1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/i915_drm.h>
40 #include <drm/intel_lpe_audio.h>
41 
42 #include "i915_debugfs.h"
43 #include "i915_drv.h"
44 #include "intel_atomic.h"
45 #include "intel_audio.h"
46 #include "intel_connector.h"
47 #include "intel_ddi.h"
48 #include "intel_display_types.h"
49 #include "intel_dp.h"
50 #include "intel_dpio_phy.h"
51 #include "intel_fifo_underrun.h"
52 #include "intel_gmbus.h"
53 #include "intel_hdcp.h"
54 #include "intel_hdmi.h"
55 #include "intel_hotplug.h"
56 #include "intel_lspcon.h"
57 #include "intel_panel.h"
58 #include "intel_sdvo.h"
59 #include "intel_sideband.h"
60 
61 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
62 {
63 	return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
64 }
65 
66 static void
67 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
68 {
69 	struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
70 	struct drm_i915_private *dev_priv = to_i915(dev);
71 	u32 enabled_bits;
72 
73 	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
74 
75 	WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
76 	     "HDMI port enabled, expecting disabled\n");
77 }
78 
79 static void
80 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
81 				     enum transcoder cpu_transcoder)
82 {
83 	WARN(I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
84 	     TRANS_DDI_FUNC_ENABLE,
85 	     "HDMI transcoder function enabled, expecting disabled\n");
86 }
87 
88 struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
89 {
90 	struct intel_digital_port *intel_dig_port =
91 		container_of(encoder, struct intel_digital_port, base.base);
92 	return &intel_dig_port->hdmi;
93 }
94 
95 static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
96 {
97 	return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
98 }
99 
100 static u32 g4x_infoframe_index(unsigned int type)
101 {
102 	switch (type) {
103 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
104 		return VIDEO_DIP_SELECT_GAMUT;
105 	case HDMI_INFOFRAME_TYPE_AVI:
106 		return VIDEO_DIP_SELECT_AVI;
107 	case HDMI_INFOFRAME_TYPE_SPD:
108 		return VIDEO_DIP_SELECT_SPD;
109 	case HDMI_INFOFRAME_TYPE_VENDOR:
110 		return VIDEO_DIP_SELECT_VENDOR;
111 	default:
112 		MISSING_CASE(type);
113 		return 0;
114 	}
115 }
116 
117 static u32 g4x_infoframe_enable(unsigned int type)
118 {
119 	switch (type) {
120 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
121 		return VIDEO_DIP_ENABLE_GCP;
122 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
123 		return VIDEO_DIP_ENABLE_GAMUT;
124 	case DP_SDP_VSC:
125 		return 0;
126 	case HDMI_INFOFRAME_TYPE_AVI:
127 		return VIDEO_DIP_ENABLE_AVI;
128 	case HDMI_INFOFRAME_TYPE_SPD:
129 		return VIDEO_DIP_ENABLE_SPD;
130 	case HDMI_INFOFRAME_TYPE_VENDOR:
131 		return VIDEO_DIP_ENABLE_VENDOR;
132 	case HDMI_INFOFRAME_TYPE_DRM:
133 		return 0;
134 	default:
135 		MISSING_CASE(type);
136 		return 0;
137 	}
138 }
139 
140 static u32 hsw_infoframe_enable(unsigned int type)
141 {
142 	switch (type) {
143 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
144 		return VIDEO_DIP_ENABLE_GCP_HSW;
145 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
146 		return VIDEO_DIP_ENABLE_GMP_HSW;
147 	case DP_SDP_VSC:
148 		return VIDEO_DIP_ENABLE_VSC_HSW;
149 	case DP_SDP_PPS:
150 		return VDIP_ENABLE_PPS;
151 	case HDMI_INFOFRAME_TYPE_AVI:
152 		return VIDEO_DIP_ENABLE_AVI_HSW;
153 	case HDMI_INFOFRAME_TYPE_SPD:
154 		return VIDEO_DIP_ENABLE_SPD_HSW;
155 	case HDMI_INFOFRAME_TYPE_VENDOR:
156 		return VIDEO_DIP_ENABLE_VS_HSW;
157 	case HDMI_INFOFRAME_TYPE_DRM:
158 		return VIDEO_DIP_ENABLE_DRM_GLK;
159 	default:
160 		MISSING_CASE(type);
161 		return 0;
162 	}
163 }
164 
165 static i915_reg_t
166 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
167 		 enum transcoder cpu_transcoder,
168 		 unsigned int type,
169 		 int i)
170 {
171 	switch (type) {
172 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
173 		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
174 	case DP_SDP_VSC:
175 		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
176 	case DP_SDP_PPS:
177 		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
178 	case HDMI_INFOFRAME_TYPE_AVI:
179 		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
180 	case HDMI_INFOFRAME_TYPE_SPD:
181 		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
182 	case HDMI_INFOFRAME_TYPE_VENDOR:
183 		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
184 	case HDMI_INFOFRAME_TYPE_DRM:
185 		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
186 	default:
187 		MISSING_CASE(type);
188 		return INVALID_MMIO_REG;
189 	}
190 }
191 
192 static int hsw_dip_data_size(unsigned int type)
193 {
194 	switch (type) {
195 	case DP_SDP_VSC:
196 		return VIDEO_DIP_VSC_DATA_SIZE;
197 	case DP_SDP_PPS:
198 		return VIDEO_DIP_PPS_DATA_SIZE;
199 	default:
200 		return VIDEO_DIP_DATA_SIZE;
201 	}
202 }
203 
204 static void g4x_write_infoframe(struct intel_encoder *encoder,
205 				const struct intel_crtc_state *crtc_state,
206 				unsigned int type,
207 				const void *frame, ssize_t len)
208 {
209 	const u32 *data = frame;
210 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
211 	u32 val = I915_READ(VIDEO_DIP_CTL);
212 	int i;
213 
214 	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
215 
216 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
217 	val |= g4x_infoframe_index(type);
218 
219 	val &= ~g4x_infoframe_enable(type);
220 
221 	I915_WRITE(VIDEO_DIP_CTL, val);
222 
223 	for (i = 0; i < len; i += 4) {
224 		I915_WRITE(VIDEO_DIP_DATA, *data);
225 		data++;
226 	}
227 	/* Write every possible data byte to force correct ECC calculation. */
228 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
229 		I915_WRITE(VIDEO_DIP_DATA, 0);
230 
231 	val |= g4x_infoframe_enable(type);
232 	val &= ~VIDEO_DIP_FREQ_MASK;
233 	val |= VIDEO_DIP_FREQ_VSYNC;
234 
235 	I915_WRITE(VIDEO_DIP_CTL, val);
236 	POSTING_READ(VIDEO_DIP_CTL);
237 }
238 
239 static void g4x_read_infoframe(struct intel_encoder *encoder,
240 			       const struct intel_crtc_state *crtc_state,
241 			       unsigned int type,
242 			       void *frame, ssize_t len)
243 {
244 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
245 	u32 val, *data = frame;
246 	int i;
247 
248 	val = I915_READ(VIDEO_DIP_CTL);
249 
250 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
251 	val |= g4x_infoframe_index(type);
252 
253 	I915_WRITE(VIDEO_DIP_CTL, val);
254 
255 	for (i = 0; i < len; i += 4)
256 		*data++ = I915_READ(VIDEO_DIP_DATA);
257 }
258 
259 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
260 				  const struct intel_crtc_state *pipe_config)
261 {
262 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
263 	u32 val = I915_READ(VIDEO_DIP_CTL);
264 
265 	if ((val & VIDEO_DIP_ENABLE) == 0)
266 		return 0;
267 
268 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
269 		return 0;
270 
271 	return val & (VIDEO_DIP_ENABLE_AVI |
272 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
273 }
274 
275 static void ibx_write_infoframe(struct intel_encoder *encoder,
276 				const struct intel_crtc_state *crtc_state,
277 				unsigned int type,
278 				const void *frame, ssize_t len)
279 {
280 	const u32 *data = frame;
281 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
282 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
283 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
284 	u32 val = I915_READ(reg);
285 	int i;
286 
287 	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
288 
289 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
290 	val |= g4x_infoframe_index(type);
291 
292 	val &= ~g4x_infoframe_enable(type);
293 
294 	I915_WRITE(reg, val);
295 
296 	for (i = 0; i < len; i += 4) {
297 		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
298 		data++;
299 	}
300 	/* Write every possible data byte to force correct ECC calculation. */
301 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
302 		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
303 
304 	val |= g4x_infoframe_enable(type);
305 	val &= ~VIDEO_DIP_FREQ_MASK;
306 	val |= VIDEO_DIP_FREQ_VSYNC;
307 
308 	I915_WRITE(reg, val);
309 	POSTING_READ(reg);
310 }
311 
312 static void ibx_read_infoframe(struct intel_encoder *encoder,
313 			       const struct intel_crtc_state *crtc_state,
314 			       unsigned int type,
315 			       void *frame, ssize_t len)
316 {
317 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
318 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
319 	u32 val, *data = frame;
320 	int i;
321 
322 	val = I915_READ(TVIDEO_DIP_CTL(crtc->pipe));
323 
324 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
325 	val |= g4x_infoframe_index(type);
326 
327 	I915_WRITE(TVIDEO_DIP_CTL(crtc->pipe), val);
328 
329 	for (i = 0; i < len; i += 4)
330 		*data++ = I915_READ(TVIDEO_DIP_DATA(crtc->pipe));
331 }
332 
333 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
334 				  const struct intel_crtc_state *pipe_config)
335 {
336 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
337 	enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
338 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
339 	u32 val = I915_READ(reg);
340 
341 	if ((val & VIDEO_DIP_ENABLE) == 0)
342 		return 0;
343 
344 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
345 		return 0;
346 
347 	return val & (VIDEO_DIP_ENABLE_AVI |
348 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
349 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
350 }
351 
352 static void cpt_write_infoframe(struct intel_encoder *encoder,
353 				const struct intel_crtc_state *crtc_state,
354 				unsigned int type,
355 				const void *frame, ssize_t len)
356 {
357 	const u32 *data = frame;
358 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
359 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
360 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
361 	u32 val = I915_READ(reg);
362 	int i;
363 
364 	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
365 
366 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
367 	val |= g4x_infoframe_index(type);
368 
369 	/* The DIP control register spec says that we need to update the AVI
370 	 * infoframe without clearing its enable bit */
371 	if (type != HDMI_INFOFRAME_TYPE_AVI)
372 		val &= ~g4x_infoframe_enable(type);
373 
374 	I915_WRITE(reg, val);
375 
376 	for (i = 0; i < len; i += 4) {
377 		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
378 		data++;
379 	}
380 	/* Write every possible data byte to force correct ECC calculation. */
381 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
382 		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
383 
384 	val |= g4x_infoframe_enable(type);
385 	val &= ~VIDEO_DIP_FREQ_MASK;
386 	val |= VIDEO_DIP_FREQ_VSYNC;
387 
388 	I915_WRITE(reg, val);
389 	POSTING_READ(reg);
390 }
391 
392 static void cpt_read_infoframe(struct intel_encoder *encoder,
393 			       const struct intel_crtc_state *crtc_state,
394 			       unsigned int type,
395 			       void *frame, ssize_t len)
396 {
397 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
398 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
399 	u32 val, *data = frame;
400 	int i;
401 
402 	val = I915_READ(TVIDEO_DIP_CTL(crtc->pipe));
403 
404 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
405 	val |= g4x_infoframe_index(type);
406 
407 	I915_WRITE(TVIDEO_DIP_CTL(crtc->pipe), val);
408 
409 	for (i = 0; i < len; i += 4)
410 		*data++ = I915_READ(TVIDEO_DIP_DATA(crtc->pipe));
411 }
412 
413 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
414 				  const struct intel_crtc_state *pipe_config)
415 {
416 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
417 	enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
418 	u32 val = I915_READ(TVIDEO_DIP_CTL(pipe));
419 
420 	if ((val & VIDEO_DIP_ENABLE) == 0)
421 		return 0;
422 
423 	return val & (VIDEO_DIP_ENABLE_AVI |
424 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
425 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
426 }
427 
428 static void vlv_write_infoframe(struct intel_encoder *encoder,
429 				const struct intel_crtc_state *crtc_state,
430 				unsigned int type,
431 				const void *frame, ssize_t len)
432 {
433 	const u32 *data = frame;
434 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
435 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
436 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
437 	u32 val = I915_READ(reg);
438 	int i;
439 
440 	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
441 
442 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
443 	val |= g4x_infoframe_index(type);
444 
445 	val &= ~g4x_infoframe_enable(type);
446 
447 	I915_WRITE(reg, val);
448 
449 	for (i = 0; i < len; i += 4) {
450 		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
451 		data++;
452 	}
453 	/* Write every possible data byte to force correct ECC calculation. */
454 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
455 		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
456 
457 	val |= g4x_infoframe_enable(type);
458 	val &= ~VIDEO_DIP_FREQ_MASK;
459 	val |= VIDEO_DIP_FREQ_VSYNC;
460 
461 	I915_WRITE(reg, val);
462 	POSTING_READ(reg);
463 }
464 
465 static void vlv_read_infoframe(struct intel_encoder *encoder,
466 			       const struct intel_crtc_state *crtc_state,
467 			       unsigned int type,
468 			       void *frame, ssize_t len)
469 {
470 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
471 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
472 	u32 val, *data = frame;
473 	int i;
474 
475 	val = I915_READ(VLV_TVIDEO_DIP_CTL(crtc->pipe));
476 
477 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
478 	val |= g4x_infoframe_index(type);
479 
480 	I915_WRITE(VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
481 
482 	for (i = 0; i < len; i += 4)
483 		*data++ = I915_READ(VLV_TVIDEO_DIP_DATA(crtc->pipe));
484 }
485 
486 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
487 				  const struct intel_crtc_state *pipe_config)
488 {
489 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
490 	enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
491 	u32 val = I915_READ(VLV_TVIDEO_DIP_CTL(pipe));
492 
493 	if ((val & VIDEO_DIP_ENABLE) == 0)
494 		return 0;
495 
496 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
497 		return 0;
498 
499 	return val & (VIDEO_DIP_ENABLE_AVI |
500 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
501 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
502 }
503 
504 static void hsw_write_infoframe(struct intel_encoder *encoder,
505 				const struct intel_crtc_state *crtc_state,
506 				unsigned int type,
507 				const void *frame, ssize_t len)
508 {
509 	const u32 *data = frame;
510 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
511 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
512 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
513 	int data_size;
514 	int i;
515 	u32 val = I915_READ(ctl_reg);
516 
517 	data_size = hsw_dip_data_size(type);
518 
519 	val &= ~hsw_infoframe_enable(type);
520 	I915_WRITE(ctl_reg, val);
521 
522 	for (i = 0; i < len; i += 4) {
523 		I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
524 					    type, i >> 2), *data);
525 		data++;
526 	}
527 	/* Write every possible data byte to force correct ECC calculation. */
528 	for (; i < data_size; i += 4)
529 		I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
530 					    type, i >> 2), 0);
531 
532 	val |= hsw_infoframe_enable(type);
533 	I915_WRITE(ctl_reg, val);
534 	POSTING_READ(ctl_reg);
535 }
536 
537 static void hsw_read_infoframe(struct intel_encoder *encoder,
538 			       const struct intel_crtc_state *crtc_state,
539 			       unsigned int type,
540 			       void *frame, ssize_t len)
541 {
542 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
543 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
544 	u32 val, *data = frame;
545 	int i;
546 
547 	val = I915_READ(HSW_TVIDEO_DIP_CTL(cpu_transcoder));
548 
549 	for (i = 0; i < len; i += 4)
550 		*data++ = I915_READ(hsw_dip_data_reg(dev_priv, cpu_transcoder,
551 						     type, i >> 2));
552 }
553 
554 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
555 				  const struct intel_crtc_state *pipe_config)
556 {
557 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
558 	u32 val = I915_READ(HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
559 	u32 mask;
560 
561 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
562 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
563 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
564 
565 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
566 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
567 
568 	return val & mask;
569 }
570 
571 static const u8 infoframe_type_to_idx[] = {
572 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
573 	HDMI_PACKET_TYPE_GAMUT_METADATA,
574 	DP_SDP_VSC,
575 	HDMI_INFOFRAME_TYPE_AVI,
576 	HDMI_INFOFRAME_TYPE_SPD,
577 	HDMI_INFOFRAME_TYPE_VENDOR,
578 	HDMI_INFOFRAME_TYPE_DRM,
579 };
580 
581 u32 intel_hdmi_infoframe_enable(unsigned int type)
582 {
583 	int i;
584 
585 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
586 		if (infoframe_type_to_idx[i] == type)
587 			return BIT(i);
588 	}
589 
590 	return 0;
591 }
592 
593 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
594 				  const struct intel_crtc_state *crtc_state)
595 {
596 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
597 	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
598 	u32 val, ret = 0;
599 	int i;
600 
601 	val = dig_port->infoframes_enabled(encoder, crtc_state);
602 
603 	/* map from hardware bits to dip idx */
604 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
605 		unsigned int type = infoframe_type_to_idx[i];
606 
607 		if (HAS_DDI(dev_priv)) {
608 			if (val & hsw_infoframe_enable(type))
609 				ret |= BIT(i);
610 		} else {
611 			if (val & g4x_infoframe_enable(type))
612 				ret |= BIT(i);
613 		}
614 	}
615 
616 	return ret;
617 }
618 
619 /*
620  * The data we write to the DIP data buffer registers is 1 byte bigger than the
621  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
622  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
623  * used for both technologies.
624  *
625  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
626  * DW1:       DB3       | DB2 | DB1 | DB0
627  * DW2:       DB7       | DB6 | DB5 | DB4
628  * DW3: ...
629  *
630  * (HB is Header Byte, DB is Data Byte)
631  *
632  * The hdmi pack() functions don't know about that hardware specific hole so we
633  * trick them by giving an offset into the buffer and moving back the header
634  * bytes by one.
635  */
636 static void intel_write_infoframe(struct intel_encoder *encoder,
637 				  const struct intel_crtc_state *crtc_state,
638 				  enum hdmi_infoframe_type type,
639 				  const union hdmi_infoframe *frame)
640 {
641 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
642 	u8 buffer[VIDEO_DIP_DATA_SIZE];
643 	ssize_t len;
644 
645 	if ((crtc_state->infoframes.enable &
646 	     intel_hdmi_infoframe_enable(type)) == 0)
647 		return;
648 
649 	if (WARN_ON(frame->any.type != type))
650 		return;
651 
652 	/* see comment above for the reason for this offset */
653 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
654 	if (WARN_ON(len < 0))
655 		return;
656 
657 	/* Insert the 'hole' (see big comment above) at position 3 */
658 	memmove(&buffer[0], &buffer[1], 3);
659 	buffer[3] = 0;
660 	len++;
661 
662 	intel_dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
663 }
664 
665 void intel_read_infoframe(struct intel_encoder *encoder,
666 			  const struct intel_crtc_state *crtc_state,
667 			  enum hdmi_infoframe_type type,
668 			  union hdmi_infoframe *frame)
669 {
670 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
671 	u8 buffer[VIDEO_DIP_DATA_SIZE];
672 	int ret;
673 
674 	if ((crtc_state->infoframes.enable &
675 	     intel_hdmi_infoframe_enable(type)) == 0)
676 		return;
677 
678 	intel_dig_port->read_infoframe(encoder, crtc_state,
679 				       type, buffer, sizeof(buffer));
680 
681 	/* Fill the 'hole' (see big comment above) at position 3 */
682 	memmove(&buffer[1], &buffer[0], 3);
683 
684 	/* see comment above for the reason for this offset */
685 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
686 	if (ret) {
687 		DRM_DEBUG_KMS("Failed to unpack infoframe type 0x%02x\n", type);
688 		return;
689 	}
690 
691 	if (frame->any.type != type)
692 		DRM_DEBUG_KMS("Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
693 			      frame->any.type, type);
694 }
695 
696 static bool
697 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
698 				 struct intel_crtc_state *crtc_state,
699 				 struct drm_connector_state *conn_state)
700 {
701 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
702 	const struct drm_display_mode *adjusted_mode =
703 		&crtc_state->base.adjusted_mode;
704 	struct drm_connector *connector = conn_state->connector;
705 	int ret;
706 
707 	if (!crtc_state->has_infoframe)
708 		return true;
709 
710 	crtc_state->infoframes.enable |=
711 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
712 
713 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
714 						       adjusted_mode);
715 	if (ret)
716 		return false;
717 
718 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
719 		frame->colorspace = HDMI_COLORSPACE_YUV420;
720 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
721 		frame->colorspace = HDMI_COLORSPACE_YUV444;
722 	else
723 		frame->colorspace = HDMI_COLORSPACE_RGB;
724 
725 	drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
726 
727 	/* nonsense combination */
728 	WARN_ON(crtc_state->limited_color_range &&
729 		crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
730 
731 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
732 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
733 						   adjusted_mode,
734 						   crtc_state->limited_color_range ?
735 						   HDMI_QUANTIZATION_RANGE_LIMITED :
736 						   HDMI_QUANTIZATION_RANGE_FULL);
737 	} else {
738 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
739 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
740 	}
741 
742 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
743 
744 	/* TODO: handle pixel repetition for YCBCR420 outputs */
745 
746 	ret = hdmi_avi_infoframe_check(frame);
747 	if (WARN_ON(ret))
748 		return false;
749 
750 	return true;
751 }
752 
753 static bool
754 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
755 				 struct intel_crtc_state *crtc_state,
756 				 struct drm_connector_state *conn_state)
757 {
758 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
759 	int ret;
760 
761 	if (!crtc_state->has_infoframe)
762 		return true;
763 
764 	crtc_state->infoframes.enable |=
765 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
766 
767 	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
768 	if (WARN_ON(ret))
769 		return false;
770 
771 	frame->sdi = HDMI_SPD_SDI_PC;
772 
773 	ret = hdmi_spd_infoframe_check(frame);
774 	if (WARN_ON(ret))
775 		return false;
776 
777 	return true;
778 }
779 
780 static bool
781 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
782 				  struct intel_crtc_state *crtc_state,
783 				  struct drm_connector_state *conn_state)
784 {
785 	struct hdmi_vendor_infoframe *frame =
786 		&crtc_state->infoframes.hdmi.vendor.hdmi;
787 	const struct drm_display_info *info =
788 		&conn_state->connector->display_info;
789 	int ret;
790 
791 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
792 		return true;
793 
794 	crtc_state->infoframes.enable |=
795 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
796 
797 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
798 							  conn_state->connector,
799 							  &crtc_state->base.adjusted_mode);
800 	if (WARN_ON(ret))
801 		return false;
802 
803 	ret = hdmi_vendor_infoframe_check(frame);
804 	if (WARN_ON(ret))
805 		return false;
806 
807 	return true;
808 }
809 
810 static bool
811 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
812 				 struct intel_crtc_state *crtc_state,
813 				 struct drm_connector_state *conn_state)
814 {
815 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
816 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
817 	int ret;
818 
819 	if (!(INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)))
820 		return true;
821 
822 	if (!crtc_state->has_infoframe)
823 		return true;
824 
825 	if (!conn_state->hdr_output_metadata)
826 		return true;
827 
828 	crtc_state->infoframes.enable |=
829 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
830 
831 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
832 	if (ret < 0) {
833 		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
834 		return false;
835 	}
836 
837 	ret = hdmi_drm_infoframe_check(frame);
838 	if (WARN_ON(ret))
839 		return false;
840 
841 	return true;
842 }
843 
844 static void g4x_set_infoframes(struct intel_encoder *encoder,
845 			       bool enable,
846 			       const struct intel_crtc_state *crtc_state,
847 			       const struct drm_connector_state *conn_state)
848 {
849 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
850 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
851 	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
852 	i915_reg_t reg = VIDEO_DIP_CTL;
853 	u32 val = I915_READ(reg);
854 	u32 port = VIDEO_DIP_PORT(encoder->port);
855 
856 	assert_hdmi_port_disabled(intel_hdmi);
857 
858 	/* If the registers were not initialized yet, they might be zeroes,
859 	 * which means we're selecting the AVI DIP and we're setting its
860 	 * frequency to once. This seems to really confuse the HW and make
861 	 * things stop working (the register spec says the AVI always needs to
862 	 * be sent every VSync). So here we avoid writing to the register more
863 	 * than we need and also explicitly select the AVI DIP and explicitly
864 	 * set its frequency to every VSync. Avoiding to write it twice seems to
865 	 * be enough to solve the problem, but being defensive shouldn't hurt us
866 	 * either. */
867 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
868 
869 	if (!enable) {
870 		if (!(val & VIDEO_DIP_ENABLE))
871 			return;
872 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
873 			DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
874 				      (val & VIDEO_DIP_PORT_MASK) >> 29);
875 			return;
876 		}
877 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
878 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
879 		I915_WRITE(reg, val);
880 		POSTING_READ(reg);
881 		return;
882 	}
883 
884 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
885 		if (val & VIDEO_DIP_ENABLE) {
886 			DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
887 				      (val & VIDEO_DIP_PORT_MASK) >> 29);
888 			return;
889 		}
890 		val &= ~VIDEO_DIP_PORT_MASK;
891 		val |= port;
892 	}
893 
894 	val |= VIDEO_DIP_ENABLE;
895 	val &= ~(VIDEO_DIP_ENABLE_AVI |
896 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
897 
898 	I915_WRITE(reg, val);
899 	POSTING_READ(reg);
900 
901 	intel_write_infoframe(encoder, crtc_state,
902 			      HDMI_INFOFRAME_TYPE_AVI,
903 			      &crtc_state->infoframes.avi);
904 	intel_write_infoframe(encoder, crtc_state,
905 			      HDMI_INFOFRAME_TYPE_SPD,
906 			      &crtc_state->infoframes.spd);
907 	intel_write_infoframe(encoder, crtc_state,
908 			      HDMI_INFOFRAME_TYPE_VENDOR,
909 			      &crtc_state->infoframes.hdmi);
910 }
911 
912 /*
913  * Determine if default_phase=1 can be indicated in the GCP infoframe.
914  *
915  * From HDMI specification 1.4a:
916  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
917  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
918  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
919  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
920  *   phase of 0
921  */
922 static bool gcp_default_phase_possible(int pipe_bpp,
923 				       const struct drm_display_mode *mode)
924 {
925 	unsigned int pixels_per_group;
926 
927 	switch (pipe_bpp) {
928 	case 30:
929 		/* 4 pixels in 5 clocks */
930 		pixels_per_group = 4;
931 		break;
932 	case 36:
933 		/* 2 pixels in 3 clocks */
934 		pixels_per_group = 2;
935 		break;
936 	case 48:
937 		/* 1 pixel in 2 clocks */
938 		pixels_per_group = 1;
939 		break;
940 	default:
941 		/* phase information not relevant for 8bpc */
942 		return false;
943 	}
944 
945 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
946 		mode->crtc_htotal % pixels_per_group == 0 &&
947 		mode->crtc_hblank_start % pixels_per_group == 0 &&
948 		mode->crtc_hblank_end % pixels_per_group == 0 &&
949 		mode->crtc_hsync_start % pixels_per_group == 0 &&
950 		mode->crtc_hsync_end % pixels_per_group == 0 &&
951 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
952 		 mode->crtc_htotal/2 % pixels_per_group == 0);
953 }
954 
955 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
956 					 const struct intel_crtc_state *crtc_state,
957 					 const struct drm_connector_state *conn_state)
958 {
959 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
960 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
961 	i915_reg_t reg;
962 
963 	if ((crtc_state->infoframes.enable &
964 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
965 		return false;
966 
967 	if (HAS_DDI(dev_priv))
968 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
969 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
970 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
971 	else if (HAS_PCH_SPLIT(dev_priv))
972 		reg = TVIDEO_DIP_GCP(crtc->pipe);
973 	else
974 		return false;
975 
976 	I915_WRITE(reg, crtc_state->infoframes.gcp);
977 
978 	return true;
979 }
980 
981 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
982 				   struct intel_crtc_state *crtc_state)
983 {
984 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
985 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
986 	i915_reg_t reg;
987 
988 	if ((crtc_state->infoframes.enable &
989 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
990 		return;
991 
992 	if (HAS_DDI(dev_priv))
993 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
994 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
995 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
996 	else if (HAS_PCH_SPLIT(dev_priv))
997 		reg = TVIDEO_DIP_GCP(crtc->pipe);
998 	else
999 		return;
1000 
1001 	crtc_state->infoframes.gcp = I915_READ(reg);
1002 }
1003 
1004 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1005 					     struct intel_crtc_state *crtc_state,
1006 					     struct drm_connector_state *conn_state)
1007 {
1008 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1009 
1010 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1011 		return;
1012 
1013 	crtc_state->infoframes.enable |=
1014 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1015 
1016 	/* Indicate color indication for deep color mode */
1017 	if (crtc_state->pipe_bpp > 24)
1018 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1019 
1020 	/* Enable default_phase whenever the display mode is suitably aligned */
1021 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1022 				       &crtc_state->base.adjusted_mode))
1023 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1024 }
1025 
1026 static void ibx_set_infoframes(struct intel_encoder *encoder,
1027 			       bool enable,
1028 			       const struct intel_crtc_state *crtc_state,
1029 			       const struct drm_connector_state *conn_state)
1030 {
1031 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1032 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1033 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
1034 	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
1035 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1036 	u32 val = I915_READ(reg);
1037 	u32 port = VIDEO_DIP_PORT(encoder->port);
1038 
1039 	assert_hdmi_port_disabled(intel_hdmi);
1040 
1041 	/* See the big comment in g4x_set_infoframes() */
1042 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1043 
1044 	if (!enable) {
1045 		if (!(val & VIDEO_DIP_ENABLE))
1046 			return;
1047 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1048 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1049 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1050 		I915_WRITE(reg, val);
1051 		POSTING_READ(reg);
1052 		return;
1053 	}
1054 
1055 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1056 		WARN(val & VIDEO_DIP_ENABLE,
1057 		     "DIP already enabled on port %c\n",
1058 		     (val & VIDEO_DIP_PORT_MASK) >> 29);
1059 		val &= ~VIDEO_DIP_PORT_MASK;
1060 		val |= port;
1061 	}
1062 
1063 	val |= VIDEO_DIP_ENABLE;
1064 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1065 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1066 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1067 
1068 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1069 		val |= VIDEO_DIP_ENABLE_GCP;
1070 
1071 	I915_WRITE(reg, val);
1072 	POSTING_READ(reg);
1073 
1074 	intel_write_infoframe(encoder, crtc_state,
1075 			      HDMI_INFOFRAME_TYPE_AVI,
1076 			      &crtc_state->infoframes.avi);
1077 	intel_write_infoframe(encoder, crtc_state,
1078 			      HDMI_INFOFRAME_TYPE_SPD,
1079 			      &crtc_state->infoframes.spd);
1080 	intel_write_infoframe(encoder, crtc_state,
1081 			      HDMI_INFOFRAME_TYPE_VENDOR,
1082 			      &crtc_state->infoframes.hdmi);
1083 }
1084 
1085 static void cpt_set_infoframes(struct intel_encoder *encoder,
1086 			       bool enable,
1087 			       const struct intel_crtc_state *crtc_state,
1088 			       const struct drm_connector_state *conn_state)
1089 {
1090 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1091 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1092 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1093 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1094 	u32 val = I915_READ(reg);
1095 
1096 	assert_hdmi_port_disabled(intel_hdmi);
1097 
1098 	/* See the big comment in g4x_set_infoframes() */
1099 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1100 
1101 	if (!enable) {
1102 		if (!(val & VIDEO_DIP_ENABLE))
1103 			return;
1104 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1105 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1106 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1107 		I915_WRITE(reg, val);
1108 		POSTING_READ(reg);
1109 		return;
1110 	}
1111 
1112 	/* Set both together, unset both together: see the spec. */
1113 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1114 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1115 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1116 
1117 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1118 		val |= VIDEO_DIP_ENABLE_GCP;
1119 
1120 	I915_WRITE(reg, val);
1121 	POSTING_READ(reg);
1122 
1123 	intel_write_infoframe(encoder, crtc_state,
1124 			      HDMI_INFOFRAME_TYPE_AVI,
1125 			      &crtc_state->infoframes.avi);
1126 	intel_write_infoframe(encoder, crtc_state,
1127 			      HDMI_INFOFRAME_TYPE_SPD,
1128 			      &crtc_state->infoframes.spd);
1129 	intel_write_infoframe(encoder, crtc_state,
1130 			      HDMI_INFOFRAME_TYPE_VENDOR,
1131 			      &crtc_state->infoframes.hdmi);
1132 }
1133 
1134 static void vlv_set_infoframes(struct intel_encoder *encoder,
1135 			       bool enable,
1136 			       const struct intel_crtc_state *crtc_state,
1137 			       const struct drm_connector_state *conn_state)
1138 {
1139 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1140 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1141 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1142 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
1143 	u32 val = I915_READ(reg);
1144 	u32 port = VIDEO_DIP_PORT(encoder->port);
1145 
1146 	assert_hdmi_port_disabled(intel_hdmi);
1147 
1148 	/* See the big comment in g4x_set_infoframes() */
1149 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1150 
1151 	if (!enable) {
1152 		if (!(val & VIDEO_DIP_ENABLE))
1153 			return;
1154 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1155 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1156 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1157 		I915_WRITE(reg, val);
1158 		POSTING_READ(reg);
1159 		return;
1160 	}
1161 
1162 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1163 		WARN(val & VIDEO_DIP_ENABLE,
1164 		     "DIP already enabled on port %c\n",
1165 		     (val & VIDEO_DIP_PORT_MASK) >> 29);
1166 		val &= ~VIDEO_DIP_PORT_MASK;
1167 		val |= port;
1168 	}
1169 
1170 	val |= VIDEO_DIP_ENABLE;
1171 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1172 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1173 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1174 
1175 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1176 		val |= VIDEO_DIP_ENABLE_GCP;
1177 
1178 	I915_WRITE(reg, val);
1179 	POSTING_READ(reg);
1180 
1181 	intel_write_infoframe(encoder, crtc_state,
1182 			      HDMI_INFOFRAME_TYPE_AVI,
1183 			      &crtc_state->infoframes.avi);
1184 	intel_write_infoframe(encoder, crtc_state,
1185 			      HDMI_INFOFRAME_TYPE_SPD,
1186 			      &crtc_state->infoframes.spd);
1187 	intel_write_infoframe(encoder, crtc_state,
1188 			      HDMI_INFOFRAME_TYPE_VENDOR,
1189 			      &crtc_state->infoframes.hdmi);
1190 }
1191 
1192 static void hsw_set_infoframes(struct intel_encoder *encoder,
1193 			       bool enable,
1194 			       const struct intel_crtc_state *crtc_state,
1195 			       const struct drm_connector_state *conn_state)
1196 {
1197 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1198 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1199 	u32 val = I915_READ(reg);
1200 
1201 	assert_hdmi_transcoder_func_disabled(dev_priv,
1202 					     crtc_state->cpu_transcoder);
1203 
1204 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1205 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1206 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1207 		 VIDEO_DIP_ENABLE_DRM_GLK);
1208 
1209 	if (!enable) {
1210 		I915_WRITE(reg, val);
1211 		POSTING_READ(reg);
1212 		return;
1213 	}
1214 
1215 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1216 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1217 
1218 	I915_WRITE(reg, val);
1219 	POSTING_READ(reg);
1220 
1221 	intel_write_infoframe(encoder, crtc_state,
1222 			      HDMI_INFOFRAME_TYPE_AVI,
1223 			      &crtc_state->infoframes.avi);
1224 	intel_write_infoframe(encoder, crtc_state,
1225 			      HDMI_INFOFRAME_TYPE_SPD,
1226 			      &crtc_state->infoframes.spd);
1227 	intel_write_infoframe(encoder, crtc_state,
1228 			      HDMI_INFOFRAME_TYPE_VENDOR,
1229 			      &crtc_state->infoframes.hdmi);
1230 	intel_write_infoframe(encoder, crtc_state,
1231 			      HDMI_INFOFRAME_TYPE_DRM,
1232 			      &crtc_state->infoframes.drm);
1233 }
1234 
1235 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1236 {
1237 	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1238 	struct i2c_adapter *adapter =
1239 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1240 
1241 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1242 		return;
1243 
1244 	DRM_DEBUG_KMS("%s DP dual mode adaptor TMDS output\n",
1245 		      enable ? "Enabling" : "Disabling");
1246 
1247 	drm_dp_dual_mode_set_tmds_output(hdmi->dp_dual_mode.type,
1248 					 adapter, enable);
1249 }
1250 
1251 static int intel_hdmi_hdcp_read(struct intel_digital_port *intel_dig_port,
1252 				unsigned int offset, void *buffer, size_t size)
1253 {
1254 	struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
1255 	struct drm_i915_private *dev_priv =
1256 		intel_dig_port->base.base.dev->dev_private;
1257 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
1258 							      hdmi->ddc_bus);
1259 	int ret;
1260 	u8 start = offset & 0xff;
1261 	struct i2c_msg msgs[] = {
1262 		{
1263 			.addr = DRM_HDCP_DDC_ADDR,
1264 			.flags = 0,
1265 			.len = 1,
1266 			.buf = &start,
1267 		},
1268 		{
1269 			.addr = DRM_HDCP_DDC_ADDR,
1270 			.flags = I2C_M_RD,
1271 			.len = size,
1272 			.buf = buffer
1273 		}
1274 	};
1275 	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1276 	if (ret == ARRAY_SIZE(msgs))
1277 		return 0;
1278 	return ret >= 0 ? -EIO : ret;
1279 }
1280 
1281 static int intel_hdmi_hdcp_write(struct intel_digital_port *intel_dig_port,
1282 				 unsigned int offset, void *buffer, size_t size)
1283 {
1284 	struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
1285 	struct drm_i915_private *dev_priv =
1286 		intel_dig_port->base.base.dev->dev_private;
1287 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
1288 							      hdmi->ddc_bus);
1289 	int ret;
1290 	u8 *write_buf;
1291 	struct i2c_msg msg;
1292 
1293 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1294 	if (!write_buf)
1295 		return -ENOMEM;
1296 
1297 	write_buf[0] = offset & 0xff;
1298 	memcpy(&write_buf[1], buffer, size);
1299 
1300 	msg.addr = DRM_HDCP_DDC_ADDR;
1301 	msg.flags = 0,
1302 	msg.len = size + 1,
1303 	msg.buf = write_buf;
1304 
1305 	ret = i2c_transfer(adapter, &msg, 1);
1306 	if (ret == 1)
1307 		ret = 0;
1308 	else if (ret >= 0)
1309 		ret = -EIO;
1310 
1311 	kfree(write_buf);
1312 	return ret;
1313 }
1314 
1315 static
1316 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
1317 				  u8 *an)
1318 {
1319 	struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
1320 	struct drm_i915_private *dev_priv =
1321 		intel_dig_port->base.base.dev->dev_private;
1322 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
1323 							      hdmi->ddc_bus);
1324 	int ret;
1325 
1326 	ret = intel_hdmi_hdcp_write(intel_dig_port, DRM_HDCP_DDC_AN, an,
1327 				    DRM_HDCP_AN_LEN);
1328 	if (ret) {
1329 		DRM_DEBUG_KMS("Write An over DDC failed (%d)\n", ret);
1330 		return ret;
1331 	}
1332 
1333 	ret = intel_gmbus_output_aksv(adapter);
1334 	if (ret < 0) {
1335 		DRM_DEBUG_KMS("Failed to output aksv (%d)\n", ret);
1336 		return ret;
1337 	}
1338 	return 0;
1339 }
1340 
1341 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
1342 				     u8 *bksv)
1343 {
1344 	int ret;
1345 	ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BKSV, bksv,
1346 				   DRM_HDCP_KSV_LEN);
1347 	if (ret)
1348 		DRM_DEBUG_KMS("Read Bksv over DDC failed (%d)\n", ret);
1349 	return ret;
1350 }
1351 
1352 static
1353 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
1354 				 u8 *bstatus)
1355 {
1356 	int ret;
1357 	ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BSTATUS,
1358 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1359 	if (ret)
1360 		DRM_DEBUG_KMS("Read bstatus over DDC failed (%d)\n", ret);
1361 	return ret;
1362 }
1363 
1364 static
1365 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
1366 				     bool *repeater_present)
1367 {
1368 	int ret;
1369 	u8 val;
1370 
1371 	ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1372 	if (ret) {
1373 		DRM_DEBUG_KMS("Read bcaps over DDC failed (%d)\n", ret);
1374 		return ret;
1375 	}
1376 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1377 	return 0;
1378 }
1379 
1380 static
1381 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
1382 				  u8 *ri_prime)
1383 {
1384 	int ret;
1385 	ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_RI_PRIME,
1386 				   ri_prime, DRM_HDCP_RI_LEN);
1387 	if (ret)
1388 		DRM_DEBUG_KMS("Read Ri' over DDC failed (%d)\n", ret);
1389 	return ret;
1390 }
1391 
1392 static
1393 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
1394 				   bool *ksv_ready)
1395 {
1396 	int ret;
1397 	u8 val;
1398 
1399 	ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1400 	if (ret) {
1401 		DRM_DEBUG_KMS("Read bcaps over DDC failed (%d)\n", ret);
1402 		return ret;
1403 	}
1404 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1405 	return 0;
1406 }
1407 
1408 static
1409 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
1410 				  int num_downstream, u8 *ksv_fifo)
1411 {
1412 	int ret;
1413 	ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_KSV_FIFO,
1414 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1415 	if (ret) {
1416 		DRM_DEBUG_KMS("Read ksv fifo over DDC failed (%d)\n", ret);
1417 		return ret;
1418 	}
1419 	return 0;
1420 }
1421 
1422 static
1423 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
1424 				      int i, u32 *part)
1425 {
1426 	int ret;
1427 
1428 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1429 		return -EINVAL;
1430 
1431 	ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_V_PRIME(i),
1432 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1433 	if (ret)
1434 		DRM_DEBUG_KMS("Read V'[%d] over DDC failed (%d)\n", i, ret);
1435 	return ret;
1436 }
1437 
1438 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector)
1439 {
1440 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1441 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1442 	struct drm_crtc *crtc = connector->base.state->crtc;
1443 	struct intel_crtc *intel_crtc = container_of(crtc,
1444 						     struct intel_crtc, base);
1445 	u32 scanline;
1446 	int ret;
1447 
1448 	for (;;) {
1449 		scanline = I915_READ(PIPEDSL(intel_crtc->pipe));
1450 		if (scanline > 100 && scanline < 200)
1451 			break;
1452 		usleep_range(25, 50);
1453 	}
1454 
1455 	ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, false);
1456 	if (ret) {
1457 		DRM_ERROR("Disable HDCP signalling failed (%d)\n", ret);
1458 		return ret;
1459 	}
1460 	ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, true);
1461 	if (ret) {
1462 		DRM_ERROR("Enable HDCP signalling failed (%d)\n", ret);
1463 		return ret;
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 static
1470 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
1471 				      bool enable)
1472 {
1473 	struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
1474 	struct intel_connector *connector = hdmi->attached_connector;
1475 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1476 	int ret;
1477 
1478 	if (!enable)
1479 		usleep_range(6, 60); /* Bspec says >= 6us */
1480 
1481 	ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, enable);
1482 	if (ret) {
1483 		DRM_ERROR("%s HDCP signalling failed (%d)\n",
1484 			  enable ? "Enable" : "Disable", ret);
1485 		return ret;
1486 	}
1487 
1488 	/*
1489 	 * WA: To fix incorrect positioning of the window of
1490 	 * opportunity and enc_en signalling in KABYLAKE.
1491 	 */
1492 	if (IS_KABYLAKE(dev_priv) && enable)
1493 		return kbl_repositioning_enc_en_signal(connector);
1494 
1495 	return 0;
1496 }
1497 
1498 static
1499 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *intel_dig_port)
1500 {
1501 	struct drm_i915_private *dev_priv =
1502 		intel_dig_port->base.base.dev->dev_private;
1503 	struct intel_connector *connector =
1504 		intel_dig_port->hdmi.attached_connector;
1505 	enum port port = intel_dig_port->base.port;
1506 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1507 	int ret;
1508 	union {
1509 		u32 reg;
1510 		u8 shim[DRM_HDCP_RI_LEN];
1511 	} ri;
1512 
1513 	ret = intel_hdmi_hdcp_read_ri_prime(intel_dig_port, ri.shim);
1514 	if (ret)
1515 		return false;
1516 
1517 	I915_WRITE(HDCP_RPRIME(dev_priv, cpu_transcoder, port), ri.reg);
1518 
1519 	/* Wait for Ri prime match */
1520 	if (wait_for(I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
1521 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1522 		DRM_ERROR("Ri' mismatch detected, link check failed (%x)\n",
1523 			  I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
1524 						port)));
1525 		return false;
1526 	}
1527 	return true;
1528 }
1529 
1530 struct hdcp2_hdmi_msg_data {
1531 	u8 msg_id;
1532 	u32 timeout;
1533 	u32 timeout2;
1534 };
1535 
1536 static const struct hdcp2_hdmi_msg_data hdcp2_msg_data[] = {
1537 	{ HDCP_2_2_AKE_INIT, 0, 0 },
1538 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
1539 	{ HDCP_2_2_AKE_NO_STORED_KM, 0, 0 },
1540 	{ HDCP_2_2_AKE_STORED_KM, 0, 0 },
1541 	{ HDCP_2_2_AKE_SEND_HPRIME, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
1542 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
1543 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
1544 	{ HDCP_2_2_LC_INIT, 0, 0 },
1545 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, 0 },
1546 	{ HDCP_2_2_SKE_SEND_EKS, 0, 0 },
1547 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
1548 	{ HDCP_2_2_REP_SEND_ACK, 0, 0 },
1549 	{ HDCP_2_2_REP_STREAM_MANAGE, 0, 0 },
1550 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
1551 };
1552 
1553 static
1554 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
1555 				    u8 *rx_status)
1556 {
1557 	return intel_hdmi_hdcp_read(intel_dig_port,
1558 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1559 				    rx_status,
1560 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1561 }
1562 
1563 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1564 {
1565 	int i;
1566 
1567 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
1568 		if (hdcp2_msg_data[i].msg_id == msg_id &&
1569 		    (msg_id != HDCP_2_2_AKE_SEND_HPRIME || is_paired))
1570 			return hdcp2_msg_data[i].timeout;
1571 		else if (hdcp2_msg_data[i].msg_id == msg_id)
1572 			return hdcp2_msg_data[i].timeout2;
1573 
1574 	return -EINVAL;
1575 }
1576 
1577 static inline
1578 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_digital_port,
1579 				  u8 msg_id, bool *msg_ready,
1580 				  ssize_t *msg_sz)
1581 {
1582 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1583 	int ret;
1584 
1585 	ret = intel_hdmi_hdcp2_read_rx_status(intel_digital_port, rx_status);
1586 	if (ret < 0) {
1587 		DRM_DEBUG_KMS("rx_status read failed. Err %d\n", ret);
1588 		return ret;
1589 	}
1590 
1591 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1592 		  rx_status[0]);
1593 
1594 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1595 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1596 			     *msg_sz);
1597 	else
1598 		*msg_ready = *msg_sz;
1599 
1600 	return 0;
1601 }
1602 
1603 static ssize_t
1604 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
1605 			      u8 msg_id, bool paired)
1606 {
1607 	bool msg_ready = false;
1608 	int timeout, ret;
1609 	ssize_t msg_sz = 0;
1610 
1611 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1612 	if (timeout < 0)
1613 		return timeout;
1614 
1615 	ret = __wait_for(ret = hdcp2_detect_msg_availability(intel_dig_port,
1616 							     msg_id, &msg_ready,
1617 							     &msg_sz),
1618 			 !ret && msg_ready && msg_sz, timeout * 1000,
1619 			 1000, 5 * 1000);
1620 	if (ret)
1621 		DRM_DEBUG_KMS("msg_id: %d, ret: %d, timeout: %d\n",
1622 			      msg_id, ret, timeout);
1623 
1624 	return ret ? ret : msg_sz;
1625 }
1626 
1627 static
1628 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
1629 			       void *buf, size_t size)
1630 {
1631 	unsigned int offset;
1632 
1633 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1634 	return intel_hdmi_hdcp_write(intel_dig_port, offset, buf, size);
1635 }
1636 
1637 static
1638 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
1639 			      u8 msg_id, void *buf, size_t size)
1640 {
1641 	struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
1642 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1643 	unsigned int offset;
1644 	ssize_t ret;
1645 
1646 	ret = intel_hdmi_hdcp2_wait_for_msg(intel_dig_port, msg_id,
1647 					    hdcp->is_paired);
1648 	if (ret < 0)
1649 		return ret;
1650 
1651 	/*
1652 	 * Available msg size should be equal to or lesser than the
1653 	 * available buffer.
1654 	 */
1655 	if (ret > size) {
1656 		DRM_DEBUG_KMS("msg_sz(%zd) is more than exp size(%zu)\n",
1657 			      ret, size);
1658 		return -1;
1659 	}
1660 
1661 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1662 	ret = intel_hdmi_hdcp_read(intel_dig_port, offset, buf, ret);
1663 	if (ret)
1664 		DRM_DEBUG_KMS("Failed to read msg_id: %d(%zd)\n", msg_id, ret);
1665 
1666 	return ret;
1667 }
1668 
1669 static
1670 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
1671 {
1672 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1673 	int ret;
1674 
1675 	ret = intel_hdmi_hdcp2_read_rx_status(intel_dig_port, rx_status);
1676 	if (ret)
1677 		return ret;
1678 
1679 	/*
1680 	 * Re-auth request and Link Integrity Failures are represented by
1681 	 * same bit. i.e reauth_req.
1682 	 */
1683 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1684 		ret = HDCP_REAUTH_REQUEST;
1685 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1686 		ret = HDCP_TOPOLOGY_CHANGE;
1687 
1688 	return ret;
1689 }
1690 
1691 static
1692 int intel_hdmi_hdcp2_capable(struct intel_digital_port *intel_dig_port,
1693 			     bool *capable)
1694 {
1695 	u8 hdcp2_version;
1696 	int ret;
1697 
1698 	*capable = false;
1699 	ret = intel_hdmi_hdcp_read(intel_dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1700 				   &hdcp2_version, sizeof(hdcp2_version));
1701 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1702 		*capable = true;
1703 
1704 	return ret;
1705 }
1706 
1707 static inline
1708 enum hdcp_wired_protocol intel_hdmi_hdcp2_protocol(void)
1709 {
1710 	return HDCP_PROTOCOL_HDMI;
1711 }
1712 
1713 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1714 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1715 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1716 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1717 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1718 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1719 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1720 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1721 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1722 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1723 	.check_link = intel_hdmi_hdcp_check_link,
1724 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1725 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1726 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1727 	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1728 	.protocol = HDCP_PROTOCOL_HDMI,
1729 };
1730 
1731 static void intel_hdmi_prepare(struct intel_encoder *encoder,
1732 			       const struct intel_crtc_state *crtc_state)
1733 {
1734 	struct drm_device *dev = encoder->base.dev;
1735 	struct drm_i915_private *dev_priv = to_i915(dev);
1736 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1737 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1738 	const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
1739 	u32 hdmi_val;
1740 
1741 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
1742 
1743 	hdmi_val = SDVO_ENCODING_HDMI;
1744 	if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range)
1745 		hdmi_val |= HDMI_COLOR_RANGE_16_235;
1746 	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1747 		hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
1748 	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1749 		hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
1750 
1751 	if (crtc_state->pipe_bpp > 24)
1752 		hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
1753 	else
1754 		hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
1755 
1756 	if (crtc_state->has_hdmi_sink)
1757 		hdmi_val |= HDMI_MODE_SELECT_HDMI;
1758 
1759 	if (HAS_PCH_CPT(dev_priv))
1760 		hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
1761 	else if (IS_CHERRYVIEW(dev_priv))
1762 		hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
1763 	else
1764 		hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
1765 
1766 	I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
1767 	POSTING_READ(intel_hdmi->hdmi_reg);
1768 }
1769 
1770 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
1771 				    enum pipe *pipe)
1772 {
1773 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1774 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1775 	intel_wakeref_t wakeref;
1776 	bool ret;
1777 
1778 	wakeref = intel_display_power_get_if_enabled(dev_priv,
1779 						     encoder->power_domain);
1780 	if (!wakeref)
1781 		return false;
1782 
1783 	ret = intel_sdvo_port_enabled(dev_priv, intel_hdmi->hdmi_reg, pipe);
1784 
1785 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
1786 
1787 	return ret;
1788 }
1789 
1790 static void intel_hdmi_get_config(struct intel_encoder *encoder,
1791 				  struct intel_crtc_state *pipe_config)
1792 {
1793 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1794 	struct drm_device *dev = encoder->base.dev;
1795 	struct drm_i915_private *dev_priv = to_i915(dev);
1796 	u32 tmp, flags = 0;
1797 	int dotclock;
1798 
1799 	pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI);
1800 
1801 	tmp = I915_READ(intel_hdmi->hdmi_reg);
1802 
1803 	if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
1804 		flags |= DRM_MODE_FLAG_PHSYNC;
1805 	else
1806 		flags |= DRM_MODE_FLAG_NHSYNC;
1807 
1808 	if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
1809 		flags |= DRM_MODE_FLAG_PVSYNC;
1810 	else
1811 		flags |= DRM_MODE_FLAG_NVSYNC;
1812 
1813 	if (tmp & HDMI_MODE_SELECT_HDMI)
1814 		pipe_config->has_hdmi_sink = true;
1815 
1816 	pipe_config->infoframes.enable |=
1817 		intel_hdmi_infoframes_enabled(encoder, pipe_config);
1818 
1819 	if (pipe_config->infoframes.enable)
1820 		pipe_config->has_infoframe = true;
1821 
1822 	if (tmp & HDMI_AUDIO_ENABLE)
1823 		pipe_config->has_audio = true;
1824 
1825 	if (!HAS_PCH_SPLIT(dev_priv) &&
1826 	    tmp & HDMI_COLOR_RANGE_16_235)
1827 		pipe_config->limited_color_range = true;
1828 
1829 	pipe_config->base.adjusted_mode.flags |= flags;
1830 
1831 	if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
1832 		dotclock = pipe_config->port_clock * 2 / 3;
1833 	else
1834 		dotclock = pipe_config->port_clock;
1835 
1836 	if (pipe_config->pixel_multiplier)
1837 		dotclock /= pipe_config->pixel_multiplier;
1838 
1839 	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
1840 
1841 	pipe_config->lane_count = 4;
1842 
1843 	intel_hdmi_read_gcp_infoframe(encoder, pipe_config);
1844 
1845 	intel_read_infoframe(encoder, pipe_config,
1846 			     HDMI_INFOFRAME_TYPE_AVI,
1847 			     &pipe_config->infoframes.avi);
1848 	intel_read_infoframe(encoder, pipe_config,
1849 			     HDMI_INFOFRAME_TYPE_SPD,
1850 			     &pipe_config->infoframes.spd);
1851 	intel_read_infoframe(encoder, pipe_config,
1852 			     HDMI_INFOFRAME_TYPE_VENDOR,
1853 			     &pipe_config->infoframes.hdmi);
1854 }
1855 
1856 static void intel_enable_hdmi_audio(struct intel_encoder *encoder,
1857 				    const struct intel_crtc_state *pipe_config,
1858 				    const struct drm_connector_state *conn_state)
1859 {
1860 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
1861 
1862 	WARN_ON(!pipe_config->has_hdmi_sink);
1863 	DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
1864 			 pipe_name(crtc->pipe));
1865 	intel_audio_codec_enable(encoder, pipe_config, conn_state);
1866 }
1867 
1868 static void g4x_enable_hdmi(struct intel_encoder *encoder,
1869 			    const struct intel_crtc_state *pipe_config,
1870 			    const struct drm_connector_state *conn_state)
1871 {
1872 	struct drm_device *dev = encoder->base.dev;
1873 	struct drm_i915_private *dev_priv = to_i915(dev);
1874 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1875 	u32 temp;
1876 
1877 	temp = I915_READ(intel_hdmi->hdmi_reg);
1878 
1879 	temp |= SDVO_ENABLE;
1880 	if (pipe_config->has_audio)
1881 		temp |= HDMI_AUDIO_ENABLE;
1882 
1883 	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1884 	POSTING_READ(intel_hdmi->hdmi_reg);
1885 
1886 	if (pipe_config->has_audio)
1887 		intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
1888 }
1889 
1890 static void ibx_enable_hdmi(struct intel_encoder *encoder,
1891 			    const struct intel_crtc_state *pipe_config,
1892 			    const struct drm_connector_state *conn_state)
1893 {
1894 	struct drm_device *dev = encoder->base.dev;
1895 	struct drm_i915_private *dev_priv = to_i915(dev);
1896 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1897 	u32 temp;
1898 
1899 	temp = I915_READ(intel_hdmi->hdmi_reg);
1900 
1901 	temp |= SDVO_ENABLE;
1902 	if (pipe_config->has_audio)
1903 		temp |= HDMI_AUDIO_ENABLE;
1904 
1905 	/*
1906 	 * HW workaround, need to write this twice for issue
1907 	 * that may result in first write getting masked.
1908 	 */
1909 	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1910 	POSTING_READ(intel_hdmi->hdmi_reg);
1911 	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1912 	POSTING_READ(intel_hdmi->hdmi_reg);
1913 
1914 	/*
1915 	 * HW workaround, need to toggle enable bit off and on
1916 	 * for 12bpc with pixel repeat.
1917 	 *
1918 	 * FIXME: BSpec says this should be done at the end of
1919 	 * of the modeset sequence, so not sure if this isn't too soon.
1920 	 */
1921 	if (pipe_config->pipe_bpp > 24 &&
1922 	    pipe_config->pixel_multiplier > 1) {
1923 		I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
1924 		POSTING_READ(intel_hdmi->hdmi_reg);
1925 
1926 		/*
1927 		 * HW workaround, need to write this twice for issue
1928 		 * that may result in first write getting masked.
1929 		 */
1930 		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1931 		POSTING_READ(intel_hdmi->hdmi_reg);
1932 		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1933 		POSTING_READ(intel_hdmi->hdmi_reg);
1934 	}
1935 
1936 	if (pipe_config->has_audio)
1937 		intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
1938 }
1939 
1940 static void cpt_enable_hdmi(struct intel_encoder *encoder,
1941 			    const struct intel_crtc_state *pipe_config,
1942 			    const struct drm_connector_state *conn_state)
1943 {
1944 	struct drm_device *dev = encoder->base.dev;
1945 	struct drm_i915_private *dev_priv = to_i915(dev);
1946 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
1947 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1948 	enum pipe pipe = crtc->pipe;
1949 	u32 temp;
1950 
1951 	temp = I915_READ(intel_hdmi->hdmi_reg);
1952 
1953 	temp |= SDVO_ENABLE;
1954 	if (pipe_config->has_audio)
1955 		temp |= HDMI_AUDIO_ENABLE;
1956 
1957 	/*
1958 	 * WaEnableHDMI8bpcBefore12bpc:snb,ivb
1959 	 *
1960 	 * The procedure for 12bpc is as follows:
1961 	 * 1. disable HDMI clock gating
1962 	 * 2. enable HDMI with 8bpc
1963 	 * 3. enable HDMI with 12bpc
1964 	 * 4. enable HDMI clock gating
1965 	 */
1966 
1967 	if (pipe_config->pipe_bpp > 24) {
1968 		I915_WRITE(TRANS_CHICKEN1(pipe),
1969 			   I915_READ(TRANS_CHICKEN1(pipe)) |
1970 			   TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1971 
1972 		temp &= ~SDVO_COLOR_FORMAT_MASK;
1973 		temp |= SDVO_COLOR_FORMAT_8bpc;
1974 	}
1975 
1976 	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1977 	POSTING_READ(intel_hdmi->hdmi_reg);
1978 
1979 	if (pipe_config->pipe_bpp > 24) {
1980 		temp &= ~SDVO_COLOR_FORMAT_MASK;
1981 		temp |= HDMI_COLOR_FORMAT_12bpc;
1982 
1983 		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1984 		POSTING_READ(intel_hdmi->hdmi_reg);
1985 
1986 		I915_WRITE(TRANS_CHICKEN1(pipe),
1987 			   I915_READ(TRANS_CHICKEN1(pipe)) &
1988 			   ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1989 	}
1990 
1991 	if (pipe_config->has_audio)
1992 		intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
1993 }
1994 
1995 static void vlv_enable_hdmi(struct intel_encoder *encoder,
1996 			    const struct intel_crtc_state *pipe_config,
1997 			    const struct drm_connector_state *conn_state)
1998 {
1999 }
2000 
2001 static void intel_disable_hdmi(struct intel_encoder *encoder,
2002 			       const struct intel_crtc_state *old_crtc_state,
2003 			       const struct drm_connector_state *old_conn_state)
2004 {
2005 	struct drm_device *dev = encoder->base.dev;
2006 	struct drm_i915_private *dev_priv = to_i915(dev);
2007 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2008 	struct intel_digital_port *intel_dig_port =
2009 		hdmi_to_dig_port(intel_hdmi);
2010 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2011 	u32 temp;
2012 
2013 	temp = I915_READ(intel_hdmi->hdmi_reg);
2014 
2015 	temp &= ~(SDVO_ENABLE | HDMI_AUDIO_ENABLE);
2016 	I915_WRITE(intel_hdmi->hdmi_reg, temp);
2017 	POSTING_READ(intel_hdmi->hdmi_reg);
2018 
2019 	/*
2020 	 * HW workaround for IBX, we need to move the port
2021 	 * to transcoder A after disabling it to allow the
2022 	 * matching DP port to be enabled on transcoder A.
2023 	 */
2024 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) {
2025 		/*
2026 		 * We get CPU/PCH FIFO underruns on the other pipe when
2027 		 * doing the workaround. Sweep them under the rug.
2028 		 */
2029 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
2030 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
2031 
2032 		temp &= ~SDVO_PIPE_SEL_MASK;
2033 		temp |= SDVO_ENABLE | SDVO_PIPE_SEL(PIPE_A);
2034 		/*
2035 		 * HW workaround, need to write this twice for issue
2036 		 * that may result in first write getting masked.
2037 		 */
2038 		I915_WRITE(intel_hdmi->hdmi_reg, temp);
2039 		POSTING_READ(intel_hdmi->hdmi_reg);
2040 		I915_WRITE(intel_hdmi->hdmi_reg, temp);
2041 		POSTING_READ(intel_hdmi->hdmi_reg);
2042 
2043 		temp &= ~SDVO_ENABLE;
2044 		I915_WRITE(intel_hdmi->hdmi_reg, temp);
2045 		POSTING_READ(intel_hdmi->hdmi_reg);
2046 
2047 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
2048 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
2049 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
2050 	}
2051 
2052 	intel_dig_port->set_infoframes(encoder,
2053 				       false,
2054 				       old_crtc_state, old_conn_state);
2055 
2056 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
2057 }
2058 
2059 static void g4x_disable_hdmi(struct intel_encoder *encoder,
2060 			     const struct intel_crtc_state *old_crtc_state,
2061 			     const struct drm_connector_state *old_conn_state)
2062 {
2063 	if (old_crtc_state->has_audio)
2064 		intel_audio_codec_disable(encoder,
2065 					  old_crtc_state, old_conn_state);
2066 
2067 	intel_disable_hdmi(encoder, old_crtc_state, old_conn_state);
2068 }
2069 
2070 static void pch_disable_hdmi(struct intel_encoder *encoder,
2071 			     const struct intel_crtc_state *old_crtc_state,
2072 			     const struct drm_connector_state *old_conn_state)
2073 {
2074 	if (old_crtc_state->has_audio)
2075 		intel_audio_codec_disable(encoder,
2076 					  old_crtc_state, old_conn_state);
2077 }
2078 
2079 static void pch_post_disable_hdmi(struct intel_encoder *encoder,
2080 				  const struct intel_crtc_state *old_crtc_state,
2081 				  const struct drm_connector_state *old_conn_state)
2082 {
2083 	intel_disable_hdmi(encoder, old_crtc_state, old_conn_state);
2084 }
2085 
2086 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
2087 {
2088 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2089 	const struct ddi_vbt_port_info *info =
2090 		&dev_priv->vbt.ddi_port_info[encoder->port];
2091 	int max_tmds_clock;
2092 
2093 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
2094 		max_tmds_clock = 594000;
2095 	else if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv))
2096 		max_tmds_clock = 300000;
2097 	else if (INTEL_GEN(dev_priv) >= 5)
2098 		max_tmds_clock = 225000;
2099 	else
2100 		max_tmds_clock = 165000;
2101 
2102 	if (info->max_tmds_clock)
2103 		max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock);
2104 
2105 	return max_tmds_clock;
2106 }
2107 
2108 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
2109 				 bool respect_downstream_limits,
2110 				 bool force_dvi)
2111 {
2112 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2113 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
2114 
2115 	if (respect_downstream_limits) {
2116 		struct intel_connector *connector = hdmi->attached_connector;
2117 		const struct drm_display_info *info = &connector->base.display_info;
2118 
2119 		if (hdmi->dp_dual_mode.max_tmds_clock)
2120 			max_tmds_clock = min(max_tmds_clock,
2121 					     hdmi->dp_dual_mode.max_tmds_clock);
2122 
2123 		if (info->max_tmds_clock)
2124 			max_tmds_clock = min(max_tmds_clock,
2125 					     info->max_tmds_clock);
2126 		else if (!hdmi->has_hdmi_sink || force_dvi)
2127 			max_tmds_clock = min(max_tmds_clock, 165000);
2128 	}
2129 
2130 	return max_tmds_clock;
2131 }
2132 
2133 static enum drm_mode_status
2134 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
2135 		      int clock, bool respect_downstream_limits,
2136 		      bool force_dvi)
2137 {
2138 	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
2139 
2140 	if (clock < 25000)
2141 		return MODE_CLOCK_LOW;
2142 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, force_dvi))
2143 		return MODE_CLOCK_HIGH;
2144 
2145 	/* BXT DPLL can't generate 223-240 MHz */
2146 	if (IS_GEN9_LP(dev_priv) && clock > 223333 && clock < 240000)
2147 		return MODE_CLOCK_RANGE;
2148 
2149 	/* CHV DPLL can't generate 216-240 MHz */
2150 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
2151 		return MODE_CLOCK_RANGE;
2152 
2153 	return MODE_OK;
2154 }
2155 
2156 static enum drm_mode_status
2157 intel_hdmi_mode_valid(struct drm_connector *connector,
2158 		      struct drm_display_mode *mode)
2159 {
2160 	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
2161 	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
2162 	struct drm_i915_private *dev_priv = to_i915(dev);
2163 	enum drm_mode_status status;
2164 	int clock;
2165 	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
2166 	bool force_dvi =
2167 		READ_ONCE(to_intel_digital_connector_state(connector->state)->force_audio) == HDMI_AUDIO_OFF_DVI;
2168 
2169 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
2170 		return MODE_NO_DBLESCAN;
2171 
2172 	clock = mode->clock;
2173 
2174 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2175 		clock *= 2;
2176 
2177 	if (clock > max_dotclk)
2178 		return MODE_CLOCK_HIGH;
2179 
2180 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
2181 		clock *= 2;
2182 
2183 	if (drm_mode_is_420_only(&connector->display_info, mode))
2184 		clock /= 2;
2185 
2186 	/* check if we can do 8bpc */
2187 	status = hdmi_port_clock_valid(hdmi, clock, true, force_dvi);
2188 
2189 	if (hdmi->has_hdmi_sink && !force_dvi) {
2190 		/* if we can't do 8bpc we may still be able to do 12bpc */
2191 		if (status != MODE_OK && !HAS_GMCH(dev_priv))
2192 			status = hdmi_port_clock_valid(hdmi, clock * 3 / 2,
2193 						       true, force_dvi);
2194 
2195 		/* if we can't do 8,12bpc we may still be able to do 10bpc */
2196 		if (status != MODE_OK && INTEL_GEN(dev_priv) >= 11)
2197 			status = hdmi_port_clock_valid(hdmi, clock * 5 / 4,
2198 						       true, force_dvi);
2199 	}
2200 	if (status != MODE_OK)
2201 		return status;
2202 
2203 	return intel_mode_valid_max_plane_size(dev_priv, mode);
2204 }
2205 
2206 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2207 				     int bpc)
2208 {
2209 	struct drm_i915_private *dev_priv =
2210 		to_i915(crtc_state->base.crtc->dev);
2211 	struct drm_atomic_state *state = crtc_state->base.state;
2212 	struct drm_connector_state *connector_state;
2213 	struct drm_connector *connector;
2214 	const struct drm_display_mode *adjusted_mode =
2215 		&crtc_state->base.adjusted_mode;
2216 	int i;
2217 
2218 	if (HAS_GMCH(dev_priv))
2219 		return false;
2220 
2221 	if (bpc == 10 && INTEL_GEN(dev_priv) < 11)
2222 		return false;
2223 
2224 	if (crtc_state->pipe_bpp < bpc * 3)
2225 		return false;
2226 
2227 	if (!crtc_state->has_hdmi_sink)
2228 		return false;
2229 
2230 	/*
2231 	 * HDMI deep color affects the clocks, so it's only possible
2232 	 * when not cloning with other encoder types.
2233 	 */
2234 	if (crtc_state->output_types != 1 << INTEL_OUTPUT_HDMI)
2235 		return false;
2236 
2237 	for_each_new_connector_in_state(state, connector, connector_state, i) {
2238 		const struct drm_display_info *info = &connector->display_info;
2239 
2240 		if (connector_state->crtc != crtc_state->base.crtc)
2241 			continue;
2242 
2243 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2244 			const struct drm_hdmi_info *hdmi = &info->hdmi;
2245 
2246 			if (bpc == 12 && !(hdmi->y420_dc_modes &
2247 					   DRM_EDID_YCBCR420_DC_36))
2248 				return false;
2249 			else if (bpc == 10 && !(hdmi->y420_dc_modes &
2250 						DRM_EDID_YCBCR420_DC_30))
2251 				return false;
2252 		} else {
2253 			if (bpc == 12 && !(info->edid_hdmi_dc_modes &
2254 					   DRM_EDID_HDMI_DC_36))
2255 				return false;
2256 			else if (bpc == 10 && !(info->edid_hdmi_dc_modes &
2257 						DRM_EDID_HDMI_DC_30))
2258 				return false;
2259 		}
2260 	}
2261 
2262 	/* Display WA #1139: glk */
2263 	if (bpc == 12 && IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1) &&
2264 	    adjusted_mode->htotal > 5460)
2265 		return false;
2266 
2267 	/* Display Wa_1405510057:icl */
2268 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2269 	    bpc == 10 && INTEL_GEN(dev_priv) >= 11 &&
2270 	    (adjusted_mode->crtc_hblank_end -
2271 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2272 		return false;
2273 
2274 	return true;
2275 }
2276 
2277 static bool
2278 intel_hdmi_ycbcr420_config(struct drm_connector *connector,
2279 			   struct intel_crtc_state *config)
2280 {
2281 	struct intel_crtc *intel_crtc = to_intel_crtc(config->base.crtc);
2282 
2283 	if (!connector->ycbcr_420_allowed) {
2284 		DRM_ERROR("Platform doesn't support YCBCR420 output\n");
2285 		return false;
2286 	}
2287 
2288 	config->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2289 
2290 	/* YCBCR 420 output conversion needs a scaler */
2291 	if (skl_update_scaler_crtc(config)) {
2292 		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2293 		return false;
2294 	}
2295 
2296 	intel_pch_panel_fitting(intel_crtc, config,
2297 				DRM_MODE_SCALE_FULLSCREEN);
2298 
2299 	return true;
2300 }
2301 
2302 static int intel_hdmi_port_clock(int clock, int bpc)
2303 {
2304 	/*
2305 	 * Need to adjust the port link by:
2306 	 *  1.5x for 12bpc
2307 	 *  1.25x for 10bpc
2308 	 */
2309 	return clock * bpc / 8;
2310 }
2311 
2312 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2313 				  struct intel_crtc_state *crtc_state,
2314 				  int clock, bool force_dvi)
2315 {
2316 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2317 	int bpc;
2318 
2319 	for (bpc = 12; bpc >= 10; bpc -= 2) {
2320 		if (hdmi_deep_color_possible(crtc_state, bpc) &&
2321 		    hdmi_port_clock_valid(intel_hdmi,
2322 					  intel_hdmi_port_clock(clock, bpc),
2323 					  true, force_dvi) == MODE_OK)
2324 			return bpc;
2325 	}
2326 
2327 	return 8;
2328 }
2329 
2330 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2331 				    struct intel_crtc_state *crtc_state,
2332 				    bool force_dvi)
2333 {
2334 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2335 	const struct drm_display_mode *adjusted_mode =
2336 		&crtc_state->base.adjusted_mode;
2337 	int bpc, clock = adjusted_mode->crtc_clock;
2338 
2339 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2340 		clock *= 2;
2341 
2342 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
2343 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2344 		clock /= 2;
2345 
2346 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state,
2347 				     clock, force_dvi);
2348 
2349 	crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2350 
2351 	/*
2352 	 * pipe_bpp could already be below 8bpc due to
2353 	 * FDI bandwidth constraints. We shouldn't bump it
2354 	 * back up to 8bpc in that case.
2355 	 */
2356 	if (crtc_state->pipe_bpp > bpc * 3)
2357 		crtc_state->pipe_bpp = bpc * 3;
2358 
2359 	DRM_DEBUG_KMS("picking %d bpc for HDMI output (pipe bpp: %d)\n",
2360 		      bpc, crtc_state->pipe_bpp);
2361 
2362 	if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2363 				  false, force_dvi) != MODE_OK) {
2364 		DRM_DEBUG_KMS("unsupported HDMI clock (%d kHz), rejecting mode\n",
2365 			      crtc_state->port_clock);
2366 		return -EINVAL;
2367 	}
2368 
2369 	return 0;
2370 }
2371 
2372 static bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2373 					   const struct drm_connector_state *conn_state)
2374 {
2375 	const struct intel_digital_connector_state *intel_conn_state =
2376 		to_intel_digital_connector_state(conn_state);
2377 	const struct drm_display_mode *adjusted_mode =
2378 		&crtc_state->base.adjusted_mode;
2379 
2380 	/*
2381 	 * Our YCbCr output is always limited range.
2382 	 * crtc_state->limited_color_range only applies to RGB,
2383 	 * and it must never be set for YCbCr or we risk setting
2384 	 * some conflicting bits in PIPECONF which will mess up
2385 	 * the colors on the monitor.
2386 	 */
2387 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2388 		return false;
2389 
2390 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2391 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2392 		return crtc_state->has_hdmi_sink &&
2393 			drm_default_rgb_quant_range(adjusted_mode) ==
2394 			HDMI_QUANTIZATION_RANGE_LIMITED;
2395 	} else {
2396 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2397 	}
2398 }
2399 
2400 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2401 			      struct intel_crtc_state *pipe_config,
2402 			      struct drm_connector_state *conn_state)
2403 {
2404 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2405 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2406 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2407 	struct drm_connector *connector = conn_state->connector;
2408 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2409 	struct intel_digital_connector_state *intel_conn_state =
2410 		to_intel_digital_connector_state(conn_state);
2411 	bool force_dvi = intel_conn_state->force_audio == HDMI_AUDIO_OFF_DVI;
2412 	int ret;
2413 
2414 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2415 		return -EINVAL;
2416 
2417 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2418 	pipe_config->has_hdmi_sink = !force_dvi && intel_hdmi->has_hdmi_sink;
2419 
2420 	if (pipe_config->has_hdmi_sink)
2421 		pipe_config->has_infoframe = true;
2422 
2423 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2424 		pipe_config->pixel_multiplier = 2;
2425 
2426 	if (drm_mode_is_420_only(&connector->display_info, adjusted_mode)) {
2427 		if (!intel_hdmi_ycbcr420_config(connector, pipe_config)) {
2428 			DRM_ERROR("Can't support YCBCR420 output\n");
2429 			return -EINVAL;
2430 		}
2431 	}
2432 
2433 	pipe_config->limited_color_range =
2434 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2435 
2436 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2437 		pipe_config->has_pch_encoder = true;
2438 
2439 	if (pipe_config->has_hdmi_sink) {
2440 		if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2441 			pipe_config->has_audio = intel_hdmi->has_audio;
2442 		else
2443 			pipe_config->has_audio =
2444 				intel_conn_state->force_audio == HDMI_AUDIO_ON;
2445 	}
2446 
2447 	ret = intel_hdmi_compute_clock(encoder, pipe_config, force_dvi);
2448 	if (ret)
2449 		return ret;
2450 
2451 	/* Set user selected PAR to incoming mode's member */
2452 	adjusted_mode->picture_aspect_ratio = conn_state->picture_aspect_ratio;
2453 
2454 	pipe_config->lane_count = 4;
2455 
2456 	if (scdc->scrambling.supported && (INTEL_GEN(dev_priv) >= 10 ||
2457 					   IS_GEMINILAKE(dev_priv))) {
2458 		if (scdc->scrambling.low_rates)
2459 			pipe_config->hdmi_scrambling = true;
2460 
2461 		if (pipe_config->port_clock > 340000) {
2462 			pipe_config->hdmi_scrambling = true;
2463 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2464 		}
2465 	}
2466 
2467 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config, conn_state);
2468 
2469 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2470 		DRM_DEBUG_KMS("bad AVI infoframe\n");
2471 		return -EINVAL;
2472 	}
2473 
2474 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2475 		DRM_DEBUG_KMS("bad SPD infoframe\n");
2476 		return -EINVAL;
2477 	}
2478 
2479 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2480 		DRM_DEBUG_KMS("bad HDMI infoframe\n");
2481 		return -EINVAL;
2482 	}
2483 
2484 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2485 		DRM_DEBUG_KMS("bad DRM infoframe\n");
2486 		return -EINVAL;
2487 	}
2488 
2489 	intel_hdcp_transcoder_config(intel_hdmi->attached_connector,
2490 				     pipe_config->cpu_transcoder);
2491 
2492 	return 0;
2493 }
2494 
2495 static void
2496 intel_hdmi_unset_edid(struct drm_connector *connector)
2497 {
2498 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
2499 
2500 	intel_hdmi->has_hdmi_sink = false;
2501 	intel_hdmi->has_audio = false;
2502 
2503 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2504 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2505 
2506 	kfree(to_intel_connector(connector)->detect_edid);
2507 	to_intel_connector(connector)->detect_edid = NULL;
2508 }
2509 
2510 static void
2511 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2512 {
2513 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2514 	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
2515 	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2516 	struct i2c_adapter *adapter =
2517 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2518 	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(adapter);
2519 
2520 	/*
2521 	 * Type 1 DVI adaptors are not required to implement any
2522 	 * registers, so we can't always detect their presence.
2523 	 * Ideally we should be able to check the state of the
2524 	 * CONFIG1 pin, but no such luck on our hardware.
2525 	 *
2526 	 * The only method left to us is to check the VBT to see
2527 	 * if the port is a dual mode capable DP port. But let's
2528 	 * only do that when we sucesfully read the EDID, to avoid
2529 	 * confusing log messages about DP dual mode adaptors when
2530 	 * there's nothing connected to the port.
2531 	 */
2532 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2533 		/* An overridden EDID imply that we want this port for testing.
2534 		 * Make sure not to set limits for that port.
2535 		 */
2536 		if (has_edid && !connector->override_edid &&
2537 		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2538 			DRM_DEBUG_KMS("Assuming DP dual mode adaptor presence based on VBT\n");
2539 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2540 		} else {
2541 			type = DRM_DP_DUAL_MODE_NONE;
2542 		}
2543 	}
2544 
2545 	if (type == DRM_DP_DUAL_MODE_NONE)
2546 		return;
2547 
2548 	hdmi->dp_dual_mode.type = type;
2549 	hdmi->dp_dual_mode.max_tmds_clock =
2550 		drm_dp_dual_mode_max_tmds_clock(type, adapter);
2551 
2552 	DRM_DEBUG_KMS("DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2553 		      drm_dp_get_dual_mode_type_name(type),
2554 		      hdmi->dp_dual_mode.max_tmds_clock);
2555 }
2556 
2557 static bool
2558 intel_hdmi_set_edid(struct drm_connector *connector)
2559 {
2560 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2561 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
2562 	intel_wakeref_t wakeref;
2563 	struct edid *edid;
2564 	bool connected = false;
2565 	struct i2c_adapter *i2c;
2566 
2567 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2568 
2569 	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2570 
2571 	edid = drm_get_edid(connector, i2c);
2572 
2573 	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2574 		DRM_DEBUG_KMS("HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2575 		intel_gmbus_force_bit(i2c, true);
2576 		edid = drm_get_edid(connector, i2c);
2577 		intel_gmbus_force_bit(i2c, false);
2578 	}
2579 
2580 	intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2581 
2582 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2583 
2584 	to_intel_connector(connector)->detect_edid = edid;
2585 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2586 		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2587 		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2588 
2589 		connected = true;
2590 	}
2591 
2592 	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2593 
2594 	return connected;
2595 }
2596 
2597 static enum drm_connector_status
2598 intel_hdmi_detect(struct drm_connector *connector, bool force)
2599 {
2600 	enum drm_connector_status status = connector_status_disconnected;
2601 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2602 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
2603 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2604 	intel_wakeref_t wakeref;
2605 
2606 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
2607 		      connector->base.id, connector->name);
2608 
2609 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2610 
2611 	if (INTEL_GEN(dev_priv) >= 11 &&
2612 	    !intel_digital_port_connected(encoder))
2613 		goto out;
2614 
2615 	intel_hdmi_unset_edid(connector);
2616 
2617 	if (intel_hdmi_set_edid(connector))
2618 		status = connector_status_connected;
2619 
2620 out:
2621 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2622 
2623 	if (status != connector_status_connected)
2624 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2625 
2626 	return status;
2627 }
2628 
2629 static void
2630 intel_hdmi_force(struct drm_connector *connector)
2631 {
2632 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
2633 		      connector->base.id, connector->name);
2634 
2635 	intel_hdmi_unset_edid(connector);
2636 
2637 	if (connector->status != connector_status_connected)
2638 		return;
2639 
2640 	intel_hdmi_set_edid(connector);
2641 }
2642 
2643 static int intel_hdmi_get_modes(struct drm_connector *connector)
2644 {
2645 	struct edid *edid;
2646 
2647 	edid = to_intel_connector(connector)->detect_edid;
2648 	if (edid == NULL)
2649 		return 0;
2650 
2651 	return intel_connector_update_modes(connector, edid);
2652 }
2653 
2654 static void intel_hdmi_pre_enable(struct intel_encoder *encoder,
2655 				  const struct intel_crtc_state *pipe_config,
2656 				  const struct drm_connector_state *conn_state)
2657 {
2658 	struct intel_digital_port *intel_dig_port =
2659 		enc_to_dig_port(&encoder->base);
2660 
2661 	intel_hdmi_prepare(encoder, pipe_config);
2662 
2663 	intel_dig_port->set_infoframes(encoder,
2664 				       pipe_config->has_infoframe,
2665 				       pipe_config, conn_state);
2666 }
2667 
2668 static void vlv_hdmi_pre_enable(struct intel_encoder *encoder,
2669 				const struct intel_crtc_state *pipe_config,
2670 				const struct drm_connector_state *conn_state)
2671 {
2672 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2673 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2674 
2675 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
2676 
2677 	/* HDMI 1.0V-2dB */
2678 	vlv_set_phy_signal_level(encoder, 0x2b245f5f, 0x00002000, 0x5578b83a,
2679 				 0x2b247878);
2680 
2681 	dport->set_infoframes(encoder,
2682 			      pipe_config->has_infoframe,
2683 			      pipe_config, conn_state);
2684 
2685 	g4x_enable_hdmi(encoder, pipe_config, conn_state);
2686 
2687 	vlv_wait_port_ready(dev_priv, dport, 0x0);
2688 }
2689 
2690 static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder,
2691 				    const struct intel_crtc_state *pipe_config,
2692 				    const struct drm_connector_state *conn_state)
2693 {
2694 	intel_hdmi_prepare(encoder, pipe_config);
2695 
2696 	vlv_phy_pre_pll_enable(encoder, pipe_config);
2697 }
2698 
2699 static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder,
2700 				    const struct intel_crtc_state *pipe_config,
2701 				    const struct drm_connector_state *conn_state)
2702 {
2703 	intel_hdmi_prepare(encoder, pipe_config);
2704 
2705 	chv_phy_pre_pll_enable(encoder, pipe_config);
2706 }
2707 
2708 static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder,
2709 				      const struct intel_crtc_state *old_crtc_state,
2710 				      const struct drm_connector_state *old_conn_state)
2711 {
2712 	chv_phy_post_pll_disable(encoder, old_crtc_state);
2713 }
2714 
2715 static void vlv_hdmi_post_disable(struct intel_encoder *encoder,
2716 				  const struct intel_crtc_state *old_crtc_state,
2717 				  const struct drm_connector_state *old_conn_state)
2718 {
2719 	/* Reset lanes to avoid HDMI flicker (VLV w/a) */
2720 	vlv_phy_reset_lanes(encoder, old_crtc_state);
2721 }
2722 
2723 static void chv_hdmi_post_disable(struct intel_encoder *encoder,
2724 				  const struct intel_crtc_state *old_crtc_state,
2725 				  const struct drm_connector_state *old_conn_state)
2726 {
2727 	struct drm_device *dev = encoder->base.dev;
2728 	struct drm_i915_private *dev_priv = to_i915(dev);
2729 
2730 	vlv_dpio_get(dev_priv);
2731 
2732 	/* Assert data lane reset */
2733 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
2734 
2735 	vlv_dpio_put(dev_priv);
2736 }
2737 
2738 static void chv_hdmi_pre_enable(struct intel_encoder *encoder,
2739 				const struct intel_crtc_state *pipe_config,
2740 				const struct drm_connector_state *conn_state)
2741 {
2742 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2743 	struct drm_device *dev = encoder->base.dev;
2744 	struct drm_i915_private *dev_priv = to_i915(dev);
2745 
2746 	chv_phy_pre_encoder_enable(encoder, pipe_config);
2747 
2748 	/* FIXME: Program the support xxx V-dB */
2749 	/* Use 800mV-0dB */
2750 	chv_set_phy_signal_level(encoder, 128, 102, false);
2751 
2752 	dport->set_infoframes(encoder,
2753 			      pipe_config->has_infoframe,
2754 			      pipe_config, conn_state);
2755 
2756 	g4x_enable_hdmi(encoder, pipe_config, conn_state);
2757 
2758 	vlv_wait_port_ready(dev_priv, dport, 0x0);
2759 
2760 	/* Second common lane will stay alive on its own now */
2761 	chv_phy_release_cl2_override(encoder);
2762 }
2763 
2764 static struct i2c_adapter *
2765 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2766 {
2767 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2768 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
2769 
2770 	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2771 }
2772 
2773 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2774 {
2775 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2776 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2777 	struct kobject *connector_kobj = &connector->kdev->kobj;
2778 	int ret;
2779 
2780 	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2781 	if (ret)
2782 		DRM_ERROR("Failed to create i2c symlink (%d)\n", ret);
2783 }
2784 
2785 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2786 {
2787 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2788 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2789 	struct kobject *connector_kobj = &connector->kdev->kobj;
2790 
2791 	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2792 }
2793 
2794 static int
2795 intel_hdmi_connector_register(struct drm_connector *connector)
2796 {
2797 	int ret;
2798 
2799 	ret = intel_connector_register(connector);
2800 	if (ret)
2801 		return ret;
2802 
2803 	i915_debugfs_connector_add(connector);
2804 
2805 	intel_hdmi_create_i2c_symlink(connector);
2806 
2807 	return ret;
2808 }
2809 
2810 static void intel_hdmi_destroy(struct drm_connector *connector)
2811 {
2812 	struct cec_notifier *n = intel_attached_hdmi(connector)->cec_notifier;
2813 
2814 	cec_notifier_conn_unregister(n);
2815 
2816 	intel_connector_destroy(connector);
2817 }
2818 
2819 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2820 {
2821 	intel_hdmi_remove_i2c_symlink(connector);
2822 
2823 	intel_connector_unregister(connector);
2824 }
2825 
2826 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2827 	.detect = intel_hdmi_detect,
2828 	.force = intel_hdmi_force,
2829 	.fill_modes = drm_helper_probe_single_connector_modes,
2830 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2831 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2832 	.late_register = intel_hdmi_connector_register,
2833 	.early_unregister = intel_hdmi_connector_unregister,
2834 	.destroy = intel_hdmi_destroy,
2835 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2836 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2837 };
2838 
2839 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2840 	.get_modes = intel_hdmi_get_modes,
2841 	.mode_valid = intel_hdmi_mode_valid,
2842 	.atomic_check = intel_digital_connector_atomic_check,
2843 };
2844 
2845 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
2846 	.destroy = intel_encoder_destroy,
2847 };
2848 
2849 static void
2850 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2851 {
2852 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2853 	struct intel_digital_port *intel_dig_port =
2854 				hdmi_to_dig_port(intel_hdmi);
2855 
2856 	intel_attach_force_audio_property(connector);
2857 	intel_attach_broadcast_rgb_property(connector);
2858 	intel_attach_aspect_ratio_property(connector);
2859 
2860 	/*
2861 	 * Attach Colorspace property for Non LSPCON based device
2862 	 * ToDo: This needs to be extended for LSPCON implementation
2863 	 * as well. Will be implemented separately.
2864 	 */
2865 	if (!intel_dig_port->lspcon.active)
2866 		intel_attach_colorspace_property(connector);
2867 
2868 	drm_connector_attach_content_type_property(connector);
2869 	connector->state->picture_aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
2870 
2871 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
2872 		drm_object_attach_property(&connector->base,
2873 			connector->dev->mode_config.hdr_output_metadata_property, 0);
2874 
2875 	if (!HAS_GMCH(dev_priv))
2876 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2877 }
2878 
2879 /*
2880  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2881  * @encoder: intel_encoder
2882  * @connector: drm_connector
2883  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2884  *  or reset the high tmds clock ratio for scrambling
2885  * @scrambling: bool to Indicate if the function needs to set or reset
2886  *  sink scrambling
2887  *
2888  * This function handles scrambling on HDMI 2.0 capable sinks.
2889  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2890  * it enables scrambling. This should be called before enabling the HDMI
2891  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2892  * detect a scrambled clock within 100 ms.
2893  *
2894  * Returns:
2895  * True on success, false on failure.
2896  */
2897 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2898 				       struct drm_connector *connector,
2899 				       bool high_tmds_clock_ratio,
2900 				       bool scrambling)
2901 {
2902 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2903 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2904 	struct drm_scrambling *sink_scrambling =
2905 		&connector->display_info.hdmi.scdc.scrambling;
2906 	struct i2c_adapter *adapter =
2907 		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2908 
2909 	if (!sink_scrambling->supported)
2910 		return true;
2911 
2912 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2913 		      connector->base.id, connector->name,
2914 		      yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2915 
2916 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2917 	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2918 						  high_tmds_clock_ratio) &&
2919 		drm_scdc_set_scrambling(adapter, scrambling);
2920 }
2921 
2922 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2923 {
2924 	u8 ddc_pin;
2925 
2926 	switch (port) {
2927 	case PORT_B:
2928 		ddc_pin = GMBUS_PIN_DPB;
2929 		break;
2930 	case PORT_C:
2931 		ddc_pin = GMBUS_PIN_DPC;
2932 		break;
2933 	case PORT_D:
2934 		ddc_pin = GMBUS_PIN_DPD_CHV;
2935 		break;
2936 	default:
2937 		MISSING_CASE(port);
2938 		ddc_pin = GMBUS_PIN_DPB;
2939 		break;
2940 	}
2941 	return ddc_pin;
2942 }
2943 
2944 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2945 {
2946 	u8 ddc_pin;
2947 
2948 	switch (port) {
2949 	case PORT_B:
2950 		ddc_pin = GMBUS_PIN_1_BXT;
2951 		break;
2952 	case PORT_C:
2953 		ddc_pin = GMBUS_PIN_2_BXT;
2954 		break;
2955 	default:
2956 		MISSING_CASE(port);
2957 		ddc_pin = GMBUS_PIN_1_BXT;
2958 		break;
2959 	}
2960 	return ddc_pin;
2961 }
2962 
2963 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2964 			      enum port port)
2965 {
2966 	u8 ddc_pin;
2967 
2968 	switch (port) {
2969 	case PORT_B:
2970 		ddc_pin = GMBUS_PIN_1_BXT;
2971 		break;
2972 	case PORT_C:
2973 		ddc_pin = GMBUS_PIN_2_BXT;
2974 		break;
2975 	case PORT_D:
2976 		ddc_pin = GMBUS_PIN_4_CNP;
2977 		break;
2978 	case PORT_F:
2979 		ddc_pin = GMBUS_PIN_3_BXT;
2980 		break;
2981 	default:
2982 		MISSING_CASE(port);
2983 		ddc_pin = GMBUS_PIN_1_BXT;
2984 		break;
2985 	}
2986 	return ddc_pin;
2987 }
2988 
2989 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2990 {
2991 	enum phy phy = intel_port_to_phy(dev_priv, port);
2992 
2993 	if (intel_phy_is_combo(dev_priv, phy))
2994 		return GMBUS_PIN_1_BXT + port;
2995 	else if (intel_phy_is_tc(dev_priv, phy))
2996 		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2997 
2998 	WARN(1, "Unknown port:%c\n", port_name(port));
2999 	return GMBUS_PIN_2_BXT;
3000 }
3001 
3002 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
3003 {
3004 	enum phy phy = intel_port_to_phy(dev_priv, port);
3005 	u8 ddc_pin;
3006 
3007 	switch (phy) {
3008 	case PHY_A:
3009 		ddc_pin = GMBUS_PIN_1_BXT;
3010 		break;
3011 	case PHY_B:
3012 		ddc_pin = GMBUS_PIN_2_BXT;
3013 		break;
3014 	case PHY_C:
3015 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
3016 		break;
3017 	default:
3018 		MISSING_CASE(phy);
3019 		ddc_pin = GMBUS_PIN_1_BXT;
3020 		break;
3021 	}
3022 	return ddc_pin;
3023 }
3024 
3025 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
3026 			      enum port port)
3027 {
3028 	u8 ddc_pin;
3029 
3030 	switch (port) {
3031 	case PORT_B:
3032 		ddc_pin = GMBUS_PIN_DPB;
3033 		break;
3034 	case PORT_C:
3035 		ddc_pin = GMBUS_PIN_DPC;
3036 		break;
3037 	case PORT_D:
3038 		ddc_pin = GMBUS_PIN_DPD;
3039 		break;
3040 	default:
3041 		MISSING_CASE(port);
3042 		ddc_pin = GMBUS_PIN_DPB;
3043 		break;
3044 	}
3045 	return ddc_pin;
3046 }
3047 
3048 static u8 intel_hdmi_ddc_pin(struct drm_i915_private *dev_priv,
3049 			     enum port port)
3050 {
3051 	const struct ddi_vbt_port_info *info =
3052 		&dev_priv->vbt.ddi_port_info[port];
3053 	u8 ddc_pin;
3054 
3055 	if (info->alternate_ddc_pin) {
3056 		DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (VBT)\n",
3057 			      info->alternate_ddc_pin, port_name(port));
3058 		return info->alternate_ddc_pin;
3059 	}
3060 
3061 	if (HAS_PCH_MCC(dev_priv))
3062 		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
3063 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3064 		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
3065 	else if (HAS_PCH_CNP(dev_priv))
3066 		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
3067 	else if (IS_GEN9_LP(dev_priv))
3068 		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
3069 	else if (IS_CHERRYVIEW(dev_priv))
3070 		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
3071 	else
3072 		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
3073 
3074 	DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (platform default)\n",
3075 		      ddc_pin, port_name(port));
3076 
3077 	return ddc_pin;
3078 }
3079 
3080 void intel_infoframe_init(struct intel_digital_port *intel_dig_port)
3081 {
3082 	struct drm_i915_private *dev_priv =
3083 		to_i915(intel_dig_port->base.base.dev);
3084 
3085 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3086 		intel_dig_port->write_infoframe = vlv_write_infoframe;
3087 		intel_dig_port->read_infoframe = vlv_read_infoframe;
3088 		intel_dig_port->set_infoframes = vlv_set_infoframes;
3089 		intel_dig_port->infoframes_enabled = vlv_infoframes_enabled;
3090 	} else if (IS_G4X(dev_priv)) {
3091 		intel_dig_port->write_infoframe = g4x_write_infoframe;
3092 		intel_dig_port->read_infoframe = g4x_read_infoframe;
3093 		intel_dig_port->set_infoframes = g4x_set_infoframes;
3094 		intel_dig_port->infoframes_enabled = g4x_infoframes_enabled;
3095 	} else if (HAS_DDI(dev_priv)) {
3096 		if (intel_dig_port->lspcon.active) {
3097 			intel_dig_port->write_infoframe = lspcon_write_infoframe;
3098 			intel_dig_port->read_infoframe = lspcon_read_infoframe;
3099 			intel_dig_port->set_infoframes = lspcon_set_infoframes;
3100 			intel_dig_port->infoframes_enabled = lspcon_infoframes_enabled;
3101 		} else {
3102 			intel_dig_port->write_infoframe = hsw_write_infoframe;
3103 			intel_dig_port->read_infoframe = hsw_read_infoframe;
3104 			intel_dig_port->set_infoframes = hsw_set_infoframes;
3105 			intel_dig_port->infoframes_enabled = hsw_infoframes_enabled;
3106 		}
3107 	} else if (HAS_PCH_IBX(dev_priv)) {
3108 		intel_dig_port->write_infoframe = ibx_write_infoframe;
3109 		intel_dig_port->read_infoframe = ibx_read_infoframe;
3110 		intel_dig_port->set_infoframes = ibx_set_infoframes;
3111 		intel_dig_port->infoframes_enabled = ibx_infoframes_enabled;
3112 	} else {
3113 		intel_dig_port->write_infoframe = cpt_write_infoframe;
3114 		intel_dig_port->read_infoframe = cpt_read_infoframe;
3115 		intel_dig_port->set_infoframes = cpt_set_infoframes;
3116 		intel_dig_port->infoframes_enabled = cpt_infoframes_enabled;
3117 	}
3118 }
3119 
3120 void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
3121 			       struct intel_connector *intel_connector)
3122 {
3123 	struct drm_connector *connector = &intel_connector->base;
3124 	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
3125 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3126 	struct drm_device *dev = intel_encoder->base.dev;
3127 	struct drm_i915_private *dev_priv = to_i915(dev);
3128 	enum port port = intel_encoder->port;
3129 	struct cec_connector_info conn_info;
3130 
3131 	DRM_DEBUG_KMS("Adding HDMI connector on [ENCODER:%d:%s]\n",
3132 		      intel_encoder->base.base.id, intel_encoder->base.name);
3133 
3134 	if (WARN(intel_dig_port->max_lanes < 4,
3135 		 "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3136 		 intel_dig_port->max_lanes, intel_encoder->base.base.id,
3137 		 intel_encoder->base.name))
3138 		return;
3139 
3140 	drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
3141 			   DRM_MODE_CONNECTOR_HDMIA);
3142 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3143 
3144 	connector->interlace_allowed = 1;
3145 	connector->doublescan_allowed = 0;
3146 	connector->stereo_allowed = 1;
3147 
3148 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
3149 		connector->ycbcr_420_allowed = true;
3150 
3151 	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(dev_priv, port);
3152 
3153 	if (WARN_ON(port == PORT_A))
3154 		return;
3155 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
3156 
3157 	if (HAS_DDI(dev_priv))
3158 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3159 	else
3160 		intel_connector->get_hw_state = intel_connector_get_hw_state;
3161 
3162 	intel_hdmi_add_properties(intel_hdmi, connector);
3163 
3164 	intel_connector_attach_encoder(intel_connector, intel_encoder);
3165 	intel_hdmi->attached_connector = intel_connector;
3166 
3167 	if (is_hdcp_supported(dev_priv, port)) {
3168 		int ret = intel_hdcp_init(intel_connector,
3169 					  &intel_hdmi_hdcp_shim);
3170 		if (ret)
3171 			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
3172 	}
3173 
3174 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3175 	 * 0xd.  Failure to do so will result in spurious interrupts being
3176 	 * generated on the port when a cable is not attached.
3177 	 */
3178 	if (IS_G45(dev_priv)) {
3179 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3180 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3181 	}
3182 
3183 	cec_fill_conn_info_from_drm(&conn_info, connector);
3184 
3185 	intel_hdmi->cec_notifier =
3186 		cec_notifier_conn_register(dev->dev, port_identifier(port),
3187 					   &conn_info);
3188 	if (!intel_hdmi->cec_notifier)
3189 		DRM_DEBUG_KMS("CEC notifier get failed\n");
3190 }
3191 
3192 static enum intel_hotplug_state
3193 intel_hdmi_hotplug(struct intel_encoder *encoder,
3194 		   struct intel_connector *connector, bool irq_received)
3195 {
3196 	enum intel_hotplug_state state;
3197 
3198 	state = intel_encoder_hotplug(encoder, connector, irq_received);
3199 
3200 	/*
3201 	 * On many platforms the HDMI live state signal is known to be
3202 	 * unreliable, so we can't use it to detect if a sink is connected or
3203 	 * not. Instead we detect if it's connected based on whether we can
3204 	 * read the EDID or not. That in turn has a problem during disconnect,
3205 	 * since the HPD interrupt may be raised before the DDC lines get
3206 	 * disconnected (due to how the required length of DDC vs. HPD
3207 	 * connector pins are specified) and so we'll still be able to get a
3208 	 * valid EDID. To solve this schedule another detection cycle if this
3209 	 * time around we didn't detect any change in the sink's connection
3210 	 * status.
3211 	 */
3212 	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
3213 		state = INTEL_HOTPLUG_RETRY;
3214 
3215 	return state;
3216 }
3217 
3218 void intel_hdmi_init(struct drm_i915_private *dev_priv,
3219 		     i915_reg_t hdmi_reg, enum port port)
3220 {
3221 	struct intel_digital_port *intel_dig_port;
3222 	struct intel_encoder *intel_encoder;
3223 	struct intel_connector *intel_connector;
3224 
3225 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3226 	if (!intel_dig_port)
3227 		return;
3228 
3229 	intel_connector = intel_connector_alloc();
3230 	if (!intel_connector) {
3231 		kfree(intel_dig_port);
3232 		return;
3233 	}
3234 
3235 	intel_encoder = &intel_dig_port->base;
3236 
3237 	drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
3238 			 &intel_hdmi_enc_funcs, DRM_MODE_ENCODER_TMDS,
3239 			 "HDMI %c", port_name(port));
3240 
3241 	intel_encoder->hotplug = intel_hdmi_hotplug;
3242 	intel_encoder->compute_config = intel_hdmi_compute_config;
3243 	if (HAS_PCH_SPLIT(dev_priv)) {
3244 		intel_encoder->disable = pch_disable_hdmi;
3245 		intel_encoder->post_disable = pch_post_disable_hdmi;
3246 	} else {
3247 		intel_encoder->disable = g4x_disable_hdmi;
3248 	}
3249 	intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
3250 	intel_encoder->get_config = intel_hdmi_get_config;
3251 	if (IS_CHERRYVIEW(dev_priv)) {
3252 		intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
3253 		intel_encoder->pre_enable = chv_hdmi_pre_enable;
3254 		intel_encoder->enable = vlv_enable_hdmi;
3255 		intel_encoder->post_disable = chv_hdmi_post_disable;
3256 		intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
3257 	} else if (IS_VALLEYVIEW(dev_priv)) {
3258 		intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
3259 		intel_encoder->pre_enable = vlv_hdmi_pre_enable;
3260 		intel_encoder->enable = vlv_enable_hdmi;
3261 		intel_encoder->post_disable = vlv_hdmi_post_disable;
3262 	} else {
3263 		intel_encoder->pre_enable = intel_hdmi_pre_enable;
3264 		if (HAS_PCH_CPT(dev_priv))
3265 			intel_encoder->enable = cpt_enable_hdmi;
3266 		else if (HAS_PCH_IBX(dev_priv))
3267 			intel_encoder->enable = ibx_enable_hdmi;
3268 		else
3269 			intel_encoder->enable = g4x_enable_hdmi;
3270 	}
3271 
3272 	intel_encoder->type = INTEL_OUTPUT_HDMI;
3273 	intel_encoder->power_domain = intel_port_to_power_domain(port);
3274 	intel_encoder->port = port;
3275 	if (IS_CHERRYVIEW(dev_priv)) {
3276 		if (port == PORT_D)
3277 			intel_encoder->crtc_mask = BIT(PIPE_C);
3278 		else
3279 			intel_encoder->crtc_mask = BIT(PIPE_A) | BIT(PIPE_B);
3280 	} else {
3281 		intel_encoder->crtc_mask = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C);
3282 	}
3283 	intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
3284 	/*
3285 	 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
3286 	 * to work on real hardware. And since g4x can send infoframes to
3287 	 * only one port anyway, nothing is lost by allowing it.
3288 	 */
3289 	if (IS_G4X(dev_priv))
3290 		intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
3291 
3292 	intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
3293 	intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
3294 	intel_dig_port->max_lanes = 4;
3295 
3296 	intel_infoframe_init(intel_dig_port);
3297 
3298 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
3299 	intel_hdmi_init_connector(intel_dig_port, intel_connector);
3300 }
3301