1 /* 2 * Copyright © 2014-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include "i915_reg.h" 25 #include "intel_ddi.h" 26 #include "intel_ddi_buf_trans.h" 27 #include "intel_de.h" 28 #include "intel_display_power_well.h" 29 #include "intel_display_types.h" 30 #include "intel_dp.h" 31 #include "intel_dpio_phy.h" 32 #include "vlv_sideband.h" 33 34 /** 35 * DOC: DPIO 36 * 37 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI 38 * ports. DPIO is the name given to such a display PHY. These PHYs 39 * don't follow the standard programming model using direct MMIO 40 * registers, and instead their registers must be accessed trough IOSF 41 * sideband. VLV has one such PHY for driving ports B and C, and CHV 42 * adds another PHY for driving port D. Each PHY responds to specific 43 * IOSF-SB port. 44 * 45 * Each display PHY is made up of one or two channels. Each channel 46 * houses a common lane part which contains the PLL and other common 47 * logic. CH0 common lane also contains the IOSF-SB logic for the 48 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock 49 * must be running when any DPIO registers are accessed. 50 * 51 * In addition to having their own registers, the PHYs are also 52 * controlled through some dedicated signals from the display 53 * controller. These include PLL reference clock enable, PLL enable, 54 * and CRI clock selection, for example. 55 * 56 * Eeach channel also has two splines (also called data lanes), and 57 * each spline is made up of one Physical Access Coding Sub-Layer 58 * (PCS) block and two TX lanes. So each channel has two PCS blocks 59 * and four TX lanes. The TX lanes are used as DP lanes or TMDS 60 * data/clock pairs depending on the output type. 61 * 62 * Additionally the PHY also contains an AUX lane with AUX blocks 63 * for each channel. This is used for DP AUX communication, but 64 * this fact isn't really relevant for the driver since AUX is 65 * controlled from the display controller side. No DPIO registers 66 * need to be accessed during AUX communication, 67 * 68 * Generally on VLV/CHV the common lane corresponds to the pipe and 69 * the spline (PCS/TX) corresponds to the port. 70 * 71 * For dual channel PHY (VLV/CHV): 72 * 73 * pipe A == CMN/PLL/REF CH0 74 * 75 * pipe B == CMN/PLL/REF CH1 76 * 77 * port B == PCS/TX CH0 78 * 79 * port C == PCS/TX CH1 80 * 81 * This is especially important when we cross the streams 82 * ie. drive port B with pipe B, or port C with pipe A. 83 * 84 * For single channel PHY (CHV): 85 * 86 * pipe C == CMN/PLL/REF CH0 87 * 88 * port D == PCS/TX CH0 89 * 90 * On BXT the entire PHY channel corresponds to the port. That means 91 * the PLL is also now associated with the port rather than the pipe, 92 * and so the clock needs to be routed to the appropriate transcoder. 93 * Port A PLL is directly connected to transcoder EDP and port B/C 94 * PLLs can be routed to any transcoder A/B/C. 95 * 96 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is 97 * digital port D (CHV) or port A (BXT). :: 98 * 99 * 100 * Dual channel PHY (VLV/CHV/BXT) 101 * --------------------------------- 102 * | CH0 | CH1 | 103 * | CMN/PLL/REF | CMN/PLL/REF | 104 * |---------------|---------------| Display PHY 105 * | PCS01 | PCS23 | PCS01 | PCS23 | 106 * |-------|-------|-------|-------| 107 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3| 108 * --------------------------------- 109 * | DDI0 | DDI1 | DP/HDMI ports 110 * --------------------------------- 111 * 112 * Single channel PHY (CHV/BXT) 113 * ----------------- 114 * | CH0 | 115 * | CMN/PLL/REF | 116 * |---------------| Display PHY 117 * | PCS01 | PCS23 | 118 * |-------|-------| 119 * |TX0|TX1|TX2|TX3| 120 * ----------------- 121 * | DDI2 | DP/HDMI port 122 * ----------------- 123 */ 124 125 /** 126 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy 127 */ 128 struct bxt_ddi_phy_info { 129 /** 130 * @dual_channel: true if this phy has a second channel. 131 */ 132 bool dual_channel; 133 134 /** 135 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor. 136 * Otherwise the GRC value will be copied from the phy indicated by 137 * this field. 138 */ 139 enum dpio_phy rcomp_phy; 140 141 /** 142 * @reset_delay: delay in us to wait before setting the common reset 143 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy. 144 */ 145 int reset_delay; 146 147 /** 148 * @pwron_mask: Mask with the appropriate bit set that would cause the 149 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON. 150 */ 151 u32 pwron_mask; 152 153 /** 154 * @channel: struct containing per channel information. 155 */ 156 struct { 157 /** 158 * @channel.port: which port maps to this channel. 159 */ 160 enum port port; 161 } channel[2]; 162 }; 163 164 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = { 165 [DPIO_PHY0] = { 166 .dual_channel = true, 167 .rcomp_phy = DPIO_PHY1, 168 .pwron_mask = BIT(0), 169 170 .channel = { 171 [DPIO_CH0] = { .port = PORT_B }, 172 [DPIO_CH1] = { .port = PORT_C }, 173 } 174 }, 175 [DPIO_PHY1] = { 176 .dual_channel = false, 177 .rcomp_phy = -1, 178 .pwron_mask = BIT(1), 179 180 .channel = { 181 [DPIO_CH0] = { .port = PORT_A }, 182 } 183 }, 184 }; 185 186 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = { 187 [DPIO_PHY0] = { 188 .dual_channel = false, 189 .rcomp_phy = DPIO_PHY1, 190 .pwron_mask = BIT(0), 191 .reset_delay = 20, 192 193 .channel = { 194 [DPIO_CH0] = { .port = PORT_B }, 195 } 196 }, 197 [DPIO_PHY1] = { 198 .dual_channel = false, 199 .rcomp_phy = -1, 200 .pwron_mask = BIT(3), 201 .reset_delay = 20, 202 203 .channel = { 204 [DPIO_CH0] = { .port = PORT_A }, 205 } 206 }, 207 [DPIO_PHY2] = { 208 .dual_channel = false, 209 .rcomp_phy = DPIO_PHY1, 210 .pwron_mask = BIT(1), 211 .reset_delay = 20, 212 213 .channel = { 214 [DPIO_CH0] = { .port = PORT_C }, 215 } 216 }, 217 }; 218 219 static const struct bxt_ddi_phy_info * 220 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count) 221 { 222 if (IS_GEMINILAKE(dev_priv)) { 223 *count = ARRAY_SIZE(glk_ddi_phy_info); 224 return glk_ddi_phy_info; 225 } else { 226 *count = ARRAY_SIZE(bxt_ddi_phy_info); 227 return bxt_ddi_phy_info; 228 } 229 } 230 231 static const struct bxt_ddi_phy_info * 232 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy) 233 { 234 int count; 235 const struct bxt_ddi_phy_info *phy_list = 236 bxt_get_phy_list(dev_priv, &count); 237 238 return &phy_list[phy]; 239 } 240 241 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 242 enum dpio_phy *phy, enum dpio_channel *ch) 243 { 244 const struct bxt_ddi_phy_info *phy_info, *phys; 245 int i, count; 246 247 phys = bxt_get_phy_list(dev_priv, &count); 248 249 for (i = 0; i < count; i++) { 250 phy_info = &phys[i]; 251 252 if (port == phy_info->channel[DPIO_CH0].port) { 253 *phy = i; 254 *ch = DPIO_CH0; 255 return; 256 } 257 258 if (phy_info->dual_channel && 259 port == phy_info->channel[DPIO_CH1].port) { 260 *phy = i; 261 *ch = DPIO_CH1; 262 return; 263 } 264 } 265 266 drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c", 267 port_name(port)); 268 *phy = DPIO_PHY0; 269 *ch = DPIO_CH0; 270 } 271 272 void bxt_ddi_phy_set_signal_levels(struct intel_encoder *encoder, 273 const struct intel_crtc_state *crtc_state) 274 { 275 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 276 int level = intel_ddi_level(encoder, crtc_state, 0); 277 const struct intel_ddi_buf_trans *trans; 278 enum dpio_channel ch; 279 enum dpio_phy phy; 280 int n_entries; 281 u32 val; 282 283 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries); 284 if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans)) 285 return; 286 287 bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch); 288 289 /* 290 * While we write to the group register to program all lanes at once we 291 * can read only lane registers and we pick lanes 0/1 for that. 292 */ 293 val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch)); 294 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT); 295 intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val); 296 297 val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch)); 298 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE); 299 val |= trans->entries[level].bxt.margin << MARGIN_000_SHIFT | 300 trans->entries[level].bxt.scale << UNIQ_TRANS_SCALE_SHIFT; 301 intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val); 302 303 val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch)); 304 val &= ~SCALE_DCOMP_METHOD; 305 if (trans->entries[level].bxt.enable) 306 val |= SCALE_DCOMP_METHOD; 307 308 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD)) 309 drm_err(&dev_priv->drm, 310 "Disabled scaling while ouniqetrangenmethod was set"); 311 312 intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val); 313 314 val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch)); 315 val &= ~DE_EMPHASIS; 316 val |= trans->entries[level].bxt.deemphasis << DEEMPH_SHIFT; 317 intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val); 318 319 val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch)); 320 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT; 321 intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val); 322 } 323 324 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 325 enum dpio_phy phy) 326 { 327 const struct bxt_ddi_phy_info *phy_info; 328 329 phy_info = bxt_get_phy_info(dev_priv, phy); 330 331 if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask)) 332 return false; 333 334 if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) & 335 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) { 336 drm_dbg(&dev_priv->drm, 337 "DDI PHY %d powered, but power hasn't settled\n", phy); 338 339 return false; 340 } 341 342 if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) { 343 drm_dbg(&dev_priv->drm, 344 "DDI PHY %d powered, but still in reset\n", phy); 345 346 return false; 347 } 348 349 return true; 350 } 351 352 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy) 353 { 354 u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy)); 355 356 return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT; 357 } 358 359 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv, 360 enum dpio_phy phy) 361 { 362 if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy), 363 GRC_DONE, 10)) 364 drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n", 365 phy); 366 } 367 368 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv, 369 enum dpio_phy phy) 370 { 371 const struct bxt_ddi_phy_info *phy_info; 372 u32 val; 373 374 phy_info = bxt_get_phy_info(dev_priv, phy); 375 376 if (bxt_ddi_phy_is_enabled(dev_priv, phy)) { 377 /* Still read out the GRC value for state verification */ 378 if (phy_info->rcomp_phy != -1) 379 dev_priv->display.state.bxt_phy_grc = bxt_get_grc(dev_priv, phy); 380 381 if (bxt_ddi_phy_verify_state(dev_priv, phy)) { 382 drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, " 383 "won't reprogram it\n", phy); 384 return; 385 } 386 387 drm_dbg(&dev_priv->drm, 388 "DDI PHY %d enabled with invalid state, " 389 "force reprogramming it\n", phy); 390 } 391 392 val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON); 393 val |= phy_info->pwron_mask; 394 intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val); 395 396 /* 397 * The PHY registers start out inaccessible and respond to reads with 398 * all 1s. Eventually they become accessible as they power up, then 399 * the reserved bit will give the default 0. Poll on the reserved bit 400 * becoming 0 to find when the PHY is accessible. 401 * The flag should get set in 100us according to the HW team, but 402 * use 1ms due to occasional timeouts observed with that. 403 */ 404 if (intel_wait_for_register_fw(&dev_priv->uncore, 405 BXT_PORT_CL1CM_DW0(phy), 406 PHY_RESERVED | PHY_POWER_GOOD, 407 PHY_POWER_GOOD, 408 1)) 409 drm_err(&dev_priv->drm, "timeout during PHY%d power on\n", 410 phy); 411 412 /* Program PLL Rcomp code offset */ 413 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW9(phy)); 414 val &= ~IREF0RC_OFFSET_MASK; 415 val |= 0xE4 << IREF0RC_OFFSET_SHIFT; 416 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW9(phy), val); 417 418 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW10(phy)); 419 val &= ~IREF1RC_OFFSET_MASK; 420 val |= 0xE4 << IREF1RC_OFFSET_SHIFT; 421 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW10(phy), val); 422 423 /* Program power gating */ 424 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW28(phy)); 425 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | 426 SUS_CLK_CONFIG; 427 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW28(phy), val); 428 429 if (phy_info->dual_channel) { 430 val = intel_de_read(dev_priv, BXT_PORT_CL2CM_DW6(phy)); 431 val |= DW6_OLDO_DYN_PWR_DOWN_EN; 432 intel_de_write(dev_priv, BXT_PORT_CL2CM_DW6(phy), val); 433 } 434 435 if (phy_info->rcomp_phy != -1) { 436 u32 grc_code; 437 438 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy); 439 440 /* 441 * PHY0 isn't connected to an RCOMP resistor so copy over 442 * the corresponding calibrated value from PHY1, and disable 443 * the automatic calibration on PHY0. 444 */ 445 val = bxt_get_grc(dev_priv, phy_info->rcomp_phy); 446 dev_priv->display.state.bxt_phy_grc = val; 447 448 grc_code = val << GRC_CODE_FAST_SHIFT | 449 val << GRC_CODE_SLOW_SHIFT | 450 val; 451 intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code); 452 453 val = intel_de_read(dev_priv, BXT_PORT_REF_DW8(phy)); 454 val |= GRC_DIS | GRC_RDY_OVRD; 455 intel_de_write(dev_priv, BXT_PORT_REF_DW8(phy), val); 456 } 457 458 if (phy_info->reset_delay) 459 udelay(phy_info->reset_delay); 460 461 val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)); 462 val |= COMMON_RESET_DIS; 463 intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val); 464 } 465 466 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy) 467 { 468 const struct bxt_ddi_phy_info *phy_info; 469 u32 val; 470 471 phy_info = bxt_get_phy_info(dev_priv, phy); 472 473 val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)); 474 val &= ~COMMON_RESET_DIS; 475 intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val); 476 477 val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON); 478 val &= ~phy_info->pwron_mask; 479 intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val); 480 } 481 482 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy) 483 { 484 const struct bxt_ddi_phy_info *phy_info = 485 bxt_get_phy_info(dev_priv, phy); 486 enum dpio_phy rcomp_phy = phy_info->rcomp_phy; 487 bool was_enabled; 488 489 lockdep_assert_held(&dev_priv->display.power.domains.lock); 490 491 was_enabled = true; 492 if (rcomp_phy != -1) 493 was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy); 494 495 /* 496 * We need to copy the GRC calibration value from rcomp_phy, 497 * so make sure it's powered up. 498 */ 499 if (!was_enabled) 500 _bxt_ddi_phy_init(dev_priv, rcomp_phy); 501 502 _bxt_ddi_phy_init(dev_priv, phy); 503 504 if (!was_enabled) 505 bxt_ddi_phy_uninit(dev_priv, rcomp_phy); 506 } 507 508 static bool __printf(6, 7) 509 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy, 510 i915_reg_t reg, u32 mask, u32 expected, 511 const char *reg_fmt, ...) 512 { 513 struct va_format vaf; 514 va_list args; 515 u32 val; 516 517 val = intel_de_read(dev_priv, reg); 518 if ((val & mask) == expected) 519 return true; 520 521 va_start(args, reg_fmt); 522 vaf.fmt = reg_fmt; 523 vaf.va = &args; 524 525 drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: " 526 "current %08x, expected %08x (mask %08x)\n", 527 phy, &vaf, reg.reg, val, (val & ~mask) | expected, 528 mask); 529 530 va_end(args); 531 532 return false; 533 } 534 535 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 536 enum dpio_phy phy) 537 { 538 const struct bxt_ddi_phy_info *phy_info; 539 u32 mask; 540 bool ok; 541 542 phy_info = bxt_get_phy_info(dev_priv, phy); 543 544 #define _CHK(reg, mask, exp, fmt, ...) \ 545 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \ 546 ## __VA_ARGS__) 547 548 if (!bxt_ddi_phy_is_enabled(dev_priv, phy)) 549 return false; 550 551 ok = true; 552 553 /* PLL Rcomp code offset */ 554 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy), 555 IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT, 556 "BXT_PORT_CL1CM_DW9(%d)", phy); 557 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy), 558 IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT, 559 "BXT_PORT_CL1CM_DW10(%d)", phy); 560 561 /* Power gating */ 562 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG; 563 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask, 564 "BXT_PORT_CL1CM_DW28(%d)", phy); 565 566 if (phy_info->dual_channel) 567 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy), 568 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN, 569 "BXT_PORT_CL2CM_DW6(%d)", phy); 570 571 if (phy_info->rcomp_phy != -1) { 572 u32 grc_code = dev_priv->display.state.bxt_phy_grc; 573 574 grc_code = grc_code << GRC_CODE_FAST_SHIFT | 575 grc_code << GRC_CODE_SLOW_SHIFT | 576 grc_code; 577 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK | 578 GRC_CODE_NOM_MASK; 579 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code, 580 "BXT_PORT_REF_DW6(%d)", phy); 581 582 mask = GRC_DIS | GRC_RDY_OVRD; 583 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask, 584 "BXT_PORT_REF_DW8(%d)", phy); 585 } 586 587 return ok; 588 #undef _CHK 589 } 590 591 u8 592 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count) 593 { 594 switch (lane_count) { 595 case 1: 596 return 0; 597 case 2: 598 return BIT(2) | BIT(0); 599 case 4: 600 return BIT(3) | BIT(2) | BIT(0); 601 default: 602 MISSING_CASE(lane_count); 603 604 return 0; 605 } 606 } 607 608 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 609 u8 lane_lat_optim_mask) 610 { 611 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 612 enum port port = encoder->port; 613 enum dpio_phy phy; 614 enum dpio_channel ch; 615 int lane; 616 617 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); 618 619 for (lane = 0; lane < 4; lane++) { 620 u32 val = intel_de_read(dev_priv, 621 BXT_PORT_TX_DW14_LN(phy, ch, lane)); 622 623 /* 624 * Note that on CHV this flag is called UPAR, but has 625 * the same function. 626 */ 627 val &= ~LATENCY_OPTIM; 628 if (lane_lat_optim_mask & BIT(lane)) 629 val |= LATENCY_OPTIM; 630 631 intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane), 632 val); 633 } 634 } 635 636 u8 637 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder) 638 { 639 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 640 enum port port = encoder->port; 641 enum dpio_phy phy; 642 enum dpio_channel ch; 643 int lane; 644 u8 mask; 645 646 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); 647 648 mask = 0; 649 for (lane = 0; lane < 4; lane++) { 650 u32 val = intel_de_read(dev_priv, 651 BXT_PORT_TX_DW14_LN(phy, ch, lane)); 652 653 if (val & LATENCY_OPTIM) 654 mask |= BIT(lane); 655 } 656 657 return mask; 658 } 659 660 enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port) 661 { 662 switch (dig_port->base.port) { 663 default: 664 MISSING_CASE(dig_port->base.port); 665 fallthrough; 666 case PORT_B: 667 case PORT_D: 668 return DPIO_CH0; 669 case PORT_C: 670 return DPIO_CH1; 671 } 672 } 673 674 enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port) 675 { 676 switch (dig_port->base.port) { 677 default: 678 MISSING_CASE(dig_port->base.port); 679 fallthrough; 680 case PORT_B: 681 case PORT_C: 682 return DPIO_PHY0; 683 case PORT_D: 684 return DPIO_PHY1; 685 } 686 } 687 688 enum dpio_channel vlv_pipe_to_channel(enum pipe pipe) 689 { 690 switch (pipe) { 691 default: 692 MISSING_CASE(pipe); 693 fallthrough; 694 case PIPE_A: 695 case PIPE_C: 696 return DPIO_CH0; 697 case PIPE_B: 698 return DPIO_CH1; 699 } 700 } 701 702 void chv_set_phy_signal_level(struct intel_encoder *encoder, 703 const struct intel_crtc_state *crtc_state, 704 u32 deemph_reg_value, u32 margin_reg_value, 705 bool uniq_trans_scale) 706 { 707 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 708 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 709 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 710 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 711 enum pipe pipe = crtc->pipe; 712 u32 val; 713 int i; 714 715 vlv_dpio_get(dev_priv); 716 717 /* Clear calc init */ 718 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); 719 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); 720 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); 721 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; 722 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); 723 724 if (crtc_state->lane_count > 2) { 725 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); 726 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); 727 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); 728 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; 729 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); 730 } 731 732 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch)); 733 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); 734 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; 735 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val); 736 737 if (crtc_state->lane_count > 2) { 738 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch)); 739 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); 740 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; 741 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val); 742 } 743 744 /* Program swing deemph */ 745 for (i = 0; i < crtc_state->lane_count; i++) { 746 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i)); 747 val &= ~DPIO_SWING_DEEMPH9P5_MASK; 748 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT; 749 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val); 750 } 751 752 /* Program swing margin */ 753 for (i = 0; i < crtc_state->lane_count; i++) { 754 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); 755 756 val &= ~DPIO_SWING_MARGIN000_MASK; 757 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT; 758 759 /* 760 * Supposedly this value shouldn't matter when unique transition 761 * scale is disabled, but in fact it does matter. Let's just 762 * always program the same value and hope it's OK. 763 */ 764 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT); 765 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT; 766 767 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); 768 } 769 770 /* 771 * The document said it needs to set bit 27 for ch0 and bit 26 772 * for ch1. Might be a typo in the doc. 773 * For now, for this unique transition scale selection, set bit 774 * 27 for ch0 and ch1. 775 */ 776 for (i = 0; i < crtc_state->lane_count; i++) { 777 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); 778 if (uniq_trans_scale) 779 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN; 780 else 781 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; 782 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); 783 } 784 785 /* Start swing calculation */ 786 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); 787 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; 788 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); 789 790 if (crtc_state->lane_count > 2) { 791 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); 792 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; 793 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); 794 } 795 796 vlv_dpio_put(dev_priv); 797 } 798 799 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 800 const struct intel_crtc_state *crtc_state, 801 bool reset) 802 { 803 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 804 enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder)); 805 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 806 enum pipe pipe = crtc->pipe; 807 u32 val; 808 809 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); 810 if (reset) 811 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); 812 else 813 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; 814 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); 815 816 if (crtc_state->lane_count > 2) { 817 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); 818 if (reset) 819 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); 820 else 821 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; 822 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); 823 } 824 825 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); 826 val |= CHV_PCS_REQ_SOFTRESET_EN; 827 if (reset) 828 val &= ~DPIO_PCS_CLK_SOFT_RESET; 829 else 830 val |= DPIO_PCS_CLK_SOFT_RESET; 831 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); 832 833 if (crtc_state->lane_count > 2) { 834 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); 835 val |= CHV_PCS_REQ_SOFTRESET_EN; 836 if (reset) 837 val &= ~DPIO_PCS_CLK_SOFT_RESET; 838 else 839 val |= DPIO_PCS_CLK_SOFT_RESET; 840 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); 841 } 842 } 843 844 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 845 const struct intel_crtc_state *crtc_state) 846 { 847 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 848 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 849 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 850 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 851 enum pipe pipe = crtc->pipe; 852 unsigned int lane_mask = 853 intel_dp_unused_lane_mask(crtc_state->lane_count); 854 u32 val; 855 856 /* 857 * Must trick the second common lane into life. 858 * Otherwise we can't even access the PLL. 859 */ 860 if (ch == DPIO_CH0 && pipe == PIPE_B) 861 dig_port->release_cl2_override = 862 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true); 863 864 chv_phy_powergate_lanes(encoder, true, lane_mask); 865 866 vlv_dpio_get(dev_priv); 867 868 /* Assert data lane reset */ 869 chv_data_lane_soft_reset(encoder, crtc_state, true); 870 871 /* program left/right clock distribution */ 872 if (pipe != PIPE_B) { 873 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); 874 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); 875 if (ch == DPIO_CH0) 876 val |= CHV_BUFLEFTENA1_FORCE; 877 if (ch == DPIO_CH1) 878 val |= CHV_BUFRIGHTENA1_FORCE; 879 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); 880 } else { 881 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); 882 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); 883 if (ch == DPIO_CH0) 884 val |= CHV_BUFLEFTENA2_FORCE; 885 if (ch == DPIO_CH1) 886 val |= CHV_BUFRIGHTENA2_FORCE; 887 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); 888 } 889 890 /* program clock channel usage */ 891 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch)); 892 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; 893 if (pipe != PIPE_B) 894 val &= ~CHV_PCS_USEDCLKCHANNEL; 895 else 896 val |= CHV_PCS_USEDCLKCHANNEL; 897 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val); 898 899 if (crtc_state->lane_count > 2) { 900 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch)); 901 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; 902 if (pipe != PIPE_B) 903 val &= ~CHV_PCS_USEDCLKCHANNEL; 904 else 905 val |= CHV_PCS_USEDCLKCHANNEL; 906 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val); 907 } 908 909 /* 910 * This a a bit weird since generally CL 911 * matches the pipe, but here we need to 912 * pick the CL based on the port. 913 */ 914 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch)); 915 if (pipe != PIPE_B) 916 val &= ~CHV_CMN_USEDCLKCHANNEL; 917 else 918 val |= CHV_CMN_USEDCLKCHANNEL; 919 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val); 920 921 vlv_dpio_put(dev_priv); 922 } 923 924 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 925 const struct intel_crtc_state *crtc_state) 926 { 927 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 928 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 929 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 930 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 931 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); 932 enum pipe pipe = crtc->pipe; 933 int data, i, stagger; 934 u32 val; 935 936 vlv_dpio_get(dev_priv); 937 938 /* allow hardware to manage TX FIFO reset source */ 939 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch)); 940 val &= ~DPIO_LANEDESKEW_STRAP_OVRD; 941 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val); 942 943 if (crtc_state->lane_count > 2) { 944 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch)); 945 val &= ~DPIO_LANEDESKEW_STRAP_OVRD; 946 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val); 947 } 948 949 /* Program Tx lane latency optimal setting*/ 950 for (i = 0; i < crtc_state->lane_count; i++) { 951 /* Set the upar bit */ 952 if (crtc_state->lane_count == 1) 953 data = 0x0; 954 else 955 data = (i == 1) ? 0x0 : 0x1; 956 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i), 957 data << DPIO_UPAR_SHIFT); 958 } 959 960 /* Data lane stagger programming */ 961 if (crtc_state->port_clock > 270000) 962 stagger = 0x18; 963 else if (crtc_state->port_clock > 135000) 964 stagger = 0xd; 965 else if (crtc_state->port_clock > 67500) 966 stagger = 0x7; 967 else if (crtc_state->port_clock > 33750) 968 stagger = 0x4; 969 else 970 stagger = 0x2; 971 972 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch)); 973 val |= DPIO_TX2_STAGGER_MASK(0x1f); 974 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val); 975 976 if (crtc_state->lane_count > 2) { 977 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch)); 978 val |= DPIO_TX2_STAGGER_MASK(0x1f); 979 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val); 980 } 981 982 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch), 983 DPIO_LANESTAGGER_STRAP(stagger) | 984 DPIO_LANESTAGGER_STRAP_OVRD | 985 DPIO_TX1_STAGGER_MASK(0x1f) | 986 DPIO_TX1_STAGGER_MULT(6) | 987 DPIO_TX2_STAGGER_MULT(0)); 988 989 if (crtc_state->lane_count > 2) { 990 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch), 991 DPIO_LANESTAGGER_STRAP(stagger) | 992 DPIO_LANESTAGGER_STRAP_OVRD | 993 DPIO_TX1_STAGGER_MASK(0x1f) | 994 DPIO_TX1_STAGGER_MULT(7) | 995 DPIO_TX2_STAGGER_MULT(5)); 996 } 997 998 /* Deassert data lane reset */ 999 chv_data_lane_soft_reset(encoder, crtc_state, false); 1000 1001 vlv_dpio_put(dev_priv); 1002 } 1003 1004 void chv_phy_release_cl2_override(struct intel_encoder *encoder) 1005 { 1006 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1007 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1008 1009 if (dig_port->release_cl2_override) { 1010 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false); 1011 dig_port->release_cl2_override = false; 1012 } 1013 } 1014 1015 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 1016 const struct intel_crtc_state *old_crtc_state) 1017 { 1018 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1019 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe; 1020 u32 val; 1021 1022 vlv_dpio_get(dev_priv); 1023 1024 /* disable left/right clock distribution */ 1025 if (pipe != PIPE_B) { 1026 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); 1027 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); 1028 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); 1029 } else { 1030 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); 1031 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); 1032 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); 1033 } 1034 1035 vlv_dpio_put(dev_priv); 1036 1037 /* 1038 * Leave the power down bit cleared for at least one 1039 * lane so that chv_powergate_phy_ch() will power 1040 * on something when the channel is otherwise unused. 1041 * When the port is off and the override is removed 1042 * the lanes power down anyway, so otherwise it doesn't 1043 * really matter what the state of power down bits is 1044 * after this. 1045 */ 1046 chv_phy_powergate_lanes(encoder, false, 0x0); 1047 } 1048 1049 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 1050 const struct intel_crtc_state *crtc_state, 1051 u32 demph_reg_value, u32 preemph_reg_value, 1052 u32 uniqtranscale_reg_value, u32 tx3_demph) 1053 { 1054 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1055 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1056 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1057 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1058 enum pipe pipe = crtc->pipe; 1059 1060 vlv_dpio_get(dev_priv); 1061 1062 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000); 1063 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value); 1064 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 1065 uniqtranscale_reg_value); 1066 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040); 1067 1068 if (tx3_demph) 1069 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph); 1070 1071 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000); 1072 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value); 1073 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN); 1074 1075 vlv_dpio_put(dev_priv); 1076 } 1077 1078 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 1079 const struct intel_crtc_state *crtc_state) 1080 { 1081 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1082 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1083 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1084 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1085 enum pipe pipe = crtc->pipe; 1086 1087 /* Program Tx lane resets to default */ 1088 vlv_dpio_get(dev_priv); 1089 1090 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 1091 DPIO_PCS_TX_LANE2_RESET | 1092 DPIO_PCS_TX_LANE1_RESET); 1093 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 1094 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | 1095 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | 1096 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) | 1097 DPIO_PCS_CLK_SOFT_RESET); 1098 1099 /* Fix up inter-pair skew failure */ 1100 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00); 1101 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500); 1102 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000); 1103 1104 vlv_dpio_put(dev_priv); 1105 } 1106 1107 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 1108 const struct intel_crtc_state *crtc_state) 1109 { 1110 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1111 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1112 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1113 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1114 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1115 enum pipe pipe = crtc->pipe; 1116 u32 val; 1117 1118 vlv_dpio_get(dev_priv); 1119 1120 /* Enable clock channels for this port */ 1121 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port)); 1122 val = 0; 1123 if (pipe) 1124 val |= (1<<21); 1125 else 1126 val &= ~(1<<21); 1127 val |= 0x001000c4; 1128 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val); 1129 1130 /* Program lane clock */ 1131 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018); 1132 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888); 1133 1134 vlv_dpio_put(dev_priv); 1135 } 1136 1137 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 1138 const struct intel_crtc_state *old_crtc_state) 1139 { 1140 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1141 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1142 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1143 enum dpio_channel port = vlv_dig_port_to_channel(dig_port); 1144 enum pipe pipe = crtc->pipe; 1145 1146 vlv_dpio_get(dev_priv); 1147 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000); 1148 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060); 1149 vlv_dpio_put(dev_priv); 1150 } 1151