1 /* 2 * Copyright (c) 2006 Dave Airlie <airlied@linux.ie> 3 * Copyright © 2006-2008,2010 Intel Corporation 4 * Jesse Barnes <jesse.barnes@intel.com> 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 23 * DEALINGS IN THE SOFTWARE. 24 * 25 * Authors: 26 * Eric Anholt <eric@anholt.net> 27 * Chris Wilson <chris@chris-wilson.co.uk> 28 */ 29 30 #include <linux/export.h> 31 #include <linux/i2c-algo-bit.h> 32 #include <linux/i2c.h> 33 34 #include <drm/drm_hdcp.h> 35 #include <drm/i915_drm.h> 36 37 #include "i915_drv.h" 38 #include "intel_display_types.h" 39 #include "intel_gmbus.h" 40 41 struct gmbus_pin { 42 const char *name; 43 enum i915_gpio gpio; 44 }; 45 46 /* Map gmbus pin pairs to names and registers. */ 47 static const struct gmbus_pin gmbus_pins[] = { 48 [GMBUS_PIN_SSC] = { "ssc", GPIOB }, 49 [GMBUS_PIN_VGADDC] = { "vga", GPIOA }, 50 [GMBUS_PIN_PANEL] = { "panel", GPIOC }, 51 [GMBUS_PIN_DPC] = { "dpc", GPIOD }, 52 [GMBUS_PIN_DPB] = { "dpb", GPIOE }, 53 [GMBUS_PIN_DPD] = { "dpd", GPIOF }, 54 }; 55 56 static const struct gmbus_pin gmbus_pins_bdw[] = { 57 [GMBUS_PIN_VGADDC] = { "vga", GPIOA }, 58 [GMBUS_PIN_DPC] = { "dpc", GPIOD }, 59 [GMBUS_PIN_DPB] = { "dpb", GPIOE }, 60 [GMBUS_PIN_DPD] = { "dpd", GPIOF }, 61 }; 62 63 static const struct gmbus_pin gmbus_pins_skl[] = { 64 [GMBUS_PIN_DPC] = { "dpc", GPIOD }, 65 [GMBUS_PIN_DPB] = { "dpb", GPIOE }, 66 [GMBUS_PIN_DPD] = { "dpd", GPIOF }, 67 }; 68 69 static const struct gmbus_pin gmbus_pins_bxt[] = { 70 [GMBUS_PIN_1_BXT] = { "dpb", GPIOB }, 71 [GMBUS_PIN_2_BXT] = { "dpc", GPIOC }, 72 [GMBUS_PIN_3_BXT] = { "misc", GPIOD }, 73 }; 74 75 static const struct gmbus_pin gmbus_pins_cnp[] = { 76 [GMBUS_PIN_1_BXT] = { "dpb", GPIOB }, 77 [GMBUS_PIN_2_BXT] = { "dpc", GPIOC }, 78 [GMBUS_PIN_3_BXT] = { "misc", GPIOD }, 79 [GMBUS_PIN_4_CNP] = { "dpd", GPIOE }, 80 }; 81 82 static const struct gmbus_pin gmbus_pins_icp[] = { 83 [GMBUS_PIN_1_BXT] = { "dpa", GPIOB }, 84 [GMBUS_PIN_2_BXT] = { "dpb", GPIOC }, 85 [GMBUS_PIN_3_BXT] = { "dpc", GPIOD }, 86 [GMBUS_PIN_9_TC1_ICP] = { "tc1", GPIOJ }, 87 [GMBUS_PIN_10_TC2_ICP] = { "tc2", GPIOK }, 88 [GMBUS_PIN_11_TC3_ICP] = { "tc3", GPIOL }, 89 [GMBUS_PIN_12_TC4_ICP] = { "tc4", GPIOM }, 90 [GMBUS_PIN_13_TC5_TGP] = { "tc5", GPION }, 91 [GMBUS_PIN_14_TC6_TGP] = { "tc6", GPIOO }, 92 }; 93 94 /* pin is expected to be valid */ 95 static const struct gmbus_pin *get_gmbus_pin(struct drm_i915_private *dev_priv, 96 unsigned int pin) 97 { 98 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 99 return &gmbus_pins_icp[pin]; 100 else if (HAS_PCH_CNP(dev_priv)) 101 return &gmbus_pins_cnp[pin]; 102 else if (IS_GEN9_LP(dev_priv)) 103 return &gmbus_pins_bxt[pin]; 104 else if (IS_GEN9_BC(dev_priv)) 105 return &gmbus_pins_skl[pin]; 106 else if (IS_BROADWELL(dev_priv)) 107 return &gmbus_pins_bdw[pin]; 108 else 109 return &gmbus_pins[pin]; 110 } 111 112 bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 113 unsigned int pin) 114 { 115 unsigned int size; 116 117 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 118 size = ARRAY_SIZE(gmbus_pins_icp); 119 else if (HAS_PCH_CNP(dev_priv)) 120 size = ARRAY_SIZE(gmbus_pins_cnp); 121 else if (IS_GEN9_LP(dev_priv)) 122 size = ARRAY_SIZE(gmbus_pins_bxt); 123 else if (IS_GEN9_BC(dev_priv)) 124 size = ARRAY_SIZE(gmbus_pins_skl); 125 else if (IS_BROADWELL(dev_priv)) 126 size = ARRAY_SIZE(gmbus_pins_bdw); 127 else 128 size = ARRAY_SIZE(gmbus_pins); 129 130 return pin < size && get_gmbus_pin(dev_priv, pin)->name; 131 } 132 133 /* Intel GPIO access functions */ 134 135 #define I2C_RISEFALL_TIME 10 136 137 static inline struct intel_gmbus * 138 to_intel_gmbus(struct i2c_adapter *i2c) 139 { 140 return container_of(i2c, struct intel_gmbus, adapter); 141 } 142 143 void 144 intel_gmbus_reset(struct drm_i915_private *dev_priv) 145 { 146 I915_WRITE(GMBUS0, 0); 147 I915_WRITE(GMBUS4, 0); 148 } 149 150 static void pnv_gmbus_clock_gating(struct drm_i915_private *dev_priv, 151 bool enable) 152 { 153 u32 val; 154 155 /* When using bit bashing for I2C, this bit needs to be set to 1 */ 156 val = I915_READ(DSPCLK_GATE_D); 157 if (!enable) 158 val |= PNV_GMBUSUNIT_CLOCK_GATE_DISABLE; 159 else 160 val &= ~PNV_GMBUSUNIT_CLOCK_GATE_DISABLE; 161 I915_WRITE(DSPCLK_GATE_D, val); 162 } 163 164 static void pch_gmbus_clock_gating(struct drm_i915_private *dev_priv, 165 bool enable) 166 { 167 u32 val; 168 169 val = I915_READ(SOUTH_DSPCLK_GATE_D); 170 if (!enable) 171 val |= PCH_GMBUSUNIT_CLOCK_GATE_DISABLE; 172 else 173 val &= ~PCH_GMBUSUNIT_CLOCK_GATE_DISABLE; 174 I915_WRITE(SOUTH_DSPCLK_GATE_D, val); 175 } 176 177 static void bxt_gmbus_clock_gating(struct drm_i915_private *dev_priv, 178 bool enable) 179 { 180 u32 val; 181 182 val = I915_READ(GEN9_CLKGATE_DIS_4); 183 if (!enable) 184 val |= BXT_GMBUS_GATING_DIS; 185 else 186 val &= ~BXT_GMBUS_GATING_DIS; 187 I915_WRITE(GEN9_CLKGATE_DIS_4, val); 188 } 189 190 static u32 get_reserved(struct intel_gmbus *bus) 191 { 192 struct drm_i915_private *i915 = bus->dev_priv; 193 struct intel_uncore *uncore = &i915->uncore; 194 u32 reserved = 0; 195 196 /* On most chips, these bits must be preserved in software. */ 197 if (!IS_I830(i915) && !IS_I845G(i915)) 198 reserved = intel_uncore_read_notrace(uncore, bus->gpio_reg) & 199 (GPIO_DATA_PULLUP_DISABLE | 200 GPIO_CLOCK_PULLUP_DISABLE); 201 202 return reserved; 203 } 204 205 static int get_clock(void *data) 206 { 207 struct intel_gmbus *bus = data; 208 struct intel_uncore *uncore = &bus->dev_priv->uncore; 209 u32 reserved = get_reserved(bus); 210 211 intel_uncore_write_notrace(uncore, 212 bus->gpio_reg, 213 reserved | GPIO_CLOCK_DIR_MASK); 214 intel_uncore_write_notrace(uncore, bus->gpio_reg, reserved); 215 216 return (intel_uncore_read_notrace(uncore, bus->gpio_reg) & 217 GPIO_CLOCK_VAL_IN) != 0; 218 } 219 220 static int get_data(void *data) 221 { 222 struct intel_gmbus *bus = data; 223 struct intel_uncore *uncore = &bus->dev_priv->uncore; 224 u32 reserved = get_reserved(bus); 225 226 intel_uncore_write_notrace(uncore, 227 bus->gpio_reg, 228 reserved | GPIO_DATA_DIR_MASK); 229 intel_uncore_write_notrace(uncore, bus->gpio_reg, reserved); 230 231 return (intel_uncore_read_notrace(uncore, bus->gpio_reg) & 232 GPIO_DATA_VAL_IN) != 0; 233 } 234 235 static void set_clock(void *data, int state_high) 236 { 237 struct intel_gmbus *bus = data; 238 struct intel_uncore *uncore = &bus->dev_priv->uncore; 239 u32 reserved = get_reserved(bus); 240 u32 clock_bits; 241 242 if (state_high) 243 clock_bits = GPIO_CLOCK_DIR_IN | GPIO_CLOCK_DIR_MASK; 244 else 245 clock_bits = GPIO_CLOCK_DIR_OUT | GPIO_CLOCK_DIR_MASK | 246 GPIO_CLOCK_VAL_MASK; 247 248 intel_uncore_write_notrace(uncore, 249 bus->gpio_reg, 250 reserved | clock_bits); 251 intel_uncore_posting_read(uncore, bus->gpio_reg); 252 } 253 254 static void set_data(void *data, int state_high) 255 { 256 struct intel_gmbus *bus = data; 257 struct intel_uncore *uncore = &bus->dev_priv->uncore; 258 u32 reserved = get_reserved(bus); 259 u32 data_bits; 260 261 if (state_high) 262 data_bits = GPIO_DATA_DIR_IN | GPIO_DATA_DIR_MASK; 263 else 264 data_bits = GPIO_DATA_DIR_OUT | GPIO_DATA_DIR_MASK | 265 GPIO_DATA_VAL_MASK; 266 267 intel_uncore_write_notrace(uncore, bus->gpio_reg, reserved | data_bits); 268 intel_uncore_posting_read(uncore, bus->gpio_reg); 269 } 270 271 static int 272 intel_gpio_pre_xfer(struct i2c_adapter *adapter) 273 { 274 struct intel_gmbus *bus = container_of(adapter, 275 struct intel_gmbus, 276 adapter); 277 struct drm_i915_private *dev_priv = bus->dev_priv; 278 279 intel_gmbus_reset(dev_priv); 280 281 if (IS_PINEVIEW(dev_priv)) 282 pnv_gmbus_clock_gating(dev_priv, false); 283 284 set_data(bus, 1); 285 set_clock(bus, 1); 286 udelay(I2C_RISEFALL_TIME); 287 return 0; 288 } 289 290 static void 291 intel_gpio_post_xfer(struct i2c_adapter *adapter) 292 { 293 struct intel_gmbus *bus = container_of(adapter, 294 struct intel_gmbus, 295 adapter); 296 struct drm_i915_private *dev_priv = bus->dev_priv; 297 298 set_data(bus, 1); 299 set_clock(bus, 1); 300 301 if (IS_PINEVIEW(dev_priv)) 302 pnv_gmbus_clock_gating(dev_priv, true); 303 } 304 305 static void 306 intel_gpio_setup(struct intel_gmbus *bus, unsigned int pin) 307 { 308 struct drm_i915_private *dev_priv = bus->dev_priv; 309 struct i2c_algo_bit_data *algo; 310 311 algo = &bus->bit_algo; 312 313 bus->gpio_reg = GPIO(get_gmbus_pin(dev_priv, pin)->gpio); 314 bus->adapter.algo_data = algo; 315 algo->setsda = set_data; 316 algo->setscl = set_clock; 317 algo->getsda = get_data; 318 algo->getscl = get_clock; 319 algo->pre_xfer = intel_gpio_pre_xfer; 320 algo->post_xfer = intel_gpio_post_xfer; 321 algo->udelay = I2C_RISEFALL_TIME; 322 algo->timeout = usecs_to_jiffies(2200); 323 algo->data = bus; 324 } 325 326 static int gmbus_wait(struct drm_i915_private *dev_priv, u32 status, u32 irq_en) 327 { 328 DEFINE_WAIT(wait); 329 u32 gmbus2; 330 int ret; 331 332 /* Important: The hw handles only the first bit, so set only one! Since 333 * we also need to check for NAKs besides the hw ready/idle signal, we 334 * need to wake up periodically and check that ourselves. 335 */ 336 if (!HAS_GMBUS_IRQ(dev_priv)) 337 irq_en = 0; 338 339 add_wait_queue(&dev_priv->gmbus_wait_queue, &wait); 340 I915_WRITE_FW(GMBUS4, irq_en); 341 342 status |= GMBUS_SATOER; 343 ret = wait_for_us((gmbus2 = I915_READ_FW(GMBUS2)) & status, 2); 344 if (ret) 345 ret = wait_for((gmbus2 = I915_READ_FW(GMBUS2)) & status, 50); 346 347 I915_WRITE_FW(GMBUS4, 0); 348 remove_wait_queue(&dev_priv->gmbus_wait_queue, &wait); 349 350 if (gmbus2 & GMBUS_SATOER) 351 return -ENXIO; 352 353 return ret; 354 } 355 356 static int 357 gmbus_wait_idle(struct drm_i915_private *dev_priv) 358 { 359 DEFINE_WAIT(wait); 360 u32 irq_enable; 361 int ret; 362 363 /* Important: The hw handles only the first bit, so set only one! */ 364 irq_enable = 0; 365 if (HAS_GMBUS_IRQ(dev_priv)) 366 irq_enable = GMBUS_IDLE_EN; 367 368 add_wait_queue(&dev_priv->gmbus_wait_queue, &wait); 369 I915_WRITE_FW(GMBUS4, irq_enable); 370 371 ret = intel_wait_for_register_fw(&dev_priv->uncore, 372 GMBUS2, GMBUS_ACTIVE, 0, 373 10); 374 375 I915_WRITE_FW(GMBUS4, 0); 376 remove_wait_queue(&dev_priv->gmbus_wait_queue, &wait); 377 378 return ret; 379 } 380 381 static inline 382 unsigned int gmbus_max_xfer_size(struct drm_i915_private *dev_priv) 383 { 384 return INTEL_GEN(dev_priv) >= 9 ? GEN9_GMBUS_BYTE_COUNT_MAX : 385 GMBUS_BYTE_COUNT_MAX; 386 } 387 388 static int 389 gmbus_xfer_read_chunk(struct drm_i915_private *dev_priv, 390 unsigned short addr, u8 *buf, unsigned int len, 391 u32 gmbus0_reg, u32 gmbus1_index) 392 { 393 unsigned int size = len; 394 bool burst_read = len > gmbus_max_xfer_size(dev_priv); 395 bool extra_byte_added = false; 396 397 if (burst_read) { 398 /* 399 * As per HW Spec, for 512Bytes need to read extra Byte and 400 * Ignore the extra byte read. 401 */ 402 if (len == 512) { 403 extra_byte_added = true; 404 len++; 405 } 406 size = len % 256 + 256; 407 I915_WRITE_FW(GMBUS0, gmbus0_reg | GMBUS_BYTE_CNT_OVERRIDE); 408 } 409 410 I915_WRITE_FW(GMBUS1, 411 gmbus1_index | 412 GMBUS_CYCLE_WAIT | 413 (size << GMBUS_BYTE_COUNT_SHIFT) | 414 (addr << GMBUS_SLAVE_ADDR_SHIFT) | 415 GMBUS_SLAVE_READ | GMBUS_SW_RDY); 416 while (len) { 417 int ret; 418 u32 val, loop = 0; 419 420 ret = gmbus_wait(dev_priv, GMBUS_HW_RDY, GMBUS_HW_RDY_EN); 421 if (ret) 422 return ret; 423 424 val = I915_READ_FW(GMBUS3); 425 do { 426 if (extra_byte_added && len == 1) 427 break; 428 429 *buf++ = val & 0xff; 430 val >>= 8; 431 } while (--len && ++loop < 4); 432 433 if (burst_read && len == size - 4) 434 /* Reset the override bit */ 435 I915_WRITE_FW(GMBUS0, gmbus0_reg); 436 } 437 438 return 0; 439 } 440 441 /* 442 * HW spec says that 512Bytes in Burst read need special treatment. 443 * But it doesn't talk about other multiple of 256Bytes. And couldn't locate 444 * an I2C slave, which supports such a lengthy burst read too for experiments. 445 * 446 * So until things get clarified on HW support, to avoid the burst read length 447 * in fold of 256Bytes except 512, max burst read length is fixed at 767Bytes. 448 */ 449 #define INTEL_GMBUS_BURST_READ_MAX_LEN 767U 450 451 static int 452 gmbus_xfer_read(struct drm_i915_private *dev_priv, struct i2c_msg *msg, 453 u32 gmbus0_reg, u32 gmbus1_index) 454 { 455 u8 *buf = msg->buf; 456 unsigned int rx_size = msg->len; 457 unsigned int len; 458 int ret; 459 460 do { 461 if (HAS_GMBUS_BURST_READ(dev_priv)) 462 len = min(rx_size, INTEL_GMBUS_BURST_READ_MAX_LEN); 463 else 464 len = min(rx_size, gmbus_max_xfer_size(dev_priv)); 465 466 ret = gmbus_xfer_read_chunk(dev_priv, msg->addr, buf, len, 467 gmbus0_reg, gmbus1_index); 468 if (ret) 469 return ret; 470 471 rx_size -= len; 472 buf += len; 473 } while (rx_size != 0); 474 475 return 0; 476 } 477 478 static int 479 gmbus_xfer_write_chunk(struct drm_i915_private *dev_priv, 480 unsigned short addr, u8 *buf, unsigned int len, 481 u32 gmbus1_index) 482 { 483 unsigned int chunk_size = len; 484 u32 val, loop; 485 486 val = loop = 0; 487 while (len && loop < 4) { 488 val |= *buf++ << (8 * loop++); 489 len -= 1; 490 } 491 492 I915_WRITE_FW(GMBUS3, val); 493 I915_WRITE_FW(GMBUS1, 494 gmbus1_index | GMBUS_CYCLE_WAIT | 495 (chunk_size << GMBUS_BYTE_COUNT_SHIFT) | 496 (addr << GMBUS_SLAVE_ADDR_SHIFT) | 497 GMBUS_SLAVE_WRITE | GMBUS_SW_RDY); 498 while (len) { 499 int ret; 500 501 val = loop = 0; 502 do { 503 val |= *buf++ << (8 * loop); 504 } while (--len && ++loop < 4); 505 506 I915_WRITE_FW(GMBUS3, val); 507 508 ret = gmbus_wait(dev_priv, GMBUS_HW_RDY, GMBUS_HW_RDY_EN); 509 if (ret) 510 return ret; 511 } 512 513 return 0; 514 } 515 516 static int 517 gmbus_xfer_write(struct drm_i915_private *dev_priv, struct i2c_msg *msg, 518 u32 gmbus1_index) 519 { 520 u8 *buf = msg->buf; 521 unsigned int tx_size = msg->len; 522 unsigned int len; 523 int ret; 524 525 do { 526 len = min(tx_size, gmbus_max_xfer_size(dev_priv)); 527 528 ret = gmbus_xfer_write_chunk(dev_priv, msg->addr, buf, len, 529 gmbus1_index); 530 if (ret) 531 return ret; 532 533 buf += len; 534 tx_size -= len; 535 } while (tx_size != 0); 536 537 return 0; 538 } 539 540 /* 541 * The gmbus controller can combine a 1 or 2 byte write with another read/write 542 * that immediately follows it by using an "INDEX" cycle. 543 */ 544 static bool 545 gmbus_is_index_xfer(struct i2c_msg *msgs, int i, int num) 546 { 547 return (i + 1 < num && 548 msgs[i].addr == msgs[i + 1].addr && 549 !(msgs[i].flags & I2C_M_RD) && 550 (msgs[i].len == 1 || msgs[i].len == 2) && 551 msgs[i + 1].len > 0); 552 } 553 554 static int 555 gmbus_index_xfer(struct drm_i915_private *dev_priv, struct i2c_msg *msgs, 556 u32 gmbus0_reg) 557 { 558 u32 gmbus1_index = 0; 559 u32 gmbus5 = 0; 560 int ret; 561 562 if (msgs[0].len == 2) 563 gmbus5 = GMBUS_2BYTE_INDEX_EN | 564 msgs[0].buf[1] | (msgs[0].buf[0] << 8); 565 if (msgs[0].len == 1) 566 gmbus1_index = GMBUS_CYCLE_INDEX | 567 (msgs[0].buf[0] << GMBUS_SLAVE_INDEX_SHIFT); 568 569 /* GMBUS5 holds 16-bit index */ 570 if (gmbus5) 571 I915_WRITE_FW(GMBUS5, gmbus5); 572 573 if (msgs[1].flags & I2C_M_RD) 574 ret = gmbus_xfer_read(dev_priv, &msgs[1], gmbus0_reg, 575 gmbus1_index); 576 else 577 ret = gmbus_xfer_write(dev_priv, &msgs[1], gmbus1_index); 578 579 /* Clear GMBUS5 after each index transfer */ 580 if (gmbus5) 581 I915_WRITE_FW(GMBUS5, 0); 582 583 return ret; 584 } 585 586 static int 587 do_gmbus_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num, 588 u32 gmbus0_source) 589 { 590 struct intel_gmbus *bus = container_of(adapter, 591 struct intel_gmbus, 592 adapter); 593 struct drm_i915_private *dev_priv = bus->dev_priv; 594 int i = 0, inc, try = 0; 595 int ret = 0; 596 597 /* Display WA #0868: skl,bxt,kbl,cfl,glk,cnl */ 598 if (IS_GEN9_LP(dev_priv)) 599 bxt_gmbus_clock_gating(dev_priv, false); 600 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_CNP(dev_priv)) 601 pch_gmbus_clock_gating(dev_priv, false); 602 603 retry: 604 I915_WRITE_FW(GMBUS0, gmbus0_source | bus->reg0); 605 606 for (; i < num; i += inc) { 607 inc = 1; 608 if (gmbus_is_index_xfer(msgs, i, num)) { 609 ret = gmbus_index_xfer(dev_priv, &msgs[i], 610 gmbus0_source | bus->reg0); 611 inc = 2; /* an index transmission is two msgs */ 612 } else if (msgs[i].flags & I2C_M_RD) { 613 ret = gmbus_xfer_read(dev_priv, &msgs[i], 614 gmbus0_source | bus->reg0, 0); 615 } else { 616 ret = gmbus_xfer_write(dev_priv, &msgs[i], 0); 617 } 618 619 if (!ret) 620 ret = gmbus_wait(dev_priv, 621 GMBUS_HW_WAIT_PHASE, GMBUS_HW_WAIT_EN); 622 if (ret == -ETIMEDOUT) 623 goto timeout; 624 else if (ret) 625 goto clear_err; 626 } 627 628 /* Generate a STOP condition on the bus. Note that gmbus can't generata 629 * a STOP on the very first cycle. To simplify the code we 630 * unconditionally generate the STOP condition with an additional gmbus 631 * cycle. */ 632 I915_WRITE_FW(GMBUS1, GMBUS_CYCLE_STOP | GMBUS_SW_RDY); 633 634 /* Mark the GMBUS interface as disabled after waiting for idle. 635 * We will re-enable it at the start of the next xfer, 636 * till then let it sleep. 637 */ 638 if (gmbus_wait_idle(dev_priv)) { 639 DRM_DEBUG_KMS("GMBUS [%s] timed out waiting for idle\n", 640 adapter->name); 641 ret = -ETIMEDOUT; 642 } 643 I915_WRITE_FW(GMBUS0, 0); 644 ret = ret ?: i; 645 goto out; 646 647 clear_err: 648 /* 649 * Wait for bus to IDLE before clearing NAK. 650 * If we clear the NAK while bus is still active, then it will stay 651 * active and the next transaction may fail. 652 * 653 * If no ACK is received during the address phase of a transaction, the 654 * adapter must report -ENXIO. It is not clear what to return if no ACK 655 * is received at other times. But we have to be careful to not return 656 * spurious -ENXIO because that will prevent i2c and drm edid functions 657 * from retrying. So return -ENXIO only when gmbus properly quiescents - 658 * timing out seems to happen when there _is_ a ddc chip present, but 659 * it's slow responding and only answers on the 2nd retry. 660 */ 661 ret = -ENXIO; 662 if (gmbus_wait_idle(dev_priv)) { 663 DRM_DEBUG_KMS("GMBUS [%s] timed out after NAK\n", 664 adapter->name); 665 ret = -ETIMEDOUT; 666 } 667 668 /* Toggle the Software Clear Interrupt bit. This has the effect 669 * of resetting the GMBUS controller and so clearing the 670 * BUS_ERROR raised by the slave's NAK. 671 */ 672 I915_WRITE_FW(GMBUS1, GMBUS_SW_CLR_INT); 673 I915_WRITE_FW(GMBUS1, 0); 674 I915_WRITE_FW(GMBUS0, 0); 675 676 DRM_DEBUG_KMS("GMBUS [%s] NAK for addr: %04x %c(%d)\n", 677 adapter->name, msgs[i].addr, 678 (msgs[i].flags & I2C_M_RD) ? 'r' : 'w', msgs[i].len); 679 680 /* 681 * Passive adapters sometimes NAK the first probe. Retry the first 682 * message once on -ENXIO for GMBUS transfers; the bit banging algorithm 683 * has retries internally. See also the retry loop in 684 * drm_do_probe_ddc_edid, which bails out on the first -ENXIO. 685 */ 686 if (ret == -ENXIO && i == 0 && try++ == 0) { 687 DRM_DEBUG_KMS("GMBUS [%s] NAK on first message, retry\n", 688 adapter->name); 689 goto retry; 690 } 691 692 goto out; 693 694 timeout: 695 DRM_DEBUG_KMS("GMBUS [%s] timed out, falling back to bit banging on pin %d\n", 696 bus->adapter.name, bus->reg0 & 0xff); 697 I915_WRITE_FW(GMBUS0, 0); 698 699 /* 700 * Hardware may not support GMBUS over these pins? Try GPIO bitbanging 701 * instead. Use EAGAIN to have i2c core retry. 702 */ 703 ret = -EAGAIN; 704 705 out: 706 /* Display WA #0868: skl,bxt,kbl,cfl,glk,cnl */ 707 if (IS_GEN9_LP(dev_priv)) 708 bxt_gmbus_clock_gating(dev_priv, true); 709 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_CNP(dev_priv)) 710 pch_gmbus_clock_gating(dev_priv, true); 711 712 return ret; 713 } 714 715 static int 716 gmbus_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num) 717 { 718 struct intel_gmbus *bus = 719 container_of(adapter, struct intel_gmbus, adapter); 720 struct drm_i915_private *dev_priv = bus->dev_priv; 721 intel_wakeref_t wakeref; 722 int ret; 723 724 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 725 726 if (bus->force_bit) { 727 ret = i2c_bit_algo.master_xfer(adapter, msgs, num); 728 if (ret < 0) 729 bus->force_bit &= ~GMBUS_FORCE_BIT_RETRY; 730 } else { 731 ret = do_gmbus_xfer(adapter, msgs, num, 0); 732 if (ret == -EAGAIN) 733 bus->force_bit |= GMBUS_FORCE_BIT_RETRY; 734 } 735 736 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 737 738 return ret; 739 } 740 741 int intel_gmbus_output_aksv(struct i2c_adapter *adapter) 742 { 743 struct intel_gmbus *bus = 744 container_of(adapter, struct intel_gmbus, adapter); 745 struct drm_i915_private *dev_priv = bus->dev_priv; 746 u8 cmd = DRM_HDCP_DDC_AKSV; 747 u8 buf[DRM_HDCP_KSV_LEN] = { 0 }; 748 struct i2c_msg msgs[] = { 749 { 750 .addr = DRM_HDCP_DDC_ADDR, 751 .flags = 0, 752 .len = sizeof(cmd), 753 .buf = &cmd, 754 }, 755 { 756 .addr = DRM_HDCP_DDC_ADDR, 757 .flags = 0, 758 .len = sizeof(buf), 759 .buf = buf, 760 } 761 }; 762 intel_wakeref_t wakeref; 763 int ret; 764 765 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 766 mutex_lock(&dev_priv->gmbus_mutex); 767 768 /* 769 * In order to output Aksv to the receiver, use an indexed write to 770 * pass the i2c command, and tell GMBUS to use the HW-provided value 771 * instead of sourcing GMBUS3 for the data. 772 */ 773 ret = do_gmbus_xfer(adapter, msgs, ARRAY_SIZE(msgs), GMBUS_AKSV_SELECT); 774 775 mutex_unlock(&dev_priv->gmbus_mutex); 776 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 777 778 return ret; 779 } 780 781 static u32 gmbus_func(struct i2c_adapter *adapter) 782 { 783 return i2c_bit_algo.functionality(adapter) & 784 (I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 785 /* I2C_FUNC_10BIT_ADDR | */ 786 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 787 I2C_FUNC_SMBUS_BLOCK_PROC_CALL); 788 } 789 790 static const struct i2c_algorithm gmbus_algorithm = { 791 .master_xfer = gmbus_xfer, 792 .functionality = gmbus_func 793 }; 794 795 static void gmbus_lock_bus(struct i2c_adapter *adapter, 796 unsigned int flags) 797 { 798 struct intel_gmbus *bus = to_intel_gmbus(adapter); 799 struct drm_i915_private *dev_priv = bus->dev_priv; 800 801 mutex_lock(&dev_priv->gmbus_mutex); 802 } 803 804 static int gmbus_trylock_bus(struct i2c_adapter *adapter, 805 unsigned int flags) 806 { 807 struct intel_gmbus *bus = to_intel_gmbus(adapter); 808 struct drm_i915_private *dev_priv = bus->dev_priv; 809 810 return mutex_trylock(&dev_priv->gmbus_mutex); 811 } 812 813 static void gmbus_unlock_bus(struct i2c_adapter *adapter, 814 unsigned int flags) 815 { 816 struct intel_gmbus *bus = to_intel_gmbus(adapter); 817 struct drm_i915_private *dev_priv = bus->dev_priv; 818 819 mutex_unlock(&dev_priv->gmbus_mutex); 820 } 821 822 static const struct i2c_lock_operations gmbus_lock_ops = { 823 .lock_bus = gmbus_lock_bus, 824 .trylock_bus = gmbus_trylock_bus, 825 .unlock_bus = gmbus_unlock_bus, 826 }; 827 828 /** 829 * intel_gmbus_setup - instantiate all Intel i2c GMBuses 830 * @dev_priv: i915 device private 831 */ 832 int intel_gmbus_setup(struct drm_i915_private *dev_priv) 833 { 834 struct pci_dev *pdev = dev_priv->drm.pdev; 835 struct intel_gmbus *bus; 836 unsigned int pin; 837 int ret; 838 839 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 840 return 0; 841 842 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 843 dev_priv->gpio_mmio_base = VLV_DISPLAY_BASE; 844 else if (!HAS_GMCH(dev_priv)) 845 /* 846 * Broxton uses the same PCH offsets for South Display Engine, 847 * even though it doesn't have a PCH. 848 */ 849 dev_priv->gpio_mmio_base = PCH_DISPLAY_BASE; 850 851 mutex_init(&dev_priv->gmbus_mutex); 852 init_waitqueue_head(&dev_priv->gmbus_wait_queue); 853 854 for (pin = 0; pin < ARRAY_SIZE(dev_priv->gmbus); pin++) { 855 if (!intel_gmbus_is_valid_pin(dev_priv, pin)) 856 continue; 857 858 bus = &dev_priv->gmbus[pin]; 859 860 bus->adapter.owner = THIS_MODULE; 861 bus->adapter.class = I2C_CLASS_DDC; 862 snprintf(bus->adapter.name, 863 sizeof(bus->adapter.name), 864 "i915 gmbus %s", 865 get_gmbus_pin(dev_priv, pin)->name); 866 867 bus->adapter.dev.parent = &pdev->dev; 868 bus->dev_priv = dev_priv; 869 870 bus->adapter.algo = &gmbus_algorithm; 871 bus->adapter.lock_ops = &gmbus_lock_ops; 872 873 /* 874 * We wish to retry with bit banging 875 * after a timed out GMBUS attempt. 876 */ 877 bus->adapter.retries = 1; 878 879 /* By default use a conservative clock rate */ 880 bus->reg0 = pin | GMBUS_RATE_100KHZ; 881 882 /* gmbus seems to be broken on i830 */ 883 if (IS_I830(dev_priv)) 884 bus->force_bit = 1; 885 886 intel_gpio_setup(bus, pin); 887 888 ret = i2c_add_adapter(&bus->adapter); 889 if (ret) 890 goto err; 891 } 892 893 intel_gmbus_reset(dev_priv); 894 895 return 0; 896 897 err: 898 while (pin--) { 899 if (!intel_gmbus_is_valid_pin(dev_priv, pin)) 900 continue; 901 902 bus = &dev_priv->gmbus[pin]; 903 i2c_del_adapter(&bus->adapter); 904 } 905 return ret; 906 } 907 908 struct i2c_adapter *intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, 909 unsigned int pin) 910 { 911 if (WARN_ON(!intel_gmbus_is_valid_pin(dev_priv, pin))) 912 return NULL; 913 914 return &dev_priv->gmbus[pin].adapter; 915 } 916 917 void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed) 918 { 919 struct intel_gmbus *bus = to_intel_gmbus(adapter); 920 921 bus->reg0 = (bus->reg0 & ~(0x3 << 8)) | speed; 922 } 923 924 void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit) 925 { 926 struct intel_gmbus *bus = to_intel_gmbus(adapter); 927 struct drm_i915_private *dev_priv = bus->dev_priv; 928 929 mutex_lock(&dev_priv->gmbus_mutex); 930 931 bus->force_bit += force_bit ? 1 : -1; 932 DRM_DEBUG_KMS("%sabling bit-banging on %s. force bit now %d\n", 933 force_bit ? "en" : "dis", adapter->name, 934 bus->force_bit); 935 936 mutex_unlock(&dev_priv->gmbus_mutex); 937 } 938 939 bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 940 { 941 struct intel_gmbus *bus = to_intel_gmbus(adapter); 942 943 return bus->force_bit; 944 } 945 946 void intel_gmbus_teardown(struct drm_i915_private *dev_priv) 947 { 948 struct intel_gmbus *bus; 949 unsigned int pin; 950 951 for (pin = 0; pin < ARRAY_SIZE(dev_priv->gmbus); pin++) { 952 if (!intel_gmbus_is_valid_pin(dev_priv, pin)) 953 continue; 954 955 bus = &dev_priv->gmbus[pin]; 956 i2c_del_adapter(&bus->adapter); 957 } 958 } 959