1 /* 2 * Copyright 2006 Dave Airlie <airlied@linux.ie> 3 * Copyright © 2006-2009 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * Jesse Barnes <jesse.barnes@intel.com> 27 */ 28 29 #include <linux/delay.h> 30 #include <linux/hdmi.h> 31 #include <linux/i2c.h> 32 #include <linux/slab.h> 33 #include <linux/string_helpers.h> 34 35 #include <drm/drm_atomic_helper.h> 36 #include <drm/drm_crtc.h> 37 #include <drm/drm_edid.h> 38 #include <drm/drm_hdcp.h> 39 #include <drm/drm_scdc_helper.h> 40 #include <drm/intel_lpe_audio.h> 41 42 #include "i915_debugfs.h" 43 #include "i915_drv.h" 44 #include "intel_atomic.h" 45 #include "intel_connector.h" 46 #include "intel_ddi.h" 47 #include "intel_de.h" 48 #include "intel_display_types.h" 49 #include "intel_dp.h" 50 #include "intel_gmbus.h" 51 #include "intel_hdcp.h" 52 #include "intel_hdmi.h" 53 #include "intel_lspcon.h" 54 #include "intel_panel.h" 55 #include "intel_snps_phy.h" 56 57 static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi) 58 { 59 return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev); 60 } 61 62 static void 63 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) 64 { 65 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi); 66 u32 enabled_bits; 67 68 enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; 69 70 drm_WARN(&dev_priv->drm, 71 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits, 72 "HDMI port enabled, expecting disabled\n"); 73 } 74 75 static void 76 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv, 77 enum transcoder cpu_transcoder) 78 { 79 drm_WARN(&dev_priv->drm, 80 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) & 81 TRANS_DDI_FUNC_ENABLE, 82 "HDMI transcoder function enabled, expecting disabled\n"); 83 } 84 85 static u32 g4x_infoframe_index(unsigned int type) 86 { 87 switch (type) { 88 case HDMI_PACKET_TYPE_GAMUT_METADATA: 89 return VIDEO_DIP_SELECT_GAMUT; 90 case HDMI_INFOFRAME_TYPE_AVI: 91 return VIDEO_DIP_SELECT_AVI; 92 case HDMI_INFOFRAME_TYPE_SPD: 93 return VIDEO_DIP_SELECT_SPD; 94 case HDMI_INFOFRAME_TYPE_VENDOR: 95 return VIDEO_DIP_SELECT_VENDOR; 96 default: 97 MISSING_CASE(type); 98 return 0; 99 } 100 } 101 102 static u32 g4x_infoframe_enable(unsigned int type) 103 { 104 switch (type) { 105 case HDMI_PACKET_TYPE_GENERAL_CONTROL: 106 return VIDEO_DIP_ENABLE_GCP; 107 case HDMI_PACKET_TYPE_GAMUT_METADATA: 108 return VIDEO_DIP_ENABLE_GAMUT; 109 case DP_SDP_VSC: 110 return 0; 111 case HDMI_INFOFRAME_TYPE_AVI: 112 return VIDEO_DIP_ENABLE_AVI; 113 case HDMI_INFOFRAME_TYPE_SPD: 114 return VIDEO_DIP_ENABLE_SPD; 115 case HDMI_INFOFRAME_TYPE_VENDOR: 116 return VIDEO_DIP_ENABLE_VENDOR; 117 case HDMI_INFOFRAME_TYPE_DRM: 118 return 0; 119 default: 120 MISSING_CASE(type); 121 return 0; 122 } 123 } 124 125 static u32 hsw_infoframe_enable(unsigned int type) 126 { 127 switch (type) { 128 case HDMI_PACKET_TYPE_GENERAL_CONTROL: 129 return VIDEO_DIP_ENABLE_GCP_HSW; 130 case HDMI_PACKET_TYPE_GAMUT_METADATA: 131 return VIDEO_DIP_ENABLE_GMP_HSW; 132 case DP_SDP_VSC: 133 return VIDEO_DIP_ENABLE_VSC_HSW; 134 case DP_SDP_PPS: 135 return VDIP_ENABLE_PPS; 136 case HDMI_INFOFRAME_TYPE_AVI: 137 return VIDEO_DIP_ENABLE_AVI_HSW; 138 case HDMI_INFOFRAME_TYPE_SPD: 139 return VIDEO_DIP_ENABLE_SPD_HSW; 140 case HDMI_INFOFRAME_TYPE_VENDOR: 141 return VIDEO_DIP_ENABLE_VS_HSW; 142 case HDMI_INFOFRAME_TYPE_DRM: 143 return VIDEO_DIP_ENABLE_DRM_GLK; 144 default: 145 MISSING_CASE(type); 146 return 0; 147 } 148 } 149 150 static i915_reg_t 151 hsw_dip_data_reg(struct drm_i915_private *dev_priv, 152 enum transcoder cpu_transcoder, 153 unsigned int type, 154 int i) 155 { 156 switch (type) { 157 case HDMI_PACKET_TYPE_GAMUT_METADATA: 158 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i); 159 case DP_SDP_VSC: 160 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i); 161 case DP_SDP_PPS: 162 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i); 163 case HDMI_INFOFRAME_TYPE_AVI: 164 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i); 165 case HDMI_INFOFRAME_TYPE_SPD: 166 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i); 167 case HDMI_INFOFRAME_TYPE_VENDOR: 168 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i); 169 case HDMI_INFOFRAME_TYPE_DRM: 170 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i); 171 default: 172 MISSING_CASE(type); 173 return INVALID_MMIO_REG; 174 } 175 } 176 177 static int hsw_dip_data_size(struct drm_i915_private *dev_priv, 178 unsigned int type) 179 { 180 switch (type) { 181 case DP_SDP_VSC: 182 return VIDEO_DIP_VSC_DATA_SIZE; 183 case DP_SDP_PPS: 184 return VIDEO_DIP_PPS_DATA_SIZE; 185 case HDMI_PACKET_TYPE_GAMUT_METADATA: 186 if (DISPLAY_VER(dev_priv) >= 11) 187 return VIDEO_DIP_GMP_DATA_SIZE; 188 else 189 return VIDEO_DIP_DATA_SIZE; 190 default: 191 return VIDEO_DIP_DATA_SIZE; 192 } 193 } 194 195 static void g4x_write_infoframe(struct intel_encoder *encoder, 196 const struct intel_crtc_state *crtc_state, 197 unsigned int type, 198 const void *frame, ssize_t len) 199 { 200 const u32 *data = frame; 201 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 202 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 203 int i; 204 205 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 206 "Writing DIP with CTL reg disabled\n"); 207 208 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 209 val |= g4x_infoframe_index(type); 210 211 val &= ~g4x_infoframe_enable(type); 212 213 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 214 215 for (i = 0; i < len; i += 4) { 216 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data); 217 data++; 218 } 219 /* Write every possible data byte to force correct ECC calculation. */ 220 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 221 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0); 222 223 val |= g4x_infoframe_enable(type); 224 val &= ~VIDEO_DIP_FREQ_MASK; 225 val |= VIDEO_DIP_FREQ_VSYNC; 226 227 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 228 intel_de_posting_read(dev_priv, VIDEO_DIP_CTL); 229 } 230 231 static void g4x_read_infoframe(struct intel_encoder *encoder, 232 const struct intel_crtc_state *crtc_state, 233 unsigned int type, 234 void *frame, ssize_t len) 235 { 236 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 237 u32 val, *data = frame; 238 int i; 239 240 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 241 242 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 243 val |= g4x_infoframe_index(type); 244 245 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 246 247 for (i = 0; i < len; i += 4) 248 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA); 249 } 250 251 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder, 252 const struct intel_crtc_state *pipe_config) 253 { 254 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 255 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 256 257 if ((val & VIDEO_DIP_ENABLE) == 0) 258 return 0; 259 260 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 261 return 0; 262 263 return val & (VIDEO_DIP_ENABLE_AVI | 264 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 265 } 266 267 static void ibx_write_infoframe(struct intel_encoder *encoder, 268 const struct intel_crtc_state *crtc_state, 269 unsigned int type, 270 const void *frame, ssize_t len) 271 { 272 const u32 *data = frame; 273 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 274 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 275 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 276 u32 val = intel_de_read(dev_priv, reg); 277 int i; 278 279 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 280 "Writing DIP with CTL reg disabled\n"); 281 282 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 283 val |= g4x_infoframe_index(type); 284 285 val &= ~g4x_infoframe_enable(type); 286 287 intel_de_write(dev_priv, reg, val); 288 289 for (i = 0; i < len; i += 4) { 290 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 291 *data); 292 data++; 293 } 294 /* Write every possible data byte to force correct ECC calculation. */ 295 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 296 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0); 297 298 val |= g4x_infoframe_enable(type); 299 val &= ~VIDEO_DIP_FREQ_MASK; 300 val |= VIDEO_DIP_FREQ_VSYNC; 301 302 intel_de_write(dev_priv, reg, val); 303 intel_de_posting_read(dev_priv, reg); 304 } 305 306 static void ibx_read_infoframe(struct intel_encoder *encoder, 307 const struct intel_crtc_state *crtc_state, 308 unsigned int type, 309 void *frame, ssize_t len) 310 { 311 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 312 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 313 u32 val, *data = frame; 314 int i; 315 316 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe)); 317 318 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 319 val |= g4x_infoframe_index(type); 320 321 intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val); 322 323 for (i = 0; i < len; i += 4) 324 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); 325 } 326 327 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder, 328 const struct intel_crtc_state *pipe_config) 329 { 330 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 331 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 332 i915_reg_t reg = TVIDEO_DIP_CTL(pipe); 333 u32 val = intel_de_read(dev_priv, reg); 334 335 if ((val & VIDEO_DIP_ENABLE) == 0) 336 return 0; 337 338 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 339 return 0; 340 341 return val & (VIDEO_DIP_ENABLE_AVI | 342 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 343 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 344 } 345 346 static void cpt_write_infoframe(struct intel_encoder *encoder, 347 const struct intel_crtc_state *crtc_state, 348 unsigned int type, 349 const void *frame, ssize_t len) 350 { 351 const u32 *data = frame; 352 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 353 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 354 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 355 u32 val = intel_de_read(dev_priv, reg); 356 int i; 357 358 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 359 "Writing DIP with CTL reg disabled\n"); 360 361 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 362 val |= g4x_infoframe_index(type); 363 364 /* The DIP control register spec says that we need to update the AVI 365 * infoframe without clearing its enable bit */ 366 if (type != HDMI_INFOFRAME_TYPE_AVI) 367 val &= ~g4x_infoframe_enable(type); 368 369 intel_de_write(dev_priv, reg, val); 370 371 for (i = 0; i < len; i += 4) { 372 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 373 *data); 374 data++; 375 } 376 /* Write every possible data byte to force correct ECC calculation. */ 377 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 378 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0); 379 380 val |= g4x_infoframe_enable(type); 381 val &= ~VIDEO_DIP_FREQ_MASK; 382 val |= VIDEO_DIP_FREQ_VSYNC; 383 384 intel_de_write(dev_priv, reg, val); 385 intel_de_posting_read(dev_priv, reg); 386 } 387 388 static void cpt_read_infoframe(struct intel_encoder *encoder, 389 const struct intel_crtc_state *crtc_state, 390 unsigned int type, 391 void *frame, ssize_t len) 392 { 393 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 394 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 395 u32 val, *data = frame; 396 int i; 397 398 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe)); 399 400 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 401 val |= g4x_infoframe_index(type); 402 403 intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val); 404 405 for (i = 0; i < len; i += 4) 406 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); 407 } 408 409 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder, 410 const struct intel_crtc_state *pipe_config) 411 { 412 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 413 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 414 u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe)); 415 416 if ((val & VIDEO_DIP_ENABLE) == 0) 417 return 0; 418 419 return val & (VIDEO_DIP_ENABLE_AVI | 420 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 421 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 422 } 423 424 static void vlv_write_infoframe(struct intel_encoder *encoder, 425 const struct intel_crtc_state *crtc_state, 426 unsigned int type, 427 const void *frame, ssize_t len) 428 { 429 const u32 *data = frame; 430 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 431 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 432 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe); 433 u32 val = intel_de_read(dev_priv, reg); 434 int i; 435 436 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 437 "Writing DIP with CTL reg disabled\n"); 438 439 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 440 val |= g4x_infoframe_index(type); 441 442 val &= ~g4x_infoframe_enable(type); 443 444 intel_de_write(dev_priv, reg, val); 445 446 for (i = 0; i < len; i += 4) { 447 intel_de_write(dev_priv, 448 VLV_TVIDEO_DIP_DATA(crtc->pipe), *data); 449 data++; 450 } 451 /* Write every possible data byte to force correct ECC calculation. */ 452 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 453 intel_de_write(dev_priv, 454 VLV_TVIDEO_DIP_DATA(crtc->pipe), 0); 455 456 val |= g4x_infoframe_enable(type); 457 val &= ~VIDEO_DIP_FREQ_MASK; 458 val |= VIDEO_DIP_FREQ_VSYNC; 459 460 intel_de_write(dev_priv, reg, val); 461 intel_de_posting_read(dev_priv, reg); 462 } 463 464 static void vlv_read_infoframe(struct intel_encoder *encoder, 465 const struct intel_crtc_state *crtc_state, 466 unsigned int type, 467 void *frame, ssize_t len) 468 { 469 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 470 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 471 u32 val, *data = frame; 472 int i; 473 474 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe)); 475 476 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 477 val |= g4x_infoframe_index(type); 478 479 intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val); 480 481 for (i = 0; i < len; i += 4) 482 *data++ = intel_de_read(dev_priv, 483 VLV_TVIDEO_DIP_DATA(crtc->pipe)); 484 } 485 486 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder, 487 const struct intel_crtc_state *pipe_config) 488 { 489 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 490 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 491 u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe)); 492 493 if ((val & VIDEO_DIP_ENABLE) == 0) 494 return 0; 495 496 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 497 return 0; 498 499 return val & (VIDEO_DIP_ENABLE_AVI | 500 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 501 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 502 } 503 504 void hsw_write_infoframe(struct intel_encoder *encoder, 505 const struct intel_crtc_state *crtc_state, 506 unsigned int type, 507 const void *frame, ssize_t len) 508 { 509 const u32 *data = frame; 510 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 511 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 512 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder); 513 int data_size; 514 int i; 515 u32 val = intel_de_read(dev_priv, ctl_reg); 516 517 data_size = hsw_dip_data_size(dev_priv, type); 518 519 drm_WARN_ON(&dev_priv->drm, len > data_size); 520 521 val &= ~hsw_infoframe_enable(type); 522 intel_de_write(dev_priv, ctl_reg, val); 523 524 for (i = 0; i < len; i += 4) { 525 intel_de_write(dev_priv, 526 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 527 *data); 528 data++; 529 } 530 /* Write every possible data byte to force correct ECC calculation. */ 531 for (; i < data_size; i += 4) 532 intel_de_write(dev_priv, 533 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 534 0); 535 536 /* Wa_14013475917 */ 537 if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr && 538 type == DP_SDP_VSC) 539 return; 540 541 val |= hsw_infoframe_enable(type); 542 intel_de_write(dev_priv, ctl_reg, val); 543 intel_de_posting_read(dev_priv, ctl_reg); 544 } 545 546 void hsw_read_infoframe(struct intel_encoder *encoder, 547 const struct intel_crtc_state *crtc_state, 548 unsigned int type, void *frame, ssize_t len) 549 { 550 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 551 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 552 u32 *data = frame; 553 int i; 554 555 for (i = 0; i < len; i += 4) 556 *data++ = intel_de_read(dev_priv, 557 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2)); 558 } 559 560 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder, 561 const struct intel_crtc_state *pipe_config) 562 { 563 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 564 u32 val = intel_de_read(dev_priv, 565 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder)); 566 u32 mask; 567 568 mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | 569 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | 570 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW); 571 572 if (DISPLAY_VER(dev_priv) >= 10) 573 mask |= VIDEO_DIP_ENABLE_DRM_GLK; 574 575 return val & mask; 576 } 577 578 static const u8 infoframe_type_to_idx[] = { 579 HDMI_PACKET_TYPE_GENERAL_CONTROL, 580 HDMI_PACKET_TYPE_GAMUT_METADATA, 581 DP_SDP_VSC, 582 HDMI_INFOFRAME_TYPE_AVI, 583 HDMI_INFOFRAME_TYPE_SPD, 584 HDMI_INFOFRAME_TYPE_VENDOR, 585 HDMI_INFOFRAME_TYPE_DRM, 586 }; 587 588 u32 intel_hdmi_infoframe_enable(unsigned int type) 589 { 590 int i; 591 592 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { 593 if (infoframe_type_to_idx[i] == type) 594 return BIT(i); 595 } 596 597 return 0; 598 } 599 600 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder, 601 const struct intel_crtc_state *crtc_state) 602 { 603 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 604 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 605 u32 val, ret = 0; 606 int i; 607 608 val = dig_port->infoframes_enabled(encoder, crtc_state); 609 610 /* map from hardware bits to dip idx */ 611 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { 612 unsigned int type = infoframe_type_to_idx[i]; 613 614 if (HAS_DDI(dev_priv)) { 615 if (val & hsw_infoframe_enable(type)) 616 ret |= BIT(i); 617 } else { 618 if (val & g4x_infoframe_enable(type)) 619 ret |= BIT(i); 620 } 621 } 622 623 return ret; 624 } 625 626 /* 627 * The data we write to the DIP data buffer registers is 1 byte bigger than the 628 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting 629 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be 630 * used for both technologies. 631 * 632 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0 633 * DW1: DB3 | DB2 | DB1 | DB0 634 * DW2: DB7 | DB6 | DB5 | DB4 635 * DW3: ... 636 * 637 * (HB is Header Byte, DB is Data Byte) 638 * 639 * The hdmi pack() functions don't know about that hardware specific hole so we 640 * trick them by giving an offset into the buffer and moving back the header 641 * bytes by one. 642 */ 643 static void intel_write_infoframe(struct intel_encoder *encoder, 644 const struct intel_crtc_state *crtc_state, 645 enum hdmi_infoframe_type type, 646 const union hdmi_infoframe *frame) 647 { 648 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 649 u8 buffer[VIDEO_DIP_DATA_SIZE]; 650 ssize_t len; 651 652 if ((crtc_state->infoframes.enable & 653 intel_hdmi_infoframe_enable(type)) == 0) 654 return; 655 656 if (drm_WARN_ON(encoder->base.dev, frame->any.type != type)) 657 return; 658 659 /* see comment above for the reason for this offset */ 660 len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1); 661 if (drm_WARN_ON(encoder->base.dev, len < 0)) 662 return; 663 664 /* Insert the 'hole' (see big comment above) at position 3 */ 665 memmove(&buffer[0], &buffer[1], 3); 666 buffer[3] = 0; 667 len++; 668 669 dig_port->write_infoframe(encoder, crtc_state, type, buffer, len); 670 } 671 672 void intel_read_infoframe(struct intel_encoder *encoder, 673 const struct intel_crtc_state *crtc_state, 674 enum hdmi_infoframe_type type, 675 union hdmi_infoframe *frame) 676 { 677 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 678 u8 buffer[VIDEO_DIP_DATA_SIZE]; 679 int ret; 680 681 if ((crtc_state->infoframes.enable & 682 intel_hdmi_infoframe_enable(type)) == 0) 683 return; 684 685 dig_port->read_infoframe(encoder, crtc_state, 686 type, buffer, sizeof(buffer)); 687 688 /* Fill the 'hole' (see big comment above) at position 3 */ 689 memmove(&buffer[1], &buffer[0], 3); 690 691 /* see comment above for the reason for this offset */ 692 ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1); 693 if (ret) { 694 drm_dbg_kms(encoder->base.dev, 695 "Failed to unpack infoframe type 0x%02x\n", type); 696 return; 697 } 698 699 if (frame->any.type != type) 700 drm_dbg_kms(encoder->base.dev, 701 "Found the wrong infoframe type 0x%x (expected 0x%02x)\n", 702 frame->any.type, type); 703 } 704 705 static bool 706 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder, 707 struct intel_crtc_state *crtc_state, 708 struct drm_connector_state *conn_state) 709 { 710 struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi; 711 const struct drm_display_mode *adjusted_mode = 712 &crtc_state->hw.adjusted_mode; 713 struct drm_connector *connector = conn_state->connector; 714 int ret; 715 716 if (!crtc_state->has_infoframe) 717 return true; 718 719 crtc_state->infoframes.enable |= 720 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI); 721 722 ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector, 723 adjusted_mode); 724 if (ret) 725 return false; 726 727 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 728 frame->colorspace = HDMI_COLORSPACE_YUV420; 729 else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 730 frame->colorspace = HDMI_COLORSPACE_YUV444; 731 else 732 frame->colorspace = HDMI_COLORSPACE_RGB; 733 734 drm_hdmi_avi_infoframe_colorimetry(frame, conn_state); 735 736 /* nonsense combination */ 737 drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range && 738 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 739 740 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) { 741 drm_hdmi_avi_infoframe_quant_range(frame, connector, 742 adjusted_mode, 743 crtc_state->limited_color_range ? 744 HDMI_QUANTIZATION_RANGE_LIMITED : 745 HDMI_QUANTIZATION_RANGE_FULL); 746 } else { 747 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; 748 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED; 749 } 750 751 drm_hdmi_avi_infoframe_content_type(frame, conn_state); 752 753 /* TODO: handle pixel repetition for YCBCR420 outputs */ 754 755 ret = hdmi_avi_infoframe_check(frame); 756 if (drm_WARN_ON(encoder->base.dev, ret)) 757 return false; 758 759 return true; 760 } 761 762 static bool 763 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder, 764 struct intel_crtc_state *crtc_state, 765 struct drm_connector_state *conn_state) 766 { 767 struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd; 768 int ret; 769 770 if (!crtc_state->has_infoframe) 771 return true; 772 773 crtc_state->infoframes.enable |= 774 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD); 775 776 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx"); 777 if (drm_WARN_ON(encoder->base.dev, ret)) 778 return false; 779 780 frame->sdi = HDMI_SPD_SDI_PC; 781 782 ret = hdmi_spd_infoframe_check(frame); 783 if (drm_WARN_ON(encoder->base.dev, ret)) 784 return false; 785 786 return true; 787 } 788 789 static bool 790 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder, 791 struct intel_crtc_state *crtc_state, 792 struct drm_connector_state *conn_state) 793 { 794 struct hdmi_vendor_infoframe *frame = 795 &crtc_state->infoframes.hdmi.vendor.hdmi; 796 const struct drm_display_info *info = 797 &conn_state->connector->display_info; 798 int ret; 799 800 if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe) 801 return true; 802 803 crtc_state->infoframes.enable |= 804 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR); 805 806 ret = drm_hdmi_vendor_infoframe_from_display_mode(frame, 807 conn_state->connector, 808 &crtc_state->hw.adjusted_mode); 809 if (drm_WARN_ON(encoder->base.dev, ret)) 810 return false; 811 812 ret = hdmi_vendor_infoframe_check(frame); 813 if (drm_WARN_ON(encoder->base.dev, ret)) 814 return false; 815 816 return true; 817 } 818 819 static bool 820 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder, 821 struct intel_crtc_state *crtc_state, 822 struct drm_connector_state *conn_state) 823 { 824 struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm; 825 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 826 int ret; 827 828 if (DISPLAY_VER(dev_priv) < 10) 829 return true; 830 831 if (!crtc_state->has_infoframe) 832 return true; 833 834 if (!conn_state->hdr_output_metadata) 835 return true; 836 837 crtc_state->infoframes.enable |= 838 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM); 839 840 ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state); 841 if (ret < 0) { 842 drm_dbg_kms(&dev_priv->drm, 843 "couldn't set HDR metadata in infoframe\n"); 844 return false; 845 } 846 847 ret = hdmi_drm_infoframe_check(frame); 848 if (drm_WARN_ON(&dev_priv->drm, ret)) 849 return false; 850 851 return true; 852 } 853 854 static void g4x_set_infoframes(struct intel_encoder *encoder, 855 bool enable, 856 const struct intel_crtc_state *crtc_state, 857 const struct drm_connector_state *conn_state) 858 { 859 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 860 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 861 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 862 i915_reg_t reg = VIDEO_DIP_CTL; 863 u32 val = intel_de_read(dev_priv, reg); 864 u32 port = VIDEO_DIP_PORT(encoder->port); 865 866 assert_hdmi_port_disabled(intel_hdmi); 867 868 /* If the registers were not initialized yet, they might be zeroes, 869 * which means we're selecting the AVI DIP and we're setting its 870 * frequency to once. This seems to really confuse the HW and make 871 * things stop working (the register spec says the AVI always needs to 872 * be sent every VSync). So here we avoid writing to the register more 873 * than we need and also explicitly select the AVI DIP and explicitly 874 * set its frequency to every VSync. Avoiding to write it twice seems to 875 * be enough to solve the problem, but being defensive shouldn't hurt us 876 * either. */ 877 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 878 879 if (!enable) { 880 if (!(val & VIDEO_DIP_ENABLE)) 881 return; 882 if (port != (val & VIDEO_DIP_PORT_MASK)) { 883 drm_dbg_kms(&dev_priv->drm, 884 "video DIP still enabled on port %c\n", 885 (val & VIDEO_DIP_PORT_MASK) >> 29); 886 return; 887 } 888 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 889 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 890 intel_de_write(dev_priv, reg, val); 891 intel_de_posting_read(dev_priv, reg); 892 return; 893 } 894 895 if (port != (val & VIDEO_DIP_PORT_MASK)) { 896 if (val & VIDEO_DIP_ENABLE) { 897 drm_dbg_kms(&dev_priv->drm, 898 "video DIP already enabled on port %c\n", 899 (val & VIDEO_DIP_PORT_MASK) >> 29); 900 return; 901 } 902 val &= ~VIDEO_DIP_PORT_MASK; 903 val |= port; 904 } 905 906 val |= VIDEO_DIP_ENABLE; 907 val &= ~(VIDEO_DIP_ENABLE_AVI | 908 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 909 910 intel_de_write(dev_priv, reg, val); 911 intel_de_posting_read(dev_priv, reg); 912 913 intel_write_infoframe(encoder, crtc_state, 914 HDMI_INFOFRAME_TYPE_AVI, 915 &crtc_state->infoframes.avi); 916 intel_write_infoframe(encoder, crtc_state, 917 HDMI_INFOFRAME_TYPE_SPD, 918 &crtc_state->infoframes.spd); 919 intel_write_infoframe(encoder, crtc_state, 920 HDMI_INFOFRAME_TYPE_VENDOR, 921 &crtc_state->infoframes.hdmi); 922 } 923 924 /* 925 * Determine if default_phase=1 can be indicated in the GCP infoframe. 926 * 927 * From HDMI specification 1.4a: 928 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0 929 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0 930 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase 931 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing 932 * phase of 0 933 */ 934 static bool gcp_default_phase_possible(int pipe_bpp, 935 const struct drm_display_mode *mode) 936 { 937 unsigned int pixels_per_group; 938 939 switch (pipe_bpp) { 940 case 30: 941 /* 4 pixels in 5 clocks */ 942 pixels_per_group = 4; 943 break; 944 case 36: 945 /* 2 pixels in 3 clocks */ 946 pixels_per_group = 2; 947 break; 948 case 48: 949 /* 1 pixel in 2 clocks */ 950 pixels_per_group = 1; 951 break; 952 default: 953 /* phase information not relevant for 8bpc */ 954 return false; 955 } 956 957 return mode->crtc_hdisplay % pixels_per_group == 0 && 958 mode->crtc_htotal % pixels_per_group == 0 && 959 mode->crtc_hblank_start % pixels_per_group == 0 && 960 mode->crtc_hblank_end % pixels_per_group == 0 && 961 mode->crtc_hsync_start % pixels_per_group == 0 && 962 mode->crtc_hsync_end % pixels_per_group == 0 && 963 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 || 964 mode->crtc_htotal/2 % pixels_per_group == 0); 965 } 966 967 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder, 968 const struct intel_crtc_state *crtc_state, 969 const struct drm_connector_state *conn_state) 970 { 971 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 972 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 973 i915_reg_t reg; 974 975 if ((crtc_state->infoframes.enable & 976 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) 977 return false; 978 979 if (HAS_DDI(dev_priv)) 980 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); 981 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 982 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); 983 else if (HAS_PCH_SPLIT(dev_priv)) 984 reg = TVIDEO_DIP_GCP(crtc->pipe); 985 else 986 return false; 987 988 intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp); 989 990 return true; 991 } 992 993 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder, 994 struct intel_crtc_state *crtc_state) 995 { 996 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 997 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 998 i915_reg_t reg; 999 1000 if ((crtc_state->infoframes.enable & 1001 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) 1002 return; 1003 1004 if (HAS_DDI(dev_priv)) 1005 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); 1006 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1007 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); 1008 else if (HAS_PCH_SPLIT(dev_priv)) 1009 reg = TVIDEO_DIP_GCP(crtc->pipe); 1010 else 1011 return; 1012 1013 crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg); 1014 } 1015 1016 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder, 1017 struct intel_crtc_state *crtc_state, 1018 struct drm_connector_state *conn_state) 1019 { 1020 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1021 1022 if (IS_G4X(dev_priv) || !crtc_state->has_infoframe) 1023 return; 1024 1025 crtc_state->infoframes.enable |= 1026 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL); 1027 1028 /* Indicate color indication for deep color mode */ 1029 if (crtc_state->pipe_bpp > 24) 1030 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION; 1031 1032 /* Enable default_phase whenever the display mode is suitably aligned */ 1033 if (gcp_default_phase_possible(crtc_state->pipe_bpp, 1034 &crtc_state->hw.adjusted_mode)) 1035 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE; 1036 } 1037 1038 static void ibx_set_infoframes(struct intel_encoder *encoder, 1039 bool enable, 1040 const struct intel_crtc_state *crtc_state, 1041 const struct drm_connector_state *conn_state) 1042 { 1043 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1044 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1045 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1046 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 1047 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 1048 u32 val = intel_de_read(dev_priv, reg); 1049 u32 port = VIDEO_DIP_PORT(encoder->port); 1050 1051 assert_hdmi_port_disabled(intel_hdmi); 1052 1053 /* See the big comment in g4x_set_infoframes() */ 1054 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1055 1056 if (!enable) { 1057 if (!(val & VIDEO_DIP_ENABLE)) 1058 return; 1059 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1060 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1061 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1062 intel_de_write(dev_priv, reg, val); 1063 intel_de_posting_read(dev_priv, reg); 1064 return; 1065 } 1066 1067 if (port != (val & VIDEO_DIP_PORT_MASK)) { 1068 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, 1069 "DIP already enabled on port %c\n", 1070 (val & VIDEO_DIP_PORT_MASK) >> 29); 1071 val &= ~VIDEO_DIP_PORT_MASK; 1072 val |= port; 1073 } 1074 1075 val |= VIDEO_DIP_ENABLE; 1076 val &= ~(VIDEO_DIP_ENABLE_AVI | 1077 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1078 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1079 1080 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1081 val |= VIDEO_DIP_ENABLE_GCP; 1082 1083 intel_de_write(dev_priv, reg, val); 1084 intel_de_posting_read(dev_priv, reg); 1085 1086 intel_write_infoframe(encoder, crtc_state, 1087 HDMI_INFOFRAME_TYPE_AVI, 1088 &crtc_state->infoframes.avi); 1089 intel_write_infoframe(encoder, crtc_state, 1090 HDMI_INFOFRAME_TYPE_SPD, 1091 &crtc_state->infoframes.spd); 1092 intel_write_infoframe(encoder, crtc_state, 1093 HDMI_INFOFRAME_TYPE_VENDOR, 1094 &crtc_state->infoframes.hdmi); 1095 } 1096 1097 static void cpt_set_infoframes(struct intel_encoder *encoder, 1098 bool enable, 1099 const struct intel_crtc_state *crtc_state, 1100 const struct drm_connector_state *conn_state) 1101 { 1102 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1103 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1104 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1105 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 1106 u32 val = intel_de_read(dev_priv, reg); 1107 1108 assert_hdmi_port_disabled(intel_hdmi); 1109 1110 /* See the big comment in g4x_set_infoframes() */ 1111 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1112 1113 if (!enable) { 1114 if (!(val & VIDEO_DIP_ENABLE)) 1115 return; 1116 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1117 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1118 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1119 intel_de_write(dev_priv, reg, val); 1120 intel_de_posting_read(dev_priv, reg); 1121 return; 1122 } 1123 1124 /* Set both together, unset both together: see the spec. */ 1125 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; 1126 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1127 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1128 1129 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1130 val |= VIDEO_DIP_ENABLE_GCP; 1131 1132 intel_de_write(dev_priv, reg, val); 1133 intel_de_posting_read(dev_priv, reg); 1134 1135 intel_write_infoframe(encoder, crtc_state, 1136 HDMI_INFOFRAME_TYPE_AVI, 1137 &crtc_state->infoframes.avi); 1138 intel_write_infoframe(encoder, crtc_state, 1139 HDMI_INFOFRAME_TYPE_SPD, 1140 &crtc_state->infoframes.spd); 1141 intel_write_infoframe(encoder, crtc_state, 1142 HDMI_INFOFRAME_TYPE_VENDOR, 1143 &crtc_state->infoframes.hdmi); 1144 } 1145 1146 static void vlv_set_infoframes(struct intel_encoder *encoder, 1147 bool enable, 1148 const struct intel_crtc_state *crtc_state, 1149 const struct drm_connector_state *conn_state) 1150 { 1151 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1152 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1153 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1154 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe); 1155 u32 val = intel_de_read(dev_priv, reg); 1156 u32 port = VIDEO_DIP_PORT(encoder->port); 1157 1158 assert_hdmi_port_disabled(intel_hdmi); 1159 1160 /* See the big comment in g4x_set_infoframes() */ 1161 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1162 1163 if (!enable) { 1164 if (!(val & VIDEO_DIP_ENABLE)) 1165 return; 1166 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1167 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1168 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1169 intel_de_write(dev_priv, reg, val); 1170 intel_de_posting_read(dev_priv, reg); 1171 return; 1172 } 1173 1174 if (port != (val & VIDEO_DIP_PORT_MASK)) { 1175 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, 1176 "DIP already enabled on port %c\n", 1177 (val & VIDEO_DIP_PORT_MASK) >> 29); 1178 val &= ~VIDEO_DIP_PORT_MASK; 1179 val |= port; 1180 } 1181 1182 val |= VIDEO_DIP_ENABLE; 1183 val &= ~(VIDEO_DIP_ENABLE_AVI | 1184 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1185 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1186 1187 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1188 val |= VIDEO_DIP_ENABLE_GCP; 1189 1190 intel_de_write(dev_priv, reg, val); 1191 intel_de_posting_read(dev_priv, reg); 1192 1193 intel_write_infoframe(encoder, crtc_state, 1194 HDMI_INFOFRAME_TYPE_AVI, 1195 &crtc_state->infoframes.avi); 1196 intel_write_infoframe(encoder, crtc_state, 1197 HDMI_INFOFRAME_TYPE_SPD, 1198 &crtc_state->infoframes.spd); 1199 intel_write_infoframe(encoder, crtc_state, 1200 HDMI_INFOFRAME_TYPE_VENDOR, 1201 &crtc_state->infoframes.hdmi); 1202 } 1203 1204 static void hsw_set_infoframes(struct intel_encoder *encoder, 1205 bool enable, 1206 const struct intel_crtc_state *crtc_state, 1207 const struct drm_connector_state *conn_state) 1208 { 1209 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1210 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); 1211 u32 val = intel_de_read(dev_priv, reg); 1212 1213 assert_hdmi_transcoder_func_disabled(dev_priv, 1214 crtc_state->cpu_transcoder); 1215 1216 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | 1217 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | 1218 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW | 1219 VIDEO_DIP_ENABLE_DRM_GLK); 1220 1221 if (!enable) { 1222 intel_de_write(dev_priv, reg, val); 1223 intel_de_posting_read(dev_priv, reg); 1224 return; 1225 } 1226 1227 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1228 val |= VIDEO_DIP_ENABLE_GCP_HSW; 1229 1230 intel_de_write(dev_priv, reg, val); 1231 intel_de_posting_read(dev_priv, reg); 1232 1233 intel_write_infoframe(encoder, crtc_state, 1234 HDMI_INFOFRAME_TYPE_AVI, 1235 &crtc_state->infoframes.avi); 1236 intel_write_infoframe(encoder, crtc_state, 1237 HDMI_INFOFRAME_TYPE_SPD, 1238 &crtc_state->infoframes.spd); 1239 intel_write_infoframe(encoder, crtc_state, 1240 HDMI_INFOFRAME_TYPE_VENDOR, 1241 &crtc_state->infoframes.hdmi); 1242 intel_write_infoframe(encoder, crtc_state, 1243 HDMI_INFOFRAME_TYPE_DRM, 1244 &crtc_state->infoframes.drm); 1245 } 1246 1247 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable) 1248 { 1249 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); 1250 struct i2c_adapter *adapter; 1251 1252 if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI) 1253 return; 1254 1255 adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); 1256 1257 drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n", 1258 enable ? "Enabling" : "Disabling"); 1259 1260 drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable); 1261 } 1262 1263 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port, 1264 unsigned int offset, void *buffer, size_t size) 1265 { 1266 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1267 struct intel_hdmi *hdmi = &dig_port->hdmi; 1268 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1269 hdmi->ddc_bus); 1270 int ret; 1271 u8 start = offset & 0xff; 1272 struct i2c_msg msgs[] = { 1273 { 1274 .addr = DRM_HDCP_DDC_ADDR, 1275 .flags = 0, 1276 .len = 1, 1277 .buf = &start, 1278 }, 1279 { 1280 .addr = DRM_HDCP_DDC_ADDR, 1281 .flags = I2C_M_RD, 1282 .len = size, 1283 .buf = buffer 1284 } 1285 }; 1286 ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs)); 1287 if (ret == ARRAY_SIZE(msgs)) 1288 return 0; 1289 return ret >= 0 ? -EIO : ret; 1290 } 1291 1292 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port, 1293 unsigned int offset, void *buffer, size_t size) 1294 { 1295 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1296 struct intel_hdmi *hdmi = &dig_port->hdmi; 1297 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1298 hdmi->ddc_bus); 1299 int ret; 1300 u8 *write_buf; 1301 struct i2c_msg msg; 1302 1303 write_buf = kzalloc(size + 1, GFP_KERNEL); 1304 if (!write_buf) 1305 return -ENOMEM; 1306 1307 write_buf[0] = offset & 0xff; 1308 memcpy(&write_buf[1], buffer, size); 1309 1310 msg.addr = DRM_HDCP_DDC_ADDR; 1311 msg.flags = 0, 1312 msg.len = size + 1, 1313 msg.buf = write_buf; 1314 1315 ret = i2c_transfer(adapter, &msg, 1); 1316 if (ret == 1) 1317 ret = 0; 1318 else if (ret >= 0) 1319 ret = -EIO; 1320 1321 kfree(write_buf); 1322 return ret; 1323 } 1324 1325 static 1326 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port, 1327 u8 *an) 1328 { 1329 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1330 struct intel_hdmi *hdmi = &dig_port->hdmi; 1331 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1332 hdmi->ddc_bus); 1333 int ret; 1334 1335 ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an, 1336 DRM_HDCP_AN_LEN); 1337 if (ret) { 1338 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n", 1339 ret); 1340 return ret; 1341 } 1342 1343 ret = intel_gmbus_output_aksv(adapter); 1344 if (ret < 0) { 1345 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret); 1346 return ret; 1347 } 1348 return 0; 1349 } 1350 1351 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port, 1352 u8 *bksv) 1353 { 1354 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1355 1356 int ret; 1357 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv, 1358 DRM_HDCP_KSV_LEN); 1359 if (ret) 1360 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n", 1361 ret); 1362 return ret; 1363 } 1364 1365 static 1366 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port, 1367 u8 *bstatus) 1368 { 1369 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1370 1371 int ret; 1372 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS, 1373 bstatus, DRM_HDCP_BSTATUS_LEN); 1374 if (ret) 1375 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n", 1376 ret); 1377 return ret; 1378 } 1379 1380 static 1381 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port, 1382 bool *repeater_present) 1383 { 1384 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1385 int ret; 1386 u8 val; 1387 1388 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); 1389 if (ret) { 1390 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", 1391 ret); 1392 return ret; 1393 } 1394 *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT; 1395 return 0; 1396 } 1397 1398 static 1399 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port, 1400 u8 *ri_prime) 1401 { 1402 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1403 1404 int ret; 1405 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME, 1406 ri_prime, DRM_HDCP_RI_LEN); 1407 if (ret) 1408 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n", 1409 ret); 1410 return ret; 1411 } 1412 1413 static 1414 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port, 1415 bool *ksv_ready) 1416 { 1417 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1418 int ret; 1419 u8 val; 1420 1421 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); 1422 if (ret) { 1423 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", 1424 ret); 1425 return ret; 1426 } 1427 *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY; 1428 return 0; 1429 } 1430 1431 static 1432 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port, 1433 int num_downstream, u8 *ksv_fifo) 1434 { 1435 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1436 int ret; 1437 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO, 1438 ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN); 1439 if (ret) { 1440 drm_dbg_kms(&i915->drm, 1441 "Read ksv fifo over DDC failed (%d)\n", ret); 1442 return ret; 1443 } 1444 return 0; 1445 } 1446 1447 static 1448 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port, 1449 int i, u32 *part) 1450 { 1451 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1452 int ret; 1453 1454 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 1455 return -EINVAL; 1456 1457 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i), 1458 part, DRM_HDCP_V_PRIME_PART_LEN); 1459 if (ret) 1460 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n", 1461 i, ret); 1462 return ret; 1463 } 1464 1465 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector, 1466 enum transcoder cpu_transcoder) 1467 { 1468 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1469 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1470 struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc); 1471 u32 scanline; 1472 int ret; 1473 1474 for (;;) { 1475 scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe)); 1476 if (scanline > 100 && scanline < 200) 1477 break; 1478 usleep_range(25, 50); 1479 } 1480 1481 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder, 1482 false, TRANS_DDI_HDCP_SIGNALLING); 1483 if (ret) { 1484 drm_err(&dev_priv->drm, 1485 "Disable HDCP signalling failed (%d)\n", ret); 1486 return ret; 1487 } 1488 1489 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder, 1490 true, TRANS_DDI_HDCP_SIGNALLING); 1491 if (ret) { 1492 drm_err(&dev_priv->drm, 1493 "Enable HDCP signalling failed (%d)\n", ret); 1494 return ret; 1495 } 1496 1497 return 0; 1498 } 1499 1500 static 1501 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port, 1502 enum transcoder cpu_transcoder, 1503 bool enable) 1504 { 1505 struct intel_hdmi *hdmi = &dig_port->hdmi; 1506 struct intel_connector *connector = hdmi->attached_connector; 1507 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1508 int ret; 1509 1510 if (!enable) 1511 usleep_range(6, 60); /* Bspec says >= 6us */ 1512 1513 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, 1514 cpu_transcoder, enable, 1515 TRANS_DDI_HDCP_SIGNALLING); 1516 if (ret) { 1517 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n", 1518 enable ? "Enable" : "Disable", ret); 1519 return ret; 1520 } 1521 1522 /* 1523 * WA: To fix incorrect positioning of the window of 1524 * opportunity and enc_en signalling in KABYLAKE. 1525 */ 1526 if (IS_KABYLAKE(dev_priv) && enable) 1527 return kbl_repositioning_enc_en_signal(connector, 1528 cpu_transcoder); 1529 1530 return 0; 1531 } 1532 1533 static 1534 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port, 1535 struct intel_connector *connector) 1536 { 1537 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1538 enum port port = dig_port->base.port; 1539 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; 1540 int ret; 1541 union { 1542 u32 reg; 1543 u8 shim[DRM_HDCP_RI_LEN]; 1544 } ri; 1545 1546 ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim); 1547 if (ret) 1548 return false; 1549 1550 intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg); 1551 1552 /* Wait for Ri prime match */ 1553 if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) & 1554 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) == 1555 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) { 1556 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n", 1557 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, 1558 port))); 1559 return false; 1560 } 1561 return true; 1562 } 1563 1564 static 1565 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port, 1566 struct intel_connector *connector) 1567 { 1568 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1569 int retry; 1570 1571 for (retry = 0; retry < 3; retry++) 1572 if (intel_hdmi_hdcp_check_link_once(dig_port, connector)) 1573 return true; 1574 1575 drm_err(&i915->drm, "Link check failed\n"); 1576 return false; 1577 } 1578 1579 struct hdcp2_hdmi_msg_timeout { 1580 u8 msg_id; 1581 u16 timeout; 1582 }; 1583 1584 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = { 1585 { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, }, 1586 { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, }, 1587 { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, }, 1588 { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, }, 1589 { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, }, 1590 }; 1591 1592 static 1593 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port, 1594 u8 *rx_status) 1595 { 1596 return intel_hdmi_hdcp_read(dig_port, 1597 HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET, 1598 rx_status, 1599 HDCP_2_2_HDMI_RXSTATUS_LEN); 1600 } 1601 1602 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired) 1603 { 1604 int i; 1605 1606 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) { 1607 if (is_paired) 1608 return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS; 1609 else 1610 return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS; 1611 } 1612 1613 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) { 1614 if (hdcp2_msg_timeout[i].msg_id == msg_id) 1615 return hdcp2_msg_timeout[i].timeout; 1616 } 1617 1618 return -EINVAL; 1619 } 1620 1621 static int 1622 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port, 1623 u8 msg_id, bool *msg_ready, 1624 ssize_t *msg_sz) 1625 { 1626 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1627 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; 1628 int ret; 1629 1630 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); 1631 if (ret < 0) { 1632 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n", 1633 ret); 1634 return ret; 1635 } 1636 1637 *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) | 1638 rx_status[0]); 1639 1640 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) 1641 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) && 1642 *msg_sz); 1643 else 1644 *msg_ready = *msg_sz; 1645 1646 return 0; 1647 } 1648 1649 static ssize_t 1650 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port, 1651 u8 msg_id, bool paired) 1652 { 1653 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1654 bool msg_ready = false; 1655 int timeout, ret; 1656 ssize_t msg_sz = 0; 1657 1658 timeout = get_hdcp2_msg_timeout(msg_id, paired); 1659 if (timeout < 0) 1660 return timeout; 1661 1662 ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port, 1663 msg_id, &msg_ready, 1664 &msg_sz), 1665 !ret && msg_ready && msg_sz, timeout * 1000, 1666 1000, 5 * 1000); 1667 if (ret) 1668 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n", 1669 msg_id, ret, timeout); 1670 1671 return ret ? ret : msg_sz; 1672 } 1673 1674 static 1675 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port, 1676 void *buf, size_t size) 1677 { 1678 unsigned int offset; 1679 1680 offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET; 1681 return intel_hdmi_hdcp_write(dig_port, offset, buf, size); 1682 } 1683 1684 static 1685 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port, 1686 u8 msg_id, void *buf, size_t size) 1687 { 1688 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1689 struct intel_hdmi *hdmi = &dig_port->hdmi; 1690 struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp; 1691 unsigned int offset; 1692 ssize_t ret; 1693 1694 ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id, 1695 hdcp->is_paired); 1696 if (ret < 0) 1697 return ret; 1698 1699 /* 1700 * Available msg size should be equal to or lesser than the 1701 * available buffer. 1702 */ 1703 if (ret > size) { 1704 drm_dbg_kms(&i915->drm, 1705 "msg_sz(%zd) is more than exp size(%zu)\n", 1706 ret, size); 1707 return -EINVAL; 1708 } 1709 1710 offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET; 1711 ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret); 1712 if (ret) 1713 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n", 1714 msg_id, ret); 1715 1716 return ret; 1717 } 1718 1719 static 1720 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port, 1721 struct intel_connector *connector) 1722 { 1723 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; 1724 int ret; 1725 1726 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); 1727 if (ret) 1728 return ret; 1729 1730 /* 1731 * Re-auth request and Link Integrity Failures are represented by 1732 * same bit. i.e reauth_req. 1733 */ 1734 if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1])) 1735 ret = HDCP_REAUTH_REQUEST; 1736 else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1])) 1737 ret = HDCP_TOPOLOGY_CHANGE; 1738 1739 return ret; 1740 } 1741 1742 static 1743 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port, 1744 bool *capable) 1745 { 1746 u8 hdcp2_version; 1747 int ret; 1748 1749 *capable = false; 1750 ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET, 1751 &hdcp2_version, sizeof(hdcp2_version)); 1752 if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK) 1753 *capable = true; 1754 1755 return ret; 1756 } 1757 1758 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = { 1759 .write_an_aksv = intel_hdmi_hdcp_write_an_aksv, 1760 .read_bksv = intel_hdmi_hdcp_read_bksv, 1761 .read_bstatus = intel_hdmi_hdcp_read_bstatus, 1762 .repeater_present = intel_hdmi_hdcp_repeater_present, 1763 .read_ri_prime = intel_hdmi_hdcp_read_ri_prime, 1764 .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready, 1765 .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo, 1766 .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part, 1767 .toggle_signalling = intel_hdmi_hdcp_toggle_signalling, 1768 .check_link = intel_hdmi_hdcp_check_link, 1769 .write_2_2_msg = intel_hdmi_hdcp2_write_msg, 1770 .read_2_2_msg = intel_hdmi_hdcp2_read_msg, 1771 .check_2_2_link = intel_hdmi_hdcp2_check_link, 1772 .hdcp_2_2_capable = intel_hdmi_hdcp2_capable, 1773 .protocol = HDCP_PROTOCOL_HDMI, 1774 }; 1775 1776 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder) 1777 { 1778 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1779 int max_tmds_clock, vbt_max_tmds_clock; 1780 1781 if (DISPLAY_VER(dev_priv) >= 10) 1782 max_tmds_clock = 594000; 1783 else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) 1784 max_tmds_clock = 300000; 1785 else if (DISPLAY_VER(dev_priv) >= 5) 1786 max_tmds_clock = 225000; 1787 else 1788 max_tmds_clock = 165000; 1789 1790 vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder); 1791 if (vbt_max_tmds_clock) 1792 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock); 1793 1794 return max_tmds_clock; 1795 } 1796 1797 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi, 1798 const struct drm_connector_state *conn_state) 1799 { 1800 return hdmi->has_hdmi_sink && 1801 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI; 1802 } 1803 1804 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state) 1805 { 1806 return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420; 1807 } 1808 1809 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, 1810 bool respect_downstream_limits, 1811 bool has_hdmi_sink) 1812 { 1813 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base; 1814 int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder); 1815 1816 if (respect_downstream_limits) { 1817 struct intel_connector *connector = hdmi->attached_connector; 1818 const struct drm_display_info *info = &connector->base.display_info; 1819 1820 if (hdmi->dp_dual_mode.max_tmds_clock) 1821 max_tmds_clock = min(max_tmds_clock, 1822 hdmi->dp_dual_mode.max_tmds_clock); 1823 1824 if (info->max_tmds_clock) 1825 max_tmds_clock = min(max_tmds_clock, 1826 info->max_tmds_clock); 1827 else if (!has_hdmi_sink) 1828 max_tmds_clock = min(max_tmds_clock, 165000); 1829 } 1830 1831 return max_tmds_clock; 1832 } 1833 1834 static enum drm_mode_status 1835 hdmi_port_clock_valid(struct intel_hdmi *hdmi, 1836 int clock, bool respect_downstream_limits, 1837 bool has_hdmi_sink) 1838 { 1839 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); 1840 enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port); 1841 1842 if (clock < 25000) 1843 return MODE_CLOCK_LOW; 1844 if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, 1845 has_hdmi_sink)) 1846 return MODE_CLOCK_HIGH; 1847 1848 /* GLK DPLL can't generate 446-480 MHz */ 1849 if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000) 1850 return MODE_CLOCK_RANGE; 1851 1852 /* BXT/GLK DPLL can't generate 223-240 MHz */ 1853 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 1854 clock > 223333 && clock < 240000) 1855 return MODE_CLOCK_RANGE; 1856 1857 /* CHV DPLL can't generate 216-240 MHz */ 1858 if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000) 1859 return MODE_CLOCK_RANGE; 1860 1861 /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */ 1862 if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200) 1863 return MODE_CLOCK_RANGE; 1864 1865 /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */ 1866 if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800) 1867 return MODE_CLOCK_RANGE; 1868 1869 /* 1870 * SNPS PHYs' MPLLB table-based programming can only handle a fixed 1871 * set of link rates. 1872 * 1873 * FIXME: We will hopefully get an algorithmic way of programming 1874 * the MPLLB for HDMI in the future. 1875 */ 1876 if (IS_DG2(dev_priv)) 1877 return intel_snps_phy_check_hdmi_link_rate(clock); 1878 1879 return MODE_OK; 1880 } 1881 1882 int intel_hdmi_tmds_clock(int clock, int bpc, bool ycbcr420_output) 1883 { 1884 /* YCBCR420 TMDS rate requirement is half the pixel clock */ 1885 if (ycbcr420_output) 1886 clock /= 2; 1887 1888 /* 1889 * Need to adjust the port link by: 1890 * 1.5x for 12bpc 1891 * 1.25x for 10bpc 1892 */ 1893 return clock * bpc / 8; 1894 } 1895 1896 static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc) 1897 { 1898 switch (bpc) { 1899 case 12: 1900 return !HAS_GMCH(i915); 1901 case 10: 1902 return DISPLAY_VER(i915) >= 11; 1903 case 8: 1904 return true; 1905 default: 1906 MISSING_CASE(bpc); 1907 return false; 1908 } 1909 } 1910 1911 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector, 1912 int bpc, bool has_hdmi_sink, bool ycbcr420_output) 1913 { 1914 const struct drm_display_info *info = &connector->display_info; 1915 const struct drm_hdmi_info *hdmi = &info->hdmi; 1916 1917 switch (bpc) { 1918 case 12: 1919 if (!has_hdmi_sink) 1920 return false; 1921 1922 if (ycbcr420_output) 1923 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36; 1924 else 1925 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36; 1926 case 10: 1927 if (!has_hdmi_sink) 1928 return false; 1929 1930 if (ycbcr420_output) 1931 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30; 1932 else 1933 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30; 1934 case 8: 1935 return true; 1936 default: 1937 MISSING_CASE(bpc); 1938 return false; 1939 } 1940 } 1941 1942 static enum drm_mode_status 1943 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock, 1944 bool has_hdmi_sink, bool ycbcr420_output) 1945 { 1946 struct drm_i915_private *i915 = to_i915(connector->dev); 1947 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 1948 enum drm_mode_status status = MODE_OK; 1949 int bpc; 1950 1951 /* 1952 * Try all color depths since valid port clock range 1953 * can have holes. Any mode that can be used with at 1954 * least one color depth is accepted. 1955 */ 1956 for (bpc = 12; bpc >= 8; bpc -= 2) { 1957 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output); 1958 1959 if (!intel_hdmi_source_bpc_possible(i915, bpc)) 1960 continue; 1961 1962 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output)) 1963 continue; 1964 1965 status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink); 1966 if (status == MODE_OK) 1967 return MODE_OK; 1968 } 1969 1970 /* can never happen */ 1971 drm_WARN_ON(&i915->drm, status == MODE_OK); 1972 1973 return status; 1974 } 1975 1976 static enum drm_mode_status 1977 intel_hdmi_mode_valid(struct drm_connector *connector, 1978 struct drm_display_mode *mode) 1979 { 1980 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 1981 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); 1982 enum drm_mode_status status; 1983 int clock = mode->clock; 1984 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; 1985 bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state); 1986 bool ycbcr_420_only; 1987 1988 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 1989 return MODE_NO_DBLESCAN; 1990 1991 if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) 1992 clock *= 2; 1993 1994 if (clock > max_dotclk) 1995 return MODE_CLOCK_HIGH; 1996 1997 if (mode->flags & DRM_MODE_FLAG_DBLCLK) { 1998 if (!has_hdmi_sink) 1999 return MODE_CLOCK_LOW; 2000 clock *= 2; 2001 } 2002 2003 ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode); 2004 2005 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only); 2006 if (status != MODE_OK) { 2007 if (ycbcr_420_only || 2008 !connector->ycbcr_420_allowed || 2009 !drm_mode_is_420_also(&connector->display_info, mode)) 2010 return status; 2011 2012 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true); 2013 if (status != MODE_OK) 2014 return status; 2015 } 2016 2017 return intel_mode_valid_max_plane_size(dev_priv, mode, false); 2018 } 2019 2020 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, 2021 int bpc, bool has_hdmi_sink, bool ycbcr420_output) 2022 { 2023 struct drm_atomic_state *state = crtc_state->uapi.state; 2024 struct drm_connector_state *connector_state; 2025 struct drm_connector *connector; 2026 int i; 2027 2028 for_each_new_connector_in_state(state, connector, connector_state, i) { 2029 if (connector_state->crtc != crtc_state->uapi.crtc) 2030 continue; 2031 2032 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output)) 2033 return false; 2034 } 2035 2036 return true; 2037 } 2038 2039 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc) 2040 { 2041 struct drm_i915_private *dev_priv = 2042 to_i915(crtc_state->uapi.crtc->dev); 2043 const struct drm_display_mode *adjusted_mode = 2044 &crtc_state->hw.adjusted_mode; 2045 2046 if (!intel_hdmi_source_bpc_possible(dev_priv, bpc)) 2047 return false; 2048 2049 /* 2050 * HDMI deep color affects the clocks, so it's only possible 2051 * when not cloning with other encoder types. 2052 */ 2053 if (bpc > 8 && crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI)) 2054 return false; 2055 2056 /* Display Wa_1405510057:icl,ehl */ 2057 if (intel_hdmi_is_ycbcr420(crtc_state) && 2058 bpc == 10 && DISPLAY_VER(dev_priv) == 11 && 2059 (adjusted_mode->crtc_hblank_end - 2060 adjusted_mode->crtc_hblank_start) % 8 == 2) 2061 return false; 2062 2063 return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink, 2064 intel_hdmi_is_ycbcr420(crtc_state)); 2065 } 2066 2067 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder, 2068 struct intel_crtc_state *crtc_state, 2069 int clock, bool respect_downstream_limits) 2070 { 2071 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2072 bool ycbcr420_output = intel_hdmi_is_ycbcr420(crtc_state); 2073 int bpc; 2074 2075 /* 2076 * pipe_bpp could already be below 8bpc due to FDI 2077 * bandwidth constraints. HDMI minimum is 8bpc however. 2078 */ 2079 bpc = max(crtc_state->pipe_bpp / 3, 8); 2080 2081 /* 2082 * We will never exceed downstream TMDS clock limits while 2083 * attempting deep color. If the user insists on forcing an 2084 * out of spec mode they will have to be satisfied with 8bpc. 2085 */ 2086 if (!respect_downstream_limits) 2087 bpc = 8; 2088 2089 for (; bpc >= 8; bpc -= 2) { 2090 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output); 2091 2092 if (hdmi_bpc_possible(crtc_state, bpc) && 2093 hdmi_port_clock_valid(intel_hdmi, tmds_clock, 2094 respect_downstream_limits, 2095 crtc_state->has_hdmi_sink) == MODE_OK) 2096 return bpc; 2097 } 2098 2099 return -EINVAL; 2100 } 2101 2102 static int intel_hdmi_compute_clock(struct intel_encoder *encoder, 2103 struct intel_crtc_state *crtc_state, 2104 bool respect_downstream_limits) 2105 { 2106 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2107 const struct drm_display_mode *adjusted_mode = 2108 &crtc_state->hw.adjusted_mode; 2109 int bpc, clock = adjusted_mode->crtc_clock; 2110 2111 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2112 clock *= 2; 2113 2114 bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock, 2115 respect_downstream_limits); 2116 if (bpc < 0) 2117 return bpc; 2118 2119 crtc_state->port_clock = 2120 intel_hdmi_tmds_clock(clock, bpc, intel_hdmi_is_ycbcr420(crtc_state)); 2121 2122 /* 2123 * pipe_bpp could already be below 8bpc due to 2124 * FDI bandwidth constraints. We shouldn't bump it 2125 * back up to the HDMI minimum 8bpc in that case. 2126 */ 2127 crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3); 2128 2129 drm_dbg_kms(&i915->drm, 2130 "picking %d bpc for HDMI output (pipe bpp: %d)\n", 2131 bpc, crtc_state->pipe_bpp); 2132 2133 return 0; 2134 } 2135 2136 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state, 2137 const struct drm_connector_state *conn_state) 2138 { 2139 const struct intel_digital_connector_state *intel_conn_state = 2140 to_intel_digital_connector_state(conn_state); 2141 const struct drm_display_mode *adjusted_mode = 2142 &crtc_state->hw.adjusted_mode; 2143 2144 /* 2145 * Our YCbCr output is always limited range. 2146 * crtc_state->limited_color_range only applies to RGB, 2147 * and it must never be set for YCbCr or we risk setting 2148 * some conflicting bits in PIPECONF which will mess up 2149 * the colors on the monitor. 2150 */ 2151 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2152 return false; 2153 2154 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2155 /* See CEA-861-E - 5.1 Default Encoding Parameters */ 2156 return crtc_state->has_hdmi_sink && 2157 drm_default_rgb_quant_range(adjusted_mode) == 2158 HDMI_QUANTIZATION_RANGE_LIMITED; 2159 } else { 2160 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; 2161 } 2162 } 2163 2164 static bool intel_hdmi_has_audio(struct intel_encoder *encoder, 2165 const struct intel_crtc_state *crtc_state, 2166 const struct drm_connector_state *conn_state) 2167 { 2168 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2169 const struct intel_digital_connector_state *intel_conn_state = 2170 to_intel_digital_connector_state(conn_state); 2171 2172 if (!crtc_state->has_hdmi_sink) 2173 return false; 2174 2175 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2176 return intel_hdmi->has_audio; 2177 else 2178 return intel_conn_state->force_audio == HDMI_AUDIO_ON; 2179 } 2180 2181 static enum intel_output_format 2182 intel_hdmi_output_format(struct intel_connector *connector, 2183 bool ycbcr_420_output) 2184 { 2185 if (connector->base.ycbcr_420_allowed && ycbcr_420_output) 2186 return INTEL_OUTPUT_FORMAT_YCBCR420; 2187 else 2188 return INTEL_OUTPUT_FORMAT_RGB; 2189 } 2190 2191 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder, 2192 struct intel_crtc_state *crtc_state, 2193 const struct drm_connector_state *conn_state, 2194 bool respect_downstream_limits) 2195 { 2196 struct intel_connector *connector = to_intel_connector(conn_state->connector); 2197 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 2198 const struct drm_display_info *info = &connector->base.display_info; 2199 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2200 bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode); 2201 int ret; 2202 2203 crtc_state->output_format = intel_hdmi_output_format(connector, ycbcr_420_only); 2204 2205 if (ycbcr_420_only && !intel_hdmi_is_ycbcr420(crtc_state)) { 2206 drm_dbg_kms(&i915->drm, 2207 "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n"); 2208 crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB; 2209 } 2210 2211 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits); 2212 if (ret) { 2213 if (intel_hdmi_is_ycbcr420(crtc_state) || 2214 !connector->base.ycbcr_420_allowed || 2215 !drm_mode_is_420_also(info, adjusted_mode)) 2216 return ret; 2217 2218 crtc_state->output_format = intel_hdmi_output_format(connector, true); 2219 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits); 2220 } 2221 2222 return ret; 2223 } 2224 2225 int intel_hdmi_compute_config(struct intel_encoder *encoder, 2226 struct intel_crtc_state *pipe_config, 2227 struct drm_connector_state *conn_state) 2228 { 2229 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2230 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2231 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2232 struct drm_connector *connector = conn_state->connector; 2233 struct drm_scdc *scdc = &connector->display_info.hdmi.scdc; 2234 int ret; 2235 2236 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2237 return -EINVAL; 2238 2239 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2240 pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi, 2241 conn_state); 2242 2243 if (pipe_config->has_hdmi_sink) 2244 pipe_config->has_infoframe = true; 2245 2246 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2247 pipe_config->pixel_multiplier = 2; 2248 2249 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv)) 2250 pipe_config->has_pch_encoder = true; 2251 2252 pipe_config->has_audio = 2253 intel_hdmi_has_audio(encoder, pipe_config, conn_state); 2254 2255 /* 2256 * Try to respect downstream TMDS clock limits first, if 2257 * that fails assume the user might know something we don't. 2258 */ 2259 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true); 2260 if (ret) 2261 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false); 2262 if (ret) { 2263 drm_dbg_kms(&dev_priv->drm, 2264 "unsupported HDMI clock (%d kHz), rejecting mode\n", 2265 pipe_config->hw.adjusted_mode.crtc_clock); 2266 return ret; 2267 } 2268 2269 if (intel_hdmi_is_ycbcr420(pipe_config)) { 2270 ret = intel_panel_fitting(pipe_config, conn_state); 2271 if (ret) 2272 return ret; 2273 } 2274 2275 pipe_config->limited_color_range = 2276 intel_hdmi_limited_color_range(pipe_config, conn_state); 2277 2278 if (conn_state->picture_aspect_ratio) 2279 adjusted_mode->picture_aspect_ratio = 2280 conn_state->picture_aspect_ratio; 2281 2282 pipe_config->lane_count = 4; 2283 2284 if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) { 2285 if (scdc->scrambling.low_rates) 2286 pipe_config->hdmi_scrambling = true; 2287 2288 if (pipe_config->port_clock > 340000) { 2289 pipe_config->hdmi_scrambling = true; 2290 pipe_config->hdmi_high_tmds_clock_ratio = true; 2291 } 2292 } 2293 2294 intel_hdmi_compute_gcp_infoframe(encoder, pipe_config, 2295 conn_state); 2296 2297 if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) { 2298 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n"); 2299 return -EINVAL; 2300 } 2301 2302 if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) { 2303 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n"); 2304 return -EINVAL; 2305 } 2306 2307 if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) { 2308 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n"); 2309 return -EINVAL; 2310 } 2311 2312 if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) { 2313 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n"); 2314 return -EINVAL; 2315 } 2316 2317 return 0; 2318 } 2319 2320 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder) 2321 { 2322 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2323 2324 /* 2325 * Give a hand to buggy BIOSen which forget to turn 2326 * the TMDS output buffers back on after a reboot. 2327 */ 2328 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true); 2329 } 2330 2331 static void 2332 intel_hdmi_unset_edid(struct drm_connector *connector) 2333 { 2334 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2335 2336 intel_hdmi->has_hdmi_sink = false; 2337 intel_hdmi->has_audio = false; 2338 2339 intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE; 2340 intel_hdmi->dp_dual_mode.max_tmds_clock = 0; 2341 2342 kfree(to_intel_connector(connector)->detect_edid); 2343 to_intel_connector(connector)->detect_edid = NULL; 2344 } 2345 2346 static void 2347 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid) 2348 { 2349 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2350 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2351 enum port port = hdmi_to_dig_port(hdmi)->base.port; 2352 struct i2c_adapter *adapter = 2353 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); 2354 enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter); 2355 2356 /* 2357 * Type 1 DVI adaptors are not required to implement any 2358 * registers, so we can't always detect their presence. 2359 * Ideally we should be able to check the state of the 2360 * CONFIG1 pin, but no such luck on our hardware. 2361 * 2362 * The only method left to us is to check the VBT to see 2363 * if the port is a dual mode capable DP port. But let's 2364 * only do that when we sucesfully read the EDID, to avoid 2365 * confusing log messages about DP dual mode adaptors when 2366 * there's nothing connected to the port. 2367 */ 2368 if (type == DRM_DP_DUAL_MODE_UNKNOWN) { 2369 /* An overridden EDID imply that we want this port for testing. 2370 * Make sure not to set limits for that port. 2371 */ 2372 if (has_edid && !connector->override_edid && 2373 intel_bios_is_port_dp_dual_mode(dev_priv, port)) { 2374 drm_dbg_kms(&dev_priv->drm, 2375 "Assuming DP dual mode adaptor presence based on VBT\n"); 2376 type = DRM_DP_DUAL_MODE_TYPE1_DVI; 2377 } else { 2378 type = DRM_DP_DUAL_MODE_NONE; 2379 } 2380 } 2381 2382 if (type == DRM_DP_DUAL_MODE_NONE) 2383 return; 2384 2385 hdmi->dp_dual_mode.type = type; 2386 hdmi->dp_dual_mode.max_tmds_clock = 2387 drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter); 2388 2389 drm_dbg_kms(&dev_priv->drm, 2390 "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n", 2391 drm_dp_get_dual_mode_type_name(type), 2392 hdmi->dp_dual_mode.max_tmds_clock); 2393 2394 /* Older VBTs are often buggy and can't be trusted :( Play it safe. */ 2395 if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) && 2396 !intel_bios_is_port_dp_dual_mode(dev_priv, port)) { 2397 drm_dbg_kms(&dev_priv->drm, 2398 "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n"); 2399 hdmi->dp_dual_mode.max_tmds_clock = 0; 2400 } 2401 } 2402 2403 static bool 2404 intel_hdmi_set_edid(struct drm_connector *connector) 2405 { 2406 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2407 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2408 intel_wakeref_t wakeref; 2409 struct edid *edid; 2410 bool connected = false; 2411 struct i2c_adapter *i2c; 2412 2413 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 2414 2415 i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2416 2417 edid = drm_get_edid(connector, i2c); 2418 2419 if (!edid && !intel_gmbus_is_forced_bit(i2c)) { 2420 drm_dbg_kms(&dev_priv->drm, 2421 "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n"); 2422 intel_gmbus_force_bit(i2c, true); 2423 edid = drm_get_edid(connector, i2c); 2424 intel_gmbus_force_bit(i2c, false); 2425 } 2426 2427 intel_hdmi_dp_dual_mode_detect(connector, edid != NULL); 2428 2429 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 2430 2431 to_intel_connector(connector)->detect_edid = edid; 2432 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) { 2433 intel_hdmi->has_audio = drm_detect_monitor_audio(edid); 2434 intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid); 2435 2436 connected = true; 2437 } 2438 2439 cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid); 2440 2441 return connected; 2442 } 2443 2444 static enum drm_connector_status 2445 intel_hdmi_detect(struct drm_connector *connector, bool force) 2446 { 2447 enum drm_connector_status status = connector_status_disconnected; 2448 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2449 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2450 struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base; 2451 intel_wakeref_t wakeref; 2452 2453 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 2454 connector->base.id, connector->name); 2455 2456 if (!INTEL_DISPLAY_ENABLED(dev_priv)) 2457 return connector_status_disconnected; 2458 2459 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 2460 2461 if (DISPLAY_VER(dev_priv) >= 11 && 2462 !intel_digital_port_connected(encoder)) 2463 goto out; 2464 2465 intel_hdmi_unset_edid(connector); 2466 2467 if (intel_hdmi_set_edid(connector)) 2468 status = connector_status_connected; 2469 2470 out: 2471 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 2472 2473 if (status != connector_status_connected) 2474 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier); 2475 2476 /* 2477 * Make sure the refs for power wells enabled during detect are 2478 * dropped to avoid a new detect cycle triggered by HPD polling. 2479 */ 2480 intel_display_power_flush_work(dev_priv); 2481 2482 return status; 2483 } 2484 2485 static void 2486 intel_hdmi_force(struct drm_connector *connector) 2487 { 2488 struct drm_i915_private *i915 = to_i915(connector->dev); 2489 2490 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 2491 connector->base.id, connector->name); 2492 2493 intel_hdmi_unset_edid(connector); 2494 2495 if (connector->status != connector_status_connected) 2496 return; 2497 2498 intel_hdmi_set_edid(connector); 2499 } 2500 2501 static int intel_hdmi_get_modes(struct drm_connector *connector) 2502 { 2503 struct edid *edid; 2504 2505 edid = to_intel_connector(connector)->detect_edid; 2506 if (edid == NULL) 2507 return 0; 2508 2509 return intel_connector_update_modes(connector, edid); 2510 } 2511 2512 static struct i2c_adapter * 2513 intel_hdmi_get_i2c_adapter(struct drm_connector *connector) 2514 { 2515 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2516 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2517 2518 return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2519 } 2520 2521 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector) 2522 { 2523 struct drm_i915_private *i915 = to_i915(connector->dev); 2524 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector); 2525 struct kobject *i2c_kobj = &adapter->dev.kobj; 2526 struct kobject *connector_kobj = &connector->kdev->kobj; 2527 int ret; 2528 2529 ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name); 2530 if (ret) 2531 drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret); 2532 } 2533 2534 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector) 2535 { 2536 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector); 2537 struct kobject *i2c_kobj = &adapter->dev.kobj; 2538 struct kobject *connector_kobj = &connector->kdev->kobj; 2539 2540 sysfs_remove_link(connector_kobj, i2c_kobj->name); 2541 } 2542 2543 static int 2544 intel_hdmi_connector_register(struct drm_connector *connector) 2545 { 2546 int ret; 2547 2548 ret = intel_connector_register(connector); 2549 if (ret) 2550 return ret; 2551 2552 intel_hdmi_create_i2c_symlink(connector); 2553 2554 return ret; 2555 } 2556 2557 static void intel_hdmi_connector_unregister(struct drm_connector *connector) 2558 { 2559 struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier; 2560 2561 cec_notifier_conn_unregister(n); 2562 2563 intel_hdmi_remove_i2c_symlink(connector); 2564 intel_connector_unregister(connector); 2565 } 2566 2567 static const struct drm_connector_funcs intel_hdmi_connector_funcs = { 2568 .detect = intel_hdmi_detect, 2569 .force = intel_hdmi_force, 2570 .fill_modes = drm_helper_probe_single_connector_modes, 2571 .atomic_get_property = intel_digital_connector_atomic_get_property, 2572 .atomic_set_property = intel_digital_connector_atomic_set_property, 2573 .late_register = intel_hdmi_connector_register, 2574 .early_unregister = intel_hdmi_connector_unregister, 2575 .destroy = intel_connector_destroy, 2576 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 2577 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 2578 }; 2579 2580 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { 2581 .get_modes = intel_hdmi_get_modes, 2582 .mode_valid = intel_hdmi_mode_valid, 2583 .atomic_check = intel_digital_connector_atomic_check, 2584 }; 2585 2586 static void 2587 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) 2588 { 2589 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2590 2591 intel_attach_force_audio_property(connector); 2592 intel_attach_broadcast_rgb_property(connector); 2593 intel_attach_aspect_ratio_property(connector); 2594 2595 intel_attach_hdmi_colorspace_property(connector); 2596 drm_connector_attach_content_type_property(connector); 2597 2598 if (DISPLAY_VER(dev_priv) >= 10) 2599 drm_connector_attach_hdr_output_metadata_property(connector); 2600 2601 if (!HAS_GMCH(dev_priv)) 2602 drm_connector_attach_max_bpc_property(connector, 8, 12); 2603 } 2604 2605 /* 2606 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup 2607 * @encoder: intel_encoder 2608 * @connector: drm_connector 2609 * @high_tmds_clock_ratio = bool to indicate if the function needs to set 2610 * or reset the high tmds clock ratio for scrambling 2611 * @scrambling: bool to Indicate if the function needs to set or reset 2612 * sink scrambling 2613 * 2614 * This function handles scrambling on HDMI 2.0 capable sinks. 2615 * If required clock rate is > 340 Mhz && scrambling is supported by sink 2616 * it enables scrambling. This should be called before enabling the HDMI 2617 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't 2618 * detect a scrambled clock within 100 ms. 2619 * 2620 * Returns: 2621 * True on success, false on failure. 2622 */ 2623 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder, 2624 struct drm_connector *connector, 2625 bool high_tmds_clock_ratio, 2626 bool scrambling) 2627 { 2628 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2629 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2630 struct drm_scrambling *sink_scrambling = 2631 &connector->display_info.hdmi.scdc.scrambling; 2632 struct i2c_adapter *adapter = 2633 intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2634 2635 if (!sink_scrambling->supported) 2636 return true; 2637 2638 drm_dbg_kms(&dev_priv->drm, 2639 "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n", 2640 connector->base.id, connector->name, 2641 str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10); 2642 2643 /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */ 2644 return drm_scdc_set_high_tmds_clock_ratio(adapter, 2645 high_tmds_clock_ratio) && 2646 drm_scdc_set_scrambling(adapter, scrambling); 2647 } 2648 2649 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2650 { 2651 u8 ddc_pin; 2652 2653 switch (port) { 2654 case PORT_B: 2655 ddc_pin = GMBUS_PIN_DPB; 2656 break; 2657 case PORT_C: 2658 ddc_pin = GMBUS_PIN_DPC; 2659 break; 2660 case PORT_D: 2661 ddc_pin = GMBUS_PIN_DPD_CHV; 2662 break; 2663 default: 2664 MISSING_CASE(port); 2665 ddc_pin = GMBUS_PIN_DPB; 2666 break; 2667 } 2668 return ddc_pin; 2669 } 2670 2671 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2672 { 2673 u8 ddc_pin; 2674 2675 switch (port) { 2676 case PORT_B: 2677 ddc_pin = GMBUS_PIN_1_BXT; 2678 break; 2679 case PORT_C: 2680 ddc_pin = GMBUS_PIN_2_BXT; 2681 break; 2682 default: 2683 MISSING_CASE(port); 2684 ddc_pin = GMBUS_PIN_1_BXT; 2685 break; 2686 } 2687 return ddc_pin; 2688 } 2689 2690 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv, 2691 enum port port) 2692 { 2693 u8 ddc_pin; 2694 2695 switch (port) { 2696 case PORT_B: 2697 ddc_pin = GMBUS_PIN_1_BXT; 2698 break; 2699 case PORT_C: 2700 ddc_pin = GMBUS_PIN_2_BXT; 2701 break; 2702 case PORT_D: 2703 ddc_pin = GMBUS_PIN_4_CNP; 2704 break; 2705 case PORT_F: 2706 ddc_pin = GMBUS_PIN_3_BXT; 2707 break; 2708 default: 2709 MISSING_CASE(port); 2710 ddc_pin = GMBUS_PIN_1_BXT; 2711 break; 2712 } 2713 return ddc_pin; 2714 } 2715 2716 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2717 { 2718 enum phy phy = intel_port_to_phy(dev_priv, port); 2719 2720 if (intel_phy_is_combo(dev_priv, phy)) 2721 return GMBUS_PIN_1_BXT + port; 2722 else if (intel_phy_is_tc(dev_priv, phy)) 2723 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port); 2724 2725 drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port)); 2726 return GMBUS_PIN_2_BXT; 2727 } 2728 2729 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2730 { 2731 enum phy phy = intel_port_to_phy(dev_priv, port); 2732 u8 ddc_pin; 2733 2734 switch (phy) { 2735 case PHY_A: 2736 ddc_pin = GMBUS_PIN_1_BXT; 2737 break; 2738 case PHY_B: 2739 ddc_pin = GMBUS_PIN_2_BXT; 2740 break; 2741 case PHY_C: 2742 ddc_pin = GMBUS_PIN_9_TC1_ICP; 2743 break; 2744 default: 2745 MISSING_CASE(phy); 2746 ddc_pin = GMBUS_PIN_1_BXT; 2747 break; 2748 } 2749 return ddc_pin; 2750 } 2751 2752 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2753 { 2754 enum phy phy = intel_port_to_phy(dev_priv, port); 2755 2756 WARN_ON(port == PORT_C); 2757 2758 /* 2759 * Pin mapping for RKL depends on which PCH is present. With TGP, the 2760 * final two outputs use type-c pins, even though they're actually 2761 * combo outputs. With CMP, the traditional DDI A-D pins are used for 2762 * all outputs. 2763 */ 2764 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C) 2765 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; 2766 2767 return GMBUS_PIN_1_BXT + phy; 2768 } 2769 2770 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port) 2771 { 2772 enum phy phy = intel_port_to_phy(i915, port); 2773 2774 drm_WARN_ON(&i915->drm, port == PORT_A); 2775 2776 /* 2777 * Pin mapping for GEN9 BC depends on which PCH is present. With TGP, 2778 * final two outputs use type-c pins, even though they're actually 2779 * combo outputs. With CMP, the traditional DDI A-D pins are used for 2780 * all outputs. 2781 */ 2782 if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C) 2783 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; 2784 2785 return GMBUS_PIN_1_BXT + phy; 2786 } 2787 2788 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2789 { 2790 return intel_port_to_phy(dev_priv, port) + 1; 2791 } 2792 2793 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2794 { 2795 enum phy phy = intel_port_to_phy(dev_priv, port); 2796 2797 WARN_ON(port == PORT_B || port == PORT_C); 2798 2799 /* 2800 * Pin mapping for ADL-S requires TC pins for all combo phy outputs 2801 * except first combo output. 2802 */ 2803 if (phy == PHY_A) 2804 return GMBUS_PIN_1_BXT; 2805 2806 return GMBUS_PIN_9_TC1_ICP + phy - PHY_B; 2807 } 2808 2809 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv, 2810 enum port port) 2811 { 2812 u8 ddc_pin; 2813 2814 switch (port) { 2815 case PORT_B: 2816 ddc_pin = GMBUS_PIN_DPB; 2817 break; 2818 case PORT_C: 2819 ddc_pin = GMBUS_PIN_DPC; 2820 break; 2821 case PORT_D: 2822 ddc_pin = GMBUS_PIN_DPD; 2823 break; 2824 default: 2825 MISSING_CASE(port); 2826 ddc_pin = GMBUS_PIN_DPB; 2827 break; 2828 } 2829 return ddc_pin; 2830 } 2831 2832 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder) 2833 { 2834 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2835 enum port port = encoder->port; 2836 u8 ddc_pin; 2837 2838 ddc_pin = intel_bios_alternate_ddc_pin(encoder); 2839 if (ddc_pin) { 2840 drm_dbg_kms(&dev_priv->drm, 2841 "Using DDC pin 0x%x for port %c (VBT)\n", 2842 ddc_pin, port_name(port)); 2843 return ddc_pin; 2844 } 2845 2846 if (IS_ALDERLAKE_S(dev_priv)) 2847 ddc_pin = adls_port_to_ddc_pin(dev_priv, port); 2848 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) 2849 ddc_pin = dg1_port_to_ddc_pin(dev_priv, port); 2850 else if (IS_ROCKETLAKE(dev_priv)) 2851 ddc_pin = rkl_port_to_ddc_pin(dev_priv, port); 2852 else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv)) 2853 ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port); 2854 else if (HAS_PCH_MCC(dev_priv)) 2855 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port); 2856 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2857 ddc_pin = icl_port_to_ddc_pin(dev_priv, port); 2858 else if (HAS_PCH_CNP(dev_priv)) 2859 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port); 2860 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 2861 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port); 2862 else if (IS_CHERRYVIEW(dev_priv)) 2863 ddc_pin = chv_port_to_ddc_pin(dev_priv, port); 2864 else 2865 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port); 2866 2867 drm_dbg_kms(&dev_priv->drm, 2868 "Using DDC pin 0x%x for port %c (platform default)\n", 2869 ddc_pin, port_name(port)); 2870 2871 return ddc_pin; 2872 } 2873 2874 void intel_infoframe_init(struct intel_digital_port *dig_port) 2875 { 2876 struct drm_i915_private *dev_priv = 2877 to_i915(dig_port->base.base.dev); 2878 2879 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 2880 dig_port->write_infoframe = vlv_write_infoframe; 2881 dig_port->read_infoframe = vlv_read_infoframe; 2882 dig_port->set_infoframes = vlv_set_infoframes; 2883 dig_port->infoframes_enabled = vlv_infoframes_enabled; 2884 } else if (IS_G4X(dev_priv)) { 2885 dig_port->write_infoframe = g4x_write_infoframe; 2886 dig_port->read_infoframe = g4x_read_infoframe; 2887 dig_port->set_infoframes = g4x_set_infoframes; 2888 dig_port->infoframes_enabled = g4x_infoframes_enabled; 2889 } else if (HAS_DDI(dev_priv)) { 2890 if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) { 2891 dig_port->write_infoframe = lspcon_write_infoframe; 2892 dig_port->read_infoframe = lspcon_read_infoframe; 2893 dig_port->set_infoframes = lspcon_set_infoframes; 2894 dig_port->infoframes_enabled = lspcon_infoframes_enabled; 2895 } else { 2896 dig_port->write_infoframe = hsw_write_infoframe; 2897 dig_port->read_infoframe = hsw_read_infoframe; 2898 dig_port->set_infoframes = hsw_set_infoframes; 2899 dig_port->infoframes_enabled = hsw_infoframes_enabled; 2900 } 2901 } else if (HAS_PCH_IBX(dev_priv)) { 2902 dig_port->write_infoframe = ibx_write_infoframe; 2903 dig_port->read_infoframe = ibx_read_infoframe; 2904 dig_port->set_infoframes = ibx_set_infoframes; 2905 dig_port->infoframes_enabled = ibx_infoframes_enabled; 2906 } else { 2907 dig_port->write_infoframe = cpt_write_infoframe; 2908 dig_port->read_infoframe = cpt_read_infoframe; 2909 dig_port->set_infoframes = cpt_set_infoframes; 2910 dig_port->infoframes_enabled = cpt_infoframes_enabled; 2911 } 2912 } 2913 2914 void intel_hdmi_init_connector(struct intel_digital_port *dig_port, 2915 struct intel_connector *intel_connector) 2916 { 2917 struct drm_connector *connector = &intel_connector->base; 2918 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 2919 struct intel_encoder *intel_encoder = &dig_port->base; 2920 struct drm_device *dev = intel_encoder->base.dev; 2921 struct drm_i915_private *dev_priv = to_i915(dev); 2922 struct i2c_adapter *ddc; 2923 enum port port = intel_encoder->port; 2924 struct cec_connector_info conn_info; 2925 2926 drm_dbg_kms(&dev_priv->drm, 2927 "Adding HDMI connector on [ENCODER:%d:%s]\n", 2928 intel_encoder->base.base.id, intel_encoder->base.name); 2929 2930 if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A)) 2931 return; 2932 2933 if (drm_WARN(dev, dig_port->max_lanes < 4, 2934 "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n", 2935 dig_port->max_lanes, intel_encoder->base.base.id, 2936 intel_encoder->base.name)) 2937 return; 2938 2939 intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder); 2940 ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2941 2942 drm_connector_init_with_ddc(dev, connector, 2943 &intel_hdmi_connector_funcs, 2944 DRM_MODE_CONNECTOR_HDMIA, 2945 ddc); 2946 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); 2947 2948 connector->interlace_allowed = 1; 2949 connector->doublescan_allowed = 0; 2950 connector->stereo_allowed = 1; 2951 2952 if (DISPLAY_VER(dev_priv) >= 10) 2953 connector->ycbcr_420_allowed = true; 2954 2955 intel_connector->polled = DRM_CONNECTOR_POLL_HPD; 2956 2957 if (HAS_DDI(dev_priv)) 2958 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 2959 else 2960 intel_connector->get_hw_state = intel_connector_get_hw_state; 2961 2962 intel_hdmi_add_properties(intel_hdmi, connector); 2963 2964 intel_connector_attach_encoder(intel_connector, intel_encoder); 2965 intel_hdmi->attached_connector = intel_connector; 2966 2967 if (is_hdcp_supported(dev_priv, port)) { 2968 int ret = intel_hdcp_init(intel_connector, dig_port, 2969 &intel_hdmi_hdcp_shim); 2970 if (ret) 2971 drm_dbg_kms(&dev_priv->drm, 2972 "HDCP init failed, skipping.\n"); 2973 } 2974 2975 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 2976 * 0xd. Failure to do so will result in spurious interrupts being 2977 * generated on the port when a cable is not attached. 2978 */ 2979 if (IS_G45(dev_priv)) { 2980 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); 2981 intel_de_write(dev_priv, PEG_BAND_GAP_DATA, 2982 (temp & ~0xf) | 0xd); 2983 } 2984 2985 cec_fill_conn_info_from_drm(&conn_info, connector); 2986 2987 intel_hdmi->cec_notifier = 2988 cec_notifier_conn_register(dev->dev, port_identifier(port), 2989 &conn_info); 2990 if (!intel_hdmi->cec_notifier) 2991 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n"); 2992 } 2993 2994 /* 2995 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height 2996 * @vactive: Vactive of a display mode 2997 * 2998 * @return: appropriate dsc slice height for a given mode. 2999 */ 3000 int intel_hdmi_dsc_get_slice_height(int vactive) 3001 { 3002 int slice_height; 3003 3004 /* 3005 * Slice Height determination : HDMI2.1 Section 7.7.5.2 3006 * Select smallest slice height >=96, that results in a valid PPS and 3007 * requires minimum padding lines required for final slice. 3008 * 3009 * Assumption : Vactive is even. 3010 */ 3011 for (slice_height = 96; slice_height <= vactive; slice_height += 2) 3012 if (vactive % slice_height == 0) 3013 return slice_height; 3014 3015 return 0; 3016 } 3017 3018 /* 3019 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder 3020 * and dsc decoder capabilities 3021 * 3022 * @crtc_state: intel crtc_state 3023 * @src_max_slices: maximum slices supported by the DSC encoder 3024 * @src_max_slice_width: maximum slice width supported by DSC encoder 3025 * @hdmi_max_slices: maximum slices supported by sink DSC decoder 3026 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink 3027 * 3028 * @return: num of dsc slices that can be supported by the dsc encoder 3029 * and decoder. 3030 */ 3031 int 3032 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state, 3033 int src_max_slices, int src_max_slice_width, 3034 int hdmi_max_slices, int hdmi_throughput) 3035 { 3036 /* Pixel rates in KPixels/sec */ 3037 #define HDMI_DSC_PEAK_PIXEL_RATE 2720000 3038 /* 3039 * Rates at which the source and sink are required to process pixels in each 3040 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz. 3041 */ 3042 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0 340000 3043 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1 400000 3044 3045 /* Spec limits the slice width to 2720 pixels */ 3046 #define MAX_HDMI_SLICE_WIDTH 2720 3047 int kslice_adjust; 3048 int adjusted_clk_khz; 3049 int min_slices; 3050 int target_slices; 3051 int max_throughput; /* max clock freq. in khz per slice */ 3052 int max_slice_width; 3053 int slice_width; 3054 int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock; 3055 3056 if (!hdmi_throughput) 3057 return 0; 3058 3059 /* 3060 * Slice Width determination : HDMI2.1 Section 7.7.5.1 3061 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as 3062 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later 3063 * dividing adjusted clock value by 10. 3064 */ 3065 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || 3066 crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 3067 kslice_adjust = 10; 3068 else 3069 kslice_adjust = 5; 3070 3071 /* 3072 * As per spec, the rate at which the source and the sink process 3073 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz. 3074 * This depends upon the pixel clock rate and output formats 3075 * (kslice adjust). 3076 * If pixel clock * kslice adjust >= 2720MHz slices can be processed 3077 * at max 340MHz, otherwise they can be processed at max 400MHz. 3078 */ 3079 3080 adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10); 3081 3082 if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE) 3083 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0; 3084 else 3085 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1; 3086 3087 /* 3088 * Taking into account the sink's capability for maximum 3089 * clock per slice (in MHz) as read from HF-VSDB. 3090 */ 3091 max_throughput = min(max_throughput, hdmi_throughput * 1000); 3092 3093 min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput); 3094 max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width); 3095 3096 /* 3097 * Keep on increasing the num of slices/line, starting from min_slices 3098 * per line till we get such a number, for which the slice_width is 3099 * just less than max_slice_width. The slices/line selected should be 3100 * less than or equal to the max horizontal slices that the combination 3101 * of PCON encoder and HDMI decoder can support. 3102 */ 3103 slice_width = max_slice_width; 3104 3105 do { 3106 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1) 3107 target_slices = 1; 3108 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2) 3109 target_slices = 2; 3110 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4) 3111 target_slices = 4; 3112 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8) 3113 target_slices = 8; 3114 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12) 3115 target_slices = 12; 3116 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16) 3117 target_slices = 16; 3118 else 3119 return 0; 3120 3121 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices); 3122 if (slice_width >= max_slice_width) 3123 min_slices = target_slices + 1; 3124 } while (slice_width >= max_slice_width); 3125 3126 return target_slices; 3127 } 3128 3129 /* 3130 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on 3131 * source and sink capabilities. 3132 * 3133 * @src_fraction_bpp: fractional bpp supported by the source 3134 * @slice_width: dsc slice width supported by the source and sink 3135 * @num_slices: num of slices supported by the source and sink 3136 * @output_format: video output format 3137 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting 3138 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink 3139 * 3140 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel 3141 */ 3142 int 3143 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices, 3144 int output_format, bool hdmi_all_bpp, 3145 int hdmi_max_chunk_bytes) 3146 { 3147 int max_dsc_bpp, min_dsc_bpp; 3148 int target_bytes; 3149 bool bpp_found = false; 3150 int bpp_decrement_x16; 3151 int bpp_target; 3152 int bpp_target_x16; 3153 3154 /* 3155 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec 3156 * Start with the max bpp and keep on decrementing with 3157 * fractional bpp, if supported by PCON DSC encoder 3158 * 3159 * for each bpp we check if no of bytes can be supported by HDMI sink 3160 */ 3161 3162 /* Assuming: bpc as 8*/ 3163 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { 3164 min_dsc_bpp = 6; 3165 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */ 3166 } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || 3167 output_format == INTEL_OUTPUT_FORMAT_RGB) { 3168 min_dsc_bpp = 8; 3169 max_dsc_bpp = 3 * 8; /* 3*bpc */ 3170 } else { 3171 /* Assuming 4:2:2 encoding */ 3172 min_dsc_bpp = 7; 3173 max_dsc_bpp = 2 * 8; /* 2*bpc */ 3174 } 3175 3176 /* 3177 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink 3178 * Section 7.7.34 : Source shall not enable compressed Video 3179 * Transport with bpp_target settings above 12 bpp unless 3180 * DSC_all_bpp is set to 1. 3181 */ 3182 if (!hdmi_all_bpp) 3183 max_dsc_bpp = min(max_dsc_bpp, 12); 3184 3185 /* 3186 * The Sink has a limit of compressed data in bytes for a scanline, 3187 * as described in max_chunk_bytes field in HFVSDB block of edid. 3188 * The no. of bytes depend on the target bits per pixel that the 3189 * source configures. So we start with the max_bpp and calculate 3190 * the target_chunk_bytes. We keep on decrementing the target_bpp, 3191 * till we get the target_chunk_bytes just less than what the sink's 3192 * max_chunk_bytes, or else till we reach the min_dsc_bpp. 3193 * 3194 * The decrement is according to the fractional support from PCON DSC 3195 * encoder. For fractional BPP we use bpp_target as a multiple of 16. 3196 * 3197 * bpp_target_x16 = bpp_target * 16 3198 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps 3199 * {1/16, 1/8, 1/4, 1/2, 1} respectively. 3200 */ 3201 3202 bpp_target = max_dsc_bpp; 3203 3204 /* src does not support fractional bpp implies decrement by 16 for bppx16 */ 3205 if (!src_fractional_bpp) 3206 src_fractional_bpp = 1; 3207 bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp); 3208 bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16; 3209 3210 while (bpp_target_x16 > (min_dsc_bpp * 16)) { 3211 int bpp; 3212 3213 bpp = DIV_ROUND_UP(bpp_target_x16, 16); 3214 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8); 3215 if (target_bytes <= hdmi_max_chunk_bytes) { 3216 bpp_found = true; 3217 break; 3218 } 3219 bpp_target_x16 -= bpp_decrement_x16; 3220 } 3221 if (bpp_found) 3222 return bpp_target_x16; 3223 3224 return 0; 3225 } 3226