xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_dpll.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
8 
9 #include "i915_reg.h"
10 #include "intel_crtc.h"
11 #include "intel_de.h"
12 #include "intel_display.h"
13 #include "intel_display_types.h"
14 #include "intel_dpio_phy.h"
15 #include "intel_dpll.h"
16 #include "intel_lvds.h"
17 #include "intel_panel.h"
18 #include "intel_pps.h"
19 #include "intel_snps_phy.h"
20 #include "vlv_sideband.h"
21 
22 struct intel_dpll_funcs {
23 	int (*crtc_compute_clock)(struct intel_atomic_state *state,
24 				  struct intel_crtc *crtc);
25 	int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
26 				    struct intel_crtc *crtc);
27 };
28 
29 struct intel_limit {
30 	struct {
31 		int min, max;
32 	} dot, vco, n, m, m1, m2, p, p1;
33 
34 	struct {
35 		int dot_limit;
36 		int p2_slow, p2_fast;
37 	} p2;
38 };
39 static const struct intel_limit intel_limits_i8xx_dac = {
40 	.dot = { .min = 25000, .max = 350000 },
41 	.vco = { .min = 908000, .max = 1512000 },
42 	.n = { .min = 2, .max = 16 },
43 	.m = { .min = 96, .max = 140 },
44 	.m1 = { .min = 18, .max = 26 },
45 	.m2 = { .min = 6, .max = 16 },
46 	.p = { .min = 4, .max = 128 },
47 	.p1 = { .min = 2, .max = 33 },
48 	.p2 = { .dot_limit = 165000,
49 		.p2_slow = 4, .p2_fast = 2 },
50 };
51 
52 static const struct intel_limit intel_limits_i8xx_dvo = {
53 	.dot = { .min = 25000, .max = 350000 },
54 	.vco = { .min = 908000, .max = 1512000 },
55 	.n = { .min = 2, .max = 16 },
56 	.m = { .min = 96, .max = 140 },
57 	.m1 = { .min = 18, .max = 26 },
58 	.m2 = { .min = 6, .max = 16 },
59 	.p = { .min = 4, .max = 128 },
60 	.p1 = { .min = 2, .max = 33 },
61 	.p2 = { .dot_limit = 165000,
62 		.p2_slow = 4, .p2_fast = 4 },
63 };
64 
65 static const struct intel_limit intel_limits_i8xx_lvds = {
66 	.dot = { .min = 25000, .max = 350000 },
67 	.vco = { .min = 908000, .max = 1512000 },
68 	.n = { .min = 2, .max = 16 },
69 	.m = { .min = 96, .max = 140 },
70 	.m1 = { .min = 18, .max = 26 },
71 	.m2 = { .min = 6, .max = 16 },
72 	.p = { .min = 4, .max = 128 },
73 	.p1 = { .min = 1, .max = 6 },
74 	.p2 = { .dot_limit = 165000,
75 		.p2_slow = 14, .p2_fast = 7 },
76 };
77 
78 static const struct intel_limit intel_limits_i9xx_sdvo = {
79 	.dot = { .min = 20000, .max = 400000 },
80 	.vco = { .min = 1400000, .max = 2800000 },
81 	.n = { .min = 1, .max = 6 },
82 	.m = { .min = 70, .max = 120 },
83 	.m1 = { .min = 8, .max = 18 },
84 	.m2 = { .min = 3, .max = 7 },
85 	.p = { .min = 5, .max = 80 },
86 	.p1 = { .min = 1, .max = 8 },
87 	.p2 = { .dot_limit = 200000,
88 		.p2_slow = 10, .p2_fast = 5 },
89 };
90 
91 static const struct intel_limit intel_limits_i9xx_lvds = {
92 	.dot = { .min = 20000, .max = 400000 },
93 	.vco = { .min = 1400000, .max = 2800000 },
94 	.n = { .min = 1, .max = 6 },
95 	.m = { .min = 70, .max = 120 },
96 	.m1 = { .min = 8, .max = 18 },
97 	.m2 = { .min = 3, .max = 7 },
98 	.p = { .min = 7, .max = 98 },
99 	.p1 = { .min = 1, .max = 8 },
100 	.p2 = { .dot_limit = 112000,
101 		.p2_slow = 14, .p2_fast = 7 },
102 };
103 
104 
105 static const struct intel_limit intel_limits_g4x_sdvo = {
106 	.dot = { .min = 25000, .max = 270000 },
107 	.vco = { .min = 1750000, .max = 3500000},
108 	.n = { .min = 1, .max = 4 },
109 	.m = { .min = 104, .max = 138 },
110 	.m1 = { .min = 17, .max = 23 },
111 	.m2 = { .min = 5, .max = 11 },
112 	.p = { .min = 10, .max = 30 },
113 	.p1 = { .min = 1, .max = 3},
114 	.p2 = { .dot_limit = 270000,
115 		.p2_slow = 10,
116 		.p2_fast = 10
117 	},
118 };
119 
120 static const struct intel_limit intel_limits_g4x_hdmi = {
121 	.dot = { .min = 22000, .max = 400000 },
122 	.vco = { .min = 1750000, .max = 3500000},
123 	.n = { .min = 1, .max = 4 },
124 	.m = { .min = 104, .max = 138 },
125 	.m1 = { .min = 16, .max = 23 },
126 	.m2 = { .min = 5, .max = 11 },
127 	.p = { .min = 5, .max = 80 },
128 	.p1 = { .min = 1, .max = 8},
129 	.p2 = { .dot_limit = 165000,
130 		.p2_slow = 10, .p2_fast = 5 },
131 };
132 
133 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
134 	.dot = { .min = 20000, .max = 115000 },
135 	.vco = { .min = 1750000, .max = 3500000 },
136 	.n = { .min = 1, .max = 3 },
137 	.m = { .min = 104, .max = 138 },
138 	.m1 = { .min = 17, .max = 23 },
139 	.m2 = { .min = 5, .max = 11 },
140 	.p = { .min = 28, .max = 112 },
141 	.p1 = { .min = 2, .max = 8 },
142 	.p2 = { .dot_limit = 0,
143 		.p2_slow = 14, .p2_fast = 14
144 	},
145 };
146 
147 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
148 	.dot = { .min = 80000, .max = 224000 },
149 	.vco = { .min = 1750000, .max = 3500000 },
150 	.n = { .min = 1, .max = 3 },
151 	.m = { .min = 104, .max = 138 },
152 	.m1 = { .min = 17, .max = 23 },
153 	.m2 = { .min = 5, .max = 11 },
154 	.p = { .min = 14, .max = 42 },
155 	.p1 = { .min = 2, .max = 6 },
156 	.p2 = { .dot_limit = 0,
157 		.p2_slow = 7, .p2_fast = 7
158 	},
159 };
160 
161 static const struct intel_limit pnv_limits_sdvo = {
162 	.dot = { .min = 20000, .max = 400000},
163 	.vco = { .min = 1700000, .max = 3500000 },
164 	/* Pineview's Ncounter is a ring counter */
165 	.n = { .min = 3, .max = 6 },
166 	.m = { .min = 2, .max = 256 },
167 	/* Pineview only has one combined m divider, which we treat as m2. */
168 	.m1 = { .min = 0, .max = 0 },
169 	.m2 = { .min = 0, .max = 254 },
170 	.p = { .min = 5, .max = 80 },
171 	.p1 = { .min = 1, .max = 8 },
172 	.p2 = { .dot_limit = 200000,
173 		.p2_slow = 10, .p2_fast = 5 },
174 };
175 
176 static const struct intel_limit pnv_limits_lvds = {
177 	.dot = { .min = 20000, .max = 400000 },
178 	.vco = { .min = 1700000, .max = 3500000 },
179 	.n = { .min = 3, .max = 6 },
180 	.m = { .min = 2, .max = 256 },
181 	.m1 = { .min = 0, .max = 0 },
182 	.m2 = { .min = 0, .max = 254 },
183 	.p = { .min = 7, .max = 112 },
184 	.p1 = { .min = 1, .max = 8 },
185 	.p2 = { .dot_limit = 112000,
186 		.p2_slow = 14, .p2_fast = 14 },
187 };
188 
189 /* Ironlake / Sandybridge
190  *
191  * We calculate clock using (register_value + 2) for N/M1/M2, so here
192  * the range value for them is (actual_value - 2).
193  */
194 static const struct intel_limit ilk_limits_dac = {
195 	.dot = { .min = 25000, .max = 350000 },
196 	.vco = { .min = 1760000, .max = 3510000 },
197 	.n = { .min = 1, .max = 5 },
198 	.m = { .min = 79, .max = 127 },
199 	.m1 = { .min = 12, .max = 22 },
200 	.m2 = { .min = 5, .max = 9 },
201 	.p = { .min = 5, .max = 80 },
202 	.p1 = { .min = 1, .max = 8 },
203 	.p2 = { .dot_limit = 225000,
204 		.p2_slow = 10, .p2_fast = 5 },
205 };
206 
207 static const struct intel_limit ilk_limits_single_lvds = {
208 	.dot = { .min = 25000, .max = 350000 },
209 	.vco = { .min = 1760000, .max = 3510000 },
210 	.n = { .min = 1, .max = 3 },
211 	.m = { .min = 79, .max = 118 },
212 	.m1 = { .min = 12, .max = 22 },
213 	.m2 = { .min = 5, .max = 9 },
214 	.p = { .min = 28, .max = 112 },
215 	.p1 = { .min = 2, .max = 8 },
216 	.p2 = { .dot_limit = 225000,
217 		.p2_slow = 14, .p2_fast = 14 },
218 };
219 
220 static const struct intel_limit ilk_limits_dual_lvds = {
221 	.dot = { .min = 25000, .max = 350000 },
222 	.vco = { .min = 1760000, .max = 3510000 },
223 	.n = { .min = 1, .max = 3 },
224 	.m = { .min = 79, .max = 127 },
225 	.m1 = { .min = 12, .max = 22 },
226 	.m2 = { .min = 5, .max = 9 },
227 	.p = { .min = 14, .max = 56 },
228 	.p1 = { .min = 2, .max = 8 },
229 	.p2 = { .dot_limit = 225000,
230 		.p2_slow = 7, .p2_fast = 7 },
231 };
232 
233 /* LVDS 100mhz refclk limits. */
234 static const struct intel_limit ilk_limits_single_lvds_100m = {
235 	.dot = { .min = 25000, .max = 350000 },
236 	.vco = { .min = 1760000, .max = 3510000 },
237 	.n = { .min = 1, .max = 2 },
238 	.m = { .min = 79, .max = 126 },
239 	.m1 = { .min = 12, .max = 22 },
240 	.m2 = { .min = 5, .max = 9 },
241 	.p = { .min = 28, .max = 112 },
242 	.p1 = { .min = 2, .max = 8 },
243 	.p2 = { .dot_limit = 225000,
244 		.p2_slow = 14, .p2_fast = 14 },
245 };
246 
247 static const struct intel_limit ilk_limits_dual_lvds_100m = {
248 	.dot = { .min = 25000, .max = 350000 },
249 	.vco = { .min = 1760000, .max = 3510000 },
250 	.n = { .min = 1, .max = 3 },
251 	.m = { .min = 79, .max = 126 },
252 	.m1 = { .min = 12, .max = 22 },
253 	.m2 = { .min = 5, .max = 9 },
254 	.p = { .min = 14, .max = 42 },
255 	.p1 = { .min = 2, .max = 6 },
256 	.p2 = { .dot_limit = 225000,
257 		.p2_slow = 7, .p2_fast = 7 },
258 };
259 
260 static const struct intel_limit intel_limits_vlv = {
261 	 /*
262 	  * These are based on the data rate limits (measured in fast clocks)
263 	  * since those are the strictest limits we have. The fast
264 	  * clock and actual rate limits are more relaxed, so checking
265 	  * them would make no difference.
266 	  */
267 	.dot = { .min = 25000, .max = 270000 },
268 	.vco = { .min = 4000000, .max = 6000000 },
269 	.n = { .min = 1, .max = 7 },
270 	.m1 = { .min = 2, .max = 3 },
271 	.m2 = { .min = 11, .max = 156 },
272 	.p1 = { .min = 2, .max = 3 },
273 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
274 };
275 
276 static const struct intel_limit intel_limits_chv = {
277 	/*
278 	 * These are based on the data rate limits (measured in fast clocks)
279 	 * since those are the strictest limits we have.  The fast
280 	 * clock and actual rate limits are more relaxed, so checking
281 	 * them would make no difference.
282 	 */
283 	.dot = { .min = 25000, .max = 540000 },
284 	.vco = { .min = 4800000, .max = 6480000 },
285 	.n = { .min = 1, .max = 1 },
286 	.m1 = { .min = 2, .max = 2 },
287 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
288 	.p1 = { .min = 2, .max = 4 },
289 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
290 };
291 
292 static const struct intel_limit intel_limits_bxt = {
293 	.dot = { .min = 25000, .max = 594000 },
294 	.vco = { .min = 4800000, .max = 6700000 },
295 	.n = { .min = 1, .max = 1 },
296 	.m1 = { .min = 2, .max = 2 },
297 	/* FIXME: find real m2 limits */
298 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
299 	.p1 = { .min = 2, .max = 4 },
300 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
301 };
302 
303 /*
304  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
305  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
306  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
307  * The helpers' return value is the rate of the clock that is fed to the
308  * display engine's pipe which can be the above fast dot clock rate or a
309  * divided-down version of it.
310  */
311 /* m1 is reserved as 0 in Pineview, n is a ring counter */
312 int pnv_calc_dpll_params(int refclk, struct dpll *clock)
313 {
314 	clock->m = clock->m2 + 2;
315 	clock->p = clock->p1 * clock->p2;
316 	if (WARN_ON(clock->n == 0 || clock->p == 0))
317 		return 0;
318 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
319 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
320 
321 	return clock->dot;
322 }
323 
324 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
325 {
326 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
327 }
328 
329 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
330 {
331 	clock->m = i9xx_dpll_compute_m(clock);
332 	clock->p = clock->p1 * clock->p2;
333 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
334 		return 0;
335 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
336 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
337 
338 	return clock->dot;
339 }
340 
341 int vlv_calc_dpll_params(int refclk, struct dpll *clock)
342 {
343 	clock->m = clock->m1 * clock->m2;
344 	clock->p = clock->p1 * clock->p2 * 5;
345 	if (WARN_ON(clock->n == 0 || clock->p == 0))
346 		return 0;
347 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
348 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
349 
350 	return clock->dot;
351 }
352 
353 int chv_calc_dpll_params(int refclk, struct dpll *clock)
354 {
355 	clock->m = clock->m1 * clock->m2;
356 	clock->p = clock->p1 * clock->p2 * 5;
357 	if (WARN_ON(clock->n == 0 || clock->p == 0))
358 		return 0;
359 	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
360 					   clock->n << 22);
361 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
362 
363 	return clock->dot;
364 }
365 
366 /*
367  * Returns whether the given set of divisors are valid for a given refclk with
368  * the given connectors.
369  */
370 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
371 			       const struct intel_limit *limit,
372 			       const struct dpll *clock)
373 {
374 	if (clock->n < limit->n.min || limit->n.max < clock->n)
375 		return false;
376 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
377 		return false;
378 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
379 		return false;
380 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
381 		return false;
382 
383 	if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
384 		if (clock->m1 <= clock->m2)
385 			return false;
386 
387 	if (!IS_LP(dev_priv)) {
388 		if (clock->p < limit->p.min || limit->p.max < clock->p)
389 			return false;
390 		if (clock->m < limit->m.min || limit->m.max < clock->m)
391 			return false;
392 	}
393 
394 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
395 		return false;
396 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
397 	 * connector, etc., rather than just a single range.
398 	 */
399 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
400 		return false;
401 
402 	return true;
403 }
404 
405 static int
406 i9xx_select_p2_div(const struct intel_limit *limit,
407 		   const struct intel_crtc_state *crtc_state,
408 		   int target)
409 {
410 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
411 
412 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
413 		/*
414 		 * For LVDS just rely on its current settings for dual-channel.
415 		 * We haven't figured out how to reliably set up different
416 		 * single/dual channel state, if we even can.
417 		 */
418 		if (intel_is_dual_link_lvds(dev_priv))
419 			return limit->p2.p2_fast;
420 		else
421 			return limit->p2.p2_slow;
422 	} else {
423 		if (target < limit->p2.dot_limit)
424 			return limit->p2.p2_slow;
425 		else
426 			return limit->p2.p2_fast;
427 	}
428 }
429 
430 /*
431  * Returns a set of divisors for the desired target clock with the given
432  * refclk, or FALSE.
433  *
434  * Target and reference clocks are specified in kHz.
435  *
436  * If match_clock is provided, then best_clock P divider must match the P
437  * divider from @match_clock used for LVDS downclocking.
438  */
439 static bool
440 i9xx_find_best_dpll(const struct intel_limit *limit,
441 		    struct intel_crtc_state *crtc_state,
442 		    int target, int refclk,
443 		    const struct dpll *match_clock,
444 		    struct dpll *best_clock)
445 {
446 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
447 	struct dpll clock;
448 	int err = target;
449 
450 	memset(best_clock, 0, sizeof(*best_clock));
451 
452 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
453 
454 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
455 	     clock.m1++) {
456 		for (clock.m2 = limit->m2.min;
457 		     clock.m2 <= limit->m2.max; clock.m2++) {
458 			if (clock.m2 >= clock.m1)
459 				break;
460 			for (clock.n = limit->n.min;
461 			     clock.n <= limit->n.max; clock.n++) {
462 				for (clock.p1 = limit->p1.min;
463 					clock.p1 <= limit->p1.max; clock.p1++) {
464 					int this_err;
465 
466 					i9xx_calc_dpll_params(refclk, &clock);
467 					if (!intel_pll_is_valid(to_i915(dev),
468 								limit,
469 								&clock))
470 						continue;
471 					if (match_clock &&
472 					    clock.p != match_clock->p)
473 						continue;
474 
475 					this_err = abs(clock.dot - target);
476 					if (this_err < err) {
477 						*best_clock = clock;
478 						err = this_err;
479 					}
480 				}
481 			}
482 		}
483 	}
484 
485 	return (err != target);
486 }
487 
488 /*
489  * Returns a set of divisors for the desired target clock with the given
490  * refclk, or FALSE.
491  *
492  * Target and reference clocks are specified in kHz.
493  *
494  * If match_clock is provided, then best_clock P divider must match the P
495  * divider from @match_clock used for LVDS downclocking.
496  */
497 static bool
498 pnv_find_best_dpll(const struct intel_limit *limit,
499 		   struct intel_crtc_state *crtc_state,
500 		   int target, int refclk,
501 		   const struct dpll *match_clock,
502 		   struct dpll *best_clock)
503 {
504 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
505 	struct dpll clock;
506 	int err = target;
507 
508 	memset(best_clock, 0, sizeof(*best_clock));
509 
510 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
511 
512 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
513 	     clock.m1++) {
514 		for (clock.m2 = limit->m2.min;
515 		     clock.m2 <= limit->m2.max; clock.m2++) {
516 			for (clock.n = limit->n.min;
517 			     clock.n <= limit->n.max; clock.n++) {
518 				for (clock.p1 = limit->p1.min;
519 					clock.p1 <= limit->p1.max; clock.p1++) {
520 					int this_err;
521 
522 					pnv_calc_dpll_params(refclk, &clock);
523 					if (!intel_pll_is_valid(to_i915(dev),
524 								limit,
525 								&clock))
526 						continue;
527 					if (match_clock &&
528 					    clock.p != match_clock->p)
529 						continue;
530 
531 					this_err = abs(clock.dot - target);
532 					if (this_err < err) {
533 						*best_clock = clock;
534 						err = this_err;
535 					}
536 				}
537 			}
538 		}
539 	}
540 
541 	return (err != target);
542 }
543 
544 /*
545  * Returns a set of divisors for the desired target clock with the given
546  * refclk, or FALSE.
547  *
548  * Target and reference clocks are specified in kHz.
549  *
550  * If match_clock is provided, then best_clock P divider must match the P
551  * divider from @match_clock used for LVDS downclocking.
552  */
553 static bool
554 g4x_find_best_dpll(const struct intel_limit *limit,
555 		   struct intel_crtc_state *crtc_state,
556 		   int target, int refclk,
557 		   const struct dpll *match_clock,
558 		   struct dpll *best_clock)
559 {
560 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
561 	struct dpll clock;
562 	int max_n;
563 	bool found = false;
564 	/* approximately equals target * 0.00585 */
565 	int err_most = (target >> 8) + (target >> 9);
566 
567 	memset(best_clock, 0, sizeof(*best_clock));
568 
569 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
570 
571 	max_n = limit->n.max;
572 	/* based on hardware requirement, prefer smaller n to precision */
573 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
574 		/* based on hardware requirement, prefere larger m1,m2 */
575 		for (clock.m1 = limit->m1.max;
576 		     clock.m1 >= limit->m1.min; clock.m1--) {
577 			for (clock.m2 = limit->m2.max;
578 			     clock.m2 >= limit->m2.min; clock.m2--) {
579 				for (clock.p1 = limit->p1.max;
580 				     clock.p1 >= limit->p1.min; clock.p1--) {
581 					int this_err;
582 
583 					i9xx_calc_dpll_params(refclk, &clock);
584 					if (!intel_pll_is_valid(to_i915(dev),
585 								limit,
586 								&clock))
587 						continue;
588 
589 					this_err = abs(clock.dot - target);
590 					if (this_err < err_most) {
591 						*best_clock = clock;
592 						err_most = this_err;
593 						max_n = clock.n;
594 						found = true;
595 					}
596 				}
597 			}
598 		}
599 	}
600 	return found;
601 }
602 
603 /*
604  * Check if the calculated PLL configuration is more optimal compared to the
605  * best configuration and error found so far. Return the calculated error.
606  */
607 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
608 			       const struct dpll *calculated_clock,
609 			       const struct dpll *best_clock,
610 			       unsigned int best_error_ppm,
611 			       unsigned int *error_ppm)
612 {
613 	/*
614 	 * For CHV ignore the error and consider only the P value.
615 	 * Prefer a bigger P value based on HW requirements.
616 	 */
617 	if (IS_CHERRYVIEW(to_i915(dev))) {
618 		*error_ppm = 0;
619 
620 		return calculated_clock->p > best_clock->p;
621 	}
622 
623 	if (drm_WARN_ON_ONCE(dev, !target_freq))
624 		return false;
625 
626 	*error_ppm = div_u64(1000000ULL *
627 				abs(target_freq - calculated_clock->dot),
628 			     target_freq);
629 	/*
630 	 * Prefer a better P value over a better (smaller) error if the error
631 	 * is small. Ensure this preference for future configurations too by
632 	 * setting the error to 0.
633 	 */
634 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
635 		*error_ppm = 0;
636 
637 		return true;
638 	}
639 
640 	return *error_ppm + 10 < best_error_ppm;
641 }
642 
643 /*
644  * Returns a set of divisors for the desired target clock with the given
645  * refclk, or FALSE.
646  */
647 static bool
648 vlv_find_best_dpll(const struct intel_limit *limit,
649 		   struct intel_crtc_state *crtc_state,
650 		   int target, int refclk,
651 		   const struct dpll *match_clock,
652 		   struct dpll *best_clock)
653 {
654 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
655 	struct drm_device *dev = crtc->base.dev;
656 	struct dpll clock;
657 	unsigned int bestppm = 1000000;
658 	/* min update 19.2 MHz */
659 	int max_n = min(limit->n.max, refclk / 19200);
660 	bool found = false;
661 
662 	memset(best_clock, 0, sizeof(*best_clock));
663 
664 	/* based on hardware requirement, prefer smaller n to precision */
665 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
666 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
667 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
668 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
669 				clock.p = clock.p1 * clock.p2 * 5;
670 				/* based on hardware requirement, prefer bigger m1,m2 values */
671 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
672 					unsigned int ppm;
673 
674 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
675 								     refclk * clock.m1);
676 
677 					vlv_calc_dpll_params(refclk, &clock);
678 
679 					if (!intel_pll_is_valid(to_i915(dev),
680 								limit,
681 								&clock))
682 						continue;
683 
684 					if (!vlv_PLL_is_optimal(dev, target,
685 								&clock,
686 								best_clock,
687 								bestppm, &ppm))
688 						continue;
689 
690 					*best_clock = clock;
691 					bestppm = ppm;
692 					found = true;
693 				}
694 			}
695 		}
696 	}
697 
698 	return found;
699 }
700 
701 /*
702  * Returns a set of divisors for the desired target clock with the given
703  * refclk, or FALSE.
704  */
705 static bool
706 chv_find_best_dpll(const struct intel_limit *limit,
707 		   struct intel_crtc_state *crtc_state,
708 		   int target, int refclk,
709 		   const struct dpll *match_clock,
710 		   struct dpll *best_clock)
711 {
712 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
713 	struct drm_device *dev = crtc->base.dev;
714 	unsigned int best_error_ppm;
715 	struct dpll clock;
716 	u64 m2;
717 	int found = false;
718 
719 	memset(best_clock, 0, sizeof(*best_clock));
720 	best_error_ppm = 1000000;
721 
722 	/*
723 	 * Based on hardware doc, the n always set to 1, and m1 always
724 	 * set to 2.  If requires to support 200Mhz refclk, we need to
725 	 * revisit this because n may not 1 anymore.
726 	 */
727 	clock.n = 1;
728 	clock.m1 = 2;
729 
730 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
731 		for (clock.p2 = limit->p2.p2_fast;
732 				clock.p2 >= limit->p2.p2_slow;
733 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
734 			unsigned int error_ppm;
735 
736 			clock.p = clock.p1 * clock.p2 * 5;
737 
738 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
739 						   refclk * clock.m1);
740 
741 			if (m2 > INT_MAX/clock.m1)
742 				continue;
743 
744 			clock.m2 = m2;
745 
746 			chv_calc_dpll_params(refclk, &clock);
747 
748 			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
749 				continue;
750 
751 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
752 						best_error_ppm, &error_ppm))
753 				continue;
754 
755 			*best_clock = clock;
756 			best_error_ppm = error_ppm;
757 			found = true;
758 		}
759 	}
760 
761 	return found;
762 }
763 
764 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
765 			struct dpll *best_clock)
766 {
767 	const struct intel_limit *limit = &intel_limits_bxt;
768 	int refclk = 100000;
769 
770 	return chv_find_best_dpll(limit, crtc_state,
771 				  crtc_state->port_clock, refclk,
772 				  NULL, best_clock);
773 }
774 
775 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
776 {
777 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
778 }
779 
780 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
781 {
782 	return (1 << dpll->n) << 16 | dpll->m2;
783 }
784 
785 static void i9xx_update_pll_dividers(struct intel_crtc_state *crtc_state,
786 				     const struct dpll *clock,
787 				     const struct dpll *reduced_clock)
788 {
789 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
790 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
791 	u32 fp, fp2;
792 
793 	if (IS_PINEVIEW(dev_priv)) {
794 		fp = pnv_dpll_compute_fp(clock);
795 		fp2 = pnv_dpll_compute_fp(reduced_clock);
796 	} else {
797 		fp = i9xx_dpll_compute_fp(clock);
798 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
799 	}
800 
801 	crtc_state->dpll_hw_state.fp0 = fp;
802 	crtc_state->dpll_hw_state.fp1 = fp2;
803 }
804 
805 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
806 			      const struct dpll *clock,
807 			      const struct dpll *reduced_clock)
808 {
809 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
810 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
811 	u32 dpll;
812 
813 	i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
814 
815 	dpll = DPLL_VGA_MODE_DIS;
816 
817 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
818 		dpll |= DPLLB_MODE_LVDS;
819 	else
820 		dpll |= DPLLB_MODE_DAC_SERIAL;
821 
822 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
823 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
824 		dpll |= (crtc_state->pixel_multiplier - 1)
825 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
826 	}
827 
828 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
829 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
830 		dpll |= DPLL_SDVO_HIGH_SPEED;
831 
832 	if (intel_crtc_has_dp_encoder(crtc_state))
833 		dpll |= DPLL_SDVO_HIGH_SPEED;
834 
835 	/* compute bitmask from p1 value */
836 	if (IS_G4X(dev_priv)) {
837 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
838 		dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
839 	} else if (IS_PINEVIEW(dev_priv)) {
840 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
841 		WARN_ON(reduced_clock->p1 != clock->p1);
842 	} else {
843 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
844 		WARN_ON(reduced_clock->p1 != clock->p1);
845 	}
846 
847 	switch (clock->p2) {
848 	case 5:
849 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
850 		break;
851 	case 7:
852 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
853 		break;
854 	case 10:
855 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
856 		break;
857 	case 14:
858 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
859 		break;
860 	}
861 	WARN_ON(reduced_clock->p2 != clock->p2);
862 
863 	if (DISPLAY_VER(dev_priv) >= 4)
864 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
865 
866 	if (crtc_state->sdvo_tv_clock)
867 		dpll |= PLL_REF_INPUT_TVCLKINBC;
868 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
869 		 intel_panel_use_ssc(dev_priv))
870 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
871 	else
872 		dpll |= PLL_REF_INPUT_DREFCLK;
873 
874 	dpll |= DPLL_VCO_ENABLE;
875 	crtc_state->dpll_hw_state.dpll = dpll;
876 
877 	if (DISPLAY_VER(dev_priv) >= 4) {
878 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
879 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
880 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
881 	}
882 }
883 
884 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
885 			      const struct dpll *clock,
886 			      const struct dpll *reduced_clock)
887 {
888 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
889 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
890 	u32 dpll;
891 
892 	i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
893 
894 	dpll = DPLL_VGA_MODE_DIS;
895 
896 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
897 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
898 	} else {
899 		if (clock->p1 == 2)
900 			dpll |= PLL_P1_DIVIDE_BY_TWO;
901 		else
902 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
903 		if (clock->p2 == 4)
904 			dpll |= PLL_P2_DIVIDE_BY_4;
905 	}
906 	WARN_ON(reduced_clock->p1 != clock->p1);
907 	WARN_ON(reduced_clock->p2 != clock->p2);
908 
909 	/*
910 	 * Bspec:
911 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
912 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
913 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
914 	 *  Enable) must be set to “1” in both the DPLL A Control Register
915 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
916 	 *
917 	 * For simplicity We simply keep both bits always enabled in
918 	 * both DPLLS. The spec says we should disable the DVO 2X clock
919 	 * when not needed, but this seems to work fine in practice.
920 	 */
921 	if (IS_I830(dev_priv) ||
922 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
923 		dpll |= DPLL_DVO_2X_MODE;
924 
925 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
926 	    intel_panel_use_ssc(dev_priv))
927 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
928 	else
929 		dpll |= PLL_REF_INPUT_DREFCLK;
930 
931 	dpll |= DPLL_VCO_ENABLE;
932 	crtc_state->dpll_hw_state.dpll = dpll;
933 }
934 
935 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
936 				  struct intel_crtc *crtc)
937 {
938 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
939 	struct intel_crtc_state *crtc_state =
940 		intel_atomic_get_new_crtc_state(state, crtc);
941 	struct intel_encoder *encoder =
942 		intel_get_crtc_new_encoder(state, crtc_state);
943 	int ret;
944 
945 	if (DISPLAY_VER(dev_priv) < 11 &&
946 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
947 		return 0;
948 
949 	ret = intel_compute_shared_dplls(state, crtc, encoder);
950 	if (ret)
951 		return ret;
952 
953 	/* FIXME this is a mess */
954 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
955 		return 0;
956 
957 	/* CRT dotclock is determined via other means */
958 	if (!crtc_state->has_pch_encoder)
959 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
960 
961 	return 0;
962 }
963 
964 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
965 				    struct intel_crtc *crtc)
966 {
967 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
968 	struct intel_crtc_state *crtc_state =
969 		intel_atomic_get_new_crtc_state(state, crtc);
970 	struct intel_encoder *encoder =
971 		intel_get_crtc_new_encoder(state, crtc_state);
972 
973 	if (DISPLAY_VER(dev_priv) < 11 &&
974 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
975 		return 0;
976 
977 	return intel_reserve_shared_dplls(state, crtc, encoder);
978 }
979 
980 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
981 				  struct intel_crtc *crtc)
982 {
983 	struct intel_crtc_state *crtc_state =
984 		intel_atomic_get_new_crtc_state(state, crtc);
985 	struct intel_encoder *encoder =
986 		intel_get_crtc_new_encoder(state, crtc_state);
987 	int ret;
988 
989 	ret = intel_mpllb_calc_state(crtc_state, encoder);
990 	if (ret)
991 		return ret;
992 
993 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
994 
995 	return 0;
996 }
997 
998 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
999 {
1000 	return dpll->m < factor * dpll->n;
1001 }
1002 
1003 static void ilk_update_pll_dividers(struct intel_crtc_state *crtc_state,
1004 				    const struct dpll *clock,
1005 				    const struct dpll *reduced_clock)
1006 {
1007 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1008 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1009 	u32 fp, fp2;
1010 	int factor;
1011 
1012 	/* Enable autotuning of the PLL clock (if permissible) */
1013 	factor = 21;
1014 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1015 		if ((intel_panel_use_ssc(dev_priv) &&
1016 		     dev_priv->display.vbt.lvds_ssc_freq == 100000) ||
1017 		    (HAS_PCH_IBX(dev_priv) &&
1018 		     intel_is_dual_link_lvds(dev_priv)))
1019 			factor = 25;
1020 	} else if (crtc_state->sdvo_tv_clock) {
1021 		factor = 20;
1022 	}
1023 
1024 	fp = i9xx_dpll_compute_fp(clock);
1025 	if (ilk_needs_fb_cb_tune(clock, factor))
1026 		fp |= FP_CB_TUNE;
1027 
1028 	fp2 = i9xx_dpll_compute_fp(reduced_clock);
1029 	if (ilk_needs_fb_cb_tune(reduced_clock, factor))
1030 		fp2 |= FP_CB_TUNE;
1031 
1032 	crtc_state->dpll_hw_state.fp0 = fp;
1033 	crtc_state->dpll_hw_state.fp1 = fp2;
1034 }
1035 
1036 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1037 			     const struct dpll *clock,
1038 			     const struct dpll *reduced_clock)
1039 {
1040 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1041 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1042 	u32 dpll;
1043 
1044 	ilk_update_pll_dividers(crtc_state, clock, reduced_clock);
1045 
1046 	dpll = 0;
1047 
1048 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1049 		dpll |= DPLLB_MODE_LVDS;
1050 	else
1051 		dpll |= DPLLB_MODE_DAC_SERIAL;
1052 
1053 	dpll |= (crtc_state->pixel_multiplier - 1)
1054 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1055 
1056 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1057 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1058 		dpll |= DPLL_SDVO_HIGH_SPEED;
1059 
1060 	if (intel_crtc_has_dp_encoder(crtc_state))
1061 		dpll |= DPLL_SDVO_HIGH_SPEED;
1062 
1063 	/*
1064 	 * The high speed IO clock is only really required for
1065 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1066 	 * possible to share the DPLL between CRT and HDMI. Enabling
1067 	 * the clock needlessly does no real harm, except use up a
1068 	 * bit of power potentially.
1069 	 *
1070 	 * We'll limit this to IVB with 3 pipes, since it has only two
1071 	 * DPLLs and so DPLL sharing is the only way to get three pipes
1072 	 * driving PCH ports at the same time. On SNB we could do this,
1073 	 * and potentially avoid enabling the second DPLL, but it's not
1074 	 * clear if it''s a win or loss power wise. No point in doing
1075 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1076 	 */
1077 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1078 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1079 		dpll |= DPLL_SDVO_HIGH_SPEED;
1080 
1081 	/* compute bitmask from p1 value */
1082 	dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1083 	/* also FPA1 */
1084 	dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1085 
1086 	switch (clock->p2) {
1087 	case 5:
1088 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1089 		break;
1090 	case 7:
1091 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1092 		break;
1093 	case 10:
1094 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1095 		break;
1096 	case 14:
1097 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1098 		break;
1099 	}
1100 	WARN_ON(reduced_clock->p2 != clock->p2);
1101 
1102 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1103 	    intel_panel_use_ssc(dev_priv))
1104 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1105 	else
1106 		dpll |= PLL_REF_INPUT_DREFCLK;
1107 
1108 	dpll |= DPLL_VCO_ENABLE;
1109 
1110 	crtc_state->dpll_hw_state.dpll = dpll;
1111 }
1112 
1113 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1114 				  struct intel_crtc *crtc)
1115 {
1116 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1117 	struct intel_crtc_state *crtc_state =
1118 		intel_atomic_get_new_crtc_state(state, crtc);
1119 	const struct intel_limit *limit;
1120 	int refclk = 120000;
1121 	int ret;
1122 
1123 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1124 	if (!crtc_state->has_pch_encoder)
1125 		return 0;
1126 
1127 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1128 		if (intel_panel_use_ssc(dev_priv)) {
1129 			drm_dbg_kms(&dev_priv->drm,
1130 				    "using SSC reference clock of %d kHz\n",
1131 				    dev_priv->display.vbt.lvds_ssc_freq);
1132 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1133 		}
1134 
1135 		if (intel_is_dual_link_lvds(dev_priv)) {
1136 			if (refclk == 100000)
1137 				limit = &ilk_limits_dual_lvds_100m;
1138 			else
1139 				limit = &ilk_limits_dual_lvds;
1140 		} else {
1141 			if (refclk == 100000)
1142 				limit = &ilk_limits_single_lvds_100m;
1143 			else
1144 				limit = &ilk_limits_single_lvds;
1145 		}
1146 	} else {
1147 		limit = &ilk_limits_dac;
1148 	}
1149 
1150 	if (!crtc_state->clock_set &&
1151 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1152 				refclk, NULL, &crtc_state->dpll))
1153 		return -EINVAL;
1154 
1155 	ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1156 			 &crtc_state->dpll);
1157 
1158 	ret = intel_compute_shared_dplls(state, crtc, NULL);
1159 	if (ret)
1160 		return ret;
1161 
1162 	crtc_state->port_clock = crtc_state->dpll.dot;
1163 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1164 
1165 	return ret;
1166 }
1167 
1168 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1169 				    struct intel_crtc *crtc)
1170 {
1171 	struct intel_crtc_state *crtc_state =
1172 		intel_atomic_get_new_crtc_state(state, crtc);
1173 
1174 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1175 	if (!crtc_state->has_pch_encoder)
1176 		return 0;
1177 
1178 	return intel_reserve_shared_dplls(state, crtc, NULL);
1179 }
1180 
1181 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1182 {
1183 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1184 
1185 	crtc_state->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1186 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1187 	if (crtc->pipe != PIPE_A)
1188 		crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1189 
1190 	/* DPLL not used with DSI, but still need the rest set up */
1191 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1192 		crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
1193 			DPLL_EXT_BUFFER_ENABLE_VLV;
1194 
1195 	crtc_state->dpll_hw_state.dpll_md =
1196 		(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1197 }
1198 
1199 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1200 {
1201 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1202 
1203 	crtc_state->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
1204 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1205 	if (crtc->pipe != PIPE_A)
1206 		crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1207 
1208 	/* DPLL not used with DSI, but still need the rest set up */
1209 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1210 		crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
1211 
1212 	crtc_state->dpll_hw_state.dpll_md =
1213 		(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1214 }
1215 
1216 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1217 				  struct intel_crtc *crtc)
1218 {
1219 	struct intel_crtc_state *crtc_state =
1220 		intel_atomic_get_new_crtc_state(state, crtc);
1221 	const struct intel_limit *limit = &intel_limits_chv;
1222 	int refclk = 100000;
1223 
1224 	if (!crtc_state->clock_set &&
1225 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1226 				refclk, NULL, &crtc_state->dpll))
1227 		return -EINVAL;
1228 
1229 	chv_compute_dpll(crtc_state);
1230 
1231 	/* FIXME this is a mess */
1232 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1233 		return 0;
1234 
1235 	crtc_state->port_clock = crtc_state->dpll.dot;
1236 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1237 
1238 	return 0;
1239 }
1240 
1241 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1242 				  struct intel_crtc *crtc)
1243 {
1244 	struct intel_crtc_state *crtc_state =
1245 		intel_atomic_get_new_crtc_state(state, crtc);
1246 	const struct intel_limit *limit = &intel_limits_vlv;
1247 	int refclk = 100000;
1248 
1249 	if (!crtc_state->clock_set &&
1250 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1251 				refclk, NULL, &crtc_state->dpll)) {
1252 		return -EINVAL;
1253 	}
1254 
1255 	vlv_compute_dpll(crtc_state);
1256 
1257 	/* FIXME this is a mess */
1258 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1259 		return 0;
1260 
1261 	crtc_state->port_clock = crtc_state->dpll.dot;
1262 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1263 
1264 	return 0;
1265 }
1266 
1267 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1268 				  struct intel_crtc *crtc)
1269 {
1270 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1271 	struct intel_crtc_state *crtc_state =
1272 		intel_atomic_get_new_crtc_state(state, crtc);
1273 	const struct intel_limit *limit;
1274 	int refclk = 96000;
1275 
1276 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1277 		if (intel_panel_use_ssc(dev_priv)) {
1278 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1279 			drm_dbg_kms(&dev_priv->drm,
1280 				    "using SSC reference clock of %d kHz\n",
1281 				    refclk);
1282 		}
1283 
1284 		if (intel_is_dual_link_lvds(dev_priv))
1285 			limit = &intel_limits_g4x_dual_channel_lvds;
1286 		else
1287 			limit = &intel_limits_g4x_single_channel_lvds;
1288 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1289 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1290 		limit = &intel_limits_g4x_hdmi;
1291 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1292 		limit = &intel_limits_g4x_sdvo;
1293 	} else {
1294 		/* The option is for other outputs */
1295 		limit = &intel_limits_i9xx_sdvo;
1296 	}
1297 
1298 	if (!crtc_state->clock_set &&
1299 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1300 				refclk, NULL, &crtc_state->dpll))
1301 		return -EINVAL;
1302 
1303 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1304 			  &crtc_state->dpll);
1305 
1306 	crtc_state->port_clock = crtc_state->dpll.dot;
1307 	/* FIXME this is a mess */
1308 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1309 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1310 
1311 	return 0;
1312 }
1313 
1314 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1315 				  struct intel_crtc *crtc)
1316 {
1317 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1318 	struct intel_crtc_state *crtc_state =
1319 		intel_atomic_get_new_crtc_state(state, crtc);
1320 	const struct intel_limit *limit;
1321 	int refclk = 96000;
1322 
1323 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1324 		if (intel_panel_use_ssc(dev_priv)) {
1325 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1326 			drm_dbg_kms(&dev_priv->drm,
1327 				    "using SSC reference clock of %d kHz\n",
1328 				    refclk);
1329 		}
1330 
1331 		limit = &pnv_limits_lvds;
1332 	} else {
1333 		limit = &pnv_limits_sdvo;
1334 	}
1335 
1336 	if (!crtc_state->clock_set &&
1337 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1338 				refclk, NULL, &crtc_state->dpll))
1339 		return -EINVAL;
1340 
1341 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1342 			  &crtc_state->dpll);
1343 
1344 	crtc_state->port_clock = crtc_state->dpll.dot;
1345 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1346 
1347 	return 0;
1348 }
1349 
1350 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1351 				   struct intel_crtc *crtc)
1352 {
1353 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1354 	struct intel_crtc_state *crtc_state =
1355 		intel_atomic_get_new_crtc_state(state, crtc);
1356 	const struct intel_limit *limit;
1357 	int refclk = 96000;
1358 
1359 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1360 		if (intel_panel_use_ssc(dev_priv)) {
1361 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1362 			drm_dbg_kms(&dev_priv->drm,
1363 				    "using SSC reference clock of %d kHz\n",
1364 				    refclk);
1365 		}
1366 
1367 		limit = &intel_limits_i9xx_lvds;
1368 	} else {
1369 		limit = &intel_limits_i9xx_sdvo;
1370 	}
1371 
1372 	if (!crtc_state->clock_set &&
1373 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1374 				 refclk, NULL, &crtc_state->dpll))
1375 		return -EINVAL;
1376 
1377 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1378 			  &crtc_state->dpll);
1379 
1380 	crtc_state->port_clock = crtc_state->dpll.dot;
1381 	/* FIXME this is a mess */
1382 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1383 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1384 
1385 	return 0;
1386 }
1387 
1388 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1389 				   struct intel_crtc *crtc)
1390 {
1391 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1392 	struct intel_crtc_state *crtc_state =
1393 		intel_atomic_get_new_crtc_state(state, crtc);
1394 	const struct intel_limit *limit;
1395 	int refclk = 48000;
1396 
1397 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1398 		if (intel_panel_use_ssc(dev_priv)) {
1399 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1400 			drm_dbg_kms(&dev_priv->drm,
1401 				    "using SSC reference clock of %d kHz\n",
1402 				    refclk);
1403 		}
1404 
1405 		limit = &intel_limits_i8xx_lvds;
1406 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1407 		limit = &intel_limits_i8xx_dvo;
1408 	} else {
1409 		limit = &intel_limits_i8xx_dac;
1410 	}
1411 
1412 	if (!crtc_state->clock_set &&
1413 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1414 				 refclk, NULL, &crtc_state->dpll))
1415 		return -EINVAL;
1416 
1417 	i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1418 			  &crtc_state->dpll);
1419 
1420 	crtc_state->port_clock = crtc_state->dpll.dot;
1421 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1422 
1423 	return 0;
1424 }
1425 
1426 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1427 	.crtc_compute_clock = dg2_crtc_compute_clock,
1428 };
1429 
1430 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1431 	.crtc_compute_clock = hsw_crtc_compute_clock,
1432 	.crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1433 };
1434 
1435 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1436 	.crtc_compute_clock = ilk_crtc_compute_clock,
1437 	.crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1438 };
1439 
1440 static const struct intel_dpll_funcs chv_dpll_funcs = {
1441 	.crtc_compute_clock = chv_crtc_compute_clock,
1442 };
1443 
1444 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1445 	.crtc_compute_clock = vlv_crtc_compute_clock,
1446 };
1447 
1448 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1449 	.crtc_compute_clock = g4x_crtc_compute_clock,
1450 };
1451 
1452 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1453 	.crtc_compute_clock = pnv_crtc_compute_clock,
1454 };
1455 
1456 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1457 	.crtc_compute_clock = i9xx_crtc_compute_clock,
1458 };
1459 
1460 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1461 	.crtc_compute_clock = i8xx_crtc_compute_clock,
1462 };
1463 
1464 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1465 				  struct intel_crtc *crtc)
1466 {
1467 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1468 	struct intel_crtc_state *crtc_state =
1469 		intel_atomic_get_new_crtc_state(state, crtc);
1470 	int ret;
1471 
1472 	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1473 
1474 	memset(&crtc_state->dpll_hw_state, 0,
1475 	       sizeof(crtc_state->dpll_hw_state));
1476 
1477 	if (!crtc_state->hw.enable)
1478 		return 0;
1479 
1480 	ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1481 	if (ret) {
1482 		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1483 			    crtc->base.base.id, crtc->base.name);
1484 		return ret;
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1491 				    struct intel_crtc *crtc)
1492 {
1493 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1494 	struct intel_crtc_state *crtc_state =
1495 		intel_atomic_get_new_crtc_state(state, crtc);
1496 	int ret;
1497 
1498 	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1499 	drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1500 
1501 	if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1502 		return 0;
1503 
1504 	if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1505 		return 0;
1506 
1507 	ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1508 	if (ret) {
1509 		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1510 			    crtc->base.base.id, crtc->base.name);
1511 		return ret;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 void
1518 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1519 {
1520 	if (IS_DG2(dev_priv))
1521 		dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1522 	else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1523 		dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1524 	else if (HAS_PCH_SPLIT(dev_priv))
1525 		dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1526 	else if (IS_CHERRYVIEW(dev_priv))
1527 		dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1528 	else if (IS_VALLEYVIEW(dev_priv))
1529 		dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1530 	else if (IS_G4X(dev_priv))
1531 		dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1532 	else if (IS_PINEVIEW(dev_priv))
1533 		dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1534 	else if (DISPLAY_VER(dev_priv) != 2)
1535 		dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1536 	else
1537 		dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1538 }
1539 
1540 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1541 {
1542 	if (IS_I830(dev_priv))
1543 		return false;
1544 
1545 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1546 }
1547 
1548 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1549 {
1550 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1551 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1552 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1553 	enum pipe pipe = crtc->pipe;
1554 	int i;
1555 
1556 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1557 
1558 	/* PLL is protected by panel, make sure we can write it */
1559 	if (i9xx_has_pps(dev_priv))
1560 		assert_pps_unlocked(dev_priv, pipe);
1561 
1562 	intel_de_write(dev_priv, FP0(pipe), crtc_state->dpll_hw_state.fp0);
1563 	intel_de_write(dev_priv, FP1(pipe), crtc_state->dpll_hw_state.fp1);
1564 
1565 	/*
1566 	 * Apparently we need to have VGA mode enabled prior to changing
1567 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1568 	 * dividers, even though the register value does change.
1569 	 */
1570 	intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
1571 	intel_de_write(dev_priv, DPLL(pipe), dpll);
1572 
1573 	/* Wait for the clocks to stabilize. */
1574 	intel_de_posting_read(dev_priv, DPLL(pipe));
1575 	udelay(150);
1576 
1577 	if (DISPLAY_VER(dev_priv) >= 4) {
1578 		intel_de_write(dev_priv, DPLL_MD(pipe),
1579 			       crtc_state->dpll_hw_state.dpll_md);
1580 	} else {
1581 		/* The pixel multiplier can only be updated once the
1582 		 * DPLL is enabled and the clocks are stable.
1583 		 *
1584 		 * So write it again.
1585 		 */
1586 		intel_de_write(dev_priv, DPLL(pipe), dpll);
1587 	}
1588 
1589 	/* We do this three times for luck */
1590 	for (i = 0; i < 3; i++) {
1591 		intel_de_write(dev_priv, DPLL(pipe), dpll);
1592 		intel_de_posting_read(dev_priv, DPLL(pipe));
1593 		udelay(150); /* wait for warmup */
1594 	}
1595 }
1596 
1597 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1598 				 enum pipe pipe)
1599 {
1600 	u32 reg_val;
1601 
1602 	/*
1603 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1604 	 * and set it to a reasonable value instead.
1605 	 */
1606 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1607 	reg_val &= 0xffffff00;
1608 	reg_val |= 0x00000030;
1609 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1610 
1611 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1612 	reg_val &= 0x00ffffff;
1613 	reg_val |= 0x8c000000;
1614 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1615 
1616 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1617 	reg_val &= 0xffffff00;
1618 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1619 
1620 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1621 	reg_val &= 0x00ffffff;
1622 	reg_val |= 0xb0000000;
1623 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1624 }
1625 
1626 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1627 {
1628 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1629 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1630 	enum pipe pipe = crtc->pipe;
1631 	u32 mdiv;
1632 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
1633 	u32 coreclk, reg_val;
1634 
1635 	vlv_dpio_get(dev_priv);
1636 
1637 	bestn = crtc_state->dpll.n;
1638 	bestm1 = crtc_state->dpll.m1;
1639 	bestm2 = crtc_state->dpll.m2;
1640 	bestp1 = crtc_state->dpll.p1;
1641 	bestp2 = crtc_state->dpll.p2;
1642 
1643 	/* See eDP HDMI DPIO driver vbios notes doc */
1644 
1645 	/* PLL B needs special handling */
1646 	if (pipe == PIPE_B)
1647 		vlv_pllb_recal_opamp(dev_priv, pipe);
1648 
1649 	/* Set up Tx target for periodic Rcomp update */
1650 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
1651 
1652 	/* Disable target IRef on PLL */
1653 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
1654 	reg_val &= 0x00ffffff;
1655 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
1656 
1657 	/* Disable fast lock */
1658 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
1659 
1660 	/* Set idtafcrecal before PLL is enabled */
1661 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
1662 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
1663 	mdiv |= ((bestn << DPIO_N_SHIFT));
1664 	mdiv |= (1 << DPIO_K_SHIFT);
1665 
1666 	/*
1667 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1668 	 * but we don't support that).
1669 	 * Note: don't use the DAC post divider as it seems unstable.
1670 	 */
1671 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
1672 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1673 
1674 	mdiv |= DPIO_ENABLE_CALIBRATION;
1675 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1676 
1677 	/* Set HBR and RBR LPF coefficients */
1678 	if (crtc_state->port_clock == 162000 ||
1679 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1680 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1681 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1682 				 0x009f0003);
1683 	else
1684 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1685 				 0x00d0000f);
1686 
1687 	if (intel_crtc_has_dp_encoder(crtc_state)) {
1688 		/* Use SSC source */
1689 		if (pipe == PIPE_A)
1690 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1691 					 0x0df40000);
1692 		else
1693 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1694 					 0x0df70000);
1695 	} else { /* HDMI or VGA */
1696 		/* Use bend source */
1697 		if (pipe == PIPE_A)
1698 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1699 					 0x0df70000);
1700 		else
1701 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1702 					 0x0df40000);
1703 	}
1704 
1705 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
1706 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1707 	if (intel_crtc_has_dp_encoder(crtc_state))
1708 		coreclk |= 0x01000000;
1709 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
1710 
1711 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
1712 
1713 	vlv_dpio_put(dev_priv);
1714 }
1715 
1716 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1717 {
1718 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1719 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1720 	enum pipe pipe = crtc->pipe;
1721 
1722 	intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1723 	intel_de_posting_read(dev_priv, DPLL(pipe));
1724 	udelay(150);
1725 
1726 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1727 		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1728 }
1729 
1730 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1731 {
1732 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1733 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1734 	enum pipe pipe = crtc->pipe;
1735 
1736 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1737 
1738 	/* PLL is protected by panel, make sure we can write it */
1739 	assert_pps_unlocked(dev_priv, pipe);
1740 
1741 	/* Enable Refclk */
1742 	intel_de_write(dev_priv, DPLL(pipe),
1743 		       crtc_state->dpll_hw_state.dpll &
1744 		       ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
1745 
1746 	if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1747 		vlv_prepare_pll(crtc_state);
1748 		_vlv_enable_pll(crtc_state);
1749 	}
1750 
1751 	intel_de_write(dev_priv, DPLL_MD(pipe),
1752 		       crtc_state->dpll_hw_state.dpll_md);
1753 	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1754 }
1755 
1756 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
1757 {
1758 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1759 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1760 	enum pipe pipe = crtc->pipe;
1761 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1762 	u32 loopfilter, tribuf_calcntr;
1763 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
1764 	u32 dpio_val;
1765 	int vco;
1766 
1767 	bestn = crtc_state->dpll.n;
1768 	bestm2_frac = crtc_state->dpll.m2 & 0x3fffff;
1769 	bestm1 = crtc_state->dpll.m1;
1770 	bestm2 = crtc_state->dpll.m2 >> 22;
1771 	bestp1 = crtc_state->dpll.p1;
1772 	bestp2 = crtc_state->dpll.p2;
1773 	vco = crtc_state->dpll.vco;
1774 	dpio_val = 0;
1775 	loopfilter = 0;
1776 
1777 	vlv_dpio_get(dev_priv);
1778 
1779 	/* p1 and p2 divider */
1780 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
1781 			5 << DPIO_CHV_S1_DIV_SHIFT |
1782 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
1783 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1784 			1 << DPIO_CHV_K_DIV_SHIFT);
1785 
1786 	/* Feedback post-divider - m2 */
1787 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
1788 
1789 	/* Feedback refclk divider - n and m1 */
1790 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
1791 			DPIO_CHV_M1_DIV_BY_2 |
1792 			1 << DPIO_CHV_N_DIV_SHIFT);
1793 
1794 	/* M2 fraction division */
1795 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
1796 
1797 	/* M2 fraction division enable */
1798 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
1799 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
1800 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
1801 	if (bestm2_frac)
1802 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
1803 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
1804 
1805 	/* Program digital lock detect threshold */
1806 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
1807 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
1808 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
1809 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
1810 	if (!bestm2_frac)
1811 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
1812 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
1813 
1814 	/* Loop filter */
1815 	if (vco == 5400000) {
1816 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
1817 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
1818 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
1819 		tribuf_calcntr = 0x9;
1820 	} else if (vco <= 6200000) {
1821 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
1822 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
1823 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1824 		tribuf_calcntr = 0x9;
1825 	} else if (vco <= 6480000) {
1826 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1827 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1828 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1829 		tribuf_calcntr = 0x8;
1830 	} else {
1831 		/* Not supported. Apply the same limits as in the max case */
1832 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1833 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1834 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1835 		tribuf_calcntr = 0;
1836 	}
1837 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
1838 
1839 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
1840 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
1841 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
1842 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
1843 
1844 	/* AFC Recal */
1845 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
1846 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
1847 			DPIO_AFC_RECAL);
1848 
1849 	vlv_dpio_put(dev_priv);
1850 }
1851 
1852 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
1853 {
1854 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1855 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1856 	enum pipe pipe = crtc->pipe;
1857 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1858 	u32 tmp;
1859 
1860 	vlv_dpio_get(dev_priv);
1861 
1862 	/* Enable back the 10bit clock to display controller */
1863 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1864 	tmp |= DPIO_DCLKP_EN;
1865 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1866 
1867 	vlv_dpio_put(dev_priv);
1868 
1869 	/*
1870 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1871 	 */
1872 	udelay(1);
1873 
1874 	/* Enable PLL */
1875 	intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1876 
1877 	/* Check PLL is locked */
1878 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1879 		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1880 }
1881 
1882 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
1883 {
1884 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1885 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1886 	enum pipe pipe = crtc->pipe;
1887 
1888 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1889 
1890 	/* PLL is protected by panel, make sure we can write it */
1891 	assert_pps_unlocked(dev_priv, pipe);
1892 
1893 	/* Enable Refclk and SSC */
1894 	intel_de_write(dev_priv, DPLL(pipe),
1895 		       crtc_state->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
1896 
1897 	if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1898 		chv_prepare_pll(crtc_state);
1899 		_chv_enable_pll(crtc_state);
1900 	}
1901 
1902 	if (pipe != PIPE_A) {
1903 		/*
1904 		 * WaPixelRepeatModeFixForC0:chv
1905 		 *
1906 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1907 		 * the value from DPLLBMD to either pipe B or C.
1908 		 */
1909 		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1910 		intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1911 			       crtc_state->dpll_hw_state.dpll_md);
1912 		intel_de_write(dev_priv, CBR4_VLV, 0);
1913 		dev_priv->chv_dpll_md[pipe] = crtc_state->dpll_hw_state.dpll_md;
1914 
1915 		/*
1916 		 * DPLLB VGA mode also seems to cause problems.
1917 		 * We should always have it disabled.
1918 		 */
1919 		drm_WARN_ON(&dev_priv->drm,
1920 			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1921 			     DPLL_VGA_MODE_DIS) == 0);
1922 	} else {
1923 		intel_de_write(dev_priv, DPLL_MD(pipe),
1924 			       crtc_state->dpll_hw_state.dpll_md);
1925 		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1926 	}
1927 }
1928 
1929 /**
1930  * vlv_force_pll_on - forcibly enable just the PLL
1931  * @dev_priv: i915 private structure
1932  * @pipe: pipe PLL to enable
1933  * @dpll: PLL configuration
1934  *
1935  * Enable the PLL for @pipe using the supplied @dpll config. To be used
1936  * in cases where we need the PLL enabled even when @pipe is not going to
1937  * be enabled.
1938  */
1939 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
1940 		     const struct dpll *dpll)
1941 {
1942 	struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
1943 	struct intel_crtc_state *crtc_state;
1944 
1945 	crtc_state = intel_crtc_state_alloc(crtc);
1946 	if (!crtc_state)
1947 		return -ENOMEM;
1948 
1949 	crtc_state->cpu_transcoder = (enum transcoder)pipe;
1950 	crtc_state->pixel_multiplier = 1;
1951 	crtc_state->dpll = *dpll;
1952 	crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
1953 
1954 	if (IS_CHERRYVIEW(dev_priv)) {
1955 		chv_compute_dpll(crtc_state);
1956 		chv_enable_pll(crtc_state);
1957 	} else {
1958 		vlv_compute_dpll(crtc_state);
1959 		vlv_enable_pll(crtc_state);
1960 	}
1961 
1962 	kfree(crtc_state);
1963 
1964 	return 0;
1965 }
1966 
1967 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1968 {
1969 	u32 val;
1970 
1971 	/* Make sure the pipe isn't still relying on us */
1972 	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
1973 
1974 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1975 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1976 	if (pipe != PIPE_A)
1977 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1978 
1979 	intel_de_write(dev_priv, DPLL(pipe), val);
1980 	intel_de_posting_read(dev_priv, DPLL(pipe));
1981 }
1982 
1983 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1984 {
1985 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1986 	u32 val;
1987 
1988 	/* Make sure the pipe isn't still relying on us */
1989 	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
1990 
1991 	val = DPLL_SSC_REF_CLK_CHV |
1992 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1993 	if (pipe != PIPE_A)
1994 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1995 
1996 	intel_de_write(dev_priv, DPLL(pipe), val);
1997 	intel_de_posting_read(dev_priv, DPLL(pipe));
1998 
1999 	vlv_dpio_get(dev_priv);
2000 
2001 	/* Disable 10bit clock to display controller */
2002 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
2003 	val &= ~DPIO_DCLKP_EN;
2004 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
2005 
2006 	vlv_dpio_put(dev_priv);
2007 }
2008 
2009 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2010 {
2011 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2012 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2013 	enum pipe pipe = crtc->pipe;
2014 
2015 	/* Don't disable pipe or pipe PLLs if needed */
2016 	if (IS_I830(dev_priv))
2017 		return;
2018 
2019 	/* Make sure the pipe isn't still relying on us */
2020 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2021 
2022 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
2023 	intel_de_posting_read(dev_priv, DPLL(pipe));
2024 }
2025 
2026 
2027 /**
2028  * vlv_force_pll_off - forcibly disable just the PLL
2029  * @dev_priv: i915 private structure
2030  * @pipe: pipe PLL to disable
2031  *
2032  * Disable the PLL for @pipe. To be used in cases where we need
2033  * the PLL enabled even when @pipe is not going to be enabled.
2034  */
2035 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2036 {
2037 	if (IS_CHERRYVIEW(dev_priv))
2038 		chv_disable_pll(dev_priv, pipe);
2039 	else
2040 		vlv_disable_pll(dev_priv, pipe);
2041 }
2042 
2043 /* Only for pre-ILK configs */
2044 static void assert_pll(struct drm_i915_private *dev_priv,
2045 		       enum pipe pipe, bool state)
2046 {
2047 	bool cur_state;
2048 
2049 	cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
2050 	I915_STATE_WARN(cur_state != state,
2051 			"PLL state assertion failure (expected %s, current %s)\n",
2052 			str_on_off(state), str_on_off(cur_state));
2053 }
2054 
2055 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2056 {
2057 	assert_pll(i915, pipe, true);
2058 }
2059 
2060 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2061 {
2062 	assert_pll(i915, pipe, false);
2063 }
2064