1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_hdcp.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/i915_drm.h> 44 45 #include "i915_debugfs.h" 46 #include "i915_drv.h" 47 #include "i915_trace.h" 48 #include "intel_atomic.h" 49 #include "intel_audio.h" 50 #include "intel_connector.h" 51 #include "intel_ddi.h" 52 #include "intel_display_types.h" 53 #include "intel_dp.h" 54 #include "intel_dp_link_training.h" 55 #include "intel_dp_mst.h" 56 #include "intel_dpio_phy.h" 57 #include "intel_fifo_underrun.h" 58 #include "intel_hdcp.h" 59 #include "intel_hdmi.h" 60 #include "intel_hotplug.h" 61 #include "intel_lspcon.h" 62 #include "intel_lvds.h" 63 #include "intel_panel.h" 64 #include "intel_psr.h" 65 #include "intel_sideband.h" 66 #include "intel_tc.h" 67 #include "intel_vdsc.h" 68 69 #define DP_DPRX_ESI_LEN 14 70 71 /* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */ 72 #define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER 61440 73 #define DP_DSC_MIN_SUPPORTED_BPC 8 74 #define DP_DSC_MAX_SUPPORTED_BPC 10 75 76 /* DP DSC throughput values used for slice count calculations KPixels/s */ 77 #define DP_DSC_PEAK_PIXEL_RATE 2720000 78 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 79 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 80 81 /* DP DSC FEC Overhead factor = (100 - 2.4)/100 */ 82 #define DP_DSC_FEC_OVERHEAD_FACTOR 976 83 84 /* Compliance test status bits */ 85 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 86 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 87 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 88 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 89 90 struct dp_link_dpll { 91 int clock; 92 struct dpll dpll; 93 }; 94 95 static const struct dp_link_dpll g4x_dpll[] = { 96 { 162000, 97 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 98 { 270000, 99 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 100 }; 101 102 static const struct dp_link_dpll pch_dpll[] = { 103 { 162000, 104 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 105 { 270000, 106 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 107 }; 108 109 static const struct dp_link_dpll vlv_dpll[] = { 110 { 162000, 111 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 112 { 270000, 113 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 114 }; 115 116 /* 117 * CHV supports eDP 1.4 that have more link rates. 118 * Below only provides the fixed rate but exclude variable rate. 119 */ 120 static const struct dp_link_dpll chv_dpll[] = { 121 /* 122 * CHV requires to program fractional division for m2. 123 * m2 is stored in fixed point format using formula below 124 * (m2_int << 22) | m2_fraction 125 */ 126 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 127 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 128 { 270000, /* m2_int = 27, m2_fraction = 0 */ 129 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 130 }; 131 132 /* Constants for DP DSC configurations */ 133 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 134 135 /* With Single pipe configuration, HW is capable of supporting maximum 136 * of 4 slices per line. 137 */ 138 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 139 140 /** 141 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 142 * @intel_dp: DP struct 143 * 144 * If a CPU or PCH DP output is attached to an eDP panel, this function 145 * will return true, and false otherwise. 146 */ 147 bool intel_dp_is_edp(struct intel_dp *intel_dp) 148 { 149 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 150 151 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 152 } 153 154 static struct intel_dp *intel_attached_dp(struct drm_connector *connector) 155 { 156 return enc_to_intel_dp(&intel_attached_encoder(connector)->base); 157 } 158 159 static void intel_dp_link_down(struct intel_encoder *encoder, 160 const struct intel_crtc_state *old_crtc_state); 161 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 162 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 163 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 164 const struct intel_crtc_state *crtc_state); 165 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 166 enum pipe pipe); 167 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 168 169 /* update sink rates from dpcd */ 170 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 171 { 172 static const int dp_rates[] = { 173 162000, 270000, 540000, 810000 174 }; 175 int i, max_rate; 176 177 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 178 179 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 180 if (dp_rates[i] > max_rate) 181 break; 182 intel_dp->sink_rates[i] = dp_rates[i]; 183 } 184 185 intel_dp->num_sink_rates = i; 186 } 187 188 /* Get length of rates array potentially limited by max_rate. */ 189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 190 { 191 int i; 192 193 /* Limit results by potentially reduced max rate */ 194 for (i = 0; i < len; i++) { 195 if (rates[len - i - 1] <= max_rate) 196 return len - i; 197 } 198 199 return 0; 200 } 201 202 /* Get length of common rates array potentially limited by max_rate. */ 203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 204 int max_rate) 205 { 206 return intel_dp_rate_limit_len(intel_dp->common_rates, 207 intel_dp->num_common_rates, max_rate); 208 } 209 210 /* Theoretical max between source and sink */ 211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 212 { 213 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 214 } 215 216 /* Theoretical max between source and sink */ 217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 218 { 219 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 220 int source_max = intel_dig_port->max_lanes; 221 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 222 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); 223 224 return min3(source_max, sink_max, fia_max); 225 } 226 227 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 228 { 229 return intel_dp->max_link_lane_count; 230 } 231 232 int 233 intel_dp_link_required(int pixel_clock, int bpp) 234 { 235 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 236 return DIV_ROUND_UP(pixel_clock * bpp, 8); 237 } 238 239 int 240 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 241 { 242 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 243 * link rate that is generally expressed in Gbps. Since, 8 bits of data 244 * is transmitted every LS_Clk per lane, there is no need to account for 245 * the channel encoding that is done in the PHY layer here. 246 */ 247 248 return max_link_clock * max_lanes; 249 } 250 251 static int 252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 253 { 254 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 255 struct intel_encoder *encoder = &intel_dig_port->base; 256 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 257 int max_dotclk = dev_priv->max_dotclk_freq; 258 int ds_max_dotclk; 259 260 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 261 262 if (type != DP_DS_PORT_TYPE_VGA) 263 return max_dotclk; 264 265 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 266 intel_dp->downstream_ports); 267 268 if (ds_max_dotclk != 0) 269 max_dotclk = min(max_dotclk, ds_max_dotclk); 270 271 return max_dotclk; 272 } 273 274 static int cnl_max_source_rate(struct intel_dp *intel_dp) 275 { 276 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 277 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 278 enum port port = dig_port->base.port; 279 280 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 281 282 /* Low voltage SKUs are limited to max of 5.4G */ 283 if (voltage == VOLTAGE_INFO_0_85V) 284 return 540000; 285 286 /* For this SKU 8.1G is supported in all ports */ 287 if (IS_CNL_WITH_PORT_F(dev_priv)) 288 return 810000; 289 290 /* For other SKUs, max rate on ports A and D is 5.4G */ 291 if (port == PORT_A || port == PORT_D) 292 return 540000; 293 294 return 810000; 295 } 296 297 static int icl_max_source_rate(struct intel_dp *intel_dp) 298 { 299 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 300 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 301 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 302 303 if (intel_phy_is_combo(dev_priv, phy) && 304 !IS_ELKHARTLAKE(dev_priv) && 305 !intel_dp_is_edp(intel_dp)) 306 return 540000; 307 308 return 810000; 309 } 310 311 static void 312 intel_dp_set_source_rates(struct intel_dp *intel_dp) 313 { 314 /* The values must be in increasing order */ 315 static const int cnl_rates[] = { 316 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 317 }; 318 static const int bxt_rates[] = { 319 162000, 216000, 243000, 270000, 324000, 432000, 540000 320 }; 321 static const int skl_rates[] = { 322 162000, 216000, 270000, 324000, 432000, 540000 323 }; 324 static const int hsw_rates[] = { 325 162000, 270000, 540000 326 }; 327 static const int g4x_rates[] = { 328 162000, 270000 329 }; 330 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 331 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 332 const struct ddi_vbt_port_info *info = 333 &dev_priv->vbt.ddi_port_info[dig_port->base.port]; 334 const int *source_rates; 335 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate; 336 337 /* This should only be done once */ 338 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates); 339 340 if (INTEL_GEN(dev_priv) >= 10) { 341 source_rates = cnl_rates; 342 size = ARRAY_SIZE(cnl_rates); 343 if (IS_GEN(dev_priv, 10)) 344 max_rate = cnl_max_source_rate(intel_dp); 345 else 346 max_rate = icl_max_source_rate(intel_dp); 347 } else if (IS_GEN9_LP(dev_priv)) { 348 source_rates = bxt_rates; 349 size = ARRAY_SIZE(bxt_rates); 350 } else if (IS_GEN9_BC(dev_priv)) { 351 source_rates = skl_rates; 352 size = ARRAY_SIZE(skl_rates); 353 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 354 IS_BROADWELL(dev_priv)) { 355 source_rates = hsw_rates; 356 size = ARRAY_SIZE(hsw_rates); 357 } else { 358 source_rates = g4x_rates; 359 size = ARRAY_SIZE(g4x_rates); 360 } 361 362 if (max_rate && vbt_max_rate) 363 max_rate = min(max_rate, vbt_max_rate); 364 else if (vbt_max_rate) 365 max_rate = vbt_max_rate; 366 367 if (max_rate) 368 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 369 370 intel_dp->source_rates = source_rates; 371 intel_dp->num_source_rates = size; 372 } 373 374 static int intersect_rates(const int *source_rates, int source_len, 375 const int *sink_rates, int sink_len, 376 int *common_rates) 377 { 378 int i = 0, j = 0, k = 0; 379 380 while (i < source_len && j < sink_len) { 381 if (source_rates[i] == sink_rates[j]) { 382 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 383 return k; 384 common_rates[k] = source_rates[i]; 385 ++k; 386 ++i; 387 ++j; 388 } else if (source_rates[i] < sink_rates[j]) { 389 ++i; 390 } else { 391 ++j; 392 } 393 } 394 return k; 395 } 396 397 /* return index of rate in rates array, or -1 if not found */ 398 static int intel_dp_rate_index(const int *rates, int len, int rate) 399 { 400 int i; 401 402 for (i = 0; i < len; i++) 403 if (rate == rates[i]) 404 return i; 405 406 return -1; 407 } 408 409 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 410 { 411 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); 412 413 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 414 intel_dp->num_source_rates, 415 intel_dp->sink_rates, 416 intel_dp->num_sink_rates, 417 intel_dp->common_rates); 418 419 /* Paranoia, there should always be something in common. */ 420 if (WARN_ON(intel_dp->num_common_rates == 0)) { 421 intel_dp->common_rates[0] = 162000; 422 intel_dp->num_common_rates = 1; 423 } 424 } 425 426 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 427 u8 lane_count) 428 { 429 /* 430 * FIXME: we need to synchronize the current link parameters with 431 * hardware readout. Currently fast link training doesn't work on 432 * boot-up. 433 */ 434 if (link_rate == 0 || 435 link_rate > intel_dp->max_link_rate) 436 return false; 437 438 if (lane_count == 0 || 439 lane_count > intel_dp_max_lane_count(intel_dp)) 440 return false; 441 442 return true; 443 } 444 445 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 446 int link_rate, 447 u8 lane_count) 448 { 449 const struct drm_display_mode *fixed_mode = 450 intel_dp->attached_connector->panel.fixed_mode; 451 int mode_rate, max_rate; 452 453 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 454 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 455 if (mode_rate > max_rate) 456 return false; 457 458 return true; 459 } 460 461 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 462 int link_rate, u8 lane_count) 463 { 464 int index; 465 466 index = intel_dp_rate_index(intel_dp->common_rates, 467 intel_dp->num_common_rates, 468 link_rate); 469 if (index > 0) { 470 if (intel_dp_is_edp(intel_dp) && 471 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 472 intel_dp->common_rates[index - 1], 473 lane_count)) { 474 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 475 return 0; 476 } 477 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 478 intel_dp->max_link_lane_count = lane_count; 479 } else if (lane_count > 1) { 480 if (intel_dp_is_edp(intel_dp) && 481 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 482 intel_dp_max_common_rate(intel_dp), 483 lane_count >> 1)) { 484 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 485 return 0; 486 } 487 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 488 intel_dp->max_link_lane_count = lane_count >> 1; 489 } else { 490 DRM_ERROR("Link Training Unsuccessful\n"); 491 return -1; 492 } 493 494 return 0; 495 } 496 497 static enum drm_mode_status 498 intel_dp_mode_valid(struct drm_connector *connector, 499 struct drm_display_mode *mode) 500 { 501 struct intel_dp *intel_dp = intel_attached_dp(connector); 502 struct intel_connector *intel_connector = to_intel_connector(connector); 503 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 504 struct drm_i915_private *dev_priv = to_i915(connector->dev); 505 int target_clock = mode->clock; 506 int max_rate, mode_rate, max_lanes, max_link_clock; 507 int max_dotclk; 508 u16 dsc_max_output_bpp = 0; 509 u8 dsc_slice_count = 0; 510 511 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 512 return MODE_NO_DBLESCAN; 513 514 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 515 516 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 517 if (mode->hdisplay > fixed_mode->hdisplay) 518 return MODE_PANEL; 519 520 if (mode->vdisplay > fixed_mode->vdisplay) 521 return MODE_PANEL; 522 523 target_clock = fixed_mode->clock; 524 } 525 526 max_link_clock = intel_dp_max_link_rate(intel_dp); 527 max_lanes = intel_dp_max_lane_count(intel_dp); 528 529 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 530 mode_rate = intel_dp_link_required(target_clock, 18); 531 532 /* 533 * Output bpp is stored in 6.4 format so right shift by 4 to get the 534 * integer value since we support only integer values of bpp. 535 */ 536 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 537 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 538 if (intel_dp_is_edp(intel_dp)) { 539 dsc_max_output_bpp = 540 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 541 dsc_slice_count = 542 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 543 true); 544 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 545 dsc_max_output_bpp = 546 intel_dp_dsc_get_output_bpp(max_link_clock, 547 max_lanes, 548 target_clock, 549 mode->hdisplay) >> 4; 550 dsc_slice_count = 551 intel_dp_dsc_get_slice_count(intel_dp, 552 target_clock, 553 mode->hdisplay); 554 } 555 } 556 557 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 558 target_clock > max_dotclk) 559 return MODE_CLOCK_HIGH; 560 561 if (mode->clock < 10000) 562 return MODE_CLOCK_LOW; 563 564 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 565 return MODE_H_ILLEGAL; 566 567 return MODE_OK; 568 } 569 570 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 571 { 572 int i; 573 u32 v = 0; 574 575 if (src_bytes > 4) 576 src_bytes = 4; 577 for (i = 0; i < src_bytes; i++) 578 v |= ((u32)src[i]) << ((3 - i) * 8); 579 return v; 580 } 581 582 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 583 { 584 int i; 585 if (dst_bytes > 4) 586 dst_bytes = 4; 587 for (i = 0; i < dst_bytes; i++) 588 dst[i] = src >> ((3-i) * 8); 589 } 590 591 static void 592 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 593 static void 594 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 595 bool force_disable_vdd); 596 static void 597 intel_dp_pps_init(struct intel_dp *intel_dp); 598 599 static intel_wakeref_t 600 pps_lock(struct intel_dp *intel_dp) 601 { 602 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 603 intel_wakeref_t wakeref; 604 605 /* 606 * See intel_power_sequencer_reset() why we need 607 * a power domain reference here. 608 */ 609 wakeref = intel_display_power_get(dev_priv, 610 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 611 612 mutex_lock(&dev_priv->pps_mutex); 613 614 return wakeref; 615 } 616 617 static intel_wakeref_t 618 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 619 { 620 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 621 622 mutex_unlock(&dev_priv->pps_mutex); 623 intel_display_power_put(dev_priv, 624 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 625 wakeref); 626 return 0; 627 } 628 629 #define with_pps_lock(dp, wf) \ 630 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 631 632 static void 633 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 634 { 635 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 636 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 637 enum pipe pipe = intel_dp->pps_pipe; 638 bool pll_enabled, release_cl_override = false; 639 enum dpio_phy phy = DPIO_PHY(pipe); 640 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 641 u32 DP; 642 643 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, 644 "skipping pipe %c power sequencer kick due to port %c being active\n", 645 pipe_name(pipe), port_name(intel_dig_port->base.port))) 646 return; 647 648 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n", 649 pipe_name(pipe), port_name(intel_dig_port->base.port)); 650 651 /* Preserve the BIOS-computed detected bit. This is 652 * supposed to be read-only. 653 */ 654 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 655 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 656 DP |= DP_PORT_WIDTH(1); 657 DP |= DP_LINK_TRAIN_PAT_1; 658 659 if (IS_CHERRYVIEW(dev_priv)) 660 DP |= DP_PIPE_SEL_CHV(pipe); 661 else 662 DP |= DP_PIPE_SEL(pipe); 663 664 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; 665 666 /* 667 * The DPLL for the pipe must be enabled for this to work. 668 * So enable temporarily it if it's not already enabled. 669 */ 670 if (!pll_enabled) { 671 release_cl_override = IS_CHERRYVIEW(dev_priv) && 672 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 673 674 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 675 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 676 DRM_ERROR("Failed to force on pll for pipe %c!\n", 677 pipe_name(pipe)); 678 return; 679 } 680 } 681 682 /* 683 * Similar magic as in intel_dp_enable_port(). 684 * We _must_ do this port enable + disable trick 685 * to make this power sequencer lock onto the port. 686 * Otherwise even VDD force bit won't work. 687 */ 688 I915_WRITE(intel_dp->output_reg, DP); 689 POSTING_READ(intel_dp->output_reg); 690 691 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); 692 POSTING_READ(intel_dp->output_reg); 693 694 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); 695 POSTING_READ(intel_dp->output_reg); 696 697 if (!pll_enabled) { 698 vlv_force_pll_off(dev_priv, pipe); 699 700 if (release_cl_override) 701 chv_phy_powergate_ch(dev_priv, phy, ch, false); 702 } 703 } 704 705 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 706 { 707 struct intel_encoder *encoder; 708 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 709 710 /* 711 * We don't have power sequencer currently. 712 * Pick one that's not used by other ports. 713 */ 714 for_each_intel_dp(&dev_priv->drm, encoder) { 715 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 716 717 if (encoder->type == INTEL_OUTPUT_EDP) { 718 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 719 intel_dp->active_pipe != intel_dp->pps_pipe); 720 721 if (intel_dp->pps_pipe != INVALID_PIPE) 722 pipes &= ~(1 << intel_dp->pps_pipe); 723 } else { 724 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE); 725 726 if (intel_dp->active_pipe != INVALID_PIPE) 727 pipes &= ~(1 << intel_dp->active_pipe); 728 } 729 } 730 731 if (pipes == 0) 732 return INVALID_PIPE; 733 734 return ffs(pipes) - 1; 735 } 736 737 static enum pipe 738 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 739 { 740 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 741 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 742 enum pipe pipe; 743 744 lockdep_assert_held(&dev_priv->pps_mutex); 745 746 /* We should never land here with regular DP ports */ 747 WARN_ON(!intel_dp_is_edp(intel_dp)); 748 749 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 750 intel_dp->active_pipe != intel_dp->pps_pipe); 751 752 if (intel_dp->pps_pipe != INVALID_PIPE) 753 return intel_dp->pps_pipe; 754 755 pipe = vlv_find_free_pps(dev_priv); 756 757 /* 758 * Didn't find one. This should not happen since there 759 * are two power sequencers and up to two eDP ports. 760 */ 761 if (WARN_ON(pipe == INVALID_PIPE)) 762 pipe = PIPE_A; 763 764 vlv_steal_power_sequencer(dev_priv, pipe); 765 intel_dp->pps_pipe = pipe; 766 767 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n", 768 pipe_name(intel_dp->pps_pipe), 769 port_name(intel_dig_port->base.port)); 770 771 /* init power sequencer on this pipe and port */ 772 intel_dp_init_panel_power_sequencer(intel_dp); 773 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 774 775 /* 776 * Even vdd force doesn't work until we've made 777 * the power sequencer lock in on the port. 778 */ 779 vlv_power_sequencer_kick(intel_dp); 780 781 return intel_dp->pps_pipe; 782 } 783 784 static int 785 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 786 { 787 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 788 int backlight_controller = dev_priv->vbt.backlight.controller; 789 790 lockdep_assert_held(&dev_priv->pps_mutex); 791 792 /* We should never land here with regular DP ports */ 793 WARN_ON(!intel_dp_is_edp(intel_dp)); 794 795 if (!intel_dp->pps_reset) 796 return backlight_controller; 797 798 intel_dp->pps_reset = false; 799 800 /* 801 * Only the HW needs to be reprogrammed, the SW state is fixed and 802 * has been setup during connector init. 803 */ 804 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 805 806 return backlight_controller; 807 } 808 809 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 810 enum pipe pipe); 811 812 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 813 enum pipe pipe) 814 { 815 return I915_READ(PP_STATUS(pipe)) & PP_ON; 816 } 817 818 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 819 enum pipe pipe) 820 { 821 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD; 822 } 823 824 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 825 enum pipe pipe) 826 { 827 return true; 828 } 829 830 static enum pipe 831 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 832 enum port port, 833 vlv_pipe_check pipe_check) 834 { 835 enum pipe pipe; 836 837 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 838 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) & 839 PANEL_PORT_SELECT_MASK; 840 841 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 842 continue; 843 844 if (!pipe_check(dev_priv, pipe)) 845 continue; 846 847 return pipe; 848 } 849 850 return INVALID_PIPE; 851 } 852 853 static void 854 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 855 { 856 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 857 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 858 enum port port = intel_dig_port->base.port; 859 860 lockdep_assert_held(&dev_priv->pps_mutex); 861 862 /* try to find a pipe with this port selected */ 863 /* first pick one where the panel is on */ 864 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 865 vlv_pipe_has_pp_on); 866 /* didn't find one? pick one where vdd is on */ 867 if (intel_dp->pps_pipe == INVALID_PIPE) 868 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 869 vlv_pipe_has_vdd_on); 870 /* didn't find one? pick one with just the correct port */ 871 if (intel_dp->pps_pipe == INVALID_PIPE) 872 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 873 vlv_pipe_any); 874 875 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 876 if (intel_dp->pps_pipe == INVALID_PIPE) { 877 DRM_DEBUG_KMS("no initial power sequencer for port %c\n", 878 port_name(port)); 879 return; 880 } 881 882 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n", 883 port_name(port), pipe_name(intel_dp->pps_pipe)); 884 885 intel_dp_init_panel_power_sequencer(intel_dp); 886 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 887 } 888 889 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 890 { 891 struct intel_encoder *encoder; 892 893 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 894 !IS_GEN9_LP(dev_priv))) 895 return; 896 897 /* 898 * We can't grab pps_mutex here due to deadlock with power_domain 899 * mutex when power_domain functions are called while holding pps_mutex. 900 * That also means that in order to use pps_pipe the code needs to 901 * hold both a power domain reference and pps_mutex, and the power domain 902 * reference get/put must be done while _not_ holding pps_mutex. 903 * pps_{lock,unlock}() do these steps in the correct order, so one 904 * should use them always. 905 */ 906 907 for_each_intel_dp(&dev_priv->drm, encoder) { 908 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 909 910 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 911 912 if (encoder->type != INTEL_OUTPUT_EDP) 913 continue; 914 915 if (IS_GEN9_LP(dev_priv)) 916 intel_dp->pps_reset = true; 917 else 918 intel_dp->pps_pipe = INVALID_PIPE; 919 } 920 } 921 922 struct pps_registers { 923 i915_reg_t pp_ctrl; 924 i915_reg_t pp_stat; 925 i915_reg_t pp_on; 926 i915_reg_t pp_off; 927 i915_reg_t pp_div; 928 }; 929 930 static void intel_pps_get_registers(struct intel_dp *intel_dp, 931 struct pps_registers *regs) 932 { 933 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 934 int pps_idx = 0; 935 936 memset(regs, 0, sizeof(*regs)); 937 938 if (IS_GEN9_LP(dev_priv)) 939 pps_idx = bxt_power_sequencer_idx(intel_dp); 940 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 941 pps_idx = vlv_power_sequencer_pipe(intel_dp); 942 943 regs->pp_ctrl = PP_CONTROL(pps_idx); 944 regs->pp_stat = PP_STATUS(pps_idx); 945 regs->pp_on = PP_ON_DELAYS(pps_idx); 946 regs->pp_off = PP_OFF_DELAYS(pps_idx); 947 948 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 949 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 950 regs->pp_div = INVALID_MMIO_REG; 951 else 952 regs->pp_div = PP_DIVISOR(pps_idx); 953 } 954 955 static i915_reg_t 956 _pp_ctrl_reg(struct intel_dp *intel_dp) 957 { 958 struct pps_registers regs; 959 960 intel_pps_get_registers(intel_dp, ®s); 961 962 return regs.pp_ctrl; 963 } 964 965 static i915_reg_t 966 _pp_stat_reg(struct intel_dp *intel_dp) 967 { 968 struct pps_registers regs; 969 970 intel_pps_get_registers(intel_dp, ®s); 971 972 return regs.pp_stat; 973 } 974 975 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 976 This function only applicable when panel PM state is not to be tracked */ 977 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 978 void *unused) 979 { 980 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 981 edp_notifier); 982 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 983 intel_wakeref_t wakeref; 984 985 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 986 return 0; 987 988 with_pps_lock(intel_dp, wakeref) { 989 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 990 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 991 i915_reg_t pp_ctrl_reg, pp_div_reg; 992 u32 pp_div; 993 994 pp_ctrl_reg = PP_CONTROL(pipe); 995 pp_div_reg = PP_DIVISOR(pipe); 996 pp_div = I915_READ(pp_div_reg); 997 pp_div &= PP_REFERENCE_DIVIDER_MASK; 998 999 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1000 I915_WRITE(pp_div_reg, pp_div | 0x1F); 1001 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS); 1002 msleep(intel_dp->panel_power_cycle_delay); 1003 } 1004 } 1005 1006 return 0; 1007 } 1008 1009 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1010 { 1011 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1012 1013 lockdep_assert_held(&dev_priv->pps_mutex); 1014 1015 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1016 intel_dp->pps_pipe == INVALID_PIPE) 1017 return false; 1018 1019 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; 1020 } 1021 1022 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1023 { 1024 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1025 1026 lockdep_assert_held(&dev_priv->pps_mutex); 1027 1028 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1029 intel_dp->pps_pipe == INVALID_PIPE) 1030 return false; 1031 1032 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1033 } 1034 1035 static void 1036 intel_dp_check_edp(struct intel_dp *intel_dp) 1037 { 1038 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1039 1040 if (!intel_dp_is_edp(intel_dp)) 1041 return; 1042 1043 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1044 WARN(1, "eDP powered off while attempting aux channel communication.\n"); 1045 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", 1046 I915_READ(_pp_stat_reg(intel_dp)), 1047 I915_READ(_pp_ctrl_reg(intel_dp))); 1048 } 1049 } 1050 1051 static u32 1052 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1053 { 1054 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1055 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1056 u32 status; 1057 bool done; 1058 1059 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1060 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1061 msecs_to_jiffies_timeout(10)); 1062 1063 /* just trace the final value */ 1064 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1065 1066 if (!done) 1067 DRM_ERROR("dp aux hw did not signal timeout!\n"); 1068 #undef C 1069 1070 return status; 1071 } 1072 1073 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1074 { 1075 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1076 1077 if (index) 1078 return 0; 1079 1080 /* 1081 * The clock divider is based off the hrawclk, and would like to run at 1082 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1083 */ 1084 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1085 } 1086 1087 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1088 { 1089 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1090 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1091 1092 if (index) 1093 return 0; 1094 1095 /* 1096 * The clock divider is based off the cdclk or PCH rawclk, and would 1097 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1098 * divide by 2000 and use that 1099 */ 1100 if (dig_port->aux_ch == AUX_CH_A) 1101 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000); 1102 else 1103 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1104 } 1105 1106 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1107 { 1108 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1109 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1110 1111 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1112 /* Workaround for non-ULT HSW */ 1113 switch (index) { 1114 case 0: return 63; 1115 case 1: return 72; 1116 default: return 0; 1117 } 1118 } 1119 1120 return ilk_get_aux_clock_divider(intel_dp, index); 1121 } 1122 1123 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1124 { 1125 /* 1126 * SKL doesn't need us to program the AUX clock divider (Hardware will 1127 * derive the clock from CDCLK automatically). We still implement the 1128 * get_aux_clock_divider vfunc to plug-in into the existing code. 1129 */ 1130 return index ? 0 : 1; 1131 } 1132 1133 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1134 int send_bytes, 1135 u32 aux_clock_divider) 1136 { 1137 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1138 struct drm_i915_private *dev_priv = 1139 to_i915(intel_dig_port->base.base.dev); 1140 u32 precharge, timeout; 1141 1142 if (IS_GEN(dev_priv, 6)) 1143 precharge = 3; 1144 else 1145 precharge = 5; 1146 1147 if (IS_BROADWELL(dev_priv)) 1148 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1149 else 1150 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1151 1152 return DP_AUX_CH_CTL_SEND_BUSY | 1153 DP_AUX_CH_CTL_DONE | 1154 DP_AUX_CH_CTL_INTERRUPT | 1155 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1156 timeout | 1157 DP_AUX_CH_CTL_RECEIVE_ERROR | 1158 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1159 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1160 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1161 } 1162 1163 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1164 int send_bytes, 1165 u32 unused) 1166 { 1167 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1168 u32 ret; 1169 1170 ret = DP_AUX_CH_CTL_SEND_BUSY | 1171 DP_AUX_CH_CTL_DONE | 1172 DP_AUX_CH_CTL_INTERRUPT | 1173 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1174 DP_AUX_CH_CTL_TIME_OUT_MAX | 1175 DP_AUX_CH_CTL_RECEIVE_ERROR | 1176 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1177 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1178 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1179 1180 if (intel_dig_port->tc_mode == TC_PORT_TBT_ALT) 1181 ret |= DP_AUX_CH_CTL_TBT_IO; 1182 1183 return ret; 1184 } 1185 1186 static int 1187 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1188 const u8 *send, int send_bytes, 1189 u8 *recv, int recv_size, 1190 u32 aux_send_ctl_flags) 1191 { 1192 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1193 struct drm_i915_private *i915 = 1194 to_i915(intel_dig_port->base.base.dev); 1195 struct intel_uncore *uncore = &i915->uncore; 1196 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1197 bool is_tc_port = intel_phy_is_tc(i915, phy); 1198 i915_reg_t ch_ctl, ch_data[5]; 1199 u32 aux_clock_divider; 1200 enum intel_display_power_domain aux_domain = 1201 intel_aux_power_domain(intel_dig_port); 1202 intel_wakeref_t aux_wakeref; 1203 intel_wakeref_t pps_wakeref; 1204 int i, ret, recv_bytes; 1205 int try, clock = 0; 1206 u32 status; 1207 bool vdd; 1208 1209 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1210 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1211 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1212 1213 if (is_tc_port) 1214 intel_tc_port_lock(intel_dig_port); 1215 1216 aux_wakeref = intel_display_power_get(i915, aux_domain); 1217 pps_wakeref = pps_lock(intel_dp); 1218 1219 /* 1220 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1221 * In such cases we want to leave VDD enabled and it's up to upper layers 1222 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1223 * ourselves. 1224 */ 1225 vdd = edp_panel_vdd_on(intel_dp); 1226 1227 /* dp aux is extremely sensitive to irq latency, hence request the 1228 * lowest possible wakeup latency and so prevent the cpu from going into 1229 * deep sleep states. 1230 */ 1231 pm_qos_update_request(&i915->pm_qos, 0); 1232 1233 intel_dp_check_edp(intel_dp); 1234 1235 /* Try to wait for any previous AUX channel activity */ 1236 for (try = 0; try < 3; try++) { 1237 status = intel_uncore_read_notrace(uncore, ch_ctl); 1238 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1239 break; 1240 msleep(1); 1241 } 1242 /* just trace the final value */ 1243 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1244 1245 if (try == 3) { 1246 static u32 last_status = -1; 1247 const u32 status = intel_uncore_read(uncore, ch_ctl); 1248 1249 if (status != last_status) { 1250 WARN(1, "dp_aux_ch not started status 0x%08x\n", 1251 status); 1252 last_status = status; 1253 } 1254 1255 ret = -EBUSY; 1256 goto out; 1257 } 1258 1259 /* Only 5 data registers! */ 1260 if (WARN_ON(send_bytes > 20 || recv_size > 20)) { 1261 ret = -E2BIG; 1262 goto out; 1263 } 1264 1265 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1266 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1267 send_bytes, 1268 aux_clock_divider); 1269 1270 send_ctl |= aux_send_ctl_flags; 1271 1272 /* Must try at least 3 times according to DP spec */ 1273 for (try = 0; try < 5; try++) { 1274 /* Load the send data into the aux channel data registers */ 1275 for (i = 0; i < send_bytes; i += 4) 1276 intel_uncore_write(uncore, 1277 ch_data[i >> 2], 1278 intel_dp_pack_aux(send + i, 1279 send_bytes - i)); 1280 1281 /* Send the command and wait for it to complete */ 1282 intel_uncore_write(uncore, ch_ctl, send_ctl); 1283 1284 status = intel_dp_aux_wait_done(intel_dp); 1285 1286 /* Clear done status and any errors */ 1287 intel_uncore_write(uncore, 1288 ch_ctl, 1289 status | 1290 DP_AUX_CH_CTL_DONE | 1291 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1292 DP_AUX_CH_CTL_RECEIVE_ERROR); 1293 1294 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1295 * 400us delay required for errors and timeouts 1296 * Timeout errors from the HW already meet this 1297 * requirement so skip to next iteration 1298 */ 1299 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1300 continue; 1301 1302 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1303 usleep_range(400, 500); 1304 continue; 1305 } 1306 if (status & DP_AUX_CH_CTL_DONE) 1307 goto done; 1308 } 1309 } 1310 1311 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1312 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); 1313 ret = -EBUSY; 1314 goto out; 1315 } 1316 1317 done: 1318 /* Check for timeout or receive error. 1319 * Timeouts occur when the sink is not connected 1320 */ 1321 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1322 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); 1323 ret = -EIO; 1324 goto out; 1325 } 1326 1327 /* Timeouts occur when the device isn't connected, so they're 1328 * "normal" -- don't fill the kernel log with these */ 1329 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1330 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); 1331 ret = -ETIMEDOUT; 1332 goto out; 1333 } 1334 1335 /* Unload any bytes sent back from the other side */ 1336 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1337 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1338 1339 /* 1340 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1341 * We have no idea of what happened so we return -EBUSY so 1342 * drm layer takes care for the necessary retries. 1343 */ 1344 if (recv_bytes == 0 || recv_bytes > 20) { 1345 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n", 1346 recv_bytes); 1347 ret = -EBUSY; 1348 goto out; 1349 } 1350 1351 if (recv_bytes > recv_size) 1352 recv_bytes = recv_size; 1353 1354 for (i = 0; i < recv_bytes; i += 4) 1355 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1356 recv + i, recv_bytes - i); 1357 1358 ret = recv_bytes; 1359 out: 1360 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1361 1362 if (vdd) 1363 edp_panel_vdd_off(intel_dp, false); 1364 1365 pps_unlock(intel_dp, pps_wakeref); 1366 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1367 1368 if (is_tc_port) 1369 intel_tc_port_unlock(intel_dig_port); 1370 1371 return ret; 1372 } 1373 1374 #define BARE_ADDRESS_SIZE 3 1375 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1376 1377 static void 1378 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1379 const struct drm_dp_aux_msg *msg) 1380 { 1381 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1382 txbuf[1] = (msg->address >> 8) & 0xff; 1383 txbuf[2] = msg->address & 0xff; 1384 txbuf[3] = msg->size - 1; 1385 } 1386 1387 static ssize_t 1388 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1389 { 1390 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1391 u8 txbuf[20], rxbuf[20]; 1392 size_t txsize, rxsize; 1393 int ret; 1394 1395 intel_dp_aux_header(txbuf, msg); 1396 1397 switch (msg->request & ~DP_AUX_I2C_MOT) { 1398 case DP_AUX_NATIVE_WRITE: 1399 case DP_AUX_I2C_WRITE: 1400 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1401 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1402 rxsize = 2; /* 0 or 1 data bytes */ 1403 1404 if (WARN_ON(txsize > 20)) 1405 return -E2BIG; 1406 1407 WARN_ON(!msg->buffer != !msg->size); 1408 1409 if (msg->buffer) 1410 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1411 1412 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1413 rxbuf, rxsize, 0); 1414 if (ret > 0) { 1415 msg->reply = rxbuf[0] >> 4; 1416 1417 if (ret > 1) { 1418 /* Number of bytes written in a short write. */ 1419 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1420 } else { 1421 /* Return payload size. */ 1422 ret = msg->size; 1423 } 1424 } 1425 break; 1426 1427 case DP_AUX_NATIVE_READ: 1428 case DP_AUX_I2C_READ: 1429 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1430 rxsize = msg->size + 1; 1431 1432 if (WARN_ON(rxsize > 20)) 1433 return -E2BIG; 1434 1435 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1436 rxbuf, rxsize, 0); 1437 if (ret > 0) { 1438 msg->reply = rxbuf[0] >> 4; 1439 /* 1440 * Assume happy day, and copy the data. The caller is 1441 * expected to check msg->reply before touching it. 1442 * 1443 * Return payload size. 1444 */ 1445 ret--; 1446 memcpy(msg->buffer, rxbuf + 1, ret); 1447 } 1448 break; 1449 1450 default: 1451 ret = -EINVAL; 1452 break; 1453 } 1454 1455 return ret; 1456 } 1457 1458 1459 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1460 { 1461 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1462 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1463 enum aux_ch aux_ch = dig_port->aux_ch; 1464 1465 switch (aux_ch) { 1466 case AUX_CH_B: 1467 case AUX_CH_C: 1468 case AUX_CH_D: 1469 return DP_AUX_CH_CTL(aux_ch); 1470 default: 1471 MISSING_CASE(aux_ch); 1472 return DP_AUX_CH_CTL(AUX_CH_B); 1473 } 1474 } 1475 1476 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1477 { 1478 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1479 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1480 enum aux_ch aux_ch = dig_port->aux_ch; 1481 1482 switch (aux_ch) { 1483 case AUX_CH_B: 1484 case AUX_CH_C: 1485 case AUX_CH_D: 1486 return DP_AUX_CH_DATA(aux_ch, index); 1487 default: 1488 MISSING_CASE(aux_ch); 1489 return DP_AUX_CH_DATA(AUX_CH_B, index); 1490 } 1491 } 1492 1493 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1494 { 1495 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1496 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1497 enum aux_ch aux_ch = dig_port->aux_ch; 1498 1499 switch (aux_ch) { 1500 case AUX_CH_A: 1501 return DP_AUX_CH_CTL(aux_ch); 1502 case AUX_CH_B: 1503 case AUX_CH_C: 1504 case AUX_CH_D: 1505 return PCH_DP_AUX_CH_CTL(aux_ch); 1506 default: 1507 MISSING_CASE(aux_ch); 1508 return DP_AUX_CH_CTL(AUX_CH_A); 1509 } 1510 } 1511 1512 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1513 { 1514 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1515 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1516 enum aux_ch aux_ch = dig_port->aux_ch; 1517 1518 switch (aux_ch) { 1519 case AUX_CH_A: 1520 return DP_AUX_CH_DATA(aux_ch, index); 1521 case AUX_CH_B: 1522 case AUX_CH_C: 1523 case AUX_CH_D: 1524 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1525 default: 1526 MISSING_CASE(aux_ch); 1527 return DP_AUX_CH_DATA(AUX_CH_A, index); 1528 } 1529 } 1530 1531 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1532 { 1533 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1534 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1535 enum aux_ch aux_ch = dig_port->aux_ch; 1536 1537 switch (aux_ch) { 1538 case AUX_CH_A: 1539 case AUX_CH_B: 1540 case AUX_CH_C: 1541 case AUX_CH_D: 1542 case AUX_CH_E: 1543 case AUX_CH_F: 1544 return DP_AUX_CH_CTL(aux_ch); 1545 default: 1546 MISSING_CASE(aux_ch); 1547 return DP_AUX_CH_CTL(AUX_CH_A); 1548 } 1549 } 1550 1551 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1552 { 1553 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1554 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1555 enum aux_ch aux_ch = dig_port->aux_ch; 1556 1557 switch (aux_ch) { 1558 case AUX_CH_A: 1559 case AUX_CH_B: 1560 case AUX_CH_C: 1561 case AUX_CH_D: 1562 case AUX_CH_E: 1563 case AUX_CH_F: 1564 return DP_AUX_CH_DATA(aux_ch, index); 1565 default: 1566 MISSING_CASE(aux_ch); 1567 return DP_AUX_CH_DATA(AUX_CH_A, index); 1568 } 1569 } 1570 1571 static void 1572 intel_dp_aux_fini(struct intel_dp *intel_dp) 1573 { 1574 kfree(intel_dp->aux.name); 1575 } 1576 1577 static void 1578 intel_dp_aux_init(struct intel_dp *intel_dp) 1579 { 1580 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1581 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1582 struct intel_encoder *encoder = &dig_port->base; 1583 1584 if (INTEL_GEN(dev_priv) >= 9) { 1585 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1586 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1587 } else if (HAS_PCH_SPLIT(dev_priv)) { 1588 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1589 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1590 } else { 1591 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1592 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1593 } 1594 1595 if (INTEL_GEN(dev_priv) >= 9) 1596 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1597 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1598 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1599 else if (HAS_PCH_SPLIT(dev_priv)) 1600 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1601 else 1602 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1603 1604 if (INTEL_GEN(dev_priv) >= 9) 1605 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1606 else 1607 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1608 1609 drm_dp_aux_init(&intel_dp->aux); 1610 1611 /* Failure to allocate our preferred name is not critical */ 1612 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", 1613 port_name(encoder->port)); 1614 intel_dp->aux.transfer = intel_dp_aux_transfer; 1615 } 1616 1617 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1618 { 1619 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1620 1621 return max_rate >= 540000; 1622 } 1623 1624 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1625 { 1626 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1627 1628 return max_rate >= 810000; 1629 } 1630 1631 static void 1632 intel_dp_set_clock(struct intel_encoder *encoder, 1633 struct intel_crtc_state *pipe_config) 1634 { 1635 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1636 const struct dp_link_dpll *divisor = NULL; 1637 int i, count = 0; 1638 1639 if (IS_G4X(dev_priv)) { 1640 divisor = g4x_dpll; 1641 count = ARRAY_SIZE(g4x_dpll); 1642 } else if (HAS_PCH_SPLIT(dev_priv)) { 1643 divisor = pch_dpll; 1644 count = ARRAY_SIZE(pch_dpll); 1645 } else if (IS_CHERRYVIEW(dev_priv)) { 1646 divisor = chv_dpll; 1647 count = ARRAY_SIZE(chv_dpll); 1648 } else if (IS_VALLEYVIEW(dev_priv)) { 1649 divisor = vlv_dpll; 1650 count = ARRAY_SIZE(vlv_dpll); 1651 } 1652 1653 if (divisor && count) { 1654 for (i = 0; i < count; i++) { 1655 if (pipe_config->port_clock == divisor[i].clock) { 1656 pipe_config->dpll = divisor[i].dpll; 1657 pipe_config->clock_set = true; 1658 break; 1659 } 1660 } 1661 } 1662 } 1663 1664 static void snprintf_int_array(char *str, size_t len, 1665 const int *array, int nelem) 1666 { 1667 int i; 1668 1669 str[0] = '\0'; 1670 1671 for (i = 0; i < nelem; i++) { 1672 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1673 if (r >= len) 1674 return; 1675 str += r; 1676 len -= r; 1677 } 1678 } 1679 1680 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1681 { 1682 char str[128]; /* FIXME: too big for stack? */ 1683 1684 if ((drm_debug & DRM_UT_KMS) == 0) 1685 return; 1686 1687 snprintf_int_array(str, sizeof(str), 1688 intel_dp->source_rates, intel_dp->num_source_rates); 1689 DRM_DEBUG_KMS("source rates: %s\n", str); 1690 1691 snprintf_int_array(str, sizeof(str), 1692 intel_dp->sink_rates, intel_dp->num_sink_rates); 1693 DRM_DEBUG_KMS("sink rates: %s\n", str); 1694 1695 snprintf_int_array(str, sizeof(str), 1696 intel_dp->common_rates, intel_dp->num_common_rates); 1697 DRM_DEBUG_KMS("common rates: %s\n", str); 1698 } 1699 1700 int 1701 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1702 { 1703 int len; 1704 1705 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1706 if (WARN_ON(len <= 0)) 1707 return 162000; 1708 1709 return intel_dp->common_rates[len - 1]; 1710 } 1711 1712 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1713 { 1714 int i = intel_dp_rate_index(intel_dp->sink_rates, 1715 intel_dp->num_sink_rates, rate); 1716 1717 if (WARN_ON(i < 0)) 1718 i = 0; 1719 1720 return i; 1721 } 1722 1723 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1724 u8 *link_bw, u8 *rate_select) 1725 { 1726 /* eDP 1.4 rate select method. */ 1727 if (intel_dp->use_rate_select) { 1728 *link_bw = 0; 1729 *rate_select = 1730 intel_dp_rate_select(intel_dp, port_clock); 1731 } else { 1732 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1733 *rate_select = 0; 1734 } 1735 } 1736 1737 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1738 const struct intel_crtc_state *pipe_config) 1739 { 1740 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1741 1742 return INTEL_GEN(dev_priv) >= 11 && 1743 pipe_config->cpu_transcoder != TRANSCODER_A; 1744 } 1745 1746 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1747 const struct intel_crtc_state *pipe_config) 1748 { 1749 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1750 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1751 } 1752 1753 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp, 1754 const struct intel_crtc_state *pipe_config) 1755 { 1756 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1757 1758 return INTEL_GEN(dev_priv) >= 10 && 1759 pipe_config->cpu_transcoder != TRANSCODER_A; 1760 } 1761 1762 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1763 const struct intel_crtc_state *pipe_config) 1764 { 1765 if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable) 1766 return false; 1767 1768 return intel_dp_source_supports_dsc(intel_dp, pipe_config) && 1769 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1770 } 1771 1772 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1773 struct intel_crtc_state *pipe_config) 1774 { 1775 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1776 struct intel_connector *intel_connector = intel_dp->attached_connector; 1777 int bpp, bpc; 1778 1779 bpp = pipe_config->pipe_bpp; 1780 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1781 1782 if (bpc > 0) 1783 bpp = min(bpp, 3*bpc); 1784 1785 if (intel_dp_is_edp(intel_dp)) { 1786 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1787 if (intel_connector->base.display_info.bpc == 0 && 1788 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1789 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", 1790 dev_priv->vbt.edp.bpp); 1791 bpp = dev_priv->vbt.edp.bpp; 1792 } 1793 } 1794 1795 return bpp; 1796 } 1797 1798 /* Adjust link config limits based on compliance test requests. */ 1799 void 1800 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1801 struct intel_crtc_state *pipe_config, 1802 struct link_config_limits *limits) 1803 { 1804 /* For DP Compliance we override the computed bpp for the pipe */ 1805 if (intel_dp->compliance.test_data.bpc != 0) { 1806 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1807 1808 limits->min_bpp = limits->max_bpp = bpp; 1809 pipe_config->dither_force_disable = bpp == 6 * 3; 1810 1811 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); 1812 } 1813 1814 /* Use values requested by Compliance Test Request */ 1815 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 1816 int index; 1817 1818 /* Validate the compliance test data since max values 1819 * might have changed due to link train fallback. 1820 */ 1821 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 1822 intel_dp->compliance.test_lane_count)) { 1823 index = intel_dp_rate_index(intel_dp->common_rates, 1824 intel_dp->num_common_rates, 1825 intel_dp->compliance.test_link_rate); 1826 if (index >= 0) 1827 limits->min_clock = limits->max_clock = index; 1828 limits->min_lane_count = limits->max_lane_count = 1829 intel_dp->compliance.test_lane_count; 1830 } 1831 } 1832 } 1833 1834 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 1835 { 1836 /* 1837 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1838 * format of the number of bytes per pixel will be half the number 1839 * of bytes of RGB pixel. 1840 */ 1841 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1842 bpp /= 2; 1843 1844 return bpp; 1845 } 1846 1847 /* Optimize link config in order: max bpp, min clock, min lanes */ 1848 static int 1849 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 1850 struct intel_crtc_state *pipe_config, 1851 const struct link_config_limits *limits) 1852 { 1853 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 1854 int bpp, clock, lane_count; 1855 int mode_rate, link_clock, link_avail; 1856 1857 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 1858 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 1859 1860 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 1861 output_bpp); 1862 1863 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 1864 for (lane_count = limits->min_lane_count; 1865 lane_count <= limits->max_lane_count; 1866 lane_count <<= 1) { 1867 link_clock = intel_dp->common_rates[clock]; 1868 link_avail = intel_dp_max_data_rate(link_clock, 1869 lane_count); 1870 1871 if (mode_rate <= link_avail) { 1872 pipe_config->lane_count = lane_count; 1873 pipe_config->pipe_bpp = bpp; 1874 pipe_config->port_clock = link_clock; 1875 1876 return 0; 1877 } 1878 } 1879 } 1880 } 1881 1882 return -EINVAL; 1883 } 1884 1885 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 1886 { 1887 int i, num_bpc; 1888 u8 dsc_bpc[3] = {0}; 1889 1890 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 1891 dsc_bpc); 1892 for (i = 0; i < num_bpc; i++) { 1893 if (dsc_max_bpc >= dsc_bpc[i]) 1894 return dsc_bpc[i] * 3; 1895 } 1896 1897 return 0; 1898 } 1899 1900 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 1901 struct intel_crtc_state *pipe_config, 1902 struct drm_connector_state *conn_state, 1903 struct link_config_limits *limits) 1904 { 1905 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1906 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 1907 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 1908 u8 dsc_max_bpc; 1909 int pipe_bpp; 1910 int ret; 1911 1912 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 1913 intel_dp_supports_fec(intel_dp, pipe_config); 1914 1915 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 1916 return -EINVAL; 1917 1918 dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC, 1919 conn_state->max_requested_bpc); 1920 1921 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 1922 if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) { 1923 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n"); 1924 return -EINVAL; 1925 } 1926 1927 /* 1928 * For now enable DSC for max bpp, max link rate, max lane count. 1929 * Optimize this later for the minimum possible link rate/lane count 1930 * with DSC enabled for the requested mode. 1931 */ 1932 pipe_config->pipe_bpp = pipe_bpp; 1933 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 1934 pipe_config->lane_count = limits->max_lane_count; 1935 1936 if (intel_dp_is_edp(intel_dp)) { 1937 pipe_config->dsc_params.compressed_bpp = 1938 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 1939 pipe_config->pipe_bpp); 1940 pipe_config->dsc_params.slice_count = 1941 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 1942 true); 1943 } else { 1944 u16 dsc_max_output_bpp; 1945 u8 dsc_dp_slice_count; 1946 1947 dsc_max_output_bpp = 1948 intel_dp_dsc_get_output_bpp(pipe_config->port_clock, 1949 pipe_config->lane_count, 1950 adjusted_mode->crtc_clock, 1951 adjusted_mode->crtc_hdisplay); 1952 dsc_dp_slice_count = 1953 intel_dp_dsc_get_slice_count(intel_dp, 1954 adjusted_mode->crtc_clock, 1955 adjusted_mode->crtc_hdisplay); 1956 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 1957 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n"); 1958 return -EINVAL; 1959 } 1960 pipe_config->dsc_params.compressed_bpp = min_t(u16, 1961 dsc_max_output_bpp >> 4, 1962 pipe_config->pipe_bpp); 1963 pipe_config->dsc_params.slice_count = dsc_dp_slice_count; 1964 } 1965 /* 1966 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 1967 * is greater than the maximum Cdclock and if slice count is even 1968 * then we need to use 2 VDSC instances. 1969 */ 1970 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 1971 if (pipe_config->dsc_params.slice_count > 1) { 1972 pipe_config->dsc_params.dsc_split = true; 1973 } else { 1974 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n"); 1975 return -EINVAL; 1976 } 1977 } 1978 1979 ret = intel_dp_compute_dsc_params(intel_dp, pipe_config); 1980 if (ret < 0) { 1981 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d " 1982 "Compressed BPP = %d\n", 1983 pipe_config->pipe_bpp, 1984 pipe_config->dsc_params.compressed_bpp); 1985 return ret; 1986 } 1987 1988 pipe_config->dsc_params.compression_enable = true; 1989 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d " 1990 "Compressed Bpp = %d Slice Count = %d\n", 1991 pipe_config->pipe_bpp, 1992 pipe_config->dsc_params.compressed_bpp, 1993 pipe_config->dsc_params.slice_count); 1994 1995 return 0; 1996 } 1997 1998 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 1999 { 2000 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2001 return 6 * 3; 2002 else 2003 return 8 * 3; 2004 } 2005 2006 static int 2007 intel_dp_compute_link_config(struct intel_encoder *encoder, 2008 struct intel_crtc_state *pipe_config, 2009 struct drm_connector_state *conn_state) 2010 { 2011 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2012 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2013 struct link_config_limits limits; 2014 int common_len; 2015 int ret; 2016 2017 common_len = intel_dp_common_len_rate_limit(intel_dp, 2018 intel_dp->max_link_rate); 2019 2020 /* No common link rates between source and sink */ 2021 WARN_ON(common_len <= 0); 2022 2023 limits.min_clock = 0; 2024 limits.max_clock = common_len - 1; 2025 2026 limits.min_lane_count = 1; 2027 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2028 2029 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2030 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2031 2032 if (intel_dp_is_edp(intel_dp)) { 2033 /* 2034 * Use the maximum clock and number of lanes the eDP panel 2035 * advertizes being capable of. The panels are generally 2036 * designed to support only a single clock and lane 2037 * configuration, and typically these values correspond to the 2038 * native resolution of the panel. 2039 */ 2040 limits.min_lane_count = limits.max_lane_count; 2041 limits.min_clock = limits.max_clock; 2042 } 2043 2044 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2045 2046 DRM_DEBUG_KMS("DP link computation with max lane count %i " 2047 "max rate %d max bpp %d pixel clock %iKHz\n", 2048 limits.max_lane_count, 2049 intel_dp->common_rates[limits.max_clock], 2050 limits.max_bpp, adjusted_mode->crtc_clock); 2051 2052 /* 2053 * Optimize for slow and wide. This is the place to add alternative 2054 * optimization policy. 2055 */ 2056 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2057 2058 /* enable compression if the mode doesn't fit available BW */ 2059 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en); 2060 if (ret || intel_dp->force_dsc_en) { 2061 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2062 conn_state, &limits); 2063 if (ret < 0) 2064 return ret; 2065 } 2066 2067 if (pipe_config->dsc_params.compression_enable) { 2068 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2069 pipe_config->lane_count, pipe_config->port_clock, 2070 pipe_config->pipe_bpp, 2071 pipe_config->dsc_params.compressed_bpp); 2072 2073 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2074 intel_dp_link_required(adjusted_mode->crtc_clock, 2075 pipe_config->dsc_params.compressed_bpp), 2076 intel_dp_max_data_rate(pipe_config->port_clock, 2077 pipe_config->lane_count)); 2078 } else { 2079 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", 2080 pipe_config->lane_count, pipe_config->port_clock, 2081 pipe_config->pipe_bpp); 2082 2083 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2084 intel_dp_link_required(adjusted_mode->crtc_clock, 2085 pipe_config->pipe_bpp), 2086 intel_dp_max_data_rate(pipe_config->port_clock, 2087 pipe_config->lane_count)); 2088 } 2089 return 0; 2090 } 2091 2092 static int 2093 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2094 struct drm_connector *connector, 2095 struct intel_crtc_state *crtc_state) 2096 { 2097 const struct drm_display_info *info = &connector->display_info; 2098 const struct drm_display_mode *adjusted_mode = 2099 &crtc_state->base.adjusted_mode; 2100 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 2101 int ret; 2102 2103 if (!drm_mode_is_420_only(info, adjusted_mode) || 2104 !intel_dp_get_colorimetry_status(intel_dp) || 2105 !connector->ycbcr_420_allowed) 2106 return 0; 2107 2108 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2109 2110 /* YCBCR 420 output conversion needs a scaler */ 2111 ret = skl_update_scaler_crtc(crtc_state); 2112 if (ret) { 2113 DRM_DEBUG_KMS("Scaler allocation for output failed\n"); 2114 return ret; 2115 } 2116 2117 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN); 2118 2119 return 0; 2120 } 2121 2122 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2123 const struct drm_connector_state *conn_state) 2124 { 2125 const struct intel_digital_connector_state *intel_conn_state = 2126 to_intel_digital_connector_state(conn_state); 2127 const struct drm_display_mode *adjusted_mode = 2128 &crtc_state->base.adjusted_mode; 2129 2130 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2131 /* 2132 * See: 2133 * CEA-861-E - 5.1 Default Encoding Parameters 2134 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2135 */ 2136 return crtc_state->pipe_bpp != 18 && 2137 drm_default_rgb_quant_range(adjusted_mode) == 2138 HDMI_QUANTIZATION_RANGE_LIMITED; 2139 } else { 2140 return intel_conn_state->broadcast_rgb == 2141 INTEL_BROADCAST_RGB_LIMITED; 2142 } 2143 } 2144 2145 int 2146 intel_dp_compute_config(struct intel_encoder *encoder, 2147 struct intel_crtc_state *pipe_config, 2148 struct drm_connector_state *conn_state) 2149 { 2150 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2151 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2152 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2153 struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base); 2154 enum port port = encoder->port; 2155 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); 2156 struct intel_connector *intel_connector = intel_dp->attached_connector; 2157 struct intel_digital_connector_state *intel_conn_state = 2158 to_intel_digital_connector_state(conn_state); 2159 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 2160 DP_DPCD_QUIRK_CONSTANT_N); 2161 int ret = 0, output_bpp; 2162 2163 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2164 pipe_config->has_pch_encoder = true; 2165 2166 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2167 if (lspcon->active) 2168 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2169 else 2170 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base, 2171 pipe_config); 2172 2173 if (ret) 2174 return ret; 2175 2176 pipe_config->has_drrs = false; 2177 if (IS_G4X(dev_priv) || port == PORT_A) 2178 pipe_config->has_audio = false; 2179 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2180 pipe_config->has_audio = intel_dp->has_audio; 2181 else 2182 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2183 2184 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2185 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2186 adjusted_mode); 2187 2188 if (INTEL_GEN(dev_priv) >= 9) { 2189 ret = skl_update_scaler_crtc(pipe_config); 2190 if (ret) 2191 return ret; 2192 } 2193 2194 if (HAS_GMCH(dev_priv)) 2195 intel_gmch_panel_fitting(intel_crtc, pipe_config, 2196 conn_state->scaling_mode); 2197 else 2198 intel_pch_panel_fitting(intel_crtc, pipe_config, 2199 conn_state->scaling_mode); 2200 } 2201 2202 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2203 return -EINVAL; 2204 2205 if (HAS_GMCH(dev_priv) && 2206 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2207 return -EINVAL; 2208 2209 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2210 return -EINVAL; 2211 2212 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2213 if (ret < 0) 2214 return ret; 2215 2216 pipe_config->limited_color_range = 2217 intel_dp_limited_color_range(pipe_config, conn_state); 2218 2219 if (pipe_config->dsc_params.compression_enable) 2220 output_bpp = pipe_config->dsc_params.compressed_bpp; 2221 else 2222 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2223 2224 intel_link_compute_m_n(output_bpp, 2225 pipe_config->lane_count, 2226 adjusted_mode->crtc_clock, 2227 pipe_config->port_clock, 2228 &pipe_config->dp_m_n, 2229 constant_n); 2230 2231 if (intel_connector->panel.downclock_mode != NULL && 2232 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2233 pipe_config->has_drrs = true; 2234 intel_link_compute_m_n(output_bpp, 2235 pipe_config->lane_count, 2236 intel_connector->panel.downclock_mode->clock, 2237 pipe_config->port_clock, 2238 &pipe_config->dp_m2_n2, 2239 constant_n); 2240 } 2241 2242 if (!HAS_DDI(dev_priv)) 2243 intel_dp_set_clock(encoder, pipe_config); 2244 2245 intel_psr_compute_config(intel_dp, pipe_config); 2246 2247 return 0; 2248 } 2249 2250 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2251 int link_rate, u8 lane_count, 2252 bool link_mst) 2253 { 2254 intel_dp->link_trained = false; 2255 intel_dp->link_rate = link_rate; 2256 intel_dp->lane_count = lane_count; 2257 intel_dp->link_mst = link_mst; 2258 } 2259 2260 static void intel_dp_prepare(struct intel_encoder *encoder, 2261 const struct intel_crtc_state *pipe_config) 2262 { 2263 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2264 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2265 enum port port = encoder->port; 2266 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 2267 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2268 2269 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2270 pipe_config->lane_count, 2271 intel_crtc_has_type(pipe_config, 2272 INTEL_OUTPUT_DP_MST)); 2273 2274 /* 2275 * There are four kinds of DP registers: 2276 * 2277 * IBX PCH 2278 * SNB CPU 2279 * IVB CPU 2280 * CPT PCH 2281 * 2282 * IBX PCH and CPU are the same for almost everything, 2283 * except that the CPU DP PLL is configured in this 2284 * register 2285 * 2286 * CPT PCH is quite different, having many bits moved 2287 * to the TRANS_DP_CTL register instead. That 2288 * configuration happens (oddly) in ironlake_pch_enable 2289 */ 2290 2291 /* Preserve the BIOS-computed detected bit. This is 2292 * supposed to be read-only. 2293 */ 2294 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 2295 2296 /* Handle DP bits in common between all three register formats */ 2297 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2298 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2299 2300 /* Split out the IBX/CPU vs CPT settings */ 2301 2302 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2303 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2304 intel_dp->DP |= DP_SYNC_HS_HIGH; 2305 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2306 intel_dp->DP |= DP_SYNC_VS_HIGH; 2307 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2308 2309 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2310 intel_dp->DP |= DP_ENHANCED_FRAMING; 2311 2312 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2313 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2314 u32 trans_dp; 2315 2316 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2317 2318 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 2319 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2320 trans_dp |= TRANS_DP_ENH_FRAMING; 2321 else 2322 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2323 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); 2324 } else { 2325 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2326 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2327 2328 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2329 intel_dp->DP |= DP_SYNC_HS_HIGH; 2330 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2331 intel_dp->DP |= DP_SYNC_VS_HIGH; 2332 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2333 2334 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2335 intel_dp->DP |= DP_ENHANCED_FRAMING; 2336 2337 if (IS_CHERRYVIEW(dev_priv)) 2338 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2339 else 2340 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2341 } 2342 } 2343 2344 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2345 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2346 2347 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2348 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2349 2350 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2351 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2352 2353 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2354 2355 static void wait_panel_status(struct intel_dp *intel_dp, 2356 u32 mask, 2357 u32 value) 2358 { 2359 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2360 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2361 2362 lockdep_assert_held(&dev_priv->pps_mutex); 2363 2364 intel_pps_verify_state(intel_dp); 2365 2366 pp_stat_reg = _pp_stat_reg(intel_dp); 2367 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2368 2369 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", 2370 mask, value, 2371 I915_READ(pp_stat_reg), 2372 I915_READ(pp_ctrl_reg)); 2373 2374 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2375 mask, value, 5000)) 2376 DRM_ERROR("Panel status timeout: status %08x control %08x\n", 2377 I915_READ(pp_stat_reg), 2378 I915_READ(pp_ctrl_reg)); 2379 2380 DRM_DEBUG_KMS("Wait complete\n"); 2381 } 2382 2383 static void wait_panel_on(struct intel_dp *intel_dp) 2384 { 2385 DRM_DEBUG_KMS("Wait for panel power on\n"); 2386 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2387 } 2388 2389 static void wait_panel_off(struct intel_dp *intel_dp) 2390 { 2391 DRM_DEBUG_KMS("Wait for panel power off time\n"); 2392 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2393 } 2394 2395 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2396 { 2397 ktime_t panel_power_on_time; 2398 s64 panel_power_off_duration; 2399 2400 DRM_DEBUG_KMS("Wait for panel power cycle\n"); 2401 2402 /* take the difference of currrent time and panel power off time 2403 * and then make panel wait for t11_t12 if needed. */ 2404 panel_power_on_time = ktime_get_boottime(); 2405 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2406 2407 /* When we disable the VDD override bit last we have to do the manual 2408 * wait. */ 2409 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2410 wait_remaining_ms_from_jiffies(jiffies, 2411 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2412 2413 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2414 } 2415 2416 static void wait_backlight_on(struct intel_dp *intel_dp) 2417 { 2418 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2419 intel_dp->backlight_on_delay); 2420 } 2421 2422 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2423 { 2424 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2425 intel_dp->backlight_off_delay); 2426 } 2427 2428 /* Read the current pp_control value, unlocking the register if it 2429 * is locked 2430 */ 2431 2432 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) 2433 { 2434 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2435 u32 control; 2436 2437 lockdep_assert_held(&dev_priv->pps_mutex); 2438 2439 control = I915_READ(_pp_ctrl_reg(intel_dp)); 2440 if (WARN_ON(!HAS_DDI(dev_priv) && 2441 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2442 control &= ~PANEL_UNLOCK_MASK; 2443 control |= PANEL_UNLOCK_REGS; 2444 } 2445 return control; 2446 } 2447 2448 /* 2449 * Must be paired with edp_panel_vdd_off(). 2450 * Must hold pps_mutex around the whole on/off sequence. 2451 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2452 */ 2453 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2454 { 2455 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2456 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2457 u32 pp; 2458 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2459 bool need_to_disable = !intel_dp->want_panel_vdd; 2460 2461 lockdep_assert_held(&dev_priv->pps_mutex); 2462 2463 if (!intel_dp_is_edp(intel_dp)) 2464 return false; 2465 2466 cancel_delayed_work(&intel_dp->panel_vdd_work); 2467 intel_dp->want_panel_vdd = true; 2468 2469 if (edp_have_panel_vdd(intel_dp)) 2470 return need_to_disable; 2471 2472 intel_display_power_get(dev_priv, 2473 intel_aux_power_domain(intel_dig_port)); 2474 2475 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n", 2476 port_name(intel_dig_port->base.port)); 2477 2478 if (!edp_have_panel_power(intel_dp)) 2479 wait_panel_power_cycle(intel_dp); 2480 2481 pp = ironlake_get_pp_control(intel_dp); 2482 pp |= EDP_FORCE_VDD; 2483 2484 pp_stat_reg = _pp_stat_reg(intel_dp); 2485 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2486 2487 I915_WRITE(pp_ctrl_reg, pp); 2488 POSTING_READ(pp_ctrl_reg); 2489 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2490 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2491 /* 2492 * If the panel wasn't on, delay before accessing aux channel 2493 */ 2494 if (!edp_have_panel_power(intel_dp)) { 2495 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n", 2496 port_name(intel_dig_port->base.port)); 2497 msleep(intel_dp->panel_power_up_delay); 2498 } 2499 2500 return need_to_disable; 2501 } 2502 2503 /* 2504 * Must be paired with intel_edp_panel_vdd_off() or 2505 * intel_edp_panel_off(). 2506 * Nested calls to these functions are not allowed since 2507 * we drop the lock. Caller must use some higher level 2508 * locking to prevent nested calls from other threads. 2509 */ 2510 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2511 { 2512 intel_wakeref_t wakeref; 2513 bool vdd; 2514 2515 if (!intel_dp_is_edp(intel_dp)) 2516 return; 2517 2518 vdd = false; 2519 with_pps_lock(intel_dp, wakeref) 2520 vdd = edp_panel_vdd_on(intel_dp); 2521 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n", 2522 port_name(dp_to_dig_port(intel_dp)->base.port)); 2523 } 2524 2525 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2526 { 2527 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2528 struct intel_digital_port *intel_dig_port = 2529 dp_to_dig_port(intel_dp); 2530 u32 pp; 2531 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2532 2533 lockdep_assert_held(&dev_priv->pps_mutex); 2534 2535 WARN_ON(intel_dp->want_panel_vdd); 2536 2537 if (!edp_have_panel_vdd(intel_dp)) 2538 return; 2539 2540 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n", 2541 port_name(intel_dig_port->base.port)); 2542 2543 pp = ironlake_get_pp_control(intel_dp); 2544 pp &= ~EDP_FORCE_VDD; 2545 2546 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2547 pp_stat_reg = _pp_stat_reg(intel_dp); 2548 2549 I915_WRITE(pp_ctrl_reg, pp); 2550 POSTING_READ(pp_ctrl_reg); 2551 2552 /* Make sure sequencer is idle before allowing subsequent activity */ 2553 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2554 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2555 2556 if ((pp & PANEL_POWER_ON) == 0) 2557 intel_dp->panel_power_off_time = ktime_get_boottime(); 2558 2559 intel_display_power_put_unchecked(dev_priv, 2560 intel_aux_power_domain(intel_dig_port)); 2561 } 2562 2563 static void edp_panel_vdd_work(struct work_struct *__work) 2564 { 2565 struct intel_dp *intel_dp = 2566 container_of(to_delayed_work(__work), 2567 struct intel_dp, panel_vdd_work); 2568 intel_wakeref_t wakeref; 2569 2570 with_pps_lock(intel_dp, wakeref) { 2571 if (!intel_dp->want_panel_vdd) 2572 edp_panel_vdd_off_sync(intel_dp); 2573 } 2574 } 2575 2576 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 2577 { 2578 unsigned long delay; 2579 2580 /* 2581 * Queue the timer to fire a long time from now (relative to the power 2582 * down delay) to keep the panel power up across a sequence of 2583 * operations. 2584 */ 2585 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 2586 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 2587 } 2588 2589 /* 2590 * Must be paired with edp_panel_vdd_on(). 2591 * Must hold pps_mutex around the whole on/off sequence. 2592 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2593 */ 2594 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 2595 { 2596 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2597 2598 lockdep_assert_held(&dev_priv->pps_mutex); 2599 2600 if (!intel_dp_is_edp(intel_dp)) 2601 return; 2602 2603 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on", 2604 port_name(dp_to_dig_port(intel_dp)->base.port)); 2605 2606 intel_dp->want_panel_vdd = false; 2607 2608 if (sync) 2609 edp_panel_vdd_off_sync(intel_dp); 2610 else 2611 edp_panel_vdd_schedule_off(intel_dp); 2612 } 2613 2614 static void edp_panel_on(struct intel_dp *intel_dp) 2615 { 2616 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2617 u32 pp; 2618 i915_reg_t pp_ctrl_reg; 2619 2620 lockdep_assert_held(&dev_priv->pps_mutex); 2621 2622 if (!intel_dp_is_edp(intel_dp)) 2623 return; 2624 2625 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n", 2626 port_name(dp_to_dig_port(intel_dp)->base.port)); 2627 2628 if (WARN(edp_have_panel_power(intel_dp), 2629 "eDP port %c panel power already on\n", 2630 port_name(dp_to_dig_port(intel_dp)->base.port))) 2631 return; 2632 2633 wait_panel_power_cycle(intel_dp); 2634 2635 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2636 pp = ironlake_get_pp_control(intel_dp); 2637 if (IS_GEN(dev_priv, 5)) { 2638 /* ILK workaround: disable reset around power sequence */ 2639 pp &= ~PANEL_POWER_RESET; 2640 I915_WRITE(pp_ctrl_reg, pp); 2641 POSTING_READ(pp_ctrl_reg); 2642 } 2643 2644 pp |= PANEL_POWER_ON; 2645 if (!IS_GEN(dev_priv, 5)) 2646 pp |= PANEL_POWER_RESET; 2647 2648 I915_WRITE(pp_ctrl_reg, pp); 2649 POSTING_READ(pp_ctrl_reg); 2650 2651 wait_panel_on(intel_dp); 2652 intel_dp->last_power_on = jiffies; 2653 2654 if (IS_GEN(dev_priv, 5)) { 2655 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 2656 I915_WRITE(pp_ctrl_reg, pp); 2657 POSTING_READ(pp_ctrl_reg); 2658 } 2659 } 2660 2661 void intel_edp_panel_on(struct intel_dp *intel_dp) 2662 { 2663 intel_wakeref_t wakeref; 2664 2665 if (!intel_dp_is_edp(intel_dp)) 2666 return; 2667 2668 with_pps_lock(intel_dp, wakeref) 2669 edp_panel_on(intel_dp); 2670 } 2671 2672 2673 static void edp_panel_off(struct intel_dp *intel_dp) 2674 { 2675 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2676 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2677 u32 pp; 2678 i915_reg_t pp_ctrl_reg; 2679 2680 lockdep_assert_held(&dev_priv->pps_mutex); 2681 2682 if (!intel_dp_is_edp(intel_dp)) 2683 return; 2684 2685 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n", 2686 port_name(dig_port->base.port)); 2687 2688 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n", 2689 port_name(dig_port->base.port)); 2690 2691 pp = ironlake_get_pp_control(intel_dp); 2692 /* We need to switch off panel power _and_ force vdd, for otherwise some 2693 * panels get very unhappy and cease to work. */ 2694 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 2695 EDP_BLC_ENABLE); 2696 2697 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2698 2699 intel_dp->want_panel_vdd = false; 2700 2701 I915_WRITE(pp_ctrl_reg, pp); 2702 POSTING_READ(pp_ctrl_reg); 2703 2704 wait_panel_off(intel_dp); 2705 intel_dp->panel_power_off_time = ktime_get_boottime(); 2706 2707 /* We got a reference when we enabled the VDD. */ 2708 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 2709 } 2710 2711 void intel_edp_panel_off(struct intel_dp *intel_dp) 2712 { 2713 intel_wakeref_t wakeref; 2714 2715 if (!intel_dp_is_edp(intel_dp)) 2716 return; 2717 2718 with_pps_lock(intel_dp, wakeref) 2719 edp_panel_off(intel_dp); 2720 } 2721 2722 /* Enable backlight in the panel power control. */ 2723 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 2724 { 2725 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2726 intel_wakeref_t wakeref; 2727 2728 /* 2729 * If we enable the backlight right away following a panel power 2730 * on, we may see slight flicker as the panel syncs with the eDP 2731 * link. So delay a bit to make sure the image is solid before 2732 * allowing it to appear. 2733 */ 2734 wait_backlight_on(intel_dp); 2735 2736 with_pps_lock(intel_dp, wakeref) { 2737 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2738 u32 pp; 2739 2740 pp = ironlake_get_pp_control(intel_dp); 2741 pp |= EDP_BLC_ENABLE; 2742 2743 I915_WRITE(pp_ctrl_reg, pp); 2744 POSTING_READ(pp_ctrl_reg); 2745 } 2746 } 2747 2748 /* Enable backlight PWM and backlight PP control. */ 2749 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 2750 const struct drm_connector_state *conn_state) 2751 { 2752 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder); 2753 2754 if (!intel_dp_is_edp(intel_dp)) 2755 return; 2756 2757 DRM_DEBUG_KMS("\n"); 2758 2759 intel_panel_enable_backlight(crtc_state, conn_state); 2760 _intel_edp_backlight_on(intel_dp); 2761 } 2762 2763 /* Disable backlight in the panel power control. */ 2764 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 2765 { 2766 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2767 intel_wakeref_t wakeref; 2768 2769 if (!intel_dp_is_edp(intel_dp)) 2770 return; 2771 2772 with_pps_lock(intel_dp, wakeref) { 2773 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2774 u32 pp; 2775 2776 pp = ironlake_get_pp_control(intel_dp); 2777 pp &= ~EDP_BLC_ENABLE; 2778 2779 I915_WRITE(pp_ctrl_reg, pp); 2780 POSTING_READ(pp_ctrl_reg); 2781 } 2782 2783 intel_dp->last_backlight_off = jiffies; 2784 edp_wait_backlight_off(intel_dp); 2785 } 2786 2787 /* Disable backlight PP control and backlight PWM. */ 2788 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 2789 { 2790 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder); 2791 2792 if (!intel_dp_is_edp(intel_dp)) 2793 return; 2794 2795 DRM_DEBUG_KMS("\n"); 2796 2797 _intel_edp_backlight_off(intel_dp); 2798 intel_panel_disable_backlight(old_conn_state); 2799 } 2800 2801 /* 2802 * Hook for controlling the panel power control backlight through the bl_power 2803 * sysfs attribute. Take care to handle multiple calls. 2804 */ 2805 static void intel_edp_backlight_power(struct intel_connector *connector, 2806 bool enable) 2807 { 2808 struct intel_dp *intel_dp = intel_attached_dp(&connector->base); 2809 intel_wakeref_t wakeref; 2810 bool is_enabled; 2811 2812 is_enabled = false; 2813 with_pps_lock(intel_dp, wakeref) 2814 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 2815 if (is_enabled == enable) 2816 return; 2817 2818 DRM_DEBUG_KMS("panel power control backlight %s\n", 2819 enable ? "enable" : "disable"); 2820 2821 if (enable) 2822 _intel_edp_backlight_on(intel_dp); 2823 else 2824 _intel_edp_backlight_off(intel_dp); 2825 } 2826 2827 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 2828 { 2829 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2830 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2831 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN; 2832 2833 I915_STATE_WARN(cur_state != state, 2834 "DP port %c state assertion failure (expected %s, current %s)\n", 2835 port_name(dig_port->base.port), 2836 onoff(state), onoff(cur_state)); 2837 } 2838 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 2839 2840 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 2841 { 2842 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE; 2843 2844 I915_STATE_WARN(cur_state != state, 2845 "eDP PLL state assertion failure (expected %s, current %s)\n", 2846 onoff(state), onoff(cur_state)); 2847 } 2848 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 2849 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 2850 2851 static void ironlake_edp_pll_on(struct intel_dp *intel_dp, 2852 const struct intel_crtc_state *pipe_config) 2853 { 2854 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 2855 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2856 2857 assert_pipe_disabled(dev_priv, crtc->pipe); 2858 assert_dp_port_disabled(intel_dp); 2859 assert_edp_pll_disabled(dev_priv); 2860 2861 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n", 2862 pipe_config->port_clock); 2863 2864 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 2865 2866 if (pipe_config->port_clock == 162000) 2867 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 2868 else 2869 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 2870 2871 I915_WRITE(DP_A, intel_dp->DP); 2872 POSTING_READ(DP_A); 2873 udelay(500); 2874 2875 /* 2876 * [DevILK] Work around required when enabling DP PLL 2877 * while a pipe is enabled going to FDI: 2878 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 2879 * 2. Program DP PLL enable 2880 */ 2881 if (IS_GEN(dev_priv, 5)) 2882 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 2883 2884 intel_dp->DP |= DP_PLL_ENABLE; 2885 2886 I915_WRITE(DP_A, intel_dp->DP); 2887 POSTING_READ(DP_A); 2888 udelay(200); 2889 } 2890 2891 static void ironlake_edp_pll_off(struct intel_dp *intel_dp, 2892 const struct intel_crtc_state *old_crtc_state) 2893 { 2894 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 2895 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2896 2897 assert_pipe_disabled(dev_priv, crtc->pipe); 2898 assert_dp_port_disabled(intel_dp); 2899 assert_edp_pll_enabled(dev_priv); 2900 2901 DRM_DEBUG_KMS("disabling eDP PLL\n"); 2902 2903 intel_dp->DP &= ~DP_PLL_ENABLE; 2904 2905 I915_WRITE(DP_A, intel_dp->DP); 2906 POSTING_READ(DP_A); 2907 udelay(200); 2908 } 2909 2910 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 2911 { 2912 /* 2913 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 2914 * be capable of signalling downstream hpd with a long pulse. 2915 * Whether or not that means D3 is safe to use is not clear, 2916 * but let's assume so until proven otherwise. 2917 * 2918 * FIXME should really check all downstream ports... 2919 */ 2920 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 2921 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 2922 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 2923 } 2924 2925 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 2926 const struct intel_crtc_state *crtc_state, 2927 bool enable) 2928 { 2929 int ret; 2930 2931 if (!crtc_state->dsc_params.compression_enable) 2932 return; 2933 2934 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 2935 enable ? DP_DECOMPRESSION_EN : 0); 2936 if (ret < 0) 2937 DRM_DEBUG_KMS("Failed to %s sink decompression state\n", 2938 enable ? "enable" : "disable"); 2939 } 2940 2941 /* If the sink supports it, try to set the power state appropriately */ 2942 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 2943 { 2944 int ret, i; 2945 2946 /* Should have a valid DPCD by this point */ 2947 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 2948 return; 2949 2950 if (mode != DRM_MODE_DPMS_ON) { 2951 if (downstream_hpd_needs_d0(intel_dp)) 2952 return; 2953 2954 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 2955 DP_SET_POWER_D3); 2956 } else { 2957 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 2958 2959 /* 2960 * When turning on, we need to retry for 1ms to give the sink 2961 * time to wake up. 2962 */ 2963 for (i = 0; i < 3; i++) { 2964 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 2965 DP_SET_POWER_D0); 2966 if (ret == 1) 2967 break; 2968 msleep(1); 2969 } 2970 2971 if (ret == 1 && lspcon->active) 2972 lspcon_wait_pcon_mode(lspcon); 2973 } 2974 2975 if (ret != 1) 2976 DRM_DEBUG_KMS("failed to %s sink power state\n", 2977 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 2978 } 2979 2980 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 2981 enum port port, enum pipe *pipe) 2982 { 2983 enum pipe p; 2984 2985 for_each_pipe(dev_priv, p) { 2986 u32 val = I915_READ(TRANS_DP_CTL(p)); 2987 2988 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 2989 *pipe = p; 2990 return true; 2991 } 2992 } 2993 2994 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port)); 2995 2996 /* must initialize pipe to something for the asserts */ 2997 *pipe = PIPE_A; 2998 2999 return false; 3000 } 3001 3002 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3003 i915_reg_t dp_reg, enum port port, 3004 enum pipe *pipe) 3005 { 3006 bool ret; 3007 u32 val; 3008 3009 val = I915_READ(dp_reg); 3010 3011 ret = val & DP_PORT_EN; 3012 3013 /* asserts want to know the pipe even if the port is disabled */ 3014 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3015 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3016 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3017 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3018 else if (IS_CHERRYVIEW(dev_priv)) 3019 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3020 else 3021 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3022 3023 return ret; 3024 } 3025 3026 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3027 enum pipe *pipe) 3028 { 3029 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3030 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3031 intel_wakeref_t wakeref; 3032 bool ret; 3033 3034 wakeref = intel_display_power_get_if_enabled(dev_priv, 3035 encoder->power_domain); 3036 if (!wakeref) 3037 return false; 3038 3039 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3040 encoder->port, pipe); 3041 3042 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3043 3044 return ret; 3045 } 3046 3047 static void intel_dp_get_config(struct intel_encoder *encoder, 3048 struct intel_crtc_state *pipe_config) 3049 { 3050 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3051 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3052 u32 tmp, flags = 0; 3053 enum port port = encoder->port; 3054 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3055 3056 if (encoder->type == INTEL_OUTPUT_EDP) 3057 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3058 else 3059 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3060 3061 tmp = I915_READ(intel_dp->output_reg); 3062 3063 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3064 3065 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3066 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 3067 3068 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3069 flags |= DRM_MODE_FLAG_PHSYNC; 3070 else 3071 flags |= DRM_MODE_FLAG_NHSYNC; 3072 3073 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3074 flags |= DRM_MODE_FLAG_PVSYNC; 3075 else 3076 flags |= DRM_MODE_FLAG_NVSYNC; 3077 } else { 3078 if (tmp & DP_SYNC_HS_HIGH) 3079 flags |= DRM_MODE_FLAG_PHSYNC; 3080 else 3081 flags |= DRM_MODE_FLAG_NHSYNC; 3082 3083 if (tmp & DP_SYNC_VS_HIGH) 3084 flags |= DRM_MODE_FLAG_PVSYNC; 3085 else 3086 flags |= DRM_MODE_FLAG_NVSYNC; 3087 } 3088 3089 pipe_config->base.adjusted_mode.flags |= flags; 3090 3091 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3092 pipe_config->limited_color_range = true; 3093 3094 pipe_config->lane_count = 3095 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3096 3097 intel_dp_get_m_n(crtc, pipe_config); 3098 3099 if (port == PORT_A) { 3100 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3101 pipe_config->port_clock = 162000; 3102 else 3103 pipe_config->port_clock = 270000; 3104 } 3105 3106 pipe_config->base.adjusted_mode.crtc_clock = 3107 intel_dotclock_calculate(pipe_config->port_clock, 3108 &pipe_config->dp_m_n); 3109 3110 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3111 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3112 /* 3113 * This is a big fat ugly hack. 3114 * 3115 * Some machines in UEFI boot mode provide us a VBT that has 18 3116 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3117 * unknown we fail to light up. Yet the same BIOS boots up with 3118 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3119 * max, not what it tells us to use. 3120 * 3121 * Note: This will still be broken if the eDP panel is not lit 3122 * up by the BIOS, and thus we can't get the mode at module 3123 * load. 3124 */ 3125 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3126 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3127 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3128 } 3129 } 3130 3131 static void intel_disable_dp(struct intel_encoder *encoder, 3132 const struct intel_crtc_state *old_crtc_state, 3133 const struct drm_connector_state *old_conn_state) 3134 { 3135 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3136 3137 intel_dp->link_trained = false; 3138 3139 if (old_crtc_state->has_audio) 3140 intel_audio_codec_disable(encoder, 3141 old_crtc_state, old_conn_state); 3142 3143 /* Make sure the panel is off before trying to change the mode. But also 3144 * ensure that we have vdd while we switch off the panel. */ 3145 intel_edp_panel_vdd_on(intel_dp); 3146 intel_edp_backlight_off(old_conn_state); 3147 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3148 intel_edp_panel_off(intel_dp); 3149 } 3150 3151 static void g4x_disable_dp(struct intel_encoder *encoder, 3152 const struct intel_crtc_state *old_crtc_state, 3153 const struct drm_connector_state *old_conn_state) 3154 { 3155 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3156 } 3157 3158 static void vlv_disable_dp(struct intel_encoder *encoder, 3159 const struct intel_crtc_state *old_crtc_state, 3160 const struct drm_connector_state *old_conn_state) 3161 { 3162 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3163 } 3164 3165 static void g4x_post_disable_dp(struct intel_encoder *encoder, 3166 const struct intel_crtc_state *old_crtc_state, 3167 const struct drm_connector_state *old_conn_state) 3168 { 3169 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3170 enum port port = encoder->port; 3171 3172 /* 3173 * Bspec does not list a specific disable sequence for g4x DP. 3174 * Follow the ilk+ sequence (disable pipe before the port) for 3175 * g4x DP as it does not suffer from underruns like the normal 3176 * g4x modeset sequence (disable pipe after the port). 3177 */ 3178 intel_dp_link_down(encoder, old_crtc_state); 3179 3180 /* Only ilk+ has port A */ 3181 if (port == PORT_A) 3182 ironlake_edp_pll_off(intel_dp, old_crtc_state); 3183 } 3184 3185 static void vlv_post_disable_dp(struct intel_encoder *encoder, 3186 const struct intel_crtc_state *old_crtc_state, 3187 const struct drm_connector_state *old_conn_state) 3188 { 3189 intel_dp_link_down(encoder, old_crtc_state); 3190 } 3191 3192 static void chv_post_disable_dp(struct intel_encoder *encoder, 3193 const struct intel_crtc_state *old_crtc_state, 3194 const struct drm_connector_state *old_conn_state) 3195 { 3196 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3197 3198 intel_dp_link_down(encoder, old_crtc_state); 3199 3200 vlv_dpio_get(dev_priv); 3201 3202 /* Assert data lane reset */ 3203 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3204 3205 vlv_dpio_put(dev_priv); 3206 } 3207 3208 static void 3209 _intel_dp_set_link_train(struct intel_dp *intel_dp, 3210 u32 *DP, 3211 u8 dp_train_pat) 3212 { 3213 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3214 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3215 enum port port = intel_dig_port->base.port; 3216 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 3217 3218 if (dp_train_pat & train_pat_mask) 3219 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n", 3220 dp_train_pat & train_pat_mask); 3221 3222 if (HAS_DDI(dev_priv)) { 3223 u32 temp = I915_READ(DP_TP_CTL(port)); 3224 3225 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) 3226 temp |= DP_TP_CTL_SCRAMBLE_DISABLE; 3227 else 3228 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; 3229 3230 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3231 switch (dp_train_pat & train_pat_mask) { 3232 case DP_TRAINING_PATTERN_DISABLE: 3233 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; 3234 3235 break; 3236 case DP_TRAINING_PATTERN_1: 3237 temp |= DP_TP_CTL_LINK_TRAIN_PAT1; 3238 break; 3239 case DP_TRAINING_PATTERN_2: 3240 temp |= DP_TP_CTL_LINK_TRAIN_PAT2; 3241 break; 3242 case DP_TRAINING_PATTERN_3: 3243 temp |= DP_TP_CTL_LINK_TRAIN_PAT3; 3244 break; 3245 case DP_TRAINING_PATTERN_4: 3246 temp |= DP_TP_CTL_LINK_TRAIN_PAT4; 3247 break; 3248 } 3249 I915_WRITE(DP_TP_CTL(port), temp); 3250 3251 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3252 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3253 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3254 3255 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3256 case DP_TRAINING_PATTERN_DISABLE: 3257 *DP |= DP_LINK_TRAIN_OFF_CPT; 3258 break; 3259 case DP_TRAINING_PATTERN_1: 3260 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3261 break; 3262 case DP_TRAINING_PATTERN_2: 3263 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3264 break; 3265 case DP_TRAINING_PATTERN_3: 3266 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3267 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3268 break; 3269 } 3270 3271 } else { 3272 *DP &= ~DP_LINK_TRAIN_MASK; 3273 3274 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3275 case DP_TRAINING_PATTERN_DISABLE: 3276 *DP |= DP_LINK_TRAIN_OFF; 3277 break; 3278 case DP_TRAINING_PATTERN_1: 3279 *DP |= DP_LINK_TRAIN_PAT_1; 3280 break; 3281 case DP_TRAINING_PATTERN_2: 3282 *DP |= DP_LINK_TRAIN_PAT_2; 3283 break; 3284 case DP_TRAINING_PATTERN_3: 3285 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3286 *DP |= DP_LINK_TRAIN_PAT_2; 3287 break; 3288 } 3289 } 3290 } 3291 3292 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3293 const struct intel_crtc_state *old_crtc_state) 3294 { 3295 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3296 3297 /* enable with pattern 1 (as per spec) */ 3298 3299 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3300 3301 /* 3302 * Magic for VLV/CHV. We _must_ first set up the register 3303 * without actually enabling the port, and then do another 3304 * write to enable the port. Otherwise link training will 3305 * fail when the power sequencer is freshly used for this port. 3306 */ 3307 intel_dp->DP |= DP_PORT_EN; 3308 if (old_crtc_state->has_audio) 3309 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3310 3311 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3312 POSTING_READ(intel_dp->output_reg); 3313 } 3314 3315 static void intel_enable_dp(struct intel_encoder *encoder, 3316 const struct intel_crtc_state *pipe_config, 3317 const struct drm_connector_state *conn_state) 3318 { 3319 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3320 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3321 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3322 u32 dp_reg = I915_READ(intel_dp->output_reg); 3323 enum pipe pipe = crtc->pipe; 3324 intel_wakeref_t wakeref; 3325 3326 if (WARN_ON(dp_reg & DP_PORT_EN)) 3327 return; 3328 3329 with_pps_lock(intel_dp, wakeref) { 3330 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3331 vlv_init_panel_power_sequencer(encoder, pipe_config); 3332 3333 intel_dp_enable_port(intel_dp, pipe_config); 3334 3335 edp_panel_vdd_on(intel_dp); 3336 edp_panel_on(intel_dp); 3337 edp_panel_vdd_off(intel_dp, true); 3338 } 3339 3340 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3341 unsigned int lane_mask = 0x0; 3342 3343 if (IS_CHERRYVIEW(dev_priv)) 3344 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3345 3346 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3347 lane_mask); 3348 } 3349 3350 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3351 intel_dp_start_link_train(intel_dp); 3352 intel_dp_stop_link_train(intel_dp); 3353 3354 if (pipe_config->has_audio) { 3355 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", 3356 pipe_name(pipe)); 3357 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3358 } 3359 } 3360 3361 static void g4x_enable_dp(struct intel_encoder *encoder, 3362 const struct intel_crtc_state *pipe_config, 3363 const struct drm_connector_state *conn_state) 3364 { 3365 intel_enable_dp(encoder, pipe_config, conn_state); 3366 intel_edp_backlight_on(pipe_config, conn_state); 3367 } 3368 3369 static void vlv_enable_dp(struct intel_encoder *encoder, 3370 const struct intel_crtc_state *pipe_config, 3371 const struct drm_connector_state *conn_state) 3372 { 3373 intel_edp_backlight_on(pipe_config, conn_state); 3374 } 3375 3376 static void g4x_pre_enable_dp(struct intel_encoder *encoder, 3377 const struct intel_crtc_state *pipe_config, 3378 const struct drm_connector_state *conn_state) 3379 { 3380 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3381 enum port port = encoder->port; 3382 3383 intel_dp_prepare(encoder, pipe_config); 3384 3385 /* Only ilk+ has port A */ 3386 if (port == PORT_A) 3387 ironlake_edp_pll_on(intel_dp, pipe_config); 3388 } 3389 3390 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3391 { 3392 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3393 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3394 enum pipe pipe = intel_dp->pps_pipe; 3395 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3396 3397 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3398 3399 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) 3400 return; 3401 3402 edp_panel_vdd_off_sync(intel_dp); 3403 3404 /* 3405 * VLV seems to get confused when multiple power sequencers 3406 * have the same port selected (even if only one has power/vdd 3407 * enabled). The failure manifests as vlv_wait_port_ready() failing 3408 * CHV on the other hand doesn't seem to mind having the same port 3409 * selected in multiple power sequencers, but let's clear the 3410 * port select always when logically disconnecting a power sequencer 3411 * from a port. 3412 */ 3413 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n", 3414 pipe_name(pipe), port_name(intel_dig_port->base.port)); 3415 I915_WRITE(pp_on_reg, 0); 3416 POSTING_READ(pp_on_reg); 3417 3418 intel_dp->pps_pipe = INVALID_PIPE; 3419 } 3420 3421 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3422 enum pipe pipe) 3423 { 3424 struct intel_encoder *encoder; 3425 3426 lockdep_assert_held(&dev_priv->pps_mutex); 3427 3428 for_each_intel_dp(&dev_priv->drm, encoder) { 3429 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3430 enum port port = encoder->port; 3431 3432 WARN(intel_dp->active_pipe == pipe, 3433 "stealing pipe %c power sequencer from active (e)DP port %c\n", 3434 pipe_name(pipe), port_name(port)); 3435 3436 if (intel_dp->pps_pipe != pipe) 3437 continue; 3438 3439 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n", 3440 pipe_name(pipe), port_name(port)); 3441 3442 /* make sure vdd is off before we steal it */ 3443 vlv_detach_power_sequencer(intel_dp); 3444 } 3445 } 3446 3447 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3448 const struct intel_crtc_state *crtc_state) 3449 { 3450 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3451 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3452 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 3453 3454 lockdep_assert_held(&dev_priv->pps_mutex); 3455 3456 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3457 3458 if (intel_dp->pps_pipe != INVALID_PIPE && 3459 intel_dp->pps_pipe != crtc->pipe) { 3460 /* 3461 * If another power sequencer was being used on this 3462 * port previously make sure to turn off vdd there while 3463 * we still have control of it. 3464 */ 3465 vlv_detach_power_sequencer(intel_dp); 3466 } 3467 3468 /* 3469 * We may be stealing the power 3470 * sequencer from another port. 3471 */ 3472 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3473 3474 intel_dp->active_pipe = crtc->pipe; 3475 3476 if (!intel_dp_is_edp(intel_dp)) 3477 return; 3478 3479 /* now it's all ours */ 3480 intel_dp->pps_pipe = crtc->pipe; 3481 3482 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n", 3483 pipe_name(intel_dp->pps_pipe), port_name(encoder->port)); 3484 3485 /* init power sequencer on this pipe and port */ 3486 intel_dp_init_panel_power_sequencer(intel_dp); 3487 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3488 } 3489 3490 static void vlv_pre_enable_dp(struct intel_encoder *encoder, 3491 const struct intel_crtc_state *pipe_config, 3492 const struct drm_connector_state *conn_state) 3493 { 3494 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3495 3496 intel_enable_dp(encoder, pipe_config, conn_state); 3497 } 3498 3499 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, 3500 const struct intel_crtc_state *pipe_config, 3501 const struct drm_connector_state *conn_state) 3502 { 3503 intel_dp_prepare(encoder, pipe_config); 3504 3505 vlv_phy_pre_pll_enable(encoder, pipe_config); 3506 } 3507 3508 static void chv_pre_enable_dp(struct intel_encoder *encoder, 3509 const struct intel_crtc_state *pipe_config, 3510 const struct drm_connector_state *conn_state) 3511 { 3512 chv_phy_pre_encoder_enable(encoder, pipe_config); 3513 3514 intel_enable_dp(encoder, pipe_config, conn_state); 3515 3516 /* Second common lane will stay alive on its own now */ 3517 chv_phy_release_cl2_override(encoder); 3518 } 3519 3520 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, 3521 const struct intel_crtc_state *pipe_config, 3522 const struct drm_connector_state *conn_state) 3523 { 3524 intel_dp_prepare(encoder, pipe_config); 3525 3526 chv_phy_pre_pll_enable(encoder, pipe_config); 3527 } 3528 3529 static void chv_dp_post_pll_disable(struct intel_encoder *encoder, 3530 const struct intel_crtc_state *old_crtc_state, 3531 const struct drm_connector_state *old_conn_state) 3532 { 3533 chv_phy_post_pll_disable(encoder, old_crtc_state); 3534 } 3535 3536 /* 3537 * Fetch AUX CH registers 0x202 - 0x207 which contain 3538 * link status information 3539 */ 3540 bool 3541 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3542 { 3543 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 3544 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 3545 } 3546 3547 /* These are source-specific values. */ 3548 u8 3549 intel_dp_voltage_max(struct intel_dp *intel_dp) 3550 { 3551 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3552 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3553 enum port port = encoder->port; 3554 3555 if (HAS_DDI(dev_priv)) 3556 return intel_ddi_dp_voltage_max(encoder); 3557 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3558 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3559 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3560 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3561 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3562 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3563 else 3564 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3565 } 3566 3567 u8 3568 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) 3569 { 3570 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3571 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3572 enum port port = encoder->port; 3573 3574 if (HAS_DDI(dev_priv)) { 3575 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); 3576 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3577 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3578 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3579 return DP_TRAIN_PRE_EMPH_LEVEL_3; 3580 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3581 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3582 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3583 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3584 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3585 default: 3586 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3587 } 3588 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3589 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3590 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3591 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3592 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3593 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3594 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3595 default: 3596 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3597 } 3598 } else { 3599 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3600 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3601 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3602 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3603 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3604 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3605 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3606 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3607 default: 3608 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3609 } 3610 } 3611 } 3612 3613 static u32 vlv_signal_levels(struct intel_dp *intel_dp) 3614 { 3615 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3616 unsigned long demph_reg_value, preemph_reg_value, 3617 uniqtranscale_reg_value; 3618 u8 train_set = intel_dp->train_set[0]; 3619 3620 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3621 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3622 preemph_reg_value = 0x0004000; 3623 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3624 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3625 demph_reg_value = 0x2B405555; 3626 uniqtranscale_reg_value = 0x552AB83A; 3627 break; 3628 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3629 demph_reg_value = 0x2B404040; 3630 uniqtranscale_reg_value = 0x5548B83A; 3631 break; 3632 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3633 demph_reg_value = 0x2B245555; 3634 uniqtranscale_reg_value = 0x5560B83A; 3635 break; 3636 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3637 demph_reg_value = 0x2B405555; 3638 uniqtranscale_reg_value = 0x5598DA3A; 3639 break; 3640 default: 3641 return 0; 3642 } 3643 break; 3644 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3645 preemph_reg_value = 0x0002000; 3646 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3647 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3648 demph_reg_value = 0x2B404040; 3649 uniqtranscale_reg_value = 0x5552B83A; 3650 break; 3651 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3652 demph_reg_value = 0x2B404848; 3653 uniqtranscale_reg_value = 0x5580B83A; 3654 break; 3655 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3656 demph_reg_value = 0x2B404040; 3657 uniqtranscale_reg_value = 0x55ADDA3A; 3658 break; 3659 default: 3660 return 0; 3661 } 3662 break; 3663 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3664 preemph_reg_value = 0x0000000; 3665 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3666 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3667 demph_reg_value = 0x2B305555; 3668 uniqtranscale_reg_value = 0x5570B83A; 3669 break; 3670 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3671 demph_reg_value = 0x2B2B4040; 3672 uniqtranscale_reg_value = 0x55ADDA3A; 3673 break; 3674 default: 3675 return 0; 3676 } 3677 break; 3678 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3679 preemph_reg_value = 0x0006000; 3680 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3681 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3682 demph_reg_value = 0x1B405555; 3683 uniqtranscale_reg_value = 0x55ADDA3A; 3684 break; 3685 default: 3686 return 0; 3687 } 3688 break; 3689 default: 3690 return 0; 3691 } 3692 3693 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 3694 uniqtranscale_reg_value, 0); 3695 3696 return 0; 3697 } 3698 3699 static u32 chv_signal_levels(struct intel_dp *intel_dp) 3700 { 3701 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3702 u32 deemph_reg_value, margin_reg_value; 3703 bool uniq_trans_scale = false; 3704 u8 train_set = intel_dp->train_set[0]; 3705 3706 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3707 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3708 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3709 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3710 deemph_reg_value = 128; 3711 margin_reg_value = 52; 3712 break; 3713 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3714 deemph_reg_value = 128; 3715 margin_reg_value = 77; 3716 break; 3717 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3718 deemph_reg_value = 128; 3719 margin_reg_value = 102; 3720 break; 3721 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3722 deemph_reg_value = 128; 3723 margin_reg_value = 154; 3724 uniq_trans_scale = true; 3725 break; 3726 default: 3727 return 0; 3728 } 3729 break; 3730 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3731 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3732 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3733 deemph_reg_value = 85; 3734 margin_reg_value = 78; 3735 break; 3736 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3737 deemph_reg_value = 85; 3738 margin_reg_value = 116; 3739 break; 3740 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3741 deemph_reg_value = 85; 3742 margin_reg_value = 154; 3743 break; 3744 default: 3745 return 0; 3746 } 3747 break; 3748 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3749 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3750 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3751 deemph_reg_value = 64; 3752 margin_reg_value = 104; 3753 break; 3754 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3755 deemph_reg_value = 64; 3756 margin_reg_value = 154; 3757 break; 3758 default: 3759 return 0; 3760 } 3761 break; 3762 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3763 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3764 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3765 deemph_reg_value = 43; 3766 margin_reg_value = 154; 3767 break; 3768 default: 3769 return 0; 3770 } 3771 break; 3772 default: 3773 return 0; 3774 } 3775 3776 chv_set_phy_signal_level(encoder, deemph_reg_value, 3777 margin_reg_value, uniq_trans_scale); 3778 3779 return 0; 3780 } 3781 3782 static u32 3783 g4x_signal_levels(u8 train_set) 3784 { 3785 u32 signal_levels = 0; 3786 3787 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3788 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3789 default: 3790 signal_levels |= DP_VOLTAGE_0_4; 3791 break; 3792 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3793 signal_levels |= DP_VOLTAGE_0_6; 3794 break; 3795 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3796 signal_levels |= DP_VOLTAGE_0_8; 3797 break; 3798 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3799 signal_levels |= DP_VOLTAGE_1_2; 3800 break; 3801 } 3802 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3803 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3804 default: 3805 signal_levels |= DP_PRE_EMPHASIS_0; 3806 break; 3807 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3808 signal_levels |= DP_PRE_EMPHASIS_3_5; 3809 break; 3810 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3811 signal_levels |= DP_PRE_EMPHASIS_6; 3812 break; 3813 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3814 signal_levels |= DP_PRE_EMPHASIS_9_5; 3815 break; 3816 } 3817 return signal_levels; 3818 } 3819 3820 /* SNB CPU eDP voltage swing and pre-emphasis control */ 3821 static u32 3822 snb_cpu_edp_signal_levels(u8 train_set) 3823 { 3824 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 3825 DP_TRAIN_PRE_EMPHASIS_MASK); 3826 switch (signal_levels) { 3827 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3828 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3829 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 3830 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3831 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 3832 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3833 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3834 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 3835 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3836 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3837 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 3838 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3839 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3840 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 3841 default: 3842 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 3843 "0x%x\n", signal_levels); 3844 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 3845 } 3846 } 3847 3848 /* IVB CPU eDP voltage swing and pre-emphasis control */ 3849 static u32 3850 ivb_cpu_edp_signal_levels(u8 train_set) 3851 { 3852 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 3853 DP_TRAIN_PRE_EMPHASIS_MASK); 3854 switch (signal_levels) { 3855 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3856 return EDP_LINK_TRAIN_400MV_0DB_IVB; 3857 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3858 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 3859 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3860 return EDP_LINK_TRAIN_400MV_6DB_IVB; 3861 3862 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3863 return EDP_LINK_TRAIN_600MV_0DB_IVB; 3864 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3865 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 3866 3867 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3868 return EDP_LINK_TRAIN_800MV_0DB_IVB; 3869 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3870 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 3871 3872 default: 3873 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 3874 "0x%x\n", signal_levels); 3875 return EDP_LINK_TRAIN_500MV_0DB_IVB; 3876 } 3877 } 3878 3879 void 3880 intel_dp_set_signal_levels(struct intel_dp *intel_dp) 3881 { 3882 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3883 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3884 enum port port = intel_dig_port->base.port; 3885 u32 signal_levels, mask = 0; 3886 u8 train_set = intel_dp->train_set[0]; 3887 3888 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) { 3889 signal_levels = bxt_signal_levels(intel_dp); 3890 } else if (HAS_DDI(dev_priv)) { 3891 signal_levels = ddi_signal_levels(intel_dp); 3892 mask = DDI_BUF_EMP_MASK; 3893 } else if (IS_CHERRYVIEW(dev_priv)) { 3894 signal_levels = chv_signal_levels(intel_dp); 3895 } else if (IS_VALLEYVIEW(dev_priv)) { 3896 signal_levels = vlv_signal_levels(intel_dp); 3897 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3898 signal_levels = ivb_cpu_edp_signal_levels(train_set); 3899 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 3900 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) { 3901 signal_levels = snb_cpu_edp_signal_levels(train_set); 3902 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 3903 } else { 3904 signal_levels = g4x_signal_levels(train_set); 3905 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; 3906 } 3907 3908 if (mask) 3909 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); 3910 3911 DRM_DEBUG_KMS("Using vswing level %d\n", 3912 train_set & DP_TRAIN_VOLTAGE_SWING_MASK); 3913 DRM_DEBUG_KMS("Using pre-emphasis level %d\n", 3914 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 3915 DP_TRAIN_PRE_EMPHASIS_SHIFT); 3916 3917 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; 3918 3919 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3920 POSTING_READ(intel_dp->output_reg); 3921 } 3922 3923 void 3924 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 3925 u8 dp_train_pat) 3926 { 3927 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3928 struct drm_i915_private *dev_priv = 3929 to_i915(intel_dig_port->base.base.dev); 3930 3931 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); 3932 3933 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3934 POSTING_READ(intel_dp->output_reg); 3935 } 3936 3937 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 3938 { 3939 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3940 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3941 enum port port = intel_dig_port->base.port; 3942 u32 val; 3943 3944 if (!HAS_DDI(dev_priv)) 3945 return; 3946 3947 val = I915_READ(DP_TP_CTL(port)); 3948 val &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3949 val |= DP_TP_CTL_LINK_TRAIN_IDLE; 3950 I915_WRITE(DP_TP_CTL(port), val); 3951 3952 /* 3953 * On PORT_A we can have only eDP in SST mode. There the only reason 3954 * we need to set idle transmission mode is to work around a HW issue 3955 * where we enable the pipe while not in idle link-training mode. 3956 * In this case there is requirement to wait for a minimum number of 3957 * idle patterns to be sent. 3958 */ 3959 if (port == PORT_A) 3960 return; 3961 3962 if (intel_de_wait_for_set(dev_priv, DP_TP_STATUS(port), 3963 DP_TP_STATUS_IDLE_DONE, 1)) 3964 DRM_ERROR("Timed out waiting for DP idle patterns\n"); 3965 } 3966 3967 static void 3968 intel_dp_link_down(struct intel_encoder *encoder, 3969 const struct intel_crtc_state *old_crtc_state) 3970 { 3971 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3972 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3973 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 3974 enum port port = encoder->port; 3975 u32 DP = intel_dp->DP; 3976 3977 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) 3978 return; 3979 3980 DRM_DEBUG_KMS("\n"); 3981 3982 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3983 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3984 DP &= ~DP_LINK_TRAIN_MASK_CPT; 3985 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 3986 } else { 3987 DP &= ~DP_LINK_TRAIN_MASK; 3988 DP |= DP_LINK_TRAIN_PAT_IDLE; 3989 } 3990 I915_WRITE(intel_dp->output_reg, DP); 3991 POSTING_READ(intel_dp->output_reg); 3992 3993 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 3994 I915_WRITE(intel_dp->output_reg, DP); 3995 POSTING_READ(intel_dp->output_reg); 3996 3997 /* 3998 * HW workaround for IBX, we need to move the port 3999 * to transcoder A after disabling it to allow the 4000 * matching HDMI port to be enabled on transcoder A. 4001 */ 4002 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4003 /* 4004 * We get CPU/PCH FIFO underruns on the other pipe when 4005 * doing the workaround. Sweep them under the rug. 4006 */ 4007 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4008 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4009 4010 /* always enable with pattern 1 (as per spec) */ 4011 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4012 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4013 DP_LINK_TRAIN_PAT_1; 4014 I915_WRITE(intel_dp->output_reg, DP); 4015 POSTING_READ(intel_dp->output_reg); 4016 4017 DP &= ~DP_PORT_EN; 4018 I915_WRITE(intel_dp->output_reg, DP); 4019 POSTING_READ(intel_dp->output_reg); 4020 4021 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4022 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4023 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4024 } 4025 4026 msleep(intel_dp->panel_power_down_delay); 4027 4028 intel_dp->DP = DP; 4029 4030 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4031 intel_wakeref_t wakeref; 4032 4033 with_pps_lock(intel_dp, wakeref) 4034 intel_dp->active_pipe = INVALID_PIPE; 4035 } 4036 } 4037 4038 static void 4039 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4040 { 4041 u8 dpcd_ext[6]; 4042 4043 /* 4044 * Prior to DP1.3 the bit represented by 4045 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4046 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4047 * the true capability of the panel. The only way to check is to 4048 * then compare 0000h and 2200h. 4049 */ 4050 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4051 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4052 return; 4053 4054 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4055 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4056 DRM_ERROR("DPCD failed read at extended capabilities\n"); 4057 return; 4058 } 4059 4060 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4061 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n"); 4062 return; 4063 } 4064 4065 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4066 return; 4067 4068 DRM_DEBUG_KMS("Base DPCD: %*ph\n", 4069 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4070 4071 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4072 } 4073 4074 bool 4075 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4076 { 4077 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4078 sizeof(intel_dp->dpcd)) < 0) 4079 return false; /* aux transfer failed */ 4080 4081 intel_dp_extended_receiver_capabilities(intel_dp); 4082 4083 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); 4084 4085 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4086 } 4087 4088 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4089 { 4090 u8 dprx = 0; 4091 4092 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4093 &dprx) != 1) 4094 return false; 4095 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4096 } 4097 4098 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4099 { 4100 /* 4101 * Clear the cached register set to avoid using stale values 4102 * for the sinks that do not support DSC. 4103 */ 4104 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4105 4106 /* Clear fec_capable to avoid using stale values */ 4107 intel_dp->fec_capable = 0; 4108 4109 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4110 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4111 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4112 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4113 intel_dp->dsc_dpcd, 4114 sizeof(intel_dp->dsc_dpcd)) < 0) 4115 DRM_ERROR("Failed to read DPCD register 0x%x\n", 4116 DP_DSC_SUPPORT); 4117 4118 DRM_DEBUG_KMS("DSC DPCD: %*ph\n", 4119 (int)sizeof(intel_dp->dsc_dpcd), 4120 intel_dp->dsc_dpcd); 4121 4122 /* FEC is supported only on DP 1.4 */ 4123 if (!intel_dp_is_edp(intel_dp) && 4124 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4125 &intel_dp->fec_capable) < 0) 4126 DRM_ERROR("Failed to read FEC DPCD register\n"); 4127 4128 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable); 4129 } 4130 } 4131 4132 static bool 4133 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4134 { 4135 struct drm_i915_private *dev_priv = 4136 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4137 4138 /* this function is meant to be called only once */ 4139 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0); 4140 4141 if (!intel_dp_read_dpcd(intel_dp)) 4142 return false; 4143 4144 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4145 drm_dp_is_branch(intel_dp->dpcd)); 4146 4147 /* 4148 * Read the eDP display control registers. 4149 * 4150 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4151 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4152 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4153 * method). The display control registers should read zero if they're 4154 * not supported anyway. 4155 */ 4156 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4157 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4158 sizeof(intel_dp->edp_dpcd)) 4159 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd), 4160 intel_dp->edp_dpcd); 4161 4162 /* 4163 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4164 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4165 */ 4166 intel_psr_init_dpcd(intel_dp); 4167 4168 /* Read the eDP 1.4+ supported link rates. */ 4169 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4170 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4171 int i; 4172 4173 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4174 sink_rates, sizeof(sink_rates)); 4175 4176 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4177 int val = le16_to_cpu(sink_rates[i]); 4178 4179 if (val == 0) 4180 break; 4181 4182 /* Value read multiplied by 200kHz gives the per-lane 4183 * link rate in kHz. The source rates are, however, 4184 * stored in terms of LS_Clk kHz. The full conversion 4185 * back to symbols is 4186 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4187 */ 4188 intel_dp->sink_rates[i] = (val * 200) / 10; 4189 } 4190 intel_dp->num_sink_rates = i; 4191 } 4192 4193 /* 4194 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4195 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4196 */ 4197 if (intel_dp->num_sink_rates) 4198 intel_dp->use_rate_select = true; 4199 else 4200 intel_dp_set_sink_rates(intel_dp); 4201 4202 intel_dp_set_common_rates(intel_dp); 4203 4204 /* Read the eDP DSC DPCD registers */ 4205 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4206 intel_dp_get_dsc_sink_cap(intel_dp); 4207 4208 return true; 4209 } 4210 4211 4212 static bool 4213 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4214 { 4215 if (!intel_dp_read_dpcd(intel_dp)) 4216 return false; 4217 4218 /* 4219 * Don't clobber cached eDP rates. Also skip re-reading 4220 * the OUI/ID since we know it won't change. 4221 */ 4222 if (!intel_dp_is_edp(intel_dp)) { 4223 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4224 drm_dp_is_branch(intel_dp->dpcd)); 4225 4226 intel_dp_set_sink_rates(intel_dp); 4227 intel_dp_set_common_rates(intel_dp); 4228 } 4229 4230 /* 4231 * Some eDP panels do not set a valid value for sink count, that is why 4232 * it don't care about read it here and in intel_edp_init_dpcd(). 4233 */ 4234 if (!intel_dp_is_edp(intel_dp) && 4235 !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) { 4236 u8 count; 4237 ssize_t r; 4238 4239 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4240 if (r < 1) 4241 return false; 4242 4243 /* 4244 * Sink count can change between short pulse hpd hence 4245 * a member variable in intel_dp will track any changes 4246 * between short pulse interrupts. 4247 */ 4248 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4249 4250 /* 4251 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4252 * a dongle is present but no display. Unless we require to know 4253 * if a dongle is present or not, we don't need to update 4254 * downstream port information. So, an early return here saves 4255 * time from performing other operations which are not required. 4256 */ 4257 if (!intel_dp->sink_count) 4258 return false; 4259 } 4260 4261 if (!drm_dp_is_branch(intel_dp->dpcd)) 4262 return true; /* native DP sink */ 4263 4264 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4265 return true; /* no per-port downstream info */ 4266 4267 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4268 intel_dp->downstream_ports, 4269 DP_MAX_DOWNSTREAM_PORTS) < 0) 4270 return false; /* downstream port status fetch failed */ 4271 4272 return true; 4273 } 4274 4275 static bool 4276 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4277 { 4278 u8 mstm_cap; 4279 4280 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4281 return false; 4282 4283 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4284 return false; 4285 4286 return mstm_cap & DP_MST_CAP; 4287 } 4288 4289 static bool 4290 intel_dp_can_mst(struct intel_dp *intel_dp) 4291 { 4292 return i915_modparams.enable_dp_mst && 4293 intel_dp->can_mst && 4294 intel_dp_sink_can_mst(intel_dp); 4295 } 4296 4297 static void 4298 intel_dp_configure_mst(struct intel_dp *intel_dp) 4299 { 4300 struct intel_encoder *encoder = 4301 &dp_to_dig_port(intel_dp)->base; 4302 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4303 4304 DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n", 4305 port_name(encoder->port), yesno(intel_dp->can_mst), 4306 yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst)); 4307 4308 if (!intel_dp->can_mst) 4309 return; 4310 4311 intel_dp->is_mst = sink_can_mst && 4312 i915_modparams.enable_dp_mst; 4313 4314 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4315 intel_dp->is_mst); 4316 } 4317 4318 static bool 4319 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4320 { 4321 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4322 sink_irq_vector, DP_DPRX_ESI_LEN) == 4323 DP_DPRX_ESI_LEN; 4324 } 4325 4326 u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count, 4327 int mode_clock, int mode_hdisplay) 4328 { 4329 u16 bits_per_pixel, max_bpp_small_joiner_ram; 4330 int i; 4331 4332 /* 4333 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 4334 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP) 4335 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1, 4336 * for MST -> TimeSlotsPerMTP has to be calculated 4337 */ 4338 bits_per_pixel = (link_clock * lane_count * 8 * 4339 DP_DSC_FEC_OVERHEAD_FACTOR) / 4340 mode_clock; 4341 4342 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 4343 max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER / 4344 mode_hdisplay; 4345 4346 /* 4347 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW 4348 * check, output bpp from small joiner RAM check) 4349 */ 4350 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 4351 4352 /* Error out if the max bpp is less than smallest allowed valid bpp */ 4353 if (bits_per_pixel < valid_dsc_bpp[0]) { 4354 DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel); 4355 return 0; 4356 } 4357 4358 /* Find the nearest match in the array of known BPPs from VESA */ 4359 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 4360 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 4361 break; 4362 } 4363 bits_per_pixel = valid_dsc_bpp[i]; 4364 4365 /* 4366 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 4367 * fractional part is 0 4368 */ 4369 return bits_per_pixel << 4; 4370 } 4371 4372 u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 4373 int mode_clock, 4374 int mode_hdisplay) 4375 { 4376 u8 min_slice_count, i; 4377 int max_slice_width; 4378 4379 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 4380 min_slice_count = DIV_ROUND_UP(mode_clock, 4381 DP_DSC_MAX_ENC_THROUGHPUT_0); 4382 else 4383 min_slice_count = DIV_ROUND_UP(mode_clock, 4384 DP_DSC_MAX_ENC_THROUGHPUT_1); 4385 4386 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 4387 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 4388 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n", 4389 max_slice_width); 4390 return 0; 4391 } 4392 /* Also take into account max slice width */ 4393 min_slice_count = min_t(u8, min_slice_count, 4394 DIV_ROUND_UP(mode_hdisplay, 4395 max_slice_width)); 4396 4397 /* Find the closest match to the valid slice count values */ 4398 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 4399 if (valid_dsc_slicecount[i] > 4400 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 4401 false)) 4402 break; 4403 if (min_slice_count <= valid_dsc_slicecount[i]) 4404 return valid_dsc_slicecount[i]; 4405 } 4406 4407 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count); 4408 return 0; 4409 } 4410 4411 static void 4412 intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp, 4413 const struct intel_crtc_state *crtc_state) 4414 { 4415 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4416 struct dp_sdp vsc_sdp = {}; 4417 4418 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */ 4419 vsc_sdp.sdp_header.HB0 = 0; 4420 vsc_sdp.sdp_header.HB1 = 0x7; 4421 4422 /* 4423 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 4424 * Colorimetry Format indication. 4425 */ 4426 vsc_sdp.sdp_header.HB2 = 0x5; 4427 4428 /* 4429 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/ 4430 * Colorimetry Format indication (HB2 = 05h). 4431 */ 4432 vsc_sdp.sdp_header.HB3 = 0x13; 4433 4434 /* 4435 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h 4436 * DB16[3:0] DP 1.4a spec, Table 2-120 4437 */ 4438 vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/ 4439 /* RGB->YCBCR color conversion uses the BT.709 color space. */ 4440 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */ 4441 4442 /* 4443 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only, 4444 * the following Component Bit Depth values are defined: 4445 * 001b = 8bpc. 4446 * 010b = 10bpc. 4447 * 011b = 12bpc. 4448 * 100b = 16bpc. 4449 */ 4450 switch (crtc_state->pipe_bpp) { 4451 case 24: /* 8bpc */ 4452 vsc_sdp.db[17] = 0x1; 4453 break; 4454 case 30: /* 10bpc */ 4455 vsc_sdp.db[17] = 0x2; 4456 break; 4457 case 36: /* 12bpc */ 4458 vsc_sdp.db[17] = 0x3; 4459 break; 4460 case 48: /* 16bpc */ 4461 vsc_sdp.db[17] = 0x4; 4462 break; 4463 default: 4464 MISSING_CASE(crtc_state->pipe_bpp); 4465 break; 4466 } 4467 4468 /* 4469 * Dynamic Range (Bit 7) 4470 * 0 = VESA range, 1 = CTA range. 4471 * all YCbCr are always limited range 4472 */ 4473 vsc_sdp.db[17] |= 0x80; 4474 4475 /* 4476 * Content Type (Bits 2:0) 4477 * 000b = Not defined. 4478 * 001b = Graphics. 4479 * 010b = Photo. 4480 * 011b = Video. 4481 * 100b = Game 4482 * All other values are RESERVED. 4483 * Note: See CTA-861-G for the definition and expected 4484 * processing by a stream sink for the above contect types. 4485 */ 4486 vsc_sdp.db[18] = 0; 4487 4488 intel_dig_port->write_infoframe(&intel_dig_port->base, 4489 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp)); 4490 } 4491 4492 void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp, 4493 const struct intel_crtc_state *crtc_state) 4494 { 4495 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420) 4496 return; 4497 4498 intel_pixel_encoding_setup_vsc(intel_dp, crtc_state); 4499 } 4500 4501 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 4502 { 4503 int status = 0; 4504 int test_link_rate; 4505 u8 test_lane_count, test_link_bw; 4506 /* (DP CTS 1.2) 4507 * 4.3.1.11 4508 */ 4509 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 4510 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 4511 &test_lane_count); 4512 4513 if (status <= 0) { 4514 DRM_DEBUG_KMS("Lane count read failed\n"); 4515 return DP_TEST_NAK; 4516 } 4517 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 4518 4519 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 4520 &test_link_bw); 4521 if (status <= 0) { 4522 DRM_DEBUG_KMS("Link Rate read failed\n"); 4523 return DP_TEST_NAK; 4524 } 4525 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 4526 4527 /* Validate the requested link rate and lane count */ 4528 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 4529 test_lane_count)) 4530 return DP_TEST_NAK; 4531 4532 intel_dp->compliance.test_lane_count = test_lane_count; 4533 intel_dp->compliance.test_link_rate = test_link_rate; 4534 4535 return DP_TEST_ACK; 4536 } 4537 4538 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 4539 { 4540 u8 test_pattern; 4541 u8 test_misc; 4542 __be16 h_width, v_height; 4543 int status = 0; 4544 4545 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 4546 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 4547 &test_pattern); 4548 if (status <= 0) { 4549 DRM_DEBUG_KMS("Test pattern read failed\n"); 4550 return DP_TEST_NAK; 4551 } 4552 if (test_pattern != DP_COLOR_RAMP) 4553 return DP_TEST_NAK; 4554 4555 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 4556 &h_width, 2); 4557 if (status <= 0) { 4558 DRM_DEBUG_KMS("H Width read failed\n"); 4559 return DP_TEST_NAK; 4560 } 4561 4562 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 4563 &v_height, 2); 4564 if (status <= 0) { 4565 DRM_DEBUG_KMS("V Height read failed\n"); 4566 return DP_TEST_NAK; 4567 } 4568 4569 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 4570 &test_misc); 4571 if (status <= 0) { 4572 DRM_DEBUG_KMS("TEST MISC read failed\n"); 4573 return DP_TEST_NAK; 4574 } 4575 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 4576 return DP_TEST_NAK; 4577 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 4578 return DP_TEST_NAK; 4579 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 4580 case DP_TEST_BIT_DEPTH_6: 4581 intel_dp->compliance.test_data.bpc = 6; 4582 break; 4583 case DP_TEST_BIT_DEPTH_8: 4584 intel_dp->compliance.test_data.bpc = 8; 4585 break; 4586 default: 4587 return DP_TEST_NAK; 4588 } 4589 4590 intel_dp->compliance.test_data.video_pattern = test_pattern; 4591 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 4592 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 4593 /* Set test active flag here so userspace doesn't interrupt things */ 4594 intel_dp->compliance.test_active = 1; 4595 4596 return DP_TEST_ACK; 4597 } 4598 4599 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 4600 { 4601 u8 test_result = DP_TEST_ACK; 4602 struct intel_connector *intel_connector = intel_dp->attached_connector; 4603 struct drm_connector *connector = &intel_connector->base; 4604 4605 if (intel_connector->detect_edid == NULL || 4606 connector->edid_corrupt || 4607 intel_dp->aux.i2c_defer_count > 6) { 4608 /* Check EDID read for NACKs, DEFERs and corruption 4609 * (DP CTS 1.2 Core r1.1) 4610 * 4.2.2.4 : Failed EDID read, I2C_NAK 4611 * 4.2.2.5 : Failed EDID read, I2C_DEFER 4612 * 4.2.2.6 : EDID corruption detected 4613 * Use failsafe mode for all cases 4614 */ 4615 if (intel_dp->aux.i2c_nack_count > 0 || 4616 intel_dp->aux.i2c_defer_count > 0) 4617 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", 4618 intel_dp->aux.i2c_nack_count, 4619 intel_dp->aux.i2c_defer_count); 4620 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 4621 } else { 4622 struct edid *block = intel_connector->detect_edid; 4623 4624 /* We have to write the checksum 4625 * of the last block read 4626 */ 4627 block += intel_connector->detect_edid->extensions; 4628 4629 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 4630 block->checksum) <= 0) 4631 DRM_DEBUG_KMS("Failed to write EDID checksum\n"); 4632 4633 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 4634 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 4635 } 4636 4637 /* Set test active flag here so userspace doesn't interrupt things */ 4638 intel_dp->compliance.test_active = 1; 4639 4640 return test_result; 4641 } 4642 4643 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 4644 { 4645 u8 test_result = DP_TEST_NAK; 4646 return test_result; 4647 } 4648 4649 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 4650 { 4651 u8 response = DP_TEST_NAK; 4652 u8 request = 0; 4653 int status; 4654 4655 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 4656 if (status <= 0) { 4657 DRM_DEBUG_KMS("Could not read test request from sink\n"); 4658 goto update_status; 4659 } 4660 4661 switch (request) { 4662 case DP_TEST_LINK_TRAINING: 4663 DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); 4664 response = intel_dp_autotest_link_training(intel_dp); 4665 break; 4666 case DP_TEST_LINK_VIDEO_PATTERN: 4667 DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); 4668 response = intel_dp_autotest_video_pattern(intel_dp); 4669 break; 4670 case DP_TEST_LINK_EDID_READ: 4671 DRM_DEBUG_KMS("EDID test requested\n"); 4672 response = intel_dp_autotest_edid(intel_dp); 4673 break; 4674 case DP_TEST_LINK_PHY_TEST_PATTERN: 4675 DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); 4676 response = intel_dp_autotest_phy_pattern(intel_dp); 4677 break; 4678 default: 4679 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); 4680 break; 4681 } 4682 4683 if (response & DP_TEST_ACK) 4684 intel_dp->compliance.test_type = request; 4685 4686 update_status: 4687 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 4688 if (status <= 0) 4689 DRM_DEBUG_KMS("Could not write test response to sink\n"); 4690 } 4691 4692 static int 4693 intel_dp_check_mst_status(struct intel_dp *intel_dp) 4694 { 4695 bool bret; 4696 4697 if (intel_dp->is_mst) { 4698 u8 esi[DP_DPRX_ESI_LEN] = { 0 }; 4699 int ret = 0; 4700 int retry; 4701 bool handled; 4702 4703 WARN_ON_ONCE(intel_dp->active_mst_links < 0); 4704 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4705 go_again: 4706 if (bret == true) { 4707 4708 /* check link status - esi[10] = 0x200c */ 4709 if (intel_dp->active_mst_links > 0 && 4710 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 4711 DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); 4712 intel_dp_start_link_train(intel_dp); 4713 intel_dp_stop_link_train(intel_dp); 4714 } 4715 4716 DRM_DEBUG_KMS("got esi %3ph\n", esi); 4717 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 4718 4719 if (handled) { 4720 for (retry = 0; retry < 3; retry++) { 4721 int wret; 4722 wret = drm_dp_dpcd_write(&intel_dp->aux, 4723 DP_SINK_COUNT_ESI+1, 4724 &esi[1], 3); 4725 if (wret == 3) { 4726 break; 4727 } 4728 } 4729 4730 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4731 if (bret == true) { 4732 DRM_DEBUG_KMS("got esi2 %3ph\n", esi); 4733 goto go_again; 4734 } 4735 } else 4736 ret = 0; 4737 4738 return ret; 4739 } else { 4740 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); 4741 intel_dp->is_mst = false; 4742 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4743 intel_dp->is_mst); 4744 } 4745 } 4746 return -EINVAL; 4747 } 4748 4749 static bool 4750 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 4751 { 4752 u8 link_status[DP_LINK_STATUS_SIZE]; 4753 4754 if (!intel_dp->link_trained) 4755 return false; 4756 4757 /* 4758 * While PSR source HW is enabled, it will control main-link sending 4759 * frames, enabling and disabling it so trying to do a retrain will fail 4760 * as the link would or not be on or it could mix training patterns 4761 * and frame data at the same time causing retrain to fail. 4762 * Also when exiting PSR, HW will retrain the link anyways fixing 4763 * any link status error. 4764 */ 4765 if (intel_psr_enabled(intel_dp)) 4766 return false; 4767 4768 if (!intel_dp_get_link_status(intel_dp, link_status)) 4769 return false; 4770 4771 /* 4772 * Validate the cached values of intel_dp->link_rate and 4773 * intel_dp->lane_count before attempting to retrain. 4774 */ 4775 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 4776 intel_dp->lane_count)) 4777 return false; 4778 4779 /* Retrain if Channel EQ or CR not ok */ 4780 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 4781 } 4782 4783 int intel_dp_retrain_link(struct intel_encoder *encoder, 4784 struct drm_modeset_acquire_ctx *ctx) 4785 { 4786 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4787 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 4788 struct intel_connector *connector = intel_dp->attached_connector; 4789 struct drm_connector_state *conn_state; 4790 struct intel_crtc_state *crtc_state; 4791 struct intel_crtc *crtc; 4792 int ret; 4793 4794 /* FIXME handle the MST connectors as well */ 4795 4796 if (!connector || connector->base.status != connector_status_connected) 4797 return 0; 4798 4799 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 4800 ctx); 4801 if (ret) 4802 return ret; 4803 4804 conn_state = connector->base.state; 4805 4806 crtc = to_intel_crtc(conn_state->crtc); 4807 if (!crtc) 4808 return 0; 4809 4810 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 4811 if (ret) 4812 return ret; 4813 4814 crtc_state = to_intel_crtc_state(crtc->base.state); 4815 4816 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state)); 4817 4818 if (!crtc_state->base.active) 4819 return 0; 4820 4821 if (conn_state->commit && 4822 !try_wait_for_completion(&conn_state->commit->hw_done)) 4823 return 0; 4824 4825 if (!intel_dp_needs_link_retrain(intel_dp)) 4826 return 0; 4827 4828 /* Suppress underruns caused by re-training */ 4829 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 4830 if (crtc_state->has_pch_encoder) 4831 intel_set_pch_fifo_underrun_reporting(dev_priv, 4832 intel_crtc_pch_transcoder(crtc), false); 4833 4834 intel_dp_start_link_train(intel_dp); 4835 intel_dp_stop_link_train(intel_dp); 4836 4837 /* Keep underrun reporting disabled until things are stable */ 4838 intel_wait_for_vblank(dev_priv, crtc->pipe); 4839 4840 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 4841 if (crtc_state->has_pch_encoder) 4842 intel_set_pch_fifo_underrun_reporting(dev_priv, 4843 intel_crtc_pch_transcoder(crtc), true); 4844 4845 return 0; 4846 } 4847 4848 /* 4849 * If display is now connected check links status, 4850 * there has been known issues of link loss triggering 4851 * long pulse. 4852 * 4853 * Some sinks (eg. ASUS PB287Q) seem to perform some 4854 * weird HPD ping pong during modesets. So we can apparently 4855 * end up with HPD going low during a modeset, and then 4856 * going back up soon after. And once that happens we must 4857 * retrain the link to get a picture. That's in case no 4858 * userspace component reacted to intermittent HPD dip. 4859 */ 4860 static enum intel_hotplug_state 4861 intel_dp_hotplug(struct intel_encoder *encoder, 4862 struct intel_connector *connector, 4863 bool irq_received) 4864 { 4865 struct drm_modeset_acquire_ctx ctx; 4866 enum intel_hotplug_state state; 4867 int ret; 4868 4869 state = intel_encoder_hotplug(encoder, connector, irq_received); 4870 4871 drm_modeset_acquire_init(&ctx, 0); 4872 4873 for (;;) { 4874 ret = intel_dp_retrain_link(encoder, &ctx); 4875 4876 if (ret == -EDEADLK) { 4877 drm_modeset_backoff(&ctx); 4878 continue; 4879 } 4880 4881 break; 4882 } 4883 4884 drm_modeset_drop_locks(&ctx); 4885 drm_modeset_acquire_fini(&ctx); 4886 WARN(ret, "Acquiring modeset locks failed with %i\n", ret); 4887 4888 /* 4889 * Keeping it consistent with intel_ddi_hotplug() and 4890 * intel_hdmi_hotplug(). 4891 */ 4892 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received) 4893 state = INTEL_HOTPLUG_RETRY; 4894 4895 return state; 4896 } 4897 4898 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 4899 { 4900 u8 val; 4901 4902 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 4903 return; 4904 4905 if (drm_dp_dpcd_readb(&intel_dp->aux, 4906 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 4907 return; 4908 4909 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 4910 4911 if (val & DP_AUTOMATED_TEST_REQUEST) 4912 intel_dp_handle_test_request(intel_dp); 4913 4914 if (val & DP_CP_IRQ) 4915 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 4916 4917 if (val & DP_SINK_SPECIFIC_IRQ) 4918 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n"); 4919 } 4920 4921 /* 4922 * According to DP spec 4923 * 5.1.2: 4924 * 1. Read DPCD 4925 * 2. Configure link according to Receiver Capabilities 4926 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 4927 * 4. Check link status on receipt of hot-plug interrupt 4928 * 4929 * intel_dp_short_pulse - handles short pulse interrupts 4930 * when full detection is not required. 4931 * Returns %true if short pulse is handled and full detection 4932 * is NOT required and %false otherwise. 4933 */ 4934 static bool 4935 intel_dp_short_pulse(struct intel_dp *intel_dp) 4936 { 4937 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4938 u8 old_sink_count = intel_dp->sink_count; 4939 bool ret; 4940 4941 /* 4942 * Clearing compliance test variables to allow capturing 4943 * of values for next automated test request. 4944 */ 4945 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 4946 4947 /* 4948 * Now read the DPCD to see if it's actually running 4949 * If the current value of sink count doesn't match with 4950 * the value that was stored earlier or dpcd read failed 4951 * we need to do full detection 4952 */ 4953 ret = intel_dp_get_dpcd(intel_dp); 4954 4955 if ((old_sink_count != intel_dp->sink_count) || !ret) { 4956 /* No need to proceed if we are going to do full detect */ 4957 return false; 4958 } 4959 4960 intel_dp_check_service_irq(intel_dp); 4961 4962 /* Handle CEC interrupts, if any */ 4963 drm_dp_cec_irq(&intel_dp->aux); 4964 4965 /* defer to the hotplug work for link retraining if needed */ 4966 if (intel_dp_needs_link_retrain(intel_dp)) 4967 return false; 4968 4969 intel_psr_short_pulse(intel_dp); 4970 4971 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 4972 DRM_DEBUG_KMS("Link Training Compliance Test requested\n"); 4973 /* Send a Hotplug Uevent to userspace to start modeset */ 4974 drm_kms_helper_hotplug_event(&dev_priv->drm); 4975 } 4976 4977 return true; 4978 } 4979 4980 /* XXX this is probably wrong for multiple downstream ports */ 4981 static enum drm_connector_status 4982 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 4983 { 4984 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 4985 u8 *dpcd = intel_dp->dpcd; 4986 u8 type; 4987 4988 if (WARN_ON(intel_dp_is_edp(intel_dp))) 4989 return connector_status_connected; 4990 4991 if (lspcon->active) 4992 lspcon_resume(lspcon); 4993 4994 if (!intel_dp_get_dpcd(intel_dp)) 4995 return connector_status_disconnected; 4996 4997 /* if there's no downstream port, we're done */ 4998 if (!drm_dp_is_branch(dpcd)) 4999 return connector_status_connected; 5000 5001 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5002 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5003 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5004 5005 return intel_dp->sink_count ? 5006 connector_status_connected : connector_status_disconnected; 5007 } 5008 5009 if (intel_dp_can_mst(intel_dp)) 5010 return connector_status_connected; 5011 5012 /* If no HPD, poke DDC gently */ 5013 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5014 return connector_status_connected; 5015 5016 /* Well we tried, say unknown for unreliable port types */ 5017 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5018 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5019 if (type == DP_DS_PORT_TYPE_VGA || 5020 type == DP_DS_PORT_TYPE_NON_EDID) 5021 return connector_status_unknown; 5022 } else { 5023 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5024 DP_DWN_STRM_PORT_TYPE_MASK; 5025 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5026 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5027 return connector_status_unknown; 5028 } 5029 5030 /* Anything else is out of spec, warn and ignore */ 5031 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); 5032 return connector_status_disconnected; 5033 } 5034 5035 static enum drm_connector_status 5036 edp_detect(struct intel_dp *intel_dp) 5037 { 5038 return connector_status_connected; 5039 } 5040 5041 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 5042 { 5043 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5044 u32 bit; 5045 5046 switch (encoder->hpd_pin) { 5047 case HPD_PORT_B: 5048 bit = SDE_PORTB_HOTPLUG; 5049 break; 5050 case HPD_PORT_C: 5051 bit = SDE_PORTC_HOTPLUG; 5052 break; 5053 case HPD_PORT_D: 5054 bit = SDE_PORTD_HOTPLUG; 5055 break; 5056 default: 5057 MISSING_CASE(encoder->hpd_pin); 5058 return false; 5059 } 5060 5061 return I915_READ(SDEISR) & bit; 5062 } 5063 5064 static bool cpt_digital_port_connected(struct intel_encoder *encoder) 5065 { 5066 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5067 u32 bit; 5068 5069 switch (encoder->hpd_pin) { 5070 case HPD_PORT_B: 5071 bit = SDE_PORTB_HOTPLUG_CPT; 5072 break; 5073 case HPD_PORT_C: 5074 bit = SDE_PORTC_HOTPLUG_CPT; 5075 break; 5076 case HPD_PORT_D: 5077 bit = SDE_PORTD_HOTPLUG_CPT; 5078 break; 5079 default: 5080 MISSING_CASE(encoder->hpd_pin); 5081 return false; 5082 } 5083 5084 return I915_READ(SDEISR) & bit; 5085 } 5086 5087 static bool spt_digital_port_connected(struct intel_encoder *encoder) 5088 { 5089 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5090 u32 bit; 5091 5092 switch (encoder->hpd_pin) { 5093 case HPD_PORT_A: 5094 bit = SDE_PORTA_HOTPLUG_SPT; 5095 break; 5096 case HPD_PORT_E: 5097 bit = SDE_PORTE_HOTPLUG_SPT; 5098 break; 5099 default: 5100 return cpt_digital_port_connected(encoder); 5101 } 5102 5103 return I915_READ(SDEISR) & bit; 5104 } 5105 5106 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 5107 { 5108 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5109 u32 bit; 5110 5111 switch (encoder->hpd_pin) { 5112 case HPD_PORT_B: 5113 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 5114 break; 5115 case HPD_PORT_C: 5116 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 5117 break; 5118 case HPD_PORT_D: 5119 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 5120 break; 5121 default: 5122 MISSING_CASE(encoder->hpd_pin); 5123 return false; 5124 } 5125 5126 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5127 } 5128 5129 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 5130 { 5131 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5132 u32 bit; 5133 5134 switch (encoder->hpd_pin) { 5135 case HPD_PORT_B: 5136 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 5137 break; 5138 case HPD_PORT_C: 5139 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 5140 break; 5141 case HPD_PORT_D: 5142 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 5143 break; 5144 default: 5145 MISSING_CASE(encoder->hpd_pin); 5146 return false; 5147 } 5148 5149 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5150 } 5151 5152 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 5153 { 5154 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5155 5156 if (encoder->hpd_pin == HPD_PORT_A) 5157 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5158 else 5159 return ibx_digital_port_connected(encoder); 5160 } 5161 5162 static bool snb_digital_port_connected(struct intel_encoder *encoder) 5163 { 5164 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5165 5166 if (encoder->hpd_pin == HPD_PORT_A) 5167 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5168 else 5169 return cpt_digital_port_connected(encoder); 5170 } 5171 5172 static bool ivb_digital_port_connected(struct intel_encoder *encoder) 5173 { 5174 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5175 5176 if (encoder->hpd_pin == HPD_PORT_A) 5177 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB; 5178 else 5179 return cpt_digital_port_connected(encoder); 5180 } 5181 5182 static bool bdw_digital_port_connected(struct intel_encoder *encoder) 5183 { 5184 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5185 5186 if (encoder->hpd_pin == HPD_PORT_A) 5187 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; 5188 else 5189 return cpt_digital_port_connected(encoder); 5190 } 5191 5192 static bool bxt_digital_port_connected(struct intel_encoder *encoder) 5193 { 5194 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5195 u32 bit; 5196 5197 switch (encoder->hpd_pin) { 5198 case HPD_PORT_A: 5199 bit = BXT_DE_PORT_HP_DDIA; 5200 break; 5201 case HPD_PORT_B: 5202 bit = BXT_DE_PORT_HP_DDIB; 5203 break; 5204 case HPD_PORT_C: 5205 bit = BXT_DE_PORT_HP_DDIC; 5206 break; 5207 default: 5208 MISSING_CASE(encoder->hpd_pin); 5209 return false; 5210 } 5211 5212 return I915_READ(GEN8_DE_PORT_ISR) & bit; 5213 } 5214 5215 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv, 5216 struct intel_digital_port *intel_dig_port) 5217 { 5218 enum port port = intel_dig_port->base.port; 5219 5220 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port); 5221 } 5222 5223 static bool icl_digital_port_connected(struct intel_encoder *encoder) 5224 { 5225 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5226 struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); 5227 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 5228 5229 if (intel_phy_is_combo(dev_priv, phy)) 5230 return icl_combo_port_connected(dev_priv, dig_port); 5231 else if (intel_phy_is_tc(dev_priv, phy)) 5232 return intel_tc_port_connected(dig_port); 5233 else 5234 MISSING_CASE(encoder->hpd_pin); 5235 5236 return false; 5237 } 5238 5239 /* 5240 * intel_digital_port_connected - is the specified port connected? 5241 * @encoder: intel_encoder 5242 * 5243 * In cases where there's a connector physically connected but it can't be used 5244 * by our hardware we also return false, since the rest of the driver should 5245 * pretty much treat the port as disconnected. This is relevant for type-C 5246 * (starting on ICL) where there's ownership involved. 5247 * 5248 * Return %true if port is connected, %false otherwise. 5249 */ 5250 static bool __intel_digital_port_connected(struct intel_encoder *encoder) 5251 { 5252 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5253 5254 if (HAS_GMCH(dev_priv)) { 5255 if (IS_GM45(dev_priv)) 5256 return gm45_digital_port_connected(encoder); 5257 else 5258 return g4x_digital_port_connected(encoder); 5259 } 5260 5261 if (INTEL_GEN(dev_priv) >= 11) 5262 return icl_digital_port_connected(encoder); 5263 else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv)) 5264 return spt_digital_port_connected(encoder); 5265 else if (IS_GEN9_LP(dev_priv)) 5266 return bxt_digital_port_connected(encoder); 5267 else if (IS_GEN(dev_priv, 8)) 5268 return bdw_digital_port_connected(encoder); 5269 else if (IS_GEN(dev_priv, 7)) 5270 return ivb_digital_port_connected(encoder); 5271 else if (IS_GEN(dev_priv, 6)) 5272 return snb_digital_port_connected(encoder); 5273 else if (IS_GEN(dev_priv, 5)) 5274 return ilk_digital_port_connected(encoder); 5275 5276 MISSING_CASE(INTEL_GEN(dev_priv)); 5277 return false; 5278 } 5279 5280 bool intel_digital_port_connected(struct intel_encoder *encoder) 5281 { 5282 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5283 bool is_connected = false; 5284 intel_wakeref_t wakeref; 5285 5286 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 5287 is_connected = __intel_digital_port_connected(encoder); 5288 5289 return is_connected; 5290 } 5291 5292 static struct edid * 5293 intel_dp_get_edid(struct intel_dp *intel_dp) 5294 { 5295 struct intel_connector *intel_connector = intel_dp->attached_connector; 5296 5297 /* use cached edid if we have one */ 5298 if (intel_connector->edid) { 5299 /* invalid edid */ 5300 if (IS_ERR(intel_connector->edid)) 5301 return NULL; 5302 5303 return drm_edid_duplicate(intel_connector->edid); 5304 } else 5305 return drm_get_edid(&intel_connector->base, 5306 &intel_dp->aux.ddc); 5307 } 5308 5309 static void 5310 intel_dp_set_edid(struct intel_dp *intel_dp) 5311 { 5312 struct intel_connector *intel_connector = intel_dp->attached_connector; 5313 struct edid *edid; 5314 5315 intel_dp_unset_edid(intel_dp); 5316 edid = intel_dp_get_edid(intel_dp); 5317 intel_connector->detect_edid = edid; 5318 5319 intel_dp->has_audio = drm_detect_monitor_audio(edid); 5320 drm_dp_cec_set_edid(&intel_dp->aux, edid); 5321 } 5322 5323 static void 5324 intel_dp_unset_edid(struct intel_dp *intel_dp) 5325 { 5326 struct intel_connector *intel_connector = intel_dp->attached_connector; 5327 5328 drm_dp_cec_unset_edid(&intel_dp->aux); 5329 kfree(intel_connector->detect_edid); 5330 intel_connector->detect_edid = NULL; 5331 5332 intel_dp->has_audio = false; 5333 } 5334 5335 static int 5336 intel_dp_detect(struct drm_connector *connector, 5337 struct drm_modeset_acquire_ctx *ctx, 5338 bool force) 5339 { 5340 struct drm_i915_private *dev_priv = to_i915(connector->dev); 5341 struct intel_dp *intel_dp = intel_attached_dp(connector); 5342 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5343 struct intel_encoder *encoder = &dig_port->base; 5344 enum drm_connector_status status; 5345 5346 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5347 connector->base.id, connector->name); 5348 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 5349 5350 /* Can't disconnect eDP */ 5351 if (intel_dp_is_edp(intel_dp)) 5352 status = edp_detect(intel_dp); 5353 else if (intel_digital_port_connected(encoder)) 5354 status = intel_dp_detect_dpcd(intel_dp); 5355 else 5356 status = connector_status_disconnected; 5357 5358 if (status == connector_status_disconnected) { 5359 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5360 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 5361 5362 if (intel_dp->is_mst) { 5363 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 5364 intel_dp->is_mst, 5365 intel_dp->mst_mgr.mst_state); 5366 intel_dp->is_mst = false; 5367 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5368 intel_dp->is_mst); 5369 } 5370 5371 goto out; 5372 } 5373 5374 if (intel_dp->reset_link_params) { 5375 /* Initial max link lane count */ 5376 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 5377 5378 /* Initial max link rate */ 5379 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 5380 5381 intel_dp->reset_link_params = false; 5382 } 5383 5384 intel_dp_print_rates(intel_dp); 5385 5386 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 5387 if (INTEL_GEN(dev_priv) >= 11) 5388 intel_dp_get_dsc_sink_cap(intel_dp); 5389 5390 intel_dp_configure_mst(intel_dp); 5391 5392 if (intel_dp->is_mst) { 5393 /* 5394 * If we are in MST mode then this connector 5395 * won't appear connected or have anything 5396 * with EDID on it 5397 */ 5398 status = connector_status_disconnected; 5399 goto out; 5400 } 5401 5402 /* 5403 * Some external monitors do not signal loss of link synchronization 5404 * with an IRQ_HPD, so force a link status check. 5405 */ 5406 if (!intel_dp_is_edp(intel_dp)) { 5407 int ret; 5408 5409 ret = intel_dp_retrain_link(encoder, ctx); 5410 if (ret) 5411 return ret; 5412 } 5413 5414 /* 5415 * Clearing NACK and defer counts to get their exact values 5416 * while reading EDID which are required by Compliance tests 5417 * 4.2.2.4 and 4.2.2.5 5418 */ 5419 intel_dp->aux.i2c_nack_count = 0; 5420 intel_dp->aux.i2c_defer_count = 0; 5421 5422 intel_dp_set_edid(intel_dp); 5423 if (intel_dp_is_edp(intel_dp) || 5424 to_intel_connector(connector)->detect_edid) 5425 status = connector_status_connected; 5426 5427 intel_dp_check_service_irq(intel_dp); 5428 5429 out: 5430 if (status != connector_status_connected && !intel_dp->is_mst) 5431 intel_dp_unset_edid(intel_dp); 5432 5433 return status; 5434 } 5435 5436 static void 5437 intel_dp_force(struct drm_connector *connector) 5438 { 5439 struct intel_dp *intel_dp = intel_attached_dp(connector); 5440 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5441 struct intel_encoder *intel_encoder = &dig_port->base; 5442 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 5443 enum intel_display_power_domain aux_domain = 5444 intel_aux_power_domain(dig_port); 5445 intel_wakeref_t wakeref; 5446 5447 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5448 connector->base.id, connector->name); 5449 intel_dp_unset_edid(intel_dp); 5450 5451 if (connector->status != connector_status_connected) 5452 return; 5453 5454 wakeref = intel_display_power_get(dev_priv, aux_domain); 5455 5456 intel_dp_set_edid(intel_dp); 5457 5458 intel_display_power_put(dev_priv, aux_domain, wakeref); 5459 } 5460 5461 static int intel_dp_get_modes(struct drm_connector *connector) 5462 { 5463 struct intel_connector *intel_connector = to_intel_connector(connector); 5464 struct edid *edid; 5465 5466 edid = intel_connector->detect_edid; 5467 if (edid) { 5468 int ret = intel_connector_update_modes(connector, edid); 5469 if (ret) 5470 return ret; 5471 } 5472 5473 /* if eDP has no EDID, fall back to fixed mode */ 5474 if (intel_dp_is_edp(intel_attached_dp(connector)) && 5475 intel_connector->panel.fixed_mode) { 5476 struct drm_display_mode *mode; 5477 5478 mode = drm_mode_duplicate(connector->dev, 5479 intel_connector->panel.fixed_mode); 5480 if (mode) { 5481 drm_mode_probed_add(connector, mode); 5482 return 1; 5483 } 5484 } 5485 5486 return 0; 5487 } 5488 5489 static int 5490 intel_dp_connector_register(struct drm_connector *connector) 5491 { 5492 struct intel_dp *intel_dp = intel_attached_dp(connector); 5493 struct drm_device *dev = connector->dev; 5494 int ret; 5495 5496 ret = intel_connector_register(connector); 5497 if (ret) 5498 return ret; 5499 5500 i915_debugfs_connector_add(connector); 5501 5502 DRM_DEBUG_KMS("registering %s bus for %s\n", 5503 intel_dp->aux.name, connector->kdev->kobj.name); 5504 5505 intel_dp->aux.dev = connector->kdev; 5506 ret = drm_dp_aux_register(&intel_dp->aux); 5507 if (!ret) 5508 drm_dp_cec_register_connector(&intel_dp->aux, 5509 connector->name, dev->dev); 5510 return ret; 5511 } 5512 5513 static void 5514 intel_dp_connector_unregister(struct drm_connector *connector) 5515 { 5516 struct intel_dp *intel_dp = intel_attached_dp(connector); 5517 5518 drm_dp_cec_unregister_connector(&intel_dp->aux); 5519 drm_dp_aux_unregister(&intel_dp->aux); 5520 intel_connector_unregister(connector); 5521 } 5522 5523 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 5524 { 5525 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 5526 struct intel_dp *intel_dp = &intel_dig_port->dp; 5527 5528 intel_dp_mst_encoder_cleanup(intel_dig_port); 5529 if (intel_dp_is_edp(intel_dp)) { 5530 intel_wakeref_t wakeref; 5531 5532 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5533 /* 5534 * vdd might still be enabled do to the delayed vdd off. 5535 * Make sure vdd is actually turned off here. 5536 */ 5537 with_pps_lock(intel_dp, wakeref) 5538 edp_panel_vdd_off_sync(intel_dp); 5539 5540 if (intel_dp->edp_notifier.notifier_call) { 5541 unregister_reboot_notifier(&intel_dp->edp_notifier); 5542 intel_dp->edp_notifier.notifier_call = NULL; 5543 } 5544 } 5545 5546 intel_dp_aux_fini(intel_dp); 5547 } 5548 5549 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 5550 { 5551 intel_dp_encoder_flush_work(encoder); 5552 5553 drm_encoder_cleanup(encoder); 5554 kfree(enc_to_dig_port(encoder)); 5555 } 5556 5557 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 5558 { 5559 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); 5560 intel_wakeref_t wakeref; 5561 5562 if (!intel_dp_is_edp(intel_dp)) 5563 return; 5564 5565 /* 5566 * vdd might still be enabled do to the delayed vdd off. 5567 * Make sure vdd is actually turned off here. 5568 */ 5569 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5570 with_pps_lock(intel_dp, wakeref) 5571 edp_panel_vdd_off_sync(intel_dp); 5572 } 5573 5574 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 5575 { 5576 long ret; 5577 5578 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 5579 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, 5580 msecs_to_jiffies(timeout)); 5581 5582 if (!ret) 5583 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 5584 } 5585 5586 static 5587 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 5588 u8 *an) 5589 { 5590 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base); 5591 static const struct drm_dp_aux_msg msg = { 5592 .request = DP_AUX_NATIVE_WRITE, 5593 .address = DP_AUX_HDCP_AKSV, 5594 .size = DRM_HDCP_KSV_LEN, 5595 }; 5596 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 5597 ssize_t dpcd_ret; 5598 int ret; 5599 5600 /* Output An first, that's easy */ 5601 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 5602 an, DRM_HDCP_AN_LEN); 5603 if (dpcd_ret != DRM_HDCP_AN_LEN) { 5604 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n", 5605 dpcd_ret); 5606 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 5607 } 5608 5609 /* 5610 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 5611 * order to get it on the wire, we need to create the AUX header as if 5612 * we were writing the data, and then tickle the hardware to output the 5613 * data once the header is sent out. 5614 */ 5615 intel_dp_aux_header(txbuf, &msg); 5616 5617 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 5618 rxbuf, sizeof(rxbuf), 5619 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 5620 if (ret < 0) { 5621 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret); 5622 return ret; 5623 } else if (ret == 0) { 5624 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n"); 5625 return -EIO; 5626 } 5627 5628 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 5629 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 5630 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 5631 reply); 5632 return -EIO; 5633 } 5634 return 0; 5635 } 5636 5637 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 5638 u8 *bksv) 5639 { 5640 ssize_t ret; 5641 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 5642 DRM_HDCP_KSV_LEN); 5643 if (ret != DRM_HDCP_KSV_LEN) { 5644 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret); 5645 return ret >= 0 ? -EIO : ret; 5646 } 5647 return 0; 5648 } 5649 5650 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 5651 u8 *bstatus) 5652 { 5653 ssize_t ret; 5654 /* 5655 * For some reason the HDMI and DP HDCP specs call this register 5656 * definition by different names. In the HDMI spec, it's called BSTATUS, 5657 * but in DP it's called BINFO. 5658 */ 5659 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 5660 bstatus, DRM_HDCP_BSTATUS_LEN); 5661 if (ret != DRM_HDCP_BSTATUS_LEN) { 5662 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5663 return ret >= 0 ? -EIO : ret; 5664 } 5665 return 0; 5666 } 5667 5668 static 5669 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 5670 u8 *bcaps) 5671 { 5672 ssize_t ret; 5673 5674 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 5675 bcaps, 1); 5676 if (ret != 1) { 5677 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret); 5678 return ret >= 0 ? -EIO : ret; 5679 } 5680 5681 return 0; 5682 } 5683 5684 static 5685 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 5686 bool *repeater_present) 5687 { 5688 ssize_t ret; 5689 u8 bcaps; 5690 5691 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 5692 if (ret) 5693 return ret; 5694 5695 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 5696 return 0; 5697 } 5698 5699 static 5700 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 5701 u8 *ri_prime) 5702 { 5703 ssize_t ret; 5704 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 5705 ri_prime, DRM_HDCP_RI_LEN); 5706 if (ret != DRM_HDCP_RI_LEN) { 5707 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret); 5708 return ret >= 0 ? -EIO : ret; 5709 } 5710 return 0; 5711 } 5712 5713 static 5714 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 5715 bool *ksv_ready) 5716 { 5717 ssize_t ret; 5718 u8 bstatus; 5719 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5720 &bstatus, 1); 5721 if (ret != 1) { 5722 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5723 return ret >= 0 ? -EIO : ret; 5724 } 5725 *ksv_ready = bstatus & DP_BSTATUS_READY; 5726 return 0; 5727 } 5728 5729 static 5730 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 5731 int num_downstream, u8 *ksv_fifo) 5732 { 5733 ssize_t ret; 5734 int i; 5735 5736 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 5737 for (i = 0; i < num_downstream; i += 3) { 5738 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 5739 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5740 DP_AUX_HDCP_KSV_FIFO, 5741 ksv_fifo + i * DRM_HDCP_KSV_LEN, 5742 len); 5743 if (ret != len) { 5744 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n", 5745 i, ret); 5746 return ret >= 0 ? -EIO : ret; 5747 } 5748 } 5749 return 0; 5750 } 5751 5752 static 5753 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 5754 int i, u32 *part) 5755 { 5756 ssize_t ret; 5757 5758 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 5759 return -EINVAL; 5760 5761 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5762 DP_AUX_HDCP_V_PRIME(i), part, 5763 DRM_HDCP_V_PRIME_PART_LEN); 5764 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 5765 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 5766 return ret >= 0 ? -EIO : ret; 5767 } 5768 return 0; 5769 } 5770 5771 static 5772 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 5773 bool enable) 5774 { 5775 /* Not used for single stream DisplayPort setups */ 5776 return 0; 5777 } 5778 5779 static 5780 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 5781 { 5782 ssize_t ret; 5783 u8 bstatus; 5784 5785 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5786 &bstatus, 1); 5787 if (ret != 1) { 5788 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5789 return false; 5790 } 5791 5792 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 5793 } 5794 5795 static 5796 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 5797 bool *hdcp_capable) 5798 { 5799 ssize_t ret; 5800 u8 bcaps; 5801 5802 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 5803 if (ret) 5804 return ret; 5805 5806 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 5807 return 0; 5808 } 5809 5810 struct hdcp2_dp_errata_stream_type { 5811 u8 msg_id; 5812 u8 stream_type; 5813 } __packed; 5814 5815 struct hdcp2_dp_msg_data { 5816 u8 msg_id; 5817 u32 offset; 5818 bool msg_detectable; 5819 u32 timeout; 5820 u32 timeout2; /* Added for non_paired situation */ 5821 }; 5822 5823 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { 5824 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, 5825 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 5826 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, 5827 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 5828 false, 0, 0 }, 5829 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 5830 false, 0, 0 }, 5831 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 5832 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 5833 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, 5834 { HDCP_2_2_AKE_SEND_PAIRING_INFO, 5835 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 5836 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, 5837 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, 5838 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 5839 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, 5840 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 5841 0, 0 }, 5842 { HDCP_2_2_REP_SEND_RECVID_LIST, 5843 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 5844 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, 5845 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 5846 0, 0 }, 5847 { HDCP_2_2_REP_STREAM_MANAGE, 5848 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 5849 0, 0 }, 5850 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 5851 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, 5852 /* local define to shovel this through the write_2_2 interface */ 5853 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 5854 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, 5855 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 5856 0, 0 }, 5857 }; 5858 5859 static inline 5860 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 5861 u8 *rx_status) 5862 { 5863 ssize_t ret; 5864 5865 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5866 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 5867 HDCP_2_2_DP_RXSTATUS_LEN); 5868 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 5869 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5870 return ret >= 0 ? -EIO : ret; 5871 } 5872 5873 return 0; 5874 } 5875 5876 static 5877 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 5878 u8 msg_id, bool *msg_ready) 5879 { 5880 u8 rx_status; 5881 int ret; 5882 5883 *msg_ready = false; 5884 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 5885 if (ret < 0) 5886 return ret; 5887 5888 switch (msg_id) { 5889 case HDCP_2_2_AKE_SEND_HPRIME: 5890 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 5891 *msg_ready = true; 5892 break; 5893 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 5894 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 5895 *msg_ready = true; 5896 break; 5897 case HDCP_2_2_REP_SEND_RECVID_LIST: 5898 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 5899 *msg_ready = true; 5900 break; 5901 default: 5902 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 5903 return -EINVAL; 5904 } 5905 5906 return 0; 5907 } 5908 5909 static ssize_t 5910 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 5911 const struct hdcp2_dp_msg_data *hdcp2_msg_data) 5912 { 5913 struct intel_dp *dp = &intel_dig_port->dp; 5914 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 5915 u8 msg_id = hdcp2_msg_data->msg_id; 5916 int ret, timeout; 5917 bool msg_ready = false; 5918 5919 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 5920 timeout = hdcp2_msg_data->timeout2; 5921 else 5922 timeout = hdcp2_msg_data->timeout; 5923 5924 /* 5925 * There is no way to detect the CERT, LPRIME and STREAM_READY 5926 * availability. So Wait for timeout and read the msg. 5927 */ 5928 if (!hdcp2_msg_data->msg_detectable) { 5929 mdelay(timeout); 5930 ret = 0; 5931 } else { 5932 /* 5933 * As we want to check the msg availability at timeout, Ignoring 5934 * the timeout at wait for CP_IRQ. 5935 */ 5936 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 5937 ret = hdcp2_detect_msg_availability(intel_dig_port, 5938 msg_id, &msg_ready); 5939 if (!msg_ready) 5940 ret = -ETIMEDOUT; 5941 } 5942 5943 if (ret) 5944 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n", 5945 hdcp2_msg_data->msg_id, ret, timeout); 5946 5947 return ret; 5948 } 5949 5950 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 5951 { 5952 int i; 5953 5954 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) 5955 if (hdcp2_dp_msg_data[i].msg_id == msg_id) 5956 return &hdcp2_dp_msg_data[i]; 5957 5958 return NULL; 5959 } 5960 5961 static 5962 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 5963 void *buf, size_t size) 5964 { 5965 struct intel_dp *dp = &intel_dig_port->dp; 5966 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 5967 unsigned int offset; 5968 u8 *byte = buf; 5969 ssize_t ret, bytes_to_write, len; 5970 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 5971 5972 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 5973 if (!hdcp2_msg_data) 5974 return -EINVAL; 5975 5976 offset = hdcp2_msg_data->offset; 5977 5978 /* No msg_id in DP HDCP2.2 msgs */ 5979 bytes_to_write = size - 1; 5980 byte++; 5981 5982 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 5983 5984 while (bytes_to_write) { 5985 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 5986 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 5987 5988 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 5989 offset, (void *)byte, len); 5990 if (ret < 0) 5991 return ret; 5992 5993 bytes_to_write -= ret; 5994 byte += ret; 5995 offset += ret; 5996 } 5997 5998 return size; 5999 } 6000 6001 static 6002 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6003 { 6004 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6005 u32 dev_cnt; 6006 ssize_t ret; 6007 6008 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6009 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6010 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6011 if (ret != HDCP_2_2_RXINFO_LEN) 6012 return ret >= 0 ? -EIO : ret; 6013 6014 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6015 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6016 6017 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6018 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6019 6020 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6021 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6022 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6023 6024 return ret; 6025 } 6026 6027 static 6028 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6029 u8 msg_id, void *buf, size_t size) 6030 { 6031 unsigned int offset; 6032 u8 *byte = buf; 6033 ssize_t ret, bytes_to_recv, len; 6034 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6035 6036 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6037 if (!hdcp2_msg_data) 6038 return -EINVAL; 6039 offset = hdcp2_msg_data->offset; 6040 6041 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6042 if (ret < 0) 6043 return ret; 6044 6045 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6046 ret = get_receiver_id_list_size(intel_dig_port); 6047 if (ret < 0) 6048 return ret; 6049 6050 size = ret; 6051 } 6052 bytes_to_recv = size - 1; 6053 6054 /* DP adaptation msgs has no msg_id */ 6055 byte++; 6056 6057 while (bytes_to_recv) { 6058 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6059 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6060 6061 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6062 (void *)byte, len); 6063 if (ret < 0) { 6064 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret); 6065 return ret; 6066 } 6067 6068 bytes_to_recv -= ret; 6069 byte += ret; 6070 offset += ret; 6071 } 6072 byte = buf; 6073 *byte = msg_id; 6074 6075 return size; 6076 } 6077 6078 static 6079 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6080 bool is_repeater, u8 content_type) 6081 { 6082 struct hdcp2_dp_errata_stream_type stream_type_msg; 6083 6084 if (is_repeater) 6085 return 0; 6086 6087 /* 6088 * Errata for DP: As Stream type is used for encryption, Receiver 6089 * should be communicated with stream type for the decryption of the 6090 * content. 6091 * Repeater will be communicated with stream type as a part of it's 6092 * auth later in time. 6093 */ 6094 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6095 stream_type_msg.stream_type = content_type; 6096 6097 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6098 sizeof(stream_type_msg)); 6099 } 6100 6101 static 6102 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6103 { 6104 u8 rx_status; 6105 int ret; 6106 6107 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6108 if (ret) 6109 return ret; 6110 6111 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6112 ret = HDCP_REAUTH_REQUEST; 6113 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6114 ret = HDCP_LINK_INTEGRITY_FAILURE; 6115 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6116 ret = HDCP_TOPOLOGY_CHANGE; 6117 6118 return ret; 6119 } 6120 6121 static 6122 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6123 bool *capable) 6124 { 6125 u8 rx_caps[3]; 6126 int ret; 6127 6128 *capable = false; 6129 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6130 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6131 rx_caps, HDCP_2_2_RXCAPS_LEN); 6132 if (ret != HDCP_2_2_RXCAPS_LEN) 6133 return ret >= 0 ? -EIO : ret; 6134 6135 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6136 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6137 *capable = true; 6138 6139 return 0; 6140 } 6141 6142 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6143 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6144 .read_bksv = intel_dp_hdcp_read_bksv, 6145 .read_bstatus = intel_dp_hdcp_read_bstatus, 6146 .repeater_present = intel_dp_hdcp_repeater_present, 6147 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6148 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6149 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6150 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6151 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6152 .check_link = intel_dp_hdcp_check_link, 6153 .hdcp_capable = intel_dp_hdcp_capable, 6154 .write_2_2_msg = intel_dp_hdcp2_write_msg, 6155 .read_2_2_msg = intel_dp_hdcp2_read_msg, 6156 .config_stream_type = intel_dp_hdcp2_config_stream_type, 6157 .check_2_2_link = intel_dp_hdcp2_check_link, 6158 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 6159 .protocol = HDCP_PROTOCOL_DP, 6160 }; 6161 6162 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6163 { 6164 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6165 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6166 6167 lockdep_assert_held(&dev_priv->pps_mutex); 6168 6169 if (!edp_have_panel_vdd(intel_dp)) 6170 return; 6171 6172 /* 6173 * The VDD bit needs a power domain reference, so if the bit is 6174 * already enabled when we boot or resume, grab this reference and 6175 * schedule a vdd off, so we don't hold on to the reference 6176 * indefinitely. 6177 */ 6178 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); 6179 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6180 6181 edp_panel_vdd_schedule_off(intel_dp); 6182 } 6183 6184 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6185 { 6186 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6187 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6188 enum pipe pipe; 6189 6190 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6191 encoder->port, &pipe)) 6192 return pipe; 6193 6194 return INVALID_PIPE; 6195 } 6196 6197 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6198 { 6199 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6200 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 6201 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6202 intel_wakeref_t wakeref; 6203 6204 if (!HAS_DDI(dev_priv)) 6205 intel_dp->DP = I915_READ(intel_dp->output_reg); 6206 6207 if (lspcon->active) 6208 lspcon_resume(lspcon); 6209 6210 intel_dp->reset_link_params = true; 6211 6212 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6213 !intel_dp_is_edp(intel_dp)) 6214 return; 6215 6216 with_pps_lock(intel_dp, wakeref) { 6217 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6218 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6219 6220 if (intel_dp_is_edp(intel_dp)) { 6221 /* 6222 * Reinit the power sequencer, in case BIOS did 6223 * something nasty with it. 6224 */ 6225 intel_dp_pps_init(intel_dp); 6226 intel_edp_panel_vdd_sanitize(intel_dp); 6227 } 6228 } 6229 } 6230 6231 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6232 .force = intel_dp_force, 6233 .fill_modes = drm_helper_probe_single_connector_modes, 6234 .atomic_get_property = intel_digital_connector_atomic_get_property, 6235 .atomic_set_property = intel_digital_connector_atomic_set_property, 6236 .late_register = intel_dp_connector_register, 6237 .early_unregister = intel_dp_connector_unregister, 6238 .destroy = intel_connector_destroy, 6239 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6240 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6241 }; 6242 6243 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6244 .detect_ctx = intel_dp_detect, 6245 .get_modes = intel_dp_get_modes, 6246 .mode_valid = intel_dp_mode_valid, 6247 .atomic_check = intel_digital_connector_atomic_check, 6248 }; 6249 6250 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6251 .reset = intel_dp_encoder_reset, 6252 .destroy = intel_dp_encoder_destroy, 6253 }; 6254 6255 enum irqreturn 6256 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 6257 { 6258 struct intel_dp *intel_dp = &intel_dig_port->dp; 6259 6260 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { 6261 /* 6262 * vdd off can generate a long pulse on eDP which 6263 * would require vdd on to handle it, and thus we 6264 * would end up in an endless cycle of 6265 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." 6266 */ 6267 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n", 6268 port_name(intel_dig_port->base.port)); 6269 return IRQ_HANDLED; 6270 } 6271 6272 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n", 6273 port_name(intel_dig_port->base.port), 6274 long_hpd ? "long" : "short"); 6275 6276 if (long_hpd) { 6277 intel_dp->reset_link_params = true; 6278 return IRQ_NONE; 6279 } 6280 6281 if (intel_dp->is_mst) { 6282 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { 6283 /* 6284 * If we were in MST mode, and device is not 6285 * there, get out of MST mode 6286 */ 6287 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 6288 intel_dp->is_mst, intel_dp->mst_mgr.mst_state); 6289 intel_dp->is_mst = false; 6290 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6291 intel_dp->is_mst); 6292 6293 return IRQ_NONE; 6294 } 6295 } 6296 6297 if (!intel_dp->is_mst) { 6298 bool handled; 6299 6300 handled = intel_dp_short_pulse(intel_dp); 6301 6302 if (!handled) 6303 return IRQ_NONE; 6304 } 6305 6306 return IRQ_HANDLED; 6307 } 6308 6309 /* check the VBT to see whether the eDP is on another port */ 6310 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6311 { 6312 /* 6313 * eDP not supported on g4x. so bail out early just 6314 * for a bit extra safety in case the VBT is bonkers. 6315 */ 6316 if (INTEL_GEN(dev_priv) < 5) 6317 return false; 6318 6319 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 6320 return true; 6321 6322 return intel_bios_is_port_edp(dev_priv, port); 6323 } 6324 6325 static void 6326 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6327 { 6328 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6329 enum port port = dp_to_dig_port(intel_dp)->base.port; 6330 6331 if (!IS_G4X(dev_priv) && port != PORT_A) 6332 intel_attach_force_audio_property(connector); 6333 6334 intel_attach_broadcast_rgb_property(connector); 6335 if (HAS_GMCH(dev_priv)) 6336 drm_connector_attach_max_bpc_property(connector, 6, 10); 6337 else if (INTEL_GEN(dev_priv) >= 5) 6338 drm_connector_attach_max_bpc_property(connector, 6, 12); 6339 6340 if (intel_dp_is_edp(intel_dp)) { 6341 u32 allowed_scalers; 6342 6343 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 6344 if (!HAS_GMCH(dev_priv)) 6345 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 6346 6347 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 6348 6349 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 6350 6351 } 6352 } 6353 6354 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 6355 { 6356 intel_dp->panel_power_off_time = ktime_get_boottime(); 6357 intel_dp->last_power_on = jiffies; 6358 intel_dp->last_backlight_off = jiffies; 6359 } 6360 6361 static void 6362 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 6363 { 6364 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6365 u32 pp_on, pp_off, pp_ctl; 6366 struct pps_registers regs; 6367 6368 intel_pps_get_registers(intel_dp, ®s); 6369 6370 pp_ctl = ironlake_get_pp_control(intel_dp); 6371 6372 /* Ensure PPS is unlocked */ 6373 if (!HAS_DDI(dev_priv)) 6374 I915_WRITE(regs.pp_ctrl, pp_ctl); 6375 6376 pp_on = I915_READ(regs.pp_on); 6377 pp_off = I915_READ(regs.pp_off); 6378 6379 /* Pull timing values out of registers */ 6380 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 6381 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 6382 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 6383 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 6384 6385 if (i915_mmio_reg_valid(regs.pp_div)) { 6386 u32 pp_div; 6387 6388 pp_div = I915_READ(regs.pp_div); 6389 6390 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 6391 } else { 6392 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 6393 } 6394 } 6395 6396 static void 6397 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 6398 { 6399 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 6400 state_name, 6401 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 6402 } 6403 6404 static void 6405 intel_pps_verify_state(struct intel_dp *intel_dp) 6406 { 6407 struct edp_power_seq hw; 6408 struct edp_power_seq *sw = &intel_dp->pps_delays; 6409 6410 intel_pps_readout_hw_state(intel_dp, &hw); 6411 6412 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 6413 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 6414 DRM_ERROR("PPS state mismatch\n"); 6415 intel_pps_dump_state("sw", sw); 6416 intel_pps_dump_state("hw", &hw); 6417 } 6418 } 6419 6420 static void 6421 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 6422 { 6423 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6424 struct edp_power_seq cur, vbt, spec, 6425 *final = &intel_dp->pps_delays; 6426 6427 lockdep_assert_held(&dev_priv->pps_mutex); 6428 6429 /* already initialized? */ 6430 if (final->t11_t12 != 0) 6431 return; 6432 6433 intel_pps_readout_hw_state(intel_dp, &cur); 6434 6435 intel_pps_dump_state("cur", &cur); 6436 6437 vbt = dev_priv->vbt.edp.pps; 6438 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 6439 * of 500ms appears to be too short. Ocassionally the panel 6440 * just fails to power back on. Increasing the delay to 800ms 6441 * seems sufficient to avoid this problem. 6442 */ 6443 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 6444 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 6445 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n", 6446 vbt.t11_t12); 6447 } 6448 /* T11_T12 delay is special and actually in units of 100ms, but zero 6449 * based in the hw (so we need to add 100 ms). But the sw vbt 6450 * table multiplies it with 1000 to make it in units of 100usec, 6451 * too. */ 6452 vbt.t11_t12 += 100 * 10; 6453 6454 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 6455 * our hw here, which are all in 100usec. */ 6456 spec.t1_t3 = 210 * 10; 6457 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 6458 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 6459 spec.t10 = 500 * 10; 6460 /* This one is special and actually in units of 100ms, but zero 6461 * based in the hw (so we need to add 100 ms). But the sw vbt 6462 * table multiplies it with 1000 to make it in units of 100usec, 6463 * too. */ 6464 spec.t11_t12 = (510 + 100) * 10; 6465 6466 intel_pps_dump_state("vbt", &vbt); 6467 6468 /* Use the max of the register settings and vbt. If both are 6469 * unset, fall back to the spec limits. */ 6470 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 6471 spec.field : \ 6472 max(cur.field, vbt.field)) 6473 assign_final(t1_t3); 6474 assign_final(t8); 6475 assign_final(t9); 6476 assign_final(t10); 6477 assign_final(t11_t12); 6478 #undef assign_final 6479 6480 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 6481 intel_dp->panel_power_up_delay = get_delay(t1_t3); 6482 intel_dp->backlight_on_delay = get_delay(t8); 6483 intel_dp->backlight_off_delay = get_delay(t9); 6484 intel_dp->panel_power_down_delay = get_delay(t10); 6485 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 6486 #undef get_delay 6487 6488 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", 6489 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, 6490 intel_dp->panel_power_cycle_delay); 6491 6492 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", 6493 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); 6494 6495 /* 6496 * We override the HW backlight delays to 1 because we do manual waits 6497 * on them. For T8, even BSpec recommends doing it. For T9, if we 6498 * don't do this, we'll end up waiting for the backlight off delay 6499 * twice: once when we do the manual sleep, and once when we disable 6500 * the panel and wait for the PP_STATUS bit to become zero. 6501 */ 6502 final->t8 = 1; 6503 final->t9 = 1; 6504 6505 /* 6506 * HW has only a 100msec granularity for t11_t12 so round it up 6507 * accordingly. 6508 */ 6509 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 6510 } 6511 6512 static void 6513 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 6514 bool force_disable_vdd) 6515 { 6516 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6517 u32 pp_on, pp_off, port_sel = 0; 6518 int div = dev_priv->rawclk_freq / 1000; 6519 struct pps_registers regs; 6520 enum port port = dp_to_dig_port(intel_dp)->base.port; 6521 const struct edp_power_seq *seq = &intel_dp->pps_delays; 6522 6523 lockdep_assert_held(&dev_priv->pps_mutex); 6524 6525 intel_pps_get_registers(intel_dp, ®s); 6526 6527 /* 6528 * On some VLV machines the BIOS can leave the VDD 6529 * enabled even on power sequencers which aren't 6530 * hooked up to any port. This would mess up the 6531 * power domain tracking the first time we pick 6532 * one of these power sequencers for use since 6533 * edp_panel_vdd_on() would notice that the VDD was 6534 * already on and therefore wouldn't grab the power 6535 * domain reference. Disable VDD first to avoid this. 6536 * This also avoids spuriously turning the VDD on as 6537 * soon as the new power sequencer gets initialized. 6538 */ 6539 if (force_disable_vdd) { 6540 u32 pp = ironlake_get_pp_control(intel_dp); 6541 6542 WARN(pp & PANEL_POWER_ON, "Panel power already on\n"); 6543 6544 if (pp & EDP_FORCE_VDD) 6545 DRM_DEBUG_KMS("VDD already on, disabling first\n"); 6546 6547 pp &= ~EDP_FORCE_VDD; 6548 6549 I915_WRITE(regs.pp_ctrl, pp); 6550 } 6551 6552 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 6553 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 6554 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 6555 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 6556 6557 /* Haswell doesn't have any port selection bits for the panel 6558 * power sequencer any more. */ 6559 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6560 port_sel = PANEL_PORT_SELECT_VLV(port); 6561 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 6562 switch (port) { 6563 case PORT_A: 6564 port_sel = PANEL_PORT_SELECT_DPA; 6565 break; 6566 case PORT_C: 6567 port_sel = PANEL_PORT_SELECT_DPC; 6568 break; 6569 case PORT_D: 6570 port_sel = PANEL_PORT_SELECT_DPD; 6571 break; 6572 default: 6573 MISSING_CASE(port); 6574 break; 6575 } 6576 } 6577 6578 pp_on |= port_sel; 6579 6580 I915_WRITE(regs.pp_on, pp_on); 6581 I915_WRITE(regs.pp_off, pp_off); 6582 6583 /* 6584 * Compute the divisor for the pp clock, simply match the Bspec formula. 6585 */ 6586 if (i915_mmio_reg_valid(regs.pp_div)) { 6587 I915_WRITE(regs.pp_div, 6588 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | 6589 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 6590 } else { 6591 u32 pp_ctl; 6592 6593 pp_ctl = I915_READ(regs.pp_ctrl); 6594 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 6595 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 6596 I915_WRITE(regs.pp_ctrl, pp_ctl); 6597 } 6598 6599 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 6600 I915_READ(regs.pp_on), 6601 I915_READ(regs.pp_off), 6602 i915_mmio_reg_valid(regs.pp_div) ? 6603 I915_READ(regs.pp_div) : 6604 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 6605 } 6606 6607 static void intel_dp_pps_init(struct intel_dp *intel_dp) 6608 { 6609 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6610 6611 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6612 vlv_initial_power_sequencer_setup(intel_dp); 6613 } else { 6614 intel_dp_init_panel_power_sequencer(intel_dp); 6615 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 6616 } 6617 } 6618 6619 /** 6620 * intel_dp_set_drrs_state - program registers for RR switch to take effect 6621 * @dev_priv: i915 device 6622 * @crtc_state: a pointer to the active intel_crtc_state 6623 * @refresh_rate: RR to be programmed 6624 * 6625 * This function gets called when refresh rate (RR) has to be changed from 6626 * one frequency to another. Switches can be between high and low RR 6627 * supported by the panel or to any other RR based on media playback (in 6628 * this case, RR value needs to be passed from user space). 6629 * 6630 * The caller of this function needs to take a lock on dev_priv->drrs. 6631 */ 6632 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 6633 const struct intel_crtc_state *crtc_state, 6634 int refresh_rate) 6635 { 6636 struct intel_dp *intel_dp = dev_priv->drrs.dp; 6637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 6638 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 6639 6640 if (refresh_rate <= 0) { 6641 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); 6642 return; 6643 } 6644 6645 if (intel_dp == NULL) { 6646 DRM_DEBUG_KMS("DRRS not supported.\n"); 6647 return; 6648 } 6649 6650 if (!intel_crtc) { 6651 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); 6652 return; 6653 } 6654 6655 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 6656 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); 6657 return; 6658 } 6659 6660 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == 6661 refresh_rate) 6662 index = DRRS_LOW_RR; 6663 6664 if (index == dev_priv->drrs.refresh_rate_type) { 6665 DRM_DEBUG_KMS( 6666 "DRRS requested for previously set RR...ignoring\n"); 6667 return; 6668 } 6669 6670 if (!crtc_state->base.active) { 6671 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); 6672 return; 6673 } 6674 6675 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 6676 switch (index) { 6677 case DRRS_HIGH_RR: 6678 intel_dp_set_m_n(crtc_state, M1_N1); 6679 break; 6680 case DRRS_LOW_RR: 6681 intel_dp_set_m_n(crtc_state, M2_N2); 6682 break; 6683 case DRRS_MAX_RR: 6684 default: 6685 DRM_ERROR("Unsupported refreshrate type\n"); 6686 } 6687 } else if (INTEL_GEN(dev_priv) > 6) { 6688 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 6689 u32 val; 6690 6691 val = I915_READ(reg); 6692 if (index > DRRS_HIGH_RR) { 6693 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6694 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6695 else 6696 val |= PIPECONF_EDP_RR_MODE_SWITCH; 6697 } else { 6698 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6699 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6700 else 6701 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 6702 } 6703 I915_WRITE(reg, val); 6704 } 6705 6706 dev_priv->drrs.refresh_rate_type = index; 6707 6708 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); 6709 } 6710 6711 /** 6712 * intel_edp_drrs_enable - init drrs struct if supported 6713 * @intel_dp: DP struct 6714 * @crtc_state: A pointer to the active crtc state. 6715 * 6716 * Initializes frontbuffer_bits and drrs.dp 6717 */ 6718 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 6719 const struct intel_crtc_state *crtc_state) 6720 { 6721 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6722 6723 if (!crtc_state->has_drrs) { 6724 DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); 6725 return; 6726 } 6727 6728 if (dev_priv->psr.enabled) { 6729 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n"); 6730 return; 6731 } 6732 6733 mutex_lock(&dev_priv->drrs.mutex); 6734 if (dev_priv->drrs.dp) { 6735 DRM_DEBUG_KMS("DRRS already enabled\n"); 6736 goto unlock; 6737 } 6738 6739 dev_priv->drrs.busy_frontbuffer_bits = 0; 6740 6741 dev_priv->drrs.dp = intel_dp; 6742 6743 unlock: 6744 mutex_unlock(&dev_priv->drrs.mutex); 6745 } 6746 6747 /** 6748 * intel_edp_drrs_disable - Disable DRRS 6749 * @intel_dp: DP struct 6750 * @old_crtc_state: Pointer to old crtc_state. 6751 * 6752 */ 6753 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 6754 const struct intel_crtc_state *old_crtc_state) 6755 { 6756 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6757 6758 if (!old_crtc_state->has_drrs) 6759 return; 6760 6761 mutex_lock(&dev_priv->drrs.mutex); 6762 if (!dev_priv->drrs.dp) { 6763 mutex_unlock(&dev_priv->drrs.mutex); 6764 return; 6765 } 6766 6767 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6768 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 6769 intel_dp->attached_connector->panel.fixed_mode->vrefresh); 6770 6771 dev_priv->drrs.dp = NULL; 6772 mutex_unlock(&dev_priv->drrs.mutex); 6773 6774 cancel_delayed_work_sync(&dev_priv->drrs.work); 6775 } 6776 6777 static void intel_edp_drrs_downclock_work(struct work_struct *work) 6778 { 6779 struct drm_i915_private *dev_priv = 6780 container_of(work, typeof(*dev_priv), drrs.work.work); 6781 struct intel_dp *intel_dp; 6782 6783 mutex_lock(&dev_priv->drrs.mutex); 6784 6785 intel_dp = dev_priv->drrs.dp; 6786 6787 if (!intel_dp) 6788 goto unlock; 6789 6790 /* 6791 * The delayed work can race with an invalidate hence we need to 6792 * recheck. 6793 */ 6794 6795 if (dev_priv->drrs.busy_frontbuffer_bits) 6796 goto unlock; 6797 6798 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 6799 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 6800 6801 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6802 intel_dp->attached_connector->panel.downclock_mode->vrefresh); 6803 } 6804 6805 unlock: 6806 mutex_unlock(&dev_priv->drrs.mutex); 6807 } 6808 6809 /** 6810 * intel_edp_drrs_invalidate - Disable Idleness DRRS 6811 * @dev_priv: i915 device 6812 * @frontbuffer_bits: frontbuffer plane tracking bits 6813 * 6814 * This function gets called everytime rendering on the given planes start. 6815 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 6816 * 6817 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 6818 */ 6819 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 6820 unsigned int frontbuffer_bits) 6821 { 6822 struct drm_crtc *crtc; 6823 enum pipe pipe; 6824 6825 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 6826 return; 6827 6828 cancel_delayed_work(&dev_priv->drrs.work); 6829 6830 mutex_lock(&dev_priv->drrs.mutex); 6831 if (!dev_priv->drrs.dp) { 6832 mutex_unlock(&dev_priv->drrs.mutex); 6833 return; 6834 } 6835 6836 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 6837 pipe = to_intel_crtc(crtc)->pipe; 6838 6839 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 6840 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 6841 6842 /* invalidate means busy screen hence upclock */ 6843 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6844 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6845 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 6846 6847 mutex_unlock(&dev_priv->drrs.mutex); 6848 } 6849 6850 /** 6851 * intel_edp_drrs_flush - Restart Idleness DRRS 6852 * @dev_priv: i915 device 6853 * @frontbuffer_bits: frontbuffer plane tracking bits 6854 * 6855 * This function gets called every time rendering on the given planes has 6856 * completed or flip on a crtc is completed. So DRRS should be upclocked 6857 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 6858 * if no other planes are dirty. 6859 * 6860 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 6861 */ 6862 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 6863 unsigned int frontbuffer_bits) 6864 { 6865 struct drm_crtc *crtc; 6866 enum pipe pipe; 6867 6868 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 6869 return; 6870 6871 cancel_delayed_work(&dev_priv->drrs.work); 6872 6873 mutex_lock(&dev_priv->drrs.mutex); 6874 if (!dev_priv->drrs.dp) { 6875 mutex_unlock(&dev_priv->drrs.mutex); 6876 return; 6877 } 6878 6879 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 6880 pipe = to_intel_crtc(crtc)->pipe; 6881 6882 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 6883 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 6884 6885 /* flush means busy screen hence upclock */ 6886 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6887 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6888 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 6889 6890 /* 6891 * flush also means no more activity hence schedule downclock, if all 6892 * other fbs are quiescent too 6893 */ 6894 if (!dev_priv->drrs.busy_frontbuffer_bits) 6895 schedule_delayed_work(&dev_priv->drrs.work, 6896 msecs_to_jiffies(1000)); 6897 mutex_unlock(&dev_priv->drrs.mutex); 6898 } 6899 6900 /** 6901 * DOC: Display Refresh Rate Switching (DRRS) 6902 * 6903 * Display Refresh Rate Switching (DRRS) is a power conservation feature 6904 * which enables swtching between low and high refresh rates, 6905 * dynamically, based on the usage scenario. This feature is applicable 6906 * for internal panels. 6907 * 6908 * Indication that the panel supports DRRS is given by the panel EDID, which 6909 * would list multiple refresh rates for one resolution. 6910 * 6911 * DRRS is of 2 types - static and seamless. 6912 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 6913 * (may appear as a blink on screen) and is used in dock-undock scenario. 6914 * Seamless DRRS involves changing RR without any visual effect to the user 6915 * and can be used during normal system usage. This is done by programming 6916 * certain registers. 6917 * 6918 * Support for static/seamless DRRS may be indicated in the VBT based on 6919 * inputs from the panel spec. 6920 * 6921 * DRRS saves power by switching to low RR based on usage scenarios. 6922 * 6923 * The implementation is based on frontbuffer tracking implementation. When 6924 * there is a disturbance on the screen triggered by user activity or a periodic 6925 * system activity, DRRS is disabled (RR is changed to high RR). When there is 6926 * no movement on screen, after a timeout of 1 second, a switch to low RR is 6927 * made. 6928 * 6929 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 6930 * and intel_edp_drrs_flush() are called. 6931 * 6932 * DRRS can be further extended to support other internal panels and also 6933 * the scenario of video playback wherein RR is set based on the rate 6934 * requested by userspace. 6935 */ 6936 6937 /** 6938 * intel_dp_drrs_init - Init basic DRRS work and mutex. 6939 * @connector: eDP connector 6940 * @fixed_mode: preferred mode of panel 6941 * 6942 * This function is called only once at driver load to initialize basic 6943 * DRRS stuff. 6944 * 6945 * Returns: 6946 * Downclock mode if panel supports it, else return NULL. 6947 * DRRS support is determined by the presence of downclock mode (apart 6948 * from VBT setting). 6949 */ 6950 static struct drm_display_mode * 6951 intel_dp_drrs_init(struct intel_connector *connector, 6952 struct drm_display_mode *fixed_mode) 6953 { 6954 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 6955 struct drm_display_mode *downclock_mode = NULL; 6956 6957 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 6958 mutex_init(&dev_priv->drrs.mutex); 6959 6960 if (INTEL_GEN(dev_priv) <= 6) { 6961 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); 6962 return NULL; 6963 } 6964 6965 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 6966 DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); 6967 return NULL; 6968 } 6969 6970 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 6971 if (!downclock_mode) { 6972 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); 6973 return NULL; 6974 } 6975 6976 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 6977 6978 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 6979 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); 6980 return downclock_mode; 6981 } 6982 6983 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 6984 struct intel_connector *intel_connector) 6985 { 6986 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6987 struct drm_device *dev = &dev_priv->drm; 6988 struct drm_connector *connector = &intel_connector->base; 6989 struct drm_display_mode *fixed_mode = NULL; 6990 struct drm_display_mode *downclock_mode = NULL; 6991 bool has_dpcd; 6992 enum pipe pipe = INVALID_PIPE; 6993 intel_wakeref_t wakeref; 6994 struct edid *edid; 6995 6996 if (!intel_dp_is_edp(intel_dp)) 6997 return true; 6998 6999 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7000 7001 /* 7002 * On IBX/CPT we may get here with LVDS already registered. Since the 7003 * driver uses the only internal power sequencer available for both 7004 * eDP and LVDS bail out early in this case to prevent interfering 7005 * with an already powered-on LVDS power sequencer. 7006 */ 7007 if (intel_get_lvds_encoder(dev_priv)) { 7008 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7009 DRM_INFO("LVDS was detected, not registering eDP\n"); 7010 7011 return false; 7012 } 7013 7014 with_pps_lock(intel_dp, wakeref) { 7015 intel_dp_init_panel_power_timestamps(intel_dp); 7016 intel_dp_pps_init(intel_dp); 7017 intel_edp_panel_vdd_sanitize(intel_dp); 7018 } 7019 7020 /* Cache DPCD and EDID for edp. */ 7021 has_dpcd = intel_edp_init_dpcd(intel_dp); 7022 7023 if (!has_dpcd) { 7024 /* if this fails, presume the device is a ghost */ 7025 DRM_INFO("failed to retrieve link info, disabling eDP\n"); 7026 goto out_vdd_off; 7027 } 7028 7029 mutex_lock(&dev->mode_config.mutex); 7030 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7031 if (edid) { 7032 if (drm_add_edid_modes(connector, edid)) { 7033 drm_connector_update_edid_property(connector, 7034 edid); 7035 } else { 7036 kfree(edid); 7037 edid = ERR_PTR(-EINVAL); 7038 } 7039 } else { 7040 edid = ERR_PTR(-ENOENT); 7041 } 7042 intel_connector->edid = edid; 7043 7044 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7045 if (fixed_mode) 7046 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7047 7048 /* fallback to VBT if available for eDP */ 7049 if (!fixed_mode) 7050 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7051 mutex_unlock(&dev->mode_config.mutex); 7052 7053 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7054 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7055 register_reboot_notifier(&intel_dp->edp_notifier); 7056 7057 /* 7058 * Figure out the current pipe for the initial backlight setup. 7059 * If the current pipe isn't valid, try the PPS pipe, and if that 7060 * fails just assume pipe A. 7061 */ 7062 pipe = vlv_active_pipe(intel_dp); 7063 7064 if (pipe != PIPE_A && pipe != PIPE_B) 7065 pipe = intel_dp->pps_pipe; 7066 7067 if (pipe != PIPE_A && pipe != PIPE_B) 7068 pipe = PIPE_A; 7069 7070 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", 7071 pipe_name(pipe)); 7072 } 7073 7074 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7075 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7076 intel_panel_setup_backlight(connector, pipe); 7077 7078 if (fixed_mode) 7079 drm_connector_init_panel_orientation_property( 7080 connector, fixed_mode->hdisplay, fixed_mode->vdisplay); 7081 7082 return true; 7083 7084 out_vdd_off: 7085 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7086 /* 7087 * vdd might still be enabled do to the delayed vdd off. 7088 * Make sure vdd is actually turned off here. 7089 */ 7090 with_pps_lock(intel_dp, wakeref) 7091 edp_panel_vdd_off_sync(intel_dp); 7092 7093 return false; 7094 } 7095 7096 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7097 { 7098 struct intel_connector *intel_connector; 7099 struct drm_connector *connector; 7100 7101 intel_connector = container_of(work, typeof(*intel_connector), 7102 modeset_retry_work); 7103 connector = &intel_connector->base; 7104 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7105 connector->name); 7106 7107 /* Grab the locks before changing connector property*/ 7108 mutex_lock(&connector->dev->mode_config.mutex); 7109 /* Set connector link status to BAD and send a Uevent to notify 7110 * userspace to do a modeset. 7111 */ 7112 drm_connector_set_link_status_property(connector, 7113 DRM_MODE_LINK_STATUS_BAD); 7114 mutex_unlock(&connector->dev->mode_config.mutex); 7115 /* Send Hotplug uevent so userspace can reprobe */ 7116 drm_kms_helper_hotplug_event(connector->dev); 7117 } 7118 7119 bool 7120 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 7121 struct intel_connector *intel_connector) 7122 { 7123 struct drm_connector *connector = &intel_connector->base; 7124 struct intel_dp *intel_dp = &intel_dig_port->dp; 7125 struct intel_encoder *intel_encoder = &intel_dig_port->base; 7126 struct drm_device *dev = intel_encoder->base.dev; 7127 struct drm_i915_private *dev_priv = to_i915(dev); 7128 enum port port = intel_encoder->port; 7129 enum phy phy = intel_port_to_phy(dev_priv, port); 7130 int type; 7131 7132 /* Initialize the work for modeset in case of link train failure */ 7133 INIT_WORK(&intel_connector->modeset_retry_work, 7134 intel_dp_modeset_retry_work_fn); 7135 7136 if (WARN(intel_dig_port->max_lanes < 1, 7137 "Not enough lanes (%d) for DP on port %c\n", 7138 intel_dig_port->max_lanes, port_name(port))) 7139 return false; 7140 7141 intel_dp_set_source_rates(intel_dp); 7142 7143 intel_dp->reset_link_params = true; 7144 intel_dp->pps_pipe = INVALID_PIPE; 7145 intel_dp->active_pipe = INVALID_PIPE; 7146 7147 /* Preserve the current hw state. */ 7148 intel_dp->DP = I915_READ(intel_dp->output_reg); 7149 intel_dp->attached_connector = intel_connector; 7150 7151 if (intel_dp_is_port_edp(dev_priv, port)) { 7152 /* 7153 * Currently we don't support eDP on TypeC ports, although in 7154 * theory it could work on TypeC legacy ports. 7155 */ 7156 WARN_ON(intel_phy_is_tc(dev_priv, phy)); 7157 type = DRM_MODE_CONNECTOR_eDP; 7158 } else { 7159 type = DRM_MODE_CONNECTOR_DisplayPort; 7160 } 7161 7162 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7163 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7164 7165 /* 7166 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7167 * for DP the encoder type can be set by the caller to 7168 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7169 */ 7170 if (type == DRM_MODE_CONNECTOR_eDP) 7171 intel_encoder->type = INTEL_OUTPUT_EDP; 7172 7173 /* eDP only on port B and/or C on vlv/chv */ 7174 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 7175 intel_dp_is_edp(intel_dp) && 7176 port != PORT_B && port != PORT_C)) 7177 return false; 7178 7179 DRM_DEBUG_KMS("Adding %s connector on port %c\n", 7180 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7181 port_name(port)); 7182 7183 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7184 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7185 7186 if (!HAS_GMCH(dev_priv)) 7187 connector->interlace_allowed = true; 7188 connector->doublescan_allowed = 0; 7189 7190 if (INTEL_GEN(dev_priv) >= 11) 7191 connector->ycbcr_420_allowed = true; 7192 7193 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7194 7195 intel_dp_aux_init(intel_dp); 7196 7197 intel_connector_attach_encoder(intel_connector, intel_encoder); 7198 7199 if (HAS_DDI(dev_priv)) 7200 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7201 else 7202 intel_connector->get_hw_state = intel_connector_get_hw_state; 7203 7204 /* init MST on ports that can support it */ 7205 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) && 7206 (port == PORT_B || port == PORT_C || 7207 port == PORT_D || port == PORT_F)) 7208 intel_dp_mst_encoder_init(intel_dig_port, 7209 intel_connector->base.base.id); 7210 7211 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7212 intel_dp_aux_fini(intel_dp); 7213 intel_dp_mst_encoder_cleanup(intel_dig_port); 7214 goto fail; 7215 } 7216 7217 intel_dp_add_properties(intel_dp, connector); 7218 7219 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7220 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 7221 if (ret) 7222 DRM_DEBUG_KMS("HDCP init failed, skipping.\n"); 7223 } 7224 7225 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7226 * 0xd. Failure to do so will result in spurious interrupts being 7227 * generated on the port when a cable is not attached. 7228 */ 7229 if (IS_G45(dev_priv)) { 7230 u32 temp = I915_READ(PEG_BAND_GAP_DATA); 7231 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); 7232 } 7233 7234 return true; 7235 7236 fail: 7237 drm_connector_cleanup(connector); 7238 7239 return false; 7240 } 7241 7242 bool intel_dp_init(struct drm_i915_private *dev_priv, 7243 i915_reg_t output_reg, 7244 enum port port) 7245 { 7246 struct intel_digital_port *intel_dig_port; 7247 struct intel_encoder *intel_encoder; 7248 struct drm_encoder *encoder; 7249 struct intel_connector *intel_connector; 7250 7251 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 7252 if (!intel_dig_port) 7253 return false; 7254 7255 intel_connector = intel_connector_alloc(); 7256 if (!intel_connector) 7257 goto err_connector_alloc; 7258 7259 intel_encoder = &intel_dig_port->base; 7260 encoder = &intel_encoder->base; 7261 7262 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7263 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7264 "DP %c", port_name(port))) 7265 goto err_encoder_init; 7266 7267 intel_encoder->hotplug = intel_dp_hotplug; 7268 intel_encoder->compute_config = intel_dp_compute_config; 7269 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7270 intel_encoder->get_config = intel_dp_get_config; 7271 intel_encoder->update_pipe = intel_panel_update_backlight; 7272 intel_encoder->suspend = intel_dp_encoder_suspend; 7273 if (IS_CHERRYVIEW(dev_priv)) { 7274 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7275 intel_encoder->pre_enable = chv_pre_enable_dp; 7276 intel_encoder->enable = vlv_enable_dp; 7277 intel_encoder->disable = vlv_disable_dp; 7278 intel_encoder->post_disable = chv_post_disable_dp; 7279 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 7280 } else if (IS_VALLEYVIEW(dev_priv)) { 7281 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 7282 intel_encoder->pre_enable = vlv_pre_enable_dp; 7283 intel_encoder->enable = vlv_enable_dp; 7284 intel_encoder->disable = vlv_disable_dp; 7285 intel_encoder->post_disable = vlv_post_disable_dp; 7286 } else { 7287 intel_encoder->pre_enable = g4x_pre_enable_dp; 7288 intel_encoder->enable = g4x_enable_dp; 7289 intel_encoder->disable = g4x_disable_dp; 7290 intel_encoder->post_disable = g4x_post_disable_dp; 7291 } 7292 7293 intel_dig_port->dp.output_reg = output_reg; 7294 intel_dig_port->max_lanes = 4; 7295 7296 intel_encoder->type = INTEL_OUTPUT_DP; 7297 intel_encoder->power_domain = intel_port_to_power_domain(port); 7298 if (IS_CHERRYVIEW(dev_priv)) { 7299 if (port == PORT_D) 7300 intel_encoder->crtc_mask = 1 << 2; 7301 else 7302 intel_encoder->crtc_mask = (1 << 0) | (1 << 1); 7303 } else { 7304 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); 7305 } 7306 intel_encoder->cloneable = 0; 7307 intel_encoder->port = port; 7308 7309 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 7310 7311 if (port != PORT_A) 7312 intel_infoframe_init(intel_dig_port); 7313 7314 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 7315 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 7316 goto err_init_connector; 7317 7318 return true; 7319 7320 err_init_connector: 7321 drm_encoder_cleanup(encoder); 7322 err_encoder_init: 7323 kfree(intel_connector); 7324 err_connector_alloc: 7325 kfree(intel_dig_port); 7326 return false; 7327 } 7328 7329 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 7330 { 7331 struct intel_encoder *encoder; 7332 7333 for_each_intel_encoder(&dev_priv->drm, encoder) { 7334 struct intel_dp *intel_dp; 7335 7336 if (encoder->type != INTEL_OUTPUT_DDI) 7337 continue; 7338 7339 intel_dp = enc_to_intel_dp(&encoder->base); 7340 7341 if (!intel_dp->can_mst) 7342 continue; 7343 7344 if (intel_dp->is_mst) 7345 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 7346 } 7347 } 7348 7349 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 7350 { 7351 struct intel_encoder *encoder; 7352 7353 for_each_intel_encoder(&dev_priv->drm, encoder) { 7354 struct intel_dp *intel_dp; 7355 int ret; 7356 7357 if (encoder->type != INTEL_OUTPUT_DDI) 7358 continue; 7359 7360 intel_dp = enc_to_intel_dp(&encoder->base); 7361 7362 if (!intel_dp->can_mst) 7363 continue; 7364 7365 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr); 7366 if (ret) { 7367 intel_dp->is_mst = false; 7368 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 7369 false); 7370 } 7371 } 7372 } 7373