xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14 
15 #include <drm/drm_hdcp.h>
16 #include <drm/i915_component.h>
17 
18 #include "i915_reg.h"
19 #include "intel_display_power.h"
20 #include "intel_display_types.h"
21 #include "intel_hdcp.h"
22 #include "intel_sideband.h"
23 #include "intel_connector.h"
24 
25 #define KEY_LOAD_TRIES	5
26 #define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS	50
27 #define HDCP2_LC_RETRY_CNT			3
28 
29 static
30 bool intel_hdcp_is_ksv_valid(u8 *ksv)
31 {
32 	int i, ones = 0;
33 	/* KSV has 20 1's and 20 0's */
34 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
35 		ones += hweight8(ksv[i]);
36 	if (ones != 20)
37 		return false;
38 
39 	return true;
40 }
41 
42 static
43 int intel_hdcp_read_valid_bksv(struct intel_digital_port *intel_dig_port,
44 			       const struct intel_hdcp_shim *shim, u8 *bksv)
45 {
46 	int ret, i, tries = 2;
47 
48 	/* HDCP spec states that we must retry the bksv if it is invalid */
49 	for (i = 0; i < tries; i++) {
50 		ret = shim->read_bksv(intel_dig_port, bksv);
51 		if (ret)
52 			return ret;
53 		if (intel_hdcp_is_ksv_valid(bksv))
54 			break;
55 	}
56 	if (i == tries) {
57 		DRM_DEBUG_KMS("Bksv is invalid\n");
58 		return -ENODEV;
59 	}
60 
61 	return 0;
62 }
63 
64 /* Is HDCP1.4 capable on Platform and Sink */
65 bool intel_hdcp_capable(struct intel_connector *connector)
66 {
67 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
68 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
69 	bool capable = false;
70 	u8 bksv[5];
71 
72 	if (!shim)
73 		return capable;
74 
75 	if (shim->hdcp_capable) {
76 		shim->hdcp_capable(intel_dig_port, &capable);
77 	} else {
78 		if (!intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv))
79 			capable = true;
80 	}
81 
82 	return capable;
83 }
84 
85 /* Is HDCP2.2 capable on Platform and Sink */
86 bool intel_hdcp2_capable(struct intel_connector *connector)
87 {
88 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
89 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
90 	struct intel_hdcp *hdcp = &connector->hdcp;
91 	bool capable = false;
92 
93 	/* I915 support for HDCP2.2 */
94 	if (!hdcp->hdcp2_supported)
95 		return false;
96 
97 	/* MEI interface is solid */
98 	mutex_lock(&dev_priv->hdcp_comp_mutex);
99 	if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
100 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
101 		return false;
102 	}
103 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
104 
105 	/* Sink's capability for HDCP2.2 */
106 	hdcp->shim->hdcp_2_2_capable(intel_dig_port, &capable);
107 
108 	return capable;
109 }
110 
111 static inline
112 bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
113 		       enum transcoder cpu_transcoder, enum port port)
114 {
115 	return I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
116 	       HDCP_STATUS_ENC;
117 }
118 
119 static inline
120 bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
121 			enum transcoder cpu_transcoder, enum port port)
122 {
123 	return I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
124 	       LINK_ENCRYPTION_STATUS;
125 }
126 
127 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
128 				    const struct intel_hdcp_shim *shim)
129 {
130 	int ret, read_ret;
131 	bool ksv_ready;
132 
133 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
134 	ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
135 							 &ksv_ready),
136 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
137 			 100 * 1000);
138 	if (ret)
139 		return ret;
140 	if (read_ret)
141 		return read_ret;
142 	if (!ksv_ready)
143 		return -ETIMEDOUT;
144 
145 	return 0;
146 }
147 
148 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
149 {
150 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
151 	struct i915_power_well *power_well;
152 	enum i915_power_well_id id;
153 	bool enabled = false;
154 
155 	/*
156 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
157 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
158 	 */
159 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
160 		id = HSW_DISP_PW_GLOBAL;
161 	else
162 		id = SKL_DISP_PW_1;
163 
164 	mutex_lock(&power_domains->lock);
165 
166 	/* PG1 (power well #1) needs to be enabled */
167 	for_each_power_well(dev_priv, power_well) {
168 		if (power_well->desc->id == id) {
169 			enabled = power_well->desc->ops->is_enabled(dev_priv,
170 								    power_well);
171 			break;
172 		}
173 	}
174 	mutex_unlock(&power_domains->lock);
175 
176 	/*
177 	 * Another req for hdcp key loadability is enabled state of pll for
178 	 * cdclk. Without active crtc we wont land here. So we are assuming that
179 	 * cdclk is already on.
180 	 */
181 
182 	return enabled;
183 }
184 
185 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
186 {
187 	I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
188 	I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
189 		   HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
190 }
191 
192 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
193 {
194 	int ret;
195 	u32 val;
196 
197 	val = I915_READ(HDCP_KEY_STATUS);
198 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
199 		return 0;
200 
201 	/*
202 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
203 	 * out of reset. So if Key is not already loaded, its an error state.
204 	 */
205 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
206 		if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
207 			return -ENXIO;
208 
209 	/*
210 	 * Initiate loading the HDCP key from fuses.
211 	 *
212 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
213 	 * platforms except BXT and GLK, differ in the key load trigger process
214 	 * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
215 	 */
216 	if (IS_GEN9_BC(dev_priv)) {
217 		ret = sandybridge_pcode_write(dev_priv,
218 					      SKL_PCODE_LOAD_HDCP_KEYS, 1);
219 		if (ret) {
220 			DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
221 			          ret);
222 			return ret;
223 		}
224 	} else {
225 		I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
226 	}
227 
228 	/* Wait for the keys to load (500us) */
229 	ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
230 					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
231 					10, 1, &val);
232 	if (ret)
233 		return ret;
234 	else if (!(val & HDCP_KEY_LOAD_STATUS))
235 		return -ENXIO;
236 
237 	/* Send Aksv over to PCH display for use in authentication */
238 	I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
239 
240 	return 0;
241 }
242 
243 /* Returns updated SHA-1 index */
244 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
245 {
246 	I915_WRITE(HDCP_SHA_TEXT, sha_text);
247 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
248 		DRM_ERROR("Timed out waiting for SHA1 ready\n");
249 		return -ETIMEDOUT;
250 	}
251 	return 0;
252 }
253 
254 static
255 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
256 				enum transcoder cpu_transcoder, enum port port)
257 {
258 	if (INTEL_GEN(dev_priv) >= 12) {
259 		switch (cpu_transcoder) {
260 		case TRANSCODER_A:
261 			return HDCP_TRANSA_REP_PRESENT |
262 			       HDCP_TRANSA_SHA1_M0;
263 		case TRANSCODER_B:
264 			return HDCP_TRANSB_REP_PRESENT |
265 			       HDCP_TRANSB_SHA1_M0;
266 		case TRANSCODER_C:
267 			return HDCP_TRANSC_REP_PRESENT |
268 			       HDCP_TRANSC_SHA1_M0;
269 		case TRANSCODER_D:
270 			return HDCP_TRANSD_REP_PRESENT |
271 			       HDCP_TRANSD_SHA1_M0;
272 		default:
273 			DRM_ERROR("Unknown transcoder %d\n", cpu_transcoder);
274 			return -EINVAL;
275 		}
276 	}
277 
278 	switch (port) {
279 	case PORT_A:
280 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
281 	case PORT_B:
282 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
283 	case PORT_C:
284 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
285 	case PORT_D:
286 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
287 	case PORT_E:
288 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
289 	default:
290 		DRM_ERROR("Unknown port %d\n", port);
291 		return -EINVAL;
292 	}
293 }
294 
295 static
296 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
297 				const struct intel_hdcp_shim *shim,
298 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
299 {
300 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
301 	struct drm_i915_private *dev_priv;
302 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
303 	enum port port = intel_dig_port->base.port;
304 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
305 	int ret, i, j, sha_idx;
306 
307 	dev_priv = intel_dig_port->base.base.dev->dev_private;
308 
309 	/* Process V' values from the receiver */
310 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
311 		ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
312 		if (ret)
313 			return ret;
314 		I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
315 	}
316 
317 	/*
318 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
319 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
320 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
321 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
322 	 * index will keep track of our progress through the 64 bytes as well as
323 	 * helping us work the 40-bit KSVs through our 32-bit register.
324 	 *
325 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
326 	 */
327 	sha_idx = 0;
328 	sha_text = 0;
329 	sha_leftovers = 0;
330 	rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
331 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
332 	for (i = 0; i < num_downstream; i++) {
333 		unsigned int sha_empty;
334 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
335 
336 		/* Fill up the empty slots in sha_text and write it out */
337 		sha_empty = sizeof(sha_text) - sha_leftovers;
338 		for (j = 0; j < sha_empty; j++)
339 			sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);
340 
341 		ret = intel_write_sha_text(dev_priv, sha_text);
342 		if (ret < 0)
343 			return ret;
344 
345 		/* Programming guide writes this every 64 bytes */
346 		sha_idx += sizeof(sha_text);
347 		if (!(sha_idx % 64))
348 			I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
349 
350 		/* Store the leftover bytes from the ksv in sha_text */
351 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
352 		sha_text = 0;
353 		for (j = 0; j < sha_leftovers; j++)
354 			sha_text |= ksv[sha_empty + j] <<
355 					((sizeof(sha_text) - j - 1) * 8);
356 
357 		/*
358 		 * If we still have room in sha_text for more data, continue.
359 		 * Otherwise, write it out immediately.
360 		 */
361 		if (sizeof(sha_text) > sha_leftovers)
362 			continue;
363 
364 		ret = intel_write_sha_text(dev_priv, sha_text);
365 		if (ret < 0)
366 			return ret;
367 		sha_leftovers = 0;
368 		sha_text = 0;
369 		sha_idx += sizeof(sha_text);
370 	}
371 
372 	/*
373 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
374 	 * bytes are leftover from the last ksv, we might be able to fit them
375 	 * all in sha_text (first 2 cases), or we might need to split them up
376 	 * into 2 writes (last 2 cases).
377 	 */
378 	if (sha_leftovers == 0) {
379 		/* Write 16 bits of text, 16 bits of M0 */
380 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
381 		ret = intel_write_sha_text(dev_priv,
382 					   bstatus[0] << 8 | bstatus[1]);
383 		if (ret < 0)
384 			return ret;
385 		sha_idx += sizeof(sha_text);
386 
387 		/* Write 32 bits of M0 */
388 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
389 		ret = intel_write_sha_text(dev_priv, 0);
390 		if (ret < 0)
391 			return ret;
392 		sha_idx += sizeof(sha_text);
393 
394 		/* Write 16 bits of M0 */
395 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
396 		ret = intel_write_sha_text(dev_priv, 0);
397 		if (ret < 0)
398 			return ret;
399 		sha_idx += sizeof(sha_text);
400 
401 	} else if (sha_leftovers == 1) {
402 		/* Write 24 bits of text, 8 bits of M0 */
403 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
404 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
405 		/* Only 24-bits of data, must be in the LSB */
406 		sha_text = (sha_text & 0xffffff00) >> 8;
407 		ret = intel_write_sha_text(dev_priv, sha_text);
408 		if (ret < 0)
409 			return ret;
410 		sha_idx += sizeof(sha_text);
411 
412 		/* Write 32 bits of M0 */
413 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
414 		ret = intel_write_sha_text(dev_priv, 0);
415 		if (ret < 0)
416 			return ret;
417 		sha_idx += sizeof(sha_text);
418 
419 		/* Write 24 bits of M0 */
420 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
421 		ret = intel_write_sha_text(dev_priv, 0);
422 		if (ret < 0)
423 			return ret;
424 		sha_idx += sizeof(sha_text);
425 
426 	} else if (sha_leftovers == 2) {
427 		/* Write 32 bits of text */
428 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
429 		sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
430 		ret = intel_write_sha_text(dev_priv, sha_text);
431 		if (ret < 0)
432 			return ret;
433 		sha_idx += sizeof(sha_text);
434 
435 		/* Write 64 bits of M0 */
436 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
437 		for (i = 0; i < 2; i++) {
438 			ret = intel_write_sha_text(dev_priv, 0);
439 			if (ret < 0)
440 				return ret;
441 			sha_idx += sizeof(sha_text);
442 		}
443 	} else if (sha_leftovers == 3) {
444 		/* Write 32 bits of text */
445 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
446 		sha_text |= bstatus[0] << 24;
447 		ret = intel_write_sha_text(dev_priv, sha_text);
448 		if (ret < 0)
449 			return ret;
450 		sha_idx += sizeof(sha_text);
451 
452 		/* Write 8 bits of text, 24 bits of M0 */
453 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
454 		ret = intel_write_sha_text(dev_priv, bstatus[1]);
455 		if (ret < 0)
456 			return ret;
457 		sha_idx += sizeof(sha_text);
458 
459 		/* Write 32 bits of M0 */
460 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
461 		ret = intel_write_sha_text(dev_priv, 0);
462 		if (ret < 0)
463 			return ret;
464 		sha_idx += sizeof(sha_text);
465 
466 		/* Write 8 bits of M0 */
467 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
468 		ret = intel_write_sha_text(dev_priv, 0);
469 		if (ret < 0)
470 			return ret;
471 		sha_idx += sizeof(sha_text);
472 	} else {
473 		DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
474 			      sha_leftovers);
475 		return -EINVAL;
476 	}
477 
478 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
479 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
480 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
481 		ret = intel_write_sha_text(dev_priv, 0);
482 		if (ret < 0)
483 			return ret;
484 		sha_idx += sizeof(sha_text);
485 	}
486 
487 	/*
488 	 * Last write gets the length of the concatenation in bits. That is:
489 	 *  - 5 bytes per device
490 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
491 	 */
492 	sha_text = (num_downstream * 5 + 10) * 8;
493 	ret = intel_write_sha_text(dev_priv, sha_text);
494 	if (ret < 0)
495 		return ret;
496 
497 	/* Tell the HW we're done with the hash and wait for it to ACK */
498 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
499 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
500 				  HDCP_SHA1_COMPLETE, 1)) {
501 		DRM_ERROR("Timed out waiting for SHA1 complete\n");
502 		return -ETIMEDOUT;
503 	}
504 	if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
505 		DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
506 		return -ENXIO;
507 	}
508 
509 	return 0;
510 }
511 
512 /* Implements Part 2 of the HDCP authorization procedure */
513 static
514 int intel_hdcp_auth_downstream(struct intel_connector *connector)
515 {
516 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
517 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
518 	struct drm_device *dev = connector->base.dev;
519 	u8 bstatus[2], num_downstream, *ksv_fifo;
520 	int ret, i, tries = 3;
521 
522 	ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
523 	if (ret) {
524 		DRM_DEBUG_KMS("KSV list failed to become ready (%d)\n", ret);
525 		return ret;
526 	}
527 
528 	ret = shim->read_bstatus(intel_dig_port, bstatus);
529 	if (ret)
530 		return ret;
531 
532 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
533 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
534 		DRM_DEBUG_KMS("Max Topology Limit Exceeded\n");
535 		return -EPERM;
536 	}
537 
538 	/*
539 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
540 	 * the HDCP encryption. That implies that repeater can't have its own
541 	 * display. As there is no consumption of encrypted content in the
542 	 * repeater with 0 downstream devices, we are failing the
543 	 * authentication.
544 	 */
545 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
546 	if (num_downstream == 0) {
547 		DRM_DEBUG_KMS("Repeater with zero downstream devices\n");
548 		return -EINVAL;
549 	}
550 
551 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
552 	if (!ksv_fifo) {
553 		DRM_DEBUG_KMS("Out of mem: ksv_fifo\n");
554 		return -ENOMEM;
555 	}
556 
557 	ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
558 	if (ret)
559 		goto err;
560 
561 	if (drm_hdcp_check_ksvs_revoked(dev, ksv_fifo, num_downstream)) {
562 		DRM_ERROR("Revoked Ksv(s) in ksv_fifo\n");
563 		ret = -EPERM;
564 		goto err;
565 	}
566 
567 	/*
568 	 * When V prime mismatches, DP Spec mandates re-read of
569 	 * V prime atleast twice.
570 	 */
571 	for (i = 0; i < tries; i++) {
572 		ret = intel_hdcp_validate_v_prime(connector, shim,
573 						  ksv_fifo, num_downstream,
574 						  bstatus);
575 		if (!ret)
576 			break;
577 	}
578 
579 	if (i == tries) {
580 		DRM_DEBUG_KMS("V Prime validation failed.(%d)\n", ret);
581 		goto err;
582 	}
583 
584 	DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
585 		      num_downstream);
586 	ret = 0;
587 err:
588 	kfree(ksv_fifo);
589 	return ret;
590 }
591 
592 /* Implements Part 1 of the HDCP authorization procedure */
593 static int intel_hdcp_auth(struct intel_connector *connector)
594 {
595 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
596 	struct intel_hdcp *hdcp = &connector->hdcp;
597 	struct drm_device *dev = connector->base.dev;
598 	const struct intel_hdcp_shim *shim = hdcp->shim;
599 	struct drm_i915_private *dev_priv;
600 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
601 	enum port port;
602 	unsigned long r0_prime_gen_start;
603 	int ret, i, tries = 2;
604 	union {
605 		u32 reg[2];
606 		u8 shim[DRM_HDCP_AN_LEN];
607 	} an;
608 	union {
609 		u32 reg[2];
610 		u8 shim[DRM_HDCP_KSV_LEN];
611 	} bksv;
612 	union {
613 		u32 reg;
614 		u8 shim[DRM_HDCP_RI_LEN];
615 	} ri;
616 	bool repeater_present, hdcp_capable;
617 
618 	dev_priv = intel_dig_port->base.base.dev->dev_private;
619 
620 	port = intel_dig_port->base.port;
621 
622 	/*
623 	 * Detects whether the display is HDCP capable. Although we check for
624 	 * valid Bksv below, the HDCP over DP spec requires that we check
625 	 * whether the display supports HDCP before we write An. For HDMI
626 	 * displays, this is not necessary.
627 	 */
628 	if (shim->hdcp_capable) {
629 		ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
630 		if (ret)
631 			return ret;
632 		if (!hdcp_capable) {
633 			DRM_DEBUG_KMS("Panel is not HDCP capable\n");
634 			return -EINVAL;
635 		}
636 	}
637 
638 	/* Initialize An with 2 random values and acquire it */
639 	for (i = 0; i < 2; i++)
640 		I915_WRITE(HDCP_ANINIT(dev_priv, cpu_transcoder, port),
641 			   get_random_u32());
642 	I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port),
643 		   HDCP_CONF_CAPTURE_AN);
644 
645 	/* Wait for An to be acquired */
646 	if (intel_de_wait_for_set(dev_priv,
647 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
648 				  HDCP_STATUS_AN_READY, 1)) {
649 		DRM_ERROR("Timed out waiting for An\n");
650 		return -ETIMEDOUT;
651 	}
652 
653 	an.reg[0] = I915_READ(HDCP_ANLO(dev_priv, cpu_transcoder, port));
654 	an.reg[1] = I915_READ(HDCP_ANHI(dev_priv, cpu_transcoder, port));
655 	ret = shim->write_an_aksv(intel_dig_port, an.shim);
656 	if (ret)
657 		return ret;
658 
659 	r0_prime_gen_start = jiffies;
660 
661 	memset(&bksv, 0, sizeof(bksv));
662 
663 	ret = intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv.shim);
664 	if (ret < 0)
665 		return ret;
666 
667 	if (drm_hdcp_check_ksvs_revoked(dev, bksv.shim, 1)) {
668 		DRM_ERROR("BKSV is revoked\n");
669 		return -EPERM;
670 	}
671 
672 	I915_WRITE(HDCP_BKSVLO(dev_priv, cpu_transcoder, port), bksv.reg[0]);
673 	I915_WRITE(HDCP_BKSVHI(dev_priv, cpu_transcoder, port), bksv.reg[1]);
674 
675 	ret = shim->repeater_present(intel_dig_port, &repeater_present);
676 	if (ret)
677 		return ret;
678 	if (repeater_present)
679 		I915_WRITE(HDCP_REP_CTL,
680 			   intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
681 						       port));
682 
683 	ret = shim->toggle_signalling(intel_dig_port, true);
684 	if (ret)
685 		return ret;
686 
687 	I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port),
688 		   HDCP_CONF_AUTH_AND_ENC);
689 
690 	/* Wait for R0 ready */
691 	if (wait_for(I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
692 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
693 		DRM_ERROR("Timed out waiting for R0 ready\n");
694 		return -ETIMEDOUT;
695 	}
696 
697 	/*
698 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
699 	 * some monitors can take longer than this. We'll set the timeout at
700 	 * 300ms just to be sure.
701 	 *
702 	 * On DP, there's an R0_READY bit available but no such bit
703 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
704 	 * the stupid thing instead of polling on one and not the other.
705 	 */
706 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
707 
708 	tries = 3;
709 
710 	/*
711 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
712 	 * of R0 mismatch.
713 	 */
714 	for (i = 0; i < tries; i++) {
715 		ri.reg = 0;
716 		ret = shim->read_ri_prime(intel_dig_port, ri.shim);
717 		if (ret)
718 			return ret;
719 		I915_WRITE(HDCP_RPRIME(dev_priv, cpu_transcoder, port), ri.reg);
720 
721 		/* Wait for Ri prime match */
722 		if (!wait_for(I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
723 						    port)) &
724 		    (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
725 			break;
726 	}
727 
728 	if (i == tries) {
729 		DRM_DEBUG_KMS("Timed out waiting for Ri prime match (%x)\n",
730 			      I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
731 						    port)));
732 		return -ETIMEDOUT;
733 	}
734 
735 	/* Wait for encryption confirmation */
736 	if (intel_de_wait_for_set(dev_priv,
737 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
738 				  HDCP_STATUS_ENC,
739 				  ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
740 		DRM_ERROR("Timed out waiting for encryption\n");
741 		return -ETIMEDOUT;
742 	}
743 
744 	/*
745 	 * XXX: If we have MST-connected devices, we need to enable encryption
746 	 * on those as well.
747 	 */
748 
749 	if (repeater_present)
750 		return intel_hdcp_auth_downstream(connector);
751 
752 	DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
753 	return 0;
754 }
755 
756 static int _intel_hdcp_disable(struct intel_connector *connector)
757 {
758 	struct intel_hdcp *hdcp = &connector->hdcp;
759 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
760 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
761 	enum port port = intel_dig_port->base.port;
762 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
763 	int ret;
764 
765 	DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
766 		      connector->base.name, connector->base.base.id);
767 
768 	hdcp->hdcp_encrypted = false;
769 	I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
770 	if (intel_de_wait_for_clear(dev_priv,
771 				    HDCP_STATUS(dev_priv, cpu_transcoder, port),
772 				    ~0, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
773 		DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
774 		return -ETIMEDOUT;
775 	}
776 
777 	ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
778 	if (ret) {
779 		DRM_ERROR("Failed to disable HDCP signalling\n");
780 		return ret;
781 	}
782 
783 	DRM_DEBUG_KMS("HDCP is disabled\n");
784 	return 0;
785 }
786 
787 static int _intel_hdcp_enable(struct intel_connector *connector)
788 {
789 	struct intel_hdcp *hdcp = &connector->hdcp;
790 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
791 	int i, ret, tries = 3;
792 
793 	DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
794 		      connector->base.name, connector->base.base.id);
795 
796 	if (!hdcp_key_loadable(dev_priv)) {
797 		DRM_ERROR("HDCP key Load is not possible\n");
798 		return -ENXIO;
799 	}
800 
801 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
802 		ret = intel_hdcp_load_keys(dev_priv);
803 		if (!ret)
804 			break;
805 		intel_hdcp_clear_keys(dev_priv);
806 	}
807 	if (ret) {
808 		DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
809 		return ret;
810 	}
811 
812 	/* Incase of authentication failures, HDCP spec expects reauth. */
813 	for (i = 0; i < tries; i++) {
814 		ret = intel_hdcp_auth(connector);
815 		if (!ret) {
816 			hdcp->hdcp_encrypted = true;
817 			return 0;
818 		}
819 
820 		DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);
821 
822 		/* Ensuring HDCP encryption and signalling are stopped. */
823 		_intel_hdcp_disable(connector);
824 	}
825 
826 	DRM_DEBUG_KMS("HDCP authentication failed (%d tries/%d)\n", tries, ret);
827 	return ret;
828 }
829 
830 static inline
831 struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
832 {
833 	return container_of(hdcp, struct intel_connector, hdcp);
834 }
835 
836 /* Implements Part 3 of the HDCP authorization procedure */
837 static int intel_hdcp_check_link(struct intel_connector *connector)
838 {
839 	struct intel_hdcp *hdcp = &connector->hdcp;
840 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
841 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
842 	enum port port = intel_dig_port->base.port;
843 	enum transcoder cpu_transcoder;
844 	int ret = 0;
845 
846 	mutex_lock(&hdcp->mutex);
847 	cpu_transcoder = hdcp->cpu_transcoder;
848 
849 	/* Check_link valid only when HDCP1.4 is enabled */
850 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
851 	    !hdcp->hdcp_encrypted) {
852 		ret = -EINVAL;
853 		goto out;
854 	}
855 
856 	if (WARN_ON(!intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
857 		DRM_ERROR("%s:%d HDCP link stopped encryption,%x\n",
858 			  connector->base.name, connector->base.base.id,
859 			  I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
860 						port)));
861 		ret = -ENXIO;
862 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
863 		schedule_work(&hdcp->prop_work);
864 		goto out;
865 	}
866 
867 	if (hdcp->shim->check_link(intel_dig_port)) {
868 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
869 			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
870 			schedule_work(&hdcp->prop_work);
871 		}
872 		goto out;
873 	}
874 
875 	DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
876 		      connector->base.name, connector->base.base.id);
877 
878 	ret = _intel_hdcp_disable(connector);
879 	if (ret) {
880 		DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
881 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
882 		schedule_work(&hdcp->prop_work);
883 		goto out;
884 	}
885 
886 	ret = _intel_hdcp_enable(connector);
887 	if (ret) {
888 		DRM_ERROR("Failed to enable hdcp (%d)\n", ret);
889 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
890 		schedule_work(&hdcp->prop_work);
891 		goto out;
892 	}
893 
894 out:
895 	mutex_unlock(&hdcp->mutex);
896 	return ret;
897 }
898 
899 static void intel_hdcp_prop_work(struct work_struct *work)
900 {
901 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
902 					       prop_work);
903 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
904 	struct drm_device *dev = connector->base.dev;
905 
906 	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
907 	mutex_lock(&hdcp->mutex);
908 
909 	/*
910 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
911 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
912 	 * we're running just after hdcp has been disabled, so just exit
913 	 */
914 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
915 		drm_hdcp_update_content_protection(&connector->base,
916 						   hdcp->value);
917 
918 	mutex_unlock(&hdcp->mutex);
919 	drm_modeset_unlock(&dev->mode_config.connection_mutex);
920 }
921 
922 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
923 {
924 	/* PORT E doesn't have HDCP, and PORT F is disabled */
925 	return INTEL_INFO(dev_priv)->display.has_hdcp && port < PORT_E;
926 }
927 
928 static int
929 hdcp2_prepare_ake_init(struct intel_connector *connector,
930 		       struct hdcp2_ake_init *ake_data)
931 {
932 	struct hdcp_port_data *data = &connector->hdcp.port_data;
933 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
934 	struct i915_hdcp_comp_master *comp;
935 	int ret;
936 
937 	mutex_lock(&dev_priv->hdcp_comp_mutex);
938 	comp = dev_priv->hdcp_master;
939 
940 	if (!comp || !comp->ops) {
941 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
942 		return -EINVAL;
943 	}
944 
945 	ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
946 	if (ret)
947 		DRM_DEBUG_KMS("Prepare_ake_init failed. %d\n", ret);
948 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
949 
950 	return ret;
951 }
952 
953 static int
954 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
955 				struct hdcp2_ake_send_cert *rx_cert,
956 				bool *paired,
957 				struct hdcp2_ake_no_stored_km *ek_pub_km,
958 				size_t *msg_sz)
959 {
960 	struct hdcp_port_data *data = &connector->hdcp.port_data;
961 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
962 	struct i915_hdcp_comp_master *comp;
963 	int ret;
964 
965 	mutex_lock(&dev_priv->hdcp_comp_mutex);
966 	comp = dev_priv->hdcp_master;
967 
968 	if (!comp || !comp->ops) {
969 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
970 		return -EINVAL;
971 	}
972 
973 	ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
974 							 rx_cert, paired,
975 							 ek_pub_km, msg_sz);
976 	if (ret < 0)
977 		DRM_DEBUG_KMS("Verify rx_cert failed. %d\n", ret);
978 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
979 
980 	return ret;
981 }
982 
983 static int hdcp2_verify_hprime(struct intel_connector *connector,
984 			       struct hdcp2_ake_send_hprime *rx_hprime)
985 {
986 	struct hdcp_port_data *data = &connector->hdcp.port_data;
987 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
988 	struct i915_hdcp_comp_master *comp;
989 	int ret;
990 
991 	mutex_lock(&dev_priv->hdcp_comp_mutex);
992 	comp = dev_priv->hdcp_master;
993 
994 	if (!comp || !comp->ops) {
995 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
996 		return -EINVAL;
997 	}
998 
999 	ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1000 	if (ret < 0)
1001 		DRM_DEBUG_KMS("Verify hprime failed. %d\n", ret);
1002 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1003 
1004 	return ret;
1005 }
1006 
1007 static int
1008 hdcp2_store_pairing_info(struct intel_connector *connector,
1009 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1010 {
1011 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1012 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1013 	struct i915_hdcp_comp_master *comp;
1014 	int ret;
1015 
1016 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1017 	comp = dev_priv->hdcp_master;
1018 
1019 	if (!comp || !comp->ops) {
1020 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1021 		return -EINVAL;
1022 	}
1023 
1024 	ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1025 	if (ret < 0)
1026 		DRM_DEBUG_KMS("Store pairing info failed. %d\n", ret);
1027 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1028 
1029 	return ret;
1030 }
1031 
1032 static int
1033 hdcp2_prepare_lc_init(struct intel_connector *connector,
1034 		      struct hdcp2_lc_init *lc_init)
1035 {
1036 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1037 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1038 	struct i915_hdcp_comp_master *comp;
1039 	int ret;
1040 
1041 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1042 	comp = dev_priv->hdcp_master;
1043 
1044 	if (!comp || !comp->ops) {
1045 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1046 		return -EINVAL;
1047 	}
1048 
1049 	ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1050 	if (ret < 0)
1051 		DRM_DEBUG_KMS("Prepare lc_init failed. %d\n", ret);
1052 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1053 
1054 	return ret;
1055 }
1056 
1057 static int
1058 hdcp2_verify_lprime(struct intel_connector *connector,
1059 		    struct hdcp2_lc_send_lprime *rx_lprime)
1060 {
1061 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1062 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1063 	struct i915_hdcp_comp_master *comp;
1064 	int ret;
1065 
1066 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1067 	comp = dev_priv->hdcp_master;
1068 
1069 	if (!comp || !comp->ops) {
1070 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1071 		return -EINVAL;
1072 	}
1073 
1074 	ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1075 	if (ret < 0)
1076 		DRM_DEBUG_KMS("Verify L_Prime failed. %d\n", ret);
1077 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1078 
1079 	return ret;
1080 }
1081 
1082 static int hdcp2_prepare_skey(struct intel_connector *connector,
1083 			      struct hdcp2_ske_send_eks *ske_data)
1084 {
1085 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1086 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1087 	struct i915_hdcp_comp_master *comp;
1088 	int ret;
1089 
1090 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1091 	comp = dev_priv->hdcp_master;
1092 
1093 	if (!comp || !comp->ops) {
1094 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1095 		return -EINVAL;
1096 	}
1097 
1098 	ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1099 	if (ret < 0)
1100 		DRM_DEBUG_KMS("Get session key failed. %d\n", ret);
1101 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1102 
1103 	return ret;
1104 }
1105 
1106 static int
1107 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1108 				      struct hdcp2_rep_send_receiverid_list
1109 								*rep_topology,
1110 				      struct hdcp2_rep_send_ack *rep_send_ack)
1111 {
1112 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1113 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1114 	struct i915_hdcp_comp_master *comp;
1115 	int ret;
1116 
1117 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1118 	comp = dev_priv->hdcp_master;
1119 
1120 	if (!comp || !comp->ops) {
1121 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1122 		return -EINVAL;
1123 	}
1124 
1125 	ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1126 							 rep_topology,
1127 							 rep_send_ack);
1128 	if (ret < 0)
1129 		DRM_DEBUG_KMS("Verify rep topology failed. %d\n", ret);
1130 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1131 
1132 	return ret;
1133 }
1134 
1135 static int
1136 hdcp2_verify_mprime(struct intel_connector *connector,
1137 		    struct hdcp2_rep_stream_ready *stream_ready)
1138 {
1139 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1140 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1141 	struct i915_hdcp_comp_master *comp;
1142 	int ret;
1143 
1144 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1145 	comp = dev_priv->hdcp_master;
1146 
1147 	if (!comp || !comp->ops) {
1148 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1149 		return -EINVAL;
1150 	}
1151 
1152 	ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1153 	if (ret < 0)
1154 		DRM_DEBUG_KMS("Verify mprime failed. %d\n", ret);
1155 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1156 
1157 	return ret;
1158 }
1159 
1160 static int hdcp2_authenticate_port(struct intel_connector *connector)
1161 {
1162 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1163 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1164 	struct i915_hdcp_comp_master *comp;
1165 	int ret;
1166 
1167 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1168 	comp = dev_priv->hdcp_master;
1169 
1170 	if (!comp || !comp->ops) {
1171 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1172 		return -EINVAL;
1173 	}
1174 
1175 	ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1176 	if (ret < 0)
1177 		DRM_DEBUG_KMS("Enable hdcp auth failed. %d\n", ret);
1178 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1179 
1180 	return ret;
1181 }
1182 
1183 static int hdcp2_close_mei_session(struct intel_connector *connector)
1184 {
1185 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1186 	struct i915_hdcp_comp_master *comp;
1187 	int ret;
1188 
1189 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1190 	comp = dev_priv->hdcp_master;
1191 
1192 	if (!comp || !comp->ops) {
1193 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1194 		return -EINVAL;
1195 	}
1196 
1197 	ret = comp->ops->close_hdcp_session(comp->mei_dev,
1198 					     &connector->hdcp.port_data);
1199 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1200 
1201 	return ret;
1202 }
1203 
1204 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1205 {
1206 	return hdcp2_close_mei_session(connector);
1207 }
1208 
1209 /* Authentication flow starts from here */
1210 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1211 {
1212 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1213 	struct intel_hdcp *hdcp = &connector->hdcp;
1214 	struct drm_device *dev = connector->base.dev;
1215 	union {
1216 		struct hdcp2_ake_init ake_init;
1217 		struct hdcp2_ake_send_cert send_cert;
1218 		struct hdcp2_ake_no_stored_km no_stored_km;
1219 		struct hdcp2_ake_send_hprime send_hprime;
1220 		struct hdcp2_ake_send_pairing_info pairing_info;
1221 	} msgs;
1222 	const struct intel_hdcp_shim *shim = hdcp->shim;
1223 	size_t size;
1224 	int ret;
1225 
1226 	/* Init for seq_num */
1227 	hdcp->seq_num_v = 0;
1228 	hdcp->seq_num_m = 0;
1229 
1230 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1231 	if (ret < 0)
1232 		return ret;
1233 
1234 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.ake_init,
1235 				  sizeof(msgs.ake_init));
1236 	if (ret < 0)
1237 		return ret;
1238 
1239 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_CERT,
1240 				 &msgs.send_cert, sizeof(msgs.send_cert));
1241 	if (ret < 0)
1242 		return ret;
1243 
1244 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1245 		DRM_DEBUG_KMS("cert.rx_caps dont claim HDCP2.2\n");
1246 		return -EINVAL;
1247 	}
1248 
1249 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1250 
1251 	if (drm_hdcp_check_ksvs_revoked(dev, msgs.send_cert.cert_rx.receiver_id,
1252 					1)) {
1253 		DRM_ERROR("Receiver ID is revoked\n");
1254 		return -EPERM;
1255 	}
1256 
1257 	/*
1258 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1259 	 * stored also.
1260 	 */
1261 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1262 					      &hdcp->is_paired,
1263 					      &msgs.no_stored_km, &size);
1264 	if (ret < 0)
1265 		return ret;
1266 
1267 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.no_stored_km, size);
1268 	if (ret < 0)
1269 		return ret;
1270 
1271 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1272 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1273 	if (ret < 0)
1274 		return ret;
1275 
1276 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1277 	if (ret < 0)
1278 		return ret;
1279 
1280 	if (!hdcp->is_paired) {
1281 		/* Pairing is required */
1282 		ret = shim->read_2_2_msg(intel_dig_port,
1283 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1284 					 &msgs.pairing_info,
1285 					 sizeof(msgs.pairing_info));
1286 		if (ret < 0)
1287 			return ret;
1288 
1289 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1290 		if (ret < 0)
1291 			return ret;
1292 		hdcp->is_paired = true;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 static int hdcp2_locality_check(struct intel_connector *connector)
1299 {
1300 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1301 	struct intel_hdcp *hdcp = &connector->hdcp;
1302 	union {
1303 		struct hdcp2_lc_init lc_init;
1304 		struct hdcp2_lc_send_lprime send_lprime;
1305 	} msgs;
1306 	const struct intel_hdcp_shim *shim = hdcp->shim;
1307 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1308 
1309 	for (i = 0; i < tries; i++) {
1310 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1311 		if (ret < 0)
1312 			continue;
1313 
1314 		ret = shim->write_2_2_msg(intel_dig_port, &msgs.lc_init,
1315 				      sizeof(msgs.lc_init));
1316 		if (ret < 0)
1317 			continue;
1318 
1319 		ret = shim->read_2_2_msg(intel_dig_port,
1320 					 HDCP_2_2_LC_SEND_LPRIME,
1321 					 &msgs.send_lprime,
1322 					 sizeof(msgs.send_lprime));
1323 		if (ret < 0)
1324 			continue;
1325 
1326 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1327 		if (!ret)
1328 			break;
1329 	}
1330 
1331 	return ret;
1332 }
1333 
1334 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1335 {
1336 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1337 	struct intel_hdcp *hdcp = &connector->hdcp;
1338 	struct hdcp2_ske_send_eks send_eks;
1339 	int ret;
1340 
1341 	ret = hdcp2_prepare_skey(connector, &send_eks);
1342 	if (ret < 0)
1343 		return ret;
1344 
1345 	ret = hdcp->shim->write_2_2_msg(intel_dig_port, &send_eks,
1346 					sizeof(send_eks));
1347 	if (ret < 0)
1348 		return ret;
1349 
1350 	return 0;
1351 }
1352 
1353 static
1354 int hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1355 {
1356 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1357 	struct intel_hdcp *hdcp = &connector->hdcp;
1358 	union {
1359 		struct hdcp2_rep_stream_manage stream_manage;
1360 		struct hdcp2_rep_stream_ready stream_ready;
1361 	} msgs;
1362 	const struct intel_hdcp_shim *shim = hdcp->shim;
1363 	int ret;
1364 
1365 	/* Prepare RepeaterAuth_Stream_Manage msg */
1366 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1367 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1368 
1369 	/* K no of streams is fixed as 1. Stored as big-endian. */
1370 	msgs.stream_manage.k = cpu_to_be16(1);
1371 
1372 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
1373 	msgs.stream_manage.streams[0].stream_id = 0;
1374 	msgs.stream_manage.streams[0].stream_type = hdcp->content_type;
1375 
1376 	/* Send it to Repeater */
1377 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.stream_manage,
1378 				  sizeof(msgs.stream_manage));
1379 	if (ret < 0)
1380 		return ret;
1381 
1382 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_STREAM_READY,
1383 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1384 	if (ret < 0)
1385 		return ret;
1386 
1387 	hdcp->port_data.seq_num_m = hdcp->seq_num_m;
1388 	hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1389 
1390 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1391 	if (ret < 0)
1392 		return ret;
1393 
1394 	hdcp->seq_num_m++;
1395 
1396 	if (hdcp->seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1397 		DRM_DEBUG_KMS("seq_num_m roll over.\n");
1398 		return -1;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static
1405 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1406 {
1407 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1408 	struct intel_hdcp *hdcp = &connector->hdcp;
1409 	struct drm_device *dev = connector->base.dev;
1410 	union {
1411 		struct hdcp2_rep_send_receiverid_list recvid_list;
1412 		struct hdcp2_rep_send_ack rep_ack;
1413 	} msgs;
1414 	const struct intel_hdcp_shim *shim = hdcp->shim;
1415 	u32 seq_num_v, device_cnt;
1416 	u8 *rx_info;
1417 	int ret;
1418 
1419 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1420 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1421 	if (ret < 0)
1422 		return ret;
1423 
1424 	rx_info = msgs.recvid_list.rx_info;
1425 
1426 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1427 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1428 		DRM_DEBUG_KMS("Topology Max Size Exceeded\n");
1429 		return -EINVAL;
1430 	}
1431 
1432 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1433 	seq_num_v =
1434 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1435 
1436 	if (seq_num_v < hdcp->seq_num_v) {
1437 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1438 		DRM_DEBUG_KMS("Seq_num_v roll over.\n");
1439 		return -EINVAL;
1440 	}
1441 
1442 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1443 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1444 	if (drm_hdcp_check_ksvs_revoked(dev, msgs.recvid_list.receiver_ids,
1445 					device_cnt)) {
1446 		DRM_ERROR("Revoked receiver ID(s) is in list\n");
1447 		return -EPERM;
1448 	}
1449 
1450 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1451 						    &msgs.recvid_list,
1452 						    &msgs.rep_ack);
1453 	if (ret < 0)
1454 		return ret;
1455 
1456 	hdcp->seq_num_v = seq_num_v;
1457 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.rep_ack,
1458 				  sizeof(msgs.rep_ack));
1459 	if (ret < 0)
1460 		return ret;
1461 
1462 	return 0;
1463 }
1464 
1465 static int hdcp2_authenticate_repeater(struct intel_connector *connector)
1466 {
1467 	int ret;
1468 
1469 	ret = hdcp2_authenticate_repeater_topology(connector);
1470 	if (ret < 0)
1471 		return ret;
1472 
1473 	return hdcp2_propagate_stream_management_info(connector);
1474 }
1475 
1476 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1477 {
1478 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1479 	struct intel_hdcp *hdcp = &connector->hdcp;
1480 	const struct intel_hdcp_shim *shim = hdcp->shim;
1481 	int ret;
1482 
1483 	ret = hdcp2_authentication_key_exchange(connector);
1484 	if (ret < 0) {
1485 		DRM_DEBUG_KMS("AKE Failed. Err : %d\n", ret);
1486 		return ret;
1487 	}
1488 
1489 	ret = hdcp2_locality_check(connector);
1490 	if (ret < 0) {
1491 		DRM_DEBUG_KMS("Locality Check failed. Err : %d\n", ret);
1492 		return ret;
1493 	}
1494 
1495 	ret = hdcp2_session_key_exchange(connector);
1496 	if (ret < 0) {
1497 		DRM_DEBUG_KMS("SKE Failed. Err : %d\n", ret);
1498 		return ret;
1499 	}
1500 
1501 	if (shim->config_stream_type) {
1502 		ret = shim->config_stream_type(intel_dig_port,
1503 					       hdcp->is_repeater,
1504 					       hdcp->content_type);
1505 		if (ret < 0)
1506 			return ret;
1507 	}
1508 
1509 	if (hdcp->is_repeater) {
1510 		ret = hdcp2_authenticate_repeater(connector);
1511 		if (ret < 0) {
1512 			DRM_DEBUG_KMS("Repeater Auth Failed. Err: %d\n", ret);
1513 			return ret;
1514 		}
1515 	}
1516 
1517 	hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1518 	ret = hdcp2_authenticate_port(connector);
1519 	if (ret < 0)
1520 		return ret;
1521 
1522 	return ret;
1523 }
1524 
1525 static int hdcp2_enable_encryption(struct intel_connector *connector)
1526 {
1527 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1528 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1529 	struct intel_hdcp *hdcp = &connector->hdcp;
1530 	enum port port = connector->encoder->port;
1531 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1532 	int ret;
1533 
1534 	WARN_ON(I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1535 		LINK_ENCRYPTION_STATUS);
1536 	if (hdcp->shim->toggle_signalling) {
1537 		ret = hdcp->shim->toggle_signalling(intel_dig_port, true);
1538 		if (ret) {
1539 			DRM_ERROR("Failed to enable HDCP signalling. %d\n",
1540 				  ret);
1541 			return ret;
1542 		}
1543 	}
1544 
1545 	if (I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1546 	    LINK_AUTH_STATUS) {
1547 		/* Link is Authenticated. Now set for Encryption */
1548 		I915_WRITE(HDCP2_CTL(dev_priv, cpu_transcoder, port),
1549 			   I915_READ(HDCP2_CTL(dev_priv, cpu_transcoder,
1550 					       port)) |
1551 			   CTL_LINK_ENCRYPTION_REQ);
1552 	}
1553 
1554 	ret = intel_de_wait_for_set(dev_priv,
1555 				    HDCP2_STATUS(dev_priv, cpu_transcoder,
1556 						 port),
1557 				    LINK_ENCRYPTION_STATUS,
1558 				    ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1559 
1560 	return ret;
1561 }
1562 
1563 static int hdcp2_disable_encryption(struct intel_connector *connector)
1564 {
1565 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1566 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1567 	struct intel_hdcp *hdcp = &connector->hdcp;
1568 	enum port port = connector->encoder->port;
1569 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1570 	int ret;
1571 
1572 	WARN_ON(!(I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1573 			    LINK_ENCRYPTION_STATUS));
1574 
1575 	I915_WRITE(HDCP2_CTL(dev_priv, cpu_transcoder, port),
1576 		   I915_READ(HDCP2_CTL(dev_priv, cpu_transcoder, port)) &
1577 		   ~CTL_LINK_ENCRYPTION_REQ);
1578 
1579 	ret = intel_de_wait_for_clear(dev_priv,
1580 				      HDCP2_STATUS(dev_priv, cpu_transcoder,
1581 						   port),
1582 				      LINK_ENCRYPTION_STATUS,
1583 				      ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1584 	if (ret == -ETIMEDOUT)
1585 		DRM_DEBUG_KMS("Disable Encryption Timedout");
1586 
1587 	if (hdcp->shim->toggle_signalling) {
1588 		ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
1589 		if (ret) {
1590 			DRM_ERROR("Failed to disable HDCP signalling. %d\n",
1591 				  ret);
1592 			return ret;
1593 		}
1594 	}
1595 
1596 	return ret;
1597 }
1598 
1599 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1600 {
1601 	int ret, i, tries = 3;
1602 
1603 	for (i = 0; i < tries; i++) {
1604 		ret = hdcp2_authenticate_sink(connector);
1605 		if (!ret)
1606 			break;
1607 
1608 		/* Clearing the mei hdcp session */
1609 		DRM_DEBUG_KMS("HDCP2.2 Auth %d of %d Failed.(%d)\n",
1610 			      i + 1, tries, ret);
1611 		if (hdcp2_deauthenticate_port(connector) < 0)
1612 			DRM_DEBUG_KMS("Port deauth failed.\n");
1613 	}
1614 
1615 	if (i != tries) {
1616 		/*
1617 		 * Ensuring the required 200mSec min time interval between
1618 		 * Session Key Exchange and encryption.
1619 		 */
1620 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1621 		ret = hdcp2_enable_encryption(connector);
1622 		if (ret < 0) {
1623 			DRM_DEBUG_KMS("Encryption Enable Failed.(%d)\n", ret);
1624 			if (hdcp2_deauthenticate_port(connector) < 0)
1625 				DRM_DEBUG_KMS("Port deauth failed.\n");
1626 		}
1627 	}
1628 
1629 	return ret;
1630 }
1631 
1632 static int _intel_hdcp2_enable(struct intel_connector *connector)
1633 {
1634 	struct intel_hdcp *hdcp = &connector->hdcp;
1635 	int ret;
1636 
1637 	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1638 		      connector->base.name, connector->base.base.id,
1639 		      hdcp->content_type);
1640 
1641 	ret = hdcp2_authenticate_and_encrypt(connector);
1642 	if (ret) {
1643 		DRM_DEBUG_KMS("HDCP2 Type%d  Enabling Failed. (%d)\n",
1644 			      hdcp->content_type, ret);
1645 		return ret;
1646 	}
1647 
1648 	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is enabled. Type %d\n",
1649 		      connector->base.name, connector->base.base.id,
1650 		      hdcp->content_type);
1651 
1652 	hdcp->hdcp2_encrypted = true;
1653 	return 0;
1654 }
1655 
1656 static int _intel_hdcp2_disable(struct intel_connector *connector)
1657 {
1658 	int ret;
1659 
1660 	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being Disabled\n",
1661 		      connector->base.name, connector->base.base.id);
1662 
1663 	ret = hdcp2_disable_encryption(connector);
1664 
1665 	if (hdcp2_deauthenticate_port(connector) < 0)
1666 		DRM_DEBUG_KMS("Port deauth failed.\n");
1667 
1668 	connector->hdcp.hdcp2_encrypted = false;
1669 
1670 	return ret;
1671 }
1672 
1673 /* Implements the Link Integrity Check for HDCP2.2 */
1674 static int intel_hdcp2_check_link(struct intel_connector *connector)
1675 {
1676 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1677 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1678 	struct intel_hdcp *hdcp = &connector->hdcp;
1679 	enum port port = connector->encoder->port;
1680 	enum transcoder cpu_transcoder;
1681 	int ret = 0;
1682 
1683 	mutex_lock(&hdcp->mutex);
1684 	cpu_transcoder = hdcp->cpu_transcoder;
1685 
1686 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
1687 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1688 	    !hdcp->hdcp2_encrypted) {
1689 		ret = -EINVAL;
1690 		goto out;
1691 	}
1692 
1693 	if (WARN_ON(!intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
1694 		DRM_ERROR("HDCP2.2 link stopped the encryption, %x\n",
1695 			  I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder,
1696 						 port)));
1697 		ret = -ENXIO;
1698 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1699 		schedule_work(&hdcp->prop_work);
1700 		goto out;
1701 	}
1702 
1703 	ret = hdcp->shim->check_2_2_link(intel_dig_port);
1704 	if (ret == HDCP_LINK_PROTECTED) {
1705 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1706 			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1707 			schedule_work(&hdcp->prop_work);
1708 		}
1709 		goto out;
1710 	}
1711 
1712 	if (ret == HDCP_TOPOLOGY_CHANGE) {
1713 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1714 			goto out;
1715 
1716 		DRM_DEBUG_KMS("HDCP2.2 Downstream topology change\n");
1717 		ret = hdcp2_authenticate_repeater_topology(connector);
1718 		if (!ret) {
1719 			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1720 			schedule_work(&hdcp->prop_work);
1721 			goto out;
1722 		}
1723 		DRM_DEBUG_KMS("[%s:%d] Repeater topology auth failed.(%d)\n",
1724 			      connector->base.name, connector->base.base.id,
1725 			      ret);
1726 	} else {
1727 		DRM_DEBUG_KMS("[%s:%d] HDCP2.2 link failed, retrying auth\n",
1728 			      connector->base.name, connector->base.base.id);
1729 	}
1730 
1731 	ret = _intel_hdcp2_disable(connector);
1732 	if (ret) {
1733 		DRM_ERROR("[%s:%d] Failed to disable hdcp2.2 (%d)\n",
1734 			  connector->base.name, connector->base.base.id, ret);
1735 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1736 		schedule_work(&hdcp->prop_work);
1737 		goto out;
1738 	}
1739 
1740 	ret = _intel_hdcp2_enable(connector);
1741 	if (ret) {
1742 		DRM_DEBUG_KMS("[%s:%d] Failed to enable hdcp2.2 (%d)\n",
1743 			      connector->base.name, connector->base.base.id,
1744 			      ret);
1745 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1746 		schedule_work(&hdcp->prop_work);
1747 		goto out;
1748 	}
1749 
1750 out:
1751 	mutex_unlock(&hdcp->mutex);
1752 	return ret;
1753 }
1754 
1755 static void intel_hdcp_check_work(struct work_struct *work)
1756 {
1757 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
1758 					       struct intel_hdcp,
1759 					       check_work);
1760 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1761 
1762 	if (!intel_hdcp2_check_link(connector))
1763 		schedule_delayed_work(&hdcp->check_work,
1764 				      DRM_HDCP2_CHECK_PERIOD_MS);
1765 	else if (!intel_hdcp_check_link(connector))
1766 		schedule_delayed_work(&hdcp->check_work,
1767 				      DRM_HDCP_CHECK_PERIOD_MS);
1768 }
1769 
1770 static int i915_hdcp_component_bind(struct device *i915_kdev,
1771 				    struct device *mei_kdev, void *data)
1772 {
1773 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1774 
1775 	DRM_DEBUG("I915 HDCP comp bind\n");
1776 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1777 	dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
1778 	dev_priv->hdcp_master->mei_dev = mei_kdev;
1779 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1780 
1781 	return 0;
1782 }
1783 
1784 static void i915_hdcp_component_unbind(struct device *i915_kdev,
1785 				       struct device *mei_kdev, void *data)
1786 {
1787 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1788 
1789 	DRM_DEBUG("I915 HDCP comp unbind\n");
1790 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1791 	dev_priv->hdcp_master = NULL;
1792 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1793 }
1794 
1795 static const struct component_ops i915_hdcp_component_ops = {
1796 	.bind   = i915_hdcp_component_bind,
1797 	.unbind = i915_hdcp_component_unbind,
1798 };
1799 
1800 static inline
1801 enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
1802 {
1803 	switch (port) {
1804 	case PORT_A:
1805 		return MEI_DDI_A;
1806 	case PORT_B ... PORT_F:
1807 		return (enum mei_fw_ddi)port;
1808 	default:
1809 		return MEI_DDI_INVALID_PORT;
1810 	}
1811 }
1812 
1813 static inline
1814 enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
1815 {
1816 	switch (cpu_transcoder) {
1817 	case TRANSCODER_A ... TRANSCODER_D:
1818 		return (enum mei_fw_tc)(cpu_transcoder | 0x10);
1819 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
1820 		return MEI_INVALID_TRANSCODER;
1821 	}
1822 }
1823 
1824 static inline int initialize_hdcp_port_data(struct intel_connector *connector,
1825 					    const struct intel_hdcp_shim *shim)
1826 {
1827 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1828 	struct intel_hdcp *hdcp = &connector->hdcp;
1829 	struct hdcp_port_data *data = &hdcp->port_data;
1830 
1831 	if (INTEL_GEN(dev_priv) < 12)
1832 		data->fw_ddi =
1833 			intel_get_mei_fw_ddi_index(connector->encoder->port);
1834 	else
1835 		/*
1836 		 * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
1837 		 * with zero(INVALID PORT index).
1838 		 */
1839 		data->fw_ddi = MEI_DDI_INVALID_PORT;
1840 
1841 	/*
1842 	 * As associated transcoder is set and modified at modeset, here fw_tc
1843 	 * is initialized to zero (invalid transcoder index). This will be
1844 	 * retained for <Gen12 forever.
1845 	 */
1846 	data->fw_tc = MEI_INVALID_TRANSCODER;
1847 
1848 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
1849 	data->protocol = (u8)shim->protocol;
1850 
1851 	data->k = 1;
1852 	if (!data->streams)
1853 		data->streams = kcalloc(data->k,
1854 					sizeof(struct hdcp2_streamid_type),
1855 					GFP_KERNEL);
1856 	if (!data->streams) {
1857 		DRM_ERROR("Out of Memory\n");
1858 		return -ENOMEM;
1859 	}
1860 
1861 	data->streams[0].stream_id = 0;
1862 	data->streams[0].stream_type = hdcp->content_type;
1863 
1864 	return 0;
1865 }
1866 
1867 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
1868 {
1869 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
1870 		return false;
1871 
1872 	return (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv) ||
1873 		IS_KABYLAKE(dev_priv));
1874 }
1875 
1876 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
1877 {
1878 	int ret;
1879 
1880 	if (!is_hdcp2_supported(dev_priv))
1881 		return;
1882 
1883 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1884 	WARN_ON(dev_priv->hdcp_comp_added);
1885 
1886 	dev_priv->hdcp_comp_added = true;
1887 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1888 	ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
1889 				  I915_COMPONENT_HDCP);
1890 	if (ret < 0) {
1891 		DRM_DEBUG_KMS("Failed at component add(%d)\n", ret);
1892 		mutex_lock(&dev_priv->hdcp_comp_mutex);
1893 		dev_priv->hdcp_comp_added = false;
1894 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1895 		return;
1896 	}
1897 }
1898 
1899 static void intel_hdcp2_init(struct intel_connector *connector,
1900 			     const struct intel_hdcp_shim *shim)
1901 {
1902 	struct intel_hdcp *hdcp = &connector->hdcp;
1903 	int ret;
1904 
1905 	ret = initialize_hdcp_port_data(connector, shim);
1906 	if (ret) {
1907 		DRM_DEBUG_KMS("Mei hdcp data init failed\n");
1908 		return;
1909 	}
1910 
1911 	hdcp->hdcp2_supported = true;
1912 }
1913 
1914 int intel_hdcp_init(struct intel_connector *connector,
1915 		    const struct intel_hdcp_shim *shim)
1916 {
1917 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1918 	struct intel_hdcp *hdcp = &connector->hdcp;
1919 	int ret;
1920 
1921 	if (!shim)
1922 		return -EINVAL;
1923 
1924 	if (is_hdcp2_supported(dev_priv))
1925 		intel_hdcp2_init(connector, shim);
1926 
1927 	ret =
1928 	drm_connector_attach_content_protection_property(&connector->base,
1929 							 hdcp->hdcp2_supported);
1930 	if (ret) {
1931 		hdcp->hdcp2_supported = false;
1932 		kfree(hdcp->port_data.streams);
1933 		return ret;
1934 	}
1935 
1936 	hdcp->shim = shim;
1937 	mutex_init(&hdcp->mutex);
1938 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
1939 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
1940 	init_waitqueue_head(&hdcp->cp_irq_queue);
1941 
1942 	return 0;
1943 }
1944 
1945 int intel_hdcp_enable(struct intel_connector *connector,
1946 		      enum transcoder cpu_transcoder, u8 content_type)
1947 {
1948 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1949 	struct intel_hdcp *hdcp = &connector->hdcp;
1950 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
1951 	int ret = -EINVAL;
1952 
1953 	if (!hdcp->shim)
1954 		return -ENOENT;
1955 
1956 	mutex_lock(&hdcp->mutex);
1957 	WARN_ON(hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
1958 	hdcp->content_type = content_type;
1959 
1960 	if (INTEL_GEN(dev_priv) >= 12) {
1961 		hdcp->cpu_transcoder = cpu_transcoder;
1962 		hdcp->port_data.fw_tc = intel_get_mei_fw_tc(cpu_transcoder);
1963 	}
1964 
1965 	/*
1966 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
1967 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
1968 	 */
1969 	if (intel_hdcp2_capable(connector)) {
1970 		ret = _intel_hdcp2_enable(connector);
1971 		if (!ret)
1972 			check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
1973 	}
1974 
1975 	/*
1976 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
1977 	 * be attempted.
1978 	 */
1979 	if (ret && intel_hdcp_capable(connector) &&
1980 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
1981 		ret = _intel_hdcp_enable(connector);
1982 	}
1983 
1984 	if (!ret) {
1985 		schedule_delayed_work(&hdcp->check_work, check_link_interval);
1986 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1987 		schedule_work(&hdcp->prop_work);
1988 	}
1989 
1990 	mutex_unlock(&hdcp->mutex);
1991 	return ret;
1992 }
1993 
1994 int intel_hdcp_disable(struct intel_connector *connector)
1995 {
1996 	struct intel_hdcp *hdcp = &connector->hdcp;
1997 	int ret = 0;
1998 
1999 	if (!hdcp->shim)
2000 		return -ENOENT;
2001 
2002 	mutex_lock(&hdcp->mutex);
2003 
2004 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2005 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
2006 		if (hdcp->hdcp2_encrypted)
2007 			ret = _intel_hdcp2_disable(connector);
2008 		else if (hdcp->hdcp_encrypted)
2009 			ret = _intel_hdcp_disable(connector);
2010 	}
2011 
2012 	mutex_unlock(&hdcp->mutex);
2013 	cancel_delayed_work_sync(&hdcp->check_work);
2014 	return ret;
2015 }
2016 
2017 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2018 {
2019 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2020 	if (!dev_priv->hdcp_comp_added) {
2021 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
2022 		return;
2023 	}
2024 
2025 	dev_priv->hdcp_comp_added = false;
2026 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2027 
2028 	component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2029 }
2030 
2031 void intel_hdcp_cleanup(struct intel_connector *connector)
2032 {
2033 	if (!connector->hdcp.shim)
2034 		return;
2035 
2036 	mutex_lock(&connector->hdcp.mutex);
2037 	kfree(connector->hdcp.port_data.streams);
2038 	mutex_unlock(&connector->hdcp.mutex);
2039 }
2040 
2041 void intel_hdcp_atomic_check(struct drm_connector *connector,
2042 			     struct drm_connector_state *old_state,
2043 			     struct drm_connector_state *new_state)
2044 {
2045 	u64 old_cp = old_state->content_protection;
2046 	u64 new_cp = new_state->content_protection;
2047 	struct drm_crtc_state *crtc_state;
2048 
2049 	if (!new_state->crtc) {
2050 		/*
2051 		 * If the connector is being disabled with CP enabled, mark it
2052 		 * desired so it's re-enabled when the connector is brought back
2053 		 */
2054 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2055 			new_state->content_protection =
2056 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2057 		return;
2058 	}
2059 
2060 	/*
2061 	 * Nothing to do if the state didn't change, or HDCP was activated since
2062 	 * the last commit. And also no change in hdcp content type.
2063 	 */
2064 	if (old_cp == new_cp ||
2065 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2066 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2067 		if (old_state->hdcp_content_type ==
2068 				new_state->hdcp_content_type)
2069 			return;
2070 	}
2071 
2072 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2073 						   new_state->crtc);
2074 	crtc_state->mode_changed = true;
2075 }
2076 
2077 /* Handles the CP_IRQ raised from the DP HDCP sink */
2078 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2079 {
2080 	struct intel_hdcp *hdcp = &connector->hdcp;
2081 
2082 	if (!hdcp->shim)
2083 		return;
2084 
2085 	atomic_inc(&connector->hdcp.cp_irq_count);
2086 	wake_up_all(&connector->hdcp.cp_irq_queue);
2087 
2088 	schedule_delayed_work(&hdcp->check_work, 0);
2089 }
2090