1 /* 2 * Copyright 2006 Dave Airlie <airlied@linux.ie> 3 * Copyright © 2006-2009 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * Jesse Barnes <jesse.barnes@intel.com> 27 */ 28 29 #include <linux/delay.h> 30 #include <linux/hdmi.h> 31 #include <linux/i2c.h> 32 #include <linux/slab.h> 33 34 #include <drm/drm_atomic_helper.h> 35 #include <drm/drm_crtc.h> 36 #include <drm/drm_edid.h> 37 #include <drm/drm_hdcp.h> 38 #include <drm/drm_scdc_helper.h> 39 #include <drm/intel_lpe_audio.h> 40 41 #include "i915_debugfs.h" 42 #include "i915_drv.h" 43 #include "intel_atomic.h" 44 #include "intel_audio.h" 45 #include "intel_connector.h" 46 #include "intel_ddi.h" 47 #include "intel_display_types.h" 48 #include "intel_dp.h" 49 #include "intel_dpio_phy.h" 50 #include "intel_fifo_underrun.h" 51 #include "intel_gmbus.h" 52 #include "intel_hdcp.h" 53 #include "intel_hdmi.h" 54 #include "intel_hotplug.h" 55 #include "intel_lspcon.h" 56 #include "intel_panel.h" 57 #include "intel_sdvo.h" 58 #include "intel_sideband.h" 59 60 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi) 61 { 62 return hdmi_to_dig_port(intel_hdmi)->base.base.dev; 63 } 64 65 static void 66 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) 67 { 68 struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi); 69 struct drm_i915_private *dev_priv = to_i915(dev); 70 u32 enabled_bits; 71 72 enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; 73 74 drm_WARN(dev, 75 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits, 76 "HDMI port enabled, expecting disabled\n"); 77 } 78 79 static void 80 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv, 81 enum transcoder cpu_transcoder) 82 { 83 drm_WARN(&dev_priv->drm, 84 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) & 85 TRANS_DDI_FUNC_ENABLE, 86 "HDMI transcoder function enabled, expecting disabled\n"); 87 } 88 89 struct intel_hdmi *enc_to_intel_hdmi(struct intel_encoder *encoder) 90 { 91 struct intel_digital_port *dig_port = 92 container_of(&encoder->base, struct intel_digital_port, 93 base.base); 94 return &dig_port->hdmi; 95 } 96 97 static struct intel_hdmi *intel_attached_hdmi(struct intel_connector *connector) 98 { 99 return enc_to_intel_hdmi(intel_attached_encoder(connector)); 100 } 101 102 static u32 g4x_infoframe_index(unsigned int type) 103 { 104 switch (type) { 105 case HDMI_PACKET_TYPE_GAMUT_METADATA: 106 return VIDEO_DIP_SELECT_GAMUT; 107 case HDMI_INFOFRAME_TYPE_AVI: 108 return VIDEO_DIP_SELECT_AVI; 109 case HDMI_INFOFRAME_TYPE_SPD: 110 return VIDEO_DIP_SELECT_SPD; 111 case HDMI_INFOFRAME_TYPE_VENDOR: 112 return VIDEO_DIP_SELECT_VENDOR; 113 default: 114 MISSING_CASE(type); 115 return 0; 116 } 117 } 118 119 static u32 g4x_infoframe_enable(unsigned int type) 120 { 121 switch (type) { 122 case HDMI_PACKET_TYPE_GENERAL_CONTROL: 123 return VIDEO_DIP_ENABLE_GCP; 124 case HDMI_PACKET_TYPE_GAMUT_METADATA: 125 return VIDEO_DIP_ENABLE_GAMUT; 126 case DP_SDP_VSC: 127 return 0; 128 case HDMI_INFOFRAME_TYPE_AVI: 129 return VIDEO_DIP_ENABLE_AVI; 130 case HDMI_INFOFRAME_TYPE_SPD: 131 return VIDEO_DIP_ENABLE_SPD; 132 case HDMI_INFOFRAME_TYPE_VENDOR: 133 return VIDEO_DIP_ENABLE_VENDOR; 134 case HDMI_INFOFRAME_TYPE_DRM: 135 return 0; 136 default: 137 MISSING_CASE(type); 138 return 0; 139 } 140 } 141 142 static u32 hsw_infoframe_enable(unsigned int type) 143 { 144 switch (type) { 145 case HDMI_PACKET_TYPE_GENERAL_CONTROL: 146 return VIDEO_DIP_ENABLE_GCP_HSW; 147 case HDMI_PACKET_TYPE_GAMUT_METADATA: 148 return VIDEO_DIP_ENABLE_GMP_HSW; 149 case DP_SDP_VSC: 150 return VIDEO_DIP_ENABLE_VSC_HSW; 151 case DP_SDP_PPS: 152 return VDIP_ENABLE_PPS; 153 case HDMI_INFOFRAME_TYPE_AVI: 154 return VIDEO_DIP_ENABLE_AVI_HSW; 155 case HDMI_INFOFRAME_TYPE_SPD: 156 return VIDEO_DIP_ENABLE_SPD_HSW; 157 case HDMI_INFOFRAME_TYPE_VENDOR: 158 return VIDEO_DIP_ENABLE_VS_HSW; 159 case HDMI_INFOFRAME_TYPE_DRM: 160 return VIDEO_DIP_ENABLE_DRM_GLK; 161 default: 162 MISSING_CASE(type); 163 return 0; 164 } 165 } 166 167 static i915_reg_t 168 hsw_dip_data_reg(struct drm_i915_private *dev_priv, 169 enum transcoder cpu_transcoder, 170 unsigned int type, 171 int i) 172 { 173 switch (type) { 174 case HDMI_PACKET_TYPE_GAMUT_METADATA: 175 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i); 176 case DP_SDP_VSC: 177 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i); 178 case DP_SDP_PPS: 179 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i); 180 case HDMI_INFOFRAME_TYPE_AVI: 181 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i); 182 case HDMI_INFOFRAME_TYPE_SPD: 183 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i); 184 case HDMI_INFOFRAME_TYPE_VENDOR: 185 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i); 186 case HDMI_INFOFRAME_TYPE_DRM: 187 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i); 188 default: 189 MISSING_CASE(type); 190 return INVALID_MMIO_REG; 191 } 192 } 193 194 static int hsw_dip_data_size(struct drm_i915_private *dev_priv, 195 unsigned int type) 196 { 197 switch (type) { 198 case DP_SDP_VSC: 199 return VIDEO_DIP_VSC_DATA_SIZE; 200 case DP_SDP_PPS: 201 return VIDEO_DIP_PPS_DATA_SIZE; 202 case HDMI_PACKET_TYPE_GAMUT_METADATA: 203 if (INTEL_GEN(dev_priv) >= 11) 204 return VIDEO_DIP_GMP_DATA_SIZE; 205 else 206 return VIDEO_DIP_DATA_SIZE; 207 default: 208 return VIDEO_DIP_DATA_SIZE; 209 } 210 } 211 212 static void g4x_write_infoframe(struct intel_encoder *encoder, 213 const struct intel_crtc_state *crtc_state, 214 unsigned int type, 215 const void *frame, ssize_t len) 216 { 217 const u32 *data = frame; 218 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 219 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 220 int i; 221 222 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 223 "Writing DIP with CTL reg disabled\n"); 224 225 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 226 val |= g4x_infoframe_index(type); 227 228 val &= ~g4x_infoframe_enable(type); 229 230 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 231 232 for (i = 0; i < len; i += 4) { 233 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data); 234 data++; 235 } 236 /* Write every possible data byte to force correct ECC calculation. */ 237 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 238 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0); 239 240 val |= g4x_infoframe_enable(type); 241 val &= ~VIDEO_DIP_FREQ_MASK; 242 val |= VIDEO_DIP_FREQ_VSYNC; 243 244 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 245 intel_de_posting_read(dev_priv, VIDEO_DIP_CTL); 246 } 247 248 static void g4x_read_infoframe(struct intel_encoder *encoder, 249 const struct intel_crtc_state *crtc_state, 250 unsigned int type, 251 void *frame, ssize_t len) 252 { 253 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 254 u32 val, *data = frame; 255 int i; 256 257 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 258 259 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 260 val |= g4x_infoframe_index(type); 261 262 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 263 264 for (i = 0; i < len; i += 4) 265 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA); 266 } 267 268 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder, 269 const struct intel_crtc_state *pipe_config) 270 { 271 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 272 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 273 274 if ((val & VIDEO_DIP_ENABLE) == 0) 275 return 0; 276 277 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 278 return 0; 279 280 return val & (VIDEO_DIP_ENABLE_AVI | 281 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 282 } 283 284 static void ibx_write_infoframe(struct intel_encoder *encoder, 285 const struct intel_crtc_state *crtc_state, 286 unsigned int type, 287 const void *frame, ssize_t len) 288 { 289 const u32 *data = frame; 290 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 291 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 292 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 293 u32 val = intel_de_read(dev_priv, reg); 294 int i; 295 296 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 297 "Writing DIP with CTL reg disabled\n"); 298 299 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 300 val |= g4x_infoframe_index(type); 301 302 val &= ~g4x_infoframe_enable(type); 303 304 intel_de_write(dev_priv, reg, val); 305 306 for (i = 0; i < len; i += 4) { 307 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 308 *data); 309 data++; 310 } 311 /* Write every possible data byte to force correct ECC calculation. */ 312 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 313 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0); 314 315 val |= g4x_infoframe_enable(type); 316 val &= ~VIDEO_DIP_FREQ_MASK; 317 val |= VIDEO_DIP_FREQ_VSYNC; 318 319 intel_de_write(dev_priv, reg, val); 320 intel_de_posting_read(dev_priv, reg); 321 } 322 323 static void ibx_read_infoframe(struct intel_encoder *encoder, 324 const struct intel_crtc_state *crtc_state, 325 unsigned int type, 326 void *frame, ssize_t len) 327 { 328 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 329 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 330 u32 val, *data = frame; 331 int i; 332 333 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe)); 334 335 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 336 val |= g4x_infoframe_index(type); 337 338 intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val); 339 340 for (i = 0; i < len; i += 4) 341 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); 342 } 343 344 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder, 345 const struct intel_crtc_state *pipe_config) 346 { 347 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 348 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 349 i915_reg_t reg = TVIDEO_DIP_CTL(pipe); 350 u32 val = intel_de_read(dev_priv, reg); 351 352 if ((val & VIDEO_DIP_ENABLE) == 0) 353 return 0; 354 355 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 356 return 0; 357 358 return val & (VIDEO_DIP_ENABLE_AVI | 359 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 360 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 361 } 362 363 static void cpt_write_infoframe(struct intel_encoder *encoder, 364 const struct intel_crtc_state *crtc_state, 365 unsigned int type, 366 const void *frame, ssize_t len) 367 { 368 const u32 *data = frame; 369 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 370 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 371 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 372 u32 val = intel_de_read(dev_priv, reg); 373 int i; 374 375 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 376 "Writing DIP with CTL reg disabled\n"); 377 378 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 379 val |= g4x_infoframe_index(type); 380 381 /* The DIP control register spec says that we need to update the AVI 382 * infoframe without clearing its enable bit */ 383 if (type != HDMI_INFOFRAME_TYPE_AVI) 384 val &= ~g4x_infoframe_enable(type); 385 386 intel_de_write(dev_priv, reg, val); 387 388 for (i = 0; i < len; i += 4) { 389 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 390 *data); 391 data++; 392 } 393 /* Write every possible data byte to force correct ECC calculation. */ 394 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 395 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0); 396 397 val |= g4x_infoframe_enable(type); 398 val &= ~VIDEO_DIP_FREQ_MASK; 399 val |= VIDEO_DIP_FREQ_VSYNC; 400 401 intel_de_write(dev_priv, reg, val); 402 intel_de_posting_read(dev_priv, reg); 403 } 404 405 static void cpt_read_infoframe(struct intel_encoder *encoder, 406 const struct intel_crtc_state *crtc_state, 407 unsigned int type, 408 void *frame, ssize_t len) 409 { 410 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 411 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 412 u32 val, *data = frame; 413 int i; 414 415 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe)); 416 417 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 418 val |= g4x_infoframe_index(type); 419 420 intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val); 421 422 for (i = 0; i < len; i += 4) 423 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); 424 } 425 426 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder, 427 const struct intel_crtc_state *pipe_config) 428 { 429 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 430 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 431 u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe)); 432 433 if ((val & VIDEO_DIP_ENABLE) == 0) 434 return 0; 435 436 return val & (VIDEO_DIP_ENABLE_AVI | 437 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 438 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 439 } 440 441 static void vlv_write_infoframe(struct intel_encoder *encoder, 442 const struct intel_crtc_state *crtc_state, 443 unsigned int type, 444 const void *frame, ssize_t len) 445 { 446 const u32 *data = frame; 447 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 449 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); 450 u32 val = intel_de_read(dev_priv, reg); 451 int i; 452 453 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 454 "Writing DIP with CTL reg disabled\n"); 455 456 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 457 val |= g4x_infoframe_index(type); 458 459 val &= ~g4x_infoframe_enable(type); 460 461 intel_de_write(dev_priv, reg, val); 462 463 for (i = 0; i < len; i += 4) { 464 intel_de_write(dev_priv, 465 VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data); 466 data++; 467 } 468 /* Write every possible data byte to force correct ECC calculation. */ 469 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 470 intel_de_write(dev_priv, 471 VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0); 472 473 val |= g4x_infoframe_enable(type); 474 val &= ~VIDEO_DIP_FREQ_MASK; 475 val |= VIDEO_DIP_FREQ_VSYNC; 476 477 intel_de_write(dev_priv, reg, val); 478 intel_de_posting_read(dev_priv, reg); 479 } 480 481 static void vlv_read_infoframe(struct intel_encoder *encoder, 482 const struct intel_crtc_state *crtc_state, 483 unsigned int type, 484 void *frame, ssize_t len) 485 { 486 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 487 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 488 u32 val, *data = frame; 489 int i; 490 491 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe)); 492 493 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 494 val |= g4x_infoframe_index(type); 495 496 intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val); 497 498 for (i = 0; i < len; i += 4) 499 *data++ = intel_de_read(dev_priv, 500 VLV_TVIDEO_DIP_DATA(crtc->pipe)); 501 } 502 503 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder, 504 const struct intel_crtc_state *pipe_config) 505 { 506 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 507 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 508 u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe)); 509 510 if ((val & VIDEO_DIP_ENABLE) == 0) 511 return 0; 512 513 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 514 return 0; 515 516 return val & (VIDEO_DIP_ENABLE_AVI | 517 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 518 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 519 } 520 521 void hsw_write_infoframe(struct intel_encoder *encoder, 522 const struct intel_crtc_state *crtc_state, 523 unsigned int type, 524 const void *frame, ssize_t len) 525 { 526 const u32 *data = frame; 527 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 528 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 529 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder); 530 int data_size; 531 int i; 532 u32 val = intel_de_read(dev_priv, ctl_reg); 533 534 data_size = hsw_dip_data_size(dev_priv, type); 535 536 drm_WARN_ON(&dev_priv->drm, len > data_size); 537 538 val &= ~hsw_infoframe_enable(type); 539 intel_de_write(dev_priv, ctl_reg, val); 540 541 for (i = 0; i < len; i += 4) { 542 intel_de_write(dev_priv, 543 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 544 *data); 545 data++; 546 } 547 /* Write every possible data byte to force correct ECC calculation. */ 548 for (; i < data_size; i += 4) 549 intel_de_write(dev_priv, 550 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 551 0); 552 553 val |= hsw_infoframe_enable(type); 554 intel_de_write(dev_priv, ctl_reg, val); 555 intel_de_posting_read(dev_priv, ctl_reg); 556 } 557 558 void hsw_read_infoframe(struct intel_encoder *encoder, 559 const struct intel_crtc_state *crtc_state, 560 unsigned int type, void *frame, ssize_t len) 561 { 562 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 563 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 564 u32 val, *data = frame; 565 int i; 566 567 val = intel_de_read(dev_priv, HSW_TVIDEO_DIP_CTL(cpu_transcoder)); 568 569 for (i = 0; i < len; i += 4) 570 *data++ = intel_de_read(dev_priv, 571 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2)); 572 } 573 574 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder, 575 const struct intel_crtc_state *pipe_config) 576 { 577 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 578 u32 val = intel_de_read(dev_priv, 579 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder)); 580 u32 mask; 581 582 mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | 583 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | 584 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW); 585 586 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 587 mask |= VIDEO_DIP_ENABLE_DRM_GLK; 588 589 return val & mask; 590 } 591 592 static const u8 infoframe_type_to_idx[] = { 593 HDMI_PACKET_TYPE_GENERAL_CONTROL, 594 HDMI_PACKET_TYPE_GAMUT_METADATA, 595 DP_SDP_VSC, 596 HDMI_INFOFRAME_TYPE_AVI, 597 HDMI_INFOFRAME_TYPE_SPD, 598 HDMI_INFOFRAME_TYPE_VENDOR, 599 HDMI_INFOFRAME_TYPE_DRM, 600 }; 601 602 u32 intel_hdmi_infoframe_enable(unsigned int type) 603 { 604 int i; 605 606 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { 607 if (infoframe_type_to_idx[i] == type) 608 return BIT(i); 609 } 610 611 return 0; 612 } 613 614 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder, 615 const struct intel_crtc_state *crtc_state) 616 { 617 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 618 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 619 u32 val, ret = 0; 620 int i; 621 622 val = dig_port->infoframes_enabled(encoder, crtc_state); 623 624 /* map from hardware bits to dip idx */ 625 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { 626 unsigned int type = infoframe_type_to_idx[i]; 627 628 if (HAS_DDI(dev_priv)) { 629 if (val & hsw_infoframe_enable(type)) 630 ret |= BIT(i); 631 } else { 632 if (val & g4x_infoframe_enable(type)) 633 ret |= BIT(i); 634 } 635 } 636 637 return ret; 638 } 639 640 /* 641 * The data we write to the DIP data buffer registers is 1 byte bigger than the 642 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting 643 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be 644 * used for both technologies. 645 * 646 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0 647 * DW1: DB3 | DB2 | DB1 | DB0 648 * DW2: DB7 | DB6 | DB5 | DB4 649 * DW3: ... 650 * 651 * (HB is Header Byte, DB is Data Byte) 652 * 653 * The hdmi pack() functions don't know about that hardware specific hole so we 654 * trick them by giving an offset into the buffer and moving back the header 655 * bytes by one. 656 */ 657 static void intel_write_infoframe(struct intel_encoder *encoder, 658 const struct intel_crtc_state *crtc_state, 659 enum hdmi_infoframe_type type, 660 const union hdmi_infoframe *frame) 661 { 662 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 663 u8 buffer[VIDEO_DIP_DATA_SIZE]; 664 ssize_t len; 665 666 if ((crtc_state->infoframes.enable & 667 intel_hdmi_infoframe_enable(type)) == 0) 668 return; 669 670 if (drm_WARN_ON(encoder->base.dev, frame->any.type != type)) 671 return; 672 673 /* see comment above for the reason for this offset */ 674 len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1); 675 if (drm_WARN_ON(encoder->base.dev, len < 0)) 676 return; 677 678 /* Insert the 'hole' (see big comment above) at position 3 */ 679 memmove(&buffer[0], &buffer[1], 3); 680 buffer[3] = 0; 681 len++; 682 683 dig_port->write_infoframe(encoder, crtc_state, type, buffer, len); 684 } 685 686 void intel_read_infoframe(struct intel_encoder *encoder, 687 const struct intel_crtc_state *crtc_state, 688 enum hdmi_infoframe_type type, 689 union hdmi_infoframe *frame) 690 { 691 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 692 u8 buffer[VIDEO_DIP_DATA_SIZE]; 693 int ret; 694 695 if ((crtc_state->infoframes.enable & 696 intel_hdmi_infoframe_enable(type)) == 0) 697 return; 698 699 dig_port->read_infoframe(encoder, crtc_state, 700 type, buffer, sizeof(buffer)); 701 702 /* Fill the 'hole' (see big comment above) at position 3 */ 703 memmove(&buffer[1], &buffer[0], 3); 704 705 /* see comment above for the reason for this offset */ 706 ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1); 707 if (ret) { 708 drm_dbg_kms(encoder->base.dev, 709 "Failed to unpack infoframe type 0x%02x\n", type); 710 return; 711 } 712 713 if (frame->any.type != type) 714 drm_dbg_kms(encoder->base.dev, 715 "Found the wrong infoframe type 0x%x (expected 0x%02x)\n", 716 frame->any.type, type); 717 } 718 719 static bool 720 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder, 721 struct intel_crtc_state *crtc_state, 722 struct drm_connector_state *conn_state) 723 { 724 struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi; 725 const struct drm_display_mode *adjusted_mode = 726 &crtc_state->hw.adjusted_mode; 727 struct drm_connector *connector = conn_state->connector; 728 int ret; 729 730 if (!crtc_state->has_infoframe) 731 return true; 732 733 crtc_state->infoframes.enable |= 734 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI); 735 736 ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector, 737 adjusted_mode); 738 if (ret) 739 return false; 740 741 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 742 frame->colorspace = HDMI_COLORSPACE_YUV420; 743 else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 744 frame->colorspace = HDMI_COLORSPACE_YUV444; 745 else 746 frame->colorspace = HDMI_COLORSPACE_RGB; 747 748 drm_hdmi_avi_infoframe_colorspace(frame, conn_state); 749 750 /* nonsense combination */ 751 drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range && 752 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 753 754 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) { 755 drm_hdmi_avi_infoframe_quant_range(frame, connector, 756 adjusted_mode, 757 crtc_state->limited_color_range ? 758 HDMI_QUANTIZATION_RANGE_LIMITED : 759 HDMI_QUANTIZATION_RANGE_FULL); 760 } else { 761 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; 762 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED; 763 } 764 765 drm_hdmi_avi_infoframe_content_type(frame, conn_state); 766 767 /* TODO: handle pixel repetition for YCBCR420 outputs */ 768 769 ret = hdmi_avi_infoframe_check(frame); 770 if (drm_WARN_ON(encoder->base.dev, ret)) 771 return false; 772 773 return true; 774 } 775 776 static bool 777 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder, 778 struct intel_crtc_state *crtc_state, 779 struct drm_connector_state *conn_state) 780 { 781 struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd; 782 int ret; 783 784 if (!crtc_state->has_infoframe) 785 return true; 786 787 crtc_state->infoframes.enable |= 788 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD); 789 790 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx"); 791 if (drm_WARN_ON(encoder->base.dev, ret)) 792 return false; 793 794 frame->sdi = HDMI_SPD_SDI_PC; 795 796 ret = hdmi_spd_infoframe_check(frame); 797 if (drm_WARN_ON(encoder->base.dev, ret)) 798 return false; 799 800 return true; 801 } 802 803 static bool 804 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder, 805 struct intel_crtc_state *crtc_state, 806 struct drm_connector_state *conn_state) 807 { 808 struct hdmi_vendor_infoframe *frame = 809 &crtc_state->infoframes.hdmi.vendor.hdmi; 810 const struct drm_display_info *info = 811 &conn_state->connector->display_info; 812 int ret; 813 814 if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe) 815 return true; 816 817 crtc_state->infoframes.enable |= 818 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR); 819 820 ret = drm_hdmi_vendor_infoframe_from_display_mode(frame, 821 conn_state->connector, 822 &crtc_state->hw.adjusted_mode); 823 if (drm_WARN_ON(encoder->base.dev, ret)) 824 return false; 825 826 ret = hdmi_vendor_infoframe_check(frame); 827 if (drm_WARN_ON(encoder->base.dev, ret)) 828 return false; 829 830 return true; 831 } 832 833 static bool 834 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder, 835 struct intel_crtc_state *crtc_state, 836 struct drm_connector_state *conn_state) 837 { 838 struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm; 839 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 840 int ret; 841 842 if (!(INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))) 843 return true; 844 845 if (!crtc_state->has_infoframe) 846 return true; 847 848 if (!conn_state->hdr_output_metadata) 849 return true; 850 851 crtc_state->infoframes.enable |= 852 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM); 853 854 ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state); 855 if (ret < 0) { 856 drm_dbg_kms(&dev_priv->drm, 857 "couldn't set HDR metadata in infoframe\n"); 858 return false; 859 } 860 861 ret = hdmi_drm_infoframe_check(frame); 862 if (drm_WARN_ON(&dev_priv->drm, ret)) 863 return false; 864 865 return true; 866 } 867 868 static void g4x_set_infoframes(struct intel_encoder *encoder, 869 bool enable, 870 const struct intel_crtc_state *crtc_state, 871 const struct drm_connector_state *conn_state) 872 { 873 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 874 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 875 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 876 i915_reg_t reg = VIDEO_DIP_CTL; 877 u32 val = intel_de_read(dev_priv, reg); 878 u32 port = VIDEO_DIP_PORT(encoder->port); 879 880 assert_hdmi_port_disabled(intel_hdmi); 881 882 /* If the registers were not initialized yet, they might be zeroes, 883 * which means we're selecting the AVI DIP and we're setting its 884 * frequency to once. This seems to really confuse the HW and make 885 * things stop working (the register spec says the AVI always needs to 886 * be sent every VSync). So here we avoid writing to the register more 887 * than we need and also explicitly select the AVI DIP and explicitly 888 * set its frequency to every VSync. Avoiding to write it twice seems to 889 * be enough to solve the problem, but being defensive shouldn't hurt us 890 * either. */ 891 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 892 893 if (!enable) { 894 if (!(val & VIDEO_DIP_ENABLE)) 895 return; 896 if (port != (val & VIDEO_DIP_PORT_MASK)) { 897 drm_dbg_kms(&dev_priv->drm, 898 "video DIP still enabled on port %c\n", 899 (val & VIDEO_DIP_PORT_MASK) >> 29); 900 return; 901 } 902 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 903 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 904 intel_de_write(dev_priv, reg, val); 905 intel_de_posting_read(dev_priv, reg); 906 return; 907 } 908 909 if (port != (val & VIDEO_DIP_PORT_MASK)) { 910 if (val & VIDEO_DIP_ENABLE) { 911 drm_dbg_kms(&dev_priv->drm, 912 "video DIP already enabled on port %c\n", 913 (val & VIDEO_DIP_PORT_MASK) >> 29); 914 return; 915 } 916 val &= ~VIDEO_DIP_PORT_MASK; 917 val |= port; 918 } 919 920 val |= VIDEO_DIP_ENABLE; 921 val &= ~(VIDEO_DIP_ENABLE_AVI | 922 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 923 924 intel_de_write(dev_priv, reg, val); 925 intel_de_posting_read(dev_priv, reg); 926 927 intel_write_infoframe(encoder, crtc_state, 928 HDMI_INFOFRAME_TYPE_AVI, 929 &crtc_state->infoframes.avi); 930 intel_write_infoframe(encoder, crtc_state, 931 HDMI_INFOFRAME_TYPE_SPD, 932 &crtc_state->infoframes.spd); 933 intel_write_infoframe(encoder, crtc_state, 934 HDMI_INFOFRAME_TYPE_VENDOR, 935 &crtc_state->infoframes.hdmi); 936 } 937 938 /* 939 * Determine if default_phase=1 can be indicated in the GCP infoframe. 940 * 941 * From HDMI specification 1.4a: 942 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0 943 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0 944 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase 945 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing 946 * phase of 0 947 */ 948 static bool gcp_default_phase_possible(int pipe_bpp, 949 const struct drm_display_mode *mode) 950 { 951 unsigned int pixels_per_group; 952 953 switch (pipe_bpp) { 954 case 30: 955 /* 4 pixels in 5 clocks */ 956 pixels_per_group = 4; 957 break; 958 case 36: 959 /* 2 pixels in 3 clocks */ 960 pixels_per_group = 2; 961 break; 962 case 48: 963 /* 1 pixel in 2 clocks */ 964 pixels_per_group = 1; 965 break; 966 default: 967 /* phase information not relevant for 8bpc */ 968 return false; 969 } 970 971 return mode->crtc_hdisplay % pixels_per_group == 0 && 972 mode->crtc_htotal % pixels_per_group == 0 && 973 mode->crtc_hblank_start % pixels_per_group == 0 && 974 mode->crtc_hblank_end % pixels_per_group == 0 && 975 mode->crtc_hsync_start % pixels_per_group == 0 && 976 mode->crtc_hsync_end % pixels_per_group == 0 && 977 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 || 978 mode->crtc_htotal/2 % pixels_per_group == 0); 979 } 980 981 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder, 982 const struct intel_crtc_state *crtc_state, 983 const struct drm_connector_state *conn_state) 984 { 985 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 986 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 987 i915_reg_t reg; 988 989 if ((crtc_state->infoframes.enable & 990 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) 991 return false; 992 993 if (HAS_DDI(dev_priv)) 994 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); 995 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 996 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); 997 else if (HAS_PCH_SPLIT(dev_priv)) 998 reg = TVIDEO_DIP_GCP(crtc->pipe); 999 else 1000 return false; 1001 1002 intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp); 1003 1004 return true; 1005 } 1006 1007 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder, 1008 struct intel_crtc_state *crtc_state) 1009 { 1010 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1011 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1012 i915_reg_t reg; 1013 1014 if ((crtc_state->infoframes.enable & 1015 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) 1016 return; 1017 1018 if (HAS_DDI(dev_priv)) 1019 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); 1020 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1021 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); 1022 else if (HAS_PCH_SPLIT(dev_priv)) 1023 reg = TVIDEO_DIP_GCP(crtc->pipe); 1024 else 1025 return; 1026 1027 crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg); 1028 } 1029 1030 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder, 1031 struct intel_crtc_state *crtc_state, 1032 struct drm_connector_state *conn_state) 1033 { 1034 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1035 1036 if (IS_G4X(dev_priv) || !crtc_state->has_infoframe) 1037 return; 1038 1039 crtc_state->infoframes.enable |= 1040 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL); 1041 1042 /* Indicate color indication for deep color mode */ 1043 if (crtc_state->pipe_bpp > 24) 1044 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION; 1045 1046 /* Enable default_phase whenever the display mode is suitably aligned */ 1047 if (gcp_default_phase_possible(crtc_state->pipe_bpp, 1048 &crtc_state->hw.adjusted_mode)) 1049 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE; 1050 } 1051 1052 static void ibx_set_infoframes(struct intel_encoder *encoder, 1053 bool enable, 1054 const struct intel_crtc_state *crtc_state, 1055 const struct drm_connector_state *conn_state) 1056 { 1057 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 1059 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1060 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 1061 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 1062 u32 val = intel_de_read(dev_priv, reg); 1063 u32 port = VIDEO_DIP_PORT(encoder->port); 1064 1065 assert_hdmi_port_disabled(intel_hdmi); 1066 1067 /* See the big comment in g4x_set_infoframes() */ 1068 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1069 1070 if (!enable) { 1071 if (!(val & VIDEO_DIP_ENABLE)) 1072 return; 1073 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1074 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1075 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1076 intel_de_write(dev_priv, reg, val); 1077 intel_de_posting_read(dev_priv, reg); 1078 return; 1079 } 1080 1081 if (port != (val & VIDEO_DIP_PORT_MASK)) { 1082 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, 1083 "DIP already enabled on port %c\n", 1084 (val & VIDEO_DIP_PORT_MASK) >> 29); 1085 val &= ~VIDEO_DIP_PORT_MASK; 1086 val |= port; 1087 } 1088 1089 val |= VIDEO_DIP_ENABLE; 1090 val &= ~(VIDEO_DIP_ENABLE_AVI | 1091 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1092 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1093 1094 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1095 val |= VIDEO_DIP_ENABLE_GCP; 1096 1097 intel_de_write(dev_priv, reg, val); 1098 intel_de_posting_read(dev_priv, reg); 1099 1100 intel_write_infoframe(encoder, crtc_state, 1101 HDMI_INFOFRAME_TYPE_AVI, 1102 &crtc_state->infoframes.avi); 1103 intel_write_infoframe(encoder, crtc_state, 1104 HDMI_INFOFRAME_TYPE_SPD, 1105 &crtc_state->infoframes.spd); 1106 intel_write_infoframe(encoder, crtc_state, 1107 HDMI_INFOFRAME_TYPE_VENDOR, 1108 &crtc_state->infoframes.hdmi); 1109 } 1110 1111 static void cpt_set_infoframes(struct intel_encoder *encoder, 1112 bool enable, 1113 const struct intel_crtc_state *crtc_state, 1114 const struct drm_connector_state *conn_state) 1115 { 1116 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 1118 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1119 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 1120 u32 val = intel_de_read(dev_priv, reg); 1121 1122 assert_hdmi_port_disabled(intel_hdmi); 1123 1124 /* See the big comment in g4x_set_infoframes() */ 1125 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1126 1127 if (!enable) { 1128 if (!(val & VIDEO_DIP_ENABLE)) 1129 return; 1130 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1131 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1132 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1133 intel_de_write(dev_priv, reg, val); 1134 intel_de_posting_read(dev_priv, reg); 1135 return; 1136 } 1137 1138 /* Set both together, unset both together: see the spec. */ 1139 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; 1140 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1141 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1142 1143 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1144 val |= VIDEO_DIP_ENABLE_GCP; 1145 1146 intel_de_write(dev_priv, reg, val); 1147 intel_de_posting_read(dev_priv, reg); 1148 1149 intel_write_infoframe(encoder, crtc_state, 1150 HDMI_INFOFRAME_TYPE_AVI, 1151 &crtc_state->infoframes.avi); 1152 intel_write_infoframe(encoder, crtc_state, 1153 HDMI_INFOFRAME_TYPE_SPD, 1154 &crtc_state->infoframes.spd); 1155 intel_write_infoframe(encoder, crtc_state, 1156 HDMI_INFOFRAME_TYPE_VENDOR, 1157 &crtc_state->infoframes.hdmi); 1158 } 1159 1160 static void vlv_set_infoframes(struct intel_encoder *encoder, 1161 bool enable, 1162 const struct intel_crtc_state *crtc_state, 1163 const struct drm_connector_state *conn_state) 1164 { 1165 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 1167 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1168 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); 1169 u32 val = intel_de_read(dev_priv, reg); 1170 u32 port = VIDEO_DIP_PORT(encoder->port); 1171 1172 assert_hdmi_port_disabled(intel_hdmi); 1173 1174 /* See the big comment in g4x_set_infoframes() */ 1175 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1176 1177 if (!enable) { 1178 if (!(val & VIDEO_DIP_ENABLE)) 1179 return; 1180 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1181 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1182 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1183 intel_de_write(dev_priv, reg, val); 1184 intel_de_posting_read(dev_priv, reg); 1185 return; 1186 } 1187 1188 if (port != (val & VIDEO_DIP_PORT_MASK)) { 1189 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, 1190 "DIP already enabled on port %c\n", 1191 (val & VIDEO_DIP_PORT_MASK) >> 29); 1192 val &= ~VIDEO_DIP_PORT_MASK; 1193 val |= port; 1194 } 1195 1196 val |= VIDEO_DIP_ENABLE; 1197 val &= ~(VIDEO_DIP_ENABLE_AVI | 1198 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1199 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1200 1201 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1202 val |= VIDEO_DIP_ENABLE_GCP; 1203 1204 intel_de_write(dev_priv, reg, val); 1205 intel_de_posting_read(dev_priv, reg); 1206 1207 intel_write_infoframe(encoder, crtc_state, 1208 HDMI_INFOFRAME_TYPE_AVI, 1209 &crtc_state->infoframes.avi); 1210 intel_write_infoframe(encoder, crtc_state, 1211 HDMI_INFOFRAME_TYPE_SPD, 1212 &crtc_state->infoframes.spd); 1213 intel_write_infoframe(encoder, crtc_state, 1214 HDMI_INFOFRAME_TYPE_VENDOR, 1215 &crtc_state->infoframes.hdmi); 1216 } 1217 1218 static void hsw_set_infoframes(struct intel_encoder *encoder, 1219 bool enable, 1220 const struct intel_crtc_state *crtc_state, 1221 const struct drm_connector_state *conn_state) 1222 { 1223 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1224 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); 1225 u32 val = intel_de_read(dev_priv, reg); 1226 1227 assert_hdmi_transcoder_func_disabled(dev_priv, 1228 crtc_state->cpu_transcoder); 1229 1230 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | 1231 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | 1232 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW | 1233 VIDEO_DIP_ENABLE_DRM_GLK); 1234 1235 if (!enable) { 1236 intel_de_write(dev_priv, reg, val); 1237 intel_de_posting_read(dev_priv, reg); 1238 return; 1239 } 1240 1241 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1242 val |= VIDEO_DIP_ENABLE_GCP_HSW; 1243 1244 intel_de_write(dev_priv, reg, val); 1245 intel_de_posting_read(dev_priv, reg); 1246 1247 intel_write_infoframe(encoder, crtc_state, 1248 HDMI_INFOFRAME_TYPE_AVI, 1249 &crtc_state->infoframes.avi); 1250 intel_write_infoframe(encoder, crtc_state, 1251 HDMI_INFOFRAME_TYPE_SPD, 1252 &crtc_state->infoframes.spd); 1253 intel_write_infoframe(encoder, crtc_state, 1254 HDMI_INFOFRAME_TYPE_VENDOR, 1255 &crtc_state->infoframes.hdmi); 1256 intel_write_infoframe(encoder, crtc_state, 1257 HDMI_INFOFRAME_TYPE_DRM, 1258 &crtc_state->infoframes.drm); 1259 } 1260 1261 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable) 1262 { 1263 struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi)); 1264 struct i2c_adapter *adapter = 1265 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); 1266 1267 if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI) 1268 return; 1269 1270 drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n", 1271 enable ? "Enabling" : "Disabling"); 1272 1273 drm_dp_dual_mode_set_tmds_output(hdmi->dp_dual_mode.type, 1274 adapter, enable); 1275 } 1276 1277 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port, 1278 unsigned int offset, void *buffer, size_t size) 1279 { 1280 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1281 struct intel_hdmi *hdmi = &dig_port->hdmi; 1282 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1283 hdmi->ddc_bus); 1284 int ret; 1285 u8 start = offset & 0xff; 1286 struct i2c_msg msgs[] = { 1287 { 1288 .addr = DRM_HDCP_DDC_ADDR, 1289 .flags = 0, 1290 .len = 1, 1291 .buf = &start, 1292 }, 1293 { 1294 .addr = DRM_HDCP_DDC_ADDR, 1295 .flags = I2C_M_RD, 1296 .len = size, 1297 .buf = buffer 1298 } 1299 }; 1300 ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs)); 1301 if (ret == ARRAY_SIZE(msgs)) 1302 return 0; 1303 return ret >= 0 ? -EIO : ret; 1304 } 1305 1306 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port, 1307 unsigned int offset, void *buffer, size_t size) 1308 { 1309 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1310 struct intel_hdmi *hdmi = &dig_port->hdmi; 1311 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1312 hdmi->ddc_bus); 1313 int ret; 1314 u8 *write_buf; 1315 struct i2c_msg msg; 1316 1317 write_buf = kzalloc(size + 1, GFP_KERNEL); 1318 if (!write_buf) 1319 return -ENOMEM; 1320 1321 write_buf[0] = offset & 0xff; 1322 memcpy(&write_buf[1], buffer, size); 1323 1324 msg.addr = DRM_HDCP_DDC_ADDR; 1325 msg.flags = 0, 1326 msg.len = size + 1, 1327 msg.buf = write_buf; 1328 1329 ret = i2c_transfer(adapter, &msg, 1); 1330 if (ret == 1) 1331 ret = 0; 1332 else if (ret >= 0) 1333 ret = -EIO; 1334 1335 kfree(write_buf); 1336 return ret; 1337 } 1338 1339 static 1340 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port, 1341 u8 *an) 1342 { 1343 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1344 struct intel_hdmi *hdmi = &dig_port->hdmi; 1345 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1346 hdmi->ddc_bus); 1347 int ret; 1348 1349 ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an, 1350 DRM_HDCP_AN_LEN); 1351 if (ret) { 1352 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n", 1353 ret); 1354 return ret; 1355 } 1356 1357 ret = intel_gmbus_output_aksv(adapter); 1358 if (ret < 0) { 1359 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret); 1360 return ret; 1361 } 1362 return 0; 1363 } 1364 1365 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port, 1366 u8 *bksv) 1367 { 1368 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1369 1370 int ret; 1371 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv, 1372 DRM_HDCP_KSV_LEN); 1373 if (ret) 1374 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n", 1375 ret); 1376 return ret; 1377 } 1378 1379 static 1380 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port, 1381 u8 *bstatus) 1382 { 1383 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1384 1385 int ret; 1386 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS, 1387 bstatus, DRM_HDCP_BSTATUS_LEN); 1388 if (ret) 1389 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n", 1390 ret); 1391 return ret; 1392 } 1393 1394 static 1395 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port, 1396 bool *repeater_present) 1397 { 1398 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1399 int ret; 1400 u8 val; 1401 1402 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); 1403 if (ret) { 1404 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", 1405 ret); 1406 return ret; 1407 } 1408 *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT; 1409 return 0; 1410 } 1411 1412 static 1413 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port, 1414 u8 *ri_prime) 1415 { 1416 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1417 1418 int ret; 1419 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME, 1420 ri_prime, DRM_HDCP_RI_LEN); 1421 if (ret) 1422 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n", 1423 ret); 1424 return ret; 1425 } 1426 1427 static 1428 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port, 1429 bool *ksv_ready) 1430 { 1431 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1432 int ret; 1433 u8 val; 1434 1435 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); 1436 if (ret) { 1437 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", 1438 ret); 1439 return ret; 1440 } 1441 *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY; 1442 return 0; 1443 } 1444 1445 static 1446 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port, 1447 int num_downstream, u8 *ksv_fifo) 1448 { 1449 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1450 int ret; 1451 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO, 1452 ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN); 1453 if (ret) { 1454 drm_dbg_kms(&i915->drm, 1455 "Read ksv fifo over DDC failed (%d)\n", ret); 1456 return ret; 1457 } 1458 return 0; 1459 } 1460 1461 static 1462 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port, 1463 int i, u32 *part) 1464 { 1465 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1466 int ret; 1467 1468 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 1469 return -EINVAL; 1470 1471 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i), 1472 part, DRM_HDCP_V_PRIME_PART_LEN); 1473 if (ret) 1474 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n", 1475 i, ret); 1476 return ret; 1477 } 1478 1479 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector, 1480 enum transcoder cpu_transcoder) 1481 { 1482 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1483 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1484 struct drm_crtc *crtc = connector->base.state->crtc; 1485 struct intel_crtc *intel_crtc = container_of(crtc, 1486 struct intel_crtc, base); 1487 u32 scanline; 1488 int ret; 1489 1490 for (;;) { 1491 scanline = intel_de_read(dev_priv, PIPEDSL(intel_crtc->pipe)); 1492 if (scanline > 100 && scanline < 200) 1493 break; 1494 usleep_range(25, 50); 1495 } 1496 1497 ret = intel_ddi_toggle_hdcp_signalling(&dig_port->base, cpu_transcoder, 1498 false); 1499 if (ret) { 1500 drm_err(&dev_priv->drm, 1501 "Disable HDCP signalling failed (%d)\n", ret); 1502 return ret; 1503 } 1504 ret = intel_ddi_toggle_hdcp_signalling(&dig_port->base, cpu_transcoder, 1505 true); 1506 if (ret) { 1507 drm_err(&dev_priv->drm, 1508 "Enable HDCP signalling failed (%d)\n", ret); 1509 return ret; 1510 } 1511 1512 return 0; 1513 } 1514 1515 static 1516 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port, 1517 enum transcoder cpu_transcoder, 1518 bool enable) 1519 { 1520 struct intel_hdmi *hdmi = &dig_port->hdmi; 1521 struct intel_connector *connector = hdmi->attached_connector; 1522 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1523 int ret; 1524 1525 if (!enable) 1526 usleep_range(6, 60); /* Bspec says >= 6us */ 1527 1528 ret = intel_ddi_toggle_hdcp_signalling(&dig_port->base, cpu_transcoder, 1529 enable); 1530 if (ret) { 1531 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n", 1532 enable ? "Enable" : "Disable", ret); 1533 return ret; 1534 } 1535 1536 /* 1537 * WA: To fix incorrect positioning of the window of 1538 * opportunity and enc_en signalling in KABYLAKE. 1539 */ 1540 if (IS_KABYLAKE(dev_priv) && enable) 1541 return kbl_repositioning_enc_en_signal(connector, 1542 cpu_transcoder); 1543 1544 return 0; 1545 } 1546 1547 static 1548 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port, 1549 struct intel_connector *connector) 1550 { 1551 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1552 enum port port = dig_port->base.port; 1553 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; 1554 int ret; 1555 union { 1556 u32 reg; 1557 u8 shim[DRM_HDCP_RI_LEN]; 1558 } ri; 1559 1560 ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim); 1561 if (ret) 1562 return false; 1563 1564 intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg); 1565 1566 /* Wait for Ri prime match */ 1567 if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) & 1568 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) == 1569 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) { 1570 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n", 1571 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, 1572 port))); 1573 return false; 1574 } 1575 return true; 1576 } 1577 1578 static 1579 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port, 1580 struct intel_connector *connector) 1581 { 1582 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1583 int retry; 1584 1585 for (retry = 0; retry < 3; retry++) 1586 if (intel_hdmi_hdcp_check_link_once(dig_port, connector)) 1587 return true; 1588 1589 drm_err(&i915->drm, "Link check failed\n"); 1590 return false; 1591 } 1592 1593 struct hdcp2_hdmi_msg_timeout { 1594 u8 msg_id; 1595 u16 timeout; 1596 }; 1597 1598 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = { 1599 { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, }, 1600 { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, }, 1601 { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, }, 1602 { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, }, 1603 { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, }, 1604 }; 1605 1606 static 1607 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port, 1608 u8 *rx_status) 1609 { 1610 return intel_hdmi_hdcp_read(dig_port, 1611 HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET, 1612 rx_status, 1613 HDCP_2_2_HDMI_RXSTATUS_LEN); 1614 } 1615 1616 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired) 1617 { 1618 int i; 1619 1620 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) { 1621 if (is_paired) 1622 return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS; 1623 else 1624 return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS; 1625 } 1626 1627 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) { 1628 if (hdcp2_msg_timeout[i].msg_id == msg_id) 1629 return hdcp2_msg_timeout[i].timeout; 1630 } 1631 1632 return -EINVAL; 1633 } 1634 1635 static int 1636 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port, 1637 u8 msg_id, bool *msg_ready, 1638 ssize_t *msg_sz) 1639 { 1640 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1641 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; 1642 int ret; 1643 1644 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); 1645 if (ret < 0) { 1646 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n", 1647 ret); 1648 return ret; 1649 } 1650 1651 *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) | 1652 rx_status[0]); 1653 1654 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) 1655 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) && 1656 *msg_sz); 1657 else 1658 *msg_ready = *msg_sz; 1659 1660 return 0; 1661 } 1662 1663 static ssize_t 1664 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port, 1665 u8 msg_id, bool paired) 1666 { 1667 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1668 bool msg_ready = false; 1669 int timeout, ret; 1670 ssize_t msg_sz = 0; 1671 1672 timeout = get_hdcp2_msg_timeout(msg_id, paired); 1673 if (timeout < 0) 1674 return timeout; 1675 1676 ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port, 1677 msg_id, &msg_ready, 1678 &msg_sz), 1679 !ret && msg_ready && msg_sz, timeout * 1000, 1680 1000, 5 * 1000); 1681 if (ret) 1682 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n", 1683 msg_id, ret, timeout); 1684 1685 return ret ? ret : msg_sz; 1686 } 1687 1688 static 1689 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port, 1690 void *buf, size_t size) 1691 { 1692 unsigned int offset; 1693 1694 offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET; 1695 return intel_hdmi_hdcp_write(dig_port, offset, buf, size); 1696 } 1697 1698 static 1699 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port, 1700 u8 msg_id, void *buf, size_t size) 1701 { 1702 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1703 struct intel_hdmi *hdmi = &dig_port->hdmi; 1704 struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp; 1705 unsigned int offset; 1706 ssize_t ret; 1707 1708 ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id, 1709 hdcp->is_paired); 1710 if (ret < 0) 1711 return ret; 1712 1713 /* 1714 * Available msg size should be equal to or lesser than the 1715 * available buffer. 1716 */ 1717 if (ret > size) { 1718 drm_dbg_kms(&i915->drm, 1719 "msg_sz(%zd) is more than exp size(%zu)\n", 1720 ret, size); 1721 return -1; 1722 } 1723 1724 offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET; 1725 ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret); 1726 if (ret) 1727 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n", 1728 msg_id, ret); 1729 1730 return ret; 1731 } 1732 1733 static 1734 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port) 1735 { 1736 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; 1737 int ret; 1738 1739 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); 1740 if (ret) 1741 return ret; 1742 1743 /* 1744 * Re-auth request and Link Integrity Failures are represented by 1745 * same bit. i.e reauth_req. 1746 */ 1747 if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1])) 1748 ret = HDCP_REAUTH_REQUEST; 1749 else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1])) 1750 ret = HDCP_TOPOLOGY_CHANGE; 1751 1752 return ret; 1753 } 1754 1755 static 1756 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port, 1757 bool *capable) 1758 { 1759 u8 hdcp2_version; 1760 int ret; 1761 1762 *capable = false; 1763 ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET, 1764 &hdcp2_version, sizeof(hdcp2_version)); 1765 if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK) 1766 *capable = true; 1767 1768 return ret; 1769 } 1770 1771 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = { 1772 .write_an_aksv = intel_hdmi_hdcp_write_an_aksv, 1773 .read_bksv = intel_hdmi_hdcp_read_bksv, 1774 .read_bstatus = intel_hdmi_hdcp_read_bstatus, 1775 .repeater_present = intel_hdmi_hdcp_repeater_present, 1776 .read_ri_prime = intel_hdmi_hdcp_read_ri_prime, 1777 .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready, 1778 .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo, 1779 .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part, 1780 .toggle_signalling = intel_hdmi_hdcp_toggle_signalling, 1781 .check_link = intel_hdmi_hdcp_check_link, 1782 .write_2_2_msg = intel_hdmi_hdcp2_write_msg, 1783 .read_2_2_msg = intel_hdmi_hdcp2_read_msg, 1784 .check_2_2_link = intel_hdmi_hdcp2_check_link, 1785 .hdcp_2_2_capable = intel_hdmi_hdcp2_capable, 1786 .protocol = HDCP_PROTOCOL_HDMI, 1787 }; 1788 1789 static void intel_hdmi_prepare(struct intel_encoder *encoder, 1790 const struct intel_crtc_state *crtc_state) 1791 { 1792 struct drm_device *dev = encoder->base.dev; 1793 struct drm_i915_private *dev_priv = to_i915(dev); 1794 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1795 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1796 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 1797 u32 hdmi_val; 1798 1799 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true); 1800 1801 hdmi_val = SDVO_ENCODING_HDMI; 1802 if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range) 1803 hdmi_val |= HDMI_COLOR_RANGE_16_235; 1804 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 1805 hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH; 1806 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 1807 hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH; 1808 1809 if (crtc_state->pipe_bpp > 24) 1810 hdmi_val |= HDMI_COLOR_FORMAT_12bpc; 1811 else 1812 hdmi_val |= SDVO_COLOR_FORMAT_8bpc; 1813 1814 if (crtc_state->has_hdmi_sink) 1815 hdmi_val |= HDMI_MODE_SELECT_HDMI; 1816 1817 if (HAS_PCH_CPT(dev_priv)) 1818 hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe); 1819 else if (IS_CHERRYVIEW(dev_priv)) 1820 hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe); 1821 else 1822 hdmi_val |= SDVO_PIPE_SEL(crtc->pipe); 1823 1824 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, hdmi_val); 1825 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1826 } 1827 1828 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder, 1829 enum pipe *pipe) 1830 { 1831 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1832 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1833 intel_wakeref_t wakeref; 1834 bool ret; 1835 1836 wakeref = intel_display_power_get_if_enabled(dev_priv, 1837 encoder->power_domain); 1838 if (!wakeref) 1839 return false; 1840 1841 ret = intel_sdvo_port_enabled(dev_priv, intel_hdmi->hdmi_reg, pipe); 1842 1843 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 1844 1845 return ret; 1846 } 1847 1848 static void intel_hdmi_get_config(struct intel_encoder *encoder, 1849 struct intel_crtc_state *pipe_config) 1850 { 1851 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1852 struct drm_device *dev = encoder->base.dev; 1853 struct drm_i915_private *dev_priv = to_i915(dev); 1854 u32 tmp, flags = 0; 1855 int dotclock; 1856 1857 pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI); 1858 1859 tmp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg); 1860 1861 if (tmp & SDVO_HSYNC_ACTIVE_HIGH) 1862 flags |= DRM_MODE_FLAG_PHSYNC; 1863 else 1864 flags |= DRM_MODE_FLAG_NHSYNC; 1865 1866 if (tmp & SDVO_VSYNC_ACTIVE_HIGH) 1867 flags |= DRM_MODE_FLAG_PVSYNC; 1868 else 1869 flags |= DRM_MODE_FLAG_NVSYNC; 1870 1871 if (tmp & HDMI_MODE_SELECT_HDMI) 1872 pipe_config->has_hdmi_sink = true; 1873 1874 pipe_config->infoframes.enable |= 1875 intel_hdmi_infoframes_enabled(encoder, pipe_config); 1876 1877 if (pipe_config->infoframes.enable) 1878 pipe_config->has_infoframe = true; 1879 1880 if (tmp & HDMI_AUDIO_ENABLE) 1881 pipe_config->has_audio = true; 1882 1883 if (!HAS_PCH_SPLIT(dev_priv) && 1884 tmp & HDMI_COLOR_RANGE_16_235) 1885 pipe_config->limited_color_range = true; 1886 1887 pipe_config->hw.adjusted_mode.flags |= flags; 1888 1889 if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc) 1890 dotclock = pipe_config->port_clock * 2 / 3; 1891 else 1892 dotclock = pipe_config->port_clock; 1893 1894 if (pipe_config->pixel_multiplier) 1895 dotclock /= pipe_config->pixel_multiplier; 1896 1897 pipe_config->hw.adjusted_mode.crtc_clock = dotclock; 1898 1899 pipe_config->lane_count = 4; 1900 1901 intel_hdmi_read_gcp_infoframe(encoder, pipe_config); 1902 1903 intel_read_infoframe(encoder, pipe_config, 1904 HDMI_INFOFRAME_TYPE_AVI, 1905 &pipe_config->infoframes.avi); 1906 intel_read_infoframe(encoder, pipe_config, 1907 HDMI_INFOFRAME_TYPE_SPD, 1908 &pipe_config->infoframes.spd); 1909 intel_read_infoframe(encoder, pipe_config, 1910 HDMI_INFOFRAME_TYPE_VENDOR, 1911 &pipe_config->infoframes.hdmi); 1912 } 1913 1914 static void intel_enable_hdmi_audio(struct intel_encoder *encoder, 1915 const struct intel_crtc_state *pipe_config, 1916 const struct drm_connector_state *conn_state) 1917 { 1918 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 1919 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 1920 1921 drm_WARN_ON(&i915->drm, !pipe_config->has_hdmi_sink); 1922 drm_dbg_kms(&i915->drm, "Enabling HDMI audio on pipe %c\n", 1923 pipe_name(crtc->pipe)); 1924 intel_audio_codec_enable(encoder, pipe_config, conn_state); 1925 } 1926 1927 static void g4x_enable_hdmi(struct intel_atomic_state *state, 1928 struct intel_encoder *encoder, 1929 const struct intel_crtc_state *pipe_config, 1930 const struct drm_connector_state *conn_state) 1931 { 1932 struct drm_device *dev = encoder->base.dev; 1933 struct drm_i915_private *dev_priv = to_i915(dev); 1934 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1935 u32 temp; 1936 1937 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg); 1938 1939 temp |= SDVO_ENABLE; 1940 if (pipe_config->has_audio) 1941 temp |= HDMI_AUDIO_ENABLE; 1942 1943 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 1944 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1945 1946 if (pipe_config->has_audio) 1947 intel_enable_hdmi_audio(encoder, pipe_config, conn_state); 1948 } 1949 1950 static void ibx_enable_hdmi(struct intel_atomic_state *state, 1951 struct intel_encoder *encoder, 1952 const struct intel_crtc_state *pipe_config, 1953 const struct drm_connector_state *conn_state) 1954 { 1955 struct drm_device *dev = encoder->base.dev; 1956 struct drm_i915_private *dev_priv = to_i915(dev); 1957 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1958 u32 temp; 1959 1960 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg); 1961 1962 temp |= SDVO_ENABLE; 1963 if (pipe_config->has_audio) 1964 temp |= HDMI_AUDIO_ENABLE; 1965 1966 /* 1967 * HW workaround, need to write this twice for issue 1968 * that may result in first write getting masked. 1969 */ 1970 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 1971 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1972 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 1973 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1974 1975 /* 1976 * HW workaround, need to toggle enable bit off and on 1977 * for 12bpc with pixel repeat. 1978 * 1979 * FIXME: BSpec says this should be done at the end of 1980 * of the modeset sequence, so not sure if this isn't too soon. 1981 */ 1982 if (pipe_config->pipe_bpp > 24 && 1983 pipe_config->pixel_multiplier > 1) { 1984 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, 1985 temp & ~SDVO_ENABLE); 1986 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1987 1988 /* 1989 * HW workaround, need to write this twice for issue 1990 * that may result in first write getting masked. 1991 */ 1992 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 1993 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1994 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 1995 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1996 } 1997 1998 if (pipe_config->has_audio) 1999 intel_enable_hdmi_audio(encoder, pipe_config, conn_state); 2000 } 2001 2002 static void cpt_enable_hdmi(struct intel_atomic_state *state, 2003 struct intel_encoder *encoder, 2004 const struct intel_crtc_state *pipe_config, 2005 const struct drm_connector_state *conn_state) 2006 { 2007 struct drm_device *dev = encoder->base.dev; 2008 struct drm_i915_private *dev_priv = to_i915(dev); 2009 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 2010 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2011 enum pipe pipe = crtc->pipe; 2012 u32 temp; 2013 2014 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg); 2015 2016 temp |= SDVO_ENABLE; 2017 if (pipe_config->has_audio) 2018 temp |= HDMI_AUDIO_ENABLE; 2019 2020 /* 2021 * WaEnableHDMI8bpcBefore12bpc:snb,ivb 2022 * 2023 * The procedure for 12bpc is as follows: 2024 * 1. disable HDMI clock gating 2025 * 2. enable HDMI with 8bpc 2026 * 3. enable HDMI with 12bpc 2027 * 4. enable HDMI clock gating 2028 */ 2029 2030 if (pipe_config->pipe_bpp > 24) { 2031 intel_de_write(dev_priv, TRANS_CHICKEN1(pipe), 2032 intel_de_read(dev_priv, TRANS_CHICKEN1(pipe)) | TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE); 2033 2034 temp &= ~SDVO_COLOR_FORMAT_MASK; 2035 temp |= SDVO_COLOR_FORMAT_8bpc; 2036 } 2037 2038 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2039 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2040 2041 if (pipe_config->pipe_bpp > 24) { 2042 temp &= ~SDVO_COLOR_FORMAT_MASK; 2043 temp |= HDMI_COLOR_FORMAT_12bpc; 2044 2045 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2046 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2047 2048 intel_de_write(dev_priv, TRANS_CHICKEN1(pipe), 2049 intel_de_read(dev_priv, TRANS_CHICKEN1(pipe)) & ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE); 2050 } 2051 2052 if (pipe_config->has_audio) 2053 intel_enable_hdmi_audio(encoder, pipe_config, conn_state); 2054 } 2055 2056 static void vlv_enable_hdmi(struct intel_atomic_state *state, 2057 struct intel_encoder *encoder, 2058 const struct intel_crtc_state *pipe_config, 2059 const struct drm_connector_state *conn_state) 2060 { 2061 } 2062 2063 static void intel_disable_hdmi(struct intel_atomic_state *state, 2064 struct intel_encoder *encoder, 2065 const struct intel_crtc_state *old_crtc_state, 2066 const struct drm_connector_state *old_conn_state) 2067 { 2068 struct drm_device *dev = encoder->base.dev; 2069 struct drm_i915_private *dev_priv = to_i915(dev); 2070 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2071 struct intel_digital_port *dig_port = 2072 hdmi_to_dig_port(intel_hdmi); 2073 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 2074 u32 temp; 2075 2076 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg); 2077 2078 temp &= ~(SDVO_ENABLE | HDMI_AUDIO_ENABLE); 2079 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2080 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2081 2082 /* 2083 * HW workaround for IBX, we need to move the port 2084 * to transcoder A after disabling it to allow the 2085 * matching DP port to be enabled on transcoder A. 2086 */ 2087 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) { 2088 /* 2089 * We get CPU/PCH FIFO underruns on the other pipe when 2090 * doing the workaround. Sweep them under the rug. 2091 */ 2092 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 2093 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 2094 2095 temp &= ~SDVO_PIPE_SEL_MASK; 2096 temp |= SDVO_ENABLE | SDVO_PIPE_SEL(PIPE_A); 2097 /* 2098 * HW workaround, need to write this twice for issue 2099 * that may result in first write getting masked. 2100 */ 2101 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2102 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2103 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2104 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2105 2106 temp &= ~SDVO_ENABLE; 2107 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2108 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2109 2110 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 2111 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 2112 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 2113 } 2114 2115 dig_port->set_infoframes(encoder, 2116 false, 2117 old_crtc_state, old_conn_state); 2118 2119 intel_dp_dual_mode_set_tmds_output(intel_hdmi, false); 2120 } 2121 2122 static void g4x_disable_hdmi(struct intel_atomic_state *state, 2123 struct intel_encoder *encoder, 2124 const struct intel_crtc_state *old_crtc_state, 2125 const struct drm_connector_state *old_conn_state) 2126 { 2127 if (old_crtc_state->has_audio) 2128 intel_audio_codec_disable(encoder, 2129 old_crtc_state, old_conn_state); 2130 2131 intel_disable_hdmi(state, encoder, old_crtc_state, old_conn_state); 2132 } 2133 2134 static void pch_disable_hdmi(struct intel_atomic_state *state, 2135 struct intel_encoder *encoder, 2136 const struct intel_crtc_state *old_crtc_state, 2137 const struct drm_connector_state *old_conn_state) 2138 { 2139 if (old_crtc_state->has_audio) 2140 intel_audio_codec_disable(encoder, 2141 old_crtc_state, old_conn_state); 2142 } 2143 2144 static void pch_post_disable_hdmi(struct intel_atomic_state *state, 2145 struct intel_encoder *encoder, 2146 const struct intel_crtc_state *old_crtc_state, 2147 const struct drm_connector_state *old_conn_state) 2148 { 2149 intel_disable_hdmi(state, encoder, old_crtc_state, old_conn_state); 2150 } 2151 2152 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder) 2153 { 2154 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2155 int max_tmds_clock, vbt_max_tmds_clock; 2156 2157 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 2158 max_tmds_clock = 594000; 2159 else if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) 2160 max_tmds_clock = 300000; 2161 else if (INTEL_GEN(dev_priv) >= 5) 2162 max_tmds_clock = 225000; 2163 else 2164 max_tmds_clock = 165000; 2165 2166 vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder); 2167 if (vbt_max_tmds_clock) 2168 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock); 2169 2170 return max_tmds_clock; 2171 } 2172 2173 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi, 2174 const struct drm_connector_state *conn_state) 2175 { 2176 return hdmi->has_hdmi_sink && 2177 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI; 2178 } 2179 2180 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, 2181 bool respect_downstream_limits, 2182 bool has_hdmi_sink) 2183 { 2184 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base; 2185 int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder); 2186 2187 if (respect_downstream_limits) { 2188 struct intel_connector *connector = hdmi->attached_connector; 2189 const struct drm_display_info *info = &connector->base.display_info; 2190 2191 if (hdmi->dp_dual_mode.max_tmds_clock) 2192 max_tmds_clock = min(max_tmds_clock, 2193 hdmi->dp_dual_mode.max_tmds_clock); 2194 2195 if (info->max_tmds_clock) 2196 max_tmds_clock = min(max_tmds_clock, 2197 info->max_tmds_clock); 2198 else if (!has_hdmi_sink) 2199 max_tmds_clock = min(max_tmds_clock, 165000); 2200 } 2201 2202 return max_tmds_clock; 2203 } 2204 2205 static enum drm_mode_status 2206 hdmi_port_clock_valid(struct intel_hdmi *hdmi, 2207 int clock, bool respect_downstream_limits, 2208 bool has_hdmi_sink) 2209 { 2210 struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi)); 2211 2212 if (clock < 25000) 2213 return MODE_CLOCK_LOW; 2214 if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, 2215 has_hdmi_sink)) 2216 return MODE_CLOCK_HIGH; 2217 2218 /* BXT DPLL can't generate 223-240 MHz */ 2219 if (IS_GEN9_LP(dev_priv) && clock > 223333 && clock < 240000) 2220 return MODE_CLOCK_RANGE; 2221 2222 /* CHV DPLL can't generate 216-240 MHz */ 2223 if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000) 2224 return MODE_CLOCK_RANGE; 2225 2226 return MODE_OK; 2227 } 2228 2229 static enum drm_mode_status 2230 intel_hdmi_mode_valid(struct drm_connector *connector, 2231 struct drm_display_mode *mode) 2232 { 2233 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2234 struct drm_device *dev = intel_hdmi_to_dev(hdmi); 2235 struct drm_i915_private *dev_priv = to_i915(dev); 2236 enum drm_mode_status status; 2237 int clock = mode->clock; 2238 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; 2239 bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state); 2240 2241 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 2242 return MODE_NO_DBLESCAN; 2243 2244 if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) 2245 clock *= 2; 2246 2247 if (clock > max_dotclk) 2248 return MODE_CLOCK_HIGH; 2249 2250 if (mode->flags & DRM_MODE_FLAG_DBLCLK) { 2251 if (!has_hdmi_sink) 2252 return MODE_CLOCK_LOW; 2253 clock *= 2; 2254 } 2255 2256 if (drm_mode_is_420_only(&connector->display_info, mode)) 2257 clock /= 2; 2258 2259 /* check if we can do 8bpc */ 2260 status = hdmi_port_clock_valid(hdmi, clock, true, has_hdmi_sink); 2261 2262 if (has_hdmi_sink) { 2263 /* if we can't do 8bpc we may still be able to do 12bpc */ 2264 if (status != MODE_OK && !HAS_GMCH(dev_priv)) 2265 status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, 2266 true, has_hdmi_sink); 2267 2268 /* if we can't do 8,12bpc we may still be able to do 10bpc */ 2269 if (status != MODE_OK && INTEL_GEN(dev_priv) >= 11) 2270 status = hdmi_port_clock_valid(hdmi, clock * 5 / 4, 2271 true, has_hdmi_sink); 2272 } 2273 if (status != MODE_OK) 2274 return status; 2275 2276 return intel_mode_valid_max_plane_size(dev_priv, mode, false); 2277 } 2278 2279 bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state, 2280 int bpc, bool has_hdmi_sink, bool ycbcr420_output) 2281 { 2282 struct drm_atomic_state *state = crtc_state->uapi.state; 2283 struct drm_connector_state *connector_state; 2284 struct drm_connector *connector; 2285 int i; 2286 2287 if (crtc_state->pipe_bpp < bpc * 3) 2288 return false; 2289 2290 if (!has_hdmi_sink) 2291 return false; 2292 2293 for_each_new_connector_in_state(state, connector, connector_state, i) { 2294 const struct drm_display_info *info = &connector->display_info; 2295 2296 if (connector_state->crtc != crtc_state->uapi.crtc) 2297 continue; 2298 2299 if (ycbcr420_output) { 2300 const struct drm_hdmi_info *hdmi = &info->hdmi; 2301 2302 if (bpc == 12 && !(hdmi->y420_dc_modes & 2303 DRM_EDID_YCBCR420_DC_36)) 2304 return false; 2305 else if (bpc == 10 && !(hdmi->y420_dc_modes & 2306 DRM_EDID_YCBCR420_DC_30)) 2307 return false; 2308 } else { 2309 if (bpc == 12 && !(info->edid_hdmi_dc_modes & 2310 DRM_EDID_HDMI_DC_36)) 2311 return false; 2312 else if (bpc == 10 && !(info->edid_hdmi_dc_modes & 2313 DRM_EDID_HDMI_DC_30)) 2314 return false; 2315 } 2316 } 2317 2318 return true; 2319 } 2320 2321 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state, 2322 int bpc) 2323 { 2324 struct drm_i915_private *dev_priv = 2325 to_i915(crtc_state->uapi.crtc->dev); 2326 const struct drm_display_mode *adjusted_mode = 2327 &crtc_state->hw.adjusted_mode; 2328 2329 if (HAS_GMCH(dev_priv)) 2330 return false; 2331 2332 if (bpc == 10 && INTEL_GEN(dev_priv) < 11) 2333 return false; 2334 2335 /* 2336 * HDMI deep color affects the clocks, so it's only possible 2337 * when not cloning with other encoder types. 2338 */ 2339 if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI)) 2340 return false; 2341 2342 /* Display Wa_1405510057:icl,ehl */ 2343 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 && 2344 bpc == 10 && IS_GEN(dev_priv, 11) && 2345 (adjusted_mode->crtc_hblank_end - 2346 adjusted_mode->crtc_hblank_start) % 8 == 2) 2347 return false; 2348 2349 return intel_hdmi_deep_color_possible(crtc_state, bpc, 2350 crtc_state->has_hdmi_sink, 2351 crtc_state->output_format == 2352 INTEL_OUTPUT_FORMAT_YCBCR420); 2353 } 2354 2355 static int 2356 intel_hdmi_ycbcr420_config(struct intel_crtc_state *crtc_state, 2357 const struct drm_connector_state *conn_state) 2358 { 2359 struct drm_connector *connector = conn_state->connector; 2360 struct drm_i915_private *i915 = to_i915(connector->dev); 2361 const struct drm_display_mode *adjusted_mode = 2362 &crtc_state->hw.adjusted_mode; 2363 2364 if (!drm_mode_is_420_only(&connector->display_info, adjusted_mode)) 2365 return 0; 2366 2367 if (!connector->ycbcr_420_allowed) { 2368 drm_err(&i915->drm, 2369 "Platform doesn't support YCBCR420 output\n"); 2370 return -EINVAL; 2371 } 2372 2373 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2374 2375 return intel_pch_panel_fitting(crtc_state, conn_state); 2376 } 2377 2378 static int intel_hdmi_port_clock(int clock, int bpc) 2379 { 2380 /* 2381 * Need to adjust the port link by: 2382 * 1.5x for 12bpc 2383 * 1.25x for 10bpc 2384 */ 2385 return clock * bpc / 8; 2386 } 2387 2388 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder, 2389 struct intel_crtc_state *crtc_state, 2390 int clock) 2391 { 2392 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2393 int bpc; 2394 2395 for (bpc = 12; bpc >= 10; bpc -= 2) { 2396 if (hdmi_deep_color_possible(crtc_state, bpc) && 2397 hdmi_port_clock_valid(intel_hdmi, 2398 intel_hdmi_port_clock(clock, bpc), 2399 true, crtc_state->has_hdmi_sink) == MODE_OK) 2400 return bpc; 2401 } 2402 2403 return 8; 2404 } 2405 2406 static int intel_hdmi_compute_clock(struct intel_encoder *encoder, 2407 struct intel_crtc_state *crtc_state) 2408 { 2409 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2410 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2411 const struct drm_display_mode *adjusted_mode = 2412 &crtc_state->hw.adjusted_mode; 2413 int bpc, clock = adjusted_mode->crtc_clock; 2414 2415 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2416 clock *= 2; 2417 2418 /* YCBCR420 TMDS rate requirement is half the pixel clock */ 2419 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 2420 clock /= 2; 2421 2422 bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock); 2423 2424 crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc); 2425 2426 /* 2427 * pipe_bpp could already be below 8bpc due to 2428 * FDI bandwidth constraints. We shouldn't bump it 2429 * back up to 8bpc in that case. 2430 */ 2431 if (crtc_state->pipe_bpp > bpc * 3) 2432 crtc_state->pipe_bpp = bpc * 3; 2433 2434 drm_dbg_kms(&i915->drm, 2435 "picking %d bpc for HDMI output (pipe bpp: %d)\n", 2436 bpc, crtc_state->pipe_bpp); 2437 2438 if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock, 2439 false, crtc_state->has_hdmi_sink) != MODE_OK) { 2440 drm_dbg_kms(&i915->drm, 2441 "unsupported HDMI clock (%d kHz), rejecting mode\n", 2442 crtc_state->port_clock); 2443 return -EINVAL; 2444 } 2445 2446 return 0; 2447 } 2448 2449 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state, 2450 const struct drm_connector_state *conn_state) 2451 { 2452 const struct intel_digital_connector_state *intel_conn_state = 2453 to_intel_digital_connector_state(conn_state); 2454 const struct drm_display_mode *adjusted_mode = 2455 &crtc_state->hw.adjusted_mode; 2456 2457 /* 2458 * Our YCbCr output is always limited range. 2459 * crtc_state->limited_color_range only applies to RGB, 2460 * and it must never be set for YCbCr or we risk setting 2461 * some conflicting bits in PIPECONF which will mess up 2462 * the colors on the monitor. 2463 */ 2464 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2465 return false; 2466 2467 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2468 /* See CEA-861-E - 5.1 Default Encoding Parameters */ 2469 return crtc_state->has_hdmi_sink && 2470 drm_default_rgb_quant_range(adjusted_mode) == 2471 HDMI_QUANTIZATION_RANGE_LIMITED; 2472 } else { 2473 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; 2474 } 2475 } 2476 2477 static bool intel_hdmi_has_audio(struct intel_encoder *encoder, 2478 const struct intel_crtc_state *crtc_state, 2479 const struct drm_connector_state *conn_state) 2480 { 2481 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2482 const struct intel_digital_connector_state *intel_conn_state = 2483 to_intel_digital_connector_state(conn_state); 2484 2485 if (!crtc_state->has_hdmi_sink) 2486 return false; 2487 2488 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2489 return intel_hdmi->has_audio; 2490 else 2491 return intel_conn_state->force_audio == HDMI_AUDIO_ON; 2492 } 2493 2494 int intel_hdmi_compute_config(struct intel_encoder *encoder, 2495 struct intel_crtc_state *pipe_config, 2496 struct drm_connector_state *conn_state) 2497 { 2498 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2499 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2500 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2501 struct drm_connector *connector = conn_state->connector; 2502 struct drm_scdc *scdc = &connector->display_info.hdmi.scdc; 2503 int ret; 2504 2505 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2506 return -EINVAL; 2507 2508 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2509 pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi, 2510 conn_state); 2511 2512 if (pipe_config->has_hdmi_sink) 2513 pipe_config->has_infoframe = true; 2514 2515 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2516 pipe_config->pixel_multiplier = 2; 2517 2518 ret = intel_hdmi_ycbcr420_config(pipe_config, conn_state); 2519 if (ret) 2520 return ret; 2521 2522 pipe_config->limited_color_range = 2523 intel_hdmi_limited_color_range(pipe_config, conn_state); 2524 2525 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv)) 2526 pipe_config->has_pch_encoder = true; 2527 2528 pipe_config->has_audio = 2529 intel_hdmi_has_audio(encoder, pipe_config, conn_state); 2530 2531 ret = intel_hdmi_compute_clock(encoder, pipe_config); 2532 if (ret) 2533 return ret; 2534 2535 if (conn_state->picture_aspect_ratio) 2536 adjusted_mode->picture_aspect_ratio = 2537 conn_state->picture_aspect_ratio; 2538 2539 pipe_config->lane_count = 4; 2540 2541 if (scdc->scrambling.supported && (INTEL_GEN(dev_priv) >= 10 || 2542 IS_GEMINILAKE(dev_priv))) { 2543 if (scdc->scrambling.low_rates) 2544 pipe_config->hdmi_scrambling = true; 2545 2546 if (pipe_config->port_clock > 340000) { 2547 pipe_config->hdmi_scrambling = true; 2548 pipe_config->hdmi_high_tmds_clock_ratio = true; 2549 } 2550 } 2551 2552 intel_hdmi_compute_gcp_infoframe(encoder, pipe_config, 2553 conn_state); 2554 2555 if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) { 2556 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n"); 2557 return -EINVAL; 2558 } 2559 2560 if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) { 2561 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n"); 2562 return -EINVAL; 2563 } 2564 2565 if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) { 2566 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n"); 2567 return -EINVAL; 2568 } 2569 2570 if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) { 2571 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n"); 2572 return -EINVAL; 2573 } 2574 2575 return 0; 2576 } 2577 2578 static void 2579 intel_hdmi_unset_edid(struct drm_connector *connector) 2580 { 2581 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2582 2583 intel_hdmi->has_hdmi_sink = false; 2584 intel_hdmi->has_audio = false; 2585 2586 intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE; 2587 intel_hdmi->dp_dual_mode.max_tmds_clock = 0; 2588 2589 kfree(to_intel_connector(connector)->detect_edid); 2590 to_intel_connector(connector)->detect_edid = NULL; 2591 } 2592 2593 static void 2594 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid) 2595 { 2596 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2597 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2598 enum port port = hdmi_to_dig_port(hdmi)->base.port; 2599 struct i2c_adapter *adapter = 2600 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); 2601 enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(adapter); 2602 2603 /* 2604 * Type 1 DVI adaptors are not required to implement any 2605 * registers, so we can't always detect their presence. 2606 * Ideally we should be able to check the state of the 2607 * CONFIG1 pin, but no such luck on our hardware. 2608 * 2609 * The only method left to us is to check the VBT to see 2610 * if the port is a dual mode capable DP port. But let's 2611 * only do that when we sucesfully read the EDID, to avoid 2612 * confusing log messages about DP dual mode adaptors when 2613 * there's nothing connected to the port. 2614 */ 2615 if (type == DRM_DP_DUAL_MODE_UNKNOWN) { 2616 /* An overridden EDID imply that we want this port for testing. 2617 * Make sure not to set limits for that port. 2618 */ 2619 if (has_edid && !connector->override_edid && 2620 intel_bios_is_port_dp_dual_mode(dev_priv, port)) { 2621 drm_dbg_kms(&dev_priv->drm, 2622 "Assuming DP dual mode adaptor presence based on VBT\n"); 2623 type = DRM_DP_DUAL_MODE_TYPE1_DVI; 2624 } else { 2625 type = DRM_DP_DUAL_MODE_NONE; 2626 } 2627 } 2628 2629 if (type == DRM_DP_DUAL_MODE_NONE) 2630 return; 2631 2632 hdmi->dp_dual_mode.type = type; 2633 hdmi->dp_dual_mode.max_tmds_clock = 2634 drm_dp_dual_mode_max_tmds_clock(type, adapter); 2635 2636 drm_dbg_kms(&dev_priv->drm, 2637 "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n", 2638 drm_dp_get_dual_mode_type_name(type), 2639 hdmi->dp_dual_mode.max_tmds_clock); 2640 } 2641 2642 static bool 2643 intel_hdmi_set_edid(struct drm_connector *connector) 2644 { 2645 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2646 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2647 intel_wakeref_t wakeref; 2648 struct edid *edid; 2649 bool connected = false; 2650 struct i2c_adapter *i2c; 2651 2652 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 2653 2654 i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2655 2656 edid = drm_get_edid(connector, i2c); 2657 2658 if (!edid && !intel_gmbus_is_forced_bit(i2c)) { 2659 drm_dbg_kms(&dev_priv->drm, 2660 "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n"); 2661 intel_gmbus_force_bit(i2c, true); 2662 edid = drm_get_edid(connector, i2c); 2663 intel_gmbus_force_bit(i2c, false); 2664 } 2665 2666 intel_hdmi_dp_dual_mode_detect(connector, edid != NULL); 2667 2668 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 2669 2670 to_intel_connector(connector)->detect_edid = edid; 2671 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) { 2672 intel_hdmi->has_audio = drm_detect_monitor_audio(edid); 2673 intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid); 2674 2675 connected = true; 2676 } 2677 2678 cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid); 2679 2680 return connected; 2681 } 2682 2683 static enum drm_connector_status 2684 intel_hdmi_detect(struct drm_connector *connector, bool force) 2685 { 2686 enum drm_connector_status status = connector_status_disconnected; 2687 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2688 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2689 struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base; 2690 intel_wakeref_t wakeref; 2691 2692 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 2693 connector->base.id, connector->name); 2694 2695 if (!INTEL_DISPLAY_ENABLED(dev_priv)) 2696 return connector_status_disconnected; 2697 2698 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 2699 2700 if (INTEL_GEN(dev_priv) >= 11 && 2701 !intel_digital_port_connected(encoder)) 2702 goto out; 2703 2704 intel_hdmi_unset_edid(connector); 2705 2706 if (intel_hdmi_set_edid(connector)) 2707 status = connector_status_connected; 2708 2709 out: 2710 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 2711 2712 if (status != connector_status_connected) 2713 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier); 2714 2715 /* 2716 * Make sure the refs for power wells enabled during detect are 2717 * dropped to avoid a new detect cycle triggered by HPD polling. 2718 */ 2719 intel_display_power_flush_work(dev_priv); 2720 2721 return status; 2722 } 2723 2724 static void 2725 intel_hdmi_force(struct drm_connector *connector) 2726 { 2727 struct drm_i915_private *i915 = to_i915(connector->dev); 2728 2729 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 2730 connector->base.id, connector->name); 2731 2732 intel_hdmi_unset_edid(connector); 2733 2734 if (connector->status != connector_status_connected) 2735 return; 2736 2737 intel_hdmi_set_edid(connector); 2738 } 2739 2740 static int intel_hdmi_get_modes(struct drm_connector *connector) 2741 { 2742 struct edid *edid; 2743 2744 edid = to_intel_connector(connector)->detect_edid; 2745 if (edid == NULL) 2746 return 0; 2747 2748 return intel_connector_update_modes(connector, edid); 2749 } 2750 2751 static void intel_hdmi_pre_enable(struct intel_atomic_state *state, 2752 struct intel_encoder *encoder, 2753 const struct intel_crtc_state *pipe_config, 2754 const struct drm_connector_state *conn_state) 2755 { 2756 struct intel_digital_port *dig_port = 2757 enc_to_dig_port(encoder); 2758 2759 intel_hdmi_prepare(encoder, pipe_config); 2760 2761 dig_port->set_infoframes(encoder, 2762 pipe_config->has_infoframe, 2763 pipe_config, conn_state); 2764 } 2765 2766 static void vlv_hdmi_pre_enable(struct intel_atomic_state *state, 2767 struct intel_encoder *encoder, 2768 const struct intel_crtc_state *pipe_config, 2769 const struct drm_connector_state *conn_state) 2770 { 2771 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 2772 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2773 2774 vlv_phy_pre_encoder_enable(encoder, pipe_config); 2775 2776 /* HDMI 1.0V-2dB */ 2777 vlv_set_phy_signal_level(encoder, pipe_config, 2778 0x2b245f5f, 0x00002000, 2779 0x5578b83a, 0x2b247878); 2780 2781 dig_port->set_infoframes(encoder, 2782 pipe_config->has_infoframe, 2783 pipe_config, conn_state); 2784 2785 g4x_enable_hdmi(state, encoder, pipe_config, conn_state); 2786 2787 vlv_wait_port_ready(dev_priv, dig_port, 0x0); 2788 } 2789 2790 static void vlv_hdmi_pre_pll_enable(struct intel_atomic_state *state, 2791 struct intel_encoder *encoder, 2792 const struct intel_crtc_state *pipe_config, 2793 const struct drm_connector_state *conn_state) 2794 { 2795 intel_hdmi_prepare(encoder, pipe_config); 2796 2797 vlv_phy_pre_pll_enable(encoder, pipe_config); 2798 } 2799 2800 static void chv_hdmi_pre_pll_enable(struct intel_atomic_state *state, 2801 struct intel_encoder *encoder, 2802 const struct intel_crtc_state *pipe_config, 2803 const struct drm_connector_state *conn_state) 2804 { 2805 intel_hdmi_prepare(encoder, pipe_config); 2806 2807 chv_phy_pre_pll_enable(encoder, pipe_config); 2808 } 2809 2810 static void chv_hdmi_post_pll_disable(struct intel_atomic_state *state, 2811 struct intel_encoder *encoder, 2812 const struct intel_crtc_state *old_crtc_state, 2813 const struct drm_connector_state *old_conn_state) 2814 { 2815 chv_phy_post_pll_disable(encoder, old_crtc_state); 2816 } 2817 2818 static void vlv_hdmi_post_disable(struct intel_atomic_state *state, 2819 struct intel_encoder *encoder, 2820 const struct intel_crtc_state *old_crtc_state, 2821 const struct drm_connector_state *old_conn_state) 2822 { 2823 /* Reset lanes to avoid HDMI flicker (VLV w/a) */ 2824 vlv_phy_reset_lanes(encoder, old_crtc_state); 2825 } 2826 2827 static void chv_hdmi_post_disable(struct intel_atomic_state *state, 2828 struct intel_encoder *encoder, 2829 const struct intel_crtc_state *old_crtc_state, 2830 const struct drm_connector_state *old_conn_state) 2831 { 2832 struct drm_device *dev = encoder->base.dev; 2833 struct drm_i915_private *dev_priv = to_i915(dev); 2834 2835 vlv_dpio_get(dev_priv); 2836 2837 /* Assert data lane reset */ 2838 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 2839 2840 vlv_dpio_put(dev_priv); 2841 } 2842 2843 static void chv_hdmi_pre_enable(struct intel_atomic_state *state, 2844 struct intel_encoder *encoder, 2845 const struct intel_crtc_state *pipe_config, 2846 const struct drm_connector_state *conn_state) 2847 { 2848 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 2849 struct drm_device *dev = encoder->base.dev; 2850 struct drm_i915_private *dev_priv = to_i915(dev); 2851 2852 chv_phy_pre_encoder_enable(encoder, pipe_config); 2853 2854 /* FIXME: Program the support xxx V-dB */ 2855 /* Use 800mV-0dB */ 2856 chv_set_phy_signal_level(encoder, pipe_config, 128, 102, false); 2857 2858 dig_port->set_infoframes(encoder, 2859 pipe_config->has_infoframe, 2860 pipe_config, conn_state); 2861 2862 g4x_enable_hdmi(state, encoder, pipe_config, conn_state); 2863 2864 vlv_wait_port_ready(dev_priv, dig_port, 0x0); 2865 2866 /* Second common lane will stay alive on its own now */ 2867 chv_phy_release_cl2_override(encoder); 2868 } 2869 2870 static struct i2c_adapter * 2871 intel_hdmi_get_i2c_adapter(struct drm_connector *connector) 2872 { 2873 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2874 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2875 2876 return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2877 } 2878 2879 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector) 2880 { 2881 struct drm_i915_private *i915 = to_i915(connector->dev); 2882 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector); 2883 struct kobject *i2c_kobj = &adapter->dev.kobj; 2884 struct kobject *connector_kobj = &connector->kdev->kobj; 2885 int ret; 2886 2887 ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name); 2888 if (ret) 2889 drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret); 2890 } 2891 2892 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector) 2893 { 2894 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector); 2895 struct kobject *i2c_kobj = &adapter->dev.kobj; 2896 struct kobject *connector_kobj = &connector->kdev->kobj; 2897 2898 sysfs_remove_link(connector_kobj, i2c_kobj->name); 2899 } 2900 2901 static int 2902 intel_hdmi_connector_register(struct drm_connector *connector) 2903 { 2904 int ret; 2905 2906 ret = intel_connector_register(connector); 2907 if (ret) 2908 return ret; 2909 2910 intel_hdmi_create_i2c_symlink(connector); 2911 2912 return ret; 2913 } 2914 2915 static void intel_hdmi_connector_unregister(struct drm_connector *connector) 2916 { 2917 struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier; 2918 2919 cec_notifier_conn_unregister(n); 2920 2921 intel_hdmi_remove_i2c_symlink(connector); 2922 intel_connector_unregister(connector); 2923 } 2924 2925 static const struct drm_connector_funcs intel_hdmi_connector_funcs = { 2926 .detect = intel_hdmi_detect, 2927 .force = intel_hdmi_force, 2928 .fill_modes = drm_helper_probe_single_connector_modes, 2929 .atomic_get_property = intel_digital_connector_atomic_get_property, 2930 .atomic_set_property = intel_digital_connector_atomic_set_property, 2931 .late_register = intel_hdmi_connector_register, 2932 .early_unregister = intel_hdmi_connector_unregister, 2933 .destroy = intel_connector_destroy, 2934 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 2935 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 2936 }; 2937 2938 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { 2939 .get_modes = intel_hdmi_get_modes, 2940 .mode_valid = intel_hdmi_mode_valid, 2941 .atomic_check = intel_digital_connector_atomic_check, 2942 }; 2943 2944 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = { 2945 .destroy = intel_encoder_destroy, 2946 }; 2947 2948 static void 2949 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) 2950 { 2951 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2952 2953 intel_attach_force_audio_property(connector); 2954 intel_attach_broadcast_rgb_property(connector); 2955 intel_attach_aspect_ratio_property(connector); 2956 2957 intel_attach_hdmi_colorspace_property(connector); 2958 drm_connector_attach_content_type_property(connector); 2959 2960 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 2961 drm_object_attach_property(&connector->base, 2962 connector->dev->mode_config.hdr_output_metadata_property, 0); 2963 2964 if (!HAS_GMCH(dev_priv)) 2965 drm_connector_attach_max_bpc_property(connector, 8, 12); 2966 } 2967 2968 /* 2969 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup 2970 * @encoder: intel_encoder 2971 * @connector: drm_connector 2972 * @high_tmds_clock_ratio = bool to indicate if the function needs to set 2973 * or reset the high tmds clock ratio for scrambling 2974 * @scrambling: bool to Indicate if the function needs to set or reset 2975 * sink scrambling 2976 * 2977 * This function handles scrambling on HDMI 2.0 capable sinks. 2978 * If required clock rate is > 340 Mhz && scrambling is supported by sink 2979 * it enables scrambling. This should be called before enabling the HDMI 2980 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't 2981 * detect a scrambled clock within 100 ms. 2982 * 2983 * Returns: 2984 * True on success, false on failure. 2985 */ 2986 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder, 2987 struct drm_connector *connector, 2988 bool high_tmds_clock_ratio, 2989 bool scrambling) 2990 { 2991 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2992 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2993 struct drm_scrambling *sink_scrambling = 2994 &connector->display_info.hdmi.scdc.scrambling; 2995 struct i2c_adapter *adapter = 2996 intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2997 2998 if (!sink_scrambling->supported) 2999 return true; 3000 3001 drm_dbg_kms(&dev_priv->drm, 3002 "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n", 3003 connector->base.id, connector->name, 3004 yesno(scrambling), high_tmds_clock_ratio ? 40 : 10); 3005 3006 /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */ 3007 return drm_scdc_set_high_tmds_clock_ratio(adapter, 3008 high_tmds_clock_ratio) && 3009 drm_scdc_set_scrambling(adapter, scrambling); 3010 } 3011 3012 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 3013 { 3014 u8 ddc_pin; 3015 3016 switch (port) { 3017 case PORT_B: 3018 ddc_pin = GMBUS_PIN_DPB; 3019 break; 3020 case PORT_C: 3021 ddc_pin = GMBUS_PIN_DPC; 3022 break; 3023 case PORT_D: 3024 ddc_pin = GMBUS_PIN_DPD_CHV; 3025 break; 3026 default: 3027 MISSING_CASE(port); 3028 ddc_pin = GMBUS_PIN_DPB; 3029 break; 3030 } 3031 return ddc_pin; 3032 } 3033 3034 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 3035 { 3036 u8 ddc_pin; 3037 3038 switch (port) { 3039 case PORT_B: 3040 ddc_pin = GMBUS_PIN_1_BXT; 3041 break; 3042 case PORT_C: 3043 ddc_pin = GMBUS_PIN_2_BXT; 3044 break; 3045 default: 3046 MISSING_CASE(port); 3047 ddc_pin = GMBUS_PIN_1_BXT; 3048 break; 3049 } 3050 return ddc_pin; 3051 } 3052 3053 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv, 3054 enum port port) 3055 { 3056 u8 ddc_pin; 3057 3058 switch (port) { 3059 case PORT_B: 3060 ddc_pin = GMBUS_PIN_1_BXT; 3061 break; 3062 case PORT_C: 3063 ddc_pin = GMBUS_PIN_2_BXT; 3064 break; 3065 case PORT_D: 3066 ddc_pin = GMBUS_PIN_4_CNP; 3067 break; 3068 case PORT_F: 3069 ddc_pin = GMBUS_PIN_3_BXT; 3070 break; 3071 default: 3072 MISSING_CASE(port); 3073 ddc_pin = GMBUS_PIN_1_BXT; 3074 break; 3075 } 3076 return ddc_pin; 3077 } 3078 3079 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 3080 { 3081 enum phy phy = intel_port_to_phy(dev_priv, port); 3082 3083 if (intel_phy_is_combo(dev_priv, phy)) 3084 return GMBUS_PIN_1_BXT + port; 3085 else if (intel_phy_is_tc(dev_priv, phy)) 3086 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port); 3087 3088 drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port)); 3089 return GMBUS_PIN_2_BXT; 3090 } 3091 3092 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 3093 { 3094 enum phy phy = intel_port_to_phy(dev_priv, port); 3095 u8 ddc_pin; 3096 3097 switch (phy) { 3098 case PHY_A: 3099 ddc_pin = GMBUS_PIN_1_BXT; 3100 break; 3101 case PHY_B: 3102 ddc_pin = GMBUS_PIN_2_BXT; 3103 break; 3104 case PHY_C: 3105 ddc_pin = GMBUS_PIN_9_TC1_ICP; 3106 break; 3107 default: 3108 MISSING_CASE(phy); 3109 ddc_pin = GMBUS_PIN_1_BXT; 3110 break; 3111 } 3112 return ddc_pin; 3113 } 3114 3115 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 3116 { 3117 enum phy phy = intel_port_to_phy(dev_priv, port); 3118 3119 WARN_ON(port == PORT_C); 3120 3121 /* 3122 * Pin mapping for RKL depends on which PCH is present. With TGP, the 3123 * final two outputs use type-c pins, even though they're actually 3124 * combo outputs. With CMP, the traditional DDI A-D pins are used for 3125 * all outputs. 3126 */ 3127 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C) 3128 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; 3129 3130 return GMBUS_PIN_1_BXT + phy; 3131 } 3132 3133 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 3134 { 3135 return intel_port_to_phy(dev_priv, port) + 1; 3136 } 3137 3138 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv, 3139 enum port port) 3140 { 3141 u8 ddc_pin; 3142 3143 switch (port) { 3144 case PORT_B: 3145 ddc_pin = GMBUS_PIN_DPB; 3146 break; 3147 case PORT_C: 3148 ddc_pin = GMBUS_PIN_DPC; 3149 break; 3150 case PORT_D: 3151 ddc_pin = GMBUS_PIN_DPD; 3152 break; 3153 default: 3154 MISSING_CASE(port); 3155 ddc_pin = GMBUS_PIN_DPB; 3156 break; 3157 } 3158 return ddc_pin; 3159 } 3160 3161 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder) 3162 { 3163 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3164 enum port port = encoder->port; 3165 u8 ddc_pin; 3166 3167 ddc_pin = intel_bios_alternate_ddc_pin(encoder); 3168 if (ddc_pin) { 3169 drm_dbg_kms(&dev_priv->drm, 3170 "Using DDC pin 0x%x for port %c (VBT)\n", 3171 ddc_pin, port_name(port)); 3172 return ddc_pin; 3173 } 3174 3175 if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) 3176 ddc_pin = dg1_port_to_ddc_pin(dev_priv, port); 3177 else if (IS_ROCKETLAKE(dev_priv)) 3178 ddc_pin = rkl_port_to_ddc_pin(dev_priv, port); 3179 else if (HAS_PCH_MCC(dev_priv)) 3180 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port); 3181 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3182 ddc_pin = icl_port_to_ddc_pin(dev_priv, port); 3183 else if (HAS_PCH_CNP(dev_priv)) 3184 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port); 3185 else if (IS_GEN9_LP(dev_priv)) 3186 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port); 3187 else if (IS_CHERRYVIEW(dev_priv)) 3188 ddc_pin = chv_port_to_ddc_pin(dev_priv, port); 3189 else 3190 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port); 3191 3192 drm_dbg_kms(&dev_priv->drm, 3193 "Using DDC pin 0x%x for port %c (platform default)\n", 3194 ddc_pin, port_name(port)); 3195 3196 return ddc_pin; 3197 } 3198 3199 void intel_infoframe_init(struct intel_digital_port *dig_port) 3200 { 3201 struct drm_i915_private *dev_priv = 3202 to_i915(dig_port->base.base.dev); 3203 3204 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3205 dig_port->write_infoframe = vlv_write_infoframe; 3206 dig_port->read_infoframe = vlv_read_infoframe; 3207 dig_port->set_infoframes = vlv_set_infoframes; 3208 dig_port->infoframes_enabled = vlv_infoframes_enabled; 3209 } else if (IS_G4X(dev_priv)) { 3210 dig_port->write_infoframe = g4x_write_infoframe; 3211 dig_port->read_infoframe = g4x_read_infoframe; 3212 dig_port->set_infoframes = g4x_set_infoframes; 3213 dig_port->infoframes_enabled = g4x_infoframes_enabled; 3214 } else if (HAS_DDI(dev_priv)) { 3215 if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) { 3216 dig_port->write_infoframe = lspcon_write_infoframe; 3217 dig_port->read_infoframe = lspcon_read_infoframe; 3218 dig_port->set_infoframes = lspcon_set_infoframes; 3219 dig_port->infoframes_enabled = lspcon_infoframes_enabled; 3220 } else { 3221 dig_port->write_infoframe = hsw_write_infoframe; 3222 dig_port->read_infoframe = hsw_read_infoframe; 3223 dig_port->set_infoframes = hsw_set_infoframes; 3224 dig_port->infoframes_enabled = hsw_infoframes_enabled; 3225 } 3226 } else if (HAS_PCH_IBX(dev_priv)) { 3227 dig_port->write_infoframe = ibx_write_infoframe; 3228 dig_port->read_infoframe = ibx_read_infoframe; 3229 dig_port->set_infoframes = ibx_set_infoframes; 3230 dig_port->infoframes_enabled = ibx_infoframes_enabled; 3231 } else { 3232 dig_port->write_infoframe = cpt_write_infoframe; 3233 dig_port->read_infoframe = cpt_read_infoframe; 3234 dig_port->set_infoframes = cpt_set_infoframes; 3235 dig_port->infoframes_enabled = cpt_infoframes_enabled; 3236 } 3237 } 3238 3239 void intel_hdmi_init_connector(struct intel_digital_port *dig_port, 3240 struct intel_connector *intel_connector) 3241 { 3242 struct drm_connector *connector = &intel_connector->base; 3243 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 3244 struct intel_encoder *intel_encoder = &dig_port->base; 3245 struct drm_device *dev = intel_encoder->base.dev; 3246 struct drm_i915_private *dev_priv = to_i915(dev); 3247 struct i2c_adapter *ddc; 3248 enum port port = intel_encoder->port; 3249 struct cec_connector_info conn_info; 3250 3251 drm_dbg_kms(&dev_priv->drm, 3252 "Adding HDMI connector on [ENCODER:%d:%s]\n", 3253 intel_encoder->base.base.id, intel_encoder->base.name); 3254 3255 if (INTEL_GEN(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A)) 3256 return; 3257 3258 if (drm_WARN(dev, dig_port->max_lanes < 4, 3259 "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n", 3260 dig_port->max_lanes, intel_encoder->base.base.id, 3261 intel_encoder->base.name)) 3262 return; 3263 3264 intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder); 3265 ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 3266 3267 drm_connector_init_with_ddc(dev, connector, 3268 &intel_hdmi_connector_funcs, 3269 DRM_MODE_CONNECTOR_HDMIA, 3270 ddc); 3271 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); 3272 3273 connector->interlace_allowed = 1; 3274 connector->doublescan_allowed = 0; 3275 connector->stereo_allowed = 1; 3276 3277 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 3278 connector->ycbcr_420_allowed = true; 3279 3280 intel_connector->polled = DRM_CONNECTOR_POLL_HPD; 3281 3282 if (HAS_DDI(dev_priv)) 3283 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 3284 else 3285 intel_connector->get_hw_state = intel_connector_get_hw_state; 3286 3287 intel_hdmi_add_properties(intel_hdmi, connector); 3288 3289 intel_connector_attach_encoder(intel_connector, intel_encoder); 3290 intel_hdmi->attached_connector = intel_connector; 3291 3292 if (is_hdcp_supported(dev_priv, port)) { 3293 int ret = intel_hdcp_init(intel_connector, port, 3294 &intel_hdmi_hdcp_shim); 3295 if (ret) 3296 drm_dbg_kms(&dev_priv->drm, 3297 "HDCP init failed, skipping.\n"); 3298 } 3299 3300 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 3301 * 0xd. Failure to do so will result in spurious interrupts being 3302 * generated on the port when a cable is not attached. 3303 */ 3304 if (IS_G45(dev_priv)) { 3305 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); 3306 intel_de_write(dev_priv, PEG_BAND_GAP_DATA, 3307 (temp & ~0xf) | 0xd); 3308 } 3309 3310 cec_fill_conn_info_from_drm(&conn_info, connector); 3311 3312 intel_hdmi->cec_notifier = 3313 cec_notifier_conn_register(dev->dev, port_identifier(port), 3314 &conn_info); 3315 if (!intel_hdmi->cec_notifier) 3316 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n"); 3317 } 3318 3319 static enum intel_hotplug_state 3320 intel_hdmi_hotplug(struct intel_encoder *encoder, 3321 struct intel_connector *connector) 3322 { 3323 enum intel_hotplug_state state; 3324 3325 state = intel_encoder_hotplug(encoder, connector); 3326 3327 /* 3328 * On many platforms the HDMI live state signal is known to be 3329 * unreliable, so we can't use it to detect if a sink is connected or 3330 * not. Instead we detect if it's connected based on whether we can 3331 * read the EDID or not. That in turn has a problem during disconnect, 3332 * since the HPD interrupt may be raised before the DDC lines get 3333 * disconnected (due to how the required length of DDC vs. HPD 3334 * connector pins are specified) and so we'll still be able to get a 3335 * valid EDID. To solve this schedule another detection cycle if this 3336 * time around we didn't detect any change in the sink's connection 3337 * status. 3338 */ 3339 if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries) 3340 state = INTEL_HOTPLUG_RETRY; 3341 3342 return state; 3343 } 3344 3345 void intel_hdmi_init(struct drm_i915_private *dev_priv, 3346 i915_reg_t hdmi_reg, enum port port) 3347 { 3348 struct intel_digital_port *dig_port; 3349 struct intel_encoder *intel_encoder; 3350 struct intel_connector *intel_connector; 3351 3352 dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL); 3353 if (!dig_port) 3354 return; 3355 3356 intel_connector = intel_connector_alloc(); 3357 if (!intel_connector) { 3358 kfree(dig_port); 3359 return; 3360 } 3361 3362 intel_encoder = &dig_port->base; 3363 3364 mutex_init(&dig_port->hdcp_mutex); 3365 3366 drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 3367 &intel_hdmi_enc_funcs, DRM_MODE_ENCODER_TMDS, 3368 "HDMI %c", port_name(port)); 3369 3370 intel_encoder->hotplug = intel_hdmi_hotplug; 3371 intel_encoder->compute_config = intel_hdmi_compute_config; 3372 if (HAS_PCH_SPLIT(dev_priv)) { 3373 intel_encoder->disable = pch_disable_hdmi; 3374 intel_encoder->post_disable = pch_post_disable_hdmi; 3375 } else { 3376 intel_encoder->disable = g4x_disable_hdmi; 3377 } 3378 intel_encoder->get_hw_state = intel_hdmi_get_hw_state; 3379 intel_encoder->get_config = intel_hdmi_get_config; 3380 if (IS_CHERRYVIEW(dev_priv)) { 3381 intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable; 3382 intel_encoder->pre_enable = chv_hdmi_pre_enable; 3383 intel_encoder->enable = vlv_enable_hdmi; 3384 intel_encoder->post_disable = chv_hdmi_post_disable; 3385 intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable; 3386 } else if (IS_VALLEYVIEW(dev_priv)) { 3387 intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable; 3388 intel_encoder->pre_enable = vlv_hdmi_pre_enable; 3389 intel_encoder->enable = vlv_enable_hdmi; 3390 intel_encoder->post_disable = vlv_hdmi_post_disable; 3391 } else { 3392 intel_encoder->pre_enable = intel_hdmi_pre_enable; 3393 if (HAS_PCH_CPT(dev_priv)) 3394 intel_encoder->enable = cpt_enable_hdmi; 3395 else if (HAS_PCH_IBX(dev_priv)) 3396 intel_encoder->enable = ibx_enable_hdmi; 3397 else 3398 intel_encoder->enable = g4x_enable_hdmi; 3399 } 3400 3401 intel_encoder->type = INTEL_OUTPUT_HDMI; 3402 intel_encoder->power_domain = intel_port_to_power_domain(port); 3403 intel_encoder->port = port; 3404 if (IS_CHERRYVIEW(dev_priv)) { 3405 if (port == PORT_D) 3406 intel_encoder->pipe_mask = BIT(PIPE_C); 3407 else 3408 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); 3409 } else { 3410 intel_encoder->pipe_mask = ~0; 3411 } 3412 intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG; 3413 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 3414 /* 3415 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems 3416 * to work on real hardware. And since g4x can send infoframes to 3417 * only one port anyway, nothing is lost by allowing it. 3418 */ 3419 if (IS_G4X(dev_priv)) 3420 intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI; 3421 3422 dig_port->hdmi.hdmi_reg = hdmi_reg; 3423 dig_port->dp.output_reg = INVALID_MMIO_REG; 3424 dig_port->max_lanes = 4; 3425 3426 intel_infoframe_init(dig_port); 3427 3428 dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 3429 intel_hdmi_init_connector(dig_port, intel_connector); 3430 } 3431 3432 /* 3433 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height 3434 * @vactive: Vactive of a display mode 3435 * 3436 * @return: appropriate dsc slice height for a given mode. 3437 */ 3438 int intel_hdmi_dsc_get_slice_height(int vactive) 3439 { 3440 int slice_height; 3441 3442 /* 3443 * Slice Height determination : HDMI2.1 Section 7.7.5.2 3444 * Select smallest slice height >=96, that results in a valid PPS and 3445 * requires minimum padding lines required for final slice. 3446 * 3447 * Assumption : Vactive is even. 3448 */ 3449 for (slice_height = 96; slice_height <= vactive; slice_height += 2) 3450 if (vactive % slice_height == 0) 3451 return slice_height; 3452 3453 return 0; 3454 } 3455 3456 /* 3457 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder 3458 * and dsc decoder capabilities 3459 * 3460 * @crtc_state: intel crtc_state 3461 * @src_max_slices: maximum slices supported by the DSC encoder 3462 * @src_max_slice_width: maximum slice width supported by DSC encoder 3463 * @hdmi_max_slices: maximum slices supported by sink DSC decoder 3464 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink 3465 * 3466 * @return: num of dsc slices that can be supported by the dsc encoder 3467 * and decoder. 3468 */ 3469 int 3470 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state, 3471 int src_max_slices, int src_max_slice_width, 3472 int hdmi_max_slices, int hdmi_throughput) 3473 { 3474 /* Pixel rates in KPixels/sec */ 3475 #define HDMI_DSC_PEAK_PIXEL_RATE 2720000 3476 /* 3477 * Rates at which the source and sink are required to process pixels in each 3478 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz. 3479 */ 3480 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0 340000 3481 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1 400000 3482 3483 /* Spec limits the slice width to 2720 pixels */ 3484 #define MAX_HDMI_SLICE_WIDTH 2720 3485 int kslice_adjust; 3486 int adjusted_clk_khz; 3487 int min_slices; 3488 int target_slices; 3489 int max_throughput; /* max clock freq. in khz per slice */ 3490 int max_slice_width; 3491 int slice_width; 3492 int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock; 3493 3494 if (!hdmi_throughput) 3495 return 0; 3496 3497 /* 3498 * Slice Width determination : HDMI2.1 Section 7.7.5.1 3499 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as 3500 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later 3501 * dividing adjusted clock value by 10. 3502 */ 3503 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || 3504 crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 3505 kslice_adjust = 10; 3506 else 3507 kslice_adjust = 5; 3508 3509 /* 3510 * As per spec, the rate at which the source and the sink process 3511 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz. 3512 * This depends upon the pixel clock rate and output formats 3513 * (kslice adjust). 3514 * If pixel clock * kslice adjust >= 2720MHz slices can be processed 3515 * at max 340MHz, otherwise they can be processed at max 400MHz. 3516 */ 3517 3518 adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10); 3519 3520 if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE) 3521 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0; 3522 else 3523 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1; 3524 3525 /* 3526 * Taking into account the sink's capability for maximum 3527 * clock per slice (in MHz) as read from HF-VSDB. 3528 */ 3529 max_throughput = min(max_throughput, hdmi_throughput * 1000); 3530 3531 min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput); 3532 max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width); 3533 3534 /* 3535 * Keep on increasing the num of slices/line, starting from min_slices 3536 * per line till we get such a number, for which the slice_width is 3537 * just less than max_slice_width. The slices/line selected should be 3538 * less than or equal to the max horizontal slices that the combination 3539 * of PCON encoder and HDMI decoder can support. 3540 */ 3541 slice_width = max_slice_width; 3542 3543 do { 3544 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1) 3545 target_slices = 1; 3546 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2) 3547 target_slices = 2; 3548 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4) 3549 target_slices = 4; 3550 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8) 3551 target_slices = 8; 3552 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12) 3553 target_slices = 12; 3554 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16) 3555 target_slices = 16; 3556 else 3557 return 0; 3558 3559 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices); 3560 if (slice_width >= max_slice_width) 3561 min_slices = target_slices + 1; 3562 } while (slice_width >= max_slice_width); 3563 3564 return target_slices; 3565 } 3566 3567 /* 3568 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on 3569 * source and sink capabilities. 3570 * 3571 * @src_fraction_bpp: fractional bpp supported by the source 3572 * @slice_width: dsc slice width supported by the source and sink 3573 * @num_slices: num of slices supported by the source and sink 3574 * @output_format: video output format 3575 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting 3576 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink 3577 * 3578 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel 3579 */ 3580 int 3581 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices, 3582 int output_format, bool hdmi_all_bpp, 3583 int hdmi_max_chunk_bytes) 3584 { 3585 int max_dsc_bpp, min_dsc_bpp; 3586 int target_bytes; 3587 bool bpp_found = false; 3588 int bpp_decrement_x16; 3589 int bpp_target; 3590 int bpp_target_x16; 3591 3592 /* 3593 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec 3594 * Start with the max bpp and keep on decrementing with 3595 * fractional bpp, if supported by PCON DSC encoder 3596 * 3597 * for each bpp we check if no of bytes can be supported by HDMI sink 3598 */ 3599 3600 /* Assuming: bpc as 8*/ 3601 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { 3602 min_dsc_bpp = 6; 3603 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */ 3604 } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || 3605 output_format == INTEL_OUTPUT_FORMAT_RGB) { 3606 min_dsc_bpp = 8; 3607 max_dsc_bpp = 3 * 8; /* 3*bpc */ 3608 } else { 3609 /* Assuming 4:2:2 encoding */ 3610 min_dsc_bpp = 7; 3611 max_dsc_bpp = 2 * 8; /* 2*bpc */ 3612 } 3613 3614 /* 3615 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink 3616 * Section 7.7.34 : Source shall not enable compressed Video 3617 * Transport with bpp_target settings above 12 bpp unless 3618 * DSC_all_bpp is set to 1. 3619 */ 3620 if (!hdmi_all_bpp) 3621 max_dsc_bpp = min(max_dsc_bpp, 12); 3622 3623 /* 3624 * The Sink has a limit of compressed data in bytes for a scanline, 3625 * as described in max_chunk_bytes field in HFVSDB block of edid. 3626 * The no. of bytes depend on the target bits per pixel that the 3627 * source configures. So we start with the max_bpp and calculate 3628 * the target_chunk_bytes. We keep on decrementing the target_bpp, 3629 * till we get the target_chunk_bytes just less than what the sink's 3630 * max_chunk_bytes, or else till we reach the min_dsc_bpp. 3631 * 3632 * The decrement is according to the fractional support from PCON DSC 3633 * encoder. For fractional BPP we use bpp_target as a multiple of 16. 3634 * 3635 * bpp_target_x16 = bpp_target * 16 3636 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps 3637 * {1/16, 1/8, 1/4, 1/2, 1} respectively. 3638 */ 3639 3640 bpp_target = max_dsc_bpp; 3641 3642 /* src does not support fractional bpp implies decrement by 16 for bppx16 */ 3643 if (!src_fractional_bpp) 3644 src_fractional_bpp = 1; 3645 bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp); 3646 bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16; 3647 3648 while (bpp_target_x16 > (min_dsc_bpp * 16)) { 3649 int bpp; 3650 3651 bpp = DIV_ROUND_UP(bpp_target_x16, 16); 3652 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8); 3653 if (target_bytes <= hdmi_max_chunk_bytes) { 3654 bpp_found = true; 3655 break; 3656 } 3657 bpp_target_x16 -= bpp_decrement_x16; 3658 } 3659 if (bpp_found) 3660 return bpp_target_x16; 3661 3662 return 0; 3663 } 3664