xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14 
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/i915_component.h>
17 
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_hdcp_regs.h"
27 #include "intel_pcode.h"
28 
29 #define KEY_LOAD_TRIES	5
30 #define HDCP2_LC_RETRY_CNT			3
31 
32 static int intel_conn_to_vcpi(struct intel_connector *connector)
33 {
34 	struct drm_dp_mst_topology_mgr *mgr;
35 	struct drm_dp_mst_atomic_payload *payload;
36 	struct drm_dp_mst_topology_state *mst_state;
37 	int vcpi = 0;
38 
39 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
40 	if (!connector->port)
41 		return 0;
42 	mgr = connector->port->mgr;
43 
44 	drm_modeset_lock(&mgr->base.lock, NULL);
45 	mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
46 	payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
47 	if (drm_WARN_ON(mgr->dev, !payload))
48 		goto out;
49 
50 	vcpi = payload->vcpi;
51 	if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
52 		vcpi = 0;
53 		goto out;
54 	}
55 out:
56 	drm_modeset_unlock(&mgr->base.lock);
57 	return vcpi;
58 }
59 
60 /*
61  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
62  * content_type for all streams in DP MST topology because security f/w doesn't
63  * have any provision to mark content_type for each stream separately, it marks
64  * all available streams with the content_type proivided at the time of port
65  * authentication. This may prohibit the userspace to use type1 content on
66  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
67  * DP MST topology. Though it is not compulsory, security fw should change its
68  * policy to mark different content_types for different streams.
69  */
70 static int
71 intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
72 {
73 	struct drm_connector_list_iter conn_iter;
74 	struct intel_digital_port *conn_dig_port;
75 	struct intel_connector *connector;
76 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
77 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
78 	bool enforce_type0 = false;
79 	int k;
80 
81 	data->k = 0;
82 
83 	if (dig_port->hdcp_auth_status)
84 		return 0;
85 
86 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
87 	for_each_intel_connector_iter(connector, &conn_iter) {
88 		if (connector->base.status == connector_status_disconnected)
89 			continue;
90 
91 		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
92 			continue;
93 
94 		conn_dig_port = intel_attached_dig_port(connector);
95 		if (conn_dig_port != dig_port)
96 			continue;
97 
98 		if (!enforce_type0 && !dig_port->hdcp_mst_type1_capable)
99 			enforce_type0 = true;
100 
101 		data->streams[data->k].stream_id = intel_conn_to_vcpi(connector);
102 		data->k++;
103 
104 		/* if there is only one active stream */
105 		if (dig_port->dp.active_mst_links <= 1)
106 			break;
107 	}
108 	drm_connector_list_iter_end(&conn_iter);
109 
110 	if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
111 		return -EINVAL;
112 
113 	/*
114 	 * Apply common protection level across all streams in DP MST Topology.
115 	 * Use highest supported content type for all streams in DP MST Topology.
116 	 */
117 	for (k = 0; k < data->k; k++)
118 		data->streams[k].stream_type =
119 			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
120 
121 	return 0;
122 }
123 
124 static int intel_hdcp_prepare_streams(struct intel_connector *connector)
125 {
126 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
127 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
128 	struct intel_hdcp *hdcp = &connector->hdcp;
129 	int ret;
130 
131 	if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
132 		data->k = 1;
133 		data->streams[0].stream_type = hdcp->content_type;
134 	} else {
135 		ret = intel_hdcp_required_content_stream(dig_port);
136 		if (ret)
137 			return ret;
138 	}
139 
140 	return 0;
141 }
142 
143 static
144 bool intel_hdcp_is_ksv_valid(u8 *ksv)
145 {
146 	int i, ones = 0;
147 	/* KSV has 20 1's and 20 0's */
148 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
149 		ones += hweight8(ksv[i]);
150 	if (ones != 20)
151 		return false;
152 
153 	return true;
154 }
155 
156 static
157 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
158 			       const struct intel_hdcp_shim *shim, u8 *bksv)
159 {
160 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
161 	int ret, i, tries = 2;
162 
163 	/* HDCP spec states that we must retry the bksv if it is invalid */
164 	for (i = 0; i < tries; i++) {
165 		ret = shim->read_bksv(dig_port, bksv);
166 		if (ret)
167 			return ret;
168 		if (intel_hdcp_is_ksv_valid(bksv))
169 			break;
170 	}
171 	if (i == tries) {
172 		drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
173 		return -ENODEV;
174 	}
175 
176 	return 0;
177 }
178 
179 /* Is HDCP1.4 capable on Platform and Sink */
180 bool intel_hdcp_capable(struct intel_connector *connector)
181 {
182 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
183 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
184 	bool capable = false;
185 	u8 bksv[5];
186 
187 	if (!shim)
188 		return capable;
189 
190 	if (shim->hdcp_capable) {
191 		shim->hdcp_capable(dig_port, &capable);
192 	} else {
193 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
194 			capable = true;
195 	}
196 
197 	return capable;
198 }
199 
200 /* Is HDCP2.2 capable on Platform and Sink */
201 bool intel_hdcp2_capable(struct intel_connector *connector)
202 {
203 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
204 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
205 	struct intel_hdcp *hdcp = &connector->hdcp;
206 	bool capable = false;
207 
208 	/* I915 support for HDCP2.2 */
209 	if (!hdcp->hdcp2_supported)
210 		return false;
211 
212 	/* MEI interface is solid */
213 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
214 	if (!dev_priv->display.hdcp.comp_added ||  !dev_priv->display.hdcp.master) {
215 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
216 		return false;
217 	}
218 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
219 
220 	/* Sink's capability for HDCP2.2 */
221 	hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
222 
223 	return capable;
224 }
225 
226 static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
227 			      enum transcoder cpu_transcoder, enum port port)
228 {
229 	return intel_de_read(dev_priv,
230 	                     HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
231 	       HDCP_STATUS_ENC;
232 }
233 
234 static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
235 			       enum transcoder cpu_transcoder, enum port port)
236 {
237 	return intel_de_read(dev_priv,
238 	                     HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
239 	       LINK_ENCRYPTION_STATUS;
240 }
241 
242 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
243 				    const struct intel_hdcp_shim *shim)
244 {
245 	int ret, read_ret;
246 	bool ksv_ready;
247 
248 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
249 	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
250 							 &ksv_ready),
251 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
252 			 100 * 1000);
253 	if (ret)
254 		return ret;
255 	if (read_ret)
256 		return read_ret;
257 	if (!ksv_ready)
258 		return -ETIMEDOUT;
259 
260 	return 0;
261 }
262 
263 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
264 {
265 	enum i915_power_well_id id;
266 	intel_wakeref_t wakeref;
267 	bool enabled = false;
268 
269 	/*
270 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
271 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
272 	 */
273 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
274 		id = HSW_DISP_PW_GLOBAL;
275 	else
276 		id = SKL_DISP_PW_1;
277 
278 	/* PG1 (power well #1) needs to be enabled */
279 	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
280 		enabled = intel_display_power_well_is_enabled(dev_priv, id);
281 
282 	/*
283 	 * Another req for hdcp key loadability is enabled state of pll for
284 	 * cdclk. Without active crtc we wont land here. So we are assuming that
285 	 * cdclk is already on.
286 	 */
287 
288 	return enabled;
289 }
290 
291 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
292 {
293 	intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
294 	intel_de_write(dev_priv, HDCP_KEY_STATUS,
295 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
296 }
297 
298 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
299 {
300 	int ret;
301 	u32 val;
302 
303 	val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
304 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
305 		return 0;
306 
307 	/*
308 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
309 	 * out of reset. So if Key is not already loaded, its an error state.
310 	 */
311 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
312 		if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
313 			return -ENXIO;
314 
315 	/*
316 	 * Initiate loading the HDCP key from fuses.
317 	 *
318 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
319 	 * version 9 platforms (minus BXT) differ in the key load trigger
320 	 * process from other platforms. These platforms use the GT Driver
321 	 * Mailbox interface.
322 	 */
323 	if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv)) {
324 		ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
325 		if (ret) {
326 			drm_err(&dev_priv->drm,
327 				"Failed to initiate HDCP key load (%d)\n",
328 				ret);
329 			return ret;
330 		}
331 	} else {
332 		intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
333 	}
334 
335 	/* Wait for the keys to load (500us) */
336 	ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
337 					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
338 					10, 1, &val);
339 	if (ret)
340 		return ret;
341 	else if (!(val & HDCP_KEY_LOAD_STATUS))
342 		return -ENXIO;
343 
344 	/* Send Aksv over to PCH display for use in authentication */
345 	intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
346 
347 	return 0;
348 }
349 
350 /* Returns updated SHA-1 index */
351 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
352 {
353 	intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
354 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
355 		drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
356 		return -ETIMEDOUT;
357 	}
358 	return 0;
359 }
360 
361 static
362 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
363 				enum transcoder cpu_transcoder, enum port port)
364 {
365 	if (DISPLAY_VER(dev_priv) >= 12) {
366 		switch (cpu_transcoder) {
367 		case TRANSCODER_A:
368 			return HDCP_TRANSA_REP_PRESENT |
369 			       HDCP_TRANSA_SHA1_M0;
370 		case TRANSCODER_B:
371 			return HDCP_TRANSB_REP_PRESENT |
372 			       HDCP_TRANSB_SHA1_M0;
373 		case TRANSCODER_C:
374 			return HDCP_TRANSC_REP_PRESENT |
375 			       HDCP_TRANSC_SHA1_M0;
376 		case TRANSCODER_D:
377 			return HDCP_TRANSD_REP_PRESENT |
378 			       HDCP_TRANSD_SHA1_M0;
379 		default:
380 			drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
381 				cpu_transcoder);
382 			return -EINVAL;
383 		}
384 	}
385 
386 	switch (port) {
387 	case PORT_A:
388 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
389 	case PORT_B:
390 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
391 	case PORT_C:
392 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
393 	case PORT_D:
394 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
395 	case PORT_E:
396 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
397 	default:
398 		drm_err(&dev_priv->drm, "Unknown port %d\n", port);
399 		return -EINVAL;
400 	}
401 }
402 
403 static
404 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
405 				const struct intel_hdcp_shim *shim,
406 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
407 {
408 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
409 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
410 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
411 	enum port port = dig_port->base.port;
412 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
413 	int ret, i, j, sha_idx;
414 
415 	/* Process V' values from the receiver */
416 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
417 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
418 		if (ret)
419 			return ret;
420 		intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
421 	}
422 
423 	/*
424 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
425 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
426 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
427 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
428 	 * index will keep track of our progress through the 64 bytes as well as
429 	 * helping us work the 40-bit KSVs through our 32-bit register.
430 	 *
431 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
432 	 */
433 	sha_idx = 0;
434 	sha_text = 0;
435 	sha_leftovers = 0;
436 	rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
437 	intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
438 	for (i = 0; i < num_downstream; i++) {
439 		unsigned int sha_empty;
440 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
441 
442 		/* Fill up the empty slots in sha_text and write it out */
443 		sha_empty = sizeof(sha_text) - sha_leftovers;
444 		for (j = 0; j < sha_empty; j++) {
445 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
446 			sha_text |= ksv[j] << off;
447 		}
448 
449 		ret = intel_write_sha_text(dev_priv, sha_text);
450 		if (ret < 0)
451 			return ret;
452 
453 		/* Programming guide writes this every 64 bytes */
454 		sha_idx += sizeof(sha_text);
455 		if (!(sha_idx % 64))
456 			intel_de_write(dev_priv, HDCP_REP_CTL,
457 				       rep_ctl | HDCP_SHA1_TEXT_32);
458 
459 		/* Store the leftover bytes from the ksv in sha_text */
460 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
461 		sha_text = 0;
462 		for (j = 0; j < sha_leftovers; j++)
463 			sha_text |= ksv[sha_empty + j] <<
464 					((sizeof(sha_text) - j - 1) * 8);
465 
466 		/*
467 		 * If we still have room in sha_text for more data, continue.
468 		 * Otherwise, write it out immediately.
469 		 */
470 		if (sizeof(sha_text) > sha_leftovers)
471 			continue;
472 
473 		ret = intel_write_sha_text(dev_priv, sha_text);
474 		if (ret < 0)
475 			return ret;
476 		sha_leftovers = 0;
477 		sha_text = 0;
478 		sha_idx += sizeof(sha_text);
479 	}
480 
481 	/*
482 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
483 	 * bytes are leftover from the last ksv, we might be able to fit them
484 	 * all in sha_text (first 2 cases), or we might need to split them up
485 	 * into 2 writes (last 2 cases).
486 	 */
487 	if (sha_leftovers == 0) {
488 		/* Write 16 bits of text, 16 bits of M0 */
489 		intel_de_write(dev_priv, HDCP_REP_CTL,
490 			       rep_ctl | HDCP_SHA1_TEXT_16);
491 		ret = intel_write_sha_text(dev_priv,
492 					   bstatus[0] << 8 | bstatus[1]);
493 		if (ret < 0)
494 			return ret;
495 		sha_idx += sizeof(sha_text);
496 
497 		/* Write 32 bits of M0 */
498 		intel_de_write(dev_priv, HDCP_REP_CTL,
499 			       rep_ctl | HDCP_SHA1_TEXT_0);
500 		ret = intel_write_sha_text(dev_priv, 0);
501 		if (ret < 0)
502 			return ret;
503 		sha_idx += sizeof(sha_text);
504 
505 		/* Write 16 bits of M0 */
506 		intel_de_write(dev_priv, HDCP_REP_CTL,
507 			       rep_ctl | HDCP_SHA1_TEXT_16);
508 		ret = intel_write_sha_text(dev_priv, 0);
509 		if (ret < 0)
510 			return ret;
511 		sha_idx += sizeof(sha_text);
512 
513 	} else if (sha_leftovers == 1) {
514 		/* Write 24 bits of text, 8 bits of M0 */
515 		intel_de_write(dev_priv, HDCP_REP_CTL,
516 			       rep_ctl | HDCP_SHA1_TEXT_24);
517 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
518 		/* Only 24-bits of data, must be in the LSB */
519 		sha_text = (sha_text & 0xffffff00) >> 8;
520 		ret = intel_write_sha_text(dev_priv, sha_text);
521 		if (ret < 0)
522 			return ret;
523 		sha_idx += sizeof(sha_text);
524 
525 		/* Write 32 bits of M0 */
526 		intel_de_write(dev_priv, HDCP_REP_CTL,
527 			       rep_ctl | HDCP_SHA1_TEXT_0);
528 		ret = intel_write_sha_text(dev_priv, 0);
529 		if (ret < 0)
530 			return ret;
531 		sha_idx += sizeof(sha_text);
532 
533 		/* Write 24 bits of M0 */
534 		intel_de_write(dev_priv, HDCP_REP_CTL,
535 			       rep_ctl | HDCP_SHA1_TEXT_8);
536 		ret = intel_write_sha_text(dev_priv, 0);
537 		if (ret < 0)
538 			return ret;
539 		sha_idx += sizeof(sha_text);
540 
541 	} else if (sha_leftovers == 2) {
542 		/* Write 32 bits of text */
543 		intel_de_write(dev_priv, HDCP_REP_CTL,
544 			       rep_ctl | HDCP_SHA1_TEXT_32);
545 		sha_text |= bstatus[0] << 8 | bstatus[1];
546 		ret = intel_write_sha_text(dev_priv, sha_text);
547 		if (ret < 0)
548 			return ret;
549 		sha_idx += sizeof(sha_text);
550 
551 		/* Write 64 bits of M0 */
552 		intel_de_write(dev_priv, HDCP_REP_CTL,
553 			       rep_ctl | HDCP_SHA1_TEXT_0);
554 		for (i = 0; i < 2; i++) {
555 			ret = intel_write_sha_text(dev_priv, 0);
556 			if (ret < 0)
557 				return ret;
558 			sha_idx += sizeof(sha_text);
559 		}
560 
561 		/*
562 		 * Terminate the SHA-1 stream by hand. For the other leftover
563 		 * cases this is appended by the hardware.
564 		 */
565 		intel_de_write(dev_priv, HDCP_REP_CTL,
566 			       rep_ctl | HDCP_SHA1_TEXT_32);
567 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
568 		ret = intel_write_sha_text(dev_priv, sha_text);
569 		if (ret < 0)
570 			return ret;
571 		sha_idx += sizeof(sha_text);
572 	} else if (sha_leftovers == 3) {
573 		/* Write 32 bits of text (filled from LSB) */
574 		intel_de_write(dev_priv, HDCP_REP_CTL,
575 			       rep_ctl | HDCP_SHA1_TEXT_32);
576 		sha_text |= bstatus[0];
577 		ret = intel_write_sha_text(dev_priv, sha_text);
578 		if (ret < 0)
579 			return ret;
580 		sha_idx += sizeof(sha_text);
581 
582 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
583 		intel_de_write(dev_priv, HDCP_REP_CTL,
584 			       rep_ctl | HDCP_SHA1_TEXT_8);
585 		ret = intel_write_sha_text(dev_priv, bstatus[1]);
586 		if (ret < 0)
587 			return ret;
588 		sha_idx += sizeof(sha_text);
589 
590 		/* Write 32 bits of M0 */
591 		intel_de_write(dev_priv, HDCP_REP_CTL,
592 			       rep_ctl | HDCP_SHA1_TEXT_0);
593 		ret = intel_write_sha_text(dev_priv, 0);
594 		if (ret < 0)
595 			return ret;
596 		sha_idx += sizeof(sha_text);
597 
598 		/* Write 8 bits of M0 */
599 		intel_de_write(dev_priv, HDCP_REP_CTL,
600 			       rep_ctl | HDCP_SHA1_TEXT_24);
601 		ret = intel_write_sha_text(dev_priv, 0);
602 		if (ret < 0)
603 			return ret;
604 		sha_idx += sizeof(sha_text);
605 	} else {
606 		drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
607 			    sha_leftovers);
608 		return -EINVAL;
609 	}
610 
611 	intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
612 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
613 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
614 		ret = intel_write_sha_text(dev_priv, 0);
615 		if (ret < 0)
616 			return ret;
617 		sha_idx += sizeof(sha_text);
618 	}
619 
620 	/*
621 	 * Last write gets the length of the concatenation in bits. That is:
622 	 *  - 5 bytes per device
623 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
624 	 */
625 	sha_text = (num_downstream * 5 + 10) * 8;
626 	ret = intel_write_sha_text(dev_priv, sha_text);
627 	if (ret < 0)
628 		return ret;
629 
630 	/* Tell the HW we're done with the hash and wait for it to ACK */
631 	intel_de_write(dev_priv, HDCP_REP_CTL,
632 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
633 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
634 				  HDCP_SHA1_COMPLETE, 1)) {
635 		drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
636 		return -ETIMEDOUT;
637 	}
638 	if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
639 		drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
640 		return -ENXIO;
641 	}
642 
643 	return 0;
644 }
645 
646 /* Implements Part 2 of the HDCP authorization procedure */
647 static
648 int intel_hdcp_auth_downstream(struct intel_connector *connector)
649 {
650 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
651 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
652 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
653 	u8 bstatus[2], num_downstream, *ksv_fifo;
654 	int ret, i, tries = 3;
655 
656 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
657 	if (ret) {
658 		drm_dbg_kms(&dev_priv->drm,
659 			    "KSV list failed to become ready (%d)\n", ret);
660 		return ret;
661 	}
662 
663 	ret = shim->read_bstatus(dig_port, bstatus);
664 	if (ret)
665 		return ret;
666 
667 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
668 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
669 		drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
670 		return -EPERM;
671 	}
672 
673 	/*
674 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
675 	 * the HDCP encryption. That implies that repeater can't have its own
676 	 * display. As there is no consumption of encrypted content in the
677 	 * repeater with 0 downstream devices, we are failing the
678 	 * authentication.
679 	 */
680 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
681 	if (num_downstream == 0) {
682 		drm_dbg_kms(&dev_priv->drm,
683 			    "Repeater with zero downstream devices\n");
684 		return -EINVAL;
685 	}
686 
687 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
688 	if (!ksv_fifo) {
689 		drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
690 		return -ENOMEM;
691 	}
692 
693 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
694 	if (ret)
695 		goto err;
696 
697 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
698 					num_downstream) > 0) {
699 		drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
700 		ret = -EPERM;
701 		goto err;
702 	}
703 
704 	/*
705 	 * When V prime mismatches, DP Spec mandates re-read of
706 	 * V prime atleast twice.
707 	 */
708 	for (i = 0; i < tries; i++) {
709 		ret = intel_hdcp_validate_v_prime(connector, shim,
710 						  ksv_fifo, num_downstream,
711 						  bstatus);
712 		if (!ret)
713 			break;
714 	}
715 
716 	if (i == tries) {
717 		drm_dbg_kms(&dev_priv->drm,
718 			    "V Prime validation failed.(%d)\n", ret);
719 		goto err;
720 	}
721 
722 	drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
723 		    num_downstream);
724 	ret = 0;
725 err:
726 	kfree(ksv_fifo);
727 	return ret;
728 }
729 
730 /* Implements Part 1 of the HDCP authorization procedure */
731 static int intel_hdcp_auth(struct intel_connector *connector)
732 {
733 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
734 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
735 	struct intel_hdcp *hdcp = &connector->hdcp;
736 	const struct intel_hdcp_shim *shim = hdcp->shim;
737 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
738 	enum port port = dig_port->base.port;
739 	unsigned long r0_prime_gen_start;
740 	int ret, i, tries = 2;
741 	union {
742 		u32 reg[2];
743 		u8 shim[DRM_HDCP_AN_LEN];
744 	} an;
745 	union {
746 		u32 reg[2];
747 		u8 shim[DRM_HDCP_KSV_LEN];
748 	} bksv;
749 	union {
750 		u32 reg;
751 		u8 shim[DRM_HDCP_RI_LEN];
752 	} ri;
753 	bool repeater_present, hdcp_capable;
754 
755 	/*
756 	 * Detects whether the display is HDCP capable. Although we check for
757 	 * valid Bksv below, the HDCP over DP spec requires that we check
758 	 * whether the display supports HDCP before we write An. For HDMI
759 	 * displays, this is not necessary.
760 	 */
761 	if (shim->hdcp_capable) {
762 		ret = shim->hdcp_capable(dig_port, &hdcp_capable);
763 		if (ret)
764 			return ret;
765 		if (!hdcp_capable) {
766 			drm_dbg_kms(&dev_priv->drm,
767 				    "Panel is not HDCP capable\n");
768 			return -EINVAL;
769 		}
770 	}
771 
772 	/* Initialize An with 2 random values and acquire it */
773 	for (i = 0; i < 2; i++)
774 		intel_de_write(dev_priv,
775 			       HDCP_ANINIT(dev_priv, cpu_transcoder, port),
776 			       get_random_u32());
777 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
778 		       HDCP_CONF_CAPTURE_AN);
779 
780 	/* Wait for An to be acquired */
781 	if (intel_de_wait_for_set(dev_priv,
782 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
783 				  HDCP_STATUS_AN_READY, 1)) {
784 		drm_err(&dev_priv->drm, "Timed out waiting for An\n");
785 		return -ETIMEDOUT;
786 	}
787 
788 	an.reg[0] = intel_de_read(dev_priv,
789 				  HDCP_ANLO(dev_priv, cpu_transcoder, port));
790 	an.reg[1] = intel_de_read(dev_priv,
791 				  HDCP_ANHI(dev_priv, cpu_transcoder, port));
792 	ret = shim->write_an_aksv(dig_port, an.shim);
793 	if (ret)
794 		return ret;
795 
796 	r0_prime_gen_start = jiffies;
797 
798 	memset(&bksv, 0, sizeof(bksv));
799 
800 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
801 	if (ret < 0)
802 		return ret;
803 
804 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
805 		drm_err(&dev_priv->drm, "BKSV is revoked\n");
806 		return -EPERM;
807 	}
808 
809 	intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
810 		       bksv.reg[0]);
811 	intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
812 		       bksv.reg[1]);
813 
814 	ret = shim->repeater_present(dig_port, &repeater_present);
815 	if (ret)
816 		return ret;
817 	if (repeater_present)
818 		intel_de_write(dev_priv, HDCP_REP_CTL,
819 			       intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
820 
821 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
822 	if (ret)
823 		return ret;
824 
825 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
826 		       HDCP_CONF_AUTH_AND_ENC);
827 
828 	/* Wait for R0 ready */
829 	if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
830 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
831 		drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
832 		return -ETIMEDOUT;
833 	}
834 
835 	/*
836 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
837 	 * some monitors can take longer than this. We'll set the timeout at
838 	 * 300ms just to be sure.
839 	 *
840 	 * On DP, there's an R0_READY bit available but no such bit
841 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
842 	 * the stupid thing instead of polling on one and not the other.
843 	 */
844 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
845 
846 	tries = 3;
847 
848 	/*
849 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
850 	 * of R0 mismatch.
851 	 */
852 	for (i = 0; i < tries; i++) {
853 		ri.reg = 0;
854 		ret = shim->read_ri_prime(dig_port, ri.shim);
855 		if (ret)
856 			return ret;
857 		intel_de_write(dev_priv,
858 			       HDCP_RPRIME(dev_priv, cpu_transcoder, port),
859 			       ri.reg);
860 
861 		/* Wait for Ri prime match */
862 		if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
863 			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
864 			break;
865 	}
866 
867 	if (i == tries) {
868 		drm_dbg_kms(&dev_priv->drm,
869 			    "Timed out waiting for Ri prime match (%x)\n",
870 			    intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
871 					  cpu_transcoder, port)));
872 		return -ETIMEDOUT;
873 	}
874 
875 	/* Wait for encryption confirmation */
876 	if (intel_de_wait_for_set(dev_priv,
877 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
878 				  HDCP_STATUS_ENC,
879 				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
880 		drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
881 		return -ETIMEDOUT;
882 	}
883 
884 	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
885 	if (shim->stream_encryption) {
886 		ret = shim->stream_encryption(connector, true);
887 		if (ret) {
888 			drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
889 				connector->base.name, connector->base.base.id);
890 			return ret;
891 		}
892 		drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
893 			    transcoder_name(hdcp->stream_transcoder));
894 	}
895 
896 	if (repeater_present)
897 		return intel_hdcp_auth_downstream(connector);
898 
899 	drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
900 	return 0;
901 }
902 
903 static int _intel_hdcp_disable(struct intel_connector *connector)
904 {
905 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
906 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
907 	struct intel_hdcp *hdcp = &connector->hdcp;
908 	enum port port = dig_port->base.port;
909 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
910 	u32 repeater_ctl;
911 	int ret;
912 
913 	drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
914 		    connector->base.name, connector->base.base.id);
915 
916 	if (hdcp->shim->stream_encryption) {
917 		ret = hdcp->shim->stream_encryption(connector, false);
918 		if (ret) {
919 			drm_err(&dev_priv->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
920 				connector->base.name, connector->base.base.id);
921 			return ret;
922 		}
923 		drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
924 			    transcoder_name(hdcp->stream_transcoder));
925 		/*
926 		 * If there are other connectors on this port using HDCP,
927 		 * don't disable it until it disabled HDCP encryption for
928 		 * all connectors in MST topology.
929 		 */
930 		if (dig_port->num_hdcp_streams > 0)
931 			return 0;
932 	}
933 
934 	hdcp->hdcp_encrypted = false;
935 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
936 	if (intel_de_wait_for_clear(dev_priv,
937 				    HDCP_STATUS(dev_priv, cpu_transcoder, port),
938 				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
939 		drm_err(&dev_priv->drm,
940 			"Failed to disable HDCP, timeout clearing status\n");
941 		return -ETIMEDOUT;
942 	}
943 
944 	repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
945 						   port);
946 	intel_de_write(dev_priv, HDCP_REP_CTL,
947 		       intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
948 
949 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
950 	if (ret) {
951 		drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
952 		return ret;
953 	}
954 
955 	drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
956 	return 0;
957 }
958 
959 static int _intel_hdcp_enable(struct intel_connector *connector)
960 {
961 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
962 	struct intel_hdcp *hdcp = &connector->hdcp;
963 	int i, ret, tries = 3;
964 
965 	drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
966 		    connector->base.name, connector->base.base.id);
967 
968 	if (!hdcp_key_loadable(dev_priv)) {
969 		drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
970 		return -ENXIO;
971 	}
972 
973 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
974 		ret = intel_hdcp_load_keys(dev_priv);
975 		if (!ret)
976 			break;
977 		intel_hdcp_clear_keys(dev_priv);
978 	}
979 	if (ret) {
980 		drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
981 			ret);
982 		return ret;
983 	}
984 
985 	/* Incase of authentication failures, HDCP spec expects reauth. */
986 	for (i = 0; i < tries; i++) {
987 		ret = intel_hdcp_auth(connector);
988 		if (!ret) {
989 			hdcp->hdcp_encrypted = true;
990 			return 0;
991 		}
992 
993 		drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
994 
995 		/* Ensuring HDCP encryption and signalling are stopped. */
996 		_intel_hdcp_disable(connector);
997 	}
998 
999 	drm_dbg_kms(&dev_priv->drm,
1000 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1001 	return ret;
1002 }
1003 
1004 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1005 {
1006 	return container_of(hdcp, struct intel_connector, hdcp);
1007 }
1008 
1009 static void intel_hdcp_update_value(struct intel_connector *connector,
1010 				    u64 value, bool update_property)
1011 {
1012 	struct drm_device *dev = connector->base.dev;
1013 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1014 	struct intel_hdcp *hdcp = &connector->hdcp;
1015 
1016 	drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
1017 
1018 	if (hdcp->value == value)
1019 		return;
1020 
1021 	drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
1022 
1023 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1024 		if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1025 			dig_port->num_hdcp_streams--;
1026 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1027 		dig_port->num_hdcp_streams++;
1028 	}
1029 
1030 	hdcp->value = value;
1031 	if (update_property) {
1032 		drm_connector_get(&connector->base);
1033 		schedule_work(&hdcp->prop_work);
1034 	}
1035 }
1036 
1037 /* Implements Part 3 of the HDCP authorization procedure */
1038 static int intel_hdcp_check_link(struct intel_connector *connector)
1039 {
1040 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1041 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1042 	struct intel_hdcp *hdcp = &connector->hdcp;
1043 	enum port port = dig_port->base.port;
1044 	enum transcoder cpu_transcoder;
1045 	int ret = 0;
1046 
1047 	mutex_lock(&hdcp->mutex);
1048 	mutex_lock(&dig_port->hdcp_mutex);
1049 
1050 	cpu_transcoder = hdcp->cpu_transcoder;
1051 
1052 	/* Check_link valid only when HDCP1.4 is enabled */
1053 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1054 	    !hdcp->hdcp_encrypted) {
1055 		ret = -EINVAL;
1056 		goto out;
1057 	}
1058 
1059 	if (drm_WARN_ON(&dev_priv->drm,
1060 			!intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
1061 		drm_err(&dev_priv->drm,
1062 			"%s:%d HDCP link stopped encryption,%x\n",
1063 			connector->base.name, connector->base.base.id,
1064 			intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
1065 		ret = -ENXIO;
1066 		intel_hdcp_update_value(connector,
1067 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1068 					true);
1069 		goto out;
1070 	}
1071 
1072 	if (hdcp->shim->check_link(dig_port, connector)) {
1073 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1074 			intel_hdcp_update_value(connector,
1075 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1076 		}
1077 		goto out;
1078 	}
1079 
1080 	drm_dbg_kms(&dev_priv->drm,
1081 		    "[%s:%d] HDCP link failed, retrying authentication\n",
1082 		    connector->base.name, connector->base.base.id);
1083 
1084 	ret = _intel_hdcp_disable(connector);
1085 	if (ret) {
1086 		drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
1087 		intel_hdcp_update_value(connector,
1088 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1089 					true);
1090 		goto out;
1091 	}
1092 
1093 	ret = _intel_hdcp_enable(connector);
1094 	if (ret) {
1095 		drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
1096 		intel_hdcp_update_value(connector,
1097 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1098 					true);
1099 		goto out;
1100 	}
1101 
1102 out:
1103 	mutex_unlock(&dig_port->hdcp_mutex);
1104 	mutex_unlock(&hdcp->mutex);
1105 	return ret;
1106 }
1107 
1108 static void intel_hdcp_prop_work(struct work_struct *work)
1109 {
1110 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1111 					       prop_work);
1112 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1113 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1114 
1115 	drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
1116 	mutex_lock(&hdcp->mutex);
1117 
1118 	/*
1119 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1120 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1121 	 * we're running just after hdcp has been disabled, so just exit
1122 	 */
1123 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1124 		drm_hdcp_update_content_protection(&connector->base,
1125 						   hdcp->value);
1126 
1127 	mutex_unlock(&hdcp->mutex);
1128 	drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
1129 
1130 	drm_connector_put(&connector->base);
1131 }
1132 
1133 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
1134 {
1135 	return RUNTIME_INFO(dev_priv)->has_hdcp &&
1136 		(DISPLAY_VER(dev_priv) >= 12 || port < PORT_E);
1137 }
1138 
1139 static int
1140 hdcp2_prepare_ake_init(struct intel_connector *connector,
1141 		       struct hdcp2_ake_init *ake_data)
1142 {
1143 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1144 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1145 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1146 	struct i915_hdcp_comp_master *comp;
1147 	int ret;
1148 
1149 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1150 	comp = dev_priv->display.hdcp.master;
1151 
1152 	if (!comp || !comp->ops) {
1153 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1154 		return -EINVAL;
1155 	}
1156 
1157 	ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
1158 	if (ret)
1159 		drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
1160 			    ret);
1161 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1162 
1163 	return ret;
1164 }
1165 
1166 static int
1167 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1168 				struct hdcp2_ake_send_cert *rx_cert,
1169 				bool *paired,
1170 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1171 				size_t *msg_sz)
1172 {
1173 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1174 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1175 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1176 	struct i915_hdcp_comp_master *comp;
1177 	int ret;
1178 
1179 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1180 	comp = dev_priv->display.hdcp.master;
1181 
1182 	if (!comp || !comp->ops) {
1183 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1184 		return -EINVAL;
1185 	}
1186 
1187 	ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
1188 							 rx_cert, paired,
1189 							 ek_pub_km, msg_sz);
1190 	if (ret < 0)
1191 		drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
1192 			    ret);
1193 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1194 
1195 	return ret;
1196 }
1197 
1198 static int hdcp2_verify_hprime(struct intel_connector *connector,
1199 			       struct hdcp2_ake_send_hprime *rx_hprime)
1200 {
1201 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1202 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1203 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1204 	struct i915_hdcp_comp_master *comp;
1205 	int ret;
1206 
1207 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1208 	comp = dev_priv->display.hdcp.master;
1209 
1210 	if (!comp || !comp->ops) {
1211 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1212 		return -EINVAL;
1213 	}
1214 
1215 	ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1216 	if (ret < 0)
1217 		drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
1218 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1219 
1220 	return ret;
1221 }
1222 
1223 static int
1224 hdcp2_store_pairing_info(struct intel_connector *connector,
1225 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1226 {
1227 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1228 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1229 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1230 	struct i915_hdcp_comp_master *comp;
1231 	int ret;
1232 
1233 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1234 	comp = dev_priv->display.hdcp.master;
1235 
1236 	if (!comp || !comp->ops) {
1237 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1238 		return -EINVAL;
1239 	}
1240 
1241 	ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1242 	if (ret < 0)
1243 		drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
1244 			    ret);
1245 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1246 
1247 	return ret;
1248 }
1249 
1250 static int
1251 hdcp2_prepare_lc_init(struct intel_connector *connector,
1252 		      struct hdcp2_lc_init *lc_init)
1253 {
1254 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1255 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1256 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1257 	struct i915_hdcp_comp_master *comp;
1258 	int ret;
1259 
1260 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1261 	comp = dev_priv->display.hdcp.master;
1262 
1263 	if (!comp || !comp->ops) {
1264 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1265 		return -EINVAL;
1266 	}
1267 
1268 	ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1269 	if (ret < 0)
1270 		drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
1271 			    ret);
1272 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1273 
1274 	return ret;
1275 }
1276 
1277 static int
1278 hdcp2_verify_lprime(struct intel_connector *connector,
1279 		    struct hdcp2_lc_send_lprime *rx_lprime)
1280 {
1281 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1282 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1283 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1284 	struct i915_hdcp_comp_master *comp;
1285 	int ret;
1286 
1287 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1288 	comp = dev_priv->display.hdcp.master;
1289 
1290 	if (!comp || !comp->ops) {
1291 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1292 		return -EINVAL;
1293 	}
1294 
1295 	ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1296 	if (ret < 0)
1297 		drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
1298 			    ret);
1299 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1300 
1301 	return ret;
1302 }
1303 
1304 static int hdcp2_prepare_skey(struct intel_connector *connector,
1305 			      struct hdcp2_ske_send_eks *ske_data)
1306 {
1307 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1308 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1309 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1310 	struct i915_hdcp_comp_master *comp;
1311 	int ret;
1312 
1313 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1314 	comp = dev_priv->display.hdcp.master;
1315 
1316 	if (!comp || !comp->ops) {
1317 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1318 		return -EINVAL;
1319 	}
1320 
1321 	ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1322 	if (ret < 0)
1323 		drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
1324 			    ret);
1325 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1326 
1327 	return ret;
1328 }
1329 
1330 static int
1331 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1332 				      struct hdcp2_rep_send_receiverid_list
1333 								*rep_topology,
1334 				      struct hdcp2_rep_send_ack *rep_send_ack)
1335 {
1336 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1337 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1338 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1339 	struct i915_hdcp_comp_master *comp;
1340 	int ret;
1341 
1342 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1343 	comp = dev_priv->display.hdcp.master;
1344 
1345 	if (!comp || !comp->ops) {
1346 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1347 		return -EINVAL;
1348 	}
1349 
1350 	ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1351 							 rep_topology,
1352 							 rep_send_ack);
1353 	if (ret < 0)
1354 		drm_dbg_kms(&dev_priv->drm,
1355 			    "Verify rep topology failed. %d\n", ret);
1356 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1357 
1358 	return ret;
1359 }
1360 
1361 static int
1362 hdcp2_verify_mprime(struct intel_connector *connector,
1363 		    struct hdcp2_rep_stream_ready *stream_ready)
1364 {
1365 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1366 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1367 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1368 	struct i915_hdcp_comp_master *comp;
1369 	int ret;
1370 
1371 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1372 	comp = dev_priv->display.hdcp.master;
1373 
1374 	if (!comp || !comp->ops) {
1375 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1376 		return -EINVAL;
1377 	}
1378 
1379 	ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1380 	if (ret < 0)
1381 		drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
1382 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1383 
1384 	return ret;
1385 }
1386 
1387 static int hdcp2_authenticate_port(struct intel_connector *connector)
1388 {
1389 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1390 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1391 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1392 	struct i915_hdcp_comp_master *comp;
1393 	int ret;
1394 
1395 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1396 	comp = dev_priv->display.hdcp.master;
1397 
1398 	if (!comp || !comp->ops) {
1399 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1400 		return -EINVAL;
1401 	}
1402 
1403 	ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1404 	if (ret < 0)
1405 		drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
1406 			    ret);
1407 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1408 
1409 	return ret;
1410 }
1411 
1412 static int hdcp2_close_mei_session(struct intel_connector *connector)
1413 {
1414 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1415 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1416 	struct i915_hdcp_comp_master *comp;
1417 	int ret;
1418 
1419 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1420 	comp = dev_priv->display.hdcp.master;
1421 
1422 	if (!comp || !comp->ops) {
1423 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1424 		return -EINVAL;
1425 	}
1426 
1427 	ret = comp->ops->close_hdcp_session(comp->mei_dev,
1428 					     &dig_port->hdcp_port_data);
1429 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1430 
1431 	return ret;
1432 }
1433 
1434 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1435 {
1436 	return hdcp2_close_mei_session(connector);
1437 }
1438 
1439 /* Authentication flow starts from here */
1440 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1441 {
1442 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1443 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1444 	struct intel_hdcp *hdcp = &connector->hdcp;
1445 	union {
1446 		struct hdcp2_ake_init ake_init;
1447 		struct hdcp2_ake_send_cert send_cert;
1448 		struct hdcp2_ake_no_stored_km no_stored_km;
1449 		struct hdcp2_ake_send_hprime send_hprime;
1450 		struct hdcp2_ake_send_pairing_info pairing_info;
1451 	} msgs;
1452 	const struct intel_hdcp_shim *shim = hdcp->shim;
1453 	size_t size;
1454 	int ret;
1455 
1456 	/* Init for seq_num */
1457 	hdcp->seq_num_v = 0;
1458 	hdcp->seq_num_m = 0;
1459 
1460 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1461 	if (ret < 0)
1462 		return ret;
1463 
1464 	ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1465 				  sizeof(msgs.ake_init));
1466 	if (ret < 0)
1467 		return ret;
1468 
1469 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1470 				 &msgs.send_cert, sizeof(msgs.send_cert));
1471 	if (ret < 0)
1472 		return ret;
1473 
1474 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1475 		drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
1476 		return -EINVAL;
1477 	}
1478 
1479 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1480 
1481 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1482 					msgs.send_cert.cert_rx.receiver_id,
1483 					1) > 0) {
1484 		drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
1485 		return -EPERM;
1486 	}
1487 
1488 	/*
1489 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1490 	 * stored also.
1491 	 */
1492 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1493 					      &hdcp->is_paired,
1494 					      &msgs.no_stored_km, &size);
1495 	if (ret < 0)
1496 		return ret;
1497 
1498 	ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1499 	if (ret < 0)
1500 		return ret;
1501 
1502 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1503 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1504 	if (ret < 0)
1505 		return ret;
1506 
1507 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1508 	if (ret < 0)
1509 		return ret;
1510 
1511 	if (!hdcp->is_paired) {
1512 		/* Pairing is required */
1513 		ret = shim->read_2_2_msg(dig_port,
1514 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1515 					 &msgs.pairing_info,
1516 					 sizeof(msgs.pairing_info));
1517 		if (ret < 0)
1518 			return ret;
1519 
1520 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1521 		if (ret < 0)
1522 			return ret;
1523 		hdcp->is_paired = true;
1524 	}
1525 
1526 	return 0;
1527 }
1528 
1529 static int hdcp2_locality_check(struct intel_connector *connector)
1530 {
1531 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1532 	struct intel_hdcp *hdcp = &connector->hdcp;
1533 	union {
1534 		struct hdcp2_lc_init lc_init;
1535 		struct hdcp2_lc_send_lprime send_lprime;
1536 	} msgs;
1537 	const struct intel_hdcp_shim *shim = hdcp->shim;
1538 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1539 
1540 	for (i = 0; i < tries; i++) {
1541 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1542 		if (ret < 0)
1543 			continue;
1544 
1545 		ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1546 				      sizeof(msgs.lc_init));
1547 		if (ret < 0)
1548 			continue;
1549 
1550 		ret = shim->read_2_2_msg(dig_port,
1551 					 HDCP_2_2_LC_SEND_LPRIME,
1552 					 &msgs.send_lprime,
1553 					 sizeof(msgs.send_lprime));
1554 		if (ret < 0)
1555 			continue;
1556 
1557 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1558 		if (!ret)
1559 			break;
1560 	}
1561 
1562 	return ret;
1563 }
1564 
1565 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1566 {
1567 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1568 	struct intel_hdcp *hdcp = &connector->hdcp;
1569 	struct hdcp2_ske_send_eks send_eks;
1570 	int ret;
1571 
1572 	ret = hdcp2_prepare_skey(connector, &send_eks);
1573 	if (ret < 0)
1574 		return ret;
1575 
1576 	ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1577 					sizeof(send_eks));
1578 	if (ret < 0)
1579 		return ret;
1580 
1581 	return 0;
1582 }
1583 
1584 static
1585 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1586 {
1587 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1588 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1589 	struct intel_hdcp *hdcp = &connector->hdcp;
1590 	union {
1591 		struct hdcp2_rep_stream_manage stream_manage;
1592 		struct hdcp2_rep_stream_ready stream_ready;
1593 	} msgs;
1594 	const struct intel_hdcp_shim *shim = hdcp->shim;
1595 	int ret, streams_size_delta, i;
1596 
1597 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1598 		return -ERANGE;
1599 
1600 	/* Prepare RepeaterAuth_Stream_Manage msg */
1601 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1602 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1603 
1604 	msgs.stream_manage.k = cpu_to_be16(data->k);
1605 
1606 	for (i = 0; i < data->k; i++) {
1607 		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1608 		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1609 	}
1610 
1611 	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1612 				sizeof(struct hdcp2_streamid_type);
1613 	/* Send it to Repeater */
1614 	ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1615 				  sizeof(msgs.stream_manage) - streams_size_delta);
1616 	if (ret < 0)
1617 		goto out;
1618 
1619 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1620 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1621 	if (ret < 0)
1622 		goto out;
1623 
1624 	data->seq_num_m = hdcp->seq_num_m;
1625 
1626 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1627 
1628 out:
1629 	hdcp->seq_num_m++;
1630 
1631 	return ret;
1632 }
1633 
1634 static
1635 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1636 {
1637 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1638 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1639 	struct intel_hdcp *hdcp = &connector->hdcp;
1640 	union {
1641 		struct hdcp2_rep_send_receiverid_list recvid_list;
1642 		struct hdcp2_rep_send_ack rep_ack;
1643 	} msgs;
1644 	const struct intel_hdcp_shim *shim = hdcp->shim;
1645 	u32 seq_num_v, device_cnt;
1646 	u8 *rx_info;
1647 	int ret;
1648 
1649 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1650 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1651 	if (ret < 0)
1652 		return ret;
1653 
1654 	rx_info = msgs.recvid_list.rx_info;
1655 
1656 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1657 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1658 		drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
1659 		return -EINVAL;
1660 	}
1661 
1662 	/*
1663 	 * MST topology is not Type 1 capable if it contains a downstream
1664 	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1665 	 */
1666 	dig_port->hdcp_mst_type1_capable =
1667 		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1668 		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1669 
1670 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1671 	seq_num_v =
1672 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1673 
1674 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1675 		drm_dbg_kms(&dev_priv->drm,
1676 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1677 		return -EINVAL;
1678 	}
1679 
1680 	if (seq_num_v < hdcp->seq_num_v) {
1681 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1682 		drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
1683 		return -EINVAL;
1684 	}
1685 
1686 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1687 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1688 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1689 					msgs.recvid_list.receiver_ids,
1690 					device_cnt) > 0) {
1691 		drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
1692 		return -EPERM;
1693 	}
1694 
1695 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1696 						    &msgs.recvid_list,
1697 						    &msgs.rep_ack);
1698 	if (ret < 0)
1699 		return ret;
1700 
1701 	hdcp->seq_num_v = seq_num_v;
1702 	ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1703 				  sizeof(msgs.rep_ack));
1704 	if (ret < 0)
1705 		return ret;
1706 
1707 	return 0;
1708 }
1709 
1710 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1711 {
1712 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1713 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1714 	struct intel_hdcp *hdcp = &connector->hdcp;
1715 	const struct intel_hdcp_shim *shim = hdcp->shim;
1716 	int ret;
1717 
1718 	ret = hdcp2_authentication_key_exchange(connector);
1719 	if (ret < 0) {
1720 		drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1721 		return ret;
1722 	}
1723 
1724 	ret = hdcp2_locality_check(connector);
1725 	if (ret < 0) {
1726 		drm_dbg_kms(&i915->drm,
1727 			    "Locality Check failed. Err : %d\n", ret);
1728 		return ret;
1729 	}
1730 
1731 	ret = hdcp2_session_key_exchange(connector);
1732 	if (ret < 0) {
1733 		drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1734 		return ret;
1735 	}
1736 
1737 	if (shim->config_stream_type) {
1738 		ret = shim->config_stream_type(dig_port,
1739 					       hdcp->is_repeater,
1740 					       hdcp->content_type);
1741 		if (ret < 0)
1742 			return ret;
1743 	}
1744 
1745 	if (hdcp->is_repeater) {
1746 		ret = hdcp2_authenticate_repeater_topology(connector);
1747 		if (ret < 0) {
1748 			drm_dbg_kms(&i915->drm,
1749 				    "Repeater Auth Failed. Err: %d\n", ret);
1750 			return ret;
1751 		}
1752 	}
1753 
1754 	return ret;
1755 }
1756 
1757 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1758 {
1759 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1760 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1761 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1762 	struct intel_hdcp *hdcp = &connector->hdcp;
1763 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1764 	enum port port = dig_port->base.port;
1765 	int ret = 0;
1766 
1767 	if (!(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1768 			    LINK_ENCRYPTION_STATUS)) {
1769 		drm_err(&dev_priv->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1770 			connector->base.name, connector->base.base.id);
1771 		ret = -EPERM;
1772 		goto link_recover;
1773 	}
1774 
1775 	if (hdcp->shim->stream_2_2_encryption) {
1776 		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1777 		if (ret) {
1778 			drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1779 				connector->base.name, connector->base.base.id);
1780 			return ret;
1781 		}
1782 		drm_dbg_kms(&dev_priv->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1783 			    transcoder_name(hdcp->stream_transcoder));
1784 	}
1785 
1786 	return 0;
1787 
1788 link_recover:
1789 	if (hdcp2_deauthenticate_port(connector) < 0)
1790 		drm_dbg_kms(&dev_priv->drm, "Port deauth failed.\n");
1791 
1792 	dig_port->hdcp_auth_status = false;
1793 	data->k = 0;
1794 
1795 	return ret;
1796 }
1797 
1798 static int hdcp2_enable_encryption(struct intel_connector *connector)
1799 {
1800 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1801 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1802 	struct intel_hdcp *hdcp = &connector->hdcp;
1803 	enum port port = dig_port->base.port;
1804 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1805 	int ret;
1806 
1807 	drm_WARN_ON(&dev_priv->drm,
1808 		    intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1809 		    LINK_ENCRYPTION_STATUS);
1810 	if (hdcp->shim->toggle_signalling) {
1811 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1812 						    true);
1813 		if (ret) {
1814 			drm_err(&dev_priv->drm,
1815 				"Failed to enable HDCP signalling. %d\n",
1816 				ret);
1817 			return ret;
1818 		}
1819 	}
1820 
1821 	if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1822 	    LINK_AUTH_STATUS) {
1823 		/* Link is Authenticated. Now set for Encryption */
1824 		intel_de_write(dev_priv,
1825 			       HDCP2_CTL(dev_priv, cpu_transcoder, port),
1826 			       intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
1827 	}
1828 
1829 	ret = intel_de_wait_for_set(dev_priv,
1830 				    HDCP2_STATUS(dev_priv, cpu_transcoder,
1831 						 port),
1832 				    LINK_ENCRYPTION_STATUS,
1833 				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1834 	dig_port->hdcp_auth_status = true;
1835 
1836 	return ret;
1837 }
1838 
1839 static int hdcp2_disable_encryption(struct intel_connector *connector)
1840 {
1841 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1842 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1843 	struct intel_hdcp *hdcp = &connector->hdcp;
1844 	enum port port = dig_port->base.port;
1845 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1846 	int ret;
1847 
1848 	drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1849 				      LINK_ENCRYPTION_STATUS));
1850 
1851 	intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
1852 		       intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
1853 
1854 	ret = intel_de_wait_for_clear(dev_priv,
1855 				      HDCP2_STATUS(dev_priv, cpu_transcoder,
1856 						   port),
1857 				      LINK_ENCRYPTION_STATUS,
1858 				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1859 	if (ret == -ETIMEDOUT)
1860 		drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
1861 
1862 	if (hdcp->shim->toggle_signalling) {
1863 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1864 						    false);
1865 		if (ret) {
1866 			drm_err(&dev_priv->drm,
1867 				"Failed to disable HDCP signalling. %d\n",
1868 				ret);
1869 			return ret;
1870 		}
1871 	}
1872 
1873 	return ret;
1874 }
1875 
1876 static int
1877 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1878 {
1879 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1880 	int i, tries = 3, ret;
1881 
1882 	if (!connector->hdcp.is_repeater)
1883 		return 0;
1884 
1885 	for (i = 0; i < tries; i++) {
1886 		ret = _hdcp2_propagate_stream_management_info(connector);
1887 		if (!ret)
1888 			break;
1889 
1890 		/* Lets restart the auth incase of seq_num_m roll over */
1891 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1892 			drm_dbg_kms(&i915->drm,
1893 				    "seq_num_m roll over.(%d)\n", ret);
1894 			break;
1895 		}
1896 
1897 		drm_dbg_kms(&i915->drm,
1898 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
1899 			    i + 1, tries, ret);
1900 	}
1901 
1902 	return ret;
1903 }
1904 
1905 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1906 {
1907 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1908 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1909 	int ret = 0, i, tries = 3;
1910 
1911 	for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1912 		ret = hdcp2_authenticate_sink(connector);
1913 		if (!ret) {
1914 			ret = intel_hdcp_prepare_streams(connector);
1915 			if (ret) {
1916 				drm_dbg_kms(&i915->drm,
1917 					    "Prepare streams failed.(%d)\n",
1918 					    ret);
1919 				break;
1920 			}
1921 
1922 			ret = hdcp2_propagate_stream_management_info(connector);
1923 			if (ret) {
1924 				drm_dbg_kms(&i915->drm,
1925 					    "Stream management failed.(%d)\n",
1926 					    ret);
1927 				break;
1928 			}
1929 
1930 			ret = hdcp2_authenticate_port(connector);
1931 			if (!ret)
1932 				break;
1933 			drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1934 				    ret);
1935 		}
1936 
1937 		/* Clearing the mei hdcp session */
1938 		drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1939 			    i + 1, tries, ret);
1940 		if (hdcp2_deauthenticate_port(connector) < 0)
1941 			drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1942 	}
1943 
1944 	if (!ret && !dig_port->hdcp_auth_status) {
1945 		/*
1946 		 * Ensuring the required 200mSec min time interval between
1947 		 * Session Key Exchange and encryption.
1948 		 */
1949 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1950 		ret = hdcp2_enable_encryption(connector);
1951 		if (ret < 0) {
1952 			drm_dbg_kms(&i915->drm,
1953 				    "Encryption Enable Failed.(%d)\n", ret);
1954 			if (hdcp2_deauthenticate_port(connector) < 0)
1955 				drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1956 		}
1957 	}
1958 
1959 	if (!ret)
1960 		ret = hdcp2_enable_stream_encryption(connector);
1961 
1962 	return ret;
1963 }
1964 
1965 static int _intel_hdcp2_enable(struct intel_connector *connector)
1966 {
1967 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1968 	struct intel_hdcp *hdcp = &connector->hdcp;
1969 	int ret;
1970 
1971 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1972 		    connector->base.name, connector->base.base.id,
1973 		    hdcp->content_type);
1974 
1975 	ret = hdcp2_authenticate_and_encrypt(connector);
1976 	if (ret) {
1977 		drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
1978 			    hdcp->content_type, ret);
1979 		return ret;
1980 	}
1981 
1982 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1983 		    connector->base.name, connector->base.base.id,
1984 		    hdcp->content_type);
1985 
1986 	hdcp->hdcp2_encrypted = true;
1987 	return 0;
1988 }
1989 
1990 static int
1991 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1992 {
1993 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1994 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1995 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1996 	struct intel_hdcp *hdcp = &connector->hdcp;
1997 	int ret;
1998 
1999 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
2000 		    connector->base.name, connector->base.base.id);
2001 
2002 	if (hdcp->shim->stream_2_2_encryption) {
2003 		ret = hdcp->shim->stream_2_2_encryption(connector, false);
2004 		if (ret) {
2005 			drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
2006 				connector->base.name, connector->base.base.id);
2007 			return ret;
2008 		}
2009 		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2010 			    transcoder_name(hdcp->stream_transcoder));
2011 
2012 		if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
2013 			return 0;
2014 	}
2015 
2016 	ret = hdcp2_disable_encryption(connector);
2017 
2018 	if (hdcp2_deauthenticate_port(connector) < 0)
2019 		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
2020 
2021 	connector->hdcp.hdcp2_encrypted = false;
2022 	dig_port->hdcp_auth_status = false;
2023 	data->k = 0;
2024 
2025 	return ret;
2026 }
2027 
2028 /* Implements the Link Integrity Check for HDCP2.2 */
2029 static int intel_hdcp2_check_link(struct intel_connector *connector)
2030 {
2031 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2032 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2033 	struct intel_hdcp *hdcp = &connector->hdcp;
2034 	enum port port = dig_port->base.port;
2035 	enum transcoder cpu_transcoder;
2036 	int ret = 0;
2037 
2038 	mutex_lock(&hdcp->mutex);
2039 	mutex_lock(&dig_port->hdcp_mutex);
2040 	cpu_transcoder = hdcp->cpu_transcoder;
2041 
2042 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2043 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2044 	    !hdcp->hdcp2_encrypted) {
2045 		ret = -EINVAL;
2046 		goto out;
2047 	}
2048 
2049 	if (drm_WARN_ON(&dev_priv->drm,
2050 			!intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
2051 		drm_err(&dev_priv->drm,
2052 			"HDCP2.2 link stopped the encryption, %x\n",
2053 			intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
2054 		ret = -ENXIO;
2055 		_intel_hdcp2_disable(connector, true);
2056 		intel_hdcp_update_value(connector,
2057 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2058 					true);
2059 		goto out;
2060 	}
2061 
2062 	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2063 	if (ret == HDCP_LINK_PROTECTED) {
2064 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2065 			intel_hdcp_update_value(connector,
2066 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2067 					true);
2068 		}
2069 		goto out;
2070 	}
2071 
2072 	if (ret == HDCP_TOPOLOGY_CHANGE) {
2073 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2074 			goto out;
2075 
2076 		drm_dbg_kms(&dev_priv->drm,
2077 			    "HDCP2.2 Downstream topology change\n");
2078 		ret = hdcp2_authenticate_repeater_topology(connector);
2079 		if (!ret) {
2080 			intel_hdcp_update_value(connector,
2081 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2082 					true);
2083 			goto out;
2084 		}
2085 		drm_dbg_kms(&dev_priv->drm,
2086 			    "[%s:%d] Repeater topology auth failed.(%d)\n",
2087 			    connector->base.name, connector->base.base.id,
2088 			    ret);
2089 	} else {
2090 		drm_dbg_kms(&dev_priv->drm,
2091 			    "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2092 			    connector->base.name, connector->base.base.id);
2093 	}
2094 
2095 	ret = _intel_hdcp2_disable(connector, true);
2096 	if (ret) {
2097 		drm_err(&dev_priv->drm,
2098 			"[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2099 			connector->base.name, connector->base.base.id, ret);
2100 		intel_hdcp_update_value(connector,
2101 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2102 		goto out;
2103 	}
2104 
2105 	ret = _intel_hdcp2_enable(connector);
2106 	if (ret) {
2107 		drm_dbg_kms(&dev_priv->drm,
2108 			    "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2109 			    connector->base.name, connector->base.base.id,
2110 			    ret);
2111 		intel_hdcp_update_value(connector,
2112 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2113 					true);
2114 		goto out;
2115 	}
2116 
2117 out:
2118 	mutex_unlock(&dig_port->hdcp_mutex);
2119 	mutex_unlock(&hdcp->mutex);
2120 	return ret;
2121 }
2122 
2123 static void intel_hdcp_check_work(struct work_struct *work)
2124 {
2125 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2126 					       struct intel_hdcp,
2127 					       check_work);
2128 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2129 
2130 	if (drm_connector_is_unregistered(&connector->base))
2131 		return;
2132 
2133 	if (!intel_hdcp2_check_link(connector))
2134 		schedule_delayed_work(&hdcp->check_work,
2135 				      DRM_HDCP2_CHECK_PERIOD_MS);
2136 	else if (!intel_hdcp_check_link(connector))
2137 		schedule_delayed_work(&hdcp->check_work,
2138 				      DRM_HDCP_CHECK_PERIOD_MS);
2139 }
2140 
2141 static int i915_hdcp_component_bind(struct device *i915_kdev,
2142 				    struct device *mei_kdev, void *data)
2143 {
2144 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2145 
2146 	drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
2147 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2148 	dev_priv->display.hdcp.master = (struct i915_hdcp_comp_master *)data;
2149 	dev_priv->display.hdcp.master->mei_dev = mei_kdev;
2150 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2151 
2152 	return 0;
2153 }
2154 
2155 static void i915_hdcp_component_unbind(struct device *i915_kdev,
2156 				       struct device *mei_kdev, void *data)
2157 {
2158 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2159 
2160 	drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
2161 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2162 	dev_priv->display.hdcp.master = NULL;
2163 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2164 }
2165 
2166 static const struct component_ops i915_hdcp_component_ops = {
2167 	.bind   = i915_hdcp_component_bind,
2168 	.unbind = i915_hdcp_component_unbind,
2169 };
2170 
2171 static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
2172 {
2173 	switch (port) {
2174 	case PORT_A:
2175 		return MEI_DDI_A;
2176 	case PORT_B ... PORT_F:
2177 		return (enum mei_fw_ddi)port;
2178 	default:
2179 		return MEI_DDI_INVALID_PORT;
2180 	}
2181 }
2182 
2183 static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
2184 {
2185 	switch (cpu_transcoder) {
2186 	case TRANSCODER_A ... TRANSCODER_D:
2187 		return (enum mei_fw_tc)(cpu_transcoder | 0x10);
2188 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2189 		return MEI_INVALID_TRANSCODER;
2190 	}
2191 }
2192 
2193 static int initialize_hdcp_port_data(struct intel_connector *connector,
2194 				     struct intel_digital_port *dig_port,
2195 				     const struct intel_hdcp_shim *shim)
2196 {
2197 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2198 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2199 	struct intel_hdcp *hdcp = &connector->hdcp;
2200 	enum port port = dig_port->base.port;
2201 
2202 	if (DISPLAY_VER(dev_priv) < 12)
2203 		data->fw_ddi = intel_get_mei_fw_ddi_index(port);
2204 	else
2205 		/*
2206 		 * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
2207 		 * with zero(INVALID PORT index).
2208 		 */
2209 		data->fw_ddi = MEI_DDI_INVALID_PORT;
2210 
2211 	/*
2212 	 * As associated transcoder is set and modified at modeset, here fw_tc
2213 	 * is initialized to zero (invalid transcoder index). This will be
2214 	 * retained for <Gen12 forever.
2215 	 */
2216 	data->fw_tc = MEI_INVALID_TRANSCODER;
2217 
2218 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2219 	data->protocol = (u8)shim->protocol;
2220 
2221 	if (!data->streams)
2222 		data->streams = kcalloc(INTEL_NUM_PIPES(dev_priv),
2223 					sizeof(struct hdcp2_streamid_type),
2224 					GFP_KERNEL);
2225 	if (!data->streams) {
2226 		drm_err(&dev_priv->drm, "Out of Memory\n");
2227 		return -ENOMEM;
2228 	}
2229 	/* For SST */
2230 	data->streams[0].stream_id = 0;
2231 	data->streams[0].stream_type = hdcp->content_type;
2232 
2233 	return 0;
2234 }
2235 
2236 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
2237 {
2238 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2239 		return false;
2240 
2241 	return (DISPLAY_VER(dev_priv) >= 10 ||
2242 		IS_KABYLAKE(dev_priv) ||
2243 		IS_COFFEELAKE(dev_priv) ||
2244 		IS_COMETLAKE(dev_priv));
2245 }
2246 
2247 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
2248 {
2249 	int ret;
2250 
2251 	if (!is_hdcp2_supported(dev_priv))
2252 		return;
2253 
2254 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2255 	drm_WARN_ON(&dev_priv->drm, dev_priv->display.hdcp.comp_added);
2256 
2257 	dev_priv->display.hdcp.comp_added = true;
2258 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2259 	ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
2260 				  I915_COMPONENT_HDCP);
2261 	if (ret < 0) {
2262 		drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
2263 			    ret);
2264 		mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2265 		dev_priv->display.hdcp.comp_added = false;
2266 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2267 		return;
2268 	}
2269 }
2270 
2271 static void intel_hdcp2_init(struct intel_connector *connector,
2272 			     struct intel_digital_port *dig_port,
2273 			     const struct intel_hdcp_shim *shim)
2274 {
2275 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2276 	struct intel_hdcp *hdcp = &connector->hdcp;
2277 	int ret;
2278 
2279 	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2280 	if (ret) {
2281 		drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2282 		return;
2283 	}
2284 
2285 	hdcp->hdcp2_supported = true;
2286 }
2287 
2288 int intel_hdcp_init(struct intel_connector *connector,
2289 		    struct intel_digital_port *dig_port,
2290 		    const struct intel_hdcp_shim *shim)
2291 {
2292 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2293 	struct intel_hdcp *hdcp = &connector->hdcp;
2294 	int ret;
2295 
2296 	if (!shim)
2297 		return -EINVAL;
2298 
2299 	if (is_hdcp2_supported(dev_priv))
2300 		intel_hdcp2_init(connector, dig_port, shim);
2301 
2302 	ret =
2303 	drm_connector_attach_content_protection_property(&connector->base,
2304 							 hdcp->hdcp2_supported);
2305 	if (ret) {
2306 		hdcp->hdcp2_supported = false;
2307 		kfree(dig_port->hdcp_port_data.streams);
2308 		return ret;
2309 	}
2310 
2311 	hdcp->shim = shim;
2312 	mutex_init(&hdcp->mutex);
2313 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2314 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2315 	init_waitqueue_head(&hdcp->cp_irq_queue);
2316 
2317 	return 0;
2318 }
2319 
2320 int intel_hdcp_enable(struct intel_connector *connector,
2321 		      const struct intel_crtc_state *pipe_config, u8 content_type)
2322 {
2323 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2324 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2325 	struct intel_hdcp *hdcp = &connector->hdcp;
2326 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2327 	int ret = -EINVAL;
2328 
2329 	if (!hdcp->shim)
2330 		return -ENOENT;
2331 
2332 	if (!connector->encoder) {
2333 		drm_err(&dev_priv->drm, "[%s:%d] encoder is not initialized\n",
2334 			connector->base.name, connector->base.base.id);
2335 		return -ENODEV;
2336 	}
2337 
2338 	mutex_lock(&hdcp->mutex);
2339 	mutex_lock(&dig_port->hdcp_mutex);
2340 	drm_WARN_ON(&dev_priv->drm,
2341 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2342 	hdcp->content_type = content_type;
2343 
2344 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2345 		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2346 		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2347 	} else {
2348 		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2349 		hdcp->stream_transcoder = INVALID_TRANSCODER;
2350 	}
2351 
2352 	if (DISPLAY_VER(dev_priv) >= 12)
2353 		dig_port->hdcp_port_data.fw_tc = intel_get_mei_fw_tc(hdcp->cpu_transcoder);
2354 
2355 	/*
2356 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2357 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2358 	 */
2359 	if (intel_hdcp2_capable(connector)) {
2360 		ret = _intel_hdcp2_enable(connector);
2361 		if (!ret)
2362 			check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
2363 	}
2364 
2365 	/*
2366 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2367 	 * be attempted.
2368 	 */
2369 	if (ret && intel_hdcp_capable(connector) &&
2370 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2371 		ret = _intel_hdcp_enable(connector);
2372 	}
2373 
2374 	if (!ret) {
2375 		schedule_delayed_work(&hdcp->check_work, check_link_interval);
2376 		intel_hdcp_update_value(connector,
2377 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2378 					true);
2379 	}
2380 
2381 	mutex_unlock(&dig_port->hdcp_mutex);
2382 	mutex_unlock(&hdcp->mutex);
2383 	return ret;
2384 }
2385 
2386 int intel_hdcp_disable(struct intel_connector *connector)
2387 {
2388 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2389 	struct intel_hdcp *hdcp = &connector->hdcp;
2390 	int ret = 0;
2391 
2392 	if (!hdcp->shim)
2393 		return -ENOENT;
2394 
2395 	mutex_lock(&hdcp->mutex);
2396 	mutex_lock(&dig_port->hdcp_mutex);
2397 
2398 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2399 		goto out;
2400 
2401 	intel_hdcp_update_value(connector,
2402 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2403 	if (hdcp->hdcp2_encrypted)
2404 		ret = _intel_hdcp2_disable(connector, false);
2405 	else if (hdcp->hdcp_encrypted)
2406 		ret = _intel_hdcp_disable(connector);
2407 
2408 out:
2409 	mutex_unlock(&dig_port->hdcp_mutex);
2410 	mutex_unlock(&hdcp->mutex);
2411 	cancel_delayed_work_sync(&hdcp->check_work);
2412 	return ret;
2413 }
2414 
2415 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2416 			    struct intel_encoder *encoder,
2417 			    const struct intel_crtc_state *crtc_state,
2418 			    const struct drm_connector_state *conn_state)
2419 {
2420 	struct intel_connector *connector =
2421 				to_intel_connector(conn_state->connector);
2422 	struct intel_hdcp *hdcp = &connector->hdcp;
2423 	bool content_protection_type_changed, desired_and_not_enabled = false;
2424 
2425 	if (!connector->hdcp.shim)
2426 		return;
2427 
2428 	content_protection_type_changed =
2429 		(conn_state->hdcp_content_type != hdcp->content_type &&
2430 		 conn_state->content_protection !=
2431 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2432 
2433 	/*
2434 	 * During the HDCP encryption session if Type change is requested,
2435 	 * disable the HDCP and reenable it with new TYPE value.
2436 	 */
2437 	if (conn_state->content_protection ==
2438 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2439 	    content_protection_type_changed)
2440 		intel_hdcp_disable(connector);
2441 
2442 	/*
2443 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2444 	 * change procedure.
2445 	 */
2446 	if (content_protection_type_changed) {
2447 		mutex_lock(&hdcp->mutex);
2448 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2449 		drm_connector_get(&connector->base);
2450 		schedule_work(&hdcp->prop_work);
2451 		mutex_unlock(&hdcp->mutex);
2452 	}
2453 
2454 	if (conn_state->content_protection ==
2455 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2456 		mutex_lock(&hdcp->mutex);
2457 		/* Avoid enabling hdcp, if it already ENABLED */
2458 		desired_and_not_enabled =
2459 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2460 		mutex_unlock(&hdcp->mutex);
2461 		/*
2462 		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2463 		 * prop_work to update correct CP property to user space.
2464 		 */
2465 		if (!desired_and_not_enabled && !content_protection_type_changed) {
2466 			drm_connector_get(&connector->base);
2467 			schedule_work(&hdcp->prop_work);
2468 		}
2469 	}
2470 
2471 	if (desired_and_not_enabled || content_protection_type_changed)
2472 		intel_hdcp_enable(connector,
2473 				  crtc_state,
2474 				  (u8)conn_state->hdcp_content_type);
2475 }
2476 
2477 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2478 {
2479 	mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2480 	if (!dev_priv->display.hdcp.comp_added) {
2481 		mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2482 		return;
2483 	}
2484 
2485 	dev_priv->display.hdcp.comp_added = false;
2486 	mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2487 
2488 	component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2489 }
2490 
2491 void intel_hdcp_cleanup(struct intel_connector *connector)
2492 {
2493 	struct intel_hdcp *hdcp = &connector->hdcp;
2494 
2495 	if (!hdcp->shim)
2496 		return;
2497 
2498 	/*
2499 	 * If the connector is registered, it's possible userspace could kick
2500 	 * off another HDCP enable, which would re-spawn the workers.
2501 	 */
2502 	drm_WARN_ON(connector->base.dev,
2503 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2504 
2505 	/*
2506 	 * Now that the connector is not registered, check_work won't be run,
2507 	 * but cancel any outstanding instances of it
2508 	 */
2509 	cancel_delayed_work_sync(&hdcp->check_work);
2510 
2511 	/*
2512 	 * We don't cancel prop_work in the same way as check_work since it
2513 	 * requires connection_mutex which could be held while calling this
2514 	 * function. Instead, we rely on the connector references grabbed before
2515 	 * scheduling prop_work to ensure the connector is alive when prop_work
2516 	 * is run. So if we're in the destroy path (which is where this
2517 	 * function should be called), we're "guaranteed" that prop_work is not
2518 	 * active (tl;dr This Should Never Happen).
2519 	 */
2520 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2521 
2522 	mutex_lock(&hdcp->mutex);
2523 	hdcp->shim = NULL;
2524 	mutex_unlock(&hdcp->mutex);
2525 }
2526 
2527 void intel_hdcp_atomic_check(struct drm_connector *connector,
2528 			     struct drm_connector_state *old_state,
2529 			     struct drm_connector_state *new_state)
2530 {
2531 	u64 old_cp = old_state->content_protection;
2532 	u64 new_cp = new_state->content_protection;
2533 	struct drm_crtc_state *crtc_state;
2534 
2535 	if (!new_state->crtc) {
2536 		/*
2537 		 * If the connector is being disabled with CP enabled, mark it
2538 		 * desired so it's re-enabled when the connector is brought back
2539 		 */
2540 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2541 			new_state->content_protection =
2542 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2543 		return;
2544 	}
2545 
2546 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2547 						   new_state->crtc);
2548 	/*
2549 	 * Fix the HDCP uapi content protection state in case of modeset.
2550 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2551 	 * need to be sent if there is transition from ENABLED->DESIRED.
2552 	 */
2553 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2554 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2555 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2556 		new_state->content_protection =
2557 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2558 
2559 	/*
2560 	 * Nothing to do if the state didn't change, or HDCP was activated since
2561 	 * the last commit. And also no change in hdcp content type.
2562 	 */
2563 	if (old_cp == new_cp ||
2564 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2565 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2566 		if (old_state->hdcp_content_type ==
2567 				new_state->hdcp_content_type)
2568 			return;
2569 	}
2570 
2571 	crtc_state->mode_changed = true;
2572 }
2573 
2574 /* Handles the CP_IRQ raised from the DP HDCP sink */
2575 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2576 {
2577 	struct intel_hdcp *hdcp = &connector->hdcp;
2578 
2579 	if (!hdcp->shim)
2580 		return;
2581 
2582 	atomic_inc(&connector->hdcp.cp_irq_count);
2583 	wake_up_all(&connector->hdcp.cp_irq_queue);
2584 
2585 	schedule_delayed_work(&hdcp->check_work, 0);
2586 }
2587