1 /* 2 * Copyright © 2014-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include "display/intel_dp.h" 25 26 #include "intel_dpio_phy.h" 27 #include "intel_drv.h" 28 #include "intel_sideband.h" 29 30 /** 31 * DOC: DPIO 32 * 33 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI 34 * ports. DPIO is the name given to such a display PHY. These PHYs 35 * don't follow the standard programming model using direct MMIO 36 * registers, and instead their registers must be accessed trough IOSF 37 * sideband. VLV has one such PHY for driving ports B and C, and CHV 38 * adds another PHY for driving port D. Each PHY responds to specific 39 * IOSF-SB port. 40 * 41 * Each display PHY is made up of one or two channels. Each channel 42 * houses a common lane part which contains the PLL and other common 43 * logic. CH0 common lane also contains the IOSF-SB logic for the 44 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock 45 * must be running when any DPIO registers are accessed. 46 * 47 * In addition to having their own registers, the PHYs are also 48 * controlled through some dedicated signals from the display 49 * controller. These include PLL reference clock enable, PLL enable, 50 * and CRI clock selection, for example. 51 * 52 * Eeach channel also has two splines (also called data lanes), and 53 * each spline is made up of one Physical Access Coding Sub-Layer 54 * (PCS) block and two TX lanes. So each channel has two PCS blocks 55 * and four TX lanes. The TX lanes are used as DP lanes or TMDS 56 * data/clock pairs depending on the output type. 57 * 58 * Additionally the PHY also contains an AUX lane with AUX blocks 59 * for each channel. This is used for DP AUX communication, but 60 * this fact isn't really relevant for the driver since AUX is 61 * controlled from the display controller side. No DPIO registers 62 * need to be accessed during AUX communication, 63 * 64 * Generally on VLV/CHV the common lane corresponds to the pipe and 65 * the spline (PCS/TX) corresponds to the port. 66 * 67 * For dual channel PHY (VLV/CHV): 68 * 69 * pipe A == CMN/PLL/REF CH0 70 * 71 * pipe B == CMN/PLL/REF CH1 72 * 73 * port B == PCS/TX CH0 74 * 75 * port C == PCS/TX CH1 76 * 77 * This is especially important when we cross the streams 78 * ie. drive port B with pipe B, or port C with pipe A. 79 * 80 * For single channel PHY (CHV): 81 * 82 * pipe C == CMN/PLL/REF CH0 83 * 84 * port D == PCS/TX CH0 85 * 86 * On BXT the entire PHY channel corresponds to the port. That means 87 * the PLL is also now associated with the port rather than the pipe, 88 * and so the clock needs to be routed to the appropriate transcoder. 89 * Port A PLL is directly connected to transcoder EDP and port B/C 90 * PLLs can be routed to any transcoder A/B/C. 91 * 92 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is 93 * digital port D (CHV) or port A (BXT). :: 94 * 95 * 96 * Dual channel PHY (VLV/CHV/BXT) 97 * --------------------------------- 98 * | CH0 | CH1 | 99 * | CMN/PLL/REF | CMN/PLL/REF | 100 * |---------------|---------------| Display PHY 101 * | PCS01 | PCS23 | PCS01 | PCS23 | 102 * |-------|-------|-------|-------| 103 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3| 104 * --------------------------------- 105 * | DDI0 | DDI1 | DP/HDMI ports 106 * --------------------------------- 107 * 108 * Single channel PHY (CHV/BXT) 109 * ----------------- 110 * | CH0 | 111 * | CMN/PLL/REF | 112 * |---------------| Display PHY 113 * | PCS01 | PCS23 | 114 * |-------|-------| 115 * |TX0|TX1|TX2|TX3| 116 * ----------------- 117 * | DDI2 | DP/HDMI port 118 * ----------------- 119 */ 120 121 /** 122 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy 123 */ 124 struct bxt_ddi_phy_info { 125 /** 126 * @dual_channel: true if this phy has a second channel. 127 */ 128 bool dual_channel; 129 130 /** 131 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor. 132 * Otherwise the GRC value will be copied from the phy indicated by 133 * this field. 134 */ 135 enum dpio_phy rcomp_phy; 136 137 /** 138 * @reset_delay: delay in us to wait before setting the common reset 139 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy. 140 */ 141 int reset_delay; 142 143 /** 144 * @pwron_mask: Mask with the appropriate bit set that would cause the 145 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON. 146 */ 147 u32 pwron_mask; 148 149 /** 150 * @channel: struct containing per channel information. 151 */ 152 struct { 153 /** 154 * @channel.port: which port maps to this channel. 155 */ 156 enum port port; 157 } channel[2]; 158 }; 159 160 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = { 161 [DPIO_PHY0] = { 162 .dual_channel = true, 163 .rcomp_phy = DPIO_PHY1, 164 .pwron_mask = BIT(0), 165 166 .channel = { 167 [DPIO_CH0] = { .port = PORT_B }, 168 [DPIO_CH1] = { .port = PORT_C }, 169 } 170 }, 171 [DPIO_PHY1] = { 172 .dual_channel = false, 173 .rcomp_phy = -1, 174 .pwron_mask = BIT(1), 175 176 .channel = { 177 [DPIO_CH0] = { .port = PORT_A }, 178 } 179 }, 180 }; 181 182 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = { 183 [DPIO_PHY0] = { 184 .dual_channel = false, 185 .rcomp_phy = DPIO_PHY1, 186 .pwron_mask = BIT(0), 187 .reset_delay = 20, 188 189 .channel = { 190 [DPIO_CH0] = { .port = PORT_B }, 191 } 192 }, 193 [DPIO_PHY1] = { 194 .dual_channel = false, 195 .rcomp_phy = -1, 196 .pwron_mask = BIT(3), 197 .reset_delay = 20, 198 199 .channel = { 200 [DPIO_CH0] = { .port = PORT_A }, 201 } 202 }, 203 [DPIO_PHY2] = { 204 .dual_channel = false, 205 .rcomp_phy = DPIO_PHY1, 206 .pwron_mask = BIT(1), 207 .reset_delay = 20, 208 209 .channel = { 210 [DPIO_CH0] = { .port = PORT_C }, 211 } 212 }, 213 }; 214 215 static const struct bxt_ddi_phy_info * 216 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count) 217 { 218 if (IS_GEMINILAKE(dev_priv)) { 219 *count = ARRAY_SIZE(glk_ddi_phy_info); 220 return glk_ddi_phy_info; 221 } else { 222 *count = ARRAY_SIZE(bxt_ddi_phy_info); 223 return bxt_ddi_phy_info; 224 } 225 } 226 227 static const struct bxt_ddi_phy_info * 228 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy) 229 { 230 int count; 231 const struct bxt_ddi_phy_info *phy_list = 232 bxt_get_phy_list(dev_priv, &count); 233 234 return &phy_list[phy]; 235 } 236 237 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 238 enum dpio_phy *phy, enum dpio_channel *ch) 239 { 240 const struct bxt_ddi_phy_info *phy_info, *phys; 241 int i, count; 242 243 phys = bxt_get_phy_list(dev_priv, &count); 244 245 for (i = 0; i < count; i++) { 246 phy_info = &phys[i]; 247 248 if (port == phy_info->channel[DPIO_CH0].port) { 249 *phy = i; 250 *ch = DPIO_CH0; 251 return; 252 } 253 254 if (phy_info->dual_channel && 255 port == phy_info->channel[DPIO_CH1].port) { 256 *phy = i; 257 *ch = DPIO_CH1; 258 return; 259 } 260 } 261 262 WARN(1, "PHY not found for PORT %c", port_name(port)); 263 *phy = DPIO_PHY0; 264 *ch = DPIO_CH0; 265 } 266 267 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 268 enum port port, u32 margin, u32 scale, 269 u32 enable, u32 deemphasis) 270 { 271 u32 val; 272 enum dpio_phy phy; 273 enum dpio_channel ch; 274 275 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); 276 277 /* 278 * While we write to the group register to program all lanes at once we 279 * can read only lane registers and we pick lanes 0/1 for that. 280 */ 281 val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch)); 282 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT); 283 I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val); 284 285 val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch)); 286 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE); 287 val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT; 288 I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val); 289 290 val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch)); 291 val &= ~SCALE_DCOMP_METHOD; 292 if (enable) 293 val |= SCALE_DCOMP_METHOD; 294 295 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD)) 296 DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set"); 297 298 I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val); 299 300 val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch)); 301 val &= ~DE_EMPHASIS; 302 val |= deemphasis << DEEMPH_SHIFT; 303 I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val); 304 305 val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch)); 306 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT; 307 I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val); 308 } 309 310 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 311 enum dpio_phy phy) 312 { 313 const struct bxt_ddi_phy_info *phy_info; 314 315 phy_info = bxt_get_phy_info(dev_priv, phy); 316 317 if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask)) 318 return false; 319 320 if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) & 321 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) { 322 DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n", 323 phy); 324 325 return false; 326 } 327 328 if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) { 329 DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n", 330 phy); 331 332 return false; 333 } 334 335 return true; 336 } 337 338 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy) 339 { 340 u32 val = I915_READ(BXT_PORT_REF_DW6(phy)); 341 342 return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT; 343 } 344 345 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv, 346 enum dpio_phy phy) 347 { 348 if (intel_wait_for_register(&dev_priv->uncore, 349 BXT_PORT_REF_DW3(phy), 350 GRC_DONE, GRC_DONE, 351 10)) 352 DRM_ERROR("timeout waiting for PHY%d GRC\n", phy); 353 } 354 355 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv, 356 enum dpio_phy phy) 357 { 358 const struct bxt_ddi_phy_info *phy_info; 359 u32 val; 360 361 phy_info = bxt_get_phy_info(dev_priv, phy); 362 363 if (bxt_ddi_phy_is_enabled(dev_priv, phy)) { 364 /* Still read out the GRC value for state verification */ 365 if (phy_info->rcomp_phy != -1) 366 dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy); 367 368 if (bxt_ddi_phy_verify_state(dev_priv, phy)) { 369 DRM_DEBUG_DRIVER("DDI PHY %d already enabled, " 370 "won't reprogram it\n", phy); 371 return; 372 } 373 374 DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, " 375 "force reprogramming it\n", phy); 376 } 377 378 val = I915_READ(BXT_P_CR_GT_DISP_PWRON); 379 val |= phy_info->pwron_mask; 380 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val); 381 382 /* 383 * The PHY registers start out inaccessible and respond to reads with 384 * all 1s. Eventually they become accessible as they power up, then 385 * the reserved bit will give the default 0. Poll on the reserved bit 386 * becoming 0 to find when the PHY is accessible. 387 * The flag should get set in 100us according to the HW team, but 388 * use 1ms due to occasional timeouts observed with that. 389 */ 390 if (intel_wait_for_register_fw(&dev_priv->uncore, 391 BXT_PORT_CL1CM_DW0(phy), 392 PHY_RESERVED | PHY_POWER_GOOD, 393 PHY_POWER_GOOD, 394 1)) 395 DRM_ERROR("timeout during PHY%d power on\n", phy); 396 397 /* Program PLL Rcomp code offset */ 398 val = I915_READ(BXT_PORT_CL1CM_DW9(phy)); 399 val &= ~IREF0RC_OFFSET_MASK; 400 val |= 0xE4 << IREF0RC_OFFSET_SHIFT; 401 I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val); 402 403 val = I915_READ(BXT_PORT_CL1CM_DW10(phy)); 404 val &= ~IREF1RC_OFFSET_MASK; 405 val |= 0xE4 << IREF1RC_OFFSET_SHIFT; 406 I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val); 407 408 /* Program power gating */ 409 val = I915_READ(BXT_PORT_CL1CM_DW28(phy)); 410 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | 411 SUS_CLK_CONFIG; 412 I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val); 413 414 if (phy_info->dual_channel) { 415 val = I915_READ(BXT_PORT_CL2CM_DW6(phy)); 416 val |= DW6_OLDO_DYN_PWR_DOWN_EN; 417 I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val); 418 } 419 420 if (phy_info->rcomp_phy != -1) { 421 u32 grc_code; 422 423 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy); 424 425 /* 426 * PHY0 isn't connected to an RCOMP resistor so copy over 427 * the corresponding calibrated value from PHY1, and disable 428 * the automatic calibration on PHY0. 429 */ 430 val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, 431 phy_info->rcomp_phy); 432 grc_code = val << GRC_CODE_FAST_SHIFT | 433 val << GRC_CODE_SLOW_SHIFT | 434 val; 435 I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code); 436 437 val = I915_READ(BXT_PORT_REF_DW8(phy)); 438 val |= GRC_DIS | GRC_RDY_OVRD; 439 I915_WRITE(BXT_PORT_REF_DW8(phy), val); 440 } 441 442 if (phy_info->reset_delay) 443 udelay(phy_info->reset_delay); 444 445 val = I915_READ(BXT_PHY_CTL_FAMILY(phy)); 446 val |= COMMON_RESET_DIS; 447 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val); 448 } 449 450 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy) 451 { 452 const struct bxt_ddi_phy_info *phy_info; 453 u32 val; 454 455 phy_info = bxt_get_phy_info(dev_priv, phy); 456 457 val = I915_READ(BXT_PHY_CTL_FAMILY(phy)); 458 val &= ~COMMON_RESET_DIS; 459 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val); 460 461 val = I915_READ(BXT_P_CR_GT_DISP_PWRON); 462 val &= ~phy_info->pwron_mask; 463 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val); 464 } 465 466 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy) 467 { 468 const struct bxt_ddi_phy_info *phy_info = 469 bxt_get_phy_info(dev_priv, phy); 470 enum dpio_phy rcomp_phy = phy_info->rcomp_phy; 471 bool was_enabled; 472 473 lockdep_assert_held(&dev_priv->power_domains.lock); 474 475 was_enabled = true; 476 if (rcomp_phy != -1) 477 was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy); 478 479 /* 480 * We need to copy the GRC calibration value from rcomp_phy, 481 * so make sure it's powered up. 482 */ 483 if (!was_enabled) 484 _bxt_ddi_phy_init(dev_priv, rcomp_phy); 485 486 _bxt_ddi_phy_init(dev_priv, phy); 487 488 if (!was_enabled) 489 bxt_ddi_phy_uninit(dev_priv, rcomp_phy); 490 } 491 492 static bool __printf(6, 7) 493 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy, 494 i915_reg_t reg, u32 mask, u32 expected, 495 const char *reg_fmt, ...) 496 { 497 struct va_format vaf; 498 va_list args; 499 u32 val; 500 501 val = I915_READ(reg); 502 if ((val & mask) == expected) 503 return true; 504 505 va_start(args, reg_fmt); 506 vaf.fmt = reg_fmt; 507 vaf.va = &args; 508 509 DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: " 510 "current %08x, expected %08x (mask %08x)\n", 511 phy, &vaf, reg.reg, val, (val & ~mask) | expected, 512 mask); 513 514 va_end(args); 515 516 return false; 517 } 518 519 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 520 enum dpio_phy phy) 521 { 522 const struct bxt_ddi_phy_info *phy_info; 523 u32 mask; 524 bool ok; 525 526 phy_info = bxt_get_phy_info(dev_priv, phy); 527 528 #define _CHK(reg, mask, exp, fmt, ...) \ 529 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \ 530 ## __VA_ARGS__) 531 532 if (!bxt_ddi_phy_is_enabled(dev_priv, phy)) 533 return false; 534 535 ok = true; 536 537 /* PLL Rcomp code offset */ 538 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy), 539 IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT, 540 "BXT_PORT_CL1CM_DW9(%d)", phy); 541 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy), 542 IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT, 543 "BXT_PORT_CL1CM_DW10(%d)", phy); 544 545 /* Power gating */ 546 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG; 547 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask, 548 "BXT_PORT_CL1CM_DW28(%d)", phy); 549 550 if (phy_info->dual_channel) 551 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy), 552 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN, 553 "BXT_PORT_CL2CM_DW6(%d)", phy); 554 555 if (phy_info->rcomp_phy != -1) { 556 u32 grc_code = dev_priv->bxt_phy_grc; 557 558 grc_code = grc_code << GRC_CODE_FAST_SHIFT | 559 grc_code << GRC_CODE_SLOW_SHIFT | 560 grc_code; 561 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK | 562 GRC_CODE_NOM_MASK; 563 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code, 564 "BXT_PORT_REF_DW6(%d)", phy); 565 566 mask = GRC_DIS | GRC_RDY_OVRD; 567 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask, 568 "BXT_PORT_REF_DW8(%d)", phy); 569 } 570 571 return ok; 572 #undef _CHK 573 } 574 575 u8 576 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count) 577 { 578 switch (lane_count) { 579 case 1: 580 return 0; 581 case 2: 582 return BIT(2) | BIT(0); 583 case 4: 584 return BIT(3) | BIT(2) | BIT(0); 585 default: 586 MISSING_CASE(lane_count); 587 588 return 0; 589 } 590 } 591 592 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 593 u8 lane_lat_optim_mask) 594 { 595 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 596 enum port port = encoder->port; 597 enum dpio_phy phy; 598 enum dpio_channel ch; 599 int lane; 600 601 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); 602 603 for (lane = 0; lane < 4; lane++) { 604 u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane)); 605 606 /* 607 * Note that on CHV this flag is called UPAR, but has 608 * the same function. 609 */ 610 val &= ~LATENCY_OPTIM; 611 if (lane_lat_optim_mask & BIT(lane)) 612 val |= LATENCY_OPTIM; 613 614 I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val); 615 } 616 } 617 618 u8 619 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder) 620 { 621 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 622 enum port port = encoder->port; 623 enum dpio_phy phy; 624 enum dpio_channel ch; 625 int lane; 626 u8 mask; 627 628 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); 629 630 mask = 0; 631 for (lane = 0; lane < 4; lane++) { 632 u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane)); 633 634 if (val & LATENCY_OPTIM) 635 mask |= BIT(lane); 636 } 637 638 return mask; 639 } 640 641 642 void chv_set_phy_signal_level(struct intel_encoder *encoder, 643 u32 deemph_reg_value, u32 margin_reg_value, 644 bool uniq_trans_scale) 645 { 646 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 647 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); 648 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); 649 enum dpio_channel ch = vlv_dport_to_channel(dport); 650 enum pipe pipe = intel_crtc->pipe; 651 u32 val; 652 int i; 653 654 vlv_dpio_get(dev_priv); 655 656 /* Clear calc init */ 657 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); 658 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); 659 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); 660 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; 661 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); 662 663 if (intel_crtc->config->lane_count > 2) { 664 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); 665 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); 666 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); 667 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; 668 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); 669 } 670 671 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch)); 672 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); 673 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; 674 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val); 675 676 if (intel_crtc->config->lane_count > 2) { 677 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch)); 678 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); 679 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; 680 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val); 681 } 682 683 /* Program swing deemph */ 684 for (i = 0; i < intel_crtc->config->lane_count; i++) { 685 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i)); 686 val &= ~DPIO_SWING_DEEMPH9P5_MASK; 687 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT; 688 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val); 689 } 690 691 /* Program swing margin */ 692 for (i = 0; i < intel_crtc->config->lane_count; i++) { 693 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); 694 695 val &= ~DPIO_SWING_MARGIN000_MASK; 696 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT; 697 698 /* 699 * Supposedly this value shouldn't matter when unique transition 700 * scale is disabled, but in fact it does matter. Let's just 701 * always program the same value and hope it's OK. 702 */ 703 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT); 704 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT; 705 706 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); 707 } 708 709 /* 710 * The document said it needs to set bit 27 for ch0 and bit 26 711 * for ch1. Might be a typo in the doc. 712 * For now, for this unique transition scale selection, set bit 713 * 27 for ch0 and ch1. 714 */ 715 for (i = 0; i < intel_crtc->config->lane_count; i++) { 716 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); 717 if (uniq_trans_scale) 718 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN; 719 else 720 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; 721 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); 722 } 723 724 /* Start swing calculation */ 725 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); 726 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; 727 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); 728 729 if (intel_crtc->config->lane_count > 2) { 730 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); 731 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; 732 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); 733 } 734 735 vlv_dpio_put(dev_priv); 736 } 737 738 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 739 const struct intel_crtc_state *crtc_state, 740 bool reset) 741 { 742 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 743 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base)); 744 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 745 enum pipe pipe = crtc->pipe; 746 u32 val; 747 748 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); 749 if (reset) 750 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); 751 else 752 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; 753 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); 754 755 if (crtc_state->lane_count > 2) { 756 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); 757 if (reset) 758 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); 759 else 760 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; 761 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); 762 } 763 764 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); 765 val |= CHV_PCS_REQ_SOFTRESET_EN; 766 if (reset) 767 val &= ~DPIO_PCS_CLK_SOFT_RESET; 768 else 769 val |= DPIO_PCS_CLK_SOFT_RESET; 770 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); 771 772 if (crtc_state->lane_count > 2) { 773 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); 774 val |= CHV_PCS_REQ_SOFTRESET_EN; 775 if (reset) 776 val &= ~DPIO_PCS_CLK_SOFT_RESET; 777 else 778 val |= DPIO_PCS_CLK_SOFT_RESET; 779 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); 780 } 781 } 782 783 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 784 const struct intel_crtc_state *crtc_state) 785 { 786 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); 787 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 788 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 789 enum dpio_channel ch = vlv_dport_to_channel(dport); 790 enum pipe pipe = crtc->pipe; 791 unsigned int lane_mask = 792 intel_dp_unused_lane_mask(crtc_state->lane_count); 793 u32 val; 794 795 /* 796 * Must trick the second common lane into life. 797 * Otherwise we can't even access the PLL. 798 */ 799 if (ch == DPIO_CH0 && pipe == PIPE_B) 800 dport->release_cl2_override = 801 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true); 802 803 chv_phy_powergate_lanes(encoder, true, lane_mask); 804 805 vlv_dpio_get(dev_priv); 806 807 /* Assert data lane reset */ 808 chv_data_lane_soft_reset(encoder, crtc_state, true); 809 810 /* program left/right clock distribution */ 811 if (pipe != PIPE_B) { 812 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); 813 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); 814 if (ch == DPIO_CH0) 815 val |= CHV_BUFLEFTENA1_FORCE; 816 if (ch == DPIO_CH1) 817 val |= CHV_BUFRIGHTENA1_FORCE; 818 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); 819 } else { 820 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); 821 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); 822 if (ch == DPIO_CH0) 823 val |= CHV_BUFLEFTENA2_FORCE; 824 if (ch == DPIO_CH1) 825 val |= CHV_BUFRIGHTENA2_FORCE; 826 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); 827 } 828 829 /* program clock channel usage */ 830 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch)); 831 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; 832 if (pipe != PIPE_B) 833 val &= ~CHV_PCS_USEDCLKCHANNEL; 834 else 835 val |= CHV_PCS_USEDCLKCHANNEL; 836 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val); 837 838 if (crtc_state->lane_count > 2) { 839 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch)); 840 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; 841 if (pipe != PIPE_B) 842 val &= ~CHV_PCS_USEDCLKCHANNEL; 843 else 844 val |= CHV_PCS_USEDCLKCHANNEL; 845 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val); 846 } 847 848 /* 849 * This a a bit weird since generally CL 850 * matches the pipe, but here we need to 851 * pick the CL based on the port. 852 */ 853 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch)); 854 if (pipe != PIPE_B) 855 val &= ~CHV_CMN_USEDCLKCHANNEL; 856 else 857 val |= CHV_CMN_USEDCLKCHANNEL; 858 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val); 859 860 vlv_dpio_put(dev_priv); 861 } 862 863 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 864 const struct intel_crtc_state *crtc_state) 865 { 866 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 867 struct intel_digital_port *dport = dp_to_dig_port(intel_dp); 868 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 869 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 870 enum dpio_channel ch = vlv_dport_to_channel(dport); 871 enum pipe pipe = crtc->pipe; 872 int data, i, stagger; 873 u32 val; 874 875 vlv_dpio_get(dev_priv); 876 877 /* allow hardware to manage TX FIFO reset source */ 878 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch)); 879 val &= ~DPIO_LANEDESKEW_STRAP_OVRD; 880 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val); 881 882 if (crtc_state->lane_count > 2) { 883 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch)); 884 val &= ~DPIO_LANEDESKEW_STRAP_OVRD; 885 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val); 886 } 887 888 /* Program Tx lane latency optimal setting*/ 889 for (i = 0; i < crtc_state->lane_count; i++) { 890 /* Set the upar bit */ 891 if (crtc_state->lane_count == 1) 892 data = 0x0; 893 else 894 data = (i == 1) ? 0x0 : 0x1; 895 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i), 896 data << DPIO_UPAR_SHIFT); 897 } 898 899 /* Data lane stagger programming */ 900 if (crtc_state->port_clock > 270000) 901 stagger = 0x18; 902 else if (crtc_state->port_clock > 135000) 903 stagger = 0xd; 904 else if (crtc_state->port_clock > 67500) 905 stagger = 0x7; 906 else if (crtc_state->port_clock > 33750) 907 stagger = 0x4; 908 else 909 stagger = 0x2; 910 911 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch)); 912 val |= DPIO_TX2_STAGGER_MASK(0x1f); 913 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val); 914 915 if (crtc_state->lane_count > 2) { 916 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch)); 917 val |= DPIO_TX2_STAGGER_MASK(0x1f); 918 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val); 919 } 920 921 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch), 922 DPIO_LANESTAGGER_STRAP(stagger) | 923 DPIO_LANESTAGGER_STRAP_OVRD | 924 DPIO_TX1_STAGGER_MASK(0x1f) | 925 DPIO_TX1_STAGGER_MULT(6) | 926 DPIO_TX2_STAGGER_MULT(0)); 927 928 if (crtc_state->lane_count > 2) { 929 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch), 930 DPIO_LANESTAGGER_STRAP(stagger) | 931 DPIO_LANESTAGGER_STRAP_OVRD | 932 DPIO_TX1_STAGGER_MASK(0x1f) | 933 DPIO_TX1_STAGGER_MULT(7) | 934 DPIO_TX2_STAGGER_MULT(5)); 935 } 936 937 /* Deassert data lane reset */ 938 chv_data_lane_soft_reset(encoder, crtc_state, false); 939 940 vlv_dpio_put(dev_priv); 941 } 942 943 void chv_phy_release_cl2_override(struct intel_encoder *encoder) 944 { 945 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); 946 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 947 948 if (dport->release_cl2_override) { 949 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false); 950 dport->release_cl2_override = false; 951 } 952 } 953 954 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 955 const struct intel_crtc_state *old_crtc_state) 956 { 957 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 958 enum pipe pipe = to_intel_crtc(old_crtc_state->base.crtc)->pipe; 959 u32 val; 960 961 vlv_dpio_get(dev_priv); 962 963 /* disable left/right clock distribution */ 964 if (pipe != PIPE_B) { 965 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); 966 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); 967 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); 968 } else { 969 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); 970 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); 971 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); 972 } 973 974 vlv_dpio_put(dev_priv); 975 976 /* 977 * Leave the power down bit cleared for at least one 978 * lane so that chv_powergate_phy_ch() will power 979 * on something when the channel is otherwise unused. 980 * When the port is off and the override is removed 981 * the lanes power down anyway, so otherwise it doesn't 982 * really matter what the state of power down bits is 983 * after this. 984 */ 985 chv_phy_powergate_lanes(encoder, false, 0x0); 986 } 987 988 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 989 u32 demph_reg_value, u32 preemph_reg_value, 990 u32 uniqtranscale_reg_value, u32 tx3_demph) 991 { 992 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 993 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); 994 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); 995 enum dpio_channel port = vlv_dport_to_channel(dport); 996 enum pipe pipe = intel_crtc->pipe; 997 998 vlv_dpio_get(dev_priv); 999 1000 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000); 1001 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value); 1002 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 1003 uniqtranscale_reg_value); 1004 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040); 1005 1006 if (tx3_demph) 1007 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph); 1008 1009 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000); 1010 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value); 1011 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN); 1012 1013 vlv_dpio_put(dev_priv); 1014 } 1015 1016 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 1017 const struct intel_crtc_state *crtc_state) 1018 { 1019 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); 1020 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1021 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1022 enum dpio_channel port = vlv_dport_to_channel(dport); 1023 enum pipe pipe = crtc->pipe; 1024 1025 /* Program Tx lane resets to default */ 1026 vlv_dpio_get(dev_priv); 1027 1028 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 1029 DPIO_PCS_TX_LANE2_RESET | 1030 DPIO_PCS_TX_LANE1_RESET); 1031 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 1032 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | 1033 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | 1034 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) | 1035 DPIO_PCS_CLK_SOFT_RESET); 1036 1037 /* Fix up inter-pair skew failure */ 1038 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00); 1039 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500); 1040 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000); 1041 1042 vlv_dpio_put(dev_priv); 1043 } 1044 1045 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 1046 const struct intel_crtc_state *crtc_state) 1047 { 1048 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 1049 struct intel_digital_port *dport = dp_to_dig_port(intel_dp); 1050 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1051 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1052 enum dpio_channel port = vlv_dport_to_channel(dport); 1053 enum pipe pipe = crtc->pipe; 1054 u32 val; 1055 1056 vlv_dpio_get(dev_priv); 1057 1058 /* Enable clock channels for this port */ 1059 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port)); 1060 val = 0; 1061 if (pipe) 1062 val |= (1<<21); 1063 else 1064 val &= ~(1<<21); 1065 val |= 0x001000c4; 1066 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val); 1067 1068 /* Program lane clock */ 1069 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018); 1070 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888); 1071 1072 vlv_dpio_put(dev_priv); 1073 } 1074 1075 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 1076 const struct intel_crtc_state *old_crtc_state) 1077 { 1078 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); 1079 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1080 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 1081 enum dpio_channel port = vlv_dport_to_channel(dport); 1082 enum pipe pipe = crtc->pipe; 1083 1084 vlv_dpio_get(dev_priv); 1085 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000); 1086 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060); 1087 vlv_dpio_put(dev_priv); 1088 } 1089