1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
8
9 #include "i915_reg.h"
10 #include "intel_crtc.h"
11 #include "intel_cx0_phy.h"
12 #include "intel_de.h"
13 #include "intel_display.h"
14 #include "intel_display_types.h"
15 #include "intel_dpio_phy.h"
16 #include "intel_dpll.h"
17 #include "intel_lvds.h"
18 #include "intel_panel.h"
19 #include "intel_pps.h"
20 #include "intel_snps_phy.h"
21 #include "vlv_sideband.h"
22
23 struct intel_dpll_funcs {
24 int (*crtc_compute_clock)(struct intel_atomic_state *state,
25 struct intel_crtc *crtc);
26 int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
27 struct intel_crtc *crtc);
28 };
29
30 struct intel_limit {
31 struct {
32 int min, max;
33 } dot, vco, n, m, m1, m2, p, p1;
34
35 struct {
36 int dot_limit;
37 int p2_slow, p2_fast;
38 } p2;
39 };
40 static const struct intel_limit intel_limits_i8xx_dac = {
41 .dot = { .min = 25000, .max = 350000 },
42 .vco = { .min = 908000, .max = 1512000 },
43 .n = { .min = 2, .max = 16 },
44 .m = { .min = 96, .max = 140 },
45 .m1 = { .min = 18, .max = 26 },
46 .m2 = { .min = 6, .max = 16 },
47 .p = { .min = 4, .max = 128 },
48 .p1 = { .min = 2, .max = 33 },
49 .p2 = { .dot_limit = 165000,
50 .p2_slow = 4, .p2_fast = 2 },
51 };
52
53 static const struct intel_limit intel_limits_i8xx_dvo = {
54 .dot = { .min = 25000, .max = 350000 },
55 .vco = { .min = 908000, .max = 1512000 },
56 .n = { .min = 2, .max = 16 },
57 .m = { .min = 96, .max = 140 },
58 .m1 = { .min = 18, .max = 26 },
59 .m2 = { .min = 6, .max = 16 },
60 .p = { .min = 4, .max = 128 },
61 .p1 = { .min = 2, .max = 33 },
62 .p2 = { .dot_limit = 165000,
63 .p2_slow = 4, .p2_fast = 4 },
64 };
65
66 static const struct intel_limit intel_limits_i8xx_lvds = {
67 .dot = { .min = 25000, .max = 350000 },
68 .vco = { .min = 908000, .max = 1512000 },
69 .n = { .min = 2, .max = 16 },
70 .m = { .min = 96, .max = 140 },
71 .m1 = { .min = 18, .max = 26 },
72 .m2 = { .min = 6, .max = 16 },
73 .p = { .min = 4, .max = 128 },
74 .p1 = { .min = 1, .max = 6 },
75 .p2 = { .dot_limit = 165000,
76 .p2_slow = 14, .p2_fast = 7 },
77 };
78
79 static const struct intel_limit intel_limits_i9xx_sdvo = {
80 .dot = { .min = 20000, .max = 400000 },
81 .vco = { .min = 1400000, .max = 2800000 },
82 .n = { .min = 1, .max = 6 },
83 .m = { .min = 70, .max = 120 },
84 .m1 = { .min = 8, .max = 18 },
85 .m2 = { .min = 3, .max = 7 },
86 .p = { .min = 5, .max = 80 },
87 .p1 = { .min = 1, .max = 8 },
88 .p2 = { .dot_limit = 200000,
89 .p2_slow = 10, .p2_fast = 5 },
90 };
91
92 static const struct intel_limit intel_limits_i9xx_lvds = {
93 .dot = { .min = 20000, .max = 400000 },
94 .vco = { .min = 1400000, .max = 2800000 },
95 .n = { .min = 1, .max = 6 },
96 .m = { .min = 70, .max = 120 },
97 .m1 = { .min = 8, .max = 18 },
98 .m2 = { .min = 3, .max = 7 },
99 .p = { .min = 7, .max = 98 },
100 .p1 = { .min = 1, .max = 8 },
101 .p2 = { .dot_limit = 112000,
102 .p2_slow = 14, .p2_fast = 7 },
103 };
104
105
106 static const struct intel_limit intel_limits_g4x_sdvo = {
107 .dot = { .min = 25000, .max = 270000 },
108 .vco = { .min = 1750000, .max = 3500000},
109 .n = { .min = 1, .max = 4 },
110 .m = { .min = 104, .max = 138 },
111 .m1 = { .min = 17, .max = 23 },
112 .m2 = { .min = 5, .max = 11 },
113 .p = { .min = 10, .max = 30 },
114 .p1 = { .min = 1, .max = 3},
115 .p2 = { .dot_limit = 270000,
116 .p2_slow = 10,
117 .p2_fast = 10
118 },
119 };
120
121 static const struct intel_limit intel_limits_g4x_hdmi = {
122 .dot = { .min = 22000, .max = 400000 },
123 .vco = { .min = 1750000, .max = 3500000},
124 .n = { .min = 1, .max = 4 },
125 .m = { .min = 104, .max = 138 },
126 .m1 = { .min = 16, .max = 23 },
127 .m2 = { .min = 5, .max = 11 },
128 .p = { .min = 5, .max = 80 },
129 .p1 = { .min = 1, .max = 8},
130 .p2 = { .dot_limit = 165000,
131 .p2_slow = 10, .p2_fast = 5 },
132 };
133
134 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
135 .dot = { .min = 20000, .max = 115000 },
136 .vco = { .min = 1750000, .max = 3500000 },
137 .n = { .min = 1, .max = 3 },
138 .m = { .min = 104, .max = 138 },
139 .m1 = { .min = 17, .max = 23 },
140 .m2 = { .min = 5, .max = 11 },
141 .p = { .min = 28, .max = 112 },
142 .p1 = { .min = 2, .max = 8 },
143 .p2 = { .dot_limit = 0,
144 .p2_slow = 14, .p2_fast = 14
145 },
146 };
147
148 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
149 .dot = { .min = 80000, .max = 224000 },
150 .vco = { .min = 1750000, .max = 3500000 },
151 .n = { .min = 1, .max = 3 },
152 .m = { .min = 104, .max = 138 },
153 .m1 = { .min = 17, .max = 23 },
154 .m2 = { .min = 5, .max = 11 },
155 .p = { .min = 14, .max = 42 },
156 .p1 = { .min = 2, .max = 6 },
157 .p2 = { .dot_limit = 0,
158 .p2_slow = 7, .p2_fast = 7
159 },
160 };
161
162 static const struct intel_limit pnv_limits_sdvo = {
163 .dot = { .min = 20000, .max = 400000},
164 .vco = { .min = 1700000, .max = 3500000 },
165 /* Pineview's Ncounter is a ring counter */
166 .n = { .min = 3, .max = 6 },
167 .m = { .min = 2, .max = 256 },
168 /* Pineview only has one combined m divider, which we treat as m2. */
169 .m1 = { .min = 0, .max = 0 },
170 .m2 = { .min = 0, .max = 254 },
171 .p = { .min = 5, .max = 80 },
172 .p1 = { .min = 1, .max = 8 },
173 .p2 = { .dot_limit = 200000,
174 .p2_slow = 10, .p2_fast = 5 },
175 };
176
177 static const struct intel_limit pnv_limits_lvds = {
178 .dot = { .min = 20000, .max = 400000 },
179 .vco = { .min = 1700000, .max = 3500000 },
180 .n = { .min = 3, .max = 6 },
181 .m = { .min = 2, .max = 256 },
182 .m1 = { .min = 0, .max = 0 },
183 .m2 = { .min = 0, .max = 254 },
184 .p = { .min = 7, .max = 112 },
185 .p1 = { .min = 1, .max = 8 },
186 .p2 = { .dot_limit = 112000,
187 .p2_slow = 14, .p2_fast = 14 },
188 };
189
190 /* Ironlake / Sandybridge
191 *
192 * We calculate clock using (register_value + 2) for N/M1/M2, so here
193 * the range value for them is (actual_value - 2).
194 */
195 static const struct intel_limit ilk_limits_dac = {
196 .dot = { .min = 25000, .max = 350000 },
197 .vco = { .min = 1760000, .max = 3510000 },
198 .n = { .min = 1, .max = 5 },
199 .m = { .min = 79, .max = 127 },
200 .m1 = { .min = 12, .max = 22 },
201 .m2 = { .min = 5, .max = 9 },
202 .p = { .min = 5, .max = 80 },
203 .p1 = { .min = 1, .max = 8 },
204 .p2 = { .dot_limit = 225000,
205 .p2_slow = 10, .p2_fast = 5 },
206 };
207
208 static const struct intel_limit ilk_limits_single_lvds = {
209 .dot = { .min = 25000, .max = 350000 },
210 .vco = { .min = 1760000, .max = 3510000 },
211 .n = { .min = 1, .max = 3 },
212 .m = { .min = 79, .max = 118 },
213 .m1 = { .min = 12, .max = 22 },
214 .m2 = { .min = 5, .max = 9 },
215 .p = { .min = 28, .max = 112 },
216 .p1 = { .min = 2, .max = 8 },
217 .p2 = { .dot_limit = 225000,
218 .p2_slow = 14, .p2_fast = 14 },
219 };
220
221 static const struct intel_limit ilk_limits_dual_lvds = {
222 .dot = { .min = 25000, .max = 350000 },
223 .vco = { .min = 1760000, .max = 3510000 },
224 .n = { .min = 1, .max = 3 },
225 .m = { .min = 79, .max = 127 },
226 .m1 = { .min = 12, .max = 22 },
227 .m2 = { .min = 5, .max = 9 },
228 .p = { .min = 14, .max = 56 },
229 .p1 = { .min = 2, .max = 8 },
230 .p2 = { .dot_limit = 225000,
231 .p2_slow = 7, .p2_fast = 7 },
232 };
233
234 /* LVDS 100mhz refclk limits. */
235 static const struct intel_limit ilk_limits_single_lvds_100m = {
236 .dot = { .min = 25000, .max = 350000 },
237 .vco = { .min = 1760000, .max = 3510000 },
238 .n = { .min = 1, .max = 2 },
239 .m = { .min = 79, .max = 126 },
240 .m1 = { .min = 12, .max = 22 },
241 .m2 = { .min = 5, .max = 9 },
242 .p = { .min = 28, .max = 112 },
243 .p1 = { .min = 2, .max = 8 },
244 .p2 = { .dot_limit = 225000,
245 .p2_slow = 14, .p2_fast = 14 },
246 };
247
248 static const struct intel_limit ilk_limits_dual_lvds_100m = {
249 .dot = { .min = 25000, .max = 350000 },
250 .vco = { .min = 1760000, .max = 3510000 },
251 .n = { .min = 1, .max = 3 },
252 .m = { .min = 79, .max = 126 },
253 .m1 = { .min = 12, .max = 22 },
254 .m2 = { .min = 5, .max = 9 },
255 .p = { .min = 14, .max = 42 },
256 .p1 = { .min = 2, .max = 6 },
257 .p2 = { .dot_limit = 225000,
258 .p2_slow = 7, .p2_fast = 7 },
259 };
260
261 static const struct intel_limit intel_limits_vlv = {
262 /*
263 * These are based on the data rate limits (measured in fast clocks)
264 * since those are the strictest limits we have. The fast
265 * clock and actual rate limits are more relaxed, so checking
266 * them would make no difference.
267 */
268 .dot = { .min = 25000, .max = 270000 },
269 .vco = { .min = 4000000, .max = 6000000 },
270 .n = { .min = 1, .max = 7 },
271 .m1 = { .min = 2, .max = 3 },
272 .m2 = { .min = 11, .max = 156 },
273 .p1 = { .min = 2, .max = 3 },
274 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
275 };
276
277 static const struct intel_limit intel_limits_chv = {
278 /*
279 * These are based on the data rate limits (measured in fast clocks)
280 * since those are the strictest limits we have. The fast
281 * clock and actual rate limits are more relaxed, so checking
282 * them would make no difference.
283 */
284 .dot = { .min = 25000, .max = 540000 },
285 .vco = { .min = 4800000, .max = 6480000 },
286 .n = { .min = 1, .max = 1 },
287 .m1 = { .min = 2, .max = 2 },
288 .m2 = { .min = 24 << 22, .max = 175 << 22 },
289 .p1 = { .min = 2, .max = 4 },
290 .p2 = { .p2_slow = 1, .p2_fast = 14 },
291 };
292
293 static const struct intel_limit intel_limits_bxt = {
294 .dot = { .min = 25000, .max = 594000 },
295 .vco = { .min = 4800000, .max = 6700000 },
296 .n = { .min = 1, .max = 1 },
297 .m1 = { .min = 2, .max = 2 },
298 /* FIXME: find real m2 limits */
299 .m2 = { .min = 2 << 22, .max = 255 << 22 },
300 .p1 = { .min = 2, .max = 4 },
301 .p2 = { .p2_slow = 1, .p2_fast = 20 },
302 };
303
304 /*
305 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
306 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
307 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
308 * The helpers' return value is the rate of the clock that is fed to the
309 * display engine's pipe which can be the above fast dot clock rate or a
310 * divided-down version of it.
311 */
312 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)313 int pnv_calc_dpll_params(int refclk, struct dpll *clock)
314 {
315 clock->m = clock->m2 + 2;
316 clock->p = clock->p1 * clock->p2;
317 if (WARN_ON(clock->n == 0 || clock->p == 0))
318 return 0;
319 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
320 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
321
322 return clock->dot;
323 }
324
i9xx_dpll_compute_m(const struct dpll * dpll)325 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
326 {
327 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
328 }
329
i9xx_calc_dpll_params(int refclk,struct dpll * clock)330 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
331 {
332 clock->m = i9xx_dpll_compute_m(clock);
333 clock->p = clock->p1 * clock->p2;
334 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
335 return 0;
336 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
337 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
338
339 return clock->dot;
340 }
341
vlv_calc_dpll_params(int refclk,struct dpll * clock)342 int vlv_calc_dpll_params(int refclk, struct dpll *clock)
343 {
344 clock->m = clock->m1 * clock->m2;
345 clock->p = clock->p1 * clock->p2 * 5;
346 if (WARN_ON(clock->n == 0 || clock->p == 0))
347 return 0;
348 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
349 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
350
351 return clock->dot;
352 }
353
chv_calc_dpll_params(int refclk,struct dpll * clock)354 int chv_calc_dpll_params(int refclk, struct dpll *clock)
355 {
356 clock->m = clock->m1 * clock->m2;
357 clock->p = clock->p1 * clock->p2 * 5;
358 if (WARN_ON(clock->n == 0 || clock->p == 0))
359 return 0;
360 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
361 clock->n << 22);
362 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
363
364 return clock->dot;
365 }
366
367 /*
368 * Returns whether the given set of divisors are valid for a given refclk with
369 * the given connectors.
370 */
intel_pll_is_valid(struct drm_i915_private * dev_priv,const struct intel_limit * limit,const struct dpll * clock)371 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
372 const struct intel_limit *limit,
373 const struct dpll *clock)
374 {
375 if (clock->n < limit->n.min || limit->n.max < clock->n)
376 return false;
377 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
378 return false;
379 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
380 return false;
381 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
382 return false;
383
384 if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
385 if (clock->m1 <= clock->m2)
386 return false;
387
388 if (!IS_LP(dev_priv)) {
389 if (clock->p < limit->p.min || limit->p.max < clock->p)
390 return false;
391 if (clock->m < limit->m.min || limit->m.max < clock->m)
392 return false;
393 }
394
395 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
396 return false;
397 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
398 * connector, etc., rather than just a single range.
399 */
400 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
401 return false;
402
403 return true;
404 }
405
406 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)407 i9xx_select_p2_div(const struct intel_limit *limit,
408 const struct intel_crtc_state *crtc_state,
409 int target)
410 {
411 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
412
413 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
414 /*
415 * For LVDS just rely on its current settings for dual-channel.
416 * We haven't figured out how to reliably set up different
417 * single/dual channel state, if we even can.
418 */
419 if (intel_is_dual_link_lvds(dev_priv))
420 return limit->p2.p2_fast;
421 else
422 return limit->p2.p2_slow;
423 } else {
424 if (target < limit->p2.dot_limit)
425 return limit->p2.p2_slow;
426 else
427 return limit->p2.p2_fast;
428 }
429 }
430
431 /*
432 * Returns a set of divisors for the desired target clock with the given
433 * refclk, or FALSE.
434 *
435 * Target and reference clocks are specified in kHz.
436 *
437 * If match_clock is provided, then best_clock P divider must match the P
438 * divider from @match_clock used for LVDS downclocking.
439 */
440 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)441 i9xx_find_best_dpll(const struct intel_limit *limit,
442 struct intel_crtc_state *crtc_state,
443 int target, int refclk,
444 const struct dpll *match_clock,
445 struct dpll *best_clock)
446 {
447 struct drm_device *dev = crtc_state->uapi.crtc->dev;
448 struct dpll clock;
449 int err = target;
450
451 memset(best_clock, 0, sizeof(*best_clock));
452
453 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
454
455 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
456 clock.m1++) {
457 for (clock.m2 = limit->m2.min;
458 clock.m2 <= limit->m2.max; clock.m2++) {
459 if (clock.m2 >= clock.m1)
460 break;
461 for (clock.n = limit->n.min;
462 clock.n <= limit->n.max; clock.n++) {
463 for (clock.p1 = limit->p1.min;
464 clock.p1 <= limit->p1.max; clock.p1++) {
465 int this_err;
466
467 i9xx_calc_dpll_params(refclk, &clock);
468 if (!intel_pll_is_valid(to_i915(dev),
469 limit,
470 &clock))
471 continue;
472 if (match_clock &&
473 clock.p != match_clock->p)
474 continue;
475
476 this_err = abs(clock.dot - target);
477 if (this_err < err) {
478 *best_clock = clock;
479 err = this_err;
480 }
481 }
482 }
483 }
484 }
485
486 return (err != target);
487 }
488
489 /*
490 * Returns a set of divisors for the desired target clock with the given
491 * refclk, or FALSE.
492 *
493 * Target and reference clocks are specified in kHz.
494 *
495 * If match_clock is provided, then best_clock P divider must match the P
496 * divider from @match_clock used for LVDS downclocking.
497 */
498 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)499 pnv_find_best_dpll(const struct intel_limit *limit,
500 struct intel_crtc_state *crtc_state,
501 int target, int refclk,
502 const struct dpll *match_clock,
503 struct dpll *best_clock)
504 {
505 struct drm_device *dev = crtc_state->uapi.crtc->dev;
506 struct dpll clock;
507 int err = target;
508
509 memset(best_clock, 0, sizeof(*best_clock));
510
511 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
512
513 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
514 clock.m1++) {
515 for (clock.m2 = limit->m2.min;
516 clock.m2 <= limit->m2.max; clock.m2++) {
517 for (clock.n = limit->n.min;
518 clock.n <= limit->n.max; clock.n++) {
519 for (clock.p1 = limit->p1.min;
520 clock.p1 <= limit->p1.max; clock.p1++) {
521 int this_err;
522
523 pnv_calc_dpll_params(refclk, &clock);
524 if (!intel_pll_is_valid(to_i915(dev),
525 limit,
526 &clock))
527 continue;
528 if (match_clock &&
529 clock.p != match_clock->p)
530 continue;
531
532 this_err = abs(clock.dot - target);
533 if (this_err < err) {
534 *best_clock = clock;
535 err = this_err;
536 }
537 }
538 }
539 }
540 }
541
542 return (err != target);
543 }
544
545 /*
546 * Returns a set of divisors for the desired target clock with the given
547 * refclk, or FALSE.
548 *
549 * Target and reference clocks are specified in kHz.
550 *
551 * If match_clock is provided, then best_clock P divider must match the P
552 * divider from @match_clock used for LVDS downclocking.
553 */
554 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)555 g4x_find_best_dpll(const struct intel_limit *limit,
556 struct intel_crtc_state *crtc_state,
557 int target, int refclk,
558 const struct dpll *match_clock,
559 struct dpll *best_clock)
560 {
561 struct drm_device *dev = crtc_state->uapi.crtc->dev;
562 struct dpll clock;
563 int max_n;
564 bool found = false;
565 /* approximately equals target * 0.00585 */
566 int err_most = (target >> 8) + (target >> 9);
567
568 memset(best_clock, 0, sizeof(*best_clock));
569
570 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
571
572 max_n = limit->n.max;
573 /* based on hardware requirement, prefer smaller n to precision */
574 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
575 /* based on hardware requirement, prefere larger m1,m2 */
576 for (clock.m1 = limit->m1.max;
577 clock.m1 >= limit->m1.min; clock.m1--) {
578 for (clock.m2 = limit->m2.max;
579 clock.m2 >= limit->m2.min; clock.m2--) {
580 for (clock.p1 = limit->p1.max;
581 clock.p1 >= limit->p1.min; clock.p1--) {
582 int this_err;
583
584 i9xx_calc_dpll_params(refclk, &clock);
585 if (!intel_pll_is_valid(to_i915(dev),
586 limit,
587 &clock))
588 continue;
589
590 this_err = abs(clock.dot - target);
591 if (this_err < err_most) {
592 *best_clock = clock;
593 err_most = this_err;
594 max_n = clock.n;
595 found = true;
596 }
597 }
598 }
599 }
600 }
601 return found;
602 }
603
604 /*
605 * Check if the calculated PLL configuration is more optimal compared to the
606 * best configuration and error found so far. Return the calculated error.
607 */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)608 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
609 const struct dpll *calculated_clock,
610 const struct dpll *best_clock,
611 unsigned int best_error_ppm,
612 unsigned int *error_ppm)
613 {
614 /*
615 * For CHV ignore the error and consider only the P value.
616 * Prefer a bigger P value based on HW requirements.
617 */
618 if (IS_CHERRYVIEW(to_i915(dev))) {
619 *error_ppm = 0;
620
621 return calculated_clock->p > best_clock->p;
622 }
623
624 if (drm_WARN_ON_ONCE(dev, !target_freq))
625 return false;
626
627 *error_ppm = div_u64(1000000ULL *
628 abs(target_freq - calculated_clock->dot),
629 target_freq);
630 /*
631 * Prefer a better P value over a better (smaller) error if the error
632 * is small. Ensure this preference for future configurations too by
633 * setting the error to 0.
634 */
635 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
636 *error_ppm = 0;
637
638 return true;
639 }
640
641 return *error_ppm + 10 < best_error_ppm;
642 }
643
644 /*
645 * Returns a set of divisors for the desired target clock with the given
646 * refclk, or FALSE.
647 */
648 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)649 vlv_find_best_dpll(const struct intel_limit *limit,
650 struct intel_crtc_state *crtc_state,
651 int target, int refclk,
652 const struct dpll *match_clock,
653 struct dpll *best_clock)
654 {
655 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
656 struct drm_device *dev = crtc->base.dev;
657 struct dpll clock;
658 unsigned int bestppm = 1000000;
659 /* min update 19.2 MHz */
660 int max_n = min(limit->n.max, refclk / 19200);
661 bool found = false;
662
663 memset(best_clock, 0, sizeof(*best_clock));
664
665 /* based on hardware requirement, prefer smaller n to precision */
666 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
667 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
668 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
669 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
670 clock.p = clock.p1 * clock.p2 * 5;
671 /* based on hardware requirement, prefer bigger m1,m2 values */
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
673 unsigned int ppm;
674
675 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
676 refclk * clock.m1);
677
678 vlv_calc_dpll_params(refclk, &clock);
679
680 if (!intel_pll_is_valid(to_i915(dev),
681 limit,
682 &clock))
683 continue;
684
685 if (!vlv_PLL_is_optimal(dev, target,
686 &clock,
687 best_clock,
688 bestppm, &ppm))
689 continue;
690
691 *best_clock = clock;
692 bestppm = ppm;
693 found = true;
694 }
695 }
696 }
697 }
698
699 return found;
700 }
701
702 /*
703 * Returns a set of divisors for the desired target clock with the given
704 * refclk, or FALSE.
705 */
706 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)707 chv_find_best_dpll(const struct intel_limit *limit,
708 struct intel_crtc_state *crtc_state,
709 int target, int refclk,
710 const struct dpll *match_clock,
711 struct dpll *best_clock)
712 {
713 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
714 struct drm_device *dev = crtc->base.dev;
715 unsigned int best_error_ppm;
716 struct dpll clock;
717 u64 m2;
718 int found = false;
719
720 memset(best_clock, 0, sizeof(*best_clock));
721 best_error_ppm = 1000000;
722
723 /*
724 * Based on hardware doc, the n always set to 1, and m1 always
725 * set to 2. If requires to support 200Mhz refclk, we need to
726 * revisit this because n may not 1 anymore.
727 */
728 clock.n = 1;
729 clock.m1 = 2;
730
731 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
732 for (clock.p2 = limit->p2.p2_fast;
733 clock.p2 >= limit->p2.p2_slow;
734 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
735 unsigned int error_ppm;
736
737 clock.p = clock.p1 * clock.p2 * 5;
738
739 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
740 refclk * clock.m1);
741
742 if (m2 > INT_MAX/clock.m1)
743 continue;
744
745 clock.m2 = m2;
746
747 chv_calc_dpll_params(refclk, &clock);
748
749 if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
750 continue;
751
752 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
753 best_error_ppm, &error_ppm))
754 continue;
755
756 *best_clock = clock;
757 best_error_ppm = error_ppm;
758 found = true;
759 }
760 }
761
762 return found;
763 }
764
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,struct dpll * best_clock)765 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
766 struct dpll *best_clock)
767 {
768 const struct intel_limit *limit = &intel_limits_bxt;
769 int refclk = 100000;
770
771 return chv_find_best_dpll(limit, crtc_state,
772 crtc_state->port_clock, refclk,
773 NULL, best_clock);
774 }
775
i9xx_dpll_compute_fp(const struct dpll * dpll)776 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
777 {
778 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
779 }
780
pnv_dpll_compute_fp(const struct dpll * dpll)781 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
782 {
783 return (1 << dpll->n) << 16 | dpll->m2;
784 }
785
i9xx_update_pll_dividers(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)786 static void i9xx_update_pll_dividers(struct intel_crtc_state *crtc_state,
787 const struct dpll *clock,
788 const struct dpll *reduced_clock)
789 {
790 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
791 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
792 u32 fp, fp2;
793
794 if (IS_PINEVIEW(dev_priv)) {
795 fp = pnv_dpll_compute_fp(clock);
796 fp2 = pnv_dpll_compute_fp(reduced_clock);
797 } else {
798 fp = i9xx_dpll_compute_fp(clock);
799 fp2 = i9xx_dpll_compute_fp(reduced_clock);
800 }
801
802 crtc_state->dpll_hw_state.fp0 = fp;
803 crtc_state->dpll_hw_state.fp1 = fp2;
804 }
805
i9xx_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)806 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
807 const struct dpll *clock,
808 const struct dpll *reduced_clock)
809 {
810 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
811 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
812 u32 dpll;
813
814 i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
815
816 dpll = DPLL_VGA_MODE_DIS;
817
818 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
819 dpll |= DPLLB_MODE_LVDS;
820 else
821 dpll |= DPLLB_MODE_DAC_SERIAL;
822
823 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
824 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
825 dpll |= (crtc_state->pixel_multiplier - 1)
826 << SDVO_MULTIPLIER_SHIFT_HIRES;
827 }
828
829 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
830 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
831 dpll |= DPLL_SDVO_HIGH_SPEED;
832
833 if (intel_crtc_has_dp_encoder(crtc_state))
834 dpll |= DPLL_SDVO_HIGH_SPEED;
835
836 /* compute bitmask from p1 value */
837 if (IS_G4X(dev_priv)) {
838 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
839 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
840 } else if (IS_PINEVIEW(dev_priv)) {
841 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
842 WARN_ON(reduced_clock->p1 != clock->p1);
843 } else {
844 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
845 WARN_ON(reduced_clock->p1 != clock->p1);
846 }
847
848 switch (clock->p2) {
849 case 5:
850 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
851 break;
852 case 7:
853 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
854 break;
855 case 10:
856 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
857 break;
858 case 14:
859 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
860 break;
861 }
862 WARN_ON(reduced_clock->p2 != clock->p2);
863
864 if (DISPLAY_VER(dev_priv) >= 4)
865 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
866
867 if (crtc_state->sdvo_tv_clock)
868 dpll |= PLL_REF_INPUT_TVCLKINBC;
869 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
870 intel_panel_use_ssc(dev_priv))
871 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
872 else
873 dpll |= PLL_REF_INPUT_DREFCLK;
874
875 dpll |= DPLL_VCO_ENABLE;
876 crtc_state->dpll_hw_state.dpll = dpll;
877
878 if (DISPLAY_VER(dev_priv) >= 4) {
879 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
880 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
881 crtc_state->dpll_hw_state.dpll_md = dpll_md;
882 }
883 }
884
i8xx_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)885 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
886 const struct dpll *clock,
887 const struct dpll *reduced_clock)
888 {
889 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
890 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
891 u32 dpll;
892
893 i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
894
895 dpll = DPLL_VGA_MODE_DIS;
896
897 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
898 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
899 } else {
900 if (clock->p1 == 2)
901 dpll |= PLL_P1_DIVIDE_BY_TWO;
902 else
903 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
904 if (clock->p2 == 4)
905 dpll |= PLL_P2_DIVIDE_BY_4;
906 }
907 WARN_ON(reduced_clock->p1 != clock->p1);
908 WARN_ON(reduced_clock->p2 != clock->p2);
909
910 /*
911 * Bspec:
912 * "[Almador Errata}: For the correct operation of the muxed DVO pins
913 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
914 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
915 * Enable) must be set to “1” in both the DPLL A Control Register
916 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
917 *
918 * For simplicity We simply keep both bits always enabled in
919 * both DPLLS. The spec says we should disable the DVO 2X clock
920 * when not needed, but this seems to work fine in practice.
921 */
922 if (IS_I830(dev_priv) ||
923 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
924 dpll |= DPLL_DVO_2X_MODE;
925
926 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
927 intel_panel_use_ssc(dev_priv))
928 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
929 else
930 dpll |= PLL_REF_INPUT_DREFCLK;
931
932 dpll |= DPLL_VCO_ENABLE;
933 crtc_state->dpll_hw_state.dpll = dpll;
934 }
935
hsw_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)936 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
937 struct intel_crtc *crtc)
938 {
939 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
940 struct intel_crtc_state *crtc_state =
941 intel_atomic_get_new_crtc_state(state, crtc);
942 struct intel_encoder *encoder =
943 intel_get_crtc_new_encoder(state, crtc_state);
944 int ret;
945
946 if (DISPLAY_VER(dev_priv) < 11 &&
947 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
948 return 0;
949
950 ret = intel_compute_shared_dplls(state, crtc, encoder);
951 if (ret)
952 return ret;
953
954 /* FIXME this is a mess */
955 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
956 return 0;
957
958 /* CRT dotclock is determined via other means */
959 if (!crtc_state->has_pch_encoder)
960 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
961
962 return 0;
963 }
964
hsw_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)965 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
966 struct intel_crtc *crtc)
967 {
968 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
969 struct intel_crtc_state *crtc_state =
970 intel_atomic_get_new_crtc_state(state, crtc);
971 struct intel_encoder *encoder =
972 intel_get_crtc_new_encoder(state, crtc_state);
973
974 if (DISPLAY_VER(dev_priv) < 11 &&
975 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
976 return 0;
977
978 return intel_reserve_shared_dplls(state, crtc, encoder);
979 }
980
dg2_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)981 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
982 struct intel_crtc *crtc)
983 {
984 struct intel_crtc_state *crtc_state =
985 intel_atomic_get_new_crtc_state(state, crtc);
986 struct intel_encoder *encoder =
987 intel_get_crtc_new_encoder(state, crtc_state);
988 int ret;
989
990 ret = intel_mpllb_calc_state(crtc_state, encoder);
991 if (ret)
992 return ret;
993
994 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
995
996 return 0;
997 }
998
mtl_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)999 static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1000 struct intel_crtc *crtc)
1001 {
1002 struct drm_i915_private *i915 = to_i915(state->base.dev);
1003 struct intel_crtc_state *crtc_state =
1004 intel_atomic_get_new_crtc_state(state, crtc);
1005 struct intel_encoder *encoder =
1006 intel_get_crtc_new_encoder(state, crtc_state);
1007 enum phy phy = intel_port_to_phy(i915, encoder->port);
1008 int ret;
1009
1010 ret = intel_cx0pll_calc_state(crtc_state, encoder);
1011 if (ret)
1012 return ret;
1013
1014 /* TODO: Do the readback via intel_compute_shared_dplls() */
1015 if (intel_is_c10phy(i915, phy))
1016 crtc_state->port_clock = intel_c10pll_calc_port_clock(encoder, &crtc_state->cx0pll_state.c10);
1017 else
1018 crtc_state->port_clock = intel_c20pll_calc_port_clock(encoder, &crtc_state->cx0pll_state.c20);
1019
1020 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1021
1022 return 0;
1023 }
1024
ilk_needs_fb_cb_tune(const struct dpll * dpll,int factor)1025 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1026 {
1027 return dpll->m < factor * dpll->n;
1028 }
1029
ilk_update_pll_dividers(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1030 static void ilk_update_pll_dividers(struct intel_crtc_state *crtc_state,
1031 const struct dpll *clock,
1032 const struct dpll *reduced_clock)
1033 {
1034 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1035 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1036 u32 fp, fp2;
1037 int factor;
1038
1039 /* Enable autotuning of the PLL clock (if permissible) */
1040 factor = 21;
1041 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1042 if ((intel_panel_use_ssc(dev_priv) &&
1043 dev_priv->display.vbt.lvds_ssc_freq == 100000) ||
1044 (HAS_PCH_IBX(dev_priv) &&
1045 intel_is_dual_link_lvds(dev_priv)))
1046 factor = 25;
1047 } else if (crtc_state->sdvo_tv_clock) {
1048 factor = 20;
1049 }
1050
1051 fp = i9xx_dpll_compute_fp(clock);
1052 if (ilk_needs_fb_cb_tune(clock, factor))
1053 fp |= FP_CB_TUNE;
1054
1055 fp2 = i9xx_dpll_compute_fp(reduced_clock);
1056 if (ilk_needs_fb_cb_tune(reduced_clock, factor))
1057 fp2 |= FP_CB_TUNE;
1058
1059 crtc_state->dpll_hw_state.fp0 = fp;
1060 crtc_state->dpll_hw_state.fp1 = fp2;
1061 }
1062
ilk_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1063 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1064 const struct dpll *clock,
1065 const struct dpll *reduced_clock)
1066 {
1067 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1068 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1069 u32 dpll;
1070
1071 ilk_update_pll_dividers(crtc_state, clock, reduced_clock);
1072
1073 dpll = 0;
1074
1075 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1076 dpll |= DPLLB_MODE_LVDS;
1077 else
1078 dpll |= DPLLB_MODE_DAC_SERIAL;
1079
1080 dpll |= (crtc_state->pixel_multiplier - 1)
1081 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1082
1083 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1084 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1085 dpll |= DPLL_SDVO_HIGH_SPEED;
1086
1087 if (intel_crtc_has_dp_encoder(crtc_state))
1088 dpll |= DPLL_SDVO_HIGH_SPEED;
1089
1090 /*
1091 * The high speed IO clock is only really required for
1092 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1093 * possible to share the DPLL between CRT and HDMI. Enabling
1094 * the clock needlessly does no real harm, except use up a
1095 * bit of power potentially.
1096 *
1097 * We'll limit this to IVB with 3 pipes, since it has only two
1098 * DPLLs and so DPLL sharing is the only way to get three pipes
1099 * driving PCH ports at the same time. On SNB we could do this,
1100 * and potentially avoid enabling the second DPLL, but it's not
1101 * clear if it''s a win or loss power wise. No point in doing
1102 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1103 */
1104 if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1105 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1106 dpll |= DPLL_SDVO_HIGH_SPEED;
1107
1108 /* compute bitmask from p1 value */
1109 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1110 /* also FPA1 */
1111 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1112
1113 switch (clock->p2) {
1114 case 5:
1115 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1116 break;
1117 case 7:
1118 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1119 break;
1120 case 10:
1121 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1122 break;
1123 case 14:
1124 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1125 break;
1126 }
1127 WARN_ON(reduced_clock->p2 != clock->p2);
1128
1129 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1130 intel_panel_use_ssc(dev_priv))
1131 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1132 else
1133 dpll |= PLL_REF_INPUT_DREFCLK;
1134
1135 dpll |= DPLL_VCO_ENABLE;
1136
1137 crtc_state->dpll_hw_state.dpll = dpll;
1138 }
1139
ilk_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1140 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1141 struct intel_crtc *crtc)
1142 {
1143 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1144 struct intel_crtc_state *crtc_state =
1145 intel_atomic_get_new_crtc_state(state, crtc);
1146 const struct intel_limit *limit;
1147 int refclk = 120000;
1148 int ret;
1149
1150 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1151 if (!crtc_state->has_pch_encoder)
1152 return 0;
1153
1154 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1155 if (intel_panel_use_ssc(dev_priv)) {
1156 drm_dbg_kms(&dev_priv->drm,
1157 "using SSC reference clock of %d kHz\n",
1158 dev_priv->display.vbt.lvds_ssc_freq);
1159 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1160 }
1161
1162 if (intel_is_dual_link_lvds(dev_priv)) {
1163 if (refclk == 100000)
1164 limit = &ilk_limits_dual_lvds_100m;
1165 else
1166 limit = &ilk_limits_dual_lvds;
1167 } else {
1168 if (refclk == 100000)
1169 limit = &ilk_limits_single_lvds_100m;
1170 else
1171 limit = &ilk_limits_single_lvds;
1172 }
1173 } else {
1174 limit = &ilk_limits_dac;
1175 }
1176
1177 if (!crtc_state->clock_set &&
1178 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1179 refclk, NULL, &crtc_state->dpll))
1180 return -EINVAL;
1181
1182 ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1183 &crtc_state->dpll);
1184
1185 ret = intel_compute_shared_dplls(state, crtc, NULL);
1186 if (ret)
1187 return ret;
1188
1189 crtc_state->port_clock = crtc_state->dpll.dot;
1190 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1191
1192 return ret;
1193 }
1194
ilk_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)1195 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1196 struct intel_crtc *crtc)
1197 {
1198 struct intel_crtc_state *crtc_state =
1199 intel_atomic_get_new_crtc_state(state, crtc);
1200
1201 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1202 if (!crtc_state->has_pch_encoder)
1203 return 0;
1204
1205 return intel_reserve_shared_dplls(state, crtc, NULL);
1206 }
1207
vlv_compute_dpll(struct intel_crtc_state * crtc_state)1208 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1209 {
1210 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1211
1212 crtc_state->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1213 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1214 if (crtc->pipe != PIPE_A)
1215 crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1216
1217 /* DPLL not used with DSI, but still need the rest set up */
1218 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1219 crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
1220 DPLL_EXT_BUFFER_ENABLE_VLV;
1221
1222 crtc_state->dpll_hw_state.dpll_md =
1223 (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1224 }
1225
chv_compute_dpll(struct intel_crtc_state * crtc_state)1226 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1227 {
1228 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1229
1230 crtc_state->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
1231 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1232 if (crtc->pipe != PIPE_A)
1233 crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1234
1235 /* DPLL not used with DSI, but still need the rest set up */
1236 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1237 crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
1238
1239 crtc_state->dpll_hw_state.dpll_md =
1240 (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1241 }
1242
chv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1243 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1244 struct intel_crtc *crtc)
1245 {
1246 struct intel_crtc_state *crtc_state =
1247 intel_atomic_get_new_crtc_state(state, crtc);
1248 const struct intel_limit *limit = &intel_limits_chv;
1249 int refclk = 100000;
1250
1251 if (!crtc_state->clock_set &&
1252 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1253 refclk, NULL, &crtc_state->dpll))
1254 return -EINVAL;
1255
1256 chv_compute_dpll(crtc_state);
1257
1258 /* FIXME this is a mess */
1259 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1260 return 0;
1261
1262 crtc_state->port_clock = crtc_state->dpll.dot;
1263 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1264
1265 return 0;
1266 }
1267
vlv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1268 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1269 struct intel_crtc *crtc)
1270 {
1271 struct intel_crtc_state *crtc_state =
1272 intel_atomic_get_new_crtc_state(state, crtc);
1273 const struct intel_limit *limit = &intel_limits_vlv;
1274 int refclk = 100000;
1275
1276 if (!crtc_state->clock_set &&
1277 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1278 refclk, NULL, &crtc_state->dpll)) {
1279 return -EINVAL;
1280 }
1281
1282 vlv_compute_dpll(crtc_state);
1283
1284 /* FIXME this is a mess */
1285 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1286 return 0;
1287
1288 crtc_state->port_clock = crtc_state->dpll.dot;
1289 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1290
1291 return 0;
1292 }
1293
g4x_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1294 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1295 struct intel_crtc *crtc)
1296 {
1297 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1298 struct intel_crtc_state *crtc_state =
1299 intel_atomic_get_new_crtc_state(state, crtc);
1300 const struct intel_limit *limit;
1301 int refclk = 96000;
1302
1303 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1304 if (intel_panel_use_ssc(dev_priv)) {
1305 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1306 drm_dbg_kms(&dev_priv->drm,
1307 "using SSC reference clock of %d kHz\n",
1308 refclk);
1309 }
1310
1311 if (intel_is_dual_link_lvds(dev_priv))
1312 limit = &intel_limits_g4x_dual_channel_lvds;
1313 else
1314 limit = &intel_limits_g4x_single_channel_lvds;
1315 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1316 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1317 limit = &intel_limits_g4x_hdmi;
1318 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1319 limit = &intel_limits_g4x_sdvo;
1320 } else {
1321 /* The option is for other outputs */
1322 limit = &intel_limits_i9xx_sdvo;
1323 }
1324
1325 if (!crtc_state->clock_set &&
1326 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1327 refclk, NULL, &crtc_state->dpll))
1328 return -EINVAL;
1329
1330 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1331 &crtc_state->dpll);
1332
1333 crtc_state->port_clock = crtc_state->dpll.dot;
1334 /* FIXME this is a mess */
1335 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1336 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1337
1338 return 0;
1339 }
1340
pnv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1341 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1342 struct intel_crtc *crtc)
1343 {
1344 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1345 struct intel_crtc_state *crtc_state =
1346 intel_atomic_get_new_crtc_state(state, crtc);
1347 const struct intel_limit *limit;
1348 int refclk = 96000;
1349
1350 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1351 if (intel_panel_use_ssc(dev_priv)) {
1352 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1353 drm_dbg_kms(&dev_priv->drm,
1354 "using SSC reference clock of %d kHz\n",
1355 refclk);
1356 }
1357
1358 limit = &pnv_limits_lvds;
1359 } else {
1360 limit = &pnv_limits_sdvo;
1361 }
1362
1363 if (!crtc_state->clock_set &&
1364 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1365 refclk, NULL, &crtc_state->dpll))
1366 return -EINVAL;
1367
1368 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1369 &crtc_state->dpll);
1370
1371 crtc_state->port_clock = crtc_state->dpll.dot;
1372 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1373
1374 return 0;
1375 }
1376
i9xx_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1377 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1378 struct intel_crtc *crtc)
1379 {
1380 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1381 struct intel_crtc_state *crtc_state =
1382 intel_atomic_get_new_crtc_state(state, crtc);
1383 const struct intel_limit *limit;
1384 int refclk = 96000;
1385
1386 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1387 if (intel_panel_use_ssc(dev_priv)) {
1388 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1389 drm_dbg_kms(&dev_priv->drm,
1390 "using SSC reference clock of %d kHz\n",
1391 refclk);
1392 }
1393
1394 limit = &intel_limits_i9xx_lvds;
1395 } else {
1396 limit = &intel_limits_i9xx_sdvo;
1397 }
1398
1399 if (!crtc_state->clock_set &&
1400 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1401 refclk, NULL, &crtc_state->dpll))
1402 return -EINVAL;
1403
1404 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1405 &crtc_state->dpll);
1406
1407 crtc_state->port_clock = crtc_state->dpll.dot;
1408 /* FIXME this is a mess */
1409 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1410 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1411
1412 return 0;
1413 }
1414
i8xx_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1415 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1416 struct intel_crtc *crtc)
1417 {
1418 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1419 struct intel_crtc_state *crtc_state =
1420 intel_atomic_get_new_crtc_state(state, crtc);
1421 const struct intel_limit *limit;
1422 int refclk = 48000;
1423
1424 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1425 if (intel_panel_use_ssc(dev_priv)) {
1426 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1427 drm_dbg_kms(&dev_priv->drm,
1428 "using SSC reference clock of %d kHz\n",
1429 refclk);
1430 }
1431
1432 limit = &intel_limits_i8xx_lvds;
1433 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1434 limit = &intel_limits_i8xx_dvo;
1435 } else {
1436 limit = &intel_limits_i8xx_dac;
1437 }
1438
1439 if (!crtc_state->clock_set &&
1440 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1441 refclk, NULL, &crtc_state->dpll))
1442 return -EINVAL;
1443
1444 i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1445 &crtc_state->dpll);
1446
1447 crtc_state->port_clock = crtc_state->dpll.dot;
1448 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1449
1450 return 0;
1451 }
1452
1453 static const struct intel_dpll_funcs mtl_dpll_funcs = {
1454 .crtc_compute_clock = mtl_crtc_compute_clock,
1455 };
1456
1457 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1458 .crtc_compute_clock = dg2_crtc_compute_clock,
1459 };
1460
1461 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1462 .crtc_compute_clock = hsw_crtc_compute_clock,
1463 .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1464 };
1465
1466 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1467 .crtc_compute_clock = ilk_crtc_compute_clock,
1468 .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1469 };
1470
1471 static const struct intel_dpll_funcs chv_dpll_funcs = {
1472 .crtc_compute_clock = chv_crtc_compute_clock,
1473 };
1474
1475 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1476 .crtc_compute_clock = vlv_crtc_compute_clock,
1477 };
1478
1479 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1480 .crtc_compute_clock = g4x_crtc_compute_clock,
1481 };
1482
1483 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1484 .crtc_compute_clock = pnv_crtc_compute_clock,
1485 };
1486
1487 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1488 .crtc_compute_clock = i9xx_crtc_compute_clock,
1489 };
1490
1491 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1492 .crtc_compute_clock = i8xx_crtc_compute_clock,
1493 };
1494
intel_dpll_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1495 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1496 struct intel_crtc *crtc)
1497 {
1498 struct drm_i915_private *i915 = to_i915(state->base.dev);
1499 struct intel_crtc_state *crtc_state =
1500 intel_atomic_get_new_crtc_state(state, crtc);
1501 int ret;
1502
1503 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1504
1505 memset(&crtc_state->dpll_hw_state, 0,
1506 sizeof(crtc_state->dpll_hw_state));
1507
1508 if (!crtc_state->hw.enable)
1509 return 0;
1510
1511 ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1512 if (ret) {
1513 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1514 crtc->base.base.id, crtc->base.name);
1515 return ret;
1516 }
1517
1518 return 0;
1519 }
1520
intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)1521 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1522 struct intel_crtc *crtc)
1523 {
1524 struct drm_i915_private *i915 = to_i915(state->base.dev);
1525 struct intel_crtc_state *crtc_state =
1526 intel_atomic_get_new_crtc_state(state, crtc);
1527 int ret;
1528
1529 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1530 drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1531
1532 if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1533 return 0;
1534
1535 if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1536 return 0;
1537
1538 ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1539 if (ret) {
1540 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1541 crtc->base.base.id, crtc->base.name);
1542 return ret;
1543 }
1544
1545 return 0;
1546 }
1547
1548 void
intel_dpll_init_clock_hook(struct drm_i915_private * dev_priv)1549 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1550 {
1551 if (DISPLAY_VER(dev_priv) >= 14)
1552 dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1553 else if (IS_DG2(dev_priv))
1554 dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1555 else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1556 dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1557 else if (HAS_PCH_SPLIT(dev_priv))
1558 dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1559 else if (IS_CHERRYVIEW(dev_priv))
1560 dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1561 else if (IS_VALLEYVIEW(dev_priv))
1562 dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1563 else if (IS_G4X(dev_priv))
1564 dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1565 else if (IS_PINEVIEW(dev_priv))
1566 dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1567 else if (DISPLAY_VER(dev_priv) != 2)
1568 dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1569 else
1570 dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1571 }
1572
i9xx_has_pps(struct drm_i915_private * dev_priv)1573 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1574 {
1575 if (IS_I830(dev_priv))
1576 return false;
1577
1578 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1579 }
1580
i9xx_enable_pll(const struct intel_crtc_state * crtc_state)1581 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1582 {
1583 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1584 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1585 u32 dpll = crtc_state->dpll_hw_state.dpll;
1586 enum pipe pipe = crtc->pipe;
1587 int i;
1588
1589 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1590
1591 /* PLL is protected by panel, make sure we can write it */
1592 if (i9xx_has_pps(dev_priv))
1593 assert_pps_unlocked(dev_priv, pipe);
1594
1595 intel_de_write(dev_priv, FP0(pipe), crtc_state->dpll_hw_state.fp0);
1596 intel_de_write(dev_priv, FP1(pipe), crtc_state->dpll_hw_state.fp1);
1597
1598 /*
1599 * Apparently we need to have VGA mode enabled prior to changing
1600 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1601 * dividers, even though the register value does change.
1602 */
1603 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
1604 intel_de_write(dev_priv, DPLL(pipe), dpll);
1605
1606 /* Wait for the clocks to stabilize. */
1607 intel_de_posting_read(dev_priv, DPLL(pipe));
1608 udelay(150);
1609
1610 if (DISPLAY_VER(dev_priv) >= 4) {
1611 intel_de_write(dev_priv, DPLL_MD(pipe),
1612 crtc_state->dpll_hw_state.dpll_md);
1613 } else {
1614 /* The pixel multiplier can only be updated once the
1615 * DPLL is enabled and the clocks are stable.
1616 *
1617 * So write it again.
1618 */
1619 intel_de_write(dev_priv, DPLL(pipe), dpll);
1620 }
1621
1622 /* We do this three times for luck */
1623 for (i = 0; i < 3; i++) {
1624 intel_de_write(dev_priv, DPLL(pipe), dpll);
1625 intel_de_posting_read(dev_priv, DPLL(pipe));
1626 udelay(150); /* wait for warmup */
1627 }
1628 }
1629
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)1630 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1631 enum pipe pipe)
1632 {
1633 u32 reg_val;
1634
1635 /*
1636 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1637 * and set it to a reasonable value instead.
1638 */
1639 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1640 reg_val &= 0xffffff00;
1641 reg_val |= 0x00000030;
1642 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1643
1644 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1645 reg_val &= 0x00ffffff;
1646 reg_val |= 0x8c000000;
1647 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1648
1649 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1650 reg_val &= 0xffffff00;
1651 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1652
1653 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1654 reg_val &= 0x00ffffff;
1655 reg_val |= 0xb0000000;
1656 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1657 }
1658
vlv_prepare_pll(const struct intel_crtc_state * crtc_state)1659 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1660 {
1661 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1662 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1663 enum pipe pipe = crtc->pipe;
1664 u32 mdiv;
1665 u32 bestn, bestm1, bestm2, bestp1, bestp2;
1666 u32 coreclk, reg_val;
1667
1668 vlv_dpio_get(dev_priv);
1669
1670 bestn = crtc_state->dpll.n;
1671 bestm1 = crtc_state->dpll.m1;
1672 bestm2 = crtc_state->dpll.m2;
1673 bestp1 = crtc_state->dpll.p1;
1674 bestp2 = crtc_state->dpll.p2;
1675
1676 /* See eDP HDMI DPIO driver vbios notes doc */
1677
1678 /* PLL B needs special handling */
1679 if (pipe == PIPE_B)
1680 vlv_pllb_recal_opamp(dev_priv, pipe);
1681
1682 /* Set up Tx target for periodic Rcomp update */
1683 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
1684
1685 /* Disable target IRef on PLL */
1686 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
1687 reg_val &= 0x00ffffff;
1688 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
1689
1690 /* Disable fast lock */
1691 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
1692
1693 /* Set idtafcrecal before PLL is enabled */
1694 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
1695 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
1696 mdiv |= ((bestn << DPIO_N_SHIFT));
1697 mdiv |= (1 << DPIO_K_SHIFT);
1698
1699 /*
1700 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1701 * but we don't support that).
1702 * Note: don't use the DAC post divider as it seems unstable.
1703 */
1704 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
1705 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1706
1707 mdiv |= DPIO_ENABLE_CALIBRATION;
1708 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1709
1710 /* Set HBR and RBR LPF coefficients */
1711 if (crtc_state->port_clock == 162000 ||
1712 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1713 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1714 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1715 0x009f0003);
1716 else
1717 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1718 0x00d0000f);
1719
1720 if (intel_crtc_has_dp_encoder(crtc_state)) {
1721 /* Use SSC source */
1722 if (pipe == PIPE_A)
1723 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1724 0x0df40000);
1725 else
1726 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1727 0x0df70000);
1728 } else { /* HDMI or VGA */
1729 /* Use bend source */
1730 if (pipe == PIPE_A)
1731 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1732 0x0df70000);
1733 else
1734 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1735 0x0df40000);
1736 }
1737
1738 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
1739 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1740 if (intel_crtc_has_dp_encoder(crtc_state))
1741 coreclk |= 0x01000000;
1742 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
1743
1744 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
1745
1746 vlv_dpio_put(dev_priv);
1747 }
1748
_vlv_enable_pll(const struct intel_crtc_state * crtc_state)1749 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1750 {
1751 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1752 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1753 enum pipe pipe = crtc->pipe;
1754
1755 intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1756 intel_de_posting_read(dev_priv, DPLL(pipe));
1757 udelay(150);
1758
1759 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1760 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1761 }
1762
vlv_enable_pll(const struct intel_crtc_state * crtc_state)1763 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1764 {
1765 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1766 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1767 enum pipe pipe = crtc->pipe;
1768
1769 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1770
1771 /* PLL is protected by panel, make sure we can write it */
1772 assert_pps_unlocked(dev_priv, pipe);
1773
1774 /* Enable Refclk */
1775 intel_de_write(dev_priv, DPLL(pipe),
1776 crtc_state->dpll_hw_state.dpll &
1777 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
1778
1779 if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1780 vlv_prepare_pll(crtc_state);
1781 _vlv_enable_pll(crtc_state);
1782 }
1783
1784 intel_de_write(dev_priv, DPLL_MD(pipe),
1785 crtc_state->dpll_hw_state.dpll_md);
1786 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1787 }
1788
chv_prepare_pll(const struct intel_crtc_state * crtc_state)1789 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
1790 {
1791 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1792 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1793 enum pipe pipe = crtc->pipe;
1794 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1795 u32 loopfilter, tribuf_calcntr;
1796 u32 bestm2, bestp1, bestp2, bestm2_frac;
1797 u32 dpio_val;
1798 int vco;
1799
1800 bestm2_frac = crtc_state->dpll.m2 & 0x3fffff;
1801 bestm2 = crtc_state->dpll.m2 >> 22;
1802 bestp1 = crtc_state->dpll.p1;
1803 bestp2 = crtc_state->dpll.p2;
1804 vco = crtc_state->dpll.vco;
1805 dpio_val = 0;
1806 loopfilter = 0;
1807
1808 vlv_dpio_get(dev_priv);
1809
1810 /* p1 and p2 divider */
1811 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
1812 5 << DPIO_CHV_S1_DIV_SHIFT |
1813 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
1814 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1815 1 << DPIO_CHV_K_DIV_SHIFT);
1816
1817 /* Feedback post-divider - m2 */
1818 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
1819
1820 /* Feedback refclk divider - n and m1 */
1821 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
1822 DPIO_CHV_M1_DIV_BY_2 |
1823 1 << DPIO_CHV_N_DIV_SHIFT);
1824
1825 /* M2 fraction division */
1826 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
1827
1828 /* M2 fraction division enable */
1829 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
1830 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
1831 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
1832 if (bestm2_frac)
1833 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
1834 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
1835
1836 /* Program digital lock detect threshold */
1837 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
1838 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
1839 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
1840 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
1841 if (!bestm2_frac)
1842 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
1843 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
1844
1845 /* Loop filter */
1846 if (vco == 5400000) {
1847 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
1848 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
1849 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
1850 tribuf_calcntr = 0x9;
1851 } else if (vco <= 6200000) {
1852 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
1853 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
1854 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1855 tribuf_calcntr = 0x9;
1856 } else if (vco <= 6480000) {
1857 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1858 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1859 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1860 tribuf_calcntr = 0x8;
1861 } else {
1862 /* Not supported. Apply the same limits as in the max case */
1863 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1864 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1865 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1866 tribuf_calcntr = 0;
1867 }
1868 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
1869
1870 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
1871 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
1872 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
1873 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
1874
1875 /* AFC Recal */
1876 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
1877 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
1878 DPIO_AFC_RECAL);
1879
1880 vlv_dpio_put(dev_priv);
1881 }
1882
_chv_enable_pll(const struct intel_crtc_state * crtc_state)1883 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
1884 {
1885 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1886 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1887 enum pipe pipe = crtc->pipe;
1888 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1889 u32 tmp;
1890
1891 vlv_dpio_get(dev_priv);
1892
1893 /* Enable back the 10bit clock to display controller */
1894 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1895 tmp |= DPIO_DCLKP_EN;
1896 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1897
1898 vlv_dpio_put(dev_priv);
1899
1900 /*
1901 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1902 */
1903 udelay(1);
1904
1905 /* Enable PLL */
1906 intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1907
1908 /* Check PLL is locked */
1909 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1910 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1911 }
1912
chv_enable_pll(const struct intel_crtc_state * crtc_state)1913 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
1914 {
1915 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1916 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1917 enum pipe pipe = crtc->pipe;
1918
1919 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1920
1921 /* PLL is protected by panel, make sure we can write it */
1922 assert_pps_unlocked(dev_priv, pipe);
1923
1924 /* Enable Refclk and SSC */
1925 intel_de_write(dev_priv, DPLL(pipe),
1926 crtc_state->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
1927
1928 if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1929 chv_prepare_pll(crtc_state);
1930 _chv_enable_pll(crtc_state);
1931 }
1932
1933 if (pipe != PIPE_A) {
1934 /*
1935 * WaPixelRepeatModeFixForC0:chv
1936 *
1937 * DPLLCMD is AWOL. Use chicken bits to propagate
1938 * the value from DPLLBMD to either pipe B or C.
1939 */
1940 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1941 intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1942 crtc_state->dpll_hw_state.dpll_md);
1943 intel_de_write(dev_priv, CBR4_VLV, 0);
1944 dev_priv->display.state.chv_dpll_md[pipe] = crtc_state->dpll_hw_state.dpll_md;
1945
1946 /*
1947 * DPLLB VGA mode also seems to cause problems.
1948 * We should always have it disabled.
1949 */
1950 drm_WARN_ON(&dev_priv->drm,
1951 (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1952 DPLL_VGA_MODE_DIS) == 0);
1953 } else {
1954 intel_de_write(dev_priv, DPLL_MD(pipe),
1955 crtc_state->dpll_hw_state.dpll_md);
1956 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1957 }
1958 }
1959
1960 /**
1961 * vlv_force_pll_on - forcibly enable just the PLL
1962 * @dev_priv: i915 private structure
1963 * @pipe: pipe PLL to enable
1964 * @dpll: PLL configuration
1965 *
1966 * Enable the PLL for @pipe using the supplied @dpll config. To be used
1967 * in cases where we need the PLL enabled even when @pipe is not going to
1968 * be enabled.
1969 */
vlv_force_pll_on(struct drm_i915_private * dev_priv,enum pipe pipe,const struct dpll * dpll)1970 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
1971 const struct dpll *dpll)
1972 {
1973 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
1974 struct intel_crtc_state *crtc_state;
1975
1976 crtc_state = intel_crtc_state_alloc(crtc);
1977 if (!crtc_state)
1978 return -ENOMEM;
1979
1980 crtc_state->cpu_transcoder = (enum transcoder)pipe;
1981 crtc_state->pixel_multiplier = 1;
1982 crtc_state->dpll = *dpll;
1983 crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
1984
1985 if (IS_CHERRYVIEW(dev_priv)) {
1986 chv_compute_dpll(crtc_state);
1987 chv_enable_pll(crtc_state);
1988 } else {
1989 vlv_compute_dpll(crtc_state);
1990 vlv_enable_pll(crtc_state);
1991 }
1992
1993 kfree(crtc_state);
1994
1995 return 0;
1996 }
1997
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1998 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1999 {
2000 u32 val;
2001
2002 /* Make sure the pipe isn't still relying on us */
2003 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2004
2005 val = DPLL_INTEGRATED_REF_CLK_VLV |
2006 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2007 if (pipe != PIPE_A)
2008 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2009
2010 intel_de_write(dev_priv, DPLL(pipe), val);
2011 intel_de_posting_read(dev_priv, DPLL(pipe));
2012 }
2013
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)2014 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2015 {
2016 enum dpio_channel port = vlv_pipe_to_channel(pipe);
2017 u32 val;
2018
2019 /* Make sure the pipe isn't still relying on us */
2020 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2021
2022 val = DPLL_SSC_REF_CLK_CHV |
2023 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2024 if (pipe != PIPE_A)
2025 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2026
2027 intel_de_write(dev_priv, DPLL(pipe), val);
2028 intel_de_posting_read(dev_priv, DPLL(pipe));
2029
2030 vlv_dpio_get(dev_priv);
2031
2032 /* Disable 10bit clock to display controller */
2033 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
2034 val &= ~DPIO_DCLKP_EN;
2035 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
2036
2037 vlv_dpio_put(dev_priv);
2038 }
2039
i9xx_disable_pll(const struct intel_crtc_state * crtc_state)2040 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2041 {
2042 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2043 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2044 enum pipe pipe = crtc->pipe;
2045
2046 /* Don't disable pipe or pipe PLLs if needed */
2047 if (IS_I830(dev_priv))
2048 return;
2049
2050 /* Make sure the pipe isn't still relying on us */
2051 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2052
2053 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
2054 intel_de_posting_read(dev_priv, DPLL(pipe));
2055 }
2056
2057
2058 /**
2059 * vlv_force_pll_off - forcibly disable just the PLL
2060 * @dev_priv: i915 private structure
2061 * @pipe: pipe PLL to disable
2062 *
2063 * Disable the PLL for @pipe. To be used in cases where we need
2064 * the PLL enabled even when @pipe is not going to be enabled.
2065 */
vlv_force_pll_off(struct drm_i915_private * dev_priv,enum pipe pipe)2066 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2067 {
2068 if (IS_CHERRYVIEW(dev_priv))
2069 chv_disable_pll(dev_priv, pipe);
2070 else
2071 vlv_disable_pll(dev_priv, pipe);
2072 }
2073
2074 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)2075 static void assert_pll(struct drm_i915_private *dev_priv,
2076 enum pipe pipe, bool state)
2077 {
2078 bool cur_state;
2079
2080 cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
2081 I915_STATE_WARN(dev_priv, cur_state != state,
2082 "PLL state assertion failure (expected %s, current %s)\n",
2083 str_on_off(state), str_on_off(cur_state));
2084 }
2085
assert_pll_enabled(struct drm_i915_private * i915,enum pipe pipe)2086 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2087 {
2088 assert_pll(i915, pipe, true);
2089 }
2090
assert_pll_disabled(struct drm_i915_private * i915,enum pipe pipe)2091 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2092 {
2093 assert_pll(i915, pipe, false);
2094 }
2095