1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40 
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_connector.h"
45 #include "intel_ddi.h"
46 #include "intel_de.h"
47 #include "intel_display_types.h"
48 #include "intel_dp.h"
49 #include "intel_gmbus.h"
50 #include "intel_hdcp.h"
51 #include "intel_hdmi.h"
52 #include "intel_lspcon.h"
53 #include "intel_panel.h"
54 
55 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
56 {
57 	return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
58 }
59 
60 static void
61 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
62 {
63 	struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
64 	struct drm_i915_private *dev_priv = to_i915(dev);
65 	u32 enabled_bits;
66 
67 	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
68 
69 	drm_WARN(dev,
70 		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
71 		 "HDMI port enabled, expecting disabled\n");
72 }
73 
74 static void
75 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
76 				     enum transcoder cpu_transcoder)
77 {
78 	drm_WARN(&dev_priv->drm,
79 		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
80 		 TRANS_DDI_FUNC_ENABLE,
81 		 "HDMI transcoder function enabled, expecting disabled\n");
82 }
83 
84 static u32 g4x_infoframe_index(unsigned int type)
85 {
86 	switch (type) {
87 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
88 		return VIDEO_DIP_SELECT_GAMUT;
89 	case HDMI_INFOFRAME_TYPE_AVI:
90 		return VIDEO_DIP_SELECT_AVI;
91 	case HDMI_INFOFRAME_TYPE_SPD:
92 		return VIDEO_DIP_SELECT_SPD;
93 	case HDMI_INFOFRAME_TYPE_VENDOR:
94 		return VIDEO_DIP_SELECT_VENDOR;
95 	default:
96 		MISSING_CASE(type);
97 		return 0;
98 	}
99 }
100 
101 static u32 g4x_infoframe_enable(unsigned int type)
102 {
103 	switch (type) {
104 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
105 		return VIDEO_DIP_ENABLE_GCP;
106 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
107 		return VIDEO_DIP_ENABLE_GAMUT;
108 	case DP_SDP_VSC:
109 		return 0;
110 	case HDMI_INFOFRAME_TYPE_AVI:
111 		return VIDEO_DIP_ENABLE_AVI;
112 	case HDMI_INFOFRAME_TYPE_SPD:
113 		return VIDEO_DIP_ENABLE_SPD;
114 	case HDMI_INFOFRAME_TYPE_VENDOR:
115 		return VIDEO_DIP_ENABLE_VENDOR;
116 	case HDMI_INFOFRAME_TYPE_DRM:
117 		return 0;
118 	default:
119 		MISSING_CASE(type);
120 		return 0;
121 	}
122 }
123 
124 static u32 hsw_infoframe_enable(unsigned int type)
125 {
126 	switch (type) {
127 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
128 		return VIDEO_DIP_ENABLE_GCP_HSW;
129 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
130 		return VIDEO_DIP_ENABLE_GMP_HSW;
131 	case DP_SDP_VSC:
132 		return VIDEO_DIP_ENABLE_VSC_HSW;
133 	case DP_SDP_PPS:
134 		return VDIP_ENABLE_PPS;
135 	case HDMI_INFOFRAME_TYPE_AVI:
136 		return VIDEO_DIP_ENABLE_AVI_HSW;
137 	case HDMI_INFOFRAME_TYPE_SPD:
138 		return VIDEO_DIP_ENABLE_SPD_HSW;
139 	case HDMI_INFOFRAME_TYPE_VENDOR:
140 		return VIDEO_DIP_ENABLE_VS_HSW;
141 	case HDMI_INFOFRAME_TYPE_DRM:
142 		return VIDEO_DIP_ENABLE_DRM_GLK;
143 	default:
144 		MISSING_CASE(type);
145 		return 0;
146 	}
147 }
148 
149 static i915_reg_t
150 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
151 		 enum transcoder cpu_transcoder,
152 		 unsigned int type,
153 		 int i)
154 {
155 	switch (type) {
156 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
157 		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
158 	case DP_SDP_VSC:
159 		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
160 	case DP_SDP_PPS:
161 		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
162 	case HDMI_INFOFRAME_TYPE_AVI:
163 		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
164 	case HDMI_INFOFRAME_TYPE_SPD:
165 		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
166 	case HDMI_INFOFRAME_TYPE_VENDOR:
167 		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
168 	case HDMI_INFOFRAME_TYPE_DRM:
169 		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
170 	default:
171 		MISSING_CASE(type);
172 		return INVALID_MMIO_REG;
173 	}
174 }
175 
176 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
177 			     unsigned int type)
178 {
179 	switch (type) {
180 	case DP_SDP_VSC:
181 		return VIDEO_DIP_VSC_DATA_SIZE;
182 	case DP_SDP_PPS:
183 		return VIDEO_DIP_PPS_DATA_SIZE;
184 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
185 		if (DISPLAY_VER(dev_priv) >= 11)
186 			return VIDEO_DIP_GMP_DATA_SIZE;
187 		else
188 			return VIDEO_DIP_DATA_SIZE;
189 	default:
190 		return VIDEO_DIP_DATA_SIZE;
191 	}
192 }
193 
194 static void g4x_write_infoframe(struct intel_encoder *encoder,
195 				const struct intel_crtc_state *crtc_state,
196 				unsigned int type,
197 				const void *frame, ssize_t len)
198 {
199 	const u32 *data = frame;
200 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
201 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
202 	int i;
203 
204 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
205 		 "Writing DIP with CTL reg disabled\n");
206 
207 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
208 	val |= g4x_infoframe_index(type);
209 
210 	val &= ~g4x_infoframe_enable(type);
211 
212 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
213 
214 	for (i = 0; i < len; i += 4) {
215 		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
216 		data++;
217 	}
218 	/* Write every possible data byte to force correct ECC calculation. */
219 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
220 		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
221 
222 	val |= g4x_infoframe_enable(type);
223 	val &= ~VIDEO_DIP_FREQ_MASK;
224 	val |= VIDEO_DIP_FREQ_VSYNC;
225 
226 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
227 	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
228 }
229 
230 static void g4x_read_infoframe(struct intel_encoder *encoder,
231 			       const struct intel_crtc_state *crtc_state,
232 			       unsigned int type,
233 			       void *frame, ssize_t len)
234 {
235 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
236 	u32 val, *data = frame;
237 	int i;
238 
239 	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
240 
241 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
242 	val |= g4x_infoframe_index(type);
243 
244 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
245 
246 	for (i = 0; i < len; i += 4)
247 		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
248 }
249 
250 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
251 				  const struct intel_crtc_state *pipe_config)
252 {
253 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
254 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
255 
256 	if ((val & VIDEO_DIP_ENABLE) == 0)
257 		return 0;
258 
259 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
260 		return 0;
261 
262 	return val & (VIDEO_DIP_ENABLE_AVI |
263 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
264 }
265 
266 static void ibx_write_infoframe(struct intel_encoder *encoder,
267 				const struct intel_crtc_state *crtc_state,
268 				unsigned int type,
269 				const void *frame, ssize_t len)
270 {
271 	const u32 *data = frame;
272 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
273 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
274 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
275 	u32 val = intel_de_read(dev_priv, reg);
276 	int i;
277 
278 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
279 		 "Writing DIP with CTL reg disabled\n");
280 
281 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
282 	val |= g4x_infoframe_index(type);
283 
284 	val &= ~g4x_infoframe_enable(type);
285 
286 	intel_de_write(dev_priv, reg, val);
287 
288 	for (i = 0; i < len; i += 4) {
289 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
290 			       *data);
291 		data++;
292 	}
293 	/* Write every possible data byte to force correct ECC calculation. */
294 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
295 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
296 
297 	val |= g4x_infoframe_enable(type);
298 	val &= ~VIDEO_DIP_FREQ_MASK;
299 	val |= VIDEO_DIP_FREQ_VSYNC;
300 
301 	intel_de_write(dev_priv, reg, val);
302 	intel_de_posting_read(dev_priv, reg);
303 }
304 
305 static void ibx_read_infoframe(struct intel_encoder *encoder,
306 			       const struct intel_crtc_state *crtc_state,
307 			       unsigned int type,
308 			       void *frame, ssize_t len)
309 {
310 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
311 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
312 	u32 val, *data = frame;
313 	int i;
314 
315 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
316 
317 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
318 	val |= g4x_infoframe_index(type);
319 
320 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
321 
322 	for (i = 0; i < len; i += 4)
323 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
324 }
325 
326 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
327 				  const struct intel_crtc_state *pipe_config)
328 {
329 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
330 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
331 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
332 	u32 val = intel_de_read(dev_priv, reg);
333 
334 	if ((val & VIDEO_DIP_ENABLE) == 0)
335 		return 0;
336 
337 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
338 		return 0;
339 
340 	return val & (VIDEO_DIP_ENABLE_AVI |
341 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
342 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
343 }
344 
345 static void cpt_write_infoframe(struct intel_encoder *encoder,
346 				const struct intel_crtc_state *crtc_state,
347 				unsigned int type,
348 				const void *frame, ssize_t len)
349 {
350 	const u32 *data = frame;
351 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
352 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
353 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
354 	u32 val = intel_de_read(dev_priv, reg);
355 	int i;
356 
357 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
358 		 "Writing DIP with CTL reg disabled\n");
359 
360 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
361 	val |= g4x_infoframe_index(type);
362 
363 	/* The DIP control register spec says that we need to update the AVI
364 	 * infoframe without clearing its enable bit */
365 	if (type != HDMI_INFOFRAME_TYPE_AVI)
366 		val &= ~g4x_infoframe_enable(type);
367 
368 	intel_de_write(dev_priv, reg, val);
369 
370 	for (i = 0; i < len; i += 4) {
371 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
372 			       *data);
373 		data++;
374 	}
375 	/* Write every possible data byte to force correct ECC calculation. */
376 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
377 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
378 
379 	val |= g4x_infoframe_enable(type);
380 	val &= ~VIDEO_DIP_FREQ_MASK;
381 	val |= VIDEO_DIP_FREQ_VSYNC;
382 
383 	intel_de_write(dev_priv, reg, val);
384 	intel_de_posting_read(dev_priv, reg);
385 }
386 
387 static void cpt_read_infoframe(struct intel_encoder *encoder,
388 			       const struct intel_crtc_state *crtc_state,
389 			       unsigned int type,
390 			       void *frame, ssize_t len)
391 {
392 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
393 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394 	u32 val, *data = frame;
395 	int i;
396 
397 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
398 
399 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
400 	val |= g4x_infoframe_index(type);
401 
402 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
403 
404 	for (i = 0; i < len; i += 4)
405 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
406 }
407 
408 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
409 				  const struct intel_crtc_state *pipe_config)
410 {
411 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
412 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
413 	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
414 
415 	if ((val & VIDEO_DIP_ENABLE) == 0)
416 		return 0;
417 
418 	return val & (VIDEO_DIP_ENABLE_AVI |
419 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
420 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
421 }
422 
423 static void vlv_write_infoframe(struct intel_encoder *encoder,
424 				const struct intel_crtc_state *crtc_state,
425 				unsigned int type,
426 				const void *frame, ssize_t len)
427 {
428 	const u32 *data = frame;
429 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
430 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
431 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
432 	u32 val = intel_de_read(dev_priv, reg);
433 	int i;
434 
435 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
436 		 "Writing DIP with CTL reg disabled\n");
437 
438 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
439 	val |= g4x_infoframe_index(type);
440 
441 	val &= ~g4x_infoframe_enable(type);
442 
443 	intel_de_write(dev_priv, reg, val);
444 
445 	for (i = 0; i < len; i += 4) {
446 		intel_de_write(dev_priv,
447 			       VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
448 		data++;
449 	}
450 	/* Write every possible data byte to force correct ECC calculation. */
451 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
452 		intel_de_write(dev_priv,
453 			       VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
454 
455 	val |= g4x_infoframe_enable(type);
456 	val &= ~VIDEO_DIP_FREQ_MASK;
457 	val |= VIDEO_DIP_FREQ_VSYNC;
458 
459 	intel_de_write(dev_priv, reg, val);
460 	intel_de_posting_read(dev_priv, reg);
461 }
462 
463 static void vlv_read_infoframe(struct intel_encoder *encoder,
464 			       const struct intel_crtc_state *crtc_state,
465 			       unsigned int type,
466 			       void *frame, ssize_t len)
467 {
468 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
469 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
470 	u32 val, *data = frame;
471 	int i;
472 
473 	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
474 
475 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
476 	val |= g4x_infoframe_index(type);
477 
478 	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
479 
480 	for (i = 0; i < len; i += 4)
481 		*data++ = intel_de_read(dev_priv,
482 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
483 }
484 
485 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
486 				  const struct intel_crtc_state *pipe_config)
487 {
488 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
489 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
490 	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
491 
492 	if ((val & VIDEO_DIP_ENABLE) == 0)
493 		return 0;
494 
495 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
496 		return 0;
497 
498 	return val & (VIDEO_DIP_ENABLE_AVI |
499 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
500 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
501 }
502 
503 void hsw_write_infoframe(struct intel_encoder *encoder,
504 			 const struct intel_crtc_state *crtc_state,
505 			 unsigned int type,
506 			 const void *frame, ssize_t len)
507 {
508 	const u32 *data = frame;
509 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
510 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
511 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
512 	int data_size;
513 	int i;
514 	u32 val = intel_de_read(dev_priv, ctl_reg);
515 
516 	data_size = hsw_dip_data_size(dev_priv, type);
517 
518 	drm_WARN_ON(&dev_priv->drm, len > data_size);
519 
520 	val &= ~hsw_infoframe_enable(type);
521 	intel_de_write(dev_priv, ctl_reg, val);
522 
523 	for (i = 0; i < len; i += 4) {
524 		intel_de_write(dev_priv,
525 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
526 			       *data);
527 		data++;
528 	}
529 	/* Write every possible data byte to force correct ECC calculation. */
530 	for (; i < data_size; i += 4)
531 		intel_de_write(dev_priv,
532 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
533 			       0);
534 
535 	/* Wa_14013475917 */
536 	if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
537 	    type == DP_SDP_VSC)
538 		return;
539 
540 	val |= hsw_infoframe_enable(type);
541 	intel_de_write(dev_priv, ctl_reg, val);
542 	intel_de_posting_read(dev_priv, ctl_reg);
543 }
544 
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546 			const struct intel_crtc_state *crtc_state,
547 			unsigned int type, void *frame, ssize_t len)
548 {
549 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551 	u32 *data = frame;
552 	int i;
553 
554 	for (i = 0; i < len; i += 4)
555 		*data++ = intel_de_read(dev_priv,
556 				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558 
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560 				  const struct intel_crtc_state *pipe_config)
561 {
562 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563 	u32 val = intel_de_read(dev_priv,
564 				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565 	u32 mask;
566 
567 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570 
571 	if (DISPLAY_VER(dev_priv) >= 10)
572 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573 
574 	return val & mask;
575 }
576 
577 static const u8 infoframe_type_to_idx[] = {
578 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
579 	HDMI_PACKET_TYPE_GAMUT_METADATA,
580 	DP_SDP_VSC,
581 	HDMI_INFOFRAME_TYPE_AVI,
582 	HDMI_INFOFRAME_TYPE_SPD,
583 	HDMI_INFOFRAME_TYPE_VENDOR,
584 	HDMI_INFOFRAME_TYPE_DRM,
585 };
586 
587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589 	int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592 		if (infoframe_type_to_idx[i] == type)
593 			return BIT(i);
594 	}
595 
596 	return 0;
597 }
598 
599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600 				  const struct intel_crtc_state *crtc_state)
601 {
602 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
603 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604 	u32 val, ret = 0;
605 	int i;
606 
607 	val = dig_port->infoframes_enabled(encoder, crtc_state);
608 
609 	/* map from hardware bits to dip idx */
610 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611 		unsigned int type = infoframe_type_to_idx[i];
612 
613 		if (HAS_DDI(dev_priv)) {
614 			if (val & hsw_infoframe_enable(type))
615 				ret |= BIT(i);
616 		} else {
617 			if (val & g4x_infoframe_enable(type))
618 				ret |= BIT(i);
619 		}
620 	}
621 
622 	return ret;
623 }
624 
625 /*
626  * The data we write to the DIP data buffer registers is 1 byte bigger than the
627  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629  * used for both technologies.
630  *
631  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632  * DW1:       DB3       | DB2 | DB1 | DB0
633  * DW2:       DB7       | DB6 | DB5 | DB4
634  * DW3: ...
635  *
636  * (HB is Header Byte, DB is Data Byte)
637  *
638  * The hdmi pack() functions don't know about that hardware specific hole so we
639  * trick them by giving an offset into the buffer and moving back the header
640  * bytes by one.
641  */
642 static void intel_write_infoframe(struct intel_encoder *encoder,
643 				  const struct intel_crtc_state *crtc_state,
644 				  enum hdmi_infoframe_type type,
645 				  const union hdmi_infoframe *frame)
646 {
647 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648 	u8 buffer[VIDEO_DIP_DATA_SIZE];
649 	ssize_t len;
650 
651 	if ((crtc_state->infoframes.enable &
652 	     intel_hdmi_infoframe_enable(type)) == 0)
653 		return;
654 
655 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656 		return;
657 
658 	/* see comment above for the reason for this offset */
659 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660 	if (drm_WARN_ON(encoder->base.dev, len < 0))
661 		return;
662 
663 	/* Insert the 'hole' (see big comment above) at position 3 */
664 	memmove(&buffer[0], &buffer[1], 3);
665 	buffer[3] = 0;
666 	len++;
667 
668 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670 
671 void intel_read_infoframe(struct intel_encoder *encoder,
672 			  const struct intel_crtc_state *crtc_state,
673 			  enum hdmi_infoframe_type type,
674 			  union hdmi_infoframe *frame)
675 {
676 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677 	u8 buffer[VIDEO_DIP_DATA_SIZE];
678 	int ret;
679 
680 	if ((crtc_state->infoframes.enable &
681 	     intel_hdmi_infoframe_enable(type)) == 0)
682 		return;
683 
684 	dig_port->read_infoframe(encoder, crtc_state,
685 				       type, buffer, sizeof(buffer));
686 
687 	/* Fill the 'hole' (see big comment above) at position 3 */
688 	memmove(&buffer[1], &buffer[0], 3);
689 
690 	/* see comment above for the reason for this offset */
691 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692 	if (ret) {
693 		drm_dbg_kms(encoder->base.dev,
694 			    "Failed to unpack infoframe type 0x%02x\n", type);
695 		return;
696 	}
697 
698 	if (frame->any.type != type)
699 		drm_dbg_kms(encoder->base.dev,
700 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701 			    frame->any.type, type);
702 }
703 
704 static bool
705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706 				 struct intel_crtc_state *crtc_state,
707 				 struct drm_connector_state *conn_state)
708 {
709 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710 	const struct drm_display_mode *adjusted_mode =
711 		&crtc_state->hw.adjusted_mode;
712 	struct drm_connector *connector = conn_state->connector;
713 	int ret;
714 
715 	if (!crtc_state->has_infoframe)
716 		return true;
717 
718 	crtc_state->infoframes.enable |=
719 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720 
721 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722 						       adjusted_mode);
723 	if (ret)
724 		return false;
725 
726 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727 		frame->colorspace = HDMI_COLORSPACE_YUV420;
728 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729 		frame->colorspace = HDMI_COLORSPACE_YUV444;
730 	else
731 		frame->colorspace = HDMI_COLORSPACE_RGB;
732 
733 	drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
734 
735 	/* nonsense combination */
736 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738 
739 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
741 						   adjusted_mode,
742 						   crtc_state->limited_color_range ?
743 						   HDMI_QUANTIZATION_RANGE_LIMITED :
744 						   HDMI_QUANTIZATION_RANGE_FULL);
745 	} else {
746 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748 	}
749 
750 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751 
752 	/* TODO: handle pixel repetition for YCBCR420 outputs */
753 
754 	ret = hdmi_avi_infoframe_check(frame);
755 	if (drm_WARN_ON(encoder->base.dev, ret))
756 		return false;
757 
758 	return true;
759 }
760 
761 static bool
762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763 				 struct intel_crtc_state *crtc_state,
764 				 struct drm_connector_state *conn_state)
765 {
766 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
767 	int ret;
768 
769 	if (!crtc_state->has_infoframe)
770 		return true;
771 
772 	crtc_state->infoframes.enable |=
773 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
774 
775 	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
776 	if (drm_WARN_ON(encoder->base.dev, ret))
777 		return false;
778 
779 	frame->sdi = HDMI_SPD_SDI_PC;
780 
781 	ret = hdmi_spd_infoframe_check(frame);
782 	if (drm_WARN_ON(encoder->base.dev, ret))
783 		return false;
784 
785 	return true;
786 }
787 
788 static bool
789 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
790 				  struct intel_crtc_state *crtc_state,
791 				  struct drm_connector_state *conn_state)
792 {
793 	struct hdmi_vendor_infoframe *frame =
794 		&crtc_state->infoframes.hdmi.vendor.hdmi;
795 	const struct drm_display_info *info =
796 		&conn_state->connector->display_info;
797 	int ret;
798 
799 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
800 		return true;
801 
802 	crtc_state->infoframes.enable |=
803 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
804 
805 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
806 							  conn_state->connector,
807 							  &crtc_state->hw.adjusted_mode);
808 	if (drm_WARN_ON(encoder->base.dev, ret))
809 		return false;
810 
811 	ret = hdmi_vendor_infoframe_check(frame);
812 	if (drm_WARN_ON(encoder->base.dev, ret))
813 		return false;
814 
815 	return true;
816 }
817 
818 static bool
819 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
820 				 struct intel_crtc_state *crtc_state,
821 				 struct drm_connector_state *conn_state)
822 {
823 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
824 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
825 	int ret;
826 
827 	if (DISPLAY_VER(dev_priv) < 10)
828 		return true;
829 
830 	if (!crtc_state->has_infoframe)
831 		return true;
832 
833 	if (!conn_state->hdr_output_metadata)
834 		return true;
835 
836 	crtc_state->infoframes.enable |=
837 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
838 
839 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
840 	if (ret < 0) {
841 		drm_dbg_kms(&dev_priv->drm,
842 			    "couldn't set HDR metadata in infoframe\n");
843 		return false;
844 	}
845 
846 	ret = hdmi_drm_infoframe_check(frame);
847 	if (drm_WARN_ON(&dev_priv->drm, ret))
848 		return false;
849 
850 	return true;
851 }
852 
853 static void g4x_set_infoframes(struct intel_encoder *encoder,
854 			       bool enable,
855 			       const struct intel_crtc_state *crtc_state,
856 			       const struct drm_connector_state *conn_state)
857 {
858 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
859 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
860 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
861 	i915_reg_t reg = VIDEO_DIP_CTL;
862 	u32 val = intel_de_read(dev_priv, reg);
863 	u32 port = VIDEO_DIP_PORT(encoder->port);
864 
865 	assert_hdmi_port_disabled(intel_hdmi);
866 
867 	/* If the registers were not initialized yet, they might be zeroes,
868 	 * which means we're selecting the AVI DIP and we're setting its
869 	 * frequency to once. This seems to really confuse the HW and make
870 	 * things stop working (the register spec says the AVI always needs to
871 	 * be sent every VSync). So here we avoid writing to the register more
872 	 * than we need and also explicitly select the AVI DIP and explicitly
873 	 * set its frequency to every VSync. Avoiding to write it twice seems to
874 	 * be enough to solve the problem, but being defensive shouldn't hurt us
875 	 * either. */
876 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
877 
878 	if (!enable) {
879 		if (!(val & VIDEO_DIP_ENABLE))
880 			return;
881 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
882 			drm_dbg_kms(&dev_priv->drm,
883 				    "video DIP still enabled on port %c\n",
884 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
885 			return;
886 		}
887 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
888 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
889 		intel_de_write(dev_priv, reg, val);
890 		intel_de_posting_read(dev_priv, reg);
891 		return;
892 	}
893 
894 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
895 		if (val & VIDEO_DIP_ENABLE) {
896 			drm_dbg_kms(&dev_priv->drm,
897 				    "video DIP already enabled on port %c\n",
898 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
899 			return;
900 		}
901 		val &= ~VIDEO_DIP_PORT_MASK;
902 		val |= port;
903 	}
904 
905 	val |= VIDEO_DIP_ENABLE;
906 	val &= ~(VIDEO_DIP_ENABLE_AVI |
907 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
908 
909 	intel_de_write(dev_priv, reg, val);
910 	intel_de_posting_read(dev_priv, reg);
911 
912 	intel_write_infoframe(encoder, crtc_state,
913 			      HDMI_INFOFRAME_TYPE_AVI,
914 			      &crtc_state->infoframes.avi);
915 	intel_write_infoframe(encoder, crtc_state,
916 			      HDMI_INFOFRAME_TYPE_SPD,
917 			      &crtc_state->infoframes.spd);
918 	intel_write_infoframe(encoder, crtc_state,
919 			      HDMI_INFOFRAME_TYPE_VENDOR,
920 			      &crtc_state->infoframes.hdmi);
921 }
922 
923 /*
924  * Determine if default_phase=1 can be indicated in the GCP infoframe.
925  *
926  * From HDMI specification 1.4a:
927  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
928  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
929  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
930  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
931  *   phase of 0
932  */
933 static bool gcp_default_phase_possible(int pipe_bpp,
934 				       const struct drm_display_mode *mode)
935 {
936 	unsigned int pixels_per_group;
937 
938 	switch (pipe_bpp) {
939 	case 30:
940 		/* 4 pixels in 5 clocks */
941 		pixels_per_group = 4;
942 		break;
943 	case 36:
944 		/* 2 pixels in 3 clocks */
945 		pixels_per_group = 2;
946 		break;
947 	case 48:
948 		/* 1 pixel in 2 clocks */
949 		pixels_per_group = 1;
950 		break;
951 	default:
952 		/* phase information not relevant for 8bpc */
953 		return false;
954 	}
955 
956 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
957 		mode->crtc_htotal % pixels_per_group == 0 &&
958 		mode->crtc_hblank_start % pixels_per_group == 0 &&
959 		mode->crtc_hblank_end % pixels_per_group == 0 &&
960 		mode->crtc_hsync_start % pixels_per_group == 0 &&
961 		mode->crtc_hsync_end % pixels_per_group == 0 &&
962 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
963 		 mode->crtc_htotal/2 % pixels_per_group == 0);
964 }
965 
966 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
967 					 const struct intel_crtc_state *crtc_state,
968 					 const struct drm_connector_state *conn_state)
969 {
970 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
971 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
972 	i915_reg_t reg;
973 
974 	if ((crtc_state->infoframes.enable &
975 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
976 		return false;
977 
978 	if (HAS_DDI(dev_priv))
979 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
980 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
981 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
982 	else if (HAS_PCH_SPLIT(dev_priv))
983 		reg = TVIDEO_DIP_GCP(crtc->pipe);
984 	else
985 		return false;
986 
987 	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
988 
989 	return true;
990 }
991 
992 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
993 				   struct intel_crtc_state *crtc_state)
994 {
995 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
996 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
997 	i915_reg_t reg;
998 
999 	if ((crtc_state->infoframes.enable &
1000 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001 		return;
1002 
1003 	if (HAS_DDI(dev_priv))
1004 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007 	else if (HAS_PCH_SPLIT(dev_priv))
1008 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1009 	else
1010 		return;
1011 
1012 	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013 }
1014 
1015 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016 					     struct intel_crtc_state *crtc_state,
1017 					     struct drm_connector_state *conn_state)
1018 {
1019 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020 
1021 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022 		return;
1023 
1024 	crtc_state->infoframes.enable |=
1025 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026 
1027 	/* Indicate color indication for deep color mode */
1028 	if (crtc_state->pipe_bpp > 24)
1029 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030 
1031 	/* Enable default_phase whenever the display mode is suitably aligned */
1032 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033 				       &crtc_state->hw.adjusted_mode))
1034 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035 }
1036 
1037 static void ibx_set_infoframes(struct intel_encoder *encoder,
1038 			       bool enable,
1039 			       const struct intel_crtc_state *crtc_state,
1040 			       const struct drm_connector_state *conn_state)
1041 {
1042 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1047 	u32 val = intel_de_read(dev_priv, reg);
1048 	u32 port = VIDEO_DIP_PORT(encoder->port);
1049 
1050 	assert_hdmi_port_disabled(intel_hdmi);
1051 
1052 	/* See the big comment in g4x_set_infoframes() */
1053 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054 
1055 	if (!enable) {
1056 		if (!(val & VIDEO_DIP_ENABLE))
1057 			return;
1058 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061 		intel_de_write(dev_priv, reg, val);
1062 		intel_de_posting_read(dev_priv, reg);
1063 		return;
1064 	}
1065 
1066 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068 			 "DIP already enabled on port %c\n",
1069 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1070 		val &= ~VIDEO_DIP_PORT_MASK;
1071 		val |= port;
1072 	}
1073 
1074 	val |= VIDEO_DIP_ENABLE;
1075 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1076 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078 
1079 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080 		val |= VIDEO_DIP_ENABLE_GCP;
1081 
1082 	intel_de_write(dev_priv, reg, val);
1083 	intel_de_posting_read(dev_priv, reg);
1084 
1085 	intel_write_infoframe(encoder, crtc_state,
1086 			      HDMI_INFOFRAME_TYPE_AVI,
1087 			      &crtc_state->infoframes.avi);
1088 	intel_write_infoframe(encoder, crtc_state,
1089 			      HDMI_INFOFRAME_TYPE_SPD,
1090 			      &crtc_state->infoframes.spd);
1091 	intel_write_infoframe(encoder, crtc_state,
1092 			      HDMI_INFOFRAME_TYPE_VENDOR,
1093 			      &crtc_state->infoframes.hdmi);
1094 }
1095 
1096 static void cpt_set_infoframes(struct intel_encoder *encoder,
1097 			       bool enable,
1098 			       const struct intel_crtc_state *crtc_state,
1099 			       const struct drm_connector_state *conn_state)
1100 {
1101 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1105 	u32 val = intel_de_read(dev_priv, reg);
1106 
1107 	assert_hdmi_port_disabled(intel_hdmi);
1108 
1109 	/* See the big comment in g4x_set_infoframes() */
1110 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111 
1112 	if (!enable) {
1113 		if (!(val & VIDEO_DIP_ENABLE))
1114 			return;
1115 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118 		intel_de_write(dev_priv, reg, val);
1119 		intel_de_posting_read(dev_priv, reg);
1120 		return;
1121 	}
1122 
1123 	/* Set both together, unset both together: see the spec. */
1124 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127 
1128 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129 		val |= VIDEO_DIP_ENABLE_GCP;
1130 
1131 	intel_de_write(dev_priv, reg, val);
1132 	intel_de_posting_read(dev_priv, reg);
1133 
1134 	intel_write_infoframe(encoder, crtc_state,
1135 			      HDMI_INFOFRAME_TYPE_AVI,
1136 			      &crtc_state->infoframes.avi);
1137 	intel_write_infoframe(encoder, crtc_state,
1138 			      HDMI_INFOFRAME_TYPE_SPD,
1139 			      &crtc_state->infoframes.spd);
1140 	intel_write_infoframe(encoder, crtc_state,
1141 			      HDMI_INFOFRAME_TYPE_VENDOR,
1142 			      &crtc_state->infoframes.hdmi);
1143 }
1144 
1145 static void vlv_set_infoframes(struct intel_encoder *encoder,
1146 			       bool enable,
1147 			       const struct intel_crtc_state *crtc_state,
1148 			       const struct drm_connector_state *conn_state)
1149 {
1150 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
1154 	u32 val = intel_de_read(dev_priv, reg);
1155 	u32 port = VIDEO_DIP_PORT(encoder->port);
1156 
1157 	assert_hdmi_port_disabled(intel_hdmi);
1158 
1159 	/* See the big comment in g4x_set_infoframes() */
1160 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161 
1162 	if (!enable) {
1163 		if (!(val & VIDEO_DIP_ENABLE))
1164 			return;
1165 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168 		intel_de_write(dev_priv, reg, val);
1169 		intel_de_posting_read(dev_priv, reg);
1170 		return;
1171 	}
1172 
1173 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175 			 "DIP already enabled on port %c\n",
1176 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1177 		val &= ~VIDEO_DIP_PORT_MASK;
1178 		val |= port;
1179 	}
1180 
1181 	val |= VIDEO_DIP_ENABLE;
1182 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1183 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185 
1186 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187 		val |= VIDEO_DIP_ENABLE_GCP;
1188 
1189 	intel_de_write(dev_priv, reg, val);
1190 	intel_de_posting_read(dev_priv, reg);
1191 
1192 	intel_write_infoframe(encoder, crtc_state,
1193 			      HDMI_INFOFRAME_TYPE_AVI,
1194 			      &crtc_state->infoframes.avi);
1195 	intel_write_infoframe(encoder, crtc_state,
1196 			      HDMI_INFOFRAME_TYPE_SPD,
1197 			      &crtc_state->infoframes.spd);
1198 	intel_write_infoframe(encoder, crtc_state,
1199 			      HDMI_INFOFRAME_TYPE_VENDOR,
1200 			      &crtc_state->infoframes.hdmi);
1201 }
1202 
1203 static void hsw_set_infoframes(struct intel_encoder *encoder,
1204 			       bool enable,
1205 			       const struct intel_crtc_state *crtc_state,
1206 			       const struct drm_connector_state *conn_state)
1207 {
1208 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210 	u32 val = intel_de_read(dev_priv, reg);
1211 
1212 	assert_hdmi_transcoder_func_disabled(dev_priv,
1213 					     crtc_state->cpu_transcoder);
1214 
1215 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218 		 VIDEO_DIP_ENABLE_DRM_GLK);
1219 
1220 	if (!enable) {
1221 		intel_de_write(dev_priv, reg, val);
1222 		intel_de_posting_read(dev_priv, reg);
1223 		return;
1224 	}
1225 
1226 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228 
1229 	intel_de_write(dev_priv, reg, val);
1230 	intel_de_posting_read(dev_priv, reg);
1231 
1232 	intel_write_infoframe(encoder, crtc_state,
1233 			      HDMI_INFOFRAME_TYPE_AVI,
1234 			      &crtc_state->infoframes.avi);
1235 	intel_write_infoframe(encoder, crtc_state,
1236 			      HDMI_INFOFRAME_TYPE_SPD,
1237 			      &crtc_state->infoframes.spd);
1238 	intel_write_infoframe(encoder, crtc_state,
1239 			      HDMI_INFOFRAME_TYPE_VENDOR,
1240 			      &crtc_state->infoframes.hdmi);
1241 	intel_write_infoframe(encoder, crtc_state,
1242 			      HDMI_INFOFRAME_TYPE_DRM,
1243 			      &crtc_state->infoframes.drm);
1244 }
1245 
1246 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247 {
1248 	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1249 	struct i2c_adapter *adapter =
1250 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1251 
1252 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1253 		return;
1254 
1255 	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1256 		    enable ? "Enabling" : "Disabling");
1257 
1258 	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1259 }
1260 
1261 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1262 				unsigned int offset, void *buffer, size_t size)
1263 {
1264 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1265 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1266 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1267 							      hdmi->ddc_bus);
1268 	int ret;
1269 	u8 start = offset & 0xff;
1270 	struct i2c_msg msgs[] = {
1271 		{
1272 			.addr = DRM_HDCP_DDC_ADDR,
1273 			.flags = 0,
1274 			.len = 1,
1275 			.buf = &start,
1276 		},
1277 		{
1278 			.addr = DRM_HDCP_DDC_ADDR,
1279 			.flags = I2C_M_RD,
1280 			.len = size,
1281 			.buf = buffer
1282 		}
1283 	};
1284 	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1285 	if (ret == ARRAY_SIZE(msgs))
1286 		return 0;
1287 	return ret >= 0 ? -EIO : ret;
1288 }
1289 
1290 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1291 				 unsigned int offset, void *buffer, size_t size)
1292 {
1293 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1294 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1295 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1296 							      hdmi->ddc_bus);
1297 	int ret;
1298 	u8 *write_buf;
1299 	struct i2c_msg msg;
1300 
1301 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1302 	if (!write_buf)
1303 		return -ENOMEM;
1304 
1305 	write_buf[0] = offset & 0xff;
1306 	memcpy(&write_buf[1], buffer, size);
1307 
1308 	msg.addr = DRM_HDCP_DDC_ADDR;
1309 	msg.flags = 0,
1310 	msg.len = size + 1,
1311 	msg.buf = write_buf;
1312 
1313 	ret = i2c_transfer(adapter, &msg, 1);
1314 	if (ret == 1)
1315 		ret = 0;
1316 	else if (ret >= 0)
1317 		ret = -EIO;
1318 
1319 	kfree(write_buf);
1320 	return ret;
1321 }
1322 
1323 static
1324 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1325 				  u8 *an)
1326 {
1327 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1328 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1329 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1330 							      hdmi->ddc_bus);
1331 	int ret;
1332 
1333 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1334 				    DRM_HDCP_AN_LEN);
1335 	if (ret) {
1336 		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1337 			    ret);
1338 		return ret;
1339 	}
1340 
1341 	ret = intel_gmbus_output_aksv(adapter);
1342 	if (ret < 0) {
1343 		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1344 		return ret;
1345 	}
1346 	return 0;
1347 }
1348 
1349 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1350 				     u8 *bksv)
1351 {
1352 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1353 
1354 	int ret;
1355 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1356 				   DRM_HDCP_KSV_LEN);
1357 	if (ret)
1358 		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1359 			    ret);
1360 	return ret;
1361 }
1362 
1363 static
1364 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1365 				 u8 *bstatus)
1366 {
1367 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1368 
1369 	int ret;
1370 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1371 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1372 	if (ret)
1373 		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1374 			    ret);
1375 	return ret;
1376 }
1377 
1378 static
1379 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1380 				     bool *repeater_present)
1381 {
1382 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1383 	int ret;
1384 	u8 val;
1385 
1386 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1387 	if (ret) {
1388 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1389 			    ret);
1390 		return ret;
1391 	}
1392 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1393 	return 0;
1394 }
1395 
1396 static
1397 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1398 				  u8 *ri_prime)
1399 {
1400 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1401 
1402 	int ret;
1403 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1404 				   ri_prime, DRM_HDCP_RI_LEN);
1405 	if (ret)
1406 		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1407 			    ret);
1408 	return ret;
1409 }
1410 
1411 static
1412 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1413 				   bool *ksv_ready)
1414 {
1415 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1416 	int ret;
1417 	u8 val;
1418 
1419 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420 	if (ret) {
1421 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1422 			    ret);
1423 		return ret;
1424 	}
1425 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1426 	return 0;
1427 }
1428 
1429 static
1430 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1431 				  int num_downstream, u8 *ksv_fifo)
1432 {
1433 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1434 	int ret;
1435 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1436 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1437 	if (ret) {
1438 		drm_dbg_kms(&i915->drm,
1439 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1440 		return ret;
1441 	}
1442 	return 0;
1443 }
1444 
1445 static
1446 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1447 				      int i, u32 *part)
1448 {
1449 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1450 	int ret;
1451 
1452 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1453 		return -EINVAL;
1454 
1455 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1456 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1457 	if (ret)
1458 		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1459 			    i, ret);
1460 	return ret;
1461 }
1462 
1463 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1464 					   enum transcoder cpu_transcoder)
1465 {
1466 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1467 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1468 	struct drm_crtc *crtc = connector->base.state->crtc;
1469 	struct intel_crtc *intel_crtc = container_of(crtc,
1470 						     struct intel_crtc, base);
1471 	u32 scanline;
1472 	int ret;
1473 
1474 	for (;;) {
1475 		scanline = intel_de_read(dev_priv, PIPEDSL(intel_crtc->pipe));
1476 		if (scanline > 100 && scanline < 200)
1477 			break;
1478 		usleep_range(25, 50);
1479 	}
1480 
1481 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1482 					 false, TRANS_DDI_HDCP_SIGNALLING);
1483 	if (ret) {
1484 		drm_err(&dev_priv->drm,
1485 			"Disable HDCP signalling failed (%d)\n", ret);
1486 		return ret;
1487 	}
1488 
1489 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1490 					 true, TRANS_DDI_HDCP_SIGNALLING);
1491 	if (ret) {
1492 		drm_err(&dev_priv->drm,
1493 			"Enable HDCP signalling failed (%d)\n", ret);
1494 		return ret;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static
1501 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1502 				      enum transcoder cpu_transcoder,
1503 				      bool enable)
1504 {
1505 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1506 	struct intel_connector *connector = hdmi->attached_connector;
1507 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1508 	int ret;
1509 
1510 	if (!enable)
1511 		usleep_range(6, 60); /* Bspec says >= 6us */
1512 
1513 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1514 					 cpu_transcoder, enable,
1515 					 TRANS_DDI_HDCP_SIGNALLING);
1516 	if (ret) {
1517 		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1518 			enable ? "Enable" : "Disable", ret);
1519 		return ret;
1520 	}
1521 
1522 	/*
1523 	 * WA: To fix incorrect positioning of the window of
1524 	 * opportunity and enc_en signalling in KABYLAKE.
1525 	 */
1526 	if (IS_KABYLAKE(dev_priv) && enable)
1527 		return kbl_repositioning_enc_en_signal(connector,
1528 						       cpu_transcoder);
1529 
1530 	return 0;
1531 }
1532 
1533 static
1534 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1535 				     struct intel_connector *connector)
1536 {
1537 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1538 	enum port port = dig_port->base.port;
1539 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1540 	int ret;
1541 	union {
1542 		u32 reg;
1543 		u8 shim[DRM_HDCP_RI_LEN];
1544 	} ri;
1545 
1546 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1547 	if (ret)
1548 		return false;
1549 
1550 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1551 
1552 	/* Wait for Ri prime match */
1553 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1554 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1555 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1556 		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1557 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1558 							port)));
1559 		return false;
1560 	}
1561 	return true;
1562 }
1563 
1564 static
1565 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1566 				struct intel_connector *connector)
1567 {
1568 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1569 	int retry;
1570 
1571 	for (retry = 0; retry < 3; retry++)
1572 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1573 			return true;
1574 
1575 	drm_err(&i915->drm, "Link check failed\n");
1576 	return false;
1577 }
1578 
1579 struct hdcp2_hdmi_msg_timeout {
1580 	u8 msg_id;
1581 	u16 timeout;
1582 };
1583 
1584 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1585 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1586 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1587 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1588 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1589 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1590 };
1591 
1592 static
1593 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1594 				    u8 *rx_status)
1595 {
1596 	return intel_hdmi_hdcp_read(dig_port,
1597 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1598 				    rx_status,
1599 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1600 }
1601 
1602 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1603 {
1604 	int i;
1605 
1606 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1607 		if (is_paired)
1608 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1609 		else
1610 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1611 	}
1612 
1613 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1614 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1615 			return hdcp2_msg_timeout[i].timeout;
1616 	}
1617 
1618 	return -EINVAL;
1619 }
1620 
1621 static int
1622 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1623 			      u8 msg_id, bool *msg_ready,
1624 			      ssize_t *msg_sz)
1625 {
1626 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1627 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1628 	int ret;
1629 
1630 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1631 	if (ret < 0) {
1632 		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1633 			    ret);
1634 		return ret;
1635 	}
1636 
1637 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1638 		  rx_status[0]);
1639 
1640 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1641 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1642 			     *msg_sz);
1643 	else
1644 		*msg_ready = *msg_sz;
1645 
1646 	return 0;
1647 }
1648 
1649 static ssize_t
1650 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1651 			      u8 msg_id, bool paired)
1652 {
1653 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1654 	bool msg_ready = false;
1655 	int timeout, ret;
1656 	ssize_t msg_sz = 0;
1657 
1658 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1659 	if (timeout < 0)
1660 		return timeout;
1661 
1662 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1663 							     msg_id, &msg_ready,
1664 							     &msg_sz),
1665 			 !ret && msg_ready && msg_sz, timeout * 1000,
1666 			 1000, 5 * 1000);
1667 	if (ret)
1668 		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1669 			    msg_id, ret, timeout);
1670 
1671 	return ret ? ret : msg_sz;
1672 }
1673 
1674 static
1675 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1676 			       void *buf, size_t size)
1677 {
1678 	unsigned int offset;
1679 
1680 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1681 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1682 }
1683 
1684 static
1685 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1686 			      u8 msg_id, void *buf, size_t size)
1687 {
1688 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1689 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1690 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1691 	unsigned int offset;
1692 	ssize_t ret;
1693 
1694 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1695 					    hdcp->is_paired);
1696 	if (ret < 0)
1697 		return ret;
1698 
1699 	/*
1700 	 * Available msg size should be equal to or lesser than the
1701 	 * available buffer.
1702 	 */
1703 	if (ret > size) {
1704 		drm_dbg_kms(&i915->drm,
1705 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1706 			    ret, size);
1707 		return -1;
1708 	}
1709 
1710 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1711 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1712 	if (ret)
1713 		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1714 			    msg_id, ret);
1715 
1716 	return ret;
1717 }
1718 
1719 static
1720 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1721 				struct intel_connector *connector)
1722 {
1723 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1724 	int ret;
1725 
1726 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1727 	if (ret)
1728 		return ret;
1729 
1730 	/*
1731 	 * Re-auth request and Link Integrity Failures are represented by
1732 	 * same bit. i.e reauth_req.
1733 	 */
1734 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1735 		ret = HDCP_REAUTH_REQUEST;
1736 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1737 		ret = HDCP_TOPOLOGY_CHANGE;
1738 
1739 	return ret;
1740 }
1741 
1742 static
1743 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1744 			     bool *capable)
1745 {
1746 	u8 hdcp2_version;
1747 	int ret;
1748 
1749 	*capable = false;
1750 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1751 				   &hdcp2_version, sizeof(hdcp2_version));
1752 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1753 		*capable = true;
1754 
1755 	return ret;
1756 }
1757 
1758 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1759 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1760 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1761 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1762 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1763 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1764 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1765 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1766 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1767 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1768 	.check_link = intel_hdmi_hdcp_check_link,
1769 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1770 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1771 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1772 	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1773 	.protocol = HDCP_PROTOCOL_HDMI,
1774 };
1775 
1776 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1777 {
1778 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1779 	int max_tmds_clock, vbt_max_tmds_clock;
1780 
1781 	if (DISPLAY_VER(dev_priv) >= 10)
1782 		max_tmds_clock = 594000;
1783 	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1784 		max_tmds_clock = 300000;
1785 	else if (DISPLAY_VER(dev_priv) >= 5)
1786 		max_tmds_clock = 225000;
1787 	else
1788 		max_tmds_clock = 165000;
1789 
1790 	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1791 	if (vbt_max_tmds_clock)
1792 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1793 
1794 	return max_tmds_clock;
1795 }
1796 
1797 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1798 				const struct drm_connector_state *conn_state)
1799 {
1800 	return hdmi->has_hdmi_sink &&
1801 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1802 }
1803 
1804 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1805 				 bool respect_downstream_limits,
1806 				 bool has_hdmi_sink)
1807 {
1808 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1809 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1810 
1811 	if (respect_downstream_limits) {
1812 		struct intel_connector *connector = hdmi->attached_connector;
1813 		const struct drm_display_info *info = &connector->base.display_info;
1814 
1815 		if (hdmi->dp_dual_mode.max_tmds_clock)
1816 			max_tmds_clock = min(max_tmds_clock,
1817 					     hdmi->dp_dual_mode.max_tmds_clock);
1818 
1819 		if (info->max_tmds_clock)
1820 			max_tmds_clock = min(max_tmds_clock,
1821 					     info->max_tmds_clock);
1822 		else if (!has_hdmi_sink)
1823 			max_tmds_clock = min(max_tmds_clock, 165000);
1824 	}
1825 
1826 	return max_tmds_clock;
1827 }
1828 
1829 static enum drm_mode_status
1830 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1831 		      int clock, bool respect_downstream_limits,
1832 		      bool has_hdmi_sink)
1833 {
1834 	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1835 
1836 	if (clock < 25000)
1837 		return MODE_CLOCK_LOW;
1838 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1839 					  has_hdmi_sink))
1840 		return MODE_CLOCK_HIGH;
1841 
1842 	/* GLK DPLL can't generate 446-480 MHz */
1843 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1844 		return MODE_CLOCK_RANGE;
1845 
1846 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1847 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1848 	    clock > 223333 && clock < 240000)
1849 		return MODE_CLOCK_RANGE;
1850 
1851 	/* CHV DPLL can't generate 216-240 MHz */
1852 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1853 		return MODE_CLOCK_RANGE;
1854 
1855 	return MODE_OK;
1856 }
1857 
1858 static int intel_hdmi_port_clock(int clock, int bpc)
1859 {
1860 	/*
1861 	 * Need to adjust the port link by:
1862 	 *  1.5x for 12bpc
1863 	 *  1.25x for 10bpc
1864 	 */
1865 	return clock * bpc / 8;
1866 }
1867 
1868 static enum drm_mode_status
1869 intel_hdmi_mode_clock_valid(struct intel_hdmi *hdmi, int clock, bool has_hdmi_sink)
1870 {
1871 	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1872 	struct drm_i915_private *dev_priv = to_i915(dev);
1873 	enum drm_mode_status status;
1874 
1875 	/* check if we can do 8bpc */
1876 	status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 8),
1877 				       true, has_hdmi_sink);
1878 
1879 	if (has_hdmi_sink) {
1880 		/* if we can't do 8bpc we may still be able to do 12bpc */
1881 		if (status != MODE_OK && !HAS_GMCH(dev_priv))
1882 			status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 12),
1883 						       true, has_hdmi_sink);
1884 
1885 		/* if we can't do 8,12bpc we may still be able to do 10bpc */
1886 		if (status != MODE_OK && DISPLAY_VER(dev_priv) >= 11)
1887 			status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 10),
1888 						       true, has_hdmi_sink);
1889 	}
1890 
1891 	return status;
1892 }
1893 
1894 static enum drm_mode_status
1895 intel_hdmi_mode_valid(struct drm_connector *connector,
1896 		      struct drm_display_mode *mode)
1897 {
1898 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1899 	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1900 	struct drm_i915_private *dev_priv = to_i915(dev);
1901 	enum drm_mode_status status;
1902 	int clock = mode->clock;
1903 	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1904 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1905 	bool ycbcr_420_only;
1906 
1907 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1908 		return MODE_NO_DBLESCAN;
1909 
1910 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1911 		clock *= 2;
1912 
1913 	if (clock > max_dotclk)
1914 		return MODE_CLOCK_HIGH;
1915 
1916 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1917 		if (!has_hdmi_sink)
1918 			return MODE_CLOCK_LOW;
1919 		clock *= 2;
1920 	}
1921 
1922 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1923 	if (ycbcr_420_only)
1924 		clock /= 2;
1925 
1926 	status = intel_hdmi_mode_clock_valid(hdmi, clock, has_hdmi_sink);
1927 	if (status != MODE_OK) {
1928 		if (ycbcr_420_only ||
1929 		    !connector->ycbcr_420_allowed ||
1930 		    !drm_mode_is_420_also(&connector->display_info, mode))
1931 			return status;
1932 
1933 		clock /= 2;
1934 		status = intel_hdmi_mode_clock_valid(hdmi, clock, has_hdmi_sink);
1935 		if (status != MODE_OK)
1936 			return status;
1937 	}
1938 
1939 	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
1940 }
1941 
1942 bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1943 				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1944 {
1945 	struct drm_atomic_state *state = crtc_state->uapi.state;
1946 	struct drm_connector_state *connector_state;
1947 	struct drm_connector *connector;
1948 	int i;
1949 
1950 	if (crtc_state->pipe_bpp < bpc * 3)
1951 		return false;
1952 
1953 	if (!has_hdmi_sink)
1954 		return false;
1955 
1956 	for_each_new_connector_in_state(state, connector, connector_state, i) {
1957 		const struct drm_display_info *info = &connector->display_info;
1958 
1959 		if (connector_state->crtc != crtc_state->uapi.crtc)
1960 			continue;
1961 
1962 		if (ycbcr420_output) {
1963 			const struct drm_hdmi_info *hdmi = &info->hdmi;
1964 
1965 			if (bpc == 12 && !(hdmi->y420_dc_modes &
1966 					   DRM_EDID_YCBCR420_DC_36))
1967 				return false;
1968 			else if (bpc == 10 && !(hdmi->y420_dc_modes &
1969 						DRM_EDID_YCBCR420_DC_30))
1970 				return false;
1971 		} else {
1972 			if (bpc == 12 && !(info->edid_hdmi_dc_modes &
1973 					   DRM_EDID_HDMI_DC_36))
1974 				return false;
1975 			else if (bpc == 10 && !(info->edid_hdmi_dc_modes &
1976 						DRM_EDID_HDMI_DC_30))
1977 				return false;
1978 		}
1979 	}
1980 
1981 	return true;
1982 }
1983 
1984 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1985 				     int bpc)
1986 {
1987 	struct drm_i915_private *dev_priv =
1988 		to_i915(crtc_state->uapi.crtc->dev);
1989 	const struct drm_display_mode *adjusted_mode =
1990 		&crtc_state->hw.adjusted_mode;
1991 
1992 	if (HAS_GMCH(dev_priv))
1993 		return false;
1994 
1995 	if (bpc == 10 && DISPLAY_VER(dev_priv) < 11)
1996 		return false;
1997 
1998 	/*
1999 	 * HDMI deep color affects the clocks, so it's only possible
2000 	 * when not cloning with other encoder types.
2001 	 */
2002 	if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2003 		return false;
2004 
2005 	/* Display Wa_1405510057:icl,ehl */
2006 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2007 	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2008 	    (adjusted_mode->crtc_hblank_end -
2009 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2010 		return false;
2011 
2012 	return intel_hdmi_deep_color_possible(crtc_state, bpc,
2013 					      crtc_state->has_hdmi_sink,
2014 					      crtc_state->output_format ==
2015 					      INTEL_OUTPUT_FORMAT_YCBCR420);
2016 }
2017 
2018 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2019 				  struct intel_crtc_state *crtc_state,
2020 				  int clock)
2021 {
2022 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2023 	int bpc;
2024 
2025 	for (bpc = 12; bpc >= 10; bpc -= 2) {
2026 		if (hdmi_deep_color_possible(crtc_state, bpc) &&
2027 		    hdmi_port_clock_valid(intel_hdmi,
2028 					  intel_hdmi_port_clock(clock, bpc),
2029 					  true, crtc_state->has_hdmi_sink) == MODE_OK)
2030 			return bpc;
2031 	}
2032 
2033 	return 8;
2034 }
2035 
2036 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2037 				    struct intel_crtc_state *crtc_state)
2038 {
2039 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2040 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2041 	const struct drm_display_mode *adjusted_mode =
2042 		&crtc_state->hw.adjusted_mode;
2043 	int bpc, clock = adjusted_mode->crtc_clock;
2044 
2045 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2046 		clock *= 2;
2047 
2048 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
2049 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2050 		clock /= 2;
2051 
2052 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2053 
2054 	crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2055 
2056 	/*
2057 	 * pipe_bpp could already be below 8bpc due to
2058 	 * FDI bandwidth constraints. We shouldn't bump it
2059 	 * back up to 8bpc in that case.
2060 	 */
2061 	if (crtc_state->pipe_bpp > bpc * 3)
2062 		crtc_state->pipe_bpp = bpc * 3;
2063 
2064 	drm_dbg_kms(&i915->drm,
2065 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2066 		    bpc, crtc_state->pipe_bpp);
2067 
2068 	if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2069 				  false, crtc_state->has_hdmi_sink) != MODE_OK) {
2070 		drm_dbg_kms(&i915->drm,
2071 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2072 			    crtc_state->port_clock);
2073 		return -EINVAL;
2074 	}
2075 
2076 	return 0;
2077 }
2078 
2079 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2080 				    const struct drm_connector_state *conn_state)
2081 {
2082 	const struct intel_digital_connector_state *intel_conn_state =
2083 		to_intel_digital_connector_state(conn_state);
2084 	const struct drm_display_mode *adjusted_mode =
2085 		&crtc_state->hw.adjusted_mode;
2086 
2087 	/*
2088 	 * Our YCbCr output is always limited range.
2089 	 * crtc_state->limited_color_range only applies to RGB,
2090 	 * and it must never be set for YCbCr or we risk setting
2091 	 * some conflicting bits in PIPECONF which will mess up
2092 	 * the colors on the monitor.
2093 	 */
2094 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2095 		return false;
2096 
2097 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2098 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2099 		return crtc_state->has_hdmi_sink &&
2100 			drm_default_rgb_quant_range(adjusted_mode) ==
2101 			HDMI_QUANTIZATION_RANGE_LIMITED;
2102 	} else {
2103 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2104 	}
2105 }
2106 
2107 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2108 				 const struct intel_crtc_state *crtc_state,
2109 				 const struct drm_connector_state *conn_state)
2110 {
2111 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2112 	const struct intel_digital_connector_state *intel_conn_state =
2113 		to_intel_digital_connector_state(conn_state);
2114 
2115 	if (!crtc_state->has_hdmi_sink)
2116 		return false;
2117 
2118 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2119 		return intel_hdmi->has_audio;
2120 	else
2121 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2122 }
2123 
2124 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2125 					    struct intel_crtc_state *crtc_state,
2126 					    const struct drm_connector_state *conn_state)
2127 {
2128 	struct drm_connector *connector = conn_state->connector;
2129 	struct drm_i915_private *i915 = to_i915(connector->dev);
2130 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2131 	int ret;
2132 	bool ycbcr_420_only;
2133 
2134 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, adjusted_mode);
2135 	if (connector->ycbcr_420_allowed && ycbcr_420_only) {
2136 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2137 	} else {
2138 		if (!connector->ycbcr_420_allowed && ycbcr_420_only)
2139 			drm_dbg_kms(&i915->drm,
2140 				    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2141 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2142 	}
2143 
2144 	ret = intel_hdmi_compute_clock(encoder, crtc_state);
2145 	if (ret) {
2146 		if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420 &&
2147 		    connector->ycbcr_420_allowed &&
2148 		    drm_mode_is_420_also(&connector->display_info, adjusted_mode)) {
2149 			crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2150 			ret = intel_hdmi_compute_clock(encoder, crtc_state);
2151 		}
2152 	}
2153 
2154 	return ret;
2155 }
2156 
2157 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2158 			      struct intel_crtc_state *pipe_config,
2159 			      struct drm_connector_state *conn_state)
2160 {
2161 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2162 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2163 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2164 	struct drm_connector *connector = conn_state->connector;
2165 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2166 	int ret;
2167 
2168 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2169 		return -EINVAL;
2170 
2171 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2172 	pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2173 							 conn_state);
2174 
2175 	if (pipe_config->has_hdmi_sink)
2176 		pipe_config->has_infoframe = true;
2177 
2178 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2179 		pipe_config->pixel_multiplier = 2;
2180 
2181 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2182 		pipe_config->has_pch_encoder = true;
2183 
2184 	pipe_config->has_audio =
2185 		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2186 
2187 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state);
2188 	if (ret)
2189 		return ret;
2190 
2191 	if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2192 		ret = intel_pch_panel_fitting(pipe_config, conn_state);
2193 		if (ret)
2194 			return ret;
2195 	}
2196 
2197 	pipe_config->limited_color_range =
2198 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2199 
2200 	if (conn_state->picture_aspect_ratio)
2201 		adjusted_mode->picture_aspect_ratio =
2202 			conn_state->picture_aspect_ratio;
2203 
2204 	pipe_config->lane_count = 4;
2205 
2206 	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2207 		if (scdc->scrambling.low_rates)
2208 			pipe_config->hdmi_scrambling = true;
2209 
2210 		if (pipe_config->port_clock > 340000) {
2211 			pipe_config->hdmi_scrambling = true;
2212 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2213 		}
2214 	}
2215 
2216 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2217 					 conn_state);
2218 
2219 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2220 		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2221 		return -EINVAL;
2222 	}
2223 
2224 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2225 		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2226 		return -EINVAL;
2227 	}
2228 
2229 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2230 		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2231 		return -EINVAL;
2232 	}
2233 
2234 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2235 		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2236 		return -EINVAL;
2237 	}
2238 
2239 	return 0;
2240 }
2241 
2242 static void
2243 intel_hdmi_unset_edid(struct drm_connector *connector)
2244 {
2245 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2246 
2247 	intel_hdmi->has_hdmi_sink = false;
2248 	intel_hdmi->has_audio = false;
2249 
2250 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2251 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2252 
2253 	kfree(to_intel_connector(connector)->detect_edid);
2254 	to_intel_connector(connector)->detect_edid = NULL;
2255 }
2256 
2257 static void
2258 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2259 {
2260 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2261 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2262 	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2263 	struct i2c_adapter *adapter =
2264 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2265 	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2266 
2267 	/*
2268 	 * Type 1 DVI adaptors are not required to implement any
2269 	 * registers, so we can't always detect their presence.
2270 	 * Ideally we should be able to check the state of the
2271 	 * CONFIG1 pin, but no such luck on our hardware.
2272 	 *
2273 	 * The only method left to us is to check the VBT to see
2274 	 * if the port is a dual mode capable DP port. But let's
2275 	 * only do that when we sucesfully read the EDID, to avoid
2276 	 * confusing log messages about DP dual mode adaptors when
2277 	 * there's nothing connected to the port.
2278 	 */
2279 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2280 		/* An overridden EDID imply that we want this port for testing.
2281 		 * Make sure not to set limits for that port.
2282 		 */
2283 		if (has_edid && !connector->override_edid &&
2284 		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2285 			drm_dbg_kms(&dev_priv->drm,
2286 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2287 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2288 		} else {
2289 			type = DRM_DP_DUAL_MODE_NONE;
2290 		}
2291 	}
2292 
2293 	if (type == DRM_DP_DUAL_MODE_NONE)
2294 		return;
2295 
2296 	hdmi->dp_dual_mode.type = type;
2297 	hdmi->dp_dual_mode.max_tmds_clock =
2298 		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2299 
2300 	drm_dbg_kms(&dev_priv->drm,
2301 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2302 		    drm_dp_get_dual_mode_type_name(type),
2303 		    hdmi->dp_dual_mode.max_tmds_clock);
2304 }
2305 
2306 static bool
2307 intel_hdmi_set_edid(struct drm_connector *connector)
2308 {
2309 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2310 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2311 	intel_wakeref_t wakeref;
2312 	struct edid *edid;
2313 	bool connected = false;
2314 	struct i2c_adapter *i2c;
2315 
2316 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2317 
2318 	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2319 
2320 	edid = drm_get_edid(connector, i2c);
2321 
2322 	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2323 		drm_dbg_kms(&dev_priv->drm,
2324 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2325 		intel_gmbus_force_bit(i2c, true);
2326 		edid = drm_get_edid(connector, i2c);
2327 		intel_gmbus_force_bit(i2c, false);
2328 	}
2329 
2330 	intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2331 
2332 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2333 
2334 	to_intel_connector(connector)->detect_edid = edid;
2335 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2336 		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2337 		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2338 
2339 		connected = true;
2340 	}
2341 
2342 	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2343 
2344 	return connected;
2345 }
2346 
2347 static enum drm_connector_status
2348 intel_hdmi_detect(struct drm_connector *connector, bool force)
2349 {
2350 	enum drm_connector_status status = connector_status_disconnected;
2351 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2352 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2353 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2354 	intel_wakeref_t wakeref;
2355 
2356 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2357 		    connector->base.id, connector->name);
2358 
2359 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2360 		return connector_status_disconnected;
2361 
2362 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2363 
2364 	if (DISPLAY_VER(dev_priv) >= 11 &&
2365 	    !intel_digital_port_connected(encoder))
2366 		goto out;
2367 
2368 	intel_hdmi_unset_edid(connector);
2369 
2370 	if (intel_hdmi_set_edid(connector))
2371 		status = connector_status_connected;
2372 
2373 out:
2374 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2375 
2376 	if (status != connector_status_connected)
2377 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2378 
2379 	/*
2380 	 * Make sure the refs for power wells enabled during detect are
2381 	 * dropped to avoid a new detect cycle triggered by HPD polling.
2382 	 */
2383 	intel_display_power_flush_work(dev_priv);
2384 
2385 	return status;
2386 }
2387 
2388 static void
2389 intel_hdmi_force(struct drm_connector *connector)
2390 {
2391 	struct drm_i915_private *i915 = to_i915(connector->dev);
2392 
2393 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2394 		    connector->base.id, connector->name);
2395 
2396 	intel_hdmi_unset_edid(connector);
2397 
2398 	if (connector->status != connector_status_connected)
2399 		return;
2400 
2401 	intel_hdmi_set_edid(connector);
2402 }
2403 
2404 static int intel_hdmi_get_modes(struct drm_connector *connector)
2405 {
2406 	struct edid *edid;
2407 
2408 	edid = to_intel_connector(connector)->detect_edid;
2409 	if (edid == NULL)
2410 		return 0;
2411 
2412 	return intel_connector_update_modes(connector, edid);
2413 }
2414 
2415 static struct i2c_adapter *
2416 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2417 {
2418 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2419 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2420 
2421 	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2422 }
2423 
2424 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2425 {
2426 	struct drm_i915_private *i915 = to_i915(connector->dev);
2427 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2428 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2429 	struct kobject *connector_kobj = &connector->kdev->kobj;
2430 	int ret;
2431 
2432 	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2433 	if (ret)
2434 		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2435 }
2436 
2437 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2438 {
2439 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2440 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2441 	struct kobject *connector_kobj = &connector->kdev->kobj;
2442 
2443 	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2444 }
2445 
2446 static int
2447 intel_hdmi_connector_register(struct drm_connector *connector)
2448 {
2449 	int ret;
2450 
2451 	ret = intel_connector_register(connector);
2452 	if (ret)
2453 		return ret;
2454 
2455 	intel_hdmi_create_i2c_symlink(connector);
2456 
2457 	return ret;
2458 }
2459 
2460 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2461 {
2462 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2463 
2464 	cec_notifier_conn_unregister(n);
2465 
2466 	intel_hdmi_remove_i2c_symlink(connector);
2467 	intel_connector_unregister(connector);
2468 }
2469 
2470 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2471 	.detect = intel_hdmi_detect,
2472 	.force = intel_hdmi_force,
2473 	.fill_modes = drm_helper_probe_single_connector_modes,
2474 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2475 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2476 	.late_register = intel_hdmi_connector_register,
2477 	.early_unregister = intel_hdmi_connector_unregister,
2478 	.destroy = intel_connector_destroy,
2479 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2480 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2481 };
2482 
2483 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2484 	.get_modes = intel_hdmi_get_modes,
2485 	.mode_valid = intel_hdmi_mode_valid,
2486 	.atomic_check = intel_digital_connector_atomic_check,
2487 };
2488 
2489 static void
2490 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2491 {
2492 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2493 
2494 	intel_attach_force_audio_property(connector);
2495 	intel_attach_broadcast_rgb_property(connector);
2496 	intel_attach_aspect_ratio_property(connector);
2497 
2498 	intel_attach_hdmi_colorspace_property(connector);
2499 	drm_connector_attach_content_type_property(connector);
2500 
2501 	if (DISPLAY_VER(dev_priv) >= 10)
2502 		drm_connector_attach_hdr_output_metadata_property(connector);
2503 
2504 	if (!HAS_GMCH(dev_priv))
2505 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2506 }
2507 
2508 /*
2509  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2510  * @encoder: intel_encoder
2511  * @connector: drm_connector
2512  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2513  *  or reset the high tmds clock ratio for scrambling
2514  * @scrambling: bool to Indicate if the function needs to set or reset
2515  *  sink scrambling
2516  *
2517  * This function handles scrambling on HDMI 2.0 capable sinks.
2518  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2519  * it enables scrambling. This should be called before enabling the HDMI
2520  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2521  * detect a scrambled clock within 100 ms.
2522  *
2523  * Returns:
2524  * True on success, false on failure.
2525  */
2526 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2527 				       struct drm_connector *connector,
2528 				       bool high_tmds_clock_ratio,
2529 				       bool scrambling)
2530 {
2531 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2532 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2533 	struct drm_scrambling *sink_scrambling =
2534 		&connector->display_info.hdmi.scdc.scrambling;
2535 	struct i2c_adapter *adapter =
2536 		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2537 
2538 	if (!sink_scrambling->supported)
2539 		return true;
2540 
2541 	drm_dbg_kms(&dev_priv->drm,
2542 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2543 		    connector->base.id, connector->name,
2544 		    yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2545 
2546 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2547 	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2548 						  high_tmds_clock_ratio) &&
2549 		drm_scdc_set_scrambling(adapter, scrambling);
2550 }
2551 
2552 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2553 {
2554 	u8 ddc_pin;
2555 
2556 	switch (port) {
2557 	case PORT_B:
2558 		ddc_pin = GMBUS_PIN_DPB;
2559 		break;
2560 	case PORT_C:
2561 		ddc_pin = GMBUS_PIN_DPC;
2562 		break;
2563 	case PORT_D:
2564 		ddc_pin = GMBUS_PIN_DPD_CHV;
2565 		break;
2566 	default:
2567 		MISSING_CASE(port);
2568 		ddc_pin = GMBUS_PIN_DPB;
2569 		break;
2570 	}
2571 	return ddc_pin;
2572 }
2573 
2574 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2575 {
2576 	u8 ddc_pin;
2577 
2578 	switch (port) {
2579 	case PORT_B:
2580 		ddc_pin = GMBUS_PIN_1_BXT;
2581 		break;
2582 	case PORT_C:
2583 		ddc_pin = GMBUS_PIN_2_BXT;
2584 		break;
2585 	default:
2586 		MISSING_CASE(port);
2587 		ddc_pin = GMBUS_PIN_1_BXT;
2588 		break;
2589 	}
2590 	return ddc_pin;
2591 }
2592 
2593 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2594 			      enum port port)
2595 {
2596 	u8 ddc_pin;
2597 
2598 	switch (port) {
2599 	case PORT_B:
2600 		ddc_pin = GMBUS_PIN_1_BXT;
2601 		break;
2602 	case PORT_C:
2603 		ddc_pin = GMBUS_PIN_2_BXT;
2604 		break;
2605 	case PORT_D:
2606 		ddc_pin = GMBUS_PIN_4_CNP;
2607 		break;
2608 	case PORT_F:
2609 		ddc_pin = GMBUS_PIN_3_BXT;
2610 		break;
2611 	default:
2612 		MISSING_CASE(port);
2613 		ddc_pin = GMBUS_PIN_1_BXT;
2614 		break;
2615 	}
2616 	return ddc_pin;
2617 }
2618 
2619 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2620 {
2621 	enum phy phy = intel_port_to_phy(dev_priv, port);
2622 
2623 	if (intel_phy_is_combo(dev_priv, phy))
2624 		return GMBUS_PIN_1_BXT + port;
2625 	else if (intel_phy_is_tc(dev_priv, phy))
2626 		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2627 
2628 	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2629 	return GMBUS_PIN_2_BXT;
2630 }
2631 
2632 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2633 {
2634 	enum phy phy = intel_port_to_phy(dev_priv, port);
2635 	u8 ddc_pin;
2636 
2637 	switch (phy) {
2638 	case PHY_A:
2639 		ddc_pin = GMBUS_PIN_1_BXT;
2640 		break;
2641 	case PHY_B:
2642 		ddc_pin = GMBUS_PIN_2_BXT;
2643 		break;
2644 	case PHY_C:
2645 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2646 		break;
2647 	default:
2648 		MISSING_CASE(phy);
2649 		ddc_pin = GMBUS_PIN_1_BXT;
2650 		break;
2651 	}
2652 	return ddc_pin;
2653 }
2654 
2655 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2656 {
2657 	enum phy phy = intel_port_to_phy(dev_priv, port);
2658 
2659 	WARN_ON(port == PORT_C);
2660 
2661 	/*
2662 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2663 	 * final two outputs use type-c pins, even though they're actually
2664 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2665 	 * all outputs.
2666 	 */
2667 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2668 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2669 
2670 	return GMBUS_PIN_1_BXT + phy;
2671 }
2672 
2673 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2674 {
2675 	enum phy phy = intel_port_to_phy(i915, port);
2676 
2677 	drm_WARN_ON(&i915->drm, port == PORT_A);
2678 
2679 	/*
2680 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2681 	 * final two outputs use type-c pins, even though they're actually
2682 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2683 	 * all outputs.
2684 	 */
2685 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2686 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2687 
2688 	return GMBUS_PIN_1_BXT + phy;
2689 }
2690 
2691 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2692 {
2693 	return intel_port_to_phy(dev_priv, port) + 1;
2694 }
2695 
2696 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2697 {
2698 	enum phy phy = intel_port_to_phy(dev_priv, port);
2699 
2700 	WARN_ON(port == PORT_B || port == PORT_C);
2701 
2702 	/*
2703 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2704 	 * except first combo output.
2705 	 */
2706 	if (phy == PHY_A)
2707 		return GMBUS_PIN_1_BXT;
2708 
2709 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2710 }
2711 
2712 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2713 			      enum port port)
2714 {
2715 	u8 ddc_pin;
2716 
2717 	switch (port) {
2718 	case PORT_B:
2719 		ddc_pin = GMBUS_PIN_DPB;
2720 		break;
2721 	case PORT_C:
2722 		ddc_pin = GMBUS_PIN_DPC;
2723 		break;
2724 	case PORT_D:
2725 		ddc_pin = GMBUS_PIN_DPD;
2726 		break;
2727 	default:
2728 		MISSING_CASE(port);
2729 		ddc_pin = GMBUS_PIN_DPB;
2730 		break;
2731 	}
2732 	return ddc_pin;
2733 }
2734 
2735 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2736 {
2737 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2738 	enum port port = encoder->port;
2739 	u8 ddc_pin;
2740 
2741 	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2742 	if (ddc_pin) {
2743 		drm_dbg_kms(&dev_priv->drm,
2744 			    "Using DDC pin 0x%x for port %c (VBT)\n",
2745 			    ddc_pin, port_name(port));
2746 		return ddc_pin;
2747 	}
2748 
2749 	if (IS_ALDERLAKE_S(dev_priv))
2750 		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2751 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2752 		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2753 	else if (IS_ROCKETLAKE(dev_priv))
2754 		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2755 	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2756 		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2757 	else if (HAS_PCH_MCC(dev_priv))
2758 		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2759 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2760 		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2761 	else if (HAS_PCH_CNP(dev_priv))
2762 		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2763 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2764 		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2765 	else if (IS_CHERRYVIEW(dev_priv))
2766 		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2767 	else
2768 		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2769 
2770 	drm_dbg_kms(&dev_priv->drm,
2771 		    "Using DDC pin 0x%x for port %c (platform default)\n",
2772 		    ddc_pin, port_name(port));
2773 
2774 	return ddc_pin;
2775 }
2776 
2777 void intel_infoframe_init(struct intel_digital_port *dig_port)
2778 {
2779 	struct drm_i915_private *dev_priv =
2780 		to_i915(dig_port->base.base.dev);
2781 
2782 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2783 		dig_port->write_infoframe = vlv_write_infoframe;
2784 		dig_port->read_infoframe = vlv_read_infoframe;
2785 		dig_port->set_infoframes = vlv_set_infoframes;
2786 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2787 	} else if (IS_G4X(dev_priv)) {
2788 		dig_port->write_infoframe = g4x_write_infoframe;
2789 		dig_port->read_infoframe = g4x_read_infoframe;
2790 		dig_port->set_infoframes = g4x_set_infoframes;
2791 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2792 	} else if (HAS_DDI(dev_priv)) {
2793 		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2794 			dig_port->write_infoframe = lspcon_write_infoframe;
2795 			dig_port->read_infoframe = lspcon_read_infoframe;
2796 			dig_port->set_infoframes = lspcon_set_infoframes;
2797 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2798 		} else {
2799 			dig_port->write_infoframe = hsw_write_infoframe;
2800 			dig_port->read_infoframe = hsw_read_infoframe;
2801 			dig_port->set_infoframes = hsw_set_infoframes;
2802 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2803 		}
2804 	} else if (HAS_PCH_IBX(dev_priv)) {
2805 		dig_port->write_infoframe = ibx_write_infoframe;
2806 		dig_port->read_infoframe = ibx_read_infoframe;
2807 		dig_port->set_infoframes = ibx_set_infoframes;
2808 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2809 	} else {
2810 		dig_port->write_infoframe = cpt_write_infoframe;
2811 		dig_port->read_infoframe = cpt_read_infoframe;
2812 		dig_port->set_infoframes = cpt_set_infoframes;
2813 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2814 	}
2815 }
2816 
2817 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2818 			       struct intel_connector *intel_connector)
2819 {
2820 	struct drm_connector *connector = &intel_connector->base;
2821 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2822 	struct intel_encoder *intel_encoder = &dig_port->base;
2823 	struct drm_device *dev = intel_encoder->base.dev;
2824 	struct drm_i915_private *dev_priv = to_i915(dev);
2825 	struct i2c_adapter *ddc;
2826 	enum port port = intel_encoder->port;
2827 	struct cec_connector_info conn_info;
2828 
2829 	drm_dbg_kms(&dev_priv->drm,
2830 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2831 		    intel_encoder->base.base.id, intel_encoder->base.name);
2832 
2833 	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2834 		return;
2835 
2836 	if (drm_WARN(dev, dig_port->max_lanes < 4,
2837 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2838 		     dig_port->max_lanes, intel_encoder->base.base.id,
2839 		     intel_encoder->base.name))
2840 		return;
2841 
2842 	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2843 	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2844 
2845 	drm_connector_init_with_ddc(dev, connector,
2846 				    &intel_hdmi_connector_funcs,
2847 				    DRM_MODE_CONNECTOR_HDMIA,
2848 				    ddc);
2849 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2850 
2851 	connector->interlace_allowed = 1;
2852 	connector->doublescan_allowed = 0;
2853 	connector->stereo_allowed = 1;
2854 
2855 	if (DISPLAY_VER(dev_priv) >= 10)
2856 		connector->ycbcr_420_allowed = true;
2857 
2858 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2859 
2860 	if (HAS_DDI(dev_priv))
2861 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2862 	else
2863 		intel_connector->get_hw_state = intel_connector_get_hw_state;
2864 
2865 	intel_hdmi_add_properties(intel_hdmi, connector);
2866 
2867 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2868 	intel_hdmi->attached_connector = intel_connector;
2869 
2870 	if (is_hdcp_supported(dev_priv, port)) {
2871 		int ret = intel_hdcp_init(intel_connector, dig_port,
2872 					  &intel_hdmi_hdcp_shim);
2873 		if (ret)
2874 			drm_dbg_kms(&dev_priv->drm,
2875 				    "HDCP init failed, skipping.\n");
2876 	}
2877 
2878 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2879 	 * 0xd.  Failure to do so will result in spurious interrupts being
2880 	 * generated on the port when a cable is not attached.
2881 	 */
2882 	if (IS_G45(dev_priv)) {
2883 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2884 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2885 		               (temp & ~0xf) | 0xd);
2886 	}
2887 
2888 	cec_fill_conn_info_from_drm(&conn_info, connector);
2889 
2890 	intel_hdmi->cec_notifier =
2891 		cec_notifier_conn_register(dev->dev, port_identifier(port),
2892 					   &conn_info);
2893 	if (!intel_hdmi->cec_notifier)
2894 		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2895 }
2896 
2897 /*
2898  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2899  * @vactive: Vactive of a display mode
2900  *
2901  * @return: appropriate dsc slice height for a given mode.
2902  */
2903 int intel_hdmi_dsc_get_slice_height(int vactive)
2904 {
2905 	int slice_height;
2906 
2907 	/*
2908 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
2909 	 * Select smallest slice height >=96, that results in a valid PPS and
2910 	 * requires minimum padding lines required for final slice.
2911 	 *
2912 	 * Assumption : Vactive is even.
2913 	 */
2914 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2915 		if (vactive % slice_height == 0)
2916 			return slice_height;
2917 
2918 	return 0;
2919 }
2920 
2921 /*
2922  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2923  * and dsc decoder capabilities
2924  *
2925  * @crtc_state: intel crtc_state
2926  * @src_max_slices: maximum slices supported by the DSC encoder
2927  * @src_max_slice_width: maximum slice width supported by DSC encoder
2928  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2929  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2930  *
2931  * @return: num of dsc slices that can be supported by the dsc encoder
2932  * and decoder.
2933  */
2934 int
2935 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2936 			      int src_max_slices, int src_max_slice_width,
2937 			      int hdmi_max_slices, int hdmi_throughput)
2938 {
2939 /* Pixel rates in KPixels/sec */
2940 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
2941 /*
2942  * Rates at which the source and sink are required to process pixels in each
2943  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
2944  */
2945 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
2946 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
2947 
2948 /* Spec limits the slice width to 2720 pixels */
2949 #define MAX_HDMI_SLICE_WIDTH			2720
2950 	int kslice_adjust;
2951 	int adjusted_clk_khz;
2952 	int min_slices;
2953 	int target_slices;
2954 	int max_throughput; /* max clock freq. in khz per slice */
2955 	int max_slice_width;
2956 	int slice_width;
2957 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
2958 
2959 	if (!hdmi_throughput)
2960 		return 0;
2961 
2962 	/*
2963 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
2964 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
2965 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
2966 	 * dividing adjusted clock value by 10.
2967 	 */
2968 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
2969 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2970 		kslice_adjust = 10;
2971 	else
2972 		kslice_adjust = 5;
2973 
2974 	/*
2975 	 * As per spec, the rate at which the source and the sink process
2976 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
2977 	 * This depends upon the pixel clock rate and output formats
2978 	 * (kslice adjust).
2979 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
2980 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
2981 	 */
2982 
2983 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
2984 
2985 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
2986 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
2987 	else
2988 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
2989 
2990 	/*
2991 	 * Taking into account the sink's capability for maximum
2992 	 * clock per slice (in MHz) as read from HF-VSDB.
2993 	 */
2994 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
2995 
2996 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
2997 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
2998 
2999 	/*
3000 	 * Keep on increasing the num of slices/line, starting from min_slices
3001 	 * per line till we get such a number, for which the slice_width is
3002 	 * just less than max_slice_width. The slices/line selected should be
3003 	 * less than or equal to the max horizontal slices that the combination
3004 	 * of PCON encoder and HDMI decoder can support.
3005 	 */
3006 	slice_width = max_slice_width;
3007 
3008 	do {
3009 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3010 			target_slices = 1;
3011 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3012 			target_slices = 2;
3013 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3014 			target_slices = 4;
3015 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3016 			target_slices = 8;
3017 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3018 			target_slices = 12;
3019 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3020 			target_slices = 16;
3021 		else
3022 			return 0;
3023 
3024 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3025 		if (slice_width >= max_slice_width)
3026 			min_slices = target_slices + 1;
3027 	} while (slice_width >= max_slice_width);
3028 
3029 	return target_slices;
3030 }
3031 
3032 /*
3033  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3034  * source and sink capabilities.
3035  *
3036  * @src_fraction_bpp: fractional bpp supported by the source
3037  * @slice_width: dsc slice width supported by the source and sink
3038  * @num_slices: num of slices supported by the source and sink
3039  * @output_format: video output format
3040  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3041  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3042  *
3043  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3044  */
3045 int
3046 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3047 		       int output_format, bool hdmi_all_bpp,
3048 		       int hdmi_max_chunk_bytes)
3049 {
3050 	int max_dsc_bpp, min_dsc_bpp;
3051 	int target_bytes;
3052 	bool bpp_found = false;
3053 	int bpp_decrement_x16;
3054 	int bpp_target;
3055 	int bpp_target_x16;
3056 
3057 	/*
3058 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3059 	 * Start with the max bpp and keep on decrementing with
3060 	 * fractional bpp, if supported by PCON DSC encoder
3061 	 *
3062 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3063 	 */
3064 
3065 	/* Assuming: bpc as 8*/
3066 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3067 		min_dsc_bpp = 6;
3068 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3069 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3070 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3071 		min_dsc_bpp = 8;
3072 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3073 	} else {
3074 		/* Assuming 4:2:2 encoding */
3075 		min_dsc_bpp = 7;
3076 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3077 	}
3078 
3079 	/*
3080 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3081 	 * Section 7.7.34 : Source shall not enable compressed Video
3082 	 * Transport with bpp_target settings above 12 bpp unless
3083 	 * DSC_all_bpp is set to 1.
3084 	 */
3085 	if (!hdmi_all_bpp)
3086 		max_dsc_bpp = min(max_dsc_bpp, 12);
3087 
3088 	/*
3089 	 * The Sink has a limit of compressed data in bytes for a scanline,
3090 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3091 	 * The no. of bytes depend on the target bits per pixel that the
3092 	 * source configures. So we start with the max_bpp and calculate
3093 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3094 	 * till we get the target_chunk_bytes just less than what the sink's
3095 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3096 	 *
3097 	 * The decrement is according to the fractional support from PCON DSC
3098 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3099 	 *
3100 	 * bpp_target_x16 = bpp_target * 16
3101 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3102 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3103 	 */
3104 
3105 	bpp_target = max_dsc_bpp;
3106 
3107 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3108 	if (!src_fractional_bpp)
3109 		src_fractional_bpp = 1;
3110 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3111 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3112 
3113 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3114 		int bpp;
3115 
3116 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3117 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3118 		if (target_bytes <= hdmi_max_chunk_bytes) {
3119 			bpp_found = true;
3120 			break;
3121 		}
3122 		bpp_target_x16 -= bpp_decrement_x16;
3123 	}
3124 	if (bpp_found)
3125 		return bpp_target_x16;
3126 
3127 	return 0;
3128 }
3129