xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  *
5  * Authors:
6  * Sean Paul <seanpaul@chromium.org>
7  */
8 
9 #include <linux/component.h>
10 #include <linux/i2c.h>
11 #include <linux/random.h>
12 
13 #include <drm/drm_hdcp.h>
14 #include <drm/i915_component.h>
15 
16 #include "i915_reg.h"
17 #include "intel_drv.h"
18 #include "intel_hdcp.h"
19 #include "intel_sideband.h"
20 
21 #define KEY_LOAD_TRIES	5
22 #define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS	50
23 #define HDCP2_LC_RETRY_CNT			3
24 
25 static
26 bool intel_hdcp_is_ksv_valid(u8 *ksv)
27 {
28 	int i, ones = 0;
29 	/* KSV has 20 1's and 20 0's */
30 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
31 		ones += hweight8(ksv[i]);
32 	if (ones != 20)
33 		return false;
34 
35 	return true;
36 }
37 
38 static
39 int intel_hdcp_read_valid_bksv(struct intel_digital_port *intel_dig_port,
40 			       const struct intel_hdcp_shim *shim, u8 *bksv)
41 {
42 	int ret, i, tries = 2;
43 
44 	/* HDCP spec states that we must retry the bksv if it is invalid */
45 	for (i = 0; i < tries; i++) {
46 		ret = shim->read_bksv(intel_dig_port, bksv);
47 		if (ret)
48 			return ret;
49 		if (intel_hdcp_is_ksv_valid(bksv))
50 			break;
51 	}
52 	if (i == tries) {
53 		DRM_DEBUG_KMS("Bksv is invalid\n");
54 		return -ENODEV;
55 	}
56 
57 	return 0;
58 }
59 
60 /* Is HDCP1.4 capable on Platform and Sink */
61 bool intel_hdcp_capable(struct intel_connector *connector)
62 {
63 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
64 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
65 	bool capable = false;
66 	u8 bksv[5];
67 
68 	if (!shim)
69 		return capable;
70 
71 	if (shim->hdcp_capable) {
72 		shim->hdcp_capable(intel_dig_port, &capable);
73 	} else {
74 		if (!intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv))
75 			capable = true;
76 	}
77 
78 	return capable;
79 }
80 
81 /* Is HDCP2.2 capable on Platform and Sink */
82 bool intel_hdcp2_capable(struct intel_connector *connector)
83 {
84 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
85 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
86 	struct intel_hdcp *hdcp = &connector->hdcp;
87 	bool capable = false;
88 
89 	/* I915 support for HDCP2.2 */
90 	if (!hdcp->hdcp2_supported)
91 		return false;
92 
93 	/* MEI interface is solid */
94 	mutex_lock(&dev_priv->hdcp_comp_mutex);
95 	if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
96 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
97 		return false;
98 	}
99 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
100 
101 	/* Sink's capability for HDCP2.2 */
102 	hdcp->shim->hdcp_2_2_capable(intel_dig_port, &capable);
103 
104 	return capable;
105 }
106 
107 static inline bool intel_hdcp_in_use(struct intel_connector *connector)
108 {
109 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
110 	enum port port = connector->encoder->port;
111 	u32 reg;
112 
113 	reg = I915_READ(PORT_HDCP_STATUS(port));
114 	return reg & HDCP_STATUS_ENC;
115 }
116 
117 static inline bool intel_hdcp2_in_use(struct intel_connector *connector)
118 {
119 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
120 	enum port port = connector->encoder->port;
121 	u32 reg;
122 
123 	reg = I915_READ(HDCP2_STATUS_DDI(port));
124 	return reg & LINK_ENCRYPTION_STATUS;
125 }
126 
127 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
128 				    const struct intel_hdcp_shim *shim)
129 {
130 	int ret, read_ret;
131 	bool ksv_ready;
132 
133 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
134 	ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
135 							 &ksv_ready),
136 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
137 			 100 * 1000);
138 	if (ret)
139 		return ret;
140 	if (read_ret)
141 		return read_ret;
142 	if (!ksv_ready)
143 		return -ETIMEDOUT;
144 
145 	return 0;
146 }
147 
148 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
149 {
150 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
151 	struct i915_power_well *power_well;
152 	enum i915_power_well_id id;
153 	bool enabled = false;
154 
155 	/*
156 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
157 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
158 	 */
159 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
160 		id = HSW_DISP_PW_GLOBAL;
161 	else
162 		id = SKL_DISP_PW_1;
163 
164 	mutex_lock(&power_domains->lock);
165 
166 	/* PG1 (power well #1) needs to be enabled */
167 	for_each_power_well(dev_priv, power_well) {
168 		if (power_well->desc->id == id) {
169 			enabled = power_well->desc->ops->is_enabled(dev_priv,
170 								    power_well);
171 			break;
172 		}
173 	}
174 	mutex_unlock(&power_domains->lock);
175 
176 	/*
177 	 * Another req for hdcp key loadability is enabled state of pll for
178 	 * cdclk. Without active crtc we wont land here. So we are assuming that
179 	 * cdclk is already on.
180 	 */
181 
182 	return enabled;
183 }
184 
185 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
186 {
187 	I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
188 	I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
189 		   HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
190 }
191 
192 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
193 {
194 	int ret;
195 	u32 val;
196 
197 	val = I915_READ(HDCP_KEY_STATUS);
198 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
199 		return 0;
200 
201 	/*
202 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
203 	 * out of reset. So if Key is not already loaded, its an error state.
204 	 */
205 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
206 		if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
207 			return -ENXIO;
208 
209 	/*
210 	 * Initiate loading the HDCP key from fuses.
211 	 *
212 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
213 	 * platforms except BXT and GLK, differ in the key load trigger process
214 	 * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
215 	 */
216 	if (IS_GEN9_BC(dev_priv)) {
217 		ret = sandybridge_pcode_write(dev_priv,
218 					      SKL_PCODE_LOAD_HDCP_KEYS, 1);
219 		if (ret) {
220 			DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
221 			          ret);
222 			return ret;
223 		}
224 	} else {
225 		I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
226 	}
227 
228 	/* Wait for the keys to load (500us) */
229 	ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
230 					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
231 					10, 1, &val);
232 	if (ret)
233 		return ret;
234 	else if (!(val & HDCP_KEY_LOAD_STATUS))
235 		return -ENXIO;
236 
237 	/* Send Aksv over to PCH display for use in authentication */
238 	I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
239 
240 	return 0;
241 }
242 
243 /* Returns updated SHA-1 index */
244 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
245 {
246 	I915_WRITE(HDCP_SHA_TEXT, sha_text);
247 	if (intel_wait_for_register(&dev_priv->uncore, HDCP_REP_CTL,
248 				    HDCP_SHA1_READY, HDCP_SHA1_READY, 1)) {
249 		DRM_ERROR("Timed out waiting for SHA1 ready\n");
250 		return -ETIMEDOUT;
251 	}
252 	return 0;
253 }
254 
255 static
256 u32 intel_hdcp_get_repeater_ctl(struct intel_digital_port *intel_dig_port)
257 {
258 	enum port port = intel_dig_port->base.port;
259 	switch (port) {
260 	case PORT_A:
261 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
262 	case PORT_B:
263 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
264 	case PORT_C:
265 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
266 	case PORT_D:
267 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
268 	case PORT_E:
269 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
270 	default:
271 		break;
272 	}
273 	DRM_ERROR("Unknown port %d\n", port);
274 	return -EINVAL;
275 }
276 
277 static
278 int intel_hdcp_validate_v_prime(struct intel_digital_port *intel_dig_port,
279 				const struct intel_hdcp_shim *shim,
280 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
281 {
282 	struct drm_i915_private *dev_priv;
283 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
284 	int ret, i, j, sha_idx;
285 
286 	dev_priv = intel_dig_port->base.base.dev->dev_private;
287 
288 	/* Process V' values from the receiver */
289 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
290 		ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
291 		if (ret)
292 			return ret;
293 		I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
294 	}
295 
296 	/*
297 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
298 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
299 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
300 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
301 	 * index will keep track of our progress through the 64 bytes as well as
302 	 * helping us work the 40-bit KSVs through our 32-bit register.
303 	 *
304 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
305 	 */
306 	sha_idx = 0;
307 	sha_text = 0;
308 	sha_leftovers = 0;
309 	rep_ctl = intel_hdcp_get_repeater_ctl(intel_dig_port);
310 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
311 	for (i = 0; i < num_downstream; i++) {
312 		unsigned int sha_empty;
313 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
314 
315 		/* Fill up the empty slots in sha_text and write it out */
316 		sha_empty = sizeof(sha_text) - sha_leftovers;
317 		for (j = 0; j < sha_empty; j++)
318 			sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);
319 
320 		ret = intel_write_sha_text(dev_priv, sha_text);
321 		if (ret < 0)
322 			return ret;
323 
324 		/* Programming guide writes this every 64 bytes */
325 		sha_idx += sizeof(sha_text);
326 		if (!(sha_idx % 64))
327 			I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
328 
329 		/* Store the leftover bytes from the ksv in sha_text */
330 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
331 		sha_text = 0;
332 		for (j = 0; j < sha_leftovers; j++)
333 			sha_text |= ksv[sha_empty + j] <<
334 					((sizeof(sha_text) - j - 1) * 8);
335 
336 		/*
337 		 * If we still have room in sha_text for more data, continue.
338 		 * Otherwise, write it out immediately.
339 		 */
340 		if (sizeof(sha_text) > sha_leftovers)
341 			continue;
342 
343 		ret = intel_write_sha_text(dev_priv, sha_text);
344 		if (ret < 0)
345 			return ret;
346 		sha_leftovers = 0;
347 		sha_text = 0;
348 		sha_idx += sizeof(sha_text);
349 	}
350 
351 	/*
352 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
353 	 * bytes are leftover from the last ksv, we might be able to fit them
354 	 * all in sha_text (first 2 cases), or we might need to split them up
355 	 * into 2 writes (last 2 cases).
356 	 */
357 	if (sha_leftovers == 0) {
358 		/* Write 16 bits of text, 16 bits of M0 */
359 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
360 		ret = intel_write_sha_text(dev_priv,
361 					   bstatus[0] << 8 | bstatus[1]);
362 		if (ret < 0)
363 			return ret;
364 		sha_idx += sizeof(sha_text);
365 
366 		/* Write 32 bits of M0 */
367 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
368 		ret = intel_write_sha_text(dev_priv, 0);
369 		if (ret < 0)
370 			return ret;
371 		sha_idx += sizeof(sha_text);
372 
373 		/* Write 16 bits of M0 */
374 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
375 		ret = intel_write_sha_text(dev_priv, 0);
376 		if (ret < 0)
377 			return ret;
378 		sha_idx += sizeof(sha_text);
379 
380 	} else if (sha_leftovers == 1) {
381 		/* Write 24 bits of text, 8 bits of M0 */
382 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
383 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
384 		/* Only 24-bits of data, must be in the LSB */
385 		sha_text = (sha_text & 0xffffff00) >> 8;
386 		ret = intel_write_sha_text(dev_priv, sha_text);
387 		if (ret < 0)
388 			return ret;
389 		sha_idx += sizeof(sha_text);
390 
391 		/* Write 32 bits of M0 */
392 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
393 		ret = intel_write_sha_text(dev_priv, 0);
394 		if (ret < 0)
395 			return ret;
396 		sha_idx += sizeof(sha_text);
397 
398 		/* Write 24 bits of M0 */
399 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
400 		ret = intel_write_sha_text(dev_priv, 0);
401 		if (ret < 0)
402 			return ret;
403 		sha_idx += sizeof(sha_text);
404 
405 	} else if (sha_leftovers == 2) {
406 		/* Write 32 bits of text */
407 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
408 		sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
409 		ret = intel_write_sha_text(dev_priv, sha_text);
410 		if (ret < 0)
411 			return ret;
412 		sha_idx += sizeof(sha_text);
413 
414 		/* Write 64 bits of M0 */
415 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
416 		for (i = 0; i < 2; i++) {
417 			ret = intel_write_sha_text(dev_priv, 0);
418 			if (ret < 0)
419 				return ret;
420 			sha_idx += sizeof(sha_text);
421 		}
422 	} else if (sha_leftovers == 3) {
423 		/* Write 32 bits of text */
424 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
425 		sha_text |= bstatus[0] << 24;
426 		ret = intel_write_sha_text(dev_priv, sha_text);
427 		if (ret < 0)
428 			return ret;
429 		sha_idx += sizeof(sha_text);
430 
431 		/* Write 8 bits of text, 24 bits of M0 */
432 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
433 		ret = intel_write_sha_text(dev_priv, bstatus[1]);
434 		if (ret < 0)
435 			return ret;
436 		sha_idx += sizeof(sha_text);
437 
438 		/* Write 32 bits of M0 */
439 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
440 		ret = intel_write_sha_text(dev_priv, 0);
441 		if (ret < 0)
442 			return ret;
443 		sha_idx += sizeof(sha_text);
444 
445 		/* Write 8 bits of M0 */
446 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
447 		ret = intel_write_sha_text(dev_priv, 0);
448 		if (ret < 0)
449 			return ret;
450 		sha_idx += sizeof(sha_text);
451 	} else {
452 		DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
453 			      sha_leftovers);
454 		return -EINVAL;
455 	}
456 
457 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
458 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
459 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
460 		ret = intel_write_sha_text(dev_priv, 0);
461 		if (ret < 0)
462 			return ret;
463 		sha_idx += sizeof(sha_text);
464 	}
465 
466 	/*
467 	 * Last write gets the length of the concatenation in bits. That is:
468 	 *  - 5 bytes per device
469 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
470 	 */
471 	sha_text = (num_downstream * 5 + 10) * 8;
472 	ret = intel_write_sha_text(dev_priv, sha_text);
473 	if (ret < 0)
474 		return ret;
475 
476 	/* Tell the HW we're done with the hash and wait for it to ACK */
477 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
478 	if (intel_wait_for_register(&dev_priv->uncore, HDCP_REP_CTL,
479 				    HDCP_SHA1_COMPLETE,
480 				    HDCP_SHA1_COMPLETE, 1)) {
481 		DRM_ERROR("Timed out waiting for SHA1 complete\n");
482 		return -ETIMEDOUT;
483 	}
484 	if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
485 		DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
486 		return -ENXIO;
487 	}
488 
489 	return 0;
490 }
491 
492 /* Implements Part 2 of the HDCP authorization procedure */
493 static
494 int intel_hdcp_auth_downstream(struct intel_connector *connector)
495 {
496 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
497 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
498 	struct drm_device *dev = connector->base.dev;
499 	u8 bstatus[2], num_downstream, *ksv_fifo;
500 	int ret, i, tries = 3;
501 
502 	ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
503 	if (ret) {
504 		DRM_DEBUG_KMS("KSV list failed to become ready (%d)\n", ret);
505 		return ret;
506 	}
507 
508 	ret = shim->read_bstatus(intel_dig_port, bstatus);
509 	if (ret)
510 		return ret;
511 
512 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
513 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
514 		DRM_DEBUG_KMS("Max Topology Limit Exceeded\n");
515 		return -EPERM;
516 	}
517 
518 	/*
519 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
520 	 * the HDCP encryption. That implies that repeater can't have its own
521 	 * display. As there is no consumption of encrypted content in the
522 	 * repeater with 0 downstream devices, we are failing the
523 	 * authentication.
524 	 */
525 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
526 	if (num_downstream == 0)
527 		return -EINVAL;
528 
529 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
530 	if (!ksv_fifo)
531 		return -ENOMEM;
532 
533 	ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
534 	if (ret)
535 		goto err;
536 
537 	if (drm_hdcp_check_ksvs_revoked(dev, ksv_fifo, num_downstream)) {
538 		DRM_ERROR("Revoked Ksv(s) in ksv_fifo\n");
539 		return -EPERM;
540 	}
541 
542 	/*
543 	 * When V prime mismatches, DP Spec mandates re-read of
544 	 * V prime atleast twice.
545 	 */
546 	for (i = 0; i < tries; i++) {
547 		ret = intel_hdcp_validate_v_prime(intel_dig_port, shim,
548 						  ksv_fifo, num_downstream,
549 						  bstatus);
550 		if (!ret)
551 			break;
552 	}
553 
554 	if (i == tries) {
555 		DRM_DEBUG_KMS("V Prime validation failed.(%d)\n", ret);
556 		goto err;
557 	}
558 
559 	DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
560 		      num_downstream);
561 	ret = 0;
562 err:
563 	kfree(ksv_fifo);
564 	return ret;
565 }
566 
567 /* Implements Part 1 of the HDCP authorization procedure */
568 static int intel_hdcp_auth(struct intel_connector *connector)
569 {
570 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
571 	struct intel_hdcp *hdcp = &connector->hdcp;
572 	struct drm_device *dev = connector->base.dev;
573 	const struct intel_hdcp_shim *shim = hdcp->shim;
574 	struct drm_i915_private *dev_priv;
575 	enum port port;
576 	unsigned long r0_prime_gen_start;
577 	int ret, i, tries = 2;
578 	union {
579 		u32 reg[2];
580 		u8 shim[DRM_HDCP_AN_LEN];
581 	} an;
582 	union {
583 		u32 reg[2];
584 		u8 shim[DRM_HDCP_KSV_LEN];
585 	} bksv;
586 	union {
587 		u32 reg;
588 		u8 shim[DRM_HDCP_RI_LEN];
589 	} ri;
590 	bool repeater_present, hdcp_capable;
591 
592 	dev_priv = intel_dig_port->base.base.dev->dev_private;
593 
594 	port = intel_dig_port->base.port;
595 
596 	/*
597 	 * Detects whether the display is HDCP capable. Although we check for
598 	 * valid Bksv below, the HDCP over DP spec requires that we check
599 	 * whether the display supports HDCP before we write An. For HDMI
600 	 * displays, this is not necessary.
601 	 */
602 	if (shim->hdcp_capable) {
603 		ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
604 		if (ret)
605 			return ret;
606 		if (!hdcp_capable) {
607 			DRM_DEBUG_KMS("Panel is not HDCP capable\n");
608 			return -EINVAL;
609 		}
610 	}
611 
612 	/* Initialize An with 2 random values and acquire it */
613 	for (i = 0; i < 2; i++)
614 		I915_WRITE(PORT_HDCP_ANINIT(port), get_random_u32());
615 	I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_CAPTURE_AN);
616 
617 	/* Wait for An to be acquired */
618 	if (intel_wait_for_register(&dev_priv->uncore, PORT_HDCP_STATUS(port),
619 				    HDCP_STATUS_AN_READY,
620 				    HDCP_STATUS_AN_READY, 1)) {
621 		DRM_ERROR("Timed out waiting for An\n");
622 		return -ETIMEDOUT;
623 	}
624 
625 	an.reg[0] = I915_READ(PORT_HDCP_ANLO(port));
626 	an.reg[1] = I915_READ(PORT_HDCP_ANHI(port));
627 	ret = shim->write_an_aksv(intel_dig_port, an.shim);
628 	if (ret)
629 		return ret;
630 
631 	r0_prime_gen_start = jiffies;
632 
633 	memset(&bksv, 0, sizeof(bksv));
634 
635 	ret = intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv.shim);
636 	if (ret < 0)
637 		return ret;
638 
639 	if (drm_hdcp_check_ksvs_revoked(dev, bksv.shim, 1)) {
640 		DRM_ERROR("BKSV is revoked\n");
641 		return -EPERM;
642 	}
643 
644 	I915_WRITE(PORT_HDCP_BKSVLO(port), bksv.reg[0]);
645 	I915_WRITE(PORT_HDCP_BKSVHI(port), bksv.reg[1]);
646 
647 	ret = shim->repeater_present(intel_dig_port, &repeater_present);
648 	if (ret)
649 		return ret;
650 	if (repeater_present)
651 		I915_WRITE(HDCP_REP_CTL,
652 			   intel_hdcp_get_repeater_ctl(intel_dig_port));
653 
654 	ret = shim->toggle_signalling(intel_dig_port, true);
655 	if (ret)
656 		return ret;
657 
658 	I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_AUTH_AND_ENC);
659 
660 	/* Wait for R0 ready */
661 	if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
662 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
663 		DRM_ERROR("Timed out waiting for R0 ready\n");
664 		return -ETIMEDOUT;
665 	}
666 
667 	/*
668 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
669 	 * some monitors can take longer than this. We'll set the timeout at
670 	 * 300ms just to be sure.
671 	 *
672 	 * On DP, there's an R0_READY bit available but no such bit
673 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
674 	 * the stupid thing instead of polling on one and not the other.
675 	 */
676 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
677 
678 	tries = 3;
679 
680 	/*
681 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
682 	 * of R0 mismatch.
683 	 */
684 	for (i = 0; i < tries; i++) {
685 		ri.reg = 0;
686 		ret = shim->read_ri_prime(intel_dig_port, ri.shim);
687 		if (ret)
688 			return ret;
689 		I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg);
690 
691 		/* Wait for Ri prime match */
692 		if (!wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
693 		    (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
694 			break;
695 	}
696 
697 	if (i == tries) {
698 		DRM_DEBUG_KMS("Timed out waiting for Ri prime match (%x)\n",
699 			      I915_READ(PORT_HDCP_STATUS(port)));
700 		return -ETIMEDOUT;
701 	}
702 
703 	/* Wait for encryption confirmation */
704 	if (intel_wait_for_register(&dev_priv->uncore, PORT_HDCP_STATUS(port),
705 				    HDCP_STATUS_ENC, HDCP_STATUS_ENC,
706 				    ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
707 		DRM_ERROR("Timed out waiting for encryption\n");
708 		return -ETIMEDOUT;
709 	}
710 
711 	/*
712 	 * XXX: If we have MST-connected devices, we need to enable encryption
713 	 * on those as well.
714 	 */
715 
716 	if (repeater_present)
717 		return intel_hdcp_auth_downstream(connector);
718 
719 	DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
720 	return 0;
721 }
722 
723 static int _intel_hdcp_disable(struct intel_connector *connector)
724 {
725 	struct intel_hdcp *hdcp = &connector->hdcp;
726 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
727 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
728 	enum port port = intel_dig_port->base.port;
729 	int ret;
730 
731 	DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
732 		      connector->base.name, connector->base.base.id);
733 
734 	hdcp->hdcp_encrypted = false;
735 	I915_WRITE(PORT_HDCP_CONF(port), 0);
736 	if (intel_wait_for_register(&dev_priv->uncore,
737 				    PORT_HDCP_STATUS(port), ~0, 0,
738 				    ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
739 		DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
740 		return -ETIMEDOUT;
741 	}
742 
743 	ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
744 	if (ret) {
745 		DRM_ERROR("Failed to disable HDCP signalling\n");
746 		return ret;
747 	}
748 
749 	DRM_DEBUG_KMS("HDCP is disabled\n");
750 	return 0;
751 }
752 
753 static int _intel_hdcp_enable(struct intel_connector *connector)
754 {
755 	struct intel_hdcp *hdcp = &connector->hdcp;
756 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
757 	int i, ret, tries = 3;
758 
759 	DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
760 		      connector->base.name, connector->base.base.id);
761 
762 	if (!hdcp_key_loadable(dev_priv)) {
763 		DRM_ERROR("HDCP key Load is not possible\n");
764 		return -ENXIO;
765 	}
766 
767 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
768 		ret = intel_hdcp_load_keys(dev_priv);
769 		if (!ret)
770 			break;
771 		intel_hdcp_clear_keys(dev_priv);
772 	}
773 	if (ret) {
774 		DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
775 		return ret;
776 	}
777 
778 	/* Incase of authentication failures, HDCP spec expects reauth. */
779 	for (i = 0; i < tries; i++) {
780 		ret = intel_hdcp_auth(connector);
781 		if (!ret) {
782 			hdcp->hdcp_encrypted = true;
783 			return 0;
784 		}
785 
786 		DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);
787 
788 		/* Ensuring HDCP encryption and signalling are stopped. */
789 		_intel_hdcp_disable(connector);
790 	}
791 
792 	DRM_DEBUG_KMS("HDCP authentication failed (%d tries/%d)\n", tries, ret);
793 	return ret;
794 }
795 
796 static inline
797 struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
798 {
799 	return container_of(hdcp, struct intel_connector, hdcp);
800 }
801 
802 /* Implements Part 3 of the HDCP authorization procedure */
803 static int intel_hdcp_check_link(struct intel_connector *connector)
804 {
805 	struct intel_hdcp *hdcp = &connector->hdcp;
806 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
807 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
808 	enum port port = intel_dig_port->base.port;
809 	int ret = 0;
810 
811 	mutex_lock(&hdcp->mutex);
812 
813 	/* Check_link valid only when HDCP1.4 is enabled */
814 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
815 	    !hdcp->hdcp_encrypted) {
816 		ret = -EINVAL;
817 		goto out;
818 	}
819 
820 	if (WARN_ON(!intel_hdcp_in_use(connector))) {
821 		DRM_ERROR("%s:%d HDCP link stopped encryption,%x\n",
822 			  connector->base.name, connector->base.base.id,
823 			  I915_READ(PORT_HDCP_STATUS(port)));
824 		ret = -ENXIO;
825 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
826 		schedule_work(&hdcp->prop_work);
827 		goto out;
828 	}
829 
830 	if (hdcp->shim->check_link(intel_dig_port)) {
831 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
832 			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
833 			schedule_work(&hdcp->prop_work);
834 		}
835 		goto out;
836 	}
837 
838 	DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
839 		      connector->base.name, connector->base.base.id);
840 
841 	ret = _intel_hdcp_disable(connector);
842 	if (ret) {
843 		DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
844 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
845 		schedule_work(&hdcp->prop_work);
846 		goto out;
847 	}
848 
849 	ret = _intel_hdcp_enable(connector);
850 	if (ret) {
851 		DRM_ERROR("Failed to enable hdcp (%d)\n", ret);
852 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
853 		schedule_work(&hdcp->prop_work);
854 		goto out;
855 	}
856 
857 out:
858 	mutex_unlock(&hdcp->mutex);
859 	return ret;
860 }
861 
862 static void intel_hdcp_prop_work(struct work_struct *work)
863 {
864 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
865 					       prop_work);
866 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
867 	struct drm_device *dev = connector->base.dev;
868 	struct drm_connector_state *state;
869 
870 	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
871 	mutex_lock(&hdcp->mutex);
872 
873 	/*
874 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
875 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
876 	 * we're running just after hdcp has been disabled, so just exit
877 	 */
878 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
879 		state = connector->base.state;
880 		state->content_protection = hdcp->value;
881 	}
882 
883 	mutex_unlock(&hdcp->mutex);
884 	drm_modeset_unlock(&dev->mode_config.connection_mutex);
885 }
886 
887 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
888 {
889 	/* PORT E doesn't have HDCP, and PORT F is disabled */
890 	return INTEL_GEN(dev_priv) >= 9 && port < PORT_E;
891 }
892 
893 static int
894 hdcp2_prepare_ake_init(struct intel_connector *connector,
895 		       struct hdcp2_ake_init *ake_data)
896 {
897 	struct hdcp_port_data *data = &connector->hdcp.port_data;
898 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
899 	struct i915_hdcp_comp_master *comp;
900 	int ret;
901 
902 	mutex_lock(&dev_priv->hdcp_comp_mutex);
903 	comp = dev_priv->hdcp_master;
904 
905 	if (!comp || !comp->ops) {
906 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
907 		return -EINVAL;
908 	}
909 
910 	ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
911 	if (ret)
912 		DRM_DEBUG_KMS("Prepare_ake_init failed. %d\n", ret);
913 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
914 
915 	return ret;
916 }
917 
918 static int
919 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
920 				struct hdcp2_ake_send_cert *rx_cert,
921 				bool *paired,
922 				struct hdcp2_ake_no_stored_km *ek_pub_km,
923 				size_t *msg_sz)
924 {
925 	struct hdcp_port_data *data = &connector->hdcp.port_data;
926 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
927 	struct i915_hdcp_comp_master *comp;
928 	int ret;
929 
930 	mutex_lock(&dev_priv->hdcp_comp_mutex);
931 	comp = dev_priv->hdcp_master;
932 
933 	if (!comp || !comp->ops) {
934 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
935 		return -EINVAL;
936 	}
937 
938 	ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
939 							 rx_cert, paired,
940 							 ek_pub_km, msg_sz);
941 	if (ret < 0)
942 		DRM_DEBUG_KMS("Verify rx_cert failed. %d\n", ret);
943 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
944 
945 	return ret;
946 }
947 
948 static int hdcp2_verify_hprime(struct intel_connector *connector,
949 			       struct hdcp2_ake_send_hprime *rx_hprime)
950 {
951 	struct hdcp_port_data *data = &connector->hdcp.port_data;
952 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
953 	struct i915_hdcp_comp_master *comp;
954 	int ret;
955 
956 	mutex_lock(&dev_priv->hdcp_comp_mutex);
957 	comp = dev_priv->hdcp_master;
958 
959 	if (!comp || !comp->ops) {
960 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
961 		return -EINVAL;
962 	}
963 
964 	ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
965 	if (ret < 0)
966 		DRM_DEBUG_KMS("Verify hprime failed. %d\n", ret);
967 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
968 
969 	return ret;
970 }
971 
972 static int
973 hdcp2_store_pairing_info(struct intel_connector *connector,
974 			 struct hdcp2_ake_send_pairing_info *pairing_info)
975 {
976 	struct hdcp_port_data *data = &connector->hdcp.port_data;
977 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
978 	struct i915_hdcp_comp_master *comp;
979 	int ret;
980 
981 	mutex_lock(&dev_priv->hdcp_comp_mutex);
982 	comp = dev_priv->hdcp_master;
983 
984 	if (!comp || !comp->ops) {
985 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
986 		return -EINVAL;
987 	}
988 
989 	ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
990 	if (ret < 0)
991 		DRM_DEBUG_KMS("Store pairing info failed. %d\n", ret);
992 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
993 
994 	return ret;
995 }
996 
997 static int
998 hdcp2_prepare_lc_init(struct intel_connector *connector,
999 		      struct hdcp2_lc_init *lc_init)
1000 {
1001 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1002 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1003 	struct i915_hdcp_comp_master *comp;
1004 	int ret;
1005 
1006 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1007 	comp = dev_priv->hdcp_master;
1008 
1009 	if (!comp || !comp->ops) {
1010 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1011 		return -EINVAL;
1012 	}
1013 
1014 	ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1015 	if (ret < 0)
1016 		DRM_DEBUG_KMS("Prepare lc_init failed. %d\n", ret);
1017 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1018 
1019 	return ret;
1020 }
1021 
1022 static int
1023 hdcp2_verify_lprime(struct intel_connector *connector,
1024 		    struct hdcp2_lc_send_lprime *rx_lprime)
1025 {
1026 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1027 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1028 	struct i915_hdcp_comp_master *comp;
1029 	int ret;
1030 
1031 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1032 	comp = dev_priv->hdcp_master;
1033 
1034 	if (!comp || !comp->ops) {
1035 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1036 		return -EINVAL;
1037 	}
1038 
1039 	ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1040 	if (ret < 0)
1041 		DRM_DEBUG_KMS("Verify L_Prime failed. %d\n", ret);
1042 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1043 
1044 	return ret;
1045 }
1046 
1047 static int hdcp2_prepare_skey(struct intel_connector *connector,
1048 			      struct hdcp2_ske_send_eks *ske_data)
1049 {
1050 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1051 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1052 	struct i915_hdcp_comp_master *comp;
1053 	int ret;
1054 
1055 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1056 	comp = dev_priv->hdcp_master;
1057 
1058 	if (!comp || !comp->ops) {
1059 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1060 		return -EINVAL;
1061 	}
1062 
1063 	ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1064 	if (ret < 0)
1065 		DRM_DEBUG_KMS("Get session key failed. %d\n", ret);
1066 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1067 
1068 	return ret;
1069 }
1070 
1071 static int
1072 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1073 				      struct hdcp2_rep_send_receiverid_list
1074 								*rep_topology,
1075 				      struct hdcp2_rep_send_ack *rep_send_ack)
1076 {
1077 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1078 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1079 	struct i915_hdcp_comp_master *comp;
1080 	int ret;
1081 
1082 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1083 	comp = dev_priv->hdcp_master;
1084 
1085 	if (!comp || !comp->ops) {
1086 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1087 		return -EINVAL;
1088 	}
1089 
1090 	ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1091 							 rep_topology,
1092 							 rep_send_ack);
1093 	if (ret < 0)
1094 		DRM_DEBUG_KMS("Verify rep topology failed. %d\n", ret);
1095 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1096 
1097 	return ret;
1098 }
1099 
1100 static int
1101 hdcp2_verify_mprime(struct intel_connector *connector,
1102 		    struct hdcp2_rep_stream_ready *stream_ready)
1103 {
1104 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1105 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1106 	struct i915_hdcp_comp_master *comp;
1107 	int ret;
1108 
1109 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1110 	comp = dev_priv->hdcp_master;
1111 
1112 	if (!comp || !comp->ops) {
1113 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1114 		return -EINVAL;
1115 	}
1116 
1117 	ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1118 	if (ret < 0)
1119 		DRM_DEBUG_KMS("Verify mprime failed. %d\n", ret);
1120 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1121 
1122 	return ret;
1123 }
1124 
1125 static int hdcp2_authenticate_port(struct intel_connector *connector)
1126 {
1127 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1128 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1129 	struct i915_hdcp_comp_master *comp;
1130 	int ret;
1131 
1132 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1133 	comp = dev_priv->hdcp_master;
1134 
1135 	if (!comp || !comp->ops) {
1136 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1137 		return -EINVAL;
1138 	}
1139 
1140 	ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1141 	if (ret < 0)
1142 		DRM_DEBUG_KMS("Enable hdcp auth failed. %d\n", ret);
1143 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1144 
1145 	return ret;
1146 }
1147 
1148 static int hdcp2_close_mei_session(struct intel_connector *connector)
1149 {
1150 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1151 	struct i915_hdcp_comp_master *comp;
1152 	int ret;
1153 
1154 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1155 	comp = dev_priv->hdcp_master;
1156 
1157 	if (!comp || !comp->ops) {
1158 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1159 		return -EINVAL;
1160 	}
1161 
1162 	ret = comp->ops->close_hdcp_session(comp->mei_dev,
1163 					     &connector->hdcp.port_data);
1164 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1165 
1166 	return ret;
1167 }
1168 
1169 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1170 {
1171 	return hdcp2_close_mei_session(connector);
1172 }
1173 
1174 /* Authentication flow starts from here */
1175 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1176 {
1177 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1178 	struct intel_hdcp *hdcp = &connector->hdcp;
1179 	struct drm_device *dev = connector->base.dev;
1180 	union {
1181 		struct hdcp2_ake_init ake_init;
1182 		struct hdcp2_ake_send_cert send_cert;
1183 		struct hdcp2_ake_no_stored_km no_stored_km;
1184 		struct hdcp2_ake_send_hprime send_hprime;
1185 		struct hdcp2_ake_send_pairing_info pairing_info;
1186 	} msgs;
1187 	const struct intel_hdcp_shim *shim = hdcp->shim;
1188 	size_t size;
1189 	int ret;
1190 
1191 	/* Init for seq_num */
1192 	hdcp->seq_num_v = 0;
1193 	hdcp->seq_num_m = 0;
1194 
1195 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1196 	if (ret < 0)
1197 		return ret;
1198 
1199 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.ake_init,
1200 				  sizeof(msgs.ake_init));
1201 	if (ret < 0)
1202 		return ret;
1203 
1204 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_CERT,
1205 				 &msgs.send_cert, sizeof(msgs.send_cert));
1206 	if (ret < 0)
1207 		return ret;
1208 
1209 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL)
1210 		return -EINVAL;
1211 
1212 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1213 
1214 	if (drm_hdcp_check_ksvs_revoked(dev, msgs.send_cert.cert_rx.receiver_id,
1215 					1)) {
1216 		DRM_ERROR("Receiver ID is revoked\n");
1217 		return -EPERM;
1218 	}
1219 
1220 	/*
1221 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1222 	 * stored also.
1223 	 */
1224 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1225 					      &hdcp->is_paired,
1226 					      &msgs.no_stored_km, &size);
1227 	if (ret < 0)
1228 		return ret;
1229 
1230 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.no_stored_km, size);
1231 	if (ret < 0)
1232 		return ret;
1233 
1234 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1235 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1236 	if (ret < 0)
1237 		return ret;
1238 
1239 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1240 	if (ret < 0)
1241 		return ret;
1242 
1243 	if (!hdcp->is_paired) {
1244 		/* Pairing is required */
1245 		ret = shim->read_2_2_msg(intel_dig_port,
1246 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1247 					 &msgs.pairing_info,
1248 					 sizeof(msgs.pairing_info));
1249 		if (ret < 0)
1250 			return ret;
1251 
1252 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1253 		if (ret < 0)
1254 			return ret;
1255 		hdcp->is_paired = true;
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static int hdcp2_locality_check(struct intel_connector *connector)
1262 {
1263 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1264 	struct intel_hdcp *hdcp = &connector->hdcp;
1265 	union {
1266 		struct hdcp2_lc_init lc_init;
1267 		struct hdcp2_lc_send_lprime send_lprime;
1268 	} msgs;
1269 	const struct intel_hdcp_shim *shim = hdcp->shim;
1270 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1271 
1272 	for (i = 0; i < tries; i++) {
1273 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1274 		if (ret < 0)
1275 			continue;
1276 
1277 		ret = shim->write_2_2_msg(intel_dig_port, &msgs.lc_init,
1278 				      sizeof(msgs.lc_init));
1279 		if (ret < 0)
1280 			continue;
1281 
1282 		ret = shim->read_2_2_msg(intel_dig_port,
1283 					 HDCP_2_2_LC_SEND_LPRIME,
1284 					 &msgs.send_lprime,
1285 					 sizeof(msgs.send_lprime));
1286 		if (ret < 0)
1287 			continue;
1288 
1289 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1290 		if (!ret)
1291 			break;
1292 	}
1293 
1294 	return ret;
1295 }
1296 
1297 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1298 {
1299 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1300 	struct intel_hdcp *hdcp = &connector->hdcp;
1301 	struct hdcp2_ske_send_eks send_eks;
1302 	int ret;
1303 
1304 	ret = hdcp2_prepare_skey(connector, &send_eks);
1305 	if (ret < 0)
1306 		return ret;
1307 
1308 	ret = hdcp->shim->write_2_2_msg(intel_dig_port, &send_eks,
1309 					sizeof(send_eks));
1310 	if (ret < 0)
1311 		return ret;
1312 
1313 	return 0;
1314 }
1315 
1316 static
1317 int hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1318 {
1319 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1320 	struct intel_hdcp *hdcp = &connector->hdcp;
1321 	union {
1322 		struct hdcp2_rep_stream_manage stream_manage;
1323 		struct hdcp2_rep_stream_ready stream_ready;
1324 	} msgs;
1325 	const struct intel_hdcp_shim *shim = hdcp->shim;
1326 	int ret;
1327 
1328 	/* Prepare RepeaterAuth_Stream_Manage msg */
1329 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1330 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1331 
1332 	/* K no of streams is fixed as 1. Stored as big-endian. */
1333 	msgs.stream_manage.k = cpu_to_be16(1);
1334 
1335 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
1336 	msgs.stream_manage.streams[0].stream_id = 0;
1337 	msgs.stream_manage.streams[0].stream_type = hdcp->content_type;
1338 
1339 	/* Send it to Repeater */
1340 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.stream_manage,
1341 				  sizeof(msgs.stream_manage));
1342 	if (ret < 0)
1343 		return ret;
1344 
1345 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_STREAM_READY,
1346 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1347 	if (ret < 0)
1348 		return ret;
1349 
1350 	hdcp->port_data.seq_num_m = hdcp->seq_num_m;
1351 	hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1352 
1353 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1354 	if (ret < 0)
1355 		return ret;
1356 
1357 	hdcp->seq_num_m++;
1358 
1359 	if (hdcp->seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1360 		DRM_DEBUG_KMS("seq_num_m roll over.\n");
1361 		return -1;
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 static
1368 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1369 {
1370 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1371 	struct intel_hdcp *hdcp = &connector->hdcp;
1372 	struct drm_device *dev = connector->base.dev;
1373 	union {
1374 		struct hdcp2_rep_send_receiverid_list recvid_list;
1375 		struct hdcp2_rep_send_ack rep_ack;
1376 	} msgs;
1377 	const struct intel_hdcp_shim *shim = hdcp->shim;
1378 	u32 seq_num_v, device_cnt;
1379 	u8 *rx_info;
1380 	int ret;
1381 
1382 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1383 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1384 	if (ret < 0)
1385 		return ret;
1386 
1387 	rx_info = msgs.recvid_list.rx_info;
1388 
1389 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1390 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1391 		DRM_DEBUG_KMS("Topology Max Size Exceeded\n");
1392 		return -EINVAL;
1393 	}
1394 
1395 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1396 	seq_num_v =
1397 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1398 
1399 	if (seq_num_v < hdcp->seq_num_v) {
1400 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1401 		DRM_DEBUG_KMS("Seq_num_v roll over.\n");
1402 		return -EINVAL;
1403 	}
1404 
1405 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1406 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1407 	if (drm_hdcp_check_ksvs_revoked(dev, msgs.recvid_list.receiver_ids,
1408 					device_cnt)) {
1409 		DRM_ERROR("Revoked receiver ID(s) is in list\n");
1410 		return -EPERM;
1411 	}
1412 
1413 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1414 						    &msgs.recvid_list,
1415 						    &msgs.rep_ack);
1416 	if (ret < 0)
1417 		return ret;
1418 
1419 	hdcp->seq_num_v = seq_num_v;
1420 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.rep_ack,
1421 				  sizeof(msgs.rep_ack));
1422 	if (ret < 0)
1423 		return ret;
1424 
1425 	return 0;
1426 }
1427 
1428 static int hdcp2_authenticate_repeater(struct intel_connector *connector)
1429 {
1430 	int ret;
1431 
1432 	ret = hdcp2_authenticate_repeater_topology(connector);
1433 	if (ret < 0)
1434 		return ret;
1435 
1436 	return hdcp2_propagate_stream_management_info(connector);
1437 }
1438 
1439 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1440 {
1441 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1442 	struct intel_hdcp *hdcp = &connector->hdcp;
1443 	const struct intel_hdcp_shim *shim = hdcp->shim;
1444 	int ret;
1445 
1446 	ret = hdcp2_authentication_key_exchange(connector);
1447 	if (ret < 0) {
1448 		DRM_DEBUG_KMS("AKE Failed. Err : %d\n", ret);
1449 		return ret;
1450 	}
1451 
1452 	ret = hdcp2_locality_check(connector);
1453 	if (ret < 0) {
1454 		DRM_DEBUG_KMS("Locality Check failed. Err : %d\n", ret);
1455 		return ret;
1456 	}
1457 
1458 	ret = hdcp2_session_key_exchange(connector);
1459 	if (ret < 0) {
1460 		DRM_DEBUG_KMS("SKE Failed. Err : %d\n", ret);
1461 		return ret;
1462 	}
1463 
1464 	if (shim->config_stream_type) {
1465 		ret = shim->config_stream_type(intel_dig_port,
1466 					       hdcp->is_repeater,
1467 					       hdcp->content_type);
1468 		if (ret < 0)
1469 			return ret;
1470 	}
1471 
1472 	if (hdcp->is_repeater) {
1473 		ret = hdcp2_authenticate_repeater(connector);
1474 		if (ret < 0) {
1475 			DRM_DEBUG_KMS("Repeater Auth Failed. Err: %d\n", ret);
1476 			return ret;
1477 		}
1478 	}
1479 
1480 	hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1481 	ret = hdcp2_authenticate_port(connector);
1482 	if (ret < 0)
1483 		return ret;
1484 
1485 	return ret;
1486 }
1487 
1488 static int hdcp2_enable_encryption(struct intel_connector *connector)
1489 {
1490 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1491 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1492 	struct intel_hdcp *hdcp = &connector->hdcp;
1493 	enum port port = connector->encoder->port;
1494 	int ret;
1495 
1496 	WARN_ON(I915_READ(HDCP2_STATUS_DDI(port)) & LINK_ENCRYPTION_STATUS);
1497 
1498 	if (hdcp->shim->toggle_signalling) {
1499 		ret = hdcp->shim->toggle_signalling(intel_dig_port, true);
1500 		if (ret) {
1501 			DRM_ERROR("Failed to enable HDCP signalling. %d\n",
1502 				  ret);
1503 			return ret;
1504 		}
1505 	}
1506 
1507 	if (I915_READ(HDCP2_STATUS_DDI(port)) & LINK_AUTH_STATUS) {
1508 		/* Link is Authenticated. Now set for Encryption */
1509 		I915_WRITE(HDCP2_CTL_DDI(port),
1510 			   I915_READ(HDCP2_CTL_DDI(port)) |
1511 			   CTL_LINK_ENCRYPTION_REQ);
1512 	}
1513 
1514 	ret = intel_wait_for_register(&dev_priv->uncore, HDCP2_STATUS_DDI(port),
1515 				      LINK_ENCRYPTION_STATUS,
1516 				      LINK_ENCRYPTION_STATUS,
1517 				      ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1518 
1519 	return ret;
1520 }
1521 
1522 static int hdcp2_disable_encryption(struct intel_connector *connector)
1523 {
1524 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1525 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1526 	struct intel_hdcp *hdcp = &connector->hdcp;
1527 	enum port port = connector->encoder->port;
1528 	int ret;
1529 
1530 	WARN_ON(!(I915_READ(HDCP2_STATUS_DDI(port)) & LINK_ENCRYPTION_STATUS));
1531 
1532 	I915_WRITE(HDCP2_CTL_DDI(port),
1533 		   I915_READ(HDCP2_CTL_DDI(port)) & ~CTL_LINK_ENCRYPTION_REQ);
1534 
1535 	ret = intel_wait_for_register(&dev_priv->uncore, HDCP2_STATUS_DDI(port),
1536 				      LINK_ENCRYPTION_STATUS, 0x0,
1537 				      ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1538 	if (ret == -ETIMEDOUT)
1539 		DRM_DEBUG_KMS("Disable Encryption Timedout");
1540 
1541 	if (hdcp->shim->toggle_signalling) {
1542 		ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
1543 		if (ret) {
1544 			DRM_ERROR("Failed to disable HDCP signalling. %d\n",
1545 				  ret);
1546 			return ret;
1547 		}
1548 	}
1549 
1550 	return ret;
1551 }
1552 
1553 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1554 {
1555 	int ret, i, tries = 3;
1556 
1557 	for (i = 0; i < tries; i++) {
1558 		ret = hdcp2_authenticate_sink(connector);
1559 		if (!ret)
1560 			break;
1561 
1562 		/* Clearing the mei hdcp session */
1563 		DRM_DEBUG_KMS("HDCP2.2 Auth %d of %d Failed.(%d)\n",
1564 			      i + 1, tries, ret);
1565 		if (hdcp2_deauthenticate_port(connector) < 0)
1566 			DRM_DEBUG_KMS("Port deauth failed.\n");
1567 	}
1568 
1569 	if (i != tries) {
1570 		/*
1571 		 * Ensuring the required 200mSec min time interval between
1572 		 * Session Key Exchange and encryption.
1573 		 */
1574 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1575 		ret = hdcp2_enable_encryption(connector);
1576 		if (ret < 0) {
1577 			DRM_DEBUG_KMS("Encryption Enable Failed.(%d)\n", ret);
1578 			if (hdcp2_deauthenticate_port(connector) < 0)
1579 				DRM_DEBUG_KMS("Port deauth failed.\n");
1580 		}
1581 	}
1582 
1583 	return ret;
1584 }
1585 
1586 static int _intel_hdcp2_enable(struct intel_connector *connector)
1587 {
1588 	struct intel_hdcp *hdcp = &connector->hdcp;
1589 	int ret;
1590 
1591 	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1592 		      connector->base.name, connector->base.base.id,
1593 		      hdcp->content_type);
1594 
1595 	ret = hdcp2_authenticate_and_encrypt(connector);
1596 	if (ret) {
1597 		DRM_DEBUG_KMS("HDCP2 Type%d  Enabling Failed. (%d)\n",
1598 			      hdcp->content_type, ret);
1599 		return ret;
1600 	}
1601 
1602 	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is enabled. Type %d\n",
1603 		      connector->base.name, connector->base.base.id,
1604 		      hdcp->content_type);
1605 
1606 	hdcp->hdcp2_encrypted = true;
1607 	return 0;
1608 }
1609 
1610 static int _intel_hdcp2_disable(struct intel_connector *connector)
1611 {
1612 	int ret;
1613 
1614 	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being Disabled\n",
1615 		      connector->base.name, connector->base.base.id);
1616 
1617 	ret = hdcp2_disable_encryption(connector);
1618 
1619 	if (hdcp2_deauthenticate_port(connector) < 0)
1620 		DRM_DEBUG_KMS("Port deauth failed.\n");
1621 
1622 	connector->hdcp.hdcp2_encrypted = false;
1623 
1624 	return ret;
1625 }
1626 
1627 /* Implements the Link Integrity Check for HDCP2.2 */
1628 static int intel_hdcp2_check_link(struct intel_connector *connector)
1629 {
1630 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1631 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1632 	struct intel_hdcp *hdcp = &connector->hdcp;
1633 	enum port port = connector->encoder->port;
1634 	int ret = 0;
1635 
1636 	mutex_lock(&hdcp->mutex);
1637 
1638 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
1639 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1640 	    !hdcp->hdcp2_encrypted) {
1641 		ret = -EINVAL;
1642 		goto out;
1643 	}
1644 
1645 	if (WARN_ON(!intel_hdcp2_in_use(connector))) {
1646 		DRM_ERROR("HDCP2.2 link stopped the encryption, %x\n",
1647 			  I915_READ(HDCP2_STATUS_DDI(port)));
1648 		ret = -ENXIO;
1649 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1650 		schedule_work(&hdcp->prop_work);
1651 		goto out;
1652 	}
1653 
1654 	ret = hdcp->shim->check_2_2_link(intel_dig_port);
1655 	if (ret == HDCP_LINK_PROTECTED) {
1656 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1657 			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1658 			schedule_work(&hdcp->prop_work);
1659 		}
1660 		goto out;
1661 	}
1662 
1663 	if (ret == HDCP_TOPOLOGY_CHANGE) {
1664 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1665 			goto out;
1666 
1667 		DRM_DEBUG_KMS("HDCP2.2 Downstream topology change\n");
1668 		ret = hdcp2_authenticate_repeater_topology(connector);
1669 		if (!ret) {
1670 			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1671 			schedule_work(&hdcp->prop_work);
1672 			goto out;
1673 		}
1674 		DRM_DEBUG_KMS("[%s:%d] Repeater topology auth failed.(%d)\n",
1675 			      connector->base.name, connector->base.base.id,
1676 			      ret);
1677 	} else {
1678 		DRM_DEBUG_KMS("[%s:%d] HDCP2.2 link failed, retrying auth\n",
1679 			      connector->base.name, connector->base.base.id);
1680 	}
1681 
1682 	ret = _intel_hdcp2_disable(connector);
1683 	if (ret) {
1684 		DRM_ERROR("[%s:%d] Failed to disable hdcp2.2 (%d)\n",
1685 			  connector->base.name, connector->base.base.id, ret);
1686 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1687 		schedule_work(&hdcp->prop_work);
1688 		goto out;
1689 	}
1690 
1691 	ret = _intel_hdcp2_enable(connector);
1692 	if (ret) {
1693 		DRM_DEBUG_KMS("[%s:%d] Failed to enable hdcp2.2 (%d)\n",
1694 			      connector->base.name, connector->base.base.id,
1695 			      ret);
1696 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1697 		schedule_work(&hdcp->prop_work);
1698 		goto out;
1699 	}
1700 
1701 out:
1702 	mutex_unlock(&hdcp->mutex);
1703 	return ret;
1704 }
1705 
1706 static void intel_hdcp_check_work(struct work_struct *work)
1707 {
1708 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
1709 					       struct intel_hdcp,
1710 					       check_work);
1711 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1712 
1713 	if (!intel_hdcp2_check_link(connector))
1714 		schedule_delayed_work(&hdcp->check_work,
1715 				      DRM_HDCP2_CHECK_PERIOD_MS);
1716 	else if (!intel_hdcp_check_link(connector))
1717 		schedule_delayed_work(&hdcp->check_work,
1718 				      DRM_HDCP_CHECK_PERIOD_MS);
1719 }
1720 
1721 static int i915_hdcp_component_bind(struct device *i915_kdev,
1722 				    struct device *mei_kdev, void *data)
1723 {
1724 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1725 
1726 	DRM_DEBUG("I915 HDCP comp bind\n");
1727 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1728 	dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
1729 	dev_priv->hdcp_master->mei_dev = mei_kdev;
1730 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1731 
1732 	return 0;
1733 }
1734 
1735 static void i915_hdcp_component_unbind(struct device *i915_kdev,
1736 				       struct device *mei_kdev, void *data)
1737 {
1738 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1739 
1740 	DRM_DEBUG("I915 HDCP comp unbind\n");
1741 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1742 	dev_priv->hdcp_master = NULL;
1743 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1744 }
1745 
1746 static const struct component_ops i915_hdcp_component_ops = {
1747 	.bind   = i915_hdcp_component_bind,
1748 	.unbind = i915_hdcp_component_unbind,
1749 };
1750 
1751 static inline int initialize_hdcp_port_data(struct intel_connector *connector)
1752 {
1753 	struct intel_hdcp *hdcp = &connector->hdcp;
1754 	struct hdcp_port_data *data = &hdcp->port_data;
1755 
1756 	data->port = connector->encoder->port;
1757 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
1758 	data->protocol = (u8)hdcp->shim->protocol;
1759 
1760 	data->k = 1;
1761 	if (!data->streams)
1762 		data->streams = kcalloc(data->k,
1763 					sizeof(struct hdcp2_streamid_type),
1764 					GFP_KERNEL);
1765 	if (!data->streams) {
1766 		DRM_ERROR("Out of Memory\n");
1767 		return -ENOMEM;
1768 	}
1769 
1770 	data->streams[0].stream_id = 0;
1771 	data->streams[0].stream_type = hdcp->content_type;
1772 
1773 	return 0;
1774 }
1775 
1776 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
1777 {
1778 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
1779 		return false;
1780 
1781 	return (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv) ||
1782 		IS_KABYLAKE(dev_priv));
1783 }
1784 
1785 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
1786 {
1787 	int ret;
1788 
1789 	if (!is_hdcp2_supported(dev_priv))
1790 		return;
1791 
1792 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1793 	WARN_ON(dev_priv->hdcp_comp_added);
1794 
1795 	dev_priv->hdcp_comp_added = true;
1796 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1797 	ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
1798 				  I915_COMPONENT_HDCP);
1799 	if (ret < 0) {
1800 		DRM_DEBUG_KMS("Failed at component add(%d)\n", ret);
1801 		mutex_lock(&dev_priv->hdcp_comp_mutex);
1802 		dev_priv->hdcp_comp_added = false;
1803 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1804 		return;
1805 	}
1806 }
1807 
1808 static void intel_hdcp2_init(struct intel_connector *connector)
1809 {
1810 	struct intel_hdcp *hdcp = &connector->hdcp;
1811 	int ret;
1812 
1813 	ret = initialize_hdcp_port_data(connector);
1814 	if (ret) {
1815 		DRM_DEBUG_KMS("Mei hdcp data init failed\n");
1816 		return;
1817 	}
1818 
1819 	hdcp->hdcp2_supported = true;
1820 }
1821 
1822 int intel_hdcp_init(struct intel_connector *connector,
1823 		    const struct intel_hdcp_shim *shim)
1824 {
1825 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1826 	struct intel_hdcp *hdcp = &connector->hdcp;
1827 	int ret;
1828 
1829 	if (!shim)
1830 		return -EINVAL;
1831 
1832 	ret = drm_connector_attach_content_protection_property(&connector->base);
1833 	if (ret)
1834 		return ret;
1835 
1836 	hdcp->shim = shim;
1837 	mutex_init(&hdcp->mutex);
1838 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
1839 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
1840 
1841 	if (is_hdcp2_supported(dev_priv))
1842 		intel_hdcp2_init(connector);
1843 	init_waitqueue_head(&hdcp->cp_irq_queue);
1844 
1845 	return 0;
1846 }
1847 
1848 int intel_hdcp_enable(struct intel_connector *connector)
1849 {
1850 	struct intel_hdcp *hdcp = &connector->hdcp;
1851 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
1852 	int ret = -EINVAL;
1853 
1854 	if (!hdcp->shim)
1855 		return -ENOENT;
1856 
1857 	mutex_lock(&hdcp->mutex);
1858 	WARN_ON(hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
1859 
1860 	/*
1861 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
1862 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
1863 	 */
1864 	if (intel_hdcp2_capable(connector)) {
1865 		ret = _intel_hdcp2_enable(connector);
1866 		if (!ret)
1867 			check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
1868 	}
1869 
1870 	/* When HDCP2.2 fails, HDCP1.4 will be attempted */
1871 	if (ret && intel_hdcp_capable(connector)) {
1872 		ret = _intel_hdcp_enable(connector);
1873 	}
1874 
1875 	if (!ret) {
1876 		schedule_delayed_work(&hdcp->check_work, check_link_interval);
1877 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1878 		schedule_work(&hdcp->prop_work);
1879 	}
1880 
1881 	mutex_unlock(&hdcp->mutex);
1882 	return ret;
1883 }
1884 
1885 int intel_hdcp_disable(struct intel_connector *connector)
1886 {
1887 	struct intel_hdcp *hdcp = &connector->hdcp;
1888 	int ret = 0;
1889 
1890 	if (!hdcp->shim)
1891 		return -ENOENT;
1892 
1893 	mutex_lock(&hdcp->mutex);
1894 
1895 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1896 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
1897 		if (hdcp->hdcp2_encrypted)
1898 			ret = _intel_hdcp2_disable(connector);
1899 		else if (hdcp->hdcp_encrypted)
1900 			ret = _intel_hdcp_disable(connector);
1901 	}
1902 
1903 	mutex_unlock(&hdcp->mutex);
1904 	cancel_delayed_work_sync(&hdcp->check_work);
1905 	return ret;
1906 }
1907 
1908 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
1909 {
1910 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1911 	if (!dev_priv->hdcp_comp_added) {
1912 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1913 		return;
1914 	}
1915 
1916 	dev_priv->hdcp_comp_added = false;
1917 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1918 
1919 	component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
1920 }
1921 
1922 void intel_hdcp_cleanup(struct intel_connector *connector)
1923 {
1924 	if (!connector->hdcp.shim)
1925 		return;
1926 
1927 	mutex_lock(&connector->hdcp.mutex);
1928 	kfree(connector->hdcp.port_data.streams);
1929 	mutex_unlock(&connector->hdcp.mutex);
1930 }
1931 
1932 void intel_hdcp_atomic_check(struct drm_connector *connector,
1933 			     struct drm_connector_state *old_state,
1934 			     struct drm_connector_state *new_state)
1935 {
1936 	u64 old_cp = old_state->content_protection;
1937 	u64 new_cp = new_state->content_protection;
1938 	struct drm_crtc_state *crtc_state;
1939 
1940 	if (!new_state->crtc) {
1941 		/*
1942 		 * If the connector is being disabled with CP enabled, mark it
1943 		 * desired so it's re-enabled when the connector is brought back
1944 		 */
1945 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
1946 			new_state->content_protection =
1947 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
1948 		return;
1949 	}
1950 
1951 	/*
1952 	 * Nothing to do if the state didn't change, or HDCP was activated since
1953 	 * the last commit
1954 	 */
1955 	if (old_cp == new_cp ||
1956 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
1957 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED))
1958 		return;
1959 
1960 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
1961 						   new_state->crtc);
1962 	crtc_state->mode_changed = true;
1963 }
1964 
1965 /* Handles the CP_IRQ raised from the DP HDCP sink */
1966 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
1967 {
1968 	struct intel_hdcp *hdcp = &connector->hdcp;
1969 
1970 	if (!hdcp->shim)
1971 		return;
1972 
1973 	atomic_inc(&connector->hdcp.cp_irq_count);
1974 	wake_up_all(&connector->hdcp.cp_irq_queue);
1975 
1976 	schedule_delayed_work(&hdcp->check_work, 0);
1977 }
1978