xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision b755c25fbcd568821a3bb0e0d5c2daa5fcb00bba)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14 
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/i915_component.h>
17 
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_hdcp_gsc.h"
27 #include "intel_hdcp_regs.h"
28 #include "intel_pcode.h"
29 
30 #define KEY_LOAD_TRIES	5
31 #define HDCP2_LC_RETRY_CNT			3
32 
33 static int intel_conn_to_vcpi(struct drm_atomic_state *state,
34 			      struct intel_connector *connector)
35 {
36 	struct drm_dp_mst_topology_mgr *mgr;
37 	struct drm_dp_mst_atomic_payload *payload;
38 	struct drm_dp_mst_topology_state *mst_state;
39 	int vcpi = 0;
40 
41 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
42 	if (!connector->port)
43 		return 0;
44 	mgr = connector->port->mgr;
45 
46 	drm_modeset_lock(&mgr->base.lock, state->acquire_ctx);
47 	mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
48 	payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
49 	if (drm_WARN_ON(mgr->dev, !payload))
50 		goto out;
51 
52 	vcpi = payload->vcpi;
53 	if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
54 		vcpi = 0;
55 		goto out;
56 	}
57 out:
58 	return vcpi;
59 }
60 
61 /*
62  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
63  * content_type for all streams in DP MST topology because security f/w doesn't
64  * have any provision to mark content_type for each stream separately, it marks
65  * all available streams with the content_type proivided at the time of port
66  * authentication. This may prohibit the userspace to use type1 content on
67  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
68  * DP MST topology. Though it is not compulsory, security fw should change its
69  * policy to mark different content_types for different streams.
70  */
71 static void
72 intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
73 {
74 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
75 	bool enforce_type0 = false;
76 	int k;
77 
78 	if (dig_port->hdcp_auth_status)
79 		return;
80 
81 	if (!dig_port->hdcp_mst_type1_capable)
82 		enforce_type0 = true;
83 
84 	/*
85 	 * Apply common protection level across all streams in DP MST Topology.
86 	 * Use highest supported content type for all streams in DP MST Topology.
87 	 */
88 	for (k = 0; k < data->k; k++)
89 		data->streams[k].stream_type =
90 			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
91 }
92 
93 static void intel_hdcp_prepare_streams(struct intel_connector *connector)
94 {
95 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
96 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
97 	struct intel_hdcp *hdcp = &connector->hdcp;
98 
99 	if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
100 		data->streams[0].stream_type = hdcp->content_type;
101 	} else {
102 		intel_hdcp_required_content_stream(dig_port);
103 	}
104 }
105 
106 static
107 bool intel_hdcp_is_ksv_valid(u8 *ksv)
108 {
109 	int i, ones = 0;
110 	/* KSV has 20 1's and 20 0's */
111 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
112 		ones += hweight8(ksv[i]);
113 	if (ones != 20)
114 		return false;
115 
116 	return true;
117 }
118 
119 static
120 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
121 			       const struct intel_hdcp_shim *shim, u8 *bksv)
122 {
123 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
124 	int ret, i, tries = 2;
125 
126 	/* HDCP spec states that we must retry the bksv if it is invalid */
127 	for (i = 0; i < tries; i++) {
128 		ret = shim->read_bksv(dig_port, bksv);
129 		if (ret)
130 			return ret;
131 		if (intel_hdcp_is_ksv_valid(bksv))
132 			break;
133 	}
134 	if (i == tries) {
135 		drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
136 		return -ENODEV;
137 	}
138 
139 	return 0;
140 }
141 
142 /* Is HDCP1.4 capable on Platform and Sink */
143 bool intel_hdcp_capable(struct intel_connector *connector)
144 {
145 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
146 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
147 	bool capable = false;
148 	u8 bksv[5];
149 
150 	if (!shim)
151 		return capable;
152 
153 	if (shim->hdcp_capable) {
154 		shim->hdcp_capable(dig_port, &capable);
155 	} else {
156 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
157 			capable = true;
158 	}
159 
160 	return capable;
161 }
162 
163 /* Is HDCP2.2 capable on Platform and Sink */
164 bool intel_hdcp2_capable(struct intel_connector *connector)
165 {
166 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
167 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
168 	struct intel_hdcp *hdcp = &connector->hdcp;
169 	bool capable = false;
170 
171 	/* I915 support for HDCP2.2 */
172 	if (!hdcp->hdcp2_supported)
173 		return false;
174 
175 	/* If MTL+ make sure gsc is loaded and proxy is setup */
176 	if (intel_hdcp_gsc_cs_required(i915)) {
177 		struct intel_gt *gt = i915->media_gt;
178 		struct intel_gsc_uc *gsc = gt ? &gt->uc.gsc : NULL;
179 
180 		if (!gsc || !intel_uc_fw_is_running(&gsc->fw))
181 			return false;
182 	}
183 
184 	/* MEI/GSC interface is solid depending on which is used */
185 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
186 	if (!i915->display.hdcp.comp_added ||  !i915->display.hdcp.arbiter) {
187 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
188 		return false;
189 	}
190 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
191 
192 	/* Sink's capability for HDCP2.2 */
193 	hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
194 
195 	return capable;
196 }
197 
198 static bool intel_hdcp_in_use(struct drm_i915_private *i915,
199 			      enum transcoder cpu_transcoder, enum port port)
200 {
201 	return intel_de_read(i915,
202 			     HDCP_STATUS(i915, cpu_transcoder, port)) &
203 		HDCP_STATUS_ENC;
204 }
205 
206 static bool intel_hdcp2_in_use(struct drm_i915_private *i915,
207 			       enum transcoder cpu_transcoder, enum port port)
208 {
209 	return intel_de_read(i915,
210 			     HDCP2_STATUS(i915, cpu_transcoder, port)) &
211 		LINK_ENCRYPTION_STATUS;
212 }
213 
214 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
215 				    const struct intel_hdcp_shim *shim)
216 {
217 	int ret, read_ret;
218 	bool ksv_ready;
219 
220 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
221 	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
222 							 &ksv_ready),
223 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
224 			 100 * 1000);
225 	if (ret)
226 		return ret;
227 	if (read_ret)
228 		return read_ret;
229 	if (!ksv_ready)
230 		return -ETIMEDOUT;
231 
232 	return 0;
233 }
234 
235 static bool hdcp_key_loadable(struct drm_i915_private *i915)
236 {
237 	enum i915_power_well_id id;
238 	intel_wakeref_t wakeref;
239 	bool enabled = false;
240 
241 	/*
242 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
243 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
244 	 */
245 	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
246 		id = HSW_DISP_PW_GLOBAL;
247 	else
248 		id = SKL_DISP_PW_1;
249 
250 	/* PG1 (power well #1) needs to be enabled */
251 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
252 		enabled = intel_display_power_well_is_enabled(i915, id);
253 
254 	/*
255 	 * Another req for hdcp key loadability is enabled state of pll for
256 	 * cdclk. Without active crtc we wont land here. So we are assuming that
257 	 * cdclk is already on.
258 	 */
259 
260 	return enabled;
261 }
262 
263 static void intel_hdcp_clear_keys(struct drm_i915_private *i915)
264 {
265 	intel_de_write(i915, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
266 	intel_de_write(i915, HDCP_KEY_STATUS,
267 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
268 }
269 
270 static int intel_hdcp_load_keys(struct drm_i915_private *i915)
271 {
272 	int ret;
273 	u32 val;
274 
275 	val = intel_de_read(i915, HDCP_KEY_STATUS);
276 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
277 		return 0;
278 
279 	/*
280 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
281 	 * out of reset. So if Key is not already loaded, its an error state.
282 	 */
283 	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
284 		if (!(intel_de_read(i915, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
285 			return -ENXIO;
286 
287 	/*
288 	 * Initiate loading the HDCP key from fuses.
289 	 *
290 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
291 	 * version 9 platforms (minus BXT) differ in the key load trigger
292 	 * process from other platforms. These platforms use the GT Driver
293 	 * Mailbox interface.
294 	 */
295 	if (DISPLAY_VER(i915) == 9 && !IS_BROXTON(i915)) {
296 		ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
297 		if (ret) {
298 			drm_err(&i915->drm,
299 				"Failed to initiate HDCP key load (%d)\n",
300 				ret);
301 			return ret;
302 		}
303 	} else {
304 		intel_de_write(i915, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
305 	}
306 
307 	/* Wait for the keys to load (500us) */
308 	ret = __intel_wait_for_register(&i915->uncore, HDCP_KEY_STATUS,
309 					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
310 					10, 1, &val);
311 	if (ret)
312 		return ret;
313 	else if (!(val & HDCP_KEY_LOAD_STATUS))
314 		return -ENXIO;
315 
316 	/* Send Aksv over to PCH display for use in authentication */
317 	intel_de_write(i915, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
318 
319 	return 0;
320 }
321 
322 /* Returns updated SHA-1 index */
323 static int intel_write_sha_text(struct drm_i915_private *i915, u32 sha_text)
324 {
325 	intel_de_write(i915, HDCP_SHA_TEXT, sha_text);
326 	if (intel_de_wait_for_set(i915, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
327 		drm_err(&i915->drm, "Timed out waiting for SHA1 ready\n");
328 		return -ETIMEDOUT;
329 	}
330 	return 0;
331 }
332 
333 static
334 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *i915,
335 				enum transcoder cpu_transcoder, enum port port)
336 {
337 	if (DISPLAY_VER(i915) >= 12) {
338 		switch (cpu_transcoder) {
339 		case TRANSCODER_A:
340 			return HDCP_TRANSA_REP_PRESENT |
341 			       HDCP_TRANSA_SHA1_M0;
342 		case TRANSCODER_B:
343 			return HDCP_TRANSB_REP_PRESENT |
344 			       HDCP_TRANSB_SHA1_M0;
345 		case TRANSCODER_C:
346 			return HDCP_TRANSC_REP_PRESENT |
347 			       HDCP_TRANSC_SHA1_M0;
348 		case TRANSCODER_D:
349 			return HDCP_TRANSD_REP_PRESENT |
350 			       HDCP_TRANSD_SHA1_M0;
351 		default:
352 			drm_err(&i915->drm, "Unknown transcoder %d\n",
353 				cpu_transcoder);
354 			return -EINVAL;
355 		}
356 	}
357 
358 	switch (port) {
359 	case PORT_A:
360 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
361 	case PORT_B:
362 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
363 	case PORT_C:
364 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
365 	case PORT_D:
366 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
367 	case PORT_E:
368 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
369 	default:
370 		drm_err(&i915->drm, "Unknown port %d\n", port);
371 		return -EINVAL;
372 	}
373 }
374 
375 static
376 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
377 				const struct intel_hdcp_shim *shim,
378 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
379 {
380 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
381 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
382 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
383 	enum port port = dig_port->base.port;
384 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
385 	int ret, i, j, sha_idx;
386 
387 	/* Process V' values from the receiver */
388 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
389 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
390 		if (ret)
391 			return ret;
392 		intel_de_write(i915, HDCP_SHA_V_PRIME(i), vprime);
393 	}
394 
395 	/*
396 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
397 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
398 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
399 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
400 	 * index will keep track of our progress through the 64 bytes as well as
401 	 * helping us work the 40-bit KSVs through our 32-bit register.
402 	 *
403 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
404 	 */
405 	sha_idx = 0;
406 	sha_text = 0;
407 	sha_leftovers = 0;
408 	rep_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port);
409 	intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
410 	for (i = 0; i < num_downstream; i++) {
411 		unsigned int sha_empty;
412 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
413 
414 		/* Fill up the empty slots in sha_text and write it out */
415 		sha_empty = sizeof(sha_text) - sha_leftovers;
416 		for (j = 0; j < sha_empty; j++) {
417 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
418 			sha_text |= ksv[j] << off;
419 		}
420 
421 		ret = intel_write_sha_text(i915, sha_text);
422 		if (ret < 0)
423 			return ret;
424 
425 		/* Programming guide writes this every 64 bytes */
426 		sha_idx += sizeof(sha_text);
427 		if (!(sha_idx % 64))
428 			intel_de_write(i915, HDCP_REP_CTL,
429 				       rep_ctl | HDCP_SHA1_TEXT_32);
430 
431 		/* Store the leftover bytes from the ksv in sha_text */
432 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
433 		sha_text = 0;
434 		for (j = 0; j < sha_leftovers; j++)
435 			sha_text |= ksv[sha_empty + j] <<
436 					((sizeof(sha_text) - j - 1) * 8);
437 
438 		/*
439 		 * If we still have room in sha_text for more data, continue.
440 		 * Otherwise, write it out immediately.
441 		 */
442 		if (sizeof(sha_text) > sha_leftovers)
443 			continue;
444 
445 		ret = intel_write_sha_text(i915, sha_text);
446 		if (ret < 0)
447 			return ret;
448 		sha_leftovers = 0;
449 		sha_text = 0;
450 		sha_idx += sizeof(sha_text);
451 	}
452 
453 	/*
454 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
455 	 * bytes are leftover from the last ksv, we might be able to fit them
456 	 * all in sha_text (first 2 cases), or we might need to split them up
457 	 * into 2 writes (last 2 cases).
458 	 */
459 	if (sha_leftovers == 0) {
460 		/* Write 16 bits of text, 16 bits of M0 */
461 		intel_de_write(i915, HDCP_REP_CTL,
462 			       rep_ctl | HDCP_SHA1_TEXT_16);
463 		ret = intel_write_sha_text(i915,
464 					   bstatus[0] << 8 | bstatus[1]);
465 		if (ret < 0)
466 			return ret;
467 		sha_idx += sizeof(sha_text);
468 
469 		/* Write 32 bits of M0 */
470 		intel_de_write(i915, HDCP_REP_CTL,
471 			       rep_ctl | HDCP_SHA1_TEXT_0);
472 		ret = intel_write_sha_text(i915, 0);
473 		if (ret < 0)
474 			return ret;
475 		sha_idx += sizeof(sha_text);
476 
477 		/* Write 16 bits of M0 */
478 		intel_de_write(i915, HDCP_REP_CTL,
479 			       rep_ctl | HDCP_SHA1_TEXT_16);
480 		ret = intel_write_sha_text(i915, 0);
481 		if (ret < 0)
482 			return ret;
483 		sha_idx += sizeof(sha_text);
484 
485 	} else if (sha_leftovers == 1) {
486 		/* Write 24 bits of text, 8 bits of M0 */
487 		intel_de_write(i915, HDCP_REP_CTL,
488 			       rep_ctl | HDCP_SHA1_TEXT_24);
489 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
490 		/* Only 24-bits of data, must be in the LSB */
491 		sha_text = (sha_text & 0xffffff00) >> 8;
492 		ret = intel_write_sha_text(i915, sha_text);
493 		if (ret < 0)
494 			return ret;
495 		sha_idx += sizeof(sha_text);
496 
497 		/* Write 32 bits of M0 */
498 		intel_de_write(i915, HDCP_REP_CTL,
499 			       rep_ctl | HDCP_SHA1_TEXT_0);
500 		ret = intel_write_sha_text(i915, 0);
501 		if (ret < 0)
502 			return ret;
503 		sha_idx += sizeof(sha_text);
504 
505 		/* Write 24 bits of M0 */
506 		intel_de_write(i915, HDCP_REP_CTL,
507 			       rep_ctl | HDCP_SHA1_TEXT_8);
508 		ret = intel_write_sha_text(i915, 0);
509 		if (ret < 0)
510 			return ret;
511 		sha_idx += sizeof(sha_text);
512 
513 	} else if (sha_leftovers == 2) {
514 		/* Write 32 bits of text */
515 		intel_de_write(i915, HDCP_REP_CTL,
516 			       rep_ctl | HDCP_SHA1_TEXT_32);
517 		sha_text |= bstatus[0] << 8 | bstatus[1];
518 		ret = intel_write_sha_text(i915, sha_text);
519 		if (ret < 0)
520 			return ret;
521 		sha_idx += sizeof(sha_text);
522 
523 		/* Write 64 bits of M0 */
524 		intel_de_write(i915, HDCP_REP_CTL,
525 			       rep_ctl | HDCP_SHA1_TEXT_0);
526 		for (i = 0; i < 2; i++) {
527 			ret = intel_write_sha_text(i915, 0);
528 			if (ret < 0)
529 				return ret;
530 			sha_idx += sizeof(sha_text);
531 		}
532 
533 		/*
534 		 * Terminate the SHA-1 stream by hand. For the other leftover
535 		 * cases this is appended by the hardware.
536 		 */
537 		intel_de_write(i915, HDCP_REP_CTL,
538 			       rep_ctl | HDCP_SHA1_TEXT_32);
539 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
540 		ret = intel_write_sha_text(i915, sha_text);
541 		if (ret < 0)
542 			return ret;
543 		sha_idx += sizeof(sha_text);
544 	} else if (sha_leftovers == 3) {
545 		/* Write 32 bits of text (filled from LSB) */
546 		intel_de_write(i915, HDCP_REP_CTL,
547 			       rep_ctl | HDCP_SHA1_TEXT_32);
548 		sha_text |= bstatus[0];
549 		ret = intel_write_sha_text(i915, sha_text);
550 		if (ret < 0)
551 			return ret;
552 		sha_idx += sizeof(sha_text);
553 
554 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
555 		intel_de_write(i915, HDCP_REP_CTL,
556 			       rep_ctl | HDCP_SHA1_TEXT_8);
557 		ret = intel_write_sha_text(i915, bstatus[1]);
558 		if (ret < 0)
559 			return ret;
560 		sha_idx += sizeof(sha_text);
561 
562 		/* Write 32 bits of M0 */
563 		intel_de_write(i915, HDCP_REP_CTL,
564 			       rep_ctl | HDCP_SHA1_TEXT_0);
565 		ret = intel_write_sha_text(i915, 0);
566 		if (ret < 0)
567 			return ret;
568 		sha_idx += sizeof(sha_text);
569 
570 		/* Write 8 bits of M0 */
571 		intel_de_write(i915, HDCP_REP_CTL,
572 			       rep_ctl | HDCP_SHA1_TEXT_24);
573 		ret = intel_write_sha_text(i915, 0);
574 		if (ret < 0)
575 			return ret;
576 		sha_idx += sizeof(sha_text);
577 	} else {
578 		drm_dbg_kms(&i915->drm, "Invalid number of leftovers %d\n",
579 			    sha_leftovers);
580 		return -EINVAL;
581 	}
582 
583 	intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
584 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
585 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
586 		ret = intel_write_sha_text(i915, 0);
587 		if (ret < 0)
588 			return ret;
589 		sha_idx += sizeof(sha_text);
590 	}
591 
592 	/*
593 	 * Last write gets the length of the concatenation in bits. That is:
594 	 *  - 5 bytes per device
595 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
596 	 */
597 	sha_text = (num_downstream * 5 + 10) * 8;
598 	ret = intel_write_sha_text(i915, sha_text);
599 	if (ret < 0)
600 		return ret;
601 
602 	/* Tell the HW we're done with the hash and wait for it to ACK */
603 	intel_de_write(i915, HDCP_REP_CTL,
604 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
605 	if (intel_de_wait_for_set(i915, HDCP_REP_CTL,
606 				  HDCP_SHA1_COMPLETE, 1)) {
607 		drm_err(&i915->drm, "Timed out waiting for SHA1 complete\n");
608 		return -ETIMEDOUT;
609 	}
610 	if (!(intel_de_read(i915, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
611 		drm_dbg_kms(&i915->drm, "SHA-1 mismatch, HDCP failed\n");
612 		return -ENXIO;
613 	}
614 
615 	return 0;
616 }
617 
618 /* Implements Part 2 of the HDCP authorization procedure */
619 static
620 int intel_hdcp_auth_downstream(struct intel_connector *connector)
621 {
622 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
623 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
624 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
625 	u8 bstatus[2], num_downstream, *ksv_fifo;
626 	int ret, i, tries = 3;
627 
628 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
629 	if (ret) {
630 		drm_dbg_kms(&i915->drm,
631 			    "KSV list failed to become ready (%d)\n", ret);
632 		return ret;
633 	}
634 
635 	ret = shim->read_bstatus(dig_port, bstatus);
636 	if (ret)
637 		return ret;
638 
639 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
640 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
641 		drm_dbg_kms(&i915->drm, "Max Topology Limit Exceeded\n");
642 		return -EPERM;
643 	}
644 
645 	/*
646 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
647 	 * the HDCP encryption. That implies that repeater can't have its own
648 	 * display. As there is no consumption of encrypted content in the
649 	 * repeater with 0 downstream devices, we are failing the
650 	 * authentication.
651 	 */
652 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
653 	if (num_downstream == 0) {
654 		drm_dbg_kms(&i915->drm,
655 			    "Repeater with zero downstream devices\n");
656 		return -EINVAL;
657 	}
658 
659 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
660 	if (!ksv_fifo) {
661 		drm_dbg_kms(&i915->drm, "Out of mem: ksv_fifo\n");
662 		return -ENOMEM;
663 	}
664 
665 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
666 	if (ret)
667 		goto err;
668 
669 	if (drm_hdcp_check_ksvs_revoked(&i915->drm, ksv_fifo,
670 					num_downstream) > 0) {
671 		drm_err(&i915->drm, "Revoked Ksv(s) in ksv_fifo\n");
672 		ret = -EPERM;
673 		goto err;
674 	}
675 
676 	/*
677 	 * When V prime mismatches, DP Spec mandates re-read of
678 	 * V prime atleast twice.
679 	 */
680 	for (i = 0; i < tries; i++) {
681 		ret = intel_hdcp_validate_v_prime(connector, shim,
682 						  ksv_fifo, num_downstream,
683 						  bstatus);
684 		if (!ret)
685 			break;
686 	}
687 
688 	if (i == tries) {
689 		drm_dbg_kms(&i915->drm,
690 			    "V Prime validation failed.(%d)\n", ret);
691 		goto err;
692 	}
693 
694 	drm_dbg_kms(&i915->drm, "HDCP is enabled (%d downstream devices)\n",
695 		    num_downstream);
696 	ret = 0;
697 err:
698 	kfree(ksv_fifo);
699 	return ret;
700 }
701 
702 /* Implements Part 1 of the HDCP authorization procedure */
703 static int intel_hdcp_auth(struct intel_connector *connector)
704 {
705 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
706 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
707 	struct intel_hdcp *hdcp = &connector->hdcp;
708 	const struct intel_hdcp_shim *shim = hdcp->shim;
709 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
710 	enum port port = dig_port->base.port;
711 	unsigned long r0_prime_gen_start;
712 	int ret, i, tries = 2;
713 	union {
714 		u32 reg[2];
715 		u8 shim[DRM_HDCP_AN_LEN];
716 	} an;
717 	union {
718 		u32 reg[2];
719 		u8 shim[DRM_HDCP_KSV_LEN];
720 	} bksv;
721 	union {
722 		u32 reg;
723 		u8 shim[DRM_HDCP_RI_LEN];
724 	} ri;
725 	bool repeater_present, hdcp_capable;
726 
727 	/*
728 	 * Detects whether the display is HDCP capable. Although we check for
729 	 * valid Bksv below, the HDCP over DP spec requires that we check
730 	 * whether the display supports HDCP before we write An. For HDMI
731 	 * displays, this is not necessary.
732 	 */
733 	if (shim->hdcp_capable) {
734 		ret = shim->hdcp_capable(dig_port, &hdcp_capable);
735 		if (ret)
736 			return ret;
737 		if (!hdcp_capable) {
738 			drm_dbg_kms(&i915->drm,
739 				    "Panel is not HDCP capable\n");
740 			return -EINVAL;
741 		}
742 	}
743 
744 	/* Initialize An with 2 random values and acquire it */
745 	for (i = 0; i < 2; i++)
746 		intel_de_write(i915,
747 			       HDCP_ANINIT(i915, cpu_transcoder, port),
748 			       get_random_u32());
749 	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
750 		       HDCP_CONF_CAPTURE_AN);
751 
752 	/* Wait for An to be acquired */
753 	if (intel_de_wait_for_set(i915,
754 				  HDCP_STATUS(i915, cpu_transcoder, port),
755 				  HDCP_STATUS_AN_READY, 1)) {
756 		drm_err(&i915->drm, "Timed out waiting for An\n");
757 		return -ETIMEDOUT;
758 	}
759 
760 	an.reg[0] = intel_de_read(i915,
761 				  HDCP_ANLO(i915, cpu_transcoder, port));
762 	an.reg[1] = intel_de_read(i915,
763 				  HDCP_ANHI(i915, cpu_transcoder, port));
764 	ret = shim->write_an_aksv(dig_port, an.shim);
765 	if (ret)
766 		return ret;
767 
768 	r0_prime_gen_start = jiffies;
769 
770 	memset(&bksv, 0, sizeof(bksv));
771 
772 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
773 	if (ret < 0)
774 		return ret;
775 
776 	if (drm_hdcp_check_ksvs_revoked(&i915->drm, bksv.shim, 1) > 0) {
777 		drm_err(&i915->drm, "BKSV is revoked\n");
778 		return -EPERM;
779 	}
780 
781 	intel_de_write(i915, HDCP_BKSVLO(i915, cpu_transcoder, port),
782 		       bksv.reg[0]);
783 	intel_de_write(i915, HDCP_BKSVHI(i915, cpu_transcoder, port),
784 		       bksv.reg[1]);
785 
786 	ret = shim->repeater_present(dig_port, &repeater_present);
787 	if (ret)
788 		return ret;
789 	if (repeater_present)
790 		intel_de_write(i915, HDCP_REP_CTL,
791 			       intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port));
792 
793 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
794 	if (ret)
795 		return ret;
796 
797 	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
798 		       HDCP_CONF_AUTH_AND_ENC);
799 
800 	/* Wait for R0 ready */
801 	if (wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
802 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
803 		drm_err(&i915->drm, "Timed out waiting for R0 ready\n");
804 		return -ETIMEDOUT;
805 	}
806 
807 	/*
808 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
809 	 * some monitors can take longer than this. We'll set the timeout at
810 	 * 300ms just to be sure.
811 	 *
812 	 * On DP, there's an R0_READY bit available but no such bit
813 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
814 	 * the stupid thing instead of polling on one and not the other.
815 	 */
816 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
817 
818 	tries = 3;
819 
820 	/*
821 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
822 	 * of R0 mismatch.
823 	 */
824 	for (i = 0; i < tries; i++) {
825 		ri.reg = 0;
826 		ret = shim->read_ri_prime(dig_port, ri.shim);
827 		if (ret)
828 			return ret;
829 		intel_de_write(i915,
830 			       HDCP_RPRIME(i915, cpu_transcoder, port),
831 			       ri.reg);
832 
833 		/* Wait for Ri prime match */
834 		if (!wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
835 			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
836 			break;
837 	}
838 
839 	if (i == tries) {
840 		drm_dbg_kms(&i915->drm,
841 			    "Timed out waiting for Ri prime match (%x)\n",
842 			    intel_de_read(i915,
843 					  HDCP_STATUS(i915, cpu_transcoder, port)));
844 		return -ETIMEDOUT;
845 	}
846 
847 	/* Wait for encryption confirmation */
848 	if (intel_de_wait_for_set(i915,
849 				  HDCP_STATUS(i915, cpu_transcoder, port),
850 				  HDCP_STATUS_ENC,
851 				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
852 		drm_err(&i915->drm, "Timed out waiting for encryption\n");
853 		return -ETIMEDOUT;
854 	}
855 
856 	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
857 	if (shim->stream_encryption) {
858 		ret = shim->stream_encryption(connector, true);
859 		if (ret) {
860 			drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
861 				connector->base.name, connector->base.base.id);
862 			return ret;
863 		}
864 		drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
865 			    transcoder_name(hdcp->stream_transcoder));
866 	}
867 
868 	if (repeater_present)
869 		return intel_hdcp_auth_downstream(connector);
870 
871 	drm_dbg_kms(&i915->drm, "HDCP is enabled (no repeater present)\n");
872 	return 0;
873 }
874 
875 static int _intel_hdcp_disable(struct intel_connector *connector)
876 {
877 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
878 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
879 	struct intel_hdcp *hdcp = &connector->hdcp;
880 	enum port port = dig_port->base.port;
881 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
882 	u32 repeater_ctl;
883 	int ret;
884 
885 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being disabled...\n",
886 		    connector->base.name, connector->base.base.id);
887 
888 	if (hdcp->shim->stream_encryption) {
889 		ret = hdcp->shim->stream_encryption(connector, false);
890 		if (ret) {
891 			drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
892 				connector->base.name, connector->base.base.id);
893 			return ret;
894 		}
895 		drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
896 			    transcoder_name(hdcp->stream_transcoder));
897 		/*
898 		 * If there are other connectors on this port using HDCP,
899 		 * don't disable it until it disabled HDCP encryption for
900 		 * all connectors in MST topology.
901 		 */
902 		if (dig_port->num_hdcp_streams > 0)
903 			return 0;
904 	}
905 
906 	hdcp->hdcp_encrypted = false;
907 	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 0);
908 	if (intel_de_wait_for_clear(i915,
909 				    HDCP_STATUS(i915, cpu_transcoder, port),
910 				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
911 		drm_err(&i915->drm,
912 			"Failed to disable HDCP, timeout clearing status\n");
913 		return -ETIMEDOUT;
914 	}
915 
916 	repeater_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder,
917 						   port);
918 	intel_de_rmw(i915, HDCP_REP_CTL, repeater_ctl, 0);
919 
920 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
921 	if (ret) {
922 		drm_err(&i915->drm, "Failed to disable HDCP signalling\n");
923 		return ret;
924 	}
925 
926 	drm_dbg_kms(&i915->drm, "HDCP is disabled\n");
927 	return 0;
928 }
929 
930 static int _intel_hdcp_enable(struct intel_connector *connector)
931 {
932 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
933 	struct intel_hdcp *hdcp = &connector->hdcp;
934 	int i, ret, tries = 3;
935 
936 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being enabled...\n",
937 		    connector->base.name, connector->base.base.id);
938 
939 	if (!hdcp_key_loadable(i915)) {
940 		drm_err(&i915->drm, "HDCP key Load is not possible\n");
941 		return -ENXIO;
942 	}
943 
944 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
945 		ret = intel_hdcp_load_keys(i915);
946 		if (!ret)
947 			break;
948 		intel_hdcp_clear_keys(i915);
949 	}
950 	if (ret) {
951 		drm_err(&i915->drm, "Could not load HDCP keys, (%d)\n",
952 			ret);
953 		return ret;
954 	}
955 
956 	/* Incase of authentication failures, HDCP spec expects reauth. */
957 	for (i = 0; i < tries; i++) {
958 		ret = intel_hdcp_auth(connector);
959 		if (!ret) {
960 			hdcp->hdcp_encrypted = true;
961 			return 0;
962 		}
963 
964 		drm_dbg_kms(&i915->drm, "HDCP Auth failure (%d)\n", ret);
965 
966 		/* Ensuring HDCP encryption and signalling are stopped. */
967 		_intel_hdcp_disable(connector);
968 	}
969 
970 	drm_dbg_kms(&i915->drm,
971 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
972 	return ret;
973 }
974 
975 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
976 {
977 	return container_of(hdcp, struct intel_connector, hdcp);
978 }
979 
980 static void intel_hdcp_update_value(struct intel_connector *connector,
981 				    u64 value, bool update_property)
982 {
983 	struct drm_device *dev = connector->base.dev;
984 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
985 	struct intel_hdcp *hdcp = &connector->hdcp;
986 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
987 
988 	drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
989 
990 	if (hdcp->value == value)
991 		return;
992 
993 	drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
994 
995 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
996 		if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
997 			dig_port->num_hdcp_streams--;
998 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
999 		dig_port->num_hdcp_streams++;
1000 	}
1001 
1002 	hdcp->value = value;
1003 	if (update_property) {
1004 		drm_connector_get(&connector->base);
1005 		queue_work(i915->unordered_wq, &hdcp->prop_work);
1006 	}
1007 }
1008 
1009 /* Implements Part 3 of the HDCP authorization procedure */
1010 static int intel_hdcp_check_link(struct intel_connector *connector)
1011 {
1012 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1013 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1014 	struct intel_hdcp *hdcp = &connector->hdcp;
1015 	enum port port = dig_port->base.port;
1016 	enum transcoder cpu_transcoder;
1017 	int ret = 0;
1018 
1019 	mutex_lock(&hdcp->mutex);
1020 	mutex_lock(&dig_port->hdcp_mutex);
1021 
1022 	cpu_transcoder = hdcp->cpu_transcoder;
1023 
1024 	/* Check_link valid only when HDCP1.4 is enabled */
1025 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1026 	    !hdcp->hdcp_encrypted) {
1027 		ret = -EINVAL;
1028 		goto out;
1029 	}
1030 
1031 	if (drm_WARN_ON(&i915->drm,
1032 			!intel_hdcp_in_use(i915, cpu_transcoder, port))) {
1033 		drm_err(&i915->drm,
1034 			"%s:%d HDCP link stopped encryption,%x\n",
1035 			connector->base.name, connector->base.base.id,
1036 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)));
1037 		ret = -ENXIO;
1038 		intel_hdcp_update_value(connector,
1039 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1040 					true);
1041 		goto out;
1042 	}
1043 
1044 	if (hdcp->shim->check_link(dig_port, connector)) {
1045 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1046 			intel_hdcp_update_value(connector,
1047 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1048 		}
1049 		goto out;
1050 	}
1051 
1052 	drm_dbg_kms(&i915->drm,
1053 		    "[%s:%d] HDCP link failed, retrying authentication\n",
1054 		    connector->base.name, connector->base.base.id);
1055 
1056 	ret = _intel_hdcp_disable(connector);
1057 	if (ret) {
1058 		drm_err(&i915->drm, "Failed to disable hdcp (%d)\n", ret);
1059 		intel_hdcp_update_value(connector,
1060 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1061 					true);
1062 		goto out;
1063 	}
1064 
1065 	ret = _intel_hdcp_enable(connector);
1066 	if (ret) {
1067 		drm_err(&i915->drm, "Failed to enable hdcp (%d)\n", ret);
1068 		intel_hdcp_update_value(connector,
1069 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1070 					true);
1071 		goto out;
1072 	}
1073 
1074 out:
1075 	mutex_unlock(&dig_port->hdcp_mutex);
1076 	mutex_unlock(&hdcp->mutex);
1077 	return ret;
1078 }
1079 
1080 static void intel_hdcp_prop_work(struct work_struct *work)
1081 {
1082 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1083 					       prop_work);
1084 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1085 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1086 
1087 	drm_modeset_lock(&i915->drm.mode_config.connection_mutex, NULL);
1088 	mutex_lock(&hdcp->mutex);
1089 
1090 	/*
1091 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1092 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1093 	 * we're running just after hdcp has been disabled, so just exit
1094 	 */
1095 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1096 		drm_hdcp_update_content_protection(&connector->base,
1097 						   hdcp->value);
1098 
1099 	mutex_unlock(&hdcp->mutex);
1100 	drm_modeset_unlock(&i915->drm.mode_config.connection_mutex);
1101 
1102 	drm_connector_put(&connector->base);
1103 }
1104 
1105 bool is_hdcp_supported(struct drm_i915_private *i915, enum port port)
1106 {
1107 	return DISPLAY_RUNTIME_INFO(i915)->has_hdcp &&
1108 		(DISPLAY_VER(i915) >= 12 || port < PORT_E);
1109 }
1110 
1111 static int
1112 hdcp2_prepare_ake_init(struct intel_connector *connector,
1113 		       struct hdcp2_ake_init *ake_data)
1114 {
1115 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1116 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1117 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1118 	struct i915_hdcp_arbiter *arbiter;
1119 	int ret;
1120 
1121 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1122 	arbiter = i915->display.hdcp.arbiter;
1123 
1124 	if (!arbiter || !arbiter->ops) {
1125 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1126 		return -EINVAL;
1127 	}
1128 
1129 	ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1130 	if (ret)
1131 		drm_dbg_kms(&i915->drm, "Prepare_ake_init failed. %d\n",
1132 			    ret);
1133 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1134 
1135 	return ret;
1136 }
1137 
1138 static int
1139 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1140 				struct hdcp2_ake_send_cert *rx_cert,
1141 				bool *paired,
1142 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1143 				size_t *msg_sz)
1144 {
1145 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1146 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1147 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1148 	struct i915_hdcp_arbiter *arbiter;
1149 	int ret;
1150 
1151 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1152 	arbiter = i915->display.hdcp.arbiter;
1153 
1154 	if (!arbiter || !arbiter->ops) {
1155 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1156 		return -EINVAL;
1157 	}
1158 
1159 	ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1160 							 rx_cert, paired,
1161 							 ek_pub_km, msg_sz);
1162 	if (ret < 0)
1163 		drm_dbg_kms(&i915->drm, "Verify rx_cert failed. %d\n",
1164 			    ret);
1165 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1166 
1167 	return ret;
1168 }
1169 
1170 static int hdcp2_verify_hprime(struct intel_connector *connector,
1171 			       struct hdcp2_ake_send_hprime *rx_hprime)
1172 {
1173 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1174 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1175 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1176 	struct i915_hdcp_arbiter *arbiter;
1177 	int ret;
1178 
1179 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1180 	arbiter = i915->display.hdcp.arbiter;
1181 
1182 	if (!arbiter || !arbiter->ops) {
1183 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1184 		return -EINVAL;
1185 	}
1186 
1187 	ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1188 	if (ret < 0)
1189 		drm_dbg_kms(&i915->drm, "Verify hprime failed. %d\n", ret);
1190 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1191 
1192 	return ret;
1193 }
1194 
1195 static int
1196 hdcp2_store_pairing_info(struct intel_connector *connector,
1197 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1198 {
1199 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1200 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1201 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1202 	struct i915_hdcp_arbiter *arbiter;
1203 	int ret;
1204 
1205 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1206 	arbiter = i915->display.hdcp.arbiter;
1207 
1208 	if (!arbiter || !arbiter->ops) {
1209 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1210 		return -EINVAL;
1211 	}
1212 
1213 	ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1214 	if (ret < 0)
1215 		drm_dbg_kms(&i915->drm, "Store pairing info failed. %d\n",
1216 			    ret);
1217 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1218 
1219 	return ret;
1220 }
1221 
1222 static int
1223 hdcp2_prepare_lc_init(struct intel_connector *connector,
1224 		      struct hdcp2_lc_init *lc_init)
1225 {
1226 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1227 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1228 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1229 	struct i915_hdcp_arbiter *arbiter;
1230 	int ret;
1231 
1232 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1233 	arbiter = i915->display.hdcp.arbiter;
1234 
1235 	if (!arbiter || !arbiter->ops) {
1236 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1237 		return -EINVAL;
1238 	}
1239 
1240 	ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1241 	if (ret < 0)
1242 		drm_dbg_kms(&i915->drm, "Prepare lc_init failed. %d\n",
1243 			    ret);
1244 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1245 
1246 	return ret;
1247 }
1248 
1249 static int
1250 hdcp2_verify_lprime(struct intel_connector *connector,
1251 		    struct hdcp2_lc_send_lprime *rx_lprime)
1252 {
1253 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1254 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1255 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1256 	struct i915_hdcp_arbiter *arbiter;
1257 	int ret;
1258 
1259 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1260 	arbiter = i915->display.hdcp.arbiter;
1261 
1262 	if (!arbiter || !arbiter->ops) {
1263 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1264 		return -EINVAL;
1265 	}
1266 
1267 	ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1268 	if (ret < 0)
1269 		drm_dbg_kms(&i915->drm, "Verify L_Prime failed. %d\n",
1270 			    ret);
1271 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1272 
1273 	return ret;
1274 }
1275 
1276 static int hdcp2_prepare_skey(struct intel_connector *connector,
1277 			      struct hdcp2_ske_send_eks *ske_data)
1278 {
1279 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1280 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1281 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1282 	struct i915_hdcp_arbiter *arbiter;
1283 	int ret;
1284 
1285 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1286 	arbiter = i915->display.hdcp.arbiter;
1287 
1288 	if (!arbiter || !arbiter->ops) {
1289 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1290 		return -EINVAL;
1291 	}
1292 
1293 	ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1294 	if (ret < 0)
1295 		drm_dbg_kms(&i915->drm, "Get session key failed. %d\n",
1296 			    ret);
1297 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1298 
1299 	return ret;
1300 }
1301 
1302 static int
1303 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1304 				      struct hdcp2_rep_send_receiverid_list
1305 								*rep_topology,
1306 				      struct hdcp2_rep_send_ack *rep_send_ack)
1307 {
1308 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1309 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1310 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1311 	struct i915_hdcp_arbiter *arbiter;
1312 	int ret;
1313 
1314 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1315 	arbiter = i915->display.hdcp.arbiter;
1316 
1317 	if (!arbiter || !arbiter->ops) {
1318 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1319 		return -EINVAL;
1320 	}
1321 
1322 	ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1323 							    data,
1324 							    rep_topology,
1325 							    rep_send_ack);
1326 	if (ret < 0)
1327 		drm_dbg_kms(&i915->drm,
1328 			    "Verify rep topology failed. %d\n", ret);
1329 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1330 
1331 	return ret;
1332 }
1333 
1334 static int
1335 hdcp2_verify_mprime(struct intel_connector *connector,
1336 		    struct hdcp2_rep_stream_ready *stream_ready)
1337 {
1338 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1339 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1340 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1341 	struct i915_hdcp_arbiter *arbiter;
1342 	int ret;
1343 
1344 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1345 	arbiter = i915->display.hdcp.arbiter;
1346 
1347 	if (!arbiter || !arbiter->ops) {
1348 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1349 		return -EINVAL;
1350 	}
1351 
1352 	ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1353 	if (ret < 0)
1354 		drm_dbg_kms(&i915->drm, "Verify mprime failed. %d\n", ret);
1355 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1356 
1357 	return ret;
1358 }
1359 
1360 static int hdcp2_authenticate_port(struct intel_connector *connector)
1361 {
1362 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1363 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1364 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1365 	struct i915_hdcp_arbiter *arbiter;
1366 	int ret;
1367 
1368 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1369 	arbiter = i915->display.hdcp.arbiter;
1370 
1371 	if (!arbiter || !arbiter->ops) {
1372 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1373 		return -EINVAL;
1374 	}
1375 
1376 	ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1377 	if (ret < 0)
1378 		drm_dbg_kms(&i915->drm, "Enable hdcp auth failed. %d\n",
1379 			    ret);
1380 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1381 
1382 	return ret;
1383 }
1384 
1385 static int hdcp2_close_session(struct intel_connector *connector)
1386 {
1387 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1388 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1389 	struct i915_hdcp_arbiter *arbiter;
1390 	int ret;
1391 
1392 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1393 	arbiter = i915->display.hdcp.arbiter;
1394 
1395 	if (!arbiter || !arbiter->ops) {
1396 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1397 		return -EINVAL;
1398 	}
1399 
1400 	ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1401 					     &dig_port->hdcp_port_data);
1402 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1403 
1404 	return ret;
1405 }
1406 
1407 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1408 {
1409 	return hdcp2_close_session(connector);
1410 }
1411 
1412 /* Authentication flow starts from here */
1413 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1414 {
1415 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1416 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1417 	struct intel_hdcp *hdcp = &connector->hdcp;
1418 	union {
1419 		struct hdcp2_ake_init ake_init;
1420 		struct hdcp2_ake_send_cert send_cert;
1421 		struct hdcp2_ake_no_stored_km no_stored_km;
1422 		struct hdcp2_ake_send_hprime send_hprime;
1423 		struct hdcp2_ake_send_pairing_info pairing_info;
1424 	} msgs;
1425 	const struct intel_hdcp_shim *shim = hdcp->shim;
1426 	size_t size;
1427 	int ret;
1428 
1429 	/* Init for seq_num */
1430 	hdcp->seq_num_v = 0;
1431 	hdcp->seq_num_m = 0;
1432 
1433 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1434 	if (ret < 0)
1435 		return ret;
1436 
1437 	ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1438 				  sizeof(msgs.ake_init));
1439 	if (ret < 0)
1440 		return ret;
1441 
1442 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1443 				 &msgs.send_cert, sizeof(msgs.send_cert));
1444 	if (ret < 0)
1445 		return ret;
1446 
1447 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1448 		drm_dbg_kms(&i915->drm, "cert.rx_caps dont claim HDCP2.2\n");
1449 		return -EINVAL;
1450 	}
1451 
1452 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1453 
1454 	if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1455 					msgs.send_cert.cert_rx.receiver_id,
1456 					1) > 0) {
1457 		drm_err(&i915->drm, "Receiver ID is revoked\n");
1458 		return -EPERM;
1459 	}
1460 
1461 	/*
1462 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1463 	 * stored also.
1464 	 */
1465 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1466 					      &hdcp->is_paired,
1467 					      &msgs.no_stored_km, &size);
1468 	if (ret < 0)
1469 		return ret;
1470 
1471 	ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1472 	if (ret < 0)
1473 		return ret;
1474 
1475 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1476 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1477 	if (ret < 0)
1478 		return ret;
1479 
1480 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1481 	if (ret < 0)
1482 		return ret;
1483 
1484 	if (!hdcp->is_paired) {
1485 		/* Pairing is required */
1486 		ret = shim->read_2_2_msg(dig_port,
1487 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1488 					 &msgs.pairing_info,
1489 					 sizeof(msgs.pairing_info));
1490 		if (ret < 0)
1491 			return ret;
1492 
1493 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1494 		if (ret < 0)
1495 			return ret;
1496 		hdcp->is_paired = true;
1497 	}
1498 
1499 	return 0;
1500 }
1501 
1502 static int hdcp2_locality_check(struct intel_connector *connector)
1503 {
1504 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1505 	struct intel_hdcp *hdcp = &connector->hdcp;
1506 	union {
1507 		struct hdcp2_lc_init lc_init;
1508 		struct hdcp2_lc_send_lprime send_lprime;
1509 	} msgs;
1510 	const struct intel_hdcp_shim *shim = hdcp->shim;
1511 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1512 
1513 	for (i = 0; i < tries; i++) {
1514 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1515 		if (ret < 0)
1516 			continue;
1517 
1518 		ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1519 				      sizeof(msgs.lc_init));
1520 		if (ret < 0)
1521 			continue;
1522 
1523 		ret = shim->read_2_2_msg(dig_port,
1524 					 HDCP_2_2_LC_SEND_LPRIME,
1525 					 &msgs.send_lprime,
1526 					 sizeof(msgs.send_lprime));
1527 		if (ret < 0)
1528 			continue;
1529 
1530 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1531 		if (!ret)
1532 			break;
1533 	}
1534 
1535 	return ret;
1536 }
1537 
1538 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1539 {
1540 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1541 	struct intel_hdcp *hdcp = &connector->hdcp;
1542 	struct hdcp2_ske_send_eks send_eks;
1543 	int ret;
1544 
1545 	ret = hdcp2_prepare_skey(connector, &send_eks);
1546 	if (ret < 0)
1547 		return ret;
1548 
1549 	ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1550 					sizeof(send_eks));
1551 	if (ret < 0)
1552 		return ret;
1553 
1554 	return 0;
1555 }
1556 
1557 static
1558 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1559 {
1560 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1561 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1562 	struct intel_hdcp *hdcp = &connector->hdcp;
1563 	union {
1564 		struct hdcp2_rep_stream_manage stream_manage;
1565 		struct hdcp2_rep_stream_ready stream_ready;
1566 	} msgs;
1567 	const struct intel_hdcp_shim *shim = hdcp->shim;
1568 	int ret, streams_size_delta, i;
1569 
1570 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1571 		return -ERANGE;
1572 
1573 	/* Prepare RepeaterAuth_Stream_Manage msg */
1574 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1575 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1576 
1577 	msgs.stream_manage.k = cpu_to_be16(data->k);
1578 
1579 	for (i = 0; i < data->k; i++) {
1580 		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1581 		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1582 	}
1583 
1584 	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1585 				sizeof(struct hdcp2_streamid_type);
1586 	/* Send it to Repeater */
1587 	ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1588 				  sizeof(msgs.stream_manage) - streams_size_delta);
1589 	if (ret < 0)
1590 		goto out;
1591 
1592 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1593 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1594 	if (ret < 0)
1595 		goto out;
1596 
1597 	data->seq_num_m = hdcp->seq_num_m;
1598 
1599 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1600 
1601 out:
1602 	hdcp->seq_num_m++;
1603 
1604 	return ret;
1605 }
1606 
1607 static
1608 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1609 {
1610 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1611 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1612 	struct intel_hdcp *hdcp = &connector->hdcp;
1613 	union {
1614 		struct hdcp2_rep_send_receiverid_list recvid_list;
1615 		struct hdcp2_rep_send_ack rep_ack;
1616 	} msgs;
1617 	const struct intel_hdcp_shim *shim = hdcp->shim;
1618 	u32 seq_num_v, device_cnt;
1619 	u8 *rx_info;
1620 	int ret;
1621 
1622 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1623 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1624 	if (ret < 0)
1625 		return ret;
1626 
1627 	rx_info = msgs.recvid_list.rx_info;
1628 
1629 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1630 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1631 		drm_dbg_kms(&i915->drm, "Topology Max Size Exceeded\n");
1632 		return -EINVAL;
1633 	}
1634 
1635 	/*
1636 	 * MST topology is not Type 1 capable if it contains a downstream
1637 	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1638 	 */
1639 	dig_port->hdcp_mst_type1_capable =
1640 		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1641 		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1642 
1643 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1644 	seq_num_v =
1645 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1646 
1647 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1648 		drm_dbg_kms(&i915->drm,
1649 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1650 		return -EINVAL;
1651 	}
1652 
1653 	if (seq_num_v < hdcp->seq_num_v) {
1654 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1655 		drm_dbg_kms(&i915->drm, "Seq_num_v roll over.\n");
1656 		return -EINVAL;
1657 	}
1658 
1659 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1660 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1661 	if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1662 					msgs.recvid_list.receiver_ids,
1663 					device_cnt) > 0) {
1664 		drm_err(&i915->drm, "Revoked receiver ID(s) is in list\n");
1665 		return -EPERM;
1666 	}
1667 
1668 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1669 						    &msgs.recvid_list,
1670 						    &msgs.rep_ack);
1671 	if (ret < 0)
1672 		return ret;
1673 
1674 	hdcp->seq_num_v = seq_num_v;
1675 	ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1676 				  sizeof(msgs.rep_ack));
1677 	if (ret < 0)
1678 		return ret;
1679 
1680 	return 0;
1681 }
1682 
1683 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1684 {
1685 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1686 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1687 	struct intel_hdcp *hdcp = &connector->hdcp;
1688 	const struct intel_hdcp_shim *shim = hdcp->shim;
1689 	int ret;
1690 
1691 	ret = hdcp2_authentication_key_exchange(connector);
1692 	if (ret < 0) {
1693 		drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1694 		return ret;
1695 	}
1696 
1697 	ret = hdcp2_locality_check(connector);
1698 	if (ret < 0) {
1699 		drm_dbg_kms(&i915->drm,
1700 			    "Locality Check failed. Err : %d\n", ret);
1701 		return ret;
1702 	}
1703 
1704 	ret = hdcp2_session_key_exchange(connector);
1705 	if (ret < 0) {
1706 		drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1707 		return ret;
1708 	}
1709 
1710 	if (shim->config_stream_type) {
1711 		ret = shim->config_stream_type(dig_port,
1712 					       hdcp->is_repeater,
1713 					       hdcp->content_type);
1714 		if (ret < 0)
1715 			return ret;
1716 	}
1717 
1718 	if (hdcp->is_repeater) {
1719 		ret = hdcp2_authenticate_repeater_topology(connector);
1720 		if (ret < 0) {
1721 			drm_dbg_kms(&i915->drm,
1722 				    "Repeater Auth Failed. Err: %d\n", ret);
1723 			return ret;
1724 		}
1725 	}
1726 
1727 	return ret;
1728 }
1729 
1730 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1731 {
1732 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1733 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1734 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1735 	struct intel_hdcp *hdcp = &connector->hdcp;
1736 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1737 	enum port port = dig_port->base.port;
1738 	int ret = 0;
1739 
1740 	if (!(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1741 			    LINK_ENCRYPTION_STATUS)) {
1742 		drm_err(&i915->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1743 			connector->base.name, connector->base.base.id);
1744 		ret = -EPERM;
1745 		goto link_recover;
1746 	}
1747 
1748 	if (hdcp->shim->stream_2_2_encryption) {
1749 		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1750 		if (ret) {
1751 			drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1752 				connector->base.name, connector->base.base.id);
1753 			return ret;
1754 		}
1755 		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1756 			    transcoder_name(hdcp->stream_transcoder));
1757 	}
1758 
1759 	return 0;
1760 
1761 link_recover:
1762 	if (hdcp2_deauthenticate_port(connector) < 0)
1763 		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1764 
1765 	dig_port->hdcp_auth_status = false;
1766 	data->k = 0;
1767 
1768 	return ret;
1769 }
1770 
1771 static int hdcp2_enable_encryption(struct intel_connector *connector)
1772 {
1773 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1774 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1775 	struct intel_hdcp *hdcp = &connector->hdcp;
1776 	enum port port = dig_port->base.port;
1777 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1778 	int ret;
1779 
1780 	drm_WARN_ON(&i915->drm,
1781 		    intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1782 		    LINK_ENCRYPTION_STATUS);
1783 	if (hdcp->shim->toggle_signalling) {
1784 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1785 						    true);
1786 		if (ret) {
1787 			drm_err(&i915->drm,
1788 				"Failed to enable HDCP signalling. %d\n",
1789 				ret);
1790 			return ret;
1791 		}
1792 	}
1793 
1794 	if (intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1795 	    LINK_AUTH_STATUS)
1796 		/* Link is Authenticated. Now set for Encryption */
1797 		intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1798 			     0, CTL_LINK_ENCRYPTION_REQ);
1799 
1800 	ret = intel_de_wait_for_set(i915,
1801 				    HDCP2_STATUS(i915, cpu_transcoder,
1802 						 port),
1803 				    LINK_ENCRYPTION_STATUS,
1804 				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1805 	dig_port->hdcp_auth_status = true;
1806 
1807 	return ret;
1808 }
1809 
1810 static int hdcp2_disable_encryption(struct intel_connector *connector)
1811 {
1812 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1813 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1814 	struct intel_hdcp *hdcp = &connector->hdcp;
1815 	enum port port = dig_port->base.port;
1816 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1817 	int ret;
1818 
1819 	drm_WARN_ON(&i915->drm, !(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1820 				      LINK_ENCRYPTION_STATUS));
1821 
1822 	intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1823 		     CTL_LINK_ENCRYPTION_REQ, 0);
1824 
1825 	ret = intel_de_wait_for_clear(i915,
1826 				      HDCP2_STATUS(i915, cpu_transcoder,
1827 						   port),
1828 				      LINK_ENCRYPTION_STATUS,
1829 				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1830 	if (ret == -ETIMEDOUT)
1831 		drm_dbg_kms(&i915->drm, "Disable Encryption Timedout");
1832 
1833 	if (hdcp->shim->toggle_signalling) {
1834 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1835 						    false);
1836 		if (ret) {
1837 			drm_err(&i915->drm,
1838 				"Failed to disable HDCP signalling. %d\n",
1839 				ret);
1840 			return ret;
1841 		}
1842 	}
1843 
1844 	return ret;
1845 }
1846 
1847 static int
1848 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1849 {
1850 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1851 	int i, tries = 3, ret;
1852 
1853 	if (!connector->hdcp.is_repeater)
1854 		return 0;
1855 
1856 	for (i = 0; i < tries; i++) {
1857 		ret = _hdcp2_propagate_stream_management_info(connector);
1858 		if (!ret)
1859 			break;
1860 
1861 		/* Lets restart the auth incase of seq_num_m roll over */
1862 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1863 			drm_dbg_kms(&i915->drm,
1864 				    "seq_num_m roll over.(%d)\n", ret);
1865 			break;
1866 		}
1867 
1868 		drm_dbg_kms(&i915->drm,
1869 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
1870 			    i + 1, tries, ret);
1871 	}
1872 
1873 	return ret;
1874 }
1875 
1876 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1877 {
1878 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1879 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1880 	int ret = 0, i, tries = 3;
1881 
1882 	for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1883 		ret = hdcp2_authenticate_sink(connector);
1884 		if (!ret) {
1885 			intel_hdcp_prepare_streams(connector);
1886 
1887 			ret = hdcp2_propagate_stream_management_info(connector);
1888 			if (ret) {
1889 				drm_dbg_kms(&i915->drm,
1890 					    "Stream management failed.(%d)\n",
1891 					    ret);
1892 				break;
1893 			}
1894 
1895 			ret = hdcp2_authenticate_port(connector);
1896 			if (!ret)
1897 				break;
1898 			drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1899 				    ret);
1900 		}
1901 
1902 		/* Clearing the mei hdcp session */
1903 		drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1904 			    i + 1, tries, ret);
1905 		if (hdcp2_deauthenticate_port(connector) < 0)
1906 			drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1907 	}
1908 
1909 	if (!ret && !dig_port->hdcp_auth_status) {
1910 		/*
1911 		 * Ensuring the required 200mSec min time interval between
1912 		 * Session Key Exchange and encryption.
1913 		 */
1914 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1915 		ret = hdcp2_enable_encryption(connector);
1916 		if (ret < 0) {
1917 			drm_dbg_kms(&i915->drm,
1918 				    "Encryption Enable Failed.(%d)\n", ret);
1919 			if (hdcp2_deauthenticate_port(connector) < 0)
1920 				drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1921 		}
1922 	}
1923 
1924 	if (!ret)
1925 		ret = hdcp2_enable_stream_encryption(connector);
1926 
1927 	return ret;
1928 }
1929 
1930 static int _intel_hdcp2_enable(struct intel_connector *connector)
1931 {
1932 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1933 	struct intel_hdcp *hdcp = &connector->hdcp;
1934 	int ret;
1935 
1936 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1937 		    connector->base.name, connector->base.base.id,
1938 		    hdcp->content_type);
1939 
1940 	ret = hdcp2_authenticate_and_encrypt(connector);
1941 	if (ret) {
1942 		drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
1943 			    hdcp->content_type, ret);
1944 		return ret;
1945 	}
1946 
1947 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1948 		    connector->base.name, connector->base.base.id,
1949 		    hdcp->content_type);
1950 
1951 	hdcp->hdcp2_encrypted = true;
1952 	return 0;
1953 }
1954 
1955 static int
1956 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1957 {
1958 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1959 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1960 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1961 	struct intel_hdcp *hdcp = &connector->hdcp;
1962 	int ret;
1963 
1964 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1965 		    connector->base.name, connector->base.base.id);
1966 
1967 	if (hdcp->shim->stream_2_2_encryption) {
1968 		ret = hdcp->shim->stream_2_2_encryption(connector, false);
1969 		if (ret) {
1970 			drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
1971 				connector->base.name, connector->base.base.id);
1972 			return ret;
1973 		}
1974 		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
1975 			    transcoder_name(hdcp->stream_transcoder));
1976 
1977 		if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
1978 			return 0;
1979 	}
1980 
1981 	ret = hdcp2_disable_encryption(connector);
1982 
1983 	if (hdcp2_deauthenticate_port(connector) < 0)
1984 		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1985 
1986 	connector->hdcp.hdcp2_encrypted = false;
1987 	dig_port->hdcp_auth_status = false;
1988 	data->k = 0;
1989 
1990 	return ret;
1991 }
1992 
1993 /* Implements the Link Integrity Check for HDCP2.2 */
1994 static int intel_hdcp2_check_link(struct intel_connector *connector)
1995 {
1996 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1997 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1998 	struct intel_hdcp *hdcp = &connector->hdcp;
1999 	enum port port = dig_port->base.port;
2000 	enum transcoder cpu_transcoder;
2001 	int ret = 0;
2002 
2003 	mutex_lock(&hdcp->mutex);
2004 	mutex_lock(&dig_port->hdcp_mutex);
2005 	cpu_transcoder = hdcp->cpu_transcoder;
2006 
2007 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2008 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2009 	    !hdcp->hdcp2_encrypted) {
2010 		ret = -EINVAL;
2011 		goto out;
2012 	}
2013 
2014 	if (drm_WARN_ON(&i915->drm,
2015 			!intel_hdcp2_in_use(i915, cpu_transcoder, port))) {
2016 		drm_err(&i915->drm,
2017 			"HDCP2.2 link stopped the encryption, %x\n",
2018 			intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)));
2019 		ret = -ENXIO;
2020 		_intel_hdcp2_disable(connector, true);
2021 		intel_hdcp_update_value(connector,
2022 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2023 					true);
2024 		goto out;
2025 	}
2026 
2027 	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2028 	if (ret == HDCP_LINK_PROTECTED) {
2029 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2030 			intel_hdcp_update_value(connector,
2031 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2032 					true);
2033 		}
2034 		goto out;
2035 	}
2036 
2037 	if (ret == HDCP_TOPOLOGY_CHANGE) {
2038 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2039 			goto out;
2040 
2041 		drm_dbg_kms(&i915->drm,
2042 			    "HDCP2.2 Downstream topology change\n");
2043 		ret = hdcp2_authenticate_repeater_topology(connector);
2044 		if (!ret) {
2045 			intel_hdcp_update_value(connector,
2046 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2047 					true);
2048 			goto out;
2049 		}
2050 		drm_dbg_kms(&i915->drm,
2051 			    "[%s:%d] Repeater topology auth failed.(%d)\n",
2052 			    connector->base.name, connector->base.base.id,
2053 			    ret);
2054 	} else {
2055 		drm_dbg_kms(&i915->drm,
2056 			    "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2057 			    connector->base.name, connector->base.base.id);
2058 	}
2059 
2060 	ret = _intel_hdcp2_disable(connector, true);
2061 	if (ret) {
2062 		drm_err(&i915->drm,
2063 			"[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2064 			connector->base.name, connector->base.base.id, ret);
2065 		intel_hdcp_update_value(connector,
2066 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2067 		goto out;
2068 	}
2069 
2070 	ret = _intel_hdcp2_enable(connector);
2071 	if (ret) {
2072 		drm_dbg_kms(&i915->drm,
2073 			    "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2074 			    connector->base.name, connector->base.base.id,
2075 			    ret);
2076 		intel_hdcp_update_value(connector,
2077 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2078 					true);
2079 		goto out;
2080 	}
2081 
2082 out:
2083 	mutex_unlock(&dig_port->hdcp_mutex);
2084 	mutex_unlock(&hdcp->mutex);
2085 	return ret;
2086 }
2087 
2088 static void intel_hdcp_check_work(struct work_struct *work)
2089 {
2090 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2091 					       struct intel_hdcp,
2092 					       check_work);
2093 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2094 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2095 
2096 	if (drm_connector_is_unregistered(&connector->base))
2097 		return;
2098 
2099 	if (!intel_hdcp2_check_link(connector))
2100 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2101 				   DRM_HDCP2_CHECK_PERIOD_MS);
2102 	else if (!intel_hdcp_check_link(connector))
2103 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2104 				   DRM_HDCP_CHECK_PERIOD_MS);
2105 }
2106 
2107 static int i915_hdcp_component_bind(struct device *i915_kdev,
2108 				    struct device *mei_kdev, void *data)
2109 {
2110 	struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2111 
2112 	drm_dbg(&i915->drm, "I915 HDCP comp bind\n");
2113 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2114 	i915->display.hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2115 	i915->display.hdcp.arbiter->hdcp_dev = mei_kdev;
2116 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2117 
2118 	return 0;
2119 }
2120 
2121 static void i915_hdcp_component_unbind(struct device *i915_kdev,
2122 				       struct device *mei_kdev, void *data)
2123 {
2124 	struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2125 
2126 	drm_dbg(&i915->drm, "I915 HDCP comp unbind\n");
2127 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2128 	i915->display.hdcp.arbiter = NULL;
2129 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2130 }
2131 
2132 static const struct component_ops i915_hdcp_ops = {
2133 	.bind   = i915_hdcp_component_bind,
2134 	.unbind = i915_hdcp_component_unbind,
2135 };
2136 
2137 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2138 {
2139 	switch (port) {
2140 	case PORT_A:
2141 		return HDCP_DDI_A;
2142 	case PORT_B ... PORT_F:
2143 		return (enum hdcp_ddi)port;
2144 	default:
2145 		return HDCP_DDI_INVALID_PORT;
2146 	}
2147 }
2148 
2149 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2150 {
2151 	switch (cpu_transcoder) {
2152 	case TRANSCODER_A ... TRANSCODER_D:
2153 		return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2154 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2155 		return HDCP_INVALID_TRANSCODER;
2156 	}
2157 }
2158 
2159 static int initialize_hdcp_port_data(struct intel_connector *connector,
2160 				     struct intel_digital_port *dig_port,
2161 				     const struct intel_hdcp_shim *shim)
2162 {
2163 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2164 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2165 	enum port port = dig_port->base.port;
2166 
2167 	if (DISPLAY_VER(i915) < 12)
2168 		data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2169 	else
2170 		/*
2171 		 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2172 		 * with zero(INVALID PORT index).
2173 		 */
2174 		data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2175 
2176 	/*
2177 	 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2178 	 * is initialized to zero (invalid transcoder index). This will be
2179 	 * retained for <Gen12 forever.
2180 	 */
2181 	data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2182 
2183 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2184 	data->protocol = (u8)shim->protocol;
2185 
2186 	if (!data->streams)
2187 		data->streams = kcalloc(INTEL_NUM_PIPES(i915),
2188 					sizeof(struct hdcp2_streamid_type),
2189 					GFP_KERNEL);
2190 	if (!data->streams) {
2191 		drm_err(&i915->drm, "Out of Memory\n");
2192 		return -ENOMEM;
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 static bool is_hdcp2_supported(struct drm_i915_private *i915)
2199 {
2200 	if (intel_hdcp_gsc_cs_required(i915))
2201 		return true;
2202 
2203 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2204 		return false;
2205 
2206 	return (DISPLAY_VER(i915) >= 10 ||
2207 		IS_KABYLAKE(i915) ||
2208 		IS_COFFEELAKE(i915) ||
2209 		IS_COMETLAKE(i915));
2210 }
2211 
2212 void intel_hdcp_component_init(struct drm_i915_private *i915)
2213 {
2214 	int ret;
2215 
2216 	if (!is_hdcp2_supported(i915))
2217 		return;
2218 
2219 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2220 	drm_WARN_ON(&i915->drm, i915->display.hdcp.comp_added);
2221 
2222 	i915->display.hdcp.comp_added = true;
2223 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2224 	if (intel_hdcp_gsc_cs_required(i915))
2225 		ret = intel_hdcp_gsc_init(i915);
2226 	else
2227 		ret = component_add_typed(i915->drm.dev, &i915_hdcp_ops,
2228 					  I915_COMPONENT_HDCP);
2229 
2230 	if (ret < 0) {
2231 		drm_dbg_kms(&i915->drm, "Failed at fw component add(%d)\n",
2232 			    ret);
2233 		mutex_lock(&i915->display.hdcp.hdcp_mutex);
2234 		i915->display.hdcp.comp_added = false;
2235 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2236 		return;
2237 	}
2238 }
2239 
2240 static void intel_hdcp2_init(struct intel_connector *connector,
2241 			     struct intel_digital_port *dig_port,
2242 			     const struct intel_hdcp_shim *shim)
2243 {
2244 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2245 	struct intel_hdcp *hdcp = &connector->hdcp;
2246 	int ret;
2247 
2248 	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2249 	if (ret) {
2250 		drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2251 		return;
2252 	}
2253 
2254 	hdcp->hdcp2_supported = true;
2255 }
2256 
2257 int intel_hdcp_init(struct intel_connector *connector,
2258 		    struct intel_digital_port *dig_port,
2259 		    const struct intel_hdcp_shim *shim)
2260 {
2261 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2262 	struct intel_hdcp *hdcp = &connector->hdcp;
2263 	int ret;
2264 
2265 	if (!shim)
2266 		return -EINVAL;
2267 
2268 	if (is_hdcp2_supported(i915))
2269 		intel_hdcp2_init(connector, dig_port, shim);
2270 
2271 	ret =
2272 	drm_connector_attach_content_protection_property(&connector->base,
2273 							 hdcp->hdcp2_supported);
2274 	if (ret) {
2275 		hdcp->hdcp2_supported = false;
2276 		kfree(dig_port->hdcp_port_data.streams);
2277 		return ret;
2278 	}
2279 
2280 	hdcp->shim = shim;
2281 	mutex_init(&hdcp->mutex);
2282 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2283 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2284 	init_waitqueue_head(&hdcp->cp_irq_queue);
2285 
2286 	return 0;
2287 }
2288 
2289 static int
2290 intel_hdcp_set_streams(struct intel_digital_port *dig_port,
2291 		       struct intel_atomic_state *state)
2292 {
2293 	struct drm_connector_list_iter conn_iter;
2294 	struct intel_digital_port *conn_dig_port;
2295 	struct intel_connector *connector;
2296 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
2297 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2298 
2299 	if (!intel_encoder_is_mst(&dig_port->base)) {
2300 		data->k = 1;
2301 		data->streams[0].stream_id = 0;
2302 		return 0;
2303 	}
2304 
2305 	data->k = 0;
2306 
2307 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
2308 	for_each_intel_connector_iter(connector, &conn_iter) {
2309 		if (connector->base.status == connector_status_disconnected)
2310 			continue;
2311 
2312 		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
2313 			continue;
2314 
2315 		conn_dig_port = intel_attached_dig_port(connector);
2316 		if (conn_dig_port != dig_port)
2317 			continue;
2318 
2319 		data->streams[data->k].stream_id =
2320 			intel_conn_to_vcpi(&state->base, connector);
2321 		data->k++;
2322 
2323 		/* if there is only one active stream */
2324 		if (dig_port->dp.active_mst_links <= 1)
2325 			break;
2326 	}
2327 	drm_connector_list_iter_end(&conn_iter);
2328 
2329 	if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
2330 		return -EINVAL;
2331 
2332 	return 0;
2333 }
2334 
2335 int intel_hdcp_enable(struct intel_atomic_state *state,
2336 		      struct intel_encoder *encoder,
2337 		      const struct intel_crtc_state *pipe_config,
2338 		      const struct drm_connector_state *conn_state)
2339 {
2340 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2341 	struct intel_connector *connector =
2342 		to_intel_connector(conn_state->connector);
2343 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2344 	struct intel_hdcp *hdcp = &connector->hdcp;
2345 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2346 	int ret = -EINVAL;
2347 
2348 	if (!hdcp->shim)
2349 		return -ENOENT;
2350 
2351 	if (!connector->encoder) {
2352 		drm_err(&i915->drm, "[%s:%d] encoder is not initialized\n",
2353 			connector->base.name, connector->base.base.id);
2354 		return -ENODEV;
2355 	}
2356 
2357 	mutex_lock(&hdcp->mutex);
2358 	mutex_lock(&dig_port->hdcp_mutex);
2359 	drm_WARN_ON(&i915->drm,
2360 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2361 	hdcp->content_type = (u8)conn_state->hdcp_content_type;
2362 
2363 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2364 		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2365 		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2366 	} else {
2367 		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2368 		hdcp->stream_transcoder = INVALID_TRANSCODER;
2369 	}
2370 
2371 	if (DISPLAY_VER(i915) >= 12)
2372 		dig_port->hdcp_port_data.hdcp_transcoder =
2373 			intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2374 
2375 	/*
2376 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2377 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2378 	 */
2379 	if (intel_hdcp2_capable(connector)) {
2380 		ret = intel_hdcp_set_streams(dig_port, state);
2381 		if (!ret) {
2382 			ret = _intel_hdcp2_enable(connector);
2383 			if (!ret)
2384 				check_link_interval =
2385 					DRM_HDCP2_CHECK_PERIOD_MS;
2386 		} else {
2387 			drm_dbg_kms(&i915->drm,
2388 				    "Set content streams failed: (%d)\n",
2389 				    ret);
2390 		}
2391 	}
2392 
2393 	/*
2394 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2395 	 * be attempted.
2396 	 */
2397 	if (ret && intel_hdcp_capable(connector) &&
2398 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2399 		ret = _intel_hdcp_enable(connector);
2400 	}
2401 
2402 	if (!ret) {
2403 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2404 				   check_link_interval);
2405 		intel_hdcp_update_value(connector,
2406 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2407 					true);
2408 	}
2409 
2410 	mutex_unlock(&dig_port->hdcp_mutex);
2411 	mutex_unlock(&hdcp->mutex);
2412 	return ret;
2413 }
2414 
2415 int intel_hdcp_disable(struct intel_connector *connector)
2416 {
2417 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2418 	struct intel_hdcp *hdcp = &connector->hdcp;
2419 	int ret = 0;
2420 
2421 	if (!hdcp->shim)
2422 		return -ENOENT;
2423 
2424 	mutex_lock(&hdcp->mutex);
2425 	mutex_lock(&dig_port->hdcp_mutex);
2426 
2427 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2428 		goto out;
2429 
2430 	intel_hdcp_update_value(connector,
2431 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2432 	if (hdcp->hdcp2_encrypted)
2433 		ret = _intel_hdcp2_disable(connector, false);
2434 	else if (hdcp->hdcp_encrypted)
2435 		ret = _intel_hdcp_disable(connector);
2436 
2437 out:
2438 	mutex_unlock(&dig_port->hdcp_mutex);
2439 	mutex_unlock(&hdcp->mutex);
2440 	cancel_delayed_work_sync(&hdcp->check_work);
2441 	return ret;
2442 }
2443 
2444 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2445 			    struct intel_encoder *encoder,
2446 			    const struct intel_crtc_state *crtc_state,
2447 			    const struct drm_connector_state *conn_state)
2448 {
2449 	struct intel_connector *connector =
2450 				to_intel_connector(conn_state->connector);
2451 	struct intel_hdcp *hdcp = &connector->hdcp;
2452 	bool content_protection_type_changed, desired_and_not_enabled = false;
2453 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2454 
2455 	if (!connector->hdcp.shim)
2456 		return;
2457 
2458 	content_protection_type_changed =
2459 		(conn_state->hdcp_content_type != hdcp->content_type &&
2460 		 conn_state->content_protection !=
2461 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2462 
2463 	/*
2464 	 * During the HDCP encryption session if Type change is requested,
2465 	 * disable the HDCP and reenable it with new TYPE value.
2466 	 */
2467 	if (conn_state->content_protection ==
2468 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2469 	    content_protection_type_changed)
2470 		intel_hdcp_disable(connector);
2471 
2472 	/*
2473 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2474 	 * change procedure.
2475 	 */
2476 	if (content_protection_type_changed) {
2477 		mutex_lock(&hdcp->mutex);
2478 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2479 		drm_connector_get(&connector->base);
2480 		queue_work(i915->unordered_wq, &hdcp->prop_work);
2481 		mutex_unlock(&hdcp->mutex);
2482 	}
2483 
2484 	if (conn_state->content_protection ==
2485 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2486 		mutex_lock(&hdcp->mutex);
2487 		/* Avoid enabling hdcp, if it already ENABLED */
2488 		desired_and_not_enabled =
2489 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2490 		mutex_unlock(&hdcp->mutex);
2491 		/*
2492 		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2493 		 * prop_work to update correct CP property to user space.
2494 		 */
2495 		if (!desired_and_not_enabled && !content_protection_type_changed) {
2496 			drm_connector_get(&connector->base);
2497 			queue_work(i915->unordered_wq, &hdcp->prop_work);
2498 		}
2499 	}
2500 
2501 	if (desired_and_not_enabled || content_protection_type_changed)
2502 		intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2503 }
2504 
2505 void intel_hdcp_component_fini(struct drm_i915_private *i915)
2506 {
2507 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2508 	if (!i915->display.hdcp.comp_added) {
2509 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2510 		return;
2511 	}
2512 
2513 	i915->display.hdcp.comp_added = false;
2514 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2515 
2516 	if (intel_hdcp_gsc_cs_required(i915))
2517 		intel_hdcp_gsc_fini(i915);
2518 	else
2519 		component_del(i915->drm.dev, &i915_hdcp_ops);
2520 }
2521 
2522 void intel_hdcp_cleanup(struct intel_connector *connector)
2523 {
2524 	struct intel_hdcp *hdcp = &connector->hdcp;
2525 
2526 	if (!hdcp->shim)
2527 		return;
2528 
2529 	/*
2530 	 * If the connector is registered, it's possible userspace could kick
2531 	 * off another HDCP enable, which would re-spawn the workers.
2532 	 */
2533 	drm_WARN_ON(connector->base.dev,
2534 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2535 
2536 	/*
2537 	 * Now that the connector is not registered, check_work won't be run,
2538 	 * but cancel any outstanding instances of it
2539 	 */
2540 	cancel_delayed_work_sync(&hdcp->check_work);
2541 
2542 	/*
2543 	 * We don't cancel prop_work in the same way as check_work since it
2544 	 * requires connection_mutex which could be held while calling this
2545 	 * function. Instead, we rely on the connector references grabbed before
2546 	 * scheduling prop_work to ensure the connector is alive when prop_work
2547 	 * is run. So if we're in the destroy path (which is where this
2548 	 * function should be called), we're "guaranteed" that prop_work is not
2549 	 * active (tl;dr This Should Never Happen).
2550 	 */
2551 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2552 
2553 	mutex_lock(&hdcp->mutex);
2554 	hdcp->shim = NULL;
2555 	mutex_unlock(&hdcp->mutex);
2556 }
2557 
2558 void intel_hdcp_atomic_check(struct drm_connector *connector,
2559 			     struct drm_connector_state *old_state,
2560 			     struct drm_connector_state *new_state)
2561 {
2562 	u64 old_cp = old_state->content_protection;
2563 	u64 new_cp = new_state->content_protection;
2564 	struct drm_crtc_state *crtc_state;
2565 
2566 	if (!new_state->crtc) {
2567 		/*
2568 		 * If the connector is being disabled with CP enabled, mark it
2569 		 * desired so it's re-enabled when the connector is brought back
2570 		 */
2571 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2572 			new_state->content_protection =
2573 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2574 		return;
2575 	}
2576 
2577 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2578 						   new_state->crtc);
2579 	/*
2580 	 * Fix the HDCP uapi content protection state in case of modeset.
2581 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2582 	 * need to be sent if there is transition from ENABLED->DESIRED.
2583 	 */
2584 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2585 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2586 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2587 		new_state->content_protection =
2588 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2589 
2590 	/*
2591 	 * Nothing to do if the state didn't change, or HDCP was activated since
2592 	 * the last commit. And also no change in hdcp content type.
2593 	 */
2594 	if (old_cp == new_cp ||
2595 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2596 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2597 		if (old_state->hdcp_content_type ==
2598 				new_state->hdcp_content_type)
2599 			return;
2600 	}
2601 
2602 	crtc_state->mode_changed = true;
2603 }
2604 
2605 /* Handles the CP_IRQ raised from the DP HDCP sink */
2606 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2607 {
2608 	struct intel_hdcp *hdcp = &connector->hdcp;
2609 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2610 
2611 	if (!hdcp->shim)
2612 		return;
2613 
2614 	atomic_inc(&connector->hdcp.cp_irq_count);
2615 	wake_up_all(&connector->hdcp.cp_irq_queue);
2616 
2617 	queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2618 }
2619