1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/slab.h> 32 #include <linux/types.h> 33 34 #include <asm/byteorder.h> 35 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_crtc.h> 38 #include <drm/drm_dp_helper.h> 39 #include <drm/drm_edid.h> 40 #include <drm/drm_probe_helper.h> 41 42 #include "i915_debugfs.h" 43 #include "i915_drv.h" 44 #include "i915_trace.h" 45 #include "intel_atomic.h" 46 #include "intel_audio.h" 47 #include "intel_connector.h" 48 #include "intel_ddi.h" 49 #include "intel_display_types.h" 50 #include "intel_dp.h" 51 #include "intel_dp_link_training.h" 52 #include "intel_dp_mst.h" 53 #include "intel_dpio_phy.h" 54 #include "intel_fifo_underrun.h" 55 #include "intel_hdcp.h" 56 #include "intel_hdmi.h" 57 #include "intel_hotplug.h" 58 #include "intel_lspcon.h" 59 #include "intel_lvds.h" 60 #include "intel_panel.h" 61 #include "intel_psr.h" 62 #include "intel_sideband.h" 63 #include "intel_tc.h" 64 #include "intel_vdsc.h" 65 66 #define DP_DPRX_ESI_LEN 14 67 68 /* DP DSC throughput values used for slice count calculations KPixels/s */ 69 #define DP_DSC_PEAK_PIXEL_RATE 2720000 70 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 71 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 72 73 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 74 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 75 76 /* Compliance test status bits */ 77 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 78 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 79 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 80 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 81 82 struct dp_link_dpll { 83 int clock; 84 struct dpll dpll; 85 }; 86 87 static const struct dp_link_dpll g4x_dpll[] = { 88 { 162000, 89 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 90 { 270000, 91 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 92 }; 93 94 static const struct dp_link_dpll pch_dpll[] = { 95 { 162000, 96 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 97 { 270000, 98 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 99 }; 100 101 static const struct dp_link_dpll vlv_dpll[] = { 102 { 162000, 103 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 104 { 270000, 105 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 106 }; 107 108 /* 109 * CHV supports eDP 1.4 that have more link rates. 110 * Below only provides the fixed rate but exclude variable rate. 111 */ 112 static const struct dp_link_dpll chv_dpll[] = { 113 /* 114 * CHV requires to program fractional division for m2. 115 * m2 is stored in fixed point format using formula below 116 * (m2_int << 22) | m2_fraction 117 */ 118 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 119 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 120 { 270000, /* m2_int = 27, m2_fraction = 0 */ 121 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 122 }; 123 124 /* Constants for DP DSC configurations */ 125 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 126 127 /* With Single pipe configuration, HW is capable of supporting maximum 128 * of 4 slices per line. 129 */ 130 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 131 132 /** 133 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 134 * @intel_dp: DP struct 135 * 136 * If a CPU or PCH DP output is attached to an eDP panel, this function 137 * will return true, and false otherwise. 138 */ 139 bool intel_dp_is_edp(struct intel_dp *intel_dp) 140 { 141 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 142 143 return dig_port->base.type == INTEL_OUTPUT_EDP; 144 } 145 146 static void intel_dp_link_down(struct intel_encoder *encoder, 147 const struct intel_crtc_state *old_crtc_state); 148 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 149 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 150 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 151 const struct intel_crtc_state *crtc_state); 152 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 153 enum pipe pipe); 154 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 155 156 /* update sink rates from dpcd */ 157 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 158 { 159 static const int dp_rates[] = { 160 162000, 270000, 540000, 810000 161 }; 162 int i, max_rate; 163 int max_lttpr_rate; 164 165 if (drm_dp_has_quirk(&intel_dp->desc, 0, 166 DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) { 167 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */ 168 static const int quirk_rates[] = { 162000, 270000, 324000 }; 169 170 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates)); 171 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates); 172 173 return; 174 } 175 176 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 177 max_lttpr_rate = drm_dp_lttpr_max_link_rate(intel_dp->lttpr_common_caps); 178 if (max_lttpr_rate) 179 max_rate = min(max_rate, max_lttpr_rate); 180 181 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 182 if (dp_rates[i] > max_rate) 183 break; 184 intel_dp->sink_rates[i] = dp_rates[i]; 185 } 186 187 intel_dp->num_sink_rates = i; 188 } 189 190 /* Get length of rates array potentially limited by max_rate. */ 191 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 192 { 193 int i; 194 195 /* Limit results by potentially reduced max rate */ 196 for (i = 0; i < len; i++) { 197 if (rates[len - i - 1] <= max_rate) 198 return len - i; 199 } 200 201 return 0; 202 } 203 204 /* Get length of common rates array potentially limited by max_rate. */ 205 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 206 int max_rate) 207 { 208 return intel_dp_rate_limit_len(intel_dp->common_rates, 209 intel_dp->num_common_rates, max_rate); 210 } 211 212 /* Theoretical max between source and sink */ 213 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 214 { 215 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 216 } 217 218 /* Theoretical max between source and sink */ 219 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 220 { 221 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 222 int source_max = dig_port->max_lanes; 223 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 224 int fia_max = intel_tc_port_fia_max_lane_count(dig_port); 225 int lttpr_max = drm_dp_lttpr_max_lane_count(intel_dp->lttpr_common_caps); 226 227 if (lttpr_max) 228 sink_max = min(sink_max, lttpr_max); 229 230 return min3(source_max, sink_max, fia_max); 231 } 232 233 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 234 { 235 return intel_dp->max_link_lane_count; 236 } 237 238 int 239 intel_dp_link_required(int pixel_clock, int bpp) 240 { 241 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 242 return DIV_ROUND_UP(pixel_clock * bpp, 8); 243 } 244 245 int 246 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 247 { 248 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 249 * link rate that is generally expressed in Gbps. Since, 8 bits of data 250 * is transmitted every LS_Clk per lane, there is no need to account for 251 * the channel encoding that is done in the PHY layer here. 252 */ 253 254 return max_link_clock * max_lanes; 255 } 256 257 bool intel_dp_can_bigjoiner(struct intel_dp *intel_dp) 258 { 259 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 260 struct intel_encoder *encoder = &intel_dig_port->base; 261 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 262 263 return INTEL_GEN(dev_priv) >= 12 || 264 (INTEL_GEN(dev_priv) == 11 && 265 encoder->port != PORT_A); 266 } 267 268 static int cnl_max_source_rate(struct intel_dp *intel_dp) 269 { 270 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 271 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 272 enum port port = dig_port->base.port; 273 274 u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 275 276 /* Low voltage SKUs are limited to max of 5.4G */ 277 if (voltage == VOLTAGE_INFO_0_85V) 278 return 540000; 279 280 /* For this SKU 8.1G is supported in all ports */ 281 if (IS_CNL_WITH_PORT_F(dev_priv)) 282 return 810000; 283 284 /* For other SKUs, max rate on ports A and D is 5.4G */ 285 if (port == PORT_A || port == PORT_D) 286 return 540000; 287 288 return 810000; 289 } 290 291 static int icl_max_source_rate(struct intel_dp *intel_dp) 292 { 293 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 294 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 295 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 296 297 if (intel_phy_is_combo(dev_priv, phy) && 298 !intel_dp_is_edp(intel_dp)) 299 return 540000; 300 301 return 810000; 302 } 303 304 static int ehl_max_source_rate(struct intel_dp *intel_dp) 305 { 306 if (intel_dp_is_edp(intel_dp)) 307 return 540000; 308 309 return 810000; 310 } 311 312 static void 313 intel_dp_set_source_rates(struct intel_dp *intel_dp) 314 { 315 /* The values must be in increasing order */ 316 static const int cnl_rates[] = { 317 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 318 }; 319 static const int bxt_rates[] = { 320 162000, 216000, 243000, 270000, 324000, 432000, 540000 321 }; 322 static const int skl_rates[] = { 323 162000, 216000, 270000, 324000, 432000, 540000 324 }; 325 static const int hsw_rates[] = { 326 162000, 270000, 540000 327 }; 328 static const int g4x_rates[] = { 329 162000, 270000 330 }; 331 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 332 struct intel_encoder *encoder = &dig_port->base; 333 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 334 const int *source_rates; 335 int size, max_rate = 0, vbt_max_rate; 336 337 /* This should only be done once */ 338 drm_WARN_ON(&dev_priv->drm, 339 intel_dp->source_rates || intel_dp->num_source_rates); 340 341 if (INTEL_GEN(dev_priv) >= 10) { 342 source_rates = cnl_rates; 343 size = ARRAY_SIZE(cnl_rates); 344 if (IS_GEN(dev_priv, 10)) 345 max_rate = cnl_max_source_rate(intel_dp); 346 else if (IS_JSL_EHL(dev_priv)) 347 max_rate = ehl_max_source_rate(intel_dp); 348 else 349 max_rate = icl_max_source_rate(intel_dp); 350 } else if (IS_GEN9_LP(dev_priv)) { 351 source_rates = bxt_rates; 352 size = ARRAY_SIZE(bxt_rates); 353 } else if (IS_GEN9_BC(dev_priv)) { 354 source_rates = skl_rates; 355 size = ARRAY_SIZE(skl_rates); 356 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 357 IS_BROADWELL(dev_priv)) { 358 source_rates = hsw_rates; 359 size = ARRAY_SIZE(hsw_rates); 360 } else { 361 source_rates = g4x_rates; 362 size = ARRAY_SIZE(g4x_rates); 363 } 364 365 vbt_max_rate = intel_bios_dp_max_link_rate(encoder); 366 if (max_rate && vbt_max_rate) 367 max_rate = min(max_rate, vbt_max_rate); 368 else if (vbt_max_rate) 369 max_rate = vbt_max_rate; 370 371 if (max_rate) 372 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 373 374 intel_dp->source_rates = source_rates; 375 intel_dp->num_source_rates = size; 376 } 377 378 static int intersect_rates(const int *source_rates, int source_len, 379 const int *sink_rates, int sink_len, 380 int *common_rates) 381 { 382 int i = 0, j = 0, k = 0; 383 384 while (i < source_len && j < sink_len) { 385 if (source_rates[i] == sink_rates[j]) { 386 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 387 return k; 388 common_rates[k] = source_rates[i]; 389 ++k; 390 ++i; 391 ++j; 392 } else if (source_rates[i] < sink_rates[j]) { 393 ++i; 394 } else { 395 ++j; 396 } 397 } 398 return k; 399 } 400 401 /* return index of rate in rates array, or -1 if not found */ 402 static int intel_dp_rate_index(const int *rates, int len, int rate) 403 { 404 int i; 405 406 for (i = 0; i < len; i++) 407 if (rate == rates[i]) 408 return i; 409 410 return -1; 411 } 412 413 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 414 { 415 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 416 417 drm_WARN_ON(&i915->drm, 418 !intel_dp->num_source_rates || !intel_dp->num_sink_rates); 419 420 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 421 intel_dp->num_source_rates, 422 intel_dp->sink_rates, 423 intel_dp->num_sink_rates, 424 intel_dp->common_rates); 425 426 /* Paranoia, there should always be something in common. */ 427 if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) { 428 intel_dp->common_rates[0] = 162000; 429 intel_dp->num_common_rates = 1; 430 } 431 } 432 433 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 434 u8 lane_count) 435 { 436 /* 437 * FIXME: we need to synchronize the current link parameters with 438 * hardware readout. Currently fast link training doesn't work on 439 * boot-up. 440 */ 441 if (link_rate == 0 || 442 link_rate > intel_dp->max_link_rate) 443 return false; 444 445 if (lane_count == 0 || 446 lane_count > intel_dp_max_lane_count(intel_dp)) 447 return false; 448 449 return true; 450 } 451 452 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 453 int link_rate, 454 u8 lane_count) 455 { 456 const struct drm_display_mode *fixed_mode = 457 intel_dp->attached_connector->panel.fixed_mode; 458 int mode_rate, max_rate; 459 460 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 461 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 462 if (mode_rate > max_rate) 463 return false; 464 465 return true; 466 } 467 468 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 469 int link_rate, u8 lane_count) 470 { 471 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 472 int index; 473 474 /* 475 * TODO: Enable fallback on MST links once MST link compute can handle 476 * the fallback params. 477 */ 478 if (intel_dp->is_mst) { 479 drm_err(&i915->drm, "Link Training Unsuccessful\n"); 480 return -1; 481 } 482 483 index = intel_dp_rate_index(intel_dp->common_rates, 484 intel_dp->num_common_rates, 485 link_rate); 486 if (index > 0) { 487 if (intel_dp_is_edp(intel_dp) && 488 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 489 intel_dp->common_rates[index - 1], 490 lane_count)) { 491 drm_dbg_kms(&i915->drm, 492 "Retrying Link training for eDP with same parameters\n"); 493 return 0; 494 } 495 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 496 intel_dp->max_link_lane_count = lane_count; 497 } else if (lane_count > 1) { 498 if (intel_dp_is_edp(intel_dp) && 499 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 500 intel_dp_max_common_rate(intel_dp), 501 lane_count >> 1)) { 502 drm_dbg_kms(&i915->drm, 503 "Retrying Link training for eDP with same parameters\n"); 504 return 0; 505 } 506 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 507 intel_dp->max_link_lane_count = lane_count >> 1; 508 } else { 509 drm_err(&i915->drm, "Link Training Unsuccessful\n"); 510 return -1; 511 } 512 513 return 0; 514 } 515 516 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 517 { 518 return div_u64(mul_u32_u32(mode_clock, 1000000U), 519 DP_DSC_FEC_OVERHEAD_FACTOR); 520 } 521 522 static int 523 small_joiner_ram_size_bits(struct drm_i915_private *i915) 524 { 525 if (INTEL_GEN(i915) >= 11) 526 return 7680 * 8; 527 else 528 return 6144 * 8; 529 } 530 531 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, 532 u32 link_clock, u32 lane_count, 533 u32 mode_clock, u32 mode_hdisplay, 534 bool bigjoiner) 535 { 536 u32 bits_per_pixel, max_bpp_small_joiner_ram; 537 int i; 538 539 /* 540 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 541 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 542 * for SST -> TimeSlotsPerMTP is 1, 543 * for MST -> TimeSlotsPerMTP has to be calculated 544 */ 545 bits_per_pixel = (link_clock * lane_count * 8) / 546 intel_dp_mode_to_fec_clock(mode_clock); 547 drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel); 548 549 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 550 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / 551 mode_hdisplay; 552 553 if (bigjoiner) 554 max_bpp_small_joiner_ram *= 2; 555 556 drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n", 557 max_bpp_small_joiner_ram); 558 559 /* 560 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 561 * check, output bpp from small joiner RAM check) 562 */ 563 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 564 565 if (bigjoiner) { 566 u32 max_bpp_bigjoiner = 567 i915->max_cdclk_freq * 48 / 568 intel_dp_mode_to_fec_clock(mode_clock); 569 570 DRM_DEBUG_KMS("Max big joiner bpp: %u\n", max_bpp_bigjoiner); 571 bits_per_pixel = min(bits_per_pixel, max_bpp_bigjoiner); 572 } 573 574 /* Error out if the max bpp is less than smallest allowed valid bpp */ 575 if (bits_per_pixel < valid_dsc_bpp[0]) { 576 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n", 577 bits_per_pixel, valid_dsc_bpp[0]); 578 return 0; 579 } 580 581 /* Find the nearest match in the array of known BPPs from VESA */ 582 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 583 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 584 break; 585 } 586 bits_per_pixel = valid_dsc_bpp[i]; 587 588 /* 589 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 590 * fractional part is 0 591 */ 592 return bits_per_pixel << 4; 593 } 594 595 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 596 int mode_clock, int mode_hdisplay, 597 bool bigjoiner) 598 { 599 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 600 u8 min_slice_count, i; 601 int max_slice_width; 602 603 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 604 min_slice_count = DIV_ROUND_UP(mode_clock, 605 DP_DSC_MAX_ENC_THROUGHPUT_0); 606 else 607 min_slice_count = DIV_ROUND_UP(mode_clock, 608 DP_DSC_MAX_ENC_THROUGHPUT_1); 609 610 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 611 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 612 drm_dbg_kms(&i915->drm, 613 "Unsupported slice width %d by DP DSC Sink device\n", 614 max_slice_width); 615 return 0; 616 } 617 /* Also take into account max slice width */ 618 min_slice_count = min_t(u8, min_slice_count, 619 DIV_ROUND_UP(mode_hdisplay, 620 max_slice_width)); 621 622 /* Find the closest match to the valid slice count values */ 623 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 624 u8 test_slice_count = valid_dsc_slicecount[i] << bigjoiner; 625 626 if (test_slice_count > 627 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, false)) 628 break; 629 630 /* big joiner needs small joiner to be enabled */ 631 if (bigjoiner && test_slice_count < 4) 632 continue; 633 634 if (min_slice_count <= test_slice_count) 635 return test_slice_count; 636 } 637 638 drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n", 639 min_slice_count); 640 return 0; 641 } 642 643 static enum intel_output_format 644 intel_dp_output_format(struct drm_connector *connector, 645 const struct drm_display_mode *mode) 646 { 647 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 648 const struct drm_display_info *info = &connector->display_info; 649 650 if (!connector->ycbcr_420_allowed || 651 !drm_mode_is_420_only(info, mode)) 652 return INTEL_OUTPUT_FORMAT_RGB; 653 654 if (intel_dp->dfp.ycbcr_444_to_420) 655 return INTEL_OUTPUT_FORMAT_YCBCR444; 656 else 657 return INTEL_OUTPUT_FORMAT_YCBCR420; 658 } 659 660 int intel_dp_min_bpp(enum intel_output_format output_format) 661 { 662 if (output_format == INTEL_OUTPUT_FORMAT_RGB) 663 return 6 * 3; 664 else 665 return 8 * 3; 666 } 667 668 static int intel_dp_output_bpp(enum intel_output_format output_format, int bpp) 669 { 670 /* 671 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 672 * format of the number of bytes per pixel will be half the number 673 * of bytes of RGB pixel. 674 */ 675 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 676 bpp /= 2; 677 678 return bpp; 679 } 680 681 static int 682 intel_dp_mode_min_output_bpp(struct drm_connector *connector, 683 const struct drm_display_mode *mode) 684 { 685 enum intel_output_format output_format = 686 intel_dp_output_format(connector, mode); 687 688 return intel_dp_output_bpp(output_format, intel_dp_min_bpp(output_format)); 689 } 690 691 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, 692 int hdisplay) 693 { 694 /* 695 * Older platforms don't like hdisplay==4096 with DP. 696 * 697 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline 698 * and frame counter increment), but we don't get vblank interrupts, 699 * and the pipe underruns immediately. The link also doesn't seem 700 * to get trained properly. 701 * 702 * On CHV the vblank interrupts don't seem to disappear but 703 * otherwise the symptoms are similar. 704 * 705 * TODO: confirm the behaviour on HSW+ 706 */ 707 return hdisplay == 4096 && !HAS_DDI(dev_priv); 708 } 709 710 static enum drm_mode_status 711 intel_dp_mode_valid_downstream(struct intel_connector *connector, 712 const struct drm_display_mode *mode, 713 int target_clock) 714 { 715 struct intel_dp *intel_dp = intel_attached_dp(connector); 716 const struct drm_display_info *info = &connector->base.display_info; 717 int tmds_clock; 718 719 if (intel_dp->dfp.max_dotclock && 720 target_clock > intel_dp->dfp.max_dotclock) 721 return MODE_CLOCK_HIGH; 722 723 /* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */ 724 tmds_clock = target_clock; 725 if (drm_mode_is_420_only(info, mode)) 726 tmds_clock /= 2; 727 728 if (intel_dp->dfp.min_tmds_clock && 729 tmds_clock < intel_dp->dfp.min_tmds_clock) 730 return MODE_CLOCK_LOW; 731 if (intel_dp->dfp.max_tmds_clock && 732 tmds_clock > intel_dp->dfp.max_tmds_clock) 733 return MODE_CLOCK_HIGH; 734 735 return MODE_OK; 736 } 737 738 static enum drm_mode_status 739 intel_dp_mode_valid(struct drm_connector *connector, 740 struct drm_display_mode *mode) 741 { 742 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 743 struct intel_connector *intel_connector = to_intel_connector(connector); 744 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 745 struct drm_i915_private *dev_priv = to_i915(connector->dev); 746 int target_clock = mode->clock; 747 int max_rate, mode_rate, max_lanes, max_link_clock; 748 int max_dotclk = dev_priv->max_dotclk_freq; 749 u16 dsc_max_output_bpp = 0; 750 u8 dsc_slice_count = 0; 751 enum drm_mode_status status; 752 bool dsc = false, bigjoiner = false; 753 754 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 755 return MODE_NO_DBLESCAN; 756 757 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 758 return MODE_H_ILLEGAL; 759 760 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 761 if (mode->hdisplay > fixed_mode->hdisplay) 762 return MODE_PANEL; 763 764 if (mode->vdisplay > fixed_mode->vdisplay) 765 return MODE_PANEL; 766 767 target_clock = fixed_mode->clock; 768 } 769 770 if (mode->clock < 10000) 771 return MODE_CLOCK_LOW; 772 773 if ((target_clock > max_dotclk || mode->hdisplay > 5120) && 774 intel_dp_can_bigjoiner(intel_dp)) { 775 bigjoiner = true; 776 max_dotclk *= 2; 777 } 778 if (target_clock > max_dotclk) 779 return MODE_CLOCK_HIGH; 780 781 max_link_clock = intel_dp_max_link_rate(intel_dp); 782 max_lanes = intel_dp_max_lane_count(intel_dp); 783 784 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 785 mode_rate = intel_dp_link_required(target_clock, 786 intel_dp_mode_min_output_bpp(connector, mode)); 787 788 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) 789 return MODE_H_ILLEGAL; 790 791 /* 792 * Output bpp is stored in 6.4 format so right shift by 4 to get the 793 * integer value since we support only integer values of bpp. 794 */ 795 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 796 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 797 if (intel_dp_is_edp(intel_dp)) { 798 dsc_max_output_bpp = 799 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 800 dsc_slice_count = 801 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 802 true); 803 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 804 dsc_max_output_bpp = 805 intel_dp_dsc_get_output_bpp(dev_priv, 806 max_link_clock, 807 max_lanes, 808 target_clock, 809 mode->hdisplay, 810 bigjoiner) >> 4; 811 dsc_slice_count = 812 intel_dp_dsc_get_slice_count(intel_dp, 813 target_clock, 814 mode->hdisplay, 815 bigjoiner); 816 } 817 818 dsc = dsc_max_output_bpp && dsc_slice_count; 819 } 820 821 /* big joiner configuration needs DSC */ 822 if (bigjoiner && !dsc) 823 return MODE_CLOCK_HIGH; 824 825 if (mode_rate > max_rate && !dsc) 826 return MODE_CLOCK_HIGH; 827 828 status = intel_dp_mode_valid_downstream(intel_connector, 829 mode, target_clock); 830 if (status != MODE_OK) 831 return status; 832 833 return intel_mode_valid_max_plane_size(dev_priv, mode, bigjoiner); 834 } 835 836 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 837 { 838 int i; 839 u32 v = 0; 840 841 if (src_bytes > 4) 842 src_bytes = 4; 843 for (i = 0; i < src_bytes; i++) 844 v |= ((u32)src[i]) << ((3 - i) * 8); 845 return v; 846 } 847 848 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 849 { 850 int i; 851 if (dst_bytes > 4) 852 dst_bytes = 4; 853 for (i = 0; i < dst_bytes; i++) 854 dst[i] = src >> ((3-i) * 8); 855 } 856 857 static void 858 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 859 static void 860 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 861 bool force_disable_vdd); 862 static void 863 intel_dp_pps_init(struct intel_dp *intel_dp); 864 865 static intel_wakeref_t 866 pps_lock(struct intel_dp *intel_dp) 867 { 868 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 869 intel_wakeref_t wakeref; 870 871 /* 872 * See intel_power_sequencer_reset() why we need 873 * a power domain reference here. 874 */ 875 wakeref = intel_display_power_get(dev_priv, 876 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 877 878 mutex_lock(&dev_priv->pps_mutex); 879 880 return wakeref; 881 } 882 883 static intel_wakeref_t 884 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 885 { 886 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 887 888 mutex_unlock(&dev_priv->pps_mutex); 889 intel_display_power_put(dev_priv, 890 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 891 wakeref); 892 return 0; 893 } 894 895 #define with_pps_lock(dp, wf) \ 896 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 897 898 static void 899 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 900 { 901 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 902 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 903 enum pipe pipe = intel_dp->pps_pipe; 904 bool pll_enabled, release_cl_override = false; 905 enum dpio_phy phy = DPIO_PHY(pipe); 906 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 907 u32 DP; 908 909 if (drm_WARN(&dev_priv->drm, 910 intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN, 911 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n", 912 pipe_name(pipe), dig_port->base.base.base.id, 913 dig_port->base.base.name)) 914 return; 915 916 drm_dbg_kms(&dev_priv->drm, 917 "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n", 918 pipe_name(pipe), dig_port->base.base.base.id, 919 dig_port->base.base.name); 920 921 /* Preserve the BIOS-computed detected bit. This is 922 * supposed to be read-only. 923 */ 924 DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; 925 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 926 DP |= DP_PORT_WIDTH(1); 927 DP |= DP_LINK_TRAIN_PAT_1; 928 929 if (IS_CHERRYVIEW(dev_priv)) 930 DP |= DP_PIPE_SEL_CHV(pipe); 931 else 932 DP |= DP_PIPE_SEL(pipe); 933 934 pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE; 935 936 /* 937 * The DPLL for the pipe must be enabled for this to work. 938 * So enable temporarily it if it's not already enabled. 939 */ 940 if (!pll_enabled) { 941 release_cl_override = IS_CHERRYVIEW(dev_priv) && 942 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 943 944 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 945 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 946 drm_err(&dev_priv->drm, 947 "Failed to force on pll for pipe %c!\n", 948 pipe_name(pipe)); 949 return; 950 } 951 } 952 953 /* 954 * Similar magic as in intel_dp_enable_port(). 955 * We _must_ do this port enable + disable trick 956 * to make this power sequencer lock onto the port. 957 * Otherwise even VDD force bit won't work. 958 */ 959 intel_de_write(dev_priv, intel_dp->output_reg, DP); 960 intel_de_posting_read(dev_priv, intel_dp->output_reg); 961 962 intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN); 963 intel_de_posting_read(dev_priv, intel_dp->output_reg); 964 965 intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN); 966 intel_de_posting_read(dev_priv, intel_dp->output_reg); 967 968 if (!pll_enabled) { 969 vlv_force_pll_off(dev_priv, pipe); 970 971 if (release_cl_override) 972 chv_phy_powergate_ch(dev_priv, phy, ch, false); 973 } 974 } 975 976 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 977 { 978 struct intel_encoder *encoder; 979 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 980 981 /* 982 * We don't have power sequencer currently. 983 * Pick one that's not used by other ports. 984 */ 985 for_each_intel_dp(&dev_priv->drm, encoder) { 986 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 987 988 if (encoder->type == INTEL_OUTPUT_EDP) { 989 drm_WARN_ON(&dev_priv->drm, 990 intel_dp->active_pipe != INVALID_PIPE && 991 intel_dp->active_pipe != 992 intel_dp->pps_pipe); 993 994 if (intel_dp->pps_pipe != INVALID_PIPE) 995 pipes &= ~(1 << intel_dp->pps_pipe); 996 } else { 997 drm_WARN_ON(&dev_priv->drm, 998 intel_dp->pps_pipe != INVALID_PIPE); 999 1000 if (intel_dp->active_pipe != INVALID_PIPE) 1001 pipes &= ~(1 << intel_dp->active_pipe); 1002 } 1003 } 1004 1005 if (pipes == 0) 1006 return INVALID_PIPE; 1007 1008 return ffs(pipes) - 1; 1009 } 1010 1011 static enum pipe 1012 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 1013 { 1014 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1015 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1016 enum pipe pipe; 1017 1018 lockdep_assert_held(&dev_priv->pps_mutex); 1019 1020 /* We should never land here with regular DP ports */ 1021 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); 1022 1023 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE && 1024 intel_dp->active_pipe != intel_dp->pps_pipe); 1025 1026 if (intel_dp->pps_pipe != INVALID_PIPE) 1027 return intel_dp->pps_pipe; 1028 1029 pipe = vlv_find_free_pps(dev_priv); 1030 1031 /* 1032 * Didn't find one. This should not happen since there 1033 * are two power sequencers and up to two eDP ports. 1034 */ 1035 if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE)) 1036 pipe = PIPE_A; 1037 1038 vlv_steal_power_sequencer(dev_priv, pipe); 1039 intel_dp->pps_pipe = pipe; 1040 1041 drm_dbg_kms(&dev_priv->drm, 1042 "picked pipe %c power sequencer for [ENCODER:%d:%s]\n", 1043 pipe_name(intel_dp->pps_pipe), 1044 dig_port->base.base.base.id, 1045 dig_port->base.base.name); 1046 1047 /* init power sequencer on this pipe and port */ 1048 intel_dp_init_panel_power_sequencer(intel_dp); 1049 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 1050 1051 /* 1052 * Even vdd force doesn't work until we've made 1053 * the power sequencer lock in on the port. 1054 */ 1055 vlv_power_sequencer_kick(intel_dp); 1056 1057 return intel_dp->pps_pipe; 1058 } 1059 1060 static int 1061 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 1062 { 1063 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1064 int backlight_controller = dev_priv->vbt.backlight.controller; 1065 1066 lockdep_assert_held(&dev_priv->pps_mutex); 1067 1068 /* We should never land here with regular DP ports */ 1069 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); 1070 1071 if (!intel_dp->pps_reset) 1072 return backlight_controller; 1073 1074 intel_dp->pps_reset = false; 1075 1076 /* 1077 * Only the HW needs to be reprogrammed, the SW state is fixed and 1078 * has been setup during connector init. 1079 */ 1080 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 1081 1082 return backlight_controller; 1083 } 1084 1085 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 1086 enum pipe pipe); 1087 1088 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 1089 enum pipe pipe) 1090 { 1091 return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON; 1092 } 1093 1094 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 1095 enum pipe pipe) 1096 { 1097 return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD; 1098 } 1099 1100 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 1101 enum pipe pipe) 1102 { 1103 return true; 1104 } 1105 1106 static enum pipe 1107 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 1108 enum port port, 1109 vlv_pipe_check pipe_check) 1110 { 1111 enum pipe pipe; 1112 1113 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 1114 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) & 1115 PANEL_PORT_SELECT_MASK; 1116 1117 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 1118 continue; 1119 1120 if (!pipe_check(dev_priv, pipe)) 1121 continue; 1122 1123 return pipe; 1124 } 1125 1126 return INVALID_PIPE; 1127 } 1128 1129 static void 1130 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 1131 { 1132 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1133 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1134 enum port port = dig_port->base.port; 1135 1136 lockdep_assert_held(&dev_priv->pps_mutex); 1137 1138 /* try to find a pipe with this port selected */ 1139 /* first pick one where the panel is on */ 1140 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1141 vlv_pipe_has_pp_on); 1142 /* didn't find one? pick one where vdd is on */ 1143 if (intel_dp->pps_pipe == INVALID_PIPE) 1144 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1145 vlv_pipe_has_vdd_on); 1146 /* didn't find one? pick one with just the correct port */ 1147 if (intel_dp->pps_pipe == INVALID_PIPE) 1148 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1149 vlv_pipe_any); 1150 1151 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 1152 if (intel_dp->pps_pipe == INVALID_PIPE) { 1153 drm_dbg_kms(&dev_priv->drm, 1154 "no initial power sequencer for [ENCODER:%d:%s]\n", 1155 dig_port->base.base.base.id, 1156 dig_port->base.base.name); 1157 return; 1158 } 1159 1160 drm_dbg_kms(&dev_priv->drm, 1161 "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n", 1162 dig_port->base.base.base.id, 1163 dig_port->base.base.name, 1164 pipe_name(intel_dp->pps_pipe)); 1165 1166 intel_dp_init_panel_power_sequencer(intel_dp); 1167 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 1168 } 1169 1170 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 1171 { 1172 struct intel_encoder *encoder; 1173 1174 if (drm_WARN_ON(&dev_priv->drm, 1175 !(IS_VALLEYVIEW(dev_priv) || 1176 IS_CHERRYVIEW(dev_priv) || 1177 IS_GEN9_LP(dev_priv)))) 1178 return; 1179 1180 /* 1181 * We can't grab pps_mutex here due to deadlock with power_domain 1182 * mutex when power_domain functions are called while holding pps_mutex. 1183 * That also means that in order to use pps_pipe the code needs to 1184 * hold both a power domain reference and pps_mutex, and the power domain 1185 * reference get/put must be done while _not_ holding pps_mutex. 1186 * pps_{lock,unlock}() do these steps in the correct order, so one 1187 * should use them always. 1188 */ 1189 1190 for_each_intel_dp(&dev_priv->drm, encoder) { 1191 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1192 1193 drm_WARN_ON(&dev_priv->drm, 1194 intel_dp->active_pipe != INVALID_PIPE); 1195 1196 if (encoder->type != INTEL_OUTPUT_EDP) 1197 continue; 1198 1199 if (IS_GEN9_LP(dev_priv)) 1200 intel_dp->pps_reset = true; 1201 else 1202 intel_dp->pps_pipe = INVALID_PIPE; 1203 } 1204 } 1205 1206 struct pps_registers { 1207 i915_reg_t pp_ctrl; 1208 i915_reg_t pp_stat; 1209 i915_reg_t pp_on; 1210 i915_reg_t pp_off; 1211 i915_reg_t pp_div; 1212 }; 1213 1214 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1215 struct pps_registers *regs) 1216 { 1217 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1218 int pps_idx = 0; 1219 1220 memset(regs, 0, sizeof(*regs)); 1221 1222 if (IS_GEN9_LP(dev_priv)) 1223 pps_idx = bxt_power_sequencer_idx(intel_dp); 1224 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1225 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1226 1227 regs->pp_ctrl = PP_CONTROL(pps_idx); 1228 regs->pp_stat = PP_STATUS(pps_idx); 1229 regs->pp_on = PP_ON_DELAYS(pps_idx); 1230 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1231 1232 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1233 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1234 regs->pp_div = INVALID_MMIO_REG; 1235 else 1236 regs->pp_div = PP_DIVISOR(pps_idx); 1237 } 1238 1239 static i915_reg_t 1240 _pp_ctrl_reg(struct intel_dp *intel_dp) 1241 { 1242 struct pps_registers regs; 1243 1244 intel_pps_get_registers(intel_dp, ®s); 1245 1246 return regs.pp_ctrl; 1247 } 1248 1249 static i915_reg_t 1250 _pp_stat_reg(struct intel_dp *intel_dp) 1251 { 1252 struct pps_registers regs; 1253 1254 intel_pps_get_registers(intel_dp, ®s); 1255 1256 return regs.pp_stat; 1257 } 1258 1259 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1260 { 1261 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1262 1263 lockdep_assert_held(&dev_priv->pps_mutex); 1264 1265 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1266 intel_dp->pps_pipe == INVALID_PIPE) 1267 return false; 1268 1269 return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0; 1270 } 1271 1272 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1273 { 1274 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1275 1276 lockdep_assert_held(&dev_priv->pps_mutex); 1277 1278 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1279 intel_dp->pps_pipe == INVALID_PIPE) 1280 return false; 1281 1282 return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1283 } 1284 1285 static void 1286 intel_dp_check_edp(struct intel_dp *intel_dp) 1287 { 1288 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1289 1290 if (!intel_dp_is_edp(intel_dp)) 1291 return; 1292 1293 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1294 drm_WARN(&dev_priv->drm, 1, 1295 "eDP powered off while attempting aux channel communication.\n"); 1296 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n", 1297 intel_de_read(dev_priv, _pp_stat_reg(intel_dp)), 1298 intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp))); 1299 } 1300 } 1301 1302 static u32 1303 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1304 { 1305 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1306 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1307 const unsigned int timeout_ms = 10; 1308 u32 status; 1309 bool done; 1310 1311 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1312 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1313 msecs_to_jiffies_timeout(timeout_ms)); 1314 1315 /* just trace the final value */ 1316 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1317 1318 if (!done) 1319 drm_err(&i915->drm, 1320 "%s: did not complete or timeout within %ums (status 0x%08x)\n", 1321 intel_dp->aux.name, timeout_ms, status); 1322 #undef C 1323 1324 return status; 1325 } 1326 1327 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1328 { 1329 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1330 1331 if (index) 1332 return 0; 1333 1334 /* 1335 * The clock divider is based off the hrawclk, and would like to run at 1336 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1337 */ 1338 return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000); 1339 } 1340 1341 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1342 { 1343 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1344 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1345 u32 freq; 1346 1347 if (index) 1348 return 0; 1349 1350 /* 1351 * The clock divider is based off the cdclk or PCH rawclk, and would 1352 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1353 * divide by 2000 and use that 1354 */ 1355 if (dig_port->aux_ch == AUX_CH_A) 1356 freq = dev_priv->cdclk.hw.cdclk; 1357 else 1358 freq = RUNTIME_INFO(dev_priv)->rawclk_freq; 1359 return DIV_ROUND_CLOSEST(freq, 2000); 1360 } 1361 1362 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1363 { 1364 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1365 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1366 1367 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1368 /* Workaround for non-ULT HSW */ 1369 switch (index) { 1370 case 0: return 63; 1371 case 1: return 72; 1372 default: return 0; 1373 } 1374 } 1375 1376 return ilk_get_aux_clock_divider(intel_dp, index); 1377 } 1378 1379 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1380 { 1381 /* 1382 * SKL doesn't need us to program the AUX clock divider (Hardware will 1383 * derive the clock from CDCLK automatically). We still implement the 1384 * get_aux_clock_divider vfunc to plug-in into the existing code. 1385 */ 1386 return index ? 0 : 1; 1387 } 1388 1389 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1390 int send_bytes, 1391 u32 aux_clock_divider) 1392 { 1393 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1394 struct drm_i915_private *dev_priv = 1395 to_i915(dig_port->base.base.dev); 1396 u32 precharge, timeout; 1397 1398 if (IS_GEN(dev_priv, 6)) 1399 precharge = 3; 1400 else 1401 precharge = 5; 1402 1403 if (IS_BROADWELL(dev_priv)) 1404 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1405 else 1406 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1407 1408 return DP_AUX_CH_CTL_SEND_BUSY | 1409 DP_AUX_CH_CTL_DONE | 1410 DP_AUX_CH_CTL_INTERRUPT | 1411 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1412 timeout | 1413 DP_AUX_CH_CTL_RECEIVE_ERROR | 1414 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1415 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1416 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1417 } 1418 1419 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1420 int send_bytes, 1421 u32 unused) 1422 { 1423 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1424 struct drm_i915_private *i915 = 1425 to_i915(dig_port->base.base.dev); 1426 enum phy phy = intel_port_to_phy(i915, dig_port->base.port); 1427 u32 ret; 1428 1429 ret = DP_AUX_CH_CTL_SEND_BUSY | 1430 DP_AUX_CH_CTL_DONE | 1431 DP_AUX_CH_CTL_INTERRUPT | 1432 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1433 DP_AUX_CH_CTL_TIME_OUT_MAX | 1434 DP_AUX_CH_CTL_RECEIVE_ERROR | 1435 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1436 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1437 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1438 1439 if (intel_phy_is_tc(i915, phy) && 1440 dig_port->tc_mode == TC_PORT_TBT_ALT) 1441 ret |= DP_AUX_CH_CTL_TBT_IO; 1442 1443 return ret; 1444 } 1445 1446 static int 1447 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1448 const u8 *send, int send_bytes, 1449 u8 *recv, int recv_size, 1450 u32 aux_send_ctl_flags) 1451 { 1452 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1453 struct drm_i915_private *i915 = 1454 to_i915(dig_port->base.base.dev); 1455 struct intel_uncore *uncore = &i915->uncore; 1456 enum phy phy = intel_port_to_phy(i915, dig_port->base.port); 1457 bool is_tc_port = intel_phy_is_tc(i915, phy); 1458 i915_reg_t ch_ctl, ch_data[5]; 1459 u32 aux_clock_divider; 1460 enum intel_display_power_domain aux_domain; 1461 intel_wakeref_t aux_wakeref; 1462 intel_wakeref_t pps_wakeref; 1463 int i, ret, recv_bytes; 1464 int try, clock = 0; 1465 u32 status; 1466 bool vdd; 1467 1468 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1469 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1470 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1471 1472 if (is_tc_port) 1473 intel_tc_port_lock(dig_port); 1474 1475 aux_domain = intel_aux_power_domain(dig_port); 1476 1477 aux_wakeref = intel_display_power_get(i915, aux_domain); 1478 pps_wakeref = pps_lock(intel_dp); 1479 1480 /* 1481 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1482 * In such cases we want to leave VDD enabled and it's up to upper layers 1483 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1484 * ourselves. 1485 */ 1486 vdd = edp_panel_vdd_on(intel_dp); 1487 1488 /* dp aux is extremely sensitive to irq latency, hence request the 1489 * lowest possible wakeup latency and so prevent the cpu from going into 1490 * deep sleep states. 1491 */ 1492 cpu_latency_qos_update_request(&i915->pm_qos, 0); 1493 1494 intel_dp_check_edp(intel_dp); 1495 1496 /* Try to wait for any previous AUX channel activity */ 1497 for (try = 0; try < 3; try++) { 1498 status = intel_uncore_read_notrace(uncore, ch_ctl); 1499 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1500 break; 1501 msleep(1); 1502 } 1503 /* just trace the final value */ 1504 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1505 1506 if (try == 3) { 1507 const u32 status = intel_uncore_read(uncore, ch_ctl); 1508 1509 if (status != intel_dp->aux_busy_last_status) { 1510 drm_WARN(&i915->drm, 1, 1511 "%s: not started (status 0x%08x)\n", 1512 intel_dp->aux.name, status); 1513 intel_dp->aux_busy_last_status = status; 1514 } 1515 1516 ret = -EBUSY; 1517 goto out; 1518 } 1519 1520 /* Only 5 data registers! */ 1521 if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) { 1522 ret = -E2BIG; 1523 goto out; 1524 } 1525 1526 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1527 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1528 send_bytes, 1529 aux_clock_divider); 1530 1531 send_ctl |= aux_send_ctl_flags; 1532 1533 /* Must try at least 3 times according to DP spec */ 1534 for (try = 0; try < 5; try++) { 1535 /* Load the send data into the aux channel data registers */ 1536 for (i = 0; i < send_bytes; i += 4) 1537 intel_uncore_write(uncore, 1538 ch_data[i >> 2], 1539 intel_dp_pack_aux(send + i, 1540 send_bytes - i)); 1541 1542 /* Send the command and wait for it to complete */ 1543 intel_uncore_write(uncore, ch_ctl, send_ctl); 1544 1545 status = intel_dp_aux_wait_done(intel_dp); 1546 1547 /* Clear done status and any errors */ 1548 intel_uncore_write(uncore, 1549 ch_ctl, 1550 status | 1551 DP_AUX_CH_CTL_DONE | 1552 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1553 DP_AUX_CH_CTL_RECEIVE_ERROR); 1554 1555 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1556 * 400us delay required for errors and timeouts 1557 * Timeout errors from the HW already meet this 1558 * requirement so skip to next iteration 1559 */ 1560 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1561 continue; 1562 1563 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1564 usleep_range(400, 500); 1565 continue; 1566 } 1567 if (status & DP_AUX_CH_CTL_DONE) 1568 goto done; 1569 } 1570 } 1571 1572 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1573 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n", 1574 intel_dp->aux.name, status); 1575 ret = -EBUSY; 1576 goto out; 1577 } 1578 1579 done: 1580 /* Check for timeout or receive error. 1581 * Timeouts occur when the sink is not connected 1582 */ 1583 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1584 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n", 1585 intel_dp->aux.name, status); 1586 ret = -EIO; 1587 goto out; 1588 } 1589 1590 /* Timeouts occur when the device isn't connected, so they're 1591 * "normal" -- don't fill the kernel log with these */ 1592 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1593 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n", 1594 intel_dp->aux.name, status); 1595 ret = -ETIMEDOUT; 1596 goto out; 1597 } 1598 1599 /* Unload any bytes sent back from the other side */ 1600 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1601 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1602 1603 /* 1604 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1605 * We have no idea of what happened so we return -EBUSY so 1606 * drm layer takes care for the necessary retries. 1607 */ 1608 if (recv_bytes == 0 || recv_bytes > 20) { 1609 drm_dbg_kms(&i915->drm, 1610 "%s: Forbidden recv_bytes = %d on aux transaction\n", 1611 intel_dp->aux.name, recv_bytes); 1612 ret = -EBUSY; 1613 goto out; 1614 } 1615 1616 if (recv_bytes > recv_size) 1617 recv_bytes = recv_size; 1618 1619 for (i = 0; i < recv_bytes; i += 4) 1620 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1621 recv + i, recv_bytes - i); 1622 1623 ret = recv_bytes; 1624 out: 1625 cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1626 1627 if (vdd) 1628 edp_panel_vdd_off(intel_dp, false); 1629 1630 pps_unlock(intel_dp, pps_wakeref); 1631 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1632 1633 if (is_tc_port) 1634 intel_tc_port_unlock(dig_port); 1635 1636 return ret; 1637 } 1638 1639 #define BARE_ADDRESS_SIZE 3 1640 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1641 1642 static void 1643 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1644 const struct drm_dp_aux_msg *msg) 1645 { 1646 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1647 txbuf[1] = (msg->address >> 8) & 0xff; 1648 txbuf[2] = msg->address & 0xff; 1649 txbuf[3] = msg->size - 1; 1650 } 1651 1652 static u32 intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg *msg) 1653 { 1654 /* 1655 * If we're trying to send the HDCP Aksv, we need to set a the Aksv 1656 * select bit to inform the hardware to send the Aksv after our header 1657 * since we can't access that data from software. 1658 */ 1659 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE && 1660 msg->address == DP_AUX_HDCP_AKSV) 1661 return DP_AUX_CH_CTL_AUX_AKSV_SELECT; 1662 1663 return 0; 1664 } 1665 1666 static ssize_t 1667 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1668 { 1669 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1670 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1671 u8 txbuf[20], rxbuf[20]; 1672 size_t txsize, rxsize; 1673 u32 flags = intel_dp_aux_xfer_flags(msg); 1674 int ret; 1675 1676 intel_dp_aux_header(txbuf, msg); 1677 1678 switch (msg->request & ~DP_AUX_I2C_MOT) { 1679 case DP_AUX_NATIVE_WRITE: 1680 case DP_AUX_I2C_WRITE: 1681 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1682 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1683 rxsize = 2; /* 0 or 1 data bytes */ 1684 1685 if (drm_WARN_ON(&i915->drm, txsize > 20)) 1686 return -E2BIG; 1687 1688 drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size); 1689 1690 if (msg->buffer) 1691 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1692 1693 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1694 rxbuf, rxsize, flags); 1695 if (ret > 0) { 1696 msg->reply = rxbuf[0] >> 4; 1697 1698 if (ret > 1) { 1699 /* Number of bytes written in a short write. */ 1700 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1701 } else { 1702 /* Return payload size. */ 1703 ret = msg->size; 1704 } 1705 } 1706 break; 1707 1708 case DP_AUX_NATIVE_READ: 1709 case DP_AUX_I2C_READ: 1710 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1711 rxsize = msg->size + 1; 1712 1713 if (drm_WARN_ON(&i915->drm, rxsize > 20)) 1714 return -E2BIG; 1715 1716 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1717 rxbuf, rxsize, flags); 1718 if (ret > 0) { 1719 msg->reply = rxbuf[0] >> 4; 1720 /* 1721 * Assume happy day, and copy the data. The caller is 1722 * expected to check msg->reply before touching it. 1723 * 1724 * Return payload size. 1725 */ 1726 ret--; 1727 memcpy(msg->buffer, rxbuf + 1, ret); 1728 } 1729 break; 1730 1731 default: 1732 ret = -EINVAL; 1733 break; 1734 } 1735 1736 return ret; 1737 } 1738 1739 1740 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1741 { 1742 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1743 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1744 enum aux_ch aux_ch = dig_port->aux_ch; 1745 1746 switch (aux_ch) { 1747 case AUX_CH_B: 1748 case AUX_CH_C: 1749 case AUX_CH_D: 1750 return DP_AUX_CH_CTL(aux_ch); 1751 default: 1752 MISSING_CASE(aux_ch); 1753 return DP_AUX_CH_CTL(AUX_CH_B); 1754 } 1755 } 1756 1757 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1758 { 1759 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1760 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1761 enum aux_ch aux_ch = dig_port->aux_ch; 1762 1763 switch (aux_ch) { 1764 case AUX_CH_B: 1765 case AUX_CH_C: 1766 case AUX_CH_D: 1767 return DP_AUX_CH_DATA(aux_ch, index); 1768 default: 1769 MISSING_CASE(aux_ch); 1770 return DP_AUX_CH_DATA(AUX_CH_B, index); 1771 } 1772 } 1773 1774 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1775 { 1776 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1777 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1778 enum aux_ch aux_ch = dig_port->aux_ch; 1779 1780 switch (aux_ch) { 1781 case AUX_CH_A: 1782 return DP_AUX_CH_CTL(aux_ch); 1783 case AUX_CH_B: 1784 case AUX_CH_C: 1785 case AUX_CH_D: 1786 return PCH_DP_AUX_CH_CTL(aux_ch); 1787 default: 1788 MISSING_CASE(aux_ch); 1789 return DP_AUX_CH_CTL(AUX_CH_A); 1790 } 1791 } 1792 1793 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1794 { 1795 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1796 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1797 enum aux_ch aux_ch = dig_port->aux_ch; 1798 1799 switch (aux_ch) { 1800 case AUX_CH_A: 1801 return DP_AUX_CH_DATA(aux_ch, index); 1802 case AUX_CH_B: 1803 case AUX_CH_C: 1804 case AUX_CH_D: 1805 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1806 default: 1807 MISSING_CASE(aux_ch); 1808 return DP_AUX_CH_DATA(AUX_CH_A, index); 1809 } 1810 } 1811 1812 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1813 { 1814 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1815 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1816 enum aux_ch aux_ch = dig_port->aux_ch; 1817 1818 switch (aux_ch) { 1819 case AUX_CH_A: 1820 case AUX_CH_B: 1821 case AUX_CH_C: 1822 case AUX_CH_D: 1823 case AUX_CH_E: 1824 case AUX_CH_F: 1825 return DP_AUX_CH_CTL(aux_ch); 1826 default: 1827 MISSING_CASE(aux_ch); 1828 return DP_AUX_CH_CTL(AUX_CH_A); 1829 } 1830 } 1831 1832 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1833 { 1834 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1835 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1836 enum aux_ch aux_ch = dig_port->aux_ch; 1837 1838 switch (aux_ch) { 1839 case AUX_CH_A: 1840 case AUX_CH_B: 1841 case AUX_CH_C: 1842 case AUX_CH_D: 1843 case AUX_CH_E: 1844 case AUX_CH_F: 1845 return DP_AUX_CH_DATA(aux_ch, index); 1846 default: 1847 MISSING_CASE(aux_ch); 1848 return DP_AUX_CH_DATA(AUX_CH_A, index); 1849 } 1850 } 1851 1852 static i915_reg_t tgl_aux_ctl_reg(struct intel_dp *intel_dp) 1853 { 1854 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1855 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1856 enum aux_ch aux_ch = dig_port->aux_ch; 1857 1858 switch (aux_ch) { 1859 case AUX_CH_A: 1860 case AUX_CH_B: 1861 case AUX_CH_C: 1862 case AUX_CH_USBC1: 1863 case AUX_CH_USBC2: 1864 case AUX_CH_USBC3: 1865 case AUX_CH_USBC4: 1866 case AUX_CH_USBC5: 1867 case AUX_CH_USBC6: 1868 return DP_AUX_CH_CTL(aux_ch); 1869 default: 1870 MISSING_CASE(aux_ch); 1871 return DP_AUX_CH_CTL(AUX_CH_A); 1872 } 1873 } 1874 1875 static i915_reg_t tgl_aux_data_reg(struct intel_dp *intel_dp, int index) 1876 { 1877 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1878 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1879 enum aux_ch aux_ch = dig_port->aux_ch; 1880 1881 switch (aux_ch) { 1882 case AUX_CH_A: 1883 case AUX_CH_B: 1884 case AUX_CH_C: 1885 case AUX_CH_USBC1: 1886 case AUX_CH_USBC2: 1887 case AUX_CH_USBC3: 1888 case AUX_CH_USBC4: 1889 case AUX_CH_USBC5: 1890 case AUX_CH_USBC6: 1891 return DP_AUX_CH_DATA(aux_ch, index); 1892 default: 1893 MISSING_CASE(aux_ch); 1894 return DP_AUX_CH_DATA(AUX_CH_A, index); 1895 } 1896 } 1897 1898 static void 1899 intel_dp_aux_fini(struct intel_dp *intel_dp) 1900 { 1901 kfree(intel_dp->aux.name); 1902 } 1903 1904 static void 1905 intel_dp_aux_init(struct intel_dp *intel_dp) 1906 { 1907 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1908 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1909 struct intel_encoder *encoder = &dig_port->base; 1910 enum aux_ch aux_ch = dig_port->aux_ch; 1911 1912 if (INTEL_GEN(dev_priv) >= 12) { 1913 intel_dp->aux_ch_ctl_reg = tgl_aux_ctl_reg; 1914 intel_dp->aux_ch_data_reg = tgl_aux_data_reg; 1915 } else if (INTEL_GEN(dev_priv) >= 9) { 1916 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1917 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1918 } else if (HAS_PCH_SPLIT(dev_priv)) { 1919 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1920 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1921 } else { 1922 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1923 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1924 } 1925 1926 if (INTEL_GEN(dev_priv) >= 9) 1927 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1928 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1929 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1930 else if (HAS_PCH_SPLIT(dev_priv)) 1931 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1932 else 1933 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1934 1935 if (INTEL_GEN(dev_priv) >= 9) 1936 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1937 else 1938 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1939 1940 drm_dp_aux_init(&intel_dp->aux); 1941 1942 /* Failure to allocate our preferred name is not critical */ 1943 if (INTEL_GEN(dev_priv) >= 12 && aux_ch >= AUX_CH_USBC1) 1944 intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX USBC%c/%s", 1945 aux_ch - AUX_CH_USBC1 + '1', 1946 encoder->base.name); 1947 else 1948 intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/%s", 1949 aux_ch_name(aux_ch), 1950 encoder->base.name); 1951 1952 intel_dp->aux.transfer = intel_dp_aux_transfer; 1953 } 1954 1955 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1956 { 1957 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1958 1959 return max_rate >= 540000; 1960 } 1961 1962 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1963 { 1964 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1965 1966 return max_rate >= 810000; 1967 } 1968 1969 static void 1970 intel_dp_set_clock(struct intel_encoder *encoder, 1971 struct intel_crtc_state *pipe_config) 1972 { 1973 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1974 const struct dp_link_dpll *divisor = NULL; 1975 int i, count = 0; 1976 1977 if (IS_G4X(dev_priv)) { 1978 divisor = g4x_dpll; 1979 count = ARRAY_SIZE(g4x_dpll); 1980 } else if (HAS_PCH_SPLIT(dev_priv)) { 1981 divisor = pch_dpll; 1982 count = ARRAY_SIZE(pch_dpll); 1983 } else if (IS_CHERRYVIEW(dev_priv)) { 1984 divisor = chv_dpll; 1985 count = ARRAY_SIZE(chv_dpll); 1986 } else if (IS_VALLEYVIEW(dev_priv)) { 1987 divisor = vlv_dpll; 1988 count = ARRAY_SIZE(vlv_dpll); 1989 } 1990 1991 if (divisor && count) { 1992 for (i = 0; i < count; i++) { 1993 if (pipe_config->port_clock == divisor[i].clock) { 1994 pipe_config->dpll = divisor[i].dpll; 1995 pipe_config->clock_set = true; 1996 break; 1997 } 1998 } 1999 } 2000 } 2001 2002 static void snprintf_int_array(char *str, size_t len, 2003 const int *array, int nelem) 2004 { 2005 int i; 2006 2007 str[0] = '\0'; 2008 2009 for (i = 0; i < nelem; i++) { 2010 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 2011 if (r >= len) 2012 return; 2013 str += r; 2014 len -= r; 2015 } 2016 } 2017 2018 static void intel_dp_print_rates(struct intel_dp *intel_dp) 2019 { 2020 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2021 char str[128]; /* FIXME: too big for stack? */ 2022 2023 if (!drm_debug_enabled(DRM_UT_KMS)) 2024 return; 2025 2026 snprintf_int_array(str, sizeof(str), 2027 intel_dp->source_rates, intel_dp->num_source_rates); 2028 drm_dbg_kms(&i915->drm, "source rates: %s\n", str); 2029 2030 snprintf_int_array(str, sizeof(str), 2031 intel_dp->sink_rates, intel_dp->num_sink_rates); 2032 drm_dbg_kms(&i915->drm, "sink rates: %s\n", str); 2033 2034 snprintf_int_array(str, sizeof(str), 2035 intel_dp->common_rates, intel_dp->num_common_rates); 2036 drm_dbg_kms(&i915->drm, "common rates: %s\n", str); 2037 } 2038 2039 int 2040 intel_dp_max_link_rate(struct intel_dp *intel_dp) 2041 { 2042 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2043 int len; 2044 2045 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 2046 if (drm_WARN_ON(&i915->drm, len <= 0)) 2047 return 162000; 2048 2049 return intel_dp->common_rates[len - 1]; 2050 } 2051 2052 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 2053 { 2054 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2055 int i = intel_dp_rate_index(intel_dp->sink_rates, 2056 intel_dp->num_sink_rates, rate); 2057 2058 if (drm_WARN_ON(&i915->drm, i < 0)) 2059 i = 0; 2060 2061 return i; 2062 } 2063 2064 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 2065 u8 *link_bw, u8 *rate_select) 2066 { 2067 /* eDP 1.4 rate select method. */ 2068 if (intel_dp->use_rate_select) { 2069 *link_bw = 0; 2070 *rate_select = 2071 intel_dp_rate_select(intel_dp, port_clock); 2072 } else { 2073 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 2074 *rate_select = 0; 2075 } 2076 } 2077 2078 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 2079 const struct intel_crtc_state *pipe_config) 2080 { 2081 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2082 2083 /* On TGL, FEC is supported on all Pipes */ 2084 if (INTEL_GEN(dev_priv) >= 12) 2085 return true; 2086 2087 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A) 2088 return true; 2089 2090 return false; 2091 } 2092 2093 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 2094 const struct intel_crtc_state *pipe_config) 2095 { 2096 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 2097 drm_dp_sink_supports_fec(intel_dp->fec_capable); 2098 } 2099 2100 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 2101 const struct intel_crtc_state *crtc_state) 2102 { 2103 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP) && !crtc_state->fec_enable) 2104 return false; 2105 2106 return intel_dsc_source_support(crtc_state) && 2107 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 2108 } 2109 2110 static bool intel_dp_hdmi_ycbcr420(struct intel_dp *intel_dp, 2111 const struct intel_crtc_state *crtc_state) 2112 { 2113 return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 2114 (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 && 2115 intel_dp->dfp.ycbcr_444_to_420); 2116 } 2117 2118 static int intel_dp_hdmi_tmds_clock(struct intel_dp *intel_dp, 2119 const struct intel_crtc_state *crtc_state, int bpc) 2120 { 2121 int clock = crtc_state->hw.adjusted_mode.crtc_clock * bpc / 8; 2122 2123 if (intel_dp_hdmi_ycbcr420(intel_dp, crtc_state)) 2124 clock /= 2; 2125 2126 return clock; 2127 } 2128 2129 static bool intel_dp_hdmi_tmds_clock_valid(struct intel_dp *intel_dp, 2130 const struct intel_crtc_state *crtc_state, int bpc) 2131 { 2132 int tmds_clock = intel_dp_hdmi_tmds_clock(intel_dp, crtc_state, bpc); 2133 2134 if (intel_dp->dfp.min_tmds_clock && 2135 tmds_clock < intel_dp->dfp.min_tmds_clock) 2136 return false; 2137 2138 if (intel_dp->dfp.max_tmds_clock && 2139 tmds_clock > intel_dp->dfp.max_tmds_clock) 2140 return false; 2141 2142 return true; 2143 } 2144 2145 static bool intel_dp_hdmi_deep_color_possible(struct intel_dp *intel_dp, 2146 const struct intel_crtc_state *crtc_state, 2147 int bpc) 2148 { 2149 2150 return intel_hdmi_deep_color_possible(crtc_state, bpc, 2151 intel_dp->has_hdmi_sink, 2152 intel_dp_hdmi_ycbcr420(intel_dp, crtc_state)) && 2153 intel_dp_hdmi_tmds_clock_valid(intel_dp, crtc_state, bpc); 2154 } 2155 2156 static int intel_dp_max_bpp(struct intel_dp *intel_dp, 2157 const struct intel_crtc_state *crtc_state) 2158 { 2159 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2160 struct intel_connector *intel_connector = intel_dp->attached_connector; 2161 int bpp, bpc; 2162 2163 bpc = crtc_state->pipe_bpp / 3; 2164 2165 if (intel_dp->dfp.max_bpc) 2166 bpc = min_t(int, bpc, intel_dp->dfp.max_bpc); 2167 2168 if (intel_dp->dfp.min_tmds_clock) { 2169 for (; bpc >= 10; bpc -= 2) { 2170 if (intel_dp_hdmi_deep_color_possible(intel_dp, crtc_state, bpc)) 2171 break; 2172 } 2173 } 2174 2175 bpp = bpc * 3; 2176 if (intel_dp_is_edp(intel_dp)) { 2177 /* Get bpp from vbt only for panels that dont have bpp in edid */ 2178 if (intel_connector->base.display_info.bpc == 0 && 2179 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 2180 drm_dbg_kms(&dev_priv->drm, 2181 "clamping bpp for eDP panel to BIOS-provided %i\n", 2182 dev_priv->vbt.edp.bpp); 2183 bpp = dev_priv->vbt.edp.bpp; 2184 } 2185 } 2186 2187 return bpp; 2188 } 2189 2190 /* Adjust link config limits based on compliance test requests. */ 2191 void 2192 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 2193 struct intel_crtc_state *pipe_config, 2194 struct link_config_limits *limits) 2195 { 2196 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2197 2198 /* For DP Compliance we override the computed bpp for the pipe */ 2199 if (intel_dp->compliance.test_data.bpc != 0) { 2200 int bpp = 3 * intel_dp->compliance.test_data.bpc; 2201 2202 limits->min_bpp = limits->max_bpp = bpp; 2203 pipe_config->dither_force_disable = bpp == 6 * 3; 2204 2205 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp); 2206 } 2207 2208 /* Use values requested by Compliance Test Request */ 2209 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 2210 int index; 2211 2212 /* Validate the compliance test data since max values 2213 * might have changed due to link train fallback. 2214 */ 2215 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 2216 intel_dp->compliance.test_lane_count)) { 2217 index = intel_dp_rate_index(intel_dp->common_rates, 2218 intel_dp->num_common_rates, 2219 intel_dp->compliance.test_link_rate); 2220 if (index >= 0) 2221 limits->min_clock = limits->max_clock = index; 2222 limits->min_lane_count = limits->max_lane_count = 2223 intel_dp->compliance.test_lane_count; 2224 } 2225 } 2226 } 2227 2228 /* Optimize link config in order: max bpp, min clock, min lanes */ 2229 static int 2230 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 2231 struct intel_crtc_state *pipe_config, 2232 const struct link_config_limits *limits) 2233 { 2234 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2235 int bpp, clock, lane_count; 2236 int mode_rate, link_clock, link_avail; 2237 2238 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 2239 int output_bpp = intel_dp_output_bpp(pipe_config->output_format, bpp); 2240 2241 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 2242 output_bpp); 2243 2244 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 2245 for (lane_count = limits->min_lane_count; 2246 lane_count <= limits->max_lane_count; 2247 lane_count <<= 1) { 2248 link_clock = intel_dp->common_rates[clock]; 2249 link_avail = intel_dp_max_data_rate(link_clock, 2250 lane_count); 2251 2252 if (mode_rate <= link_avail) { 2253 pipe_config->lane_count = lane_count; 2254 pipe_config->pipe_bpp = bpp; 2255 pipe_config->port_clock = link_clock; 2256 2257 return 0; 2258 } 2259 } 2260 } 2261 } 2262 2263 return -EINVAL; 2264 } 2265 2266 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 2267 { 2268 int i, num_bpc; 2269 u8 dsc_bpc[3] = {0}; 2270 2271 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 2272 dsc_bpc); 2273 for (i = 0; i < num_bpc; i++) { 2274 if (dsc_max_bpc >= dsc_bpc[i]) 2275 return dsc_bpc[i] * 3; 2276 } 2277 2278 return 0; 2279 } 2280 2281 #define DSC_SUPPORTED_VERSION_MIN 1 2282 2283 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder, 2284 struct intel_crtc_state *crtc_state) 2285 { 2286 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2287 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2288 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 2289 u8 line_buf_depth; 2290 int ret; 2291 2292 ret = intel_dsc_compute_params(encoder, crtc_state); 2293 if (ret) 2294 return ret; 2295 2296 /* 2297 * Slice Height of 8 works for all currently available panels. So start 2298 * with that if pic_height is an integral multiple of 8. Eventually add 2299 * logic to try multiple slice heights. 2300 */ 2301 if (vdsc_cfg->pic_height % 8 == 0) 2302 vdsc_cfg->slice_height = 8; 2303 else if (vdsc_cfg->pic_height % 4 == 0) 2304 vdsc_cfg->slice_height = 4; 2305 else 2306 vdsc_cfg->slice_height = 2; 2307 2308 vdsc_cfg->dsc_version_major = 2309 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2310 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; 2311 vdsc_cfg->dsc_version_minor = 2312 min(DSC_SUPPORTED_VERSION_MIN, 2313 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2314 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT); 2315 2316 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & 2317 DP_DSC_RGB; 2318 2319 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd); 2320 if (!line_buf_depth) { 2321 drm_dbg_kms(&i915->drm, 2322 "DSC Sink Line Buffer Depth invalid\n"); 2323 return -EINVAL; 2324 } 2325 2326 if (vdsc_cfg->dsc_version_minor == 2) 2327 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ? 2328 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth; 2329 else 2330 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ? 2331 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth; 2332 2333 vdsc_cfg->block_pred_enable = 2334 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & 2335 DP_DSC_BLK_PREDICTION_IS_SUPPORTED; 2336 2337 return drm_dsc_compute_rc_parameters(vdsc_cfg); 2338 } 2339 2340 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2341 struct intel_crtc_state *pipe_config, 2342 struct drm_connector_state *conn_state, 2343 struct link_config_limits *limits) 2344 { 2345 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2346 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2347 const struct drm_display_mode *adjusted_mode = 2348 &pipe_config->hw.adjusted_mode; 2349 u8 dsc_max_bpc; 2350 int pipe_bpp; 2351 int ret; 2352 2353 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2354 intel_dp_supports_fec(intel_dp, pipe_config); 2355 2356 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2357 return -EINVAL; 2358 2359 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 2360 if (INTEL_GEN(dev_priv) >= 12) 2361 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc); 2362 else 2363 dsc_max_bpc = min_t(u8, 10, 2364 conn_state->max_requested_bpc); 2365 2366 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2367 2368 /* Min Input BPC for ICL+ is 8 */ 2369 if (pipe_bpp < 8 * 3) { 2370 drm_dbg_kms(&dev_priv->drm, 2371 "No DSC support for less than 8bpc\n"); 2372 return -EINVAL; 2373 } 2374 2375 /* 2376 * For now enable DSC for max bpp, max link rate, max lane count. 2377 * Optimize this later for the minimum possible link rate/lane count 2378 * with DSC enabled for the requested mode. 2379 */ 2380 pipe_config->pipe_bpp = pipe_bpp; 2381 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2382 pipe_config->lane_count = limits->max_lane_count; 2383 2384 if (intel_dp_is_edp(intel_dp)) { 2385 pipe_config->dsc.compressed_bpp = 2386 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2387 pipe_config->pipe_bpp); 2388 pipe_config->dsc.slice_count = 2389 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2390 true); 2391 } else { 2392 u16 dsc_max_output_bpp; 2393 u8 dsc_dp_slice_count; 2394 2395 dsc_max_output_bpp = 2396 intel_dp_dsc_get_output_bpp(dev_priv, 2397 pipe_config->port_clock, 2398 pipe_config->lane_count, 2399 adjusted_mode->crtc_clock, 2400 adjusted_mode->crtc_hdisplay, 2401 pipe_config->bigjoiner); 2402 dsc_dp_slice_count = 2403 intel_dp_dsc_get_slice_count(intel_dp, 2404 adjusted_mode->crtc_clock, 2405 adjusted_mode->crtc_hdisplay, 2406 pipe_config->bigjoiner); 2407 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2408 drm_dbg_kms(&dev_priv->drm, 2409 "Compressed BPP/Slice Count not supported\n"); 2410 return -EINVAL; 2411 } 2412 pipe_config->dsc.compressed_bpp = min_t(u16, 2413 dsc_max_output_bpp >> 4, 2414 pipe_config->pipe_bpp); 2415 pipe_config->dsc.slice_count = dsc_dp_slice_count; 2416 } 2417 /* 2418 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2419 * is greater than the maximum Cdclock and if slice count is even 2420 * then we need to use 2 VDSC instances. 2421 */ 2422 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq || 2423 pipe_config->bigjoiner) { 2424 if (pipe_config->dsc.slice_count < 2) { 2425 drm_dbg_kms(&dev_priv->drm, 2426 "Cannot split stream to use 2 VDSC instances\n"); 2427 return -EINVAL; 2428 } 2429 2430 pipe_config->dsc.dsc_split = true; 2431 } 2432 2433 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config); 2434 if (ret < 0) { 2435 drm_dbg_kms(&dev_priv->drm, 2436 "Cannot compute valid DSC parameters for Input Bpp = %d " 2437 "Compressed BPP = %d\n", 2438 pipe_config->pipe_bpp, 2439 pipe_config->dsc.compressed_bpp); 2440 return ret; 2441 } 2442 2443 pipe_config->dsc.compression_enable = true; 2444 drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d " 2445 "Compressed Bpp = %d Slice Count = %d\n", 2446 pipe_config->pipe_bpp, 2447 pipe_config->dsc.compressed_bpp, 2448 pipe_config->dsc.slice_count); 2449 2450 return 0; 2451 } 2452 2453 static int 2454 intel_dp_compute_link_config(struct intel_encoder *encoder, 2455 struct intel_crtc_state *pipe_config, 2456 struct drm_connector_state *conn_state) 2457 { 2458 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2459 const struct drm_display_mode *adjusted_mode = 2460 &pipe_config->hw.adjusted_mode; 2461 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2462 struct link_config_limits limits; 2463 int common_len; 2464 int ret; 2465 2466 common_len = intel_dp_common_len_rate_limit(intel_dp, 2467 intel_dp->max_link_rate); 2468 2469 /* No common link rates between source and sink */ 2470 drm_WARN_ON(encoder->base.dev, common_len <= 0); 2471 2472 limits.min_clock = 0; 2473 limits.max_clock = common_len - 1; 2474 2475 limits.min_lane_count = 1; 2476 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2477 2478 limits.min_bpp = intel_dp_min_bpp(pipe_config->output_format); 2479 limits.max_bpp = intel_dp_max_bpp(intel_dp, pipe_config); 2480 2481 if (intel_dp_is_edp(intel_dp)) { 2482 /* 2483 * Use the maximum clock and number of lanes the eDP panel 2484 * advertizes being capable of. The panels are generally 2485 * designed to support only a single clock and lane 2486 * configuration, and typically these values correspond to the 2487 * native resolution of the panel. 2488 */ 2489 limits.min_lane_count = limits.max_lane_count; 2490 limits.min_clock = limits.max_clock; 2491 } 2492 2493 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2494 2495 drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i " 2496 "max rate %d max bpp %d pixel clock %iKHz\n", 2497 limits.max_lane_count, 2498 intel_dp->common_rates[limits.max_clock], 2499 limits.max_bpp, adjusted_mode->crtc_clock); 2500 2501 if ((adjusted_mode->crtc_clock > i915->max_dotclk_freq || 2502 adjusted_mode->crtc_hdisplay > 5120) && 2503 intel_dp_can_bigjoiner(intel_dp)) 2504 pipe_config->bigjoiner = true; 2505 2506 /* 2507 * Optimize for slow and wide. This is the place to add alternative 2508 * optimization policy. 2509 */ 2510 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2511 2512 /* enable compression if the mode doesn't fit available BW */ 2513 drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en); 2514 if (ret || intel_dp->force_dsc_en || pipe_config->bigjoiner) { 2515 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2516 conn_state, &limits); 2517 if (ret < 0) 2518 return ret; 2519 } 2520 2521 if (pipe_config->dsc.compression_enable) { 2522 drm_dbg_kms(&i915->drm, 2523 "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2524 pipe_config->lane_count, pipe_config->port_clock, 2525 pipe_config->pipe_bpp, 2526 pipe_config->dsc.compressed_bpp); 2527 2528 drm_dbg_kms(&i915->drm, 2529 "DP link rate required %i available %i\n", 2530 intel_dp_link_required(adjusted_mode->crtc_clock, 2531 pipe_config->dsc.compressed_bpp), 2532 intel_dp_max_data_rate(pipe_config->port_clock, 2533 pipe_config->lane_count)); 2534 } else { 2535 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n", 2536 pipe_config->lane_count, pipe_config->port_clock, 2537 pipe_config->pipe_bpp); 2538 2539 drm_dbg_kms(&i915->drm, 2540 "DP link rate required %i available %i\n", 2541 intel_dp_link_required(adjusted_mode->crtc_clock, 2542 pipe_config->pipe_bpp), 2543 intel_dp_max_data_rate(pipe_config->port_clock, 2544 pipe_config->lane_count)); 2545 } 2546 return 0; 2547 } 2548 2549 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2550 const struct drm_connector_state *conn_state) 2551 { 2552 const struct intel_digital_connector_state *intel_conn_state = 2553 to_intel_digital_connector_state(conn_state); 2554 const struct drm_display_mode *adjusted_mode = 2555 &crtc_state->hw.adjusted_mode; 2556 2557 /* 2558 * Our YCbCr output is always limited range. 2559 * crtc_state->limited_color_range only applies to RGB, 2560 * and it must never be set for YCbCr or we risk setting 2561 * some conflicting bits in PIPECONF which will mess up 2562 * the colors on the monitor. 2563 */ 2564 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2565 return false; 2566 2567 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2568 /* 2569 * See: 2570 * CEA-861-E - 5.1 Default Encoding Parameters 2571 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2572 */ 2573 return crtc_state->pipe_bpp != 18 && 2574 drm_default_rgb_quant_range(adjusted_mode) == 2575 HDMI_QUANTIZATION_RANGE_LIMITED; 2576 } else { 2577 return intel_conn_state->broadcast_rgb == 2578 INTEL_BROADCAST_RGB_LIMITED; 2579 } 2580 } 2581 2582 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv, 2583 enum port port) 2584 { 2585 if (IS_G4X(dev_priv)) 2586 return false; 2587 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A) 2588 return false; 2589 2590 return true; 2591 } 2592 2593 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state, 2594 const struct drm_connector_state *conn_state, 2595 struct drm_dp_vsc_sdp *vsc) 2596 { 2597 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2598 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2599 2600 /* 2601 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 2602 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 2603 * Colorimetry Format indication. 2604 */ 2605 vsc->revision = 0x5; 2606 vsc->length = 0x13; 2607 2608 /* DP 1.4a spec, Table 2-120 */ 2609 switch (crtc_state->output_format) { 2610 case INTEL_OUTPUT_FORMAT_YCBCR444: 2611 vsc->pixelformat = DP_PIXELFORMAT_YUV444; 2612 break; 2613 case INTEL_OUTPUT_FORMAT_YCBCR420: 2614 vsc->pixelformat = DP_PIXELFORMAT_YUV420; 2615 break; 2616 case INTEL_OUTPUT_FORMAT_RGB: 2617 default: 2618 vsc->pixelformat = DP_PIXELFORMAT_RGB; 2619 } 2620 2621 switch (conn_state->colorspace) { 2622 case DRM_MODE_COLORIMETRY_BT709_YCC: 2623 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; 2624 break; 2625 case DRM_MODE_COLORIMETRY_XVYCC_601: 2626 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601; 2627 break; 2628 case DRM_MODE_COLORIMETRY_XVYCC_709: 2629 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709; 2630 break; 2631 case DRM_MODE_COLORIMETRY_SYCC_601: 2632 vsc->colorimetry = DP_COLORIMETRY_SYCC_601; 2633 break; 2634 case DRM_MODE_COLORIMETRY_OPYCC_601: 2635 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601; 2636 break; 2637 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 2638 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC; 2639 break; 2640 case DRM_MODE_COLORIMETRY_BT2020_RGB: 2641 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB; 2642 break; 2643 case DRM_MODE_COLORIMETRY_BT2020_YCC: 2644 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC; 2645 break; 2646 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 2647 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 2648 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB; 2649 break; 2650 default: 2651 /* 2652 * RGB->YCBCR color conversion uses the BT.709 2653 * color space. 2654 */ 2655 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 2656 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; 2657 else 2658 vsc->colorimetry = DP_COLORIMETRY_DEFAULT; 2659 break; 2660 } 2661 2662 vsc->bpc = crtc_state->pipe_bpp / 3; 2663 2664 /* only RGB pixelformat supports 6 bpc */ 2665 drm_WARN_ON(&dev_priv->drm, 2666 vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB); 2667 2668 /* all YCbCr are always limited range */ 2669 vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA; 2670 vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED; 2671 } 2672 2673 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp, 2674 struct intel_crtc_state *crtc_state, 2675 const struct drm_connector_state *conn_state) 2676 { 2677 struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc; 2678 2679 /* When a crtc state has PSR, VSC SDP will be handled by PSR routine */ 2680 if (crtc_state->has_psr) 2681 return; 2682 2683 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) 2684 return; 2685 2686 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); 2687 vsc->sdp_type = DP_SDP_VSC; 2688 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, 2689 &crtc_state->infoframes.vsc); 2690 } 2691 2692 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp, 2693 const struct intel_crtc_state *crtc_state, 2694 const struct drm_connector_state *conn_state, 2695 struct drm_dp_vsc_sdp *vsc) 2696 { 2697 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2698 2699 vsc->sdp_type = DP_SDP_VSC; 2700 2701 if (dev_priv->psr.psr2_enabled) { 2702 if (dev_priv->psr.colorimetry_support && 2703 intel_dp_needs_vsc_sdp(crtc_state, conn_state)) { 2704 /* [PSR2, +Colorimetry] */ 2705 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, 2706 vsc); 2707 } else { 2708 /* 2709 * [PSR2, -Colorimetry] 2710 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11 2711 * 3D stereo + PSR/PSR2 + Y-coordinate. 2712 */ 2713 vsc->revision = 0x4; 2714 vsc->length = 0xe; 2715 } 2716 } else { 2717 /* 2718 * [PSR1] 2719 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 2720 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or 2721 * higher). 2722 */ 2723 vsc->revision = 0x2; 2724 vsc->length = 0x8; 2725 } 2726 } 2727 2728 static void 2729 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, 2730 struct intel_crtc_state *crtc_state, 2731 const struct drm_connector_state *conn_state) 2732 { 2733 int ret; 2734 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2735 struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm; 2736 2737 if (!conn_state->hdr_output_metadata) 2738 return; 2739 2740 ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state); 2741 2742 if (ret) { 2743 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n"); 2744 return; 2745 } 2746 2747 crtc_state->infoframes.enable |= 2748 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA); 2749 } 2750 2751 static void 2752 intel_dp_drrs_compute_config(struct intel_dp *intel_dp, 2753 struct intel_crtc_state *pipe_config, 2754 int output_bpp, bool constant_n) 2755 { 2756 struct intel_connector *intel_connector = intel_dp->attached_connector; 2757 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2758 2759 /* 2760 * DRRS and PSR can't be enable together, so giving preference to PSR 2761 * as it allows more power-savings by complete shutting down display, 2762 * so to guarantee this, intel_dp_drrs_compute_config() must be called 2763 * after intel_psr_compute_config(). 2764 */ 2765 if (pipe_config->has_psr) 2766 return; 2767 2768 if (!intel_connector->panel.downclock_mode || 2769 dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT) 2770 return; 2771 2772 pipe_config->has_drrs = true; 2773 intel_link_compute_m_n(output_bpp, pipe_config->lane_count, 2774 intel_connector->panel.downclock_mode->clock, 2775 pipe_config->port_clock, &pipe_config->dp_m2_n2, 2776 constant_n, pipe_config->fec_enable); 2777 } 2778 2779 int 2780 intel_dp_compute_config(struct intel_encoder *encoder, 2781 struct intel_crtc_state *pipe_config, 2782 struct drm_connector_state *conn_state) 2783 { 2784 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2785 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2786 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2787 enum port port = encoder->port; 2788 struct intel_connector *intel_connector = intel_dp->attached_connector; 2789 struct intel_digital_connector_state *intel_conn_state = 2790 to_intel_digital_connector_state(conn_state); 2791 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0, 2792 DP_DPCD_QUIRK_CONSTANT_N); 2793 int ret = 0, output_bpp; 2794 2795 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2796 pipe_config->has_pch_encoder = true; 2797 2798 pipe_config->output_format = intel_dp_output_format(&intel_connector->base, 2799 adjusted_mode); 2800 2801 if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { 2802 ret = intel_pch_panel_fitting(pipe_config, conn_state); 2803 if (ret) 2804 return ret; 2805 } 2806 2807 if (!intel_dp_port_has_audio(dev_priv, port)) 2808 pipe_config->has_audio = false; 2809 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2810 pipe_config->has_audio = intel_dp->has_audio; 2811 else 2812 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2813 2814 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2815 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2816 adjusted_mode); 2817 2818 if (HAS_GMCH(dev_priv)) 2819 ret = intel_gmch_panel_fitting(pipe_config, conn_state); 2820 else 2821 ret = intel_pch_panel_fitting(pipe_config, conn_state); 2822 if (ret) 2823 return ret; 2824 } 2825 2826 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2827 return -EINVAL; 2828 2829 if (HAS_GMCH(dev_priv) && 2830 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2831 return -EINVAL; 2832 2833 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2834 return -EINVAL; 2835 2836 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) 2837 return -EINVAL; 2838 2839 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2840 if (ret < 0) 2841 return ret; 2842 2843 pipe_config->limited_color_range = 2844 intel_dp_limited_color_range(pipe_config, conn_state); 2845 2846 if (pipe_config->dsc.compression_enable) 2847 output_bpp = pipe_config->dsc.compressed_bpp; 2848 else 2849 output_bpp = intel_dp_output_bpp(pipe_config->output_format, 2850 pipe_config->pipe_bpp); 2851 2852 intel_link_compute_m_n(output_bpp, 2853 pipe_config->lane_count, 2854 adjusted_mode->crtc_clock, 2855 pipe_config->port_clock, 2856 &pipe_config->dp_m_n, 2857 constant_n, pipe_config->fec_enable); 2858 2859 if (!HAS_DDI(dev_priv)) 2860 intel_dp_set_clock(encoder, pipe_config); 2861 2862 intel_psr_compute_config(intel_dp, pipe_config); 2863 intel_dp_drrs_compute_config(intel_dp, pipe_config, output_bpp, 2864 constant_n); 2865 intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state); 2866 intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state); 2867 2868 return 0; 2869 } 2870 2871 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2872 int link_rate, int lane_count) 2873 { 2874 intel_dp->link_trained = false; 2875 intel_dp->link_rate = link_rate; 2876 intel_dp->lane_count = lane_count; 2877 } 2878 2879 static void intel_dp_prepare(struct intel_encoder *encoder, 2880 const struct intel_crtc_state *pipe_config) 2881 { 2882 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2883 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2884 enum port port = encoder->port; 2885 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 2886 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2887 2888 intel_dp_set_link_params(intel_dp, 2889 pipe_config->port_clock, 2890 pipe_config->lane_count); 2891 2892 /* 2893 * There are four kinds of DP registers: 2894 * 2895 * IBX PCH 2896 * SNB CPU 2897 * IVB CPU 2898 * CPT PCH 2899 * 2900 * IBX PCH and CPU are the same for almost everything, 2901 * except that the CPU DP PLL is configured in this 2902 * register 2903 * 2904 * CPT PCH is quite different, having many bits moved 2905 * to the TRANS_DP_CTL register instead. That 2906 * configuration happens (oddly) in ilk_pch_enable 2907 */ 2908 2909 /* Preserve the BIOS-computed detected bit. This is 2910 * supposed to be read-only. 2911 */ 2912 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; 2913 2914 /* Handle DP bits in common between all three register formats */ 2915 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2916 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2917 2918 /* Split out the IBX/CPU vs CPT settings */ 2919 2920 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2921 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2922 intel_dp->DP |= DP_SYNC_HS_HIGH; 2923 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2924 intel_dp->DP |= DP_SYNC_VS_HIGH; 2925 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2926 2927 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2928 intel_dp->DP |= DP_ENHANCED_FRAMING; 2929 2930 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2931 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2932 u32 trans_dp; 2933 2934 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2935 2936 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe)); 2937 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2938 trans_dp |= TRANS_DP_ENH_FRAMING; 2939 else 2940 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2941 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp); 2942 } else { 2943 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2944 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2945 2946 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2947 intel_dp->DP |= DP_SYNC_HS_HIGH; 2948 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2949 intel_dp->DP |= DP_SYNC_VS_HIGH; 2950 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2951 2952 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2953 intel_dp->DP |= DP_ENHANCED_FRAMING; 2954 2955 if (IS_CHERRYVIEW(dev_priv)) 2956 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2957 else 2958 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2959 } 2960 } 2961 2962 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2963 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2964 2965 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2966 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2967 2968 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2969 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2970 2971 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2972 2973 static void wait_panel_status(struct intel_dp *intel_dp, 2974 u32 mask, 2975 u32 value) 2976 { 2977 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2978 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2979 2980 lockdep_assert_held(&dev_priv->pps_mutex); 2981 2982 intel_pps_verify_state(intel_dp); 2983 2984 pp_stat_reg = _pp_stat_reg(intel_dp); 2985 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2986 2987 drm_dbg_kms(&dev_priv->drm, 2988 "mask %08x value %08x status %08x control %08x\n", 2989 mask, value, 2990 intel_de_read(dev_priv, pp_stat_reg), 2991 intel_de_read(dev_priv, pp_ctrl_reg)); 2992 2993 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2994 mask, value, 5000)) 2995 drm_err(&dev_priv->drm, 2996 "Panel status timeout: status %08x control %08x\n", 2997 intel_de_read(dev_priv, pp_stat_reg), 2998 intel_de_read(dev_priv, pp_ctrl_reg)); 2999 3000 drm_dbg_kms(&dev_priv->drm, "Wait complete\n"); 3001 } 3002 3003 static void wait_panel_on(struct intel_dp *intel_dp) 3004 { 3005 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3006 3007 drm_dbg_kms(&i915->drm, "Wait for panel power on\n"); 3008 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 3009 } 3010 3011 static void wait_panel_off(struct intel_dp *intel_dp) 3012 { 3013 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3014 3015 drm_dbg_kms(&i915->drm, "Wait for panel power off time\n"); 3016 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 3017 } 3018 3019 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 3020 { 3021 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3022 ktime_t panel_power_on_time; 3023 s64 panel_power_off_duration; 3024 3025 drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n"); 3026 3027 /* take the difference of currrent time and panel power off time 3028 * and then make panel wait for t11_t12 if needed. */ 3029 panel_power_on_time = ktime_get_boottime(); 3030 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 3031 3032 /* When we disable the VDD override bit last we have to do the manual 3033 * wait. */ 3034 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 3035 wait_remaining_ms_from_jiffies(jiffies, 3036 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 3037 3038 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 3039 } 3040 3041 static void wait_backlight_on(struct intel_dp *intel_dp) 3042 { 3043 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 3044 intel_dp->backlight_on_delay); 3045 } 3046 3047 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 3048 { 3049 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 3050 intel_dp->backlight_off_delay); 3051 } 3052 3053 /* Read the current pp_control value, unlocking the register if it 3054 * is locked 3055 */ 3056 3057 static u32 ilk_get_pp_control(struct intel_dp *intel_dp) 3058 { 3059 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3060 u32 control; 3061 3062 lockdep_assert_held(&dev_priv->pps_mutex); 3063 3064 control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)); 3065 if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) && 3066 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 3067 control &= ~PANEL_UNLOCK_MASK; 3068 control |= PANEL_UNLOCK_REGS; 3069 } 3070 return control; 3071 } 3072 3073 /* 3074 * Must be paired with edp_panel_vdd_off(). 3075 * Must hold pps_mutex around the whole on/off sequence. 3076 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 3077 */ 3078 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 3079 { 3080 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3081 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3082 u32 pp; 3083 i915_reg_t pp_stat_reg, pp_ctrl_reg; 3084 bool need_to_disable = !intel_dp->want_panel_vdd; 3085 3086 lockdep_assert_held(&dev_priv->pps_mutex); 3087 3088 if (!intel_dp_is_edp(intel_dp)) 3089 return false; 3090 3091 cancel_delayed_work(&intel_dp->panel_vdd_work); 3092 intel_dp->want_panel_vdd = true; 3093 3094 if (edp_have_panel_vdd(intel_dp)) 3095 return need_to_disable; 3096 3097 intel_display_power_get(dev_priv, 3098 intel_aux_power_domain(dig_port)); 3099 3100 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n", 3101 dig_port->base.base.base.id, 3102 dig_port->base.base.name); 3103 3104 if (!edp_have_panel_power(intel_dp)) 3105 wait_panel_power_cycle(intel_dp); 3106 3107 pp = ilk_get_pp_control(intel_dp); 3108 pp |= EDP_FORCE_VDD; 3109 3110 pp_stat_reg = _pp_stat_reg(intel_dp); 3111 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3112 3113 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3114 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3115 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 3116 intel_de_read(dev_priv, pp_stat_reg), 3117 intel_de_read(dev_priv, pp_ctrl_reg)); 3118 /* 3119 * If the panel wasn't on, delay before accessing aux channel 3120 */ 3121 if (!edp_have_panel_power(intel_dp)) { 3122 drm_dbg_kms(&dev_priv->drm, 3123 "[ENCODER:%d:%s] panel power wasn't enabled\n", 3124 dig_port->base.base.base.id, 3125 dig_port->base.base.name); 3126 msleep(intel_dp->panel_power_up_delay); 3127 } 3128 3129 return need_to_disable; 3130 } 3131 3132 /* 3133 * Must be paired with intel_edp_panel_vdd_off() or 3134 * intel_edp_panel_off(). 3135 * Nested calls to these functions are not allowed since 3136 * we drop the lock. Caller must use some higher level 3137 * locking to prevent nested calls from other threads. 3138 */ 3139 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 3140 { 3141 intel_wakeref_t wakeref; 3142 bool vdd; 3143 3144 if (!intel_dp_is_edp(intel_dp)) 3145 return; 3146 3147 vdd = false; 3148 with_pps_lock(intel_dp, wakeref) 3149 vdd = edp_panel_vdd_on(intel_dp); 3150 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n", 3151 dp_to_dig_port(intel_dp)->base.base.base.id, 3152 dp_to_dig_port(intel_dp)->base.base.name); 3153 } 3154 3155 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 3156 { 3157 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3158 struct intel_digital_port *dig_port = 3159 dp_to_dig_port(intel_dp); 3160 u32 pp; 3161 i915_reg_t pp_stat_reg, pp_ctrl_reg; 3162 3163 lockdep_assert_held(&dev_priv->pps_mutex); 3164 3165 drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd); 3166 3167 if (!edp_have_panel_vdd(intel_dp)) 3168 return; 3169 3170 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n", 3171 dig_port->base.base.base.id, 3172 dig_port->base.base.name); 3173 3174 pp = ilk_get_pp_control(intel_dp); 3175 pp &= ~EDP_FORCE_VDD; 3176 3177 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3178 pp_stat_reg = _pp_stat_reg(intel_dp); 3179 3180 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3181 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3182 3183 /* Make sure sequencer is idle before allowing subsequent activity */ 3184 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 3185 intel_de_read(dev_priv, pp_stat_reg), 3186 intel_de_read(dev_priv, pp_ctrl_reg)); 3187 3188 if ((pp & PANEL_POWER_ON) == 0) 3189 intel_dp->panel_power_off_time = ktime_get_boottime(); 3190 3191 intel_display_power_put_unchecked(dev_priv, 3192 intel_aux_power_domain(dig_port)); 3193 } 3194 3195 static void edp_panel_vdd_work(struct work_struct *__work) 3196 { 3197 struct intel_dp *intel_dp = 3198 container_of(to_delayed_work(__work), 3199 struct intel_dp, panel_vdd_work); 3200 intel_wakeref_t wakeref; 3201 3202 with_pps_lock(intel_dp, wakeref) { 3203 if (!intel_dp->want_panel_vdd) 3204 edp_panel_vdd_off_sync(intel_dp); 3205 } 3206 } 3207 3208 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 3209 { 3210 unsigned long delay; 3211 3212 /* 3213 * Queue the timer to fire a long time from now (relative to the power 3214 * down delay) to keep the panel power up across a sequence of 3215 * operations. 3216 */ 3217 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 3218 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 3219 } 3220 3221 /* 3222 * Must be paired with edp_panel_vdd_on(). 3223 * Must hold pps_mutex around the whole on/off sequence. 3224 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 3225 */ 3226 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 3227 { 3228 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3229 3230 lockdep_assert_held(&dev_priv->pps_mutex); 3231 3232 if (!intel_dp_is_edp(intel_dp)) 3233 return; 3234 3235 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on", 3236 dp_to_dig_port(intel_dp)->base.base.base.id, 3237 dp_to_dig_port(intel_dp)->base.base.name); 3238 3239 intel_dp->want_panel_vdd = false; 3240 3241 if (sync) 3242 edp_panel_vdd_off_sync(intel_dp); 3243 else 3244 edp_panel_vdd_schedule_off(intel_dp); 3245 } 3246 3247 static void edp_panel_on(struct intel_dp *intel_dp) 3248 { 3249 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3250 u32 pp; 3251 i915_reg_t pp_ctrl_reg; 3252 3253 lockdep_assert_held(&dev_priv->pps_mutex); 3254 3255 if (!intel_dp_is_edp(intel_dp)) 3256 return; 3257 3258 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n", 3259 dp_to_dig_port(intel_dp)->base.base.base.id, 3260 dp_to_dig_port(intel_dp)->base.base.name); 3261 3262 if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp), 3263 "[ENCODER:%d:%s] panel power already on\n", 3264 dp_to_dig_port(intel_dp)->base.base.base.id, 3265 dp_to_dig_port(intel_dp)->base.base.name)) 3266 return; 3267 3268 wait_panel_power_cycle(intel_dp); 3269 3270 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3271 pp = ilk_get_pp_control(intel_dp); 3272 if (IS_GEN(dev_priv, 5)) { 3273 /* ILK workaround: disable reset around power sequence */ 3274 pp &= ~PANEL_POWER_RESET; 3275 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3276 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3277 } 3278 3279 pp |= PANEL_POWER_ON; 3280 if (!IS_GEN(dev_priv, 5)) 3281 pp |= PANEL_POWER_RESET; 3282 3283 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3284 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3285 3286 wait_panel_on(intel_dp); 3287 intel_dp->last_power_on = jiffies; 3288 3289 if (IS_GEN(dev_priv, 5)) { 3290 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 3291 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3292 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3293 } 3294 } 3295 3296 void intel_edp_panel_on(struct intel_dp *intel_dp) 3297 { 3298 intel_wakeref_t wakeref; 3299 3300 if (!intel_dp_is_edp(intel_dp)) 3301 return; 3302 3303 with_pps_lock(intel_dp, wakeref) 3304 edp_panel_on(intel_dp); 3305 } 3306 3307 3308 static void edp_panel_off(struct intel_dp *intel_dp) 3309 { 3310 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3311 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3312 u32 pp; 3313 i915_reg_t pp_ctrl_reg; 3314 3315 lockdep_assert_held(&dev_priv->pps_mutex); 3316 3317 if (!intel_dp_is_edp(intel_dp)) 3318 return; 3319 3320 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n", 3321 dig_port->base.base.base.id, dig_port->base.base.name); 3322 3323 drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd, 3324 "Need [ENCODER:%d:%s] VDD to turn off panel\n", 3325 dig_port->base.base.base.id, dig_port->base.base.name); 3326 3327 pp = ilk_get_pp_control(intel_dp); 3328 /* We need to switch off panel power _and_ force vdd, for otherwise some 3329 * panels get very unhappy and cease to work. */ 3330 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 3331 EDP_BLC_ENABLE); 3332 3333 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3334 3335 intel_dp->want_panel_vdd = false; 3336 3337 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3338 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3339 3340 wait_panel_off(intel_dp); 3341 intel_dp->panel_power_off_time = ktime_get_boottime(); 3342 3343 /* We got a reference when we enabled the VDD. */ 3344 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 3345 } 3346 3347 void intel_edp_panel_off(struct intel_dp *intel_dp) 3348 { 3349 intel_wakeref_t wakeref; 3350 3351 if (!intel_dp_is_edp(intel_dp)) 3352 return; 3353 3354 with_pps_lock(intel_dp, wakeref) 3355 edp_panel_off(intel_dp); 3356 } 3357 3358 /* Enable backlight in the panel power control. */ 3359 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 3360 { 3361 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3362 intel_wakeref_t wakeref; 3363 3364 /* 3365 * If we enable the backlight right away following a panel power 3366 * on, we may see slight flicker as the panel syncs with the eDP 3367 * link. So delay a bit to make sure the image is solid before 3368 * allowing it to appear. 3369 */ 3370 wait_backlight_on(intel_dp); 3371 3372 with_pps_lock(intel_dp, wakeref) { 3373 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3374 u32 pp; 3375 3376 pp = ilk_get_pp_control(intel_dp); 3377 pp |= EDP_BLC_ENABLE; 3378 3379 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3380 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3381 } 3382 } 3383 3384 /* Enable backlight PWM and backlight PP control. */ 3385 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 3386 const struct drm_connector_state *conn_state) 3387 { 3388 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); 3389 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3390 3391 if (!intel_dp_is_edp(intel_dp)) 3392 return; 3393 3394 drm_dbg_kms(&i915->drm, "\n"); 3395 3396 intel_panel_enable_backlight(crtc_state, conn_state); 3397 _intel_edp_backlight_on(intel_dp); 3398 } 3399 3400 /* Disable backlight in the panel power control. */ 3401 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 3402 { 3403 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3404 intel_wakeref_t wakeref; 3405 3406 if (!intel_dp_is_edp(intel_dp)) 3407 return; 3408 3409 with_pps_lock(intel_dp, wakeref) { 3410 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3411 u32 pp; 3412 3413 pp = ilk_get_pp_control(intel_dp); 3414 pp &= ~EDP_BLC_ENABLE; 3415 3416 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3417 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3418 } 3419 3420 intel_dp->last_backlight_off = jiffies; 3421 edp_wait_backlight_off(intel_dp); 3422 } 3423 3424 /* Disable backlight PP control and backlight PWM. */ 3425 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 3426 { 3427 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); 3428 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3429 3430 if (!intel_dp_is_edp(intel_dp)) 3431 return; 3432 3433 drm_dbg_kms(&i915->drm, "\n"); 3434 3435 _intel_edp_backlight_off(intel_dp); 3436 intel_panel_disable_backlight(old_conn_state); 3437 } 3438 3439 /* 3440 * Hook for controlling the panel power control backlight through the bl_power 3441 * sysfs attribute. Take care to handle multiple calls. 3442 */ 3443 static void intel_edp_backlight_power(struct intel_connector *connector, 3444 bool enable) 3445 { 3446 struct drm_i915_private *i915 = to_i915(connector->base.dev); 3447 struct intel_dp *intel_dp = intel_attached_dp(connector); 3448 intel_wakeref_t wakeref; 3449 bool is_enabled; 3450 3451 is_enabled = false; 3452 with_pps_lock(intel_dp, wakeref) 3453 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 3454 if (is_enabled == enable) 3455 return; 3456 3457 drm_dbg_kms(&i915->drm, "panel power control backlight %s\n", 3458 enable ? "enable" : "disable"); 3459 3460 if (enable) 3461 _intel_edp_backlight_on(intel_dp); 3462 else 3463 _intel_edp_backlight_off(intel_dp); 3464 } 3465 3466 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 3467 { 3468 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3469 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3470 bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN; 3471 3472 I915_STATE_WARN(cur_state != state, 3473 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", 3474 dig_port->base.base.base.id, dig_port->base.base.name, 3475 onoff(state), onoff(cur_state)); 3476 } 3477 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 3478 3479 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 3480 { 3481 bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE; 3482 3483 I915_STATE_WARN(cur_state != state, 3484 "eDP PLL state assertion failure (expected %s, current %s)\n", 3485 onoff(state), onoff(cur_state)); 3486 } 3487 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 3488 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 3489 3490 static void ilk_edp_pll_on(struct intel_dp *intel_dp, 3491 const struct intel_crtc_state *pipe_config) 3492 { 3493 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3494 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3495 3496 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 3497 assert_dp_port_disabled(intel_dp); 3498 assert_edp_pll_disabled(dev_priv); 3499 3500 drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n", 3501 pipe_config->port_clock); 3502 3503 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 3504 3505 if (pipe_config->port_clock == 162000) 3506 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 3507 else 3508 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 3509 3510 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3511 intel_de_posting_read(dev_priv, DP_A); 3512 udelay(500); 3513 3514 /* 3515 * [DevILK] Work around required when enabling DP PLL 3516 * while a pipe is enabled going to FDI: 3517 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 3518 * 2. Program DP PLL enable 3519 */ 3520 if (IS_GEN(dev_priv, 5)) 3521 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 3522 3523 intel_dp->DP |= DP_PLL_ENABLE; 3524 3525 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3526 intel_de_posting_read(dev_priv, DP_A); 3527 udelay(200); 3528 } 3529 3530 static void ilk_edp_pll_off(struct intel_dp *intel_dp, 3531 const struct intel_crtc_state *old_crtc_state) 3532 { 3533 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3534 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3535 3536 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 3537 assert_dp_port_disabled(intel_dp); 3538 assert_edp_pll_enabled(dev_priv); 3539 3540 drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n"); 3541 3542 intel_dp->DP &= ~DP_PLL_ENABLE; 3543 3544 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3545 intel_de_posting_read(dev_priv, DP_A); 3546 udelay(200); 3547 } 3548 3549 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3550 { 3551 /* 3552 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3553 * be capable of signalling downstream hpd with a long pulse. 3554 * Whether or not that means D3 is safe to use is not clear, 3555 * but let's assume so until proven otherwise. 3556 * 3557 * FIXME should really check all downstream ports... 3558 */ 3559 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3560 drm_dp_is_branch(intel_dp->dpcd) && 3561 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3562 } 3563 3564 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3565 const struct intel_crtc_state *crtc_state, 3566 bool enable) 3567 { 3568 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3569 int ret; 3570 3571 if (!crtc_state->dsc.compression_enable) 3572 return; 3573 3574 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3575 enable ? DP_DECOMPRESSION_EN : 0); 3576 if (ret < 0) 3577 drm_dbg_kms(&i915->drm, 3578 "Failed to %s sink decompression state\n", 3579 enable ? "enable" : "disable"); 3580 } 3581 3582 /* If the device supports it, try to set the power state appropriately */ 3583 void intel_dp_set_power(struct intel_dp *intel_dp, u8 mode) 3584 { 3585 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3586 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3587 int ret, i; 3588 3589 /* Should have a valid DPCD by this point */ 3590 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3591 return; 3592 3593 if (mode != DP_SET_POWER_D0) { 3594 if (downstream_hpd_needs_d0(intel_dp)) 3595 return; 3596 3597 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); 3598 } else { 3599 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3600 3601 lspcon_resume(dp_to_dig_port(intel_dp)); 3602 3603 /* 3604 * When turning on, we need to retry for 1ms to give the sink 3605 * time to wake up. 3606 */ 3607 for (i = 0; i < 3; i++) { 3608 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); 3609 if (ret == 1) 3610 break; 3611 msleep(1); 3612 } 3613 3614 if (ret == 1 && lspcon->active) 3615 lspcon_wait_pcon_mode(lspcon); 3616 } 3617 3618 if (ret != 1) 3619 drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Set power to %s failed\n", 3620 encoder->base.base.id, encoder->base.name, 3621 mode == DP_SET_POWER_D0 ? "D0" : "D3"); 3622 } 3623 3624 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3625 enum port port, enum pipe *pipe) 3626 { 3627 enum pipe p; 3628 3629 for_each_pipe(dev_priv, p) { 3630 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p)); 3631 3632 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3633 *pipe = p; 3634 return true; 3635 } 3636 } 3637 3638 drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n", 3639 port_name(port)); 3640 3641 /* must initialize pipe to something for the asserts */ 3642 *pipe = PIPE_A; 3643 3644 return false; 3645 } 3646 3647 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3648 i915_reg_t dp_reg, enum port port, 3649 enum pipe *pipe) 3650 { 3651 bool ret; 3652 u32 val; 3653 3654 val = intel_de_read(dev_priv, dp_reg); 3655 3656 ret = val & DP_PORT_EN; 3657 3658 /* asserts want to know the pipe even if the port is disabled */ 3659 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3660 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3661 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3662 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3663 else if (IS_CHERRYVIEW(dev_priv)) 3664 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3665 else 3666 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3667 3668 return ret; 3669 } 3670 3671 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3672 enum pipe *pipe) 3673 { 3674 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3675 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3676 intel_wakeref_t wakeref; 3677 bool ret; 3678 3679 wakeref = intel_display_power_get_if_enabled(dev_priv, 3680 encoder->power_domain); 3681 if (!wakeref) 3682 return false; 3683 3684 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3685 encoder->port, pipe); 3686 3687 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3688 3689 return ret; 3690 } 3691 3692 static void intel_dp_get_config(struct intel_encoder *encoder, 3693 struct intel_crtc_state *pipe_config) 3694 { 3695 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3696 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3697 u32 tmp, flags = 0; 3698 enum port port = encoder->port; 3699 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3700 3701 if (encoder->type == INTEL_OUTPUT_EDP) 3702 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3703 else 3704 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3705 3706 tmp = intel_de_read(dev_priv, intel_dp->output_reg); 3707 3708 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3709 3710 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3711 u32 trans_dp = intel_de_read(dev_priv, 3712 TRANS_DP_CTL(crtc->pipe)); 3713 3714 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3715 flags |= DRM_MODE_FLAG_PHSYNC; 3716 else 3717 flags |= DRM_MODE_FLAG_NHSYNC; 3718 3719 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3720 flags |= DRM_MODE_FLAG_PVSYNC; 3721 else 3722 flags |= DRM_MODE_FLAG_NVSYNC; 3723 } else { 3724 if (tmp & DP_SYNC_HS_HIGH) 3725 flags |= DRM_MODE_FLAG_PHSYNC; 3726 else 3727 flags |= DRM_MODE_FLAG_NHSYNC; 3728 3729 if (tmp & DP_SYNC_VS_HIGH) 3730 flags |= DRM_MODE_FLAG_PVSYNC; 3731 else 3732 flags |= DRM_MODE_FLAG_NVSYNC; 3733 } 3734 3735 pipe_config->hw.adjusted_mode.flags |= flags; 3736 3737 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3738 pipe_config->limited_color_range = true; 3739 3740 pipe_config->lane_count = 3741 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3742 3743 intel_dp_get_m_n(crtc, pipe_config); 3744 3745 if (port == PORT_A) { 3746 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3747 pipe_config->port_clock = 162000; 3748 else 3749 pipe_config->port_clock = 270000; 3750 } 3751 3752 pipe_config->hw.adjusted_mode.crtc_clock = 3753 intel_dotclock_calculate(pipe_config->port_clock, 3754 &pipe_config->dp_m_n); 3755 3756 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3757 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3758 /* 3759 * This is a big fat ugly hack. 3760 * 3761 * Some machines in UEFI boot mode provide us a VBT that has 18 3762 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3763 * unknown we fail to light up. Yet the same BIOS boots up with 3764 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3765 * max, not what it tells us to use. 3766 * 3767 * Note: This will still be broken if the eDP panel is not lit 3768 * up by the BIOS, and thus we can't get the mode at module 3769 * load. 3770 */ 3771 drm_dbg_kms(&dev_priv->drm, 3772 "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3773 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3774 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3775 } 3776 } 3777 3778 static bool 3779 intel_dp_get_dpcd(struct intel_dp *intel_dp); 3780 3781 /** 3782 * intel_dp_sync_state - sync the encoder state during init/resume 3783 * @encoder: intel encoder to sync 3784 * @crtc_state: state for the CRTC connected to the encoder 3785 * 3786 * Sync any state stored in the encoder wrt. HW state during driver init 3787 * and system resume. 3788 */ 3789 void intel_dp_sync_state(struct intel_encoder *encoder, 3790 const struct intel_crtc_state *crtc_state) 3791 { 3792 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3793 3794 /* 3795 * Don't clobber DPCD if it's been already read out during output 3796 * setup (eDP) or detect. 3797 */ 3798 if (intel_dp->dpcd[DP_DPCD_REV] == 0) 3799 intel_dp_get_dpcd(intel_dp); 3800 3801 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 3802 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 3803 } 3804 3805 bool intel_dp_initial_fastset_check(struct intel_encoder *encoder, 3806 struct intel_crtc_state *crtc_state) 3807 { 3808 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3809 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3810 3811 /* 3812 * If BIOS has set an unsupported or non-standard link rate for some 3813 * reason force an encoder recompute and full modeset. 3814 */ 3815 if (intel_dp_rate_index(intel_dp->source_rates, intel_dp->num_source_rates, 3816 crtc_state->port_clock) < 0) { 3817 drm_dbg_kms(&i915->drm, "Forcing full modeset due to unsupported link rate\n"); 3818 crtc_state->uapi.connectors_changed = true; 3819 return false; 3820 } 3821 3822 /* 3823 * FIXME hack to force full modeset when DSC is being used. 3824 * 3825 * As long as we do not have full state readout and config comparison 3826 * of crtc_state->dsc, we have no way to ensure reliable fastset. 3827 * Remove once we have readout for DSC. 3828 */ 3829 if (crtc_state->dsc.compression_enable) { 3830 drm_dbg_kms(&i915->drm, "Forcing full modeset due to DSC being enabled\n"); 3831 crtc_state->uapi.mode_changed = true; 3832 return false; 3833 } 3834 3835 if (CAN_PSR(i915) && intel_dp_is_edp(intel_dp)) { 3836 drm_dbg_kms(&i915->drm, "Forcing full modeset to compute PSR state\n"); 3837 crtc_state->uapi.mode_changed = true; 3838 return false; 3839 } 3840 3841 return true; 3842 } 3843 3844 static void intel_disable_dp(struct intel_atomic_state *state, 3845 struct intel_encoder *encoder, 3846 const struct intel_crtc_state *old_crtc_state, 3847 const struct drm_connector_state *old_conn_state) 3848 { 3849 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3850 3851 intel_dp->link_trained = false; 3852 3853 if (old_crtc_state->has_audio) 3854 intel_audio_codec_disable(encoder, 3855 old_crtc_state, old_conn_state); 3856 3857 /* Make sure the panel is off before trying to change the mode. But also 3858 * ensure that we have vdd while we switch off the panel. */ 3859 intel_edp_panel_vdd_on(intel_dp); 3860 intel_edp_backlight_off(old_conn_state); 3861 intel_dp_set_power(intel_dp, DP_SET_POWER_D3); 3862 intel_edp_panel_off(intel_dp); 3863 } 3864 3865 static void g4x_disable_dp(struct intel_atomic_state *state, 3866 struct intel_encoder *encoder, 3867 const struct intel_crtc_state *old_crtc_state, 3868 const struct drm_connector_state *old_conn_state) 3869 { 3870 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state); 3871 } 3872 3873 static void vlv_disable_dp(struct intel_atomic_state *state, 3874 struct intel_encoder *encoder, 3875 const struct intel_crtc_state *old_crtc_state, 3876 const struct drm_connector_state *old_conn_state) 3877 { 3878 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state); 3879 } 3880 3881 static void g4x_post_disable_dp(struct intel_atomic_state *state, 3882 struct intel_encoder *encoder, 3883 const struct intel_crtc_state *old_crtc_state, 3884 const struct drm_connector_state *old_conn_state) 3885 { 3886 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3887 enum port port = encoder->port; 3888 3889 /* 3890 * Bspec does not list a specific disable sequence for g4x DP. 3891 * Follow the ilk+ sequence (disable pipe before the port) for 3892 * g4x DP as it does not suffer from underruns like the normal 3893 * g4x modeset sequence (disable pipe after the port). 3894 */ 3895 intel_dp_link_down(encoder, old_crtc_state); 3896 3897 /* Only ilk+ has port A */ 3898 if (port == PORT_A) 3899 ilk_edp_pll_off(intel_dp, old_crtc_state); 3900 } 3901 3902 static void vlv_post_disable_dp(struct intel_atomic_state *state, 3903 struct intel_encoder *encoder, 3904 const struct intel_crtc_state *old_crtc_state, 3905 const struct drm_connector_state *old_conn_state) 3906 { 3907 intel_dp_link_down(encoder, old_crtc_state); 3908 } 3909 3910 static void chv_post_disable_dp(struct intel_atomic_state *state, 3911 struct intel_encoder *encoder, 3912 const struct intel_crtc_state *old_crtc_state, 3913 const struct drm_connector_state *old_conn_state) 3914 { 3915 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3916 3917 intel_dp_link_down(encoder, old_crtc_state); 3918 3919 vlv_dpio_get(dev_priv); 3920 3921 /* Assert data lane reset */ 3922 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3923 3924 vlv_dpio_put(dev_priv); 3925 } 3926 3927 static void 3928 cpt_set_link_train(struct intel_dp *intel_dp, 3929 const struct intel_crtc_state *crtc_state, 3930 u8 dp_train_pat) 3931 { 3932 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3933 u32 *DP = &intel_dp->DP; 3934 3935 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3936 3937 switch (intel_dp_training_pattern_symbol(dp_train_pat)) { 3938 case DP_TRAINING_PATTERN_DISABLE: 3939 *DP |= DP_LINK_TRAIN_OFF_CPT; 3940 break; 3941 case DP_TRAINING_PATTERN_1: 3942 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3943 break; 3944 case DP_TRAINING_PATTERN_2: 3945 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3946 break; 3947 case DP_TRAINING_PATTERN_3: 3948 drm_dbg_kms(&dev_priv->drm, 3949 "TPS3 not supported, using TPS2 instead\n"); 3950 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3951 break; 3952 } 3953 3954 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 3955 intel_de_posting_read(dev_priv, intel_dp->output_reg); 3956 } 3957 3958 static void 3959 g4x_set_link_train(struct intel_dp *intel_dp, 3960 const struct intel_crtc_state *crtc_state, 3961 u8 dp_train_pat) 3962 { 3963 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3964 u32 *DP = &intel_dp->DP; 3965 3966 *DP &= ~DP_LINK_TRAIN_MASK; 3967 3968 switch (intel_dp_training_pattern_symbol(dp_train_pat)) { 3969 case DP_TRAINING_PATTERN_DISABLE: 3970 *DP |= DP_LINK_TRAIN_OFF; 3971 break; 3972 case DP_TRAINING_PATTERN_1: 3973 *DP |= DP_LINK_TRAIN_PAT_1; 3974 break; 3975 case DP_TRAINING_PATTERN_2: 3976 *DP |= DP_LINK_TRAIN_PAT_2; 3977 break; 3978 case DP_TRAINING_PATTERN_3: 3979 drm_dbg_kms(&dev_priv->drm, 3980 "TPS3 not supported, using TPS2 instead\n"); 3981 *DP |= DP_LINK_TRAIN_PAT_2; 3982 break; 3983 } 3984 3985 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 3986 intel_de_posting_read(dev_priv, intel_dp->output_reg); 3987 } 3988 3989 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3990 const struct intel_crtc_state *crtc_state) 3991 { 3992 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3993 3994 /* enable with pattern 1 (as per spec) */ 3995 3996 intel_dp_program_link_training_pattern(intel_dp, crtc_state, 3997 DP_TRAINING_PATTERN_1); 3998 3999 /* 4000 * Magic for VLV/CHV. We _must_ first set up the register 4001 * without actually enabling the port, and then do another 4002 * write to enable the port. Otherwise link training will 4003 * fail when the power sequencer is freshly used for this port. 4004 */ 4005 intel_dp->DP |= DP_PORT_EN; 4006 if (crtc_state->has_audio) 4007 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 4008 4009 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4010 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4011 } 4012 4013 void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp) 4014 { 4015 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4016 u8 tmp; 4017 4018 if (intel_dp->dpcd[DP_DPCD_REV] < 0x13) 4019 return; 4020 4021 if (!drm_dp_is_branch(intel_dp->dpcd)) 4022 return; 4023 4024 tmp = intel_dp->has_hdmi_sink ? 4025 DP_HDMI_DVI_OUTPUT_CONFIG : 0; 4026 4027 if (drm_dp_dpcd_writeb(&intel_dp->aux, 4028 DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1) 4029 drm_dbg_kms(&i915->drm, "Failed to set protocol converter HDMI mode to %s\n", 4030 enableddisabled(intel_dp->has_hdmi_sink)); 4031 4032 tmp = intel_dp->dfp.ycbcr_444_to_420 ? 4033 DP_CONVERSION_TO_YCBCR420_ENABLE : 0; 4034 4035 if (drm_dp_dpcd_writeb(&intel_dp->aux, 4036 DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1) 4037 drm_dbg_kms(&i915->drm, 4038 "Failed to set protocol converter YCbCr 4:2:0 conversion mode to %s\n", 4039 enableddisabled(intel_dp->dfp.ycbcr_444_to_420)); 4040 4041 tmp = 0; 4042 4043 if (drm_dp_dpcd_writeb(&intel_dp->aux, 4044 DP_PROTOCOL_CONVERTER_CONTROL_2, tmp) <= 0) 4045 drm_dbg_kms(&i915->drm, 4046 "Failed to set protocol converter YCbCr 4:2:2 conversion mode to %s\n", 4047 enableddisabled(false)); 4048 } 4049 4050 static void intel_enable_dp(struct intel_atomic_state *state, 4051 struct intel_encoder *encoder, 4052 const struct intel_crtc_state *pipe_config, 4053 const struct drm_connector_state *conn_state) 4054 { 4055 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4056 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4057 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 4058 u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg); 4059 enum pipe pipe = crtc->pipe; 4060 intel_wakeref_t wakeref; 4061 4062 if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN)) 4063 return; 4064 4065 with_pps_lock(intel_dp, wakeref) { 4066 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 4067 vlv_init_panel_power_sequencer(encoder, pipe_config); 4068 4069 intel_dp_enable_port(intel_dp, pipe_config); 4070 4071 edp_panel_vdd_on(intel_dp); 4072 edp_panel_on(intel_dp); 4073 edp_panel_vdd_off(intel_dp, true); 4074 } 4075 4076 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4077 unsigned int lane_mask = 0x0; 4078 4079 if (IS_CHERRYVIEW(dev_priv)) 4080 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 4081 4082 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 4083 lane_mask); 4084 } 4085 4086 intel_dp_set_power(intel_dp, DP_SET_POWER_D0); 4087 intel_dp_configure_protocol_converter(intel_dp); 4088 intel_dp_start_link_train(intel_dp, pipe_config); 4089 intel_dp_stop_link_train(intel_dp, pipe_config); 4090 4091 if (pipe_config->has_audio) { 4092 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n", 4093 pipe_name(pipe)); 4094 intel_audio_codec_enable(encoder, pipe_config, conn_state); 4095 } 4096 } 4097 4098 static void g4x_enable_dp(struct intel_atomic_state *state, 4099 struct intel_encoder *encoder, 4100 const struct intel_crtc_state *pipe_config, 4101 const struct drm_connector_state *conn_state) 4102 { 4103 intel_enable_dp(state, encoder, pipe_config, conn_state); 4104 intel_edp_backlight_on(pipe_config, conn_state); 4105 } 4106 4107 static void vlv_enable_dp(struct intel_atomic_state *state, 4108 struct intel_encoder *encoder, 4109 const struct intel_crtc_state *pipe_config, 4110 const struct drm_connector_state *conn_state) 4111 { 4112 intel_edp_backlight_on(pipe_config, conn_state); 4113 } 4114 4115 static void g4x_pre_enable_dp(struct intel_atomic_state *state, 4116 struct intel_encoder *encoder, 4117 const struct intel_crtc_state *pipe_config, 4118 const struct drm_connector_state *conn_state) 4119 { 4120 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4121 enum port port = encoder->port; 4122 4123 intel_dp_prepare(encoder, pipe_config); 4124 4125 /* Only ilk+ has port A */ 4126 if (port == PORT_A) 4127 ilk_edp_pll_on(intel_dp, pipe_config); 4128 } 4129 4130 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 4131 { 4132 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 4133 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 4134 enum pipe pipe = intel_dp->pps_pipe; 4135 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 4136 4137 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); 4138 4139 if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B)) 4140 return; 4141 4142 edp_panel_vdd_off_sync(intel_dp); 4143 4144 /* 4145 * VLV seems to get confused when multiple power sequencers 4146 * have the same port selected (even if only one has power/vdd 4147 * enabled). The failure manifests as vlv_wait_port_ready() failing 4148 * CHV on the other hand doesn't seem to mind having the same port 4149 * selected in multiple power sequencers, but let's clear the 4150 * port select always when logically disconnecting a power sequencer 4151 * from a port. 4152 */ 4153 drm_dbg_kms(&dev_priv->drm, 4154 "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n", 4155 pipe_name(pipe), dig_port->base.base.base.id, 4156 dig_port->base.base.name); 4157 intel_de_write(dev_priv, pp_on_reg, 0); 4158 intel_de_posting_read(dev_priv, pp_on_reg); 4159 4160 intel_dp->pps_pipe = INVALID_PIPE; 4161 } 4162 4163 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 4164 enum pipe pipe) 4165 { 4166 struct intel_encoder *encoder; 4167 4168 lockdep_assert_held(&dev_priv->pps_mutex); 4169 4170 for_each_intel_dp(&dev_priv->drm, encoder) { 4171 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4172 4173 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe, 4174 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n", 4175 pipe_name(pipe), encoder->base.base.id, 4176 encoder->base.name); 4177 4178 if (intel_dp->pps_pipe != pipe) 4179 continue; 4180 4181 drm_dbg_kms(&dev_priv->drm, 4182 "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n", 4183 pipe_name(pipe), encoder->base.base.id, 4184 encoder->base.name); 4185 4186 /* make sure vdd is off before we steal it */ 4187 vlv_detach_power_sequencer(intel_dp); 4188 } 4189 } 4190 4191 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 4192 const struct intel_crtc_state *crtc_state) 4193 { 4194 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4195 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4196 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4197 4198 lockdep_assert_held(&dev_priv->pps_mutex); 4199 4200 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); 4201 4202 if (intel_dp->pps_pipe != INVALID_PIPE && 4203 intel_dp->pps_pipe != crtc->pipe) { 4204 /* 4205 * If another power sequencer was being used on this 4206 * port previously make sure to turn off vdd there while 4207 * we still have control of it. 4208 */ 4209 vlv_detach_power_sequencer(intel_dp); 4210 } 4211 4212 /* 4213 * We may be stealing the power 4214 * sequencer from another port. 4215 */ 4216 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 4217 4218 intel_dp->active_pipe = crtc->pipe; 4219 4220 if (!intel_dp_is_edp(intel_dp)) 4221 return; 4222 4223 /* now it's all ours */ 4224 intel_dp->pps_pipe = crtc->pipe; 4225 4226 drm_dbg_kms(&dev_priv->drm, 4227 "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n", 4228 pipe_name(intel_dp->pps_pipe), encoder->base.base.id, 4229 encoder->base.name); 4230 4231 /* init power sequencer on this pipe and port */ 4232 intel_dp_init_panel_power_sequencer(intel_dp); 4233 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 4234 } 4235 4236 static void vlv_pre_enable_dp(struct intel_atomic_state *state, 4237 struct intel_encoder *encoder, 4238 const struct intel_crtc_state *pipe_config, 4239 const struct drm_connector_state *conn_state) 4240 { 4241 vlv_phy_pre_encoder_enable(encoder, pipe_config); 4242 4243 intel_enable_dp(state, encoder, pipe_config, conn_state); 4244 } 4245 4246 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state, 4247 struct intel_encoder *encoder, 4248 const struct intel_crtc_state *pipe_config, 4249 const struct drm_connector_state *conn_state) 4250 { 4251 intel_dp_prepare(encoder, pipe_config); 4252 4253 vlv_phy_pre_pll_enable(encoder, pipe_config); 4254 } 4255 4256 static void chv_pre_enable_dp(struct intel_atomic_state *state, 4257 struct intel_encoder *encoder, 4258 const struct intel_crtc_state *pipe_config, 4259 const struct drm_connector_state *conn_state) 4260 { 4261 chv_phy_pre_encoder_enable(encoder, pipe_config); 4262 4263 intel_enable_dp(state, encoder, pipe_config, conn_state); 4264 4265 /* Second common lane will stay alive on its own now */ 4266 chv_phy_release_cl2_override(encoder); 4267 } 4268 4269 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state, 4270 struct intel_encoder *encoder, 4271 const struct intel_crtc_state *pipe_config, 4272 const struct drm_connector_state *conn_state) 4273 { 4274 intel_dp_prepare(encoder, pipe_config); 4275 4276 chv_phy_pre_pll_enable(encoder, pipe_config); 4277 } 4278 4279 static void chv_dp_post_pll_disable(struct intel_atomic_state *state, 4280 struct intel_encoder *encoder, 4281 const struct intel_crtc_state *old_crtc_state, 4282 const struct drm_connector_state *old_conn_state) 4283 { 4284 chv_phy_post_pll_disable(encoder, old_crtc_state); 4285 } 4286 4287 static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp, 4288 const struct intel_crtc_state *crtc_state) 4289 { 4290 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 4291 } 4292 4293 static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp, 4294 const struct intel_crtc_state *crtc_state) 4295 { 4296 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 4297 } 4298 4299 static u8 intel_dp_preemph_max_2(struct intel_dp *intel_dp) 4300 { 4301 return DP_TRAIN_PRE_EMPH_LEVEL_2; 4302 } 4303 4304 static u8 intel_dp_preemph_max_3(struct intel_dp *intel_dp) 4305 { 4306 return DP_TRAIN_PRE_EMPH_LEVEL_3; 4307 } 4308 4309 static void vlv_set_signal_levels(struct intel_dp *intel_dp, 4310 const struct intel_crtc_state *crtc_state) 4311 { 4312 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 4313 unsigned long demph_reg_value, preemph_reg_value, 4314 uniqtranscale_reg_value; 4315 u8 train_set = intel_dp->train_set[0]; 4316 4317 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4318 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4319 preemph_reg_value = 0x0004000; 4320 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4321 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4322 demph_reg_value = 0x2B405555; 4323 uniqtranscale_reg_value = 0x552AB83A; 4324 break; 4325 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4326 demph_reg_value = 0x2B404040; 4327 uniqtranscale_reg_value = 0x5548B83A; 4328 break; 4329 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4330 demph_reg_value = 0x2B245555; 4331 uniqtranscale_reg_value = 0x5560B83A; 4332 break; 4333 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4334 demph_reg_value = 0x2B405555; 4335 uniqtranscale_reg_value = 0x5598DA3A; 4336 break; 4337 default: 4338 return; 4339 } 4340 break; 4341 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4342 preemph_reg_value = 0x0002000; 4343 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4344 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4345 demph_reg_value = 0x2B404040; 4346 uniqtranscale_reg_value = 0x5552B83A; 4347 break; 4348 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4349 demph_reg_value = 0x2B404848; 4350 uniqtranscale_reg_value = 0x5580B83A; 4351 break; 4352 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4353 demph_reg_value = 0x2B404040; 4354 uniqtranscale_reg_value = 0x55ADDA3A; 4355 break; 4356 default: 4357 return; 4358 } 4359 break; 4360 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4361 preemph_reg_value = 0x0000000; 4362 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4363 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4364 demph_reg_value = 0x2B305555; 4365 uniqtranscale_reg_value = 0x5570B83A; 4366 break; 4367 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4368 demph_reg_value = 0x2B2B4040; 4369 uniqtranscale_reg_value = 0x55ADDA3A; 4370 break; 4371 default: 4372 return; 4373 } 4374 break; 4375 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4376 preemph_reg_value = 0x0006000; 4377 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4378 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4379 demph_reg_value = 0x1B405555; 4380 uniqtranscale_reg_value = 0x55ADDA3A; 4381 break; 4382 default: 4383 return; 4384 } 4385 break; 4386 default: 4387 return; 4388 } 4389 4390 vlv_set_phy_signal_level(encoder, crtc_state, 4391 demph_reg_value, preemph_reg_value, 4392 uniqtranscale_reg_value, 0); 4393 } 4394 4395 static void chv_set_signal_levels(struct intel_dp *intel_dp, 4396 const struct intel_crtc_state *crtc_state) 4397 { 4398 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 4399 u32 deemph_reg_value, margin_reg_value; 4400 bool uniq_trans_scale = false; 4401 u8 train_set = intel_dp->train_set[0]; 4402 4403 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4404 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4405 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4406 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4407 deemph_reg_value = 128; 4408 margin_reg_value = 52; 4409 break; 4410 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4411 deemph_reg_value = 128; 4412 margin_reg_value = 77; 4413 break; 4414 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4415 deemph_reg_value = 128; 4416 margin_reg_value = 102; 4417 break; 4418 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4419 deemph_reg_value = 128; 4420 margin_reg_value = 154; 4421 uniq_trans_scale = true; 4422 break; 4423 default: 4424 return; 4425 } 4426 break; 4427 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4428 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4429 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4430 deemph_reg_value = 85; 4431 margin_reg_value = 78; 4432 break; 4433 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4434 deemph_reg_value = 85; 4435 margin_reg_value = 116; 4436 break; 4437 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4438 deemph_reg_value = 85; 4439 margin_reg_value = 154; 4440 break; 4441 default: 4442 return; 4443 } 4444 break; 4445 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4446 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4447 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4448 deemph_reg_value = 64; 4449 margin_reg_value = 104; 4450 break; 4451 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4452 deemph_reg_value = 64; 4453 margin_reg_value = 154; 4454 break; 4455 default: 4456 return; 4457 } 4458 break; 4459 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4460 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4461 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4462 deemph_reg_value = 43; 4463 margin_reg_value = 154; 4464 break; 4465 default: 4466 return; 4467 } 4468 break; 4469 default: 4470 return; 4471 } 4472 4473 chv_set_phy_signal_level(encoder, crtc_state, 4474 deemph_reg_value, margin_reg_value, 4475 uniq_trans_scale); 4476 } 4477 4478 static u32 g4x_signal_levels(u8 train_set) 4479 { 4480 u32 signal_levels = 0; 4481 4482 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4483 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4484 default: 4485 signal_levels |= DP_VOLTAGE_0_4; 4486 break; 4487 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4488 signal_levels |= DP_VOLTAGE_0_6; 4489 break; 4490 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4491 signal_levels |= DP_VOLTAGE_0_8; 4492 break; 4493 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4494 signal_levels |= DP_VOLTAGE_1_2; 4495 break; 4496 } 4497 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4498 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4499 default: 4500 signal_levels |= DP_PRE_EMPHASIS_0; 4501 break; 4502 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4503 signal_levels |= DP_PRE_EMPHASIS_3_5; 4504 break; 4505 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4506 signal_levels |= DP_PRE_EMPHASIS_6; 4507 break; 4508 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4509 signal_levels |= DP_PRE_EMPHASIS_9_5; 4510 break; 4511 } 4512 return signal_levels; 4513 } 4514 4515 static void 4516 g4x_set_signal_levels(struct intel_dp *intel_dp, 4517 const struct intel_crtc_state *crtc_state) 4518 { 4519 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4520 u8 train_set = intel_dp->train_set[0]; 4521 u32 signal_levels; 4522 4523 signal_levels = g4x_signal_levels(train_set); 4524 4525 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", 4526 signal_levels); 4527 4528 intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK); 4529 intel_dp->DP |= signal_levels; 4530 4531 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4532 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4533 } 4534 4535 /* SNB CPU eDP voltage swing and pre-emphasis control */ 4536 static u32 snb_cpu_edp_signal_levels(u8 train_set) 4537 { 4538 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4539 DP_TRAIN_PRE_EMPHASIS_MASK); 4540 4541 switch (signal_levels) { 4542 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4543 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4544 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4545 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4546 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 4547 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4548 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4549 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 4550 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4551 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4552 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 4553 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4554 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4555 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 4556 default: 4557 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4558 "0x%x\n", signal_levels); 4559 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4560 } 4561 } 4562 4563 static void 4564 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp, 4565 const struct intel_crtc_state *crtc_state) 4566 { 4567 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4568 u8 train_set = intel_dp->train_set[0]; 4569 u32 signal_levels; 4570 4571 signal_levels = snb_cpu_edp_signal_levels(train_set); 4572 4573 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", 4574 signal_levels); 4575 4576 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 4577 intel_dp->DP |= signal_levels; 4578 4579 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4580 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4581 } 4582 4583 /* IVB CPU eDP voltage swing and pre-emphasis control */ 4584 static u32 ivb_cpu_edp_signal_levels(u8 train_set) 4585 { 4586 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4587 DP_TRAIN_PRE_EMPHASIS_MASK); 4588 4589 switch (signal_levels) { 4590 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4591 return EDP_LINK_TRAIN_400MV_0DB_IVB; 4592 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4593 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 4594 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4595 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4596 return EDP_LINK_TRAIN_400MV_6DB_IVB; 4597 4598 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4599 return EDP_LINK_TRAIN_600MV_0DB_IVB; 4600 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4601 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 4602 4603 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4604 return EDP_LINK_TRAIN_800MV_0DB_IVB; 4605 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4606 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 4607 4608 default: 4609 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4610 "0x%x\n", signal_levels); 4611 return EDP_LINK_TRAIN_500MV_0DB_IVB; 4612 } 4613 } 4614 4615 static void 4616 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp, 4617 const struct intel_crtc_state *crtc_state) 4618 { 4619 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4620 u8 train_set = intel_dp->train_set[0]; 4621 u32 signal_levels; 4622 4623 signal_levels = ivb_cpu_edp_signal_levels(train_set); 4624 4625 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", 4626 signal_levels); 4627 4628 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 4629 intel_dp->DP |= signal_levels; 4630 4631 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4632 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4633 } 4634 4635 void intel_dp_set_signal_levels(struct intel_dp *intel_dp, 4636 const struct intel_crtc_state *crtc_state) 4637 { 4638 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4639 u8 train_set = intel_dp->train_set[0]; 4640 4641 drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n", 4642 train_set & DP_TRAIN_VOLTAGE_SWING_MASK, 4643 train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : ""); 4644 drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n", 4645 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4646 DP_TRAIN_PRE_EMPHASIS_SHIFT, 4647 train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ? 4648 " (max)" : ""); 4649 4650 intel_dp->set_signal_levels(intel_dp, crtc_state); 4651 } 4652 4653 void 4654 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4655 const struct intel_crtc_state *crtc_state, 4656 u8 dp_train_pat) 4657 { 4658 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4659 4660 if ((intel_dp_training_pattern_symbol(dp_train_pat)) != 4661 DP_TRAINING_PATTERN_DISABLE) 4662 drm_dbg_kms(&dev_priv->drm, 4663 "Using DP training pattern TPS%d\n", 4664 intel_dp_training_pattern_symbol(dp_train_pat)); 4665 4666 intel_dp->set_link_train(intel_dp, crtc_state, dp_train_pat); 4667 } 4668 4669 static void 4670 intel_dp_link_down(struct intel_encoder *encoder, 4671 const struct intel_crtc_state *old_crtc_state) 4672 { 4673 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4674 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4675 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4676 enum port port = encoder->port; 4677 u32 DP = intel_dp->DP; 4678 4679 if (drm_WARN_ON(&dev_priv->drm, 4680 (intel_de_read(dev_priv, intel_dp->output_reg) & 4681 DP_PORT_EN) == 0)) 4682 return; 4683 4684 drm_dbg_kms(&dev_priv->drm, "\n"); 4685 4686 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4687 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4688 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4689 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4690 } else { 4691 DP &= ~DP_LINK_TRAIN_MASK; 4692 DP |= DP_LINK_TRAIN_PAT_IDLE; 4693 } 4694 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4695 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4696 4697 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4698 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4699 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4700 4701 /* 4702 * HW workaround for IBX, we need to move the port 4703 * to transcoder A after disabling it to allow the 4704 * matching HDMI port to be enabled on transcoder A. 4705 */ 4706 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4707 /* 4708 * We get CPU/PCH FIFO underruns on the other pipe when 4709 * doing the workaround. Sweep them under the rug. 4710 */ 4711 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4712 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4713 4714 /* always enable with pattern 1 (as per spec) */ 4715 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4716 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4717 DP_LINK_TRAIN_PAT_1; 4718 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4719 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4720 4721 DP &= ~DP_PORT_EN; 4722 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4723 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4724 4725 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4726 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4727 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4728 } 4729 4730 msleep(intel_dp->panel_power_down_delay); 4731 4732 intel_dp->DP = DP; 4733 4734 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4735 intel_wakeref_t wakeref; 4736 4737 with_pps_lock(intel_dp, wakeref) 4738 intel_dp->active_pipe = INVALID_PIPE; 4739 } 4740 } 4741 4742 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4743 { 4744 u8 dprx = 0; 4745 4746 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4747 &dprx) != 1) 4748 return false; 4749 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4750 } 4751 4752 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4753 { 4754 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4755 4756 /* 4757 * Clear the cached register set to avoid using stale values 4758 * for the sinks that do not support DSC. 4759 */ 4760 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4761 4762 /* Clear fec_capable to avoid using stale values */ 4763 intel_dp->fec_capable = 0; 4764 4765 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4766 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4767 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4768 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4769 intel_dp->dsc_dpcd, 4770 sizeof(intel_dp->dsc_dpcd)) < 0) 4771 drm_err(&i915->drm, 4772 "Failed to read DPCD register 0x%x\n", 4773 DP_DSC_SUPPORT); 4774 4775 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n", 4776 (int)sizeof(intel_dp->dsc_dpcd), 4777 intel_dp->dsc_dpcd); 4778 4779 /* FEC is supported only on DP 1.4 */ 4780 if (!intel_dp_is_edp(intel_dp) && 4781 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4782 &intel_dp->fec_capable) < 0) 4783 drm_err(&i915->drm, 4784 "Failed to read FEC DPCD register\n"); 4785 4786 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n", 4787 intel_dp->fec_capable); 4788 } 4789 } 4790 4791 static bool 4792 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4793 { 4794 struct drm_i915_private *dev_priv = 4795 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4796 4797 /* this function is meant to be called only once */ 4798 drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0); 4799 4800 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0) 4801 return false; 4802 4803 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4804 drm_dp_is_branch(intel_dp->dpcd)); 4805 4806 /* 4807 * Read the eDP display control registers. 4808 * 4809 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4810 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4811 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4812 * method). The display control registers should read zero if they're 4813 * not supported anyway. 4814 */ 4815 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4816 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4817 sizeof(intel_dp->edp_dpcd)) 4818 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n", 4819 (int)sizeof(intel_dp->edp_dpcd), 4820 intel_dp->edp_dpcd); 4821 4822 /* 4823 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4824 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4825 */ 4826 intel_psr_init_dpcd(intel_dp); 4827 4828 /* Read the eDP 1.4+ supported link rates. */ 4829 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4830 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4831 int i; 4832 4833 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4834 sink_rates, sizeof(sink_rates)); 4835 4836 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4837 int val = le16_to_cpu(sink_rates[i]); 4838 4839 if (val == 0) 4840 break; 4841 4842 /* Value read multiplied by 200kHz gives the per-lane 4843 * link rate in kHz. The source rates are, however, 4844 * stored in terms of LS_Clk kHz. The full conversion 4845 * back to symbols is 4846 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4847 */ 4848 intel_dp->sink_rates[i] = (val * 200) / 10; 4849 } 4850 intel_dp->num_sink_rates = i; 4851 } 4852 4853 /* 4854 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4855 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4856 */ 4857 if (intel_dp->num_sink_rates) 4858 intel_dp->use_rate_select = true; 4859 else 4860 intel_dp_set_sink_rates(intel_dp); 4861 4862 intel_dp_set_common_rates(intel_dp); 4863 4864 /* Read the eDP DSC DPCD registers */ 4865 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4866 intel_dp_get_dsc_sink_cap(intel_dp); 4867 4868 return true; 4869 } 4870 4871 static bool 4872 intel_dp_has_sink_count(struct intel_dp *intel_dp) 4873 { 4874 if (!intel_dp->attached_connector) 4875 return false; 4876 4877 return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base, 4878 intel_dp->dpcd, 4879 &intel_dp->desc); 4880 } 4881 4882 static bool 4883 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4884 { 4885 int ret; 4886 4887 intel_dp_lttpr_init(intel_dp); 4888 4889 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd)) 4890 return false; 4891 4892 /* 4893 * Don't clobber cached eDP rates. Also skip re-reading 4894 * the OUI/ID since we know it won't change. 4895 */ 4896 if (!intel_dp_is_edp(intel_dp)) { 4897 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4898 drm_dp_is_branch(intel_dp->dpcd)); 4899 4900 intel_dp_set_sink_rates(intel_dp); 4901 intel_dp_set_common_rates(intel_dp); 4902 } 4903 4904 if (intel_dp_has_sink_count(intel_dp)) { 4905 ret = drm_dp_read_sink_count(&intel_dp->aux); 4906 if (ret < 0) 4907 return false; 4908 4909 /* 4910 * Sink count can change between short pulse hpd hence 4911 * a member variable in intel_dp will track any changes 4912 * between short pulse interrupts. 4913 */ 4914 intel_dp->sink_count = ret; 4915 4916 /* 4917 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4918 * a dongle is present but no display. Unless we require to know 4919 * if a dongle is present or not, we don't need to update 4920 * downstream port information. So, an early return here saves 4921 * time from performing other operations which are not required. 4922 */ 4923 if (!intel_dp->sink_count) 4924 return false; 4925 } 4926 4927 return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd, 4928 intel_dp->downstream_ports) == 0; 4929 } 4930 4931 static bool 4932 intel_dp_can_mst(struct intel_dp *intel_dp) 4933 { 4934 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4935 4936 return i915->params.enable_dp_mst && 4937 intel_dp->can_mst && 4938 drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd); 4939 } 4940 4941 static void 4942 intel_dp_configure_mst(struct intel_dp *intel_dp) 4943 { 4944 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4945 struct intel_encoder *encoder = 4946 &dp_to_dig_port(intel_dp)->base; 4947 bool sink_can_mst = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd); 4948 4949 drm_dbg_kms(&i915->drm, 4950 "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n", 4951 encoder->base.base.id, encoder->base.name, 4952 yesno(intel_dp->can_mst), yesno(sink_can_mst), 4953 yesno(i915->params.enable_dp_mst)); 4954 4955 if (!intel_dp->can_mst) 4956 return; 4957 4958 intel_dp->is_mst = sink_can_mst && 4959 i915->params.enable_dp_mst; 4960 4961 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4962 intel_dp->is_mst); 4963 } 4964 4965 static bool 4966 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4967 { 4968 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4969 sink_irq_vector, DP_DPRX_ESI_LEN) == 4970 DP_DPRX_ESI_LEN; 4971 } 4972 4973 bool 4974 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, 4975 const struct drm_connector_state *conn_state) 4976 { 4977 /* 4978 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication 4979 * of Color Encoding Format and Content Color Gamut], in order to 4980 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. 4981 */ 4982 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4983 return true; 4984 4985 switch (conn_state->colorspace) { 4986 case DRM_MODE_COLORIMETRY_SYCC_601: 4987 case DRM_MODE_COLORIMETRY_OPYCC_601: 4988 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4989 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4990 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4991 return true; 4992 default: 4993 break; 4994 } 4995 4996 return false; 4997 } 4998 4999 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc, 5000 struct dp_sdp *sdp, size_t size) 5001 { 5002 size_t length = sizeof(struct dp_sdp); 5003 5004 if (size < length) 5005 return -ENOSPC; 5006 5007 memset(sdp, 0, size); 5008 5009 /* 5010 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 5011 * VSC SDP Header Bytes 5012 */ 5013 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */ 5014 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */ 5015 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */ 5016 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */ 5017 5018 /* 5019 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as 5020 * per DP 1.4a spec. 5021 */ 5022 if (vsc->revision != 0x5) 5023 goto out; 5024 5025 /* VSC SDP Payload for DB16 through DB18 */ 5026 /* Pixel Encoding and Colorimetry Formats */ 5027 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */ 5028 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */ 5029 5030 switch (vsc->bpc) { 5031 case 6: 5032 /* 6bpc: 0x0 */ 5033 break; 5034 case 8: 5035 sdp->db[17] = 0x1; /* DB17[3:0] */ 5036 break; 5037 case 10: 5038 sdp->db[17] = 0x2; 5039 break; 5040 case 12: 5041 sdp->db[17] = 0x3; 5042 break; 5043 case 16: 5044 sdp->db[17] = 0x4; 5045 break; 5046 default: 5047 MISSING_CASE(vsc->bpc); 5048 break; 5049 } 5050 /* Dynamic Range and Component Bit Depth */ 5051 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA) 5052 sdp->db[17] |= 0x80; /* DB17[7] */ 5053 5054 /* Content Type */ 5055 sdp->db[18] = vsc->content_type & 0x7; 5056 5057 out: 5058 return length; 5059 } 5060 5061 static ssize_t 5062 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe, 5063 struct dp_sdp *sdp, 5064 size_t size) 5065 { 5066 size_t length = sizeof(struct dp_sdp); 5067 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; 5068 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; 5069 ssize_t len; 5070 5071 if (size < length) 5072 return -ENOSPC; 5073 5074 memset(sdp, 0, size); 5075 5076 len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf)); 5077 if (len < 0) { 5078 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n"); 5079 return -ENOSPC; 5080 } 5081 5082 if (len != infoframe_size) { 5083 DRM_DEBUG_KMS("wrong static hdr metadata size\n"); 5084 return -ENOSPC; 5085 } 5086 5087 /* 5088 * Set up the infoframe sdp packet for HDR static metadata. 5089 * Prepare VSC Header for SU as per DP 1.4a spec, 5090 * Table 2-100 and Table 2-101 5091 */ 5092 5093 /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */ 5094 sdp->sdp_header.HB0 = 0; 5095 /* 5096 * Packet Type 80h + Non-audio INFOFRAME Type value 5097 * HDMI_INFOFRAME_TYPE_DRM: 0x87 5098 * - 80h + Non-audio INFOFRAME Type value 5099 * - InfoFrame Type: 0x07 5100 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame] 5101 */ 5102 sdp->sdp_header.HB1 = drm_infoframe->type; 5103 /* 5104 * Least Significant Eight Bits of (Data Byte Count – 1) 5105 * infoframe_size - 1 5106 */ 5107 sdp->sdp_header.HB2 = 0x1D; 5108 /* INFOFRAME SDP Version Number */ 5109 sdp->sdp_header.HB3 = (0x13 << 2); 5110 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 5111 sdp->db[0] = drm_infoframe->version; 5112 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 5113 sdp->db[1] = drm_infoframe->length; 5114 /* 5115 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after 5116 * HDMI_INFOFRAME_HEADER_SIZE 5117 */ 5118 BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2); 5119 memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], 5120 HDMI_DRM_INFOFRAME_SIZE); 5121 5122 /* 5123 * Size of DP infoframe sdp packet for HDR static metadata consists of 5124 * - DP SDP Header(struct dp_sdp_header): 4 bytes 5125 * - Two Data Blocks: 2 bytes 5126 * CTA Header Byte2 (INFOFRAME Version Number) 5127 * CTA Header Byte3 (Length of INFOFRAME) 5128 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes 5129 * 5130 * Prior to GEN11's GMP register size is identical to DP HDR static metadata 5131 * infoframe size. But GEN11+ has larger than that size, write_infoframe 5132 * will pad rest of the size. 5133 */ 5134 return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE; 5135 } 5136 5137 static void intel_write_dp_sdp(struct intel_encoder *encoder, 5138 const struct intel_crtc_state *crtc_state, 5139 unsigned int type) 5140 { 5141 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5142 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5143 struct dp_sdp sdp = {}; 5144 ssize_t len; 5145 5146 if ((crtc_state->infoframes.enable & 5147 intel_hdmi_infoframe_enable(type)) == 0) 5148 return; 5149 5150 switch (type) { 5151 case DP_SDP_VSC: 5152 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp, 5153 sizeof(sdp)); 5154 break; 5155 case HDMI_PACKET_TYPE_GAMUT_METADATA: 5156 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm, 5157 &sdp, sizeof(sdp)); 5158 break; 5159 default: 5160 MISSING_CASE(type); 5161 return; 5162 } 5163 5164 if (drm_WARN_ON(&dev_priv->drm, len < 0)) 5165 return; 5166 5167 dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len); 5168 } 5169 5170 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder, 5171 const struct intel_crtc_state *crtc_state, 5172 struct drm_dp_vsc_sdp *vsc) 5173 { 5174 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5175 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5176 struct dp_sdp sdp = {}; 5177 ssize_t len; 5178 5179 len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp)); 5180 5181 if (drm_WARN_ON(&dev_priv->drm, len < 0)) 5182 return; 5183 5184 dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC, 5185 &sdp, len); 5186 } 5187 5188 void intel_dp_set_infoframes(struct intel_encoder *encoder, 5189 bool enable, 5190 const struct intel_crtc_state *crtc_state, 5191 const struct drm_connector_state *conn_state) 5192 { 5193 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5194 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5195 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); 5196 u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | 5197 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | 5198 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK; 5199 u32 val = intel_de_read(dev_priv, reg); 5200 5201 /* TODO: Add DSC case (DIP_ENABLE_PPS) */ 5202 /* When PSR is enabled, this routine doesn't disable VSC DIP */ 5203 if (intel_psr_enabled(intel_dp)) 5204 val &= ~dip_enable; 5205 else 5206 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW); 5207 5208 if (!enable) { 5209 intel_de_write(dev_priv, reg, val); 5210 intel_de_posting_read(dev_priv, reg); 5211 return; 5212 } 5213 5214 intel_de_write(dev_priv, reg, val); 5215 intel_de_posting_read(dev_priv, reg); 5216 5217 /* When PSR is enabled, VSC SDP is handled by PSR routine */ 5218 if (!intel_psr_enabled(intel_dp)) 5219 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC); 5220 5221 intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA); 5222 } 5223 5224 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc, 5225 const void *buffer, size_t size) 5226 { 5227 const struct dp_sdp *sdp = buffer; 5228 5229 if (size < sizeof(struct dp_sdp)) 5230 return -EINVAL; 5231 5232 memset(vsc, 0, size); 5233 5234 if (sdp->sdp_header.HB0 != 0) 5235 return -EINVAL; 5236 5237 if (sdp->sdp_header.HB1 != DP_SDP_VSC) 5238 return -EINVAL; 5239 5240 vsc->sdp_type = sdp->sdp_header.HB1; 5241 vsc->revision = sdp->sdp_header.HB2; 5242 vsc->length = sdp->sdp_header.HB3; 5243 5244 if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) || 5245 (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) { 5246 /* 5247 * - HB2 = 0x2, HB3 = 0x8 5248 * VSC SDP supporting 3D stereo + PSR 5249 * - HB2 = 0x4, HB3 = 0xe 5250 * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of 5251 * first scan line of the SU region (applies to eDP v1.4b 5252 * and higher). 5253 */ 5254 return 0; 5255 } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) { 5256 /* 5257 * - HB2 = 0x5, HB3 = 0x13 5258 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry 5259 * Format. 5260 */ 5261 vsc->pixelformat = (sdp->db[16] >> 4) & 0xf; 5262 vsc->colorimetry = sdp->db[16] & 0xf; 5263 vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1; 5264 5265 switch (sdp->db[17] & 0x7) { 5266 case 0x0: 5267 vsc->bpc = 6; 5268 break; 5269 case 0x1: 5270 vsc->bpc = 8; 5271 break; 5272 case 0x2: 5273 vsc->bpc = 10; 5274 break; 5275 case 0x3: 5276 vsc->bpc = 12; 5277 break; 5278 case 0x4: 5279 vsc->bpc = 16; 5280 break; 5281 default: 5282 MISSING_CASE(sdp->db[17] & 0x7); 5283 return -EINVAL; 5284 } 5285 5286 vsc->content_type = sdp->db[18] & 0x7; 5287 } else { 5288 return -EINVAL; 5289 } 5290 5291 return 0; 5292 } 5293 5294 static int 5295 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe, 5296 const void *buffer, size_t size) 5297 { 5298 int ret; 5299 5300 const struct dp_sdp *sdp = buffer; 5301 5302 if (size < sizeof(struct dp_sdp)) 5303 return -EINVAL; 5304 5305 if (sdp->sdp_header.HB0 != 0) 5306 return -EINVAL; 5307 5308 if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM) 5309 return -EINVAL; 5310 5311 /* 5312 * Least Significant Eight Bits of (Data Byte Count – 1) 5313 * 1Dh (i.e., Data Byte Count = 30 bytes). 5314 */ 5315 if (sdp->sdp_header.HB2 != 0x1D) 5316 return -EINVAL; 5317 5318 /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */ 5319 if ((sdp->sdp_header.HB3 & 0x3) != 0) 5320 return -EINVAL; 5321 5322 /* INFOFRAME SDP Version Number */ 5323 if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13) 5324 return -EINVAL; 5325 5326 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 5327 if (sdp->db[0] != 1) 5328 return -EINVAL; 5329 5330 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 5331 if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE) 5332 return -EINVAL; 5333 5334 ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2], 5335 HDMI_DRM_INFOFRAME_SIZE); 5336 5337 return ret; 5338 } 5339 5340 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder, 5341 struct intel_crtc_state *crtc_state, 5342 struct drm_dp_vsc_sdp *vsc) 5343 { 5344 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5345 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5346 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5347 unsigned int type = DP_SDP_VSC; 5348 struct dp_sdp sdp = {}; 5349 int ret; 5350 5351 /* When PSR is enabled, VSC SDP is handled by PSR routine */ 5352 if (intel_psr_enabled(intel_dp)) 5353 return; 5354 5355 if ((crtc_state->infoframes.enable & 5356 intel_hdmi_infoframe_enable(type)) == 0) 5357 return; 5358 5359 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); 5360 5361 ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp)); 5362 5363 if (ret) 5364 drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n"); 5365 } 5366 5367 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder, 5368 struct intel_crtc_state *crtc_state, 5369 struct hdmi_drm_infoframe *drm_infoframe) 5370 { 5371 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5372 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5373 unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA; 5374 struct dp_sdp sdp = {}; 5375 int ret; 5376 5377 if ((crtc_state->infoframes.enable & 5378 intel_hdmi_infoframe_enable(type)) == 0) 5379 return; 5380 5381 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, 5382 sizeof(sdp)); 5383 5384 ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp, 5385 sizeof(sdp)); 5386 5387 if (ret) 5388 drm_dbg_kms(&dev_priv->drm, 5389 "Failed to unpack DP HDR Metadata Infoframe SDP\n"); 5390 } 5391 5392 void intel_read_dp_sdp(struct intel_encoder *encoder, 5393 struct intel_crtc_state *crtc_state, 5394 unsigned int type) 5395 { 5396 if (encoder->type != INTEL_OUTPUT_DDI) 5397 return; 5398 5399 switch (type) { 5400 case DP_SDP_VSC: 5401 intel_read_dp_vsc_sdp(encoder, crtc_state, 5402 &crtc_state->infoframes.vsc); 5403 break; 5404 case HDMI_PACKET_TYPE_GAMUT_METADATA: 5405 intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state, 5406 &crtc_state->infoframes.drm.drm); 5407 break; 5408 default: 5409 MISSING_CASE(type); 5410 break; 5411 } 5412 } 5413 5414 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 5415 { 5416 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5417 int status = 0; 5418 int test_link_rate; 5419 u8 test_lane_count, test_link_bw; 5420 /* (DP CTS 1.2) 5421 * 4.3.1.11 5422 */ 5423 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 5424 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 5425 &test_lane_count); 5426 5427 if (status <= 0) { 5428 drm_dbg_kms(&i915->drm, "Lane count read failed\n"); 5429 return DP_TEST_NAK; 5430 } 5431 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 5432 5433 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 5434 &test_link_bw); 5435 if (status <= 0) { 5436 drm_dbg_kms(&i915->drm, "Link Rate read failed\n"); 5437 return DP_TEST_NAK; 5438 } 5439 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 5440 5441 /* Validate the requested link rate and lane count */ 5442 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 5443 test_lane_count)) 5444 return DP_TEST_NAK; 5445 5446 intel_dp->compliance.test_lane_count = test_lane_count; 5447 intel_dp->compliance.test_link_rate = test_link_rate; 5448 5449 return DP_TEST_ACK; 5450 } 5451 5452 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 5453 { 5454 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5455 u8 test_pattern; 5456 u8 test_misc; 5457 __be16 h_width, v_height; 5458 int status = 0; 5459 5460 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 5461 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 5462 &test_pattern); 5463 if (status <= 0) { 5464 drm_dbg_kms(&i915->drm, "Test pattern read failed\n"); 5465 return DP_TEST_NAK; 5466 } 5467 if (test_pattern != DP_COLOR_RAMP) 5468 return DP_TEST_NAK; 5469 5470 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 5471 &h_width, 2); 5472 if (status <= 0) { 5473 drm_dbg_kms(&i915->drm, "H Width read failed\n"); 5474 return DP_TEST_NAK; 5475 } 5476 5477 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 5478 &v_height, 2); 5479 if (status <= 0) { 5480 drm_dbg_kms(&i915->drm, "V Height read failed\n"); 5481 return DP_TEST_NAK; 5482 } 5483 5484 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 5485 &test_misc); 5486 if (status <= 0) { 5487 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n"); 5488 return DP_TEST_NAK; 5489 } 5490 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 5491 return DP_TEST_NAK; 5492 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 5493 return DP_TEST_NAK; 5494 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 5495 case DP_TEST_BIT_DEPTH_6: 5496 intel_dp->compliance.test_data.bpc = 6; 5497 break; 5498 case DP_TEST_BIT_DEPTH_8: 5499 intel_dp->compliance.test_data.bpc = 8; 5500 break; 5501 default: 5502 return DP_TEST_NAK; 5503 } 5504 5505 intel_dp->compliance.test_data.video_pattern = test_pattern; 5506 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 5507 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 5508 /* Set test active flag here so userspace doesn't interrupt things */ 5509 intel_dp->compliance.test_active = true; 5510 5511 return DP_TEST_ACK; 5512 } 5513 5514 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 5515 { 5516 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5517 u8 test_result = DP_TEST_ACK; 5518 struct intel_connector *intel_connector = intel_dp->attached_connector; 5519 struct drm_connector *connector = &intel_connector->base; 5520 5521 if (intel_connector->detect_edid == NULL || 5522 connector->edid_corrupt || 5523 intel_dp->aux.i2c_defer_count > 6) { 5524 /* Check EDID read for NACKs, DEFERs and corruption 5525 * (DP CTS 1.2 Core r1.1) 5526 * 4.2.2.4 : Failed EDID read, I2C_NAK 5527 * 4.2.2.5 : Failed EDID read, I2C_DEFER 5528 * 4.2.2.6 : EDID corruption detected 5529 * Use failsafe mode for all cases 5530 */ 5531 if (intel_dp->aux.i2c_nack_count > 0 || 5532 intel_dp->aux.i2c_defer_count > 0) 5533 drm_dbg_kms(&i915->drm, 5534 "EDID read had %d NACKs, %d DEFERs\n", 5535 intel_dp->aux.i2c_nack_count, 5536 intel_dp->aux.i2c_defer_count); 5537 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 5538 } else { 5539 struct edid *block = intel_connector->detect_edid; 5540 5541 /* We have to write the checksum 5542 * of the last block read 5543 */ 5544 block += intel_connector->detect_edid->extensions; 5545 5546 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 5547 block->checksum) <= 0) 5548 drm_dbg_kms(&i915->drm, 5549 "Failed to write EDID checksum\n"); 5550 5551 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 5552 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 5553 } 5554 5555 /* Set test active flag here so userspace doesn't interrupt things */ 5556 intel_dp->compliance.test_active = true; 5557 5558 return test_result; 5559 } 5560 5561 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp, 5562 const struct intel_crtc_state *crtc_state) 5563 { 5564 struct drm_i915_private *dev_priv = 5565 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 5566 struct drm_dp_phy_test_params *data = 5567 &intel_dp->compliance.test_data.phytest; 5568 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5569 enum pipe pipe = crtc->pipe; 5570 u32 pattern_val; 5571 5572 switch (data->phy_pattern) { 5573 case DP_PHY_TEST_PATTERN_NONE: 5574 DRM_DEBUG_KMS("Disable Phy Test Pattern\n"); 5575 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0); 5576 break; 5577 case DP_PHY_TEST_PATTERN_D10_2: 5578 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n"); 5579 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5580 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2); 5581 break; 5582 case DP_PHY_TEST_PATTERN_ERROR_COUNT: 5583 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n"); 5584 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5585 DDI_DP_COMP_CTL_ENABLE | 5586 DDI_DP_COMP_CTL_SCRAMBLED_0); 5587 break; 5588 case DP_PHY_TEST_PATTERN_PRBS7: 5589 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n"); 5590 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5591 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7); 5592 break; 5593 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM: 5594 /* 5595 * FIXME: Ideally pattern should come from DPCD 0x250. As 5596 * current firmware of DPR-100 could not set it, so hardcoding 5597 * now for complaince test. 5598 */ 5599 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n"); 5600 pattern_val = 0x3e0f83e0; 5601 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val); 5602 pattern_val = 0x0f83e0f8; 5603 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val); 5604 pattern_val = 0x0000f83e; 5605 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val); 5606 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5607 DDI_DP_COMP_CTL_ENABLE | 5608 DDI_DP_COMP_CTL_CUSTOM80); 5609 break; 5610 case DP_PHY_TEST_PATTERN_CP2520: 5611 /* 5612 * FIXME: Ideally pattern should come from DPCD 0x24A. As 5613 * current firmware of DPR-100 could not set it, so hardcoding 5614 * now for complaince test. 5615 */ 5616 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n"); 5617 pattern_val = 0xFB; 5618 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5619 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 | 5620 pattern_val); 5621 break; 5622 default: 5623 WARN(1, "Invalid Phy Test Pattern\n"); 5624 } 5625 } 5626 5627 static void 5628 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp, 5629 const struct intel_crtc_state *crtc_state) 5630 { 5631 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5632 struct drm_device *dev = dig_port->base.base.dev; 5633 struct drm_i915_private *dev_priv = to_i915(dev); 5634 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); 5635 enum pipe pipe = crtc->pipe; 5636 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value; 5637 5638 trans_ddi_func_ctl_value = intel_de_read(dev_priv, 5639 TRANS_DDI_FUNC_CTL(pipe)); 5640 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe)); 5641 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe)); 5642 5643 trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE | 5644 TGL_TRANS_DDI_PORT_MASK); 5645 trans_conf_value &= ~PIPECONF_ENABLE; 5646 dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE; 5647 5648 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value); 5649 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe), 5650 trans_ddi_func_ctl_value); 5651 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value); 5652 } 5653 5654 static void 5655 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, 5656 const struct intel_crtc_state *crtc_state) 5657 { 5658 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5659 struct drm_device *dev = dig_port->base.base.dev; 5660 struct drm_i915_private *dev_priv = to_i915(dev); 5661 enum port port = dig_port->base.port; 5662 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); 5663 enum pipe pipe = crtc->pipe; 5664 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value; 5665 5666 trans_ddi_func_ctl_value = intel_de_read(dev_priv, 5667 TRANS_DDI_FUNC_CTL(pipe)); 5668 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe)); 5669 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe)); 5670 5671 trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE | 5672 TGL_TRANS_DDI_SELECT_PORT(port); 5673 trans_conf_value |= PIPECONF_ENABLE; 5674 dp_tp_ctl_value |= DP_TP_CTL_ENABLE; 5675 5676 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value); 5677 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value); 5678 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe), 5679 trans_ddi_func_ctl_value); 5680 } 5681 5682 static void intel_dp_process_phy_request(struct intel_dp *intel_dp, 5683 const struct intel_crtc_state *crtc_state) 5684 { 5685 struct drm_dp_phy_test_params *data = 5686 &intel_dp->compliance.test_data.phytest; 5687 u8 link_status[DP_LINK_STATUS_SIZE]; 5688 5689 if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX, 5690 link_status) < 0) { 5691 DRM_DEBUG_KMS("failed to get link status\n"); 5692 return; 5693 } 5694 5695 /* retrieve vswing & pre-emphasis setting */ 5696 intel_dp_get_adjust_train(intel_dp, crtc_state, DP_PHY_DPRX, 5697 link_status); 5698 5699 intel_dp_autotest_phy_ddi_disable(intel_dp, crtc_state); 5700 5701 intel_dp_set_signal_levels(intel_dp, crtc_state); 5702 5703 intel_dp_phy_pattern_update(intel_dp, crtc_state); 5704 5705 intel_dp_autotest_phy_ddi_enable(intel_dp, crtc_state); 5706 5707 drm_dp_set_phy_test_pattern(&intel_dp->aux, data, 5708 link_status[DP_DPCD_REV]); 5709 } 5710 5711 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 5712 { 5713 struct drm_dp_phy_test_params *data = 5714 &intel_dp->compliance.test_data.phytest; 5715 5716 if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) { 5717 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n"); 5718 return DP_TEST_NAK; 5719 } 5720 5721 /* Set test active flag here so userspace doesn't interrupt things */ 5722 intel_dp->compliance.test_active = true; 5723 5724 return DP_TEST_ACK; 5725 } 5726 5727 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 5728 { 5729 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5730 u8 response = DP_TEST_NAK; 5731 u8 request = 0; 5732 int status; 5733 5734 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 5735 if (status <= 0) { 5736 drm_dbg_kms(&i915->drm, 5737 "Could not read test request from sink\n"); 5738 goto update_status; 5739 } 5740 5741 switch (request) { 5742 case DP_TEST_LINK_TRAINING: 5743 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n"); 5744 response = intel_dp_autotest_link_training(intel_dp); 5745 break; 5746 case DP_TEST_LINK_VIDEO_PATTERN: 5747 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n"); 5748 response = intel_dp_autotest_video_pattern(intel_dp); 5749 break; 5750 case DP_TEST_LINK_EDID_READ: 5751 drm_dbg_kms(&i915->drm, "EDID test requested\n"); 5752 response = intel_dp_autotest_edid(intel_dp); 5753 break; 5754 case DP_TEST_LINK_PHY_TEST_PATTERN: 5755 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n"); 5756 response = intel_dp_autotest_phy_pattern(intel_dp); 5757 break; 5758 default: 5759 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n", 5760 request); 5761 break; 5762 } 5763 5764 if (response & DP_TEST_ACK) 5765 intel_dp->compliance.test_type = request; 5766 5767 update_status: 5768 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 5769 if (status <= 0) 5770 drm_dbg_kms(&i915->drm, 5771 "Could not write test response to sink\n"); 5772 } 5773 5774 /** 5775 * intel_dp_check_mst_status - service any pending MST interrupts, check link status 5776 * @intel_dp: Intel DP struct 5777 * 5778 * Read any pending MST interrupts, call MST core to handle these and ack the 5779 * interrupts. Check if the main and AUX link state is ok. 5780 * 5781 * Returns: 5782 * - %true if pending interrupts were serviced (or no interrupts were 5783 * pending) w/o detecting an error condition. 5784 * - %false if an error condition - like AUX failure or a loss of link - is 5785 * detected, which needs servicing from the hotplug work. 5786 */ 5787 static bool 5788 intel_dp_check_mst_status(struct intel_dp *intel_dp) 5789 { 5790 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5791 bool link_ok = true; 5792 5793 drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0); 5794 5795 for (;;) { 5796 u8 esi[DP_DPRX_ESI_LEN] = {}; 5797 bool handled; 5798 int retry; 5799 5800 if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) { 5801 drm_dbg_kms(&i915->drm, 5802 "failed to get ESI - device may have failed\n"); 5803 link_ok = false; 5804 5805 break; 5806 } 5807 5808 /* check link status - esi[10] = 0x200c */ 5809 if (intel_dp->active_mst_links > 0 && link_ok && 5810 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 5811 drm_dbg_kms(&i915->drm, 5812 "channel EQ not ok, retraining\n"); 5813 link_ok = false; 5814 } 5815 5816 drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi); 5817 5818 drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 5819 if (!handled) 5820 break; 5821 5822 for (retry = 0; retry < 3; retry++) { 5823 int wret; 5824 5825 wret = drm_dp_dpcd_write(&intel_dp->aux, 5826 DP_SINK_COUNT_ESI+1, 5827 &esi[1], 3); 5828 if (wret == 3) 5829 break; 5830 } 5831 } 5832 5833 return link_ok; 5834 } 5835 5836 static bool 5837 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 5838 { 5839 u8 link_status[DP_LINK_STATUS_SIZE]; 5840 5841 if (!intel_dp->link_trained) 5842 return false; 5843 5844 /* 5845 * While PSR source HW is enabled, it will control main-link sending 5846 * frames, enabling and disabling it so trying to do a retrain will fail 5847 * as the link would or not be on or it could mix training patterns 5848 * and frame data at the same time causing retrain to fail. 5849 * Also when exiting PSR, HW will retrain the link anyways fixing 5850 * any link status error. 5851 */ 5852 if (intel_psr_enabled(intel_dp)) 5853 return false; 5854 5855 if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX, 5856 link_status) < 0) 5857 return false; 5858 5859 /* 5860 * Validate the cached values of intel_dp->link_rate and 5861 * intel_dp->lane_count before attempting to retrain. 5862 * 5863 * FIXME would be nice to user the crtc state here, but since 5864 * we need to call this from the short HPD handler that seems 5865 * a bit hard. 5866 */ 5867 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 5868 intel_dp->lane_count)) 5869 return false; 5870 5871 /* Retrain if Channel EQ or CR not ok */ 5872 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 5873 } 5874 5875 static bool intel_dp_has_connector(struct intel_dp *intel_dp, 5876 const struct drm_connector_state *conn_state) 5877 { 5878 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5879 struct intel_encoder *encoder; 5880 enum pipe pipe; 5881 5882 if (!conn_state->best_encoder) 5883 return false; 5884 5885 /* SST */ 5886 encoder = &dp_to_dig_port(intel_dp)->base; 5887 if (conn_state->best_encoder == &encoder->base) 5888 return true; 5889 5890 /* MST */ 5891 for_each_pipe(i915, pipe) { 5892 encoder = &intel_dp->mst_encoders[pipe]->base; 5893 if (conn_state->best_encoder == &encoder->base) 5894 return true; 5895 } 5896 5897 return false; 5898 } 5899 5900 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp, 5901 struct drm_modeset_acquire_ctx *ctx, 5902 u32 *crtc_mask) 5903 { 5904 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5905 struct drm_connector_list_iter conn_iter; 5906 struct intel_connector *connector; 5907 int ret = 0; 5908 5909 *crtc_mask = 0; 5910 5911 if (!intel_dp_needs_link_retrain(intel_dp)) 5912 return 0; 5913 5914 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 5915 for_each_intel_connector_iter(connector, &conn_iter) { 5916 struct drm_connector_state *conn_state = 5917 connector->base.state; 5918 struct intel_crtc_state *crtc_state; 5919 struct intel_crtc *crtc; 5920 5921 if (!intel_dp_has_connector(intel_dp, conn_state)) 5922 continue; 5923 5924 crtc = to_intel_crtc(conn_state->crtc); 5925 if (!crtc) 5926 continue; 5927 5928 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5929 if (ret) 5930 break; 5931 5932 crtc_state = to_intel_crtc_state(crtc->base.state); 5933 5934 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state)); 5935 5936 if (!crtc_state->hw.active) 5937 continue; 5938 5939 if (conn_state->commit && 5940 !try_wait_for_completion(&conn_state->commit->hw_done)) 5941 continue; 5942 5943 *crtc_mask |= drm_crtc_mask(&crtc->base); 5944 } 5945 drm_connector_list_iter_end(&conn_iter); 5946 5947 if (!intel_dp_needs_link_retrain(intel_dp)) 5948 *crtc_mask = 0; 5949 5950 return ret; 5951 } 5952 5953 static bool intel_dp_is_connected(struct intel_dp *intel_dp) 5954 { 5955 struct intel_connector *connector = intel_dp->attached_connector; 5956 5957 return connector->base.status == connector_status_connected || 5958 intel_dp->is_mst; 5959 } 5960 5961 int intel_dp_retrain_link(struct intel_encoder *encoder, 5962 struct drm_modeset_acquire_ctx *ctx) 5963 { 5964 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5965 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5966 struct intel_crtc *crtc; 5967 u32 crtc_mask; 5968 int ret; 5969 5970 if (!intel_dp_is_connected(intel_dp)) 5971 return 0; 5972 5973 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 5974 ctx); 5975 if (ret) 5976 return ret; 5977 5978 ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask); 5979 if (ret) 5980 return ret; 5981 5982 if (crtc_mask == 0) 5983 return 0; 5984 5985 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n", 5986 encoder->base.base.id, encoder->base.name); 5987 5988 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) { 5989 const struct intel_crtc_state *crtc_state = 5990 to_intel_crtc_state(crtc->base.state); 5991 5992 /* Suppress underruns caused by re-training */ 5993 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 5994 if (crtc_state->has_pch_encoder) 5995 intel_set_pch_fifo_underrun_reporting(dev_priv, 5996 intel_crtc_pch_transcoder(crtc), false); 5997 } 5998 5999 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) { 6000 const struct intel_crtc_state *crtc_state = 6001 to_intel_crtc_state(crtc->base.state); 6002 6003 /* retrain on the MST master transcoder */ 6004 if (INTEL_GEN(dev_priv) >= 12 && 6005 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST) && 6006 !intel_dp_mst_is_master_trans(crtc_state)) 6007 continue; 6008 6009 intel_dp_start_link_train(intel_dp, crtc_state); 6010 intel_dp_stop_link_train(intel_dp, crtc_state); 6011 break; 6012 } 6013 6014 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) { 6015 const struct intel_crtc_state *crtc_state = 6016 to_intel_crtc_state(crtc->base.state); 6017 6018 /* Keep underrun reporting disabled until things are stable */ 6019 intel_wait_for_vblank(dev_priv, crtc->pipe); 6020 6021 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 6022 if (crtc_state->has_pch_encoder) 6023 intel_set_pch_fifo_underrun_reporting(dev_priv, 6024 intel_crtc_pch_transcoder(crtc), true); 6025 } 6026 6027 return 0; 6028 } 6029 6030 static int intel_dp_prep_phy_test(struct intel_dp *intel_dp, 6031 struct drm_modeset_acquire_ctx *ctx, 6032 u32 *crtc_mask) 6033 { 6034 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 6035 struct drm_connector_list_iter conn_iter; 6036 struct intel_connector *connector; 6037 int ret = 0; 6038 6039 *crtc_mask = 0; 6040 6041 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 6042 for_each_intel_connector_iter(connector, &conn_iter) { 6043 struct drm_connector_state *conn_state = 6044 connector->base.state; 6045 struct intel_crtc_state *crtc_state; 6046 struct intel_crtc *crtc; 6047 6048 if (!intel_dp_has_connector(intel_dp, conn_state)) 6049 continue; 6050 6051 crtc = to_intel_crtc(conn_state->crtc); 6052 if (!crtc) 6053 continue; 6054 6055 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 6056 if (ret) 6057 break; 6058 6059 crtc_state = to_intel_crtc_state(crtc->base.state); 6060 6061 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state)); 6062 6063 if (!crtc_state->hw.active) 6064 continue; 6065 6066 if (conn_state->commit && 6067 !try_wait_for_completion(&conn_state->commit->hw_done)) 6068 continue; 6069 6070 *crtc_mask |= drm_crtc_mask(&crtc->base); 6071 } 6072 drm_connector_list_iter_end(&conn_iter); 6073 6074 return ret; 6075 } 6076 6077 static int intel_dp_do_phy_test(struct intel_encoder *encoder, 6078 struct drm_modeset_acquire_ctx *ctx) 6079 { 6080 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6081 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 6082 struct intel_crtc *crtc; 6083 u32 crtc_mask; 6084 int ret; 6085 6086 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 6087 ctx); 6088 if (ret) 6089 return ret; 6090 6091 ret = intel_dp_prep_phy_test(intel_dp, ctx, &crtc_mask); 6092 if (ret) 6093 return ret; 6094 6095 if (crtc_mask == 0) 6096 return 0; 6097 6098 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] PHY test\n", 6099 encoder->base.base.id, encoder->base.name); 6100 6101 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) { 6102 const struct intel_crtc_state *crtc_state = 6103 to_intel_crtc_state(crtc->base.state); 6104 6105 /* test on the MST master transcoder */ 6106 if (INTEL_GEN(dev_priv) >= 12 && 6107 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST) && 6108 !intel_dp_mst_is_master_trans(crtc_state)) 6109 continue; 6110 6111 intel_dp_process_phy_request(intel_dp, crtc_state); 6112 break; 6113 } 6114 6115 return 0; 6116 } 6117 6118 static void intel_dp_phy_test(struct intel_encoder *encoder) 6119 { 6120 struct drm_modeset_acquire_ctx ctx; 6121 int ret; 6122 6123 drm_modeset_acquire_init(&ctx, 0); 6124 6125 for (;;) { 6126 ret = intel_dp_do_phy_test(encoder, &ctx); 6127 6128 if (ret == -EDEADLK) { 6129 drm_modeset_backoff(&ctx); 6130 continue; 6131 } 6132 6133 break; 6134 } 6135 6136 drm_modeset_drop_locks(&ctx); 6137 drm_modeset_acquire_fini(&ctx); 6138 drm_WARN(encoder->base.dev, ret, 6139 "Acquiring modeset locks failed with %i\n", ret); 6140 } 6141 6142 /* 6143 * If display is now connected check links status, 6144 * there has been known issues of link loss triggering 6145 * long pulse. 6146 * 6147 * Some sinks (eg. ASUS PB287Q) seem to perform some 6148 * weird HPD ping pong during modesets. So we can apparently 6149 * end up with HPD going low during a modeset, and then 6150 * going back up soon after. And once that happens we must 6151 * retrain the link to get a picture. That's in case no 6152 * userspace component reacted to intermittent HPD dip. 6153 */ 6154 static enum intel_hotplug_state 6155 intel_dp_hotplug(struct intel_encoder *encoder, 6156 struct intel_connector *connector) 6157 { 6158 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 6159 struct drm_modeset_acquire_ctx ctx; 6160 enum intel_hotplug_state state; 6161 int ret; 6162 6163 if (intel_dp->compliance.test_active && 6164 intel_dp->compliance.test_type == DP_TEST_LINK_PHY_TEST_PATTERN) { 6165 intel_dp_phy_test(encoder); 6166 /* just do the PHY test and nothing else */ 6167 return INTEL_HOTPLUG_UNCHANGED; 6168 } 6169 6170 state = intel_encoder_hotplug(encoder, connector); 6171 6172 drm_modeset_acquire_init(&ctx, 0); 6173 6174 for (;;) { 6175 ret = intel_dp_retrain_link(encoder, &ctx); 6176 6177 if (ret == -EDEADLK) { 6178 drm_modeset_backoff(&ctx); 6179 continue; 6180 } 6181 6182 break; 6183 } 6184 6185 drm_modeset_drop_locks(&ctx); 6186 drm_modeset_acquire_fini(&ctx); 6187 drm_WARN(encoder->base.dev, ret, 6188 "Acquiring modeset locks failed with %i\n", ret); 6189 6190 /* 6191 * Keeping it consistent with intel_ddi_hotplug() and 6192 * intel_hdmi_hotplug(). 6193 */ 6194 if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries) 6195 state = INTEL_HOTPLUG_RETRY; 6196 6197 return state; 6198 } 6199 6200 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 6201 { 6202 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 6203 u8 val; 6204 6205 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 6206 return; 6207 6208 if (drm_dp_dpcd_readb(&intel_dp->aux, 6209 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 6210 return; 6211 6212 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 6213 6214 if (val & DP_AUTOMATED_TEST_REQUEST) 6215 intel_dp_handle_test_request(intel_dp); 6216 6217 if (val & DP_CP_IRQ) 6218 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 6219 6220 if (val & DP_SINK_SPECIFIC_IRQ) 6221 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n"); 6222 } 6223 6224 /* 6225 * According to DP spec 6226 * 5.1.2: 6227 * 1. Read DPCD 6228 * 2. Configure link according to Receiver Capabilities 6229 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 6230 * 4. Check link status on receipt of hot-plug interrupt 6231 * 6232 * intel_dp_short_pulse - handles short pulse interrupts 6233 * when full detection is not required. 6234 * Returns %true if short pulse is handled and full detection 6235 * is NOT required and %false otherwise. 6236 */ 6237 static bool 6238 intel_dp_short_pulse(struct intel_dp *intel_dp) 6239 { 6240 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6241 u8 old_sink_count = intel_dp->sink_count; 6242 bool ret; 6243 6244 /* 6245 * Clearing compliance test variables to allow capturing 6246 * of values for next automated test request. 6247 */ 6248 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 6249 6250 /* 6251 * Now read the DPCD to see if it's actually running 6252 * If the current value of sink count doesn't match with 6253 * the value that was stored earlier or dpcd read failed 6254 * we need to do full detection 6255 */ 6256 ret = intel_dp_get_dpcd(intel_dp); 6257 6258 if ((old_sink_count != intel_dp->sink_count) || !ret) { 6259 /* No need to proceed if we are going to do full detect */ 6260 return false; 6261 } 6262 6263 intel_dp_check_service_irq(intel_dp); 6264 6265 /* Handle CEC interrupts, if any */ 6266 drm_dp_cec_irq(&intel_dp->aux); 6267 6268 /* defer to the hotplug work for link retraining if needed */ 6269 if (intel_dp_needs_link_retrain(intel_dp)) 6270 return false; 6271 6272 intel_psr_short_pulse(intel_dp); 6273 6274 switch (intel_dp->compliance.test_type) { 6275 case DP_TEST_LINK_TRAINING: 6276 drm_dbg_kms(&dev_priv->drm, 6277 "Link Training Compliance Test requested\n"); 6278 /* Send a Hotplug Uevent to userspace to start modeset */ 6279 drm_kms_helper_hotplug_event(&dev_priv->drm); 6280 break; 6281 case DP_TEST_LINK_PHY_TEST_PATTERN: 6282 drm_dbg_kms(&dev_priv->drm, 6283 "PHY test pattern Compliance Test requested\n"); 6284 /* 6285 * Schedule long hpd to do the test 6286 * 6287 * FIXME get rid of the ad-hoc phy test modeset code 6288 * and properly incorporate it into the normal modeset. 6289 */ 6290 return false; 6291 } 6292 6293 return true; 6294 } 6295 6296 /* XXX this is probably wrong for multiple downstream ports */ 6297 static enum drm_connector_status 6298 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 6299 { 6300 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 6301 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6302 u8 *dpcd = intel_dp->dpcd; 6303 u8 type; 6304 6305 if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp))) 6306 return connector_status_connected; 6307 6308 lspcon_resume(dig_port); 6309 6310 if (!intel_dp_get_dpcd(intel_dp)) 6311 return connector_status_disconnected; 6312 6313 /* if there's no downstream port, we're done */ 6314 if (!drm_dp_is_branch(dpcd)) 6315 return connector_status_connected; 6316 6317 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 6318 if (intel_dp_has_sink_count(intel_dp) && 6319 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 6320 return intel_dp->sink_count ? 6321 connector_status_connected : connector_status_disconnected; 6322 } 6323 6324 if (intel_dp_can_mst(intel_dp)) 6325 return connector_status_connected; 6326 6327 /* If no HPD, poke DDC gently */ 6328 if (drm_probe_ddc(&intel_dp->aux.ddc)) 6329 return connector_status_connected; 6330 6331 /* Well we tried, say unknown for unreliable port types */ 6332 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 6333 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 6334 if (type == DP_DS_PORT_TYPE_VGA || 6335 type == DP_DS_PORT_TYPE_NON_EDID) 6336 return connector_status_unknown; 6337 } else { 6338 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 6339 DP_DWN_STRM_PORT_TYPE_MASK; 6340 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 6341 type == DP_DWN_STRM_PORT_TYPE_OTHER) 6342 return connector_status_unknown; 6343 } 6344 6345 /* Anything else is out of spec, warn and ignore */ 6346 drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n"); 6347 return connector_status_disconnected; 6348 } 6349 6350 static enum drm_connector_status 6351 edp_detect(struct intel_dp *intel_dp) 6352 { 6353 return connector_status_connected; 6354 } 6355 6356 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 6357 { 6358 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6359 u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin]; 6360 6361 return intel_de_read(dev_priv, SDEISR) & bit; 6362 } 6363 6364 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 6365 { 6366 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6367 u32 bit; 6368 6369 switch (encoder->hpd_pin) { 6370 case HPD_PORT_B: 6371 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 6372 break; 6373 case HPD_PORT_C: 6374 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 6375 break; 6376 case HPD_PORT_D: 6377 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 6378 break; 6379 default: 6380 MISSING_CASE(encoder->hpd_pin); 6381 return false; 6382 } 6383 6384 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; 6385 } 6386 6387 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 6388 { 6389 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6390 u32 bit; 6391 6392 switch (encoder->hpd_pin) { 6393 case HPD_PORT_B: 6394 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 6395 break; 6396 case HPD_PORT_C: 6397 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 6398 break; 6399 case HPD_PORT_D: 6400 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 6401 break; 6402 default: 6403 MISSING_CASE(encoder->hpd_pin); 6404 return false; 6405 } 6406 6407 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; 6408 } 6409 6410 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 6411 { 6412 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6413 u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin]; 6414 6415 return intel_de_read(dev_priv, DEISR) & bit; 6416 } 6417 6418 /* 6419 * intel_digital_port_connected - is the specified port connected? 6420 * @encoder: intel_encoder 6421 * 6422 * In cases where there's a connector physically connected but it can't be used 6423 * by our hardware we also return false, since the rest of the driver should 6424 * pretty much treat the port as disconnected. This is relevant for type-C 6425 * (starting on ICL) where there's ownership involved. 6426 * 6427 * Return %true if port is connected, %false otherwise. 6428 */ 6429 bool intel_digital_port_connected(struct intel_encoder *encoder) 6430 { 6431 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6432 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 6433 bool is_connected = false; 6434 intel_wakeref_t wakeref; 6435 6436 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 6437 is_connected = dig_port->connected(encoder); 6438 6439 return is_connected; 6440 } 6441 6442 static struct edid * 6443 intel_dp_get_edid(struct intel_dp *intel_dp) 6444 { 6445 struct intel_connector *intel_connector = intel_dp->attached_connector; 6446 6447 /* use cached edid if we have one */ 6448 if (intel_connector->edid) { 6449 /* invalid edid */ 6450 if (IS_ERR(intel_connector->edid)) 6451 return NULL; 6452 6453 return drm_edid_duplicate(intel_connector->edid); 6454 } else 6455 return drm_get_edid(&intel_connector->base, 6456 &intel_dp->aux.ddc); 6457 } 6458 6459 static void 6460 intel_dp_update_dfp(struct intel_dp *intel_dp, 6461 const struct edid *edid) 6462 { 6463 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 6464 struct intel_connector *connector = intel_dp->attached_connector; 6465 6466 intel_dp->dfp.max_bpc = 6467 drm_dp_downstream_max_bpc(intel_dp->dpcd, 6468 intel_dp->downstream_ports, edid); 6469 6470 intel_dp->dfp.max_dotclock = 6471 drm_dp_downstream_max_dotclock(intel_dp->dpcd, 6472 intel_dp->downstream_ports); 6473 6474 intel_dp->dfp.min_tmds_clock = 6475 drm_dp_downstream_min_tmds_clock(intel_dp->dpcd, 6476 intel_dp->downstream_ports, 6477 edid); 6478 intel_dp->dfp.max_tmds_clock = 6479 drm_dp_downstream_max_tmds_clock(intel_dp->dpcd, 6480 intel_dp->downstream_ports, 6481 edid); 6482 6483 drm_dbg_kms(&i915->drm, 6484 "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d\n", 6485 connector->base.base.id, connector->base.name, 6486 intel_dp->dfp.max_bpc, 6487 intel_dp->dfp.max_dotclock, 6488 intel_dp->dfp.min_tmds_clock, 6489 intel_dp->dfp.max_tmds_clock); 6490 } 6491 6492 static void 6493 intel_dp_update_420(struct intel_dp *intel_dp) 6494 { 6495 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 6496 struct intel_connector *connector = intel_dp->attached_connector; 6497 bool is_branch, ycbcr_420_passthrough, ycbcr_444_to_420; 6498 6499 /* No YCbCr output support on gmch platforms */ 6500 if (HAS_GMCH(i915)) 6501 return; 6502 6503 /* 6504 * ILK doesn't seem capable of DP YCbCr output. The 6505 * displayed image is severly corrupted. SNB+ is fine. 6506 */ 6507 if (IS_GEN(i915, 5)) 6508 return; 6509 6510 is_branch = drm_dp_is_branch(intel_dp->dpcd); 6511 ycbcr_420_passthrough = 6512 drm_dp_downstream_420_passthrough(intel_dp->dpcd, 6513 intel_dp->downstream_ports); 6514 /* on-board LSPCON always assumed to support 4:4:4->4:2:0 conversion */ 6515 ycbcr_444_to_420 = 6516 dp_to_dig_port(intel_dp)->lspcon.active || 6517 drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd, 6518 intel_dp->downstream_ports); 6519 6520 if (INTEL_GEN(i915) >= 11) { 6521 /* Prefer 4:2:0 passthrough over 4:4:4->4:2:0 conversion */ 6522 intel_dp->dfp.ycbcr_444_to_420 = 6523 ycbcr_444_to_420 && !ycbcr_420_passthrough; 6524 6525 connector->base.ycbcr_420_allowed = 6526 !is_branch || ycbcr_444_to_420 || ycbcr_420_passthrough; 6527 } else { 6528 /* 4:4:4->4:2:0 conversion is the only way */ 6529 intel_dp->dfp.ycbcr_444_to_420 = ycbcr_444_to_420; 6530 6531 connector->base.ycbcr_420_allowed = ycbcr_444_to_420; 6532 } 6533 6534 drm_dbg_kms(&i915->drm, 6535 "[CONNECTOR:%d:%s] YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n", 6536 connector->base.base.id, connector->base.name, 6537 yesno(connector->base.ycbcr_420_allowed), 6538 yesno(intel_dp->dfp.ycbcr_444_to_420)); 6539 } 6540 6541 static void 6542 intel_dp_set_edid(struct intel_dp *intel_dp) 6543 { 6544 struct intel_connector *connector = intel_dp->attached_connector; 6545 struct edid *edid; 6546 6547 intel_dp_unset_edid(intel_dp); 6548 edid = intel_dp_get_edid(intel_dp); 6549 connector->detect_edid = edid; 6550 6551 intel_dp_update_dfp(intel_dp, edid); 6552 intel_dp_update_420(intel_dp); 6553 6554 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) { 6555 intel_dp->has_hdmi_sink = drm_detect_hdmi_monitor(edid); 6556 intel_dp->has_audio = drm_detect_monitor_audio(edid); 6557 } 6558 6559 drm_dp_cec_set_edid(&intel_dp->aux, edid); 6560 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid); 6561 } 6562 6563 static void 6564 intel_dp_unset_edid(struct intel_dp *intel_dp) 6565 { 6566 struct intel_connector *connector = intel_dp->attached_connector; 6567 6568 drm_dp_cec_unset_edid(&intel_dp->aux); 6569 kfree(connector->detect_edid); 6570 connector->detect_edid = NULL; 6571 6572 intel_dp->has_hdmi_sink = false; 6573 intel_dp->has_audio = false; 6574 intel_dp->edid_quirks = 0; 6575 6576 intel_dp->dfp.max_bpc = 0; 6577 intel_dp->dfp.max_dotclock = 0; 6578 intel_dp->dfp.min_tmds_clock = 0; 6579 intel_dp->dfp.max_tmds_clock = 0; 6580 6581 intel_dp->dfp.ycbcr_444_to_420 = false; 6582 connector->base.ycbcr_420_allowed = false; 6583 } 6584 6585 static int 6586 intel_dp_detect(struct drm_connector *connector, 6587 struct drm_modeset_acquire_ctx *ctx, 6588 bool force) 6589 { 6590 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6591 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6592 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6593 struct intel_encoder *encoder = &dig_port->base; 6594 enum drm_connector_status status; 6595 6596 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 6597 connector->base.id, connector->name); 6598 drm_WARN_ON(&dev_priv->drm, 6599 !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 6600 6601 if (!INTEL_DISPLAY_ENABLED(dev_priv)) 6602 return connector_status_disconnected; 6603 6604 /* Can't disconnect eDP */ 6605 if (intel_dp_is_edp(intel_dp)) 6606 status = edp_detect(intel_dp); 6607 else if (intel_digital_port_connected(encoder)) 6608 status = intel_dp_detect_dpcd(intel_dp); 6609 else 6610 status = connector_status_disconnected; 6611 6612 if (status == connector_status_disconnected) { 6613 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 6614 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 6615 6616 if (intel_dp->is_mst) { 6617 drm_dbg_kms(&dev_priv->drm, 6618 "MST device may have disappeared %d vs %d\n", 6619 intel_dp->is_mst, 6620 intel_dp->mst_mgr.mst_state); 6621 intel_dp->is_mst = false; 6622 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6623 intel_dp->is_mst); 6624 } 6625 6626 goto out; 6627 } 6628 6629 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 6630 if (INTEL_GEN(dev_priv) >= 11) 6631 intel_dp_get_dsc_sink_cap(intel_dp); 6632 6633 intel_dp_configure_mst(intel_dp); 6634 6635 /* 6636 * TODO: Reset link params when switching to MST mode, until MST 6637 * supports link training fallback params. 6638 */ 6639 if (intel_dp->reset_link_params || intel_dp->is_mst) { 6640 /* Initial max link lane count */ 6641 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 6642 6643 /* Initial max link rate */ 6644 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 6645 6646 intel_dp->reset_link_params = false; 6647 } 6648 6649 intel_dp_print_rates(intel_dp); 6650 6651 if (intel_dp->is_mst) { 6652 /* 6653 * If we are in MST mode then this connector 6654 * won't appear connected or have anything 6655 * with EDID on it 6656 */ 6657 status = connector_status_disconnected; 6658 goto out; 6659 } 6660 6661 /* 6662 * Some external monitors do not signal loss of link synchronization 6663 * with an IRQ_HPD, so force a link status check. 6664 */ 6665 if (!intel_dp_is_edp(intel_dp)) { 6666 int ret; 6667 6668 ret = intel_dp_retrain_link(encoder, ctx); 6669 if (ret) 6670 return ret; 6671 } 6672 6673 /* 6674 * Clearing NACK and defer counts to get their exact values 6675 * while reading EDID which are required by Compliance tests 6676 * 4.2.2.4 and 4.2.2.5 6677 */ 6678 intel_dp->aux.i2c_nack_count = 0; 6679 intel_dp->aux.i2c_defer_count = 0; 6680 6681 intel_dp_set_edid(intel_dp); 6682 if (intel_dp_is_edp(intel_dp) || 6683 to_intel_connector(connector)->detect_edid) 6684 status = connector_status_connected; 6685 6686 intel_dp_check_service_irq(intel_dp); 6687 6688 out: 6689 if (status != connector_status_connected && !intel_dp->is_mst) 6690 intel_dp_unset_edid(intel_dp); 6691 6692 /* 6693 * Make sure the refs for power wells enabled during detect are 6694 * dropped to avoid a new detect cycle triggered by HPD polling. 6695 */ 6696 intel_display_power_flush_work(dev_priv); 6697 6698 if (!intel_dp_is_edp(intel_dp)) 6699 drm_dp_set_subconnector_property(connector, 6700 status, 6701 intel_dp->dpcd, 6702 intel_dp->downstream_ports); 6703 return status; 6704 } 6705 6706 static void 6707 intel_dp_force(struct drm_connector *connector) 6708 { 6709 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6710 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6711 struct intel_encoder *intel_encoder = &dig_port->base; 6712 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 6713 enum intel_display_power_domain aux_domain = 6714 intel_aux_power_domain(dig_port); 6715 intel_wakeref_t wakeref; 6716 6717 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 6718 connector->base.id, connector->name); 6719 intel_dp_unset_edid(intel_dp); 6720 6721 if (connector->status != connector_status_connected) 6722 return; 6723 6724 wakeref = intel_display_power_get(dev_priv, aux_domain); 6725 6726 intel_dp_set_edid(intel_dp); 6727 6728 intel_display_power_put(dev_priv, aux_domain, wakeref); 6729 } 6730 6731 static int intel_dp_get_modes(struct drm_connector *connector) 6732 { 6733 struct intel_connector *intel_connector = to_intel_connector(connector); 6734 struct edid *edid; 6735 6736 edid = intel_connector->detect_edid; 6737 if (edid) { 6738 int ret = intel_connector_update_modes(connector, edid); 6739 if (ret) 6740 return ret; 6741 } 6742 6743 /* if eDP has no EDID, fall back to fixed mode */ 6744 if (intel_dp_is_edp(intel_attached_dp(intel_connector)) && 6745 intel_connector->panel.fixed_mode) { 6746 struct drm_display_mode *mode; 6747 6748 mode = drm_mode_duplicate(connector->dev, 6749 intel_connector->panel.fixed_mode); 6750 if (mode) { 6751 drm_mode_probed_add(connector, mode); 6752 return 1; 6753 } 6754 } 6755 6756 if (!edid) { 6757 struct intel_dp *intel_dp = intel_attached_dp(intel_connector); 6758 struct drm_display_mode *mode; 6759 6760 mode = drm_dp_downstream_mode(connector->dev, 6761 intel_dp->dpcd, 6762 intel_dp->downstream_ports); 6763 if (mode) { 6764 drm_mode_probed_add(connector, mode); 6765 return 1; 6766 } 6767 } 6768 6769 return 0; 6770 } 6771 6772 static int 6773 intel_dp_connector_register(struct drm_connector *connector) 6774 { 6775 struct drm_i915_private *i915 = to_i915(connector->dev); 6776 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6777 int ret; 6778 6779 ret = intel_connector_register(connector); 6780 if (ret) 6781 return ret; 6782 6783 drm_dbg_kms(&i915->drm, "registering %s bus for %s\n", 6784 intel_dp->aux.name, connector->kdev->kobj.name); 6785 6786 intel_dp->aux.dev = connector->kdev; 6787 ret = drm_dp_aux_register(&intel_dp->aux); 6788 if (!ret) 6789 drm_dp_cec_register_connector(&intel_dp->aux, connector); 6790 return ret; 6791 } 6792 6793 static void 6794 intel_dp_connector_unregister(struct drm_connector *connector) 6795 { 6796 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6797 6798 drm_dp_cec_unregister_connector(&intel_dp->aux); 6799 drm_dp_aux_unregister(&intel_dp->aux); 6800 intel_connector_unregister(connector); 6801 } 6802 6803 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 6804 { 6805 struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder)); 6806 struct intel_dp *intel_dp = &dig_port->dp; 6807 6808 intel_dp_mst_encoder_cleanup(dig_port); 6809 if (intel_dp_is_edp(intel_dp)) { 6810 intel_wakeref_t wakeref; 6811 6812 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 6813 /* 6814 * vdd might still be enabled do to the delayed vdd off. 6815 * Make sure vdd is actually turned off here. 6816 */ 6817 with_pps_lock(intel_dp, wakeref) 6818 edp_panel_vdd_off_sync(intel_dp); 6819 } 6820 6821 intel_dp_aux_fini(intel_dp); 6822 } 6823 6824 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 6825 { 6826 intel_dp_encoder_flush_work(encoder); 6827 6828 drm_encoder_cleanup(encoder); 6829 kfree(enc_to_dig_port(to_intel_encoder(encoder))); 6830 } 6831 6832 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 6833 { 6834 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); 6835 intel_wakeref_t wakeref; 6836 6837 if (!intel_dp_is_edp(intel_dp)) 6838 return; 6839 6840 /* 6841 * vdd might still be enabled do to the delayed vdd off. 6842 * Make sure vdd is actually turned off here. 6843 */ 6844 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 6845 with_pps_lock(intel_dp, wakeref) 6846 edp_panel_vdd_off_sync(intel_dp); 6847 } 6848 6849 void intel_dp_encoder_shutdown(struct intel_encoder *intel_encoder) 6850 { 6851 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); 6852 intel_wakeref_t wakeref; 6853 6854 if (!intel_dp_is_edp(intel_dp)) 6855 return; 6856 6857 with_pps_lock(intel_dp, wakeref) 6858 wait_panel_power_cycle(intel_dp); 6859 } 6860 6861 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6862 { 6863 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6864 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6865 6866 lockdep_assert_held(&dev_priv->pps_mutex); 6867 6868 if (!edp_have_panel_vdd(intel_dp)) 6869 return; 6870 6871 /* 6872 * The VDD bit needs a power domain reference, so if the bit is 6873 * already enabled when we boot or resume, grab this reference and 6874 * schedule a vdd off, so we don't hold on to the reference 6875 * indefinitely. 6876 */ 6877 drm_dbg_kms(&dev_priv->drm, 6878 "VDD left on by BIOS, adjusting state tracking\n"); 6879 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6880 6881 edp_panel_vdd_schedule_off(intel_dp); 6882 } 6883 6884 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6885 { 6886 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6887 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6888 enum pipe pipe; 6889 6890 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6891 encoder->port, &pipe)) 6892 return pipe; 6893 6894 return INVALID_PIPE; 6895 } 6896 6897 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6898 { 6899 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6900 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder)); 6901 intel_wakeref_t wakeref; 6902 6903 if (!HAS_DDI(dev_priv)) 6904 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); 6905 6906 intel_dp->reset_link_params = true; 6907 6908 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6909 !intel_dp_is_edp(intel_dp)) 6910 return; 6911 6912 with_pps_lock(intel_dp, wakeref) { 6913 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6914 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6915 6916 if (intel_dp_is_edp(intel_dp)) { 6917 /* 6918 * Reinit the power sequencer, in case BIOS did 6919 * something nasty with it. 6920 */ 6921 intel_dp_pps_init(intel_dp); 6922 intel_edp_panel_vdd_sanitize(intel_dp); 6923 } 6924 } 6925 } 6926 6927 static int intel_modeset_tile_group(struct intel_atomic_state *state, 6928 int tile_group_id) 6929 { 6930 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6931 struct drm_connector_list_iter conn_iter; 6932 struct drm_connector *connector; 6933 int ret = 0; 6934 6935 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter); 6936 drm_for_each_connector_iter(connector, &conn_iter) { 6937 struct drm_connector_state *conn_state; 6938 struct intel_crtc_state *crtc_state; 6939 struct intel_crtc *crtc; 6940 6941 if (!connector->has_tile || 6942 connector->tile_group->id != tile_group_id) 6943 continue; 6944 6945 conn_state = drm_atomic_get_connector_state(&state->base, 6946 connector); 6947 if (IS_ERR(conn_state)) { 6948 ret = PTR_ERR(conn_state); 6949 break; 6950 } 6951 6952 crtc = to_intel_crtc(conn_state->crtc); 6953 6954 if (!crtc) 6955 continue; 6956 6957 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 6958 crtc_state->uapi.mode_changed = true; 6959 6960 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 6961 if (ret) 6962 break; 6963 } 6964 drm_connector_list_iter_end(&conn_iter); 6965 6966 return ret; 6967 } 6968 6969 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders) 6970 { 6971 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6972 struct intel_crtc *crtc; 6973 6974 if (transcoders == 0) 6975 return 0; 6976 6977 for_each_intel_crtc(&dev_priv->drm, crtc) { 6978 struct intel_crtc_state *crtc_state; 6979 int ret; 6980 6981 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 6982 if (IS_ERR(crtc_state)) 6983 return PTR_ERR(crtc_state); 6984 6985 if (!crtc_state->hw.enable) 6986 continue; 6987 6988 if (!(transcoders & BIT(crtc_state->cpu_transcoder))) 6989 continue; 6990 6991 crtc_state->uapi.mode_changed = true; 6992 6993 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); 6994 if (ret) 6995 return ret; 6996 6997 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 6998 if (ret) 6999 return ret; 7000 7001 transcoders &= ~BIT(crtc_state->cpu_transcoder); 7002 } 7003 7004 drm_WARN_ON(&dev_priv->drm, transcoders != 0); 7005 7006 return 0; 7007 } 7008 7009 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state, 7010 struct drm_connector *connector) 7011 { 7012 const struct drm_connector_state *old_conn_state = 7013 drm_atomic_get_old_connector_state(&state->base, connector); 7014 const struct intel_crtc_state *old_crtc_state; 7015 struct intel_crtc *crtc; 7016 u8 transcoders; 7017 7018 crtc = to_intel_crtc(old_conn_state->crtc); 7019 if (!crtc) 7020 return 0; 7021 7022 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); 7023 7024 if (!old_crtc_state->hw.active) 7025 return 0; 7026 7027 transcoders = old_crtc_state->sync_mode_slaves_mask; 7028 if (old_crtc_state->master_transcoder != INVALID_TRANSCODER) 7029 transcoders |= BIT(old_crtc_state->master_transcoder); 7030 7031 return intel_modeset_affected_transcoders(state, 7032 transcoders); 7033 } 7034 7035 static int intel_dp_connector_atomic_check(struct drm_connector *conn, 7036 struct drm_atomic_state *_state) 7037 { 7038 struct drm_i915_private *dev_priv = to_i915(conn->dev); 7039 struct intel_atomic_state *state = to_intel_atomic_state(_state); 7040 int ret; 7041 7042 ret = intel_digital_connector_atomic_check(conn, &state->base); 7043 if (ret) 7044 return ret; 7045 7046 /* 7047 * We don't enable port sync on BDW due to missing w/as and 7048 * due to not having adjusted the modeset sequence appropriately. 7049 */ 7050 if (INTEL_GEN(dev_priv) < 9) 7051 return 0; 7052 7053 if (!intel_connector_needs_modeset(state, conn)) 7054 return 0; 7055 7056 if (conn->has_tile) { 7057 ret = intel_modeset_tile_group(state, conn->tile_group->id); 7058 if (ret) 7059 return ret; 7060 } 7061 7062 return intel_modeset_synced_crtcs(state, conn); 7063 } 7064 7065 static const struct drm_connector_funcs intel_dp_connector_funcs = { 7066 .force = intel_dp_force, 7067 .fill_modes = drm_helper_probe_single_connector_modes, 7068 .atomic_get_property = intel_digital_connector_atomic_get_property, 7069 .atomic_set_property = intel_digital_connector_atomic_set_property, 7070 .late_register = intel_dp_connector_register, 7071 .early_unregister = intel_dp_connector_unregister, 7072 .destroy = intel_connector_destroy, 7073 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 7074 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 7075 }; 7076 7077 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 7078 .detect_ctx = intel_dp_detect, 7079 .get_modes = intel_dp_get_modes, 7080 .mode_valid = intel_dp_mode_valid, 7081 .atomic_check = intel_dp_connector_atomic_check, 7082 }; 7083 7084 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 7085 .reset = intel_dp_encoder_reset, 7086 .destroy = intel_dp_encoder_destroy, 7087 }; 7088 7089 static bool intel_edp_have_power(struct intel_dp *intel_dp) 7090 { 7091 intel_wakeref_t wakeref; 7092 bool have_power = false; 7093 7094 with_pps_lock(intel_dp, wakeref) { 7095 have_power = edp_have_panel_power(intel_dp) && 7096 edp_have_panel_vdd(intel_dp); 7097 } 7098 7099 return have_power; 7100 } 7101 7102 enum irqreturn 7103 intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd) 7104 { 7105 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 7106 struct intel_dp *intel_dp = &dig_port->dp; 7107 7108 if (dig_port->base.type == INTEL_OUTPUT_EDP && 7109 (long_hpd || !intel_edp_have_power(intel_dp))) { 7110 /* 7111 * vdd off can generate a long/short pulse on eDP which 7112 * would require vdd on to handle it, and thus we 7113 * would end up in an endless cycle of 7114 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..." 7115 */ 7116 drm_dbg_kms(&i915->drm, 7117 "ignoring %s hpd on eDP [ENCODER:%d:%s]\n", 7118 long_hpd ? "long" : "short", 7119 dig_port->base.base.base.id, 7120 dig_port->base.base.name); 7121 return IRQ_HANDLED; 7122 } 7123 7124 drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n", 7125 dig_port->base.base.base.id, 7126 dig_port->base.base.name, 7127 long_hpd ? "long" : "short"); 7128 7129 if (long_hpd) { 7130 intel_dp->reset_link_params = true; 7131 return IRQ_NONE; 7132 } 7133 7134 if (intel_dp->is_mst) { 7135 if (!intel_dp_check_mst_status(intel_dp)) 7136 return IRQ_NONE; 7137 } else if (!intel_dp_short_pulse(intel_dp)) { 7138 return IRQ_NONE; 7139 } 7140 7141 return IRQ_HANDLED; 7142 } 7143 7144 /* check the VBT to see whether the eDP is on another port */ 7145 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 7146 { 7147 /* 7148 * eDP not supported on g4x. so bail out early just 7149 * for a bit extra safety in case the VBT is bonkers. 7150 */ 7151 if (INTEL_GEN(dev_priv) < 5) 7152 return false; 7153 7154 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 7155 return true; 7156 7157 return intel_bios_is_port_edp(dev_priv, port); 7158 } 7159 7160 static void 7161 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 7162 { 7163 struct drm_i915_private *dev_priv = to_i915(connector->dev); 7164 enum port port = dp_to_dig_port(intel_dp)->base.port; 7165 7166 if (!intel_dp_is_edp(intel_dp)) 7167 drm_connector_attach_dp_subconnector_property(connector); 7168 7169 if (!IS_G4X(dev_priv) && port != PORT_A) 7170 intel_attach_force_audio_property(connector); 7171 7172 intel_attach_broadcast_rgb_property(connector); 7173 if (HAS_GMCH(dev_priv)) 7174 drm_connector_attach_max_bpc_property(connector, 6, 10); 7175 else if (INTEL_GEN(dev_priv) >= 5) 7176 drm_connector_attach_max_bpc_property(connector, 6, 12); 7177 7178 intel_attach_colorspace_property(connector); 7179 7180 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11) 7181 drm_object_attach_property(&connector->base, 7182 connector->dev->mode_config.hdr_output_metadata_property, 7183 0); 7184 7185 if (intel_dp_is_edp(intel_dp)) { 7186 u32 allowed_scalers; 7187 7188 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 7189 if (!HAS_GMCH(dev_priv)) 7190 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 7191 7192 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 7193 7194 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 7195 7196 } 7197 } 7198 7199 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 7200 { 7201 intel_dp->panel_power_off_time = ktime_get_boottime(); 7202 intel_dp->last_power_on = jiffies; 7203 intel_dp->last_backlight_off = jiffies; 7204 } 7205 7206 static void 7207 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 7208 { 7209 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7210 u32 pp_on, pp_off, pp_ctl; 7211 struct pps_registers regs; 7212 7213 intel_pps_get_registers(intel_dp, ®s); 7214 7215 pp_ctl = ilk_get_pp_control(intel_dp); 7216 7217 /* Ensure PPS is unlocked */ 7218 if (!HAS_DDI(dev_priv)) 7219 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); 7220 7221 pp_on = intel_de_read(dev_priv, regs.pp_on); 7222 pp_off = intel_de_read(dev_priv, regs.pp_off); 7223 7224 /* Pull timing values out of registers */ 7225 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 7226 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 7227 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 7228 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 7229 7230 if (i915_mmio_reg_valid(regs.pp_div)) { 7231 u32 pp_div; 7232 7233 pp_div = intel_de_read(dev_priv, regs.pp_div); 7234 7235 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 7236 } else { 7237 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 7238 } 7239 } 7240 7241 static void 7242 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 7243 { 7244 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 7245 state_name, 7246 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 7247 } 7248 7249 static void 7250 intel_pps_verify_state(struct intel_dp *intel_dp) 7251 { 7252 struct edp_power_seq hw; 7253 struct edp_power_seq *sw = &intel_dp->pps_delays; 7254 7255 intel_pps_readout_hw_state(intel_dp, &hw); 7256 7257 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 7258 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 7259 DRM_ERROR("PPS state mismatch\n"); 7260 intel_pps_dump_state("sw", sw); 7261 intel_pps_dump_state("hw", &hw); 7262 } 7263 } 7264 7265 static void 7266 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 7267 { 7268 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7269 struct edp_power_seq cur, vbt, spec, 7270 *final = &intel_dp->pps_delays; 7271 7272 lockdep_assert_held(&dev_priv->pps_mutex); 7273 7274 /* already initialized? */ 7275 if (final->t11_t12 != 0) 7276 return; 7277 7278 intel_pps_readout_hw_state(intel_dp, &cur); 7279 7280 intel_pps_dump_state("cur", &cur); 7281 7282 vbt = dev_priv->vbt.edp.pps; 7283 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 7284 * of 500ms appears to be too short. Ocassionally the panel 7285 * just fails to power back on. Increasing the delay to 800ms 7286 * seems sufficient to avoid this problem. 7287 */ 7288 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 7289 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 7290 drm_dbg_kms(&dev_priv->drm, 7291 "Increasing T12 panel delay as per the quirk to %d\n", 7292 vbt.t11_t12); 7293 } 7294 /* T11_T12 delay is special and actually in units of 100ms, but zero 7295 * based in the hw (so we need to add 100 ms). But the sw vbt 7296 * table multiplies it with 1000 to make it in units of 100usec, 7297 * too. */ 7298 vbt.t11_t12 += 100 * 10; 7299 7300 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 7301 * our hw here, which are all in 100usec. */ 7302 spec.t1_t3 = 210 * 10; 7303 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 7304 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 7305 spec.t10 = 500 * 10; 7306 /* This one is special and actually in units of 100ms, but zero 7307 * based in the hw (so we need to add 100 ms). But the sw vbt 7308 * table multiplies it with 1000 to make it in units of 100usec, 7309 * too. */ 7310 spec.t11_t12 = (510 + 100) * 10; 7311 7312 intel_pps_dump_state("vbt", &vbt); 7313 7314 /* Use the max of the register settings and vbt. If both are 7315 * unset, fall back to the spec limits. */ 7316 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 7317 spec.field : \ 7318 max(cur.field, vbt.field)) 7319 assign_final(t1_t3); 7320 assign_final(t8); 7321 assign_final(t9); 7322 assign_final(t10); 7323 assign_final(t11_t12); 7324 #undef assign_final 7325 7326 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 7327 intel_dp->panel_power_up_delay = get_delay(t1_t3); 7328 intel_dp->backlight_on_delay = get_delay(t8); 7329 intel_dp->backlight_off_delay = get_delay(t9); 7330 intel_dp->panel_power_down_delay = get_delay(t10); 7331 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 7332 #undef get_delay 7333 7334 drm_dbg_kms(&dev_priv->drm, 7335 "panel power up delay %d, power down delay %d, power cycle delay %d\n", 7336 intel_dp->panel_power_up_delay, 7337 intel_dp->panel_power_down_delay, 7338 intel_dp->panel_power_cycle_delay); 7339 7340 drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n", 7341 intel_dp->backlight_on_delay, 7342 intel_dp->backlight_off_delay); 7343 7344 /* 7345 * We override the HW backlight delays to 1 because we do manual waits 7346 * on them. For T8, even BSpec recommends doing it. For T9, if we 7347 * don't do this, we'll end up waiting for the backlight off delay 7348 * twice: once when we do the manual sleep, and once when we disable 7349 * the panel and wait for the PP_STATUS bit to become zero. 7350 */ 7351 final->t8 = 1; 7352 final->t9 = 1; 7353 7354 /* 7355 * HW has only a 100msec granularity for t11_t12 so round it up 7356 * accordingly. 7357 */ 7358 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 7359 } 7360 7361 static void 7362 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 7363 bool force_disable_vdd) 7364 { 7365 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7366 u32 pp_on, pp_off, port_sel = 0; 7367 int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000; 7368 struct pps_registers regs; 7369 enum port port = dp_to_dig_port(intel_dp)->base.port; 7370 const struct edp_power_seq *seq = &intel_dp->pps_delays; 7371 7372 lockdep_assert_held(&dev_priv->pps_mutex); 7373 7374 intel_pps_get_registers(intel_dp, ®s); 7375 7376 /* 7377 * On some VLV machines the BIOS can leave the VDD 7378 * enabled even on power sequencers which aren't 7379 * hooked up to any port. This would mess up the 7380 * power domain tracking the first time we pick 7381 * one of these power sequencers for use since 7382 * edp_panel_vdd_on() would notice that the VDD was 7383 * already on and therefore wouldn't grab the power 7384 * domain reference. Disable VDD first to avoid this. 7385 * This also avoids spuriously turning the VDD on as 7386 * soon as the new power sequencer gets initialized. 7387 */ 7388 if (force_disable_vdd) { 7389 u32 pp = ilk_get_pp_control(intel_dp); 7390 7391 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON, 7392 "Panel power already on\n"); 7393 7394 if (pp & EDP_FORCE_VDD) 7395 drm_dbg_kms(&dev_priv->drm, 7396 "VDD already on, disabling first\n"); 7397 7398 pp &= ~EDP_FORCE_VDD; 7399 7400 intel_de_write(dev_priv, regs.pp_ctrl, pp); 7401 } 7402 7403 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 7404 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 7405 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 7406 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 7407 7408 /* Haswell doesn't have any port selection bits for the panel 7409 * power sequencer any more. */ 7410 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7411 port_sel = PANEL_PORT_SELECT_VLV(port); 7412 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 7413 switch (port) { 7414 case PORT_A: 7415 port_sel = PANEL_PORT_SELECT_DPA; 7416 break; 7417 case PORT_C: 7418 port_sel = PANEL_PORT_SELECT_DPC; 7419 break; 7420 case PORT_D: 7421 port_sel = PANEL_PORT_SELECT_DPD; 7422 break; 7423 default: 7424 MISSING_CASE(port); 7425 break; 7426 } 7427 } 7428 7429 pp_on |= port_sel; 7430 7431 intel_de_write(dev_priv, regs.pp_on, pp_on); 7432 intel_de_write(dev_priv, regs.pp_off, pp_off); 7433 7434 /* 7435 * Compute the divisor for the pp clock, simply match the Bspec formula. 7436 */ 7437 if (i915_mmio_reg_valid(regs.pp_div)) { 7438 intel_de_write(dev_priv, regs.pp_div, 7439 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 7440 } else { 7441 u32 pp_ctl; 7442 7443 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl); 7444 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 7445 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 7446 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); 7447 } 7448 7449 drm_dbg_kms(&dev_priv->drm, 7450 "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 7451 intel_de_read(dev_priv, regs.pp_on), 7452 intel_de_read(dev_priv, regs.pp_off), 7453 i915_mmio_reg_valid(regs.pp_div) ? 7454 intel_de_read(dev_priv, regs.pp_div) : 7455 (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 7456 } 7457 7458 static void intel_dp_pps_init(struct intel_dp *intel_dp) 7459 { 7460 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7461 7462 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7463 vlv_initial_power_sequencer_setup(intel_dp); 7464 } else { 7465 intel_dp_init_panel_power_sequencer(intel_dp); 7466 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 7467 } 7468 } 7469 7470 /** 7471 * intel_dp_set_drrs_state - program registers for RR switch to take effect 7472 * @dev_priv: i915 device 7473 * @crtc_state: a pointer to the active intel_crtc_state 7474 * @refresh_rate: RR to be programmed 7475 * 7476 * This function gets called when refresh rate (RR) has to be changed from 7477 * one frequency to another. Switches can be between high and low RR 7478 * supported by the panel or to any other RR based on media playback (in 7479 * this case, RR value needs to be passed from user space). 7480 * 7481 * The caller of this function needs to take a lock on dev_priv->drrs. 7482 */ 7483 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 7484 const struct intel_crtc_state *crtc_state, 7485 int refresh_rate) 7486 { 7487 struct intel_dp *intel_dp = dev_priv->drrs.dp; 7488 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 7489 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 7490 7491 if (refresh_rate <= 0) { 7492 drm_dbg_kms(&dev_priv->drm, 7493 "Refresh rate should be positive non-zero.\n"); 7494 return; 7495 } 7496 7497 if (intel_dp == NULL) { 7498 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n"); 7499 return; 7500 } 7501 7502 if (!intel_crtc) { 7503 drm_dbg_kms(&dev_priv->drm, 7504 "DRRS: intel_crtc not initialized\n"); 7505 return; 7506 } 7507 7508 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 7509 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n"); 7510 return; 7511 } 7512 7513 if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) == 7514 refresh_rate) 7515 index = DRRS_LOW_RR; 7516 7517 if (index == dev_priv->drrs.refresh_rate_type) { 7518 drm_dbg_kms(&dev_priv->drm, 7519 "DRRS requested for previously set RR...ignoring\n"); 7520 return; 7521 } 7522 7523 if (!crtc_state->hw.active) { 7524 drm_dbg_kms(&dev_priv->drm, 7525 "eDP encoder disabled. CRTC not Active\n"); 7526 return; 7527 } 7528 7529 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 7530 switch (index) { 7531 case DRRS_HIGH_RR: 7532 intel_dp_set_m_n(crtc_state, M1_N1); 7533 break; 7534 case DRRS_LOW_RR: 7535 intel_dp_set_m_n(crtc_state, M2_N2); 7536 break; 7537 case DRRS_MAX_RR: 7538 default: 7539 drm_err(&dev_priv->drm, 7540 "Unsupported refreshrate type\n"); 7541 } 7542 } else if (INTEL_GEN(dev_priv) > 6) { 7543 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 7544 u32 val; 7545 7546 val = intel_de_read(dev_priv, reg); 7547 if (index > DRRS_HIGH_RR) { 7548 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7549 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7550 else 7551 val |= PIPECONF_EDP_RR_MODE_SWITCH; 7552 } else { 7553 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7554 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7555 else 7556 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 7557 } 7558 intel_de_write(dev_priv, reg, val); 7559 } 7560 7561 dev_priv->drrs.refresh_rate_type = index; 7562 7563 drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n", 7564 refresh_rate); 7565 } 7566 7567 static void 7568 intel_edp_drrs_enable_locked(struct intel_dp *intel_dp) 7569 { 7570 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7571 7572 dev_priv->drrs.busy_frontbuffer_bits = 0; 7573 dev_priv->drrs.dp = intel_dp; 7574 } 7575 7576 /** 7577 * intel_edp_drrs_enable - init drrs struct if supported 7578 * @intel_dp: DP struct 7579 * @crtc_state: A pointer to the active crtc state. 7580 * 7581 * Initializes frontbuffer_bits and drrs.dp 7582 */ 7583 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 7584 const struct intel_crtc_state *crtc_state) 7585 { 7586 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7587 7588 if (!crtc_state->has_drrs) 7589 return; 7590 7591 drm_dbg_kms(&dev_priv->drm, "Enabling DRRS\n"); 7592 7593 mutex_lock(&dev_priv->drrs.mutex); 7594 7595 if (dev_priv->drrs.dp) { 7596 drm_warn(&dev_priv->drm, "DRRS already enabled\n"); 7597 goto unlock; 7598 } 7599 7600 intel_edp_drrs_enable_locked(intel_dp); 7601 7602 unlock: 7603 mutex_unlock(&dev_priv->drrs.mutex); 7604 } 7605 7606 static void 7607 intel_edp_drrs_disable_locked(struct intel_dp *intel_dp, 7608 const struct intel_crtc_state *crtc_state) 7609 { 7610 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7611 7612 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) { 7613 int refresh; 7614 7615 refresh = drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode); 7616 intel_dp_set_drrs_state(dev_priv, crtc_state, refresh); 7617 } 7618 7619 dev_priv->drrs.dp = NULL; 7620 } 7621 7622 /** 7623 * intel_edp_drrs_disable - Disable DRRS 7624 * @intel_dp: DP struct 7625 * @old_crtc_state: Pointer to old crtc_state. 7626 * 7627 */ 7628 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 7629 const struct intel_crtc_state *old_crtc_state) 7630 { 7631 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7632 7633 if (!old_crtc_state->has_drrs) 7634 return; 7635 7636 mutex_lock(&dev_priv->drrs.mutex); 7637 if (!dev_priv->drrs.dp) { 7638 mutex_unlock(&dev_priv->drrs.mutex); 7639 return; 7640 } 7641 7642 intel_edp_drrs_disable_locked(intel_dp, old_crtc_state); 7643 mutex_unlock(&dev_priv->drrs.mutex); 7644 7645 cancel_delayed_work_sync(&dev_priv->drrs.work); 7646 } 7647 7648 /** 7649 * intel_edp_drrs_update - Update DRRS state 7650 * @intel_dp: Intel DP 7651 * @crtc_state: new CRTC state 7652 * 7653 * This function will update DRRS states, disabling or enabling DRRS when 7654 * executing fastsets. For full modeset, intel_edp_drrs_disable() and 7655 * intel_edp_drrs_enable() should be called instead. 7656 */ 7657 void 7658 intel_edp_drrs_update(struct intel_dp *intel_dp, 7659 const struct intel_crtc_state *crtc_state) 7660 { 7661 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7662 7663 if (dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT) 7664 return; 7665 7666 mutex_lock(&dev_priv->drrs.mutex); 7667 7668 /* New state matches current one? */ 7669 if (crtc_state->has_drrs == !!dev_priv->drrs.dp) 7670 goto unlock; 7671 7672 if (crtc_state->has_drrs) 7673 intel_edp_drrs_enable_locked(intel_dp); 7674 else 7675 intel_edp_drrs_disable_locked(intel_dp, crtc_state); 7676 7677 unlock: 7678 mutex_unlock(&dev_priv->drrs.mutex); 7679 } 7680 7681 static void intel_edp_drrs_downclock_work(struct work_struct *work) 7682 { 7683 struct drm_i915_private *dev_priv = 7684 container_of(work, typeof(*dev_priv), drrs.work.work); 7685 struct intel_dp *intel_dp; 7686 7687 mutex_lock(&dev_priv->drrs.mutex); 7688 7689 intel_dp = dev_priv->drrs.dp; 7690 7691 if (!intel_dp) 7692 goto unlock; 7693 7694 /* 7695 * The delayed work can race with an invalidate hence we need to 7696 * recheck. 7697 */ 7698 7699 if (dev_priv->drrs.busy_frontbuffer_bits) 7700 goto unlock; 7701 7702 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 7703 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7704 7705 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7706 drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode)); 7707 } 7708 7709 unlock: 7710 mutex_unlock(&dev_priv->drrs.mutex); 7711 } 7712 7713 /** 7714 * intel_edp_drrs_invalidate - Disable Idleness DRRS 7715 * @dev_priv: i915 device 7716 * @frontbuffer_bits: frontbuffer plane tracking bits 7717 * 7718 * This function gets called everytime rendering on the given planes start. 7719 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 7720 * 7721 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7722 */ 7723 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 7724 unsigned int frontbuffer_bits) 7725 { 7726 struct intel_dp *intel_dp; 7727 struct drm_crtc *crtc; 7728 enum pipe pipe; 7729 7730 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7731 return; 7732 7733 cancel_delayed_work(&dev_priv->drrs.work); 7734 7735 mutex_lock(&dev_priv->drrs.mutex); 7736 7737 intel_dp = dev_priv->drrs.dp; 7738 if (!intel_dp) { 7739 mutex_unlock(&dev_priv->drrs.mutex); 7740 return; 7741 } 7742 7743 crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7744 pipe = to_intel_crtc(crtc)->pipe; 7745 7746 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7747 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 7748 7749 /* invalidate means busy screen hence upclock */ 7750 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7751 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7752 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode)); 7753 7754 mutex_unlock(&dev_priv->drrs.mutex); 7755 } 7756 7757 /** 7758 * intel_edp_drrs_flush - Restart Idleness DRRS 7759 * @dev_priv: i915 device 7760 * @frontbuffer_bits: frontbuffer plane tracking bits 7761 * 7762 * This function gets called every time rendering on the given planes has 7763 * completed or flip on a crtc is completed. So DRRS should be upclocked 7764 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 7765 * if no other planes are dirty. 7766 * 7767 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7768 */ 7769 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 7770 unsigned int frontbuffer_bits) 7771 { 7772 struct intel_dp *intel_dp; 7773 struct drm_crtc *crtc; 7774 enum pipe pipe; 7775 7776 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7777 return; 7778 7779 cancel_delayed_work(&dev_priv->drrs.work); 7780 7781 mutex_lock(&dev_priv->drrs.mutex); 7782 7783 intel_dp = dev_priv->drrs.dp; 7784 if (!intel_dp) { 7785 mutex_unlock(&dev_priv->drrs.mutex); 7786 return; 7787 } 7788 7789 crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7790 pipe = to_intel_crtc(crtc)->pipe; 7791 7792 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7793 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 7794 7795 /* flush means busy screen hence upclock */ 7796 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7797 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7798 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode)); 7799 7800 /* 7801 * flush also means no more activity hence schedule downclock, if all 7802 * other fbs are quiescent too 7803 */ 7804 if (!dev_priv->drrs.busy_frontbuffer_bits) 7805 schedule_delayed_work(&dev_priv->drrs.work, 7806 msecs_to_jiffies(1000)); 7807 mutex_unlock(&dev_priv->drrs.mutex); 7808 } 7809 7810 /** 7811 * DOC: Display Refresh Rate Switching (DRRS) 7812 * 7813 * Display Refresh Rate Switching (DRRS) is a power conservation feature 7814 * which enables swtching between low and high refresh rates, 7815 * dynamically, based on the usage scenario. This feature is applicable 7816 * for internal panels. 7817 * 7818 * Indication that the panel supports DRRS is given by the panel EDID, which 7819 * would list multiple refresh rates for one resolution. 7820 * 7821 * DRRS is of 2 types - static and seamless. 7822 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 7823 * (may appear as a blink on screen) and is used in dock-undock scenario. 7824 * Seamless DRRS involves changing RR without any visual effect to the user 7825 * and can be used during normal system usage. This is done by programming 7826 * certain registers. 7827 * 7828 * Support for static/seamless DRRS may be indicated in the VBT based on 7829 * inputs from the panel spec. 7830 * 7831 * DRRS saves power by switching to low RR based on usage scenarios. 7832 * 7833 * The implementation is based on frontbuffer tracking implementation. When 7834 * there is a disturbance on the screen triggered by user activity or a periodic 7835 * system activity, DRRS is disabled (RR is changed to high RR). When there is 7836 * no movement on screen, after a timeout of 1 second, a switch to low RR is 7837 * made. 7838 * 7839 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 7840 * and intel_edp_drrs_flush() are called. 7841 * 7842 * DRRS can be further extended to support other internal panels and also 7843 * the scenario of video playback wherein RR is set based on the rate 7844 * requested by userspace. 7845 */ 7846 7847 /** 7848 * intel_dp_drrs_init - Init basic DRRS work and mutex. 7849 * @connector: eDP connector 7850 * @fixed_mode: preferred mode of panel 7851 * 7852 * This function is called only once at driver load to initialize basic 7853 * DRRS stuff. 7854 * 7855 * Returns: 7856 * Downclock mode if panel supports it, else return NULL. 7857 * DRRS support is determined by the presence of downclock mode (apart 7858 * from VBT setting). 7859 */ 7860 static struct drm_display_mode * 7861 intel_dp_drrs_init(struct intel_connector *connector, 7862 struct drm_display_mode *fixed_mode) 7863 { 7864 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 7865 struct drm_display_mode *downclock_mode = NULL; 7866 7867 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 7868 mutex_init(&dev_priv->drrs.mutex); 7869 7870 if (INTEL_GEN(dev_priv) <= 6) { 7871 drm_dbg_kms(&dev_priv->drm, 7872 "DRRS supported for Gen7 and above\n"); 7873 return NULL; 7874 } 7875 7876 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 7877 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n"); 7878 return NULL; 7879 } 7880 7881 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 7882 if (!downclock_mode) { 7883 drm_dbg_kms(&dev_priv->drm, 7884 "Downclock mode is not found. DRRS not supported\n"); 7885 return NULL; 7886 } 7887 7888 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 7889 7890 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 7891 drm_dbg_kms(&dev_priv->drm, 7892 "seamless DRRS supported for eDP panel.\n"); 7893 return downclock_mode; 7894 } 7895 7896 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7897 struct intel_connector *intel_connector) 7898 { 7899 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7900 struct drm_device *dev = &dev_priv->drm; 7901 struct drm_connector *connector = &intel_connector->base; 7902 struct drm_display_mode *fixed_mode = NULL; 7903 struct drm_display_mode *downclock_mode = NULL; 7904 bool has_dpcd; 7905 enum pipe pipe = INVALID_PIPE; 7906 intel_wakeref_t wakeref; 7907 struct edid *edid; 7908 7909 if (!intel_dp_is_edp(intel_dp)) 7910 return true; 7911 7912 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7913 7914 /* 7915 * On IBX/CPT we may get here with LVDS already registered. Since the 7916 * driver uses the only internal power sequencer available for both 7917 * eDP and LVDS bail out early in this case to prevent interfering 7918 * with an already powered-on LVDS power sequencer. 7919 */ 7920 if (intel_get_lvds_encoder(dev_priv)) { 7921 drm_WARN_ON(dev, 7922 !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7923 drm_info(&dev_priv->drm, 7924 "LVDS was detected, not registering eDP\n"); 7925 7926 return false; 7927 } 7928 7929 with_pps_lock(intel_dp, wakeref) { 7930 intel_dp_init_panel_power_timestamps(intel_dp); 7931 intel_dp_pps_init(intel_dp); 7932 intel_edp_panel_vdd_sanitize(intel_dp); 7933 } 7934 7935 /* Cache DPCD and EDID for edp. */ 7936 has_dpcd = intel_edp_init_dpcd(intel_dp); 7937 7938 if (!has_dpcd) { 7939 /* if this fails, presume the device is a ghost */ 7940 drm_info(&dev_priv->drm, 7941 "failed to retrieve link info, disabling eDP\n"); 7942 goto out_vdd_off; 7943 } 7944 7945 mutex_lock(&dev->mode_config.mutex); 7946 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7947 if (edid) { 7948 if (drm_add_edid_modes(connector, edid)) { 7949 drm_connector_update_edid_property(connector, edid); 7950 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid); 7951 } else { 7952 kfree(edid); 7953 edid = ERR_PTR(-EINVAL); 7954 } 7955 } else { 7956 edid = ERR_PTR(-ENOENT); 7957 } 7958 intel_connector->edid = edid; 7959 7960 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7961 if (fixed_mode) 7962 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7963 7964 /* fallback to VBT if available for eDP */ 7965 if (!fixed_mode) 7966 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7967 mutex_unlock(&dev->mode_config.mutex); 7968 7969 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7970 /* 7971 * Figure out the current pipe for the initial backlight setup. 7972 * If the current pipe isn't valid, try the PPS pipe, and if that 7973 * fails just assume pipe A. 7974 */ 7975 pipe = vlv_active_pipe(intel_dp); 7976 7977 if (pipe != PIPE_A && pipe != PIPE_B) 7978 pipe = intel_dp->pps_pipe; 7979 7980 if (pipe != PIPE_A && pipe != PIPE_B) 7981 pipe = PIPE_A; 7982 7983 drm_dbg_kms(&dev_priv->drm, 7984 "using pipe %c for initial backlight setup\n", 7985 pipe_name(pipe)); 7986 } 7987 7988 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7989 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7990 intel_panel_setup_backlight(connector, pipe); 7991 7992 if (fixed_mode) { 7993 drm_connector_set_panel_orientation_with_quirk(connector, 7994 dev_priv->vbt.orientation, 7995 fixed_mode->hdisplay, fixed_mode->vdisplay); 7996 } 7997 7998 return true; 7999 8000 out_vdd_off: 8001 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 8002 /* 8003 * vdd might still be enabled do to the delayed vdd off. 8004 * Make sure vdd is actually turned off here. 8005 */ 8006 with_pps_lock(intel_dp, wakeref) 8007 edp_panel_vdd_off_sync(intel_dp); 8008 8009 return false; 8010 } 8011 8012 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 8013 { 8014 struct intel_connector *intel_connector; 8015 struct drm_connector *connector; 8016 8017 intel_connector = container_of(work, typeof(*intel_connector), 8018 modeset_retry_work); 8019 connector = &intel_connector->base; 8020 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 8021 connector->name); 8022 8023 /* Grab the locks before changing connector property*/ 8024 mutex_lock(&connector->dev->mode_config.mutex); 8025 /* Set connector link status to BAD and send a Uevent to notify 8026 * userspace to do a modeset. 8027 */ 8028 drm_connector_set_link_status_property(connector, 8029 DRM_MODE_LINK_STATUS_BAD); 8030 mutex_unlock(&connector->dev->mode_config.mutex); 8031 /* Send Hotplug uevent so userspace can reprobe */ 8032 drm_kms_helper_hotplug_event(connector->dev); 8033 } 8034 8035 bool 8036 intel_dp_init_connector(struct intel_digital_port *dig_port, 8037 struct intel_connector *intel_connector) 8038 { 8039 struct drm_connector *connector = &intel_connector->base; 8040 struct intel_dp *intel_dp = &dig_port->dp; 8041 struct intel_encoder *intel_encoder = &dig_port->base; 8042 struct drm_device *dev = intel_encoder->base.dev; 8043 struct drm_i915_private *dev_priv = to_i915(dev); 8044 enum port port = intel_encoder->port; 8045 enum phy phy = intel_port_to_phy(dev_priv, port); 8046 int type; 8047 8048 /* Initialize the work for modeset in case of link train failure */ 8049 INIT_WORK(&intel_connector->modeset_retry_work, 8050 intel_dp_modeset_retry_work_fn); 8051 8052 if (drm_WARN(dev, dig_port->max_lanes < 1, 8053 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 8054 dig_port->max_lanes, intel_encoder->base.base.id, 8055 intel_encoder->base.name)) 8056 return false; 8057 8058 intel_dp_set_source_rates(intel_dp); 8059 8060 intel_dp->reset_link_params = true; 8061 intel_dp->pps_pipe = INVALID_PIPE; 8062 intel_dp->active_pipe = INVALID_PIPE; 8063 8064 /* Preserve the current hw state. */ 8065 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); 8066 intel_dp->attached_connector = intel_connector; 8067 8068 if (intel_dp_is_port_edp(dev_priv, port)) { 8069 /* 8070 * Currently we don't support eDP on TypeC ports, although in 8071 * theory it could work on TypeC legacy ports. 8072 */ 8073 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy)); 8074 type = DRM_MODE_CONNECTOR_eDP; 8075 } else { 8076 type = DRM_MODE_CONNECTOR_DisplayPort; 8077 } 8078 8079 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8080 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 8081 8082 /* 8083 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 8084 * for DP the encoder type can be set by the caller to 8085 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 8086 */ 8087 if (type == DRM_MODE_CONNECTOR_eDP) 8088 intel_encoder->type = INTEL_OUTPUT_EDP; 8089 8090 /* eDP only on port B and/or C on vlv/chv */ 8091 if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) || 8092 IS_CHERRYVIEW(dev_priv)) && 8093 intel_dp_is_edp(intel_dp) && 8094 port != PORT_B && port != PORT_C)) 8095 return false; 8096 8097 drm_dbg_kms(&dev_priv->drm, 8098 "Adding %s connector on [ENCODER:%d:%s]\n", 8099 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 8100 intel_encoder->base.base.id, intel_encoder->base.name); 8101 8102 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 8103 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 8104 8105 if (!HAS_GMCH(dev_priv)) 8106 connector->interlace_allowed = true; 8107 connector->doublescan_allowed = 0; 8108 8109 intel_connector->polled = DRM_CONNECTOR_POLL_HPD; 8110 8111 intel_dp_aux_init(intel_dp); 8112 8113 intel_connector_attach_encoder(intel_connector, intel_encoder); 8114 8115 if (HAS_DDI(dev_priv)) 8116 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 8117 else 8118 intel_connector->get_hw_state = intel_connector_get_hw_state; 8119 8120 /* init MST on ports that can support it */ 8121 intel_dp_mst_encoder_init(dig_port, 8122 intel_connector->base.base.id); 8123 8124 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 8125 intel_dp_aux_fini(intel_dp); 8126 intel_dp_mst_encoder_cleanup(dig_port); 8127 goto fail; 8128 } 8129 8130 intel_dp_add_properties(intel_dp, connector); 8131 8132 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 8133 int ret = intel_dp_init_hdcp(dig_port, intel_connector); 8134 if (ret) 8135 drm_dbg_kms(&dev_priv->drm, 8136 "HDCP init failed, skipping.\n"); 8137 } 8138 8139 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 8140 * 0xd. Failure to do so will result in spurious interrupts being 8141 * generated on the port when a cable is not attached. 8142 */ 8143 if (IS_G45(dev_priv)) { 8144 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); 8145 intel_de_write(dev_priv, PEG_BAND_GAP_DATA, 8146 (temp & ~0xf) | 0xd); 8147 } 8148 8149 return true; 8150 8151 fail: 8152 drm_connector_cleanup(connector); 8153 8154 return false; 8155 } 8156 8157 bool intel_dp_init(struct drm_i915_private *dev_priv, 8158 i915_reg_t output_reg, 8159 enum port port) 8160 { 8161 struct intel_digital_port *dig_port; 8162 struct intel_encoder *intel_encoder; 8163 struct drm_encoder *encoder; 8164 struct intel_connector *intel_connector; 8165 8166 dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL); 8167 if (!dig_port) 8168 return false; 8169 8170 intel_connector = intel_connector_alloc(); 8171 if (!intel_connector) 8172 goto err_connector_alloc; 8173 8174 intel_encoder = &dig_port->base; 8175 encoder = &intel_encoder->base; 8176 8177 mutex_init(&dig_port->hdcp_mutex); 8178 8179 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 8180 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 8181 "DP %c", port_name(port))) 8182 goto err_encoder_init; 8183 8184 intel_encoder->hotplug = intel_dp_hotplug; 8185 intel_encoder->compute_config = intel_dp_compute_config; 8186 intel_encoder->get_hw_state = intel_dp_get_hw_state; 8187 intel_encoder->get_config = intel_dp_get_config; 8188 intel_encoder->sync_state = intel_dp_sync_state; 8189 intel_encoder->initial_fastset_check = intel_dp_initial_fastset_check; 8190 intel_encoder->update_pipe = intel_panel_update_backlight; 8191 intel_encoder->suspend = intel_dp_encoder_suspend; 8192 intel_encoder->shutdown = intel_dp_encoder_shutdown; 8193 if (IS_CHERRYVIEW(dev_priv)) { 8194 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 8195 intel_encoder->pre_enable = chv_pre_enable_dp; 8196 intel_encoder->enable = vlv_enable_dp; 8197 intel_encoder->disable = vlv_disable_dp; 8198 intel_encoder->post_disable = chv_post_disable_dp; 8199 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 8200 } else if (IS_VALLEYVIEW(dev_priv)) { 8201 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 8202 intel_encoder->pre_enable = vlv_pre_enable_dp; 8203 intel_encoder->enable = vlv_enable_dp; 8204 intel_encoder->disable = vlv_disable_dp; 8205 intel_encoder->post_disable = vlv_post_disable_dp; 8206 } else { 8207 intel_encoder->pre_enable = g4x_pre_enable_dp; 8208 intel_encoder->enable = g4x_enable_dp; 8209 intel_encoder->disable = g4x_disable_dp; 8210 intel_encoder->post_disable = g4x_post_disable_dp; 8211 } 8212 8213 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 8214 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) 8215 dig_port->dp.set_link_train = cpt_set_link_train; 8216 else 8217 dig_port->dp.set_link_train = g4x_set_link_train; 8218 8219 if (IS_CHERRYVIEW(dev_priv)) 8220 dig_port->dp.set_signal_levels = chv_set_signal_levels; 8221 else if (IS_VALLEYVIEW(dev_priv)) 8222 dig_port->dp.set_signal_levels = vlv_set_signal_levels; 8223 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 8224 dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels; 8225 else if (IS_GEN(dev_priv, 6) && port == PORT_A) 8226 dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels; 8227 else 8228 dig_port->dp.set_signal_levels = g4x_set_signal_levels; 8229 8230 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) || 8231 (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) { 8232 dig_port->dp.preemph_max = intel_dp_preemph_max_3; 8233 dig_port->dp.voltage_max = intel_dp_voltage_max_3; 8234 } else { 8235 dig_port->dp.preemph_max = intel_dp_preemph_max_2; 8236 dig_port->dp.voltage_max = intel_dp_voltage_max_2; 8237 } 8238 8239 dig_port->dp.output_reg = output_reg; 8240 dig_port->max_lanes = 4; 8241 8242 intel_encoder->type = INTEL_OUTPUT_DP; 8243 intel_encoder->power_domain = intel_port_to_power_domain(port); 8244 if (IS_CHERRYVIEW(dev_priv)) { 8245 if (port == PORT_D) 8246 intel_encoder->pipe_mask = BIT(PIPE_C); 8247 else 8248 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); 8249 } else { 8250 intel_encoder->pipe_mask = ~0; 8251 } 8252 intel_encoder->cloneable = 0; 8253 intel_encoder->port = port; 8254 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 8255 8256 dig_port->hpd_pulse = intel_dp_hpd_pulse; 8257 8258 if (HAS_GMCH(dev_priv)) { 8259 if (IS_GM45(dev_priv)) 8260 dig_port->connected = gm45_digital_port_connected; 8261 else 8262 dig_port->connected = g4x_digital_port_connected; 8263 } else { 8264 if (port == PORT_A) 8265 dig_port->connected = ilk_digital_port_connected; 8266 else 8267 dig_port->connected = ibx_digital_port_connected; 8268 } 8269 8270 if (port != PORT_A) 8271 intel_infoframe_init(dig_port); 8272 8273 dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 8274 if (!intel_dp_init_connector(dig_port, intel_connector)) 8275 goto err_init_connector; 8276 8277 return true; 8278 8279 err_init_connector: 8280 drm_encoder_cleanup(encoder); 8281 err_encoder_init: 8282 kfree(intel_connector); 8283 err_connector_alloc: 8284 kfree(dig_port); 8285 return false; 8286 } 8287 8288 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 8289 { 8290 struct intel_encoder *encoder; 8291 8292 for_each_intel_encoder(&dev_priv->drm, encoder) { 8293 struct intel_dp *intel_dp; 8294 8295 if (encoder->type != INTEL_OUTPUT_DDI) 8296 continue; 8297 8298 intel_dp = enc_to_intel_dp(encoder); 8299 8300 if (!intel_dp->can_mst) 8301 continue; 8302 8303 if (intel_dp->is_mst) 8304 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 8305 } 8306 } 8307 8308 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 8309 { 8310 struct intel_encoder *encoder; 8311 8312 for_each_intel_encoder(&dev_priv->drm, encoder) { 8313 struct intel_dp *intel_dp; 8314 int ret; 8315 8316 if (encoder->type != INTEL_OUTPUT_DDI) 8317 continue; 8318 8319 intel_dp = enc_to_intel_dp(encoder); 8320 8321 if (!intel_dp->can_mst) 8322 continue; 8323 8324 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, 8325 true); 8326 if (ret) { 8327 intel_dp->is_mst = false; 8328 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 8329 false); 8330 } 8331 } 8332 } 8333