1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
8 
9 #include "intel_crtc.h"
10 #include "intel_de.h"
11 #include "intel_display.h"
12 #include "intel_display_types.h"
13 #include "intel_dpll.h"
14 #include "intel_lvds.h"
15 #include "intel_panel.h"
16 #include "intel_pps.h"
17 #include "intel_snps_phy.h"
18 #include "vlv_sideband.h"
19 
20 struct intel_dpll_funcs {
21 	int (*crtc_compute_clock)(struct intel_atomic_state *state,
22 				  struct intel_crtc *crtc);
23 	int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
24 				    struct intel_crtc *crtc);
25 };
26 
27 struct intel_limit {
28 	struct {
29 		int min, max;
30 	} dot, vco, n, m, m1, m2, p, p1;
31 
32 	struct {
33 		int dot_limit;
34 		int p2_slow, p2_fast;
35 	} p2;
36 };
37 static const struct intel_limit intel_limits_i8xx_dac = {
38 	.dot = { .min = 25000, .max = 350000 },
39 	.vco = { .min = 908000, .max = 1512000 },
40 	.n = { .min = 2, .max = 16 },
41 	.m = { .min = 96, .max = 140 },
42 	.m1 = { .min = 18, .max = 26 },
43 	.m2 = { .min = 6, .max = 16 },
44 	.p = { .min = 4, .max = 128 },
45 	.p1 = { .min = 2, .max = 33 },
46 	.p2 = { .dot_limit = 165000,
47 		.p2_slow = 4, .p2_fast = 2 },
48 };
49 
50 static const struct intel_limit intel_limits_i8xx_dvo = {
51 	.dot = { .min = 25000, .max = 350000 },
52 	.vco = { .min = 908000, .max = 1512000 },
53 	.n = { .min = 2, .max = 16 },
54 	.m = { .min = 96, .max = 140 },
55 	.m1 = { .min = 18, .max = 26 },
56 	.m2 = { .min = 6, .max = 16 },
57 	.p = { .min = 4, .max = 128 },
58 	.p1 = { .min = 2, .max = 33 },
59 	.p2 = { .dot_limit = 165000,
60 		.p2_slow = 4, .p2_fast = 4 },
61 };
62 
63 static const struct intel_limit intel_limits_i8xx_lvds = {
64 	.dot = { .min = 25000, .max = 350000 },
65 	.vco = { .min = 908000, .max = 1512000 },
66 	.n = { .min = 2, .max = 16 },
67 	.m = { .min = 96, .max = 140 },
68 	.m1 = { .min = 18, .max = 26 },
69 	.m2 = { .min = 6, .max = 16 },
70 	.p = { .min = 4, .max = 128 },
71 	.p1 = { .min = 1, .max = 6 },
72 	.p2 = { .dot_limit = 165000,
73 		.p2_slow = 14, .p2_fast = 7 },
74 };
75 
76 static const struct intel_limit intel_limits_i9xx_sdvo = {
77 	.dot = { .min = 20000, .max = 400000 },
78 	.vco = { .min = 1400000, .max = 2800000 },
79 	.n = { .min = 1, .max = 6 },
80 	.m = { .min = 70, .max = 120 },
81 	.m1 = { .min = 8, .max = 18 },
82 	.m2 = { .min = 3, .max = 7 },
83 	.p = { .min = 5, .max = 80 },
84 	.p1 = { .min = 1, .max = 8 },
85 	.p2 = { .dot_limit = 200000,
86 		.p2_slow = 10, .p2_fast = 5 },
87 };
88 
89 static const struct intel_limit intel_limits_i9xx_lvds = {
90 	.dot = { .min = 20000, .max = 400000 },
91 	.vco = { .min = 1400000, .max = 2800000 },
92 	.n = { .min = 1, .max = 6 },
93 	.m = { .min = 70, .max = 120 },
94 	.m1 = { .min = 8, .max = 18 },
95 	.m2 = { .min = 3, .max = 7 },
96 	.p = { .min = 7, .max = 98 },
97 	.p1 = { .min = 1, .max = 8 },
98 	.p2 = { .dot_limit = 112000,
99 		.p2_slow = 14, .p2_fast = 7 },
100 };
101 
102 
103 static const struct intel_limit intel_limits_g4x_sdvo = {
104 	.dot = { .min = 25000, .max = 270000 },
105 	.vco = { .min = 1750000, .max = 3500000},
106 	.n = { .min = 1, .max = 4 },
107 	.m = { .min = 104, .max = 138 },
108 	.m1 = { .min = 17, .max = 23 },
109 	.m2 = { .min = 5, .max = 11 },
110 	.p = { .min = 10, .max = 30 },
111 	.p1 = { .min = 1, .max = 3},
112 	.p2 = { .dot_limit = 270000,
113 		.p2_slow = 10,
114 		.p2_fast = 10
115 	},
116 };
117 
118 static const struct intel_limit intel_limits_g4x_hdmi = {
119 	.dot = { .min = 22000, .max = 400000 },
120 	.vco = { .min = 1750000, .max = 3500000},
121 	.n = { .min = 1, .max = 4 },
122 	.m = { .min = 104, .max = 138 },
123 	.m1 = { .min = 16, .max = 23 },
124 	.m2 = { .min = 5, .max = 11 },
125 	.p = { .min = 5, .max = 80 },
126 	.p1 = { .min = 1, .max = 8},
127 	.p2 = { .dot_limit = 165000,
128 		.p2_slow = 10, .p2_fast = 5 },
129 };
130 
131 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
132 	.dot = { .min = 20000, .max = 115000 },
133 	.vco = { .min = 1750000, .max = 3500000 },
134 	.n = { .min = 1, .max = 3 },
135 	.m = { .min = 104, .max = 138 },
136 	.m1 = { .min = 17, .max = 23 },
137 	.m2 = { .min = 5, .max = 11 },
138 	.p = { .min = 28, .max = 112 },
139 	.p1 = { .min = 2, .max = 8 },
140 	.p2 = { .dot_limit = 0,
141 		.p2_slow = 14, .p2_fast = 14
142 	},
143 };
144 
145 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
146 	.dot = { .min = 80000, .max = 224000 },
147 	.vco = { .min = 1750000, .max = 3500000 },
148 	.n = { .min = 1, .max = 3 },
149 	.m = { .min = 104, .max = 138 },
150 	.m1 = { .min = 17, .max = 23 },
151 	.m2 = { .min = 5, .max = 11 },
152 	.p = { .min = 14, .max = 42 },
153 	.p1 = { .min = 2, .max = 6 },
154 	.p2 = { .dot_limit = 0,
155 		.p2_slow = 7, .p2_fast = 7
156 	},
157 };
158 
159 static const struct intel_limit pnv_limits_sdvo = {
160 	.dot = { .min = 20000, .max = 400000},
161 	.vco = { .min = 1700000, .max = 3500000 },
162 	/* Pineview's Ncounter is a ring counter */
163 	.n = { .min = 3, .max = 6 },
164 	.m = { .min = 2, .max = 256 },
165 	/* Pineview only has one combined m divider, which we treat as m2. */
166 	.m1 = { .min = 0, .max = 0 },
167 	.m2 = { .min = 0, .max = 254 },
168 	.p = { .min = 5, .max = 80 },
169 	.p1 = { .min = 1, .max = 8 },
170 	.p2 = { .dot_limit = 200000,
171 		.p2_slow = 10, .p2_fast = 5 },
172 };
173 
174 static const struct intel_limit pnv_limits_lvds = {
175 	.dot = { .min = 20000, .max = 400000 },
176 	.vco = { .min = 1700000, .max = 3500000 },
177 	.n = { .min = 3, .max = 6 },
178 	.m = { .min = 2, .max = 256 },
179 	.m1 = { .min = 0, .max = 0 },
180 	.m2 = { .min = 0, .max = 254 },
181 	.p = { .min = 7, .max = 112 },
182 	.p1 = { .min = 1, .max = 8 },
183 	.p2 = { .dot_limit = 112000,
184 		.p2_slow = 14, .p2_fast = 14 },
185 };
186 
187 /* Ironlake / Sandybridge
188  *
189  * We calculate clock using (register_value + 2) for N/M1/M2, so here
190  * the range value for them is (actual_value - 2).
191  */
192 static const struct intel_limit ilk_limits_dac = {
193 	.dot = { .min = 25000, .max = 350000 },
194 	.vco = { .min = 1760000, .max = 3510000 },
195 	.n = { .min = 1, .max = 5 },
196 	.m = { .min = 79, .max = 127 },
197 	.m1 = { .min = 12, .max = 22 },
198 	.m2 = { .min = 5, .max = 9 },
199 	.p = { .min = 5, .max = 80 },
200 	.p1 = { .min = 1, .max = 8 },
201 	.p2 = { .dot_limit = 225000,
202 		.p2_slow = 10, .p2_fast = 5 },
203 };
204 
205 static const struct intel_limit ilk_limits_single_lvds = {
206 	.dot = { .min = 25000, .max = 350000 },
207 	.vco = { .min = 1760000, .max = 3510000 },
208 	.n = { .min = 1, .max = 3 },
209 	.m = { .min = 79, .max = 118 },
210 	.m1 = { .min = 12, .max = 22 },
211 	.m2 = { .min = 5, .max = 9 },
212 	.p = { .min = 28, .max = 112 },
213 	.p1 = { .min = 2, .max = 8 },
214 	.p2 = { .dot_limit = 225000,
215 		.p2_slow = 14, .p2_fast = 14 },
216 };
217 
218 static const struct intel_limit ilk_limits_dual_lvds = {
219 	.dot = { .min = 25000, .max = 350000 },
220 	.vco = { .min = 1760000, .max = 3510000 },
221 	.n = { .min = 1, .max = 3 },
222 	.m = { .min = 79, .max = 127 },
223 	.m1 = { .min = 12, .max = 22 },
224 	.m2 = { .min = 5, .max = 9 },
225 	.p = { .min = 14, .max = 56 },
226 	.p1 = { .min = 2, .max = 8 },
227 	.p2 = { .dot_limit = 225000,
228 		.p2_slow = 7, .p2_fast = 7 },
229 };
230 
231 /* LVDS 100mhz refclk limits. */
232 static const struct intel_limit ilk_limits_single_lvds_100m = {
233 	.dot = { .min = 25000, .max = 350000 },
234 	.vco = { .min = 1760000, .max = 3510000 },
235 	.n = { .min = 1, .max = 2 },
236 	.m = { .min = 79, .max = 126 },
237 	.m1 = { .min = 12, .max = 22 },
238 	.m2 = { .min = 5, .max = 9 },
239 	.p = { .min = 28, .max = 112 },
240 	.p1 = { .min = 2, .max = 8 },
241 	.p2 = { .dot_limit = 225000,
242 		.p2_slow = 14, .p2_fast = 14 },
243 };
244 
245 static const struct intel_limit ilk_limits_dual_lvds_100m = {
246 	.dot = { .min = 25000, .max = 350000 },
247 	.vco = { .min = 1760000, .max = 3510000 },
248 	.n = { .min = 1, .max = 3 },
249 	.m = { .min = 79, .max = 126 },
250 	.m1 = { .min = 12, .max = 22 },
251 	.m2 = { .min = 5, .max = 9 },
252 	.p = { .min = 14, .max = 42 },
253 	.p1 = { .min = 2, .max = 6 },
254 	.p2 = { .dot_limit = 225000,
255 		.p2_slow = 7, .p2_fast = 7 },
256 };
257 
258 static const struct intel_limit intel_limits_vlv = {
259 	 /*
260 	  * These are based on the data rate limits (measured in fast clocks)
261 	  * since those are the strictest limits we have. The fast
262 	  * clock and actual rate limits are more relaxed, so checking
263 	  * them would make no difference.
264 	  */
265 	.dot = { .min = 25000, .max = 270000 },
266 	.vco = { .min = 4000000, .max = 6000000 },
267 	.n = { .min = 1, .max = 7 },
268 	.m1 = { .min = 2, .max = 3 },
269 	.m2 = { .min = 11, .max = 156 },
270 	.p1 = { .min = 2, .max = 3 },
271 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
272 };
273 
274 static const struct intel_limit intel_limits_chv = {
275 	/*
276 	 * These are based on the data rate limits (measured in fast clocks)
277 	 * since those are the strictest limits we have.  The fast
278 	 * clock and actual rate limits are more relaxed, so checking
279 	 * them would make no difference.
280 	 */
281 	.dot = { .min = 25000, .max = 540000 },
282 	.vco = { .min = 4800000, .max = 6480000 },
283 	.n = { .min = 1, .max = 1 },
284 	.m1 = { .min = 2, .max = 2 },
285 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
286 	.p1 = { .min = 2, .max = 4 },
287 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
288 };
289 
290 static const struct intel_limit intel_limits_bxt = {
291 	.dot = { .min = 25000, .max = 594000 },
292 	.vco = { .min = 4800000, .max = 6700000 },
293 	.n = { .min = 1, .max = 1 },
294 	.m1 = { .min = 2, .max = 2 },
295 	/* FIXME: find real m2 limits */
296 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
297 	.p1 = { .min = 2, .max = 4 },
298 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
299 };
300 
301 /*
302  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
303  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
304  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
305  * The helpers' return value is the rate of the clock that is fed to the
306  * display engine's pipe which can be the above fast dot clock rate or a
307  * divided-down version of it.
308  */
309 /* m1 is reserved as 0 in Pineview, n is a ring counter */
310 int pnv_calc_dpll_params(int refclk, struct dpll *clock)
311 {
312 	clock->m = clock->m2 + 2;
313 	clock->p = clock->p1 * clock->p2;
314 	if (WARN_ON(clock->n == 0 || clock->p == 0))
315 		return 0;
316 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
317 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
318 
319 	return clock->dot;
320 }
321 
322 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
323 {
324 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
325 }
326 
327 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
328 {
329 	clock->m = i9xx_dpll_compute_m(clock);
330 	clock->p = clock->p1 * clock->p2;
331 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
332 		return 0;
333 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
334 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
335 
336 	return clock->dot;
337 }
338 
339 int vlv_calc_dpll_params(int refclk, struct dpll *clock)
340 {
341 	clock->m = clock->m1 * clock->m2;
342 	clock->p = clock->p1 * clock->p2 * 5;
343 	if (WARN_ON(clock->n == 0 || clock->p == 0))
344 		return 0;
345 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
346 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
347 
348 	return clock->dot;
349 }
350 
351 int chv_calc_dpll_params(int refclk, struct dpll *clock)
352 {
353 	clock->m = clock->m1 * clock->m2;
354 	clock->p = clock->p1 * clock->p2 * 5;
355 	if (WARN_ON(clock->n == 0 || clock->p == 0))
356 		return 0;
357 	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
358 					   clock->n << 22);
359 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
360 
361 	return clock->dot;
362 }
363 
364 /*
365  * Returns whether the given set of divisors are valid for a given refclk with
366  * the given connectors.
367  */
368 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
369 			       const struct intel_limit *limit,
370 			       const struct dpll *clock)
371 {
372 	if (clock->n < limit->n.min || limit->n.max < clock->n)
373 		return false;
374 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
375 		return false;
376 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
377 		return false;
378 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
379 		return false;
380 
381 	if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
382 		if (clock->m1 <= clock->m2)
383 			return false;
384 
385 	if (!IS_LP(dev_priv)) {
386 		if (clock->p < limit->p.min || limit->p.max < clock->p)
387 			return false;
388 		if (clock->m < limit->m.min || limit->m.max < clock->m)
389 			return false;
390 	}
391 
392 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
393 		return false;
394 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
395 	 * connector, etc., rather than just a single range.
396 	 */
397 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
398 		return false;
399 
400 	return true;
401 }
402 
403 static int
404 i9xx_select_p2_div(const struct intel_limit *limit,
405 		   const struct intel_crtc_state *crtc_state,
406 		   int target)
407 {
408 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
409 
410 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
411 		/*
412 		 * For LVDS just rely on its current settings for dual-channel.
413 		 * We haven't figured out how to reliably set up different
414 		 * single/dual channel state, if we even can.
415 		 */
416 		if (intel_is_dual_link_lvds(dev_priv))
417 			return limit->p2.p2_fast;
418 		else
419 			return limit->p2.p2_slow;
420 	} else {
421 		if (target < limit->p2.dot_limit)
422 			return limit->p2.p2_slow;
423 		else
424 			return limit->p2.p2_fast;
425 	}
426 }
427 
428 /*
429  * Returns a set of divisors for the desired target clock with the given
430  * refclk, or FALSE.
431  *
432  * Target and reference clocks are specified in kHz.
433  *
434  * If match_clock is provided, then best_clock P divider must match the P
435  * divider from @match_clock used for LVDS downclocking.
436  */
437 static bool
438 i9xx_find_best_dpll(const struct intel_limit *limit,
439 		    struct intel_crtc_state *crtc_state,
440 		    int target, int refclk,
441 		    const struct dpll *match_clock,
442 		    struct dpll *best_clock)
443 {
444 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
445 	struct dpll clock;
446 	int err = target;
447 
448 	memset(best_clock, 0, sizeof(*best_clock));
449 
450 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
451 
452 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
453 	     clock.m1++) {
454 		for (clock.m2 = limit->m2.min;
455 		     clock.m2 <= limit->m2.max; clock.m2++) {
456 			if (clock.m2 >= clock.m1)
457 				break;
458 			for (clock.n = limit->n.min;
459 			     clock.n <= limit->n.max; clock.n++) {
460 				for (clock.p1 = limit->p1.min;
461 					clock.p1 <= limit->p1.max; clock.p1++) {
462 					int this_err;
463 
464 					i9xx_calc_dpll_params(refclk, &clock);
465 					if (!intel_pll_is_valid(to_i915(dev),
466 								limit,
467 								&clock))
468 						continue;
469 					if (match_clock &&
470 					    clock.p != match_clock->p)
471 						continue;
472 
473 					this_err = abs(clock.dot - target);
474 					if (this_err < err) {
475 						*best_clock = clock;
476 						err = this_err;
477 					}
478 				}
479 			}
480 		}
481 	}
482 
483 	return (err != target);
484 }
485 
486 /*
487  * Returns a set of divisors for the desired target clock with the given
488  * refclk, or FALSE.
489  *
490  * Target and reference clocks are specified in kHz.
491  *
492  * If match_clock is provided, then best_clock P divider must match the P
493  * divider from @match_clock used for LVDS downclocking.
494  */
495 static bool
496 pnv_find_best_dpll(const struct intel_limit *limit,
497 		   struct intel_crtc_state *crtc_state,
498 		   int target, int refclk,
499 		   const struct dpll *match_clock,
500 		   struct dpll *best_clock)
501 {
502 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
503 	struct dpll clock;
504 	int err = target;
505 
506 	memset(best_clock, 0, sizeof(*best_clock));
507 
508 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
509 
510 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
511 	     clock.m1++) {
512 		for (clock.m2 = limit->m2.min;
513 		     clock.m2 <= limit->m2.max; clock.m2++) {
514 			for (clock.n = limit->n.min;
515 			     clock.n <= limit->n.max; clock.n++) {
516 				for (clock.p1 = limit->p1.min;
517 					clock.p1 <= limit->p1.max; clock.p1++) {
518 					int this_err;
519 
520 					pnv_calc_dpll_params(refclk, &clock);
521 					if (!intel_pll_is_valid(to_i915(dev),
522 								limit,
523 								&clock))
524 						continue;
525 					if (match_clock &&
526 					    clock.p != match_clock->p)
527 						continue;
528 
529 					this_err = abs(clock.dot - target);
530 					if (this_err < err) {
531 						*best_clock = clock;
532 						err = this_err;
533 					}
534 				}
535 			}
536 		}
537 	}
538 
539 	return (err != target);
540 }
541 
542 /*
543  * Returns a set of divisors for the desired target clock with the given
544  * refclk, or FALSE.
545  *
546  * Target and reference clocks are specified in kHz.
547  *
548  * If match_clock is provided, then best_clock P divider must match the P
549  * divider from @match_clock used for LVDS downclocking.
550  */
551 static bool
552 g4x_find_best_dpll(const struct intel_limit *limit,
553 		   struct intel_crtc_state *crtc_state,
554 		   int target, int refclk,
555 		   const struct dpll *match_clock,
556 		   struct dpll *best_clock)
557 {
558 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
559 	struct dpll clock;
560 	int max_n;
561 	bool found = false;
562 	/* approximately equals target * 0.00585 */
563 	int err_most = (target >> 8) + (target >> 9);
564 
565 	memset(best_clock, 0, sizeof(*best_clock));
566 
567 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
568 
569 	max_n = limit->n.max;
570 	/* based on hardware requirement, prefer smaller n to precision */
571 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
572 		/* based on hardware requirement, prefere larger m1,m2 */
573 		for (clock.m1 = limit->m1.max;
574 		     clock.m1 >= limit->m1.min; clock.m1--) {
575 			for (clock.m2 = limit->m2.max;
576 			     clock.m2 >= limit->m2.min; clock.m2--) {
577 				for (clock.p1 = limit->p1.max;
578 				     clock.p1 >= limit->p1.min; clock.p1--) {
579 					int this_err;
580 
581 					i9xx_calc_dpll_params(refclk, &clock);
582 					if (!intel_pll_is_valid(to_i915(dev),
583 								limit,
584 								&clock))
585 						continue;
586 
587 					this_err = abs(clock.dot - target);
588 					if (this_err < err_most) {
589 						*best_clock = clock;
590 						err_most = this_err;
591 						max_n = clock.n;
592 						found = true;
593 					}
594 				}
595 			}
596 		}
597 	}
598 	return found;
599 }
600 
601 /*
602  * Check if the calculated PLL configuration is more optimal compared to the
603  * best configuration and error found so far. Return the calculated error.
604  */
605 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
606 			       const struct dpll *calculated_clock,
607 			       const struct dpll *best_clock,
608 			       unsigned int best_error_ppm,
609 			       unsigned int *error_ppm)
610 {
611 	/*
612 	 * For CHV ignore the error and consider only the P value.
613 	 * Prefer a bigger P value based on HW requirements.
614 	 */
615 	if (IS_CHERRYVIEW(to_i915(dev))) {
616 		*error_ppm = 0;
617 
618 		return calculated_clock->p > best_clock->p;
619 	}
620 
621 	if (drm_WARN_ON_ONCE(dev, !target_freq))
622 		return false;
623 
624 	*error_ppm = div_u64(1000000ULL *
625 				abs(target_freq - calculated_clock->dot),
626 			     target_freq);
627 	/*
628 	 * Prefer a better P value over a better (smaller) error if the error
629 	 * is small. Ensure this preference for future configurations too by
630 	 * setting the error to 0.
631 	 */
632 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
633 		*error_ppm = 0;
634 
635 		return true;
636 	}
637 
638 	return *error_ppm + 10 < best_error_ppm;
639 }
640 
641 /*
642  * Returns a set of divisors for the desired target clock with the given
643  * refclk, or FALSE.
644  */
645 static bool
646 vlv_find_best_dpll(const struct intel_limit *limit,
647 		   struct intel_crtc_state *crtc_state,
648 		   int target, int refclk,
649 		   const struct dpll *match_clock,
650 		   struct dpll *best_clock)
651 {
652 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
653 	struct drm_device *dev = crtc->base.dev;
654 	struct dpll clock;
655 	unsigned int bestppm = 1000000;
656 	/* min update 19.2 MHz */
657 	int max_n = min(limit->n.max, refclk / 19200);
658 	bool found = false;
659 
660 	memset(best_clock, 0, sizeof(*best_clock));
661 
662 	/* based on hardware requirement, prefer smaller n to precision */
663 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
664 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
665 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
666 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
667 				clock.p = clock.p1 * clock.p2 * 5;
668 				/* based on hardware requirement, prefer bigger m1,m2 values */
669 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
670 					unsigned int ppm;
671 
672 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
673 								     refclk * clock.m1);
674 
675 					vlv_calc_dpll_params(refclk, &clock);
676 
677 					if (!intel_pll_is_valid(to_i915(dev),
678 								limit,
679 								&clock))
680 						continue;
681 
682 					if (!vlv_PLL_is_optimal(dev, target,
683 								&clock,
684 								best_clock,
685 								bestppm, &ppm))
686 						continue;
687 
688 					*best_clock = clock;
689 					bestppm = ppm;
690 					found = true;
691 				}
692 			}
693 		}
694 	}
695 
696 	return found;
697 }
698 
699 /*
700  * Returns a set of divisors for the desired target clock with the given
701  * refclk, or FALSE.
702  */
703 static bool
704 chv_find_best_dpll(const struct intel_limit *limit,
705 		   struct intel_crtc_state *crtc_state,
706 		   int target, int refclk,
707 		   const struct dpll *match_clock,
708 		   struct dpll *best_clock)
709 {
710 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
711 	struct drm_device *dev = crtc->base.dev;
712 	unsigned int best_error_ppm;
713 	struct dpll clock;
714 	u64 m2;
715 	int found = false;
716 
717 	memset(best_clock, 0, sizeof(*best_clock));
718 	best_error_ppm = 1000000;
719 
720 	/*
721 	 * Based on hardware doc, the n always set to 1, and m1 always
722 	 * set to 2.  If requires to support 200Mhz refclk, we need to
723 	 * revisit this because n may not 1 anymore.
724 	 */
725 	clock.n = 1;
726 	clock.m1 = 2;
727 
728 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
729 		for (clock.p2 = limit->p2.p2_fast;
730 				clock.p2 >= limit->p2.p2_slow;
731 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
732 			unsigned int error_ppm;
733 
734 			clock.p = clock.p1 * clock.p2 * 5;
735 
736 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
737 						   refclk * clock.m1);
738 
739 			if (m2 > INT_MAX/clock.m1)
740 				continue;
741 
742 			clock.m2 = m2;
743 
744 			chv_calc_dpll_params(refclk, &clock);
745 
746 			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
747 				continue;
748 
749 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
750 						best_error_ppm, &error_ppm))
751 				continue;
752 
753 			*best_clock = clock;
754 			best_error_ppm = error_ppm;
755 			found = true;
756 		}
757 	}
758 
759 	return found;
760 }
761 
762 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
763 			struct dpll *best_clock)
764 {
765 	const struct intel_limit *limit = &intel_limits_bxt;
766 	int refclk = 100000;
767 
768 	return chv_find_best_dpll(limit, crtc_state,
769 				  crtc_state->port_clock, refclk,
770 				  NULL, best_clock);
771 }
772 
773 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
774 {
775 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
776 }
777 
778 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
779 {
780 	return (1 << dpll->n) << 16 | dpll->m2;
781 }
782 
783 static void i9xx_update_pll_dividers(struct intel_crtc_state *crtc_state,
784 				     const struct dpll *clock,
785 				     const struct dpll *reduced_clock)
786 {
787 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
788 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
789 	u32 fp, fp2;
790 
791 	if (IS_PINEVIEW(dev_priv)) {
792 		fp = pnv_dpll_compute_fp(clock);
793 		fp2 = pnv_dpll_compute_fp(reduced_clock);
794 	} else {
795 		fp = i9xx_dpll_compute_fp(clock);
796 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
797 	}
798 
799 	crtc_state->dpll_hw_state.fp0 = fp;
800 	crtc_state->dpll_hw_state.fp1 = fp2;
801 }
802 
803 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
804 			      const struct dpll *clock,
805 			      const struct dpll *reduced_clock)
806 {
807 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
808 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
809 	u32 dpll;
810 
811 	i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
812 
813 	dpll = DPLL_VGA_MODE_DIS;
814 
815 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
816 		dpll |= DPLLB_MODE_LVDS;
817 	else
818 		dpll |= DPLLB_MODE_DAC_SERIAL;
819 
820 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
821 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
822 		dpll |= (crtc_state->pixel_multiplier - 1)
823 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
824 	}
825 
826 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
827 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
828 		dpll |= DPLL_SDVO_HIGH_SPEED;
829 
830 	if (intel_crtc_has_dp_encoder(crtc_state))
831 		dpll |= DPLL_SDVO_HIGH_SPEED;
832 
833 	/* compute bitmask from p1 value */
834 	if (IS_G4X(dev_priv)) {
835 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
836 		dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
837 	} else if (IS_PINEVIEW(dev_priv)) {
838 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
839 		WARN_ON(reduced_clock->p1 != clock->p1);
840 	} else {
841 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
842 		WARN_ON(reduced_clock->p1 != clock->p1);
843 	}
844 
845 	switch (clock->p2) {
846 	case 5:
847 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
848 		break;
849 	case 7:
850 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
851 		break;
852 	case 10:
853 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
854 		break;
855 	case 14:
856 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
857 		break;
858 	}
859 	WARN_ON(reduced_clock->p2 != clock->p2);
860 
861 	if (DISPLAY_VER(dev_priv) >= 4)
862 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
863 
864 	if (crtc_state->sdvo_tv_clock)
865 		dpll |= PLL_REF_INPUT_TVCLKINBC;
866 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
867 		 intel_panel_use_ssc(dev_priv))
868 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
869 	else
870 		dpll |= PLL_REF_INPUT_DREFCLK;
871 
872 	dpll |= DPLL_VCO_ENABLE;
873 	crtc_state->dpll_hw_state.dpll = dpll;
874 
875 	if (DISPLAY_VER(dev_priv) >= 4) {
876 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
877 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
878 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
879 	}
880 }
881 
882 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
883 			      const struct dpll *clock,
884 			      const struct dpll *reduced_clock)
885 {
886 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
887 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
888 	u32 dpll;
889 
890 	i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
891 
892 	dpll = DPLL_VGA_MODE_DIS;
893 
894 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
895 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
896 	} else {
897 		if (clock->p1 == 2)
898 			dpll |= PLL_P1_DIVIDE_BY_TWO;
899 		else
900 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
901 		if (clock->p2 == 4)
902 			dpll |= PLL_P2_DIVIDE_BY_4;
903 	}
904 	WARN_ON(reduced_clock->p1 != clock->p1);
905 	WARN_ON(reduced_clock->p2 != clock->p2);
906 
907 	/*
908 	 * Bspec:
909 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
910 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
911 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
912 	 *  Enable) must be set to “1” in both the DPLL A Control Register
913 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
914 	 *
915 	 * For simplicity We simply keep both bits always enabled in
916 	 * both DPLLS. The spec says we should disable the DVO 2X clock
917 	 * when not needed, but this seems to work fine in practice.
918 	 */
919 	if (IS_I830(dev_priv) ||
920 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
921 		dpll |= DPLL_DVO_2X_MODE;
922 
923 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
924 	    intel_panel_use_ssc(dev_priv))
925 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
926 	else
927 		dpll |= PLL_REF_INPUT_DREFCLK;
928 
929 	dpll |= DPLL_VCO_ENABLE;
930 	crtc_state->dpll_hw_state.dpll = dpll;
931 }
932 
933 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
934 				  struct intel_crtc *crtc)
935 {
936 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
937 	struct intel_crtc_state *crtc_state =
938 		intel_atomic_get_new_crtc_state(state, crtc);
939 	struct intel_encoder *encoder =
940 		intel_get_crtc_new_encoder(state, crtc_state);
941 
942 	if (DISPLAY_VER(dev_priv) < 11 &&
943 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
944 		return 0;
945 
946 	return intel_compute_shared_dplls(state, crtc, encoder);
947 }
948 
949 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
950 				    struct intel_crtc *crtc)
951 {
952 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
953 	struct intel_crtc_state *crtc_state =
954 		intel_atomic_get_new_crtc_state(state, crtc);
955 	struct intel_encoder *encoder =
956 		intel_get_crtc_new_encoder(state, crtc_state);
957 
958 	if (DISPLAY_VER(dev_priv) < 11 &&
959 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
960 		return 0;
961 
962 	return intel_reserve_shared_dplls(state, crtc, encoder);
963 }
964 
965 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
966 				  struct intel_crtc *crtc)
967 {
968 	struct intel_crtc_state *crtc_state =
969 		intel_atomic_get_new_crtc_state(state, crtc);
970 	struct intel_encoder *encoder =
971 		intel_get_crtc_new_encoder(state, crtc_state);
972 
973 	return intel_mpllb_calc_state(crtc_state, encoder);
974 }
975 
976 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
977 {
978 	return dpll->m < factor * dpll->n;
979 }
980 
981 static void ilk_update_pll_dividers(struct intel_crtc_state *crtc_state,
982 				    const struct dpll *clock,
983 				    const struct dpll *reduced_clock)
984 {
985 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
986 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
987 	u32 fp, fp2;
988 	int factor;
989 
990 	/* Enable autotuning of the PLL clock (if permissible) */
991 	factor = 21;
992 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
993 		if ((intel_panel_use_ssc(dev_priv) &&
994 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
995 		    (HAS_PCH_IBX(dev_priv) &&
996 		     intel_is_dual_link_lvds(dev_priv)))
997 			factor = 25;
998 	} else if (crtc_state->sdvo_tv_clock) {
999 		factor = 20;
1000 	}
1001 
1002 	fp = i9xx_dpll_compute_fp(clock);
1003 	if (ilk_needs_fb_cb_tune(clock, factor))
1004 		fp |= FP_CB_TUNE;
1005 
1006 	fp2 = i9xx_dpll_compute_fp(reduced_clock);
1007 	if (ilk_needs_fb_cb_tune(reduced_clock, factor))
1008 		fp2 |= FP_CB_TUNE;
1009 
1010 	crtc_state->dpll_hw_state.fp0 = fp;
1011 	crtc_state->dpll_hw_state.fp1 = fp2;
1012 }
1013 
1014 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1015 			     const struct dpll *clock,
1016 			     const struct dpll *reduced_clock)
1017 {
1018 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1019 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1020 	u32 dpll;
1021 
1022 	ilk_update_pll_dividers(crtc_state, clock, reduced_clock);
1023 
1024 	dpll = 0;
1025 
1026 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1027 		dpll |= DPLLB_MODE_LVDS;
1028 	else
1029 		dpll |= DPLLB_MODE_DAC_SERIAL;
1030 
1031 	dpll |= (crtc_state->pixel_multiplier - 1)
1032 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1033 
1034 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1035 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1036 		dpll |= DPLL_SDVO_HIGH_SPEED;
1037 
1038 	if (intel_crtc_has_dp_encoder(crtc_state))
1039 		dpll |= DPLL_SDVO_HIGH_SPEED;
1040 
1041 	/*
1042 	 * The high speed IO clock is only really required for
1043 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1044 	 * possible to share the DPLL between CRT and HDMI. Enabling
1045 	 * the clock needlessly does no real harm, except use up a
1046 	 * bit of power potentially.
1047 	 *
1048 	 * We'll limit this to IVB with 3 pipes, since it has only two
1049 	 * DPLLs and so DPLL sharing is the only way to get three pipes
1050 	 * driving PCH ports at the same time. On SNB we could do this,
1051 	 * and potentially avoid enabling the second DPLL, but it's not
1052 	 * clear if it''s a win or loss power wise. No point in doing
1053 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1054 	 */
1055 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1056 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1057 		dpll |= DPLL_SDVO_HIGH_SPEED;
1058 
1059 	/* compute bitmask from p1 value */
1060 	dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1061 	/* also FPA1 */
1062 	dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1063 
1064 	switch (clock->p2) {
1065 	case 5:
1066 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1067 		break;
1068 	case 7:
1069 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1070 		break;
1071 	case 10:
1072 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1073 		break;
1074 	case 14:
1075 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1076 		break;
1077 	}
1078 	WARN_ON(reduced_clock->p2 != clock->p2);
1079 
1080 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1081 	    intel_panel_use_ssc(dev_priv))
1082 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1083 	else
1084 		dpll |= PLL_REF_INPUT_DREFCLK;
1085 
1086 	dpll |= DPLL_VCO_ENABLE;
1087 
1088 	crtc_state->dpll_hw_state.dpll = dpll;
1089 }
1090 
1091 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1092 				  struct intel_crtc *crtc)
1093 {
1094 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1095 	struct intel_crtc_state *crtc_state =
1096 		intel_atomic_get_new_crtc_state(state, crtc);
1097 	const struct intel_limit *limit;
1098 	int refclk = 120000;
1099 
1100 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1101 	if (!crtc_state->has_pch_encoder)
1102 		return 0;
1103 
1104 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1105 		if (intel_panel_use_ssc(dev_priv)) {
1106 			drm_dbg_kms(&dev_priv->drm,
1107 				    "using SSC reference clock of %d kHz\n",
1108 				    dev_priv->vbt.lvds_ssc_freq);
1109 			refclk = dev_priv->vbt.lvds_ssc_freq;
1110 		}
1111 
1112 		if (intel_is_dual_link_lvds(dev_priv)) {
1113 			if (refclk == 100000)
1114 				limit = &ilk_limits_dual_lvds_100m;
1115 			else
1116 				limit = &ilk_limits_dual_lvds;
1117 		} else {
1118 			if (refclk == 100000)
1119 				limit = &ilk_limits_single_lvds_100m;
1120 			else
1121 				limit = &ilk_limits_single_lvds;
1122 		}
1123 	} else {
1124 		limit = &ilk_limits_dac;
1125 	}
1126 
1127 	if (!crtc_state->clock_set &&
1128 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1129 				refclk, NULL, &crtc_state->dpll))
1130 		return -EINVAL;
1131 
1132 	ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1133 			 &crtc_state->dpll);
1134 
1135 	return intel_compute_shared_dplls(state, crtc, NULL);
1136 }
1137 
1138 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1139 				    struct intel_crtc *crtc)
1140 {
1141 	struct intel_crtc_state *crtc_state =
1142 		intel_atomic_get_new_crtc_state(state, crtc);
1143 
1144 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1145 	if (!crtc_state->has_pch_encoder)
1146 		return 0;
1147 
1148 	return intel_reserve_shared_dplls(state, crtc, NULL);
1149 }
1150 
1151 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1152 {
1153 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1154 
1155 	crtc_state->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1156 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1157 	if (crtc->pipe != PIPE_A)
1158 		crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1159 
1160 	/* DPLL not used with DSI, but still need the rest set up */
1161 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1162 		crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
1163 			DPLL_EXT_BUFFER_ENABLE_VLV;
1164 
1165 	crtc_state->dpll_hw_state.dpll_md =
1166 		(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1167 }
1168 
1169 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1170 {
1171 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1172 
1173 	crtc_state->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
1174 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1175 	if (crtc->pipe != PIPE_A)
1176 		crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1177 
1178 	/* DPLL not used with DSI, but still need the rest set up */
1179 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1180 		crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
1181 
1182 	crtc_state->dpll_hw_state.dpll_md =
1183 		(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1184 }
1185 
1186 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1187 				  struct intel_crtc *crtc)
1188 {
1189 	struct intel_crtc_state *crtc_state =
1190 		intel_atomic_get_new_crtc_state(state, crtc);
1191 	const struct intel_limit *limit = &intel_limits_chv;
1192 	int refclk = 100000;
1193 
1194 	if (!crtc_state->clock_set &&
1195 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1196 				refclk, NULL, &crtc_state->dpll))
1197 		return -EINVAL;
1198 
1199 	chv_compute_dpll(crtc_state);
1200 
1201 	return 0;
1202 }
1203 
1204 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1205 				  struct intel_crtc *crtc)
1206 {
1207 	struct intel_crtc_state *crtc_state =
1208 		intel_atomic_get_new_crtc_state(state, crtc);
1209 	const struct intel_limit *limit = &intel_limits_vlv;
1210 	int refclk = 100000;
1211 
1212 	if (!crtc_state->clock_set &&
1213 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1214 				refclk, NULL, &crtc_state->dpll)) {
1215 		return -EINVAL;
1216 	}
1217 
1218 	vlv_compute_dpll(crtc_state);
1219 
1220 	return 0;
1221 }
1222 
1223 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1224 				  struct intel_crtc *crtc)
1225 {
1226 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1227 	struct intel_crtc_state *crtc_state =
1228 		intel_atomic_get_new_crtc_state(state, crtc);
1229 	const struct intel_limit *limit;
1230 	int refclk = 96000;
1231 
1232 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1233 		if (intel_panel_use_ssc(dev_priv)) {
1234 			refclk = dev_priv->vbt.lvds_ssc_freq;
1235 			drm_dbg_kms(&dev_priv->drm,
1236 				    "using SSC reference clock of %d kHz\n",
1237 				    refclk);
1238 		}
1239 
1240 		if (intel_is_dual_link_lvds(dev_priv))
1241 			limit = &intel_limits_g4x_dual_channel_lvds;
1242 		else
1243 			limit = &intel_limits_g4x_single_channel_lvds;
1244 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1245 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1246 		limit = &intel_limits_g4x_hdmi;
1247 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1248 		limit = &intel_limits_g4x_sdvo;
1249 	} else {
1250 		/* The option is for other outputs */
1251 		limit = &intel_limits_i9xx_sdvo;
1252 	}
1253 
1254 	if (!crtc_state->clock_set &&
1255 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1256 				refclk, NULL, &crtc_state->dpll))
1257 		return -EINVAL;
1258 
1259 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1260 			  &crtc_state->dpll);
1261 
1262 	return 0;
1263 }
1264 
1265 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1266 				  struct intel_crtc *crtc)
1267 {
1268 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1269 	struct intel_crtc_state *crtc_state =
1270 		intel_atomic_get_new_crtc_state(state, crtc);
1271 	const struct intel_limit *limit;
1272 	int refclk = 96000;
1273 
1274 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1275 		if (intel_panel_use_ssc(dev_priv)) {
1276 			refclk = dev_priv->vbt.lvds_ssc_freq;
1277 			drm_dbg_kms(&dev_priv->drm,
1278 				    "using SSC reference clock of %d kHz\n",
1279 				    refclk);
1280 		}
1281 
1282 		limit = &pnv_limits_lvds;
1283 	} else {
1284 		limit = &pnv_limits_sdvo;
1285 	}
1286 
1287 	if (!crtc_state->clock_set &&
1288 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1289 				refclk, NULL, &crtc_state->dpll))
1290 		return -EINVAL;
1291 
1292 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1293 			  &crtc_state->dpll);
1294 
1295 	return 0;
1296 }
1297 
1298 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1299 				   struct intel_crtc *crtc)
1300 {
1301 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1302 	struct intel_crtc_state *crtc_state =
1303 		intel_atomic_get_new_crtc_state(state, crtc);
1304 	const struct intel_limit *limit;
1305 	int refclk = 96000;
1306 
1307 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1308 		if (intel_panel_use_ssc(dev_priv)) {
1309 			refclk = dev_priv->vbt.lvds_ssc_freq;
1310 			drm_dbg_kms(&dev_priv->drm,
1311 				    "using SSC reference clock of %d kHz\n",
1312 				    refclk);
1313 		}
1314 
1315 		limit = &intel_limits_i9xx_lvds;
1316 	} else {
1317 		limit = &intel_limits_i9xx_sdvo;
1318 	}
1319 
1320 	if (!crtc_state->clock_set &&
1321 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1322 				 refclk, NULL, &crtc_state->dpll))
1323 		return -EINVAL;
1324 
1325 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1326 			  &crtc_state->dpll);
1327 
1328 	return 0;
1329 }
1330 
1331 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1332 				   struct intel_crtc *crtc)
1333 {
1334 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1335 	struct intel_crtc_state *crtc_state =
1336 		intel_atomic_get_new_crtc_state(state, crtc);
1337 	const struct intel_limit *limit;
1338 	int refclk = 48000;
1339 
1340 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1341 		if (intel_panel_use_ssc(dev_priv)) {
1342 			refclk = dev_priv->vbt.lvds_ssc_freq;
1343 			drm_dbg_kms(&dev_priv->drm,
1344 				    "using SSC reference clock of %d kHz\n",
1345 				    refclk);
1346 		}
1347 
1348 		limit = &intel_limits_i8xx_lvds;
1349 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1350 		limit = &intel_limits_i8xx_dvo;
1351 	} else {
1352 		limit = &intel_limits_i8xx_dac;
1353 	}
1354 
1355 	if (!crtc_state->clock_set &&
1356 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1357 				 refclk, NULL, &crtc_state->dpll))
1358 		return -EINVAL;
1359 
1360 	i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1361 			  &crtc_state->dpll);
1362 
1363 	return 0;
1364 }
1365 
1366 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1367 	.crtc_compute_clock = dg2_crtc_compute_clock,
1368 };
1369 
1370 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1371 	.crtc_compute_clock = hsw_crtc_compute_clock,
1372 	.crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1373 };
1374 
1375 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1376 	.crtc_compute_clock = ilk_crtc_compute_clock,
1377 	.crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1378 };
1379 
1380 static const struct intel_dpll_funcs chv_dpll_funcs = {
1381 	.crtc_compute_clock = chv_crtc_compute_clock,
1382 };
1383 
1384 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1385 	.crtc_compute_clock = vlv_crtc_compute_clock,
1386 };
1387 
1388 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1389 	.crtc_compute_clock = g4x_crtc_compute_clock,
1390 };
1391 
1392 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1393 	.crtc_compute_clock = pnv_crtc_compute_clock,
1394 };
1395 
1396 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1397 	.crtc_compute_clock = i9xx_crtc_compute_clock,
1398 };
1399 
1400 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1401 	.crtc_compute_clock = i8xx_crtc_compute_clock,
1402 };
1403 
1404 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1405 				  struct intel_crtc *crtc)
1406 {
1407 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1408 	struct intel_crtc_state *crtc_state =
1409 		intel_atomic_get_new_crtc_state(state, crtc);
1410 	int ret;
1411 
1412 	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1413 
1414 	if (drm_WARN_ON(&i915->drm, crtc_state->shared_dpll))
1415 		return 0;
1416 
1417 	memset(&crtc_state->dpll_hw_state, 0,
1418 	       sizeof(crtc_state->dpll_hw_state));
1419 
1420 	if (!crtc_state->hw.enable)
1421 		return 0;
1422 
1423 	ret = i915->dpll_funcs->crtc_compute_clock(state, crtc);
1424 	if (ret) {
1425 		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1426 			    crtc->base.base.id, crtc->base.name);
1427 		return ret;
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1434 				    struct intel_crtc *crtc)
1435 {
1436 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1437 	struct intel_crtc_state *crtc_state =
1438 		intel_atomic_get_new_crtc_state(state, crtc);
1439 	int ret;
1440 
1441 	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1442 
1443 	if (drm_WARN_ON(&i915->drm, crtc_state->shared_dpll))
1444 		return 0;
1445 
1446 	if (!crtc_state->hw.enable)
1447 		return 0;
1448 
1449 	if (!i915->dpll_funcs->crtc_get_shared_dpll)
1450 		return 0;
1451 
1452 	ret = i915->dpll_funcs->crtc_get_shared_dpll(state, crtc);
1453 	if (ret) {
1454 		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1455 			    crtc->base.base.id, crtc->base.name);
1456 		return ret;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 void
1463 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1464 {
1465 	if (IS_DG2(dev_priv))
1466 		dev_priv->dpll_funcs = &dg2_dpll_funcs;
1467 	else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1468 		dev_priv->dpll_funcs = &hsw_dpll_funcs;
1469 	else if (HAS_PCH_SPLIT(dev_priv))
1470 		dev_priv->dpll_funcs = &ilk_dpll_funcs;
1471 	else if (IS_CHERRYVIEW(dev_priv))
1472 		dev_priv->dpll_funcs = &chv_dpll_funcs;
1473 	else if (IS_VALLEYVIEW(dev_priv))
1474 		dev_priv->dpll_funcs = &vlv_dpll_funcs;
1475 	else if (IS_G4X(dev_priv))
1476 		dev_priv->dpll_funcs = &g4x_dpll_funcs;
1477 	else if (IS_PINEVIEW(dev_priv))
1478 		dev_priv->dpll_funcs = &pnv_dpll_funcs;
1479 	else if (DISPLAY_VER(dev_priv) != 2)
1480 		dev_priv->dpll_funcs = &i9xx_dpll_funcs;
1481 	else
1482 		dev_priv->dpll_funcs = &i8xx_dpll_funcs;
1483 }
1484 
1485 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1486 {
1487 	if (IS_I830(dev_priv))
1488 		return false;
1489 
1490 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1491 }
1492 
1493 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1494 {
1495 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1496 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1497 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1498 	enum pipe pipe = crtc->pipe;
1499 	int i;
1500 
1501 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1502 
1503 	/* PLL is protected by panel, make sure we can write it */
1504 	if (i9xx_has_pps(dev_priv))
1505 		assert_pps_unlocked(dev_priv, pipe);
1506 
1507 	intel_de_write(dev_priv, FP0(pipe), crtc_state->dpll_hw_state.fp0);
1508 	intel_de_write(dev_priv, FP1(pipe), crtc_state->dpll_hw_state.fp1);
1509 
1510 	/*
1511 	 * Apparently we need to have VGA mode enabled prior to changing
1512 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1513 	 * dividers, even though the register value does change.
1514 	 */
1515 	intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
1516 	intel_de_write(dev_priv, DPLL(pipe), dpll);
1517 
1518 	/* Wait for the clocks to stabilize. */
1519 	intel_de_posting_read(dev_priv, DPLL(pipe));
1520 	udelay(150);
1521 
1522 	if (DISPLAY_VER(dev_priv) >= 4) {
1523 		intel_de_write(dev_priv, DPLL_MD(pipe),
1524 			       crtc_state->dpll_hw_state.dpll_md);
1525 	} else {
1526 		/* The pixel multiplier can only be updated once the
1527 		 * DPLL is enabled and the clocks are stable.
1528 		 *
1529 		 * So write it again.
1530 		 */
1531 		intel_de_write(dev_priv, DPLL(pipe), dpll);
1532 	}
1533 
1534 	/* We do this three times for luck */
1535 	for (i = 0; i < 3; i++) {
1536 		intel_de_write(dev_priv, DPLL(pipe), dpll);
1537 		intel_de_posting_read(dev_priv, DPLL(pipe));
1538 		udelay(150); /* wait for warmup */
1539 	}
1540 }
1541 
1542 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1543 				 enum pipe pipe)
1544 {
1545 	u32 reg_val;
1546 
1547 	/*
1548 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1549 	 * and set it to a reasonable value instead.
1550 	 */
1551 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1552 	reg_val &= 0xffffff00;
1553 	reg_val |= 0x00000030;
1554 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1555 
1556 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1557 	reg_val &= 0x00ffffff;
1558 	reg_val |= 0x8c000000;
1559 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1560 
1561 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1562 	reg_val &= 0xffffff00;
1563 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1564 
1565 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1566 	reg_val &= 0x00ffffff;
1567 	reg_val |= 0xb0000000;
1568 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1569 }
1570 
1571 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1572 {
1573 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1574 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1575 	enum pipe pipe = crtc->pipe;
1576 	u32 mdiv;
1577 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
1578 	u32 coreclk, reg_val;
1579 
1580 	vlv_dpio_get(dev_priv);
1581 
1582 	bestn = crtc_state->dpll.n;
1583 	bestm1 = crtc_state->dpll.m1;
1584 	bestm2 = crtc_state->dpll.m2;
1585 	bestp1 = crtc_state->dpll.p1;
1586 	bestp2 = crtc_state->dpll.p2;
1587 
1588 	/* See eDP HDMI DPIO driver vbios notes doc */
1589 
1590 	/* PLL B needs special handling */
1591 	if (pipe == PIPE_B)
1592 		vlv_pllb_recal_opamp(dev_priv, pipe);
1593 
1594 	/* Set up Tx target for periodic Rcomp update */
1595 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
1596 
1597 	/* Disable target IRef on PLL */
1598 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
1599 	reg_val &= 0x00ffffff;
1600 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
1601 
1602 	/* Disable fast lock */
1603 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
1604 
1605 	/* Set idtafcrecal before PLL is enabled */
1606 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
1607 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
1608 	mdiv |= ((bestn << DPIO_N_SHIFT));
1609 	mdiv |= (1 << DPIO_K_SHIFT);
1610 
1611 	/*
1612 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1613 	 * but we don't support that).
1614 	 * Note: don't use the DAC post divider as it seems unstable.
1615 	 */
1616 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
1617 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1618 
1619 	mdiv |= DPIO_ENABLE_CALIBRATION;
1620 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1621 
1622 	/* Set HBR and RBR LPF coefficients */
1623 	if (crtc_state->port_clock == 162000 ||
1624 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1625 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1626 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1627 				 0x009f0003);
1628 	else
1629 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1630 				 0x00d0000f);
1631 
1632 	if (intel_crtc_has_dp_encoder(crtc_state)) {
1633 		/* Use SSC source */
1634 		if (pipe == PIPE_A)
1635 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1636 					 0x0df40000);
1637 		else
1638 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1639 					 0x0df70000);
1640 	} else { /* HDMI or VGA */
1641 		/* Use bend source */
1642 		if (pipe == PIPE_A)
1643 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1644 					 0x0df70000);
1645 		else
1646 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1647 					 0x0df40000);
1648 	}
1649 
1650 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
1651 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1652 	if (intel_crtc_has_dp_encoder(crtc_state))
1653 		coreclk |= 0x01000000;
1654 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
1655 
1656 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
1657 
1658 	vlv_dpio_put(dev_priv);
1659 }
1660 
1661 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1662 {
1663 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1664 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1665 	enum pipe pipe = crtc->pipe;
1666 
1667 	intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1668 	intel_de_posting_read(dev_priv, DPLL(pipe));
1669 	udelay(150);
1670 
1671 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1672 		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1673 }
1674 
1675 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1676 {
1677 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1678 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1679 	enum pipe pipe = crtc->pipe;
1680 
1681 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1682 
1683 	/* PLL is protected by panel, make sure we can write it */
1684 	assert_pps_unlocked(dev_priv, pipe);
1685 
1686 	/* Enable Refclk */
1687 	intel_de_write(dev_priv, DPLL(pipe),
1688 		       crtc_state->dpll_hw_state.dpll &
1689 		       ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
1690 
1691 	if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1692 		vlv_prepare_pll(crtc_state);
1693 		_vlv_enable_pll(crtc_state);
1694 	}
1695 
1696 	intel_de_write(dev_priv, DPLL_MD(pipe),
1697 		       crtc_state->dpll_hw_state.dpll_md);
1698 	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1699 }
1700 
1701 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
1702 {
1703 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1704 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1705 	enum pipe pipe = crtc->pipe;
1706 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1707 	u32 loopfilter, tribuf_calcntr;
1708 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
1709 	u32 dpio_val;
1710 	int vco;
1711 
1712 	bestn = crtc_state->dpll.n;
1713 	bestm2_frac = crtc_state->dpll.m2 & 0x3fffff;
1714 	bestm1 = crtc_state->dpll.m1;
1715 	bestm2 = crtc_state->dpll.m2 >> 22;
1716 	bestp1 = crtc_state->dpll.p1;
1717 	bestp2 = crtc_state->dpll.p2;
1718 	vco = crtc_state->dpll.vco;
1719 	dpio_val = 0;
1720 	loopfilter = 0;
1721 
1722 	vlv_dpio_get(dev_priv);
1723 
1724 	/* p1 and p2 divider */
1725 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
1726 			5 << DPIO_CHV_S1_DIV_SHIFT |
1727 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
1728 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1729 			1 << DPIO_CHV_K_DIV_SHIFT);
1730 
1731 	/* Feedback post-divider - m2 */
1732 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
1733 
1734 	/* Feedback refclk divider - n and m1 */
1735 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
1736 			DPIO_CHV_M1_DIV_BY_2 |
1737 			1 << DPIO_CHV_N_DIV_SHIFT);
1738 
1739 	/* M2 fraction division */
1740 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
1741 
1742 	/* M2 fraction division enable */
1743 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
1744 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
1745 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
1746 	if (bestm2_frac)
1747 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
1748 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
1749 
1750 	/* Program digital lock detect threshold */
1751 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
1752 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
1753 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
1754 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
1755 	if (!bestm2_frac)
1756 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
1757 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
1758 
1759 	/* Loop filter */
1760 	if (vco == 5400000) {
1761 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
1762 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
1763 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
1764 		tribuf_calcntr = 0x9;
1765 	} else if (vco <= 6200000) {
1766 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
1767 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
1768 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1769 		tribuf_calcntr = 0x9;
1770 	} else if (vco <= 6480000) {
1771 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1772 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1773 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1774 		tribuf_calcntr = 0x8;
1775 	} else {
1776 		/* Not supported. Apply the same limits as in the max case */
1777 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1778 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1779 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1780 		tribuf_calcntr = 0;
1781 	}
1782 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
1783 
1784 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
1785 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
1786 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
1787 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
1788 
1789 	/* AFC Recal */
1790 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
1791 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
1792 			DPIO_AFC_RECAL);
1793 
1794 	vlv_dpio_put(dev_priv);
1795 }
1796 
1797 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
1798 {
1799 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1800 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1801 	enum pipe pipe = crtc->pipe;
1802 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1803 	u32 tmp;
1804 
1805 	vlv_dpio_get(dev_priv);
1806 
1807 	/* Enable back the 10bit clock to display controller */
1808 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1809 	tmp |= DPIO_DCLKP_EN;
1810 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1811 
1812 	vlv_dpio_put(dev_priv);
1813 
1814 	/*
1815 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1816 	 */
1817 	udelay(1);
1818 
1819 	/* Enable PLL */
1820 	intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1821 
1822 	/* Check PLL is locked */
1823 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1824 		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1825 }
1826 
1827 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
1828 {
1829 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1830 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1831 	enum pipe pipe = crtc->pipe;
1832 
1833 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1834 
1835 	/* PLL is protected by panel, make sure we can write it */
1836 	assert_pps_unlocked(dev_priv, pipe);
1837 
1838 	/* Enable Refclk and SSC */
1839 	intel_de_write(dev_priv, DPLL(pipe),
1840 		       crtc_state->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
1841 
1842 	if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1843 		chv_prepare_pll(crtc_state);
1844 		_chv_enable_pll(crtc_state);
1845 	}
1846 
1847 	if (pipe != PIPE_A) {
1848 		/*
1849 		 * WaPixelRepeatModeFixForC0:chv
1850 		 *
1851 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1852 		 * the value from DPLLBMD to either pipe B or C.
1853 		 */
1854 		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1855 		intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1856 			       crtc_state->dpll_hw_state.dpll_md);
1857 		intel_de_write(dev_priv, CBR4_VLV, 0);
1858 		dev_priv->chv_dpll_md[pipe] = crtc_state->dpll_hw_state.dpll_md;
1859 
1860 		/*
1861 		 * DPLLB VGA mode also seems to cause problems.
1862 		 * We should always have it disabled.
1863 		 */
1864 		drm_WARN_ON(&dev_priv->drm,
1865 			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1866 			     DPLL_VGA_MODE_DIS) == 0);
1867 	} else {
1868 		intel_de_write(dev_priv, DPLL_MD(pipe),
1869 			       crtc_state->dpll_hw_state.dpll_md);
1870 		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1871 	}
1872 }
1873 
1874 /**
1875  * vlv_force_pll_on - forcibly enable just the PLL
1876  * @dev_priv: i915 private structure
1877  * @pipe: pipe PLL to enable
1878  * @dpll: PLL configuration
1879  *
1880  * Enable the PLL for @pipe using the supplied @dpll config. To be used
1881  * in cases where we need the PLL enabled even when @pipe is not going to
1882  * be enabled.
1883  */
1884 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
1885 		     const struct dpll *dpll)
1886 {
1887 	struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
1888 	struct intel_crtc_state *crtc_state;
1889 
1890 	crtc_state = intel_crtc_state_alloc(crtc);
1891 	if (!crtc_state)
1892 		return -ENOMEM;
1893 
1894 	crtc_state->cpu_transcoder = (enum transcoder)pipe;
1895 	crtc_state->pixel_multiplier = 1;
1896 	crtc_state->dpll = *dpll;
1897 	crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
1898 
1899 	if (IS_CHERRYVIEW(dev_priv)) {
1900 		chv_compute_dpll(crtc_state);
1901 		chv_enable_pll(crtc_state);
1902 	} else {
1903 		vlv_compute_dpll(crtc_state);
1904 		vlv_enable_pll(crtc_state);
1905 	}
1906 
1907 	kfree(crtc_state);
1908 
1909 	return 0;
1910 }
1911 
1912 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1913 {
1914 	u32 val;
1915 
1916 	/* Make sure the pipe isn't still relying on us */
1917 	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
1918 
1919 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1920 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1921 	if (pipe != PIPE_A)
1922 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1923 
1924 	intel_de_write(dev_priv, DPLL(pipe), val);
1925 	intel_de_posting_read(dev_priv, DPLL(pipe));
1926 }
1927 
1928 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1929 {
1930 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1931 	u32 val;
1932 
1933 	/* Make sure the pipe isn't still relying on us */
1934 	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
1935 
1936 	val = DPLL_SSC_REF_CLK_CHV |
1937 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1938 	if (pipe != PIPE_A)
1939 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1940 
1941 	intel_de_write(dev_priv, DPLL(pipe), val);
1942 	intel_de_posting_read(dev_priv, DPLL(pipe));
1943 
1944 	vlv_dpio_get(dev_priv);
1945 
1946 	/* Disable 10bit clock to display controller */
1947 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1948 	val &= ~DPIO_DCLKP_EN;
1949 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1950 
1951 	vlv_dpio_put(dev_priv);
1952 }
1953 
1954 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1955 {
1956 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1957 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1958 	enum pipe pipe = crtc->pipe;
1959 
1960 	/* Don't disable pipe or pipe PLLs if needed */
1961 	if (IS_I830(dev_priv))
1962 		return;
1963 
1964 	/* Make sure the pipe isn't still relying on us */
1965 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1966 
1967 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1968 	intel_de_posting_read(dev_priv, DPLL(pipe));
1969 }
1970 
1971 
1972 /**
1973  * vlv_force_pll_off - forcibly disable just the PLL
1974  * @dev_priv: i915 private structure
1975  * @pipe: pipe PLL to disable
1976  *
1977  * Disable the PLL for @pipe. To be used in cases where we need
1978  * the PLL enabled even when @pipe is not going to be enabled.
1979  */
1980 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
1981 {
1982 	if (IS_CHERRYVIEW(dev_priv))
1983 		chv_disable_pll(dev_priv, pipe);
1984 	else
1985 		vlv_disable_pll(dev_priv, pipe);
1986 }
1987 
1988 /* Only for pre-ILK configs */
1989 static void assert_pll(struct drm_i915_private *dev_priv,
1990 		       enum pipe pipe, bool state)
1991 {
1992 	bool cur_state;
1993 
1994 	cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
1995 	I915_STATE_WARN(cur_state != state,
1996 			"PLL state assertion failure (expected %s, current %s)\n",
1997 			str_on_off(state), str_on_off(cur_state));
1998 }
1999 
2000 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2001 {
2002 	assert_pll(i915, pipe, true);
2003 }
2004 
2005 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2006 {
2007 	assert_pll(i915, pipe, false);
2008 }
2009