xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision 867639300759e3e1c5b1e1a5ff89231f263a32a7)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14 
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/i915_component.h>
17 
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_hdcp_gsc.h"
27 #include "intel_hdcp_regs.h"
28 #include "intel_pcode.h"
29 
30 #define KEY_LOAD_TRIES	5
31 #define HDCP2_LC_RETRY_CNT			3
32 
33 static int intel_conn_to_vcpi(struct drm_atomic_state *state,
34 			      struct intel_connector *connector)
35 {
36 	struct drm_dp_mst_topology_mgr *mgr;
37 	struct drm_dp_mst_atomic_payload *payload;
38 	struct drm_dp_mst_topology_state *mst_state;
39 	int vcpi = 0;
40 
41 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
42 	if (!connector->port)
43 		return 0;
44 	mgr = connector->port->mgr;
45 
46 	drm_modeset_lock(&mgr->base.lock, state->acquire_ctx);
47 	mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
48 	payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
49 	if (drm_WARN_ON(mgr->dev, !payload))
50 		goto out;
51 
52 	vcpi = payload->vcpi;
53 	if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
54 		vcpi = 0;
55 		goto out;
56 	}
57 out:
58 	return vcpi;
59 }
60 
61 /*
62  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
63  * content_type for all streams in DP MST topology because security f/w doesn't
64  * have any provision to mark content_type for each stream separately, it marks
65  * all available streams with the content_type proivided at the time of port
66  * authentication. This may prohibit the userspace to use type1 content on
67  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
68  * DP MST topology. Though it is not compulsory, security fw should change its
69  * policy to mark different content_types for different streams.
70  */
71 static void
72 intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
73 {
74 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
75 	bool enforce_type0 = false;
76 	int k;
77 
78 	if (dig_port->hdcp_auth_status)
79 		return;
80 
81 	if (!dig_port->hdcp_mst_type1_capable)
82 		enforce_type0 = true;
83 
84 	/*
85 	 * Apply common protection level across all streams in DP MST Topology.
86 	 * Use highest supported content type for all streams in DP MST Topology.
87 	 */
88 	for (k = 0; k < data->k; k++)
89 		data->streams[k].stream_type =
90 			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
91 }
92 
93 static void intel_hdcp_prepare_streams(struct intel_connector *connector)
94 {
95 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
96 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
97 	struct intel_hdcp *hdcp = &connector->hdcp;
98 
99 	if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
100 		data->streams[0].stream_type = hdcp->content_type;
101 	} else {
102 		intel_hdcp_required_content_stream(dig_port);
103 	}
104 }
105 
106 static
107 bool intel_hdcp_is_ksv_valid(u8 *ksv)
108 {
109 	int i, ones = 0;
110 	/* KSV has 20 1's and 20 0's */
111 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
112 		ones += hweight8(ksv[i]);
113 	if (ones != 20)
114 		return false;
115 
116 	return true;
117 }
118 
119 static
120 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
121 			       const struct intel_hdcp_shim *shim, u8 *bksv)
122 {
123 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
124 	int ret, i, tries = 2;
125 
126 	/* HDCP spec states that we must retry the bksv if it is invalid */
127 	for (i = 0; i < tries; i++) {
128 		ret = shim->read_bksv(dig_port, bksv);
129 		if (ret)
130 			return ret;
131 		if (intel_hdcp_is_ksv_valid(bksv))
132 			break;
133 	}
134 	if (i == tries) {
135 		drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
136 		return -ENODEV;
137 	}
138 
139 	return 0;
140 }
141 
142 /* Is HDCP1.4 capable on Platform and Sink */
143 bool intel_hdcp_capable(struct intel_connector *connector)
144 {
145 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
146 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
147 	bool capable = false;
148 	u8 bksv[5];
149 
150 	if (!shim)
151 		return capable;
152 
153 	if (shim->hdcp_capable) {
154 		shim->hdcp_capable(dig_port, &capable);
155 	} else {
156 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
157 			capable = true;
158 	}
159 
160 	return capable;
161 }
162 
163 /* Is HDCP2.2 capable on Platform and Sink */
164 bool intel_hdcp2_capable(struct intel_connector *connector)
165 {
166 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
167 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
168 	struct intel_hdcp *hdcp = &connector->hdcp;
169 	bool capable = false;
170 
171 	/* I915 support for HDCP2.2 */
172 	if (!hdcp->hdcp2_supported)
173 		return false;
174 
175 	/* If MTL+ make sure gsc is loaded and proxy is setup */
176 	if (intel_hdcp_gsc_cs_required(i915)) {
177 		struct intel_gt *gt = i915->media_gt;
178 		struct intel_gsc_uc *gsc = gt ? &gt->uc.gsc : NULL;
179 
180 		if (!gsc || !intel_uc_fw_is_running(&gsc->fw)) {
181 			drm_dbg_kms(&i915->drm,
182 				    "GSC components required for HDCP2.2 are not ready\n");
183 			return false;
184 		}
185 	}
186 
187 	/* MEI/GSC interface is solid depending on which is used */
188 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
189 	if (!i915->display.hdcp.comp_added ||  !i915->display.hdcp.arbiter) {
190 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
191 		return false;
192 	}
193 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
194 
195 	/* Sink's capability for HDCP2.2 */
196 	hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
197 
198 	return capable;
199 }
200 
201 static bool intel_hdcp_in_use(struct drm_i915_private *i915,
202 			      enum transcoder cpu_transcoder, enum port port)
203 {
204 	return intel_de_read(i915,
205 			     HDCP_STATUS(i915, cpu_transcoder, port)) &
206 		HDCP_STATUS_ENC;
207 }
208 
209 static bool intel_hdcp2_in_use(struct drm_i915_private *i915,
210 			       enum transcoder cpu_transcoder, enum port port)
211 {
212 	return intel_de_read(i915,
213 			     HDCP2_STATUS(i915, cpu_transcoder, port)) &
214 		LINK_ENCRYPTION_STATUS;
215 }
216 
217 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
218 				    const struct intel_hdcp_shim *shim)
219 {
220 	int ret, read_ret;
221 	bool ksv_ready;
222 
223 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
224 	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
225 							 &ksv_ready),
226 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
227 			 100 * 1000);
228 	if (ret)
229 		return ret;
230 	if (read_ret)
231 		return read_ret;
232 	if (!ksv_ready)
233 		return -ETIMEDOUT;
234 
235 	return 0;
236 }
237 
238 static bool hdcp_key_loadable(struct drm_i915_private *i915)
239 {
240 	enum i915_power_well_id id;
241 	intel_wakeref_t wakeref;
242 	bool enabled = false;
243 
244 	/*
245 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
246 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
247 	 */
248 	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
249 		id = HSW_DISP_PW_GLOBAL;
250 	else
251 		id = SKL_DISP_PW_1;
252 
253 	/* PG1 (power well #1) needs to be enabled */
254 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
255 		enabled = intel_display_power_well_is_enabled(i915, id);
256 
257 	/*
258 	 * Another req for hdcp key loadability is enabled state of pll for
259 	 * cdclk. Without active crtc we wont land here. So we are assuming that
260 	 * cdclk is already on.
261 	 */
262 
263 	return enabled;
264 }
265 
266 static void intel_hdcp_clear_keys(struct drm_i915_private *i915)
267 {
268 	intel_de_write(i915, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
269 	intel_de_write(i915, HDCP_KEY_STATUS,
270 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
271 }
272 
273 static int intel_hdcp_load_keys(struct drm_i915_private *i915)
274 {
275 	int ret;
276 	u32 val;
277 
278 	val = intel_de_read(i915, HDCP_KEY_STATUS);
279 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
280 		return 0;
281 
282 	/*
283 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
284 	 * out of reset. So if Key is not already loaded, its an error state.
285 	 */
286 	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
287 		if (!(intel_de_read(i915, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
288 			return -ENXIO;
289 
290 	/*
291 	 * Initiate loading the HDCP key from fuses.
292 	 *
293 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
294 	 * version 9 platforms (minus BXT) differ in the key load trigger
295 	 * process from other platforms. These platforms use the GT Driver
296 	 * Mailbox interface.
297 	 */
298 	if (DISPLAY_VER(i915) == 9 && !IS_BROXTON(i915)) {
299 		ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
300 		if (ret) {
301 			drm_err(&i915->drm,
302 				"Failed to initiate HDCP key load (%d)\n",
303 				ret);
304 			return ret;
305 		}
306 	} else {
307 		intel_de_write(i915, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
308 	}
309 
310 	/* Wait for the keys to load (500us) */
311 	ret = __intel_wait_for_register(&i915->uncore, HDCP_KEY_STATUS,
312 					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
313 					10, 1, &val);
314 	if (ret)
315 		return ret;
316 	else if (!(val & HDCP_KEY_LOAD_STATUS))
317 		return -ENXIO;
318 
319 	/* Send Aksv over to PCH display for use in authentication */
320 	intel_de_write(i915, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
321 
322 	return 0;
323 }
324 
325 /* Returns updated SHA-1 index */
326 static int intel_write_sha_text(struct drm_i915_private *i915, u32 sha_text)
327 {
328 	intel_de_write(i915, HDCP_SHA_TEXT, sha_text);
329 	if (intel_de_wait_for_set(i915, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
330 		drm_err(&i915->drm, "Timed out waiting for SHA1 ready\n");
331 		return -ETIMEDOUT;
332 	}
333 	return 0;
334 }
335 
336 static
337 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *i915,
338 				enum transcoder cpu_transcoder, enum port port)
339 {
340 	if (DISPLAY_VER(i915) >= 12) {
341 		switch (cpu_transcoder) {
342 		case TRANSCODER_A:
343 			return HDCP_TRANSA_REP_PRESENT |
344 			       HDCP_TRANSA_SHA1_M0;
345 		case TRANSCODER_B:
346 			return HDCP_TRANSB_REP_PRESENT |
347 			       HDCP_TRANSB_SHA1_M0;
348 		case TRANSCODER_C:
349 			return HDCP_TRANSC_REP_PRESENT |
350 			       HDCP_TRANSC_SHA1_M0;
351 		case TRANSCODER_D:
352 			return HDCP_TRANSD_REP_PRESENT |
353 			       HDCP_TRANSD_SHA1_M0;
354 		default:
355 			drm_err(&i915->drm, "Unknown transcoder %d\n",
356 				cpu_transcoder);
357 			return -EINVAL;
358 		}
359 	}
360 
361 	switch (port) {
362 	case PORT_A:
363 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
364 	case PORT_B:
365 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
366 	case PORT_C:
367 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
368 	case PORT_D:
369 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
370 	case PORT_E:
371 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
372 	default:
373 		drm_err(&i915->drm, "Unknown port %d\n", port);
374 		return -EINVAL;
375 	}
376 }
377 
378 static
379 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
380 				const struct intel_hdcp_shim *shim,
381 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
382 {
383 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
384 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
385 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
386 	enum port port = dig_port->base.port;
387 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
388 	int ret, i, j, sha_idx;
389 
390 	/* Process V' values from the receiver */
391 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
392 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
393 		if (ret)
394 			return ret;
395 		intel_de_write(i915, HDCP_SHA_V_PRIME(i), vprime);
396 	}
397 
398 	/*
399 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
400 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
401 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
402 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
403 	 * index will keep track of our progress through the 64 bytes as well as
404 	 * helping us work the 40-bit KSVs through our 32-bit register.
405 	 *
406 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
407 	 */
408 	sha_idx = 0;
409 	sha_text = 0;
410 	sha_leftovers = 0;
411 	rep_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port);
412 	intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
413 	for (i = 0; i < num_downstream; i++) {
414 		unsigned int sha_empty;
415 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
416 
417 		/* Fill up the empty slots in sha_text and write it out */
418 		sha_empty = sizeof(sha_text) - sha_leftovers;
419 		for (j = 0; j < sha_empty; j++) {
420 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
421 			sha_text |= ksv[j] << off;
422 		}
423 
424 		ret = intel_write_sha_text(i915, sha_text);
425 		if (ret < 0)
426 			return ret;
427 
428 		/* Programming guide writes this every 64 bytes */
429 		sha_idx += sizeof(sha_text);
430 		if (!(sha_idx % 64))
431 			intel_de_write(i915, HDCP_REP_CTL,
432 				       rep_ctl | HDCP_SHA1_TEXT_32);
433 
434 		/* Store the leftover bytes from the ksv in sha_text */
435 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
436 		sha_text = 0;
437 		for (j = 0; j < sha_leftovers; j++)
438 			sha_text |= ksv[sha_empty + j] <<
439 					((sizeof(sha_text) - j - 1) * 8);
440 
441 		/*
442 		 * If we still have room in sha_text for more data, continue.
443 		 * Otherwise, write it out immediately.
444 		 */
445 		if (sizeof(sha_text) > sha_leftovers)
446 			continue;
447 
448 		ret = intel_write_sha_text(i915, sha_text);
449 		if (ret < 0)
450 			return ret;
451 		sha_leftovers = 0;
452 		sha_text = 0;
453 		sha_idx += sizeof(sha_text);
454 	}
455 
456 	/*
457 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
458 	 * bytes are leftover from the last ksv, we might be able to fit them
459 	 * all in sha_text (first 2 cases), or we might need to split them up
460 	 * into 2 writes (last 2 cases).
461 	 */
462 	if (sha_leftovers == 0) {
463 		/* Write 16 bits of text, 16 bits of M0 */
464 		intel_de_write(i915, HDCP_REP_CTL,
465 			       rep_ctl | HDCP_SHA1_TEXT_16);
466 		ret = intel_write_sha_text(i915,
467 					   bstatus[0] << 8 | bstatus[1]);
468 		if (ret < 0)
469 			return ret;
470 		sha_idx += sizeof(sha_text);
471 
472 		/* Write 32 bits of M0 */
473 		intel_de_write(i915, HDCP_REP_CTL,
474 			       rep_ctl | HDCP_SHA1_TEXT_0);
475 		ret = intel_write_sha_text(i915, 0);
476 		if (ret < 0)
477 			return ret;
478 		sha_idx += sizeof(sha_text);
479 
480 		/* Write 16 bits of M0 */
481 		intel_de_write(i915, HDCP_REP_CTL,
482 			       rep_ctl | HDCP_SHA1_TEXT_16);
483 		ret = intel_write_sha_text(i915, 0);
484 		if (ret < 0)
485 			return ret;
486 		sha_idx += sizeof(sha_text);
487 
488 	} else if (sha_leftovers == 1) {
489 		/* Write 24 bits of text, 8 bits of M0 */
490 		intel_de_write(i915, HDCP_REP_CTL,
491 			       rep_ctl | HDCP_SHA1_TEXT_24);
492 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
493 		/* Only 24-bits of data, must be in the LSB */
494 		sha_text = (sha_text & 0xffffff00) >> 8;
495 		ret = intel_write_sha_text(i915, sha_text);
496 		if (ret < 0)
497 			return ret;
498 		sha_idx += sizeof(sha_text);
499 
500 		/* Write 32 bits of M0 */
501 		intel_de_write(i915, HDCP_REP_CTL,
502 			       rep_ctl | HDCP_SHA1_TEXT_0);
503 		ret = intel_write_sha_text(i915, 0);
504 		if (ret < 0)
505 			return ret;
506 		sha_idx += sizeof(sha_text);
507 
508 		/* Write 24 bits of M0 */
509 		intel_de_write(i915, HDCP_REP_CTL,
510 			       rep_ctl | HDCP_SHA1_TEXT_8);
511 		ret = intel_write_sha_text(i915, 0);
512 		if (ret < 0)
513 			return ret;
514 		sha_idx += sizeof(sha_text);
515 
516 	} else if (sha_leftovers == 2) {
517 		/* Write 32 bits of text */
518 		intel_de_write(i915, HDCP_REP_CTL,
519 			       rep_ctl | HDCP_SHA1_TEXT_32);
520 		sha_text |= bstatus[0] << 8 | bstatus[1];
521 		ret = intel_write_sha_text(i915, sha_text);
522 		if (ret < 0)
523 			return ret;
524 		sha_idx += sizeof(sha_text);
525 
526 		/* Write 64 bits of M0 */
527 		intel_de_write(i915, HDCP_REP_CTL,
528 			       rep_ctl | HDCP_SHA1_TEXT_0);
529 		for (i = 0; i < 2; i++) {
530 			ret = intel_write_sha_text(i915, 0);
531 			if (ret < 0)
532 				return ret;
533 			sha_idx += sizeof(sha_text);
534 		}
535 
536 		/*
537 		 * Terminate the SHA-1 stream by hand. For the other leftover
538 		 * cases this is appended by the hardware.
539 		 */
540 		intel_de_write(i915, HDCP_REP_CTL,
541 			       rep_ctl | HDCP_SHA1_TEXT_32);
542 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
543 		ret = intel_write_sha_text(i915, sha_text);
544 		if (ret < 0)
545 			return ret;
546 		sha_idx += sizeof(sha_text);
547 	} else if (sha_leftovers == 3) {
548 		/* Write 32 bits of text (filled from LSB) */
549 		intel_de_write(i915, HDCP_REP_CTL,
550 			       rep_ctl | HDCP_SHA1_TEXT_32);
551 		sha_text |= bstatus[0];
552 		ret = intel_write_sha_text(i915, sha_text);
553 		if (ret < 0)
554 			return ret;
555 		sha_idx += sizeof(sha_text);
556 
557 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
558 		intel_de_write(i915, HDCP_REP_CTL,
559 			       rep_ctl | HDCP_SHA1_TEXT_8);
560 		ret = intel_write_sha_text(i915, bstatus[1]);
561 		if (ret < 0)
562 			return ret;
563 		sha_idx += sizeof(sha_text);
564 
565 		/* Write 32 bits of M0 */
566 		intel_de_write(i915, HDCP_REP_CTL,
567 			       rep_ctl | HDCP_SHA1_TEXT_0);
568 		ret = intel_write_sha_text(i915, 0);
569 		if (ret < 0)
570 			return ret;
571 		sha_idx += sizeof(sha_text);
572 
573 		/* Write 8 bits of M0 */
574 		intel_de_write(i915, HDCP_REP_CTL,
575 			       rep_ctl | HDCP_SHA1_TEXT_24);
576 		ret = intel_write_sha_text(i915, 0);
577 		if (ret < 0)
578 			return ret;
579 		sha_idx += sizeof(sha_text);
580 	} else {
581 		drm_dbg_kms(&i915->drm, "Invalid number of leftovers %d\n",
582 			    sha_leftovers);
583 		return -EINVAL;
584 	}
585 
586 	intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
587 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
588 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
589 		ret = intel_write_sha_text(i915, 0);
590 		if (ret < 0)
591 			return ret;
592 		sha_idx += sizeof(sha_text);
593 	}
594 
595 	/*
596 	 * Last write gets the length of the concatenation in bits. That is:
597 	 *  - 5 bytes per device
598 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
599 	 */
600 	sha_text = (num_downstream * 5 + 10) * 8;
601 	ret = intel_write_sha_text(i915, sha_text);
602 	if (ret < 0)
603 		return ret;
604 
605 	/* Tell the HW we're done with the hash and wait for it to ACK */
606 	intel_de_write(i915, HDCP_REP_CTL,
607 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
608 	if (intel_de_wait_for_set(i915, HDCP_REP_CTL,
609 				  HDCP_SHA1_COMPLETE, 1)) {
610 		drm_err(&i915->drm, "Timed out waiting for SHA1 complete\n");
611 		return -ETIMEDOUT;
612 	}
613 	if (!(intel_de_read(i915, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
614 		drm_dbg_kms(&i915->drm, "SHA-1 mismatch, HDCP failed\n");
615 		return -ENXIO;
616 	}
617 
618 	return 0;
619 }
620 
621 /* Implements Part 2 of the HDCP authorization procedure */
622 static
623 int intel_hdcp_auth_downstream(struct intel_connector *connector)
624 {
625 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
626 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
627 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
628 	u8 bstatus[2], num_downstream, *ksv_fifo;
629 	int ret, i, tries = 3;
630 
631 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
632 	if (ret) {
633 		drm_dbg_kms(&i915->drm,
634 			    "KSV list failed to become ready (%d)\n", ret);
635 		return ret;
636 	}
637 
638 	ret = shim->read_bstatus(dig_port, bstatus);
639 	if (ret)
640 		return ret;
641 
642 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
643 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
644 		drm_dbg_kms(&i915->drm, "Max Topology Limit Exceeded\n");
645 		return -EPERM;
646 	}
647 
648 	/*
649 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
650 	 * the HDCP encryption. That implies that repeater can't have its own
651 	 * display. As there is no consumption of encrypted content in the
652 	 * repeater with 0 downstream devices, we are failing the
653 	 * authentication.
654 	 */
655 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
656 	if (num_downstream == 0) {
657 		drm_dbg_kms(&i915->drm,
658 			    "Repeater with zero downstream devices\n");
659 		return -EINVAL;
660 	}
661 
662 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
663 	if (!ksv_fifo) {
664 		drm_dbg_kms(&i915->drm, "Out of mem: ksv_fifo\n");
665 		return -ENOMEM;
666 	}
667 
668 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
669 	if (ret)
670 		goto err;
671 
672 	if (drm_hdcp_check_ksvs_revoked(&i915->drm, ksv_fifo,
673 					num_downstream) > 0) {
674 		drm_err(&i915->drm, "Revoked Ksv(s) in ksv_fifo\n");
675 		ret = -EPERM;
676 		goto err;
677 	}
678 
679 	/*
680 	 * When V prime mismatches, DP Spec mandates re-read of
681 	 * V prime atleast twice.
682 	 */
683 	for (i = 0; i < tries; i++) {
684 		ret = intel_hdcp_validate_v_prime(connector, shim,
685 						  ksv_fifo, num_downstream,
686 						  bstatus);
687 		if (!ret)
688 			break;
689 	}
690 
691 	if (i == tries) {
692 		drm_dbg_kms(&i915->drm,
693 			    "V Prime validation failed.(%d)\n", ret);
694 		goto err;
695 	}
696 
697 	drm_dbg_kms(&i915->drm, "HDCP is enabled (%d downstream devices)\n",
698 		    num_downstream);
699 	ret = 0;
700 err:
701 	kfree(ksv_fifo);
702 	return ret;
703 }
704 
705 /* Implements Part 1 of the HDCP authorization procedure */
706 static int intel_hdcp_auth(struct intel_connector *connector)
707 {
708 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
709 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
710 	struct intel_hdcp *hdcp = &connector->hdcp;
711 	const struct intel_hdcp_shim *shim = hdcp->shim;
712 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
713 	enum port port = dig_port->base.port;
714 	unsigned long r0_prime_gen_start;
715 	int ret, i, tries = 2;
716 	union {
717 		u32 reg[2];
718 		u8 shim[DRM_HDCP_AN_LEN];
719 	} an;
720 	union {
721 		u32 reg[2];
722 		u8 shim[DRM_HDCP_KSV_LEN];
723 	} bksv;
724 	union {
725 		u32 reg;
726 		u8 shim[DRM_HDCP_RI_LEN];
727 	} ri;
728 	bool repeater_present, hdcp_capable;
729 
730 	/*
731 	 * Detects whether the display is HDCP capable. Although we check for
732 	 * valid Bksv below, the HDCP over DP spec requires that we check
733 	 * whether the display supports HDCP before we write An. For HDMI
734 	 * displays, this is not necessary.
735 	 */
736 	if (shim->hdcp_capable) {
737 		ret = shim->hdcp_capable(dig_port, &hdcp_capable);
738 		if (ret)
739 			return ret;
740 		if (!hdcp_capable) {
741 			drm_dbg_kms(&i915->drm,
742 				    "Panel is not HDCP capable\n");
743 			return -EINVAL;
744 		}
745 	}
746 
747 	/* Initialize An with 2 random values and acquire it */
748 	for (i = 0; i < 2; i++)
749 		intel_de_write(i915,
750 			       HDCP_ANINIT(i915, cpu_transcoder, port),
751 			       get_random_u32());
752 	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
753 		       HDCP_CONF_CAPTURE_AN);
754 
755 	/* Wait for An to be acquired */
756 	if (intel_de_wait_for_set(i915,
757 				  HDCP_STATUS(i915, cpu_transcoder, port),
758 				  HDCP_STATUS_AN_READY, 1)) {
759 		drm_err(&i915->drm, "Timed out waiting for An\n");
760 		return -ETIMEDOUT;
761 	}
762 
763 	an.reg[0] = intel_de_read(i915,
764 				  HDCP_ANLO(i915, cpu_transcoder, port));
765 	an.reg[1] = intel_de_read(i915,
766 				  HDCP_ANHI(i915, cpu_transcoder, port));
767 	ret = shim->write_an_aksv(dig_port, an.shim);
768 	if (ret)
769 		return ret;
770 
771 	r0_prime_gen_start = jiffies;
772 
773 	memset(&bksv, 0, sizeof(bksv));
774 
775 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
776 	if (ret < 0)
777 		return ret;
778 
779 	if (drm_hdcp_check_ksvs_revoked(&i915->drm, bksv.shim, 1) > 0) {
780 		drm_err(&i915->drm, "BKSV is revoked\n");
781 		return -EPERM;
782 	}
783 
784 	intel_de_write(i915, HDCP_BKSVLO(i915, cpu_transcoder, port),
785 		       bksv.reg[0]);
786 	intel_de_write(i915, HDCP_BKSVHI(i915, cpu_transcoder, port),
787 		       bksv.reg[1]);
788 
789 	ret = shim->repeater_present(dig_port, &repeater_present);
790 	if (ret)
791 		return ret;
792 	if (repeater_present)
793 		intel_de_write(i915, HDCP_REP_CTL,
794 			       intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port));
795 
796 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
797 	if (ret)
798 		return ret;
799 
800 	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
801 		       HDCP_CONF_AUTH_AND_ENC);
802 
803 	/* Wait for R0 ready */
804 	if (wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
805 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
806 		drm_err(&i915->drm, "Timed out waiting for R0 ready\n");
807 		return -ETIMEDOUT;
808 	}
809 
810 	/*
811 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
812 	 * some monitors can take longer than this. We'll set the timeout at
813 	 * 300ms just to be sure.
814 	 *
815 	 * On DP, there's an R0_READY bit available but no such bit
816 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
817 	 * the stupid thing instead of polling on one and not the other.
818 	 */
819 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
820 
821 	tries = 3;
822 
823 	/*
824 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
825 	 * of R0 mismatch.
826 	 */
827 	for (i = 0; i < tries; i++) {
828 		ri.reg = 0;
829 		ret = shim->read_ri_prime(dig_port, ri.shim);
830 		if (ret)
831 			return ret;
832 		intel_de_write(i915,
833 			       HDCP_RPRIME(i915, cpu_transcoder, port),
834 			       ri.reg);
835 
836 		/* Wait for Ri prime match */
837 		if (!wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
838 			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
839 			break;
840 	}
841 
842 	if (i == tries) {
843 		drm_dbg_kms(&i915->drm,
844 			    "Timed out waiting for Ri prime match (%x)\n",
845 			    intel_de_read(i915,
846 					  HDCP_STATUS(i915, cpu_transcoder, port)));
847 		return -ETIMEDOUT;
848 	}
849 
850 	/* Wait for encryption confirmation */
851 	if (intel_de_wait_for_set(i915,
852 				  HDCP_STATUS(i915, cpu_transcoder, port),
853 				  HDCP_STATUS_ENC,
854 				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
855 		drm_err(&i915->drm, "Timed out waiting for encryption\n");
856 		return -ETIMEDOUT;
857 	}
858 
859 	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
860 	if (shim->stream_encryption) {
861 		ret = shim->stream_encryption(connector, true);
862 		if (ret) {
863 			drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
864 				connector->base.name, connector->base.base.id);
865 			return ret;
866 		}
867 		drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
868 			    transcoder_name(hdcp->stream_transcoder));
869 	}
870 
871 	if (repeater_present)
872 		return intel_hdcp_auth_downstream(connector);
873 
874 	drm_dbg_kms(&i915->drm, "HDCP is enabled (no repeater present)\n");
875 	return 0;
876 }
877 
878 static int _intel_hdcp_disable(struct intel_connector *connector)
879 {
880 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
881 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
882 	struct intel_hdcp *hdcp = &connector->hdcp;
883 	enum port port = dig_port->base.port;
884 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
885 	u32 repeater_ctl;
886 	int ret;
887 
888 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being disabled...\n",
889 		    connector->base.name, connector->base.base.id);
890 
891 	if (hdcp->shim->stream_encryption) {
892 		ret = hdcp->shim->stream_encryption(connector, false);
893 		if (ret) {
894 			drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
895 				connector->base.name, connector->base.base.id);
896 			return ret;
897 		}
898 		drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
899 			    transcoder_name(hdcp->stream_transcoder));
900 		/*
901 		 * If there are other connectors on this port using HDCP,
902 		 * don't disable it until it disabled HDCP encryption for
903 		 * all connectors in MST topology.
904 		 */
905 		if (dig_port->num_hdcp_streams > 0)
906 			return 0;
907 	}
908 
909 	hdcp->hdcp_encrypted = false;
910 	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 0);
911 	if (intel_de_wait_for_clear(i915,
912 				    HDCP_STATUS(i915, cpu_transcoder, port),
913 				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
914 		drm_err(&i915->drm,
915 			"Failed to disable HDCP, timeout clearing status\n");
916 		return -ETIMEDOUT;
917 	}
918 
919 	repeater_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder,
920 						   port);
921 	intel_de_rmw(i915, HDCP_REP_CTL, repeater_ctl, 0);
922 
923 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
924 	if (ret) {
925 		drm_err(&i915->drm, "Failed to disable HDCP signalling\n");
926 		return ret;
927 	}
928 
929 	drm_dbg_kms(&i915->drm, "HDCP is disabled\n");
930 	return 0;
931 }
932 
933 static int _intel_hdcp_enable(struct intel_connector *connector)
934 {
935 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
936 	struct intel_hdcp *hdcp = &connector->hdcp;
937 	int i, ret, tries = 3;
938 
939 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being enabled...\n",
940 		    connector->base.name, connector->base.base.id);
941 
942 	if (!hdcp_key_loadable(i915)) {
943 		drm_err(&i915->drm, "HDCP key Load is not possible\n");
944 		return -ENXIO;
945 	}
946 
947 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
948 		ret = intel_hdcp_load_keys(i915);
949 		if (!ret)
950 			break;
951 		intel_hdcp_clear_keys(i915);
952 	}
953 	if (ret) {
954 		drm_err(&i915->drm, "Could not load HDCP keys, (%d)\n",
955 			ret);
956 		return ret;
957 	}
958 
959 	/* Incase of authentication failures, HDCP spec expects reauth. */
960 	for (i = 0; i < tries; i++) {
961 		ret = intel_hdcp_auth(connector);
962 		if (!ret) {
963 			hdcp->hdcp_encrypted = true;
964 			return 0;
965 		}
966 
967 		drm_dbg_kms(&i915->drm, "HDCP Auth failure (%d)\n", ret);
968 
969 		/* Ensuring HDCP encryption and signalling are stopped. */
970 		_intel_hdcp_disable(connector);
971 	}
972 
973 	drm_dbg_kms(&i915->drm,
974 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
975 	return ret;
976 }
977 
978 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
979 {
980 	return container_of(hdcp, struct intel_connector, hdcp);
981 }
982 
983 static void intel_hdcp_update_value(struct intel_connector *connector,
984 				    u64 value, bool update_property)
985 {
986 	struct drm_device *dev = connector->base.dev;
987 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
988 	struct intel_hdcp *hdcp = &connector->hdcp;
989 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
990 
991 	drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
992 
993 	if (hdcp->value == value)
994 		return;
995 
996 	drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
997 
998 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
999 		if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1000 			dig_port->num_hdcp_streams--;
1001 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1002 		dig_port->num_hdcp_streams++;
1003 	}
1004 
1005 	hdcp->value = value;
1006 	if (update_property) {
1007 		drm_connector_get(&connector->base);
1008 		if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
1009 			drm_connector_put(&connector->base);
1010 	}
1011 }
1012 
1013 /* Implements Part 3 of the HDCP authorization procedure */
1014 static int intel_hdcp_check_link(struct intel_connector *connector)
1015 {
1016 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1017 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1018 	struct intel_hdcp *hdcp = &connector->hdcp;
1019 	enum port port = dig_port->base.port;
1020 	enum transcoder cpu_transcoder;
1021 	int ret = 0;
1022 
1023 	mutex_lock(&hdcp->mutex);
1024 	mutex_lock(&dig_port->hdcp_mutex);
1025 
1026 	cpu_transcoder = hdcp->cpu_transcoder;
1027 
1028 	/* Check_link valid only when HDCP1.4 is enabled */
1029 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1030 	    !hdcp->hdcp_encrypted) {
1031 		ret = -EINVAL;
1032 		goto out;
1033 	}
1034 
1035 	if (drm_WARN_ON(&i915->drm,
1036 			!intel_hdcp_in_use(i915, cpu_transcoder, port))) {
1037 		drm_err(&i915->drm,
1038 			"%s:%d HDCP link stopped encryption,%x\n",
1039 			connector->base.name, connector->base.base.id,
1040 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)));
1041 		ret = -ENXIO;
1042 		intel_hdcp_update_value(connector,
1043 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1044 					true);
1045 		goto out;
1046 	}
1047 
1048 	if (hdcp->shim->check_link(dig_port, connector)) {
1049 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1050 			intel_hdcp_update_value(connector,
1051 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1052 		}
1053 		goto out;
1054 	}
1055 
1056 	drm_dbg_kms(&i915->drm,
1057 		    "[%s:%d] HDCP link failed, retrying authentication\n",
1058 		    connector->base.name, connector->base.base.id);
1059 
1060 	ret = _intel_hdcp_disable(connector);
1061 	if (ret) {
1062 		drm_err(&i915->drm, "Failed to disable hdcp (%d)\n", ret);
1063 		intel_hdcp_update_value(connector,
1064 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1065 					true);
1066 		goto out;
1067 	}
1068 
1069 	ret = _intel_hdcp_enable(connector);
1070 	if (ret) {
1071 		drm_err(&i915->drm, "Failed to enable hdcp (%d)\n", ret);
1072 		intel_hdcp_update_value(connector,
1073 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1074 					true);
1075 		goto out;
1076 	}
1077 
1078 out:
1079 	mutex_unlock(&dig_port->hdcp_mutex);
1080 	mutex_unlock(&hdcp->mutex);
1081 	return ret;
1082 }
1083 
1084 static void intel_hdcp_prop_work(struct work_struct *work)
1085 {
1086 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1087 					       prop_work);
1088 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1089 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1090 
1091 	drm_modeset_lock(&i915->drm.mode_config.connection_mutex, NULL);
1092 	mutex_lock(&hdcp->mutex);
1093 
1094 	/*
1095 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1096 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1097 	 * we're running just after hdcp has been disabled, so just exit
1098 	 */
1099 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1100 		drm_hdcp_update_content_protection(&connector->base,
1101 						   hdcp->value);
1102 
1103 	mutex_unlock(&hdcp->mutex);
1104 	drm_modeset_unlock(&i915->drm.mode_config.connection_mutex);
1105 
1106 	drm_connector_put(&connector->base);
1107 }
1108 
1109 bool is_hdcp_supported(struct drm_i915_private *i915, enum port port)
1110 {
1111 	return DISPLAY_RUNTIME_INFO(i915)->has_hdcp &&
1112 		(DISPLAY_VER(i915) >= 12 || port < PORT_E);
1113 }
1114 
1115 static int
1116 hdcp2_prepare_ake_init(struct intel_connector *connector,
1117 		       struct hdcp2_ake_init *ake_data)
1118 {
1119 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1120 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1121 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1122 	struct i915_hdcp_arbiter *arbiter;
1123 	int ret;
1124 
1125 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1126 	arbiter = i915->display.hdcp.arbiter;
1127 
1128 	if (!arbiter || !arbiter->ops) {
1129 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1130 		return -EINVAL;
1131 	}
1132 
1133 	ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1134 	if (ret)
1135 		drm_dbg_kms(&i915->drm, "Prepare_ake_init failed. %d\n",
1136 			    ret);
1137 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1138 
1139 	return ret;
1140 }
1141 
1142 static int
1143 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1144 				struct hdcp2_ake_send_cert *rx_cert,
1145 				bool *paired,
1146 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1147 				size_t *msg_sz)
1148 {
1149 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1150 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1151 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1152 	struct i915_hdcp_arbiter *arbiter;
1153 	int ret;
1154 
1155 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1156 	arbiter = i915->display.hdcp.arbiter;
1157 
1158 	if (!arbiter || !arbiter->ops) {
1159 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1160 		return -EINVAL;
1161 	}
1162 
1163 	ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1164 							 rx_cert, paired,
1165 							 ek_pub_km, msg_sz);
1166 	if (ret < 0)
1167 		drm_dbg_kms(&i915->drm, "Verify rx_cert failed. %d\n",
1168 			    ret);
1169 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1170 
1171 	return ret;
1172 }
1173 
1174 static int hdcp2_verify_hprime(struct intel_connector *connector,
1175 			       struct hdcp2_ake_send_hprime *rx_hprime)
1176 {
1177 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1178 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1179 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1180 	struct i915_hdcp_arbiter *arbiter;
1181 	int ret;
1182 
1183 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1184 	arbiter = i915->display.hdcp.arbiter;
1185 
1186 	if (!arbiter || !arbiter->ops) {
1187 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1188 		return -EINVAL;
1189 	}
1190 
1191 	ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1192 	if (ret < 0)
1193 		drm_dbg_kms(&i915->drm, "Verify hprime failed. %d\n", ret);
1194 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1195 
1196 	return ret;
1197 }
1198 
1199 static int
1200 hdcp2_store_pairing_info(struct intel_connector *connector,
1201 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1202 {
1203 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1204 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1205 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1206 	struct i915_hdcp_arbiter *arbiter;
1207 	int ret;
1208 
1209 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1210 	arbiter = i915->display.hdcp.arbiter;
1211 
1212 	if (!arbiter || !arbiter->ops) {
1213 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1214 		return -EINVAL;
1215 	}
1216 
1217 	ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1218 	if (ret < 0)
1219 		drm_dbg_kms(&i915->drm, "Store pairing info failed. %d\n",
1220 			    ret);
1221 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1222 
1223 	return ret;
1224 }
1225 
1226 static int
1227 hdcp2_prepare_lc_init(struct intel_connector *connector,
1228 		      struct hdcp2_lc_init *lc_init)
1229 {
1230 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1231 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1232 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1233 	struct i915_hdcp_arbiter *arbiter;
1234 	int ret;
1235 
1236 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1237 	arbiter = i915->display.hdcp.arbiter;
1238 
1239 	if (!arbiter || !arbiter->ops) {
1240 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1241 		return -EINVAL;
1242 	}
1243 
1244 	ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1245 	if (ret < 0)
1246 		drm_dbg_kms(&i915->drm, "Prepare lc_init failed. %d\n",
1247 			    ret);
1248 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1249 
1250 	return ret;
1251 }
1252 
1253 static int
1254 hdcp2_verify_lprime(struct intel_connector *connector,
1255 		    struct hdcp2_lc_send_lprime *rx_lprime)
1256 {
1257 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1258 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1259 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1260 	struct i915_hdcp_arbiter *arbiter;
1261 	int ret;
1262 
1263 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1264 	arbiter = i915->display.hdcp.arbiter;
1265 
1266 	if (!arbiter || !arbiter->ops) {
1267 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1268 		return -EINVAL;
1269 	}
1270 
1271 	ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1272 	if (ret < 0)
1273 		drm_dbg_kms(&i915->drm, "Verify L_Prime failed. %d\n",
1274 			    ret);
1275 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1276 
1277 	return ret;
1278 }
1279 
1280 static int hdcp2_prepare_skey(struct intel_connector *connector,
1281 			      struct hdcp2_ske_send_eks *ske_data)
1282 {
1283 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1284 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1285 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1286 	struct i915_hdcp_arbiter *arbiter;
1287 	int ret;
1288 
1289 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1290 	arbiter = i915->display.hdcp.arbiter;
1291 
1292 	if (!arbiter || !arbiter->ops) {
1293 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1294 		return -EINVAL;
1295 	}
1296 
1297 	ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1298 	if (ret < 0)
1299 		drm_dbg_kms(&i915->drm, "Get session key failed. %d\n",
1300 			    ret);
1301 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1302 
1303 	return ret;
1304 }
1305 
1306 static int
1307 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1308 				      struct hdcp2_rep_send_receiverid_list
1309 								*rep_topology,
1310 				      struct hdcp2_rep_send_ack *rep_send_ack)
1311 {
1312 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1313 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1314 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1315 	struct i915_hdcp_arbiter *arbiter;
1316 	int ret;
1317 
1318 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1319 	arbiter = i915->display.hdcp.arbiter;
1320 
1321 	if (!arbiter || !arbiter->ops) {
1322 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1323 		return -EINVAL;
1324 	}
1325 
1326 	ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1327 							    data,
1328 							    rep_topology,
1329 							    rep_send_ack);
1330 	if (ret < 0)
1331 		drm_dbg_kms(&i915->drm,
1332 			    "Verify rep topology failed. %d\n", ret);
1333 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1334 
1335 	return ret;
1336 }
1337 
1338 static int
1339 hdcp2_verify_mprime(struct intel_connector *connector,
1340 		    struct hdcp2_rep_stream_ready *stream_ready)
1341 {
1342 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1343 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1344 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1345 	struct i915_hdcp_arbiter *arbiter;
1346 	int ret;
1347 
1348 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1349 	arbiter = i915->display.hdcp.arbiter;
1350 
1351 	if (!arbiter || !arbiter->ops) {
1352 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1353 		return -EINVAL;
1354 	}
1355 
1356 	ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1357 	if (ret < 0)
1358 		drm_dbg_kms(&i915->drm, "Verify mprime failed. %d\n", ret);
1359 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1360 
1361 	return ret;
1362 }
1363 
1364 static int hdcp2_authenticate_port(struct intel_connector *connector)
1365 {
1366 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1367 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1368 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1369 	struct i915_hdcp_arbiter *arbiter;
1370 	int ret;
1371 
1372 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1373 	arbiter = i915->display.hdcp.arbiter;
1374 
1375 	if (!arbiter || !arbiter->ops) {
1376 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1377 		return -EINVAL;
1378 	}
1379 
1380 	ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1381 	if (ret < 0)
1382 		drm_dbg_kms(&i915->drm, "Enable hdcp auth failed. %d\n",
1383 			    ret);
1384 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1385 
1386 	return ret;
1387 }
1388 
1389 static int hdcp2_close_session(struct intel_connector *connector)
1390 {
1391 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1392 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1393 	struct i915_hdcp_arbiter *arbiter;
1394 	int ret;
1395 
1396 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1397 	arbiter = i915->display.hdcp.arbiter;
1398 
1399 	if (!arbiter || !arbiter->ops) {
1400 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1401 		return -EINVAL;
1402 	}
1403 
1404 	ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1405 					     &dig_port->hdcp_port_data);
1406 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1407 
1408 	return ret;
1409 }
1410 
1411 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1412 {
1413 	return hdcp2_close_session(connector);
1414 }
1415 
1416 /* Authentication flow starts from here */
1417 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1418 {
1419 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1420 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1421 	struct intel_hdcp *hdcp = &connector->hdcp;
1422 	union {
1423 		struct hdcp2_ake_init ake_init;
1424 		struct hdcp2_ake_send_cert send_cert;
1425 		struct hdcp2_ake_no_stored_km no_stored_km;
1426 		struct hdcp2_ake_send_hprime send_hprime;
1427 		struct hdcp2_ake_send_pairing_info pairing_info;
1428 	} msgs;
1429 	const struct intel_hdcp_shim *shim = hdcp->shim;
1430 	size_t size;
1431 	int ret;
1432 
1433 	/* Init for seq_num */
1434 	hdcp->seq_num_v = 0;
1435 	hdcp->seq_num_m = 0;
1436 
1437 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1438 	if (ret < 0)
1439 		return ret;
1440 
1441 	ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1442 				  sizeof(msgs.ake_init));
1443 	if (ret < 0)
1444 		return ret;
1445 
1446 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1447 				 &msgs.send_cert, sizeof(msgs.send_cert));
1448 	if (ret < 0)
1449 		return ret;
1450 
1451 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1452 		drm_dbg_kms(&i915->drm, "cert.rx_caps dont claim HDCP2.2\n");
1453 		return -EINVAL;
1454 	}
1455 
1456 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1457 
1458 	if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1459 					msgs.send_cert.cert_rx.receiver_id,
1460 					1) > 0) {
1461 		drm_err(&i915->drm, "Receiver ID is revoked\n");
1462 		return -EPERM;
1463 	}
1464 
1465 	/*
1466 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1467 	 * stored also.
1468 	 */
1469 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1470 					      &hdcp->is_paired,
1471 					      &msgs.no_stored_km, &size);
1472 	if (ret < 0)
1473 		return ret;
1474 
1475 	ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1476 	if (ret < 0)
1477 		return ret;
1478 
1479 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1480 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1481 	if (ret < 0)
1482 		return ret;
1483 
1484 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1485 	if (ret < 0)
1486 		return ret;
1487 
1488 	if (!hdcp->is_paired) {
1489 		/* Pairing is required */
1490 		ret = shim->read_2_2_msg(dig_port,
1491 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1492 					 &msgs.pairing_info,
1493 					 sizeof(msgs.pairing_info));
1494 		if (ret < 0)
1495 			return ret;
1496 
1497 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1498 		if (ret < 0)
1499 			return ret;
1500 		hdcp->is_paired = true;
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 static int hdcp2_locality_check(struct intel_connector *connector)
1507 {
1508 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1509 	struct intel_hdcp *hdcp = &connector->hdcp;
1510 	union {
1511 		struct hdcp2_lc_init lc_init;
1512 		struct hdcp2_lc_send_lprime send_lprime;
1513 	} msgs;
1514 	const struct intel_hdcp_shim *shim = hdcp->shim;
1515 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1516 
1517 	for (i = 0; i < tries; i++) {
1518 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1519 		if (ret < 0)
1520 			continue;
1521 
1522 		ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1523 				      sizeof(msgs.lc_init));
1524 		if (ret < 0)
1525 			continue;
1526 
1527 		ret = shim->read_2_2_msg(dig_port,
1528 					 HDCP_2_2_LC_SEND_LPRIME,
1529 					 &msgs.send_lprime,
1530 					 sizeof(msgs.send_lprime));
1531 		if (ret < 0)
1532 			continue;
1533 
1534 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1535 		if (!ret)
1536 			break;
1537 	}
1538 
1539 	return ret;
1540 }
1541 
1542 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1543 {
1544 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1545 	struct intel_hdcp *hdcp = &connector->hdcp;
1546 	struct hdcp2_ske_send_eks send_eks;
1547 	int ret;
1548 
1549 	ret = hdcp2_prepare_skey(connector, &send_eks);
1550 	if (ret < 0)
1551 		return ret;
1552 
1553 	ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1554 					sizeof(send_eks));
1555 	if (ret < 0)
1556 		return ret;
1557 
1558 	return 0;
1559 }
1560 
1561 static
1562 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1563 {
1564 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1565 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1566 	struct intel_hdcp *hdcp = &connector->hdcp;
1567 	union {
1568 		struct hdcp2_rep_stream_manage stream_manage;
1569 		struct hdcp2_rep_stream_ready stream_ready;
1570 	} msgs;
1571 	const struct intel_hdcp_shim *shim = hdcp->shim;
1572 	int ret, streams_size_delta, i;
1573 
1574 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1575 		return -ERANGE;
1576 
1577 	/* Prepare RepeaterAuth_Stream_Manage msg */
1578 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1579 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1580 
1581 	msgs.stream_manage.k = cpu_to_be16(data->k);
1582 
1583 	for (i = 0; i < data->k; i++) {
1584 		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1585 		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1586 	}
1587 
1588 	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1589 				sizeof(struct hdcp2_streamid_type);
1590 	/* Send it to Repeater */
1591 	ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1592 				  sizeof(msgs.stream_manage) - streams_size_delta);
1593 	if (ret < 0)
1594 		goto out;
1595 
1596 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1597 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1598 	if (ret < 0)
1599 		goto out;
1600 
1601 	data->seq_num_m = hdcp->seq_num_m;
1602 
1603 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1604 
1605 out:
1606 	hdcp->seq_num_m++;
1607 
1608 	return ret;
1609 }
1610 
1611 static
1612 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1613 {
1614 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1615 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1616 	struct intel_hdcp *hdcp = &connector->hdcp;
1617 	union {
1618 		struct hdcp2_rep_send_receiverid_list recvid_list;
1619 		struct hdcp2_rep_send_ack rep_ack;
1620 	} msgs;
1621 	const struct intel_hdcp_shim *shim = hdcp->shim;
1622 	u32 seq_num_v, device_cnt;
1623 	u8 *rx_info;
1624 	int ret;
1625 
1626 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1627 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1628 	if (ret < 0)
1629 		return ret;
1630 
1631 	rx_info = msgs.recvid_list.rx_info;
1632 
1633 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1634 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1635 		drm_dbg_kms(&i915->drm, "Topology Max Size Exceeded\n");
1636 		return -EINVAL;
1637 	}
1638 
1639 	/*
1640 	 * MST topology is not Type 1 capable if it contains a downstream
1641 	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1642 	 */
1643 	dig_port->hdcp_mst_type1_capable =
1644 		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1645 		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1646 
1647 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1648 	seq_num_v =
1649 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1650 
1651 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1652 		drm_dbg_kms(&i915->drm,
1653 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1654 		return -EINVAL;
1655 	}
1656 
1657 	if (seq_num_v < hdcp->seq_num_v) {
1658 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1659 		drm_dbg_kms(&i915->drm, "Seq_num_v roll over.\n");
1660 		return -EINVAL;
1661 	}
1662 
1663 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1664 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1665 	if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1666 					msgs.recvid_list.receiver_ids,
1667 					device_cnt) > 0) {
1668 		drm_err(&i915->drm, "Revoked receiver ID(s) is in list\n");
1669 		return -EPERM;
1670 	}
1671 
1672 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1673 						    &msgs.recvid_list,
1674 						    &msgs.rep_ack);
1675 	if (ret < 0)
1676 		return ret;
1677 
1678 	hdcp->seq_num_v = seq_num_v;
1679 	ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1680 				  sizeof(msgs.rep_ack));
1681 	if (ret < 0)
1682 		return ret;
1683 
1684 	return 0;
1685 }
1686 
1687 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1688 {
1689 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1690 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1691 	struct intel_hdcp *hdcp = &connector->hdcp;
1692 	const struct intel_hdcp_shim *shim = hdcp->shim;
1693 	int ret;
1694 
1695 	ret = hdcp2_authentication_key_exchange(connector);
1696 	if (ret < 0) {
1697 		drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1698 		return ret;
1699 	}
1700 
1701 	ret = hdcp2_locality_check(connector);
1702 	if (ret < 0) {
1703 		drm_dbg_kms(&i915->drm,
1704 			    "Locality Check failed. Err : %d\n", ret);
1705 		return ret;
1706 	}
1707 
1708 	ret = hdcp2_session_key_exchange(connector);
1709 	if (ret < 0) {
1710 		drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1711 		return ret;
1712 	}
1713 
1714 	if (shim->config_stream_type) {
1715 		ret = shim->config_stream_type(dig_port,
1716 					       hdcp->is_repeater,
1717 					       hdcp->content_type);
1718 		if (ret < 0)
1719 			return ret;
1720 	}
1721 
1722 	if (hdcp->is_repeater) {
1723 		ret = hdcp2_authenticate_repeater_topology(connector);
1724 		if (ret < 0) {
1725 			drm_dbg_kms(&i915->drm,
1726 				    "Repeater Auth Failed. Err: %d\n", ret);
1727 			return ret;
1728 		}
1729 	}
1730 
1731 	return ret;
1732 }
1733 
1734 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1735 {
1736 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1737 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1738 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1739 	struct intel_hdcp *hdcp = &connector->hdcp;
1740 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1741 	enum port port = dig_port->base.port;
1742 	int ret = 0;
1743 
1744 	if (!(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1745 			    LINK_ENCRYPTION_STATUS)) {
1746 		drm_err(&i915->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1747 			connector->base.name, connector->base.base.id);
1748 		ret = -EPERM;
1749 		goto link_recover;
1750 	}
1751 
1752 	if (hdcp->shim->stream_2_2_encryption) {
1753 		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1754 		if (ret) {
1755 			drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1756 				connector->base.name, connector->base.base.id);
1757 			return ret;
1758 		}
1759 		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1760 			    transcoder_name(hdcp->stream_transcoder));
1761 	}
1762 
1763 	return 0;
1764 
1765 link_recover:
1766 	if (hdcp2_deauthenticate_port(connector) < 0)
1767 		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1768 
1769 	dig_port->hdcp_auth_status = false;
1770 	data->k = 0;
1771 
1772 	return ret;
1773 }
1774 
1775 static int hdcp2_enable_encryption(struct intel_connector *connector)
1776 {
1777 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1778 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1779 	struct intel_hdcp *hdcp = &connector->hdcp;
1780 	enum port port = dig_port->base.port;
1781 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1782 	int ret;
1783 
1784 	drm_WARN_ON(&i915->drm,
1785 		    intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1786 		    LINK_ENCRYPTION_STATUS);
1787 	if (hdcp->shim->toggle_signalling) {
1788 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1789 						    true);
1790 		if (ret) {
1791 			drm_err(&i915->drm,
1792 				"Failed to enable HDCP signalling. %d\n",
1793 				ret);
1794 			return ret;
1795 		}
1796 	}
1797 
1798 	if (intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1799 	    LINK_AUTH_STATUS)
1800 		/* Link is Authenticated. Now set for Encryption */
1801 		intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1802 			     0, CTL_LINK_ENCRYPTION_REQ);
1803 
1804 	ret = intel_de_wait_for_set(i915,
1805 				    HDCP2_STATUS(i915, cpu_transcoder,
1806 						 port),
1807 				    LINK_ENCRYPTION_STATUS,
1808 				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1809 	dig_port->hdcp_auth_status = true;
1810 
1811 	return ret;
1812 }
1813 
1814 static int hdcp2_disable_encryption(struct intel_connector *connector)
1815 {
1816 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1817 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1818 	struct intel_hdcp *hdcp = &connector->hdcp;
1819 	enum port port = dig_port->base.port;
1820 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1821 	int ret;
1822 
1823 	drm_WARN_ON(&i915->drm, !(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1824 				      LINK_ENCRYPTION_STATUS));
1825 
1826 	intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1827 		     CTL_LINK_ENCRYPTION_REQ, 0);
1828 
1829 	ret = intel_de_wait_for_clear(i915,
1830 				      HDCP2_STATUS(i915, cpu_transcoder,
1831 						   port),
1832 				      LINK_ENCRYPTION_STATUS,
1833 				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1834 	if (ret == -ETIMEDOUT)
1835 		drm_dbg_kms(&i915->drm, "Disable Encryption Timedout");
1836 
1837 	if (hdcp->shim->toggle_signalling) {
1838 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1839 						    false);
1840 		if (ret) {
1841 			drm_err(&i915->drm,
1842 				"Failed to disable HDCP signalling. %d\n",
1843 				ret);
1844 			return ret;
1845 		}
1846 	}
1847 
1848 	return ret;
1849 }
1850 
1851 static int
1852 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1853 {
1854 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1855 	int i, tries = 3, ret;
1856 
1857 	if (!connector->hdcp.is_repeater)
1858 		return 0;
1859 
1860 	for (i = 0; i < tries; i++) {
1861 		ret = _hdcp2_propagate_stream_management_info(connector);
1862 		if (!ret)
1863 			break;
1864 
1865 		/* Lets restart the auth incase of seq_num_m roll over */
1866 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1867 			drm_dbg_kms(&i915->drm,
1868 				    "seq_num_m roll over.(%d)\n", ret);
1869 			break;
1870 		}
1871 
1872 		drm_dbg_kms(&i915->drm,
1873 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
1874 			    i + 1, tries, ret);
1875 	}
1876 
1877 	return ret;
1878 }
1879 
1880 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1881 {
1882 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1883 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1884 	int ret = 0, i, tries = 3;
1885 
1886 	for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1887 		ret = hdcp2_authenticate_sink(connector);
1888 		if (!ret) {
1889 			intel_hdcp_prepare_streams(connector);
1890 
1891 			ret = hdcp2_propagate_stream_management_info(connector);
1892 			if (ret) {
1893 				drm_dbg_kms(&i915->drm,
1894 					    "Stream management failed.(%d)\n",
1895 					    ret);
1896 				break;
1897 			}
1898 
1899 			ret = hdcp2_authenticate_port(connector);
1900 			if (!ret)
1901 				break;
1902 			drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1903 				    ret);
1904 		}
1905 
1906 		/* Clearing the mei hdcp session */
1907 		drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1908 			    i + 1, tries, ret);
1909 		if (hdcp2_deauthenticate_port(connector) < 0)
1910 			drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1911 	}
1912 
1913 	if (!ret && !dig_port->hdcp_auth_status) {
1914 		/*
1915 		 * Ensuring the required 200mSec min time interval between
1916 		 * Session Key Exchange and encryption.
1917 		 */
1918 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1919 		ret = hdcp2_enable_encryption(connector);
1920 		if (ret < 0) {
1921 			drm_dbg_kms(&i915->drm,
1922 				    "Encryption Enable Failed.(%d)\n", ret);
1923 			if (hdcp2_deauthenticate_port(connector) < 0)
1924 				drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1925 		}
1926 	}
1927 
1928 	if (!ret)
1929 		ret = hdcp2_enable_stream_encryption(connector);
1930 
1931 	return ret;
1932 }
1933 
1934 static int _intel_hdcp2_enable(struct intel_connector *connector)
1935 {
1936 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1937 	struct intel_hdcp *hdcp = &connector->hdcp;
1938 	int ret;
1939 
1940 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1941 		    connector->base.name, connector->base.base.id,
1942 		    hdcp->content_type);
1943 
1944 	ret = hdcp2_authenticate_and_encrypt(connector);
1945 	if (ret) {
1946 		drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
1947 			    hdcp->content_type, ret);
1948 		return ret;
1949 	}
1950 
1951 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1952 		    connector->base.name, connector->base.base.id,
1953 		    hdcp->content_type);
1954 
1955 	hdcp->hdcp2_encrypted = true;
1956 	return 0;
1957 }
1958 
1959 static int
1960 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1961 {
1962 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1963 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1964 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1965 	struct intel_hdcp *hdcp = &connector->hdcp;
1966 	int ret;
1967 
1968 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1969 		    connector->base.name, connector->base.base.id);
1970 
1971 	if (hdcp->shim->stream_2_2_encryption) {
1972 		ret = hdcp->shim->stream_2_2_encryption(connector, false);
1973 		if (ret) {
1974 			drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
1975 				connector->base.name, connector->base.base.id);
1976 			return ret;
1977 		}
1978 		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
1979 			    transcoder_name(hdcp->stream_transcoder));
1980 
1981 		if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
1982 			return 0;
1983 	}
1984 
1985 	ret = hdcp2_disable_encryption(connector);
1986 
1987 	if (hdcp2_deauthenticate_port(connector) < 0)
1988 		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1989 
1990 	connector->hdcp.hdcp2_encrypted = false;
1991 	dig_port->hdcp_auth_status = false;
1992 	data->k = 0;
1993 
1994 	return ret;
1995 }
1996 
1997 /* Implements the Link Integrity Check for HDCP2.2 */
1998 static int intel_hdcp2_check_link(struct intel_connector *connector)
1999 {
2000 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2001 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2002 	struct intel_hdcp *hdcp = &connector->hdcp;
2003 	enum port port = dig_port->base.port;
2004 	enum transcoder cpu_transcoder;
2005 	int ret = 0;
2006 
2007 	mutex_lock(&hdcp->mutex);
2008 	mutex_lock(&dig_port->hdcp_mutex);
2009 	cpu_transcoder = hdcp->cpu_transcoder;
2010 
2011 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2012 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2013 	    !hdcp->hdcp2_encrypted) {
2014 		ret = -EINVAL;
2015 		goto out;
2016 	}
2017 
2018 	if (drm_WARN_ON(&i915->drm,
2019 			!intel_hdcp2_in_use(i915, cpu_transcoder, port))) {
2020 		drm_err(&i915->drm,
2021 			"HDCP2.2 link stopped the encryption, %x\n",
2022 			intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)));
2023 		ret = -ENXIO;
2024 		_intel_hdcp2_disable(connector, true);
2025 		intel_hdcp_update_value(connector,
2026 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2027 					true);
2028 		goto out;
2029 	}
2030 
2031 	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2032 	if (ret == HDCP_LINK_PROTECTED) {
2033 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2034 			intel_hdcp_update_value(connector,
2035 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2036 					true);
2037 		}
2038 		goto out;
2039 	}
2040 
2041 	if (ret == HDCP_TOPOLOGY_CHANGE) {
2042 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2043 			goto out;
2044 
2045 		drm_dbg_kms(&i915->drm,
2046 			    "HDCP2.2 Downstream topology change\n");
2047 		ret = hdcp2_authenticate_repeater_topology(connector);
2048 		if (!ret) {
2049 			intel_hdcp_update_value(connector,
2050 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2051 					true);
2052 			goto out;
2053 		}
2054 		drm_dbg_kms(&i915->drm,
2055 			    "[%s:%d] Repeater topology auth failed.(%d)\n",
2056 			    connector->base.name, connector->base.base.id,
2057 			    ret);
2058 	} else {
2059 		drm_dbg_kms(&i915->drm,
2060 			    "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2061 			    connector->base.name, connector->base.base.id);
2062 	}
2063 
2064 	ret = _intel_hdcp2_disable(connector, true);
2065 	if (ret) {
2066 		drm_err(&i915->drm,
2067 			"[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2068 			connector->base.name, connector->base.base.id, ret);
2069 		intel_hdcp_update_value(connector,
2070 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2071 		goto out;
2072 	}
2073 
2074 	ret = _intel_hdcp2_enable(connector);
2075 	if (ret) {
2076 		drm_dbg_kms(&i915->drm,
2077 			    "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2078 			    connector->base.name, connector->base.base.id,
2079 			    ret);
2080 		intel_hdcp_update_value(connector,
2081 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2082 					true);
2083 		goto out;
2084 	}
2085 
2086 out:
2087 	mutex_unlock(&dig_port->hdcp_mutex);
2088 	mutex_unlock(&hdcp->mutex);
2089 	return ret;
2090 }
2091 
2092 static void intel_hdcp_check_work(struct work_struct *work)
2093 {
2094 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2095 					       struct intel_hdcp,
2096 					       check_work);
2097 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2098 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2099 
2100 	if (drm_connector_is_unregistered(&connector->base))
2101 		return;
2102 
2103 	if (!intel_hdcp2_check_link(connector))
2104 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2105 				   DRM_HDCP2_CHECK_PERIOD_MS);
2106 	else if (!intel_hdcp_check_link(connector))
2107 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2108 				   DRM_HDCP_CHECK_PERIOD_MS);
2109 }
2110 
2111 static int i915_hdcp_component_bind(struct device *i915_kdev,
2112 				    struct device *mei_kdev, void *data)
2113 {
2114 	struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2115 
2116 	drm_dbg(&i915->drm, "I915 HDCP comp bind\n");
2117 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2118 	i915->display.hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2119 	i915->display.hdcp.arbiter->hdcp_dev = mei_kdev;
2120 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2121 
2122 	return 0;
2123 }
2124 
2125 static void i915_hdcp_component_unbind(struct device *i915_kdev,
2126 				       struct device *mei_kdev, void *data)
2127 {
2128 	struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2129 
2130 	drm_dbg(&i915->drm, "I915 HDCP comp unbind\n");
2131 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2132 	i915->display.hdcp.arbiter = NULL;
2133 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2134 }
2135 
2136 static const struct component_ops i915_hdcp_ops = {
2137 	.bind   = i915_hdcp_component_bind,
2138 	.unbind = i915_hdcp_component_unbind,
2139 };
2140 
2141 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2142 {
2143 	switch (port) {
2144 	case PORT_A:
2145 		return HDCP_DDI_A;
2146 	case PORT_B ... PORT_F:
2147 		return (enum hdcp_ddi)port;
2148 	default:
2149 		return HDCP_DDI_INVALID_PORT;
2150 	}
2151 }
2152 
2153 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2154 {
2155 	switch (cpu_transcoder) {
2156 	case TRANSCODER_A ... TRANSCODER_D:
2157 		return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2158 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2159 		return HDCP_INVALID_TRANSCODER;
2160 	}
2161 }
2162 
2163 static int initialize_hdcp_port_data(struct intel_connector *connector,
2164 				     struct intel_digital_port *dig_port,
2165 				     const struct intel_hdcp_shim *shim)
2166 {
2167 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2168 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2169 	enum port port = dig_port->base.port;
2170 
2171 	if (DISPLAY_VER(i915) < 12)
2172 		data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2173 	else
2174 		/*
2175 		 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2176 		 * with zero(INVALID PORT index).
2177 		 */
2178 		data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2179 
2180 	/*
2181 	 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2182 	 * is initialized to zero (invalid transcoder index). This will be
2183 	 * retained for <Gen12 forever.
2184 	 */
2185 	data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2186 
2187 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2188 	data->protocol = (u8)shim->protocol;
2189 
2190 	if (!data->streams)
2191 		data->streams = kcalloc(INTEL_NUM_PIPES(i915),
2192 					sizeof(struct hdcp2_streamid_type),
2193 					GFP_KERNEL);
2194 	if (!data->streams) {
2195 		drm_err(&i915->drm, "Out of Memory\n");
2196 		return -ENOMEM;
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 static bool is_hdcp2_supported(struct drm_i915_private *i915)
2203 {
2204 	if (intel_hdcp_gsc_cs_required(i915))
2205 		return true;
2206 
2207 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2208 		return false;
2209 
2210 	return (DISPLAY_VER(i915) >= 10 ||
2211 		IS_KABYLAKE(i915) ||
2212 		IS_COFFEELAKE(i915) ||
2213 		IS_COMETLAKE(i915));
2214 }
2215 
2216 void intel_hdcp_component_init(struct drm_i915_private *i915)
2217 {
2218 	int ret;
2219 
2220 	if (!is_hdcp2_supported(i915))
2221 		return;
2222 
2223 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2224 	drm_WARN_ON(&i915->drm, i915->display.hdcp.comp_added);
2225 
2226 	i915->display.hdcp.comp_added = true;
2227 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2228 	if (intel_hdcp_gsc_cs_required(i915))
2229 		ret = intel_hdcp_gsc_init(i915);
2230 	else
2231 		ret = component_add_typed(i915->drm.dev, &i915_hdcp_ops,
2232 					  I915_COMPONENT_HDCP);
2233 
2234 	if (ret < 0) {
2235 		drm_dbg_kms(&i915->drm, "Failed at fw component add(%d)\n",
2236 			    ret);
2237 		mutex_lock(&i915->display.hdcp.hdcp_mutex);
2238 		i915->display.hdcp.comp_added = false;
2239 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2240 		return;
2241 	}
2242 }
2243 
2244 static void intel_hdcp2_init(struct intel_connector *connector,
2245 			     struct intel_digital_port *dig_port,
2246 			     const struct intel_hdcp_shim *shim)
2247 {
2248 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2249 	struct intel_hdcp *hdcp = &connector->hdcp;
2250 	int ret;
2251 
2252 	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2253 	if (ret) {
2254 		drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2255 		return;
2256 	}
2257 
2258 	hdcp->hdcp2_supported = true;
2259 }
2260 
2261 int intel_hdcp_init(struct intel_connector *connector,
2262 		    struct intel_digital_port *dig_port,
2263 		    const struct intel_hdcp_shim *shim)
2264 {
2265 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2266 	struct intel_hdcp *hdcp = &connector->hdcp;
2267 	int ret;
2268 
2269 	if (!shim)
2270 		return -EINVAL;
2271 
2272 	if (is_hdcp2_supported(i915))
2273 		intel_hdcp2_init(connector, dig_port, shim);
2274 
2275 	ret =
2276 	drm_connector_attach_content_protection_property(&connector->base,
2277 							 hdcp->hdcp2_supported);
2278 	if (ret) {
2279 		hdcp->hdcp2_supported = false;
2280 		kfree(dig_port->hdcp_port_data.streams);
2281 		return ret;
2282 	}
2283 
2284 	hdcp->shim = shim;
2285 	mutex_init(&hdcp->mutex);
2286 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2287 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2288 	init_waitqueue_head(&hdcp->cp_irq_queue);
2289 
2290 	return 0;
2291 }
2292 
2293 static int
2294 intel_hdcp_set_streams(struct intel_digital_port *dig_port,
2295 		       struct intel_atomic_state *state)
2296 {
2297 	struct drm_connector_list_iter conn_iter;
2298 	struct intel_digital_port *conn_dig_port;
2299 	struct intel_connector *connector;
2300 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
2301 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2302 
2303 	if (!intel_encoder_is_mst(&dig_port->base)) {
2304 		data->k = 1;
2305 		data->streams[0].stream_id = 0;
2306 		return 0;
2307 	}
2308 
2309 	data->k = 0;
2310 
2311 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
2312 	for_each_intel_connector_iter(connector, &conn_iter) {
2313 		if (connector->base.status == connector_status_disconnected)
2314 			continue;
2315 
2316 		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
2317 			continue;
2318 
2319 		conn_dig_port = intel_attached_dig_port(connector);
2320 		if (conn_dig_port != dig_port)
2321 			continue;
2322 
2323 		data->streams[data->k].stream_id =
2324 			intel_conn_to_vcpi(&state->base, connector);
2325 		data->k++;
2326 
2327 		/* if there is only one active stream */
2328 		if (dig_port->dp.active_mst_links <= 1)
2329 			break;
2330 	}
2331 	drm_connector_list_iter_end(&conn_iter);
2332 
2333 	if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
2334 		return -EINVAL;
2335 
2336 	return 0;
2337 }
2338 
2339 int intel_hdcp_enable(struct intel_atomic_state *state,
2340 		      struct intel_encoder *encoder,
2341 		      const struct intel_crtc_state *pipe_config,
2342 		      const struct drm_connector_state *conn_state)
2343 {
2344 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2345 	struct intel_connector *connector =
2346 		to_intel_connector(conn_state->connector);
2347 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2348 	struct intel_hdcp *hdcp = &connector->hdcp;
2349 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2350 	int ret = -EINVAL;
2351 
2352 	if (!hdcp->shim)
2353 		return -ENOENT;
2354 
2355 	if (!connector->encoder) {
2356 		drm_err(&i915->drm, "[%s:%d] encoder is not initialized\n",
2357 			connector->base.name, connector->base.base.id);
2358 		return -ENODEV;
2359 	}
2360 
2361 	mutex_lock(&hdcp->mutex);
2362 	mutex_lock(&dig_port->hdcp_mutex);
2363 	drm_WARN_ON(&i915->drm,
2364 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2365 	hdcp->content_type = (u8)conn_state->hdcp_content_type;
2366 
2367 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2368 		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2369 		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2370 	} else {
2371 		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2372 		hdcp->stream_transcoder = INVALID_TRANSCODER;
2373 	}
2374 
2375 	if (DISPLAY_VER(i915) >= 12)
2376 		dig_port->hdcp_port_data.hdcp_transcoder =
2377 			intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2378 
2379 	/*
2380 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2381 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2382 	 */
2383 	if (intel_hdcp2_capable(connector)) {
2384 		ret = intel_hdcp_set_streams(dig_port, state);
2385 		if (!ret) {
2386 			ret = _intel_hdcp2_enable(connector);
2387 			if (!ret)
2388 				check_link_interval =
2389 					DRM_HDCP2_CHECK_PERIOD_MS;
2390 		} else {
2391 			drm_dbg_kms(&i915->drm,
2392 				    "Set content streams failed: (%d)\n",
2393 				    ret);
2394 		}
2395 	}
2396 
2397 	/*
2398 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2399 	 * be attempted.
2400 	 */
2401 	if (ret && intel_hdcp_capable(connector) &&
2402 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2403 		ret = _intel_hdcp_enable(connector);
2404 	}
2405 
2406 	if (!ret) {
2407 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2408 				   check_link_interval);
2409 		intel_hdcp_update_value(connector,
2410 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2411 					true);
2412 	}
2413 
2414 	mutex_unlock(&dig_port->hdcp_mutex);
2415 	mutex_unlock(&hdcp->mutex);
2416 	return ret;
2417 }
2418 
2419 int intel_hdcp_disable(struct intel_connector *connector)
2420 {
2421 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2422 	struct intel_hdcp *hdcp = &connector->hdcp;
2423 	int ret = 0;
2424 
2425 	if (!hdcp->shim)
2426 		return -ENOENT;
2427 
2428 	mutex_lock(&hdcp->mutex);
2429 	mutex_lock(&dig_port->hdcp_mutex);
2430 
2431 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2432 		goto out;
2433 
2434 	intel_hdcp_update_value(connector,
2435 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2436 	if (hdcp->hdcp2_encrypted)
2437 		ret = _intel_hdcp2_disable(connector, false);
2438 	else if (hdcp->hdcp_encrypted)
2439 		ret = _intel_hdcp_disable(connector);
2440 
2441 out:
2442 	mutex_unlock(&dig_port->hdcp_mutex);
2443 	mutex_unlock(&hdcp->mutex);
2444 	cancel_delayed_work_sync(&hdcp->check_work);
2445 	return ret;
2446 }
2447 
2448 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2449 			    struct intel_encoder *encoder,
2450 			    const struct intel_crtc_state *crtc_state,
2451 			    const struct drm_connector_state *conn_state)
2452 {
2453 	struct intel_connector *connector =
2454 				to_intel_connector(conn_state->connector);
2455 	struct intel_hdcp *hdcp = &connector->hdcp;
2456 	bool content_protection_type_changed, desired_and_not_enabled = false;
2457 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2458 
2459 	if (!connector->hdcp.shim)
2460 		return;
2461 
2462 	content_protection_type_changed =
2463 		(conn_state->hdcp_content_type != hdcp->content_type &&
2464 		 conn_state->content_protection !=
2465 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2466 
2467 	/*
2468 	 * During the HDCP encryption session if Type change is requested,
2469 	 * disable the HDCP and reenable it with new TYPE value.
2470 	 */
2471 	if (conn_state->content_protection ==
2472 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2473 	    content_protection_type_changed)
2474 		intel_hdcp_disable(connector);
2475 
2476 	/*
2477 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2478 	 * change procedure.
2479 	 */
2480 	if (content_protection_type_changed) {
2481 		mutex_lock(&hdcp->mutex);
2482 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2483 		drm_connector_get(&connector->base);
2484 		if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2485 			drm_connector_put(&connector->base);
2486 		mutex_unlock(&hdcp->mutex);
2487 	}
2488 
2489 	if (conn_state->content_protection ==
2490 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2491 		mutex_lock(&hdcp->mutex);
2492 		/* Avoid enabling hdcp, if it already ENABLED */
2493 		desired_and_not_enabled =
2494 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2495 		mutex_unlock(&hdcp->mutex);
2496 		/*
2497 		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2498 		 * prop_work to update correct CP property to user space.
2499 		 */
2500 		if (!desired_and_not_enabled && !content_protection_type_changed) {
2501 			drm_connector_get(&connector->base);
2502 			if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2503 				drm_connector_put(&connector->base);
2504 
2505 		}
2506 	}
2507 
2508 	if (desired_and_not_enabled || content_protection_type_changed)
2509 		intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2510 }
2511 
2512 void intel_hdcp_component_fini(struct drm_i915_private *i915)
2513 {
2514 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2515 	if (!i915->display.hdcp.comp_added) {
2516 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2517 		return;
2518 	}
2519 
2520 	i915->display.hdcp.comp_added = false;
2521 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2522 
2523 	if (intel_hdcp_gsc_cs_required(i915))
2524 		intel_hdcp_gsc_fini(i915);
2525 	else
2526 		component_del(i915->drm.dev, &i915_hdcp_ops);
2527 }
2528 
2529 void intel_hdcp_cleanup(struct intel_connector *connector)
2530 {
2531 	struct intel_hdcp *hdcp = &connector->hdcp;
2532 
2533 	if (!hdcp->shim)
2534 		return;
2535 
2536 	/*
2537 	 * If the connector is registered, it's possible userspace could kick
2538 	 * off another HDCP enable, which would re-spawn the workers.
2539 	 */
2540 	drm_WARN_ON(connector->base.dev,
2541 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2542 
2543 	/*
2544 	 * Now that the connector is not registered, check_work won't be run,
2545 	 * but cancel any outstanding instances of it
2546 	 */
2547 	cancel_delayed_work_sync(&hdcp->check_work);
2548 
2549 	/*
2550 	 * We don't cancel prop_work in the same way as check_work since it
2551 	 * requires connection_mutex which could be held while calling this
2552 	 * function. Instead, we rely on the connector references grabbed before
2553 	 * scheduling prop_work to ensure the connector is alive when prop_work
2554 	 * is run. So if we're in the destroy path (which is where this
2555 	 * function should be called), we're "guaranteed" that prop_work is not
2556 	 * active (tl;dr This Should Never Happen).
2557 	 */
2558 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2559 
2560 	mutex_lock(&hdcp->mutex);
2561 	hdcp->shim = NULL;
2562 	mutex_unlock(&hdcp->mutex);
2563 }
2564 
2565 void intel_hdcp_atomic_check(struct drm_connector *connector,
2566 			     struct drm_connector_state *old_state,
2567 			     struct drm_connector_state *new_state)
2568 {
2569 	u64 old_cp = old_state->content_protection;
2570 	u64 new_cp = new_state->content_protection;
2571 	struct drm_crtc_state *crtc_state;
2572 
2573 	if (!new_state->crtc) {
2574 		/*
2575 		 * If the connector is being disabled with CP enabled, mark it
2576 		 * desired so it's re-enabled when the connector is brought back
2577 		 */
2578 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2579 			new_state->content_protection =
2580 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2581 		return;
2582 	}
2583 
2584 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2585 						   new_state->crtc);
2586 	/*
2587 	 * Fix the HDCP uapi content protection state in case of modeset.
2588 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2589 	 * need to be sent if there is transition from ENABLED->DESIRED.
2590 	 */
2591 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2592 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2593 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2594 		new_state->content_protection =
2595 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2596 
2597 	/*
2598 	 * Nothing to do if the state didn't change, or HDCP was activated since
2599 	 * the last commit. And also no change in hdcp content type.
2600 	 */
2601 	if (old_cp == new_cp ||
2602 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2603 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2604 		if (old_state->hdcp_content_type ==
2605 				new_state->hdcp_content_type)
2606 			return;
2607 	}
2608 
2609 	crtc_state->mode_changed = true;
2610 }
2611 
2612 /* Handles the CP_IRQ raised from the DP HDCP sink */
2613 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2614 {
2615 	struct intel_hdcp *hdcp = &connector->hdcp;
2616 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2617 
2618 	if (!hdcp->shim)
2619 		return;
2620 
2621 	atomic_inc(&connector->hdcp.cp_irq_count);
2622 	wake_up_all(&connector->hdcp.cp_irq_queue);
2623 
2624 	queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2625 }
2626