1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40 
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_connector.h"
45 #include "intel_ddi.h"
46 #include "intel_de.h"
47 #include "intel_display_types.h"
48 #include "intel_dp.h"
49 #include "intel_gmbus.h"
50 #include "intel_hdcp.h"
51 #include "intel_hdmi.h"
52 #include "intel_lspcon.h"
53 #include "intel_panel.h"
54 #include "intel_snps_phy.h"
55 
56 static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
57 {
58 	return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
59 }
60 
61 static void
62 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
63 {
64 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
65 	u32 enabled_bits;
66 
67 	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
68 
69 	drm_WARN(&dev_priv->drm,
70 		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
71 		 "HDMI port enabled, expecting disabled\n");
72 }
73 
74 static void
75 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
76 				     enum transcoder cpu_transcoder)
77 {
78 	drm_WARN(&dev_priv->drm,
79 		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
80 		 TRANS_DDI_FUNC_ENABLE,
81 		 "HDMI transcoder function enabled, expecting disabled\n");
82 }
83 
84 static u32 g4x_infoframe_index(unsigned int type)
85 {
86 	switch (type) {
87 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
88 		return VIDEO_DIP_SELECT_GAMUT;
89 	case HDMI_INFOFRAME_TYPE_AVI:
90 		return VIDEO_DIP_SELECT_AVI;
91 	case HDMI_INFOFRAME_TYPE_SPD:
92 		return VIDEO_DIP_SELECT_SPD;
93 	case HDMI_INFOFRAME_TYPE_VENDOR:
94 		return VIDEO_DIP_SELECT_VENDOR;
95 	default:
96 		MISSING_CASE(type);
97 		return 0;
98 	}
99 }
100 
101 static u32 g4x_infoframe_enable(unsigned int type)
102 {
103 	switch (type) {
104 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
105 		return VIDEO_DIP_ENABLE_GCP;
106 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
107 		return VIDEO_DIP_ENABLE_GAMUT;
108 	case DP_SDP_VSC:
109 		return 0;
110 	case HDMI_INFOFRAME_TYPE_AVI:
111 		return VIDEO_DIP_ENABLE_AVI;
112 	case HDMI_INFOFRAME_TYPE_SPD:
113 		return VIDEO_DIP_ENABLE_SPD;
114 	case HDMI_INFOFRAME_TYPE_VENDOR:
115 		return VIDEO_DIP_ENABLE_VENDOR;
116 	case HDMI_INFOFRAME_TYPE_DRM:
117 		return 0;
118 	default:
119 		MISSING_CASE(type);
120 		return 0;
121 	}
122 }
123 
124 static u32 hsw_infoframe_enable(unsigned int type)
125 {
126 	switch (type) {
127 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
128 		return VIDEO_DIP_ENABLE_GCP_HSW;
129 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
130 		return VIDEO_DIP_ENABLE_GMP_HSW;
131 	case DP_SDP_VSC:
132 		return VIDEO_DIP_ENABLE_VSC_HSW;
133 	case DP_SDP_PPS:
134 		return VDIP_ENABLE_PPS;
135 	case HDMI_INFOFRAME_TYPE_AVI:
136 		return VIDEO_DIP_ENABLE_AVI_HSW;
137 	case HDMI_INFOFRAME_TYPE_SPD:
138 		return VIDEO_DIP_ENABLE_SPD_HSW;
139 	case HDMI_INFOFRAME_TYPE_VENDOR:
140 		return VIDEO_DIP_ENABLE_VS_HSW;
141 	case HDMI_INFOFRAME_TYPE_DRM:
142 		return VIDEO_DIP_ENABLE_DRM_GLK;
143 	default:
144 		MISSING_CASE(type);
145 		return 0;
146 	}
147 }
148 
149 static i915_reg_t
150 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
151 		 enum transcoder cpu_transcoder,
152 		 unsigned int type,
153 		 int i)
154 {
155 	switch (type) {
156 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
157 		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
158 	case DP_SDP_VSC:
159 		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
160 	case DP_SDP_PPS:
161 		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
162 	case HDMI_INFOFRAME_TYPE_AVI:
163 		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
164 	case HDMI_INFOFRAME_TYPE_SPD:
165 		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
166 	case HDMI_INFOFRAME_TYPE_VENDOR:
167 		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
168 	case HDMI_INFOFRAME_TYPE_DRM:
169 		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
170 	default:
171 		MISSING_CASE(type);
172 		return INVALID_MMIO_REG;
173 	}
174 }
175 
176 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
177 			     unsigned int type)
178 {
179 	switch (type) {
180 	case DP_SDP_VSC:
181 		return VIDEO_DIP_VSC_DATA_SIZE;
182 	case DP_SDP_PPS:
183 		return VIDEO_DIP_PPS_DATA_SIZE;
184 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
185 		if (DISPLAY_VER(dev_priv) >= 11)
186 			return VIDEO_DIP_GMP_DATA_SIZE;
187 		else
188 			return VIDEO_DIP_DATA_SIZE;
189 	default:
190 		return VIDEO_DIP_DATA_SIZE;
191 	}
192 }
193 
194 static void g4x_write_infoframe(struct intel_encoder *encoder,
195 				const struct intel_crtc_state *crtc_state,
196 				unsigned int type,
197 				const void *frame, ssize_t len)
198 {
199 	const u32 *data = frame;
200 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
201 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
202 	int i;
203 
204 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
205 		 "Writing DIP with CTL reg disabled\n");
206 
207 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
208 	val |= g4x_infoframe_index(type);
209 
210 	val &= ~g4x_infoframe_enable(type);
211 
212 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
213 
214 	for (i = 0; i < len; i += 4) {
215 		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
216 		data++;
217 	}
218 	/* Write every possible data byte to force correct ECC calculation. */
219 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
220 		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
221 
222 	val |= g4x_infoframe_enable(type);
223 	val &= ~VIDEO_DIP_FREQ_MASK;
224 	val |= VIDEO_DIP_FREQ_VSYNC;
225 
226 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
227 	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
228 }
229 
230 static void g4x_read_infoframe(struct intel_encoder *encoder,
231 			       const struct intel_crtc_state *crtc_state,
232 			       unsigned int type,
233 			       void *frame, ssize_t len)
234 {
235 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
236 	u32 val, *data = frame;
237 	int i;
238 
239 	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
240 
241 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
242 	val |= g4x_infoframe_index(type);
243 
244 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
245 
246 	for (i = 0; i < len; i += 4)
247 		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
248 }
249 
250 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
251 				  const struct intel_crtc_state *pipe_config)
252 {
253 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
254 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
255 
256 	if ((val & VIDEO_DIP_ENABLE) == 0)
257 		return 0;
258 
259 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
260 		return 0;
261 
262 	return val & (VIDEO_DIP_ENABLE_AVI |
263 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
264 }
265 
266 static void ibx_write_infoframe(struct intel_encoder *encoder,
267 				const struct intel_crtc_state *crtc_state,
268 				unsigned int type,
269 				const void *frame, ssize_t len)
270 {
271 	const u32 *data = frame;
272 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
273 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
274 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
275 	u32 val = intel_de_read(dev_priv, reg);
276 	int i;
277 
278 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
279 		 "Writing DIP with CTL reg disabled\n");
280 
281 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
282 	val |= g4x_infoframe_index(type);
283 
284 	val &= ~g4x_infoframe_enable(type);
285 
286 	intel_de_write(dev_priv, reg, val);
287 
288 	for (i = 0; i < len; i += 4) {
289 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
290 			       *data);
291 		data++;
292 	}
293 	/* Write every possible data byte to force correct ECC calculation. */
294 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
295 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
296 
297 	val |= g4x_infoframe_enable(type);
298 	val &= ~VIDEO_DIP_FREQ_MASK;
299 	val |= VIDEO_DIP_FREQ_VSYNC;
300 
301 	intel_de_write(dev_priv, reg, val);
302 	intel_de_posting_read(dev_priv, reg);
303 }
304 
305 static void ibx_read_infoframe(struct intel_encoder *encoder,
306 			       const struct intel_crtc_state *crtc_state,
307 			       unsigned int type,
308 			       void *frame, ssize_t len)
309 {
310 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
311 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
312 	u32 val, *data = frame;
313 	int i;
314 
315 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
316 
317 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
318 	val |= g4x_infoframe_index(type);
319 
320 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
321 
322 	for (i = 0; i < len; i += 4)
323 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
324 }
325 
326 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
327 				  const struct intel_crtc_state *pipe_config)
328 {
329 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
330 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
331 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
332 	u32 val = intel_de_read(dev_priv, reg);
333 
334 	if ((val & VIDEO_DIP_ENABLE) == 0)
335 		return 0;
336 
337 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
338 		return 0;
339 
340 	return val & (VIDEO_DIP_ENABLE_AVI |
341 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
342 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
343 }
344 
345 static void cpt_write_infoframe(struct intel_encoder *encoder,
346 				const struct intel_crtc_state *crtc_state,
347 				unsigned int type,
348 				const void *frame, ssize_t len)
349 {
350 	const u32 *data = frame;
351 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
352 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
353 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
354 	u32 val = intel_de_read(dev_priv, reg);
355 	int i;
356 
357 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
358 		 "Writing DIP with CTL reg disabled\n");
359 
360 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
361 	val |= g4x_infoframe_index(type);
362 
363 	/* The DIP control register spec says that we need to update the AVI
364 	 * infoframe without clearing its enable bit */
365 	if (type != HDMI_INFOFRAME_TYPE_AVI)
366 		val &= ~g4x_infoframe_enable(type);
367 
368 	intel_de_write(dev_priv, reg, val);
369 
370 	for (i = 0; i < len; i += 4) {
371 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
372 			       *data);
373 		data++;
374 	}
375 	/* Write every possible data byte to force correct ECC calculation. */
376 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
377 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
378 
379 	val |= g4x_infoframe_enable(type);
380 	val &= ~VIDEO_DIP_FREQ_MASK;
381 	val |= VIDEO_DIP_FREQ_VSYNC;
382 
383 	intel_de_write(dev_priv, reg, val);
384 	intel_de_posting_read(dev_priv, reg);
385 }
386 
387 static void cpt_read_infoframe(struct intel_encoder *encoder,
388 			       const struct intel_crtc_state *crtc_state,
389 			       unsigned int type,
390 			       void *frame, ssize_t len)
391 {
392 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
393 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394 	u32 val, *data = frame;
395 	int i;
396 
397 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
398 
399 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
400 	val |= g4x_infoframe_index(type);
401 
402 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
403 
404 	for (i = 0; i < len; i += 4)
405 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
406 }
407 
408 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
409 				  const struct intel_crtc_state *pipe_config)
410 {
411 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
412 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
413 	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
414 
415 	if ((val & VIDEO_DIP_ENABLE) == 0)
416 		return 0;
417 
418 	return val & (VIDEO_DIP_ENABLE_AVI |
419 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
420 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
421 }
422 
423 static void vlv_write_infoframe(struct intel_encoder *encoder,
424 				const struct intel_crtc_state *crtc_state,
425 				unsigned int type,
426 				const void *frame, ssize_t len)
427 {
428 	const u32 *data = frame;
429 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
430 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
431 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
432 	u32 val = intel_de_read(dev_priv, reg);
433 	int i;
434 
435 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
436 		 "Writing DIP with CTL reg disabled\n");
437 
438 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
439 	val |= g4x_infoframe_index(type);
440 
441 	val &= ~g4x_infoframe_enable(type);
442 
443 	intel_de_write(dev_priv, reg, val);
444 
445 	for (i = 0; i < len; i += 4) {
446 		intel_de_write(dev_priv,
447 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
448 		data++;
449 	}
450 	/* Write every possible data byte to force correct ECC calculation. */
451 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
452 		intel_de_write(dev_priv,
453 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
454 
455 	val |= g4x_infoframe_enable(type);
456 	val &= ~VIDEO_DIP_FREQ_MASK;
457 	val |= VIDEO_DIP_FREQ_VSYNC;
458 
459 	intel_de_write(dev_priv, reg, val);
460 	intel_de_posting_read(dev_priv, reg);
461 }
462 
463 static void vlv_read_infoframe(struct intel_encoder *encoder,
464 			       const struct intel_crtc_state *crtc_state,
465 			       unsigned int type,
466 			       void *frame, ssize_t len)
467 {
468 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
469 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
470 	u32 val, *data = frame;
471 	int i;
472 
473 	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
474 
475 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
476 	val |= g4x_infoframe_index(type);
477 
478 	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
479 
480 	for (i = 0; i < len; i += 4)
481 		*data++ = intel_de_read(dev_priv,
482 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
483 }
484 
485 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
486 				  const struct intel_crtc_state *pipe_config)
487 {
488 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
489 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
490 	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
491 
492 	if ((val & VIDEO_DIP_ENABLE) == 0)
493 		return 0;
494 
495 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
496 		return 0;
497 
498 	return val & (VIDEO_DIP_ENABLE_AVI |
499 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
500 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
501 }
502 
503 void hsw_write_infoframe(struct intel_encoder *encoder,
504 			 const struct intel_crtc_state *crtc_state,
505 			 unsigned int type,
506 			 const void *frame, ssize_t len)
507 {
508 	const u32 *data = frame;
509 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
510 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
511 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
512 	int data_size;
513 	int i;
514 	u32 val = intel_de_read(dev_priv, ctl_reg);
515 
516 	data_size = hsw_dip_data_size(dev_priv, type);
517 
518 	drm_WARN_ON(&dev_priv->drm, len > data_size);
519 
520 	val &= ~hsw_infoframe_enable(type);
521 	intel_de_write(dev_priv, ctl_reg, val);
522 
523 	for (i = 0; i < len; i += 4) {
524 		intel_de_write(dev_priv,
525 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
526 			       *data);
527 		data++;
528 	}
529 	/* Write every possible data byte to force correct ECC calculation. */
530 	for (; i < data_size; i += 4)
531 		intel_de_write(dev_priv,
532 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
533 			       0);
534 
535 	/* Wa_14013475917 */
536 	if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
537 	    type == DP_SDP_VSC)
538 		return;
539 
540 	val |= hsw_infoframe_enable(type);
541 	intel_de_write(dev_priv, ctl_reg, val);
542 	intel_de_posting_read(dev_priv, ctl_reg);
543 }
544 
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546 			const struct intel_crtc_state *crtc_state,
547 			unsigned int type, void *frame, ssize_t len)
548 {
549 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551 	u32 *data = frame;
552 	int i;
553 
554 	for (i = 0; i < len; i += 4)
555 		*data++ = intel_de_read(dev_priv,
556 				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558 
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560 				  const struct intel_crtc_state *pipe_config)
561 {
562 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563 	u32 val = intel_de_read(dev_priv,
564 				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565 	u32 mask;
566 
567 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570 
571 	if (DISPLAY_VER(dev_priv) >= 10)
572 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573 
574 	return val & mask;
575 }
576 
577 static const u8 infoframe_type_to_idx[] = {
578 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
579 	HDMI_PACKET_TYPE_GAMUT_METADATA,
580 	DP_SDP_VSC,
581 	HDMI_INFOFRAME_TYPE_AVI,
582 	HDMI_INFOFRAME_TYPE_SPD,
583 	HDMI_INFOFRAME_TYPE_VENDOR,
584 	HDMI_INFOFRAME_TYPE_DRM,
585 };
586 
587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589 	int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592 		if (infoframe_type_to_idx[i] == type)
593 			return BIT(i);
594 	}
595 
596 	return 0;
597 }
598 
599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600 				  const struct intel_crtc_state *crtc_state)
601 {
602 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
603 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604 	u32 val, ret = 0;
605 	int i;
606 
607 	val = dig_port->infoframes_enabled(encoder, crtc_state);
608 
609 	/* map from hardware bits to dip idx */
610 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611 		unsigned int type = infoframe_type_to_idx[i];
612 
613 		if (HAS_DDI(dev_priv)) {
614 			if (val & hsw_infoframe_enable(type))
615 				ret |= BIT(i);
616 		} else {
617 			if (val & g4x_infoframe_enable(type))
618 				ret |= BIT(i);
619 		}
620 	}
621 
622 	return ret;
623 }
624 
625 /*
626  * The data we write to the DIP data buffer registers is 1 byte bigger than the
627  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629  * used for both technologies.
630  *
631  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632  * DW1:       DB3       | DB2 | DB1 | DB0
633  * DW2:       DB7       | DB6 | DB5 | DB4
634  * DW3: ...
635  *
636  * (HB is Header Byte, DB is Data Byte)
637  *
638  * The hdmi pack() functions don't know about that hardware specific hole so we
639  * trick them by giving an offset into the buffer and moving back the header
640  * bytes by one.
641  */
642 static void intel_write_infoframe(struct intel_encoder *encoder,
643 				  const struct intel_crtc_state *crtc_state,
644 				  enum hdmi_infoframe_type type,
645 				  const union hdmi_infoframe *frame)
646 {
647 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648 	u8 buffer[VIDEO_DIP_DATA_SIZE];
649 	ssize_t len;
650 
651 	if ((crtc_state->infoframes.enable &
652 	     intel_hdmi_infoframe_enable(type)) == 0)
653 		return;
654 
655 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656 		return;
657 
658 	/* see comment above for the reason for this offset */
659 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660 	if (drm_WARN_ON(encoder->base.dev, len < 0))
661 		return;
662 
663 	/* Insert the 'hole' (see big comment above) at position 3 */
664 	memmove(&buffer[0], &buffer[1], 3);
665 	buffer[3] = 0;
666 	len++;
667 
668 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670 
671 void intel_read_infoframe(struct intel_encoder *encoder,
672 			  const struct intel_crtc_state *crtc_state,
673 			  enum hdmi_infoframe_type type,
674 			  union hdmi_infoframe *frame)
675 {
676 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677 	u8 buffer[VIDEO_DIP_DATA_SIZE];
678 	int ret;
679 
680 	if ((crtc_state->infoframes.enable &
681 	     intel_hdmi_infoframe_enable(type)) == 0)
682 		return;
683 
684 	dig_port->read_infoframe(encoder, crtc_state,
685 				       type, buffer, sizeof(buffer));
686 
687 	/* Fill the 'hole' (see big comment above) at position 3 */
688 	memmove(&buffer[1], &buffer[0], 3);
689 
690 	/* see comment above for the reason for this offset */
691 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692 	if (ret) {
693 		drm_dbg_kms(encoder->base.dev,
694 			    "Failed to unpack infoframe type 0x%02x\n", type);
695 		return;
696 	}
697 
698 	if (frame->any.type != type)
699 		drm_dbg_kms(encoder->base.dev,
700 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701 			    frame->any.type, type);
702 }
703 
704 static bool
705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706 				 struct intel_crtc_state *crtc_state,
707 				 struct drm_connector_state *conn_state)
708 {
709 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710 	const struct drm_display_mode *adjusted_mode =
711 		&crtc_state->hw.adjusted_mode;
712 	struct drm_connector *connector = conn_state->connector;
713 	int ret;
714 
715 	if (!crtc_state->has_infoframe)
716 		return true;
717 
718 	crtc_state->infoframes.enable |=
719 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720 
721 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722 						       adjusted_mode);
723 	if (ret)
724 		return false;
725 
726 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727 		frame->colorspace = HDMI_COLORSPACE_YUV420;
728 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729 		frame->colorspace = HDMI_COLORSPACE_YUV444;
730 	else
731 		frame->colorspace = HDMI_COLORSPACE_RGB;
732 
733 	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
734 
735 	/* nonsense combination */
736 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738 
739 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
741 						   adjusted_mode,
742 						   crtc_state->limited_color_range ?
743 						   HDMI_QUANTIZATION_RANGE_LIMITED :
744 						   HDMI_QUANTIZATION_RANGE_FULL);
745 	} else {
746 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748 	}
749 
750 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751 
752 	/* TODO: handle pixel repetition for YCBCR420 outputs */
753 
754 	ret = hdmi_avi_infoframe_check(frame);
755 	if (drm_WARN_ON(encoder->base.dev, ret))
756 		return false;
757 
758 	return true;
759 }
760 
761 static bool
762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763 				 struct intel_crtc_state *crtc_state,
764 				 struct drm_connector_state *conn_state)
765 {
766 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
767 	int ret;
768 
769 	if (!crtc_state->has_infoframe)
770 		return true;
771 
772 	crtc_state->infoframes.enable |=
773 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
774 
775 	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
776 	if (drm_WARN_ON(encoder->base.dev, ret))
777 		return false;
778 
779 	frame->sdi = HDMI_SPD_SDI_PC;
780 
781 	ret = hdmi_spd_infoframe_check(frame);
782 	if (drm_WARN_ON(encoder->base.dev, ret))
783 		return false;
784 
785 	return true;
786 }
787 
788 static bool
789 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
790 				  struct intel_crtc_state *crtc_state,
791 				  struct drm_connector_state *conn_state)
792 {
793 	struct hdmi_vendor_infoframe *frame =
794 		&crtc_state->infoframes.hdmi.vendor.hdmi;
795 	const struct drm_display_info *info =
796 		&conn_state->connector->display_info;
797 	int ret;
798 
799 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
800 		return true;
801 
802 	crtc_state->infoframes.enable |=
803 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
804 
805 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
806 							  conn_state->connector,
807 							  &crtc_state->hw.adjusted_mode);
808 	if (drm_WARN_ON(encoder->base.dev, ret))
809 		return false;
810 
811 	ret = hdmi_vendor_infoframe_check(frame);
812 	if (drm_WARN_ON(encoder->base.dev, ret))
813 		return false;
814 
815 	return true;
816 }
817 
818 static bool
819 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
820 				 struct intel_crtc_state *crtc_state,
821 				 struct drm_connector_state *conn_state)
822 {
823 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
824 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
825 	int ret;
826 
827 	if (DISPLAY_VER(dev_priv) < 10)
828 		return true;
829 
830 	if (!crtc_state->has_infoframe)
831 		return true;
832 
833 	if (!conn_state->hdr_output_metadata)
834 		return true;
835 
836 	crtc_state->infoframes.enable |=
837 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
838 
839 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
840 	if (ret < 0) {
841 		drm_dbg_kms(&dev_priv->drm,
842 			    "couldn't set HDR metadata in infoframe\n");
843 		return false;
844 	}
845 
846 	ret = hdmi_drm_infoframe_check(frame);
847 	if (drm_WARN_ON(&dev_priv->drm, ret))
848 		return false;
849 
850 	return true;
851 }
852 
853 static void g4x_set_infoframes(struct intel_encoder *encoder,
854 			       bool enable,
855 			       const struct intel_crtc_state *crtc_state,
856 			       const struct drm_connector_state *conn_state)
857 {
858 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
859 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
860 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
861 	i915_reg_t reg = VIDEO_DIP_CTL;
862 	u32 val = intel_de_read(dev_priv, reg);
863 	u32 port = VIDEO_DIP_PORT(encoder->port);
864 
865 	assert_hdmi_port_disabled(intel_hdmi);
866 
867 	/* If the registers were not initialized yet, they might be zeroes,
868 	 * which means we're selecting the AVI DIP and we're setting its
869 	 * frequency to once. This seems to really confuse the HW and make
870 	 * things stop working (the register spec says the AVI always needs to
871 	 * be sent every VSync). So here we avoid writing to the register more
872 	 * than we need and also explicitly select the AVI DIP and explicitly
873 	 * set its frequency to every VSync. Avoiding to write it twice seems to
874 	 * be enough to solve the problem, but being defensive shouldn't hurt us
875 	 * either. */
876 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
877 
878 	if (!enable) {
879 		if (!(val & VIDEO_DIP_ENABLE))
880 			return;
881 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
882 			drm_dbg_kms(&dev_priv->drm,
883 				    "video DIP still enabled on port %c\n",
884 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
885 			return;
886 		}
887 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
888 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
889 		intel_de_write(dev_priv, reg, val);
890 		intel_de_posting_read(dev_priv, reg);
891 		return;
892 	}
893 
894 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
895 		if (val & VIDEO_DIP_ENABLE) {
896 			drm_dbg_kms(&dev_priv->drm,
897 				    "video DIP already enabled on port %c\n",
898 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
899 			return;
900 		}
901 		val &= ~VIDEO_DIP_PORT_MASK;
902 		val |= port;
903 	}
904 
905 	val |= VIDEO_DIP_ENABLE;
906 	val &= ~(VIDEO_DIP_ENABLE_AVI |
907 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
908 
909 	intel_de_write(dev_priv, reg, val);
910 	intel_de_posting_read(dev_priv, reg);
911 
912 	intel_write_infoframe(encoder, crtc_state,
913 			      HDMI_INFOFRAME_TYPE_AVI,
914 			      &crtc_state->infoframes.avi);
915 	intel_write_infoframe(encoder, crtc_state,
916 			      HDMI_INFOFRAME_TYPE_SPD,
917 			      &crtc_state->infoframes.spd);
918 	intel_write_infoframe(encoder, crtc_state,
919 			      HDMI_INFOFRAME_TYPE_VENDOR,
920 			      &crtc_state->infoframes.hdmi);
921 }
922 
923 /*
924  * Determine if default_phase=1 can be indicated in the GCP infoframe.
925  *
926  * From HDMI specification 1.4a:
927  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
928  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
929  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
930  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
931  *   phase of 0
932  */
933 static bool gcp_default_phase_possible(int pipe_bpp,
934 				       const struct drm_display_mode *mode)
935 {
936 	unsigned int pixels_per_group;
937 
938 	switch (pipe_bpp) {
939 	case 30:
940 		/* 4 pixels in 5 clocks */
941 		pixels_per_group = 4;
942 		break;
943 	case 36:
944 		/* 2 pixels in 3 clocks */
945 		pixels_per_group = 2;
946 		break;
947 	case 48:
948 		/* 1 pixel in 2 clocks */
949 		pixels_per_group = 1;
950 		break;
951 	default:
952 		/* phase information not relevant for 8bpc */
953 		return false;
954 	}
955 
956 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
957 		mode->crtc_htotal % pixels_per_group == 0 &&
958 		mode->crtc_hblank_start % pixels_per_group == 0 &&
959 		mode->crtc_hblank_end % pixels_per_group == 0 &&
960 		mode->crtc_hsync_start % pixels_per_group == 0 &&
961 		mode->crtc_hsync_end % pixels_per_group == 0 &&
962 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
963 		 mode->crtc_htotal/2 % pixels_per_group == 0);
964 }
965 
966 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
967 					 const struct intel_crtc_state *crtc_state,
968 					 const struct drm_connector_state *conn_state)
969 {
970 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
971 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
972 	i915_reg_t reg;
973 
974 	if ((crtc_state->infoframes.enable &
975 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
976 		return false;
977 
978 	if (HAS_DDI(dev_priv))
979 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
980 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
981 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
982 	else if (HAS_PCH_SPLIT(dev_priv))
983 		reg = TVIDEO_DIP_GCP(crtc->pipe);
984 	else
985 		return false;
986 
987 	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
988 
989 	return true;
990 }
991 
992 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
993 				   struct intel_crtc_state *crtc_state)
994 {
995 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
996 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
997 	i915_reg_t reg;
998 
999 	if ((crtc_state->infoframes.enable &
1000 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001 		return;
1002 
1003 	if (HAS_DDI(dev_priv))
1004 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007 	else if (HAS_PCH_SPLIT(dev_priv))
1008 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1009 	else
1010 		return;
1011 
1012 	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013 }
1014 
1015 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016 					     struct intel_crtc_state *crtc_state,
1017 					     struct drm_connector_state *conn_state)
1018 {
1019 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020 
1021 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022 		return;
1023 
1024 	crtc_state->infoframes.enable |=
1025 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026 
1027 	/* Indicate color indication for deep color mode */
1028 	if (crtc_state->pipe_bpp > 24)
1029 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030 
1031 	/* Enable default_phase whenever the display mode is suitably aligned */
1032 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033 				       &crtc_state->hw.adjusted_mode))
1034 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035 }
1036 
1037 static void ibx_set_infoframes(struct intel_encoder *encoder,
1038 			       bool enable,
1039 			       const struct intel_crtc_state *crtc_state,
1040 			       const struct drm_connector_state *conn_state)
1041 {
1042 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1047 	u32 val = intel_de_read(dev_priv, reg);
1048 	u32 port = VIDEO_DIP_PORT(encoder->port);
1049 
1050 	assert_hdmi_port_disabled(intel_hdmi);
1051 
1052 	/* See the big comment in g4x_set_infoframes() */
1053 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054 
1055 	if (!enable) {
1056 		if (!(val & VIDEO_DIP_ENABLE))
1057 			return;
1058 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061 		intel_de_write(dev_priv, reg, val);
1062 		intel_de_posting_read(dev_priv, reg);
1063 		return;
1064 	}
1065 
1066 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068 			 "DIP already enabled on port %c\n",
1069 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1070 		val &= ~VIDEO_DIP_PORT_MASK;
1071 		val |= port;
1072 	}
1073 
1074 	val |= VIDEO_DIP_ENABLE;
1075 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1076 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078 
1079 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080 		val |= VIDEO_DIP_ENABLE_GCP;
1081 
1082 	intel_de_write(dev_priv, reg, val);
1083 	intel_de_posting_read(dev_priv, reg);
1084 
1085 	intel_write_infoframe(encoder, crtc_state,
1086 			      HDMI_INFOFRAME_TYPE_AVI,
1087 			      &crtc_state->infoframes.avi);
1088 	intel_write_infoframe(encoder, crtc_state,
1089 			      HDMI_INFOFRAME_TYPE_SPD,
1090 			      &crtc_state->infoframes.spd);
1091 	intel_write_infoframe(encoder, crtc_state,
1092 			      HDMI_INFOFRAME_TYPE_VENDOR,
1093 			      &crtc_state->infoframes.hdmi);
1094 }
1095 
1096 static void cpt_set_infoframes(struct intel_encoder *encoder,
1097 			       bool enable,
1098 			       const struct intel_crtc_state *crtc_state,
1099 			       const struct drm_connector_state *conn_state)
1100 {
1101 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1105 	u32 val = intel_de_read(dev_priv, reg);
1106 
1107 	assert_hdmi_port_disabled(intel_hdmi);
1108 
1109 	/* See the big comment in g4x_set_infoframes() */
1110 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111 
1112 	if (!enable) {
1113 		if (!(val & VIDEO_DIP_ENABLE))
1114 			return;
1115 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118 		intel_de_write(dev_priv, reg, val);
1119 		intel_de_posting_read(dev_priv, reg);
1120 		return;
1121 	}
1122 
1123 	/* Set both together, unset both together: see the spec. */
1124 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127 
1128 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129 		val |= VIDEO_DIP_ENABLE_GCP;
1130 
1131 	intel_de_write(dev_priv, reg, val);
1132 	intel_de_posting_read(dev_priv, reg);
1133 
1134 	intel_write_infoframe(encoder, crtc_state,
1135 			      HDMI_INFOFRAME_TYPE_AVI,
1136 			      &crtc_state->infoframes.avi);
1137 	intel_write_infoframe(encoder, crtc_state,
1138 			      HDMI_INFOFRAME_TYPE_SPD,
1139 			      &crtc_state->infoframes.spd);
1140 	intel_write_infoframe(encoder, crtc_state,
1141 			      HDMI_INFOFRAME_TYPE_VENDOR,
1142 			      &crtc_state->infoframes.hdmi);
1143 }
1144 
1145 static void vlv_set_infoframes(struct intel_encoder *encoder,
1146 			       bool enable,
1147 			       const struct intel_crtc_state *crtc_state,
1148 			       const struct drm_connector_state *conn_state)
1149 {
1150 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1154 	u32 val = intel_de_read(dev_priv, reg);
1155 	u32 port = VIDEO_DIP_PORT(encoder->port);
1156 
1157 	assert_hdmi_port_disabled(intel_hdmi);
1158 
1159 	/* See the big comment in g4x_set_infoframes() */
1160 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161 
1162 	if (!enable) {
1163 		if (!(val & VIDEO_DIP_ENABLE))
1164 			return;
1165 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168 		intel_de_write(dev_priv, reg, val);
1169 		intel_de_posting_read(dev_priv, reg);
1170 		return;
1171 	}
1172 
1173 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175 			 "DIP already enabled on port %c\n",
1176 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1177 		val &= ~VIDEO_DIP_PORT_MASK;
1178 		val |= port;
1179 	}
1180 
1181 	val |= VIDEO_DIP_ENABLE;
1182 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1183 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185 
1186 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187 		val |= VIDEO_DIP_ENABLE_GCP;
1188 
1189 	intel_de_write(dev_priv, reg, val);
1190 	intel_de_posting_read(dev_priv, reg);
1191 
1192 	intel_write_infoframe(encoder, crtc_state,
1193 			      HDMI_INFOFRAME_TYPE_AVI,
1194 			      &crtc_state->infoframes.avi);
1195 	intel_write_infoframe(encoder, crtc_state,
1196 			      HDMI_INFOFRAME_TYPE_SPD,
1197 			      &crtc_state->infoframes.spd);
1198 	intel_write_infoframe(encoder, crtc_state,
1199 			      HDMI_INFOFRAME_TYPE_VENDOR,
1200 			      &crtc_state->infoframes.hdmi);
1201 }
1202 
1203 static void hsw_set_infoframes(struct intel_encoder *encoder,
1204 			       bool enable,
1205 			       const struct intel_crtc_state *crtc_state,
1206 			       const struct drm_connector_state *conn_state)
1207 {
1208 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210 	u32 val = intel_de_read(dev_priv, reg);
1211 
1212 	assert_hdmi_transcoder_func_disabled(dev_priv,
1213 					     crtc_state->cpu_transcoder);
1214 
1215 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218 		 VIDEO_DIP_ENABLE_DRM_GLK);
1219 
1220 	if (!enable) {
1221 		intel_de_write(dev_priv, reg, val);
1222 		intel_de_posting_read(dev_priv, reg);
1223 		return;
1224 	}
1225 
1226 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228 
1229 	intel_de_write(dev_priv, reg, val);
1230 	intel_de_posting_read(dev_priv, reg);
1231 
1232 	intel_write_infoframe(encoder, crtc_state,
1233 			      HDMI_INFOFRAME_TYPE_AVI,
1234 			      &crtc_state->infoframes.avi);
1235 	intel_write_infoframe(encoder, crtc_state,
1236 			      HDMI_INFOFRAME_TYPE_SPD,
1237 			      &crtc_state->infoframes.spd);
1238 	intel_write_infoframe(encoder, crtc_state,
1239 			      HDMI_INFOFRAME_TYPE_VENDOR,
1240 			      &crtc_state->infoframes.hdmi);
1241 	intel_write_infoframe(encoder, crtc_state,
1242 			      HDMI_INFOFRAME_TYPE_DRM,
1243 			      &crtc_state->infoframes.drm);
1244 }
1245 
1246 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247 {
1248 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1249 	struct i2c_adapter *adapter;
1250 
1251 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1252 		return;
1253 
1254 	adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1255 
1256 	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1257 		    enable ? "Enabling" : "Disabling");
1258 
1259 	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1260 }
1261 
1262 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1263 				unsigned int offset, void *buffer, size_t size)
1264 {
1265 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1266 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1267 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1268 							      hdmi->ddc_bus);
1269 	int ret;
1270 	u8 start = offset & 0xff;
1271 	struct i2c_msg msgs[] = {
1272 		{
1273 			.addr = DRM_HDCP_DDC_ADDR,
1274 			.flags = 0,
1275 			.len = 1,
1276 			.buf = &start,
1277 		},
1278 		{
1279 			.addr = DRM_HDCP_DDC_ADDR,
1280 			.flags = I2C_M_RD,
1281 			.len = size,
1282 			.buf = buffer
1283 		}
1284 	};
1285 	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1286 	if (ret == ARRAY_SIZE(msgs))
1287 		return 0;
1288 	return ret >= 0 ? -EIO : ret;
1289 }
1290 
1291 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1292 				 unsigned int offset, void *buffer, size_t size)
1293 {
1294 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1295 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1296 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1297 							      hdmi->ddc_bus);
1298 	int ret;
1299 	u8 *write_buf;
1300 	struct i2c_msg msg;
1301 
1302 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1303 	if (!write_buf)
1304 		return -ENOMEM;
1305 
1306 	write_buf[0] = offset & 0xff;
1307 	memcpy(&write_buf[1], buffer, size);
1308 
1309 	msg.addr = DRM_HDCP_DDC_ADDR;
1310 	msg.flags = 0,
1311 	msg.len = size + 1,
1312 	msg.buf = write_buf;
1313 
1314 	ret = i2c_transfer(adapter, &msg, 1);
1315 	if (ret == 1)
1316 		ret = 0;
1317 	else if (ret >= 0)
1318 		ret = -EIO;
1319 
1320 	kfree(write_buf);
1321 	return ret;
1322 }
1323 
1324 static
1325 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1326 				  u8 *an)
1327 {
1328 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1329 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1330 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1331 							      hdmi->ddc_bus);
1332 	int ret;
1333 
1334 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1335 				    DRM_HDCP_AN_LEN);
1336 	if (ret) {
1337 		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1338 			    ret);
1339 		return ret;
1340 	}
1341 
1342 	ret = intel_gmbus_output_aksv(adapter);
1343 	if (ret < 0) {
1344 		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1345 		return ret;
1346 	}
1347 	return 0;
1348 }
1349 
1350 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1351 				     u8 *bksv)
1352 {
1353 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1354 
1355 	int ret;
1356 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1357 				   DRM_HDCP_KSV_LEN);
1358 	if (ret)
1359 		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1360 			    ret);
1361 	return ret;
1362 }
1363 
1364 static
1365 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1366 				 u8 *bstatus)
1367 {
1368 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1369 
1370 	int ret;
1371 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1372 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1373 	if (ret)
1374 		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1375 			    ret);
1376 	return ret;
1377 }
1378 
1379 static
1380 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1381 				     bool *repeater_present)
1382 {
1383 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1384 	int ret;
1385 	u8 val;
1386 
1387 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1388 	if (ret) {
1389 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1390 			    ret);
1391 		return ret;
1392 	}
1393 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1394 	return 0;
1395 }
1396 
1397 static
1398 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1399 				  u8 *ri_prime)
1400 {
1401 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1402 
1403 	int ret;
1404 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1405 				   ri_prime, DRM_HDCP_RI_LEN);
1406 	if (ret)
1407 		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1408 			    ret);
1409 	return ret;
1410 }
1411 
1412 static
1413 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1414 				   bool *ksv_ready)
1415 {
1416 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1417 	int ret;
1418 	u8 val;
1419 
1420 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1421 	if (ret) {
1422 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1423 			    ret);
1424 		return ret;
1425 	}
1426 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1427 	return 0;
1428 }
1429 
1430 static
1431 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1432 				  int num_downstream, u8 *ksv_fifo)
1433 {
1434 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1435 	int ret;
1436 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1437 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1438 	if (ret) {
1439 		drm_dbg_kms(&i915->drm,
1440 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1441 		return ret;
1442 	}
1443 	return 0;
1444 }
1445 
1446 static
1447 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1448 				      int i, u32 *part)
1449 {
1450 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1451 	int ret;
1452 
1453 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1454 		return -EINVAL;
1455 
1456 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1457 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1458 	if (ret)
1459 		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1460 			    i, ret);
1461 	return ret;
1462 }
1463 
1464 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1465 					   enum transcoder cpu_transcoder)
1466 {
1467 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1468 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1469 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1470 	u32 scanline;
1471 	int ret;
1472 
1473 	for (;;) {
1474 		scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1475 		if (scanline > 100 && scanline < 200)
1476 			break;
1477 		usleep_range(25, 50);
1478 	}
1479 
1480 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1481 					 false, TRANS_DDI_HDCP_SIGNALLING);
1482 	if (ret) {
1483 		drm_err(&dev_priv->drm,
1484 			"Disable HDCP signalling failed (%d)\n", ret);
1485 		return ret;
1486 	}
1487 
1488 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1489 					 true, TRANS_DDI_HDCP_SIGNALLING);
1490 	if (ret) {
1491 		drm_err(&dev_priv->drm,
1492 			"Enable HDCP signalling failed (%d)\n", ret);
1493 		return ret;
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 static
1500 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1501 				      enum transcoder cpu_transcoder,
1502 				      bool enable)
1503 {
1504 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1505 	struct intel_connector *connector = hdmi->attached_connector;
1506 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1507 	int ret;
1508 
1509 	if (!enable)
1510 		usleep_range(6, 60); /* Bspec says >= 6us */
1511 
1512 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1513 					 cpu_transcoder, enable,
1514 					 TRANS_DDI_HDCP_SIGNALLING);
1515 	if (ret) {
1516 		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1517 			enable ? "Enable" : "Disable", ret);
1518 		return ret;
1519 	}
1520 
1521 	/*
1522 	 * WA: To fix incorrect positioning of the window of
1523 	 * opportunity and enc_en signalling in KABYLAKE.
1524 	 */
1525 	if (IS_KABYLAKE(dev_priv) && enable)
1526 		return kbl_repositioning_enc_en_signal(connector,
1527 						       cpu_transcoder);
1528 
1529 	return 0;
1530 }
1531 
1532 static
1533 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1534 				     struct intel_connector *connector)
1535 {
1536 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1537 	enum port port = dig_port->base.port;
1538 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1539 	int ret;
1540 	union {
1541 		u32 reg;
1542 		u8 shim[DRM_HDCP_RI_LEN];
1543 	} ri;
1544 
1545 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1546 	if (ret)
1547 		return false;
1548 
1549 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1550 
1551 	/* Wait for Ri prime match */
1552 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1553 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1554 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1555 		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1556 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1557 							port)));
1558 		return false;
1559 	}
1560 	return true;
1561 }
1562 
1563 static
1564 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1565 				struct intel_connector *connector)
1566 {
1567 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1568 	int retry;
1569 
1570 	for (retry = 0; retry < 3; retry++)
1571 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1572 			return true;
1573 
1574 	drm_err(&i915->drm, "Link check failed\n");
1575 	return false;
1576 }
1577 
1578 struct hdcp2_hdmi_msg_timeout {
1579 	u8 msg_id;
1580 	u16 timeout;
1581 };
1582 
1583 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1584 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1585 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1586 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1587 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1588 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1589 };
1590 
1591 static
1592 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1593 				    u8 *rx_status)
1594 {
1595 	return intel_hdmi_hdcp_read(dig_port,
1596 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1597 				    rx_status,
1598 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1599 }
1600 
1601 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1602 {
1603 	int i;
1604 
1605 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1606 		if (is_paired)
1607 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1608 		else
1609 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1610 	}
1611 
1612 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1613 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1614 			return hdcp2_msg_timeout[i].timeout;
1615 	}
1616 
1617 	return -EINVAL;
1618 }
1619 
1620 static int
1621 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1622 			      u8 msg_id, bool *msg_ready,
1623 			      ssize_t *msg_sz)
1624 {
1625 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1626 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1627 	int ret;
1628 
1629 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1630 	if (ret < 0) {
1631 		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1632 			    ret);
1633 		return ret;
1634 	}
1635 
1636 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1637 		  rx_status[0]);
1638 
1639 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1640 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1641 			     *msg_sz);
1642 	else
1643 		*msg_ready = *msg_sz;
1644 
1645 	return 0;
1646 }
1647 
1648 static ssize_t
1649 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1650 			      u8 msg_id, bool paired)
1651 {
1652 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1653 	bool msg_ready = false;
1654 	int timeout, ret;
1655 	ssize_t msg_sz = 0;
1656 
1657 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1658 	if (timeout < 0)
1659 		return timeout;
1660 
1661 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1662 							     msg_id, &msg_ready,
1663 							     &msg_sz),
1664 			 !ret && msg_ready && msg_sz, timeout * 1000,
1665 			 1000, 5 * 1000);
1666 	if (ret)
1667 		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1668 			    msg_id, ret, timeout);
1669 
1670 	return ret ? ret : msg_sz;
1671 }
1672 
1673 static
1674 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1675 			       void *buf, size_t size)
1676 {
1677 	unsigned int offset;
1678 
1679 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1680 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1681 }
1682 
1683 static
1684 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1685 			      u8 msg_id, void *buf, size_t size)
1686 {
1687 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1688 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1689 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1690 	unsigned int offset;
1691 	ssize_t ret;
1692 
1693 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1694 					    hdcp->is_paired);
1695 	if (ret < 0)
1696 		return ret;
1697 
1698 	/*
1699 	 * Available msg size should be equal to or lesser than the
1700 	 * available buffer.
1701 	 */
1702 	if (ret > size) {
1703 		drm_dbg_kms(&i915->drm,
1704 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1705 			    ret, size);
1706 		return -EINVAL;
1707 	}
1708 
1709 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1710 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1711 	if (ret)
1712 		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1713 			    msg_id, ret);
1714 
1715 	return ret;
1716 }
1717 
1718 static
1719 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1720 				struct intel_connector *connector)
1721 {
1722 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1723 	int ret;
1724 
1725 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1726 	if (ret)
1727 		return ret;
1728 
1729 	/*
1730 	 * Re-auth request and Link Integrity Failures are represented by
1731 	 * same bit. i.e reauth_req.
1732 	 */
1733 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1734 		ret = HDCP_REAUTH_REQUEST;
1735 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1736 		ret = HDCP_TOPOLOGY_CHANGE;
1737 
1738 	return ret;
1739 }
1740 
1741 static
1742 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1743 			     bool *capable)
1744 {
1745 	u8 hdcp2_version;
1746 	int ret;
1747 
1748 	*capable = false;
1749 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1750 				   &hdcp2_version, sizeof(hdcp2_version));
1751 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1752 		*capable = true;
1753 
1754 	return ret;
1755 }
1756 
1757 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1758 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1759 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1760 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1761 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1762 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1763 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1764 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1765 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1766 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1767 	.check_link = intel_hdmi_hdcp_check_link,
1768 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1769 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1770 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1771 	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1772 	.protocol = HDCP_PROTOCOL_HDMI,
1773 };
1774 
1775 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1776 {
1777 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1778 	int max_tmds_clock, vbt_max_tmds_clock;
1779 
1780 	if (DISPLAY_VER(dev_priv) >= 10)
1781 		max_tmds_clock = 594000;
1782 	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1783 		max_tmds_clock = 300000;
1784 	else if (DISPLAY_VER(dev_priv) >= 5)
1785 		max_tmds_clock = 225000;
1786 	else
1787 		max_tmds_clock = 165000;
1788 
1789 	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1790 	if (vbt_max_tmds_clock)
1791 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1792 
1793 	return max_tmds_clock;
1794 }
1795 
1796 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1797 				const struct drm_connector_state *conn_state)
1798 {
1799 	return hdmi->has_hdmi_sink &&
1800 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1801 }
1802 
1803 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1804 {
1805 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1806 }
1807 
1808 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1809 				 bool respect_downstream_limits,
1810 				 bool has_hdmi_sink)
1811 {
1812 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1813 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1814 
1815 	if (respect_downstream_limits) {
1816 		struct intel_connector *connector = hdmi->attached_connector;
1817 		const struct drm_display_info *info = &connector->base.display_info;
1818 
1819 		if (hdmi->dp_dual_mode.max_tmds_clock)
1820 			max_tmds_clock = min(max_tmds_clock,
1821 					     hdmi->dp_dual_mode.max_tmds_clock);
1822 
1823 		if (info->max_tmds_clock)
1824 			max_tmds_clock = min(max_tmds_clock,
1825 					     info->max_tmds_clock);
1826 		else if (!has_hdmi_sink)
1827 			max_tmds_clock = min(max_tmds_clock, 165000);
1828 	}
1829 
1830 	return max_tmds_clock;
1831 }
1832 
1833 static enum drm_mode_status
1834 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1835 		      int clock, bool respect_downstream_limits,
1836 		      bool has_hdmi_sink)
1837 {
1838 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1839 
1840 	if (clock < 25000)
1841 		return MODE_CLOCK_LOW;
1842 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1843 					  has_hdmi_sink))
1844 		return MODE_CLOCK_HIGH;
1845 
1846 	/* GLK DPLL can't generate 446-480 MHz */
1847 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1848 		return MODE_CLOCK_RANGE;
1849 
1850 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1851 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1852 	    clock > 223333 && clock < 240000)
1853 		return MODE_CLOCK_RANGE;
1854 
1855 	/* CHV DPLL can't generate 216-240 MHz */
1856 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1857 		return MODE_CLOCK_RANGE;
1858 
1859 	/*
1860 	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1861 	 * set of link rates.
1862 	 *
1863 	 * FIXME: We will hopefully get an algorithmic way of programming
1864 	 * the MPLLB for HDMI in the future.
1865 	 */
1866 	if (IS_DG2(dev_priv))
1867 		return intel_snps_phy_check_hdmi_link_rate(clock);
1868 
1869 	return MODE_OK;
1870 }
1871 
1872 static int intel_hdmi_tmds_clock(int clock, int bpc, bool ycbcr420_output)
1873 {
1874 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1875 	if (ycbcr420_output)
1876 		clock /= 2;
1877 
1878 	/*
1879 	 * Need to adjust the port link by:
1880 	 *  1.5x for 12bpc
1881 	 *  1.25x for 10bpc
1882 	 */
1883 	return clock * bpc / 8;
1884 }
1885 
1886 static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc)
1887 {
1888 	switch (bpc) {
1889 	case 12:
1890 		return !HAS_GMCH(i915);
1891 	case 10:
1892 		return DISPLAY_VER(i915) >= 11;
1893 	case 8:
1894 		return true;
1895 	default:
1896 		MISSING_CASE(bpc);
1897 		return false;
1898 	}
1899 }
1900 
1901 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1902 					 int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1903 {
1904 	const struct drm_display_info *info = &connector->display_info;
1905 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1906 
1907 	switch (bpc) {
1908 	case 12:
1909 		if (!has_hdmi_sink)
1910 			return false;
1911 
1912 		if (ycbcr420_output)
1913 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1914 		else
1915 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1916 	case 10:
1917 		if (!has_hdmi_sink)
1918 			return false;
1919 
1920 		if (ycbcr420_output)
1921 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1922 		else
1923 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1924 	case 8:
1925 		return true;
1926 	default:
1927 		MISSING_CASE(bpc);
1928 		return false;
1929 	}
1930 }
1931 
1932 static enum drm_mode_status
1933 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1934 			    bool has_hdmi_sink, bool ycbcr420_output)
1935 {
1936 	struct drm_i915_private *i915 = to_i915(connector->dev);
1937 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1938 	enum drm_mode_status status;
1939 
1940 	/* check if we can do 8bpc */
1941 	status = hdmi_port_clock_valid(hdmi, intel_hdmi_tmds_clock(clock, 8, ycbcr420_output),
1942 				       true, has_hdmi_sink);
1943 
1944 	/* if we can't do 8bpc we may still be able to do 12bpc */
1945 	if (status != MODE_OK &&
1946 	    intel_hdmi_source_bpc_possible(i915, 12) &&
1947 	    intel_hdmi_sink_bpc_possible(connector, 12, has_hdmi_sink, ycbcr420_output))
1948 		status = hdmi_port_clock_valid(hdmi, intel_hdmi_tmds_clock(clock, 12, ycbcr420_output),
1949 					       true, has_hdmi_sink);
1950 
1951 	/* if we can't do 8,12bpc we may still be able to do 10bpc */
1952 	if (status != MODE_OK &&
1953 	    intel_hdmi_source_bpc_possible(i915, 10) &&
1954 	    intel_hdmi_sink_bpc_possible(connector, 10, has_hdmi_sink, ycbcr420_output))
1955 		status = hdmi_port_clock_valid(hdmi, intel_hdmi_tmds_clock(clock, 10, ycbcr420_output),
1956 					       true, has_hdmi_sink);
1957 
1958 	return status;
1959 }
1960 
1961 static enum drm_mode_status
1962 intel_hdmi_mode_valid(struct drm_connector *connector,
1963 		      struct drm_display_mode *mode)
1964 {
1965 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1966 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1967 	enum drm_mode_status status;
1968 	int clock = mode->clock;
1969 	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1970 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1971 	bool ycbcr_420_only;
1972 
1973 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1974 		return MODE_NO_DBLESCAN;
1975 
1976 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1977 		clock *= 2;
1978 
1979 	if (clock > max_dotclk)
1980 		return MODE_CLOCK_HIGH;
1981 
1982 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1983 		if (!has_hdmi_sink)
1984 			return MODE_CLOCK_LOW;
1985 		clock *= 2;
1986 	}
1987 
1988 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1989 
1990 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
1991 	if (status != MODE_OK) {
1992 		if (ycbcr_420_only ||
1993 		    !connector->ycbcr_420_allowed ||
1994 		    !drm_mode_is_420_also(&connector->display_info, mode))
1995 			return status;
1996 
1997 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
1998 		if (status != MODE_OK)
1999 			return status;
2000 	}
2001 
2002 	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2003 }
2004 
2005 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2006 			     int bpc, bool has_hdmi_sink, bool ycbcr420_output)
2007 {
2008 	struct drm_atomic_state *state = crtc_state->uapi.state;
2009 	struct drm_connector_state *connector_state;
2010 	struct drm_connector *connector;
2011 	int i;
2012 
2013 	for_each_new_connector_in_state(state, connector, connector_state, i) {
2014 		if (connector_state->crtc != crtc_state->uapi.crtc)
2015 			continue;
2016 
2017 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
2018 			return false;
2019 	}
2020 
2021 	return true;
2022 }
2023 
2024 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2025 {
2026 	struct drm_i915_private *dev_priv =
2027 		to_i915(crtc_state->uapi.crtc->dev);
2028 	const struct drm_display_mode *adjusted_mode =
2029 		&crtc_state->hw.adjusted_mode;
2030 
2031 	if (!intel_hdmi_source_bpc_possible(dev_priv, bpc))
2032 		return false;
2033 
2034 	/*
2035 	 * HDMI deep color affects the clocks, so it's only possible
2036 	 * when not cloning with other encoder types.
2037 	 */
2038 	if (bpc > 8 && crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2039 		return false;
2040 
2041 	/* Display Wa_1405510057:icl,ehl */
2042 	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2043 	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2044 	    (adjusted_mode->crtc_hblank_end -
2045 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2046 		return false;
2047 
2048 	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink,
2049 				       intel_hdmi_is_ycbcr420(crtc_state));
2050 }
2051 
2052 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2053 				  struct intel_crtc_state *crtc_state,
2054 				  int clock, bool respect_downstream_limits)
2055 {
2056 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2057 	bool ycbcr420_output = intel_hdmi_is_ycbcr420(crtc_state);
2058 	int bpc;
2059 
2060 	/*
2061 	 * pipe_bpp could already be below 8bpc due to FDI
2062 	 * bandwidth constraints. HDMI minimum is 8bpc however.
2063 	 */
2064 	bpc = max(crtc_state->pipe_bpp / 3, 8);
2065 
2066 	/*
2067 	 * We will never exceed downstream TMDS clock limits while
2068 	 * attempting deep color. If the user insists on forcing an
2069 	 * out of spec mode they will have to be satisfied with 8bpc.
2070 	 */
2071 	if (!respect_downstream_limits)
2072 		bpc = 8;
2073 
2074 	for (; bpc >= 8; bpc -= 2) {
2075 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output);
2076 
2077 		if (hdmi_bpc_possible(crtc_state, bpc) &&
2078 		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2079 					  respect_downstream_limits,
2080 					  crtc_state->has_hdmi_sink) == MODE_OK)
2081 			return bpc;
2082 	}
2083 
2084 	return -EINVAL;
2085 }
2086 
2087 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2088 				    struct intel_crtc_state *crtc_state,
2089 				    bool respect_downstream_limits)
2090 {
2091 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2092 	const struct drm_display_mode *adjusted_mode =
2093 		&crtc_state->hw.adjusted_mode;
2094 	int bpc, clock = adjusted_mode->crtc_clock;
2095 
2096 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2097 		clock *= 2;
2098 
2099 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2100 				     respect_downstream_limits);
2101 	if (bpc < 0)
2102 		return bpc;
2103 
2104 	crtc_state->port_clock =
2105 		intel_hdmi_tmds_clock(clock, bpc, intel_hdmi_is_ycbcr420(crtc_state));
2106 
2107 	/*
2108 	 * pipe_bpp could already be below 8bpc due to
2109 	 * FDI bandwidth constraints. We shouldn't bump it
2110 	 * back up to the HDMI minimum 8bpc in that case.
2111 	 */
2112 	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2113 
2114 	drm_dbg_kms(&i915->drm,
2115 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2116 		    bpc, crtc_state->pipe_bpp);
2117 
2118 	return 0;
2119 }
2120 
2121 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2122 				    const struct drm_connector_state *conn_state)
2123 {
2124 	const struct intel_digital_connector_state *intel_conn_state =
2125 		to_intel_digital_connector_state(conn_state);
2126 	const struct drm_display_mode *adjusted_mode =
2127 		&crtc_state->hw.adjusted_mode;
2128 
2129 	/*
2130 	 * Our YCbCr output is always limited range.
2131 	 * crtc_state->limited_color_range only applies to RGB,
2132 	 * and it must never be set for YCbCr or we risk setting
2133 	 * some conflicting bits in PIPECONF which will mess up
2134 	 * the colors on the monitor.
2135 	 */
2136 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2137 		return false;
2138 
2139 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2140 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2141 		return crtc_state->has_hdmi_sink &&
2142 			drm_default_rgb_quant_range(adjusted_mode) ==
2143 			HDMI_QUANTIZATION_RANGE_LIMITED;
2144 	} else {
2145 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2146 	}
2147 }
2148 
2149 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2150 				 const struct intel_crtc_state *crtc_state,
2151 				 const struct drm_connector_state *conn_state)
2152 {
2153 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2154 	const struct intel_digital_connector_state *intel_conn_state =
2155 		to_intel_digital_connector_state(conn_state);
2156 
2157 	if (!crtc_state->has_hdmi_sink)
2158 		return false;
2159 
2160 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2161 		return intel_hdmi->has_audio;
2162 	else
2163 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2164 }
2165 
2166 static enum intel_output_format
2167 intel_hdmi_output_format(struct intel_connector *connector,
2168 			 bool ycbcr_420_output)
2169 {
2170 	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2171 		return INTEL_OUTPUT_FORMAT_YCBCR420;
2172 	else
2173 		return INTEL_OUTPUT_FORMAT_RGB;
2174 }
2175 
2176 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2177 					    struct intel_crtc_state *crtc_state,
2178 					    const struct drm_connector_state *conn_state,
2179 					    bool respect_downstream_limits)
2180 {
2181 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2182 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2183 	const struct drm_display_info *info = &connector->base.display_info;
2184 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2185 	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2186 	int ret;
2187 
2188 	crtc_state->output_format = intel_hdmi_output_format(connector, ycbcr_420_only);
2189 
2190 	if (ycbcr_420_only && !intel_hdmi_is_ycbcr420(crtc_state)) {
2191 		drm_dbg_kms(&i915->drm,
2192 			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2193 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2194 	}
2195 
2196 	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2197 	if (ret) {
2198 		if (intel_hdmi_is_ycbcr420(crtc_state) ||
2199 		    !connector->base.ycbcr_420_allowed ||
2200 		    !drm_mode_is_420_also(info, adjusted_mode))
2201 			return ret;
2202 
2203 		crtc_state->output_format = intel_hdmi_output_format(connector, true);
2204 		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2205 	}
2206 
2207 	return ret;
2208 }
2209 
2210 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2211 			      struct intel_crtc_state *pipe_config,
2212 			      struct drm_connector_state *conn_state)
2213 {
2214 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2215 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2216 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2217 	struct drm_connector *connector = conn_state->connector;
2218 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2219 	int ret;
2220 
2221 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2222 		return -EINVAL;
2223 
2224 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2225 	pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2226 							 conn_state);
2227 
2228 	if (pipe_config->has_hdmi_sink)
2229 		pipe_config->has_infoframe = true;
2230 
2231 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2232 		pipe_config->pixel_multiplier = 2;
2233 
2234 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2235 		pipe_config->has_pch_encoder = true;
2236 
2237 	pipe_config->has_audio =
2238 		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2239 
2240 	/*
2241 	 * Try to respect downstream TMDS clock limits first, if
2242 	 * that fails assume the user might know something we don't.
2243 	 */
2244 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2245 	if (ret)
2246 		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2247 	if (ret) {
2248 		drm_dbg_kms(&dev_priv->drm,
2249 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2250 			    pipe_config->hw.adjusted_mode.crtc_clock);
2251 		return ret;
2252 	}
2253 
2254 	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2255 		ret = intel_panel_fitting(pipe_config, conn_state);
2256 		if (ret)
2257 			return ret;
2258 	}
2259 
2260 	pipe_config->limited_color_range =
2261 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2262 
2263 	if (conn_state->picture_aspect_ratio)
2264 		adjusted_mode->picture_aspect_ratio =
2265 			conn_state->picture_aspect_ratio;
2266 
2267 	pipe_config->lane_count = 4;
2268 
2269 	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2270 		if (scdc->scrambling.low_rates)
2271 			pipe_config->hdmi_scrambling = true;
2272 
2273 		if (pipe_config->port_clock > 340000) {
2274 			pipe_config->hdmi_scrambling = true;
2275 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2276 		}
2277 	}
2278 
2279 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2280 					 conn_state);
2281 
2282 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2283 		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2284 		return -EINVAL;
2285 	}
2286 
2287 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2288 		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2289 		return -EINVAL;
2290 	}
2291 
2292 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2293 		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2294 		return -EINVAL;
2295 	}
2296 
2297 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2298 		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2299 		return -EINVAL;
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2306 {
2307 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2308 
2309 	/*
2310 	 * Give a hand to buggy BIOSen which forget to turn
2311 	 * the TMDS output buffers back on after a reboot.
2312 	 */
2313 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2314 }
2315 
2316 static void
2317 intel_hdmi_unset_edid(struct drm_connector *connector)
2318 {
2319 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2320 
2321 	intel_hdmi->has_hdmi_sink = false;
2322 	intel_hdmi->has_audio = false;
2323 
2324 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2325 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2326 
2327 	kfree(to_intel_connector(connector)->detect_edid);
2328 	to_intel_connector(connector)->detect_edid = NULL;
2329 }
2330 
2331 static void
2332 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2333 {
2334 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2335 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2336 	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2337 	struct i2c_adapter *adapter =
2338 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2339 	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2340 
2341 	/*
2342 	 * Type 1 DVI adaptors are not required to implement any
2343 	 * registers, so we can't always detect their presence.
2344 	 * Ideally we should be able to check the state of the
2345 	 * CONFIG1 pin, but no such luck on our hardware.
2346 	 *
2347 	 * The only method left to us is to check the VBT to see
2348 	 * if the port is a dual mode capable DP port. But let's
2349 	 * only do that when we sucesfully read the EDID, to avoid
2350 	 * confusing log messages about DP dual mode adaptors when
2351 	 * there's nothing connected to the port.
2352 	 */
2353 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2354 		/* An overridden EDID imply that we want this port for testing.
2355 		 * Make sure not to set limits for that port.
2356 		 */
2357 		if (has_edid && !connector->override_edid &&
2358 		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2359 			drm_dbg_kms(&dev_priv->drm,
2360 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2361 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2362 		} else {
2363 			type = DRM_DP_DUAL_MODE_NONE;
2364 		}
2365 	}
2366 
2367 	if (type == DRM_DP_DUAL_MODE_NONE)
2368 		return;
2369 
2370 	hdmi->dp_dual_mode.type = type;
2371 	hdmi->dp_dual_mode.max_tmds_clock =
2372 		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2373 
2374 	drm_dbg_kms(&dev_priv->drm,
2375 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2376 		    drm_dp_get_dual_mode_type_name(type),
2377 		    hdmi->dp_dual_mode.max_tmds_clock);
2378 
2379 	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2380 	if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
2381 	    !intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2382 		drm_dbg_kms(&dev_priv->drm,
2383 			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2384 		hdmi->dp_dual_mode.max_tmds_clock = 0;
2385 	}
2386 }
2387 
2388 static bool
2389 intel_hdmi_set_edid(struct drm_connector *connector)
2390 {
2391 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2392 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2393 	intel_wakeref_t wakeref;
2394 	struct edid *edid;
2395 	bool connected = false;
2396 	struct i2c_adapter *i2c;
2397 
2398 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2399 
2400 	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2401 
2402 	edid = drm_get_edid(connector, i2c);
2403 
2404 	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2405 		drm_dbg_kms(&dev_priv->drm,
2406 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2407 		intel_gmbus_force_bit(i2c, true);
2408 		edid = drm_get_edid(connector, i2c);
2409 		intel_gmbus_force_bit(i2c, false);
2410 	}
2411 
2412 	intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2413 
2414 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2415 
2416 	to_intel_connector(connector)->detect_edid = edid;
2417 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2418 		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2419 		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2420 
2421 		connected = true;
2422 	}
2423 
2424 	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2425 
2426 	return connected;
2427 }
2428 
2429 static enum drm_connector_status
2430 intel_hdmi_detect(struct drm_connector *connector, bool force)
2431 {
2432 	enum drm_connector_status status = connector_status_disconnected;
2433 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2434 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2435 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2436 	intel_wakeref_t wakeref;
2437 
2438 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2439 		    connector->base.id, connector->name);
2440 
2441 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2442 		return connector_status_disconnected;
2443 
2444 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2445 
2446 	if (DISPLAY_VER(dev_priv) >= 11 &&
2447 	    !intel_digital_port_connected(encoder))
2448 		goto out;
2449 
2450 	intel_hdmi_unset_edid(connector);
2451 
2452 	if (intel_hdmi_set_edid(connector))
2453 		status = connector_status_connected;
2454 
2455 out:
2456 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2457 
2458 	if (status != connector_status_connected)
2459 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2460 
2461 	/*
2462 	 * Make sure the refs for power wells enabled during detect are
2463 	 * dropped to avoid a new detect cycle triggered by HPD polling.
2464 	 */
2465 	intel_display_power_flush_work(dev_priv);
2466 
2467 	return status;
2468 }
2469 
2470 static void
2471 intel_hdmi_force(struct drm_connector *connector)
2472 {
2473 	struct drm_i915_private *i915 = to_i915(connector->dev);
2474 
2475 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2476 		    connector->base.id, connector->name);
2477 
2478 	intel_hdmi_unset_edid(connector);
2479 
2480 	if (connector->status != connector_status_connected)
2481 		return;
2482 
2483 	intel_hdmi_set_edid(connector);
2484 }
2485 
2486 static int intel_hdmi_get_modes(struct drm_connector *connector)
2487 {
2488 	struct edid *edid;
2489 
2490 	edid = to_intel_connector(connector)->detect_edid;
2491 	if (edid == NULL)
2492 		return 0;
2493 
2494 	return intel_connector_update_modes(connector, edid);
2495 }
2496 
2497 static struct i2c_adapter *
2498 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2499 {
2500 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2501 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2502 
2503 	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2504 }
2505 
2506 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2507 {
2508 	struct drm_i915_private *i915 = to_i915(connector->dev);
2509 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2510 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2511 	struct kobject *connector_kobj = &connector->kdev->kobj;
2512 	int ret;
2513 
2514 	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2515 	if (ret)
2516 		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2517 }
2518 
2519 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2520 {
2521 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2522 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2523 	struct kobject *connector_kobj = &connector->kdev->kobj;
2524 
2525 	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2526 }
2527 
2528 static int
2529 intel_hdmi_connector_register(struct drm_connector *connector)
2530 {
2531 	int ret;
2532 
2533 	ret = intel_connector_register(connector);
2534 	if (ret)
2535 		return ret;
2536 
2537 	intel_hdmi_create_i2c_symlink(connector);
2538 
2539 	return ret;
2540 }
2541 
2542 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2543 {
2544 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2545 
2546 	cec_notifier_conn_unregister(n);
2547 
2548 	intel_hdmi_remove_i2c_symlink(connector);
2549 	intel_connector_unregister(connector);
2550 }
2551 
2552 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2553 	.detect = intel_hdmi_detect,
2554 	.force = intel_hdmi_force,
2555 	.fill_modes = drm_helper_probe_single_connector_modes,
2556 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2557 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2558 	.late_register = intel_hdmi_connector_register,
2559 	.early_unregister = intel_hdmi_connector_unregister,
2560 	.destroy = intel_connector_destroy,
2561 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2562 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2563 };
2564 
2565 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2566 	.get_modes = intel_hdmi_get_modes,
2567 	.mode_valid = intel_hdmi_mode_valid,
2568 	.atomic_check = intel_digital_connector_atomic_check,
2569 };
2570 
2571 static void
2572 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2573 {
2574 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2575 
2576 	intel_attach_force_audio_property(connector);
2577 	intel_attach_broadcast_rgb_property(connector);
2578 	intel_attach_aspect_ratio_property(connector);
2579 
2580 	intel_attach_hdmi_colorspace_property(connector);
2581 	drm_connector_attach_content_type_property(connector);
2582 
2583 	if (DISPLAY_VER(dev_priv) >= 10)
2584 		drm_connector_attach_hdr_output_metadata_property(connector);
2585 
2586 	if (!HAS_GMCH(dev_priv))
2587 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2588 }
2589 
2590 /*
2591  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2592  * @encoder: intel_encoder
2593  * @connector: drm_connector
2594  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2595  *  or reset the high tmds clock ratio for scrambling
2596  * @scrambling: bool to Indicate if the function needs to set or reset
2597  *  sink scrambling
2598  *
2599  * This function handles scrambling on HDMI 2.0 capable sinks.
2600  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2601  * it enables scrambling. This should be called before enabling the HDMI
2602  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2603  * detect a scrambled clock within 100 ms.
2604  *
2605  * Returns:
2606  * True on success, false on failure.
2607  */
2608 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2609 				       struct drm_connector *connector,
2610 				       bool high_tmds_clock_ratio,
2611 				       bool scrambling)
2612 {
2613 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2614 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2615 	struct drm_scrambling *sink_scrambling =
2616 		&connector->display_info.hdmi.scdc.scrambling;
2617 	struct i2c_adapter *adapter =
2618 		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2619 
2620 	if (!sink_scrambling->supported)
2621 		return true;
2622 
2623 	drm_dbg_kms(&dev_priv->drm,
2624 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2625 		    connector->base.id, connector->name,
2626 		    yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2627 
2628 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2629 	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2630 						  high_tmds_clock_ratio) &&
2631 		drm_scdc_set_scrambling(adapter, scrambling);
2632 }
2633 
2634 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2635 {
2636 	u8 ddc_pin;
2637 
2638 	switch (port) {
2639 	case PORT_B:
2640 		ddc_pin = GMBUS_PIN_DPB;
2641 		break;
2642 	case PORT_C:
2643 		ddc_pin = GMBUS_PIN_DPC;
2644 		break;
2645 	case PORT_D:
2646 		ddc_pin = GMBUS_PIN_DPD_CHV;
2647 		break;
2648 	default:
2649 		MISSING_CASE(port);
2650 		ddc_pin = GMBUS_PIN_DPB;
2651 		break;
2652 	}
2653 	return ddc_pin;
2654 }
2655 
2656 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2657 {
2658 	u8 ddc_pin;
2659 
2660 	switch (port) {
2661 	case PORT_B:
2662 		ddc_pin = GMBUS_PIN_1_BXT;
2663 		break;
2664 	case PORT_C:
2665 		ddc_pin = GMBUS_PIN_2_BXT;
2666 		break;
2667 	default:
2668 		MISSING_CASE(port);
2669 		ddc_pin = GMBUS_PIN_1_BXT;
2670 		break;
2671 	}
2672 	return ddc_pin;
2673 }
2674 
2675 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2676 			      enum port port)
2677 {
2678 	u8 ddc_pin;
2679 
2680 	switch (port) {
2681 	case PORT_B:
2682 		ddc_pin = GMBUS_PIN_1_BXT;
2683 		break;
2684 	case PORT_C:
2685 		ddc_pin = GMBUS_PIN_2_BXT;
2686 		break;
2687 	case PORT_D:
2688 		ddc_pin = GMBUS_PIN_4_CNP;
2689 		break;
2690 	case PORT_F:
2691 		ddc_pin = GMBUS_PIN_3_BXT;
2692 		break;
2693 	default:
2694 		MISSING_CASE(port);
2695 		ddc_pin = GMBUS_PIN_1_BXT;
2696 		break;
2697 	}
2698 	return ddc_pin;
2699 }
2700 
2701 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2702 {
2703 	enum phy phy = intel_port_to_phy(dev_priv, port);
2704 
2705 	if (intel_phy_is_combo(dev_priv, phy))
2706 		return GMBUS_PIN_1_BXT + port;
2707 	else if (intel_phy_is_tc(dev_priv, phy))
2708 		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2709 
2710 	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2711 	return GMBUS_PIN_2_BXT;
2712 }
2713 
2714 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2715 {
2716 	enum phy phy = intel_port_to_phy(dev_priv, port);
2717 	u8 ddc_pin;
2718 
2719 	switch (phy) {
2720 	case PHY_A:
2721 		ddc_pin = GMBUS_PIN_1_BXT;
2722 		break;
2723 	case PHY_B:
2724 		ddc_pin = GMBUS_PIN_2_BXT;
2725 		break;
2726 	case PHY_C:
2727 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2728 		break;
2729 	default:
2730 		MISSING_CASE(phy);
2731 		ddc_pin = GMBUS_PIN_1_BXT;
2732 		break;
2733 	}
2734 	return ddc_pin;
2735 }
2736 
2737 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2738 {
2739 	enum phy phy = intel_port_to_phy(dev_priv, port);
2740 
2741 	WARN_ON(port == PORT_C);
2742 
2743 	/*
2744 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2745 	 * final two outputs use type-c pins, even though they're actually
2746 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2747 	 * all outputs.
2748 	 */
2749 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2750 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2751 
2752 	return GMBUS_PIN_1_BXT + phy;
2753 }
2754 
2755 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2756 {
2757 	enum phy phy = intel_port_to_phy(i915, port);
2758 
2759 	drm_WARN_ON(&i915->drm, port == PORT_A);
2760 
2761 	/*
2762 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2763 	 * final two outputs use type-c pins, even though they're actually
2764 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2765 	 * all outputs.
2766 	 */
2767 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2768 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2769 
2770 	return GMBUS_PIN_1_BXT + phy;
2771 }
2772 
2773 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2774 {
2775 	return intel_port_to_phy(dev_priv, port) + 1;
2776 }
2777 
2778 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2779 {
2780 	enum phy phy = intel_port_to_phy(dev_priv, port);
2781 
2782 	WARN_ON(port == PORT_B || port == PORT_C);
2783 
2784 	/*
2785 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2786 	 * except first combo output.
2787 	 */
2788 	if (phy == PHY_A)
2789 		return GMBUS_PIN_1_BXT;
2790 
2791 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2792 }
2793 
2794 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2795 			      enum port port)
2796 {
2797 	u8 ddc_pin;
2798 
2799 	switch (port) {
2800 	case PORT_B:
2801 		ddc_pin = GMBUS_PIN_DPB;
2802 		break;
2803 	case PORT_C:
2804 		ddc_pin = GMBUS_PIN_DPC;
2805 		break;
2806 	case PORT_D:
2807 		ddc_pin = GMBUS_PIN_DPD;
2808 		break;
2809 	default:
2810 		MISSING_CASE(port);
2811 		ddc_pin = GMBUS_PIN_DPB;
2812 		break;
2813 	}
2814 	return ddc_pin;
2815 }
2816 
2817 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2818 {
2819 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2820 	enum port port = encoder->port;
2821 	u8 ddc_pin;
2822 
2823 	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2824 	if (ddc_pin) {
2825 		drm_dbg_kms(&dev_priv->drm,
2826 			    "Using DDC pin 0x%x for port %c (VBT)\n",
2827 			    ddc_pin, port_name(port));
2828 		return ddc_pin;
2829 	}
2830 
2831 	if (IS_ALDERLAKE_S(dev_priv))
2832 		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2833 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2834 		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2835 	else if (IS_ROCKETLAKE(dev_priv))
2836 		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2837 	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2838 		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2839 	else if (HAS_PCH_MCC(dev_priv))
2840 		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2841 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2842 		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2843 	else if (HAS_PCH_CNP(dev_priv))
2844 		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2845 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2846 		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2847 	else if (IS_CHERRYVIEW(dev_priv))
2848 		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2849 	else
2850 		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2851 
2852 	drm_dbg_kms(&dev_priv->drm,
2853 		    "Using DDC pin 0x%x for port %c (platform default)\n",
2854 		    ddc_pin, port_name(port));
2855 
2856 	return ddc_pin;
2857 }
2858 
2859 void intel_infoframe_init(struct intel_digital_port *dig_port)
2860 {
2861 	struct drm_i915_private *dev_priv =
2862 		to_i915(dig_port->base.base.dev);
2863 
2864 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2865 		dig_port->write_infoframe = vlv_write_infoframe;
2866 		dig_port->read_infoframe = vlv_read_infoframe;
2867 		dig_port->set_infoframes = vlv_set_infoframes;
2868 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2869 	} else if (IS_G4X(dev_priv)) {
2870 		dig_port->write_infoframe = g4x_write_infoframe;
2871 		dig_port->read_infoframe = g4x_read_infoframe;
2872 		dig_port->set_infoframes = g4x_set_infoframes;
2873 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2874 	} else if (HAS_DDI(dev_priv)) {
2875 		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2876 			dig_port->write_infoframe = lspcon_write_infoframe;
2877 			dig_port->read_infoframe = lspcon_read_infoframe;
2878 			dig_port->set_infoframes = lspcon_set_infoframes;
2879 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2880 		} else {
2881 			dig_port->write_infoframe = hsw_write_infoframe;
2882 			dig_port->read_infoframe = hsw_read_infoframe;
2883 			dig_port->set_infoframes = hsw_set_infoframes;
2884 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2885 		}
2886 	} else if (HAS_PCH_IBX(dev_priv)) {
2887 		dig_port->write_infoframe = ibx_write_infoframe;
2888 		dig_port->read_infoframe = ibx_read_infoframe;
2889 		dig_port->set_infoframes = ibx_set_infoframes;
2890 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2891 	} else {
2892 		dig_port->write_infoframe = cpt_write_infoframe;
2893 		dig_port->read_infoframe = cpt_read_infoframe;
2894 		dig_port->set_infoframes = cpt_set_infoframes;
2895 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2896 	}
2897 }
2898 
2899 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2900 			       struct intel_connector *intel_connector)
2901 {
2902 	struct drm_connector *connector = &intel_connector->base;
2903 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2904 	struct intel_encoder *intel_encoder = &dig_port->base;
2905 	struct drm_device *dev = intel_encoder->base.dev;
2906 	struct drm_i915_private *dev_priv = to_i915(dev);
2907 	struct i2c_adapter *ddc;
2908 	enum port port = intel_encoder->port;
2909 	struct cec_connector_info conn_info;
2910 
2911 	drm_dbg_kms(&dev_priv->drm,
2912 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2913 		    intel_encoder->base.base.id, intel_encoder->base.name);
2914 
2915 	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2916 		return;
2917 
2918 	if (drm_WARN(dev, dig_port->max_lanes < 4,
2919 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2920 		     dig_port->max_lanes, intel_encoder->base.base.id,
2921 		     intel_encoder->base.name))
2922 		return;
2923 
2924 	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2925 	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2926 
2927 	drm_connector_init_with_ddc(dev, connector,
2928 				    &intel_hdmi_connector_funcs,
2929 				    DRM_MODE_CONNECTOR_HDMIA,
2930 				    ddc);
2931 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2932 
2933 	connector->interlace_allowed = 1;
2934 	connector->doublescan_allowed = 0;
2935 	connector->stereo_allowed = 1;
2936 
2937 	if (DISPLAY_VER(dev_priv) >= 10)
2938 		connector->ycbcr_420_allowed = true;
2939 
2940 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2941 
2942 	if (HAS_DDI(dev_priv))
2943 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2944 	else
2945 		intel_connector->get_hw_state = intel_connector_get_hw_state;
2946 
2947 	intel_hdmi_add_properties(intel_hdmi, connector);
2948 
2949 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2950 	intel_hdmi->attached_connector = intel_connector;
2951 
2952 	if (is_hdcp_supported(dev_priv, port)) {
2953 		int ret = intel_hdcp_init(intel_connector, dig_port,
2954 					  &intel_hdmi_hdcp_shim);
2955 		if (ret)
2956 			drm_dbg_kms(&dev_priv->drm,
2957 				    "HDCP init failed, skipping.\n");
2958 	}
2959 
2960 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2961 	 * 0xd.  Failure to do so will result in spurious interrupts being
2962 	 * generated on the port when a cable is not attached.
2963 	 */
2964 	if (IS_G45(dev_priv)) {
2965 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2966 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2967 		               (temp & ~0xf) | 0xd);
2968 	}
2969 
2970 	cec_fill_conn_info_from_drm(&conn_info, connector);
2971 
2972 	intel_hdmi->cec_notifier =
2973 		cec_notifier_conn_register(dev->dev, port_identifier(port),
2974 					   &conn_info);
2975 	if (!intel_hdmi->cec_notifier)
2976 		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2977 }
2978 
2979 /*
2980  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2981  * @vactive: Vactive of a display mode
2982  *
2983  * @return: appropriate dsc slice height for a given mode.
2984  */
2985 int intel_hdmi_dsc_get_slice_height(int vactive)
2986 {
2987 	int slice_height;
2988 
2989 	/*
2990 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
2991 	 * Select smallest slice height >=96, that results in a valid PPS and
2992 	 * requires minimum padding lines required for final slice.
2993 	 *
2994 	 * Assumption : Vactive is even.
2995 	 */
2996 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2997 		if (vactive % slice_height == 0)
2998 			return slice_height;
2999 
3000 	return 0;
3001 }
3002 
3003 /*
3004  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3005  * and dsc decoder capabilities
3006  *
3007  * @crtc_state: intel crtc_state
3008  * @src_max_slices: maximum slices supported by the DSC encoder
3009  * @src_max_slice_width: maximum slice width supported by DSC encoder
3010  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3011  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3012  *
3013  * @return: num of dsc slices that can be supported by the dsc encoder
3014  * and decoder.
3015  */
3016 int
3017 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3018 			      int src_max_slices, int src_max_slice_width,
3019 			      int hdmi_max_slices, int hdmi_throughput)
3020 {
3021 /* Pixel rates in KPixels/sec */
3022 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3023 /*
3024  * Rates at which the source and sink are required to process pixels in each
3025  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3026  */
3027 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3028 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3029 
3030 /* Spec limits the slice width to 2720 pixels */
3031 #define MAX_HDMI_SLICE_WIDTH			2720
3032 	int kslice_adjust;
3033 	int adjusted_clk_khz;
3034 	int min_slices;
3035 	int target_slices;
3036 	int max_throughput; /* max clock freq. in khz per slice */
3037 	int max_slice_width;
3038 	int slice_width;
3039 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3040 
3041 	if (!hdmi_throughput)
3042 		return 0;
3043 
3044 	/*
3045 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3046 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3047 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3048 	 * dividing adjusted clock value by 10.
3049 	 */
3050 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3051 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3052 		kslice_adjust = 10;
3053 	else
3054 		kslice_adjust = 5;
3055 
3056 	/*
3057 	 * As per spec, the rate at which the source and the sink process
3058 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3059 	 * This depends upon the pixel clock rate and output formats
3060 	 * (kslice adjust).
3061 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3062 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3063 	 */
3064 
3065 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3066 
3067 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3068 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3069 	else
3070 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3071 
3072 	/*
3073 	 * Taking into account the sink's capability for maximum
3074 	 * clock per slice (in MHz) as read from HF-VSDB.
3075 	 */
3076 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3077 
3078 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3079 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3080 
3081 	/*
3082 	 * Keep on increasing the num of slices/line, starting from min_slices
3083 	 * per line till we get such a number, for which the slice_width is
3084 	 * just less than max_slice_width. The slices/line selected should be
3085 	 * less than or equal to the max horizontal slices that the combination
3086 	 * of PCON encoder and HDMI decoder can support.
3087 	 */
3088 	slice_width = max_slice_width;
3089 
3090 	do {
3091 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3092 			target_slices = 1;
3093 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3094 			target_slices = 2;
3095 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3096 			target_slices = 4;
3097 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3098 			target_slices = 8;
3099 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3100 			target_slices = 12;
3101 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3102 			target_slices = 16;
3103 		else
3104 			return 0;
3105 
3106 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3107 		if (slice_width >= max_slice_width)
3108 			min_slices = target_slices + 1;
3109 	} while (slice_width >= max_slice_width);
3110 
3111 	return target_slices;
3112 }
3113 
3114 /*
3115  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3116  * source and sink capabilities.
3117  *
3118  * @src_fraction_bpp: fractional bpp supported by the source
3119  * @slice_width: dsc slice width supported by the source and sink
3120  * @num_slices: num of slices supported by the source and sink
3121  * @output_format: video output format
3122  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3123  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3124  *
3125  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3126  */
3127 int
3128 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3129 		       int output_format, bool hdmi_all_bpp,
3130 		       int hdmi_max_chunk_bytes)
3131 {
3132 	int max_dsc_bpp, min_dsc_bpp;
3133 	int target_bytes;
3134 	bool bpp_found = false;
3135 	int bpp_decrement_x16;
3136 	int bpp_target;
3137 	int bpp_target_x16;
3138 
3139 	/*
3140 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3141 	 * Start with the max bpp and keep on decrementing with
3142 	 * fractional bpp, if supported by PCON DSC encoder
3143 	 *
3144 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3145 	 */
3146 
3147 	/* Assuming: bpc as 8*/
3148 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3149 		min_dsc_bpp = 6;
3150 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3151 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3152 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3153 		min_dsc_bpp = 8;
3154 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3155 	} else {
3156 		/* Assuming 4:2:2 encoding */
3157 		min_dsc_bpp = 7;
3158 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3159 	}
3160 
3161 	/*
3162 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3163 	 * Section 7.7.34 : Source shall not enable compressed Video
3164 	 * Transport with bpp_target settings above 12 bpp unless
3165 	 * DSC_all_bpp is set to 1.
3166 	 */
3167 	if (!hdmi_all_bpp)
3168 		max_dsc_bpp = min(max_dsc_bpp, 12);
3169 
3170 	/*
3171 	 * The Sink has a limit of compressed data in bytes for a scanline,
3172 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3173 	 * The no. of bytes depend on the target bits per pixel that the
3174 	 * source configures. So we start with the max_bpp and calculate
3175 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3176 	 * till we get the target_chunk_bytes just less than what the sink's
3177 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3178 	 *
3179 	 * The decrement is according to the fractional support from PCON DSC
3180 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3181 	 *
3182 	 * bpp_target_x16 = bpp_target * 16
3183 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3184 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3185 	 */
3186 
3187 	bpp_target = max_dsc_bpp;
3188 
3189 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3190 	if (!src_fractional_bpp)
3191 		src_fractional_bpp = 1;
3192 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3193 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3194 
3195 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3196 		int bpp;
3197 
3198 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3199 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3200 		if (target_bytes <= hdmi_max_chunk_bytes) {
3201 			bpp_found = true;
3202 			break;
3203 		}
3204 		bpp_target_x16 -= bpp_decrement_x16;
3205 	}
3206 	if (bpp_found)
3207 		return bpp_target_x16;
3208 
3209 	return 0;
3210 }
3211