1 /*
2  * Copyright © 2014-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "display/intel_dp.h"
25 
26 #include "intel_de.h"
27 #include "intel_display_types.h"
28 #include "intel_dpio_phy.h"
29 #include "intel_sideband.h"
30 
31 /**
32  * DOC: DPIO
33  *
34  * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
35  * ports. DPIO is the name given to such a display PHY. These PHYs
36  * don't follow the standard programming model using direct MMIO
37  * registers, and instead their registers must be accessed trough IOSF
38  * sideband. VLV has one such PHY for driving ports B and C, and CHV
39  * adds another PHY for driving port D. Each PHY responds to specific
40  * IOSF-SB port.
41  *
42  * Each display PHY is made up of one or two channels. Each channel
43  * houses a common lane part which contains the PLL and other common
44  * logic. CH0 common lane also contains the IOSF-SB logic for the
45  * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
46  * must be running when any DPIO registers are accessed.
47  *
48  * In addition to having their own registers, the PHYs are also
49  * controlled through some dedicated signals from the display
50  * controller. These include PLL reference clock enable, PLL enable,
51  * and CRI clock selection, for example.
52  *
53  * Eeach channel also has two splines (also called data lanes), and
54  * each spline is made up of one Physical Access Coding Sub-Layer
55  * (PCS) block and two TX lanes. So each channel has two PCS blocks
56  * and four TX lanes. The TX lanes are used as DP lanes or TMDS
57  * data/clock pairs depending on the output type.
58  *
59  * Additionally the PHY also contains an AUX lane with AUX blocks
60  * for each channel. This is used for DP AUX communication, but
61  * this fact isn't really relevant for the driver since AUX is
62  * controlled from the display controller side. No DPIO registers
63  * need to be accessed during AUX communication,
64  *
65  * Generally on VLV/CHV the common lane corresponds to the pipe and
66  * the spline (PCS/TX) corresponds to the port.
67  *
68  * For dual channel PHY (VLV/CHV):
69  *
70  *  pipe A == CMN/PLL/REF CH0
71  *
72  *  pipe B == CMN/PLL/REF CH1
73  *
74  *  port B == PCS/TX CH0
75  *
76  *  port C == PCS/TX CH1
77  *
78  * This is especially important when we cross the streams
79  * ie. drive port B with pipe B, or port C with pipe A.
80  *
81  * For single channel PHY (CHV):
82  *
83  *  pipe C == CMN/PLL/REF CH0
84  *
85  *  port D == PCS/TX CH0
86  *
87  * On BXT the entire PHY channel corresponds to the port. That means
88  * the PLL is also now associated with the port rather than the pipe,
89  * and so the clock needs to be routed to the appropriate transcoder.
90  * Port A PLL is directly connected to transcoder EDP and port B/C
91  * PLLs can be routed to any transcoder A/B/C.
92  *
93  * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
94  * digital port D (CHV) or port A (BXT). ::
95  *
96  *
97  *     Dual channel PHY (VLV/CHV/BXT)
98  *     ---------------------------------
99  *     |      CH0      |      CH1      |
100  *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
101  *     |---------------|---------------| Display PHY
102  *     | PCS01 | PCS23 | PCS01 | PCS23 |
103  *     |-------|-------|-------|-------|
104  *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
105  *     ---------------------------------
106  *     |     DDI0      |     DDI1      | DP/HDMI ports
107  *     ---------------------------------
108  *
109  *     Single channel PHY (CHV/BXT)
110  *     -----------------
111  *     |      CH0      |
112  *     |  CMN/PLL/REF  |
113  *     |---------------| Display PHY
114  *     | PCS01 | PCS23 |
115  *     |-------|-------|
116  *     |TX0|TX1|TX2|TX3|
117  *     -----------------
118  *     |     DDI2      | DP/HDMI port
119  *     -----------------
120  */
121 
122 /**
123  * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
124  */
125 struct bxt_ddi_phy_info {
126 	/**
127 	 * @dual_channel: true if this phy has a second channel.
128 	 */
129 	bool dual_channel;
130 
131 	/**
132 	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
133 	 * Otherwise the GRC value will be copied from the phy indicated by
134 	 * this field.
135 	 */
136 	enum dpio_phy rcomp_phy;
137 
138 	/**
139 	 * @reset_delay: delay in us to wait before setting the common reset
140 	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
141 	 */
142 	int reset_delay;
143 
144 	/**
145 	 * @pwron_mask: Mask with the appropriate bit set that would cause the
146 	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
147 	 */
148 	u32 pwron_mask;
149 
150 	/**
151 	 * @channel: struct containing per channel information.
152 	 */
153 	struct {
154 		/**
155 		 * @channel.port: which port maps to this channel.
156 		 */
157 		enum port port;
158 	} channel[2];
159 };
160 
161 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
162 	[DPIO_PHY0] = {
163 		.dual_channel = true,
164 		.rcomp_phy = DPIO_PHY1,
165 		.pwron_mask = BIT(0),
166 
167 		.channel = {
168 			[DPIO_CH0] = { .port = PORT_B },
169 			[DPIO_CH1] = { .port = PORT_C },
170 		}
171 	},
172 	[DPIO_PHY1] = {
173 		.dual_channel = false,
174 		.rcomp_phy = -1,
175 		.pwron_mask = BIT(1),
176 
177 		.channel = {
178 			[DPIO_CH0] = { .port = PORT_A },
179 		}
180 	},
181 };
182 
183 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
184 	[DPIO_PHY0] = {
185 		.dual_channel = false,
186 		.rcomp_phy = DPIO_PHY1,
187 		.pwron_mask = BIT(0),
188 		.reset_delay = 20,
189 
190 		.channel = {
191 			[DPIO_CH0] = { .port = PORT_B },
192 		}
193 	},
194 	[DPIO_PHY1] = {
195 		.dual_channel = false,
196 		.rcomp_phy = -1,
197 		.pwron_mask = BIT(3),
198 		.reset_delay = 20,
199 
200 		.channel = {
201 			[DPIO_CH0] = { .port = PORT_A },
202 		}
203 	},
204 	[DPIO_PHY2] = {
205 		.dual_channel = false,
206 		.rcomp_phy = DPIO_PHY1,
207 		.pwron_mask = BIT(1),
208 		.reset_delay = 20,
209 
210 		.channel = {
211 			[DPIO_CH0] = { .port = PORT_C },
212 		}
213 	},
214 };
215 
216 static const struct bxt_ddi_phy_info *
217 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
218 {
219 	if (IS_GEMINILAKE(dev_priv)) {
220 		*count =  ARRAY_SIZE(glk_ddi_phy_info);
221 		return glk_ddi_phy_info;
222 	} else {
223 		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
224 		return bxt_ddi_phy_info;
225 	}
226 }
227 
228 static const struct bxt_ddi_phy_info *
229 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
230 {
231 	int count;
232 	const struct bxt_ddi_phy_info *phy_list =
233 		bxt_get_phy_list(dev_priv, &count);
234 
235 	return &phy_list[phy];
236 }
237 
238 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
239 			     enum dpio_phy *phy, enum dpio_channel *ch)
240 {
241 	const struct bxt_ddi_phy_info *phy_info, *phys;
242 	int i, count;
243 
244 	phys = bxt_get_phy_list(dev_priv, &count);
245 
246 	for (i = 0; i < count; i++) {
247 		phy_info = &phys[i];
248 
249 		if (port == phy_info->channel[DPIO_CH0].port) {
250 			*phy = i;
251 			*ch = DPIO_CH0;
252 			return;
253 		}
254 
255 		if (phy_info->dual_channel &&
256 		    port == phy_info->channel[DPIO_CH1].port) {
257 			*phy = i;
258 			*ch = DPIO_CH1;
259 			return;
260 		}
261 	}
262 
263 	drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
264 		 port_name(port));
265 	*phy = DPIO_PHY0;
266 	*ch = DPIO_CH0;
267 }
268 
269 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
270 				  enum port port, u32 margin, u32 scale,
271 				  u32 enable, u32 deemphasis)
272 {
273 	u32 val;
274 	enum dpio_phy phy;
275 	enum dpio_channel ch;
276 
277 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
278 
279 	/*
280 	 * While we write to the group register to program all lanes at once we
281 	 * can read only lane registers and we pick lanes 0/1 for that.
282 	 */
283 	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
284 	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
285 	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
286 
287 	val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch));
288 	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
289 	val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
290 	intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val);
291 
292 	val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch));
293 	val &= ~SCALE_DCOMP_METHOD;
294 	if (enable)
295 		val |= SCALE_DCOMP_METHOD;
296 
297 	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
298 		drm_err(&dev_priv->drm,
299 			"Disabled scaling while ouniqetrangenmethod was set");
300 
301 	intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val);
302 
303 	val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch));
304 	val &= ~DE_EMPHASIS;
305 	val |= deemphasis << DEEMPH_SHIFT;
306 	intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val);
307 
308 	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
309 	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
310 	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
311 }
312 
313 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
314 			    enum dpio_phy phy)
315 {
316 	const struct bxt_ddi_phy_info *phy_info;
317 
318 	phy_info = bxt_get_phy_info(dev_priv, phy);
319 
320 	if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
321 		return false;
322 
323 	if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
324 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
325 		drm_dbg(&dev_priv->drm,
326 			"DDI PHY %d powered, but power hasn't settled\n", phy);
327 
328 		return false;
329 	}
330 
331 	if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
332 		drm_dbg(&dev_priv->drm,
333 			"DDI PHY %d powered, but still in reset\n", phy);
334 
335 		return false;
336 	}
337 
338 	return true;
339 }
340 
341 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
342 {
343 	u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
344 
345 	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
346 }
347 
348 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
349 				  enum dpio_phy phy)
350 {
351 	if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
352 				  GRC_DONE, 10))
353 		drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
354 			phy);
355 }
356 
357 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
358 			      enum dpio_phy phy)
359 {
360 	const struct bxt_ddi_phy_info *phy_info;
361 	u32 val;
362 
363 	phy_info = bxt_get_phy_info(dev_priv, phy);
364 
365 	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
366 		/* Still read out the GRC value for state verification */
367 		if (phy_info->rcomp_phy != -1)
368 			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
369 
370 		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
371 			drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
372 				"won't reprogram it\n", phy);
373 			return;
374 		}
375 
376 		drm_dbg(&dev_priv->drm,
377 			"DDI PHY %d enabled with invalid state, "
378 			"force reprogramming it\n", phy);
379 	}
380 
381 	val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
382 	val |= phy_info->pwron_mask;
383 	intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
384 
385 	/*
386 	 * The PHY registers start out inaccessible and respond to reads with
387 	 * all 1s.  Eventually they become accessible as they power up, then
388 	 * the reserved bit will give the default 0.  Poll on the reserved bit
389 	 * becoming 0 to find when the PHY is accessible.
390 	 * The flag should get set in 100us according to the HW team, but
391 	 * use 1ms due to occasional timeouts observed with that.
392 	 */
393 	if (intel_wait_for_register_fw(&dev_priv->uncore,
394 				       BXT_PORT_CL1CM_DW0(phy),
395 				       PHY_RESERVED | PHY_POWER_GOOD,
396 				       PHY_POWER_GOOD,
397 				       1))
398 		drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
399 			phy);
400 
401 	/* Program PLL Rcomp code offset */
402 	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW9(phy));
403 	val &= ~IREF0RC_OFFSET_MASK;
404 	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
405 	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW9(phy), val);
406 
407 	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW10(phy));
408 	val &= ~IREF1RC_OFFSET_MASK;
409 	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
410 	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW10(phy), val);
411 
412 	/* Program power gating */
413 	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW28(phy));
414 	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
415 		SUS_CLK_CONFIG;
416 	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW28(phy), val);
417 
418 	if (phy_info->dual_channel) {
419 		val = intel_de_read(dev_priv, BXT_PORT_CL2CM_DW6(phy));
420 		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
421 		intel_de_write(dev_priv, BXT_PORT_CL2CM_DW6(phy), val);
422 	}
423 
424 	if (phy_info->rcomp_phy != -1) {
425 		u32 grc_code;
426 
427 		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
428 
429 		/*
430 		 * PHY0 isn't connected to an RCOMP resistor so copy over
431 		 * the corresponding calibrated value from PHY1, and disable
432 		 * the automatic calibration on PHY0.
433 		 */
434 		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
435 							  phy_info->rcomp_phy);
436 		grc_code = val << GRC_CODE_FAST_SHIFT |
437 			   val << GRC_CODE_SLOW_SHIFT |
438 			   val;
439 		intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
440 
441 		val = intel_de_read(dev_priv, BXT_PORT_REF_DW8(phy));
442 		val |= GRC_DIS | GRC_RDY_OVRD;
443 		intel_de_write(dev_priv, BXT_PORT_REF_DW8(phy), val);
444 	}
445 
446 	if (phy_info->reset_delay)
447 		udelay(phy_info->reset_delay);
448 
449 	val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
450 	val |= COMMON_RESET_DIS;
451 	intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
452 }
453 
454 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
455 {
456 	const struct bxt_ddi_phy_info *phy_info;
457 	u32 val;
458 
459 	phy_info = bxt_get_phy_info(dev_priv, phy);
460 
461 	val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
462 	val &= ~COMMON_RESET_DIS;
463 	intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
464 
465 	val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
466 	val &= ~phy_info->pwron_mask;
467 	intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
468 }
469 
470 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
471 {
472 	const struct bxt_ddi_phy_info *phy_info =
473 		bxt_get_phy_info(dev_priv, phy);
474 	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
475 	bool was_enabled;
476 
477 	lockdep_assert_held(&dev_priv->power_domains.lock);
478 
479 	was_enabled = true;
480 	if (rcomp_phy != -1)
481 		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
482 
483 	/*
484 	 * We need to copy the GRC calibration value from rcomp_phy,
485 	 * so make sure it's powered up.
486 	 */
487 	if (!was_enabled)
488 		_bxt_ddi_phy_init(dev_priv, rcomp_phy);
489 
490 	_bxt_ddi_phy_init(dev_priv, phy);
491 
492 	if (!was_enabled)
493 		bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
494 }
495 
496 static bool __printf(6, 7)
497 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
498 		       i915_reg_t reg, u32 mask, u32 expected,
499 		       const char *reg_fmt, ...)
500 {
501 	struct va_format vaf;
502 	va_list args;
503 	u32 val;
504 
505 	val = intel_de_read(dev_priv, reg);
506 	if ((val & mask) == expected)
507 		return true;
508 
509 	va_start(args, reg_fmt);
510 	vaf.fmt = reg_fmt;
511 	vaf.va = &args;
512 
513 	drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
514 			 "current %08x, expected %08x (mask %08x)\n",
515 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
516 			 mask);
517 
518 	va_end(args);
519 
520 	return false;
521 }
522 
523 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
524 			      enum dpio_phy phy)
525 {
526 	const struct bxt_ddi_phy_info *phy_info;
527 	u32 mask;
528 	bool ok;
529 
530 	phy_info = bxt_get_phy_info(dev_priv, phy);
531 
532 #define _CHK(reg, mask, exp, fmt, ...)					\
533 	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
534 			       ## __VA_ARGS__)
535 
536 	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
537 		return false;
538 
539 	ok = true;
540 
541 	/* PLL Rcomp code offset */
542 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
543 		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
544 		    "BXT_PORT_CL1CM_DW9(%d)", phy);
545 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
546 		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
547 		    "BXT_PORT_CL1CM_DW10(%d)", phy);
548 
549 	/* Power gating */
550 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
551 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
552 		    "BXT_PORT_CL1CM_DW28(%d)", phy);
553 
554 	if (phy_info->dual_channel)
555 		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
556 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
557 			   "BXT_PORT_CL2CM_DW6(%d)", phy);
558 
559 	if (phy_info->rcomp_phy != -1) {
560 		u32 grc_code = dev_priv->bxt_phy_grc;
561 
562 		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
563 			   grc_code << GRC_CODE_SLOW_SHIFT |
564 			   grc_code;
565 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
566 		       GRC_CODE_NOM_MASK;
567 		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
568 			   "BXT_PORT_REF_DW6(%d)", phy);
569 
570 		mask = GRC_DIS | GRC_RDY_OVRD;
571 		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
572 			    "BXT_PORT_REF_DW8(%d)", phy);
573 	}
574 
575 	return ok;
576 #undef _CHK
577 }
578 
579 u8
580 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
581 {
582 	switch (lane_count) {
583 	case 1:
584 		return 0;
585 	case 2:
586 		return BIT(2) | BIT(0);
587 	case 4:
588 		return BIT(3) | BIT(2) | BIT(0);
589 	default:
590 		MISSING_CASE(lane_count);
591 
592 		return 0;
593 	}
594 }
595 
596 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
597 				     u8 lane_lat_optim_mask)
598 {
599 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
600 	enum port port = encoder->port;
601 	enum dpio_phy phy;
602 	enum dpio_channel ch;
603 	int lane;
604 
605 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
606 
607 	for (lane = 0; lane < 4; lane++) {
608 		u32 val = intel_de_read(dev_priv,
609 					BXT_PORT_TX_DW14_LN(phy, ch, lane));
610 
611 		/*
612 		 * Note that on CHV this flag is called UPAR, but has
613 		 * the same function.
614 		 */
615 		val &= ~LATENCY_OPTIM;
616 		if (lane_lat_optim_mask & BIT(lane))
617 			val |= LATENCY_OPTIM;
618 
619 		intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
620 			       val);
621 	}
622 }
623 
624 u8
625 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
626 {
627 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
628 	enum port port = encoder->port;
629 	enum dpio_phy phy;
630 	enum dpio_channel ch;
631 	int lane;
632 	u8 mask;
633 
634 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
635 
636 	mask = 0;
637 	for (lane = 0; lane < 4; lane++) {
638 		u32 val = intel_de_read(dev_priv,
639 					BXT_PORT_TX_DW14_LN(phy, ch, lane));
640 
641 		if (val & LATENCY_OPTIM)
642 			mask |= BIT(lane);
643 	}
644 
645 	return mask;
646 }
647 
648 void chv_set_phy_signal_level(struct intel_encoder *encoder,
649 			      const struct intel_crtc_state *crtc_state,
650 			      u32 deemph_reg_value, u32 margin_reg_value,
651 			      bool uniq_trans_scale)
652 {
653 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
654 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
655 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
656 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
657 	enum pipe pipe = crtc->pipe;
658 	u32 val;
659 	int i;
660 
661 	vlv_dpio_get(dev_priv);
662 
663 	/* Clear calc init */
664 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
665 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
666 	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
667 	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
668 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
669 
670 	if (crtc_state->lane_count > 2) {
671 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
672 		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
673 		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
674 		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
675 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
676 	}
677 
678 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
679 	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
680 	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
681 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
682 
683 	if (crtc_state->lane_count > 2) {
684 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
685 		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
686 		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
687 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
688 	}
689 
690 	/* Program swing deemph */
691 	for (i = 0; i < crtc_state->lane_count; i++) {
692 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
693 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
694 		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
695 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
696 	}
697 
698 	/* Program swing margin */
699 	for (i = 0; i < crtc_state->lane_count; i++) {
700 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
701 
702 		val &= ~DPIO_SWING_MARGIN000_MASK;
703 		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
704 
705 		/*
706 		 * Supposedly this value shouldn't matter when unique transition
707 		 * scale is disabled, but in fact it does matter. Let's just
708 		 * always program the same value and hope it's OK.
709 		 */
710 		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
711 		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
712 
713 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
714 	}
715 
716 	/*
717 	 * The document said it needs to set bit 27 for ch0 and bit 26
718 	 * for ch1. Might be a typo in the doc.
719 	 * For now, for this unique transition scale selection, set bit
720 	 * 27 for ch0 and ch1.
721 	 */
722 	for (i = 0; i < crtc_state->lane_count; i++) {
723 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
724 		if (uniq_trans_scale)
725 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
726 		else
727 			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
728 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
729 	}
730 
731 	/* Start swing calculation */
732 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
733 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
734 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
735 
736 	if (crtc_state->lane_count > 2) {
737 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
738 		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
739 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
740 	}
741 
742 	vlv_dpio_put(dev_priv);
743 }
744 
745 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
746 			      const struct intel_crtc_state *crtc_state,
747 			      bool reset)
748 {
749 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
750 	enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
751 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
752 	enum pipe pipe = crtc->pipe;
753 	u32 val;
754 
755 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
756 	if (reset)
757 		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
758 	else
759 		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
760 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
761 
762 	if (crtc_state->lane_count > 2) {
763 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
764 		if (reset)
765 			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
766 		else
767 			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
768 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
769 	}
770 
771 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
772 	val |= CHV_PCS_REQ_SOFTRESET_EN;
773 	if (reset)
774 		val &= ~DPIO_PCS_CLK_SOFT_RESET;
775 	else
776 		val |= DPIO_PCS_CLK_SOFT_RESET;
777 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
778 
779 	if (crtc_state->lane_count > 2) {
780 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
781 		val |= CHV_PCS_REQ_SOFTRESET_EN;
782 		if (reset)
783 			val &= ~DPIO_PCS_CLK_SOFT_RESET;
784 		else
785 			val |= DPIO_PCS_CLK_SOFT_RESET;
786 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
787 	}
788 }
789 
790 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
791 			    const struct intel_crtc_state *crtc_state)
792 {
793 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
794 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
795 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
796 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
797 	enum pipe pipe = crtc->pipe;
798 	unsigned int lane_mask =
799 		intel_dp_unused_lane_mask(crtc_state->lane_count);
800 	u32 val;
801 
802 	/*
803 	 * Must trick the second common lane into life.
804 	 * Otherwise we can't even access the PLL.
805 	 */
806 	if (ch == DPIO_CH0 && pipe == PIPE_B)
807 		dig_port->release_cl2_override =
808 			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
809 
810 	chv_phy_powergate_lanes(encoder, true, lane_mask);
811 
812 	vlv_dpio_get(dev_priv);
813 
814 	/* Assert data lane reset */
815 	chv_data_lane_soft_reset(encoder, crtc_state, true);
816 
817 	/* program left/right clock distribution */
818 	if (pipe != PIPE_B) {
819 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
820 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
821 		if (ch == DPIO_CH0)
822 			val |= CHV_BUFLEFTENA1_FORCE;
823 		if (ch == DPIO_CH1)
824 			val |= CHV_BUFRIGHTENA1_FORCE;
825 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
826 	} else {
827 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
828 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
829 		if (ch == DPIO_CH0)
830 			val |= CHV_BUFLEFTENA2_FORCE;
831 		if (ch == DPIO_CH1)
832 			val |= CHV_BUFRIGHTENA2_FORCE;
833 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
834 	}
835 
836 	/* program clock channel usage */
837 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
838 	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
839 	if (pipe != PIPE_B)
840 		val &= ~CHV_PCS_USEDCLKCHANNEL;
841 	else
842 		val |= CHV_PCS_USEDCLKCHANNEL;
843 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
844 
845 	if (crtc_state->lane_count > 2) {
846 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
847 		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
848 		if (pipe != PIPE_B)
849 			val &= ~CHV_PCS_USEDCLKCHANNEL;
850 		else
851 			val |= CHV_PCS_USEDCLKCHANNEL;
852 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
853 	}
854 
855 	/*
856 	 * This a a bit weird since generally CL
857 	 * matches the pipe, but here we need to
858 	 * pick the CL based on the port.
859 	 */
860 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
861 	if (pipe != PIPE_B)
862 		val &= ~CHV_CMN_USEDCLKCHANNEL;
863 	else
864 		val |= CHV_CMN_USEDCLKCHANNEL;
865 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
866 
867 	vlv_dpio_put(dev_priv);
868 }
869 
870 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
871 				const struct intel_crtc_state *crtc_state)
872 {
873 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
874 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
875 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
876 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
877 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
878 	enum pipe pipe = crtc->pipe;
879 	int data, i, stagger;
880 	u32 val;
881 
882 	vlv_dpio_get(dev_priv);
883 
884 	/* allow hardware to manage TX FIFO reset source */
885 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
886 	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
887 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
888 
889 	if (crtc_state->lane_count > 2) {
890 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
891 		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
892 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
893 	}
894 
895 	/* Program Tx lane latency optimal setting*/
896 	for (i = 0; i < crtc_state->lane_count; i++) {
897 		/* Set the upar bit */
898 		if (crtc_state->lane_count == 1)
899 			data = 0x0;
900 		else
901 			data = (i == 1) ? 0x0 : 0x1;
902 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
903 				data << DPIO_UPAR_SHIFT);
904 	}
905 
906 	/* Data lane stagger programming */
907 	if (crtc_state->port_clock > 270000)
908 		stagger = 0x18;
909 	else if (crtc_state->port_clock > 135000)
910 		stagger = 0xd;
911 	else if (crtc_state->port_clock > 67500)
912 		stagger = 0x7;
913 	else if (crtc_state->port_clock > 33750)
914 		stagger = 0x4;
915 	else
916 		stagger = 0x2;
917 
918 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
919 	val |= DPIO_TX2_STAGGER_MASK(0x1f);
920 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
921 
922 	if (crtc_state->lane_count > 2) {
923 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
924 		val |= DPIO_TX2_STAGGER_MASK(0x1f);
925 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
926 	}
927 
928 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
929 		       DPIO_LANESTAGGER_STRAP(stagger) |
930 		       DPIO_LANESTAGGER_STRAP_OVRD |
931 		       DPIO_TX1_STAGGER_MASK(0x1f) |
932 		       DPIO_TX1_STAGGER_MULT(6) |
933 		       DPIO_TX2_STAGGER_MULT(0));
934 
935 	if (crtc_state->lane_count > 2) {
936 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
937 			       DPIO_LANESTAGGER_STRAP(stagger) |
938 			       DPIO_LANESTAGGER_STRAP_OVRD |
939 			       DPIO_TX1_STAGGER_MASK(0x1f) |
940 			       DPIO_TX1_STAGGER_MULT(7) |
941 			       DPIO_TX2_STAGGER_MULT(5));
942 	}
943 
944 	/* Deassert data lane reset */
945 	chv_data_lane_soft_reset(encoder, crtc_state, false);
946 
947 	vlv_dpio_put(dev_priv);
948 }
949 
950 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
951 {
952 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
953 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
954 
955 	if (dig_port->release_cl2_override) {
956 		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
957 		dig_port->release_cl2_override = false;
958 	}
959 }
960 
961 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
962 			      const struct intel_crtc_state *old_crtc_state)
963 {
964 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
965 	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
966 	u32 val;
967 
968 	vlv_dpio_get(dev_priv);
969 
970 	/* disable left/right clock distribution */
971 	if (pipe != PIPE_B) {
972 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
973 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
974 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
975 	} else {
976 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
977 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
978 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
979 	}
980 
981 	vlv_dpio_put(dev_priv);
982 
983 	/*
984 	 * Leave the power down bit cleared for at least one
985 	 * lane so that chv_powergate_phy_ch() will power
986 	 * on something when the channel is otherwise unused.
987 	 * When the port is off and the override is removed
988 	 * the lanes power down anyway, so otherwise it doesn't
989 	 * really matter what the state of power down bits is
990 	 * after this.
991 	 */
992 	chv_phy_powergate_lanes(encoder, false, 0x0);
993 }
994 
995 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
996 			      const struct intel_crtc_state *crtc_state,
997 			      u32 demph_reg_value, u32 preemph_reg_value,
998 			      u32 uniqtranscale_reg_value, u32 tx3_demph)
999 {
1000 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1001 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1002 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1003 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1004 	enum pipe pipe = crtc->pipe;
1005 
1006 	vlv_dpio_get(dev_priv);
1007 
1008 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
1009 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
1010 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
1011 			 uniqtranscale_reg_value);
1012 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1013 
1014 	if (tx3_demph)
1015 		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1016 
1017 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1018 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1019 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1020 
1021 	vlv_dpio_put(dev_priv);
1022 }
1023 
1024 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1025 			    const struct intel_crtc_state *crtc_state)
1026 {
1027 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1028 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1029 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1030 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1031 	enum pipe pipe = crtc->pipe;
1032 
1033 	/* Program Tx lane resets to default */
1034 	vlv_dpio_get(dev_priv);
1035 
1036 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1037 			 DPIO_PCS_TX_LANE2_RESET |
1038 			 DPIO_PCS_TX_LANE1_RESET);
1039 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1040 			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1041 			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1042 			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1043 				 DPIO_PCS_CLK_SOFT_RESET);
1044 
1045 	/* Fix up inter-pair skew failure */
1046 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1047 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1048 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1049 
1050 	vlv_dpio_put(dev_priv);
1051 }
1052 
1053 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1054 				const struct intel_crtc_state *crtc_state)
1055 {
1056 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1057 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1058 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1059 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1060 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1061 	enum pipe pipe = crtc->pipe;
1062 	u32 val;
1063 
1064 	vlv_dpio_get(dev_priv);
1065 
1066 	/* Enable clock channels for this port */
1067 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1068 	val = 0;
1069 	if (pipe)
1070 		val |= (1<<21);
1071 	else
1072 		val &= ~(1<<21);
1073 	val |= 0x001000c4;
1074 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1075 
1076 	/* Program lane clock */
1077 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1078 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1079 
1080 	vlv_dpio_put(dev_priv);
1081 }
1082 
1083 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1084 			 const struct intel_crtc_state *old_crtc_state)
1085 {
1086 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1087 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1088 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1089 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1090 	enum pipe pipe = crtc->pipe;
1091 
1092 	vlv_dpio_get(dev_priv);
1093 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1094 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1095 	vlv_dpio_put(dev_priv);
1096 }
1097