1 /* 2 * Copyright 2006 Dave Airlie <airlied@linux.ie> 3 * Copyright © 2006-2009 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * Jesse Barnes <jesse.barnes@intel.com> 27 */ 28 29 #include <linux/delay.h> 30 #include <linux/hdmi.h> 31 #include <linux/i2c.h> 32 #include <linux/slab.h> 33 #include <linux/string_helpers.h> 34 35 #include <drm/display/drm_hdcp_helper.h> 36 #include <drm/display/drm_hdmi_helper.h> 37 #include <drm/display/drm_scdc_helper.h> 38 #include <drm/drm_atomic_helper.h> 39 #include <drm/drm_crtc.h> 40 #include <drm/drm_edid.h> 41 #include <drm/intel_lpe_audio.h> 42 43 #include "i915_debugfs.h" 44 #include "i915_drv.h" 45 #include "i915_reg.h" 46 #include "intel_atomic.h" 47 #include "intel_audio.h" 48 #include "intel_connector.h" 49 #include "intel_ddi.h" 50 #include "intel_de.h" 51 #include "intel_display_types.h" 52 #include "intel_dp.h" 53 #include "intel_gmbus.h" 54 #include "intel_hdcp.h" 55 #include "intel_hdcp_regs.h" 56 #include "intel_hdmi.h" 57 #include "intel_lspcon.h" 58 #include "intel_panel.h" 59 #include "intel_snps_phy.h" 60 61 static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi) 62 { 63 return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev); 64 } 65 66 static void 67 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) 68 { 69 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi); 70 u32 enabled_bits; 71 72 enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; 73 74 drm_WARN(&dev_priv->drm, 75 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits, 76 "HDMI port enabled, expecting disabled\n"); 77 } 78 79 static void 80 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv, 81 enum transcoder cpu_transcoder) 82 { 83 drm_WARN(&dev_priv->drm, 84 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) & 85 TRANS_DDI_FUNC_ENABLE, 86 "HDMI transcoder function enabled, expecting disabled\n"); 87 } 88 89 static u32 g4x_infoframe_index(unsigned int type) 90 { 91 switch (type) { 92 case HDMI_PACKET_TYPE_GAMUT_METADATA: 93 return VIDEO_DIP_SELECT_GAMUT; 94 case HDMI_INFOFRAME_TYPE_AVI: 95 return VIDEO_DIP_SELECT_AVI; 96 case HDMI_INFOFRAME_TYPE_SPD: 97 return VIDEO_DIP_SELECT_SPD; 98 case HDMI_INFOFRAME_TYPE_VENDOR: 99 return VIDEO_DIP_SELECT_VENDOR; 100 default: 101 MISSING_CASE(type); 102 return 0; 103 } 104 } 105 106 static u32 g4x_infoframe_enable(unsigned int type) 107 { 108 switch (type) { 109 case HDMI_PACKET_TYPE_GENERAL_CONTROL: 110 return VIDEO_DIP_ENABLE_GCP; 111 case HDMI_PACKET_TYPE_GAMUT_METADATA: 112 return VIDEO_DIP_ENABLE_GAMUT; 113 case DP_SDP_VSC: 114 return 0; 115 case HDMI_INFOFRAME_TYPE_AVI: 116 return VIDEO_DIP_ENABLE_AVI; 117 case HDMI_INFOFRAME_TYPE_SPD: 118 return VIDEO_DIP_ENABLE_SPD; 119 case HDMI_INFOFRAME_TYPE_VENDOR: 120 return VIDEO_DIP_ENABLE_VENDOR; 121 case HDMI_INFOFRAME_TYPE_DRM: 122 return 0; 123 default: 124 MISSING_CASE(type); 125 return 0; 126 } 127 } 128 129 static u32 hsw_infoframe_enable(unsigned int type) 130 { 131 switch (type) { 132 case HDMI_PACKET_TYPE_GENERAL_CONTROL: 133 return VIDEO_DIP_ENABLE_GCP_HSW; 134 case HDMI_PACKET_TYPE_GAMUT_METADATA: 135 return VIDEO_DIP_ENABLE_GMP_HSW; 136 case DP_SDP_VSC: 137 return VIDEO_DIP_ENABLE_VSC_HSW; 138 case DP_SDP_PPS: 139 return VDIP_ENABLE_PPS; 140 case HDMI_INFOFRAME_TYPE_AVI: 141 return VIDEO_DIP_ENABLE_AVI_HSW; 142 case HDMI_INFOFRAME_TYPE_SPD: 143 return VIDEO_DIP_ENABLE_SPD_HSW; 144 case HDMI_INFOFRAME_TYPE_VENDOR: 145 return VIDEO_DIP_ENABLE_VS_HSW; 146 case HDMI_INFOFRAME_TYPE_DRM: 147 return VIDEO_DIP_ENABLE_DRM_GLK; 148 default: 149 MISSING_CASE(type); 150 return 0; 151 } 152 } 153 154 static i915_reg_t 155 hsw_dip_data_reg(struct drm_i915_private *dev_priv, 156 enum transcoder cpu_transcoder, 157 unsigned int type, 158 int i) 159 { 160 switch (type) { 161 case HDMI_PACKET_TYPE_GAMUT_METADATA: 162 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i); 163 case DP_SDP_VSC: 164 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i); 165 case DP_SDP_PPS: 166 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i); 167 case HDMI_INFOFRAME_TYPE_AVI: 168 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i); 169 case HDMI_INFOFRAME_TYPE_SPD: 170 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i); 171 case HDMI_INFOFRAME_TYPE_VENDOR: 172 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i); 173 case HDMI_INFOFRAME_TYPE_DRM: 174 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i); 175 default: 176 MISSING_CASE(type); 177 return INVALID_MMIO_REG; 178 } 179 } 180 181 static int hsw_dip_data_size(struct drm_i915_private *dev_priv, 182 unsigned int type) 183 { 184 switch (type) { 185 case DP_SDP_VSC: 186 return VIDEO_DIP_VSC_DATA_SIZE; 187 case DP_SDP_PPS: 188 return VIDEO_DIP_PPS_DATA_SIZE; 189 case HDMI_PACKET_TYPE_GAMUT_METADATA: 190 if (DISPLAY_VER(dev_priv) >= 11) 191 return VIDEO_DIP_GMP_DATA_SIZE; 192 else 193 return VIDEO_DIP_DATA_SIZE; 194 default: 195 return VIDEO_DIP_DATA_SIZE; 196 } 197 } 198 199 static void g4x_write_infoframe(struct intel_encoder *encoder, 200 const struct intel_crtc_state *crtc_state, 201 unsigned int type, 202 const void *frame, ssize_t len) 203 { 204 const u32 *data = frame; 205 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 206 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 207 int i; 208 209 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 210 "Writing DIP with CTL reg disabled\n"); 211 212 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 213 val |= g4x_infoframe_index(type); 214 215 val &= ~g4x_infoframe_enable(type); 216 217 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 218 219 for (i = 0; i < len; i += 4) { 220 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data); 221 data++; 222 } 223 /* Write every possible data byte to force correct ECC calculation. */ 224 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 225 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0); 226 227 val |= g4x_infoframe_enable(type); 228 val &= ~VIDEO_DIP_FREQ_MASK; 229 val |= VIDEO_DIP_FREQ_VSYNC; 230 231 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 232 intel_de_posting_read(dev_priv, VIDEO_DIP_CTL); 233 } 234 235 static void g4x_read_infoframe(struct intel_encoder *encoder, 236 const struct intel_crtc_state *crtc_state, 237 unsigned int type, 238 void *frame, ssize_t len) 239 { 240 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 241 u32 *data = frame; 242 int i; 243 244 intel_de_rmw(dev_priv, VIDEO_DIP_CTL, 245 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); 246 247 for (i = 0; i < len; i += 4) 248 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA); 249 } 250 251 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder, 252 const struct intel_crtc_state *pipe_config) 253 { 254 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 255 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 256 257 if ((val & VIDEO_DIP_ENABLE) == 0) 258 return 0; 259 260 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 261 return 0; 262 263 return val & (VIDEO_DIP_ENABLE_AVI | 264 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 265 } 266 267 static void ibx_write_infoframe(struct intel_encoder *encoder, 268 const struct intel_crtc_state *crtc_state, 269 unsigned int type, 270 const void *frame, ssize_t len) 271 { 272 const u32 *data = frame; 273 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 274 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 275 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 276 u32 val = intel_de_read(dev_priv, reg); 277 int i; 278 279 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 280 "Writing DIP with CTL reg disabled\n"); 281 282 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 283 val |= g4x_infoframe_index(type); 284 285 val &= ~g4x_infoframe_enable(type); 286 287 intel_de_write(dev_priv, reg, val); 288 289 for (i = 0; i < len; i += 4) { 290 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 291 *data); 292 data++; 293 } 294 /* Write every possible data byte to force correct ECC calculation. */ 295 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 296 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0); 297 298 val |= g4x_infoframe_enable(type); 299 val &= ~VIDEO_DIP_FREQ_MASK; 300 val |= VIDEO_DIP_FREQ_VSYNC; 301 302 intel_de_write(dev_priv, reg, val); 303 intel_de_posting_read(dev_priv, reg); 304 } 305 306 static void ibx_read_infoframe(struct intel_encoder *encoder, 307 const struct intel_crtc_state *crtc_state, 308 unsigned int type, 309 void *frame, ssize_t len) 310 { 311 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 312 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 313 u32 *data = frame; 314 int i; 315 316 intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), 317 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); 318 319 for (i = 0; i < len; i += 4) 320 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); 321 } 322 323 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder, 324 const struct intel_crtc_state *pipe_config) 325 { 326 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 327 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 328 i915_reg_t reg = TVIDEO_DIP_CTL(pipe); 329 u32 val = intel_de_read(dev_priv, reg); 330 331 if ((val & VIDEO_DIP_ENABLE) == 0) 332 return 0; 333 334 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 335 return 0; 336 337 return val & (VIDEO_DIP_ENABLE_AVI | 338 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 339 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 340 } 341 342 static void cpt_write_infoframe(struct intel_encoder *encoder, 343 const struct intel_crtc_state *crtc_state, 344 unsigned int type, 345 const void *frame, ssize_t len) 346 { 347 const u32 *data = frame; 348 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 349 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 350 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 351 u32 val = intel_de_read(dev_priv, reg); 352 int i; 353 354 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 355 "Writing DIP with CTL reg disabled\n"); 356 357 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 358 val |= g4x_infoframe_index(type); 359 360 /* The DIP control register spec says that we need to update the AVI 361 * infoframe without clearing its enable bit */ 362 if (type != HDMI_INFOFRAME_TYPE_AVI) 363 val &= ~g4x_infoframe_enable(type); 364 365 intel_de_write(dev_priv, reg, val); 366 367 for (i = 0; i < len; i += 4) { 368 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 369 *data); 370 data++; 371 } 372 /* Write every possible data byte to force correct ECC calculation. */ 373 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 374 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0); 375 376 val |= g4x_infoframe_enable(type); 377 val &= ~VIDEO_DIP_FREQ_MASK; 378 val |= VIDEO_DIP_FREQ_VSYNC; 379 380 intel_de_write(dev_priv, reg, val); 381 intel_de_posting_read(dev_priv, reg); 382 } 383 384 static void cpt_read_infoframe(struct intel_encoder *encoder, 385 const struct intel_crtc_state *crtc_state, 386 unsigned int type, 387 void *frame, ssize_t len) 388 { 389 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 390 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 391 u32 *data = frame; 392 int i; 393 394 intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), 395 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); 396 397 for (i = 0; i < len; i += 4) 398 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); 399 } 400 401 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder, 402 const struct intel_crtc_state *pipe_config) 403 { 404 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 405 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 406 u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe)); 407 408 if ((val & VIDEO_DIP_ENABLE) == 0) 409 return 0; 410 411 return val & (VIDEO_DIP_ENABLE_AVI | 412 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 413 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 414 } 415 416 static void vlv_write_infoframe(struct intel_encoder *encoder, 417 const struct intel_crtc_state *crtc_state, 418 unsigned int type, 419 const void *frame, ssize_t len) 420 { 421 const u32 *data = frame; 422 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 423 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 424 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe); 425 u32 val = intel_de_read(dev_priv, reg); 426 int i; 427 428 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 429 "Writing DIP with CTL reg disabled\n"); 430 431 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 432 val |= g4x_infoframe_index(type); 433 434 val &= ~g4x_infoframe_enable(type); 435 436 intel_de_write(dev_priv, reg, val); 437 438 for (i = 0; i < len; i += 4) { 439 intel_de_write(dev_priv, 440 VLV_TVIDEO_DIP_DATA(crtc->pipe), *data); 441 data++; 442 } 443 /* Write every possible data byte to force correct ECC calculation. */ 444 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 445 intel_de_write(dev_priv, 446 VLV_TVIDEO_DIP_DATA(crtc->pipe), 0); 447 448 val |= g4x_infoframe_enable(type); 449 val &= ~VIDEO_DIP_FREQ_MASK; 450 val |= VIDEO_DIP_FREQ_VSYNC; 451 452 intel_de_write(dev_priv, reg, val); 453 intel_de_posting_read(dev_priv, reg); 454 } 455 456 static void vlv_read_infoframe(struct intel_encoder *encoder, 457 const struct intel_crtc_state *crtc_state, 458 unsigned int type, 459 void *frame, ssize_t len) 460 { 461 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 462 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 463 u32 *data = frame; 464 int i; 465 466 intel_de_rmw(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), 467 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); 468 469 for (i = 0; i < len; i += 4) 470 *data++ = intel_de_read(dev_priv, 471 VLV_TVIDEO_DIP_DATA(crtc->pipe)); 472 } 473 474 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder, 475 const struct intel_crtc_state *pipe_config) 476 { 477 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 478 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 479 u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe)); 480 481 if ((val & VIDEO_DIP_ENABLE) == 0) 482 return 0; 483 484 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 485 return 0; 486 487 return val & (VIDEO_DIP_ENABLE_AVI | 488 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 489 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 490 } 491 492 void hsw_write_infoframe(struct intel_encoder *encoder, 493 const struct intel_crtc_state *crtc_state, 494 unsigned int type, 495 const void *frame, ssize_t len) 496 { 497 const u32 *data = frame; 498 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 499 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 500 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder); 501 int data_size; 502 int i; 503 u32 val = intel_de_read(dev_priv, ctl_reg); 504 505 data_size = hsw_dip_data_size(dev_priv, type); 506 507 drm_WARN_ON(&dev_priv->drm, len > data_size); 508 509 val &= ~hsw_infoframe_enable(type); 510 intel_de_write(dev_priv, ctl_reg, val); 511 512 for (i = 0; i < len; i += 4) { 513 intel_de_write(dev_priv, 514 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 515 *data); 516 data++; 517 } 518 /* Write every possible data byte to force correct ECC calculation. */ 519 for (; i < data_size; i += 4) 520 intel_de_write(dev_priv, 521 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 522 0); 523 524 /* Wa_14013475917 */ 525 if (IS_DISPLAY_VER(dev_priv, 13, 14) && crtc_state->has_psr && type == DP_SDP_VSC) 526 return; 527 528 val |= hsw_infoframe_enable(type); 529 intel_de_write(dev_priv, ctl_reg, val); 530 intel_de_posting_read(dev_priv, ctl_reg); 531 } 532 533 void hsw_read_infoframe(struct intel_encoder *encoder, 534 const struct intel_crtc_state *crtc_state, 535 unsigned int type, void *frame, ssize_t len) 536 { 537 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 538 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 539 u32 *data = frame; 540 int i; 541 542 for (i = 0; i < len; i += 4) 543 *data++ = intel_de_read(dev_priv, 544 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2)); 545 } 546 547 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder, 548 const struct intel_crtc_state *pipe_config) 549 { 550 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 551 u32 val = intel_de_read(dev_priv, 552 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder)); 553 u32 mask; 554 555 mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | 556 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | 557 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW); 558 559 if (DISPLAY_VER(dev_priv) >= 10) 560 mask |= VIDEO_DIP_ENABLE_DRM_GLK; 561 562 return val & mask; 563 } 564 565 static const u8 infoframe_type_to_idx[] = { 566 HDMI_PACKET_TYPE_GENERAL_CONTROL, 567 HDMI_PACKET_TYPE_GAMUT_METADATA, 568 DP_SDP_VSC, 569 HDMI_INFOFRAME_TYPE_AVI, 570 HDMI_INFOFRAME_TYPE_SPD, 571 HDMI_INFOFRAME_TYPE_VENDOR, 572 HDMI_INFOFRAME_TYPE_DRM, 573 }; 574 575 u32 intel_hdmi_infoframe_enable(unsigned int type) 576 { 577 int i; 578 579 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { 580 if (infoframe_type_to_idx[i] == type) 581 return BIT(i); 582 } 583 584 return 0; 585 } 586 587 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder, 588 const struct intel_crtc_state *crtc_state) 589 { 590 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 591 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 592 u32 val, ret = 0; 593 int i; 594 595 val = dig_port->infoframes_enabled(encoder, crtc_state); 596 597 /* map from hardware bits to dip idx */ 598 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { 599 unsigned int type = infoframe_type_to_idx[i]; 600 601 if (HAS_DDI(dev_priv)) { 602 if (val & hsw_infoframe_enable(type)) 603 ret |= BIT(i); 604 } else { 605 if (val & g4x_infoframe_enable(type)) 606 ret |= BIT(i); 607 } 608 } 609 610 return ret; 611 } 612 613 /* 614 * The data we write to the DIP data buffer registers is 1 byte bigger than the 615 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting 616 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be 617 * used for both technologies. 618 * 619 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0 620 * DW1: DB3 | DB2 | DB1 | DB0 621 * DW2: DB7 | DB6 | DB5 | DB4 622 * DW3: ... 623 * 624 * (HB is Header Byte, DB is Data Byte) 625 * 626 * The hdmi pack() functions don't know about that hardware specific hole so we 627 * trick them by giving an offset into the buffer and moving back the header 628 * bytes by one. 629 */ 630 static void intel_write_infoframe(struct intel_encoder *encoder, 631 const struct intel_crtc_state *crtc_state, 632 enum hdmi_infoframe_type type, 633 const union hdmi_infoframe *frame) 634 { 635 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 636 u8 buffer[VIDEO_DIP_DATA_SIZE]; 637 ssize_t len; 638 639 if ((crtc_state->infoframes.enable & 640 intel_hdmi_infoframe_enable(type)) == 0) 641 return; 642 643 if (drm_WARN_ON(encoder->base.dev, frame->any.type != type)) 644 return; 645 646 /* see comment above for the reason for this offset */ 647 len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1); 648 if (drm_WARN_ON(encoder->base.dev, len < 0)) 649 return; 650 651 /* Insert the 'hole' (see big comment above) at position 3 */ 652 memmove(&buffer[0], &buffer[1], 3); 653 buffer[3] = 0; 654 len++; 655 656 dig_port->write_infoframe(encoder, crtc_state, type, buffer, len); 657 } 658 659 void intel_read_infoframe(struct intel_encoder *encoder, 660 const struct intel_crtc_state *crtc_state, 661 enum hdmi_infoframe_type type, 662 union hdmi_infoframe *frame) 663 { 664 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 665 u8 buffer[VIDEO_DIP_DATA_SIZE]; 666 int ret; 667 668 if ((crtc_state->infoframes.enable & 669 intel_hdmi_infoframe_enable(type)) == 0) 670 return; 671 672 dig_port->read_infoframe(encoder, crtc_state, 673 type, buffer, sizeof(buffer)); 674 675 /* Fill the 'hole' (see big comment above) at position 3 */ 676 memmove(&buffer[1], &buffer[0], 3); 677 678 /* see comment above for the reason for this offset */ 679 ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1); 680 if (ret) { 681 drm_dbg_kms(encoder->base.dev, 682 "Failed to unpack infoframe type 0x%02x\n", type); 683 return; 684 } 685 686 if (frame->any.type != type) 687 drm_dbg_kms(encoder->base.dev, 688 "Found the wrong infoframe type 0x%x (expected 0x%02x)\n", 689 frame->any.type, type); 690 } 691 692 static bool 693 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder, 694 struct intel_crtc_state *crtc_state, 695 struct drm_connector_state *conn_state) 696 { 697 struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi; 698 const struct drm_display_mode *adjusted_mode = 699 &crtc_state->hw.adjusted_mode; 700 struct drm_connector *connector = conn_state->connector; 701 int ret; 702 703 if (!crtc_state->has_infoframe) 704 return true; 705 706 crtc_state->infoframes.enable |= 707 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI); 708 709 ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector, 710 adjusted_mode); 711 if (ret) 712 return false; 713 714 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 715 frame->colorspace = HDMI_COLORSPACE_YUV420; 716 else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 717 frame->colorspace = HDMI_COLORSPACE_YUV444; 718 else 719 frame->colorspace = HDMI_COLORSPACE_RGB; 720 721 drm_hdmi_avi_infoframe_colorimetry(frame, conn_state); 722 723 /* nonsense combination */ 724 drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range && 725 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 726 727 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) { 728 drm_hdmi_avi_infoframe_quant_range(frame, connector, 729 adjusted_mode, 730 crtc_state->limited_color_range ? 731 HDMI_QUANTIZATION_RANGE_LIMITED : 732 HDMI_QUANTIZATION_RANGE_FULL); 733 } else { 734 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; 735 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED; 736 } 737 738 drm_hdmi_avi_infoframe_content_type(frame, conn_state); 739 740 /* TODO: handle pixel repetition for YCBCR420 outputs */ 741 742 ret = hdmi_avi_infoframe_check(frame); 743 if (drm_WARN_ON(encoder->base.dev, ret)) 744 return false; 745 746 return true; 747 } 748 749 static bool 750 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder, 751 struct intel_crtc_state *crtc_state, 752 struct drm_connector_state *conn_state) 753 { 754 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 755 struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd; 756 int ret; 757 758 if (!crtc_state->has_infoframe) 759 return true; 760 761 crtc_state->infoframes.enable |= 762 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD); 763 764 if (IS_DGFX(i915)) 765 ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx"); 766 else 767 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx"); 768 769 if (drm_WARN_ON(encoder->base.dev, ret)) 770 return false; 771 772 frame->sdi = HDMI_SPD_SDI_PC; 773 774 ret = hdmi_spd_infoframe_check(frame); 775 if (drm_WARN_ON(encoder->base.dev, ret)) 776 return false; 777 778 return true; 779 } 780 781 static bool 782 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder, 783 struct intel_crtc_state *crtc_state, 784 struct drm_connector_state *conn_state) 785 { 786 struct hdmi_vendor_infoframe *frame = 787 &crtc_state->infoframes.hdmi.vendor.hdmi; 788 const struct drm_display_info *info = 789 &conn_state->connector->display_info; 790 int ret; 791 792 if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe) 793 return true; 794 795 crtc_state->infoframes.enable |= 796 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR); 797 798 ret = drm_hdmi_vendor_infoframe_from_display_mode(frame, 799 conn_state->connector, 800 &crtc_state->hw.adjusted_mode); 801 if (drm_WARN_ON(encoder->base.dev, ret)) 802 return false; 803 804 ret = hdmi_vendor_infoframe_check(frame); 805 if (drm_WARN_ON(encoder->base.dev, ret)) 806 return false; 807 808 return true; 809 } 810 811 static bool 812 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder, 813 struct intel_crtc_state *crtc_state, 814 struct drm_connector_state *conn_state) 815 { 816 struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm; 817 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 818 int ret; 819 820 if (DISPLAY_VER(dev_priv) < 10) 821 return true; 822 823 if (!crtc_state->has_infoframe) 824 return true; 825 826 if (!conn_state->hdr_output_metadata) 827 return true; 828 829 crtc_state->infoframes.enable |= 830 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM); 831 832 ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state); 833 if (ret < 0) { 834 drm_dbg_kms(&dev_priv->drm, 835 "couldn't set HDR metadata in infoframe\n"); 836 return false; 837 } 838 839 ret = hdmi_drm_infoframe_check(frame); 840 if (drm_WARN_ON(&dev_priv->drm, ret)) 841 return false; 842 843 return true; 844 } 845 846 static void g4x_set_infoframes(struct intel_encoder *encoder, 847 bool enable, 848 const struct intel_crtc_state *crtc_state, 849 const struct drm_connector_state *conn_state) 850 { 851 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 852 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 853 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 854 i915_reg_t reg = VIDEO_DIP_CTL; 855 u32 val = intel_de_read(dev_priv, reg); 856 u32 port = VIDEO_DIP_PORT(encoder->port); 857 858 assert_hdmi_port_disabled(intel_hdmi); 859 860 /* If the registers were not initialized yet, they might be zeroes, 861 * which means we're selecting the AVI DIP and we're setting its 862 * frequency to once. This seems to really confuse the HW and make 863 * things stop working (the register spec says the AVI always needs to 864 * be sent every VSync). So here we avoid writing to the register more 865 * than we need and also explicitly select the AVI DIP and explicitly 866 * set its frequency to every VSync. Avoiding to write it twice seems to 867 * be enough to solve the problem, but being defensive shouldn't hurt us 868 * either. */ 869 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 870 871 if (!enable) { 872 if (!(val & VIDEO_DIP_ENABLE)) 873 return; 874 if (port != (val & VIDEO_DIP_PORT_MASK)) { 875 drm_dbg_kms(&dev_priv->drm, 876 "video DIP still enabled on port %c\n", 877 (val & VIDEO_DIP_PORT_MASK) >> 29); 878 return; 879 } 880 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 881 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 882 intel_de_write(dev_priv, reg, val); 883 intel_de_posting_read(dev_priv, reg); 884 return; 885 } 886 887 if (port != (val & VIDEO_DIP_PORT_MASK)) { 888 if (val & VIDEO_DIP_ENABLE) { 889 drm_dbg_kms(&dev_priv->drm, 890 "video DIP already enabled on port %c\n", 891 (val & VIDEO_DIP_PORT_MASK) >> 29); 892 return; 893 } 894 val &= ~VIDEO_DIP_PORT_MASK; 895 val |= port; 896 } 897 898 val |= VIDEO_DIP_ENABLE; 899 val &= ~(VIDEO_DIP_ENABLE_AVI | 900 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 901 902 intel_de_write(dev_priv, reg, val); 903 intel_de_posting_read(dev_priv, reg); 904 905 intel_write_infoframe(encoder, crtc_state, 906 HDMI_INFOFRAME_TYPE_AVI, 907 &crtc_state->infoframes.avi); 908 intel_write_infoframe(encoder, crtc_state, 909 HDMI_INFOFRAME_TYPE_SPD, 910 &crtc_state->infoframes.spd); 911 intel_write_infoframe(encoder, crtc_state, 912 HDMI_INFOFRAME_TYPE_VENDOR, 913 &crtc_state->infoframes.hdmi); 914 } 915 916 /* 917 * Determine if default_phase=1 can be indicated in the GCP infoframe. 918 * 919 * From HDMI specification 1.4a: 920 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0 921 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0 922 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase 923 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing 924 * phase of 0 925 */ 926 static bool gcp_default_phase_possible(int pipe_bpp, 927 const struct drm_display_mode *mode) 928 { 929 unsigned int pixels_per_group; 930 931 switch (pipe_bpp) { 932 case 30: 933 /* 4 pixels in 5 clocks */ 934 pixels_per_group = 4; 935 break; 936 case 36: 937 /* 2 pixels in 3 clocks */ 938 pixels_per_group = 2; 939 break; 940 case 48: 941 /* 1 pixel in 2 clocks */ 942 pixels_per_group = 1; 943 break; 944 default: 945 /* phase information not relevant for 8bpc */ 946 return false; 947 } 948 949 return mode->crtc_hdisplay % pixels_per_group == 0 && 950 mode->crtc_htotal % pixels_per_group == 0 && 951 mode->crtc_hblank_start % pixels_per_group == 0 && 952 mode->crtc_hblank_end % pixels_per_group == 0 && 953 mode->crtc_hsync_start % pixels_per_group == 0 && 954 mode->crtc_hsync_end % pixels_per_group == 0 && 955 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 || 956 mode->crtc_htotal/2 % pixels_per_group == 0); 957 } 958 959 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder, 960 const struct intel_crtc_state *crtc_state, 961 const struct drm_connector_state *conn_state) 962 { 963 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 964 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 965 i915_reg_t reg; 966 967 if ((crtc_state->infoframes.enable & 968 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) 969 return false; 970 971 if (HAS_DDI(dev_priv)) 972 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); 973 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 974 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); 975 else if (HAS_PCH_SPLIT(dev_priv)) 976 reg = TVIDEO_DIP_GCP(crtc->pipe); 977 else 978 return false; 979 980 intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp); 981 982 return true; 983 } 984 985 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder, 986 struct intel_crtc_state *crtc_state) 987 { 988 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 989 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 990 i915_reg_t reg; 991 992 if ((crtc_state->infoframes.enable & 993 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) 994 return; 995 996 if (HAS_DDI(dev_priv)) 997 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); 998 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 999 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); 1000 else if (HAS_PCH_SPLIT(dev_priv)) 1001 reg = TVIDEO_DIP_GCP(crtc->pipe); 1002 else 1003 return; 1004 1005 crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg); 1006 } 1007 1008 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder, 1009 struct intel_crtc_state *crtc_state, 1010 struct drm_connector_state *conn_state) 1011 { 1012 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1013 1014 if (IS_G4X(dev_priv) || !crtc_state->has_infoframe) 1015 return; 1016 1017 crtc_state->infoframes.enable |= 1018 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL); 1019 1020 /* Indicate color indication for deep color mode */ 1021 if (crtc_state->pipe_bpp > 24) 1022 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION; 1023 1024 /* Enable default_phase whenever the display mode is suitably aligned */ 1025 if (gcp_default_phase_possible(crtc_state->pipe_bpp, 1026 &crtc_state->hw.adjusted_mode)) 1027 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE; 1028 } 1029 1030 static void ibx_set_infoframes(struct intel_encoder *encoder, 1031 bool enable, 1032 const struct intel_crtc_state *crtc_state, 1033 const struct drm_connector_state *conn_state) 1034 { 1035 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1036 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1037 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1038 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 1039 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 1040 u32 val = intel_de_read(dev_priv, reg); 1041 u32 port = VIDEO_DIP_PORT(encoder->port); 1042 1043 assert_hdmi_port_disabled(intel_hdmi); 1044 1045 /* See the big comment in g4x_set_infoframes() */ 1046 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1047 1048 if (!enable) { 1049 if (!(val & VIDEO_DIP_ENABLE)) 1050 return; 1051 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1052 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1053 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1054 intel_de_write(dev_priv, reg, val); 1055 intel_de_posting_read(dev_priv, reg); 1056 return; 1057 } 1058 1059 if (port != (val & VIDEO_DIP_PORT_MASK)) { 1060 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, 1061 "DIP already enabled on port %c\n", 1062 (val & VIDEO_DIP_PORT_MASK) >> 29); 1063 val &= ~VIDEO_DIP_PORT_MASK; 1064 val |= port; 1065 } 1066 1067 val |= VIDEO_DIP_ENABLE; 1068 val &= ~(VIDEO_DIP_ENABLE_AVI | 1069 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1070 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1071 1072 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1073 val |= VIDEO_DIP_ENABLE_GCP; 1074 1075 intel_de_write(dev_priv, reg, val); 1076 intel_de_posting_read(dev_priv, reg); 1077 1078 intel_write_infoframe(encoder, crtc_state, 1079 HDMI_INFOFRAME_TYPE_AVI, 1080 &crtc_state->infoframes.avi); 1081 intel_write_infoframe(encoder, crtc_state, 1082 HDMI_INFOFRAME_TYPE_SPD, 1083 &crtc_state->infoframes.spd); 1084 intel_write_infoframe(encoder, crtc_state, 1085 HDMI_INFOFRAME_TYPE_VENDOR, 1086 &crtc_state->infoframes.hdmi); 1087 } 1088 1089 static void cpt_set_infoframes(struct intel_encoder *encoder, 1090 bool enable, 1091 const struct intel_crtc_state *crtc_state, 1092 const struct drm_connector_state *conn_state) 1093 { 1094 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1095 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1096 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1097 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 1098 u32 val = intel_de_read(dev_priv, reg); 1099 1100 assert_hdmi_port_disabled(intel_hdmi); 1101 1102 /* See the big comment in g4x_set_infoframes() */ 1103 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1104 1105 if (!enable) { 1106 if (!(val & VIDEO_DIP_ENABLE)) 1107 return; 1108 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1109 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1110 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1111 intel_de_write(dev_priv, reg, val); 1112 intel_de_posting_read(dev_priv, reg); 1113 return; 1114 } 1115 1116 /* Set both together, unset both together: see the spec. */ 1117 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; 1118 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1119 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1120 1121 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1122 val |= VIDEO_DIP_ENABLE_GCP; 1123 1124 intel_de_write(dev_priv, reg, val); 1125 intel_de_posting_read(dev_priv, reg); 1126 1127 intel_write_infoframe(encoder, crtc_state, 1128 HDMI_INFOFRAME_TYPE_AVI, 1129 &crtc_state->infoframes.avi); 1130 intel_write_infoframe(encoder, crtc_state, 1131 HDMI_INFOFRAME_TYPE_SPD, 1132 &crtc_state->infoframes.spd); 1133 intel_write_infoframe(encoder, crtc_state, 1134 HDMI_INFOFRAME_TYPE_VENDOR, 1135 &crtc_state->infoframes.hdmi); 1136 } 1137 1138 static void vlv_set_infoframes(struct intel_encoder *encoder, 1139 bool enable, 1140 const struct intel_crtc_state *crtc_state, 1141 const struct drm_connector_state *conn_state) 1142 { 1143 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1144 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1145 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1146 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe); 1147 u32 val = intel_de_read(dev_priv, reg); 1148 u32 port = VIDEO_DIP_PORT(encoder->port); 1149 1150 assert_hdmi_port_disabled(intel_hdmi); 1151 1152 /* See the big comment in g4x_set_infoframes() */ 1153 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1154 1155 if (!enable) { 1156 if (!(val & VIDEO_DIP_ENABLE)) 1157 return; 1158 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1159 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1160 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1161 intel_de_write(dev_priv, reg, val); 1162 intel_de_posting_read(dev_priv, reg); 1163 return; 1164 } 1165 1166 if (port != (val & VIDEO_DIP_PORT_MASK)) { 1167 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, 1168 "DIP already enabled on port %c\n", 1169 (val & VIDEO_DIP_PORT_MASK) >> 29); 1170 val &= ~VIDEO_DIP_PORT_MASK; 1171 val |= port; 1172 } 1173 1174 val |= VIDEO_DIP_ENABLE; 1175 val &= ~(VIDEO_DIP_ENABLE_AVI | 1176 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1177 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1178 1179 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1180 val |= VIDEO_DIP_ENABLE_GCP; 1181 1182 intel_de_write(dev_priv, reg, val); 1183 intel_de_posting_read(dev_priv, reg); 1184 1185 intel_write_infoframe(encoder, crtc_state, 1186 HDMI_INFOFRAME_TYPE_AVI, 1187 &crtc_state->infoframes.avi); 1188 intel_write_infoframe(encoder, crtc_state, 1189 HDMI_INFOFRAME_TYPE_SPD, 1190 &crtc_state->infoframes.spd); 1191 intel_write_infoframe(encoder, crtc_state, 1192 HDMI_INFOFRAME_TYPE_VENDOR, 1193 &crtc_state->infoframes.hdmi); 1194 } 1195 1196 static void hsw_set_infoframes(struct intel_encoder *encoder, 1197 bool enable, 1198 const struct intel_crtc_state *crtc_state, 1199 const struct drm_connector_state *conn_state) 1200 { 1201 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1202 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); 1203 u32 val = intel_de_read(dev_priv, reg); 1204 1205 assert_hdmi_transcoder_func_disabled(dev_priv, 1206 crtc_state->cpu_transcoder); 1207 1208 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | 1209 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | 1210 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW | 1211 VIDEO_DIP_ENABLE_DRM_GLK); 1212 1213 if (!enable) { 1214 intel_de_write(dev_priv, reg, val); 1215 intel_de_posting_read(dev_priv, reg); 1216 return; 1217 } 1218 1219 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1220 val |= VIDEO_DIP_ENABLE_GCP_HSW; 1221 1222 intel_de_write(dev_priv, reg, val); 1223 intel_de_posting_read(dev_priv, reg); 1224 1225 intel_write_infoframe(encoder, crtc_state, 1226 HDMI_INFOFRAME_TYPE_AVI, 1227 &crtc_state->infoframes.avi); 1228 intel_write_infoframe(encoder, crtc_state, 1229 HDMI_INFOFRAME_TYPE_SPD, 1230 &crtc_state->infoframes.spd); 1231 intel_write_infoframe(encoder, crtc_state, 1232 HDMI_INFOFRAME_TYPE_VENDOR, 1233 &crtc_state->infoframes.hdmi); 1234 intel_write_infoframe(encoder, crtc_state, 1235 HDMI_INFOFRAME_TYPE_DRM, 1236 &crtc_state->infoframes.drm); 1237 } 1238 1239 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable) 1240 { 1241 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); 1242 struct i2c_adapter *adapter; 1243 1244 if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI) 1245 return; 1246 1247 adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); 1248 1249 drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n", 1250 enable ? "Enabling" : "Disabling"); 1251 1252 drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable); 1253 } 1254 1255 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port, 1256 unsigned int offset, void *buffer, size_t size) 1257 { 1258 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1259 struct intel_hdmi *hdmi = &dig_port->hdmi; 1260 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1261 hdmi->ddc_bus); 1262 int ret; 1263 u8 start = offset & 0xff; 1264 struct i2c_msg msgs[] = { 1265 { 1266 .addr = DRM_HDCP_DDC_ADDR, 1267 .flags = 0, 1268 .len = 1, 1269 .buf = &start, 1270 }, 1271 { 1272 .addr = DRM_HDCP_DDC_ADDR, 1273 .flags = I2C_M_RD, 1274 .len = size, 1275 .buf = buffer 1276 } 1277 }; 1278 ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs)); 1279 if (ret == ARRAY_SIZE(msgs)) 1280 return 0; 1281 return ret >= 0 ? -EIO : ret; 1282 } 1283 1284 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port, 1285 unsigned int offset, void *buffer, size_t size) 1286 { 1287 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1288 struct intel_hdmi *hdmi = &dig_port->hdmi; 1289 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1290 hdmi->ddc_bus); 1291 int ret; 1292 u8 *write_buf; 1293 struct i2c_msg msg; 1294 1295 write_buf = kzalloc(size + 1, GFP_KERNEL); 1296 if (!write_buf) 1297 return -ENOMEM; 1298 1299 write_buf[0] = offset & 0xff; 1300 memcpy(&write_buf[1], buffer, size); 1301 1302 msg.addr = DRM_HDCP_DDC_ADDR; 1303 msg.flags = 0, 1304 msg.len = size + 1, 1305 msg.buf = write_buf; 1306 1307 ret = i2c_transfer(adapter, &msg, 1); 1308 if (ret == 1) 1309 ret = 0; 1310 else if (ret >= 0) 1311 ret = -EIO; 1312 1313 kfree(write_buf); 1314 return ret; 1315 } 1316 1317 static 1318 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port, 1319 u8 *an) 1320 { 1321 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1322 struct intel_hdmi *hdmi = &dig_port->hdmi; 1323 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1324 hdmi->ddc_bus); 1325 int ret; 1326 1327 ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an, 1328 DRM_HDCP_AN_LEN); 1329 if (ret) { 1330 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n", 1331 ret); 1332 return ret; 1333 } 1334 1335 ret = intel_gmbus_output_aksv(adapter); 1336 if (ret < 0) { 1337 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret); 1338 return ret; 1339 } 1340 return 0; 1341 } 1342 1343 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port, 1344 u8 *bksv) 1345 { 1346 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1347 1348 int ret; 1349 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv, 1350 DRM_HDCP_KSV_LEN); 1351 if (ret) 1352 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n", 1353 ret); 1354 return ret; 1355 } 1356 1357 static 1358 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port, 1359 u8 *bstatus) 1360 { 1361 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1362 1363 int ret; 1364 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS, 1365 bstatus, DRM_HDCP_BSTATUS_LEN); 1366 if (ret) 1367 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n", 1368 ret); 1369 return ret; 1370 } 1371 1372 static 1373 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port, 1374 bool *repeater_present) 1375 { 1376 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1377 int ret; 1378 u8 val; 1379 1380 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); 1381 if (ret) { 1382 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", 1383 ret); 1384 return ret; 1385 } 1386 *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT; 1387 return 0; 1388 } 1389 1390 static 1391 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port, 1392 u8 *ri_prime) 1393 { 1394 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1395 1396 int ret; 1397 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME, 1398 ri_prime, DRM_HDCP_RI_LEN); 1399 if (ret) 1400 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n", 1401 ret); 1402 return ret; 1403 } 1404 1405 static 1406 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port, 1407 bool *ksv_ready) 1408 { 1409 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1410 int ret; 1411 u8 val; 1412 1413 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); 1414 if (ret) { 1415 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", 1416 ret); 1417 return ret; 1418 } 1419 *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY; 1420 return 0; 1421 } 1422 1423 static 1424 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port, 1425 int num_downstream, u8 *ksv_fifo) 1426 { 1427 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1428 int ret; 1429 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO, 1430 ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN); 1431 if (ret) { 1432 drm_dbg_kms(&i915->drm, 1433 "Read ksv fifo over DDC failed (%d)\n", ret); 1434 return ret; 1435 } 1436 return 0; 1437 } 1438 1439 static 1440 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port, 1441 int i, u32 *part) 1442 { 1443 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1444 int ret; 1445 1446 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 1447 return -EINVAL; 1448 1449 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i), 1450 part, DRM_HDCP_V_PRIME_PART_LEN); 1451 if (ret) 1452 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n", 1453 i, ret); 1454 return ret; 1455 } 1456 1457 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector, 1458 enum transcoder cpu_transcoder) 1459 { 1460 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1461 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1462 struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc); 1463 u32 scanline; 1464 int ret; 1465 1466 for (;;) { 1467 scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe)); 1468 if (scanline > 100 && scanline < 200) 1469 break; 1470 usleep_range(25, 50); 1471 } 1472 1473 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder, 1474 false, TRANS_DDI_HDCP_SIGNALLING); 1475 if (ret) { 1476 drm_err(&dev_priv->drm, 1477 "Disable HDCP signalling failed (%d)\n", ret); 1478 return ret; 1479 } 1480 1481 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder, 1482 true, TRANS_DDI_HDCP_SIGNALLING); 1483 if (ret) { 1484 drm_err(&dev_priv->drm, 1485 "Enable HDCP signalling failed (%d)\n", ret); 1486 return ret; 1487 } 1488 1489 return 0; 1490 } 1491 1492 static 1493 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port, 1494 enum transcoder cpu_transcoder, 1495 bool enable) 1496 { 1497 struct intel_hdmi *hdmi = &dig_port->hdmi; 1498 struct intel_connector *connector = hdmi->attached_connector; 1499 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1500 int ret; 1501 1502 if (!enable) 1503 usleep_range(6, 60); /* Bspec says >= 6us */ 1504 1505 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, 1506 cpu_transcoder, enable, 1507 TRANS_DDI_HDCP_SIGNALLING); 1508 if (ret) { 1509 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n", 1510 enable ? "Enable" : "Disable", ret); 1511 return ret; 1512 } 1513 1514 /* 1515 * WA: To fix incorrect positioning of the window of 1516 * opportunity and enc_en signalling in KABYLAKE. 1517 */ 1518 if (IS_KABYLAKE(dev_priv) && enable) 1519 return kbl_repositioning_enc_en_signal(connector, 1520 cpu_transcoder); 1521 1522 return 0; 1523 } 1524 1525 static 1526 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port, 1527 struct intel_connector *connector) 1528 { 1529 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1530 enum port port = dig_port->base.port; 1531 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; 1532 int ret; 1533 union { 1534 u32 reg; 1535 u8 shim[DRM_HDCP_RI_LEN]; 1536 } ri; 1537 1538 ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim); 1539 if (ret) 1540 return false; 1541 1542 intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg); 1543 1544 /* Wait for Ri prime match */ 1545 if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) & 1546 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) == 1547 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) { 1548 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n", 1549 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, 1550 port))); 1551 return false; 1552 } 1553 return true; 1554 } 1555 1556 static 1557 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port, 1558 struct intel_connector *connector) 1559 { 1560 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1561 int retry; 1562 1563 for (retry = 0; retry < 3; retry++) 1564 if (intel_hdmi_hdcp_check_link_once(dig_port, connector)) 1565 return true; 1566 1567 drm_err(&i915->drm, "Link check failed\n"); 1568 return false; 1569 } 1570 1571 struct hdcp2_hdmi_msg_timeout { 1572 u8 msg_id; 1573 u16 timeout; 1574 }; 1575 1576 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = { 1577 { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, }, 1578 { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, }, 1579 { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, }, 1580 { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, }, 1581 { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, }, 1582 }; 1583 1584 static 1585 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port, 1586 u8 *rx_status) 1587 { 1588 return intel_hdmi_hdcp_read(dig_port, 1589 HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET, 1590 rx_status, 1591 HDCP_2_2_HDMI_RXSTATUS_LEN); 1592 } 1593 1594 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired) 1595 { 1596 int i; 1597 1598 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) { 1599 if (is_paired) 1600 return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS; 1601 else 1602 return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS; 1603 } 1604 1605 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) { 1606 if (hdcp2_msg_timeout[i].msg_id == msg_id) 1607 return hdcp2_msg_timeout[i].timeout; 1608 } 1609 1610 return -EINVAL; 1611 } 1612 1613 static int 1614 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port, 1615 u8 msg_id, bool *msg_ready, 1616 ssize_t *msg_sz) 1617 { 1618 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1619 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; 1620 int ret; 1621 1622 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); 1623 if (ret < 0) { 1624 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n", 1625 ret); 1626 return ret; 1627 } 1628 1629 *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) | 1630 rx_status[0]); 1631 1632 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) 1633 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) && 1634 *msg_sz); 1635 else 1636 *msg_ready = *msg_sz; 1637 1638 return 0; 1639 } 1640 1641 static ssize_t 1642 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port, 1643 u8 msg_id, bool paired) 1644 { 1645 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1646 bool msg_ready = false; 1647 int timeout, ret; 1648 ssize_t msg_sz = 0; 1649 1650 timeout = get_hdcp2_msg_timeout(msg_id, paired); 1651 if (timeout < 0) 1652 return timeout; 1653 1654 ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port, 1655 msg_id, &msg_ready, 1656 &msg_sz), 1657 !ret && msg_ready && msg_sz, timeout * 1000, 1658 1000, 5 * 1000); 1659 if (ret) 1660 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n", 1661 msg_id, ret, timeout); 1662 1663 return ret ? ret : msg_sz; 1664 } 1665 1666 static 1667 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port, 1668 void *buf, size_t size) 1669 { 1670 unsigned int offset; 1671 1672 offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET; 1673 return intel_hdmi_hdcp_write(dig_port, offset, buf, size); 1674 } 1675 1676 static 1677 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port, 1678 u8 msg_id, void *buf, size_t size) 1679 { 1680 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1681 struct intel_hdmi *hdmi = &dig_port->hdmi; 1682 struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp; 1683 unsigned int offset; 1684 ssize_t ret; 1685 1686 ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id, 1687 hdcp->is_paired); 1688 if (ret < 0) 1689 return ret; 1690 1691 /* 1692 * Available msg size should be equal to or lesser than the 1693 * available buffer. 1694 */ 1695 if (ret > size) { 1696 drm_dbg_kms(&i915->drm, 1697 "msg_sz(%zd) is more than exp size(%zu)\n", 1698 ret, size); 1699 return -EINVAL; 1700 } 1701 1702 offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET; 1703 ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret); 1704 if (ret) 1705 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n", 1706 msg_id, ret); 1707 1708 return ret; 1709 } 1710 1711 static 1712 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port, 1713 struct intel_connector *connector) 1714 { 1715 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; 1716 int ret; 1717 1718 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); 1719 if (ret) 1720 return ret; 1721 1722 /* 1723 * Re-auth request and Link Integrity Failures are represented by 1724 * same bit. i.e reauth_req. 1725 */ 1726 if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1])) 1727 ret = HDCP_REAUTH_REQUEST; 1728 else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1])) 1729 ret = HDCP_TOPOLOGY_CHANGE; 1730 1731 return ret; 1732 } 1733 1734 static 1735 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port, 1736 bool *capable) 1737 { 1738 u8 hdcp2_version; 1739 int ret; 1740 1741 *capable = false; 1742 ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET, 1743 &hdcp2_version, sizeof(hdcp2_version)); 1744 if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK) 1745 *capable = true; 1746 1747 return ret; 1748 } 1749 1750 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = { 1751 .write_an_aksv = intel_hdmi_hdcp_write_an_aksv, 1752 .read_bksv = intel_hdmi_hdcp_read_bksv, 1753 .read_bstatus = intel_hdmi_hdcp_read_bstatus, 1754 .repeater_present = intel_hdmi_hdcp_repeater_present, 1755 .read_ri_prime = intel_hdmi_hdcp_read_ri_prime, 1756 .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready, 1757 .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo, 1758 .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part, 1759 .toggle_signalling = intel_hdmi_hdcp_toggle_signalling, 1760 .check_link = intel_hdmi_hdcp_check_link, 1761 .write_2_2_msg = intel_hdmi_hdcp2_write_msg, 1762 .read_2_2_msg = intel_hdmi_hdcp2_read_msg, 1763 .check_2_2_link = intel_hdmi_hdcp2_check_link, 1764 .hdcp_2_2_capable = intel_hdmi_hdcp2_capable, 1765 .protocol = HDCP_PROTOCOL_HDMI, 1766 }; 1767 1768 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder) 1769 { 1770 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1771 int max_tmds_clock, vbt_max_tmds_clock; 1772 1773 if (DISPLAY_VER(dev_priv) >= 10) 1774 max_tmds_clock = 594000; 1775 else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) 1776 max_tmds_clock = 300000; 1777 else if (DISPLAY_VER(dev_priv) >= 5) 1778 max_tmds_clock = 225000; 1779 else 1780 max_tmds_clock = 165000; 1781 1782 vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata); 1783 if (vbt_max_tmds_clock) 1784 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock); 1785 1786 return max_tmds_clock; 1787 } 1788 1789 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi, 1790 const struct drm_connector_state *conn_state) 1791 { 1792 return hdmi->has_hdmi_sink && 1793 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI; 1794 } 1795 1796 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state) 1797 { 1798 return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420; 1799 } 1800 1801 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, 1802 bool respect_downstream_limits, 1803 bool has_hdmi_sink) 1804 { 1805 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base; 1806 int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder); 1807 1808 if (respect_downstream_limits) { 1809 struct intel_connector *connector = hdmi->attached_connector; 1810 const struct drm_display_info *info = &connector->base.display_info; 1811 1812 if (hdmi->dp_dual_mode.max_tmds_clock) 1813 max_tmds_clock = min(max_tmds_clock, 1814 hdmi->dp_dual_mode.max_tmds_clock); 1815 1816 if (info->max_tmds_clock) 1817 max_tmds_clock = min(max_tmds_clock, 1818 info->max_tmds_clock); 1819 else if (!has_hdmi_sink) 1820 max_tmds_clock = min(max_tmds_clock, 165000); 1821 } 1822 1823 return max_tmds_clock; 1824 } 1825 1826 static enum drm_mode_status 1827 hdmi_port_clock_valid(struct intel_hdmi *hdmi, 1828 int clock, bool respect_downstream_limits, 1829 bool has_hdmi_sink) 1830 { 1831 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); 1832 enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port); 1833 1834 if (clock < 25000) 1835 return MODE_CLOCK_LOW; 1836 if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, 1837 has_hdmi_sink)) 1838 return MODE_CLOCK_HIGH; 1839 1840 /* GLK DPLL can't generate 446-480 MHz */ 1841 if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000) 1842 return MODE_CLOCK_RANGE; 1843 1844 /* BXT/GLK DPLL can't generate 223-240 MHz */ 1845 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 1846 clock > 223333 && clock < 240000) 1847 return MODE_CLOCK_RANGE; 1848 1849 /* CHV DPLL can't generate 216-240 MHz */ 1850 if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000) 1851 return MODE_CLOCK_RANGE; 1852 1853 /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */ 1854 if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200) 1855 return MODE_CLOCK_RANGE; 1856 1857 /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */ 1858 if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800) 1859 return MODE_CLOCK_RANGE; 1860 1861 /* 1862 * SNPS PHYs' MPLLB table-based programming can only handle a fixed 1863 * set of link rates. 1864 * 1865 * FIXME: We will hopefully get an algorithmic way of programming 1866 * the MPLLB for HDMI in the future. 1867 */ 1868 if (IS_DG2(dev_priv)) 1869 return intel_snps_phy_check_hdmi_link_rate(clock); 1870 1871 return MODE_OK; 1872 } 1873 1874 int intel_hdmi_tmds_clock(int clock, int bpc, bool ycbcr420_output) 1875 { 1876 /* YCBCR420 TMDS rate requirement is half the pixel clock */ 1877 if (ycbcr420_output) 1878 clock /= 2; 1879 1880 /* 1881 * Need to adjust the port link by: 1882 * 1.5x for 12bpc 1883 * 1.25x for 10bpc 1884 */ 1885 return DIV_ROUND_CLOSEST(clock * bpc, 8); 1886 } 1887 1888 static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc) 1889 { 1890 switch (bpc) { 1891 case 12: 1892 return !HAS_GMCH(i915); 1893 case 10: 1894 return DISPLAY_VER(i915) >= 11; 1895 case 8: 1896 return true; 1897 default: 1898 MISSING_CASE(bpc); 1899 return false; 1900 } 1901 } 1902 1903 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector, 1904 int bpc, bool has_hdmi_sink, bool ycbcr420_output) 1905 { 1906 const struct drm_display_info *info = &connector->display_info; 1907 const struct drm_hdmi_info *hdmi = &info->hdmi; 1908 1909 switch (bpc) { 1910 case 12: 1911 if (!has_hdmi_sink) 1912 return false; 1913 1914 if (ycbcr420_output) 1915 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36; 1916 else 1917 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36; 1918 case 10: 1919 if (!has_hdmi_sink) 1920 return false; 1921 1922 if (ycbcr420_output) 1923 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30; 1924 else 1925 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30; 1926 case 8: 1927 return true; 1928 default: 1929 MISSING_CASE(bpc); 1930 return false; 1931 } 1932 } 1933 1934 static enum drm_mode_status 1935 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock, 1936 bool has_hdmi_sink, bool ycbcr420_output) 1937 { 1938 struct drm_i915_private *i915 = to_i915(connector->dev); 1939 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 1940 enum drm_mode_status status = MODE_OK; 1941 int bpc; 1942 1943 /* 1944 * Try all color depths since valid port clock range 1945 * can have holes. Any mode that can be used with at 1946 * least one color depth is accepted. 1947 */ 1948 for (bpc = 12; bpc >= 8; bpc -= 2) { 1949 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output); 1950 1951 if (!intel_hdmi_source_bpc_possible(i915, bpc)) 1952 continue; 1953 1954 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output)) 1955 continue; 1956 1957 status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink); 1958 if (status == MODE_OK) 1959 return MODE_OK; 1960 } 1961 1962 /* can never happen */ 1963 drm_WARN_ON(&i915->drm, status == MODE_OK); 1964 1965 return status; 1966 } 1967 1968 static enum drm_mode_status 1969 intel_hdmi_mode_valid(struct drm_connector *connector, 1970 struct drm_display_mode *mode) 1971 { 1972 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 1973 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); 1974 enum drm_mode_status status; 1975 int clock = mode->clock; 1976 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; 1977 bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state); 1978 bool ycbcr_420_only; 1979 1980 if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) 1981 clock *= 2; 1982 1983 if (clock > max_dotclk) 1984 return MODE_CLOCK_HIGH; 1985 1986 if (mode->flags & DRM_MODE_FLAG_DBLCLK) { 1987 if (!has_hdmi_sink) 1988 return MODE_CLOCK_LOW; 1989 clock *= 2; 1990 } 1991 1992 /* 1993 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be 1994 * enumerated only if FRL is supported. Current platforms do not support 1995 * FRL so prune the higher resolution modes that require doctclock more 1996 * than 600MHz. 1997 */ 1998 if (clock > 600000) 1999 return MODE_CLOCK_HIGH; 2000 2001 ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode); 2002 2003 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only); 2004 if (status != MODE_OK) { 2005 if (ycbcr_420_only || 2006 !connector->ycbcr_420_allowed || 2007 !drm_mode_is_420_also(&connector->display_info, mode)) 2008 return status; 2009 2010 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true); 2011 if (status != MODE_OK) 2012 return status; 2013 } 2014 2015 return intel_mode_valid_max_plane_size(dev_priv, mode, false); 2016 } 2017 2018 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, 2019 int bpc, bool has_hdmi_sink, bool ycbcr420_output) 2020 { 2021 struct drm_atomic_state *state = crtc_state->uapi.state; 2022 struct drm_connector_state *connector_state; 2023 struct drm_connector *connector; 2024 int i; 2025 2026 for_each_new_connector_in_state(state, connector, connector_state, i) { 2027 if (connector_state->crtc != crtc_state->uapi.crtc) 2028 continue; 2029 2030 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output)) 2031 return false; 2032 } 2033 2034 return true; 2035 } 2036 2037 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc) 2038 { 2039 struct drm_i915_private *dev_priv = 2040 to_i915(crtc_state->uapi.crtc->dev); 2041 const struct drm_display_mode *adjusted_mode = 2042 &crtc_state->hw.adjusted_mode; 2043 2044 if (!intel_hdmi_source_bpc_possible(dev_priv, bpc)) 2045 return false; 2046 2047 /* Display Wa_1405510057:icl,ehl */ 2048 if (intel_hdmi_is_ycbcr420(crtc_state) && 2049 bpc == 10 && DISPLAY_VER(dev_priv) == 11 && 2050 (adjusted_mode->crtc_hblank_end - 2051 adjusted_mode->crtc_hblank_start) % 8 == 2) 2052 return false; 2053 2054 return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink, 2055 intel_hdmi_is_ycbcr420(crtc_state)); 2056 } 2057 2058 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder, 2059 struct intel_crtc_state *crtc_state, 2060 int clock, bool respect_downstream_limits) 2061 { 2062 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2063 bool ycbcr420_output = intel_hdmi_is_ycbcr420(crtc_state); 2064 int bpc; 2065 2066 /* 2067 * pipe_bpp could already be below 8bpc due to FDI 2068 * bandwidth constraints. HDMI minimum is 8bpc however. 2069 */ 2070 bpc = max(crtc_state->pipe_bpp / 3, 8); 2071 2072 /* 2073 * We will never exceed downstream TMDS clock limits while 2074 * attempting deep color. If the user insists on forcing an 2075 * out of spec mode they will have to be satisfied with 8bpc. 2076 */ 2077 if (!respect_downstream_limits) 2078 bpc = 8; 2079 2080 for (; bpc >= 8; bpc -= 2) { 2081 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output); 2082 2083 if (hdmi_bpc_possible(crtc_state, bpc) && 2084 hdmi_port_clock_valid(intel_hdmi, tmds_clock, 2085 respect_downstream_limits, 2086 crtc_state->has_hdmi_sink) == MODE_OK) 2087 return bpc; 2088 } 2089 2090 return -EINVAL; 2091 } 2092 2093 static int intel_hdmi_compute_clock(struct intel_encoder *encoder, 2094 struct intel_crtc_state *crtc_state, 2095 bool respect_downstream_limits) 2096 { 2097 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2098 const struct drm_display_mode *adjusted_mode = 2099 &crtc_state->hw.adjusted_mode; 2100 int bpc, clock = adjusted_mode->crtc_clock; 2101 2102 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2103 clock *= 2; 2104 2105 bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock, 2106 respect_downstream_limits); 2107 if (bpc < 0) 2108 return bpc; 2109 2110 crtc_state->port_clock = 2111 intel_hdmi_tmds_clock(clock, bpc, intel_hdmi_is_ycbcr420(crtc_state)); 2112 2113 /* 2114 * pipe_bpp could already be below 8bpc due to 2115 * FDI bandwidth constraints. We shouldn't bump it 2116 * back up to the HDMI minimum 8bpc in that case. 2117 */ 2118 crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3); 2119 2120 drm_dbg_kms(&i915->drm, 2121 "picking %d bpc for HDMI output (pipe bpp: %d)\n", 2122 bpc, crtc_state->pipe_bpp); 2123 2124 return 0; 2125 } 2126 2127 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state, 2128 const struct drm_connector_state *conn_state) 2129 { 2130 const struct intel_digital_connector_state *intel_conn_state = 2131 to_intel_digital_connector_state(conn_state); 2132 const struct drm_display_mode *adjusted_mode = 2133 &crtc_state->hw.adjusted_mode; 2134 2135 /* 2136 * Our YCbCr output is always limited range. 2137 * crtc_state->limited_color_range only applies to RGB, 2138 * and it must never be set for YCbCr or we risk setting 2139 * some conflicting bits in TRANSCONF which will mess up 2140 * the colors on the monitor. 2141 */ 2142 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2143 return false; 2144 2145 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2146 /* See CEA-861-E - 5.1 Default Encoding Parameters */ 2147 return crtc_state->has_hdmi_sink && 2148 drm_default_rgb_quant_range(adjusted_mode) == 2149 HDMI_QUANTIZATION_RANGE_LIMITED; 2150 } else { 2151 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; 2152 } 2153 } 2154 2155 static bool intel_hdmi_has_audio(struct intel_encoder *encoder, 2156 const struct intel_crtc_state *crtc_state, 2157 const struct drm_connector_state *conn_state) 2158 { 2159 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2160 const struct intel_digital_connector_state *intel_conn_state = 2161 to_intel_digital_connector_state(conn_state); 2162 2163 if (!crtc_state->has_hdmi_sink) 2164 return false; 2165 2166 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2167 return intel_hdmi->has_audio; 2168 else 2169 return intel_conn_state->force_audio == HDMI_AUDIO_ON; 2170 } 2171 2172 static enum intel_output_format 2173 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state, 2174 struct intel_connector *connector, 2175 bool ycbcr_420_output) 2176 { 2177 if (!crtc_state->has_hdmi_sink) 2178 return INTEL_OUTPUT_FORMAT_RGB; 2179 2180 if (connector->base.ycbcr_420_allowed && ycbcr_420_output) 2181 return INTEL_OUTPUT_FORMAT_YCBCR420; 2182 else 2183 return INTEL_OUTPUT_FORMAT_RGB; 2184 } 2185 2186 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder, 2187 struct intel_crtc_state *crtc_state, 2188 const struct drm_connector_state *conn_state, 2189 bool respect_downstream_limits) 2190 { 2191 struct intel_connector *connector = to_intel_connector(conn_state->connector); 2192 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 2193 const struct drm_display_info *info = &connector->base.display_info; 2194 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2195 bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode); 2196 int ret; 2197 2198 crtc_state->output_format = 2199 intel_hdmi_output_format(crtc_state, connector, ycbcr_420_only); 2200 2201 if (ycbcr_420_only && !intel_hdmi_is_ycbcr420(crtc_state)) { 2202 drm_dbg_kms(&i915->drm, 2203 "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n"); 2204 crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB; 2205 } 2206 2207 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits); 2208 if (ret) { 2209 if (intel_hdmi_is_ycbcr420(crtc_state) || 2210 !connector->base.ycbcr_420_allowed || 2211 !drm_mode_is_420_also(info, adjusted_mode)) 2212 return ret; 2213 2214 crtc_state->output_format = intel_hdmi_output_format(crtc_state, connector, true); 2215 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits); 2216 } 2217 2218 return ret; 2219 } 2220 2221 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state) 2222 { 2223 return crtc_state->uapi.encoder_mask && 2224 !is_power_of_2(crtc_state->uapi.encoder_mask); 2225 } 2226 2227 static bool source_supports_scrambling(struct intel_encoder *encoder) 2228 { 2229 /* 2230 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and 2231 * scrambling is supported. 2232 * But there seem to be cases where certain platforms that support 2233 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is 2234 * capped by VBT to less than 340MHz. 2235 * 2236 * In such cases when an HDMI2.0 sink is connected, it creates a 2237 * problem : the platform and the sink both support scrambling but the 2238 * HDMI 1.4 retimer chip doesn't. 2239 * 2240 * So go for scrambling, based on the max tmds clock taking into account, 2241 * restrictions coming from VBT. 2242 */ 2243 return intel_hdmi_source_max_tmds_clock(encoder) > 340000; 2244 } 2245 2246 int intel_hdmi_compute_config(struct intel_encoder *encoder, 2247 struct intel_crtc_state *pipe_config, 2248 struct drm_connector_state *conn_state) 2249 { 2250 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2251 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2252 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2253 struct drm_connector *connector = conn_state->connector; 2254 struct drm_scdc *scdc = &connector->display_info.hdmi.scdc; 2255 int ret; 2256 2257 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2258 return -EINVAL; 2259 2260 if (!connector->interlace_allowed && 2261 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2262 return -EINVAL; 2263 2264 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2265 pipe_config->has_hdmi_sink = 2266 intel_has_hdmi_sink(intel_hdmi, conn_state) && 2267 !intel_hdmi_is_cloned(pipe_config); 2268 2269 if (pipe_config->has_hdmi_sink) 2270 pipe_config->has_infoframe = true; 2271 2272 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2273 pipe_config->pixel_multiplier = 2; 2274 2275 pipe_config->has_audio = 2276 intel_hdmi_has_audio(encoder, pipe_config, conn_state) && 2277 intel_audio_compute_config(encoder, pipe_config, conn_state); 2278 2279 /* 2280 * Try to respect downstream TMDS clock limits first, if 2281 * that fails assume the user might know something we don't. 2282 */ 2283 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true); 2284 if (ret) 2285 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false); 2286 if (ret) { 2287 drm_dbg_kms(&dev_priv->drm, 2288 "unsupported HDMI clock (%d kHz), rejecting mode\n", 2289 pipe_config->hw.adjusted_mode.crtc_clock); 2290 return ret; 2291 } 2292 2293 if (intel_hdmi_is_ycbcr420(pipe_config)) { 2294 ret = intel_panel_fitting(pipe_config, conn_state); 2295 if (ret) 2296 return ret; 2297 } 2298 2299 pipe_config->limited_color_range = 2300 intel_hdmi_limited_color_range(pipe_config, conn_state); 2301 2302 if (conn_state->picture_aspect_ratio) 2303 adjusted_mode->picture_aspect_ratio = 2304 conn_state->picture_aspect_ratio; 2305 2306 pipe_config->lane_count = 4; 2307 2308 if (scdc->scrambling.supported && source_supports_scrambling(encoder)) { 2309 if (scdc->scrambling.low_rates) 2310 pipe_config->hdmi_scrambling = true; 2311 2312 if (pipe_config->port_clock > 340000) { 2313 pipe_config->hdmi_scrambling = true; 2314 pipe_config->hdmi_high_tmds_clock_ratio = true; 2315 } 2316 } 2317 2318 intel_hdmi_compute_gcp_infoframe(encoder, pipe_config, 2319 conn_state); 2320 2321 if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) { 2322 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n"); 2323 return -EINVAL; 2324 } 2325 2326 if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) { 2327 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n"); 2328 return -EINVAL; 2329 } 2330 2331 if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) { 2332 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n"); 2333 return -EINVAL; 2334 } 2335 2336 if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) { 2337 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n"); 2338 return -EINVAL; 2339 } 2340 2341 return 0; 2342 } 2343 2344 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder) 2345 { 2346 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2347 2348 /* 2349 * Give a hand to buggy BIOSen which forget to turn 2350 * the TMDS output buffers back on after a reboot. 2351 */ 2352 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true); 2353 } 2354 2355 static void 2356 intel_hdmi_unset_edid(struct drm_connector *connector) 2357 { 2358 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2359 2360 intel_hdmi->has_hdmi_sink = false; 2361 intel_hdmi->has_audio = false; 2362 2363 intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE; 2364 intel_hdmi->dp_dual_mode.max_tmds_clock = 0; 2365 2366 drm_edid_free(to_intel_connector(connector)->detect_edid); 2367 to_intel_connector(connector)->detect_edid = NULL; 2368 } 2369 2370 static void 2371 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector) 2372 { 2373 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2374 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2375 enum port port = hdmi_to_dig_port(hdmi)->base.port; 2376 struct i2c_adapter *adapter = 2377 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); 2378 enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter); 2379 2380 /* 2381 * Type 1 DVI adaptors are not required to implement any 2382 * registers, so we can't always detect their presence. 2383 * Ideally we should be able to check the state of the 2384 * CONFIG1 pin, but no such luck on our hardware. 2385 * 2386 * The only method left to us is to check the VBT to see 2387 * if the port is a dual mode capable DP port. 2388 */ 2389 if (type == DRM_DP_DUAL_MODE_UNKNOWN) { 2390 if (!connector->force && 2391 intel_bios_is_port_dp_dual_mode(dev_priv, port)) { 2392 drm_dbg_kms(&dev_priv->drm, 2393 "Assuming DP dual mode adaptor presence based on VBT\n"); 2394 type = DRM_DP_DUAL_MODE_TYPE1_DVI; 2395 } else { 2396 type = DRM_DP_DUAL_MODE_NONE; 2397 } 2398 } 2399 2400 if (type == DRM_DP_DUAL_MODE_NONE) 2401 return; 2402 2403 hdmi->dp_dual_mode.type = type; 2404 hdmi->dp_dual_mode.max_tmds_clock = 2405 drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter); 2406 2407 drm_dbg_kms(&dev_priv->drm, 2408 "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n", 2409 drm_dp_get_dual_mode_type_name(type), 2410 hdmi->dp_dual_mode.max_tmds_clock); 2411 2412 /* Older VBTs are often buggy and can't be trusted :( Play it safe. */ 2413 if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) && 2414 !intel_bios_is_port_dp_dual_mode(dev_priv, port)) { 2415 drm_dbg_kms(&dev_priv->drm, 2416 "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n"); 2417 hdmi->dp_dual_mode.max_tmds_clock = 0; 2418 } 2419 } 2420 2421 static bool 2422 intel_hdmi_set_edid(struct drm_connector *connector) 2423 { 2424 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2425 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2426 intel_wakeref_t wakeref; 2427 const struct drm_edid *drm_edid; 2428 const struct edid *edid; 2429 bool connected = false; 2430 struct i2c_adapter *i2c; 2431 2432 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 2433 2434 i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2435 2436 drm_edid = drm_edid_read_ddc(connector, i2c); 2437 2438 if (!drm_edid && !intel_gmbus_is_forced_bit(i2c)) { 2439 drm_dbg_kms(&dev_priv->drm, 2440 "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n"); 2441 intel_gmbus_force_bit(i2c, true); 2442 drm_edid = drm_edid_read_ddc(connector, i2c); 2443 intel_gmbus_force_bit(i2c, false); 2444 } 2445 2446 /* Below we depend on display info having been updated */ 2447 drm_edid_connector_update(connector, drm_edid); 2448 2449 to_intel_connector(connector)->detect_edid = drm_edid; 2450 2451 /* FIXME: Get rid of drm_edid_raw() */ 2452 edid = drm_edid_raw(drm_edid); 2453 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) { 2454 intel_hdmi->has_audio = drm_detect_monitor_audio(edid); 2455 intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid); 2456 2457 intel_hdmi_dp_dual_mode_detect(connector); 2458 2459 connected = true; 2460 } 2461 2462 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 2463 2464 cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid); 2465 2466 return connected; 2467 } 2468 2469 static enum drm_connector_status 2470 intel_hdmi_detect(struct drm_connector *connector, bool force) 2471 { 2472 enum drm_connector_status status = connector_status_disconnected; 2473 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2474 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2475 struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base; 2476 intel_wakeref_t wakeref; 2477 2478 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 2479 connector->base.id, connector->name); 2480 2481 if (!INTEL_DISPLAY_ENABLED(dev_priv)) 2482 return connector_status_disconnected; 2483 2484 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 2485 2486 if (DISPLAY_VER(dev_priv) >= 11 && 2487 !intel_digital_port_connected(encoder)) 2488 goto out; 2489 2490 intel_hdmi_unset_edid(connector); 2491 2492 if (intel_hdmi_set_edid(connector)) 2493 status = connector_status_connected; 2494 2495 out: 2496 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 2497 2498 if (status != connector_status_connected) 2499 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier); 2500 2501 /* 2502 * Make sure the refs for power wells enabled during detect are 2503 * dropped to avoid a new detect cycle triggered by HPD polling. 2504 */ 2505 intel_display_power_flush_work(dev_priv); 2506 2507 return status; 2508 } 2509 2510 static void 2511 intel_hdmi_force(struct drm_connector *connector) 2512 { 2513 struct drm_i915_private *i915 = to_i915(connector->dev); 2514 2515 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 2516 connector->base.id, connector->name); 2517 2518 intel_hdmi_unset_edid(connector); 2519 2520 if (connector->status != connector_status_connected) 2521 return; 2522 2523 intel_hdmi_set_edid(connector); 2524 } 2525 2526 static int intel_hdmi_get_modes(struct drm_connector *connector) 2527 { 2528 /* drm_edid_connector_update() done in ->detect() or ->force() */ 2529 return drm_edid_connector_add_modes(connector); 2530 } 2531 2532 static struct i2c_adapter * 2533 intel_hdmi_get_i2c_adapter(struct drm_connector *connector) 2534 { 2535 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2536 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2537 2538 return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2539 } 2540 2541 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector) 2542 { 2543 struct drm_i915_private *i915 = to_i915(connector->dev); 2544 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector); 2545 struct kobject *i2c_kobj = &adapter->dev.kobj; 2546 struct kobject *connector_kobj = &connector->kdev->kobj; 2547 int ret; 2548 2549 ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name); 2550 if (ret) 2551 drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret); 2552 } 2553 2554 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector) 2555 { 2556 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector); 2557 struct kobject *i2c_kobj = &adapter->dev.kobj; 2558 struct kobject *connector_kobj = &connector->kdev->kobj; 2559 2560 sysfs_remove_link(connector_kobj, i2c_kobj->name); 2561 } 2562 2563 static int 2564 intel_hdmi_connector_register(struct drm_connector *connector) 2565 { 2566 int ret; 2567 2568 ret = intel_connector_register(connector); 2569 if (ret) 2570 return ret; 2571 2572 intel_hdmi_create_i2c_symlink(connector); 2573 2574 return ret; 2575 } 2576 2577 static void intel_hdmi_connector_unregister(struct drm_connector *connector) 2578 { 2579 struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier; 2580 2581 cec_notifier_conn_unregister(n); 2582 2583 intel_hdmi_remove_i2c_symlink(connector); 2584 intel_connector_unregister(connector); 2585 } 2586 2587 static const struct drm_connector_funcs intel_hdmi_connector_funcs = { 2588 .detect = intel_hdmi_detect, 2589 .force = intel_hdmi_force, 2590 .fill_modes = drm_helper_probe_single_connector_modes, 2591 .atomic_get_property = intel_digital_connector_atomic_get_property, 2592 .atomic_set_property = intel_digital_connector_atomic_set_property, 2593 .late_register = intel_hdmi_connector_register, 2594 .early_unregister = intel_hdmi_connector_unregister, 2595 .destroy = intel_connector_destroy, 2596 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 2597 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 2598 }; 2599 2600 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { 2601 .get_modes = intel_hdmi_get_modes, 2602 .mode_valid = intel_hdmi_mode_valid, 2603 .atomic_check = intel_digital_connector_atomic_check, 2604 }; 2605 2606 static void 2607 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) 2608 { 2609 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2610 2611 intel_attach_force_audio_property(connector); 2612 intel_attach_broadcast_rgb_property(connector); 2613 intel_attach_aspect_ratio_property(connector); 2614 2615 intel_attach_hdmi_colorspace_property(connector); 2616 drm_connector_attach_content_type_property(connector); 2617 2618 if (DISPLAY_VER(dev_priv) >= 10) 2619 drm_connector_attach_hdr_output_metadata_property(connector); 2620 2621 if (!HAS_GMCH(dev_priv)) 2622 drm_connector_attach_max_bpc_property(connector, 8, 12); 2623 } 2624 2625 /* 2626 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup 2627 * @encoder: intel_encoder 2628 * @connector: drm_connector 2629 * @high_tmds_clock_ratio = bool to indicate if the function needs to set 2630 * or reset the high tmds clock ratio for scrambling 2631 * @scrambling: bool to Indicate if the function needs to set or reset 2632 * sink scrambling 2633 * 2634 * This function handles scrambling on HDMI 2.0 capable sinks. 2635 * If required clock rate is > 340 Mhz && scrambling is supported by sink 2636 * it enables scrambling. This should be called before enabling the HDMI 2637 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't 2638 * detect a scrambled clock within 100 ms. 2639 * 2640 * Returns: 2641 * True on success, false on failure. 2642 */ 2643 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder, 2644 struct drm_connector *connector, 2645 bool high_tmds_clock_ratio, 2646 bool scrambling) 2647 { 2648 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2649 struct drm_scrambling *sink_scrambling = 2650 &connector->display_info.hdmi.scdc.scrambling; 2651 2652 if (!sink_scrambling->supported) 2653 return true; 2654 2655 drm_dbg_kms(&dev_priv->drm, 2656 "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n", 2657 connector->base.id, connector->name, 2658 str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10); 2659 2660 /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */ 2661 return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) && 2662 drm_scdc_set_scrambling(connector, scrambling); 2663 } 2664 2665 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2666 { 2667 u8 ddc_pin; 2668 2669 switch (port) { 2670 case PORT_B: 2671 ddc_pin = GMBUS_PIN_DPB; 2672 break; 2673 case PORT_C: 2674 ddc_pin = GMBUS_PIN_DPC; 2675 break; 2676 case PORT_D: 2677 ddc_pin = GMBUS_PIN_DPD_CHV; 2678 break; 2679 default: 2680 MISSING_CASE(port); 2681 ddc_pin = GMBUS_PIN_DPB; 2682 break; 2683 } 2684 return ddc_pin; 2685 } 2686 2687 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2688 { 2689 u8 ddc_pin; 2690 2691 switch (port) { 2692 case PORT_B: 2693 ddc_pin = GMBUS_PIN_1_BXT; 2694 break; 2695 case PORT_C: 2696 ddc_pin = GMBUS_PIN_2_BXT; 2697 break; 2698 default: 2699 MISSING_CASE(port); 2700 ddc_pin = GMBUS_PIN_1_BXT; 2701 break; 2702 } 2703 return ddc_pin; 2704 } 2705 2706 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv, 2707 enum port port) 2708 { 2709 u8 ddc_pin; 2710 2711 switch (port) { 2712 case PORT_B: 2713 ddc_pin = GMBUS_PIN_1_BXT; 2714 break; 2715 case PORT_C: 2716 ddc_pin = GMBUS_PIN_2_BXT; 2717 break; 2718 case PORT_D: 2719 ddc_pin = GMBUS_PIN_4_CNP; 2720 break; 2721 case PORT_F: 2722 ddc_pin = GMBUS_PIN_3_BXT; 2723 break; 2724 default: 2725 MISSING_CASE(port); 2726 ddc_pin = GMBUS_PIN_1_BXT; 2727 break; 2728 } 2729 return ddc_pin; 2730 } 2731 2732 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2733 { 2734 enum phy phy = intel_port_to_phy(dev_priv, port); 2735 2736 if (intel_phy_is_combo(dev_priv, phy)) 2737 return GMBUS_PIN_1_BXT + port; 2738 else if (intel_phy_is_tc(dev_priv, phy)) 2739 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port); 2740 2741 drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port)); 2742 return GMBUS_PIN_2_BXT; 2743 } 2744 2745 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2746 { 2747 enum phy phy = intel_port_to_phy(dev_priv, port); 2748 u8 ddc_pin; 2749 2750 switch (phy) { 2751 case PHY_A: 2752 ddc_pin = GMBUS_PIN_1_BXT; 2753 break; 2754 case PHY_B: 2755 ddc_pin = GMBUS_PIN_2_BXT; 2756 break; 2757 case PHY_C: 2758 ddc_pin = GMBUS_PIN_9_TC1_ICP; 2759 break; 2760 default: 2761 MISSING_CASE(phy); 2762 ddc_pin = GMBUS_PIN_1_BXT; 2763 break; 2764 } 2765 return ddc_pin; 2766 } 2767 2768 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2769 { 2770 enum phy phy = intel_port_to_phy(dev_priv, port); 2771 2772 WARN_ON(port == PORT_C); 2773 2774 /* 2775 * Pin mapping for RKL depends on which PCH is present. With TGP, the 2776 * final two outputs use type-c pins, even though they're actually 2777 * combo outputs. With CMP, the traditional DDI A-D pins are used for 2778 * all outputs. 2779 */ 2780 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C) 2781 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; 2782 2783 return GMBUS_PIN_1_BXT + phy; 2784 } 2785 2786 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port) 2787 { 2788 enum phy phy = intel_port_to_phy(i915, port); 2789 2790 drm_WARN_ON(&i915->drm, port == PORT_A); 2791 2792 /* 2793 * Pin mapping for GEN9 BC depends on which PCH is present. With TGP, 2794 * final two outputs use type-c pins, even though they're actually 2795 * combo outputs. With CMP, the traditional DDI A-D pins are used for 2796 * all outputs. 2797 */ 2798 if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C) 2799 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; 2800 2801 return GMBUS_PIN_1_BXT + phy; 2802 } 2803 2804 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2805 { 2806 return intel_port_to_phy(dev_priv, port) + 1; 2807 } 2808 2809 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2810 { 2811 enum phy phy = intel_port_to_phy(dev_priv, port); 2812 2813 WARN_ON(port == PORT_B || port == PORT_C); 2814 2815 /* 2816 * Pin mapping for ADL-S requires TC pins for all combo phy outputs 2817 * except first combo output. 2818 */ 2819 if (phy == PHY_A) 2820 return GMBUS_PIN_1_BXT; 2821 2822 return GMBUS_PIN_9_TC1_ICP + phy - PHY_B; 2823 } 2824 2825 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv, 2826 enum port port) 2827 { 2828 u8 ddc_pin; 2829 2830 switch (port) { 2831 case PORT_B: 2832 ddc_pin = GMBUS_PIN_DPB; 2833 break; 2834 case PORT_C: 2835 ddc_pin = GMBUS_PIN_DPC; 2836 break; 2837 case PORT_D: 2838 ddc_pin = GMBUS_PIN_DPD; 2839 break; 2840 default: 2841 MISSING_CASE(port); 2842 ddc_pin = GMBUS_PIN_DPB; 2843 break; 2844 } 2845 return ddc_pin; 2846 } 2847 2848 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder) 2849 { 2850 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2851 enum port port = encoder->port; 2852 u8 ddc_pin; 2853 2854 ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata); 2855 if (ddc_pin) { 2856 drm_dbg_kms(&dev_priv->drm, 2857 "[ENCODER:%d:%s] Using DDC pin 0x%x (VBT)\n", 2858 encoder->base.base.id, encoder->base.name, 2859 ddc_pin); 2860 return ddc_pin; 2861 } 2862 2863 if (IS_ALDERLAKE_S(dev_priv)) 2864 ddc_pin = adls_port_to_ddc_pin(dev_priv, port); 2865 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) 2866 ddc_pin = dg1_port_to_ddc_pin(dev_priv, port); 2867 else if (IS_ROCKETLAKE(dev_priv)) 2868 ddc_pin = rkl_port_to_ddc_pin(dev_priv, port); 2869 else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv)) 2870 ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port); 2871 else if (IS_JSL_EHL(dev_priv) && HAS_PCH_TGP(dev_priv)) 2872 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port); 2873 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2874 ddc_pin = icl_port_to_ddc_pin(dev_priv, port); 2875 else if (HAS_PCH_CNP(dev_priv)) 2876 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port); 2877 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 2878 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port); 2879 else if (IS_CHERRYVIEW(dev_priv)) 2880 ddc_pin = chv_port_to_ddc_pin(dev_priv, port); 2881 else 2882 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port); 2883 2884 drm_dbg_kms(&dev_priv->drm, 2885 "[ENCODER:%d:%s] Using DDC pin 0x%x (platform default)\n", 2886 encoder->base.base.id, encoder->base.name, 2887 ddc_pin); 2888 2889 return ddc_pin; 2890 } 2891 2892 void intel_infoframe_init(struct intel_digital_port *dig_port) 2893 { 2894 struct drm_i915_private *dev_priv = 2895 to_i915(dig_port->base.base.dev); 2896 2897 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 2898 dig_port->write_infoframe = vlv_write_infoframe; 2899 dig_port->read_infoframe = vlv_read_infoframe; 2900 dig_port->set_infoframes = vlv_set_infoframes; 2901 dig_port->infoframes_enabled = vlv_infoframes_enabled; 2902 } else if (IS_G4X(dev_priv)) { 2903 dig_port->write_infoframe = g4x_write_infoframe; 2904 dig_port->read_infoframe = g4x_read_infoframe; 2905 dig_port->set_infoframes = g4x_set_infoframes; 2906 dig_port->infoframes_enabled = g4x_infoframes_enabled; 2907 } else if (HAS_DDI(dev_priv)) { 2908 if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) { 2909 dig_port->write_infoframe = lspcon_write_infoframe; 2910 dig_port->read_infoframe = lspcon_read_infoframe; 2911 dig_port->set_infoframes = lspcon_set_infoframes; 2912 dig_port->infoframes_enabled = lspcon_infoframes_enabled; 2913 } else { 2914 dig_port->write_infoframe = hsw_write_infoframe; 2915 dig_port->read_infoframe = hsw_read_infoframe; 2916 dig_port->set_infoframes = hsw_set_infoframes; 2917 dig_port->infoframes_enabled = hsw_infoframes_enabled; 2918 } 2919 } else if (HAS_PCH_IBX(dev_priv)) { 2920 dig_port->write_infoframe = ibx_write_infoframe; 2921 dig_port->read_infoframe = ibx_read_infoframe; 2922 dig_port->set_infoframes = ibx_set_infoframes; 2923 dig_port->infoframes_enabled = ibx_infoframes_enabled; 2924 } else { 2925 dig_port->write_infoframe = cpt_write_infoframe; 2926 dig_port->read_infoframe = cpt_read_infoframe; 2927 dig_port->set_infoframes = cpt_set_infoframes; 2928 dig_port->infoframes_enabled = cpt_infoframes_enabled; 2929 } 2930 } 2931 2932 void intel_hdmi_init_connector(struct intel_digital_port *dig_port, 2933 struct intel_connector *intel_connector) 2934 { 2935 struct drm_connector *connector = &intel_connector->base; 2936 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 2937 struct intel_encoder *intel_encoder = &dig_port->base; 2938 struct drm_device *dev = intel_encoder->base.dev; 2939 struct drm_i915_private *dev_priv = to_i915(dev); 2940 struct i2c_adapter *ddc; 2941 enum port port = intel_encoder->port; 2942 struct cec_connector_info conn_info; 2943 2944 drm_dbg_kms(&dev_priv->drm, 2945 "Adding HDMI connector on [ENCODER:%d:%s]\n", 2946 intel_encoder->base.base.id, intel_encoder->base.name); 2947 2948 if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A)) 2949 return; 2950 2951 if (drm_WARN(dev, dig_port->max_lanes < 4, 2952 "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n", 2953 dig_port->max_lanes, intel_encoder->base.base.id, 2954 intel_encoder->base.name)) 2955 return; 2956 2957 intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder); 2958 ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2959 2960 drm_connector_init_with_ddc(dev, connector, 2961 &intel_hdmi_connector_funcs, 2962 DRM_MODE_CONNECTOR_HDMIA, 2963 ddc); 2964 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); 2965 2966 if (DISPLAY_VER(dev_priv) < 12) 2967 connector->interlace_allowed = true; 2968 2969 connector->stereo_allowed = true; 2970 2971 if (DISPLAY_VER(dev_priv) >= 10) 2972 connector->ycbcr_420_allowed = true; 2973 2974 intel_connector->polled = DRM_CONNECTOR_POLL_HPD; 2975 2976 if (HAS_DDI(dev_priv)) 2977 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 2978 else 2979 intel_connector->get_hw_state = intel_connector_get_hw_state; 2980 2981 intel_hdmi_add_properties(intel_hdmi, connector); 2982 2983 intel_connector_attach_encoder(intel_connector, intel_encoder); 2984 intel_hdmi->attached_connector = intel_connector; 2985 2986 if (is_hdcp_supported(dev_priv, port)) { 2987 int ret = intel_hdcp_init(intel_connector, dig_port, 2988 &intel_hdmi_hdcp_shim); 2989 if (ret) 2990 drm_dbg_kms(&dev_priv->drm, 2991 "HDCP init failed, skipping.\n"); 2992 } 2993 2994 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 2995 * 0xd. Failure to do so will result in spurious interrupts being 2996 * generated on the port when a cable is not attached. 2997 */ 2998 if (IS_G45(dev_priv)) { 2999 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); 3000 intel_de_write(dev_priv, PEG_BAND_GAP_DATA, 3001 (temp & ~0xf) | 0xd); 3002 } 3003 3004 cec_fill_conn_info_from_drm(&conn_info, connector); 3005 3006 intel_hdmi->cec_notifier = 3007 cec_notifier_conn_register(dev->dev, port_identifier(port), 3008 &conn_info); 3009 if (!intel_hdmi->cec_notifier) 3010 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n"); 3011 } 3012 3013 /* 3014 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height 3015 * @vactive: Vactive of a display mode 3016 * 3017 * @return: appropriate dsc slice height for a given mode. 3018 */ 3019 int intel_hdmi_dsc_get_slice_height(int vactive) 3020 { 3021 int slice_height; 3022 3023 /* 3024 * Slice Height determination : HDMI2.1 Section 7.7.5.2 3025 * Select smallest slice height >=96, that results in a valid PPS and 3026 * requires minimum padding lines required for final slice. 3027 * 3028 * Assumption : Vactive is even. 3029 */ 3030 for (slice_height = 96; slice_height <= vactive; slice_height += 2) 3031 if (vactive % slice_height == 0) 3032 return slice_height; 3033 3034 return 0; 3035 } 3036 3037 /* 3038 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder 3039 * and dsc decoder capabilities 3040 * 3041 * @crtc_state: intel crtc_state 3042 * @src_max_slices: maximum slices supported by the DSC encoder 3043 * @src_max_slice_width: maximum slice width supported by DSC encoder 3044 * @hdmi_max_slices: maximum slices supported by sink DSC decoder 3045 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink 3046 * 3047 * @return: num of dsc slices that can be supported by the dsc encoder 3048 * and decoder. 3049 */ 3050 int 3051 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state, 3052 int src_max_slices, int src_max_slice_width, 3053 int hdmi_max_slices, int hdmi_throughput) 3054 { 3055 /* Pixel rates in KPixels/sec */ 3056 #define HDMI_DSC_PEAK_PIXEL_RATE 2720000 3057 /* 3058 * Rates at which the source and sink are required to process pixels in each 3059 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz. 3060 */ 3061 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0 340000 3062 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1 400000 3063 3064 /* Spec limits the slice width to 2720 pixels */ 3065 #define MAX_HDMI_SLICE_WIDTH 2720 3066 int kslice_adjust; 3067 int adjusted_clk_khz; 3068 int min_slices; 3069 int target_slices; 3070 int max_throughput; /* max clock freq. in khz per slice */ 3071 int max_slice_width; 3072 int slice_width; 3073 int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock; 3074 3075 if (!hdmi_throughput) 3076 return 0; 3077 3078 /* 3079 * Slice Width determination : HDMI2.1 Section 7.7.5.1 3080 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as 3081 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later 3082 * dividing adjusted clock value by 10. 3083 */ 3084 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || 3085 crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 3086 kslice_adjust = 10; 3087 else 3088 kslice_adjust = 5; 3089 3090 /* 3091 * As per spec, the rate at which the source and the sink process 3092 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz. 3093 * This depends upon the pixel clock rate and output formats 3094 * (kslice adjust). 3095 * If pixel clock * kslice adjust >= 2720MHz slices can be processed 3096 * at max 340MHz, otherwise they can be processed at max 400MHz. 3097 */ 3098 3099 adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10); 3100 3101 if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE) 3102 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0; 3103 else 3104 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1; 3105 3106 /* 3107 * Taking into account the sink's capability for maximum 3108 * clock per slice (in MHz) as read from HF-VSDB. 3109 */ 3110 max_throughput = min(max_throughput, hdmi_throughput * 1000); 3111 3112 min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput); 3113 max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width); 3114 3115 /* 3116 * Keep on increasing the num of slices/line, starting from min_slices 3117 * per line till we get such a number, for which the slice_width is 3118 * just less than max_slice_width. The slices/line selected should be 3119 * less than or equal to the max horizontal slices that the combination 3120 * of PCON encoder and HDMI decoder can support. 3121 */ 3122 slice_width = max_slice_width; 3123 3124 do { 3125 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1) 3126 target_slices = 1; 3127 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2) 3128 target_slices = 2; 3129 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4) 3130 target_slices = 4; 3131 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8) 3132 target_slices = 8; 3133 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12) 3134 target_slices = 12; 3135 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16) 3136 target_slices = 16; 3137 else 3138 return 0; 3139 3140 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices); 3141 if (slice_width >= max_slice_width) 3142 min_slices = target_slices + 1; 3143 } while (slice_width >= max_slice_width); 3144 3145 return target_slices; 3146 } 3147 3148 /* 3149 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on 3150 * source and sink capabilities. 3151 * 3152 * @src_fraction_bpp: fractional bpp supported by the source 3153 * @slice_width: dsc slice width supported by the source and sink 3154 * @num_slices: num of slices supported by the source and sink 3155 * @output_format: video output format 3156 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting 3157 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink 3158 * 3159 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel 3160 */ 3161 int 3162 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices, 3163 int output_format, bool hdmi_all_bpp, 3164 int hdmi_max_chunk_bytes) 3165 { 3166 int max_dsc_bpp, min_dsc_bpp; 3167 int target_bytes; 3168 bool bpp_found = false; 3169 int bpp_decrement_x16; 3170 int bpp_target; 3171 int bpp_target_x16; 3172 3173 /* 3174 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec 3175 * Start with the max bpp and keep on decrementing with 3176 * fractional bpp, if supported by PCON DSC encoder 3177 * 3178 * for each bpp we check if no of bytes can be supported by HDMI sink 3179 */ 3180 3181 /* Assuming: bpc as 8*/ 3182 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { 3183 min_dsc_bpp = 6; 3184 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */ 3185 } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || 3186 output_format == INTEL_OUTPUT_FORMAT_RGB) { 3187 min_dsc_bpp = 8; 3188 max_dsc_bpp = 3 * 8; /* 3*bpc */ 3189 } else { 3190 /* Assuming 4:2:2 encoding */ 3191 min_dsc_bpp = 7; 3192 max_dsc_bpp = 2 * 8; /* 2*bpc */ 3193 } 3194 3195 /* 3196 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink 3197 * Section 7.7.34 : Source shall not enable compressed Video 3198 * Transport with bpp_target settings above 12 bpp unless 3199 * DSC_all_bpp is set to 1. 3200 */ 3201 if (!hdmi_all_bpp) 3202 max_dsc_bpp = min(max_dsc_bpp, 12); 3203 3204 /* 3205 * The Sink has a limit of compressed data in bytes for a scanline, 3206 * as described in max_chunk_bytes field in HFVSDB block of edid. 3207 * The no. of bytes depend on the target bits per pixel that the 3208 * source configures. So we start with the max_bpp and calculate 3209 * the target_chunk_bytes. We keep on decrementing the target_bpp, 3210 * till we get the target_chunk_bytes just less than what the sink's 3211 * max_chunk_bytes, or else till we reach the min_dsc_bpp. 3212 * 3213 * The decrement is according to the fractional support from PCON DSC 3214 * encoder. For fractional BPP we use bpp_target as a multiple of 16. 3215 * 3216 * bpp_target_x16 = bpp_target * 16 3217 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps 3218 * {1/16, 1/8, 1/4, 1/2, 1} respectively. 3219 */ 3220 3221 bpp_target = max_dsc_bpp; 3222 3223 /* src does not support fractional bpp implies decrement by 16 for bppx16 */ 3224 if (!src_fractional_bpp) 3225 src_fractional_bpp = 1; 3226 bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp); 3227 bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16; 3228 3229 while (bpp_target_x16 > (min_dsc_bpp * 16)) { 3230 int bpp; 3231 3232 bpp = DIV_ROUND_UP(bpp_target_x16, 16); 3233 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8); 3234 if (target_bytes <= hdmi_max_chunk_bytes) { 3235 bpp_found = true; 3236 break; 3237 } 3238 bpp_target_x16 -= bpp_decrement_x16; 3239 } 3240 if (bpp_found) 3241 return bpp_target_x16; 3242 3243 return 0; 3244 } 3245