1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 #include <linux/kernel.h>
6 #include "intel_display_types.h"
7 #include "intel_display.h"
8 #include "intel_dpll.h"
9 #include "intel_lvds.h"
10 #include "intel_panel.h"
11 
12 struct intel_limit {
13 	struct {
14 		int min, max;
15 	} dot, vco, n, m, m1, m2, p, p1;
16 
17 	struct {
18 		int dot_limit;
19 		int p2_slow, p2_fast;
20 	} p2;
21 };
22 static const struct intel_limit intel_limits_i8xx_dac = {
23 	.dot = { .min = 25000, .max = 350000 },
24 	.vco = { .min = 908000, .max = 1512000 },
25 	.n = { .min = 2, .max = 16 },
26 	.m = { .min = 96, .max = 140 },
27 	.m1 = { .min = 18, .max = 26 },
28 	.m2 = { .min = 6, .max = 16 },
29 	.p = { .min = 4, .max = 128 },
30 	.p1 = { .min = 2, .max = 33 },
31 	.p2 = { .dot_limit = 165000,
32 		.p2_slow = 4, .p2_fast = 2 },
33 };
34 
35 static const struct intel_limit intel_limits_i8xx_dvo = {
36 	.dot = { .min = 25000, .max = 350000 },
37 	.vco = { .min = 908000, .max = 1512000 },
38 	.n = { .min = 2, .max = 16 },
39 	.m = { .min = 96, .max = 140 },
40 	.m1 = { .min = 18, .max = 26 },
41 	.m2 = { .min = 6, .max = 16 },
42 	.p = { .min = 4, .max = 128 },
43 	.p1 = { .min = 2, .max = 33 },
44 	.p2 = { .dot_limit = 165000,
45 		.p2_slow = 4, .p2_fast = 4 },
46 };
47 
48 static const struct intel_limit intel_limits_i8xx_lvds = {
49 	.dot = { .min = 25000, .max = 350000 },
50 	.vco = { .min = 908000, .max = 1512000 },
51 	.n = { .min = 2, .max = 16 },
52 	.m = { .min = 96, .max = 140 },
53 	.m1 = { .min = 18, .max = 26 },
54 	.m2 = { .min = 6, .max = 16 },
55 	.p = { .min = 4, .max = 128 },
56 	.p1 = { .min = 1, .max = 6 },
57 	.p2 = { .dot_limit = 165000,
58 		.p2_slow = 14, .p2_fast = 7 },
59 };
60 
61 static const struct intel_limit intel_limits_i9xx_sdvo = {
62 	.dot = { .min = 20000, .max = 400000 },
63 	.vco = { .min = 1400000, .max = 2800000 },
64 	.n = { .min = 1, .max = 6 },
65 	.m = { .min = 70, .max = 120 },
66 	.m1 = { .min = 8, .max = 18 },
67 	.m2 = { .min = 3, .max = 7 },
68 	.p = { .min = 5, .max = 80 },
69 	.p1 = { .min = 1, .max = 8 },
70 	.p2 = { .dot_limit = 200000,
71 		.p2_slow = 10, .p2_fast = 5 },
72 };
73 
74 static const struct intel_limit intel_limits_i9xx_lvds = {
75 	.dot = { .min = 20000, .max = 400000 },
76 	.vco = { .min = 1400000, .max = 2800000 },
77 	.n = { .min = 1, .max = 6 },
78 	.m = { .min = 70, .max = 120 },
79 	.m1 = { .min = 8, .max = 18 },
80 	.m2 = { .min = 3, .max = 7 },
81 	.p = { .min = 7, .max = 98 },
82 	.p1 = { .min = 1, .max = 8 },
83 	.p2 = { .dot_limit = 112000,
84 		.p2_slow = 14, .p2_fast = 7 },
85 };
86 
87 
88 static const struct intel_limit intel_limits_g4x_sdvo = {
89 	.dot = { .min = 25000, .max = 270000 },
90 	.vco = { .min = 1750000, .max = 3500000},
91 	.n = { .min = 1, .max = 4 },
92 	.m = { .min = 104, .max = 138 },
93 	.m1 = { .min = 17, .max = 23 },
94 	.m2 = { .min = 5, .max = 11 },
95 	.p = { .min = 10, .max = 30 },
96 	.p1 = { .min = 1, .max = 3},
97 	.p2 = { .dot_limit = 270000,
98 		.p2_slow = 10,
99 		.p2_fast = 10
100 	},
101 };
102 
103 static const struct intel_limit intel_limits_g4x_hdmi = {
104 	.dot = { .min = 22000, .max = 400000 },
105 	.vco = { .min = 1750000, .max = 3500000},
106 	.n = { .min = 1, .max = 4 },
107 	.m = { .min = 104, .max = 138 },
108 	.m1 = { .min = 16, .max = 23 },
109 	.m2 = { .min = 5, .max = 11 },
110 	.p = { .min = 5, .max = 80 },
111 	.p1 = { .min = 1, .max = 8},
112 	.p2 = { .dot_limit = 165000,
113 		.p2_slow = 10, .p2_fast = 5 },
114 };
115 
116 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
117 	.dot = { .min = 20000, .max = 115000 },
118 	.vco = { .min = 1750000, .max = 3500000 },
119 	.n = { .min = 1, .max = 3 },
120 	.m = { .min = 104, .max = 138 },
121 	.m1 = { .min = 17, .max = 23 },
122 	.m2 = { .min = 5, .max = 11 },
123 	.p = { .min = 28, .max = 112 },
124 	.p1 = { .min = 2, .max = 8 },
125 	.p2 = { .dot_limit = 0,
126 		.p2_slow = 14, .p2_fast = 14
127 	},
128 };
129 
130 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
131 	.dot = { .min = 80000, .max = 224000 },
132 	.vco = { .min = 1750000, .max = 3500000 },
133 	.n = { .min = 1, .max = 3 },
134 	.m = { .min = 104, .max = 138 },
135 	.m1 = { .min = 17, .max = 23 },
136 	.m2 = { .min = 5, .max = 11 },
137 	.p = { .min = 14, .max = 42 },
138 	.p1 = { .min = 2, .max = 6 },
139 	.p2 = { .dot_limit = 0,
140 		.p2_slow = 7, .p2_fast = 7
141 	},
142 };
143 
144 static const struct intel_limit pnv_limits_sdvo = {
145 	.dot = { .min = 20000, .max = 400000},
146 	.vco = { .min = 1700000, .max = 3500000 },
147 	/* Pineview's Ncounter is a ring counter */
148 	.n = { .min = 3, .max = 6 },
149 	.m = { .min = 2, .max = 256 },
150 	/* Pineview only has one combined m divider, which we treat as m2. */
151 	.m1 = { .min = 0, .max = 0 },
152 	.m2 = { .min = 0, .max = 254 },
153 	.p = { .min = 5, .max = 80 },
154 	.p1 = { .min = 1, .max = 8 },
155 	.p2 = { .dot_limit = 200000,
156 		.p2_slow = 10, .p2_fast = 5 },
157 };
158 
159 static const struct intel_limit pnv_limits_lvds = {
160 	.dot = { .min = 20000, .max = 400000 },
161 	.vco = { .min = 1700000, .max = 3500000 },
162 	.n = { .min = 3, .max = 6 },
163 	.m = { .min = 2, .max = 256 },
164 	.m1 = { .min = 0, .max = 0 },
165 	.m2 = { .min = 0, .max = 254 },
166 	.p = { .min = 7, .max = 112 },
167 	.p1 = { .min = 1, .max = 8 },
168 	.p2 = { .dot_limit = 112000,
169 		.p2_slow = 14, .p2_fast = 14 },
170 };
171 
172 /* Ironlake / Sandybridge
173  *
174  * We calculate clock using (register_value + 2) for N/M1/M2, so here
175  * the range value for them is (actual_value - 2).
176  */
177 static const struct intel_limit ilk_limits_dac = {
178 	.dot = { .min = 25000, .max = 350000 },
179 	.vco = { .min = 1760000, .max = 3510000 },
180 	.n = { .min = 1, .max = 5 },
181 	.m = { .min = 79, .max = 127 },
182 	.m1 = { .min = 12, .max = 22 },
183 	.m2 = { .min = 5, .max = 9 },
184 	.p = { .min = 5, .max = 80 },
185 	.p1 = { .min = 1, .max = 8 },
186 	.p2 = { .dot_limit = 225000,
187 		.p2_slow = 10, .p2_fast = 5 },
188 };
189 
190 static const struct intel_limit ilk_limits_single_lvds = {
191 	.dot = { .min = 25000, .max = 350000 },
192 	.vco = { .min = 1760000, .max = 3510000 },
193 	.n = { .min = 1, .max = 3 },
194 	.m = { .min = 79, .max = 118 },
195 	.m1 = { .min = 12, .max = 22 },
196 	.m2 = { .min = 5, .max = 9 },
197 	.p = { .min = 28, .max = 112 },
198 	.p1 = { .min = 2, .max = 8 },
199 	.p2 = { .dot_limit = 225000,
200 		.p2_slow = 14, .p2_fast = 14 },
201 };
202 
203 static const struct intel_limit ilk_limits_dual_lvds = {
204 	.dot = { .min = 25000, .max = 350000 },
205 	.vco = { .min = 1760000, .max = 3510000 },
206 	.n = { .min = 1, .max = 3 },
207 	.m = { .min = 79, .max = 127 },
208 	.m1 = { .min = 12, .max = 22 },
209 	.m2 = { .min = 5, .max = 9 },
210 	.p = { .min = 14, .max = 56 },
211 	.p1 = { .min = 2, .max = 8 },
212 	.p2 = { .dot_limit = 225000,
213 		.p2_slow = 7, .p2_fast = 7 },
214 };
215 
216 /* LVDS 100mhz refclk limits. */
217 static const struct intel_limit ilk_limits_single_lvds_100m = {
218 	.dot = { .min = 25000, .max = 350000 },
219 	.vco = { .min = 1760000, .max = 3510000 },
220 	.n = { .min = 1, .max = 2 },
221 	.m = { .min = 79, .max = 126 },
222 	.m1 = { .min = 12, .max = 22 },
223 	.m2 = { .min = 5, .max = 9 },
224 	.p = { .min = 28, .max = 112 },
225 	.p1 = { .min = 2, .max = 8 },
226 	.p2 = { .dot_limit = 225000,
227 		.p2_slow = 14, .p2_fast = 14 },
228 };
229 
230 static const struct intel_limit ilk_limits_dual_lvds_100m = {
231 	.dot = { .min = 25000, .max = 350000 },
232 	.vco = { .min = 1760000, .max = 3510000 },
233 	.n = { .min = 1, .max = 3 },
234 	.m = { .min = 79, .max = 126 },
235 	.m1 = { .min = 12, .max = 22 },
236 	.m2 = { .min = 5, .max = 9 },
237 	.p = { .min = 14, .max = 42 },
238 	.p1 = { .min = 2, .max = 6 },
239 	.p2 = { .dot_limit = 225000,
240 		.p2_slow = 7, .p2_fast = 7 },
241 };
242 
243 static const struct intel_limit intel_limits_vlv = {
244 	 /*
245 	  * These are the data rate limits (measured in fast clocks)
246 	  * since those are the strictest limits we have. The fast
247 	  * clock and actual rate limits are more relaxed, so checking
248 	  * them would make no difference.
249 	  */
250 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
251 	.vco = { .min = 4000000, .max = 6000000 },
252 	.n = { .min = 1, .max = 7 },
253 	.m1 = { .min = 2, .max = 3 },
254 	.m2 = { .min = 11, .max = 156 },
255 	.p1 = { .min = 2, .max = 3 },
256 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
257 };
258 
259 static const struct intel_limit intel_limits_chv = {
260 	/*
261 	 * These are the data rate limits (measured in fast clocks)
262 	 * since those are the strictest limits we have.  The fast
263 	 * clock and actual rate limits are more relaxed, so checking
264 	 * them would make no difference.
265 	 */
266 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
267 	.vco = { .min = 4800000, .max = 6480000 },
268 	.n = { .min = 1, .max = 1 },
269 	.m1 = { .min = 2, .max = 2 },
270 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
271 	.p1 = { .min = 2, .max = 4 },
272 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
273 };
274 
275 static const struct intel_limit intel_limits_bxt = {
276 	/* FIXME: find real dot limits */
277 	.dot = { .min = 0, .max = INT_MAX },
278 	.vco = { .min = 4800000, .max = 6700000 },
279 	.n = { .min = 1, .max = 1 },
280 	.m1 = { .min = 2, .max = 2 },
281 	/* FIXME: find real m2 limits */
282 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
283 	.p1 = { .min = 2, .max = 4 },
284 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
285 };
286 
287 /*
288  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
289  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
290  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
291  * The helpers' return value is the rate of the clock that is fed to the
292  * display engine's pipe which can be the above fast dot clock rate or a
293  * divided-down version of it.
294  */
295 /* m1 is reserved as 0 in Pineview, n is a ring counter */
296 int pnv_calc_dpll_params(int refclk, struct dpll *clock)
297 {
298 	clock->m = clock->m2 + 2;
299 	clock->p = clock->p1 * clock->p2;
300 	if (WARN_ON(clock->n == 0 || clock->p == 0))
301 		return 0;
302 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
303 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
304 
305 	return clock->dot;
306 }
307 
308 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
309 {
310 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
311 }
312 
313 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
314 {
315 	clock->m = i9xx_dpll_compute_m(clock);
316 	clock->p = clock->p1 * clock->p2;
317 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
318 		return 0;
319 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
320 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
321 
322 	return clock->dot;
323 }
324 
325 int vlv_calc_dpll_params(int refclk, struct dpll *clock)
326 {
327 	clock->m = clock->m1 * clock->m2;
328 	clock->p = clock->p1 * clock->p2;
329 	if (WARN_ON(clock->n == 0 || clock->p == 0))
330 		return 0;
331 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
332 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
333 
334 	return clock->dot / 5;
335 }
336 
337 int chv_calc_dpll_params(int refclk, struct dpll *clock)
338 {
339 	clock->m = clock->m1 * clock->m2;
340 	clock->p = clock->p1 * clock->p2;
341 	if (WARN_ON(clock->n == 0 || clock->p == 0))
342 		return 0;
343 	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
344 					   clock->n << 22);
345 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
346 
347 	return clock->dot / 5;
348 }
349 
350 /*
351  * Returns whether the given set of divisors are valid for a given refclk with
352  * the given connectors.
353  */
354 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
355 			       const struct intel_limit *limit,
356 			       const struct dpll *clock)
357 {
358 	if (clock->n < limit->n.min || limit->n.max < clock->n)
359 		return false;
360 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
361 		return false;
362 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
363 		return false;
364 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
365 		return false;
366 
367 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
368 	    !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
369 		if (clock->m1 <= clock->m2)
370 			return false;
371 
372 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
373 	    !IS_GEN9_LP(dev_priv)) {
374 		if (clock->p < limit->p.min || limit->p.max < clock->p)
375 			return false;
376 		if (clock->m < limit->m.min || limit->m.max < clock->m)
377 			return false;
378 	}
379 
380 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
381 		return false;
382 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
383 	 * connector, etc., rather than just a single range.
384 	 */
385 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
386 		return false;
387 
388 	return true;
389 }
390 
391 static int
392 i9xx_select_p2_div(const struct intel_limit *limit,
393 		   const struct intel_crtc_state *crtc_state,
394 		   int target)
395 {
396 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
397 
398 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
399 		/*
400 		 * For LVDS just rely on its current settings for dual-channel.
401 		 * We haven't figured out how to reliably set up different
402 		 * single/dual channel state, if we even can.
403 		 */
404 		if (intel_is_dual_link_lvds(dev_priv))
405 			return limit->p2.p2_fast;
406 		else
407 			return limit->p2.p2_slow;
408 	} else {
409 		if (target < limit->p2.dot_limit)
410 			return limit->p2.p2_slow;
411 		else
412 			return limit->p2.p2_fast;
413 	}
414 }
415 
416 /*
417  * Returns a set of divisors for the desired target clock with the given
418  * refclk, or FALSE.  The returned values represent the clock equation:
419  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
420  *
421  * Target and reference clocks are specified in kHz.
422  *
423  * If match_clock is provided, then best_clock P divider must match the P
424  * divider from @match_clock used for LVDS downclocking.
425  */
426 static bool
427 i9xx_find_best_dpll(const struct intel_limit *limit,
428 		    struct intel_crtc_state *crtc_state,
429 		    int target, int refclk, struct dpll *match_clock,
430 		    struct dpll *best_clock)
431 {
432 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
433 	struct dpll clock;
434 	int err = target;
435 
436 	memset(best_clock, 0, sizeof(*best_clock));
437 
438 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
439 
440 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
441 	     clock.m1++) {
442 		for (clock.m2 = limit->m2.min;
443 		     clock.m2 <= limit->m2.max; clock.m2++) {
444 			if (clock.m2 >= clock.m1)
445 				break;
446 			for (clock.n = limit->n.min;
447 			     clock.n <= limit->n.max; clock.n++) {
448 				for (clock.p1 = limit->p1.min;
449 					clock.p1 <= limit->p1.max; clock.p1++) {
450 					int this_err;
451 
452 					i9xx_calc_dpll_params(refclk, &clock);
453 					if (!intel_pll_is_valid(to_i915(dev),
454 								limit,
455 								&clock))
456 						continue;
457 					if (match_clock &&
458 					    clock.p != match_clock->p)
459 						continue;
460 
461 					this_err = abs(clock.dot - target);
462 					if (this_err < err) {
463 						*best_clock = clock;
464 						err = this_err;
465 					}
466 				}
467 			}
468 		}
469 	}
470 
471 	return (err != target);
472 }
473 
474 /*
475  * Returns a set of divisors for the desired target clock with the given
476  * refclk, or FALSE.  The returned values represent the clock equation:
477  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
478  *
479  * Target and reference clocks are specified in kHz.
480  *
481  * If match_clock is provided, then best_clock P divider must match the P
482  * divider from @match_clock used for LVDS downclocking.
483  */
484 static bool
485 pnv_find_best_dpll(const struct intel_limit *limit,
486 		   struct intel_crtc_state *crtc_state,
487 		   int target, int refclk, struct dpll *match_clock,
488 		   struct dpll *best_clock)
489 {
490 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
491 	struct dpll clock;
492 	int err = target;
493 
494 	memset(best_clock, 0, sizeof(*best_clock));
495 
496 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
497 
498 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
499 	     clock.m1++) {
500 		for (clock.m2 = limit->m2.min;
501 		     clock.m2 <= limit->m2.max; clock.m2++) {
502 			for (clock.n = limit->n.min;
503 			     clock.n <= limit->n.max; clock.n++) {
504 				for (clock.p1 = limit->p1.min;
505 					clock.p1 <= limit->p1.max; clock.p1++) {
506 					int this_err;
507 
508 					pnv_calc_dpll_params(refclk, &clock);
509 					if (!intel_pll_is_valid(to_i915(dev),
510 								limit,
511 								&clock))
512 						continue;
513 					if (match_clock &&
514 					    clock.p != match_clock->p)
515 						continue;
516 
517 					this_err = abs(clock.dot - target);
518 					if (this_err < err) {
519 						*best_clock = clock;
520 						err = this_err;
521 					}
522 				}
523 			}
524 		}
525 	}
526 
527 	return (err != target);
528 }
529 
530 /*
531  * Returns a set of divisors for the desired target clock with the given
532  * refclk, or FALSE.  The returned values represent the clock equation:
533  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
534  *
535  * Target and reference clocks are specified in kHz.
536  *
537  * If match_clock is provided, then best_clock P divider must match the P
538  * divider from @match_clock used for LVDS downclocking.
539  */
540 static bool
541 g4x_find_best_dpll(const struct intel_limit *limit,
542 		   struct intel_crtc_state *crtc_state,
543 		   int target, int refclk, struct dpll *match_clock,
544 		   struct dpll *best_clock)
545 {
546 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
547 	struct dpll clock;
548 	int max_n;
549 	bool found = false;
550 	/* approximately equals target * 0.00585 */
551 	int err_most = (target >> 8) + (target >> 9);
552 
553 	memset(best_clock, 0, sizeof(*best_clock));
554 
555 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
556 
557 	max_n = limit->n.max;
558 	/* based on hardware requirement, prefer smaller n to precision */
559 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
560 		/* based on hardware requirement, prefere larger m1,m2 */
561 		for (clock.m1 = limit->m1.max;
562 		     clock.m1 >= limit->m1.min; clock.m1--) {
563 			for (clock.m2 = limit->m2.max;
564 			     clock.m2 >= limit->m2.min; clock.m2--) {
565 				for (clock.p1 = limit->p1.max;
566 				     clock.p1 >= limit->p1.min; clock.p1--) {
567 					int this_err;
568 
569 					i9xx_calc_dpll_params(refclk, &clock);
570 					if (!intel_pll_is_valid(to_i915(dev),
571 								limit,
572 								&clock))
573 						continue;
574 
575 					this_err = abs(clock.dot - target);
576 					if (this_err < err_most) {
577 						*best_clock = clock;
578 						err_most = this_err;
579 						max_n = clock.n;
580 						found = true;
581 					}
582 				}
583 			}
584 		}
585 	}
586 	return found;
587 }
588 
589 /*
590  * Check if the calculated PLL configuration is more optimal compared to the
591  * best configuration and error found so far. Return the calculated error.
592  */
593 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
594 			       const struct dpll *calculated_clock,
595 			       const struct dpll *best_clock,
596 			       unsigned int best_error_ppm,
597 			       unsigned int *error_ppm)
598 {
599 	/*
600 	 * For CHV ignore the error and consider only the P value.
601 	 * Prefer a bigger P value based on HW requirements.
602 	 */
603 	if (IS_CHERRYVIEW(to_i915(dev))) {
604 		*error_ppm = 0;
605 
606 		return calculated_clock->p > best_clock->p;
607 	}
608 
609 	if (drm_WARN_ON_ONCE(dev, !target_freq))
610 		return false;
611 
612 	*error_ppm = div_u64(1000000ULL *
613 				abs(target_freq - calculated_clock->dot),
614 			     target_freq);
615 	/*
616 	 * Prefer a better P value over a better (smaller) error if the error
617 	 * is small. Ensure this preference for future configurations too by
618 	 * setting the error to 0.
619 	 */
620 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
621 		*error_ppm = 0;
622 
623 		return true;
624 	}
625 
626 	return *error_ppm + 10 < best_error_ppm;
627 }
628 
629 /*
630  * Returns a set of divisors for the desired target clock with the given
631  * refclk, or FALSE.  The returned values represent the clock equation:
632  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
633  */
634 static bool
635 vlv_find_best_dpll(const struct intel_limit *limit,
636 		   struct intel_crtc_state *crtc_state,
637 		   int target, int refclk, struct dpll *match_clock,
638 		   struct dpll *best_clock)
639 {
640 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
641 	struct drm_device *dev = crtc->base.dev;
642 	struct dpll clock;
643 	unsigned int bestppm = 1000000;
644 	/* min update 19.2 MHz */
645 	int max_n = min(limit->n.max, refclk / 19200);
646 	bool found = false;
647 
648 	target *= 5; /* fast clock */
649 
650 	memset(best_clock, 0, sizeof(*best_clock));
651 
652 	/* based on hardware requirement, prefer smaller n to precision */
653 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
654 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
655 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
656 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
657 				clock.p = clock.p1 * clock.p2;
658 				/* based on hardware requirement, prefer bigger m1,m2 values */
659 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
660 					unsigned int ppm;
661 
662 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
663 								     refclk * clock.m1);
664 
665 					vlv_calc_dpll_params(refclk, &clock);
666 
667 					if (!intel_pll_is_valid(to_i915(dev),
668 								limit,
669 								&clock))
670 						continue;
671 
672 					if (!vlv_PLL_is_optimal(dev, target,
673 								&clock,
674 								best_clock,
675 								bestppm, &ppm))
676 						continue;
677 
678 					*best_clock = clock;
679 					bestppm = ppm;
680 					found = true;
681 				}
682 			}
683 		}
684 	}
685 
686 	return found;
687 }
688 
689 /*
690  * Returns a set of divisors for the desired target clock with the given
691  * refclk, or FALSE.  The returned values represent the clock equation:
692  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
693  */
694 static bool
695 chv_find_best_dpll(const struct intel_limit *limit,
696 		   struct intel_crtc_state *crtc_state,
697 		   int target, int refclk, struct dpll *match_clock,
698 		   struct dpll *best_clock)
699 {
700 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
701 	struct drm_device *dev = crtc->base.dev;
702 	unsigned int best_error_ppm;
703 	struct dpll clock;
704 	u64 m2;
705 	int found = false;
706 
707 	memset(best_clock, 0, sizeof(*best_clock));
708 	best_error_ppm = 1000000;
709 
710 	/*
711 	 * Based on hardware doc, the n always set to 1, and m1 always
712 	 * set to 2.  If requires to support 200Mhz refclk, we need to
713 	 * revisit this because n may not 1 anymore.
714 	 */
715 	clock.n = 1;
716 	clock.m1 = 2;
717 	target *= 5;	/* fast clock */
718 
719 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
720 		for (clock.p2 = limit->p2.p2_fast;
721 				clock.p2 >= limit->p2.p2_slow;
722 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
723 			unsigned int error_ppm;
724 
725 			clock.p = clock.p1 * clock.p2;
726 
727 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
728 						   refclk * clock.m1);
729 
730 			if (m2 > INT_MAX/clock.m1)
731 				continue;
732 
733 			clock.m2 = m2;
734 
735 			chv_calc_dpll_params(refclk, &clock);
736 
737 			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
738 				continue;
739 
740 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
741 						best_error_ppm, &error_ppm))
742 				continue;
743 
744 			*best_clock = clock;
745 			best_error_ppm = error_ppm;
746 			found = true;
747 		}
748 	}
749 
750 	return found;
751 }
752 
753 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
754 			struct dpll *best_clock)
755 {
756 	int refclk = 100000;
757 	const struct intel_limit *limit = &intel_limits_bxt;
758 
759 	return chv_find_best_dpll(limit, crtc_state,
760 				  crtc_state->port_clock, refclk,
761 				  NULL, best_clock);
762 }
763 
764 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
765 {
766 	return (1 << dpll->n) << 16 | dpll->m2;
767 }
768 
769 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
770 				     struct intel_crtc_state *crtc_state,
771 				     struct dpll *reduced_clock)
772 {
773 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
774 	u32 fp, fp2 = 0;
775 
776 	if (IS_PINEVIEW(dev_priv)) {
777 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
778 		if (reduced_clock)
779 			fp2 = pnv_dpll_compute_fp(reduced_clock);
780 	} else {
781 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
782 		if (reduced_clock)
783 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
784 	}
785 
786 	crtc_state->dpll_hw_state.fp0 = fp;
787 
788 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
789 	    reduced_clock) {
790 		crtc_state->dpll_hw_state.fp1 = fp2;
791 	} else {
792 		crtc_state->dpll_hw_state.fp1 = fp;
793 	}
794 }
795 
796 static void i9xx_compute_dpll(struct intel_crtc *crtc,
797 			      struct intel_crtc_state *crtc_state,
798 			      struct dpll *reduced_clock)
799 {
800 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
801 	u32 dpll;
802 	struct dpll *clock = &crtc_state->dpll;
803 
804 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
805 
806 	dpll = DPLL_VGA_MODE_DIS;
807 
808 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
809 		dpll |= DPLLB_MODE_LVDS;
810 	else
811 		dpll |= DPLLB_MODE_DAC_SERIAL;
812 
813 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
814 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
815 		dpll |= (crtc_state->pixel_multiplier - 1)
816 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
817 	}
818 
819 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
820 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
821 		dpll |= DPLL_SDVO_HIGH_SPEED;
822 
823 	if (intel_crtc_has_dp_encoder(crtc_state))
824 		dpll |= DPLL_SDVO_HIGH_SPEED;
825 
826 	/* compute bitmask from p1 value */
827 	if (IS_PINEVIEW(dev_priv))
828 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
829 	else {
830 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
831 		if (IS_G4X(dev_priv) && reduced_clock)
832 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
833 	}
834 	switch (clock->p2) {
835 	case 5:
836 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
837 		break;
838 	case 7:
839 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
840 		break;
841 	case 10:
842 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
843 		break;
844 	case 14:
845 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
846 		break;
847 	}
848 	if (INTEL_GEN(dev_priv) >= 4)
849 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
850 
851 	if (crtc_state->sdvo_tv_clock)
852 		dpll |= PLL_REF_INPUT_TVCLKINBC;
853 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
854 		 intel_panel_use_ssc(dev_priv))
855 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
856 	else
857 		dpll |= PLL_REF_INPUT_DREFCLK;
858 
859 	dpll |= DPLL_VCO_ENABLE;
860 	crtc_state->dpll_hw_state.dpll = dpll;
861 
862 	if (INTEL_GEN(dev_priv) >= 4) {
863 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
864 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
865 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
866 	}
867 }
868 
869 static void i8xx_compute_dpll(struct intel_crtc *crtc,
870 			      struct intel_crtc_state *crtc_state,
871 			      struct dpll *reduced_clock)
872 {
873 	struct drm_device *dev = crtc->base.dev;
874 	struct drm_i915_private *dev_priv = to_i915(dev);
875 	u32 dpll;
876 	struct dpll *clock = &crtc_state->dpll;
877 
878 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
879 
880 	dpll = DPLL_VGA_MODE_DIS;
881 
882 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
883 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
884 	} else {
885 		if (clock->p1 == 2)
886 			dpll |= PLL_P1_DIVIDE_BY_TWO;
887 		else
888 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
889 		if (clock->p2 == 4)
890 			dpll |= PLL_P2_DIVIDE_BY_4;
891 	}
892 
893 	/*
894 	 * Bspec:
895 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
896 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
897 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
898 	 *  Enable) must be set to “1” in both the DPLL A Control Register
899 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
900 	 *
901 	 * For simplicity We simply keep both bits always enabled in
902 	 * both DPLLS. The spec says we should disable the DVO 2X clock
903 	 * when not needed, but this seems to work fine in practice.
904 	 */
905 	if (IS_I830(dev_priv) ||
906 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
907 		dpll |= DPLL_DVO_2X_MODE;
908 
909 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
910 	    intel_panel_use_ssc(dev_priv))
911 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
912 	else
913 		dpll |= PLL_REF_INPUT_DREFCLK;
914 
915 	dpll |= DPLL_VCO_ENABLE;
916 	crtc_state->dpll_hw_state.dpll = dpll;
917 }
918 
919 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
920 				  struct intel_crtc_state *crtc_state)
921 {
922 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
923 	struct intel_atomic_state *state =
924 		to_intel_atomic_state(crtc_state->uapi.state);
925 
926 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
927 	    INTEL_GEN(dev_priv) >= 11) {
928 		struct intel_encoder *encoder =
929 			intel_get_crtc_new_encoder(state, crtc_state);
930 
931 		if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
932 			drm_dbg_kms(&dev_priv->drm,
933 				    "failed to find PLL for pipe %c\n",
934 				    pipe_name(crtc->pipe));
935 			return -EINVAL;
936 		}
937 	}
938 
939 	return 0;
940 }
941 
942 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
943 {
944 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
945 }
946 
947 
948 static void ilk_compute_dpll(struct intel_crtc *crtc,
949 			     struct intel_crtc_state *crtc_state,
950 			     struct dpll *reduced_clock)
951 {
952 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
953 	u32 dpll, fp, fp2;
954 	int factor;
955 
956 	/* Enable autotuning of the PLL clock (if permissible) */
957 	factor = 21;
958 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
959 		if ((intel_panel_use_ssc(dev_priv) &&
960 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
961 		    (HAS_PCH_IBX(dev_priv) &&
962 		     intel_is_dual_link_lvds(dev_priv)))
963 			factor = 25;
964 	} else if (crtc_state->sdvo_tv_clock) {
965 		factor = 20;
966 	}
967 
968 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
969 
970 	if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
971 		fp |= FP_CB_TUNE;
972 
973 	if (reduced_clock) {
974 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
975 
976 		if (reduced_clock->m < factor * reduced_clock->n)
977 			fp2 |= FP_CB_TUNE;
978 	} else {
979 		fp2 = fp;
980 	}
981 
982 	dpll = 0;
983 
984 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
985 		dpll |= DPLLB_MODE_LVDS;
986 	else
987 		dpll |= DPLLB_MODE_DAC_SERIAL;
988 
989 	dpll |= (crtc_state->pixel_multiplier - 1)
990 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
991 
992 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
993 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
994 		dpll |= DPLL_SDVO_HIGH_SPEED;
995 
996 	if (intel_crtc_has_dp_encoder(crtc_state))
997 		dpll |= DPLL_SDVO_HIGH_SPEED;
998 
999 	/*
1000 	 * The high speed IO clock is only really required for
1001 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1002 	 * possible to share the DPLL between CRT and HDMI. Enabling
1003 	 * the clock needlessly does no real harm, except use up a
1004 	 * bit of power potentially.
1005 	 *
1006 	 * We'll limit this to IVB with 3 pipes, since it has only two
1007 	 * DPLLs and so DPLL sharing is the only way to get three pipes
1008 	 * driving PCH ports at the same time. On SNB we could do this,
1009 	 * and potentially avoid enabling the second DPLL, but it's not
1010 	 * clear if it''s a win or loss power wise. No point in doing
1011 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1012 	 */
1013 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1014 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1015 		dpll |= DPLL_SDVO_HIGH_SPEED;
1016 
1017 	/* compute bitmask from p1 value */
1018 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1019 	/* also FPA1 */
1020 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1021 
1022 	switch (crtc_state->dpll.p2) {
1023 	case 5:
1024 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1025 		break;
1026 	case 7:
1027 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1028 		break;
1029 	case 10:
1030 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1031 		break;
1032 	case 14:
1033 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1034 		break;
1035 	}
1036 
1037 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1038 	    intel_panel_use_ssc(dev_priv))
1039 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1040 	else
1041 		dpll |= PLL_REF_INPUT_DREFCLK;
1042 
1043 	dpll |= DPLL_VCO_ENABLE;
1044 
1045 	crtc_state->dpll_hw_state.dpll = dpll;
1046 	crtc_state->dpll_hw_state.fp0 = fp;
1047 	crtc_state->dpll_hw_state.fp1 = fp2;
1048 }
1049 
1050 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
1051 				  struct intel_crtc_state *crtc_state)
1052 {
1053 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1054 	struct intel_atomic_state *state =
1055 		to_intel_atomic_state(crtc_state->uapi.state);
1056 	const struct intel_limit *limit;
1057 	int refclk = 120000;
1058 
1059 	memset(&crtc_state->dpll_hw_state, 0,
1060 	       sizeof(crtc_state->dpll_hw_state));
1061 
1062 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1063 	if (!crtc_state->has_pch_encoder)
1064 		return 0;
1065 
1066 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1067 		if (intel_panel_use_ssc(dev_priv)) {
1068 			drm_dbg_kms(&dev_priv->drm,
1069 				    "using SSC reference clock of %d kHz\n",
1070 				    dev_priv->vbt.lvds_ssc_freq);
1071 			refclk = dev_priv->vbt.lvds_ssc_freq;
1072 		}
1073 
1074 		if (intel_is_dual_link_lvds(dev_priv)) {
1075 			if (refclk == 100000)
1076 				limit = &ilk_limits_dual_lvds_100m;
1077 			else
1078 				limit = &ilk_limits_dual_lvds;
1079 		} else {
1080 			if (refclk == 100000)
1081 				limit = &ilk_limits_single_lvds_100m;
1082 			else
1083 				limit = &ilk_limits_single_lvds;
1084 		}
1085 	} else {
1086 		limit = &ilk_limits_dac;
1087 	}
1088 
1089 	if (!crtc_state->clock_set &&
1090 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1091 				refclk, NULL, &crtc_state->dpll)) {
1092 		drm_err(&dev_priv->drm,
1093 			"Couldn't find PLL settings for mode!\n");
1094 		return -EINVAL;
1095 	}
1096 
1097 	ilk_compute_dpll(crtc, crtc_state, NULL);
1098 
1099 	if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
1100 		drm_dbg_kms(&dev_priv->drm,
1101 			    "failed to find PLL for pipe %c\n",
1102 			    pipe_name(crtc->pipe));
1103 		return -EINVAL;
1104 	}
1105 
1106 	return 0;
1107 }
1108 
1109 void vlv_compute_dpll(struct intel_crtc *crtc,
1110 		      struct intel_crtc_state *pipe_config)
1111 {
1112 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1113 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1114 	if (crtc->pipe != PIPE_A)
1115 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1116 
1117 	/* DPLL not used with DSI, but still need the rest set up */
1118 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
1119 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
1120 			DPLL_EXT_BUFFER_ENABLE_VLV;
1121 
1122 	pipe_config->dpll_hw_state.dpll_md =
1123 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1124 }
1125 
1126 void chv_compute_dpll(struct intel_crtc *crtc,
1127 		      struct intel_crtc_state *pipe_config)
1128 {
1129 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
1130 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1131 	if (crtc->pipe != PIPE_A)
1132 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1133 
1134 	/* DPLL not used with DSI, but still need the rest set up */
1135 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
1136 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
1137 
1138 	pipe_config->dpll_hw_state.dpll_md =
1139 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1140 }
1141 
1142 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
1143 				  struct intel_crtc_state *crtc_state)
1144 {
1145 	int refclk = 100000;
1146 	const struct intel_limit *limit = &intel_limits_chv;
1147 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1148 
1149 	memset(&crtc_state->dpll_hw_state, 0,
1150 	       sizeof(crtc_state->dpll_hw_state));
1151 
1152 	if (!crtc_state->clock_set &&
1153 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1154 				refclk, NULL, &crtc_state->dpll)) {
1155 		drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
1156 		return -EINVAL;
1157 	}
1158 
1159 	chv_compute_dpll(crtc, crtc_state);
1160 
1161 	return 0;
1162 }
1163 
1164 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
1165 				  struct intel_crtc_state *crtc_state)
1166 {
1167 	int refclk = 100000;
1168 	const struct intel_limit *limit = &intel_limits_vlv;
1169 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1170 
1171 	memset(&crtc_state->dpll_hw_state, 0,
1172 	       sizeof(crtc_state->dpll_hw_state));
1173 
1174 	if (!crtc_state->clock_set &&
1175 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1176 				refclk, NULL, &crtc_state->dpll)) {
1177 		drm_err(&i915->drm,  "Couldn't find PLL settings for mode!\n");
1178 		return -EINVAL;
1179 	}
1180 
1181 	vlv_compute_dpll(crtc, crtc_state);
1182 
1183 	return 0;
1184 }
1185 
1186 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
1187 				  struct intel_crtc_state *crtc_state)
1188 {
1189 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1190 	const struct intel_limit *limit;
1191 	int refclk = 96000;
1192 
1193 	memset(&crtc_state->dpll_hw_state, 0,
1194 	       sizeof(crtc_state->dpll_hw_state));
1195 
1196 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1197 		if (intel_panel_use_ssc(dev_priv)) {
1198 			refclk = dev_priv->vbt.lvds_ssc_freq;
1199 			drm_dbg_kms(&dev_priv->drm,
1200 				    "using SSC reference clock of %d kHz\n",
1201 				    refclk);
1202 		}
1203 
1204 		if (intel_is_dual_link_lvds(dev_priv))
1205 			limit = &intel_limits_g4x_dual_channel_lvds;
1206 		else
1207 			limit = &intel_limits_g4x_single_channel_lvds;
1208 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1209 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1210 		limit = &intel_limits_g4x_hdmi;
1211 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1212 		limit = &intel_limits_g4x_sdvo;
1213 	} else {
1214 		/* The option is for other outputs */
1215 		limit = &intel_limits_i9xx_sdvo;
1216 	}
1217 
1218 	if (!crtc_state->clock_set &&
1219 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1220 				refclk, NULL, &crtc_state->dpll)) {
1221 		drm_err(&dev_priv->drm,
1222 			"Couldn't find PLL settings for mode!\n");
1223 		return -EINVAL;
1224 	}
1225 
1226 	i9xx_compute_dpll(crtc, crtc_state, NULL);
1227 
1228 	return 0;
1229 }
1230 
1231 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
1232 				  struct intel_crtc_state *crtc_state)
1233 {
1234 	struct drm_device *dev = crtc->base.dev;
1235 	struct drm_i915_private *dev_priv = to_i915(dev);
1236 	const struct intel_limit *limit;
1237 	int refclk = 96000;
1238 
1239 	memset(&crtc_state->dpll_hw_state, 0,
1240 	       sizeof(crtc_state->dpll_hw_state));
1241 
1242 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1243 		if (intel_panel_use_ssc(dev_priv)) {
1244 			refclk = dev_priv->vbt.lvds_ssc_freq;
1245 			drm_dbg_kms(&dev_priv->drm,
1246 				    "using SSC reference clock of %d kHz\n",
1247 				    refclk);
1248 		}
1249 
1250 		limit = &pnv_limits_lvds;
1251 	} else {
1252 		limit = &pnv_limits_sdvo;
1253 	}
1254 
1255 	if (!crtc_state->clock_set &&
1256 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1257 				refclk, NULL, &crtc_state->dpll)) {
1258 		drm_err(&dev_priv->drm,
1259 			"Couldn't find PLL settings for mode!\n");
1260 		return -EINVAL;
1261 	}
1262 
1263 	i9xx_compute_dpll(crtc, crtc_state, NULL);
1264 
1265 	return 0;
1266 }
1267 
1268 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
1269 				   struct intel_crtc_state *crtc_state)
1270 {
1271 	struct drm_device *dev = crtc->base.dev;
1272 	struct drm_i915_private *dev_priv = to_i915(dev);
1273 	const struct intel_limit *limit;
1274 	int refclk = 96000;
1275 
1276 	memset(&crtc_state->dpll_hw_state, 0,
1277 	       sizeof(crtc_state->dpll_hw_state));
1278 
1279 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1280 		if (intel_panel_use_ssc(dev_priv)) {
1281 			refclk = dev_priv->vbt.lvds_ssc_freq;
1282 			drm_dbg_kms(&dev_priv->drm,
1283 				    "using SSC reference clock of %d kHz\n",
1284 				    refclk);
1285 		}
1286 
1287 		limit = &intel_limits_i9xx_lvds;
1288 	} else {
1289 		limit = &intel_limits_i9xx_sdvo;
1290 	}
1291 
1292 	if (!crtc_state->clock_set &&
1293 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1294 				 refclk, NULL, &crtc_state->dpll)) {
1295 		drm_err(&dev_priv->drm,
1296 			"Couldn't find PLL settings for mode!\n");
1297 		return -EINVAL;
1298 	}
1299 
1300 	i9xx_compute_dpll(crtc, crtc_state, NULL);
1301 
1302 	return 0;
1303 }
1304 
1305 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
1306 				   struct intel_crtc_state *crtc_state)
1307 {
1308 	struct drm_device *dev = crtc->base.dev;
1309 	struct drm_i915_private *dev_priv = to_i915(dev);
1310 	const struct intel_limit *limit;
1311 	int refclk = 48000;
1312 
1313 	memset(&crtc_state->dpll_hw_state, 0,
1314 	       sizeof(crtc_state->dpll_hw_state));
1315 
1316 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1317 		if (intel_panel_use_ssc(dev_priv)) {
1318 			refclk = dev_priv->vbt.lvds_ssc_freq;
1319 			drm_dbg_kms(&dev_priv->drm,
1320 				    "using SSC reference clock of %d kHz\n",
1321 				    refclk);
1322 		}
1323 
1324 		limit = &intel_limits_i8xx_lvds;
1325 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1326 		limit = &intel_limits_i8xx_dvo;
1327 	} else {
1328 		limit = &intel_limits_i8xx_dac;
1329 	}
1330 
1331 	if (!crtc_state->clock_set &&
1332 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1333 				 refclk, NULL, &crtc_state->dpll)) {
1334 		drm_err(&dev_priv->drm,
1335 			"Couldn't find PLL settings for mode!\n");
1336 		return -EINVAL;
1337 	}
1338 
1339 	i8xx_compute_dpll(crtc, crtc_state, NULL);
1340 
1341 	return 0;
1342 }
1343 
1344 void
1345 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1346 {
1347 	if (INTEL_GEN(dev_priv) >= 9 || HAS_DDI(dev_priv))
1348 		dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
1349 	else if (HAS_PCH_SPLIT(dev_priv))
1350 		dev_priv->display.crtc_compute_clock = ilk_crtc_compute_clock;
1351 	else if (IS_CHERRYVIEW(dev_priv))
1352 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
1353 	else if (IS_VALLEYVIEW(dev_priv))
1354 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
1355 	else if (IS_G4X(dev_priv))
1356 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
1357 	else if (IS_PINEVIEW(dev_priv))
1358 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
1359 	else if (!IS_GEN(dev_priv, 2))
1360 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
1361 	else
1362 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
1363 }
1364