1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Daniel Vetter <daniel.vetter@ffwll.ch>
25  */
26 
27 /**
28  * DOC: frontbuffer tracking
29  *
30  * Many features require us to track changes to the currently active
31  * frontbuffer, especially rendering targeted at the frontbuffer.
32  *
33  * To be able to do so we track frontbuffers using a bitmask for all possible
34  * frontbuffer slots through intel_frontbuffer_track(). The functions in this
35  * file are then called when the contents of the frontbuffer are invalidated,
36  * when frontbuffer rendering has stopped again to flush out all the changes
37  * and when the frontbuffer is exchanged with a flip. Subsystems interested in
38  * frontbuffer changes (e.g. PSR, FBC, DRRS) should directly put their callbacks
39  * into the relevant places and filter for the frontbuffer slots that they are
40  * interested int.
41  *
42  * On a high level there are two types of powersaving features. The first one
43  * work like a special cache (FBC and PSR) and are interested when they should
44  * stop caching and when to restart caching. This is done by placing callbacks
45  * into the invalidate and the flush functions: At invalidate the caching must
46  * be stopped and at flush time it can be restarted. And maybe they need to know
47  * when the frontbuffer changes (e.g. when the hw doesn't initiate an invalidate
48  * and flush on its own) which can be achieved with placing callbacks into the
49  * flip functions.
50  *
51  * The other type of display power saving feature only cares about busyness
52  * (e.g. DRRS). In that case all three (invalidate, flush and flip) indicate
53  * busyness. There is no direct way to detect idleness. Instead an idle timer
54  * work delayed work should be started from the flush and flip functions and
55  * cancelled as soon as busyness is detected.
56  */
57 
58 #include "display/intel_dp.h"
59 
60 #include "i915_drv.h"
61 #include "intel_display_types.h"
62 #include "intel_fbc.h"
63 #include "intel_frontbuffer.h"
64 #include "intel_psr.h"
65 
66 /**
67  * frontbuffer_flush - flush frontbuffer
68  * @i915: i915 device
69  * @frontbuffer_bits: frontbuffer plane tracking bits
70  * @origin: which operation caused the flush
71  *
72  * This function gets called every time rendering on the given planes has
73  * completed and frontbuffer caching can be started again. Flushes will get
74  * delayed if they're blocked by some outstanding asynchronous rendering.
75  *
76  * Can be called without any locks held.
77  */
78 static void frontbuffer_flush(struct drm_i915_private *i915,
79 			      unsigned int frontbuffer_bits,
80 			      enum fb_op_origin origin)
81 {
82 	/* Delay flushing when rings are still busy.*/
83 	spin_lock(&i915->fb_tracking.lock);
84 	frontbuffer_bits &= ~i915->fb_tracking.busy_bits;
85 	spin_unlock(&i915->fb_tracking.lock);
86 
87 	if (!frontbuffer_bits)
88 		return;
89 
90 	might_sleep();
91 	intel_edp_drrs_flush(i915, frontbuffer_bits);
92 	intel_psr_flush(i915, frontbuffer_bits, origin);
93 	intel_fbc_flush(i915, frontbuffer_bits, origin);
94 }
95 
96 /**
97  * intel_frontbuffer_flip_prepare - prepare asynchronous frontbuffer flip
98  * @i915: i915 device
99  * @frontbuffer_bits: frontbuffer plane tracking bits
100  *
101  * This function gets called after scheduling a flip on @obj. The actual
102  * frontbuffer flushing will be delayed until completion is signalled with
103  * intel_frontbuffer_flip_complete. If an invalidate happens in between this
104  * flush will be cancelled.
105  *
106  * Can be called without any locks held.
107  */
108 void intel_frontbuffer_flip_prepare(struct drm_i915_private *i915,
109 				    unsigned frontbuffer_bits)
110 {
111 	spin_lock(&i915->fb_tracking.lock);
112 	i915->fb_tracking.flip_bits |= frontbuffer_bits;
113 	/* Remove stale busy bits due to the old buffer. */
114 	i915->fb_tracking.busy_bits &= ~frontbuffer_bits;
115 	spin_unlock(&i915->fb_tracking.lock);
116 }
117 
118 /**
119  * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flip
120  * @i915: i915 device
121  * @frontbuffer_bits: frontbuffer plane tracking bits
122  *
123  * This function gets called after the flip has been latched and will complete
124  * on the next vblank. It will execute the flush if it hasn't been cancelled yet.
125  *
126  * Can be called without any locks held.
127  */
128 void intel_frontbuffer_flip_complete(struct drm_i915_private *i915,
129 				     unsigned frontbuffer_bits)
130 {
131 	spin_lock(&i915->fb_tracking.lock);
132 	/* Mask any cancelled flips. */
133 	frontbuffer_bits &= i915->fb_tracking.flip_bits;
134 	i915->fb_tracking.flip_bits &= ~frontbuffer_bits;
135 	spin_unlock(&i915->fb_tracking.lock);
136 
137 	if (frontbuffer_bits)
138 		frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
139 }
140 
141 /**
142  * intel_frontbuffer_flip - synchronous frontbuffer flip
143  * @i915: i915 device
144  * @frontbuffer_bits: frontbuffer plane tracking bits
145  *
146  * This function gets called after scheduling a flip on @obj. This is for
147  * synchronous plane updates which will happen on the next vblank and which will
148  * not get delayed by pending gpu rendering.
149  *
150  * Can be called without any locks held.
151  */
152 void intel_frontbuffer_flip(struct drm_i915_private *i915,
153 			    unsigned frontbuffer_bits)
154 {
155 	spin_lock(&i915->fb_tracking.lock);
156 	/* Remove stale busy bits due to the old buffer. */
157 	i915->fb_tracking.busy_bits &= ~frontbuffer_bits;
158 	spin_unlock(&i915->fb_tracking.lock);
159 
160 	frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
161 }
162 
163 void __intel_fb_invalidate(struct intel_frontbuffer *front,
164 			   enum fb_op_origin origin,
165 			   unsigned int frontbuffer_bits)
166 {
167 	struct drm_i915_private *i915 = to_i915(front->obj->base.dev);
168 
169 	if (origin == ORIGIN_CS) {
170 		spin_lock(&i915->fb_tracking.lock);
171 		i915->fb_tracking.busy_bits |= frontbuffer_bits;
172 		i915->fb_tracking.flip_bits &= ~frontbuffer_bits;
173 		spin_unlock(&i915->fb_tracking.lock);
174 	}
175 
176 	might_sleep();
177 	intel_psr_invalidate(i915, frontbuffer_bits, origin);
178 	intel_edp_drrs_invalidate(i915, frontbuffer_bits);
179 	intel_fbc_invalidate(i915, frontbuffer_bits, origin);
180 }
181 
182 void __intel_fb_flush(struct intel_frontbuffer *front,
183 		      enum fb_op_origin origin,
184 		      unsigned int frontbuffer_bits)
185 {
186 	struct drm_i915_private *i915 = to_i915(front->obj->base.dev);
187 
188 	if (origin == ORIGIN_CS) {
189 		spin_lock(&i915->fb_tracking.lock);
190 		/* Filter out new bits since rendering started. */
191 		frontbuffer_bits &= i915->fb_tracking.busy_bits;
192 		i915->fb_tracking.busy_bits &= ~frontbuffer_bits;
193 		spin_unlock(&i915->fb_tracking.lock);
194 	}
195 
196 	if (frontbuffer_bits)
197 		frontbuffer_flush(i915, frontbuffer_bits, origin);
198 }
199 
200 static int frontbuffer_active(struct i915_active *ref)
201 {
202 	struct intel_frontbuffer *front =
203 		container_of(ref, typeof(*front), write);
204 
205 	kref_get(&front->ref);
206 	return 0;
207 }
208 
209 __i915_active_call
210 static void frontbuffer_retire(struct i915_active *ref)
211 {
212 	struct intel_frontbuffer *front =
213 		container_of(ref, typeof(*front), write);
214 
215 	intel_frontbuffer_flush(front, ORIGIN_CS);
216 	intel_frontbuffer_put(front);
217 }
218 
219 static void frontbuffer_release(struct kref *ref)
220 	__releases(&to_i915(front->obj->base.dev)->fb_tracking.lock)
221 {
222 	struct intel_frontbuffer *front =
223 		container_of(ref, typeof(*front), ref);
224 	struct drm_i915_gem_object *obj = front->obj;
225 	struct i915_vma *vma;
226 
227 	spin_lock(&obj->vma.lock);
228 	for_each_ggtt_vma(vma, obj)
229 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
230 	spin_unlock(&obj->vma.lock);
231 
232 	RCU_INIT_POINTER(obj->frontbuffer, NULL);
233 	spin_unlock(&to_i915(obj->base.dev)->fb_tracking.lock);
234 
235 	i915_gem_object_put(obj);
236 	kfree_rcu(front, rcu);
237 }
238 
239 struct intel_frontbuffer *
240 intel_frontbuffer_get(struct drm_i915_gem_object *obj)
241 {
242 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
243 	struct intel_frontbuffer *front;
244 
245 	front = __intel_frontbuffer_get(obj);
246 	if (front)
247 		return front;
248 
249 	front = kmalloc(sizeof(*front), GFP_KERNEL);
250 	if (!front)
251 		return NULL;
252 
253 	front->obj = obj;
254 	kref_init(&front->ref);
255 	atomic_set(&front->bits, 0);
256 	i915_active_init(&front->write,
257 			 frontbuffer_active,
258 			 i915_active_may_sleep(frontbuffer_retire));
259 
260 	spin_lock(&i915->fb_tracking.lock);
261 	if (rcu_access_pointer(obj->frontbuffer)) {
262 		kfree(front);
263 		front = rcu_dereference_protected(obj->frontbuffer, true);
264 		kref_get(&front->ref);
265 	} else {
266 		i915_gem_object_get(obj);
267 		rcu_assign_pointer(obj->frontbuffer, front);
268 	}
269 	spin_unlock(&i915->fb_tracking.lock);
270 
271 	return front;
272 }
273 
274 void intel_frontbuffer_put(struct intel_frontbuffer *front)
275 {
276 	kref_put_lock(&front->ref,
277 		      frontbuffer_release,
278 		      &to_i915(front->obj->base.dev)->fb_tracking.lock);
279 }
280 
281 /**
282  * intel_frontbuffer_track - update frontbuffer tracking
283  * @old: current buffer for the frontbuffer slots
284  * @new: new buffer for the frontbuffer slots
285  * @frontbuffer_bits: bitmask of frontbuffer slots
286  *
287  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
288  * from @old and setting them in @new. Both @old and @new can be NULL.
289  */
290 void intel_frontbuffer_track(struct intel_frontbuffer *old,
291 			     struct intel_frontbuffer *new,
292 			     unsigned int frontbuffer_bits)
293 {
294 	/*
295 	 * Control of individual bits within the mask are guarded by
296 	 * the owning plane->mutex, i.e. we can never see concurrent
297 	 * manipulation of individual bits. But since the bitfield as a whole
298 	 * is updated using RMW, we need to use atomics in order to update
299 	 * the bits.
300 	 */
301 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
302 		     BITS_PER_TYPE(atomic_t));
303 
304 	if (old) {
305 		drm_WARN_ON(old->obj->base.dev,
306 			    !(atomic_read(&old->bits) & frontbuffer_bits));
307 		atomic_andnot(frontbuffer_bits, &old->bits);
308 	}
309 
310 	if (new) {
311 		drm_WARN_ON(new->obj->base.dev,
312 			    atomic_read(&new->bits) & frontbuffer_bits);
313 		atomic_or(frontbuffer_bits, &new->bits);
314 	}
315 }
316