1 /* 2 * Copyright © 2014-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include "intel_ddi.h" 25 #include "intel_ddi_buf_trans.h" 26 #include "intel_de.h" 27 #include "intel_display_power_well.h" 28 #include "intel_display_types.h" 29 #include "intel_dp.h" 30 #include "intel_dpio_phy.h" 31 #include "vlv_sideband.h" 32 33 /** 34 * DOC: DPIO 35 * 36 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI 37 * ports. DPIO is the name given to such a display PHY. These PHYs 38 * don't follow the standard programming model using direct MMIO 39 * registers, and instead their registers must be accessed trough IOSF 40 * sideband. VLV has one such PHY for driving ports B and C, and CHV 41 * adds another PHY for driving port D. Each PHY responds to specific 42 * IOSF-SB port. 43 * 44 * Each display PHY is made up of one or two channels. Each channel 45 * houses a common lane part which contains the PLL and other common 46 * logic. CH0 common lane also contains the IOSF-SB logic for the 47 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock 48 * must be running when any DPIO registers are accessed. 49 * 50 * In addition to having their own registers, the PHYs are also 51 * controlled through some dedicated signals from the display 52 * controller. These include PLL reference clock enable, PLL enable, 53 * and CRI clock selection, for example. 54 * 55 * Eeach channel also has two splines (also called data lanes), and 56 * each spline is made up of one Physical Access Coding Sub-Layer 57 * (PCS) block and two TX lanes. So each channel has two PCS blocks 58 * and four TX lanes. The TX lanes are used as DP lanes or TMDS 59 * data/clock pairs depending on the output type. 60 * 61 * Additionally the PHY also contains an AUX lane with AUX blocks 62 * for each channel. This is used for DP AUX communication, but 63 * this fact isn't really relevant for the driver since AUX is 64 * controlled from the display controller side. No DPIO registers 65 * need to be accessed during AUX communication, 66 * 67 * Generally on VLV/CHV the common lane corresponds to the pipe and 68 * the spline (PCS/TX) corresponds to the port. 69 * 70 * For dual channel PHY (VLV/CHV): 71 * 72 * pipe A == CMN/PLL/REF CH0 73 * 74 * pipe B == CMN/PLL/REF CH1 75 * 76 * port B == PCS/TX CH0 77 * 78 * port C == PCS/TX CH1 79 * 80 * This is especially important when we cross the streams 81 * ie. drive port B with pipe B, or port C with pipe A. 82 * 83 * For single channel PHY (CHV): 84 * 85 * pipe C == CMN/PLL/REF CH0 86 * 87 * port D == PCS/TX CH0 88 * 89 * On BXT the entire PHY channel corresponds to the port. That means 90 * the PLL is also now associated with the port rather than the pipe, 91 * and so the clock needs to be routed to the appropriate transcoder. 92 * Port A PLL is directly connected to transcoder EDP and port B/C 93 * PLLs can be routed to any transcoder A/B/C. 94 * 95 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is 96 * digital port D (CHV) or port A (BXT). :: 97 * 98 * 99 * Dual channel PHY (VLV/CHV/BXT) 100 * --------------------------------- 101 * | CH0 | CH1 | 102 * | CMN/PLL/REF | CMN/PLL/REF | 103 * |---------------|---------------| Display PHY 104 * | PCS01 | PCS23 | PCS01 | PCS23 | 105 * |-------|-------|-------|-------| 106 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3| 107 * --------------------------------- 108 * | DDI0 | DDI1 | DP/HDMI ports 109 * --------------------------------- 110 * 111 * Single channel PHY (CHV/BXT) 112 * ----------------- 113 * | CH0 | 114 * | CMN/PLL/REF | 115 * |---------------| Display PHY 116 * | PCS01 | PCS23 | 117 * |-------|-------| 118 * |TX0|TX1|TX2|TX3| 119 * ----------------- 120 * | DDI2 | DP/HDMI port 121 * ----------------- 122 */ 123 124 /** 125 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy 126 */ 127 struct bxt_ddi_phy_info { 128 /** 129 * @dual_channel: true if this phy has a second channel. 130 */ 131 bool dual_channel; 132 133 /** 134 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor. 135 * Otherwise the GRC value will be copied from the phy indicated by 136 * this field. 137 */ 138 enum dpio_phy rcomp_phy; 139 140 /** 141 * @reset_delay: delay in us to wait before setting the common reset 142 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy. 143 */ 144 int reset_delay; 145 146 /** 147 * @pwron_mask: Mask with the appropriate bit set that would cause the 148 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON. 149 */ 150 u32 pwron_mask; 151 152 /** 153 * @channel: struct containing per channel information. 154 */ 155 struct { 156 /** 157 * @channel.port: which port maps to this channel. 158 */ 159 enum port port; 160 } channel[2]; 161 }; 162 163 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = { 164 [DPIO_PHY0] = { 165 .dual_channel = true, 166 .rcomp_phy = DPIO_PHY1, 167 .pwron_mask = BIT(0), 168 169 .channel = { 170 [DPIO_CH0] = { .port = PORT_B }, 171 [DPIO_CH1] = { .port = PORT_C }, 172 } 173 }, 174 [DPIO_PHY1] = { 175 .dual_channel = false, 176 .rcomp_phy = -1, 177 .pwron_mask = BIT(1), 178 179 .channel = { 180 [DPIO_CH0] = { .port = PORT_A }, 181 } 182 }, 183 }; 184 185 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = { 186 [DPIO_PHY0] = { 187 .dual_channel = false, 188 .rcomp_phy = DPIO_PHY1, 189 .pwron_mask = BIT(0), 190 .reset_delay = 20, 191 192 .channel = { 193 [DPIO_CH0] = { .port = PORT_B }, 194 } 195 }, 196 [DPIO_PHY1] = { 197 .dual_channel = false, 198 .rcomp_phy = -1, 199 .pwron_mask = BIT(3), 200 .reset_delay = 20, 201 202 .channel = { 203 [DPIO_CH0] = { .port = PORT_A }, 204 } 205 }, 206 [DPIO_PHY2] = { 207 .dual_channel = false, 208 .rcomp_phy = DPIO_PHY1, 209 .pwron_mask = BIT(1), 210 .reset_delay = 20, 211 212 .channel = { 213 [DPIO_CH0] = { .port = PORT_C }, 214 } 215 }, 216 }; 217 218 static const struct bxt_ddi_phy_info * 219 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count) 220 { 221 if (IS_GEMINILAKE(dev_priv)) { 222 *count = ARRAY_SIZE(glk_ddi_phy_info); 223 return glk_ddi_phy_info; 224 } else { 225 *count = ARRAY_SIZE(bxt_ddi_phy_info); 226 return bxt_ddi_phy_info; 227 } 228 } 229 230 static const struct bxt_ddi_phy_info * 231 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy) 232 { 233 int count; 234 const struct bxt_ddi_phy_info *phy_list = 235 bxt_get_phy_list(dev_priv, &count); 236 237 return &phy_list[phy]; 238 } 239 240 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 241 enum dpio_phy *phy, enum dpio_channel *ch) 242 { 243 const struct bxt_ddi_phy_info *phy_info, *phys; 244 int i, count; 245 246 phys = bxt_get_phy_list(dev_priv, &count); 247 248 for (i = 0; i < count; i++) { 249 phy_info = &phys[i]; 250 251 if (port == phy_info->channel[DPIO_CH0].port) { 252 *phy = i; 253 *ch = DPIO_CH0; 254 return; 255 } 256 257 if (phy_info->dual_channel && 258 port == phy_info->channel[DPIO_CH1].port) { 259 *phy = i; 260 *ch = DPIO_CH1; 261 return; 262 } 263 } 264 265 drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c", 266 port_name(port)); 267 *phy = DPIO_PHY0; 268 *ch = DPIO_CH0; 269 } 270 271 void bxt_ddi_phy_set_signal_levels(struct intel_encoder *encoder, 272 const struct intel_crtc_state *crtc_state) 273 { 274 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 275 int level = intel_ddi_level(encoder, crtc_state, 0); 276 const struct intel_ddi_buf_trans *trans; 277 enum dpio_channel ch; 278 enum dpio_phy phy; 279 int n_entries; 280 u32 val; 281 282 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries); 283 if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans)) 284 return; 285 286 bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch); 287 288 /* 289 * While we write to the group register to program all lanes at once we 290 * can read only lane registers and we pick lanes 0/1 for that. 291 */ 292 val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch)); 293 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT); 294 intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val); 295 296 val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch)); 297 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE); 298 val |= trans->entries[level].bxt.margin << MARGIN_000_SHIFT | 299 trans->entries[level].bxt.scale << UNIQ_TRANS_SCALE_SHIFT; 300 intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val); 301 302 val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch)); 303 val &= ~SCALE_DCOMP_METHOD; 304 if (trans->entries[level].bxt.enable) 305 val |= SCALE_DCOMP_METHOD; 306 307 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD)) 308 drm_err(&dev_priv->drm, 309 "Disabled scaling while ouniqetrangenmethod was set"); 310 311 intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val); 312 313 val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch)); 314 val &= ~DE_EMPHASIS; 315 val |= trans->entries[level].bxt.deemphasis << DEEMPH_SHIFT; 316 intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val); 317 318 val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch)); 319 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT; 320 intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val); 321 } 322 323 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 324 enum dpio_phy phy) 325 { 326 const struct bxt_ddi_phy_info *phy_info; 327 328 phy_info = bxt_get_phy_info(dev_priv, phy); 329 330 if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask)) 331 return false; 332 333 if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) & 334 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) { 335 drm_dbg(&dev_priv->drm, 336 "DDI PHY %d powered, but power hasn't settled\n", phy); 337 338 return false; 339 } 340 341 if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) { 342 drm_dbg(&dev_priv->drm, 343 "DDI PHY %d powered, but still in reset\n", phy); 344 345 return false; 346 } 347 348 return true; 349 } 350 351 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy) 352 { 353 u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy)); 354 355 return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT; 356 } 357 358 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv, 359 enum dpio_phy phy) 360 { 361 if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy), 362 GRC_DONE, 10)) 363 drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n", 364 phy); 365 } 366 367 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv, 368 enum dpio_phy phy) 369 { 370 const struct bxt_ddi_phy_info *phy_info; 371 u32 val; 372 373 phy_info = bxt_get_phy_info(dev_priv, phy); 374 375 if (bxt_ddi_phy_is_enabled(dev_priv, phy)) { 376 /* Still read out the GRC value for state verification */ 377 if (phy_info->rcomp_phy != -1) 378 dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy); 379 380 if (bxt_ddi_phy_verify_state(dev_priv, phy)) { 381 drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, " 382 "won't reprogram it\n", phy); 383 return; 384 } 385 386 drm_dbg(&dev_priv->drm, 387 "DDI PHY %d enabled with invalid state, " 388 "force reprogramming it\n", phy); 389 } 390 391 val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON); 392 val |= phy_info->pwron_mask; 393 intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val); 394 395 /* 396 * The PHY registers start out inaccessible and respond to reads with 397 * all 1s. Eventually they become accessible as they power up, then 398 * the reserved bit will give the default 0. Poll on the reserved bit 399 * becoming 0 to find when the PHY is accessible. 400 * The flag should get set in 100us according to the HW team, but 401 * use 1ms due to occasional timeouts observed with that. 402 */ 403 if (intel_wait_for_register_fw(&dev_priv->uncore, 404 BXT_PORT_CL1CM_DW0(phy), 405 PHY_RESERVED | PHY_POWER_GOOD, 406 PHY_POWER_GOOD, 407 1)) 408 drm_err(&dev_priv->drm, "timeout during PHY%d power on\n", 409 phy); 410 411 /* Program PLL Rcomp code offset */ 412 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW9(phy)); 413 val &= ~IREF0RC_OFFSET_MASK; 414 val |= 0xE4 << IREF0RC_OFFSET_SHIFT; 415 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW9(phy), val); 416 417 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW10(phy)); 418 val &= ~IREF1RC_OFFSET_MASK; 419 val |= 0xE4 << IREF1RC_OFFSET_SHIFT; 420 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW10(phy), val); 421 422 /* Program power gating */ 423 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW28(phy)); 424 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | 425 SUS_CLK_CONFIG; 426 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW28(phy), val); 427 428 if (phy_info->dual_channel) { 429 val = intel_de_read(dev_priv, BXT_PORT_CL2CM_DW6(phy)); 430 val |= DW6_OLDO_DYN_PWR_DOWN_EN; 431 intel_de_write(dev_priv, BXT_PORT_CL2CM_DW6(phy), val); 432 } 433 434 if (phy_info->rcomp_phy != -1) { 435 u32 grc_code; 436 437 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy); 438 439 /* 440 * PHY0 isn't connected to an RCOMP resistor so copy over 441 * the corresponding calibrated value from PHY1, and disable 442 * the automatic calibration on PHY0. 443 */ 444 val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, 445 phy_info->rcomp_phy); 446 grc_code = val << GRC_CODE_FAST_SHIFT | 447 val << GRC_CODE_SLOW_SHIFT | 448 val; 449 intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code); 450 451 val = intel_de_read(dev_priv, BXT_PORT_REF_DW8(phy)); 452 val |= GRC_DIS | GRC_RDY_OVRD; 453 intel_de_write(dev_priv, BXT_PORT_REF_DW8(phy), val); 454 } 455 456 if (phy_info->reset_delay) 457 udelay(phy_info->reset_delay); 458 459 val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)); 460 val |= COMMON_RESET_DIS; 461 intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val); 462 } 463 464 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy) 465 { 466 const struct bxt_ddi_phy_info *phy_info; 467 u32 val; 468 469 phy_info = bxt_get_phy_info(dev_priv, phy); 470 471 val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)); 472 val &= ~COMMON_RESET_DIS; 473 intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val); 474 475 val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON); 476 val &= ~phy_info->pwron_mask; 477 intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val); 478 } 479 480 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy) 481 { 482 const struct bxt_ddi_phy_info *phy_info = 483 bxt_get_phy_info(dev_priv, phy); 484 enum dpio_phy rcomp_phy = phy_info->rcomp_phy; 485 bool was_enabled; 486 487 lockdep_assert_held(&dev_priv->power_domains.lock); 488 489 was_enabled = true; 490 if (rcomp_phy != -1) 491 was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy); 492 493 /* 494 * We need to copy the GRC calibration value from rcomp_phy, 495 * so make sure it's powered up. 496 */ 497 if (!was_enabled) 498 _bxt_ddi_phy_init(dev_priv, rcomp_phy); 499 500 _bxt_ddi_phy_init(dev_priv, phy); 501 502 if (!was_enabled) 503 bxt_ddi_phy_uninit(dev_priv, rcomp_phy); 504 } 505 506 static bool __printf(6, 7) 507 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy, 508 i915_reg_t reg, u32 mask, u32 expected, 509 const char *reg_fmt, ...) 510 { 511 struct va_format vaf; 512 va_list args; 513 u32 val; 514 515 val = intel_de_read(dev_priv, reg); 516 if ((val & mask) == expected) 517 return true; 518 519 va_start(args, reg_fmt); 520 vaf.fmt = reg_fmt; 521 vaf.va = &args; 522 523 drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: " 524 "current %08x, expected %08x (mask %08x)\n", 525 phy, &vaf, reg.reg, val, (val & ~mask) | expected, 526 mask); 527 528 va_end(args); 529 530 return false; 531 } 532 533 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 534 enum dpio_phy phy) 535 { 536 const struct bxt_ddi_phy_info *phy_info; 537 u32 mask; 538 bool ok; 539 540 phy_info = bxt_get_phy_info(dev_priv, phy); 541 542 #define _CHK(reg, mask, exp, fmt, ...) \ 543 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \ 544 ## __VA_ARGS__) 545 546 if (!bxt_ddi_phy_is_enabled(dev_priv, phy)) 547 return false; 548 549 ok = true; 550 551 /* PLL Rcomp code offset */ 552 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy), 553 IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT, 554 "BXT_PORT_CL1CM_DW9(%d)", phy); 555 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy), 556 IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT, 557 "BXT_PORT_CL1CM_DW10(%d)", phy); 558 559 /* Power gating */ 560 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG; 561 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask, 562 "BXT_PORT_CL1CM_DW28(%d)", phy); 563 564 if (phy_info->dual_channel) 565 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy), 566 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN, 567 "BXT_PORT_CL2CM_DW6(%d)", phy); 568 569 if (phy_info->rcomp_phy != -1) { 570 u32 grc_code = dev_priv->bxt_phy_grc; 571 572 grc_code = grc_code << GRC_CODE_FAST_SHIFT | 573 grc_code << GRC_CODE_SLOW_SHIFT | 574 grc_code; 575 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK | 576 GRC_CODE_NOM_MASK; 577 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code, 578 "BXT_PORT_REF_DW6(%d)", phy); 579 580 mask = GRC_DIS | GRC_RDY_OVRD; 581 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask, 582 "BXT_PORT_REF_DW8(%d)", phy); 583 } 584 585 return ok; 586 #undef _CHK 587 } 588 589 u8 590 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count) 591 { 592 switch (lane_count) { 593 case 1: 594 return 0; 595 case 2: 596 return BIT(2) | BIT(0); 597 case 4: 598 return BIT(3) | BIT(2) | BIT(0); 599 default: 600 MISSING_CASE(lane_count); 601 602 return 0; 603 } 604 } 605 606 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 607 u8 lane_lat_optim_mask) 608 { 609 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 610 enum port port = encoder->port; 611 enum dpio_phy phy; 612 enum dpio_channel ch; 613 int lane; 614 615 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); 616 617 for (lane = 0; lane < 4; lane++) { 618 u32 val = intel_de_read(dev_priv, 619 BXT_PORT_TX_DW14_LN(phy, ch, lane)); 620 621 /* 622 * Note that on CHV this flag is called UPAR, but has 623 * the same function. 624 */ 625 val &= ~LATENCY_OPTIM; 626 if (lane_lat_optim_mask & BIT(lane)) 627 val |= LATENCY_OPTIM; 628 629 intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane), 630 val); 631 } 632 } 633 634 u8 635 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder) 636 { 637 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 638 enum port port = encoder->port; 639 enum dpio_phy phy; 640 enum dpio_channel ch; 641 int lane; 642 u8 mask; 643 644 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); 645 646 mask = 0; 647 for (lane = 0; lane < 4; lane++) { 648 u32 val = intel_de_read(dev_priv, 649 BXT_PORT_TX_DW14_LN(phy, ch, lane)); 650 651 if (val & LATENCY_OPTIM) 652 mask |= BIT(lane); 653 } 654 655 return mask; 656 } 657 658 void chv_set_phy_signal_level(struct intel_encoder *encoder, 659 const struct intel_crtc_state *crtc_state, 660 u32 deemph_reg_value, u32 margin_reg_value, 661 bool uniq_trans_scale) 662 { 663 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 664 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 665 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 666 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 667 enum pipe pipe = crtc->pipe; 668 u32 val; 669 int i; 670 671 vlv_dpio_get(dev_priv); 672 673 /* Clear calc init */ 674 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); 675 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); 676 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); 677 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; 678 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); 679 680 if (crtc_state->lane_count > 2) { 681 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); 682 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); 683 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); 684 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; 685 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); 686 } 687 688 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch)); 689 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); 690 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; 691 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val); 692 693 if (crtc_state->lane_count > 2) { 694 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch)); 695 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); 696 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; 697 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val); 698 } 699 700 /* Program swing deemph */ 701 for (i = 0; i < crtc_state->lane_count; i++) { 702 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i)); 703 val &= ~DPIO_SWING_DEEMPH9P5_MASK; 704 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT; 705 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val); 706 } 707 708 /* Program swing margin */ 709 for (i = 0; i < crtc_state->lane_count; i++) { 710 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); 711 712 val &= ~DPIO_SWING_MARGIN000_MASK; 713 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT; 714 715 /* 716 * Supposedly this value shouldn't matter when unique transition 717 * scale is disabled, but in fact it does matter. Let's just 718 * always program the same value and hope it's OK. 719 */ 720 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT); 721 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT; 722 723 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); 724 } 725 726 /* 727 * The document said it needs to set bit 27 for ch0 and bit 26 728 * for ch1. Might be a typo in the doc. 729 * For now, for this unique transition scale selection, set bit 730 * 27 for ch0 and ch1. 731 */ 732 for (i = 0; i < crtc_state->lane_count; i++) { 733 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); 734 if (uniq_trans_scale) 735 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN; 736 else 737 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; 738 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); 739 } 740 741 /* Start swing calculation */ 742 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); 743 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; 744 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); 745 746 if (crtc_state->lane_count > 2) { 747 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); 748 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; 749 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); 750 } 751 752 vlv_dpio_put(dev_priv); 753 } 754 755 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 756 const struct intel_crtc_state *crtc_state, 757 bool reset) 758 { 759 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 760 enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder)); 761 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 762 enum pipe pipe = crtc->pipe; 763 u32 val; 764 765 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); 766 if (reset) 767 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); 768 else 769 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; 770 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); 771 772 if (crtc_state->lane_count > 2) { 773 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); 774 if (reset) 775 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); 776 else 777 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; 778 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); 779 } 780 781 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); 782 val |= CHV_PCS_REQ_SOFTRESET_EN; 783 if (reset) 784 val &= ~DPIO_PCS_CLK_SOFT_RESET; 785 else 786 val |= DPIO_PCS_CLK_SOFT_RESET; 787 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); 788 789 if (crtc_state->lane_count > 2) { 790 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); 791 val |= CHV_PCS_REQ_SOFTRESET_EN; 792 if (reset) 793 val &= ~DPIO_PCS_CLK_SOFT_RESET; 794 else 795 val |= DPIO_PCS_CLK_SOFT_RESET; 796 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); 797 } 798 } 799 800 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 801 const struct intel_crtc_state *crtc_state) 802 { 803 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 804 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 805 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 806 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 807 enum pipe pipe = crtc->pipe; 808 unsigned int lane_mask = 809 intel_dp_unused_lane_mask(crtc_state->lane_count); 810 u32 val; 811 812 /* 813 * Must trick the second common lane into life. 814 * Otherwise we can't even access the PLL. 815 */ 816 if (ch == DPIO_CH0 && pipe == PIPE_B) 817 dig_port->release_cl2_override = 818 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true); 819 820 chv_phy_powergate_lanes(encoder, true, lane_mask); 821 822 vlv_dpio_get(dev_priv); 823 824 /* Assert data lane reset */ 825 chv_data_lane_soft_reset(encoder, crtc_state, true); 826 827 /* program left/right clock distribution */ 828 if (pipe != PIPE_B) { 829 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); 830 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); 831 if (ch == DPIO_CH0) 832 val |= CHV_BUFLEFTENA1_FORCE; 833 if (ch == DPIO_CH1) 834 val |= CHV_BUFRIGHTENA1_FORCE; 835 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); 836 } else { 837 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); 838 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); 839 if (ch == DPIO_CH0) 840 val |= CHV_BUFLEFTENA2_FORCE; 841 if (ch == DPIO_CH1) 842 val |= CHV_BUFRIGHTENA2_FORCE; 843 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); 844 } 845 846 /* program clock channel usage */ 847 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch)); 848 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; 849 if (pipe != PIPE_B) 850 val &= ~CHV_PCS_USEDCLKCHANNEL; 851 else 852 val |= CHV_PCS_USEDCLKCHANNEL; 853 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val); 854 855 if (crtc_state->lane_count > 2) { 856 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch)); 857 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; 858 if (pipe != PIPE_B) 859 val &= ~CHV_PCS_USEDCLKCHANNEL; 860 else 861 val |= CHV_PCS_USEDCLKCHANNEL; 862 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val); 863 } 864 865 /* 866 * This a a bit weird since generally CL 867 * matches the pipe, but here we need to 868 * pick the CL based on the port. 869 */ 870 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch)); 871 if (pipe != PIPE_B) 872 val &= ~CHV_CMN_USEDCLKCHANNEL; 873 else 874 val |= CHV_CMN_USEDCLKCHANNEL; 875 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val); 876 877 vlv_dpio_put(dev_priv); 878 } 879 880 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 881 const struct intel_crtc_state *crtc_state) 882 { 883 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 884 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 885 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 886 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 887 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 888 enum pipe pipe = crtc->pipe; 889 int data, i, stagger; 890 u32 val; 891 892 vlv_dpio_get(dev_priv); 893 894 /* allow hardware to manage TX FIFO reset source */ 895 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch)); 896 val &= ~DPIO_LANEDESKEW_STRAP_OVRD; 897 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val); 898 899 if (crtc_state->lane_count > 2) { 900 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch)); 901 val &= ~DPIO_LANEDESKEW_STRAP_OVRD; 902 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val); 903 } 904 905 /* Program Tx lane latency optimal setting*/ 906 for (i = 0; i < crtc_state->lane_count; i++) { 907 /* Set the upar bit */ 908 if (crtc_state->lane_count == 1) 909 data = 0x0; 910 else 911 data = (i == 1) ? 0x0 : 0x1; 912 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i), 913 data << DPIO_UPAR_SHIFT); 914 } 915 916 /* Data lane stagger programming */ 917 if (crtc_state->port_clock > 270000) 918 stagger = 0x18; 919 else if (crtc_state->port_clock > 135000) 920 stagger = 0xd; 921 else if (crtc_state->port_clock > 67500) 922 stagger = 0x7; 923 else if (crtc_state->port_clock > 33750) 924 stagger = 0x4; 925 else 926 stagger = 0x2; 927 928 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch)); 929 val |= DPIO_TX2_STAGGER_MASK(0x1f); 930 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val); 931 932 if (crtc_state->lane_count > 2) { 933 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch)); 934 val |= DPIO_TX2_STAGGER_MASK(0x1f); 935 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val); 936 } 937 938 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch), 939 DPIO_LANESTAGGER_STRAP(stagger) | 940 DPIO_LANESTAGGER_STRAP_OVRD | 941 DPIO_TX1_STAGGER_MASK(0x1f) | 942 DPIO_TX1_STAGGER_MULT(6) | 943 DPIO_TX2_STAGGER_MULT(0)); 944 945 if (crtc_state->lane_count > 2) { 946 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch), 947 DPIO_LANESTAGGER_STRAP(stagger) | 948 DPIO_LANESTAGGER_STRAP_OVRD | 949 DPIO_TX1_STAGGER_MASK(0x1f) | 950 DPIO_TX1_STAGGER_MULT(7) | 951 DPIO_TX2_STAGGER_MULT(5)); 952 } 953 954 /* Deassert data lane reset */ 955 chv_data_lane_soft_reset(encoder, crtc_state, false); 956 957 vlv_dpio_put(dev_priv); 958 } 959 960 void chv_phy_release_cl2_override(struct intel_encoder *encoder) 961 { 962 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 963 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 964 965 if (dig_port->release_cl2_override) { 966 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false); 967 dig_port->release_cl2_override = false; 968 } 969 } 970 971 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 972 const struct intel_crtc_state *old_crtc_state) 973 { 974 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 975 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe; 976 u32 val; 977 978 vlv_dpio_get(dev_priv); 979 980 /* disable left/right clock distribution */ 981 if (pipe != PIPE_B) { 982 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); 983 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); 984 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); 985 } else { 986 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); 987 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); 988 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); 989 } 990 991 vlv_dpio_put(dev_priv); 992 993 /* 994 * Leave the power down bit cleared for at least one 995 * lane so that chv_powergate_phy_ch() will power 996 * on something when the channel is otherwise unused. 997 * When the port is off and the override is removed 998 * the lanes power down anyway, so otherwise it doesn't 999 * really matter what the state of power down bits is 1000 * after this. 1001 */ 1002 chv_phy_powergate_lanes(encoder, false, 0x0); 1003 } 1004 1005 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 1006 const struct intel_crtc_state *crtc_state, 1007 u32 demph_reg_value, u32 preemph_reg_value, 1008 u32 uniqtranscale_reg_value, u32 tx3_demph) 1009 { 1010 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1011 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1012 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1013 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1014 enum pipe pipe = crtc->pipe; 1015 1016 vlv_dpio_get(dev_priv); 1017 1018 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000); 1019 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value); 1020 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 1021 uniqtranscale_reg_value); 1022 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040); 1023 1024 if (tx3_demph) 1025 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph); 1026 1027 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000); 1028 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value); 1029 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN); 1030 1031 vlv_dpio_put(dev_priv); 1032 } 1033 1034 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 1035 const struct intel_crtc_state *crtc_state) 1036 { 1037 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1038 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1039 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1040 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1041 enum pipe pipe = crtc->pipe; 1042 1043 /* Program Tx lane resets to default */ 1044 vlv_dpio_get(dev_priv); 1045 1046 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 1047 DPIO_PCS_TX_LANE2_RESET | 1048 DPIO_PCS_TX_LANE1_RESET); 1049 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 1050 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | 1051 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | 1052 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) | 1053 DPIO_PCS_CLK_SOFT_RESET); 1054 1055 /* Fix up inter-pair skew failure */ 1056 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00); 1057 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500); 1058 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000); 1059 1060 vlv_dpio_put(dev_priv); 1061 } 1062 1063 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 1064 const struct intel_crtc_state *crtc_state) 1065 { 1066 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1067 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1068 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1069 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1070 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1071 enum pipe pipe = crtc->pipe; 1072 u32 val; 1073 1074 vlv_dpio_get(dev_priv); 1075 1076 /* Enable clock channels for this port */ 1077 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port)); 1078 val = 0; 1079 if (pipe) 1080 val |= (1<<21); 1081 else 1082 val &= ~(1<<21); 1083 val |= 0x001000c4; 1084 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val); 1085 1086 /* Program lane clock */ 1087 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018); 1088 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888); 1089 1090 vlv_dpio_put(dev_priv); 1091 } 1092 1093 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 1094 const struct intel_crtc_state *old_crtc_state) 1095 { 1096 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1097 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1098 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1099 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1100 enum pipe pipe = crtc->pipe; 1101 1102 vlv_dpio_get(dev_priv); 1103 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000); 1104 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060); 1105 vlv_dpio_put(dev_priv); 1106 } 1107