1219 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1220 	u32 val = intel_de_read(dev_priv, reg);
1221 
1222 	assert_hdmi_transcoder_func_disabled(dev_priv,
1223 					     crtc_state->cpu_transcoder);
1224 
1225 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1226 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1227 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1228 		 VIDEO_DIP_ENABLE_DRM_GLK);
1229 
1230 	if (!enable) {
1231 		intel_de_write(dev_priv, reg, val);
1232 		intel_de_posting_read(dev_priv, reg);
1233 		return;
1234 	}
1235 
1236 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1237 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1238 
1239 	intel_de_write(dev_priv, reg, val);
1240 	intel_de_posting_read(dev_priv, reg);
1241 
1242 	intel_write_infoframe(encoder, crtc_state,
1243 			      HDMI_INFOFRAME_TYPE_AVI,
1244 			      &crtc_state->infoframes.avi);
1245 	intel_write_infoframe(encoder, crtc_state,
1246 			      HDMI_INFOFRAME_TYPE_SPD,
1247 			      &crtc_state->infoframes.spd);
1248 	intel_write_infoframe(encoder, crtc_state,
1249 			      HDMI_INFOFRAME_TYPE_VENDOR,
1250 			      &crtc_state->infoframes.hdmi);
1251 	intel_write_infoframe(encoder, crtc_state,
1252 			      HDMI_INFOFRAME_TYPE_DRM,
1253 			      &crtc_state->infoframes.drm);
1254 }
1255 
1256 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1257 {
1258 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1259 	struct i2c_adapter *adapter;
1260 
1261 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1262 		return;
1263 
1264 	adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1265 
1266 	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1267 		    enable ? "Enabling" : "Disabling");
1268 
1269 	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1270 }
1271 
1272 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1273 				unsigned int offset, void *buffer, size_t size)
1274 {
1275 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1276 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1277 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1278 							      hdmi->ddc_bus);
1279 	int ret;
1280 	u8 start = offset & 0xff;
1281 	struct i2c_msg msgs[] = {
1282 		{
1283 			.addr = DRM_HDCP_DDC_ADDR,
1284 			.flags = 0,
1285 			.len = 1,
1286 			.buf = &start,
1287 		},
1288 		{
1289 			.addr = DRM_HDCP_DDC_ADDR,
1290 			.flags = I2C_M_RD,
1291 			.len = size,
1292 			.buf = buffer
1293 		}
1294 	};
1295 	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1296 	if (ret == ARRAY_SIZE(msgs))
1297 		return 0;
1298 	return ret >= 0 ? -EIO : ret;
1299 }
1300 
1301 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1302 				 unsigned int offset, void *buffer, size_t size)
1303 {
1304 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1305 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1306 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1307 							      hdmi->ddc_bus);
1308 	int ret;
1309 	u8 *write_buf;
1310 	struct i2c_msg msg;
1311 
1312 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1313 	if (!write_buf)
1314 		return -ENOMEM;
1315 
1316 	write_buf[0] = offset & 0xff;
1317 	memcpy(&write_buf[1], buffer, size);
1318 
1319 	msg.addr = DRM_HDCP_DDC_ADDR;
1320 	msg.flags = 0,
1321 	msg.len = size + 1,
1322 	msg.buf = write_buf;
1323 
1324 	ret = i2c_transfer(adapter, &msg, 1);
1325 	if (ret == 1)
1326 		ret = 0;
1327 	else if (ret >= 0)
1328 		ret = -EIO;
1329 
1330 	kfree(write_buf);
1331 	return ret;
1332 }
1333 
1334 static
1335 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1336 				  u8 *an)
1337 {
1338 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1339 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1340 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1341 							      hdmi->ddc_bus);
1342 	int ret;
1343 
1344 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1345 				    DRM_HDCP_AN_LEN);
1346 	if (ret) {
1347 		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1348 			    ret);
1349 		return ret;
1350 	}
1351 
1352 	ret = intel_gmbus_output_aksv(adapter);
1353 	if (ret < 0) {
1354 		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1355 		return ret;
1356 	}
1357 	return 0;
1358 }
1359 
1360 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1361 				     u8 *bksv)
1362 {
1363 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1364 
1365 	int ret;
1366 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1367 				   DRM_HDCP_KSV_LEN);
1368 	if (ret)
1369 		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1370 			    ret);
1371 	return ret;
1372 }
1373 
1374 static
1375 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1376 				 u8 *bstatus)
1377 {
1378 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1379 
1380 	int ret;
1381 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1382 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1383 	if (ret)
1384 		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1385 			    ret);
1386 	return ret;
1387 }
1388 
1389 static
1390 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1391 				     bool *repeater_present)
1392 {
1393 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1394 	int ret;
1395 	u8 val;
1396 
1397 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1398 	if (ret) {
1399 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1400 			    ret);
1401 		return ret;
1402 	}
1403 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1404 	return 0;
1405 }
1406 
1407 static
1408 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1409 				  u8 *ri_prime)
1410 {
1411 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1412 
1413 	int ret;
1414 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1415 				   ri_prime, DRM_HDCP_RI_LEN);
1416 	if (ret)
1417 		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1418 			    ret);
1419 	return ret;
1420 }
1421 
1422 static
1423 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1424 				   bool *ksv_ready)
1425 {
1426 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1427 	int ret;
1428 	u8 val;
1429 
1430 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1431 	if (ret) {
1432 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1433 			    ret);
1434 		return ret;
1435 	}
1436 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1437 	return 0;
1438 }
1439 
1440 static
1441 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1442 				  int num_downstream, u8 *ksv_fifo)
1443 {
1444 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1445 	int ret;
1446 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1447 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1448 	if (ret) {
1449 		drm_dbg_kms(&i915->drm,
1450 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1451 		return ret;
1452 	}
1453 	return 0;
1454 }
1455 
1456 static
1457 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1458 				      int i, u32 *part)
1459 {
1460 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1461 	int ret;
1462 
1463 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1464 		return -EINVAL;
1465 
1466 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1467 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1468 	if (ret)
1469 		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1470 			    i, ret);
1471 	return ret;
1472 }
1473 
1474 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1475 					   enum transcoder cpu_transcoder)
1476 {
1477 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1478 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1479 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1480 	u32 scanline;
1481 	int ret;
1482 
1483 	for (;;) {
1484 		scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1485 		if (scanline > 100 && scanline < 200)
1486 			break;
1487 		usleep_range(25, 50);
1488 	}
1489 
1490 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1491 					 false, TRANS_DDI_HDCP_SIGNALLING);
1492 	if (ret) {
1493 		drm_err(&dev_priv->drm,
1494 			"Disable HDCP signalling failed (%d)\n", ret);
1495 		return ret;
1496 	}
1497 
1498 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1499 					 true, TRANS_DDI_HDCP_SIGNALLING);
1500 	if (ret) {
1501 		drm_err(&dev_priv->drm,
1502 			"Enable HDCP signalling failed (%d)\n", ret);
1503 		return ret;
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 static
1510 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1511 				      enum transcoder cpu_transcoder,
1512 				      bool enable)
1513 {
1514 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1515 	struct intel_connector *connector = hdmi->attached_connector;
1516 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1517 	int ret;
1518 
1519 	if (!enable)
1520 		usleep_range(6, 60); /* Bspec says >= 6us */
1521 
1522 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1523 					 cpu_transcoder, enable,
1524 					 TRANS_DDI_HDCP_SIGNALLING);
1525 	if (ret) {
1526 		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1527 			enable ? "Enable" : "Disable", ret);
1528 		return ret;
1529 	}
1530 
1531 	/*
1532 	 * WA: To fix incorrect positioning of the window of
1533 	 * opportunity and enc_en signalling in KABYLAKE.
1534 	 */
1535 	if (IS_KABYLAKE(dev_priv) && enable)
1536 		return kbl_repositioning_enc_en_signal(connector,
1537 						       cpu_transcoder);
1538 
1539 	return 0;
1540 }
1541 
1542 static
1543 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1544 				     struct intel_connector *connector)
1545 {
1546 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1547 	enum port port = dig_port->base.port;
1548 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1549 	int ret;
1550 	union {
1551 		u32 reg;
1552 		u8 shim[DRM_HDCP_RI_LEN];
1553 	} ri;
1554 
1555 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1556 	if (ret)
1557 		return false;
1558 
1559 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1560 
1561 	/* Wait for Ri prime match */
1562 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1563 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1564 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1565 		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1566 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1567 							port)));
1568 		return false;
1569 	}
1570 	return true;
1571 }
1572 
1573 static
1574 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1575 				struct intel_connector *connector)
1576 {
1577 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1578 	int retry;
1579 
1580 	for (retry = 0; retry < 3; retry++)
1581 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1582 			return true;
1583 
1584 	drm_err(&i915->drm, "Link check failed\n");
1585 	return false;
1586 }
1587 
1588 struct hdcp2_hdmi_msg_timeout {
1589 	u8 msg_id;
1590 	u16 timeout;
1591 };
1592 
1593 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1594 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1595 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1596 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1597 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1598 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1599 };
1600 
1601 static
1602 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1603 				    u8 *rx_status)
1604 {
1605 	return intel_hdmi_hdcp_read(dig_port,
1606 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1607 				    rx_status,
1608 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1609 }
1610 
1611 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1612 {
1613 	int i;
1614 
1615 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1616 		if (is_paired)
1617 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1618 		else
1619 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1620 	}
1621 
1622 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1623 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1624 			return hdcp2_msg_timeout[i].timeout;
1625 	}
1626 
1627 	return -EINVAL;
1628 }
1629 
1630 static int
1631 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1632 			      u8 msg_id, bool *msg_ready,
1633 			      ssize_t *msg_sz)
1634 {
1635 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1636 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1637 	int ret;
1638 
1639 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1640 	if (ret < 0) {
1641 		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1642 			    ret);
1643 		return ret;
1644 	}
1645 
1646 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1647 		  rx_status[0]);
1648 
1649 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1650 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1651 			     *msg_sz);
1652 	else
1653 		*msg_ready = *msg_sz;
1654 
1655 	return 0;
1656 }
1657 
1658 static ssize_t
1659 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1660 			      u8 msg_id, bool paired)
1661 {
1662 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1663 	bool msg_ready = false;
1664 	int timeout, ret;
1665 	ssize_t msg_sz = 0;
1666 
1667 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1668 	if (timeout < 0)
1669 		return timeout;
1670 
1671 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1672 							     msg_id, &msg_ready,
1673 							     &msg_sz),
1674 			 !ret && msg_ready && msg_sz, timeout * 1000,
1675 			 1000, 5 * 1000);
1676 	if (ret)
1677 		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1678 			    msg_id, ret, timeout);
1679 
1680 	return ret ? ret : msg_sz;
1681 }
1682 
1683 static
1684 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1685 			       void *buf, size_t size)
1686 {
1687 	unsigned int offset;
1688 
1689 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1690 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1691 }
1692 
1693 static
1694 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1695 			      u8 msg_id, void *buf, size_t size)
1696 {
1697 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1698 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1699 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1700 	unsigned int offset;
1701 	ssize_t ret;
1702 
1703 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1704 					    hdcp->is_paired);
1705 	if (ret < 0)
1706 		return ret;
1707 
1708 	/*
1709 	 * Available msg size should be equal to or lesser than the
1710 	 * available buffer.
1711 	 */
1712 	if (ret > size) {
1713 		drm_dbg_kms(&i915->drm,
1714 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1715 			    ret, size);
1716 		return -EINVAL;
1717 	}
1718 
1719 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1720 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1721 	if (ret)
1722 		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1723 			    msg_id, ret);
1724 
1725 	return ret;
1726 }
1727 
1728 static
1729 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1730 				struct intel_connector *connector)
1731 {
1732 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1733 	int ret;
1734 
1735 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1736 	if (ret)
1737 		return ret;
1738 
1739 	/*
1740 	 * Re-auth request and Link Integrity Failures are represented by
1741 	 * same bit. i.e reauth_req.
1742 	 */
1743 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1744 		ret = HDCP_REAUTH_REQUEST;
1745 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1746 		ret = HDCP_TOPOLOGY_CHANGE;
1747 
1748 	return ret;
1749 }
1750 
1751 static
1752 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1753 			     bool *capable)
1754 {
1755 	u8 hdcp2_version;
1756 	int ret;
1757 
1758 	*capable = false;
1759 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1760 				   &hdcp2_version, sizeof(hdcp2_version));
1761 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1762 		*capable = true;
1763 
1764 	return ret;
1765 }
1766 
1767 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1768 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1769 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1770 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1771 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1772 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1773 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1774 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1775 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1776 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1777 	.check_link = intel_hdmi_hdcp_check_link,
1778 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1779 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1780 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1781 	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1782 	.protocol = HDCP_PROTOCOL_HDMI,
1783 };
1784 
1785 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1786 {
1787 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1788 	int max_tmds_clock, vbt_max_tmds_clock;
1789 
1790 	if (DISPLAY_VER(dev_priv) >= 10)
1791 		max_tmds_clock = 594000;
1792 	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1793 		max_tmds_clock = 300000;
1794 	else if (DISPLAY_VER(dev_priv) >= 5)
1795 		max_tmds_clock = 225000;
1796 	else
1797 		max_tmds_clock = 165000;
1798 
1799 	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1800 	if (vbt_max_tmds_clock)
1801 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1802 
1803 	return max_tmds_clock;
1804 }
1805 
1806 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1807 				const struct drm_connector_state *conn_state)
1808 {
1809 	return hdmi->has_hdmi_sink &&
1810 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1811 }
1812 
1813 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1814 {
1815 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1816 }
1817 
1818 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1819 				 bool respect_downstream_limits,
1820 				 bool has_hdmi_sink)
1821 {
1822 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1823 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1824 
1825 	if (respect_downstream_limits) {
1826 		struct intel_connector *connector = hdmi->attached_connector;
1827 		const struct drm_display_info *info = &connector->base.display_info;
1828 
1829 		if (hdmi->dp_dual_mode.max_tmds_clock)
1830 			max_tmds_clock = min(max_tmds_clock,
1831 					     hdmi->dp_dual_mode.max_tmds_clock);
1832 
1833 		if (info->max_tmds_clock)
1834 			max_tmds_clock = min(max_tmds_clock,
1835 					     info->max_tmds_clock);
1836 		else if (!has_hdmi_sink)
1837 			max_tmds_clock = min(max_tmds_clock, 165000);
1838 	}
1839 
1840 	return max_tmds_clock;
1841 }
1842 
1843 static enum drm_mode_status
1844 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1845 		      int clock, bool respect_downstream_limits,
1846 		      bool has_hdmi_sink)
1847 {
1848 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1849 	enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port);
1850 
1851 	if (clock < 25000)
1852 		return MODE_CLOCK_LOW;
1853 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1854 					  has_hdmi_sink))
1855 		return MODE_CLOCK_HIGH;
1856 
1857 	/* GLK DPLL can't generate 446-480 MHz */
1858 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1859 		return MODE_CLOCK_RANGE;
1860 
1861 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1862 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1863 	    clock > 223333 && clock < 240000)
1864 		return MODE_CLOCK_RANGE;
1865 
1866 	/* CHV DPLL can't generate 216-240 MHz */
1867 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1868 		return MODE_CLOCK_RANGE;
1869 
1870 	/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1871 	if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200)
1872 		return MODE_CLOCK_RANGE;
1873 
1874 	/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1875 	if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800)
1876 		return MODE_CLOCK_RANGE;
1877 
1878 	/*
1879 	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1880 	 * set of link rates.
1881 	 *
1882 	 * FIXME: We will hopefully get an algorithmic way of programming
1883 	 * the MPLLB for HDMI in the future.
1884 	 */
1885 	if (IS_DG2(dev_priv))
1886 		return intel_snps_phy_check_hdmi_link_rate(clock);
1887 
1888 	return MODE_OK;
1889 }
1890 
1891 int intel_hdmi_tmds_clock(int clock, int bpc, bool ycbcr420_output)
1892 {
1893 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1894 	if (ycbcr420_output)
1895 		clock /= 2;
1896 
1897 	/*
1898 	 * Need to adjust the port link by:
1899 	 *  1.5x for 12bpc
1900 	 *  1.25x for 10bpc
1901 	 */
1902 	return DIV_ROUND_CLOSEST(clock * bpc, 8);
1903 }
1904 
1905 static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc)
1906 {
1907 	switch (bpc) {
1908 	case 12:
1909 		return !HAS_GMCH(i915);
1910 	case 10:
1911 		return DISPLAY_VER(i915) >= 11;
1912 	case 8:
1913 		return true;
1914 	default:
1915 		MISSING_CASE(bpc);
1916 		return false;
1917 	}
1918 }
1919 
1920 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1921 					 int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1922 {
1923 	const struct drm_display_info *info = &connector->display_info;
1924 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1925 
1926 	switch (bpc) {
1927 	case 12:
1928 		if (!has_hdmi_sink)
1929 			return false;
1930 
1931 		if (ycbcr420_output)
1932 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1933 		else
1934 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1935 	case 10:
1936 		if (!has_hdmi_sink)
1937 			return false;
1938 
1939 		if (ycbcr420_output)
1940 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1941 		else
1942 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1943 	case 8:
1944 		return true;
1945 	default:
1946 		MISSING_CASE(bpc);
1947 		return false;
1948 	}
1949 }
1950 
1951 static enum drm_mode_status
1952 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1953 			    bool has_hdmi_sink, bool ycbcr420_output)
1954 {
1955 	struct drm_i915_private *i915 = to_i915(connector->dev);
1956 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1957 	enum drm_mode_status status = MODE_OK;
1958 	int bpc;
1959 
1960 	/*
1961 	 * Try all color depths since valid port clock range
1962 	 * can have holes. Any mode that can be used with at
1963 	 * least one color depth is accepted.
1964 	 */
1965 	for (bpc = 12; bpc >= 8; bpc -= 2) {
1966 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output);
1967 
1968 		if (!intel_hdmi_source_bpc_possible(i915, bpc))
1969 			continue;
1970 
1971 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
1972 			continue;
1973 
1974 		status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
1975 		if (status == MODE_OK)
1976 			return MODE_OK;
1977 	}
1978 
1979 	/* can never happen */
1980 	drm_WARN_ON(&i915->drm, status == MODE_OK);
1981 
1982 	return status;
1983 }
1984 
1985 static enum drm_mode_status
1986 intel_hdmi_mode_valid(struct drm_connector *connector,
1987 		      struct drm_display_mode *mode)
1988 {
1989 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1990 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1991 	enum drm_mode_status status;
1992 	int clock = mode->clock;
1993 	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1994 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1995 	bool ycbcr_420_only;
1996 
1997 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1998 		clock *= 2;
1999 
2000 	if (clock > max_dotclk)
2001 		return MODE_CLOCK_HIGH;
2002 
2003 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2004 		if (!has_hdmi_sink)
2005 			return MODE_CLOCK_LOW;
2006 		clock *= 2;
2007 	}
2008 
2009 	/*
2010 	 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2011 	 * enumerated only if FRL is supported. Current platforms do not support
2012 	 * FRL so prune the higher resolution modes that require doctclock more
2013 	 * than 600MHz.
2014 	 */
2015 	if (clock > 600000)
2016 		return MODE_CLOCK_HIGH;
2017 
2018 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2019 
2020 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
2021 	if (status != MODE_OK) {
2022 		if (ycbcr_420_only ||
2023 		    !connector->ycbcr_420_allowed ||
2024 		    !drm_mode_is_420_also(&connector->display_info, mode))
2025 			return status;
2026 
2027 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
2028 		if (status != MODE_OK)
2029 			return status;
2030 	}
2031 
2032 	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2033 }
2034 
2035 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2036 			     int bpc, bool has_hdmi_sink, bool ycbcr420_output)
2037 {
2038 	struct drm_atomic_state *state = crtc_state->uapi.state;
2039 	struct drm_connector_state *connector_state;
2040 	struct drm_connector *connector;
2041 	int i;
2042 
2043 	for_each_new_connector_in_state(state, connector, connector_state, i) {
2044 		if (connector_state->crtc != crtc_state->uapi.crtc)
2045 			continue;
2046 
2047 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
2048 			return false;
2049 	}
2050 
2051 	return true;
2052 }
2053 
2054 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2055 {
2056 	struct drm_i915_private *dev_priv =
2057 		to_i915(crtc_state->uapi.crtc->dev);
2058 	const struct drm_display_mode *adjusted_mode =
2059 		&crtc_state->hw.adjusted_mode;
2060 
2061 	if (!intel_hdmi_source_bpc_possible(dev_priv, bpc))
2062 		return false;
2063 
2064 	/* Display Wa_1405510057:icl,ehl */
2065 	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2066 	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2067 	    (adjusted_mode->crtc_hblank_end -
2068 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2069 		return false;
2070 
2071 	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink,
2072 				       intel_hdmi_is_ycbcr420(crtc_state));
2073 }
2074 
2075 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2076 				  struct intel_crtc_state *crtc_state,
2077 				  int clock, bool respect_downstream_limits)
2078 {
2079 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2080 	bool ycbcr420_output = intel_hdmi_is_ycbcr420(crtc_state);
2081 	int bpc;
2082 
2083 	/*
2084 	 * pipe_bpp could already be below 8bpc due to FDI
2085 	 * bandwidth constraints. HDMI minimum is 8bpc however.
2086 	 */
2087 	bpc = max(crtc_state->pipe_bpp / 3, 8);
2088 
2089 	/*
2090 	 * We will never exceed downstream TMDS clock limits while
2091 	 * attempting deep color. If the user insists on forcing an
2092 	 * out of spec mode they will have to be satisfied with 8bpc.
2093 	 */
2094 	if (!respect_downstream_limits)
2095 		bpc = 8;
2096 
2097 	for (; bpc >= 8; bpc -= 2) {
2098 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output);
2099 
2100 		if (hdmi_bpc_possible(crtc_state, bpc) &&
2101 		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2102 					  respect_downstream_limits,
2103 					  crtc_state->has_hdmi_sink) == MODE_OK)
2104 			return bpc;
2105 	}
2106 
2107 	return -EINVAL;
2108 }
2109 
2110 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2111 				    struct intel_crtc_state *crtc_state,
2112 				    bool respect_downstream_limits)
2113 {
2114 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2115 	const struct drm_display_mode *adjusted_mode =
2116 		&crtc_state->hw.adjusted_mode;
2117 	int bpc, clock = adjusted_mode->crtc_clock;
2118 
2119 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2120 		clock *= 2;
2121 
2122 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2123 				     respect_downstream_limits);
2124 	if (bpc < 0)
2125 		return bpc;
2126 
2127 	crtc_state->port_clock =
2128 		intel_hdmi_tmds_clock(clock, bpc, intel_hdmi_is_ycbcr420(crtc_state));
2129 
2130 	/*
2131 	 * pipe_bpp could already be below 8bpc due to
2132 	 * FDI bandwidth constraints. We shouldn't bump it
2133 	 * back up to the HDMI minimum 8bpc in that case.
2134 	 */
2135 	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2136 
2137 	drm_dbg_kms(&i915->drm,
2138 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2139 		    bpc, crtc_state->pipe_bpp);
2140 
2141 	return 0;
2142 }
2143 
2144 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2145 				    const struct drm_connector_state *conn_state)
2146 {
2147 	const struct intel_digital_connector_state *intel_conn_state =
2148 		to_intel_digital_connector_state(conn_state);
2149 	const struct drm_display_mode *adjusted_mode =
2150 		&crtc_state->hw.adjusted_mode;
2151 
2152 	/*
2153 	 * Our YCbCr output is always limited range.
2154 	 * crtc_state->limited_color_range only applies to RGB,
2155 	 * and it must never be set for YCbCr or we risk setting
2156 	 * some conflicting bits in PIPECONF which will mess up
2157 	 * the colors on the monitor.
2158 	 */
2159 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2160 		return false;
2161 
2162 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2163 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2164 		return crtc_state->has_hdmi_sink &&
2165 			drm_default_rgb_quant_range(adjusted_mode) ==
2166 			HDMI_QUANTIZATION_RANGE_LIMITED;
2167 	} else {
2168 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2169 	}
2170 }
2171 
2172 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2173 				 const struct intel_crtc_state *crtc_state,
2174 				 const struct drm_connector_state *conn_state)
2175 {
2176 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2177 	const struct intel_digital_connector_state *intel_conn_state =
2178 		to_intel_digital_connector_state(conn_state);
2179 
2180 	if (!crtc_state->has_hdmi_sink)
2181 		return false;
2182 
2183 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2184 		return intel_hdmi->has_audio;
2185 	else
2186 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2187 }
2188 
2189 static enum intel_output_format
2190 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state,
2191 			 struct intel_connector *connector,
2192 			 bool ycbcr_420_output)
2193 {
2194 	if (!crtc_state->has_hdmi_sink)
2195 		return INTEL_OUTPUT_FORMAT_RGB;
2196 
2197 	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2198 		return INTEL_OUTPUT_FORMAT_YCBCR420;
2199 	else
2200 		return INTEL_OUTPUT_FORMAT_RGB;
2201 }
2202 
2203 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2204 					    struct intel_crtc_state *crtc_state,
2205 					    const struct drm_connector_state *conn_state,
2206 					    bool respect_downstream_limits)
2207 {
2208 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2209 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2210 	const struct drm_display_info *info = &connector->base.display_info;
2211 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2212 	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2213 	int ret;
2214 
2215 	crtc_state->output_format =
2216 		intel_hdmi_output_format(crtc_state, connector, ycbcr_420_only);
2217 
2218 	if (ycbcr_420_only && !intel_hdmi_is_ycbcr420(crtc_state)) {
2219 		drm_dbg_kms(&i915->drm,
2220 			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2221 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2222 	}
2223 
2224 	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2225 	if (ret) {
2226 		if (intel_hdmi_is_ycbcr420(crtc_state) ||
2227 		    !connector->base.ycbcr_420_allowed ||
2228 		    !drm_mode_is_420_also(info, adjusted_mode))
2229 			return ret;
2230 
2231 		crtc_state->output_format = intel_hdmi_output_format(crtc_state, connector, true);
2232 		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2233 	}
2234 
2235 	return ret;
2236 }
2237 
2238 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2239 {
2240 	return crtc_state->uapi.encoder_mask &&
2241 		!is_power_of_2(crtc_state->uapi.encoder_mask);
2242 }
2243 
2244 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2245 			      struct intel_crtc_state *pipe_config,
2246 			      struct drm_connector_state *conn_state)
2247 {
2248 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2249 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2250 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2251 	struct drm_connector *connector = conn_state->connector;
2252 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2253 	int ret;
2254 
2255 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2256 		return -EINVAL;
2257 
2258 	if (!connector->interlace_allowed &&
2259 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2260 		return -EINVAL;
2261 
2262 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2263 	pipe_config->has_hdmi_sink =
2264 		intel_has_hdmi_sink(intel_hdmi, conn_state) &&
2265 		!intel_hdmi_is_cloned(pipe_config);
2266 
2267 	if (pipe_config->has_hdmi_sink)
2268 		pipe_config->has_infoframe = true;
2269 
2270 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2271 		pipe_config->pixel_multiplier = 2;
2272 
2273 	pipe_config->has_audio =
2274 		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2275 
2276 	/*
2277 	 * Try to respect downstream TMDS clock limits first, if
2278 	 * that fails assume the user might know something we don't.
2279 	 */
2280 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2281 	if (ret)
2282 		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2283 	if (ret) {
2284 		drm_dbg_kms(&dev_priv->drm,
2285 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2286 			    pipe_config->hw.adjusted_mode.crtc_clock);
2287 		return ret;
2288 	}
2289 
2290 	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2291 		ret = intel_panel_fitting(pipe_config, conn_state);
2292 		if (ret)
2293 			return ret;
2294 	}
2295 
2296 	pipe_config->limited_color_range =
2297 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2298 
2299 	if (conn_state->picture_aspect_ratio)
2300 		adjusted_mode->picture_aspect_ratio =
2301 			conn_state->picture_aspect_ratio;
2302 
2303 	pipe_config->lane_count = 4;
2304 
2305 	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2306 		if (scdc->scrambling.low_rates)
2307 			pipe_config->hdmi_scrambling = true;
2308 
2309 		if (pipe_config->port_clock > 340000) {
2310 			pipe_config->hdmi_scrambling = true;
2311 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2312 		}
2313 	}
2314 
2315 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2316 					 conn_state);
2317 
2318 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2319 		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2320 		return -EINVAL;
2321 	}
2322 
2323 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2324 		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2325 		return -EINVAL;
2326 	}
2327 
2328 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2329 		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2330 		return -EINVAL;
2331 	}
2332 
2333 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2334 		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2335 		return -EINVAL;
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2342 {
2343 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2344 
2345 	/*
2346 	 * Give a hand to buggy BIOSen which forget to turn
2347 	 * the TMDS output buffers back on after a reboot.
2348 	 */
2349 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2350 }
2351 
2352 static void
2353 intel_hdmi_unset_edid(struct drm_connector *connector)
2354 {
2355 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2356 
2357 	intel_hdmi->has_hdmi_sink = false;
2358 	intel_hdmi->has_audio = false;
2359 
2360 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2361 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2362 
2363 	kfree(to_intel_connector(connector)->detect_edid);
2364 	to_intel_connector(connector)->detect_edid = NULL;
2365 }
2366 
2367 static void
2368 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2369 {
2370 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2371 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2372 	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2373 	struct i2c_adapter *adapter =
2374 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2375 	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2376 
2377 	/*
2378 	 * Type 1 DVI adaptors are not required to implement any
2379 	 * registers, so we can't always detect their presence.
2380 	 * Ideally we should be able to check the state of the
2381 	 * CONFIG1 pin, but no such luck on our hardware.
2382 	 *
2383 	 * The only method left to us is to check the VBT to see
2384 	 * if the port is a dual mode capable DP port.
2385 	 */
2386 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2387 		if (!connector->force &&
2388 		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2389 			drm_dbg_kms(&dev_priv->drm,
2390 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2391 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2392 		} else {
2393 			type = DRM_DP_DUAL_MODE_NONE;
2394 		}
2395 	}
2396 
2397 	if (type == DRM_DP_DUAL_MODE_NONE)
2398 		return;
2399 
2400 	hdmi->dp_dual_mode.type = type;
2401 	hdmi->dp_dual_mode.max_tmds_clock =
2402 		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2403 
2404 	drm_dbg_kms(&dev_priv->drm,
2405 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2406 		    drm_dp_get_dual_mode_type_name(type),
2407 		    hdmi->dp_dual_mode.max_tmds_clock);
2408 
2409 	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2410 	if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
2411 	    !intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2412 		drm_dbg_kms(&dev_priv->drm,
2413 			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2414 		hdmi->dp_dual_mode.max_tmds_clock = 0;
2415 	}
2416 }
2417 
2418 static bool
2419 intel_hdmi_set_edid(struct drm_connector *connector)
2420 {
2421 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2422 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2423 	intel_wakeref_t wakeref;
2424 	struct edid *edid;
2425 	bool connected = false;
2426 	struct i2c_adapter *i2c;
2427 
2428 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2429 
2430 	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2431 
2432 	edid = drm_get_edid(connector, i2c);
2433 
2434 	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2435 		drm_dbg_kms(&dev_priv->drm,
2436 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2437 		intel_gmbus_force_bit(i2c, true);
2438 		edid = drm_get_edid(connector, i2c);
2439 		intel_gmbus_force_bit(i2c, false);
2440 	}
2441 
2442 	to_intel_connector(connector)->detect_edid = edid;
2443 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2444 		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2445 		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2446 
2447 		intel_hdmi_dp_dual_mode_detect(connector);
2448 
2449 		connected = true;
2450 	}
2451 
2452 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2453 
2454 	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2455 
2456 	return connected;
2457 }
2458 
2459 static enum drm_connector_status
2460 intel_hdmi_detect(struct drm_connector *connector, bool force)
2461 {
2462 	enum drm_connector_status status = connector_status_disconnected;
2463 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2464 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2465 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2466 	intel_wakeref_t wakeref;
2467 
2468 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2469 		    connector->base.id, connector->name);
2470 
2471 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2472 		return connector_status_disconnected;
2473 
2474 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2475 
2476 	if (DISPLAY_VER(dev_priv) >= 11 &&
2477 	    !intel_digital_port_connected(encoder))
2478 		goto out;
2479 
2480 	intel_hdmi_unset_edid(connector);
2481 
2482 	if (intel_hdmi_set_edid(connector))
2483 		status = connector_status_connected;
2484 
2485 out:
2486 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2487 
2488 	if (status != connector_status_connected)
2489 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2490 
2491 	/*
2492 	 * Make sure the refs for power wells enabled during detect are
2493 	 * dropped to avoid a new detect cycle triggered by HPD polling.
2494 	 */
2495 	intel_display_power_flush_work(dev_priv);
2496 
2497 	return status;
2498 }
2499 
2500 static void
2501 intel_hdmi_force(struct drm_connector *connector)
2502 {
2503 	struct drm_i915_private *i915 = to_i915(connector->dev);
2504 
2505 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2506 		    connector->base.id, connector->name);
2507 
2508 	intel_hdmi_unset_edid(connector);
2509 
2510 	if (connector->status != connector_status_connected)
2511 		return;
2512 
2513 	intel_hdmi_set_edid(connector);
2514 }
2515 
2516 static int intel_hdmi_get_modes(struct drm_connector *connector)
2517 {
2518 	struct edid *edid;
2519 
2520 	edid = to_intel_connector(connector)->detect_edid;
2521 	if (edid == NULL)
2522 		return 0;
2523 
2524 	return intel_connector_update_modes(connector, edid);
2525 }
2526 
2527 static struct i2c_adapter *
2528 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2529 {
2530 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2531 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2532 
2533 	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2534 }
2535 
2536 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2537 {
2538 	struct drm_i915_private *i915 = to_i915(connector->dev);
2539 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2540 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2541 	struct kobject *connector_kobj = &connector->kdev->kobj;
2542 	int ret;
2543 
2544 	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2545 	if (ret)
2546 		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2547 }
2548 
2549 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2550 {
2551 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2552 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2553 	struct kobject *connector_kobj = &connector->kdev->kobj;
2554 
2555 	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2556 }
2557 
2558 static int
2559 intel_hdmi_connector_register(struct drm_connector *connector)
2560 {
2561 	int ret;
2562 
2563 	ret = intel_connector_register(connector);
2564 	if (ret)
2565 		return ret;
2566 
2567 	intel_hdmi_create_i2c_symlink(connector);
2568 
2569 	return ret;
2570 }
2571 
2572 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2573 {
2574 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2575 
2576 	cec_notifier_conn_unregister(n);
2577 
2578 	intel_hdmi_remove_i2c_symlink(connector);
2579 	intel_connector_unregister(connector);
2580 }
2581 
2582 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2583 	.detect = intel_hdmi_detect,
2584 	.force = intel_hdmi_force,
2585 	.fill_modes = drm_helper_probe_single_connector_modes,
2586 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2587 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2588 	.late_register = intel_hdmi_connector_register,
2589 	.early_unregister = intel_hdmi_connector_unregister,
2590 	.destroy = intel_connector_destroy,
2591 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2592 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2593 };
2594 
2595 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2596 	.get_modes = intel_hdmi_get_modes,
2597 	.mode_valid = intel_hdmi_mode_valid,
2598 	.atomic_check = intel_digital_connector_atomic_check,
2599 };
2600 
2601 static void
2602 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2603 {
2604 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2605 
2606 	intel_attach_force_audio_property(connector);
2607 	intel_attach_broadcast_rgb_property(connector);
2608 	intel_attach_aspect_ratio_property(connector);
2609 
2610 	intel_attach_hdmi_colorspace_property(connector);
2611 	drm_connector_attach_content_type_property(connector);
2612 
2613 	if (DISPLAY_VER(dev_priv) >= 10)
2614 		drm_connector_attach_hdr_output_metadata_property(connector);
2615 
2616 	if (!HAS_GMCH(dev_priv))
2617 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2618 }
2619 
2620 /*
2621  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2622  * @encoder: intel_encoder
2623  * @connector: drm_connector
2624  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2625  *  or reset the high tmds clock ratio for scrambling
2626  * @scrambling: bool to Indicate if the function needs to set or reset
2627  *  sink scrambling
2628  *
2629  * This function handles scrambling on HDMI 2.0 capable sinks.
2630  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2631  * it enables scrambling. This should be called before enabling the HDMI
2632  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2633  * detect a scrambled clock within 100 ms.
2634  *
2635  * Returns:
2636  * True on success, false on failure.
2637  */
2638 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2639 				       struct drm_connector *connector,
2640 				       bool high_tmds_clock_ratio,
2641 				       bool scrambling)
2642 {
2643 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2644 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2645 	struct drm_scrambling *sink_scrambling =
2646 		&connector->display_info.hdmi.scdc.scrambling;
2647 	struct i2c_adapter *adapter =
2648 		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2649 
2650 	if (!sink_scrambling->supported)
2651 		return true;
2652 
2653 	drm_dbg_kms(&dev_priv->drm,
2654 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2655 		    connector->base.id, connector->name,
2656 		    str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2657 
2658 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2659 	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2660 						  high_tmds_clock_ratio) &&
2661 		drm_scdc_set_scrambling(adapter, scrambling);
2662 }
2663 
2664 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2665 {
2666 	u8 ddc_pin;
2667 
2668 	switch (port) {
2669 	case PORT_B:
2670 		ddc_pin = GMBUS_PIN_DPB;
2671 		break;
2672 	case PORT_C:
2673 		ddc_pin = GMBUS_PIN_DPC;
2674 		break;
2675 	case PORT_D:
2676 		ddc_pin = GMBUS_PIN_DPD_CHV;
2677 		break;
2678 	default:
2679 		MISSING_CASE(port);
2680 		ddc_pin = GMBUS_PIN_DPB;
2681 		break;
2682 	}
2683 	return ddc_pin;
2684 }
2685 
2686 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2687 {
2688 	u8 ddc_pin;
2689 
2690 	switch (port) {
2691 	case PORT_B:
2692 		ddc_pin = GMBUS_PIN_1_BXT;
2693 		break;
2694 	case PORT_C:
2695 		ddc_pin = GMBUS_PIN_2_BXT;
2696 		break;
2697 	default:
2698 		MISSING_CASE(port);
2699 		ddc_pin = GMBUS_PIN_1_BXT;
2700 		break;
2701 	}
2702 	return ddc_pin;
2703 }
2704 
2705 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2706 			      enum port port)
2707 {
2708 	u8 ddc_pin;
2709 
2710 	switch (port) {
2711 	case PORT_B:
2712 		ddc_pin = GMBUS_PIN_1_BXT;
2713 		break;
2714 	case PORT_C:
2715 		ddc_pin = GMBUS_PIN_2_BXT;
2716 		break;
2717 	case PORT_D:
2718 		ddc_pin = GMBUS_PIN_4_CNP;
2719 		break;
2720 	case PORT_F:
2721 		ddc_pin = GMBUS_PIN_3_BXT;
2722 		break;
2723 	default:
2724 		MISSING_CASE(port);
2725 		ddc_pin = GMBUS_PIN_1_BXT;
2726 		break;
2727 	}
2728 	return ddc_pin;
2729 }
2730 
2731 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2732 {
2733 	enum phy phy = intel_port_to_phy(dev_priv, port);
2734 
2735 	if (intel_phy_is_combo(dev_priv, phy))
2736 		return GMBUS_PIN_1_BXT + port;
2737 	else if (intel_phy_is_tc(dev_priv, phy))
2738 		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2739 
2740 	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2741 	return GMBUS_PIN_2_BXT;
2742 }
2743 
2744 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2745 {
2746 	enum phy phy = intel_port_to_phy(dev_priv, port);
2747 	u8 ddc_pin;
2748 
2749 	switch (phy) {
2750 	case PHY_A:
2751 		ddc_pin = GMBUS_PIN_1_BXT;
2752 		break;
2753 	case PHY_B:
2754 		ddc_pin = GMBUS_PIN_2_BXT;
2755 		break;
2756 	case PHY_C:
2757 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2758 		break;
2759 	default:
2760 		MISSING_CASE(phy);
2761 		ddc_pin = GMBUS_PIN_1_BXT;
2762 		break;
2763 	}
2764 	return ddc_pin;
2765 }
2766 
2767 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2768 {
2769 	enum phy phy = intel_port_to_phy(dev_priv, port);
2770 
2771 	WARN_ON(port == PORT_C);
2772 
2773 	/*
2774 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2775 	 * final two outputs use type-c pins, even though they're actually
2776 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2777 	 * all outputs.
2778 	 */
2779 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2780 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2781 
2782 	return GMBUS_PIN_1_BXT + phy;
2783 }
2784 
2785 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2786 {
2787 	enum phy phy = intel_port_to_phy(i915, port);
2788 
2789 	drm_WARN_ON(&i915->drm, port == PORT_A);
2790 
2791 	/*
2792 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2793 	 * final two outputs use type-c pins, even though they're actually
2794 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2795 	 * all outputs.
2796 	 */
2797 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2798 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2799 
2800 	return GMBUS_PIN_1_BXT + phy;
2801 }
2802 
2803 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2804 {
2805 	return intel_port_to_phy(dev_priv, port) + 1;
2806 }
2807 
2808 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2809 {
2810 	enum phy phy = intel_port_to_phy(dev_priv, port);
2811 
2812 	WARN_ON(port == PORT_B || port == PORT_C);
2813 
2814 	/*
2815 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2816 	 * except first combo output.
2817 	 */
2818 	if (phy == PHY_A)
2819 		return GMBUS_PIN_1_BXT;
2820 
2821 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2822 }
2823 
2824 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2825 			      enum port port)
2826 {
2827 	u8 ddc_pin;
2828 
2829 	switch (port) {
2830 	case PORT_B:
2831 		ddc_pin = GMBUS_PIN_DPB;
2832 		break;
2833 	case PORT_C:
2834 		ddc_pin = GMBUS_PIN_DPC;
2835 		break;
2836 	case PORT_D:
2837 		ddc_pin = GMBUS_PIN_DPD;
2838 		break;
2839 	default:
2840 		MISSING_CASE(port);
2841 		ddc_pin = GMBUS_PIN_DPB;
2842 		break;
2843 	}
2844 	return ddc_pin;
2845 }
2846 
2847 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2848 {
2849 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2850 	enum port port = encoder->port;
2851 	u8 ddc_pin;
2852 
2853 	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2854 	if (ddc_pin) {
2855 		drm_dbg_kms(&dev_priv->drm,
2856 			    "Using DDC pin 0x%x for port %c (VBT)\n",
2857 			    ddc_pin, port_name(port));
2858 		return ddc_pin;
2859 	}
2860 
2861 	if (IS_ALDERLAKE_S(dev_priv))
2862 		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2863 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2864 		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2865 	else if (IS_ROCKETLAKE(dev_priv))
2866 		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2867 	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2868 		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2869 	else if (IS_JSL_EHL(dev_priv) && HAS_PCH_TGP(dev_priv))
2870 		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2871 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2872 		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2873 	else if (HAS_PCH_CNP(dev_priv))
2874 		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2875 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2876 		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2877 	else if (IS_CHERRYVIEW(dev_priv))
2878 		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2879 	else
2880 		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2881 
2882 	drm_dbg_kms(&dev_priv->drm,
2883 		    "Using DDC pin 0x%x for port %c (platform default)\n",
2884 		    ddc_pin, port_name(port));
2885 
2886 	return ddc_pin;
2887 }
2888 
2889 void intel_infoframe_init(struct intel_digital_port *dig_port)
2890 {
2891 	struct drm_i915_private *dev_priv =
2892 		to_i915(dig_port->base.base.dev);
2893 
2894 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2895 		dig_port->write_infoframe = vlv_write_infoframe;
2896 		dig_port->read_infoframe = vlv_read_infoframe;
2897 		dig_port->set_infoframes = vlv_set_infoframes;
2898 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2899 	} else if (IS_G4X(dev_priv)) {
2900 		dig_port->write_infoframe = g4x_write_infoframe;
2901 		dig_port->read_infoframe = g4x_read_infoframe;
2902 		dig_port->set_infoframes = g4x_set_infoframes;
2903 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2904 	} else if (HAS_DDI(dev_priv)) {
2905 		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2906 			dig_port->write_infoframe = lspcon_write_infoframe;
2907 			dig_port->read_infoframe = lspcon_read_infoframe;
2908 			dig_port->set_infoframes = lspcon_set_infoframes;
2909 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2910 		} else {
2911 			dig_port->write_infoframe = hsw_write_infoframe;
2912 			dig_port->read_infoframe = hsw_read_infoframe;
2913 			dig_port->set_infoframes = hsw_set_infoframes;
2914 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2915 		}
2916 	} else if (HAS_PCH_IBX(dev_priv)) {
2917 		dig_port->write_infoframe = ibx_write_infoframe;
2918 		dig_port->read_infoframe = ibx_read_infoframe;
2919 		dig_port->set_infoframes = ibx_set_infoframes;
2920 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2921 	} else {
2922 		dig_port->write_infoframe = cpt_write_infoframe;
2923 		dig_port->read_infoframe = cpt_read_infoframe;
2924 		dig_port->set_infoframes = cpt_set_infoframes;
2925 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2926 	}
2927 }
2928 
2929 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2930 			       struct intel_connector *intel_connector)
2931 {
2932 	struct drm_connector *connector = &intel_connector->base;
2933 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2934 	struct intel_encoder *intel_encoder = &dig_port->base;
2935 	struct drm_device *dev = intel_encoder->base.dev;
2936 	struct drm_i915_private *dev_priv = to_i915(dev);
2937 	struct i2c_adapter *ddc;
2938 	enum port port = intel_encoder->port;
2939 	struct cec_connector_info conn_info;
2940 
2941 	drm_dbg_kms(&dev_priv->drm,
2942 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2943 		    intel_encoder->base.base.id, intel_encoder->base.name);
2944 
2945 	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2946 		return;
2947 
2948 	if (drm_WARN(dev, dig_port->max_lanes < 4,
2949 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2950 		     dig_port->max_lanes, intel_encoder->base.base.id,
2951 		     intel_encoder->base.name))
2952 		return;
2953 
2954 	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2955 	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2956 
2957 	drm_connector_init_with_ddc(dev, connector,
2958 				    &intel_hdmi_connector_funcs,
2959 				    DRM_MODE_CONNECTOR_HDMIA,
2960 				    ddc);
2961 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2962 
2963 	if (DISPLAY_VER(dev_priv) < 12)
2964 		connector->interlace_allowed = true;
2965 
2966 	connector->stereo_allowed = true;
2967 
2968 	if (DISPLAY_VER(dev_priv) >= 10)
2969 		connector->ycbcr_420_allowed = true;
2970 
2971 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2972 
2973 	if (HAS_DDI(dev_priv))
2974 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2975 	else
2976 		intel_connector->get_hw_state = intel_connector_get_hw_state;
2977 
2978 	intel_hdmi_add_properties(intel_hdmi, connector);
2979 
2980 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2981 	intel_hdmi->attached_connector = intel_connector;
2982 
2983 	if (is_hdcp_supported(dev_priv, port)) {
2984 		int ret = intel_hdcp_init(intel_connector, dig_port,
2985 					  &intel_hdmi_hdcp_shim);
2986 		if (ret)
2987 			drm_dbg_kms(&dev_priv->drm,
2988 				    "HDCP init failed, skipping.\n");
2989 	}
2990 
2991 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2992 	 * 0xd.  Failure to do so will result in spurious interrupts being
2993 	 * generated on the port when a cable is not attached.
2994 	 */
2995 	if (IS_G45(dev_priv)) {
2996 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2997 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2998 		               (temp & ~0xf) | 0xd);
2999 	}
3000 
3001 	cec_fill_conn_info_from_drm(&conn_info, connector);
3002 
3003 	intel_hdmi->cec_notifier =
3004 		cec_notifier_conn_register(dev->dev, port_identifier(port),
3005 					   &conn_info);
3006 	if (!intel_hdmi->cec_notifier)
3007 		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
3008 }
3009 
3010 /*
3011  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3012  * @vactive: Vactive of a display mode
3013  *
3014  * @return: appropriate dsc slice height for a given mode.
3015  */
3016 int intel_hdmi_dsc_get_slice_height(int vactive)
3017 {
3018 	int slice_height;
3019 
3020 	/*
3021 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3022 	 * Select smallest slice height >=96, that results in a valid PPS and
3023 	 * requires minimum padding lines required for final slice.
3024 	 *
3025 	 * Assumption : Vactive is even.
3026 	 */
3027 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3028 		if (vactive % slice_height == 0)
3029 			return slice_height;
3030 
3031 	return 0;
3032 }
3033 
3034 /*
3035  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3036  * and dsc decoder capabilities
3037  *
3038  * @crtc_state: intel crtc_state
3039  * @src_max_slices: maximum slices supported by the DSC encoder
3040  * @src_max_slice_width: maximum slice width supported by DSC encoder
3041  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3042  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3043  *
3044  * @return: num of dsc slices that can be supported by the dsc encoder
3045  * and decoder.
3046  */
3047 int
3048 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3049 			      int src_max_slices, int src_max_slice_width,
3050 			      int hdmi_max_slices, int hdmi_throughput)
3051 {
3052 /* Pixel rates in KPixels/sec */
3053 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3054 /*
3055  * Rates at which the source and sink are required to process pixels in each
3056  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3057  */
3058 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3059 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3060 
3061 /* Spec limits the slice width to 2720 pixels */
3062 #define MAX_HDMI_SLICE_WIDTH			2720
3063 	int kslice_adjust;
3064 	int adjusted_clk_khz;
3065 	int min_slices;
3066 	int target_slices;
3067 	int max_throughput; /* max clock freq. in khz per slice */
3068 	int max_slice_width;
3069 	int slice_width;
3070 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3071 
3072 	if (!hdmi_throughput)
3073 		return 0;
3074 
3075 	/*
3076 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3077 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3078 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3079 	 * dividing adjusted clock value by 10.
3080 	 */
3081 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3082 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3083 		kslice_adjust = 10;
3084 	else
3085 		kslice_adjust = 5;
3086 
3087 	/*
3088 	 * As per spec, the rate at which the source and the sink process
3089 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3090 	 * This depends upon the pixel clock rate and output formats
3091 	 * (kslice adjust).
3092 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3093 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3094 	 */
3095 
3096 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3097 
3098 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3099 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3100 	else
3101 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3102 
3103 	/*
3104 	 * Taking into account the sink's capability for maximum
3105 	 * clock per slice (in MHz) as read from HF-VSDB.
3106 	 */
3107 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3108 
3109 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3110 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3111 
3112 	/*
3113 	 * Keep on increasing the num of slices/line, starting from min_slices
3114 	 * per line till we get such a number, for which the slice_width is
3115 	 * just less than max_slice_width. The slices/line selected should be
3116 	 * less than or equal to the max horizontal slices that the combination
3117 	 * of PCON encoder and HDMI decoder can support.
3118 	 */
3119 	slice_width = max_slice_width;
3120 
3121 	do {
3122 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3123 			target_slices = 1;
3124 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3125 			target_slices = 2;
3126 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3127 			target_slices = 4;
3128 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3129 			target_slices = 8;
3130 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3131 			target_slices = 12;
3132 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3133 			target_slices = 16;
3134 		else
3135 			return 0;
3136 
3137 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3138 		if (slice_width >= max_slice_width)
3139 			min_slices = target_slices + 1;
3140 	} while (slice_width >= max_slice_width);
3141 
3142 	return target_slices;
3143 }
3144 
3145 /*
3146  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3147  * source and sink capabilities.
3148  *
3149  * @src_fraction_bpp: fractional bpp supported by the source
3150  * @slice_width: dsc slice width supported by the source and sink
3151  * @num_slices: num of slices supported by the source and sink
3152  * @output_format: video output format
3153  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3154  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3155  *
3156  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3157  */
3158 int
3159 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3160 		       int output_format, bool hdmi_all_bpp,
3161 		       int hdmi_max_chunk_bytes)
3162 {
3163 	int max_dsc_bpp, min_dsc_bpp;
3164 	int target_bytes;
3165 	bool bpp_found = false;
3166 	int bpp_decrement_x16;
3167 	int bpp_target;
3168 	int bpp_target_x16;
3169 
3170 	/*
3171 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3172 	 * Start with the max bpp and keep on decrementing with
3173 	 * fractional bpp, if supported by PCON DSC encoder
3174 	 *
3175 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3176 	 */
3177 
3178 	/* Assuming: bpc as 8*/
3179 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3180 		min_dsc_bpp = 6;
3181 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3182 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3183 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3184 		min_dsc_bpp = 8;
3185 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3186 	} else {
3187 		/* Assuming 4:2:2 encoding */
3188 		min_dsc_bpp = 7;
3189 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3190 	}
3191 
3192 	/*
3193 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3194 	 * Section 7.7.34 : Source shall not enable compressed Video
3195 	 * Transport with bpp_target settings above 12 bpp unless
3196 	 * DSC_all_bpp is set to 1.
3197 	 */
3198 	if (!hdmi_all_bpp)
3199 		max_dsc_bpp = min(max_dsc_bpp, 12);
3200 
3201 	/*
3202 	 * The Sink has a limit of compressed data in bytes for a scanline,
3203 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3204 	 * The no. of bytes depend on the target bits per pixel that the
3205 	 * source configures. So we start with the max_bpp and calculate
3206 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3207 	 * till we get the target_chunk_bytes just less than what the sink's
3208 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3209 	 *
3210 	 * The decrement is according to the fractional support from PCON DSC
3211 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3212 	 *
3213 	 * bpp_target_x16 = bpp_target * 16
3214 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3215 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3216 	 */
3217 
3218 	bpp_target = max_dsc_bpp;
3219 
3220 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3221 	if (!src_fractional_bpp)
3222 		src_fractional_bpp = 1;
3223 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3224 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3225 
3226 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3227 		int bpp;
3228 
3229 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3230 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3231 		if (target_bytes <= hdmi_max_chunk_bytes) {
3232 			bpp_found = true;
3233 			break;
3234 		}
3235 		bpp_target_x16 -= bpp_decrement_x16;
3236 	}
3237 	if (bpp_found)
3238 		return bpp_target_x16;
3239 
3240 	return 0;
3241 }
3242