1 /*
2  * Copyright © 2014-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "display/intel_dp.h"
25 
26 #include "intel_display_types.h"
27 #include "intel_dpio_phy.h"
28 #include "intel_sideband.h"
29 
30 /**
31  * DOC: DPIO
32  *
33  * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
34  * ports. DPIO is the name given to such a display PHY. These PHYs
35  * don't follow the standard programming model using direct MMIO
36  * registers, and instead their registers must be accessed trough IOSF
37  * sideband. VLV has one such PHY for driving ports B and C, and CHV
38  * adds another PHY for driving port D. Each PHY responds to specific
39  * IOSF-SB port.
40  *
41  * Each display PHY is made up of one or two channels. Each channel
42  * houses a common lane part which contains the PLL and other common
43  * logic. CH0 common lane also contains the IOSF-SB logic for the
44  * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
45  * must be running when any DPIO registers are accessed.
46  *
47  * In addition to having their own registers, the PHYs are also
48  * controlled through some dedicated signals from the display
49  * controller. These include PLL reference clock enable, PLL enable,
50  * and CRI clock selection, for example.
51  *
52  * Eeach channel also has two splines (also called data lanes), and
53  * each spline is made up of one Physical Access Coding Sub-Layer
54  * (PCS) block and two TX lanes. So each channel has two PCS blocks
55  * and four TX lanes. The TX lanes are used as DP lanes or TMDS
56  * data/clock pairs depending on the output type.
57  *
58  * Additionally the PHY also contains an AUX lane with AUX blocks
59  * for each channel. This is used for DP AUX communication, but
60  * this fact isn't really relevant for the driver since AUX is
61  * controlled from the display controller side. No DPIO registers
62  * need to be accessed during AUX communication,
63  *
64  * Generally on VLV/CHV the common lane corresponds to the pipe and
65  * the spline (PCS/TX) corresponds to the port.
66  *
67  * For dual channel PHY (VLV/CHV):
68  *
69  *  pipe A == CMN/PLL/REF CH0
70  *
71  *  pipe B == CMN/PLL/REF CH1
72  *
73  *  port B == PCS/TX CH0
74  *
75  *  port C == PCS/TX CH1
76  *
77  * This is especially important when we cross the streams
78  * ie. drive port B with pipe B, or port C with pipe A.
79  *
80  * For single channel PHY (CHV):
81  *
82  *  pipe C == CMN/PLL/REF CH0
83  *
84  *  port D == PCS/TX CH0
85  *
86  * On BXT the entire PHY channel corresponds to the port. That means
87  * the PLL is also now associated with the port rather than the pipe,
88  * and so the clock needs to be routed to the appropriate transcoder.
89  * Port A PLL is directly connected to transcoder EDP and port B/C
90  * PLLs can be routed to any transcoder A/B/C.
91  *
92  * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
93  * digital port D (CHV) or port A (BXT). ::
94  *
95  *
96  *     Dual channel PHY (VLV/CHV/BXT)
97  *     ---------------------------------
98  *     |      CH0      |      CH1      |
99  *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
100  *     |---------------|---------------| Display PHY
101  *     | PCS01 | PCS23 | PCS01 | PCS23 |
102  *     |-------|-------|-------|-------|
103  *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
104  *     ---------------------------------
105  *     |     DDI0      |     DDI1      | DP/HDMI ports
106  *     ---------------------------------
107  *
108  *     Single channel PHY (CHV/BXT)
109  *     -----------------
110  *     |      CH0      |
111  *     |  CMN/PLL/REF  |
112  *     |---------------| Display PHY
113  *     | PCS01 | PCS23 |
114  *     |-------|-------|
115  *     |TX0|TX1|TX2|TX3|
116  *     -----------------
117  *     |     DDI2      | DP/HDMI port
118  *     -----------------
119  */
120 
121 /**
122  * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
123  */
124 struct bxt_ddi_phy_info {
125 	/**
126 	 * @dual_channel: true if this phy has a second channel.
127 	 */
128 	bool dual_channel;
129 
130 	/**
131 	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
132 	 * Otherwise the GRC value will be copied from the phy indicated by
133 	 * this field.
134 	 */
135 	enum dpio_phy rcomp_phy;
136 
137 	/**
138 	 * @reset_delay: delay in us to wait before setting the common reset
139 	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
140 	 */
141 	int reset_delay;
142 
143 	/**
144 	 * @pwron_mask: Mask with the appropriate bit set that would cause the
145 	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
146 	 */
147 	u32 pwron_mask;
148 
149 	/**
150 	 * @channel: struct containing per channel information.
151 	 */
152 	struct {
153 		/**
154 		 * @channel.port: which port maps to this channel.
155 		 */
156 		enum port port;
157 	} channel[2];
158 };
159 
160 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
161 	[DPIO_PHY0] = {
162 		.dual_channel = true,
163 		.rcomp_phy = DPIO_PHY1,
164 		.pwron_mask = BIT(0),
165 
166 		.channel = {
167 			[DPIO_CH0] = { .port = PORT_B },
168 			[DPIO_CH1] = { .port = PORT_C },
169 		}
170 	},
171 	[DPIO_PHY1] = {
172 		.dual_channel = false,
173 		.rcomp_phy = -1,
174 		.pwron_mask = BIT(1),
175 
176 		.channel = {
177 			[DPIO_CH0] = { .port = PORT_A },
178 		}
179 	},
180 };
181 
182 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
183 	[DPIO_PHY0] = {
184 		.dual_channel = false,
185 		.rcomp_phy = DPIO_PHY1,
186 		.pwron_mask = BIT(0),
187 		.reset_delay = 20,
188 
189 		.channel = {
190 			[DPIO_CH0] = { .port = PORT_B },
191 		}
192 	},
193 	[DPIO_PHY1] = {
194 		.dual_channel = false,
195 		.rcomp_phy = -1,
196 		.pwron_mask = BIT(3),
197 		.reset_delay = 20,
198 
199 		.channel = {
200 			[DPIO_CH0] = { .port = PORT_A },
201 		}
202 	},
203 	[DPIO_PHY2] = {
204 		.dual_channel = false,
205 		.rcomp_phy = DPIO_PHY1,
206 		.pwron_mask = BIT(1),
207 		.reset_delay = 20,
208 
209 		.channel = {
210 			[DPIO_CH0] = { .port = PORT_C },
211 		}
212 	},
213 };
214 
215 static const struct bxt_ddi_phy_info *
216 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
217 {
218 	if (IS_GEMINILAKE(dev_priv)) {
219 		*count =  ARRAY_SIZE(glk_ddi_phy_info);
220 		return glk_ddi_phy_info;
221 	} else {
222 		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
223 		return bxt_ddi_phy_info;
224 	}
225 }
226 
227 static const struct bxt_ddi_phy_info *
228 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
229 {
230 	int count;
231 	const struct bxt_ddi_phy_info *phy_list =
232 		bxt_get_phy_list(dev_priv, &count);
233 
234 	return &phy_list[phy];
235 }
236 
237 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
238 			     enum dpio_phy *phy, enum dpio_channel *ch)
239 {
240 	const struct bxt_ddi_phy_info *phy_info, *phys;
241 	int i, count;
242 
243 	phys = bxt_get_phy_list(dev_priv, &count);
244 
245 	for (i = 0; i < count; i++) {
246 		phy_info = &phys[i];
247 
248 		if (port == phy_info->channel[DPIO_CH0].port) {
249 			*phy = i;
250 			*ch = DPIO_CH0;
251 			return;
252 		}
253 
254 		if (phy_info->dual_channel &&
255 		    port == phy_info->channel[DPIO_CH1].port) {
256 			*phy = i;
257 			*ch = DPIO_CH1;
258 			return;
259 		}
260 	}
261 
262 	WARN(1, "PHY not found for PORT %c", port_name(port));
263 	*phy = DPIO_PHY0;
264 	*ch = DPIO_CH0;
265 }
266 
267 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
268 				  enum port port, u32 margin, u32 scale,
269 				  u32 enable, u32 deemphasis)
270 {
271 	u32 val;
272 	enum dpio_phy phy;
273 	enum dpio_channel ch;
274 
275 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
276 
277 	/*
278 	 * While we write to the group register to program all lanes at once we
279 	 * can read only lane registers and we pick lanes 0/1 for that.
280 	 */
281 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
282 	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
283 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
284 
285 	val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch));
286 	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
287 	val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
288 	I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val);
289 
290 	val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch));
291 	val &= ~SCALE_DCOMP_METHOD;
292 	if (enable)
293 		val |= SCALE_DCOMP_METHOD;
294 
295 	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
296 		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
297 
298 	I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val);
299 
300 	val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch));
301 	val &= ~DE_EMPHASIS;
302 	val |= deemphasis << DEEMPH_SHIFT;
303 	I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val);
304 
305 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
306 	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
307 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
308 }
309 
310 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
311 			    enum dpio_phy phy)
312 {
313 	const struct bxt_ddi_phy_info *phy_info;
314 
315 	phy_info = bxt_get_phy_info(dev_priv, phy);
316 
317 	if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
318 		return false;
319 
320 	if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
321 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
322 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
323 				 phy);
324 
325 		return false;
326 	}
327 
328 	if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
329 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
330 				 phy);
331 
332 		return false;
333 	}
334 
335 	return true;
336 }
337 
338 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
339 {
340 	u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
341 
342 	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
343 }
344 
345 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
346 				  enum dpio_phy phy)
347 {
348 	if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
349 				  GRC_DONE, 10))
350 		DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
351 }
352 
353 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
354 			      enum dpio_phy phy)
355 {
356 	const struct bxt_ddi_phy_info *phy_info;
357 	u32 val;
358 
359 	phy_info = bxt_get_phy_info(dev_priv, phy);
360 
361 	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
362 		/* Still read out the GRC value for state verification */
363 		if (phy_info->rcomp_phy != -1)
364 			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
365 
366 		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
367 			DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
368 					 "won't reprogram it\n", phy);
369 			return;
370 		}
371 
372 		DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
373 				 "force reprogramming it\n", phy);
374 	}
375 
376 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
377 	val |= phy_info->pwron_mask;
378 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
379 
380 	/*
381 	 * The PHY registers start out inaccessible and respond to reads with
382 	 * all 1s.  Eventually they become accessible as they power up, then
383 	 * the reserved bit will give the default 0.  Poll on the reserved bit
384 	 * becoming 0 to find when the PHY is accessible.
385 	 * The flag should get set in 100us according to the HW team, but
386 	 * use 1ms due to occasional timeouts observed with that.
387 	 */
388 	if (intel_wait_for_register_fw(&dev_priv->uncore,
389 				       BXT_PORT_CL1CM_DW0(phy),
390 				       PHY_RESERVED | PHY_POWER_GOOD,
391 				       PHY_POWER_GOOD,
392 				       1))
393 		DRM_ERROR("timeout during PHY%d power on\n", phy);
394 
395 	/* Program PLL Rcomp code offset */
396 	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
397 	val &= ~IREF0RC_OFFSET_MASK;
398 	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
399 	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
400 
401 	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
402 	val &= ~IREF1RC_OFFSET_MASK;
403 	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
404 	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
405 
406 	/* Program power gating */
407 	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
408 	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
409 		SUS_CLK_CONFIG;
410 	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
411 
412 	if (phy_info->dual_channel) {
413 		val = I915_READ(BXT_PORT_CL2CM_DW6(phy));
414 		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
415 		I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val);
416 	}
417 
418 	if (phy_info->rcomp_phy != -1) {
419 		u32 grc_code;
420 
421 		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
422 
423 		/*
424 		 * PHY0 isn't connected to an RCOMP resistor so copy over
425 		 * the corresponding calibrated value from PHY1, and disable
426 		 * the automatic calibration on PHY0.
427 		 */
428 		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
429 							  phy_info->rcomp_phy);
430 		grc_code = val << GRC_CODE_FAST_SHIFT |
431 			   val << GRC_CODE_SLOW_SHIFT |
432 			   val;
433 		I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code);
434 
435 		val = I915_READ(BXT_PORT_REF_DW8(phy));
436 		val |= GRC_DIS | GRC_RDY_OVRD;
437 		I915_WRITE(BXT_PORT_REF_DW8(phy), val);
438 	}
439 
440 	if (phy_info->reset_delay)
441 		udelay(phy_info->reset_delay);
442 
443 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
444 	val |= COMMON_RESET_DIS;
445 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
446 }
447 
448 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
449 {
450 	const struct bxt_ddi_phy_info *phy_info;
451 	u32 val;
452 
453 	phy_info = bxt_get_phy_info(dev_priv, phy);
454 
455 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
456 	val &= ~COMMON_RESET_DIS;
457 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
458 
459 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
460 	val &= ~phy_info->pwron_mask;
461 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
462 }
463 
464 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
465 {
466 	const struct bxt_ddi_phy_info *phy_info =
467 		bxt_get_phy_info(dev_priv, phy);
468 	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
469 	bool was_enabled;
470 
471 	lockdep_assert_held(&dev_priv->power_domains.lock);
472 
473 	was_enabled = true;
474 	if (rcomp_phy != -1)
475 		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
476 
477 	/*
478 	 * We need to copy the GRC calibration value from rcomp_phy,
479 	 * so make sure it's powered up.
480 	 */
481 	if (!was_enabled)
482 		_bxt_ddi_phy_init(dev_priv, rcomp_phy);
483 
484 	_bxt_ddi_phy_init(dev_priv, phy);
485 
486 	if (!was_enabled)
487 		bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
488 }
489 
490 static bool __printf(6, 7)
491 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
492 		       i915_reg_t reg, u32 mask, u32 expected,
493 		       const char *reg_fmt, ...)
494 {
495 	struct va_format vaf;
496 	va_list args;
497 	u32 val;
498 
499 	val = I915_READ(reg);
500 	if ((val & mask) == expected)
501 		return true;
502 
503 	va_start(args, reg_fmt);
504 	vaf.fmt = reg_fmt;
505 	vaf.va = &args;
506 
507 	DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
508 			 "current %08x, expected %08x (mask %08x)\n",
509 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
510 			 mask);
511 
512 	va_end(args);
513 
514 	return false;
515 }
516 
517 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
518 			      enum dpio_phy phy)
519 {
520 	const struct bxt_ddi_phy_info *phy_info;
521 	u32 mask;
522 	bool ok;
523 
524 	phy_info = bxt_get_phy_info(dev_priv, phy);
525 
526 #define _CHK(reg, mask, exp, fmt, ...)					\
527 	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
528 			       ## __VA_ARGS__)
529 
530 	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
531 		return false;
532 
533 	ok = true;
534 
535 	/* PLL Rcomp code offset */
536 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
537 		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
538 		    "BXT_PORT_CL1CM_DW9(%d)", phy);
539 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
540 		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
541 		    "BXT_PORT_CL1CM_DW10(%d)", phy);
542 
543 	/* Power gating */
544 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
545 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
546 		    "BXT_PORT_CL1CM_DW28(%d)", phy);
547 
548 	if (phy_info->dual_channel)
549 		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
550 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
551 			   "BXT_PORT_CL2CM_DW6(%d)", phy);
552 
553 	if (phy_info->rcomp_phy != -1) {
554 		u32 grc_code = dev_priv->bxt_phy_grc;
555 
556 		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
557 			   grc_code << GRC_CODE_SLOW_SHIFT |
558 			   grc_code;
559 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
560 		       GRC_CODE_NOM_MASK;
561 		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
562 			   "BXT_PORT_REF_DW6(%d)", phy);
563 
564 		mask = GRC_DIS | GRC_RDY_OVRD;
565 		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
566 			    "BXT_PORT_REF_DW8(%d)", phy);
567 	}
568 
569 	return ok;
570 #undef _CHK
571 }
572 
573 u8
574 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
575 {
576 	switch (lane_count) {
577 	case 1:
578 		return 0;
579 	case 2:
580 		return BIT(2) | BIT(0);
581 	case 4:
582 		return BIT(3) | BIT(2) | BIT(0);
583 	default:
584 		MISSING_CASE(lane_count);
585 
586 		return 0;
587 	}
588 }
589 
590 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
591 				     u8 lane_lat_optim_mask)
592 {
593 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
594 	enum port port = encoder->port;
595 	enum dpio_phy phy;
596 	enum dpio_channel ch;
597 	int lane;
598 
599 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
600 
601 	for (lane = 0; lane < 4; lane++) {
602 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
603 
604 		/*
605 		 * Note that on CHV this flag is called UPAR, but has
606 		 * the same function.
607 		 */
608 		val &= ~LATENCY_OPTIM;
609 		if (lane_lat_optim_mask & BIT(lane))
610 			val |= LATENCY_OPTIM;
611 
612 		I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val);
613 	}
614 }
615 
616 u8
617 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
618 {
619 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
620 	enum port port = encoder->port;
621 	enum dpio_phy phy;
622 	enum dpio_channel ch;
623 	int lane;
624 	u8 mask;
625 
626 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
627 
628 	mask = 0;
629 	for (lane = 0; lane < 4; lane++) {
630 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
631 
632 		if (val & LATENCY_OPTIM)
633 			mask |= BIT(lane);
634 	}
635 
636 	return mask;
637 }
638 
639 
640 void chv_set_phy_signal_level(struct intel_encoder *encoder,
641 			      u32 deemph_reg_value, u32 margin_reg_value,
642 			      bool uniq_trans_scale)
643 {
644 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
645 	struct intel_digital_port *dport = enc_to_dig_port(encoder);
646 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
647 	enum dpio_channel ch = vlv_dport_to_channel(dport);
648 	enum pipe pipe = intel_crtc->pipe;
649 	u32 val;
650 	int i;
651 
652 	vlv_dpio_get(dev_priv);
653 
654 	/* Clear calc init */
655 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
656 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
657 	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
658 	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
659 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
660 
661 	if (intel_crtc->config->lane_count > 2) {
662 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
663 		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
664 		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
665 		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
666 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
667 	}
668 
669 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
670 	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
671 	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
672 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
673 
674 	if (intel_crtc->config->lane_count > 2) {
675 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
676 		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
677 		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
678 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
679 	}
680 
681 	/* Program swing deemph */
682 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
683 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
684 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
685 		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
686 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
687 	}
688 
689 	/* Program swing margin */
690 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
691 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
692 
693 		val &= ~DPIO_SWING_MARGIN000_MASK;
694 		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
695 
696 		/*
697 		 * Supposedly this value shouldn't matter when unique transition
698 		 * scale is disabled, but in fact it does matter. Let's just
699 		 * always program the same value and hope it's OK.
700 		 */
701 		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
702 		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
703 
704 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
705 	}
706 
707 	/*
708 	 * The document said it needs to set bit 27 for ch0 and bit 26
709 	 * for ch1. Might be a typo in the doc.
710 	 * For now, for this unique transition scale selection, set bit
711 	 * 27 for ch0 and ch1.
712 	 */
713 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
714 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
715 		if (uniq_trans_scale)
716 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
717 		else
718 			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
719 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
720 	}
721 
722 	/* Start swing calculation */
723 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
724 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
725 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
726 
727 	if (intel_crtc->config->lane_count > 2) {
728 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
729 		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
730 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
731 	}
732 
733 	vlv_dpio_put(dev_priv);
734 }
735 
736 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
737 			      const struct intel_crtc_state *crtc_state,
738 			      bool reset)
739 {
740 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
741 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(encoder));
742 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
743 	enum pipe pipe = crtc->pipe;
744 	u32 val;
745 
746 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
747 	if (reset)
748 		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
749 	else
750 		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
751 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
752 
753 	if (crtc_state->lane_count > 2) {
754 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
755 		if (reset)
756 			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
757 		else
758 			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
759 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
760 	}
761 
762 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
763 	val |= CHV_PCS_REQ_SOFTRESET_EN;
764 	if (reset)
765 		val &= ~DPIO_PCS_CLK_SOFT_RESET;
766 	else
767 		val |= DPIO_PCS_CLK_SOFT_RESET;
768 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
769 
770 	if (crtc_state->lane_count > 2) {
771 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
772 		val |= CHV_PCS_REQ_SOFTRESET_EN;
773 		if (reset)
774 			val &= ~DPIO_PCS_CLK_SOFT_RESET;
775 		else
776 			val |= DPIO_PCS_CLK_SOFT_RESET;
777 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
778 	}
779 }
780 
781 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
782 			    const struct intel_crtc_state *crtc_state)
783 {
784 	struct intel_digital_port *dport = enc_to_dig_port(encoder);
785 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
786 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
787 	enum dpio_channel ch = vlv_dport_to_channel(dport);
788 	enum pipe pipe = crtc->pipe;
789 	unsigned int lane_mask =
790 		intel_dp_unused_lane_mask(crtc_state->lane_count);
791 	u32 val;
792 
793 	/*
794 	 * Must trick the second common lane into life.
795 	 * Otherwise we can't even access the PLL.
796 	 */
797 	if (ch == DPIO_CH0 && pipe == PIPE_B)
798 		dport->release_cl2_override =
799 			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
800 
801 	chv_phy_powergate_lanes(encoder, true, lane_mask);
802 
803 	vlv_dpio_get(dev_priv);
804 
805 	/* Assert data lane reset */
806 	chv_data_lane_soft_reset(encoder, crtc_state, true);
807 
808 	/* program left/right clock distribution */
809 	if (pipe != PIPE_B) {
810 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
811 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
812 		if (ch == DPIO_CH0)
813 			val |= CHV_BUFLEFTENA1_FORCE;
814 		if (ch == DPIO_CH1)
815 			val |= CHV_BUFRIGHTENA1_FORCE;
816 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
817 	} else {
818 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
819 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
820 		if (ch == DPIO_CH0)
821 			val |= CHV_BUFLEFTENA2_FORCE;
822 		if (ch == DPIO_CH1)
823 			val |= CHV_BUFRIGHTENA2_FORCE;
824 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
825 	}
826 
827 	/* program clock channel usage */
828 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
829 	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
830 	if (pipe != PIPE_B)
831 		val &= ~CHV_PCS_USEDCLKCHANNEL;
832 	else
833 		val |= CHV_PCS_USEDCLKCHANNEL;
834 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
835 
836 	if (crtc_state->lane_count > 2) {
837 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
838 		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
839 		if (pipe != PIPE_B)
840 			val &= ~CHV_PCS_USEDCLKCHANNEL;
841 		else
842 			val |= CHV_PCS_USEDCLKCHANNEL;
843 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
844 	}
845 
846 	/*
847 	 * This a a bit weird since generally CL
848 	 * matches the pipe, but here we need to
849 	 * pick the CL based on the port.
850 	 */
851 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
852 	if (pipe != PIPE_B)
853 		val &= ~CHV_CMN_USEDCLKCHANNEL;
854 	else
855 		val |= CHV_CMN_USEDCLKCHANNEL;
856 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
857 
858 	vlv_dpio_put(dev_priv);
859 }
860 
861 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
862 				const struct intel_crtc_state *crtc_state)
863 {
864 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
865 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
866 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
867 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
868 	enum dpio_channel ch = vlv_dport_to_channel(dport);
869 	enum pipe pipe = crtc->pipe;
870 	int data, i, stagger;
871 	u32 val;
872 
873 	vlv_dpio_get(dev_priv);
874 
875 	/* allow hardware to manage TX FIFO reset source */
876 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
877 	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
878 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
879 
880 	if (crtc_state->lane_count > 2) {
881 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
882 		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
883 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
884 	}
885 
886 	/* Program Tx lane latency optimal setting*/
887 	for (i = 0; i < crtc_state->lane_count; i++) {
888 		/* Set the upar bit */
889 		if (crtc_state->lane_count == 1)
890 			data = 0x0;
891 		else
892 			data = (i == 1) ? 0x0 : 0x1;
893 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
894 				data << DPIO_UPAR_SHIFT);
895 	}
896 
897 	/* Data lane stagger programming */
898 	if (crtc_state->port_clock > 270000)
899 		stagger = 0x18;
900 	else if (crtc_state->port_clock > 135000)
901 		stagger = 0xd;
902 	else if (crtc_state->port_clock > 67500)
903 		stagger = 0x7;
904 	else if (crtc_state->port_clock > 33750)
905 		stagger = 0x4;
906 	else
907 		stagger = 0x2;
908 
909 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
910 	val |= DPIO_TX2_STAGGER_MASK(0x1f);
911 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
912 
913 	if (crtc_state->lane_count > 2) {
914 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
915 		val |= DPIO_TX2_STAGGER_MASK(0x1f);
916 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
917 	}
918 
919 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
920 		       DPIO_LANESTAGGER_STRAP(stagger) |
921 		       DPIO_LANESTAGGER_STRAP_OVRD |
922 		       DPIO_TX1_STAGGER_MASK(0x1f) |
923 		       DPIO_TX1_STAGGER_MULT(6) |
924 		       DPIO_TX2_STAGGER_MULT(0));
925 
926 	if (crtc_state->lane_count > 2) {
927 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
928 			       DPIO_LANESTAGGER_STRAP(stagger) |
929 			       DPIO_LANESTAGGER_STRAP_OVRD |
930 			       DPIO_TX1_STAGGER_MASK(0x1f) |
931 			       DPIO_TX1_STAGGER_MULT(7) |
932 			       DPIO_TX2_STAGGER_MULT(5));
933 	}
934 
935 	/* Deassert data lane reset */
936 	chv_data_lane_soft_reset(encoder, crtc_state, false);
937 
938 	vlv_dpio_put(dev_priv);
939 }
940 
941 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
942 {
943 	struct intel_digital_port *dport = enc_to_dig_port(encoder);
944 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
945 
946 	if (dport->release_cl2_override) {
947 		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
948 		dport->release_cl2_override = false;
949 	}
950 }
951 
952 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
953 			      const struct intel_crtc_state *old_crtc_state)
954 {
955 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
956 	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
957 	u32 val;
958 
959 	vlv_dpio_get(dev_priv);
960 
961 	/* disable left/right clock distribution */
962 	if (pipe != PIPE_B) {
963 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
964 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
965 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
966 	} else {
967 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
968 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
969 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
970 	}
971 
972 	vlv_dpio_put(dev_priv);
973 
974 	/*
975 	 * Leave the power down bit cleared for at least one
976 	 * lane so that chv_powergate_phy_ch() will power
977 	 * on something when the channel is otherwise unused.
978 	 * When the port is off and the override is removed
979 	 * the lanes power down anyway, so otherwise it doesn't
980 	 * really matter what the state of power down bits is
981 	 * after this.
982 	 */
983 	chv_phy_powergate_lanes(encoder, false, 0x0);
984 }
985 
986 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
987 			      u32 demph_reg_value, u32 preemph_reg_value,
988 			      u32 uniqtranscale_reg_value, u32 tx3_demph)
989 {
990 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
991 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
992 	struct intel_digital_port *dport = enc_to_dig_port(encoder);
993 	enum dpio_channel port = vlv_dport_to_channel(dport);
994 	enum pipe pipe = intel_crtc->pipe;
995 
996 	vlv_dpio_get(dev_priv);
997 
998 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
999 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
1000 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
1001 			 uniqtranscale_reg_value);
1002 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1003 
1004 	if (tx3_demph)
1005 		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1006 
1007 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1008 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1009 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1010 
1011 	vlv_dpio_put(dev_priv);
1012 }
1013 
1014 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1015 			    const struct intel_crtc_state *crtc_state)
1016 {
1017 	struct intel_digital_port *dport = enc_to_dig_port(encoder);
1018 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1019 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1020 	enum dpio_channel port = vlv_dport_to_channel(dport);
1021 	enum pipe pipe = crtc->pipe;
1022 
1023 	/* Program Tx lane resets to default */
1024 	vlv_dpio_get(dev_priv);
1025 
1026 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1027 			 DPIO_PCS_TX_LANE2_RESET |
1028 			 DPIO_PCS_TX_LANE1_RESET);
1029 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1030 			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1031 			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1032 			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1033 				 DPIO_PCS_CLK_SOFT_RESET);
1034 
1035 	/* Fix up inter-pair skew failure */
1036 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1037 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1038 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1039 
1040 	vlv_dpio_put(dev_priv);
1041 }
1042 
1043 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1044 				const struct intel_crtc_state *crtc_state)
1045 {
1046 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1047 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1048 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1049 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1050 	enum dpio_channel port = vlv_dport_to_channel(dport);
1051 	enum pipe pipe = crtc->pipe;
1052 	u32 val;
1053 
1054 	vlv_dpio_get(dev_priv);
1055 
1056 	/* Enable clock channels for this port */
1057 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1058 	val = 0;
1059 	if (pipe)
1060 		val |= (1<<21);
1061 	else
1062 		val &= ~(1<<21);
1063 	val |= 0x001000c4;
1064 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1065 
1066 	/* Program lane clock */
1067 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1068 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1069 
1070 	vlv_dpio_put(dev_priv);
1071 }
1072 
1073 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1074 			 const struct intel_crtc_state *old_crtc_state)
1075 {
1076 	struct intel_digital_port *dport = enc_to_dig_port(encoder);
1077 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1078 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1079 	enum dpio_channel port = vlv_dport_to_channel(dport);
1080 	enum pipe pipe = crtc->pipe;
1081 
1082 	vlv_dpio_get(dev_priv);
1083 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1084 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1085 	vlv_dpio_put(dev_priv);
1086 }
1087