1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34 
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/intel_lpe_audio.h>
42 
43 #include "i915_debugfs.h"
44 #include "i915_drv.h"
45 #include "intel_atomic.h"
46 #include "intel_connector.h"
47 #include "intel_ddi.h"
48 #include "intel_de.h"
49 #include "intel_display_types.h"
50 #include "intel_dp.h"
51 #include "intel_gmbus.h"
52 #include "intel_hdcp.h"
53 #include "intel_hdmi.h"
54 #include "intel_lspcon.h"
55 #include "intel_panel.h"
56 #include "intel_snps_phy.h"
57 
58 static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
59 {
60 	return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
61 }
62 
63 static void
64 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
65 {
66 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
67 	u32 enabled_bits;
68 
69 	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
70 
71 	drm_WARN(&dev_priv->drm,
72 		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
73 		 "HDMI port enabled, expecting disabled\n");
74 }
75 
76 static void
77 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
78 				     enum transcoder cpu_transcoder)
79 {
80 	drm_WARN(&dev_priv->drm,
81 		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
82 		 TRANS_DDI_FUNC_ENABLE,
83 		 "HDMI transcoder function enabled, expecting disabled\n");
84 }
85 
86 static u32 g4x_infoframe_index(unsigned int type)
87 {
88 	switch (type) {
89 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
90 		return VIDEO_DIP_SELECT_GAMUT;
91 	case HDMI_INFOFRAME_TYPE_AVI:
92 		return VIDEO_DIP_SELECT_AVI;
93 	case HDMI_INFOFRAME_TYPE_SPD:
94 		return VIDEO_DIP_SELECT_SPD;
95 	case HDMI_INFOFRAME_TYPE_VENDOR:
96 		return VIDEO_DIP_SELECT_VENDOR;
97 	default:
98 		MISSING_CASE(type);
99 		return 0;
100 	}
101 }
102 
103 static u32 g4x_infoframe_enable(unsigned int type)
104 {
105 	switch (type) {
106 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
107 		return VIDEO_DIP_ENABLE_GCP;
108 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
109 		return VIDEO_DIP_ENABLE_GAMUT;
110 	case DP_SDP_VSC:
111 		return 0;
112 	case HDMI_INFOFRAME_TYPE_AVI:
113 		return VIDEO_DIP_ENABLE_AVI;
114 	case HDMI_INFOFRAME_TYPE_SPD:
115 		return VIDEO_DIP_ENABLE_SPD;
116 	case HDMI_INFOFRAME_TYPE_VENDOR:
117 		return VIDEO_DIP_ENABLE_VENDOR;
118 	case HDMI_INFOFRAME_TYPE_DRM:
119 		return 0;
120 	default:
121 		MISSING_CASE(type);
122 		return 0;
123 	}
124 }
125 
126 static u32 hsw_infoframe_enable(unsigned int type)
127 {
128 	switch (type) {
129 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
130 		return VIDEO_DIP_ENABLE_GCP_HSW;
131 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
132 		return VIDEO_DIP_ENABLE_GMP_HSW;
133 	case DP_SDP_VSC:
134 		return VIDEO_DIP_ENABLE_VSC_HSW;
135 	case DP_SDP_PPS:
136 		return VDIP_ENABLE_PPS;
137 	case HDMI_INFOFRAME_TYPE_AVI:
138 		return VIDEO_DIP_ENABLE_AVI_HSW;
139 	case HDMI_INFOFRAME_TYPE_SPD:
140 		return VIDEO_DIP_ENABLE_SPD_HSW;
141 	case HDMI_INFOFRAME_TYPE_VENDOR:
142 		return VIDEO_DIP_ENABLE_VS_HSW;
143 	case HDMI_INFOFRAME_TYPE_DRM:
144 		return VIDEO_DIP_ENABLE_DRM_GLK;
145 	default:
146 		MISSING_CASE(type);
147 		return 0;
148 	}
149 }
150 
151 static i915_reg_t
152 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
153 		 enum transcoder cpu_transcoder,
154 		 unsigned int type,
155 		 int i)
156 {
157 	switch (type) {
158 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
159 		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
160 	case DP_SDP_VSC:
161 		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
162 	case DP_SDP_PPS:
163 		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
164 	case HDMI_INFOFRAME_TYPE_AVI:
165 		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
166 	case HDMI_INFOFRAME_TYPE_SPD:
167 		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
168 	case HDMI_INFOFRAME_TYPE_VENDOR:
169 		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
170 	case HDMI_INFOFRAME_TYPE_DRM:
171 		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
172 	default:
173 		MISSING_CASE(type);
174 		return INVALID_MMIO_REG;
175 	}
176 }
177 
178 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
179 			     unsigned int type)
180 {
181 	switch (type) {
182 	case DP_SDP_VSC:
183 		return VIDEO_DIP_VSC_DATA_SIZE;
184 	case DP_SDP_PPS:
185 		return VIDEO_DIP_PPS_DATA_SIZE;
186 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
187 		if (DISPLAY_VER(dev_priv) >= 11)
188 			return VIDEO_DIP_GMP_DATA_SIZE;
189 		else
190 			return VIDEO_DIP_DATA_SIZE;
191 	default:
192 		return VIDEO_DIP_DATA_SIZE;
193 	}
194 }
195 
196 static void g4x_write_infoframe(struct intel_encoder *encoder,
197 				const struct intel_crtc_state *crtc_state,
198 				unsigned int type,
199 				const void *frame, ssize_t len)
200 {
201 	const u32 *data = frame;
202 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
203 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
204 	int i;
205 
206 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
207 		 "Writing DIP with CTL reg disabled\n");
208 
209 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
210 	val |= g4x_infoframe_index(type);
211 
212 	val &= ~g4x_infoframe_enable(type);
213 
214 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
215 
216 	for (i = 0; i < len; i += 4) {
217 		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
218 		data++;
219 	}
220 	/* Write every possible data byte to force correct ECC calculation. */
221 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
222 		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
223 
224 	val |= g4x_infoframe_enable(type);
225 	val &= ~VIDEO_DIP_FREQ_MASK;
226 	val |= VIDEO_DIP_FREQ_VSYNC;
227 
228 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
229 	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
230 }
231 
232 static void g4x_read_infoframe(struct intel_encoder *encoder,
233 			       const struct intel_crtc_state *crtc_state,
234 			       unsigned int type,
235 			       void *frame, ssize_t len)
236 {
237 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
238 	u32 val, *data = frame;
239 	int i;
240 
241 	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
242 
243 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
244 	val |= g4x_infoframe_index(type);
245 
246 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
247 
248 	for (i = 0; i < len; i += 4)
249 		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
250 }
251 
252 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
253 				  const struct intel_crtc_state *pipe_config)
254 {
255 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
256 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
257 
258 	if ((val & VIDEO_DIP_ENABLE) == 0)
259 		return 0;
260 
261 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
262 		return 0;
263 
264 	return val & (VIDEO_DIP_ENABLE_AVI |
265 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
266 }
267 
268 static void ibx_write_infoframe(struct intel_encoder *encoder,
269 				const struct intel_crtc_state *crtc_state,
270 				unsigned int type,
271 				const void *frame, ssize_t len)
272 {
273 	const u32 *data = frame;
274 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
275 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
276 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
277 	u32 val = intel_de_read(dev_priv, reg);
278 	int i;
279 
280 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
281 		 "Writing DIP with CTL reg disabled\n");
282 
283 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
284 	val |= g4x_infoframe_index(type);
285 
286 	val &= ~g4x_infoframe_enable(type);
287 
288 	intel_de_write(dev_priv, reg, val);
289 
290 	for (i = 0; i < len; i += 4) {
291 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
292 			       *data);
293 		data++;
294 	}
295 	/* Write every possible data byte to force correct ECC calculation. */
296 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
297 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
298 
299 	val |= g4x_infoframe_enable(type);
300 	val &= ~VIDEO_DIP_FREQ_MASK;
301 	val |= VIDEO_DIP_FREQ_VSYNC;
302 
303 	intel_de_write(dev_priv, reg, val);
304 	intel_de_posting_read(dev_priv, reg);
305 }
306 
307 static void ibx_read_infoframe(struct intel_encoder *encoder,
308 			       const struct intel_crtc_state *crtc_state,
309 			       unsigned int type,
310 			       void *frame, ssize_t len)
311 {
312 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
313 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
314 	u32 val, *data = frame;
315 	int i;
316 
317 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
318 
319 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
320 	val |= g4x_infoframe_index(type);
321 
322 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
323 
324 	for (i = 0; i < len; i += 4)
325 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
326 }
327 
328 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
329 				  const struct intel_crtc_state *pipe_config)
330 {
331 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
332 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
333 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
334 	u32 val = intel_de_read(dev_priv, reg);
335 
336 	if ((val & VIDEO_DIP_ENABLE) == 0)
337 		return 0;
338 
339 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
340 		return 0;
341 
342 	return val & (VIDEO_DIP_ENABLE_AVI |
343 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
344 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
345 }
346 
347 static void cpt_write_infoframe(struct intel_encoder *encoder,
348 				const struct intel_crtc_state *crtc_state,
349 				unsigned int type,
350 				const void *frame, ssize_t len)
351 {
352 	const u32 *data = frame;
353 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
354 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
355 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
356 	u32 val = intel_de_read(dev_priv, reg);
357 	int i;
358 
359 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
360 		 "Writing DIP with CTL reg disabled\n");
361 
362 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
363 	val |= g4x_infoframe_index(type);
364 
365 	/* The DIP control register spec says that we need to update the AVI
366 	 * infoframe without clearing its enable bit */
367 	if (type != HDMI_INFOFRAME_TYPE_AVI)
368 		val &= ~g4x_infoframe_enable(type);
369 
370 	intel_de_write(dev_priv, reg, val);
371 
372 	for (i = 0; i < len; i += 4) {
373 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
374 			       *data);
375 		data++;
376 	}
377 	/* Write every possible data byte to force correct ECC calculation. */
378 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
379 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
380 
381 	val |= g4x_infoframe_enable(type);
382 	val &= ~VIDEO_DIP_FREQ_MASK;
383 	val |= VIDEO_DIP_FREQ_VSYNC;
384 
385 	intel_de_write(dev_priv, reg, val);
386 	intel_de_posting_read(dev_priv, reg);
387 }
388 
389 static void cpt_read_infoframe(struct intel_encoder *encoder,
390 			       const struct intel_crtc_state *crtc_state,
391 			       unsigned int type,
392 			       void *frame, ssize_t len)
393 {
394 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
395 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
396 	u32 val, *data = frame;
397 	int i;
398 
399 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
400 
401 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
402 	val |= g4x_infoframe_index(type);
403 
404 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
405 
406 	for (i = 0; i < len; i += 4)
407 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
408 }
409 
410 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
411 				  const struct intel_crtc_state *pipe_config)
412 {
413 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
414 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
415 	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
416 
417 	if ((val & VIDEO_DIP_ENABLE) == 0)
418 		return 0;
419 
420 	return val & (VIDEO_DIP_ENABLE_AVI |
421 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
422 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
423 }
424 
425 static void vlv_write_infoframe(struct intel_encoder *encoder,
426 				const struct intel_crtc_state *crtc_state,
427 				unsigned int type,
428 				const void *frame, ssize_t len)
429 {
430 	const u32 *data = frame;
431 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
432 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
433 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
434 	u32 val = intel_de_read(dev_priv, reg);
435 	int i;
436 
437 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
438 		 "Writing DIP with CTL reg disabled\n");
439 
440 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
441 	val |= g4x_infoframe_index(type);
442 
443 	val &= ~g4x_infoframe_enable(type);
444 
445 	intel_de_write(dev_priv, reg, val);
446 
447 	for (i = 0; i < len; i += 4) {
448 		intel_de_write(dev_priv,
449 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
450 		data++;
451 	}
452 	/* Write every possible data byte to force correct ECC calculation. */
453 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
454 		intel_de_write(dev_priv,
455 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
456 
457 	val |= g4x_infoframe_enable(type);
458 	val &= ~VIDEO_DIP_FREQ_MASK;
459 	val |= VIDEO_DIP_FREQ_VSYNC;
460 
461 	intel_de_write(dev_priv, reg, val);
462 	intel_de_posting_read(dev_priv, reg);
463 }
464 
465 static void vlv_read_infoframe(struct intel_encoder *encoder,
466 			       const struct intel_crtc_state *crtc_state,
467 			       unsigned int type,
468 			       void *frame, ssize_t len)
469 {
470 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
471 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
472 	u32 val, *data = frame;
473 	int i;
474 
475 	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
476 
477 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
478 	val |= g4x_infoframe_index(type);
479 
480 	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
481 
482 	for (i = 0; i < len; i += 4)
483 		*data++ = intel_de_read(dev_priv,
484 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
485 }
486 
487 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
488 				  const struct intel_crtc_state *pipe_config)
489 {
490 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
491 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
492 	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
493 
494 	if ((val & VIDEO_DIP_ENABLE) == 0)
495 		return 0;
496 
497 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
498 		return 0;
499 
500 	return val & (VIDEO_DIP_ENABLE_AVI |
501 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
502 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
503 }
504 
505 void hsw_write_infoframe(struct intel_encoder *encoder,
506 			 const struct intel_crtc_state *crtc_state,
507 			 unsigned int type,
508 			 const void *frame, ssize_t len)
509 {
510 	const u32 *data = frame;
511 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
512 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
513 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
514 	int data_size;
515 	int i;
516 	u32 val = intel_de_read(dev_priv, ctl_reg);
517 
518 	data_size = hsw_dip_data_size(dev_priv, type);
519 
520 	drm_WARN_ON(&dev_priv->drm, len > data_size);
521 
522 	val &= ~hsw_infoframe_enable(type);
523 	intel_de_write(dev_priv, ctl_reg, val);
524 
525 	for (i = 0; i < len; i += 4) {
526 		intel_de_write(dev_priv,
527 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
528 			       *data);
529 		data++;
530 	}
531 	/* Write every possible data byte to force correct ECC calculation. */
532 	for (; i < data_size; i += 4)
533 		intel_de_write(dev_priv,
534 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
535 			       0);
536 
537 	/* Wa_14013475917 */
538 	if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
539 	    type == DP_SDP_VSC)
540 		return;
541 
542 	val |= hsw_infoframe_enable(type);
543 	intel_de_write(dev_priv, ctl_reg, val);
544 	intel_de_posting_read(dev_priv, ctl_reg);
545 }
546 
547 void hsw_read_infoframe(struct intel_encoder *encoder,
548 			const struct intel_crtc_state *crtc_state,
549 			unsigned int type, void *frame, ssize_t len)
550 {
551 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
552 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
553 	u32 *data = frame;
554 	int i;
555 
556 	for (i = 0; i < len; i += 4)
557 		*data++ = intel_de_read(dev_priv,
558 				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
559 }
560 
561 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
562 				  const struct intel_crtc_state *pipe_config)
563 {
564 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
565 	u32 val = intel_de_read(dev_priv,
566 				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
567 	u32 mask;
568 
569 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
570 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
571 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
572 
573 	if (DISPLAY_VER(dev_priv) >= 10)
574 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
575 
576 	return val & mask;
577 }
578 
579 static const u8 infoframe_type_to_idx[] = {
580 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
581 	HDMI_PACKET_TYPE_GAMUT_METADATA,
582 	DP_SDP_VSC,
583 	HDMI_INFOFRAME_TYPE_AVI,
584 	HDMI_INFOFRAME_TYPE_SPD,
585 	HDMI_INFOFRAME_TYPE_VENDOR,
586 	HDMI_INFOFRAME_TYPE_DRM,
587 };
588 
589 u32 intel_hdmi_infoframe_enable(unsigned int type)
590 {
591 	int i;
592 
593 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
594 		if (infoframe_type_to_idx[i] == type)
595 			return BIT(i);
596 	}
597 
598 	return 0;
599 }
600 
601 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
602 				  const struct intel_crtc_state *crtc_state)
603 {
604 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
605 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
606 	u32 val, ret = 0;
607 	int i;
608 
609 	val = dig_port->infoframes_enabled(encoder, crtc_state);
610 
611 	/* map from hardware bits to dip idx */
612 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
613 		unsigned int type = infoframe_type_to_idx[i];
614 
615 		if (HAS_DDI(dev_priv)) {
616 			if (val & hsw_infoframe_enable(type))
617 				ret |= BIT(i);
618 		} else {
619 			if (val & g4x_infoframe_enable(type))
620 				ret |= BIT(i);
621 		}
622 	}
623 
624 	return ret;
625 }
626 
627 /*
628  * The data we write to the DIP data buffer registers is 1 byte bigger than the
629  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
630  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
631  * used for both technologies.
632  *
633  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
634  * DW1:       DB3       | DB2 | DB1 | DB0
635  * DW2:       DB7       | DB6 | DB5 | DB4
636  * DW3: ...
637  *
638  * (HB is Header Byte, DB is Data Byte)
639  *
640  * The hdmi pack() functions don't know about that hardware specific hole so we
641  * trick them by giving an offset into the buffer and moving back the header
642  * bytes by one.
643  */
644 static void intel_write_infoframe(struct intel_encoder *encoder,
645 				  const struct intel_crtc_state *crtc_state,
646 				  enum hdmi_infoframe_type type,
647 				  const union hdmi_infoframe *frame)
648 {
649 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
650 	u8 buffer[VIDEO_DIP_DATA_SIZE];
651 	ssize_t len;
652 
653 	if ((crtc_state->infoframes.enable &
654 	     intel_hdmi_infoframe_enable(type)) == 0)
655 		return;
656 
657 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
658 		return;
659 
660 	/* see comment above for the reason for this offset */
661 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
662 	if (drm_WARN_ON(encoder->base.dev, len < 0))
663 		return;
664 
665 	/* Insert the 'hole' (see big comment above) at position 3 */
666 	memmove(&buffer[0], &buffer[1], 3);
667 	buffer[3] = 0;
668 	len++;
669 
670 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
671 }
672 
673 void intel_read_infoframe(struct intel_encoder *encoder,
674 			  const struct intel_crtc_state *crtc_state,
675 			  enum hdmi_infoframe_type type,
676 			  union hdmi_infoframe *frame)
677 {
678 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
679 	u8 buffer[VIDEO_DIP_DATA_SIZE];
680 	int ret;
681 
682 	if ((crtc_state->infoframes.enable &
683 	     intel_hdmi_infoframe_enable(type)) == 0)
684 		return;
685 
686 	dig_port->read_infoframe(encoder, crtc_state,
687 				       type, buffer, sizeof(buffer));
688 
689 	/* Fill the 'hole' (see big comment above) at position 3 */
690 	memmove(&buffer[1], &buffer[0], 3);
691 
692 	/* see comment above for the reason for this offset */
693 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
694 	if (ret) {
695 		drm_dbg_kms(encoder->base.dev,
696 			    "Failed to unpack infoframe type 0x%02x\n", type);
697 		return;
698 	}
699 
700 	if (frame->any.type != type)
701 		drm_dbg_kms(encoder->base.dev,
702 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
703 			    frame->any.type, type);
704 }
705 
706 static bool
707 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
708 				 struct intel_crtc_state *crtc_state,
709 				 struct drm_connector_state *conn_state)
710 {
711 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
712 	const struct drm_display_mode *adjusted_mode =
713 		&crtc_state->hw.adjusted_mode;
714 	struct drm_connector *connector = conn_state->connector;
715 	int ret;
716 
717 	if (!crtc_state->has_infoframe)
718 		return true;
719 
720 	crtc_state->infoframes.enable |=
721 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
722 
723 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
724 						       adjusted_mode);
725 	if (ret)
726 		return false;
727 
728 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
729 		frame->colorspace = HDMI_COLORSPACE_YUV420;
730 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
731 		frame->colorspace = HDMI_COLORSPACE_YUV444;
732 	else
733 		frame->colorspace = HDMI_COLORSPACE_RGB;
734 
735 	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
736 
737 	/* nonsense combination */
738 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
739 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
740 
741 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
742 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
743 						   adjusted_mode,
744 						   crtc_state->limited_color_range ?
745 						   HDMI_QUANTIZATION_RANGE_LIMITED :
746 						   HDMI_QUANTIZATION_RANGE_FULL);
747 	} else {
748 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
749 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
750 	}
751 
752 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
753 
754 	/* TODO: handle pixel repetition for YCBCR420 outputs */
755 
756 	ret = hdmi_avi_infoframe_check(frame);
757 	if (drm_WARN_ON(encoder->base.dev, ret))
758 		return false;
759 
760 	return true;
761 }
762 
763 static bool
764 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
765 				 struct intel_crtc_state *crtc_state,
766 				 struct drm_connector_state *conn_state)
767 {
768 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
769 	int ret;
770 
771 	if (!crtc_state->has_infoframe)
772 		return true;
773 
774 	crtc_state->infoframes.enable |=
775 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
776 
777 	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
778 	if (drm_WARN_ON(encoder->base.dev, ret))
779 		return false;
780 
781 	frame->sdi = HDMI_SPD_SDI_PC;
782 
783 	ret = hdmi_spd_infoframe_check(frame);
784 	if (drm_WARN_ON(encoder->base.dev, ret))
785 		return false;
786 
787 	return true;
788 }
789 
790 static bool
791 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
792 				  struct intel_crtc_state *crtc_state,
793 				  struct drm_connector_state *conn_state)
794 {
795 	struct hdmi_vendor_infoframe *frame =
796 		&crtc_state->infoframes.hdmi.vendor.hdmi;
797 	const struct drm_display_info *info =
798 		&conn_state->connector->display_info;
799 	int ret;
800 
801 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
802 		return true;
803 
804 	crtc_state->infoframes.enable |=
805 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
806 
807 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
808 							  conn_state->connector,
809 							  &crtc_state->hw.adjusted_mode);
810 	if (drm_WARN_ON(encoder->base.dev, ret))
811 		return false;
812 
813 	ret = hdmi_vendor_infoframe_check(frame);
814 	if (drm_WARN_ON(encoder->base.dev, ret))
815 		return false;
816 
817 	return true;
818 }
819 
820 static bool
821 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
822 				 struct intel_crtc_state *crtc_state,
823 				 struct drm_connector_state *conn_state)
824 {
825 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
826 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
827 	int ret;
828 
829 	if (DISPLAY_VER(dev_priv) < 10)
830 		return true;
831 
832 	if (!crtc_state->has_infoframe)
833 		return true;
834 
835 	if (!conn_state->hdr_output_metadata)
836 		return true;
837 
838 	crtc_state->infoframes.enable |=
839 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
840 
841 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
842 	if (ret < 0) {
843 		drm_dbg_kms(&dev_priv->drm,
844 			    "couldn't set HDR metadata in infoframe\n");
845 		return false;
846 	}
847 
848 	ret = hdmi_drm_infoframe_check(frame);
849 	if (drm_WARN_ON(&dev_priv->drm, ret))
850 		return false;
851 
852 	return true;
853 }
854 
855 static void g4x_set_infoframes(struct intel_encoder *encoder,
856 			       bool enable,
857 			       const struct intel_crtc_state *crtc_state,
858 			       const struct drm_connector_state *conn_state)
859 {
860 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
861 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
862 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
863 	i915_reg_t reg = VIDEO_DIP_CTL;
864 	u32 val = intel_de_read(dev_priv, reg);
865 	u32 port = VIDEO_DIP_PORT(encoder->port);
866 
867 	assert_hdmi_port_disabled(intel_hdmi);
868 
869 	/* If the registers were not initialized yet, they might be zeroes,
870 	 * which means we're selecting the AVI DIP and we're setting its
871 	 * frequency to once. This seems to really confuse the HW and make
872 	 * things stop working (the register spec says the AVI always needs to
873 	 * be sent every VSync). So here we avoid writing to the register more
874 	 * than we need and also explicitly select the AVI DIP and explicitly
875 	 * set its frequency to every VSync. Avoiding to write it twice seems to
876 	 * be enough to solve the problem, but being defensive shouldn't hurt us
877 	 * either. */
878 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
879 
880 	if (!enable) {
881 		if (!(val & VIDEO_DIP_ENABLE))
882 			return;
883 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
884 			drm_dbg_kms(&dev_priv->drm,
885 				    "video DIP still enabled on port %c\n",
886 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
887 			return;
888 		}
889 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
890 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
891 		intel_de_write(dev_priv, reg, val);
892 		intel_de_posting_read(dev_priv, reg);
893 		return;
894 	}
895 
896 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
897 		if (val & VIDEO_DIP_ENABLE) {
898 			drm_dbg_kms(&dev_priv->drm,
899 				    "video DIP already enabled on port %c\n",
900 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
901 			return;
902 		}
903 		val &= ~VIDEO_DIP_PORT_MASK;
904 		val |= port;
905 	}
906 
907 	val |= VIDEO_DIP_ENABLE;
908 	val &= ~(VIDEO_DIP_ENABLE_AVI |
909 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
910 
911 	intel_de_write(dev_priv, reg, val);
912 	intel_de_posting_read(dev_priv, reg);
913 
914 	intel_write_infoframe(encoder, crtc_state,
915 			      HDMI_INFOFRAME_TYPE_AVI,
916 			      &crtc_state->infoframes.avi);
917 	intel_write_infoframe(encoder, crtc_state,
918 			      HDMI_INFOFRAME_TYPE_SPD,
919 			      &crtc_state->infoframes.spd);
920 	intel_write_infoframe(encoder, crtc_state,
921 			      HDMI_INFOFRAME_TYPE_VENDOR,
922 			      &crtc_state->infoframes.hdmi);
923 }
924 
925 /*
926  * Determine if default_phase=1 can be indicated in the GCP infoframe.
927  *
928  * From HDMI specification 1.4a:
929  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
930  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
931  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
932  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
933  *   phase of 0
934  */
935 static bool gcp_default_phase_possible(int pipe_bpp,
936 				       const struct drm_display_mode *mode)
937 {
938 	unsigned int pixels_per_group;
939 
940 	switch (pipe_bpp) {
941 	case 30:
942 		/* 4 pixels in 5 clocks */
943 		pixels_per_group = 4;
944 		break;
945 	case 36:
946 		/* 2 pixels in 3 clocks */
947 		pixels_per_group = 2;
948 		break;
949 	case 48:
950 		/* 1 pixel in 2 clocks */
951 		pixels_per_group = 1;
952 		break;
953 	default:
954 		/* phase information not relevant for 8bpc */
955 		return false;
956 	}
957 
958 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
959 		mode->crtc_htotal % pixels_per_group == 0 &&
960 		mode->crtc_hblank_start % pixels_per_group == 0 &&
961 		mode->crtc_hblank_end % pixels_per_group == 0 &&
962 		mode->crtc_hsync_start % pixels_per_group == 0 &&
963 		mode->crtc_hsync_end % pixels_per_group == 0 &&
964 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
965 		 mode->crtc_htotal/2 % pixels_per_group == 0);
966 }
967 
968 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
969 					 const struct intel_crtc_state *crtc_state,
970 					 const struct drm_connector_state *conn_state)
971 {
972 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
973 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
974 	i915_reg_t reg;
975 
976 	if ((crtc_state->infoframes.enable &
977 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
978 		return false;
979 
980 	if (HAS_DDI(dev_priv))
981 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
982 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
983 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
984 	else if (HAS_PCH_SPLIT(dev_priv))
985 		reg = TVIDEO_DIP_GCP(crtc->pipe);
986 	else
987 		return false;
988 
989 	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
990 
991 	return true;
992 }
993 
994 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
995 				   struct intel_crtc_state *crtc_state)
996 {
997 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
998 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
999 	i915_reg_t reg;
1000 
1001 	if ((crtc_state->infoframes.enable &
1002 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1003 		return;
1004 
1005 	if (HAS_DDI(dev_priv))
1006 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1007 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1008 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1009 	else if (HAS_PCH_SPLIT(dev_priv))
1010 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1011 	else
1012 		return;
1013 
1014 	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1015 }
1016 
1017 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1018 					     struct intel_crtc_state *crtc_state,
1019 					     struct drm_connector_state *conn_state)
1020 {
1021 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1022 
1023 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1024 		return;
1025 
1026 	crtc_state->infoframes.enable |=
1027 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1028 
1029 	/* Indicate color indication for deep color mode */
1030 	if (crtc_state->pipe_bpp > 24)
1031 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1032 
1033 	/* Enable default_phase whenever the display mode is suitably aligned */
1034 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1035 				       &crtc_state->hw.adjusted_mode))
1036 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1037 }
1038 
1039 static void ibx_set_infoframes(struct intel_encoder *encoder,
1040 			       bool enable,
1041 			       const struct intel_crtc_state *crtc_state,
1042 			       const struct drm_connector_state *conn_state)
1043 {
1044 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1045 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1046 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1047 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1048 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1049 	u32 val = intel_de_read(dev_priv, reg);
1050 	u32 port = VIDEO_DIP_PORT(encoder->port);
1051 
1052 	assert_hdmi_port_disabled(intel_hdmi);
1053 
1054 	/* See the big comment in g4x_set_infoframes() */
1055 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1056 
1057 	if (!enable) {
1058 		if (!(val & VIDEO_DIP_ENABLE))
1059 			return;
1060 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1061 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1062 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1063 		intel_de_write(dev_priv, reg, val);
1064 		intel_de_posting_read(dev_priv, reg);
1065 		return;
1066 	}
1067 
1068 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1069 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1070 			 "DIP already enabled on port %c\n",
1071 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1072 		val &= ~VIDEO_DIP_PORT_MASK;
1073 		val |= port;
1074 	}
1075 
1076 	val |= VIDEO_DIP_ENABLE;
1077 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1078 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1079 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1080 
1081 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1082 		val |= VIDEO_DIP_ENABLE_GCP;
1083 
1084 	intel_de_write(dev_priv, reg, val);
1085 	intel_de_posting_read(dev_priv, reg);
1086 
1087 	intel_write_infoframe(encoder, crtc_state,
1088 			      HDMI_INFOFRAME_TYPE_AVI,
1089 			      &crtc_state->infoframes.avi);
1090 	intel_write_infoframe(encoder, crtc_state,
1091 			      HDMI_INFOFRAME_TYPE_SPD,
1092 			      &crtc_state->infoframes.spd);
1093 	intel_write_infoframe(encoder, crtc_state,
1094 			      HDMI_INFOFRAME_TYPE_VENDOR,
1095 			      &crtc_state->infoframes.hdmi);
1096 }
1097 
1098 static void cpt_set_infoframes(struct intel_encoder *encoder,
1099 			       bool enable,
1100 			       const struct intel_crtc_state *crtc_state,
1101 			       const struct drm_connector_state *conn_state)
1102 {
1103 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1104 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1105 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1106 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1107 	u32 val = intel_de_read(dev_priv, reg);
1108 
1109 	assert_hdmi_port_disabled(intel_hdmi);
1110 
1111 	/* See the big comment in g4x_set_infoframes() */
1112 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1113 
1114 	if (!enable) {
1115 		if (!(val & VIDEO_DIP_ENABLE))
1116 			return;
1117 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1118 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1119 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1120 		intel_de_write(dev_priv, reg, val);
1121 		intel_de_posting_read(dev_priv, reg);
1122 		return;
1123 	}
1124 
1125 	/* Set both together, unset both together: see the spec. */
1126 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1127 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1128 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1129 
1130 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1131 		val |= VIDEO_DIP_ENABLE_GCP;
1132 
1133 	intel_de_write(dev_priv, reg, val);
1134 	intel_de_posting_read(dev_priv, reg);
1135 
1136 	intel_write_infoframe(encoder, crtc_state,
1137 			      HDMI_INFOFRAME_TYPE_AVI,
1138 			      &crtc_state->infoframes.avi);
1139 	intel_write_infoframe(encoder, crtc_state,
1140 			      HDMI_INFOFRAME_TYPE_SPD,
1141 			      &crtc_state->infoframes.spd);
1142 	intel_write_infoframe(encoder, crtc_state,
1143 			      HDMI_INFOFRAME_TYPE_VENDOR,
1144 			      &crtc_state->infoframes.hdmi);
1145 }
1146 
1147 static void vlv_set_infoframes(struct intel_encoder *encoder,
1148 			       bool enable,
1149 			       const struct intel_crtc_state *crtc_state,
1150 			       const struct drm_connector_state *conn_state)
1151 {
1152 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1153 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1154 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1155 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1156 	u32 val = intel_de_read(dev_priv, reg);
1157 	u32 port = VIDEO_DIP_PORT(encoder->port);
1158 
1159 	assert_hdmi_port_disabled(intel_hdmi);
1160 
1161 	/* See the big comment in g4x_set_infoframes() */
1162 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1163 
1164 	if (!enable) {
1165 		if (!(val & VIDEO_DIP_ENABLE))
1166 			return;
1167 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1168 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1169 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1170 		intel_de_write(dev_priv, reg, val);
1171 		intel_de_posting_read(dev_priv, reg);
1172 		return;
1173 	}
1174 
1175 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1176 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1177 			 "DIP already enabled on port %c\n",
1178 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1179 		val &= ~VIDEO_DIP_PORT_MASK;
1180 		val |= port;
1181 	}
1182 
1183 	val |= VIDEO_DIP_ENABLE;
1184 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1185 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1186 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1187 
1188 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1189 		val |= VIDEO_DIP_ENABLE_GCP;
1190 
1191 	intel_de_write(dev_priv, reg, val);
1192 	intel_de_posting_read(dev_priv, reg);
1193 
1194 	intel_write_infoframe(encoder, crtc_state,
1195 			      HDMI_INFOFRAME_TYPE_AVI,
1196 			      &crtc_state->infoframes.avi);
1197 	intel_write_infoframe(encoder, crtc_state,
1198 			      HDMI_INFOFRAME_TYPE_SPD,
1199 			      &crtc_state->infoframes.spd);
1200 	intel_write_infoframe(encoder, crtc_state,
1201 			      HDMI_INFOFRAME_TYPE_VENDOR,
1202 			      &crtc_state->infoframes.hdmi);
1203 }
1204 
1205 static void hsw_set_infoframes(struct intel_encoder *encoder,
1206 			       bool enable,
1207 			       const struct intel_crtc_state *crtc_state,
1208 			       const struct drm_connector_state *conn_state)
1209 {
1210 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1211 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1212 	u32 val = intel_de_read(dev_priv, reg);
1213 
1214 	assert_hdmi_transcoder_func_disabled(dev_priv,
1215 					     crtc_state->cpu_transcoder);
1216 
1217 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1218 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1219 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1220 		 VIDEO_DIP_ENABLE_DRM_GLK);
1221 
1222 	if (!enable) {
1223 		intel_de_write(dev_priv, reg, val);
1224 		intel_de_posting_read(dev_priv, reg);
1225 		return;
1226 	}
1227 
1228 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1229 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1230 
1231 	intel_de_write(dev_priv, reg, val);
1232 	intel_de_posting_read(dev_priv, reg);
1233 
1234 	intel_write_infoframe(encoder, crtc_state,
1235 			      HDMI_INFOFRAME_TYPE_AVI,
1236 			      &crtc_state->infoframes.avi);
1237 	intel_write_infoframe(encoder, crtc_state,
1238 			      HDMI_INFOFRAME_TYPE_SPD,
1239 			      &crtc_state->infoframes.spd);
1240 	intel_write_infoframe(encoder, crtc_state,
1241 			      HDMI_INFOFRAME_TYPE_VENDOR,
1242 			      &crtc_state->infoframes.hdmi);
1243 	intel_write_infoframe(encoder, crtc_state,
1244 			      HDMI_INFOFRAME_TYPE_DRM,
1245 			      &crtc_state->infoframes.drm);
1246 }
1247 
1248 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1249 {
1250 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1251 	struct i2c_adapter *adapter;
1252 
1253 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1254 		return;
1255 
1256 	adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1257 
1258 	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1259 		    enable ? "Enabling" : "Disabling");
1260 
1261 	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1262 }
1263 
1264 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1265 				unsigned int offset, void *buffer, size_t size)
1266 {
1267 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1268 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1269 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1270 							      hdmi->ddc_bus);
1271 	int ret;
1272 	u8 start = offset & 0xff;
1273 	struct i2c_msg msgs[] = {
1274 		{
1275 			.addr = DRM_HDCP_DDC_ADDR,
1276 			.flags = 0,
1277 			.len = 1,
1278 			.buf = &start,
1279 		},
1280 		{
1281 			.addr = DRM_HDCP_DDC_ADDR,
1282 			.flags = I2C_M_RD,
1283 			.len = size,
1284 			.buf = buffer
1285 		}
1286 	};
1287 	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1288 	if (ret == ARRAY_SIZE(msgs))
1289 		return 0;
1290 	return ret >= 0 ? -EIO : ret;
1291 }
1292 
1293 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1294 				 unsigned int offset, void *buffer, size_t size)
1295 {
1296 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1297 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1298 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1299 							      hdmi->ddc_bus);
1300 	int ret;
1301 	u8 *write_buf;
1302 	struct i2c_msg msg;
1303 
1304 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1305 	if (!write_buf)
1306 		return -ENOMEM;
1307 
1308 	write_buf[0] = offset & 0xff;
1309 	memcpy(&write_buf[1], buffer, size);
1310 
1311 	msg.addr = DRM_HDCP_DDC_ADDR;
1312 	msg.flags = 0,
1313 	msg.len = size + 1,
1314 	msg.buf = write_buf;
1315 
1316 	ret = i2c_transfer(adapter, &msg, 1);
1317 	if (ret == 1)
1318 		ret = 0;
1319 	else if (ret >= 0)
1320 		ret = -EIO;
1321 
1322 	kfree(write_buf);
1323 	return ret;
1324 }
1325 
1326 static
1327 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1328 				  u8 *an)
1329 {
1330 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1331 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1332 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1333 							      hdmi->ddc_bus);
1334 	int ret;
1335 
1336 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1337 				    DRM_HDCP_AN_LEN);
1338 	if (ret) {
1339 		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1340 			    ret);
1341 		return ret;
1342 	}
1343 
1344 	ret = intel_gmbus_output_aksv(adapter);
1345 	if (ret < 0) {
1346 		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1347 		return ret;
1348 	}
1349 	return 0;
1350 }
1351 
1352 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1353 				     u8 *bksv)
1354 {
1355 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1356 
1357 	int ret;
1358 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1359 				   DRM_HDCP_KSV_LEN);
1360 	if (ret)
1361 		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1362 			    ret);
1363 	return ret;
1364 }
1365 
1366 static
1367 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1368 				 u8 *bstatus)
1369 {
1370 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1371 
1372 	int ret;
1373 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1374 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1375 	if (ret)
1376 		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1377 			    ret);
1378 	return ret;
1379 }
1380 
1381 static
1382 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1383 				     bool *repeater_present)
1384 {
1385 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1386 	int ret;
1387 	u8 val;
1388 
1389 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1390 	if (ret) {
1391 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1392 			    ret);
1393 		return ret;
1394 	}
1395 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1396 	return 0;
1397 }
1398 
1399 static
1400 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1401 				  u8 *ri_prime)
1402 {
1403 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1404 
1405 	int ret;
1406 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1407 				   ri_prime, DRM_HDCP_RI_LEN);
1408 	if (ret)
1409 		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1410 			    ret);
1411 	return ret;
1412 }
1413 
1414 static
1415 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1416 				   bool *ksv_ready)
1417 {
1418 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1419 	int ret;
1420 	u8 val;
1421 
1422 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1423 	if (ret) {
1424 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1425 			    ret);
1426 		return ret;
1427 	}
1428 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1429 	return 0;
1430 }
1431 
1432 static
1433 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1434 				  int num_downstream, u8 *ksv_fifo)
1435 {
1436 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1437 	int ret;
1438 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1439 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1440 	if (ret) {
1441 		drm_dbg_kms(&i915->drm,
1442 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1443 		return ret;
1444 	}
1445 	return 0;
1446 }
1447 
1448 static
1449 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1450 				      int i, u32 *part)
1451 {
1452 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1453 	int ret;
1454 
1455 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1456 		return -EINVAL;
1457 
1458 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1459 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1460 	if (ret)
1461 		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1462 			    i, ret);
1463 	return ret;
1464 }
1465 
1466 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1467 					   enum transcoder cpu_transcoder)
1468 {
1469 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1470 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1471 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1472 	u32 scanline;
1473 	int ret;
1474 
1475 	for (;;) {
1476 		scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1477 		if (scanline > 100 && scanline < 200)
1478 			break;
1479 		usleep_range(25, 50);
1480 	}
1481 
1482 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1483 					 false, TRANS_DDI_HDCP_SIGNALLING);
1484 	if (ret) {
1485 		drm_err(&dev_priv->drm,
1486 			"Disable HDCP signalling failed (%d)\n", ret);
1487 		return ret;
1488 	}
1489 
1490 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1491 					 true, TRANS_DDI_HDCP_SIGNALLING);
1492 	if (ret) {
1493 		drm_err(&dev_priv->drm,
1494 			"Enable HDCP signalling failed (%d)\n", ret);
1495 		return ret;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static
1502 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1503 				      enum transcoder cpu_transcoder,
1504 				      bool enable)
1505 {
1506 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1507 	struct intel_connector *connector = hdmi->attached_connector;
1508 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1509 	int ret;
1510 
1511 	if (!enable)
1512 		usleep_range(6, 60); /* Bspec says >= 6us */
1513 
1514 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1515 					 cpu_transcoder, enable,
1516 					 TRANS_DDI_HDCP_SIGNALLING);
1517 	if (ret) {
1518 		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1519 			enable ? "Enable" : "Disable", ret);
1520 		return ret;
1521 	}
1522 
1523 	/*
1524 	 * WA: To fix incorrect positioning of the window of
1525 	 * opportunity and enc_en signalling in KABYLAKE.
1526 	 */
1527 	if (IS_KABYLAKE(dev_priv) && enable)
1528 		return kbl_repositioning_enc_en_signal(connector,
1529 						       cpu_transcoder);
1530 
1531 	return 0;
1532 }
1533 
1534 static
1535 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1536 				     struct intel_connector *connector)
1537 {
1538 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1539 	enum port port = dig_port->base.port;
1540 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1541 	int ret;
1542 	union {
1543 		u32 reg;
1544 		u8 shim[DRM_HDCP_RI_LEN];
1545 	} ri;
1546 
1547 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1548 	if (ret)
1549 		return false;
1550 
1551 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1552 
1553 	/* Wait for Ri prime match */
1554 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1555 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1556 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1557 		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1558 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1559 							port)));
1560 		return false;
1561 	}
1562 	return true;
1563 }
1564 
1565 static
1566 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1567 				struct intel_connector *connector)
1568 {
1569 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1570 	int retry;
1571 
1572 	for (retry = 0; retry < 3; retry++)
1573 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1574 			return true;
1575 
1576 	drm_err(&i915->drm, "Link check failed\n");
1577 	return false;
1578 }
1579 
1580 struct hdcp2_hdmi_msg_timeout {
1581 	u8 msg_id;
1582 	u16 timeout;
1583 };
1584 
1585 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1586 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1587 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1588 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1589 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1590 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1591 };
1592 
1593 static
1594 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1595 				    u8 *rx_status)
1596 {
1597 	return intel_hdmi_hdcp_read(dig_port,
1598 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1599 				    rx_status,
1600 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1601 }
1602 
1603 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1604 {
1605 	int i;
1606 
1607 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1608 		if (is_paired)
1609 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1610 		else
1611 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1612 	}
1613 
1614 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1615 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1616 			return hdcp2_msg_timeout[i].timeout;
1617 	}
1618 
1619 	return -EINVAL;
1620 }
1621 
1622 static int
1623 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1624 			      u8 msg_id, bool *msg_ready,
1625 			      ssize_t *msg_sz)
1626 {
1627 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1628 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1629 	int ret;
1630 
1631 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1632 	if (ret < 0) {
1633 		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1634 			    ret);
1635 		return ret;
1636 	}
1637 
1638 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1639 		  rx_status[0]);
1640 
1641 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1642 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1643 			     *msg_sz);
1644 	else
1645 		*msg_ready = *msg_sz;
1646 
1647 	return 0;
1648 }
1649 
1650 static ssize_t
1651 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1652 			      u8 msg_id, bool paired)
1653 {
1654 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1655 	bool msg_ready = false;
1656 	int timeout, ret;
1657 	ssize_t msg_sz = 0;
1658 
1659 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1660 	if (timeout < 0)
1661 		return timeout;
1662 
1663 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1664 							     msg_id, &msg_ready,
1665 							     &msg_sz),
1666 			 !ret && msg_ready && msg_sz, timeout * 1000,
1667 			 1000, 5 * 1000);
1668 	if (ret)
1669 		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1670 			    msg_id, ret, timeout);
1671 
1672 	return ret ? ret : msg_sz;
1673 }
1674 
1675 static
1676 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1677 			       void *buf, size_t size)
1678 {
1679 	unsigned int offset;
1680 
1681 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1682 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1683 }
1684 
1685 static
1686 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1687 			      u8 msg_id, void *buf, size_t size)
1688 {
1689 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1690 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1691 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1692 	unsigned int offset;
1693 	ssize_t ret;
1694 
1695 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1696 					    hdcp->is_paired);
1697 	if (ret < 0)
1698 		return ret;
1699 
1700 	/*
1701 	 * Available msg size should be equal to or lesser than the
1702 	 * available buffer.
1703 	 */
1704 	if (ret > size) {
1705 		drm_dbg_kms(&i915->drm,
1706 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1707 			    ret, size);
1708 		return -EINVAL;
1709 	}
1710 
1711 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1712 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1713 	if (ret)
1714 		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1715 			    msg_id, ret);
1716 
1717 	return ret;
1718 }
1719 
1720 static
1721 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1722 				struct intel_connector *connector)
1723 {
1724 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1725 	int ret;
1726 
1727 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1728 	if (ret)
1729 		return ret;
1730 
1731 	/*
1732 	 * Re-auth request and Link Integrity Failures are represented by
1733 	 * same bit. i.e reauth_req.
1734 	 */
1735 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1736 		ret = HDCP_REAUTH_REQUEST;
1737 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1738 		ret = HDCP_TOPOLOGY_CHANGE;
1739 
1740 	return ret;
1741 }
1742 
1743 static
1744 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1745 			     bool *capable)
1746 {
1747 	u8 hdcp2_version;
1748 	int ret;
1749 
1750 	*capable = false;
1751 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1752 				   &hdcp2_version, sizeof(hdcp2_version));
1753 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1754 		*capable = true;
1755 
1756 	return ret;
1757 }
1758 
1759 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1760 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1761 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1762 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1763 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1764 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1765 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1766 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1767 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1768 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1769 	.check_link = intel_hdmi_hdcp_check_link,
1770 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1771 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1772 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1773 	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1774 	.protocol = HDCP_PROTOCOL_HDMI,
1775 };
1776 
1777 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1778 {
1779 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1780 	int max_tmds_clock, vbt_max_tmds_clock;
1781 
1782 	if (DISPLAY_VER(dev_priv) >= 10)
1783 		max_tmds_clock = 594000;
1784 	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1785 		max_tmds_clock = 300000;
1786 	else if (DISPLAY_VER(dev_priv) >= 5)
1787 		max_tmds_clock = 225000;
1788 	else
1789 		max_tmds_clock = 165000;
1790 
1791 	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1792 	if (vbt_max_tmds_clock)
1793 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1794 
1795 	return max_tmds_clock;
1796 }
1797 
1798 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1799 				const struct drm_connector_state *conn_state)
1800 {
1801 	return hdmi->has_hdmi_sink &&
1802 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1803 }
1804 
1805 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1806 {
1807 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1808 }
1809 
1810 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1811 				 bool respect_downstream_limits,
1812 				 bool has_hdmi_sink)
1813 {
1814 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1815 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1816 
1817 	if (respect_downstream_limits) {
1818 		struct intel_connector *connector = hdmi->attached_connector;
1819 		const struct drm_display_info *info = &connector->base.display_info;
1820 
1821 		if (hdmi->dp_dual_mode.max_tmds_clock)
1822 			max_tmds_clock = min(max_tmds_clock,
1823 					     hdmi->dp_dual_mode.max_tmds_clock);
1824 
1825 		if (info->max_tmds_clock)
1826 			max_tmds_clock = min(max_tmds_clock,
1827 					     info->max_tmds_clock);
1828 		else if (!has_hdmi_sink)
1829 			max_tmds_clock = min(max_tmds_clock, 165000);
1830 	}
1831 
1832 	return max_tmds_clock;
1833 }
1834 
1835 static enum drm_mode_status
1836 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1837 		      int clock, bool respect_downstream_limits,
1838 		      bool has_hdmi_sink)
1839 {
1840 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1841 	enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port);
1842 
1843 	if (clock < 25000)
1844 		return MODE_CLOCK_LOW;
1845 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1846 					  has_hdmi_sink))
1847 		return MODE_CLOCK_HIGH;
1848 
1849 	/* GLK DPLL can't generate 446-480 MHz */
1850 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1851 		return MODE_CLOCK_RANGE;
1852 
1853 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1854 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1855 	    clock > 223333 && clock < 240000)
1856 		return MODE_CLOCK_RANGE;
1857 
1858 	/* CHV DPLL can't generate 216-240 MHz */
1859 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1860 		return MODE_CLOCK_RANGE;
1861 
1862 	/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1863 	if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200)
1864 		return MODE_CLOCK_RANGE;
1865 
1866 	/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1867 	if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800)
1868 		return MODE_CLOCK_RANGE;
1869 
1870 	/*
1871 	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1872 	 * set of link rates.
1873 	 *
1874 	 * FIXME: We will hopefully get an algorithmic way of programming
1875 	 * the MPLLB for HDMI in the future.
1876 	 */
1877 	if (IS_DG2(dev_priv))
1878 		return intel_snps_phy_check_hdmi_link_rate(clock);
1879 
1880 	return MODE_OK;
1881 }
1882 
1883 int intel_hdmi_tmds_clock(int clock, int bpc, bool ycbcr420_output)
1884 {
1885 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1886 	if (ycbcr420_output)
1887 		clock /= 2;
1888 
1889 	/*
1890 	 * Need to adjust the port link by:
1891 	 *  1.5x for 12bpc
1892 	 *  1.25x for 10bpc
1893 	 */
1894 	return clock * bpc / 8;
1895 }
1896 
1897 static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc)
1898 {
1899 	switch (bpc) {
1900 	case 12:
1901 		return !HAS_GMCH(i915);
1902 	case 10:
1903 		return DISPLAY_VER(i915) >= 11;
1904 	case 8:
1905 		return true;
1906 	default:
1907 		MISSING_CASE(bpc);
1908 		return false;
1909 	}
1910 }
1911 
1912 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1913 					 int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1914 {
1915 	const struct drm_display_info *info = &connector->display_info;
1916 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1917 
1918 	switch (bpc) {
1919 	case 12:
1920 		if (!has_hdmi_sink)
1921 			return false;
1922 
1923 		if (ycbcr420_output)
1924 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1925 		else
1926 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1927 	case 10:
1928 		if (!has_hdmi_sink)
1929 			return false;
1930 
1931 		if (ycbcr420_output)
1932 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1933 		else
1934 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1935 	case 8:
1936 		return true;
1937 	default:
1938 		MISSING_CASE(bpc);
1939 		return false;
1940 	}
1941 }
1942 
1943 static enum drm_mode_status
1944 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1945 			    bool has_hdmi_sink, bool ycbcr420_output)
1946 {
1947 	struct drm_i915_private *i915 = to_i915(connector->dev);
1948 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1949 	enum drm_mode_status status = MODE_OK;
1950 	int bpc;
1951 
1952 	/*
1953 	 * Try all color depths since valid port clock range
1954 	 * can have holes. Any mode that can be used with at
1955 	 * least one color depth is accepted.
1956 	 */
1957 	for (bpc = 12; bpc >= 8; bpc -= 2) {
1958 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output);
1959 
1960 		if (!intel_hdmi_source_bpc_possible(i915, bpc))
1961 			continue;
1962 
1963 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
1964 			continue;
1965 
1966 		status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
1967 		if (status == MODE_OK)
1968 			return MODE_OK;
1969 	}
1970 
1971 	/* can never happen */
1972 	drm_WARN_ON(&i915->drm, status == MODE_OK);
1973 
1974 	return status;
1975 }
1976 
1977 static enum drm_mode_status
1978 intel_hdmi_mode_valid(struct drm_connector *connector,
1979 		      struct drm_display_mode *mode)
1980 {
1981 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1982 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1983 	enum drm_mode_status status;
1984 	int clock = mode->clock;
1985 	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1986 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1987 	bool ycbcr_420_only;
1988 
1989 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1990 		return MODE_NO_DBLESCAN;
1991 
1992 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1993 		clock *= 2;
1994 
1995 	if (clock > max_dotclk)
1996 		return MODE_CLOCK_HIGH;
1997 
1998 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1999 		if (!has_hdmi_sink)
2000 			return MODE_CLOCK_LOW;
2001 		clock *= 2;
2002 	}
2003 
2004 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2005 
2006 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
2007 	if (status != MODE_OK) {
2008 		if (ycbcr_420_only ||
2009 		    !connector->ycbcr_420_allowed ||
2010 		    !drm_mode_is_420_also(&connector->display_info, mode))
2011 			return status;
2012 
2013 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
2014 		if (status != MODE_OK)
2015 			return status;
2016 	}
2017 
2018 	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2019 }
2020 
2021 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2022 			     int bpc, bool has_hdmi_sink, bool ycbcr420_output)
2023 {
2024 	struct drm_atomic_state *state = crtc_state->uapi.state;
2025 	struct drm_connector_state *connector_state;
2026 	struct drm_connector *connector;
2027 	int i;
2028 
2029 	for_each_new_connector_in_state(state, connector, connector_state, i) {
2030 		if (connector_state->crtc != crtc_state->uapi.crtc)
2031 			continue;
2032 
2033 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
2034 			return false;
2035 	}
2036 
2037 	return true;
2038 }
2039 
2040 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2041 {
2042 	struct drm_i915_private *dev_priv =
2043 		to_i915(crtc_state->uapi.crtc->dev);
2044 	const struct drm_display_mode *adjusted_mode =
2045 		&crtc_state->hw.adjusted_mode;
2046 
2047 	if (!intel_hdmi_source_bpc_possible(dev_priv, bpc))
2048 		return false;
2049 
2050 	/*
2051 	 * HDMI deep color affects the clocks, so it's only possible
2052 	 * when not cloning with other encoder types.
2053 	 */
2054 	if (bpc > 8 && crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2055 		return false;
2056 
2057 	/* Display Wa_1405510057:icl,ehl */
2058 	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2059 	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2060 	    (adjusted_mode->crtc_hblank_end -
2061 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2062 		return false;
2063 
2064 	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink,
2065 				       intel_hdmi_is_ycbcr420(crtc_state));
2066 }
2067 
2068 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2069 				  struct intel_crtc_state *crtc_state,
2070 				  int clock, bool respect_downstream_limits)
2071 {
2072 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2073 	bool ycbcr420_output = intel_hdmi_is_ycbcr420(crtc_state);
2074 	int bpc;
2075 
2076 	/*
2077 	 * pipe_bpp could already be below 8bpc due to FDI
2078 	 * bandwidth constraints. HDMI minimum is 8bpc however.
2079 	 */
2080 	bpc = max(crtc_state->pipe_bpp / 3, 8);
2081 
2082 	/*
2083 	 * We will never exceed downstream TMDS clock limits while
2084 	 * attempting deep color. If the user insists on forcing an
2085 	 * out of spec mode they will have to be satisfied with 8bpc.
2086 	 */
2087 	if (!respect_downstream_limits)
2088 		bpc = 8;
2089 
2090 	for (; bpc >= 8; bpc -= 2) {
2091 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output);
2092 
2093 		if (hdmi_bpc_possible(crtc_state, bpc) &&
2094 		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2095 					  respect_downstream_limits,
2096 					  crtc_state->has_hdmi_sink) == MODE_OK)
2097 			return bpc;
2098 	}
2099 
2100 	return -EINVAL;
2101 }
2102 
2103 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2104 				    struct intel_crtc_state *crtc_state,
2105 				    bool respect_downstream_limits)
2106 {
2107 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2108 	const struct drm_display_mode *adjusted_mode =
2109 		&crtc_state->hw.adjusted_mode;
2110 	int bpc, clock = adjusted_mode->crtc_clock;
2111 
2112 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2113 		clock *= 2;
2114 
2115 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2116 				     respect_downstream_limits);
2117 	if (bpc < 0)
2118 		return bpc;
2119 
2120 	crtc_state->port_clock =
2121 		intel_hdmi_tmds_clock(clock, bpc, intel_hdmi_is_ycbcr420(crtc_state));
2122 
2123 	/*
2124 	 * pipe_bpp could already be below 8bpc due to
2125 	 * FDI bandwidth constraints. We shouldn't bump it
2126 	 * back up to the HDMI minimum 8bpc in that case.
2127 	 */
2128 	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2129 
2130 	drm_dbg_kms(&i915->drm,
2131 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2132 		    bpc, crtc_state->pipe_bpp);
2133 
2134 	return 0;
2135 }
2136 
2137 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2138 				    const struct drm_connector_state *conn_state)
2139 {
2140 	const struct intel_digital_connector_state *intel_conn_state =
2141 		to_intel_digital_connector_state(conn_state);
2142 	const struct drm_display_mode *adjusted_mode =
2143 		&crtc_state->hw.adjusted_mode;
2144 
2145 	/*
2146 	 * Our YCbCr output is always limited range.
2147 	 * crtc_state->limited_color_range only applies to RGB,
2148 	 * and it must never be set for YCbCr or we risk setting
2149 	 * some conflicting bits in PIPECONF which will mess up
2150 	 * the colors on the monitor.
2151 	 */
2152 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2153 		return false;
2154 
2155 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2156 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2157 		return crtc_state->has_hdmi_sink &&
2158 			drm_default_rgb_quant_range(adjusted_mode) ==
2159 			HDMI_QUANTIZATION_RANGE_LIMITED;
2160 	} else {
2161 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2162 	}
2163 }
2164 
2165 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2166 				 const struct intel_crtc_state *crtc_state,
2167 				 const struct drm_connector_state *conn_state)
2168 {
2169 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2170 	const struct intel_digital_connector_state *intel_conn_state =
2171 		to_intel_digital_connector_state(conn_state);
2172 
2173 	if (!crtc_state->has_hdmi_sink)
2174 		return false;
2175 
2176 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2177 		return intel_hdmi->has_audio;
2178 	else
2179 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2180 }
2181 
2182 static enum intel_output_format
2183 intel_hdmi_output_format(struct intel_connector *connector,
2184 			 bool ycbcr_420_output)
2185 {
2186 	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2187 		return INTEL_OUTPUT_FORMAT_YCBCR420;
2188 	else
2189 		return INTEL_OUTPUT_FORMAT_RGB;
2190 }
2191 
2192 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2193 					    struct intel_crtc_state *crtc_state,
2194 					    const struct drm_connector_state *conn_state,
2195 					    bool respect_downstream_limits)
2196 {
2197 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2198 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2199 	const struct drm_display_info *info = &connector->base.display_info;
2200 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2201 	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2202 	int ret;
2203 
2204 	crtc_state->output_format = intel_hdmi_output_format(connector, ycbcr_420_only);
2205 
2206 	if (ycbcr_420_only && !intel_hdmi_is_ycbcr420(crtc_state)) {
2207 		drm_dbg_kms(&i915->drm,
2208 			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2209 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2210 	}
2211 
2212 	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2213 	if (ret) {
2214 		if (intel_hdmi_is_ycbcr420(crtc_state) ||
2215 		    !connector->base.ycbcr_420_allowed ||
2216 		    !drm_mode_is_420_also(info, adjusted_mode))
2217 			return ret;
2218 
2219 		crtc_state->output_format = intel_hdmi_output_format(connector, true);
2220 		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2221 	}
2222 
2223 	return ret;
2224 }
2225 
2226 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2227 			      struct intel_crtc_state *pipe_config,
2228 			      struct drm_connector_state *conn_state)
2229 {
2230 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2231 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2232 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2233 	struct drm_connector *connector = conn_state->connector;
2234 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2235 	int ret;
2236 
2237 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2238 		return -EINVAL;
2239 
2240 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2241 	pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2242 							 conn_state);
2243 
2244 	if (pipe_config->has_hdmi_sink)
2245 		pipe_config->has_infoframe = true;
2246 
2247 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2248 		pipe_config->pixel_multiplier = 2;
2249 
2250 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2251 		pipe_config->has_pch_encoder = true;
2252 
2253 	pipe_config->has_audio =
2254 		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2255 
2256 	/*
2257 	 * Try to respect downstream TMDS clock limits first, if
2258 	 * that fails assume the user might know something we don't.
2259 	 */
2260 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2261 	if (ret)
2262 		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2263 	if (ret) {
2264 		drm_dbg_kms(&dev_priv->drm,
2265 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2266 			    pipe_config->hw.adjusted_mode.crtc_clock);
2267 		return ret;
2268 	}
2269 
2270 	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2271 		ret = intel_panel_fitting(pipe_config, conn_state);
2272 		if (ret)
2273 			return ret;
2274 	}
2275 
2276 	pipe_config->limited_color_range =
2277 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2278 
2279 	if (conn_state->picture_aspect_ratio)
2280 		adjusted_mode->picture_aspect_ratio =
2281 			conn_state->picture_aspect_ratio;
2282 
2283 	pipe_config->lane_count = 4;
2284 
2285 	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2286 		if (scdc->scrambling.low_rates)
2287 			pipe_config->hdmi_scrambling = true;
2288 
2289 		if (pipe_config->port_clock > 340000) {
2290 			pipe_config->hdmi_scrambling = true;
2291 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2292 		}
2293 	}
2294 
2295 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2296 					 conn_state);
2297 
2298 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2299 		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2300 		return -EINVAL;
2301 	}
2302 
2303 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2304 		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2305 		return -EINVAL;
2306 	}
2307 
2308 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2309 		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2310 		return -EINVAL;
2311 	}
2312 
2313 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2314 		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2315 		return -EINVAL;
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2322 {
2323 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2324 
2325 	/*
2326 	 * Give a hand to buggy BIOSen which forget to turn
2327 	 * the TMDS output buffers back on after a reboot.
2328 	 */
2329 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2330 }
2331 
2332 static void
2333 intel_hdmi_unset_edid(struct drm_connector *connector)
2334 {
2335 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2336 
2337 	intel_hdmi->has_hdmi_sink = false;
2338 	intel_hdmi->has_audio = false;
2339 
2340 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2341 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2342 
2343 	kfree(to_intel_connector(connector)->detect_edid);
2344 	to_intel_connector(connector)->detect_edid = NULL;
2345 }
2346 
2347 static void
2348 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2349 {
2350 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2351 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2352 	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2353 	struct i2c_adapter *adapter =
2354 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2355 	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2356 
2357 	/*
2358 	 * Type 1 DVI adaptors are not required to implement any
2359 	 * registers, so we can't always detect their presence.
2360 	 * Ideally we should be able to check the state of the
2361 	 * CONFIG1 pin, but no such luck on our hardware.
2362 	 *
2363 	 * The only method left to us is to check the VBT to see
2364 	 * if the port is a dual mode capable DP port. But let's
2365 	 * only do that when we sucesfully read the EDID, to avoid
2366 	 * confusing log messages about DP dual mode adaptors when
2367 	 * there's nothing connected to the port.
2368 	 */
2369 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2370 		/* An overridden EDID imply that we want this port for testing.
2371 		 * Make sure not to set limits for that port.
2372 		 */
2373 		if (has_edid && !connector->override_edid &&
2374 		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2375 			drm_dbg_kms(&dev_priv->drm,
2376 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2377 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2378 		} else {
2379 			type = DRM_DP_DUAL_MODE_NONE;
2380 		}
2381 	}
2382 
2383 	if (type == DRM_DP_DUAL_MODE_NONE)
2384 		return;
2385 
2386 	hdmi->dp_dual_mode.type = type;
2387 	hdmi->dp_dual_mode.max_tmds_clock =
2388 		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2389 
2390 	drm_dbg_kms(&dev_priv->drm,
2391 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2392 		    drm_dp_get_dual_mode_type_name(type),
2393 		    hdmi->dp_dual_mode.max_tmds_clock);
2394 
2395 	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2396 	if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
2397 	    !intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2398 		drm_dbg_kms(&dev_priv->drm,
2399 			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2400 		hdmi->dp_dual_mode.max_tmds_clock = 0;
2401 	}
2402 }
2403 
2404 static bool
2405 intel_hdmi_set_edid(struct drm_connector *connector)
2406 {
2407 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2408 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2409 	intel_wakeref_t wakeref;
2410 	struct edid *edid;
2411 	bool connected = false;
2412 	struct i2c_adapter *i2c;
2413 
2414 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2415 
2416 	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2417 
2418 	edid = drm_get_edid(connector, i2c);
2419 
2420 	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2421 		drm_dbg_kms(&dev_priv->drm,
2422 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2423 		intel_gmbus_force_bit(i2c, true);
2424 		edid = drm_get_edid(connector, i2c);
2425 		intel_gmbus_force_bit(i2c, false);
2426 	}
2427 
2428 	intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2429 
2430 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2431 
2432 	to_intel_connector(connector)->detect_edid = edid;
2433 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2434 		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2435 		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2436 
2437 		connected = true;
2438 	}
2439 
2440 	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2441 
2442 	return connected;
2443 }
2444 
2445 static enum drm_connector_status
2446 intel_hdmi_detect(struct drm_connector *connector, bool force)
2447 {
2448 	enum drm_connector_status status = connector_status_disconnected;
2449 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2450 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2451 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2452 	intel_wakeref_t wakeref;
2453 
2454 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2455 		    connector->base.id, connector->name);
2456 
2457 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2458 		return connector_status_disconnected;
2459 
2460 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2461 
2462 	if (DISPLAY_VER(dev_priv) >= 11 &&
2463 	    !intel_digital_port_connected(encoder))
2464 		goto out;
2465 
2466 	intel_hdmi_unset_edid(connector);
2467 
2468 	if (intel_hdmi_set_edid(connector))
2469 		status = connector_status_connected;
2470 
2471 out:
2472 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2473 
2474 	if (status != connector_status_connected)
2475 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2476 
2477 	/*
2478 	 * Make sure the refs for power wells enabled during detect are
2479 	 * dropped to avoid a new detect cycle triggered by HPD polling.
2480 	 */
2481 	intel_display_power_flush_work(dev_priv);
2482 
2483 	return status;
2484 }
2485 
2486 static void
2487 intel_hdmi_force(struct drm_connector *connector)
2488 {
2489 	struct drm_i915_private *i915 = to_i915(connector->dev);
2490 
2491 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2492 		    connector->base.id, connector->name);
2493 
2494 	intel_hdmi_unset_edid(connector);
2495 
2496 	if (connector->status != connector_status_connected)
2497 		return;
2498 
2499 	intel_hdmi_set_edid(connector);
2500 }
2501 
2502 static int intel_hdmi_get_modes(struct drm_connector *connector)
2503 {
2504 	struct edid *edid;
2505 
2506 	edid = to_intel_connector(connector)->detect_edid;
2507 	if (edid == NULL)
2508 		return 0;
2509 
2510 	return intel_connector_update_modes(connector, edid);
2511 }
2512 
2513 static struct i2c_adapter *
2514 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2515 {
2516 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2517 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2518 
2519 	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2520 }
2521 
2522 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2523 {
2524 	struct drm_i915_private *i915 = to_i915(connector->dev);
2525 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2526 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2527 	struct kobject *connector_kobj = &connector->kdev->kobj;
2528 	int ret;
2529 
2530 	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2531 	if (ret)
2532 		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2533 }
2534 
2535 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2536 {
2537 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2538 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2539 	struct kobject *connector_kobj = &connector->kdev->kobj;
2540 
2541 	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2542 }
2543 
2544 static int
2545 intel_hdmi_connector_register(struct drm_connector *connector)
2546 {
2547 	int ret;
2548 
2549 	ret = intel_connector_register(connector);
2550 	if (ret)
2551 		return ret;
2552 
2553 	intel_hdmi_create_i2c_symlink(connector);
2554 
2555 	return ret;
2556 }
2557 
2558 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2559 {
2560 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2561 
2562 	cec_notifier_conn_unregister(n);
2563 
2564 	intel_hdmi_remove_i2c_symlink(connector);
2565 	intel_connector_unregister(connector);
2566 }
2567 
2568 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2569 	.detect = intel_hdmi_detect,
2570 	.force = intel_hdmi_force,
2571 	.fill_modes = drm_helper_probe_single_connector_modes,
2572 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2573 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2574 	.late_register = intel_hdmi_connector_register,
2575 	.early_unregister = intel_hdmi_connector_unregister,
2576 	.destroy = intel_connector_destroy,
2577 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2578 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2579 };
2580 
2581 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2582 	.get_modes = intel_hdmi_get_modes,
2583 	.mode_valid = intel_hdmi_mode_valid,
2584 	.atomic_check = intel_digital_connector_atomic_check,
2585 };
2586 
2587 static void
2588 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2589 {
2590 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2591 
2592 	intel_attach_force_audio_property(connector);
2593 	intel_attach_broadcast_rgb_property(connector);
2594 	intel_attach_aspect_ratio_property(connector);
2595 
2596 	intel_attach_hdmi_colorspace_property(connector);
2597 	drm_connector_attach_content_type_property(connector);
2598 
2599 	if (DISPLAY_VER(dev_priv) >= 10)
2600 		drm_connector_attach_hdr_output_metadata_property(connector);
2601 
2602 	if (!HAS_GMCH(dev_priv))
2603 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2604 }
2605 
2606 /*
2607  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2608  * @encoder: intel_encoder
2609  * @connector: drm_connector
2610  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2611  *  or reset the high tmds clock ratio for scrambling
2612  * @scrambling: bool to Indicate if the function needs to set or reset
2613  *  sink scrambling
2614  *
2615  * This function handles scrambling on HDMI 2.0 capable sinks.
2616  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2617  * it enables scrambling. This should be called before enabling the HDMI
2618  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2619  * detect a scrambled clock within 100 ms.
2620  *
2621  * Returns:
2622  * True on success, false on failure.
2623  */
2624 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2625 				       struct drm_connector *connector,
2626 				       bool high_tmds_clock_ratio,
2627 				       bool scrambling)
2628 {
2629 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2630 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2631 	struct drm_scrambling *sink_scrambling =
2632 		&connector->display_info.hdmi.scdc.scrambling;
2633 	struct i2c_adapter *adapter =
2634 		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2635 
2636 	if (!sink_scrambling->supported)
2637 		return true;
2638 
2639 	drm_dbg_kms(&dev_priv->drm,
2640 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2641 		    connector->base.id, connector->name,
2642 		    str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2643 
2644 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2645 	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2646 						  high_tmds_clock_ratio) &&
2647 		drm_scdc_set_scrambling(adapter, scrambling);
2648 }
2649 
2650 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2651 {
2652 	u8 ddc_pin;
2653 
2654 	switch (port) {
2655 	case PORT_B:
2656 		ddc_pin = GMBUS_PIN_DPB;
2657 		break;
2658 	case PORT_C:
2659 		ddc_pin = GMBUS_PIN_DPC;
2660 		break;
2661 	case PORT_D:
2662 		ddc_pin = GMBUS_PIN_DPD_CHV;
2663 		break;
2664 	default:
2665 		MISSING_CASE(port);
2666 		ddc_pin = GMBUS_PIN_DPB;
2667 		break;
2668 	}
2669 	return ddc_pin;
2670 }
2671 
2672 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2673 {
2674 	u8 ddc_pin;
2675 
2676 	switch (port) {
2677 	case PORT_B:
2678 		ddc_pin = GMBUS_PIN_1_BXT;
2679 		break;
2680 	case PORT_C:
2681 		ddc_pin = GMBUS_PIN_2_BXT;
2682 		break;
2683 	default:
2684 		MISSING_CASE(port);
2685 		ddc_pin = GMBUS_PIN_1_BXT;
2686 		break;
2687 	}
2688 	return ddc_pin;
2689 }
2690 
2691 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2692 			      enum port port)
2693 {
2694 	u8 ddc_pin;
2695 
2696 	switch (port) {
2697 	case PORT_B:
2698 		ddc_pin = GMBUS_PIN_1_BXT;
2699 		break;
2700 	case PORT_C:
2701 		ddc_pin = GMBUS_PIN_2_BXT;
2702 		break;
2703 	case PORT_D:
2704 		ddc_pin = GMBUS_PIN_4_CNP;
2705 		break;
2706 	case PORT_F:
2707 		ddc_pin = GMBUS_PIN_3_BXT;
2708 		break;
2709 	default:
2710 		MISSING_CASE(port);
2711 		ddc_pin = GMBUS_PIN_1_BXT;
2712 		break;
2713 	}
2714 	return ddc_pin;
2715 }
2716 
2717 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2718 {
2719 	enum phy phy = intel_port_to_phy(dev_priv, port);
2720 
2721 	if (intel_phy_is_combo(dev_priv, phy))
2722 		return GMBUS_PIN_1_BXT + port;
2723 	else if (intel_phy_is_tc(dev_priv, phy))
2724 		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2725 
2726 	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2727 	return GMBUS_PIN_2_BXT;
2728 }
2729 
2730 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2731 {
2732 	enum phy phy = intel_port_to_phy(dev_priv, port);
2733 	u8 ddc_pin;
2734 
2735 	switch (phy) {
2736 	case PHY_A:
2737 		ddc_pin = GMBUS_PIN_1_BXT;
2738 		break;
2739 	case PHY_B:
2740 		ddc_pin = GMBUS_PIN_2_BXT;
2741 		break;
2742 	case PHY_C:
2743 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2744 		break;
2745 	default:
2746 		MISSING_CASE(phy);
2747 		ddc_pin = GMBUS_PIN_1_BXT;
2748 		break;
2749 	}
2750 	return ddc_pin;
2751 }
2752 
2753 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2754 {
2755 	enum phy phy = intel_port_to_phy(dev_priv, port);
2756 
2757 	WARN_ON(port == PORT_C);
2758 
2759 	/*
2760 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2761 	 * final two outputs use type-c pins, even though they're actually
2762 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2763 	 * all outputs.
2764 	 */
2765 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2766 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2767 
2768 	return GMBUS_PIN_1_BXT + phy;
2769 }
2770 
2771 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2772 {
2773 	enum phy phy = intel_port_to_phy(i915, port);
2774 
2775 	drm_WARN_ON(&i915->drm, port == PORT_A);
2776 
2777 	/*
2778 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2779 	 * final two outputs use type-c pins, even though they're actually
2780 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2781 	 * all outputs.
2782 	 */
2783 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2784 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2785 
2786 	return GMBUS_PIN_1_BXT + phy;
2787 }
2788 
2789 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2790 {
2791 	return intel_port_to_phy(dev_priv, port) + 1;
2792 }
2793 
2794 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2795 {
2796 	enum phy phy = intel_port_to_phy(dev_priv, port);
2797 
2798 	WARN_ON(port == PORT_B || port == PORT_C);
2799 
2800 	/*
2801 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2802 	 * except first combo output.
2803 	 */
2804 	if (phy == PHY_A)
2805 		return GMBUS_PIN_1_BXT;
2806 
2807 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2808 }
2809 
2810 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2811 			      enum port port)
2812 {
2813 	u8 ddc_pin;
2814 
2815 	switch (port) {
2816 	case PORT_B:
2817 		ddc_pin = GMBUS_PIN_DPB;
2818 		break;
2819 	case PORT_C:
2820 		ddc_pin = GMBUS_PIN_DPC;
2821 		break;
2822 	case PORT_D:
2823 		ddc_pin = GMBUS_PIN_DPD;
2824 		break;
2825 	default:
2826 		MISSING_CASE(port);
2827 		ddc_pin = GMBUS_PIN_DPB;
2828 		break;
2829 	}
2830 	return ddc_pin;
2831 }
2832 
2833 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2834 {
2835 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2836 	enum port port = encoder->port;
2837 	u8 ddc_pin;
2838 
2839 	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2840 	if (ddc_pin) {
2841 		drm_dbg_kms(&dev_priv->drm,
2842 			    "Using DDC pin 0x%x for port %c (VBT)\n",
2843 			    ddc_pin, port_name(port));
2844 		return ddc_pin;
2845 	}
2846 
2847 	if (IS_ALDERLAKE_S(dev_priv))
2848 		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2849 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2850 		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2851 	else if (IS_ROCKETLAKE(dev_priv))
2852 		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2853 	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2854 		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2855 	else if (HAS_PCH_MCC(dev_priv))
2856 		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2857 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2858 		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2859 	else if (HAS_PCH_CNP(dev_priv))
2860 		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2861 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2862 		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2863 	else if (IS_CHERRYVIEW(dev_priv))
2864 		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2865 	else
2866 		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2867 
2868 	drm_dbg_kms(&dev_priv->drm,
2869 		    "Using DDC pin 0x%x for port %c (platform default)\n",
2870 		    ddc_pin, port_name(port));
2871 
2872 	return ddc_pin;
2873 }
2874 
2875 void intel_infoframe_init(struct intel_digital_port *dig_port)
2876 {
2877 	struct drm_i915_private *dev_priv =
2878 		to_i915(dig_port->base.base.dev);
2879 
2880 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2881 		dig_port->write_infoframe = vlv_write_infoframe;
2882 		dig_port->read_infoframe = vlv_read_infoframe;
2883 		dig_port->set_infoframes = vlv_set_infoframes;
2884 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2885 	} else if (IS_G4X(dev_priv)) {
2886 		dig_port->write_infoframe = g4x_write_infoframe;
2887 		dig_port->read_infoframe = g4x_read_infoframe;
2888 		dig_port->set_infoframes = g4x_set_infoframes;
2889 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2890 	} else if (HAS_DDI(dev_priv)) {
2891 		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2892 			dig_port->write_infoframe = lspcon_write_infoframe;
2893 			dig_port->read_infoframe = lspcon_read_infoframe;
2894 			dig_port->set_infoframes = lspcon_set_infoframes;
2895 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2896 		} else {
2897 			dig_port->write_infoframe = hsw_write_infoframe;
2898 			dig_port->read_infoframe = hsw_read_infoframe;
2899 			dig_port->set_infoframes = hsw_set_infoframes;
2900 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2901 		}
2902 	} else if (HAS_PCH_IBX(dev_priv)) {
2903 		dig_port->write_infoframe = ibx_write_infoframe;
2904 		dig_port->read_infoframe = ibx_read_infoframe;
2905 		dig_port->set_infoframes = ibx_set_infoframes;
2906 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2907 	} else {
2908 		dig_port->write_infoframe = cpt_write_infoframe;
2909 		dig_port->read_infoframe = cpt_read_infoframe;
2910 		dig_port->set_infoframes = cpt_set_infoframes;
2911 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2912 	}
2913 }
2914 
2915 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2916 			       struct intel_connector *intel_connector)
2917 {
2918 	struct drm_connector *connector = &intel_connector->base;
2919 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2920 	struct intel_encoder *intel_encoder = &dig_port->base;
2921 	struct drm_device *dev = intel_encoder->base.dev;
2922 	struct drm_i915_private *dev_priv = to_i915(dev);
2923 	struct i2c_adapter *ddc;
2924 	enum port port = intel_encoder->port;
2925 	struct cec_connector_info conn_info;
2926 
2927 	drm_dbg_kms(&dev_priv->drm,
2928 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2929 		    intel_encoder->base.base.id, intel_encoder->base.name);
2930 
2931 	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2932 		return;
2933 
2934 	if (drm_WARN(dev, dig_port->max_lanes < 4,
2935 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2936 		     dig_port->max_lanes, intel_encoder->base.base.id,
2937 		     intel_encoder->base.name))
2938 		return;
2939 
2940 	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2941 	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2942 
2943 	drm_connector_init_with_ddc(dev, connector,
2944 				    &intel_hdmi_connector_funcs,
2945 				    DRM_MODE_CONNECTOR_HDMIA,
2946 				    ddc);
2947 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2948 
2949 	connector->interlace_allowed = 1;
2950 	connector->doublescan_allowed = 0;
2951 	connector->stereo_allowed = 1;
2952 
2953 	if (DISPLAY_VER(dev_priv) >= 10)
2954 		connector->ycbcr_420_allowed = true;
2955 
2956 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2957 
2958 	if (HAS_DDI(dev_priv))
2959 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2960 	else
2961 		intel_connector->get_hw_state = intel_connector_get_hw_state;
2962 
2963 	intel_hdmi_add_properties(intel_hdmi, connector);
2964 
2965 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2966 	intel_hdmi->attached_connector = intel_connector;
2967 
2968 	if (is_hdcp_supported(dev_priv, port)) {
2969 		int ret = intel_hdcp_init(intel_connector, dig_port,
2970 					  &intel_hdmi_hdcp_shim);
2971 		if (ret)
2972 			drm_dbg_kms(&dev_priv->drm,
2973 				    "HDCP init failed, skipping.\n");
2974 	}
2975 
2976 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2977 	 * 0xd.  Failure to do so will result in spurious interrupts being
2978 	 * generated on the port when a cable is not attached.
2979 	 */
2980 	if (IS_G45(dev_priv)) {
2981 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2982 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2983 		               (temp & ~0xf) | 0xd);
2984 	}
2985 
2986 	cec_fill_conn_info_from_drm(&conn_info, connector);
2987 
2988 	intel_hdmi->cec_notifier =
2989 		cec_notifier_conn_register(dev->dev, port_identifier(port),
2990 					   &conn_info);
2991 	if (!intel_hdmi->cec_notifier)
2992 		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2993 }
2994 
2995 /*
2996  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2997  * @vactive: Vactive of a display mode
2998  *
2999  * @return: appropriate dsc slice height for a given mode.
3000  */
3001 int intel_hdmi_dsc_get_slice_height(int vactive)
3002 {
3003 	int slice_height;
3004 
3005 	/*
3006 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3007 	 * Select smallest slice height >=96, that results in a valid PPS and
3008 	 * requires minimum padding lines required for final slice.
3009 	 *
3010 	 * Assumption : Vactive is even.
3011 	 */
3012 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3013 		if (vactive % slice_height == 0)
3014 			return slice_height;
3015 
3016 	return 0;
3017 }
3018 
3019 /*
3020  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3021  * and dsc decoder capabilities
3022  *
3023  * @crtc_state: intel crtc_state
3024  * @src_max_slices: maximum slices supported by the DSC encoder
3025  * @src_max_slice_width: maximum slice width supported by DSC encoder
3026  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3027  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3028  *
3029  * @return: num of dsc slices that can be supported by the dsc encoder
3030  * and decoder.
3031  */
3032 int
3033 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3034 			      int src_max_slices, int src_max_slice_width,
3035 			      int hdmi_max_slices, int hdmi_throughput)
3036 {
3037 /* Pixel rates in KPixels/sec */
3038 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3039 /*
3040  * Rates at which the source and sink are required to process pixels in each
3041  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3042  */
3043 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3044 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3045 
3046 /* Spec limits the slice width to 2720 pixels */
3047 #define MAX_HDMI_SLICE_WIDTH			2720
3048 	int kslice_adjust;
3049 	int adjusted_clk_khz;
3050 	int min_slices;
3051 	int target_slices;
3052 	int max_throughput; /* max clock freq. in khz per slice */
3053 	int max_slice_width;
3054 	int slice_width;
3055 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3056 
3057 	if (!hdmi_throughput)
3058 		return 0;
3059 
3060 	/*
3061 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3062 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3063 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3064 	 * dividing adjusted clock value by 10.
3065 	 */
3066 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3067 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3068 		kslice_adjust = 10;
3069 	else
3070 		kslice_adjust = 5;
3071 
3072 	/*
3073 	 * As per spec, the rate at which the source and the sink process
3074 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3075 	 * This depends upon the pixel clock rate and output formats
3076 	 * (kslice adjust).
3077 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3078 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3079 	 */
3080 
3081 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3082 
3083 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3084 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3085 	else
3086 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3087 
3088 	/*
3089 	 * Taking into account the sink's capability for maximum
3090 	 * clock per slice (in MHz) as read from HF-VSDB.
3091 	 */
3092 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3093 
3094 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3095 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3096 
3097 	/*
3098 	 * Keep on increasing the num of slices/line, starting from min_slices
3099 	 * per line till we get such a number, for which the slice_width is
3100 	 * just less than max_slice_width. The slices/line selected should be
3101 	 * less than or equal to the max horizontal slices that the combination
3102 	 * of PCON encoder and HDMI decoder can support.
3103 	 */
3104 	slice_width = max_slice_width;
3105 
3106 	do {
3107 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3108 			target_slices = 1;
3109 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3110 			target_slices = 2;
3111 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3112 			target_slices = 4;
3113 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3114 			target_slices = 8;
3115 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3116 			target_slices = 12;
3117 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3118 			target_slices = 16;
3119 		else
3120 			return 0;
3121 
3122 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3123 		if (slice_width >= max_slice_width)
3124 			min_slices = target_slices + 1;
3125 	} while (slice_width >= max_slice_width);
3126 
3127 	return target_slices;
3128 }
3129 
3130 /*
3131  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3132  * source and sink capabilities.
3133  *
3134  * @src_fraction_bpp: fractional bpp supported by the source
3135  * @slice_width: dsc slice width supported by the source and sink
3136  * @num_slices: num of slices supported by the source and sink
3137  * @output_format: video output format
3138  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3139  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3140  *
3141  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3142  */
3143 int
3144 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3145 		       int output_format, bool hdmi_all_bpp,
3146 		       int hdmi_max_chunk_bytes)
3147 {
3148 	int max_dsc_bpp, min_dsc_bpp;
3149 	int target_bytes;
3150 	bool bpp_found = false;
3151 	int bpp_decrement_x16;
3152 	int bpp_target;
3153 	int bpp_target_x16;
3154 
3155 	/*
3156 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3157 	 * Start with the max bpp and keep on decrementing with
3158 	 * fractional bpp, if supported by PCON DSC encoder
3159 	 *
3160 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3161 	 */
3162 
3163 	/* Assuming: bpc as 8*/
3164 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3165 		min_dsc_bpp = 6;
3166 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3167 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3168 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3169 		min_dsc_bpp = 8;
3170 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3171 	} else {
3172 		/* Assuming 4:2:2 encoding */
3173 		min_dsc_bpp = 7;
3174 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3175 	}
3176 
3177 	/*
3178 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3179 	 * Section 7.7.34 : Source shall not enable compressed Video
3180 	 * Transport with bpp_target settings above 12 bpp unless
3181 	 * DSC_all_bpp is set to 1.
3182 	 */
3183 	if (!hdmi_all_bpp)
3184 		max_dsc_bpp = min(max_dsc_bpp, 12);
3185 
3186 	/*
3187 	 * The Sink has a limit of compressed data in bytes for a scanline,
3188 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3189 	 * The no. of bytes depend on the target bits per pixel that the
3190 	 * source configures. So we start with the max_bpp and calculate
3191 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3192 	 * till we get the target_chunk_bytes just less than what the sink's
3193 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3194 	 *
3195 	 * The decrement is according to the fractional support from PCON DSC
3196 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3197 	 *
3198 	 * bpp_target_x16 = bpp_target * 16
3199 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3200 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3201 	 */
3202 
3203 	bpp_target = max_dsc_bpp;
3204 
3205 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3206 	if (!src_fractional_bpp)
3207 		src_fractional_bpp = 1;
3208 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3209 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3210 
3211 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3212 		int bpp;
3213 
3214 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3215 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3216 		if (target_bytes <= hdmi_max_chunk_bytes) {
3217 			bpp_found = true;
3218 			break;
3219 		}
3220 		bpp_target_x16 -= bpp_decrement_x16;
3221 	}
3222 	if (bpp_found)
3223 		return bpp_target_x16;
3224 
3225 	return 0;
3226 }
3227