1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44 
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68 
69 #define DP_DPRX_ESI_LEN 14
70 
71 /* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
72 #define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440
73 #define DP_DSC_MIN_SUPPORTED_BPC		8
74 #define DP_DSC_MAX_SUPPORTED_BPC		10
75 
76 /* DP DSC throughput values used for slice count calculations KPixels/s */
77 #define DP_DSC_PEAK_PIXEL_RATE			2720000
78 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
79 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
80 
81 /* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
82 #define DP_DSC_FEC_OVERHEAD_FACTOR		976
83 
84 /* Compliance test status bits  */
85 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
86 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
87 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
88 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
89 
90 struct dp_link_dpll {
91 	int clock;
92 	struct dpll dpll;
93 };
94 
95 static const struct dp_link_dpll g4x_dpll[] = {
96 	{ 162000,
97 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
98 	{ 270000,
99 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
100 };
101 
102 static const struct dp_link_dpll pch_dpll[] = {
103 	{ 162000,
104 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
105 	{ 270000,
106 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
107 };
108 
109 static const struct dp_link_dpll vlv_dpll[] = {
110 	{ 162000,
111 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
112 	{ 270000,
113 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
114 };
115 
116 /*
117  * CHV supports eDP 1.4 that have  more link rates.
118  * Below only provides the fixed rate but exclude variable rate.
119  */
120 static const struct dp_link_dpll chv_dpll[] = {
121 	/*
122 	 * CHV requires to program fractional division for m2.
123 	 * m2 is stored in fixed point format using formula below
124 	 * (m2_int << 22) | m2_fraction
125 	 */
126 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
127 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
128 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
129 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
130 };
131 
132 /* Constants for DP DSC configurations */
133 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
134 
135 /* With Single pipe configuration, HW is capable of supporting maximum
136  * of 4 slices per line.
137  */
138 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
139 
140 /**
141  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
142  * @intel_dp: DP struct
143  *
144  * If a CPU or PCH DP output is attached to an eDP panel, this function
145  * will return true, and false otherwise.
146  */
147 bool intel_dp_is_edp(struct intel_dp *intel_dp)
148 {
149 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
150 
151 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
152 }
153 
154 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
155 {
156 	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
157 }
158 
159 static void intel_dp_link_down(struct intel_encoder *encoder,
160 			       const struct intel_crtc_state *old_crtc_state);
161 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
162 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
163 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
164 					   const struct intel_crtc_state *crtc_state);
165 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
166 				      enum pipe pipe);
167 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
168 
169 /* update sink rates from dpcd */
170 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
171 {
172 	static const int dp_rates[] = {
173 		162000, 270000, 540000, 810000
174 	};
175 	int i, max_rate;
176 
177 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178 
179 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
180 		if (dp_rates[i] > max_rate)
181 			break;
182 		intel_dp->sink_rates[i] = dp_rates[i];
183 	}
184 
185 	intel_dp->num_sink_rates = i;
186 }
187 
188 /* Get length of rates array potentially limited by max_rate. */
189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
190 {
191 	int i;
192 
193 	/* Limit results by potentially reduced max rate */
194 	for (i = 0; i < len; i++) {
195 		if (rates[len - i - 1] <= max_rate)
196 			return len - i;
197 	}
198 
199 	return 0;
200 }
201 
202 /* Get length of common rates array potentially limited by max_rate. */
203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
204 					  int max_rate)
205 {
206 	return intel_dp_rate_limit_len(intel_dp->common_rates,
207 				       intel_dp->num_common_rates, max_rate);
208 }
209 
210 /* Theoretical max between source and sink */
211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212 {
213 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 }
215 
216 /* Theoretical max between source and sink */
217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 {
219 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220 	int source_max = intel_dig_port->max_lanes;
221 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222 	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
223 
224 	return min3(source_max, sink_max, fia_max);
225 }
226 
227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 {
229 	return intel_dp->max_link_lane_count;
230 }
231 
232 int
233 intel_dp_link_required(int pixel_clock, int bpp)
234 {
235 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
236 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 }
238 
239 int
240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
241 {
242 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
243 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
244 	 * is transmitted every LS_Clk per lane, there is no need to account for
245 	 * the channel encoding that is done in the PHY layer here.
246 	 */
247 
248 	return max_link_clock * max_lanes;
249 }
250 
251 static int
252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
253 {
254 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
255 	struct intel_encoder *encoder = &intel_dig_port->base;
256 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
257 	int max_dotclk = dev_priv->max_dotclk_freq;
258 	int ds_max_dotclk;
259 
260 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
261 
262 	if (type != DP_DS_PORT_TYPE_VGA)
263 		return max_dotclk;
264 
265 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
266 						    intel_dp->downstream_ports);
267 
268 	if (ds_max_dotclk != 0)
269 		max_dotclk = min(max_dotclk, ds_max_dotclk);
270 
271 	return max_dotclk;
272 }
273 
274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 {
276 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
277 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
278 	enum port port = dig_port->base.port;
279 
280 	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281 
282 	/* Low voltage SKUs are limited to max of 5.4G */
283 	if (voltage == VOLTAGE_INFO_0_85V)
284 		return 540000;
285 
286 	/* For this SKU 8.1G is supported in all ports */
287 	if (IS_CNL_WITH_PORT_F(dev_priv))
288 		return 810000;
289 
290 	/* For other SKUs, max rate on ports A and D is 5.4G */
291 	if (port == PORT_A || port == PORT_D)
292 		return 540000;
293 
294 	return 810000;
295 }
296 
297 static int icl_max_source_rate(struct intel_dp *intel_dp)
298 {
299 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302 
303 	if (intel_phy_is_combo(dev_priv, phy) &&
304 	    !IS_ELKHARTLAKE(dev_priv) &&
305 	    !intel_dp_is_edp(intel_dp))
306 		return 540000;
307 
308 	return 810000;
309 }
310 
311 static void
312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
313 {
314 	/* The values must be in increasing order */
315 	static const int cnl_rates[] = {
316 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
317 	};
318 	static const int bxt_rates[] = {
319 		162000, 216000, 243000, 270000, 324000, 432000, 540000
320 	};
321 	static const int skl_rates[] = {
322 		162000, 216000, 270000, 324000, 432000, 540000
323 	};
324 	static const int hsw_rates[] = {
325 		162000, 270000, 540000
326 	};
327 	static const int g4x_rates[] = {
328 		162000, 270000
329 	};
330 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
332 	const struct ddi_vbt_port_info *info =
333 		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
334 	const int *source_rates;
335 	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
336 
337 	/* This should only be done once */
338 	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
339 
340 	if (INTEL_GEN(dev_priv) >= 10) {
341 		source_rates = cnl_rates;
342 		size = ARRAY_SIZE(cnl_rates);
343 		if (IS_GEN(dev_priv, 10))
344 			max_rate = cnl_max_source_rate(intel_dp);
345 		else
346 			max_rate = icl_max_source_rate(intel_dp);
347 	} else if (IS_GEN9_LP(dev_priv)) {
348 		source_rates = bxt_rates;
349 		size = ARRAY_SIZE(bxt_rates);
350 	} else if (IS_GEN9_BC(dev_priv)) {
351 		source_rates = skl_rates;
352 		size = ARRAY_SIZE(skl_rates);
353 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
354 		   IS_BROADWELL(dev_priv)) {
355 		source_rates = hsw_rates;
356 		size = ARRAY_SIZE(hsw_rates);
357 	} else {
358 		source_rates = g4x_rates;
359 		size = ARRAY_SIZE(g4x_rates);
360 	}
361 
362 	if (max_rate && vbt_max_rate)
363 		max_rate = min(max_rate, vbt_max_rate);
364 	else if (vbt_max_rate)
365 		max_rate = vbt_max_rate;
366 
367 	if (max_rate)
368 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
369 
370 	intel_dp->source_rates = source_rates;
371 	intel_dp->num_source_rates = size;
372 }
373 
374 static int intersect_rates(const int *source_rates, int source_len,
375 			   const int *sink_rates, int sink_len,
376 			   int *common_rates)
377 {
378 	int i = 0, j = 0, k = 0;
379 
380 	while (i < source_len && j < sink_len) {
381 		if (source_rates[i] == sink_rates[j]) {
382 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
383 				return k;
384 			common_rates[k] = source_rates[i];
385 			++k;
386 			++i;
387 			++j;
388 		} else if (source_rates[i] < sink_rates[j]) {
389 			++i;
390 		} else {
391 			++j;
392 		}
393 	}
394 	return k;
395 }
396 
397 /* return index of rate in rates array, or -1 if not found */
398 static int intel_dp_rate_index(const int *rates, int len, int rate)
399 {
400 	int i;
401 
402 	for (i = 0; i < len; i++)
403 		if (rate == rates[i])
404 			return i;
405 
406 	return -1;
407 }
408 
409 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
410 {
411 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
412 
413 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
414 						     intel_dp->num_source_rates,
415 						     intel_dp->sink_rates,
416 						     intel_dp->num_sink_rates,
417 						     intel_dp->common_rates);
418 
419 	/* Paranoia, there should always be something in common. */
420 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
421 		intel_dp->common_rates[0] = 162000;
422 		intel_dp->num_common_rates = 1;
423 	}
424 }
425 
426 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
427 				       u8 lane_count)
428 {
429 	/*
430 	 * FIXME: we need to synchronize the current link parameters with
431 	 * hardware readout. Currently fast link training doesn't work on
432 	 * boot-up.
433 	 */
434 	if (link_rate == 0 ||
435 	    link_rate > intel_dp->max_link_rate)
436 		return false;
437 
438 	if (lane_count == 0 ||
439 	    lane_count > intel_dp_max_lane_count(intel_dp))
440 		return false;
441 
442 	return true;
443 }
444 
445 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
446 						     int link_rate,
447 						     u8 lane_count)
448 {
449 	const struct drm_display_mode *fixed_mode =
450 		intel_dp->attached_connector->panel.fixed_mode;
451 	int mode_rate, max_rate;
452 
453 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
454 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
455 	if (mode_rate > max_rate)
456 		return false;
457 
458 	return true;
459 }
460 
461 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
462 					    int link_rate, u8 lane_count)
463 {
464 	int index;
465 
466 	index = intel_dp_rate_index(intel_dp->common_rates,
467 				    intel_dp->num_common_rates,
468 				    link_rate);
469 	if (index > 0) {
470 		if (intel_dp_is_edp(intel_dp) &&
471 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
472 							      intel_dp->common_rates[index - 1],
473 							      lane_count)) {
474 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
475 			return 0;
476 		}
477 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
478 		intel_dp->max_link_lane_count = lane_count;
479 	} else if (lane_count > 1) {
480 		if (intel_dp_is_edp(intel_dp) &&
481 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
482 							      intel_dp_max_common_rate(intel_dp),
483 							      lane_count >> 1)) {
484 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
485 			return 0;
486 		}
487 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
488 		intel_dp->max_link_lane_count = lane_count >> 1;
489 	} else {
490 		DRM_ERROR("Link Training Unsuccessful\n");
491 		return -1;
492 	}
493 
494 	return 0;
495 }
496 
497 static enum drm_mode_status
498 intel_dp_mode_valid(struct drm_connector *connector,
499 		    struct drm_display_mode *mode)
500 {
501 	struct intel_dp *intel_dp = intel_attached_dp(connector);
502 	struct intel_connector *intel_connector = to_intel_connector(connector);
503 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
504 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
505 	int target_clock = mode->clock;
506 	int max_rate, mode_rate, max_lanes, max_link_clock;
507 	int max_dotclk;
508 	u16 dsc_max_output_bpp = 0;
509 	u8 dsc_slice_count = 0;
510 
511 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
512 		return MODE_NO_DBLESCAN;
513 
514 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
515 
516 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
517 		if (mode->hdisplay > fixed_mode->hdisplay)
518 			return MODE_PANEL;
519 
520 		if (mode->vdisplay > fixed_mode->vdisplay)
521 			return MODE_PANEL;
522 
523 		target_clock = fixed_mode->clock;
524 	}
525 
526 	max_link_clock = intel_dp_max_link_rate(intel_dp);
527 	max_lanes = intel_dp_max_lane_count(intel_dp);
528 
529 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
530 	mode_rate = intel_dp_link_required(target_clock, 18);
531 
532 	/*
533 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
534 	 * integer value since we support only integer values of bpp.
535 	 */
536 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
537 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
538 		if (intel_dp_is_edp(intel_dp)) {
539 			dsc_max_output_bpp =
540 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
541 			dsc_slice_count =
542 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
543 								true);
544 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
545 			dsc_max_output_bpp =
546 				intel_dp_dsc_get_output_bpp(max_link_clock,
547 							    max_lanes,
548 							    target_clock,
549 							    mode->hdisplay) >> 4;
550 			dsc_slice_count =
551 				intel_dp_dsc_get_slice_count(intel_dp,
552 							     target_clock,
553 							     mode->hdisplay);
554 		}
555 	}
556 
557 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
558 	    target_clock > max_dotclk)
559 		return MODE_CLOCK_HIGH;
560 
561 	if (mode->clock < 10000)
562 		return MODE_CLOCK_LOW;
563 
564 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
565 		return MODE_H_ILLEGAL;
566 
567 	return MODE_OK;
568 }
569 
570 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
571 {
572 	int i;
573 	u32 v = 0;
574 
575 	if (src_bytes > 4)
576 		src_bytes = 4;
577 	for (i = 0; i < src_bytes; i++)
578 		v |= ((u32)src[i]) << ((3 - i) * 8);
579 	return v;
580 }
581 
582 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
583 {
584 	int i;
585 	if (dst_bytes > 4)
586 		dst_bytes = 4;
587 	for (i = 0; i < dst_bytes; i++)
588 		dst[i] = src >> ((3-i) * 8);
589 }
590 
591 static void
592 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
593 static void
594 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
595 					      bool force_disable_vdd);
596 static void
597 intel_dp_pps_init(struct intel_dp *intel_dp);
598 
599 static intel_wakeref_t
600 pps_lock(struct intel_dp *intel_dp)
601 {
602 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
603 	intel_wakeref_t wakeref;
604 
605 	/*
606 	 * See intel_power_sequencer_reset() why we need
607 	 * a power domain reference here.
608 	 */
609 	wakeref = intel_display_power_get(dev_priv,
610 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
611 
612 	mutex_lock(&dev_priv->pps_mutex);
613 
614 	return wakeref;
615 }
616 
617 static intel_wakeref_t
618 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
619 {
620 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
621 
622 	mutex_unlock(&dev_priv->pps_mutex);
623 	intel_display_power_put(dev_priv,
624 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
625 				wakeref);
626 	return 0;
627 }
628 
629 #define with_pps_lock(dp, wf) \
630 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
631 
632 static void
633 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
634 {
635 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
636 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
637 	enum pipe pipe = intel_dp->pps_pipe;
638 	bool pll_enabled, release_cl_override = false;
639 	enum dpio_phy phy = DPIO_PHY(pipe);
640 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
641 	u32 DP;
642 
643 	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
644 		 "skipping pipe %c power sequencer kick due to port %c being active\n",
645 		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
646 		return;
647 
648 	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
649 		      pipe_name(pipe), port_name(intel_dig_port->base.port));
650 
651 	/* Preserve the BIOS-computed detected bit. This is
652 	 * supposed to be read-only.
653 	 */
654 	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
655 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
656 	DP |= DP_PORT_WIDTH(1);
657 	DP |= DP_LINK_TRAIN_PAT_1;
658 
659 	if (IS_CHERRYVIEW(dev_priv))
660 		DP |= DP_PIPE_SEL_CHV(pipe);
661 	else
662 		DP |= DP_PIPE_SEL(pipe);
663 
664 	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
665 
666 	/*
667 	 * The DPLL for the pipe must be enabled for this to work.
668 	 * So enable temporarily it if it's not already enabled.
669 	 */
670 	if (!pll_enabled) {
671 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
672 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
673 
674 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
675 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
676 			DRM_ERROR("Failed to force on pll for pipe %c!\n",
677 				  pipe_name(pipe));
678 			return;
679 		}
680 	}
681 
682 	/*
683 	 * Similar magic as in intel_dp_enable_port().
684 	 * We _must_ do this port enable + disable trick
685 	 * to make this power sequencer lock onto the port.
686 	 * Otherwise even VDD force bit won't work.
687 	 */
688 	I915_WRITE(intel_dp->output_reg, DP);
689 	POSTING_READ(intel_dp->output_reg);
690 
691 	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
692 	POSTING_READ(intel_dp->output_reg);
693 
694 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
695 	POSTING_READ(intel_dp->output_reg);
696 
697 	if (!pll_enabled) {
698 		vlv_force_pll_off(dev_priv, pipe);
699 
700 		if (release_cl_override)
701 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
702 	}
703 }
704 
705 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
706 {
707 	struct intel_encoder *encoder;
708 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
709 
710 	/*
711 	 * We don't have power sequencer currently.
712 	 * Pick one that's not used by other ports.
713 	 */
714 	for_each_intel_dp(&dev_priv->drm, encoder) {
715 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
716 
717 		if (encoder->type == INTEL_OUTPUT_EDP) {
718 			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
719 				intel_dp->active_pipe != intel_dp->pps_pipe);
720 
721 			if (intel_dp->pps_pipe != INVALID_PIPE)
722 				pipes &= ~(1 << intel_dp->pps_pipe);
723 		} else {
724 			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
725 
726 			if (intel_dp->active_pipe != INVALID_PIPE)
727 				pipes &= ~(1 << intel_dp->active_pipe);
728 		}
729 	}
730 
731 	if (pipes == 0)
732 		return INVALID_PIPE;
733 
734 	return ffs(pipes) - 1;
735 }
736 
737 static enum pipe
738 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
739 {
740 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
741 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
742 	enum pipe pipe;
743 
744 	lockdep_assert_held(&dev_priv->pps_mutex);
745 
746 	/* We should never land here with regular DP ports */
747 	WARN_ON(!intel_dp_is_edp(intel_dp));
748 
749 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
750 		intel_dp->active_pipe != intel_dp->pps_pipe);
751 
752 	if (intel_dp->pps_pipe != INVALID_PIPE)
753 		return intel_dp->pps_pipe;
754 
755 	pipe = vlv_find_free_pps(dev_priv);
756 
757 	/*
758 	 * Didn't find one. This should not happen since there
759 	 * are two power sequencers and up to two eDP ports.
760 	 */
761 	if (WARN_ON(pipe == INVALID_PIPE))
762 		pipe = PIPE_A;
763 
764 	vlv_steal_power_sequencer(dev_priv, pipe);
765 	intel_dp->pps_pipe = pipe;
766 
767 	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
768 		      pipe_name(intel_dp->pps_pipe),
769 		      port_name(intel_dig_port->base.port));
770 
771 	/* init power sequencer on this pipe and port */
772 	intel_dp_init_panel_power_sequencer(intel_dp);
773 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
774 
775 	/*
776 	 * Even vdd force doesn't work until we've made
777 	 * the power sequencer lock in on the port.
778 	 */
779 	vlv_power_sequencer_kick(intel_dp);
780 
781 	return intel_dp->pps_pipe;
782 }
783 
784 static int
785 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
786 {
787 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
788 	int backlight_controller = dev_priv->vbt.backlight.controller;
789 
790 	lockdep_assert_held(&dev_priv->pps_mutex);
791 
792 	/* We should never land here with regular DP ports */
793 	WARN_ON(!intel_dp_is_edp(intel_dp));
794 
795 	if (!intel_dp->pps_reset)
796 		return backlight_controller;
797 
798 	intel_dp->pps_reset = false;
799 
800 	/*
801 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
802 	 * has been setup during connector init.
803 	 */
804 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
805 
806 	return backlight_controller;
807 }
808 
809 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
810 			       enum pipe pipe);
811 
812 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
813 			       enum pipe pipe)
814 {
815 	return I915_READ(PP_STATUS(pipe)) & PP_ON;
816 }
817 
818 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
819 				enum pipe pipe)
820 {
821 	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
822 }
823 
824 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
825 			 enum pipe pipe)
826 {
827 	return true;
828 }
829 
830 static enum pipe
831 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
832 		     enum port port,
833 		     vlv_pipe_check pipe_check)
834 {
835 	enum pipe pipe;
836 
837 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
838 		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
839 			PANEL_PORT_SELECT_MASK;
840 
841 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
842 			continue;
843 
844 		if (!pipe_check(dev_priv, pipe))
845 			continue;
846 
847 		return pipe;
848 	}
849 
850 	return INVALID_PIPE;
851 }
852 
853 static void
854 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
855 {
856 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
857 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
858 	enum port port = intel_dig_port->base.port;
859 
860 	lockdep_assert_held(&dev_priv->pps_mutex);
861 
862 	/* try to find a pipe with this port selected */
863 	/* first pick one where the panel is on */
864 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
865 						  vlv_pipe_has_pp_on);
866 	/* didn't find one? pick one where vdd is on */
867 	if (intel_dp->pps_pipe == INVALID_PIPE)
868 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
869 							  vlv_pipe_has_vdd_on);
870 	/* didn't find one? pick one with just the correct port */
871 	if (intel_dp->pps_pipe == INVALID_PIPE)
872 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
873 							  vlv_pipe_any);
874 
875 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
876 	if (intel_dp->pps_pipe == INVALID_PIPE) {
877 		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
878 			      port_name(port));
879 		return;
880 	}
881 
882 	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
883 		      port_name(port), pipe_name(intel_dp->pps_pipe));
884 
885 	intel_dp_init_panel_power_sequencer(intel_dp);
886 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
887 }
888 
889 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
890 {
891 	struct intel_encoder *encoder;
892 
893 	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
894 		    !IS_GEN9_LP(dev_priv)))
895 		return;
896 
897 	/*
898 	 * We can't grab pps_mutex here due to deadlock with power_domain
899 	 * mutex when power_domain functions are called while holding pps_mutex.
900 	 * That also means that in order to use pps_pipe the code needs to
901 	 * hold both a power domain reference and pps_mutex, and the power domain
902 	 * reference get/put must be done while _not_ holding pps_mutex.
903 	 * pps_{lock,unlock}() do these steps in the correct order, so one
904 	 * should use them always.
905 	 */
906 
907 	for_each_intel_dp(&dev_priv->drm, encoder) {
908 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
909 
910 		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
911 
912 		if (encoder->type != INTEL_OUTPUT_EDP)
913 			continue;
914 
915 		if (IS_GEN9_LP(dev_priv))
916 			intel_dp->pps_reset = true;
917 		else
918 			intel_dp->pps_pipe = INVALID_PIPE;
919 	}
920 }
921 
922 struct pps_registers {
923 	i915_reg_t pp_ctrl;
924 	i915_reg_t pp_stat;
925 	i915_reg_t pp_on;
926 	i915_reg_t pp_off;
927 	i915_reg_t pp_div;
928 };
929 
930 static void intel_pps_get_registers(struct intel_dp *intel_dp,
931 				    struct pps_registers *regs)
932 {
933 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
934 	int pps_idx = 0;
935 
936 	memset(regs, 0, sizeof(*regs));
937 
938 	if (IS_GEN9_LP(dev_priv))
939 		pps_idx = bxt_power_sequencer_idx(intel_dp);
940 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
941 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
942 
943 	regs->pp_ctrl = PP_CONTROL(pps_idx);
944 	regs->pp_stat = PP_STATUS(pps_idx);
945 	regs->pp_on = PP_ON_DELAYS(pps_idx);
946 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
947 
948 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
949 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
950 		regs->pp_div = INVALID_MMIO_REG;
951 	else
952 		regs->pp_div = PP_DIVISOR(pps_idx);
953 }
954 
955 static i915_reg_t
956 _pp_ctrl_reg(struct intel_dp *intel_dp)
957 {
958 	struct pps_registers regs;
959 
960 	intel_pps_get_registers(intel_dp, &regs);
961 
962 	return regs.pp_ctrl;
963 }
964 
965 static i915_reg_t
966 _pp_stat_reg(struct intel_dp *intel_dp)
967 {
968 	struct pps_registers regs;
969 
970 	intel_pps_get_registers(intel_dp, &regs);
971 
972 	return regs.pp_stat;
973 }
974 
975 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
976    This function only applicable when panel PM state is not to be tracked */
977 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
978 			      void *unused)
979 {
980 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
981 						 edp_notifier);
982 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
983 	intel_wakeref_t wakeref;
984 
985 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
986 		return 0;
987 
988 	with_pps_lock(intel_dp, wakeref) {
989 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
990 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
991 			i915_reg_t pp_ctrl_reg, pp_div_reg;
992 			u32 pp_div;
993 
994 			pp_ctrl_reg = PP_CONTROL(pipe);
995 			pp_div_reg  = PP_DIVISOR(pipe);
996 			pp_div = I915_READ(pp_div_reg);
997 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
998 
999 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1000 			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1001 			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1002 			msleep(intel_dp->panel_power_cycle_delay);
1003 		}
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1010 {
1011 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1012 
1013 	lockdep_assert_held(&dev_priv->pps_mutex);
1014 
1015 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1016 	    intel_dp->pps_pipe == INVALID_PIPE)
1017 		return false;
1018 
1019 	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1020 }
1021 
1022 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1023 {
1024 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1025 
1026 	lockdep_assert_held(&dev_priv->pps_mutex);
1027 
1028 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1029 	    intel_dp->pps_pipe == INVALID_PIPE)
1030 		return false;
1031 
1032 	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1033 }
1034 
1035 static void
1036 intel_dp_check_edp(struct intel_dp *intel_dp)
1037 {
1038 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1039 
1040 	if (!intel_dp_is_edp(intel_dp))
1041 		return;
1042 
1043 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1044 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
1045 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1046 			      I915_READ(_pp_stat_reg(intel_dp)),
1047 			      I915_READ(_pp_ctrl_reg(intel_dp)));
1048 	}
1049 }
1050 
1051 static u32
1052 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1053 {
1054 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1055 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1056 	u32 status;
1057 	bool done;
1058 
1059 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1060 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1061 				  msecs_to_jiffies_timeout(10));
1062 
1063 	/* just trace the final value */
1064 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1065 
1066 	if (!done)
1067 		DRM_ERROR("dp aux hw did not signal timeout!\n");
1068 #undef C
1069 
1070 	return status;
1071 }
1072 
1073 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1074 {
1075 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1076 
1077 	if (index)
1078 		return 0;
1079 
1080 	/*
1081 	 * The clock divider is based off the hrawclk, and would like to run at
1082 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1083 	 */
1084 	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1085 }
1086 
1087 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1088 {
1089 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1090 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1091 
1092 	if (index)
1093 		return 0;
1094 
1095 	/*
1096 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1097 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1098 	 * divide by 2000 and use that
1099 	 */
1100 	if (dig_port->aux_ch == AUX_CH_A)
1101 		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1102 	else
1103 		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1104 }
1105 
1106 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1107 {
1108 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1109 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1110 
1111 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1112 		/* Workaround for non-ULT HSW */
1113 		switch (index) {
1114 		case 0: return 63;
1115 		case 1: return 72;
1116 		default: return 0;
1117 		}
1118 	}
1119 
1120 	return ilk_get_aux_clock_divider(intel_dp, index);
1121 }
1122 
1123 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1124 {
1125 	/*
1126 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1127 	 * derive the clock from CDCLK automatically). We still implement the
1128 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1129 	 */
1130 	return index ? 0 : 1;
1131 }
1132 
1133 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1134 				int send_bytes,
1135 				u32 aux_clock_divider)
1136 {
1137 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1138 	struct drm_i915_private *dev_priv =
1139 			to_i915(intel_dig_port->base.base.dev);
1140 	u32 precharge, timeout;
1141 
1142 	if (IS_GEN(dev_priv, 6))
1143 		precharge = 3;
1144 	else
1145 		precharge = 5;
1146 
1147 	if (IS_BROADWELL(dev_priv))
1148 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1149 	else
1150 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1151 
1152 	return DP_AUX_CH_CTL_SEND_BUSY |
1153 	       DP_AUX_CH_CTL_DONE |
1154 	       DP_AUX_CH_CTL_INTERRUPT |
1155 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1156 	       timeout |
1157 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1158 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1159 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1160 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1161 }
1162 
1163 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1164 				int send_bytes,
1165 				u32 unused)
1166 {
1167 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1168 	u32 ret;
1169 
1170 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1171 	      DP_AUX_CH_CTL_DONE |
1172 	      DP_AUX_CH_CTL_INTERRUPT |
1173 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1174 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1175 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1176 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1177 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1178 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1179 
1180 	if (intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1181 		ret |= DP_AUX_CH_CTL_TBT_IO;
1182 
1183 	return ret;
1184 }
1185 
1186 static int
1187 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1188 		  const u8 *send, int send_bytes,
1189 		  u8 *recv, int recv_size,
1190 		  u32 aux_send_ctl_flags)
1191 {
1192 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1193 	struct drm_i915_private *i915 =
1194 			to_i915(intel_dig_port->base.base.dev);
1195 	struct intel_uncore *uncore = &i915->uncore;
1196 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1197 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1198 	i915_reg_t ch_ctl, ch_data[5];
1199 	u32 aux_clock_divider;
1200 	enum intel_display_power_domain aux_domain =
1201 		intel_aux_power_domain(intel_dig_port);
1202 	intel_wakeref_t aux_wakeref;
1203 	intel_wakeref_t pps_wakeref;
1204 	int i, ret, recv_bytes;
1205 	int try, clock = 0;
1206 	u32 status;
1207 	bool vdd;
1208 
1209 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1210 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1211 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1212 
1213 	if (is_tc_port)
1214 		intel_tc_port_lock(intel_dig_port);
1215 
1216 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1217 	pps_wakeref = pps_lock(intel_dp);
1218 
1219 	/*
1220 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1221 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1222 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1223 	 * ourselves.
1224 	 */
1225 	vdd = edp_panel_vdd_on(intel_dp);
1226 
1227 	/* dp aux is extremely sensitive to irq latency, hence request the
1228 	 * lowest possible wakeup latency and so prevent the cpu from going into
1229 	 * deep sleep states.
1230 	 */
1231 	pm_qos_update_request(&i915->pm_qos, 0);
1232 
1233 	intel_dp_check_edp(intel_dp);
1234 
1235 	/* Try to wait for any previous AUX channel activity */
1236 	for (try = 0; try < 3; try++) {
1237 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1238 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1239 			break;
1240 		msleep(1);
1241 	}
1242 	/* just trace the final value */
1243 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1244 
1245 	if (try == 3) {
1246 		static u32 last_status = -1;
1247 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1248 
1249 		if (status != last_status) {
1250 			WARN(1, "dp_aux_ch not started status 0x%08x\n",
1251 			     status);
1252 			last_status = status;
1253 		}
1254 
1255 		ret = -EBUSY;
1256 		goto out;
1257 	}
1258 
1259 	/* Only 5 data registers! */
1260 	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1261 		ret = -E2BIG;
1262 		goto out;
1263 	}
1264 
1265 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1266 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1267 							  send_bytes,
1268 							  aux_clock_divider);
1269 
1270 		send_ctl |= aux_send_ctl_flags;
1271 
1272 		/* Must try at least 3 times according to DP spec */
1273 		for (try = 0; try < 5; try++) {
1274 			/* Load the send data into the aux channel data registers */
1275 			for (i = 0; i < send_bytes; i += 4)
1276 				intel_uncore_write(uncore,
1277 						   ch_data[i >> 2],
1278 						   intel_dp_pack_aux(send + i,
1279 								     send_bytes - i));
1280 
1281 			/* Send the command and wait for it to complete */
1282 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1283 
1284 			status = intel_dp_aux_wait_done(intel_dp);
1285 
1286 			/* Clear done status and any errors */
1287 			intel_uncore_write(uncore,
1288 					   ch_ctl,
1289 					   status |
1290 					   DP_AUX_CH_CTL_DONE |
1291 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1292 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1293 
1294 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1295 			 *   400us delay required for errors and timeouts
1296 			 *   Timeout errors from the HW already meet this
1297 			 *   requirement so skip to next iteration
1298 			 */
1299 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1300 				continue;
1301 
1302 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1303 				usleep_range(400, 500);
1304 				continue;
1305 			}
1306 			if (status & DP_AUX_CH_CTL_DONE)
1307 				goto done;
1308 		}
1309 	}
1310 
1311 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1312 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1313 		ret = -EBUSY;
1314 		goto out;
1315 	}
1316 
1317 done:
1318 	/* Check for timeout or receive error.
1319 	 * Timeouts occur when the sink is not connected
1320 	 */
1321 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1322 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1323 		ret = -EIO;
1324 		goto out;
1325 	}
1326 
1327 	/* Timeouts occur when the device isn't connected, so they're
1328 	 * "normal" -- don't fill the kernel log with these */
1329 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1330 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1331 		ret = -ETIMEDOUT;
1332 		goto out;
1333 	}
1334 
1335 	/* Unload any bytes sent back from the other side */
1336 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1337 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1338 
1339 	/*
1340 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1341 	 * We have no idea of what happened so we return -EBUSY so
1342 	 * drm layer takes care for the necessary retries.
1343 	 */
1344 	if (recv_bytes == 0 || recv_bytes > 20) {
1345 		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1346 			      recv_bytes);
1347 		ret = -EBUSY;
1348 		goto out;
1349 	}
1350 
1351 	if (recv_bytes > recv_size)
1352 		recv_bytes = recv_size;
1353 
1354 	for (i = 0; i < recv_bytes; i += 4)
1355 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1356 				    recv + i, recv_bytes - i);
1357 
1358 	ret = recv_bytes;
1359 out:
1360 	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1361 
1362 	if (vdd)
1363 		edp_panel_vdd_off(intel_dp, false);
1364 
1365 	pps_unlock(intel_dp, pps_wakeref);
1366 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1367 
1368 	if (is_tc_port)
1369 		intel_tc_port_unlock(intel_dig_port);
1370 
1371 	return ret;
1372 }
1373 
1374 #define BARE_ADDRESS_SIZE	3
1375 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1376 
1377 static void
1378 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1379 		    const struct drm_dp_aux_msg *msg)
1380 {
1381 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1382 	txbuf[1] = (msg->address >> 8) & 0xff;
1383 	txbuf[2] = msg->address & 0xff;
1384 	txbuf[3] = msg->size - 1;
1385 }
1386 
1387 static ssize_t
1388 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1389 {
1390 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1391 	u8 txbuf[20], rxbuf[20];
1392 	size_t txsize, rxsize;
1393 	int ret;
1394 
1395 	intel_dp_aux_header(txbuf, msg);
1396 
1397 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1398 	case DP_AUX_NATIVE_WRITE:
1399 	case DP_AUX_I2C_WRITE:
1400 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1401 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1402 		rxsize = 2; /* 0 or 1 data bytes */
1403 
1404 		if (WARN_ON(txsize > 20))
1405 			return -E2BIG;
1406 
1407 		WARN_ON(!msg->buffer != !msg->size);
1408 
1409 		if (msg->buffer)
1410 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1411 
1412 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1413 					rxbuf, rxsize, 0);
1414 		if (ret > 0) {
1415 			msg->reply = rxbuf[0] >> 4;
1416 
1417 			if (ret > 1) {
1418 				/* Number of bytes written in a short write. */
1419 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1420 			} else {
1421 				/* Return payload size. */
1422 				ret = msg->size;
1423 			}
1424 		}
1425 		break;
1426 
1427 	case DP_AUX_NATIVE_READ:
1428 	case DP_AUX_I2C_READ:
1429 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1430 		rxsize = msg->size + 1;
1431 
1432 		if (WARN_ON(rxsize > 20))
1433 			return -E2BIG;
1434 
1435 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1436 					rxbuf, rxsize, 0);
1437 		if (ret > 0) {
1438 			msg->reply = rxbuf[0] >> 4;
1439 			/*
1440 			 * Assume happy day, and copy the data. The caller is
1441 			 * expected to check msg->reply before touching it.
1442 			 *
1443 			 * Return payload size.
1444 			 */
1445 			ret--;
1446 			memcpy(msg->buffer, rxbuf + 1, ret);
1447 		}
1448 		break;
1449 
1450 	default:
1451 		ret = -EINVAL;
1452 		break;
1453 	}
1454 
1455 	return ret;
1456 }
1457 
1458 
1459 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1460 {
1461 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1462 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1463 	enum aux_ch aux_ch = dig_port->aux_ch;
1464 
1465 	switch (aux_ch) {
1466 	case AUX_CH_B:
1467 	case AUX_CH_C:
1468 	case AUX_CH_D:
1469 		return DP_AUX_CH_CTL(aux_ch);
1470 	default:
1471 		MISSING_CASE(aux_ch);
1472 		return DP_AUX_CH_CTL(AUX_CH_B);
1473 	}
1474 }
1475 
1476 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1477 {
1478 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1479 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1480 	enum aux_ch aux_ch = dig_port->aux_ch;
1481 
1482 	switch (aux_ch) {
1483 	case AUX_CH_B:
1484 	case AUX_CH_C:
1485 	case AUX_CH_D:
1486 		return DP_AUX_CH_DATA(aux_ch, index);
1487 	default:
1488 		MISSING_CASE(aux_ch);
1489 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1490 	}
1491 }
1492 
1493 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1494 {
1495 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1496 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1497 	enum aux_ch aux_ch = dig_port->aux_ch;
1498 
1499 	switch (aux_ch) {
1500 	case AUX_CH_A:
1501 		return DP_AUX_CH_CTL(aux_ch);
1502 	case AUX_CH_B:
1503 	case AUX_CH_C:
1504 	case AUX_CH_D:
1505 		return PCH_DP_AUX_CH_CTL(aux_ch);
1506 	default:
1507 		MISSING_CASE(aux_ch);
1508 		return DP_AUX_CH_CTL(AUX_CH_A);
1509 	}
1510 }
1511 
1512 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1513 {
1514 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1515 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1516 	enum aux_ch aux_ch = dig_port->aux_ch;
1517 
1518 	switch (aux_ch) {
1519 	case AUX_CH_A:
1520 		return DP_AUX_CH_DATA(aux_ch, index);
1521 	case AUX_CH_B:
1522 	case AUX_CH_C:
1523 	case AUX_CH_D:
1524 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1525 	default:
1526 		MISSING_CASE(aux_ch);
1527 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1528 	}
1529 }
1530 
1531 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1532 {
1533 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1534 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1535 	enum aux_ch aux_ch = dig_port->aux_ch;
1536 
1537 	switch (aux_ch) {
1538 	case AUX_CH_A:
1539 	case AUX_CH_B:
1540 	case AUX_CH_C:
1541 	case AUX_CH_D:
1542 	case AUX_CH_E:
1543 	case AUX_CH_F:
1544 		return DP_AUX_CH_CTL(aux_ch);
1545 	default:
1546 		MISSING_CASE(aux_ch);
1547 		return DP_AUX_CH_CTL(AUX_CH_A);
1548 	}
1549 }
1550 
1551 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1552 {
1553 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1554 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1555 	enum aux_ch aux_ch = dig_port->aux_ch;
1556 
1557 	switch (aux_ch) {
1558 	case AUX_CH_A:
1559 	case AUX_CH_B:
1560 	case AUX_CH_C:
1561 	case AUX_CH_D:
1562 	case AUX_CH_E:
1563 	case AUX_CH_F:
1564 		return DP_AUX_CH_DATA(aux_ch, index);
1565 	default:
1566 		MISSING_CASE(aux_ch);
1567 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1568 	}
1569 }
1570 
1571 static void
1572 intel_dp_aux_fini(struct intel_dp *intel_dp)
1573 {
1574 	kfree(intel_dp->aux.name);
1575 }
1576 
1577 static void
1578 intel_dp_aux_init(struct intel_dp *intel_dp)
1579 {
1580 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1581 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1582 	struct intel_encoder *encoder = &dig_port->base;
1583 
1584 	if (INTEL_GEN(dev_priv) >= 9) {
1585 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1586 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1587 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1588 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1589 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1590 	} else {
1591 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1592 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1593 	}
1594 
1595 	if (INTEL_GEN(dev_priv) >= 9)
1596 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1597 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1598 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1599 	else if (HAS_PCH_SPLIT(dev_priv))
1600 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1601 	else
1602 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1603 
1604 	if (INTEL_GEN(dev_priv) >= 9)
1605 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1606 	else
1607 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1608 
1609 	drm_dp_aux_init(&intel_dp->aux);
1610 
1611 	/* Failure to allocate our preferred name is not critical */
1612 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1613 				       port_name(encoder->port));
1614 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1615 }
1616 
1617 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1618 {
1619 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1620 
1621 	return max_rate >= 540000;
1622 }
1623 
1624 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1625 {
1626 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1627 
1628 	return max_rate >= 810000;
1629 }
1630 
1631 static void
1632 intel_dp_set_clock(struct intel_encoder *encoder,
1633 		   struct intel_crtc_state *pipe_config)
1634 {
1635 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1636 	const struct dp_link_dpll *divisor = NULL;
1637 	int i, count = 0;
1638 
1639 	if (IS_G4X(dev_priv)) {
1640 		divisor = g4x_dpll;
1641 		count = ARRAY_SIZE(g4x_dpll);
1642 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1643 		divisor = pch_dpll;
1644 		count = ARRAY_SIZE(pch_dpll);
1645 	} else if (IS_CHERRYVIEW(dev_priv)) {
1646 		divisor = chv_dpll;
1647 		count = ARRAY_SIZE(chv_dpll);
1648 	} else if (IS_VALLEYVIEW(dev_priv)) {
1649 		divisor = vlv_dpll;
1650 		count = ARRAY_SIZE(vlv_dpll);
1651 	}
1652 
1653 	if (divisor && count) {
1654 		for (i = 0; i < count; i++) {
1655 			if (pipe_config->port_clock == divisor[i].clock) {
1656 				pipe_config->dpll = divisor[i].dpll;
1657 				pipe_config->clock_set = true;
1658 				break;
1659 			}
1660 		}
1661 	}
1662 }
1663 
1664 static void snprintf_int_array(char *str, size_t len,
1665 			       const int *array, int nelem)
1666 {
1667 	int i;
1668 
1669 	str[0] = '\0';
1670 
1671 	for (i = 0; i < nelem; i++) {
1672 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1673 		if (r >= len)
1674 			return;
1675 		str += r;
1676 		len -= r;
1677 	}
1678 }
1679 
1680 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1681 {
1682 	char str[128]; /* FIXME: too big for stack? */
1683 
1684 	if ((drm_debug & DRM_UT_KMS) == 0)
1685 		return;
1686 
1687 	snprintf_int_array(str, sizeof(str),
1688 			   intel_dp->source_rates, intel_dp->num_source_rates);
1689 	DRM_DEBUG_KMS("source rates: %s\n", str);
1690 
1691 	snprintf_int_array(str, sizeof(str),
1692 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1693 	DRM_DEBUG_KMS("sink rates: %s\n", str);
1694 
1695 	snprintf_int_array(str, sizeof(str),
1696 			   intel_dp->common_rates, intel_dp->num_common_rates);
1697 	DRM_DEBUG_KMS("common rates: %s\n", str);
1698 }
1699 
1700 int
1701 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1702 {
1703 	int len;
1704 
1705 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1706 	if (WARN_ON(len <= 0))
1707 		return 162000;
1708 
1709 	return intel_dp->common_rates[len - 1];
1710 }
1711 
1712 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1713 {
1714 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1715 				    intel_dp->num_sink_rates, rate);
1716 
1717 	if (WARN_ON(i < 0))
1718 		i = 0;
1719 
1720 	return i;
1721 }
1722 
1723 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1724 			   u8 *link_bw, u8 *rate_select)
1725 {
1726 	/* eDP 1.4 rate select method. */
1727 	if (intel_dp->use_rate_select) {
1728 		*link_bw = 0;
1729 		*rate_select =
1730 			intel_dp_rate_select(intel_dp, port_clock);
1731 	} else {
1732 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1733 		*rate_select = 0;
1734 	}
1735 }
1736 
1737 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1738 					 const struct intel_crtc_state *pipe_config)
1739 {
1740 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1741 
1742 	return INTEL_GEN(dev_priv) >= 11 &&
1743 		pipe_config->cpu_transcoder != TRANSCODER_A;
1744 }
1745 
1746 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1747 				  const struct intel_crtc_state *pipe_config)
1748 {
1749 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1750 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1751 }
1752 
1753 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1754 					 const struct intel_crtc_state *pipe_config)
1755 {
1756 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1757 
1758 	return INTEL_GEN(dev_priv) >= 10 &&
1759 		pipe_config->cpu_transcoder != TRANSCODER_A;
1760 }
1761 
1762 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1763 				  const struct intel_crtc_state *pipe_config)
1764 {
1765 	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1766 		return false;
1767 
1768 	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1769 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1770 }
1771 
1772 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1773 				struct intel_crtc_state *pipe_config)
1774 {
1775 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1776 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1777 	int bpp, bpc;
1778 
1779 	bpp = pipe_config->pipe_bpp;
1780 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1781 
1782 	if (bpc > 0)
1783 		bpp = min(bpp, 3*bpc);
1784 
1785 	if (intel_dp_is_edp(intel_dp)) {
1786 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1787 		if (intel_connector->base.display_info.bpc == 0 &&
1788 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1789 			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1790 				      dev_priv->vbt.edp.bpp);
1791 			bpp = dev_priv->vbt.edp.bpp;
1792 		}
1793 	}
1794 
1795 	return bpp;
1796 }
1797 
1798 /* Adjust link config limits based on compliance test requests. */
1799 void
1800 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1801 				  struct intel_crtc_state *pipe_config,
1802 				  struct link_config_limits *limits)
1803 {
1804 	/* For DP Compliance we override the computed bpp for the pipe */
1805 	if (intel_dp->compliance.test_data.bpc != 0) {
1806 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1807 
1808 		limits->min_bpp = limits->max_bpp = bpp;
1809 		pipe_config->dither_force_disable = bpp == 6 * 3;
1810 
1811 		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1812 	}
1813 
1814 	/* Use values requested by Compliance Test Request */
1815 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1816 		int index;
1817 
1818 		/* Validate the compliance test data since max values
1819 		 * might have changed due to link train fallback.
1820 		 */
1821 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1822 					       intel_dp->compliance.test_lane_count)) {
1823 			index = intel_dp_rate_index(intel_dp->common_rates,
1824 						    intel_dp->num_common_rates,
1825 						    intel_dp->compliance.test_link_rate);
1826 			if (index >= 0)
1827 				limits->min_clock = limits->max_clock = index;
1828 			limits->min_lane_count = limits->max_lane_count =
1829 				intel_dp->compliance.test_lane_count;
1830 		}
1831 	}
1832 }
1833 
1834 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1835 {
1836 	/*
1837 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1838 	 * format of the number of bytes per pixel will be half the number
1839 	 * of bytes of RGB pixel.
1840 	 */
1841 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1842 		bpp /= 2;
1843 
1844 	return bpp;
1845 }
1846 
1847 /* Optimize link config in order: max bpp, min clock, min lanes */
1848 static int
1849 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1850 				  struct intel_crtc_state *pipe_config,
1851 				  const struct link_config_limits *limits)
1852 {
1853 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1854 	int bpp, clock, lane_count;
1855 	int mode_rate, link_clock, link_avail;
1856 
1857 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1858 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
1859 
1860 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1861 						   output_bpp);
1862 
1863 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1864 			for (lane_count = limits->min_lane_count;
1865 			     lane_count <= limits->max_lane_count;
1866 			     lane_count <<= 1) {
1867 				link_clock = intel_dp->common_rates[clock];
1868 				link_avail = intel_dp_max_data_rate(link_clock,
1869 								    lane_count);
1870 
1871 				if (mode_rate <= link_avail) {
1872 					pipe_config->lane_count = lane_count;
1873 					pipe_config->pipe_bpp = bpp;
1874 					pipe_config->port_clock = link_clock;
1875 
1876 					return 0;
1877 				}
1878 			}
1879 		}
1880 	}
1881 
1882 	return -EINVAL;
1883 }
1884 
1885 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
1886 {
1887 	int i, num_bpc;
1888 	u8 dsc_bpc[3] = {0};
1889 
1890 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
1891 						       dsc_bpc);
1892 	for (i = 0; i < num_bpc; i++) {
1893 		if (dsc_max_bpc >= dsc_bpc[i])
1894 			return dsc_bpc[i] * 3;
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
1901 				       struct intel_crtc_state *pipe_config,
1902 				       struct drm_connector_state *conn_state,
1903 				       struct link_config_limits *limits)
1904 {
1905 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1906 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1907 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1908 	u8 dsc_max_bpc;
1909 	int pipe_bpp;
1910 	int ret;
1911 
1912 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
1913 		intel_dp_supports_fec(intel_dp, pipe_config);
1914 
1915 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1916 		return -EINVAL;
1917 
1918 	dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
1919 			    conn_state->max_requested_bpc);
1920 
1921 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
1922 	if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
1923 		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1924 		return -EINVAL;
1925 	}
1926 
1927 	/*
1928 	 * For now enable DSC for max bpp, max link rate, max lane count.
1929 	 * Optimize this later for the minimum possible link rate/lane count
1930 	 * with DSC enabled for the requested mode.
1931 	 */
1932 	pipe_config->pipe_bpp = pipe_bpp;
1933 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
1934 	pipe_config->lane_count = limits->max_lane_count;
1935 
1936 	if (intel_dp_is_edp(intel_dp)) {
1937 		pipe_config->dsc_params.compressed_bpp =
1938 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
1939 			      pipe_config->pipe_bpp);
1940 		pipe_config->dsc_params.slice_count =
1941 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
1942 							true);
1943 	} else {
1944 		u16 dsc_max_output_bpp;
1945 		u8 dsc_dp_slice_count;
1946 
1947 		dsc_max_output_bpp =
1948 			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
1949 						    pipe_config->lane_count,
1950 						    adjusted_mode->crtc_clock,
1951 						    adjusted_mode->crtc_hdisplay);
1952 		dsc_dp_slice_count =
1953 			intel_dp_dsc_get_slice_count(intel_dp,
1954 						     adjusted_mode->crtc_clock,
1955 						     adjusted_mode->crtc_hdisplay);
1956 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
1957 			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1958 			return -EINVAL;
1959 		}
1960 		pipe_config->dsc_params.compressed_bpp = min_t(u16,
1961 							       dsc_max_output_bpp >> 4,
1962 							       pipe_config->pipe_bpp);
1963 		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
1964 	}
1965 	/*
1966 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
1967 	 * is greater than the maximum Cdclock and if slice count is even
1968 	 * then we need to use 2 VDSC instances.
1969 	 */
1970 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
1971 		if (pipe_config->dsc_params.slice_count > 1) {
1972 			pipe_config->dsc_params.dsc_split = true;
1973 		} else {
1974 			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1975 			return -EINVAL;
1976 		}
1977 	}
1978 
1979 	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
1980 	if (ret < 0) {
1981 		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
1982 			      "Compressed BPP = %d\n",
1983 			      pipe_config->pipe_bpp,
1984 			      pipe_config->dsc_params.compressed_bpp);
1985 		return ret;
1986 	}
1987 
1988 	pipe_config->dsc_params.compression_enable = true;
1989 	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
1990 		      "Compressed Bpp = %d Slice Count = %d\n",
1991 		      pipe_config->pipe_bpp,
1992 		      pipe_config->dsc_params.compressed_bpp,
1993 		      pipe_config->dsc_params.slice_count);
1994 
1995 	return 0;
1996 }
1997 
1998 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
1999 {
2000 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2001 		return 6 * 3;
2002 	else
2003 		return 8 * 3;
2004 }
2005 
2006 static int
2007 intel_dp_compute_link_config(struct intel_encoder *encoder,
2008 			     struct intel_crtc_state *pipe_config,
2009 			     struct drm_connector_state *conn_state)
2010 {
2011 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2012 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2013 	struct link_config_limits limits;
2014 	int common_len;
2015 	int ret;
2016 
2017 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2018 						    intel_dp->max_link_rate);
2019 
2020 	/* No common link rates between source and sink */
2021 	WARN_ON(common_len <= 0);
2022 
2023 	limits.min_clock = 0;
2024 	limits.max_clock = common_len - 1;
2025 
2026 	limits.min_lane_count = 1;
2027 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2028 
2029 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2030 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2031 
2032 	if (intel_dp_is_edp(intel_dp)) {
2033 		/*
2034 		 * Use the maximum clock and number of lanes the eDP panel
2035 		 * advertizes being capable of. The panels are generally
2036 		 * designed to support only a single clock and lane
2037 		 * configuration, and typically these values correspond to the
2038 		 * native resolution of the panel.
2039 		 */
2040 		limits.min_lane_count = limits.max_lane_count;
2041 		limits.min_clock = limits.max_clock;
2042 	}
2043 
2044 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2045 
2046 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
2047 		      "max rate %d max bpp %d pixel clock %iKHz\n",
2048 		      limits.max_lane_count,
2049 		      intel_dp->common_rates[limits.max_clock],
2050 		      limits.max_bpp, adjusted_mode->crtc_clock);
2051 
2052 	/*
2053 	 * Optimize for slow and wide. This is the place to add alternative
2054 	 * optimization policy.
2055 	 */
2056 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2057 
2058 	/* enable compression if the mode doesn't fit available BW */
2059 	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2060 	if (ret || intel_dp->force_dsc_en) {
2061 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2062 						  conn_state, &limits);
2063 		if (ret < 0)
2064 			return ret;
2065 	}
2066 
2067 	if (pipe_config->dsc_params.compression_enable) {
2068 		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2069 			      pipe_config->lane_count, pipe_config->port_clock,
2070 			      pipe_config->pipe_bpp,
2071 			      pipe_config->dsc_params.compressed_bpp);
2072 
2073 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2074 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2075 						     pipe_config->dsc_params.compressed_bpp),
2076 			      intel_dp_max_data_rate(pipe_config->port_clock,
2077 						     pipe_config->lane_count));
2078 	} else {
2079 		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2080 			      pipe_config->lane_count, pipe_config->port_clock,
2081 			      pipe_config->pipe_bpp);
2082 
2083 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2084 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2085 						     pipe_config->pipe_bpp),
2086 			      intel_dp_max_data_rate(pipe_config->port_clock,
2087 						     pipe_config->lane_count));
2088 	}
2089 	return 0;
2090 }
2091 
2092 static int
2093 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2094 			 struct drm_connector *connector,
2095 			 struct intel_crtc_state *crtc_state)
2096 {
2097 	const struct drm_display_info *info = &connector->display_info;
2098 	const struct drm_display_mode *adjusted_mode =
2099 		&crtc_state->base.adjusted_mode;
2100 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2101 	int ret;
2102 
2103 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2104 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2105 	    !connector->ycbcr_420_allowed)
2106 		return 0;
2107 
2108 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2109 
2110 	/* YCBCR 420 output conversion needs a scaler */
2111 	ret = skl_update_scaler_crtc(crtc_state);
2112 	if (ret) {
2113 		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2114 		return ret;
2115 	}
2116 
2117 	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2118 
2119 	return 0;
2120 }
2121 
2122 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2123 				  const struct drm_connector_state *conn_state)
2124 {
2125 	const struct intel_digital_connector_state *intel_conn_state =
2126 		to_intel_digital_connector_state(conn_state);
2127 	const struct drm_display_mode *adjusted_mode =
2128 		&crtc_state->base.adjusted_mode;
2129 
2130 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2131 		/*
2132 		 * See:
2133 		 * CEA-861-E - 5.1 Default Encoding Parameters
2134 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2135 		 */
2136 		return crtc_state->pipe_bpp != 18 &&
2137 			drm_default_rgb_quant_range(adjusted_mode) ==
2138 			HDMI_QUANTIZATION_RANGE_LIMITED;
2139 	} else {
2140 		return intel_conn_state->broadcast_rgb ==
2141 			INTEL_BROADCAST_RGB_LIMITED;
2142 	}
2143 }
2144 
2145 int
2146 intel_dp_compute_config(struct intel_encoder *encoder,
2147 			struct intel_crtc_state *pipe_config,
2148 			struct drm_connector_state *conn_state)
2149 {
2150 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2151 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2152 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2153 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2154 	enum port port = encoder->port;
2155 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
2156 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2157 	struct intel_digital_connector_state *intel_conn_state =
2158 		to_intel_digital_connector_state(conn_state);
2159 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2160 					   DP_DPCD_QUIRK_CONSTANT_N);
2161 	int ret = 0, output_bpp;
2162 
2163 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2164 		pipe_config->has_pch_encoder = true;
2165 
2166 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2167 	if (lspcon->active)
2168 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2169 	else
2170 		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2171 					       pipe_config);
2172 
2173 	if (ret)
2174 		return ret;
2175 
2176 	pipe_config->has_drrs = false;
2177 	if (IS_G4X(dev_priv) || port == PORT_A)
2178 		pipe_config->has_audio = false;
2179 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2180 		pipe_config->has_audio = intel_dp->has_audio;
2181 	else
2182 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2183 
2184 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2185 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2186 				       adjusted_mode);
2187 
2188 		if (INTEL_GEN(dev_priv) >= 9) {
2189 			ret = skl_update_scaler_crtc(pipe_config);
2190 			if (ret)
2191 				return ret;
2192 		}
2193 
2194 		if (HAS_GMCH(dev_priv))
2195 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
2196 						 conn_state->scaling_mode);
2197 		else
2198 			intel_pch_panel_fitting(intel_crtc, pipe_config,
2199 						conn_state->scaling_mode);
2200 	}
2201 
2202 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2203 		return -EINVAL;
2204 
2205 	if (HAS_GMCH(dev_priv) &&
2206 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2207 		return -EINVAL;
2208 
2209 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2210 		return -EINVAL;
2211 
2212 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2213 	if (ret < 0)
2214 		return ret;
2215 
2216 	pipe_config->limited_color_range =
2217 		intel_dp_limited_color_range(pipe_config, conn_state);
2218 
2219 	if (pipe_config->dsc_params.compression_enable)
2220 		output_bpp = pipe_config->dsc_params.compressed_bpp;
2221 	else
2222 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2223 
2224 	intel_link_compute_m_n(output_bpp,
2225 			       pipe_config->lane_count,
2226 			       adjusted_mode->crtc_clock,
2227 			       pipe_config->port_clock,
2228 			       &pipe_config->dp_m_n,
2229 			       constant_n);
2230 
2231 	if (intel_connector->panel.downclock_mode != NULL &&
2232 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2233 			pipe_config->has_drrs = true;
2234 			intel_link_compute_m_n(output_bpp,
2235 					       pipe_config->lane_count,
2236 					       intel_connector->panel.downclock_mode->clock,
2237 					       pipe_config->port_clock,
2238 					       &pipe_config->dp_m2_n2,
2239 					       constant_n);
2240 	}
2241 
2242 	if (!HAS_DDI(dev_priv))
2243 		intel_dp_set_clock(encoder, pipe_config);
2244 
2245 	intel_psr_compute_config(intel_dp, pipe_config);
2246 
2247 	return 0;
2248 }
2249 
2250 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2251 			      int link_rate, u8 lane_count,
2252 			      bool link_mst)
2253 {
2254 	intel_dp->link_trained = false;
2255 	intel_dp->link_rate = link_rate;
2256 	intel_dp->lane_count = lane_count;
2257 	intel_dp->link_mst = link_mst;
2258 }
2259 
2260 static void intel_dp_prepare(struct intel_encoder *encoder,
2261 			     const struct intel_crtc_state *pipe_config)
2262 {
2263 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2264 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2265 	enum port port = encoder->port;
2266 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2267 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2268 
2269 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2270 				 pipe_config->lane_count,
2271 				 intel_crtc_has_type(pipe_config,
2272 						     INTEL_OUTPUT_DP_MST));
2273 
2274 	/*
2275 	 * There are four kinds of DP registers:
2276 	 *
2277 	 * 	IBX PCH
2278 	 * 	SNB CPU
2279 	 *	IVB CPU
2280 	 * 	CPT PCH
2281 	 *
2282 	 * IBX PCH and CPU are the same for almost everything,
2283 	 * except that the CPU DP PLL is configured in this
2284 	 * register
2285 	 *
2286 	 * CPT PCH is quite different, having many bits moved
2287 	 * to the TRANS_DP_CTL register instead. That
2288 	 * configuration happens (oddly) in ironlake_pch_enable
2289 	 */
2290 
2291 	/* Preserve the BIOS-computed detected bit. This is
2292 	 * supposed to be read-only.
2293 	 */
2294 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2295 
2296 	/* Handle DP bits in common between all three register formats */
2297 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2298 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2299 
2300 	/* Split out the IBX/CPU vs CPT settings */
2301 
2302 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2303 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2304 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2305 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2306 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2307 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2308 
2309 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2310 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2311 
2312 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2313 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2314 		u32 trans_dp;
2315 
2316 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2317 
2318 		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2319 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2320 			trans_dp |= TRANS_DP_ENH_FRAMING;
2321 		else
2322 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2323 		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2324 	} else {
2325 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2326 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2327 
2328 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2329 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2330 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2331 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2332 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2333 
2334 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2335 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2336 
2337 		if (IS_CHERRYVIEW(dev_priv))
2338 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2339 		else
2340 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2341 	}
2342 }
2343 
2344 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2345 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2346 
2347 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2348 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2349 
2350 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2351 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2352 
2353 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2354 
2355 static void wait_panel_status(struct intel_dp *intel_dp,
2356 				       u32 mask,
2357 				       u32 value)
2358 {
2359 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2360 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2361 
2362 	lockdep_assert_held(&dev_priv->pps_mutex);
2363 
2364 	intel_pps_verify_state(intel_dp);
2365 
2366 	pp_stat_reg = _pp_stat_reg(intel_dp);
2367 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2368 
2369 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2370 			mask, value,
2371 			I915_READ(pp_stat_reg),
2372 			I915_READ(pp_ctrl_reg));
2373 
2374 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2375 				       mask, value, 5000))
2376 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2377 				I915_READ(pp_stat_reg),
2378 				I915_READ(pp_ctrl_reg));
2379 
2380 	DRM_DEBUG_KMS("Wait complete\n");
2381 }
2382 
2383 static void wait_panel_on(struct intel_dp *intel_dp)
2384 {
2385 	DRM_DEBUG_KMS("Wait for panel power on\n");
2386 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2387 }
2388 
2389 static void wait_panel_off(struct intel_dp *intel_dp)
2390 {
2391 	DRM_DEBUG_KMS("Wait for panel power off time\n");
2392 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2393 }
2394 
2395 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2396 {
2397 	ktime_t panel_power_on_time;
2398 	s64 panel_power_off_duration;
2399 
2400 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2401 
2402 	/* take the difference of currrent time and panel power off time
2403 	 * and then make panel wait for t11_t12 if needed. */
2404 	panel_power_on_time = ktime_get_boottime();
2405 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2406 
2407 	/* When we disable the VDD override bit last we have to do the manual
2408 	 * wait. */
2409 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2410 		wait_remaining_ms_from_jiffies(jiffies,
2411 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2412 
2413 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2414 }
2415 
2416 static void wait_backlight_on(struct intel_dp *intel_dp)
2417 {
2418 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2419 				       intel_dp->backlight_on_delay);
2420 }
2421 
2422 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2423 {
2424 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2425 				       intel_dp->backlight_off_delay);
2426 }
2427 
2428 /* Read the current pp_control value, unlocking the register if it
2429  * is locked
2430  */
2431 
2432 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2433 {
2434 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2435 	u32 control;
2436 
2437 	lockdep_assert_held(&dev_priv->pps_mutex);
2438 
2439 	control = I915_READ(_pp_ctrl_reg(intel_dp));
2440 	if (WARN_ON(!HAS_DDI(dev_priv) &&
2441 		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2442 		control &= ~PANEL_UNLOCK_MASK;
2443 		control |= PANEL_UNLOCK_REGS;
2444 	}
2445 	return control;
2446 }
2447 
2448 /*
2449  * Must be paired with edp_panel_vdd_off().
2450  * Must hold pps_mutex around the whole on/off sequence.
2451  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2452  */
2453 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2454 {
2455 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2456 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2457 	u32 pp;
2458 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2459 	bool need_to_disable = !intel_dp->want_panel_vdd;
2460 
2461 	lockdep_assert_held(&dev_priv->pps_mutex);
2462 
2463 	if (!intel_dp_is_edp(intel_dp))
2464 		return false;
2465 
2466 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2467 	intel_dp->want_panel_vdd = true;
2468 
2469 	if (edp_have_panel_vdd(intel_dp))
2470 		return need_to_disable;
2471 
2472 	intel_display_power_get(dev_priv,
2473 				intel_aux_power_domain(intel_dig_port));
2474 
2475 	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2476 		      port_name(intel_dig_port->base.port));
2477 
2478 	if (!edp_have_panel_power(intel_dp))
2479 		wait_panel_power_cycle(intel_dp);
2480 
2481 	pp = ironlake_get_pp_control(intel_dp);
2482 	pp |= EDP_FORCE_VDD;
2483 
2484 	pp_stat_reg = _pp_stat_reg(intel_dp);
2485 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2486 
2487 	I915_WRITE(pp_ctrl_reg, pp);
2488 	POSTING_READ(pp_ctrl_reg);
2489 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2490 			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2491 	/*
2492 	 * If the panel wasn't on, delay before accessing aux channel
2493 	 */
2494 	if (!edp_have_panel_power(intel_dp)) {
2495 		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2496 			      port_name(intel_dig_port->base.port));
2497 		msleep(intel_dp->panel_power_up_delay);
2498 	}
2499 
2500 	return need_to_disable;
2501 }
2502 
2503 /*
2504  * Must be paired with intel_edp_panel_vdd_off() or
2505  * intel_edp_panel_off().
2506  * Nested calls to these functions are not allowed since
2507  * we drop the lock. Caller must use some higher level
2508  * locking to prevent nested calls from other threads.
2509  */
2510 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2511 {
2512 	intel_wakeref_t wakeref;
2513 	bool vdd;
2514 
2515 	if (!intel_dp_is_edp(intel_dp))
2516 		return;
2517 
2518 	vdd = false;
2519 	with_pps_lock(intel_dp, wakeref)
2520 		vdd = edp_panel_vdd_on(intel_dp);
2521 	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2522 	     port_name(dp_to_dig_port(intel_dp)->base.port));
2523 }
2524 
2525 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2526 {
2527 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2528 	struct intel_digital_port *intel_dig_port =
2529 		dp_to_dig_port(intel_dp);
2530 	u32 pp;
2531 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2532 
2533 	lockdep_assert_held(&dev_priv->pps_mutex);
2534 
2535 	WARN_ON(intel_dp->want_panel_vdd);
2536 
2537 	if (!edp_have_panel_vdd(intel_dp))
2538 		return;
2539 
2540 	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2541 		      port_name(intel_dig_port->base.port));
2542 
2543 	pp = ironlake_get_pp_control(intel_dp);
2544 	pp &= ~EDP_FORCE_VDD;
2545 
2546 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2547 	pp_stat_reg = _pp_stat_reg(intel_dp);
2548 
2549 	I915_WRITE(pp_ctrl_reg, pp);
2550 	POSTING_READ(pp_ctrl_reg);
2551 
2552 	/* Make sure sequencer is idle before allowing subsequent activity */
2553 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2554 	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2555 
2556 	if ((pp & PANEL_POWER_ON) == 0)
2557 		intel_dp->panel_power_off_time = ktime_get_boottime();
2558 
2559 	intel_display_power_put_unchecked(dev_priv,
2560 					  intel_aux_power_domain(intel_dig_port));
2561 }
2562 
2563 static void edp_panel_vdd_work(struct work_struct *__work)
2564 {
2565 	struct intel_dp *intel_dp =
2566 		container_of(to_delayed_work(__work),
2567 			     struct intel_dp, panel_vdd_work);
2568 	intel_wakeref_t wakeref;
2569 
2570 	with_pps_lock(intel_dp, wakeref) {
2571 		if (!intel_dp->want_panel_vdd)
2572 			edp_panel_vdd_off_sync(intel_dp);
2573 	}
2574 }
2575 
2576 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2577 {
2578 	unsigned long delay;
2579 
2580 	/*
2581 	 * Queue the timer to fire a long time from now (relative to the power
2582 	 * down delay) to keep the panel power up across a sequence of
2583 	 * operations.
2584 	 */
2585 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2586 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2587 }
2588 
2589 /*
2590  * Must be paired with edp_panel_vdd_on().
2591  * Must hold pps_mutex around the whole on/off sequence.
2592  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2593  */
2594 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2595 {
2596 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2597 
2598 	lockdep_assert_held(&dev_priv->pps_mutex);
2599 
2600 	if (!intel_dp_is_edp(intel_dp))
2601 		return;
2602 
2603 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2604 	     port_name(dp_to_dig_port(intel_dp)->base.port));
2605 
2606 	intel_dp->want_panel_vdd = false;
2607 
2608 	if (sync)
2609 		edp_panel_vdd_off_sync(intel_dp);
2610 	else
2611 		edp_panel_vdd_schedule_off(intel_dp);
2612 }
2613 
2614 static void edp_panel_on(struct intel_dp *intel_dp)
2615 {
2616 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2617 	u32 pp;
2618 	i915_reg_t pp_ctrl_reg;
2619 
2620 	lockdep_assert_held(&dev_priv->pps_mutex);
2621 
2622 	if (!intel_dp_is_edp(intel_dp))
2623 		return;
2624 
2625 	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2626 		      port_name(dp_to_dig_port(intel_dp)->base.port));
2627 
2628 	if (WARN(edp_have_panel_power(intel_dp),
2629 		 "eDP port %c panel power already on\n",
2630 		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2631 		return;
2632 
2633 	wait_panel_power_cycle(intel_dp);
2634 
2635 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2636 	pp = ironlake_get_pp_control(intel_dp);
2637 	if (IS_GEN(dev_priv, 5)) {
2638 		/* ILK workaround: disable reset around power sequence */
2639 		pp &= ~PANEL_POWER_RESET;
2640 		I915_WRITE(pp_ctrl_reg, pp);
2641 		POSTING_READ(pp_ctrl_reg);
2642 	}
2643 
2644 	pp |= PANEL_POWER_ON;
2645 	if (!IS_GEN(dev_priv, 5))
2646 		pp |= PANEL_POWER_RESET;
2647 
2648 	I915_WRITE(pp_ctrl_reg, pp);
2649 	POSTING_READ(pp_ctrl_reg);
2650 
2651 	wait_panel_on(intel_dp);
2652 	intel_dp->last_power_on = jiffies;
2653 
2654 	if (IS_GEN(dev_priv, 5)) {
2655 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2656 		I915_WRITE(pp_ctrl_reg, pp);
2657 		POSTING_READ(pp_ctrl_reg);
2658 	}
2659 }
2660 
2661 void intel_edp_panel_on(struct intel_dp *intel_dp)
2662 {
2663 	intel_wakeref_t wakeref;
2664 
2665 	if (!intel_dp_is_edp(intel_dp))
2666 		return;
2667 
2668 	with_pps_lock(intel_dp, wakeref)
2669 		edp_panel_on(intel_dp);
2670 }
2671 
2672 
2673 static void edp_panel_off(struct intel_dp *intel_dp)
2674 {
2675 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2676 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2677 	u32 pp;
2678 	i915_reg_t pp_ctrl_reg;
2679 
2680 	lockdep_assert_held(&dev_priv->pps_mutex);
2681 
2682 	if (!intel_dp_is_edp(intel_dp))
2683 		return;
2684 
2685 	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2686 		      port_name(dig_port->base.port));
2687 
2688 	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2689 	     port_name(dig_port->base.port));
2690 
2691 	pp = ironlake_get_pp_control(intel_dp);
2692 	/* We need to switch off panel power _and_ force vdd, for otherwise some
2693 	 * panels get very unhappy and cease to work. */
2694 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2695 		EDP_BLC_ENABLE);
2696 
2697 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2698 
2699 	intel_dp->want_panel_vdd = false;
2700 
2701 	I915_WRITE(pp_ctrl_reg, pp);
2702 	POSTING_READ(pp_ctrl_reg);
2703 
2704 	wait_panel_off(intel_dp);
2705 	intel_dp->panel_power_off_time = ktime_get_boottime();
2706 
2707 	/* We got a reference when we enabled the VDD. */
2708 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2709 }
2710 
2711 void intel_edp_panel_off(struct intel_dp *intel_dp)
2712 {
2713 	intel_wakeref_t wakeref;
2714 
2715 	if (!intel_dp_is_edp(intel_dp))
2716 		return;
2717 
2718 	with_pps_lock(intel_dp, wakeref)
2719 		edp_panel_off(intel_dp);
2720 }
2721 
2722 /* Enable backlight in the panel power control. */
2723 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2724 {
2725 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2726 	intel_wakeref_t wakeref;
2727 
2728 	/*
2729 	 * If we enable the backlight right away following a panel power
2730 	 * on, we may see slight flicker as the panel syncs with the eDP
2731 	 * link.  So delay a bit to make sure the image is solid before
2732 	 * allowing it to appear.
2733 	 */
2734 	wait_backlight_on(intel_dp);
2735 
2736 	with_pps_lock(intel_dp, wakeref) {
2737 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2738 		u32 pp;
2739 
2740 		pp = ironlake_get_pp_control(intel_dp);
2741 		pp |= EDP_BLC_ENABLE;
2742 
2743 		I915_WRITE(pp_ctrl_reg, pp);
2744 		POSTING_READ(pp_ctrl_reg);
2745 	}
2746 }
2747 
2748 /* Enable backlight PWM and backlight PP control. */
2749 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2750 			    const struct drm_connector_state *conn_state)
2751 {
2752 	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2753 
2754 	if (!intel_dp_is_edp(intel_dp))
2755 		return;
2756 
2757 	DRM_DEBUG_KMS("\n");
2758 
2759 	intel_panel_enable_backlight(crtc_state, conn_state);
2760 	_intel_edp_backlight_on(intel_dp);
2761 }
2762 
2763 /* Disable backlight in the panel power control. */
2764 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2765 {
2766 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2767 	intel_wakeref_t wakeref;
2768 
2769 	if (!intel_dp_is_edp(intel_dp))
2770 		return;
2771 
2772 	with_pps_lock(intel_dp, wakeref) {
2773 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2774 		u32 pp;
2775 
2776 		pp = ironlake_get_pp_control(intel_dp);
2777 		pp &= ~EDP_BLC_ENABLE;
2778 
2779 		I915_WRITE(pp_ctrl_reg, pp);
2780 		POSTING_READ(pp_ctrl_reg);
2781 	}
2782 
2783 	intel_dp->last_backlight_off = jiffies;
2784 	edp_wait_backlight_off(intel_dp);
2785 }
2786 
2787 /* Disable backlight PP control and backlight PWM. */
2788 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2789 {
2790 	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2791 
2792 	if (!intel_dp_is_edp(intel_dp))
2793 		return;
2794 
2795 	DRM_DEBUG_KMS("\n");
2796 
2797 	_intel_edp_backlight_off(intel_dp);
2798 	intel_panel_disable_backlight(old_conn_state);
2799 }
2800 
2801 /*
2802  * Hook for controlling the panel power control backlight through the bl_power
2803  * sysfs attribute. Take care to handle multiple calls.
2804  */
2805 static void intel_edp_backlight_power(struct intel_connector *connector,
2806 				      bool enable)
2807 {
2808 	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2809 	intel_wakeref_t wakeref;
2810 	bool is_enabled;
2811 
2812 	is_enabled = false;
2813 	with_pps_lock(intel_dp, wakeref)
2814 		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2815 	if (is_enabled == enable)
2816 		return;
2817 
2818 	DRM_DEBUG_KMS("panel power control backlight %s\n",
2819 		      enable ? "enable" : "disable");
2820 
2821 	if (enable)
2822 		_intel_edp_backlight_on(intel_dp);
2823 	else
2824 		_intel_edp_backlight_off(intel_dp);
2825 }
2826 
2827 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2828 {
2829 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2830 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2831 	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2832 
2833 	I915_STATE_WARN(cur_state != state,
2834 			"DP port %c state assertion failure (expected %s, current %s)\n",
2835 			port_name(dig_port->base.port),
2836 			onoff(state), onoff(cur_state));
2837 }
2838 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2839 
2840 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2841 {
2842 	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2843 
2844 	I915_STATE_WARN(cur_state != state,
2845 			"eDP PLL state assertion failure (expected %s, current %s)\n",
2846 			onoff(state), onoff(cur_state));
2847 }
2848 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2849 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2850 
2851 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2852 				const struct intel_crtc_state *pipe_config)
2853 {
2854 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2855 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2856 
2857 	assert_pipe_disabled(dev_priv, crtc->pipe);
2858 	assert_dp_port_disabled(intel_dp);
2859 	assert_edp_pll_disabled(dev_priv);
2860 
2861 	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2862 		      pipe_config->port_clock);
2863 
2864 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2865 
2866 	if (pipe_config->port_clock == 162000)
2867 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2868 	else
2869 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2870 
2871 	I915_WRITE(DP_A, intel_dp->DP);
2872 	POSTING_READ(DP_A);
2873 	udelay(500);
2874 
2875 	/*
2876 	 * [DevILK] Work around required when enabling DP PLL
2877 	 * while a pipe is enabled going to FDI:
2878 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2879 	 * 2. Program DP PLL enable
2880 	 */
2881 	if (IS_GEN(dev_priv, 5))
2882 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2883 
2884 	intel_dp->DP |= DP_PLL_ENABLE;
2885 
2886 	I915_WRITE(DP_A, intel_dp->DP);
2887 	POSTING_READ(DP_A);
2888 	udelay(200);
2889 }
2890 
2891 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
2892 				 const struct intel_crtc_state *old_crtc_state)
2893 {
2894 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2895 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2896 
2897 	assert_pipe_disabled(dev_priv, crtc->pipe);
2898 	assert_dp_port_disabled(intel_dp);
2899 	assert_edp_pll_enabled(dev_priv);
2900 
2901 	DRM_DEBUG_KMS("disabling eDP PLL\n");
2902 
2903 	intel_dp->DP &= ~DP_PLL_ENABLE;
2904 
2905 	I915_WRITE(DP_A, intel_dp->DP);
2906 	POSTING_READ(DP_A);
2907 	udelay(200);
2908 }
2909 
2910 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
2911 {
2912 	/*
2913 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
2914 	 * be capable of signalling downstream hpd with a long pulse.
2915 	 * Whether or not that means D3 is safe to use is not clear,
2916 	 * but let's assume so until proven otherwise.
2917 	 *
2918 	 * FIXME should really check all downstream ports...
2919 	 */
2920 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
2921 		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
2922 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
2923 }
2924 
2925 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
2926 					   const struct intel_crtc_state *crtc_state,
2927 					   bool enable)
2928 {
2929 	int ret;
2930 
2931 	if (!crtc_state->dsc_params.compression_enable)
2932 		return;
2933 
2934 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
2935 				 enable ? DP_DECOMPRESSION_EN : 0);
2936 	if (ret < 0)
2937 		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
2938 			      enable ? "enable" : "disable");
2939 }
2940 
2941 /* If the sink supports it, try to set the power state appropriately */
2942 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2943 {
2944 	int ret, i;
2945 
2946 	/* Should have a valid DPCD by this point */
2947 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2948 		return;
2949 
2950 	if (mode != DRM_MODE_DPMS_ON) {
2951 		if (downstream_hpd_needs_d0(intel_dp))
2952 			return;
2953 
2954 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2955 					 DP_SET_POWER_D3);
2956 	} else {
2957 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2958 
2959 		/*
2960 		 * When turning on, we need to retry for 1ms to give the sink
2961 		 * time to wake up.
2962 		 */
2963 		for (i = 0; i < 3; i++) {
2964 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2965 						 DP_SET_POWER_D0);
2966 			if (ret == 1)
2967 				break;
2968 			msleep(1);
2969 		}
2970 
2971 		if (ret == 1 && lspcon->active)
2972 			lspcon_wait_pcon_mode(lspcon);
2973 	}
2974 
2975 	if (ret != 1)
2976 		DRM_DEBUG_KMS("failed to %s sink power state\n",
2977 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2978 }
2979 
2980 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
2981 				 enum port port, enum pipe *pipe)
2982 {
2983 	enum pipe p;
2984 
2985 	for_each_pipe(dev_priv, p) {
2986 		u32 val = I915_READ(TRANS_DP_CTL(p));
2987 
2988 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
2989 			*pipe = p;
2990 			return true;
2991 		}
2992 	}
2993 
2994 	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
2995 
2996 	/* must initialize pipe to something for the asserts */
2997 	*pipe = PIPE_A;
2998 
2999 	return false;
3000 }
3001 
3002 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3003 			   i915_reg_t dp_reg, enum port port,
3004 			   enum pipe *pipe)
3005 {
3006 	bool ret;
3007 	u32 val;
3008 
3009 	val = I915_READ(dp_reg);
3010 
3011 	ret = val & DP_PORT_EN;
3012 
3013 	/* asserts want to know the pipe even if the port is disabled */
3014 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3015 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3016 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3017 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3018 	else if (IS_CHERRYVIEW(dev_priv))
3019 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3020 	else
3021 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3022 
3023 	return ret;
3024 }
3025 
3026 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3027 				  enum pipe *pipe)
3028 {
3029 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3030 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3031 	intel_wakeref_t wakeref;
3032 	bool ret;
3033 
3034 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3035 						     encoder->power_domain);
3036 	if (!wakeref)
3037 		return false;
3038 
3039 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3040 				    encoder->port, pipe);
3041 
3042 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3043 
3044 	return ret;
3045 }
3046 
3047 static void intel_dp_get_config(struct intel_encoder *encoder,
3048 				struct intel_crtc_state *pipe_config)
3049 {
3050 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3051 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3052 	u32 tmp, flags = 0;
3053 	enum port port = encoder->port;
3054 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3055 
3056 	if (encoder->type == INTEL_OUTPUT_EDP)
3057 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3058 	else
3059 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3060 
3061 	tmp = I915_READ(intel_dp->output_reg);
3062 
3063 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3064 
3065 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3066 		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3067 
3068 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3069 			flags |= DRM_MODE_FLAG_PHSYNC;
3070 		else
3071 			flags |= DRM_MODE_FLAG_NHSYNC;
3072 
3073 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3074 			flags |= DRM_MODE_FLAG_PVSYNC;
3075 		else
3076 			flags |= DRM_MODE_FLAG_NVSYNC;
3077 	} else {
3078 		if (tmp & DP_SYNC_HS_HIGH)
3079 			flags |= DRM_MODE_FLAG_PHSYNC;
3080 		else
3081 			flags |= DRM_MODE_FLAG_NHSYNC;
3082 
3083 		if (tmp & DP_SYNC_VS_HIGH)
3084 			flags |= DRM_MODE_FLAG_PVSYNC;
3085 		else
3086 			flags |= DRM_MODE_FLAG_NVSYNC;
3087 	}
3088 
3089 	pipe_config->base.adjusted_mode.flags |= flags;
3090 
3091 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3092 		pipe_config->limited_color_range = true;
3093 
3094 	pipe_config->lane_count =
3095 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3096 
3097 	intel_dp_get_m_n(crtc, pipe_config);
3098 
3099 	if (port == PORT_A) {
3100 		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3101 			pipe_config->port_clock = 162000;
3102 		else
3103 			pipe_config->port_clock = 270000;
3104 	}
3105 
3106 	pipe_config->base.adjusted_mode.crtc_clock =
3107 		intel_dotclock_calculate(pipe_config->port_clock,
3108 					 &pipe_config->dp_m_n);
3109 
3110 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3111 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3112 		/*
3113 		 * This is a big fat ugly hack.
3114 		 *
3115 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3116 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3117 		 * unknown we fail to light up. Yet the same BIOS boots up with
3118 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3119 		 * max, not what it tells us to use.
3120 		 *
3121 		 * Note: This will still be broken if the eDP panel is not lit
3122 		 * up by the BIOS, and thus we can't get the mode at module
3123 		 * load.
3124 		 */
3125 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3126 			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3127 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3128 	}
3129 }
3130 
3131 static void intel_disable_dp(struct intel_encoder *encoder,
3132 			     const struct intel_crtc_state *old_crtc_state,
3133 			     const struct drm_connector_state *old_conn_state)
3134 {
3135 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3136 
3137 	intel_dp->link_trained = false;
3138 
3139 	if (old_crtc_state->has_audio)
3140 		intel_audio_codec_disable(encoder,
3141 					  old_crtc_state, old_conn_state);
3142 
3143 	/* Make sure the panel is off before trying to change the mode. But also
3144 	 * ensure that we have vdd while we switch off the panel. */
3145 	intel_edp_panel_vdd_on(intel_dp);
3146 	intel_edp_backlight_off(old_conn_state);
3147 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3148 	intel_edp_panel_off(intel_dp);
3149 }
3150 
3151 static void g4x_disable_dp(struct intel_encoder *encoder,
3152 			   const struct intel_crtc_state *old_crtc_state,
3153 			   const struct drm_connector_state *old_conn_state)
3154 {
3155 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3156 }
3157 
3158 static void vlv_disable_dp(struct intel_encoder *encoder,
3159 			   const struct intel_crtc_state *old_crtc_state,
3160 			   const struct drm_connector_state *old_conn_state)
3161 {
3162 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3163 }
3164 
3165 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3166 				const struct intel_crtc_state *old_crtc_state,
3167 				const struct drm_connector_state *old_conn_state)
3168 {
3169 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3170 	enum port port = encoder->port;
3171 
3172 	/*
3173 	 * Bspec does not list a specific disable sequence for g4x DP.
3174 	 * Follow the ilk+ sequence (disable pipe before the port) for
3175 	 * g4x DP as it does not suffer from underruns like the normal
3176 	 * g4x modeset sequence (disable pipe after the port).
3177 	 */
3178 	intel_dp_link_down(encoder, old_crtc_state);
3179 
3180 	/* Only ilk+ has port A */
3181 	if (port == PORT_A)
3182 		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3183 }
3184 
3185 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3186 				const struct intel_crtc_state *old_crtc_state,
3187 				const struct drm_connector_state *old_conn_state)
3188 {
3189 	intel_dp_link_down(encoder, old_crtc_state);
3190 }
3191 
3192 static void chv_post_disable_dp(struct intel_encoder *encoder,
3193 				const struct intel_crtc_state *old_crtc_state,
3194 				const struct drm_connector_state *old_conn_state)
3195 {
3196 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3197 
3198 	intel_dp_link_down(encoder, old_crtc_state);
3199 
3200 	vlv_dpio_get(dev_priv);
3201 
3202 	/* Assert data lane reset */
3203 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3204 
3205 	vlv_dpio_put(dev_priv);
3206 }
3207 
3208 static void
3209 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3210 			 u32 *DP,
3211 			 u8 dp_train_pat)
3212 {
3213 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3214 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3215 	enum port port = intel_dig_port->base.port;
3216 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3217 
3218 	if (dp_train_pat & train_pat_mask)
3219 		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3220 			      dp_train_pat & train_pat_mask);
3221 
3222 	if (HAS_DDI(dev_priv)) {
3223 		u32 temp = I915_READ(DP_TP_CTL(port));
3224 
3225 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3226 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3227 		else
3228 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3229 
3230 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3231 		switch (dp_train_pat & train_pat_mask) {
3232 		case DP_TRAINING_PATTERN_DISABLE:
3233 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3234 
3235 			break;
3236 		case DP_TRAINING_PATTERN_1:
3237 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3238 			break;
3239 		case DP_TRAINING_PATTERN_2:
3240 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3241 			break;
3242 		case DP_TRAINING_PATTERN_3:
3243 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3244 			break;
3245 		case DP_TRAINING_PATTERN_4:
3246 			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3247 			break;
3248 		}
3249 		I915_WRITE(DP_TP_CTL(port), temp);
3250 
3251 	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3252 		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3253 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3254 
3255 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3256 		case DP_TRAINING_PATTERN_DISABLE:
3257 			*DP |= DP_LINK_TRAIN_OFF_CPT;
3258 			break;
3259 		case DP_TRAINING_PATTERN_1:
3260 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3261 			break;
3262 		case DP_TRAINING_PATTERN_2:
3263 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3264 			break;
3265 		case DP_TRAINING_PATTERN_3:
3266 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3267 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3268 			break;
3269 		}
3270 
3271 	} else {
3272 		*DP &= ~DP_LINK_TRAIN_MASK;
3273 
3274 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3275 		case DP_TRAINING_PATTERN_DISABLE:
3276 			*DP |= DP_LINK_TRAIN_OFF;
3277 			break;
3278 		case DP_TRAINING_PATTERN_1:
3279 			*DP |= DP_LINK_TRAIN_PAT_1;
3280 			break;
3281 		case DP_TRAINING_PATTERN_2:
3282 			*DP |= DP_LINK_TRAIN_PAT_2;
3283 			break;
3284 		case DP_TRAINING_PATTERN_3:
3285 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3286 			*DP |= DP_LINK_TRAIN_PAT_2;
3287 			break;
3288 		}
3289 	}
3290 }
3291 
3292 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3293 				 const struct intel_crtc_state *old_crtc_state)
3294 {
3295 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3296 
3297 	/* enable with pattern 1 (as per spec) */
3298 
3299 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3300 
3301 	/*
3302 	 * Magic for VLV/CHV. We _must_ first set up the register
3303 	 * without actually enabling the port, and then do another
3304 	 * write to enable the port. Otherwise link training will
3305 	 * fail when the power sequencer is freshly used for this port.
3306 	 */
3307 	intel_dp->DP |= DP_PORT_EN;
3308 	if (old_crtc_state->has_audio)
3309 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3310 
3311 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3312 	POSTING_READ(intel_dp->output_reg);
3313 }
3314 
3315 static void intel_enable_dp(struct intel_encoder *encoder,
3316 			    const struct intel_crtc_state *pipe_config,
3317 			    const struct drm_connector_state *conn_state)
3318 {
3319 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3320 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3321 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3322 	u32 dp_reg = I915_READ(intel_dp->output_reg);
3323 	enum pipe pipe = crtc->pipe;
3324 	intel_wakeref_t wakeref;
3325 
3326 	if (WARN_ON(dp_reg & DP_PORT_EN))
3327 		return;
3328 
3329 	with_pps_lock(intel_dp, wakeref) {
3330 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3331 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3332 
3333 		intel_dp_enable_port(intel_dp, pipe_config);
3334 
3335 		edp_panel_vdd_on(intel_dp);
3336 		edp_panel_on(intel_dp);
3337 		edp_panel_vdd_off(intel_dp, true);
3338 	}
3339 
3340 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3341 		unsigned int lane_mask = 0x0;
3342 
3343 		if (IS_CHERRYVIEW(dev_priv))
3344 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3345 
3346 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3347 				    lane_mask);
3348 	}
3349 
3350 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3351 	intel_dp_start_link_train(intel_dp);
3352 	intel_dp_stop_link_train(intel_dp);
3353 
3354 	if (pipe_config->has_audio) {
3355 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3356 				 pipe_name(pipe));
3357 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3358 	}
3359 }
3360 
3361 static void g4x_enable_dp(struct intel_encoder *encoder,
3362 			  const struct intel_crtc_state *pipe_config,
3363 			  const struct drm_connector_state *conn_state)
3364 {
3365 	intel_enable_dp(encoder, pipe_config, conn_state);
3366 	intel_edp_backlight_on(pipe_config, conn_state);
3367 }
3368 
3369 static void vlv_enable_dp(struct intel_encoder *encoder,
3370 			  const struct intel_crtc_state *pipe_config,
3371 			  const struct drm_connector_state *conn_state)
3372 {
3373 	intel_edp_backlight_on(pipe_config, conn_state);
3374 }
3375 
3376 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3377 			      const struct intel_crtc_state *pipe_config,
3378 			      const struct drm_connector_state *conn_state)
3379 {
3380 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3381 	enum port port = encoder->port;
3382 
3383 	intel_dp_prepare(encoder, pipe_config);
3384 
3385 	/* Only ilk+ has port A */
3386 	if (port == PORT_A)
3387 		ironlake_edp_pll_on(intel_dp, pipe_config);
3388 }
3389 
3390 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3391 {
3392 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3393 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3394 	enum pipe pipe = intel_dp->pps_pipe;
3395 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3396 
3397 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3398 
3399 	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3400 		return;
3401 
3402 	edp_panel_vdd_off_sync(intel_dp);
3403 
3404 	/*
3405 	 * VLV seems to get confused when multiple power sequencers
3406 	 * have the same port selected (even if only one has power/vdd
3407 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3408 	 * CHV on the other hand doesn't seem to mind having the same port
3409 	 * selected in multiple power sequencers, but let's clear the
3410 	 * port select always when logically disconnecting a power sequencer
3411 	 * from a port.
3412 	 */
3413 	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3414 		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3415 	I915_WRITE(pp_on_reg, 0);
3416 	POSTING_READ(pp_on_reg);
3417 
3418 	intel_dp->pps_pipe = INVALID_PIPE;
3419 }
3420 
3421 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3422 				      enum pipe pipe)
3423 {
3424 	struct intel_encoder *encoder;
3425 
3426 	lockdep_assert_held(&dev_priv->pps_mutex);
3427 
3428 	for_each_intel_dp(&dev_priv->drm, encoder) {
3429 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3430 		enum port port = encoder->port;
3431 
3432 		WARN(intel_dp->active_pipe == pipe,
3433 		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
3434 		     pipe_name(pipe), port_name(port));
3435 
3436 		if (intel_dp->pps_pipe != pipe)
3437 			continue;
3438 
3439 		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3440 			      pipe_name(pipe), port_name(port));
3441 
3442 		/* make sure vdd is off before we steal it */
3443 		vlv_detach_power_sequencer(intel_dp);
3444 	}
3445 }
3446 
3447 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3448 					   const struct intel_crtc_state *crtc_state)
3449 {
3450 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3451 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3452 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3453 
3454 	lockdep_assert_held(&dev_priv->pps_mutex);
3455 
3456 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3457 
3458 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3459 	    intel_dp->pps_pipe != crtc->pipe) {
3460 		/*
3461 		 * If another power sequencer was being used on this
3462 		 * port previously make sure to turn off vdd there while
3463 		 * we still have control of it.
3464 		 */
3465 		vlv_detach_power_sequencer(intel_dp);
3466 	}
3467 
3468 	/*
3469 	 * We may be stealing the power
3470 	 * sequencer from another port.
3471 	 */
3472 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3473 
3474 	intel_dp->active_pipe = crtc->pipe;
3475 
3476 	if (!intel_dp_is_edp(intel_dp))
3477 		return;
3478 
3479 	/* now it's all ours */
3480 	intel_dp->pps_pipe = crtc->pipe;
3481 
3482 	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3483 		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3484 
3485 	/* init power sequencer on this pipe and port */
3486 	intel_dp_init_panel_power_sequencer(intel_dp);
3487 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3488 }
3489 
3490 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3491 			      const struct intel_crtc_state *pipe_config,
3492 			      const struct drm_connector_state *conn_state)
3493 {
3494 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3495 
3496 	intel_enable_dp(encoder, pipe_config, conn_state);
3497 }
3498 
3499 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3500 				  const struct intel_crtc_state *pipe_config,
3501 				  const struct drm_connector_state *conn_state)
3502 {
3503 	intel_dp_prepare(encoder, pipe_config);
3504 
3505 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3506 }
3507 
3508 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3509 			      const struct intel_crtc_state *pipe_config,
3510 			      const struct drm_connector_state *conn_state)
3511 {
3512 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3513 
3514 	intel_enable_dp(encoder, pipe_config, conn_state);
3515 
3516 	/* Second common lane will stay alive on its own now */
3517 	chv_phy_release_cl2_override(encoder);
3518 }
3519 
3520 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3521 				  const struct intel_crtc_state *pipe_config,
3522 				  const struct drm_connector_state *conn_state)
3523 {
3524 	intel_dp_prepare(encoder, pipe_config);
3525 
3526 	chv_phy_pre_pll_enable(encoder, pipe_config);
3527 }
3528 
3529 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3530 				    const struct intel_crtc_state *old_crtc_state,
3531 				    const struct drm_connector_state *old_conn_state)
3532 {
3533 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3534 }
3535 
3536 /*
3537  * Fetch AUX CH registers 0x202 - 0x207 which contain
3538  * link status information
3539  */
3540 bool
3541 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3542 {
3543 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3544 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3545 }
3546 
3547 /* These are source-specific values. */
3548 u8
3549 intel_dp_voltage_max(struct intel_dp *intel_dp)
3550 {
3551 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3552 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3553 	enum port port = encoder->port;
3554 
3555 	if (HAS_DDI(dev_priv))
3556 		return intel_ddi_dp_voltage_max(encoder);
3557 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3558 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3559 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3560 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3561 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3562 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3563 	else
3564 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3565 }
3566 
3567 u8
3568 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3569 {
3570 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3571 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3572 	enum port port = encoder->port;
3573 
3574 	if (HAS_DDI(dev_priv)) {
3575 		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3576 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3577 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3578 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3579 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3580 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3581 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3582 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3583 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3584 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3585 		default:
3586 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3587 		}
3588 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3589 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3590 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3591 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3592 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3593 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3594 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3595 		default:
3596 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3597 		}
3598 	} else {
3599 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3600 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3601 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3602 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3603 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3604 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3605 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3606 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3607 		default:
3608 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3609 		}
3610 	}
3611 }
3612 
3613 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3614 {
3615 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3616 	unsigned long demph_reg_value, preemph_reg_value,
3617 		uniqtranscale_reg_value;
3618 	u8 train_set = intel_dp->train_set[0];
3619 
3620 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3621 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3622 		preemph_reg_value = 0x0004000;
3623 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3624 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3625 			demph_reg_value = 0x2B405555;
3626 			uniqtranscale_reg_value = 0x552AB83A;
3627 			break;
3628 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3629 			demph_reg_value = 0x2B404040;
3630 			uniqtranscale_reg_value = 0x5548B83A;
3631 			break;
3632 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3633 			demph_reg_value = 0x2B245555;
3634 			uniqtranscale_reg_value = 0x5560B83A;
3635 			break;
3636 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3637 			demph_reg_value = 0x2B405555;
3638 			uniqtranscale_reg_value = 0x5598DA3A;
3639 			break;
3640 		default:
3641 			return 0;
3642 		}
3643 		break;
3644 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3645 		preemph_reg_value = 0x0002000;
3646 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3647 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3648 			demph_reg_value = 0x2B404040;
3649 			uniqtranscale_reg_value = 0x5552B83A;
3650 			break;
3651 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3652 			demph_reg_value = 0x2B404848;
3653 			uniqtranscale_reg_value = 0x5580B83A;
3654 			break;
3655 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3656 			demph_reg_value = 0x2B404040;
3657 			uniqtranscale_reg_value = 0x55ADDA3A;
3658 			break;
3659 		default:
3660 			return 0;
3661 		}
3662 		break;
3663 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3664 		preemph_reg_value = 0x0000000;
3665 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3666 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3667 			demph_reg_value = 0x2B305555;
3668 			uniqtranscale_reg_value = 0x5570B83A;
3669 			break;
3670 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3671 			demph_reg_value = 0x2B2B4040;
3672 			uniqtranscale_reg_value = 0x55ADDA3A;
3673 			break;
3674 		default:
3675 			return 0;
3676 		}
3677 		break;
3678 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3679 		preemph_reg_value = 0x0006000;
3680 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3681 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3682 			demph_reg_value = 0x1B405555;
3683 			uniqtranscale_reg_value = 0x55ADDA3A;
3684 			break;
3685 		default:
3686 			return 0;
3687 		}
3688 		break;
3689 	default:
3690 		return 0;
3691 	}
3692 
3693 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3694 				 uniqtranscale_reg_value, 0);
3695 
3696 	return 0;
3697 }
3698 
3699 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3700 {
3701 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3702 	u32 deemph_reg_value, margin_reg_value;
3703 	bool uniq_trans_scale = false;
3704 	u8 train_set = intel_dp->train_set[0];
3705 
3706 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3707 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3708 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3709 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3710 			deemph_reg_value = 128;
3711 			margin_reg_value = 52;
3712 			break;
3713 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3714 			deemph_reg_value = 128;
3715 			margin_reg_value = 77;
3716 			break;
3717 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3718 			deemph_reg_value = 128;
3719 			margin_reg_value = 102;
3720 			break;
3721 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3722 			deemph_reg_value = 128;
3723 			margin_reg_value = 154;
3724 			uniq_trans_scale = true;
3725 			break;
3726 		default:
3727 			return 0;
3728 		}
3729 		break;
3730 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3731 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3732 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3733 			deemph_reg_value = 85;
3734 			margin_reg_value = 78;
3735 			break;
3736 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3737 			deemph_reg_value = 85;
3738 			margin_reg_value = 116;
3739 			break;
3740 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3741 			deemph_reg_value = 85;
3742 			margin_reg_value = 154;
3743 			break;
3744 		default:
3745 			return 0;
3746 		}
3747 		break;
3748 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3749 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3750 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3751 			deemph_reg_value = 64;
3752 			margin_reg_value = 104;
3753 			break;
3754 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3755 			deemph_reg_value = 64;
3756 			margin_reg_value = 154;
3757 			break;
3758 		default:
3759 			return 0;
3760 		}
3761 		break;
3762 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3763 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3764 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3765 			deemph_reg_value = 43;
3766 			margin_reg_value = 154;
3767 			break;
3768 		default:
3769 			return 0;
3770 		}
3771 		break;
3772 	default:
3773 		return 0;
3774 	}
3775 
3776 	chv_set_phy_signal_level(encoder, deemph_reg_value,
3777 				 margin_reg_value, uniq_trans_scale);
3778 
3779 	return 0;
3780 }
3781 
3782 static u32
3783 g4x_signal_levels(u8 train_set)
3784 {
3785 	u32 signal_levels = 0;
3786 
3787 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3788 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3789 	default:
3790 		signal_levels |= DP_VOLTAGE_0_4;
3791 		break;
3792 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3793 		signal_levels |= DP_VOLTAGE_0_6;
3794 		break;
3795 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3796 		signal_levels |= DP_VOLTAGE_0_8;
3797 		break;
3798 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3799 		signal_levels |= DP_VOLTAGE_1_2;
3800 		break;
3801 	}
3802 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3803 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3804 	default:
3805 		signal_levels |= DP_PRE_EMPHASIS_0;
3806 		break;
3807 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3808 		signal_levels |= DP_PRE_EMPHASIS_3_5;
3809 		break;
3810 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3811 		signal_levels |= DP_PRE_EMPHASIS_6;
3812 		break;
3813 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3814 		signal_levels |= DP_PRE_EMPHASIS_9_5;
3815 		break;
3816 	}
3817 	return signal_levels;
3818 }
3819 
3820 /* SNB CPU eDP voltage swing and pre-emphasis control */
3821 static u32
3822 snb_cpu_edp_signal_levels(u8 train_set)
3823 {
3824 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3825 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3826 	switch (signal_levels) {
3827 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3828 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3829 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3830 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3831 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3832 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3833 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3834 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3835 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3836 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3837 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3838 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3839 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3840 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3841 	default:
3842 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3843 			      "0x%x\n", signal_levels);
3844 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3845 	}
3846 }
3847 
3848 /* IVB CPU eDP voltage swing and pre-emphasis control */
3849 static u32
3850 ivb_cpu_edp_signal_levels(u8 train_set)
3851 {
3852 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3853 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3854 	switch (signal_levels) {
3855 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3856 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3857 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3858 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3859 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3860 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
3861 
3862 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3863 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3864 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3865 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3866 
3867 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3868 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3869 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3870 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3871 
3872 	default:
3873 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3874 			      "0x%x\n", signal_levels);
3875 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
3876 	}
3877 }
3878 
3879 void
3880 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3881 {
3882 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3883 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3884 	enum port port = intel_dig_port->base.port;
3885 	u32 signal_levels, mask = 0;
3886 	u8 train_set = intel_dp->train_set[0];
3887 
3888 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3889 		signal_levels = bxt_signal_levels(intel_dp);
3890 	} else if (HAS_DDI(dev_priv)) {
3891 		signal_levels = ddi_signal_levels(intel_dp);
3892 		mask = DDI_BUF_EMP_MASK;
3893 	} else if (IS_CHERRYVIEW(dev_priv)) {
3894 		signal_levels = chv_signal_levels(intel_dp);
3895 	} else if (IS_VALLEYVIEW(dev_priv)) {
3896 		signal_levels = vlv_signal_levels(intel_dp);
3897 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3898 		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3899 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3900 	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3901 		signal_levels = snb_cpu_edp_signal_levels(train_set);
3902 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3903 	} else {
3904 		signal_levels = g4x_signal_levels(train_set);
3905 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3906 	}
3907 
3908 	if (mask)
3909 		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3910 
3911 	DRM_DEBUG_KMS("Using vswing level %d\n",
3912 		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3913 	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3914 		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3915 			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3916 
3917 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3918 
3919 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3920 	POSTING_READ(intel_dp->output_reg);
3921 }
3922 
3923 void
3924 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3925 				       u8 dp_train_pat)
3926 {
3927 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3928 	struct drm_i915_private *dev_priv =
3929 		to_i915(intel_dig_port->base.base.dev);
3930 
3931 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3932 
3933 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3934 	POSTING_READ(intel_dp->output_reg);
3935 }
3936 
3937 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3938 {
3939 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3940 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3941 	enum port port = intel_dig_port->base.port;
3942 	u32 val;
3943 
3944 	if (!HAS_DDI(dev_priv))
3945 		return;
3946 
3947 	val = I915_READ(DP_TP_CTL(port));
3948 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3949 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3950 	I915_WRITE(DP_TP_CTL(port), val);
3951 
3952 	/*
3953 	 * On PORT_A we can have only eDP in SST mode. There the only reason
3954 	 * we need to set idle transmission mode is to work around a HW issue
3955 	 * where we enable the pipe while not in idle link-training mode.
3956 	 * In this case there is requirement to wait for a minimum number of
3957 	 * idle patterns to be sent.
3958 	 */
3959 	if (port == PORT_A)
3960 		return;
3961 
3962 	if (intel_de_wait_for_set(dev_priv, DP_TP_STATUS(port),
3963 				  DP_TP_STATUS_IDLE_DONE, 1))
3964 		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3965 }
3966 
3967 static void
3968 intel_dp_link_down(struct intel_encoder *encoder,
3969 		   const struct intel_crtc_state *old_crtc_state)
3970 {
3971 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3972 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3973 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3974 	enum port port = encoder->port;
3975 	u32 DP = intel_dp->DP;
3976 
3977 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3978 		return;
3979 
3980 	DRM_DEBUG_KMS("\n");
3981 
3982 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3983 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3984 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3985 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3986 	} else {
3987 		DP &= ~DP_LINK_TRAIN_MASK;
3988 		DP |= DP_LINK_TRAIN_PAT_IDLE;
3989 	}
3990 	I915_WRITE(intel_dp->output_reg, DP);
3991 	POSTING_READ(intel_dp->output_reg);
3992 
3993 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3994 	I915_WRITE(intel_dp->output_reg, DP);
3995 	POSTING_READ(intel_dp->output_reg);
3996 
3997 	/*
3998 	 * HW workaround for IBX, we need to move the port
3999 	 * to transcoder A after disabling it to allow the
4000 	 * matching HDMI port to be enabled on transcoder A.
4001 	 */
4002 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4003 		/*
4004 		 * We get CPU/PCH FIFO underruns on the other pipe when
4005 		 * doing the workaround. Sweep them under the rug.
4006 		 */
4007 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4008 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4009 
4010 		/* always enable with pattern 1 (as per spec) */
4011 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4012 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4013 			DP_LINK_TRAIN_PAT_1;
4014 		I915_WRITE(intel_dp->output_reg, DP);
4015 		POSTING_READ(intel_dp->output_reg);
4016 
4017 		DP &= ~DP_PORT_EN;
4018 		I915_WRITE(intel_dp->output_reg, DP);
4019 		POSTING_READ(intel_dp->output_reg);
4020 
4021 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4022 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4023 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4024 	}
4025 
4026 	msleep(intel_dp->panel_power_down_delay);
4027 
4028 	intel_dp->DP = DP;
4029 
4030 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4031 		intel_wakeref_t wakeref;
4032 
4033 		with_pps_lock(intel_dp, wakeref)
4034 			intel_dp->active_pipe = INVALID_PIPE;
4035 	}
4036 }
4037 
4038 static void
4039 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4040 {
4041 	u8 dpcd_ext[6];
4042 
4043 	/*
4044 	 * Prior to DP1.3 the bit represented by
4045 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4046 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4047 	 * the true capability of the panel. The only way to check is to
4048 	 * then compare 0000h and 2200h.
4049 	 */
4050 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4051 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4052 		return;
4053 
4054 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4055 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4056 		DRM_ERROR("DPCD failed read at extended capabilities\n");
4057 		return;
4058 	}
4059 
4060 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4061 		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4062 		return;
4063 	}
4064 
4065 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4066 		return;
4067 
4068 	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4069 		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4070 
4071 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4072 }
4073 
4074 bool
4075 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4076 {
4077 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4078 			     sizeof(intel_dp->dpcd)) < 0)
4079 		return false; /* aux transfer failed */
4080 
4081 	intel_dp_extended_receiver_capabilities(intel_dp);
4082 
4083 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4084 
4085 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4086 }
4087 
4088 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4089 {
4090 	u8 dprx = 0;
4091 
4092 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4093 			      &dprx) != 1)
4094 		return false;
4095 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4096 }
4097 
4098 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4099 {
4100 	/*
4101 	 * Clear the cached register set to avoid using stale values
4102 	 * for the sinks that do not support DSC.
4103 	 */
4104 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4105 
4106 	/* Clear fec_capable to avoid using stale values */
4107 	intel_dp->fec_capable = 0;
4108 
4109 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4110 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4111 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4112 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4113 				     intel_dp->dsc_dpcd,
4114 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4115 			DRM_ERROR("Failed to read DPCD register 0x%x\n",
4116 				  DP_DSC_SUPPORT);
4117 
4118 		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4119 			      (int)sizeof(intel_dp->dsc_dpcd),
4120 			      intel_dp->dsc_dpcd);
4121 
4122 		/* FEC is supported only on DP 1.4 */
4123 		if (!intel_dp_is_edp(intel_dp) &&
4124 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4125 				      &intel_dp->fec_capable) < 0)
4126 			DRM_ERROR("Failed to read FEC DPCD register\n");
4127 
4128 		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4129 	}
4130 }
4131 
4132 static bool
4133 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4134 {
4135 	struct drm_i915_private *dev_priv =
4136 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4137 
4138 	/* this function is meant to be called only once */
4139 	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4140 
4141 	if (!intel_dp_read_dpcd(intel_dp))
4142 		return false;
4143 
4144 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4145 			 drm_dp_is_branch(intel_dp->dpcd));
4146 
4147 	/*
4148 	 * Read the eDP display control registers.
4149 	 *
4150 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4151 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4152 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4153 	 * method). The display control registers should read zero if they're
4154 	 * not supported anyway.
4155 	 */
4156 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4157 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4158 			     sizeof(intel_dp->edp_dpcd))
4159 		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4160 			      intel_dp->edp_dpcd);
4161 
4162 	/*
4163 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4164 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4165 	 */
4166 	intel_psr_init_dpcd(intel_dp);
4167 
4168 	/* Read the eDP 1.4+ supported link rates. */
4169 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4170 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4171 		int i;
4172 
4173 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4174 				sink_rates, sizeof(sink_rates));
4175 
4176 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4177 			int val = le16_to_cpu(sink_rates[i]);
4178 
4179 			if (val == 0)
4180 				break;
4181 
4182 			/* Value read multiplied by 200kHz gives the per-lane
4183 			 * link rate in kHz. The source rates are, however,
4184 			 * stored in terms of LS_Clk kHz. The full conversion
4185 			 * back to symbols is
4186 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4187 			 */
4188 			intel_dp->sink_rates[i] = (val * 200) / 10;
4189 		}
4190 		intel_dp->num_sink_rates = i;
4191 	}
4192 
4193 	/*
4194 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4195 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4196 	 */
4197 	if (intel_dp->num_sink_rates)
4198 		intel_dp->use_rate_select = true;
4199 	else
4200 		intel_dp_set_sink_rates(intel_dp);
4201 
4202 	intel_dp_set_common_rates(intel_dp);
4203 
4204 	/* Read the eDP DSC DPCD registers */
4205 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4206 		intel_dp_get_dsc_sink_cap(intel_dp);
4207 
4208 	return true;
4209 }
4210 
4211 
4212 static bool
4213 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4214 {
4215 	if (!intel_dp_read_dpcd(intel_dp))
4216 		return false;
4217 
4218 	/*
4219 	 * Don't clobber cached eDP rates. Also skip re-reading
4220 	 * the OUI/ID since we know it won't change.
4221 	 */
4222 	if (!intel_dp_is_edp(intel_dp)) {
4223 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4224 				 drm_dp_is_branch(intel_dp->dpcd));
4225 
4226 		intel_dp_set_sink_rates(intel_dp);
4227 		intel_dp_set_common_rates(intel_dp);
4228 	}
4229 
4230 	/*
4231 	 * Some eDP panels do not set a valid value for sink count, that is why
4232 	 * it don't care about read it here and in intel_edp_init_dpcd().
4233 	 */
4234 	if (!intel_dp_is_edp(intel_dp) &&
4235 	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4236 		u8 count;
4237 		ssize_t r;
4238 
4239 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4240 		if (r < 1)
4241 			return false;
4242 
4243 		/*
4244 		 * Sink count can change between short pulse hpd hence
4245 		 * a member variable in intel_dp will track any changes
4246 		 * between short pulse interrupts.
4247 		 */
4248 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4249 
4250 		/*
4251 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4252 		 * a dongle is present but no display. Unless we require to know
4253 		 * if a dongle is present or not, we don't need to update
4254 		 * downstream port information. So, an early return here saves
4255 		 * time from performing other operations which are not required.
4256 		 */
4257 		if (!intel_dp->sink_count)
4258 			return false;
4259 	}
4260 
4261 	if (!drm_dp_is_branch(intel_dp->dpcd))
4262 		return true; /* native DP sink */
4263 
4264 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4265 		return true; /* no per-port downstream info */
4266 
4267 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4268 			     intel_dp->downstream_ports,
4269 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4270 		return false; /* downstream port status fetch failed */
4271 
4272 	return true;
4273 }
4274 
4275 static bool
4276 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4277 {
4278 	u8 mstm_cap;
4279 
4280 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4281 		return false;
4282 
4283 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4284 		return false;
4285 
4286 	return mstm_cap & DP_MST_CAP;
4287 }
4288 
4289 static bool
4290 intel_dp_can_mst(struct intel_dp *intel_dp)
4291 {
4292 	return i915_modparams.enable_dp_mst &&
4293 		intel_dp->can_mst &&
4294 		intel_dp_sink_can_mst(intel_dp);
4295 }
4296 
4297 static void
4298 intel_dp_configure_mst(struct intel_dp *intel_dp)
4299 {
4300 	struct intel_encoder *encoder =
4301 		&dp_to_dig_port(intel_dp)->base;
4302 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4303 
4304 	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
4305 		      port_name(encoder->port), yesno(intel_dp->can_mst),
4306 		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4307 
4308 	if (!intel_dp->can_mst)
4309 		return;
4310 
4311 	intel_dp->is_mst = sink_can_mst &&
4312 		i915_modparams.enable_dp_mst;
4313 
4314 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4315 					intel_dp->is_mst);
4316 }
4317 
4318 static bool
4319 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4320 {
4321 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4322 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4323 		DP_DPRX_ESI_LEN;
4324 }
4325 
4326 u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
4327 				int mode_clock, int mode_hdisplay)
4328 {
4329 	u16 bits_per_pixel, max_bpp_small_joiner_ram;
4330 	int i;
4331 
4332 	/*
4333 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
4334 	 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
4335 	 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
4336 	 * for MST -> TimeSlotsPerMTP has to be calculated
4337 	 */
4338 	bits_per_pixel = (link_clock * lane_count * 8 *
4339 			  DP_DSC_FEC_OVERHEAD_FACTOR) /
4340 		mode_clock;
4341 
4342 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
4343 	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
4344 		mode_hdisplay;
4345 
4346 	/*
4347 	 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
4348 	 * check, output bpp from small joiner RAM check)
4349 	 */
4350 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
4351 
4352 	/* Error out if the max bpp is less than smallest allowed valid bpp */
4353 	if (bits_per_pixel < valid_dsc_bpp[0]) {
4354 		DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
4355 		return 0;
4356 	}
4357 
4358 	/* Find the nearest match in the array of known BPPs from VESA */
4359 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
4360 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
4361 			break;
4362 	}
4363 	bits_per_pixel = valid_dsc_bpp[i];
4364 
4365 	/*
4366 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
4367 	 * fractional part is 0
4368 	 */
4369 	return bits_per_pixel << 4;
4370 }
4371 
4372 u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
4373 				int mode_clock,
4374 				int mode_hdisplay)
4375 {
4376 	u8 min_slice_count, i;
4377 	int max_slice_width;
4378 
4379 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
4380 		min_slice_count = DIV_ROUND_UP(mode_clock,
4381 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
4382 	else
4383 		min_slice_count = DIV_ROUND_UP(mode_clock,
4384 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
4385 
4386 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
4387 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
4388 		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
4389 			      max_slice_width);
4390 		return 0;
4391 	}
4392 	/* Also take into account max slice width */
4393 	min_slice_count = min_t(u8, min_slice_count,
4394 				DIV_ROUND_UP(mode_hdisplay,
4395 					     max_slice_width));
4396 
4397 	/* Find the closest match to the valid slice count values */
4398 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
4399 		if (valid_dsc_slicecount[i] >
4400 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
4401 						    false))
4402 			break;
4403 		if (min_slice_count  <= valid_dsc_slicecount[i])
4404 			return valid_dsc_slicecount[i];
4405 	}
4406 
4407 	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
4408 	return 0;
4409 }
4410 
4411 static void
4412 intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp,
4413 			       const struct intel_crtc_state *crtc_state)
4414 {
4415 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4416 	struct dp_sdp vsc_sdp = {};
4417 
4418 	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4419 	vsc_sdp.sdp_header.HB0 = 0;
4420 	vsc_sdp.sdp_header.HB1 = 0x7;
4421 
4422 	/*
4423 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4424 	 * Colorimetry Format indication.
4425 	 */
4426 	vsc_sdp.sdp_header.HB2 = 0x5;
4427 
4428 	/*
4429 	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4430 	 * Colorimetry Format indication (HB2 = 05h).
4431 	 */
4432 	vsc_sdp.sdp_header.HB3 = 0x13;
4433 
4434 	/*
4435 	 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h
4436 	 * DB16[3:0] DP 1.4a spec, Table 2-120
4437 	 */
4438 	vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/
4439 	/* RGB->YCBCR color conversion uses the BT.709 color space. */
4440 	vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4441 
4442 	/*
4443 	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4444 	 * the following Component Bit Depth values are defined:
4445 	 * 001b = 8bpc.
4446 	 * 010b = 10bpc.
4447 	 * 011b = 12bpc.
4448 	 * 100b = 16bpc.
4449 	 */
4450 	switch (crtc_state->pipe_bpp) {
4451 	case 24: /* 8bpc */
4452 		vsc_sdp.db[17] = 0x1;
4453 		break;
4454 	case 30: /* 10bpc */
4455 		vsc_sdp.db[17] = 0x2;
4456 		break;
4457 	case 36: /* 12bpc */
4458 		vsc_sdp.db[17] = 0x3;
4459 		break;
4460 	case 48: /* 16bpc */
4461 		vsc_sdp.db[17] = 0x4;
4462 		break;
4463 	default:
4464 		MISSING_CASE(crtc_state->pipe_bpp);
4465 		break;
4466 	}
4467 
4468 	/*
4469 	 * Dynamic Range (Bit 7)
4470 	 * 0 = VESA range, 1 = CTA range.
4471 	 * all YCbCr are always limited range
4472 	 */
4473 	vsc_sdp.db[17] |= 0x80;
4474 
4475 	/*
4476 	 * Content Type (Bits 2:0)
4477 	 * 000b = Not defined.
4478 	 * 001b = Graphics.
4479 	 * 010b = Photo.
4480 	 * 011b = Video.
4481 	 * 100b = Game
4482 	 * All other values are RESERVED.
4483 	 * Note: See CTA-861-G for the definition and expected
4484 	 * processing by a stream sink for the above contect types.
4485 	 */
4486 	vsc_sdp.db[18] = 0;
4487 
4488 	intel_dig_port->write_infoframe(&intel_dig_port->base,
4489 			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4490 }
4491 
4492 void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp,
4493 			       const struct intel_crtc_state *crtc_state)
4494 {
4495 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420)
4496 		return;
4497 
4498 	intel_pixel_encoding_setup_vsc(intel_dp, crtc_state);
4499 }
4500 
4501 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4502 {
4503 	int status = 0;
4504 	int test_link_rate;
4505 	u8 test_lane_count, test_link_bw;
4506 	/* (DP CTS 1.2)
4507 	 * 4.3.1.11
4508 	 */
4509 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4510 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4511 				   &test_lane_count);
4512 
4513 	if (status <= 0) {
4514 		DRM_DEBUG_KMS("Lane count read failed\n");
4515 		return DP_TEST_NAK;
4516 	}
4517 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4518 
4519 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4520 				   &test_link_bw);
4521 	if (status <= 0) {
4522 		DRM_DEBUG_KMS("Link Rate read failed\n");
4523 		return DP_TEST_NAK;
4524 	}
4525 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4526 
4527 	/* Validate the requested link rate and lane count */
4528 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4529 					test_lane_count))
4530 		return DP_TEST_NAK;
4531 
4532 	intel_dp->compliance.test_lane_count = test_lane_count;
4533 	intel_dp->compliance.test_link_rate = test_link_rate;
4534 
4535 	return DP_TEST_ACK;
4536 }
4537 
4538 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4539 {
4540 	u8 test_pattern;
4541 	u8 test_misc;
4542 	__be16 h_width, v_height;
4543 	int status = 0;
4544 
4545 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4546 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4547 				   &test_pattern);
4548 	if (status <= 0) {
4549 		DRM_DEBUG_KMS("Test pattern read failed\n");
4550 		return DP_TEST_NAK;
4551 	}
4552 	if (test_pattern != DP_COLOR_RAMP)
4553 		return DP_TEST_NAK;
4554 
4555 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4556 				  &h_width, 2);
4557 	if (status <= 0) {
4558 		DRM_DEBUG_KMS("H Width read failed\n");
4559 		return DP_TEST_NAK;
4560 	}
4561 
4562 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4563 				  &v_height, 2);
4564 	if (status <= 0) {
4565 		DRM_DEBUG_KMS("V Height read failed\n");
4566 		return DP_TEST_NAK;
4567 	}
4568 
4569 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4570 				   &test_misc);
4571 	if (status <= 0) {
4572 		DRM_DEBUG_KMS("TEST MISC read failed\n");
4573 		return DP_TEST_NAK;
4574 	}
4575 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4576 		return DP_TEST_NAK;
4577 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4578 		return DP_TEST_NAK;
4579 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4580 	case DP_TEST_BIT_DEPTH_6:
4581 		intel_dp->compliance.test_data.bpc = 6;
4582 		break;
4583 	case DP_TEST_BIT_DEPTH_8:
4584 		intel_dp->compliance.test_data.bpc = 8;
4585 		break;
4586 	default:
4587 		return DP_TEST_NAK;
4588 	}
4589 
4590 	intel_dp->compliance.test_data.video_pattern = test_pattern;
4591 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4592 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4593 	/* Set test active flag here so userspace doesn't interrupt things */
4594 	intel_dp->compliance.test_active = 1;
4595 
4596 	return DP_TEST_ACK;
4597 }
4598 
4599 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4600 {
4601 	u8 test_result = DP_TEST_ACK;
4602 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4603 	struct drm_connector *connector = &intel_connector->base;
4604 
4605 	if (intel_connector->detect_edid == NULL ||
4606 	    connector->edid_corrupt ||
4607 	    intel_dp->aux.i2c_defer_count > 6) {
4608 		/* Check EDID read for NACKs, DEFERs and corruption
4609 		 * (DP CTS 1.2 Core r1.1)
4610 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
4611 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
4612 		 *    4.2.2.6 : EDID corruption detected
4613 		 * Use failsafe mode for all cases
4614 		 */
4615 		if (intel_dp->aux.i2c_nack_count > 0 ||
4616 			intel_dp->aux.i2c_defer_count > 0)
4617 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4618 				      intel_dp->aux.i2c_nack_count,
4619 				      intel_dp->aux.i2c_defer_count);
4620 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4621 	} else {
4622 		struct edid *block = intel_connector->detect_edid;
4623 
4624 		/* We have to write the checksum
4625 		 * of the last block read
4626 		 */
4627 		block += intel_connector->detect_edid->extensions;
4628 
4629 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4630 				       block->checksum) <= 0)
4631 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4632 
4633 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4634 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4635 	}
4636 
4637 	/* Set test active flag here so userspace doesn't interrupt things */
4638 	intel_dp->compliance.test_active = 1;
4639 
4640 	return test_result;
4641 }
4642 
4643 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4644 {
4645 	u8 test_result = DP_TEST_NAK;
4646 	return test_result;
4647 }
4648 
4649 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4650 {
4651 	u8 response = DP_TEST_NAK;
4652 	u8 request = 0;
4653 	int status;
4654 
4655 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4656 	if (status <= 0) {
4657 		DRM_DEBUG_KMS("Could not read test request from sink\n");
4658 		goto update_status;
4659 	}
4660 
4661 	switch (request) {
4662 	case DP_TEST_LINK_TRAINING:
4663 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4664 		response = intel_dp_autotest_link_training(intel_dp);
4665 		break;
4666 	case DP_TEST_LINK_VIDEO_PATTERN:
4667 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4668 		response = intel_dp_autotest_video_pattern(intel_dp);
4669 		break;
4670 	case DP_TEST_LINK_EDID_READ:
4671 		DRM_DEBUG_KMS("EDID test requested\n");
4672 		response = intel_dp_autotest_edid(intel_dp);
4673 		break;
4674 	case DP_TEST_LINK_PHY_TEST_PATTERN:
4675 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4676 		response = intel_dp_autotest_phy_pattern(intel_dp);
4677 		break;
4678 	default:
4679 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4680 		break;
4681 	}
4682 
4683 	if (response & DP_TEST_ACK)
4684 		intel_dp->compliance.test_type = request;
4685 
4686 update_status:
4687 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4688 	if (status <= 0)
4689 		DRM_DEBUG_KMS("Could not write test response to sink\n");
4690 }
4691 
4692 static int
4693 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4694 {
4695 	bool bret;
4696 
4697 	if (intel_dp->is_mst) {
4698 		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4699 		int ret = 0;
4700 		int retry;
4701 		bool handled;
4702 
4703 		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4704 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4705 go_again:
4706 		if (bret == true) {
4707 
4708 			/* check link status - esi[10] = 0x200c */
4709 			if (intel_dp->active_mst_links > 0 &&
4710 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4711 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4712 				intel_dp_start_link_train(intel_dp);
4713 				intel_dp_stop_link_train(intel_dp);
4714 			}
4715 
4716 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4717 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4718 
4719 			if (handled) {
4720 				for (retry = 0; retry < 3; retry++) {
4721 					int wret;
4722 					wret = drm_dp_dpcd_write(&intel_dp->aux,
4723 								 DP_SINK_COUNT_ESI+1,
4724 								 &esi[1], 3);
4725 					if (wret == 3) {
4726 						break;
4727 					}
4728 				}
4729 
4730 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4731 				if (bret == true) {
4732 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4733 					goto go_again;
4734 				}
4735 			} else
4736 				ret = 0;
4737 
4738 			return ret;
4739 		} else {
4740 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4741 			intel_dp->is_mst = false;
4742 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4743 							intel_dp->is_mst);
4744 		}
4745 	}
4746 	return -EINVAL;
4747 }
4748 
4749 static bool
4750 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4751 {
4752 	u8 link_status[DP_LINK_STATUS_SIZE];
4753 
4754 	if (!intel_dp->link_trained)
4755 		return false;
4756 
4757 	/*
4758 	 * While PSR source HW is enabled, it will control main-link sending
4759 	 * frames, enabling and disabling it so trying to do a retrain will fail
4760 	 * as the link would or not be on or it could mix training patterns
4761 	 * and frame data at the same time causing retrain to fail.
4762 	 * Also when exiting PSR, HW will retrain the link anyways fixing
4763 	 * any link status error.
4764 	 */
4765 	if (intel_psr_enabled(intel_dp))
4766 		return false;
4767 
4768 	if (!intel_dp_get_link_status(intel_dp, link_status))
4769 		return false;
4770 
4771 	/*
4772 	 * Validate the cached values of intel_dp->link_rate and
4773 	 * intel_dp->lane_count before attempting to retrain.
4774 	 */
4775 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4776 					intel_dp->lane_count))
4777 		return false;
4778 
4779 	/* Retrain if Channel EQ or CR not ok */
4780 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4781 }
4782 
4783 int intel_dp_retrain_link(struct intel_encoder *encoder,
4784 			  struct drm_modeset_acquire_ctx *ctx)
4785 {
4786 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4787 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4788 	struct intel_connector *connector = intel_dp->attached_connector;
4789 	struct drm_connector_state *conn_state;
4790 	struct intel_crtc_state *crtc_state;
4791 	struct intel_crtc *crtc;
4792 	int ret;
4793 
4794 	/* FIXME handle the MST connectors as well */
4795 
4796 	if (!connector || connector->base.status != connector_status_connected)
4797 		return 0;
4798 
4799 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4800 			       ctx);
4801 	if (ret)
4802 		return ret;
4803 
4804 	conn_state = connector->base.state;
4805 
4806 	crtc = to_intel_crtc(conn_state->crtc);
4807 	if (!crtc)
4808 		return 0;
4809 
4810 	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4811 	if (ret)
4812 		return ret;
4813 
4814 	crtc_state = to_intel_crtc_state(crtc->base.state);
4815 
4816 	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4817 
4818 	if (!crtc_state->base.active)
4819 		return 0;
4820 
4821 	if (conn_state->commit &&
4822 	    !try_wait_for_completion(&conn_state->commit->hw_done))
4823 		return 0;
4824 
4825 	if (!intel_dp_needs_link_retrain(intel_dp))
4826 		return 0;
4827 
4828 	/* Suppress underruns caused by re-training */
4829 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4830 	if (crtc_state->has_pch_encoder)
4831 		intel_set_pch_fifo_underrun_reporting(dev_priv,
4832 						      intel_crtc_pch_transcoder(crtc), false);
4833 
4834 	intel_dp_start_link_train(intel_dp);
4835 	intel_dp_stop_link_train(intel_dp);
4836 
4837 	/* Keep underrun reporting disabled until things are stable */
4838 	intel_wait_for_vblank(dev_priv, crtc->pipe);
4839 
4840 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4841 	if (crtc_state->has_pch_encoder)
4842 		intel_set_pch_fifo_underrun_reporting(dev_priv,
4843 						      intel_crtc_pch_transcoder(crtc), true);
4844 
4845 	return 0;
4846 }
4847 
4848 /*
4849  * If display is now connected check links status,
4850  * there has been known issues of link loss triggering
4851  * long pulse.
4852  *
4853  * Some sinks (eg. ASUS PB287Q) seem to perform some
4854  * weird HPD ping pong during modesets. So we can apparently
4855  * end up with HPD going low during a modeset, and then
4856  * going back up soon after. And once that happens we must
4857  * retrain the link to get a picture. That's in case no
4858  * userspace component reacted to intermittent HPD dip.
4859  */
4860 static enum intel_hotplug_state
4861 intel_dp_hotplug(struct intel_encoder *encoder,
4862 		 struct intel_connector *connector,
4863 		 bool irq_received)
4864 {
4865 	struct drm_modeset_acquire_ctx ctx;
4866 	enum intel_hotplug_state state;
4867 	int ret;
4868 
4869 	state = intel_encoder_hotplug(encoder, connector, irq_received);
4870 
4871 	drm_modeset_acquire_init(&ctx, 0);
4872 
4873 	for (;;) {
4874 		ret = intel_dp_retrain_link(encoder, &ctx);
4875 
4876 		if (ret == -EDEADLK) {
4877 			drm_modeset_backoff(&ctx);
4878 			continue;
4879 		}
4880 
4881 		break;
4882 	}
4883 
4884 	drm_modeset_drop_locks(&ctx);
4885 	drm_modeset_acquire_fini(&ctx);
4886 	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4887 
4888 	/*
4889 	 * Keeping it consistent with intel_ddi_hotplug() and
4890 	 * intel_hdmi_hotplug().
4891 	 */
4892 	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
4893 		state = INTEL_HOTPLUG_RETRY;
4894 
4895 	return state;
4896 }
4897 
4898 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
4899 {
4900 	u8 val;
4901 
4902 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
4903 		return;
4904 
4905 	if (drm_dp_dpcd_readb(&intel_dp->aux,
4906 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
4907 		return;
4908 
4909 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
4910 
4911 	if (val & DP_AUTOMATED_TEST_REQUEST)
4912 		intel_dp_handle_test_request(intel_dp);
4913 
4914 	if (val & DP_CP_IRQ)
4915 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4916 
4917 	if (val & DP_SINK_SPECIFIC_IRQ)
4918 		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4919 }
4920 
4921 /*
4922  * According to DP spec
4923  * 5.1.2:
4924  *  1. Read DPCD
4925  *  2. Configure link according to Receiver Capabilities
4926  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4927  *  4. Check link status on receipt of hot-plug interrupt
4928  *
4929  * intel_dp_short_pulse -  handles short pulse interrupts
4930  * when full detection is not required.
4931  * Returns %true if short pulse is handled and full detection
4932  * is NOT required and %false otherwise.
4933  */
4934 static bool
4935 intel_dp_short_pulse(struct intel_dp *intel_dp)
4936 {
4937 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4938 	u8 old_sink_count = intel_dp->sink_count;
4939 	bool ret;
4940 
4941 	/*
4942 	 * Clearing compliance test variables to allow capturing
4943 	 * of values for next automated test request.
4944 	 */
4945 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4946 
4947 	/*
4948 	 * Now read the DPCD to see if it's actually running
4949 	 * If the current value of sink count doesn't match with
4950 	 * the value that was stored earlier or dpcd read failed
4951 	 * we need to do full detection
4952 	 */
4953 	ret = intel_dp_get_dpcd(intel_dp);
4954 
4955 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
4956 		/* No need to proceed if we are going to do full detect */
4957 		return false;
4958 	}
4959 
4960 	intel_dp_check_service_irq(intel_dp);
4961 
4962 	/* Handle CEC interrupts, if any */
4963 	drm_dp_cec_irq(&intel_dp->aux);
4964 
4965 	/* defer to the hotplug work for link retraining if needed */
4966 	if (intel_dp_needs_link_retrain(intel_dp))
4967 		return false;
4968 
4969 	intel_psr_short_pulse(intel_dp);
4970 
4971 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4972 		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4973 		/* Send a Hotplug Uevent to userspace to start modeset */
4974 		drm_kms_helper_hotplug_event(&dev_priv->drm);
4975 	}
4976 
4977 	return true;
4978 }
4979 
4980 /* XXX this is probably wrong for multiple downstream ports */
4981 static enum drm_connector_status
4982 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4983 {
4984 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4985 	u8 *dpcd = intel_dp->dpcd;
4986 	u8 type;
4987 
4988 	if (WARN_ON(intel_dp_is_edp(intel_dp)))
4989 		return connector_status_connected;
4990 
4991 	if (lspcon->active)
4992 		lspcon_resume(lspcon);
4993 
4994 	if (!intel_dp_get_dpcd(intel_dp))
4995 		return connector_status_disconnected;
4996 
4997 	/* if there's no downstream port, we're done */
4998 	if (!drm_dp_is_branch(dpcd))
4999 		return connector_status_connected;
5000 
5001 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5002 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5003 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5004 
5005 		return intel_dp->sink_count ?
5006 		connector_status_connected : connector_status_disconnected;
5007 	}
5008 
5009 	if (intel_dp_can_mst(intel_dp))
5010 		return connector_status_connected;
5011 
5012 	/* If no HPD, poke DDC gently */
5013 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5014 		return connector_status_connected;
5015 
5016 	/* Well we tried, say unknown for unreliable port types */
5017 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5018 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5019 		if (type == DP_DS_PORT_TYPE_VGA ||
5020 		    type == DP_DS_PORT_TYPE_NON_EDID)
5021 			return connector_status_unknown;
5022 	} else {
5023 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5024 			DP_DWN_STRM_PORT_TYPE_MASK;
5025 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5026 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5027 			return connector_status_unknown;
5028 	}
5029 
5030 	/* Anything else is out of spec, warn and ignore */
5031 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5032 	return connector_status_disconnected;
5033 }
5034 
5035 static enum drm_connector_status
5036 edp_detect(struct intel_dp *intel_dp)
5037 {
5038 	return connector_status_connected;
5039 }
5040 
5041 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5042 {
5043 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5044 	u32 bit;
5045 
5046 	switch (encoder->hpd_pin) {
5047 	case HPD_PORT_B:
5048 		bit = SDE_PORTB_HOTPLUG;
5049 		break;
5050 	case HPD_PORT_C:
5051 		bit = SDE_PORTC_HOTPLUG;
5052 		break;
5053 	case HPD_PORT_D:
5054 		bit = SDE_PORTD_HOTPLUG;
5055 		break;
5056 	default:
5057 		MISSING_CASE(encoder->hpd_pin);
5058 		return false;
5059 	}
5060 
5061 	return I915_READ(SDEISR) & bit;
5062 }
5063 
5064 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5065 {
5066 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5067 	u32 bit;
5068 
5069 	switch (encoder->hpd_pin) {
5070 	case HPD_PORT_B:
5071 		bit = SDE_PORTB_HOTPLUG_CPT;
5072 		break;
5073 	case HPD_PORT_C:
5074 		bit = SDE_PORTC_HOTPLUG_CPT;
5075 		break;
5076 	case HPD_PORT_D:
5077 		bit = SDE_PORTD_HOTPLUG_CPT;
5078 		break;
5079 	default:
5080 		MISSING_CASE(encoder->hpd_pin);
5081 		return false;
5082 	}
5083 
5084 	return I915_READ(SDEISR) & bit;
5085 }
5086 
5087 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5088 {
5089 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5090 	u32 bit;
5091 
5092 	switch (encoder->hpd_pin) {
5093 	case HPD_PORT_A:
5094 		bit = SDE_PORTA_HOTPLUG_SPT;
5095 		break;
5096 	case HPD_PORT_E:
5097 		bit = SDE_PORTE_HOTPLUG_SPT;
5098 		break;
5099 	default:
5100 		return cpt_digital_port_connected(encoder);
5101 	}
5102 
5103 	return I915_READ(SDEISR) & bit;
5104 }
5105 
5106 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5107 {
5108 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5109 	u32 bit;
5110 
5111 	switch (encoder->hpd_pin) {
5112 	case HPD_PORT_B:
5113 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5114 		break;
5115 	case HPD_PORT_C:
5116 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5117 		break;
5118 	case HPD_PORT_D:
5119 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5120 		break;
5121 	default:
5122 		MISSING_CASE(encoder->hpd_pin);
5123 		return false;
5124 	}
5125 
5126 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5127 }
5128 
5129 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5130 {
5131 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5132 	u32 bit;
5133 
5134 	switch (encoder->hpd_pin) {
5135 	case HPD_PORT_B:
5136 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5137 		break;
5138 	case HPD_PORT_C:
5139 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5140 		break;
5141 	case HPD_PORT_D:
5142 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5143 		break;
5144 	default:
5145 		MISSING_CASE(encoder->hpd_pin);
5146 		return false;
5147 	}
5148 
5149 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5150 }
5151 
5152 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5153 {
5154 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5155 
5156 	if (encoder->hpd_pin == HPD_PORT_A)
5157 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5158 	else
5159 		return ibx_digital_port_connected(encoder);
5160 }
5161 
5162 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5163 {
5164 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5165 
5166 	if (encoder->hpd_pin == HPD_PORT_A)
5167 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5168 	else
5169 		return cpt_digital_port_connected(encoder);
5170 }
5171 
5172 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5173 {
5174 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5175 
5176 	if (encoder->hpd_pin == HPD_PORT_A)
5177 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5178 	else
5179 		return cpt_digital_port_connected(encoder);
5180 }
5181 
5182 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5183 {
5184 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5185 
5186 	if (encoder->hpd_pin == HPD_PORT_A)
5187 		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5188 	else
5189 		return cpt_digital_port_connected(encoder);
5190 }
5191 
5192 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5193 {
5194 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5195 	u32 bit;
5196 
5197 	switch (encoder->hpd_pin) {
5198 	case HPD_PORT_A:
5199 		bit = BXT_DE_PORT_HP_DDIA;
5200 		break;
5201 	case HPD_PORT_B:
5202 		bit = BXT_DE_PORT_HP_DDIB;
5203 		break;
5204 	case HPD_PORT_C:
5205 		bit = BXT_DE_PORT_HP_DDIC;
5206 		break;
5207 	default:
5208 		MISSING_CASE(encoder->hpd_pin);
5209 		return false;
5210 	}
5211 
5212 	return I915_READ(GEN8_DE_PORT_ISR) & bit;
5213 }
5214 
5215 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
5216 				     struct intel_digital_port *intel_dig_port)
5217 {
5218 	enum port port = intel_dig_port->base.port;
5219 
5220 	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
5221 }
5222 
5223 static bool icl_digital_port_connected(struct intel_encoder *encoder)
5224 {
5225 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5226 	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5227 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5228 
5229 	if (intel_phy_is_combo(dev_priv, phy))
5230 		return icl_combo_port_connected(dev_priv, dig_port);
5231 	else if (intel_phy_is_tc(dev_priv, phy))
5232 		return intel_tc_port_connected(dig_port);
5233 	else
5234 		MISSING_CASE(encoder->hpd_pin);
5235 
5236 	return false;
5237 }
5238 
5239 /*
5240  * intel_digital_port_connected - is the specified port connected?
5241  * @encoder: intel_encoder
5242  *
5243  * In cases where there's a connector physically connected but it can't be used
5244  * by our hardware we also return false, since the rest of the driver should
5245  * pretty much treat the port as disconnected. This is relevant for type-C
5246  * (starting on ICL) where there's ownership involved.
5247  *
5248  * Return %true if port is connected, %false otherwise.
5249  */
5250 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5251 {
5252 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5253 
5254 	if (HAS_GMCH(dev_priv)) {
5255 		if (IS_GM45(dev_priv))
5256 			return gm45_digital_port_connected(encoder);
5257 		else
5258 			return g4x_digital_port_connected(encoder);
5259 	}
5260 
5261 	if (INTEL_GEN(dev_priv) >= 11)
5262 		return icl_digital_port_connected(encoder);
5263 	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5264 		return spt_digital_port_connected(encoder);
5265 	else if (IS_GEN9_LP(dev_priv))
5266 		return bxt_digital_port_connected(encoder);
5267 	else if (IS_GEN(dev_priv, 8))
5268 		return bdw_digital_port_connected(encoder);
5269 	else if (IS_GEN(dev_priv, 7))
5270 		return ivb_digital_port_connected(encoder);
5271 	else if (IS_GEN(dev_priv, 6))
5272 		return snb_digital_port_connected(encoder);
5273 	else if (IS_GEN(dev_priv, 5))
5274 		return ilk_digital_port_connected(encoder);
5275 
5276 	MISSING_CASE(INTEL_GEN(dev_priv));
5277 	return false;
5278 }
5279 
5280 bool intel_digital_port_connected(struct intel_encoder *encoder)
5281 {
5282 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5283 	bool is_connected = false;
5284 	intel_wakeref_t wakeref;
5285 
5286 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5287 		is_connected = __intel_digital_port_connected(encoder);
5288 
5289 	return is_connected;
5290 }
5291 
5292 static struct edid *
5293 intel_dp_get_edid(struct intel_dp *intel_dp)
5294 {
5295 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5296 
5297 	/* use cached edid if we have one */
5298 	if (intel_connector->edid) {
5299 		/* invalid edid */
5300 		if (IS_ERR(intel_connector->edid))
5301 			return NULL;
5302 
5303 		return drm_edid_duplicate(intel_connector->edid);
5304 	} else
5305 		return drm_get_edid(&intel_connector->base,
5306 				    &intel_dp->aux.ddc);
5307 }
5308 
5309 static void
5310 intel_dp_set_edid(struct intel_dp *intel_dp)
5311 {
5312 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5313 	struct edid *edid;
5314 
5315 	intel_dp_unset_edid(intel_dp);
5316 	edid = intel_dp_get_edid(intel_dp);
5317 	intel_connector->detect_edid = edid;
5318 
5319 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5320 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5321 }
5322 
5323 static void
5324 intel_dp_unset_edid(struct intel_dp *intel_dp)
5325 {
5326 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5327 
5328 	drm_dp_cec_unset_edid(&intel_dp->aux);
5329 	kfree(intel_connector->detect_edid);
5330 	intel_connector->detect_edid = NULL;
5331 
5332 	intel_dp->has_audio = false;
5333 }
5334 
5335 static int
5336 intel_dp_detect(struct drm_connector *connector,
5337 		struct drm_modeset_acquire_ctx *ctx,
5338 		bool force)
5339 {
5340 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5341 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5342 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5343 	struct intel_encoder *encoder = &dig_port->base;
5344 	enum drm_connector_status status;
5345 
5346 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5347 		      connector->base.id, connector->name);
5348 	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5349 
5350 	/* Can't disconnect eDP */
5351 	if (intel_dp_is_edp(intel_dp))
5352 		status = edp_detect(intel_dp);
5353 	else if (intel_digital_port_connected(encoder))
5354 		status = intel_dp_detect_dpcd(intel_dp);
5355 	else
5356 		status = connector_status_disconnected;
5357 
5358 	if (status == connector_status_disconnected) {
5359 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5360 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5361 
5362 		if (intel_dp->is_mst) {
5363 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5364 				      intel_dp->is_mst,
5365 				      intel_dp->mst_mgr.mst_state);
5366 			intel_dp->is_mst = false;
5367 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5368 							intel_dp->is_mst);
5369 		}
5370 
5371 		goto out;
5372 	}
5373 
5374 	if (intel_dp->reset_link_params) {
5375 		/* Initial max link lane count */
5376 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5377 
5378 		/* Initial max link rate */
5379 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5380 
5381 		intel_dp->reset_link_params = false;
5382 	}
5383 
5384 	intel_dp_print_rates(intel_dp);
5385 
5386 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5387 	if (INTEL_GEN(dev_priv) >= 11)
5388 		intel_dp_get_dsc_sink_cap(intel_dp);
5389 
5390 	intel_dp_configure_mst(intel_dp);
5391 
5392 	if (intel_dp->is_mst) {
5393 		/*
5394 		 * If we are in MST mode then this connector
5395 		 * won't appear connected or have anything
5396 		 * with EDID on it
5397 		 */
5398 		status = connector_status_disconnected;
5399 		goto out;
5400 	}
5401 
5402 	/*
5403 	 * Some external monitors do not signal loss of link synchronization
5404 	 * with an IRQ_HPD, so force a link status check.
5405 	 */
5406 	if (!intel_dp_is_edp(intel_dp)) {
5407 		int ret;
5408 
5409 		ret = intel_dp_retrain_link(encoder, ctx);
5410 		if (ret)
5411 			return ret;
5412 	}
5413 
5414 	/*
5415 	 * Clearing NACK and defer counts to get their exact values
5416 	 * while reading EDID which are required by Compliance tests
5417 	 * 4.2.2.4 and 4.2.2.5
5418 	 */
5419 	intel_dp->aux.i2c_nack_count = 0;
5420 	intel_dp->aux.i2c_defer_count = 0;
5421 
5422 	intel_dp_set_edid(intel_dp);
5423 	if (intel_dp_is_edp(intel_dp) ||
5424 	    to_intel_connector(connector)->detect_edid)
5425 		status = connector_status_connected;
5426 
5427 	intel_dp_check_service_irq(intel_dp);
5428 
5429 out:
5430 	if (status != connector_status_connected && !intel_dp->is_mst)
5431 		intel_dp_unset_edid(intel_dp);
5432 
5433 	return status;
5434 }
5435 
5436 static void
5437 intel_dp_force(struct drm_connector *connector)
5438 {
5439 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5440 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5441 	struct intel_encoder *intel_encoder = &dig_port->base;
5442 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5443 	enum intel_display_power_domain aux_domain =
5444 		intel_aux_power_domain(dig_port);
5445 	intel_wakeref_t wakeref;
5446 
5447 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5448 		      connector->base.id, connector->name);
5449 	intel_dp_unset_edid(intel_dp);
5450 
5451 	if (connector->status != connector_status_connected)
5452 		return;
5453 
5454 	wakeref = intel_display_power_get(dev_priv, aux_domain);
5455 
5456 	intel_dp_set_edid(intel_dp);
5457 
5458 	intel_display_power_put(dev_priv, aux_domain, wakeref);
5459 }
5460 
5461 static int intel_dp_get_modes(struct drm_connector *connector)
5462 {
5463 	struct intel_connector *intel_connector = to_intel_connector(connector);
5464 	struct edid *edid;
5465 
5466 	edid = intel_connector->detect_edid;
5467 	if (edid) {
5468 		int ret = intel_connector_update_modes(connector, edid);
5469 		if (ret)
5470 			return ret;
5471 	}
5472 
5473 	/* if eDP has no EDID, fall back to fixed mode */
5474 	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5475 	    intel_connector->panel.fixed_mode) {
5476 		struct drm_display_mode *mode;
5477 
5478 		mode = drm_mode_duplicate(connector->dev,
5479 					  intel_connector->panel.fixed_mode);
5480 		if (mode) {
5481 			drm_mode_probed_add(connector, mode);
5482 			return 1;
5483 		}
5484 	}
5485 
5486 	return 0;
5487 }
5488 
5489 static int
5490 intel_dp_connector_register(struct drm_connector *connector)
5491 {
5492 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5493 	struct drm_device *dev = connector->dev;
5494 	int ret;
5495 
5496 	ret = intel_connector_register(connector);
5497 	if (ret)
5498 		return ret;
5499 
5500 	i915_debugfs_connector_add(connector);
5501 
5502 	DRM_DEBUG_KMS("registering %s bus for %s\n",
5503 		      intel_dp->aux.name, connector->kdev->kobj.name);
5504 
5505 	intel_dp->aux.dev = connector->kdev;
5506 	ret = drm_dp_aux_register(&intel_dp->aux);
5507 	if (!ret)
5508 		drm_dp_cec_register_connector(&intel_dp->aux,
5509 					      connector->name, dev->dev);
5510 	return ret;
5511 }
5512 
5513 static void
5514 intel_dp_connector_unregister(struct drm_connector *connector)
5515 {
5516 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5517 
5518 	drm_dp_cec_unregister_connector(&intel_dp->aux);
5519 	drm_dp_aux_unregister(&intel_dp->aux);
5520 	intel_connector_unregister(connector);
5521 }
5522 
5523 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5524 {
5525 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5526 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5527 
5528 	intel_dp_mst_encoder_cleanup(intel_dig_port);
5529 	if (intel_dp_is_edp(intel_dp)) {
5530 		intel_wakeref_t wakeref;
5531 
5532 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5533 		/*
5534 		 * vdd might still be enabled do to the delayed vdd off.
5535 		 * Make sure vdd is actually turned off here.
5536 		 */
5537 		with_pps_lock(intel_dp, wakeref)
5538 			edp_panel_vdd_off_sync(intel_dp);
5539 
5540 		if (intel_dp->edp_notifier.notifier_call) {
5541 			unregister_reboot_notifier(&intel_dp->edp_notifier);
5542 			intel_dp->edp_notifier.notifier_call = NULL;
5543 		}
5544 	}
5545 
5546 	intel_dp_aux_fini(intel_dp);
5547 }
5548 
5549 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5550 {
5551 	intel_dp_encoder_flush_work(encoder);
5552 
5553 	drm_encoder_cleanup(encoder);
5554 	kfree(enc_to_dig_port(encoder));
5555 }
5556 
5557 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5558 {
5559 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5560 	intel_wakeref_t wakeref;
5561 
5562 	if (!intel_dp_is_edp(intel_dp))
5563 		return;
5564 
5565 	/*
5566 	 * vdd might still be enabled do to the delayed vdd off.
5567 	 * Make sure vdd is actually turned off here.
5568 	 */
5569 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5570 	with_pps_lock(intel_dp, wakeref)
5571 		edp_panel_vdd_off_sync(intel_dp);
5572 }
5573 
5574 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5575 {
5576 	long ret;
5577 
5578 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5579 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5580 					       msecs_to_jiffies(timeout));
5581 
5582 	if (!ret)
5583 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5584 }
5585 
5586 static
5587 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5588 				u8 *an)
5589 {
5590 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5591 	static const struct drm_dp_aux_msg msg = {
5592 		.request = DP_AUX_NATIVE_WRITE,
5593 		.address = DP_AUX_HDCP_AKSV,
5594 		.size = DRM_HDCP_KSV_LEN,
5595 	};
5596 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5597 	ssize_t dpcd_ret;
5598 	int ret;
5599 
5600 	/* Output An first, that's easy */
5601 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5602 				     an, DRM_HDCP_AN_LEN);
5603 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5604 		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5605 			      dpcd_ret);
5606 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5607 	}
5608 
5609 	/*
5610 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5611 	 * order to get it on the wire, we need to create the AUX header as if
5612 	 * we were writing the data, and then tickle the hardware to output the
5613 	 * data once the header is sent out.
5614 	 */
5615 	intel_dp_aux_header(txbuf, &msg);
5616 
5617 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5618 				rxbuf, sizeof(rxbuf),
5619 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5620 	if (ret < 0) {
5621 		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5622 		return ret;
5623 	} else if (ret == 0) {
5624 		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5625 		return -EIO;
5626 	}
5627 
5628 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5629 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5630 		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5631 			      reply);
5632 		return -EIO;
5633 	}
5634 	return 0;
5635 }
5636 
5637 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5638 				   u8 *bksv)
5639 {
5640 	ssize_t ret;
5641 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5642 			       DRM_HDCP_KSV_LEN);
5643 	if (ret != DRM_HDCP_KSV_LEN) {
5644 		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5645 		return ret >= 0 ? -EIO : ret;
5646 	}
5647 	return 0;
5648 }
5649 
5650 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5651 				      u8 *bstatus)
5652 {
5653 	ssize_t ret;
5654 	/*
5655 	 * For some reason the HDMI and DP HDCP specs call this register
5656 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
5657 	 * but in DP it's called BINFO.
5658 	 */
5659 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5660 			       bstatus, DRM_HDCP_BSTATUS_LEN);
5661 	if (ret != DRM_HDCP_BSTATUS_LEN) {
5662 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5663 		return ret >= 0 ? -EIO : ret;
5664 	}
5665 	return 0;
5666 }
5667 
5668 static
5669 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5670 			     u8 *bcaps)
5671 {
5672 	ssize_t ret;
5673 
5674 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5675 			       bcaps, 1);
5676 	if (ret != 1) {
5677 		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5678 		return ret >= 0 ? -EIO : ret;
5679 	}
5680 
5681 	return 0;
5682 }
5683 
5684 static
5685 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5686 				   bool *repeater_present)
5687 {
5688 	ssize_t ret;
5689 	u8 bcaps;
5690 
5691 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5692 	if (ret)
5693 		return ret;
5694 
5695 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5696 	return 0;
5697 }
5698 
5699 static
5700 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5701 				u8 *ri_prime)
5702 {
5703 	ssize_t ret;
5704 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5705 			       ri_prime, DRM_HDCP_RI_LEN);
5706 	if (ret != DRM_HDCP_RI_LEN) {
5707 		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5708 		return ret >= 0 ? -EIO : ret;
5709 	}
5710 	return 0;
5711 }
5712 
5713 static
5714 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5715 				 bool *ksv_ready)
5716 {
5717 	ssize_t ret;
5718 	u8 bstatus;
5719 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5720 			       &bstatus, 1);
5721 	if (ret != 1) {
5722 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5723 		return ret >= 0 ? -EIO : ret;
5724 	}
5725 	*ksv_ready = bstatus & DP_BSTATUS_READY;
5726 	return 0;
5727 }
5728 
5729 static
5730 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5731 				int num_downstream, u8 *ksv_fifo)
5732 {
5733 	ssize_t ret;
5734 	int i;
5735 
5736 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5737 	for (i = 0; i < num_downstream; i += 3) {
5738 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5739 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5740 				       DP_AUX_HDCP_KSV_FIFO,
5741 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
5742 				       len);
5743 		if (ret != len) {
5744 			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
5745 				      i, ret);
5746 			return ret >= 0 ? -EIO : ret;
5747 		}
5748 	}
5749 	return 0;
5750 }
5751 
5752 static
5753 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5754 				    int i, u32 *part)
5755 {
5756 	ssize_t ret;
5757 
5758 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5759 		return -EINVAL;
5760 
5761 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5762 			       DP_AUX_HDCP_V_PRIME(i), part,
5763 			       DRM_HDCP_V_PRIME_PART_LEN);
5764 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5765 		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5766 		return ret >= 0 ? -EIO : ret;
5767 	}
5768 	return 0;
5769 }
5770 
5771 static
5772 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5773 				    bool enable)
5774 {
5775 	/* Not used for single stream DisplayPort setups */
5776 	return 0;
5777 }
5778 
5779 static
5780 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5781 {
5782 	ssize_t ret;
5783 	u8 bstatus;
5784 
5785 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5786 			       &bstatus, 1);
5787 	if (ret != 1) {
5788 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5789 		return false;
5790 	}
5791 
5792 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5793 }
5794 
5795 static
5796 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
5797 			  bool *hdcp_capable)
5798 {
5799 	ssize_t ret;
5800 	u8 bcaps;
5801 
5802 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5803 	if (ret)
5804 		return ret;
5805 
5806 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
5807 	return 0;
5808 }
5809 
5810 struct hdcp2_dp_errata_stream_type {
5811 	u8	msg_id;
5812 	u8	stream_type;
5813 } __packed;
5814 
5815 struct hdcp2_dp_msg_data {
5816 	u8 msg_id;
5817 	u32 offset;
5818 	bool msg_detectable;
5819 	u32 timeout;
5820 	u32 timeout2; /* Added for non_paired situation */
5821 };
5822 
5823 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
5824 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
5825 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
5826 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
5827 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
5828 	  false, 0, 0 },
5829 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
5830 	  false, 0, 0 },
5831 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
5832 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
5833 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
5834 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
5835 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
5836 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
5837 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
5838 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
5839 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
5840 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
5841 	  0, 0 },
5842 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
5843 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
5844 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
5845 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
5846 	  0, 0 },
5847 	{ HDCP_2_2_REP_STREAM_MANAGE,
5848 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
5849 	  0, 0 },
5850 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
5851 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
5852 /* local define to shovel this through the write_2_2 interface */
5853 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
5854 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
5855 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
5856 	  0, 0 },
5857 };
5858 
5859 static inline
5860 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
5861 				  u8 *rx_status)
5862 {
5863 	ssize_t ret;
5864 
5865 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5866 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
5867 			       HDCP_2_2_DP_RXSTATUS_LEN);
5868 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
5869 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5870 		return ret >= 0 ? -EIO : ret;
5871 	}
5872 
5873 	return 0;
5874 }
5875 
5876 static
5877 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
5878 				  u8 msg_id, bool *msg_ready)
5879 {
5880 	u8 rx_status;
5881 	int ret;
5882 
5883 	*msg_ready = false;
5884 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
5885 	if (ret < 0)
5886 		return ret;
5887 
5888 	switch (msg_id) {
5889 	case HDCP_2_2_AKE_SEND_HPRIME:
5890 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
5891 			*msg_ready = true;
5892 		break;
5893 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
5894 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
5895 			*msg_ready = true;
5896 		break;
5897 	case HDCP_2_2_REP_SEND_RECVID_LIST:
5898 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
5899 			*msg_ready = true;
5900 		break;
5901 	default:
5902 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
5903 		return -EINVAL;
5904 	}
5905 
5906 	return 0;
5907 }
5908 
5909 static ssize_t
5910 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
5911 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
5912 {
5913 	struct intel_dp *dp = &intel_dig_port->dp;
5914 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
5915 	u8 msg_id = hdcp2_msg_data->msg_id;
5916 	int ret, timeout;
5917 	bool msg_ready = false;
5918 
5919 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
5920 		timeout = hdcp2_msg_data->timeout2;
5921 	else
5922 		timeout = hdcp2_msg_data->timeout;
5923 
5924 	/*
5925 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
5926 	 * availability. So Wait for timeout and read the msg.
5927 	 */
5928 	if (!hdcp2_msg_data->msg_detectable) {
5929 		mdelay(timeout);
5930 		ret = 0;
5931 	} else {
5932 		/*
5933 		 * As we want to check the msg availability at timeout, Ignoring
5934 		 * the timeout at wait for CP_IRQ.
5935 		 */
5936 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
5937 		ret = hdcp2_detect_msg_availability(intel_dig_port,
5938 						    msg_id, &msg_ready);
5939 		if (!msg_ready)
5940 			ret = -ETIMEDOUT;
5941 	}
5942 
5943 	if (ret)
5944 		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
5945 			      hdcp2_msg_data->msg_id, ret, timeout);
5946 
5947 	return ret;
5948 }
5949 
5950 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
5951 {
5952 	int i;
5953 
5954 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
5955 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
5956 			return &hdcp2_dp_msg_data[i];
5957 
5958 	return NULL;
5959 }
5960 
5961 static
5962 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
5963 			     void *buf, size_t size)
5964 {
5965 	struct intel_dp *dp = &intel_dig_port->dp;
5966 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
5967 	unsigned int offset;
5968 	u8 *byte = buf;
5969 	ssize_t ret, bytes_to_write, len;
5970 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
5971 
5972 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
5973 	if (!hdcp2_msg_data)
5974 		return -EINVAL;
5975 
5976 	offset = hdcp2_msg_data->offset;
5977 
5978 	/* No msg_id in DP HDCP2.2 msgs */
5979 	bytes_to_write = size - 1;
5980 	byte++;
5981 
5982 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
5983 
5984 	while (bytes_to_write) {
5985 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
5986 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
5987 
5988 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
5989 					offset, (void *)byte, len);
5990 		if (ret < 0)
5991 			return ret;
5992 
5993 		bytes_to_write -= ret;
5994 		byte += ret;
5995 		offset += ret;
5996 	}
5997 
5998 	return size;
5999 }
6000 
6001 static
6002 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6003 {
6004 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6005 	u32 dev_cnt;
6006 	ssize_t ret;
6007 
6008 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6009 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6010 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6011 	if (ret != HDCP_2_2_RXINFO_LEN)
6012 		return ret >= 0 ? -EIO : ret;
6013 
6014 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6015 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6016 
6017 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6018 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6019 
6020 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6021 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6022 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6023 
6024 	return ret;
6025 }
6026 
6027 static
6028 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6029 			    u8 msg_id, void *buf, size_t size)
6030 {
6031 	unsigned int offset;
6032 	u8 *byte = buf;
6033 	ssize_t ret, bytes_to_recv, len;
6034 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6035 
6036 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6037 	if (!hdcp2_msg_data)
6038 		return -EINVAL;
6039 	offset = hdcp2_msg_data->offset;
6040 
6041 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6042 	if (ret < 0)
6043 		return ret;
6044 
6045 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6046 		ret = get_receiver_id_list_size(intel_dig_port);
6047 		if (ret < 0)
6048 			return ret;
6049 
6050 		size = ret;
6051 	}
6052 	bytes_to_recv = size - 1;
6053 
6054 	/* DP adaptation msgs has no msg_id */
6055 	byte++;
6056 
6057 	while (bytes_to_recv) {
6058 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6059 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6060 
6061 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6062 				       (void *)byte, len);
6063 		if (ret < 0) {
6064 			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6065 			return ret;
6066 		}
6067 
6068 		bytes_to_recv -= ret;
6069 		byte += ret;
6070 		offset += ret;
6071 	}
6072 	byte = buf;
6073 	*byte = msg_id;
6074 
6075 	return size;
6076 }
6077 
6078 static
6079 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6080 				      bool is_repeater, u8 content_type)
6081 {
6082 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6083 
6084 	if (is_repeater)
6085 		return 0;
6086 
6087 	/*
6088 	 * Errata for DP: As Stream type is used for encryption, Receiver
6089 	 * should be communicated with stream type for the decryption of the
6090 	 * content.
6091 	 * Repeater will be communicated with stream type as a part of it's
6092 	 * auth later in time.
6093 	 */
6094 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6095 	stream_type_msg.stream_type = content_type;
6096 
6097 	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6098 					sizeof(stream_type_msg));
6099 }
6100 
6101 static
6102 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6103 {
6104 	u8 rx_status;
6105 	int ret;
6106 
6107 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6108 	if (ret)
6109 		return ret;
6110 
6111 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6112 		ret = HDCP_REAUTH_REQUEST;
6113 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6114 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6115 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6116 		ret = HDCP_TOPOLOGY_CHANGE;
6117 
6118 	return ret;
6119 }
6120 
6121 static
6122 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6123 			   bool *capable)
6124 {
6125 	u8 rx_caps[3];
6126 	int ret;
6127 
6128 	*capable = false;
6129 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6130 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6131 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6132 	if (ret != HDCP_2_2_RXCAPS_LEN)
6133 		return ret >= 0 ? -EIO : ret;
6134 
6135 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6136 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6137 		*capable = true;
6138 
6139 	return 0;
6140 }
6141 
6142 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6143 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
6144 	.read_bksv = intel_dp_hdcp_read_bksv,
6145 	.read_bstatus = intel_dp_hdcp_read_bstatus,
6146 	.repeater_present = intel_dp_hdcp_repeater_present,
6147 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
6148 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6149 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6150 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6151 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
6152 	.check_link = intel_dp_hdcp_check_link,
6153 	.hdcp_capable = intel_dp_hdcp_capable,
6154 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
6155 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
6156 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
6157 	.check_2_2_link = intel_dp_hdcp2_check_link,
6158 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
6159 	.protocol = HDCP_PROTOCOL_DP,
6160 };
6161 
6162 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6163 {
6164 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6165 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6166 
6167 	lockdep_assert_held(&dev_priv->pps_mutex);
6168 
6169 	if (!edp_have_panel_vdd(intel_dp))
6170 		return;
6171 
6172 	/*
6173 	 * The VDD bit needs a power domain reference, so if the bit is
6174 	 * already enabled when we boot or resume, grab this reference and
6175 	 * schedule a vdd off, so we don't hold on to the reference
6176 	 * indefinitely.
6177 	 */
6178 	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6179 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6180 
6181 	edp_panel_vdd_schedule_off(intel_dp);
6182 }
6183 
6184 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6185 {
6186 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6187 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6188 	enum pipe pipe;
6189 
6190 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6191 				  encoder->port, &pipe))
6192 		return pipe;
6193 
6194 	return INVALID_PIPE;
6195 }
6196 
6197 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6198 {
6199 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6200 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6201 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6202 	intel_wakeref_t wakeref;
6203 
6204 	if (!HAS_DDI(dev_priv))
6205 		intel_dp->DP = I915_READ(intel_dp->output_reg);
6206 
6207 	if (lspcon->active)
6208 		lspcon_resume(lspcon);
6209 
6210 	intel_dp->reset_link_params = true;
6211 
6212 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6213 	    !intel_dp_is_edp(intel_dp))
6214 		return;
6215 
6216 	with_pps_lock(intel_dp, wakeref) {
6217 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6218 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6219 
6220 		if (intel_dp_is_edp(intel_dp)) {
6221 			/*
6222 			 * Reinit the power sequencer, in case BIOS did
6223 			 * something nasty with it.
6224 			 */
6225 			intel_dp_pps_init(intel_dp);
6226 			intel_edp_panel_vdd_sanitize(intel_dp);
6227 		}
6228 	}
6229 }
6230 
6231 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6232 	.force = intel_dp_force,
6233 	.fill_modes = drm_helper_probe_single_connector_modes,
6234 	.atomic_get_property = intel_digital_connector_atomic_get_property,
6235 	.atomic_set_property = intel_digital_connector_atomic_set_property,
6236 	.late_register = intel_dp_connector_register,
6237 	.early_unregister = intel_dp_connector_unregister,
6238 	.destroy = intel_connector_destroy,
6239 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6240 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6241 };
6242 
6243 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6244 	.detect_ctx = intel_dp_detect,
6245 	.get_modes = intel_dp_get_modes,
6246 	.mode_valid = intel_dp_mode_valid,
6247 	.atomic_check = intel_digital_connector_atomic_check,
6248 };
6249 
6250 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6251 	.reset = intel_dp_encoder_reset,
6252 	.destroy = intel_dp_encoder_destroy,
6253 };
6254 
6255 enum irqreturn
6256 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6257 {
6258 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6259 
6260 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6261 		/*
6262 		 * vdd off can generate a long pulse on eDP which
6263 		 * would require vdd on to handle it, and thus we
6264 		 * would end up in an endless cycle of
6265 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6266 		 */
6267 		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6268 			      port_name(intel_dig_port->base.port));
6269 		return IRQ_HANDLED;
6270 	}
6271 
6272 	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6273 		      port_name(intel_dig_port->base.port),
6274 		      long_hpd ? "long" : "short");
6275 
6276 	if (long_hpd) {
6277 		intel_dp->reset_link_params = true;
6278 		return IRQ_NONE;
6279 	}
6280 
6281 	if (intel_dp->is_mst) {
6282 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6283 			/*
6284 			 * If we were in MST mode, and device is not
6285 			 * there, get out of MST mode
6286 			 */
6287 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6288 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6289 			intel_dp->is_mst = false;
6290 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6291 							intel_dp->is_mst);
6292 
6293 			return IRQ_NONE;
6294 		}
6295 	}
6296 
6297 	if (!intel_dp->is_mst) {
6298 		bool handled;
6299 
6300 		handled = intel_dp_short_pulse(intel_dp);
6301 
6302 		if (!handled)
6303 			return IRQ_NONE;
6304 	}
6305 
6306 	return IRQ_HANDLED;
6307 }
6308 
6309 /* check the VBT to see whether the eDP is on another port */
6310 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6311 {
6312 	/*
6313 	 * eDP not supported on g4x. so bail out early just
6314 	 * for a bit extra safety in case the VBT is bonkers.
6315 	 */
6316 	if (INTEL_GEN(dev_priv) < 5)
6317 		return false;
6318 
6319 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6320 		return true;
6321 
6322 	return intel_bios_is_port_edp(dev_priv, port);
6323 }
6324 
6325 static void
6326 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6327 {
6328 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6329 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6330 
6331 	if (!IS_G4X(dev_priv) && port != PORT_A)
6332 		intel_attach_force_audio_property(connector);
6333 
6334 	intel_attach_broadcast_rgb_property(connector);
6335 	if (HAS_GMCH(dev_priv))
6336 		drm_connector_attach_max_bpc_property(connector, 6, 10);
6337 	else if (INTEL_GEN(dev_priv) >= 5)
6338 		drm_connector_attach_max_bpc_property(connector, 6, 12);
6339 
6340 	if (intel_dp_is_edp(intel_dp)) {
6341 		u32 allowed_scalers;
6342 
6343 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6344 		if (!HAS_GMCH(dev_priv))
6345 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6346 
6347 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6348 
6349 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6350 
6351 	}
6352 }
6353 
6354 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6355 {
6356 	intel_dp->panel_power_off_time = ktime_get_boottime();
6357 	intel_dp->last_power_on = jiffies;
6358 	intel_dp->last_backlight_off = jiffies;
6359 }
6360 
6361 static void
6362 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6363 {
6364 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6365 	u32 pp_on, pp_off, pp_ctl;
6366 	struct pps_registers regs;
6367 
6368 	intel_pps_get_registers(intel_dp, &regs);
6369 
6370 	pp_ctl = ironlake_get_pp_control(intel_dp);
6371 
6372 	/* Ensure PPS is unlocked */
6373 	if (!HAS_DDI(dev_priv))
6374 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6375 
6376 	pp_on = I915_READ(regs.pp_on);
6377 	pp_off = I915_READ(regs.pp_off);
6378 
6379 	/* Pull timing values out of registers */
6380 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6381 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6382 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6383 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6384 
6385 	if (i915_mmio_reg_valid(regs.pp_div)) {
6386 		u32 pp_div;
6387 
6388 		pp_div = I915_READ(regs.pp_div);
6389 
6390 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6391 	} else {
6392 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6393 	}
6394 }
6395 
6396 static void
6397 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6398 {
6399 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6400 		      state_name,
6401 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6402 }
6403 
6404 static void
6405 intel_pps_verify_state(struct intel_dp *intel_dp)
6406 {
6407 	struct edp_power_seq hw;
6408 	struct edp_power_seq *sw = &intel_dp->pps_delays;
6409 
6410 	intel_pps_readout_hw_state(intel_dp, &hw);
6411 
6412 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6413 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6414 		DRM_ERROR("PPS state mismatch\n");
6415 		intel_pps_dump_state("sw", sw);
6416 		intel_pps_dump_state("hw", &hw);
6417 	}
6418 }
6419 
6420 static void
6421 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6422 {
6423 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6424 	struct edp_power_seq cur, vbt, spec,
6425 		*final = &intel_dp->pps_delays;
6426 
6427 	lockdep_assert_held(&dev_priv->pps_mutex);
6428 
6429 	/* already initialized? */
6430 	if (final->t11_t12 != 0)
6431 		return;
6432 
6433 	intel_pps_readout_hw_state(intel_dp, &cur);
6434 
6435 	intel_pps_dump_state("cur", &cur);
6436 
6437 	vbt = dev_priv->vbt.edp.pps;
6438 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6439 	 * of 500ms appears to be too short. Ocassionally the panel
6440 	 * just fails to power back on. Increasing the delay to 800ms
6441 	 * seems sufficient to avoid this problem.
6442 	 */
6443 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6444 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6445 		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6446 			      vbt.t11_t12);
6447 	}
6448 	/* T11_T12 delay is special and actually in units of 100ms, but zero
6449 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6450 	 * table multiplies it with 1000 to make it in units of 100usec,
6451 	 * too. */
6452 	vbt.t11_t12 += 100 * 10;
6453 
6454 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6455 	 * our hw here, which are all in 100usec. */
6456 	spec.t1_t3 = 210 * 10;
6457 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6458 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6459 	spec.t10 = 500 * 10;
6460 	/* This one is special and actually in units of 100ms, but zero
6461 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6462 	 * table multiplies it with 1000 to make it in units of 100usec,
6463 	 * too. */
6464 	spec.t11_t12 = (510 + 100) * 10;
6465 
6466 	intel_pps_dump_state("vbt", &vbt);
6467 
6468 	/* Use the max of the register settings and vbt. If both are
6469 	 * unset, fall back to the spec limits. */
6470 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6471 				       spec.field : \
6472 				       max(cur.field, vbt.field))
6473 	assign_final(t1_t3);
6474 	assign_final(t8);
6475 	assign_final(t9);
6476 	assign_final(t10);
6477 	assign_final(t11_t12);
6478 #undef assign_final
6479 
6480 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6481 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
6482 	intel_dp->backlight_on_delay = get_delay(t8);
6483 	intel_dp->backlight_off_delay = get_delay(t9);
6484 	intel_dp->panel_power_down_delay = get_delay(t10);
6485 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6486 #undef get_delay
6487 
6488 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6489 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6490 		      intel_dp->panel_power_cycle_delay);
6491 
6492 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6493 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6494 
6495 	/*
6496 	 * We override the HW backlight delays to 1 because we do manual waits
6497 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
6498 	 * don't do this, we'll end up waiting for the backlight off delay
6499 	 * twice: once when we do the manual sleep, and once when we disable
6500 	 * the panel and wait for the PP_STATUS bit to become zero.
6501 	 */
6502 	final->t8 = 1;
6503 	final->t9 = 1;
6504 
6505 	/*
6506 	 * HW has only a 100msec granularity for t11_t12 so round it up
6507 	 * accordingly.
6508 	 */
6509 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6510 }
6511 
6512 static void
6513 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6514 					      bool force_disable_vdd)
6515 {
6516 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6517 	u32 pp_on, pp_off, port_sel = 0;
6518 	int div = dev_priv->rawclk_freq / 1000;
6519 	struct pps_registers regs;
6520 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6521 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6522 
6523 	lockdep_assert_held(&dev_priv->pps_mutex);
6524 
6525 	intel_pps_get_registers(intel_dp, &regs);
6526 
6527 	/*
6528 	 * On some VLV machines the BIOS can leave the VDD
6529 	 * enabled even on power sequencers which aren't
6530 	 * hooked up to any port. This would mess up the
6531 	 * power domain tracking the first time we pick
6532 	 * one of these power sequencers for use since
6533 	 * edp_panel_vdd_on() would notice that the VDD was
6534 	 * already on and therefore wouldn't grab the power
6535 	 * domain reference. Disable VDD first to avoid this.
6536 	 * This also avoids spuriously turning the VDD on as
6537 	 * soon as the new power sequencer gets initialized.
6538 	 */
6539 	if (force_disable_vdd) {
6540 		u32 pp = ironlake_get_pp_control(intel_dp);
6541 
6542 		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6543 
6544 		if (pp & EDP_FORCE_VDD)
6545 			DRM_DEBUG_KMS("VDD already on, disabling first\n");
6546 
6547 		pp &= ~EDP_FORCE_VDD;
6548 
6549 		I915_WRITE(regs.pp_ctrl, pp);
6550 	}
6551 
6552 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6553 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6554 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6555 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6556 
6557 	/* Haswell doesn't have any port selection bits for the panel
6558 	 * power sequencer any more. */
6559 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6560 		port_sel = PANEL_PORT_SELECT_VLV(port);
6561 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6562 		switch (port) {
6563 		case PORT_A:
6564 			port_sel = PANEL_PORT_SELECT_DPA;
6565 			break;
6566 		case PORT_C:
6567 			port_sel = PANEL_PORT_SELECT_DPC;
6568 			break;
6569 		case PORT_D:
6570 			port_sel = PANEL_PORT_SELECT_DPD;
6571 			break;
6572 		default:
6573 			MISSING_CASE(port);
6574 			break;
6575 		}
6576 	}
6577 
6578 	pp_on |= port_sel;
6579 
6580 	I915_WRITE(regs.pp_on, pp_on);
6581 	I915_WRITE(regs.pp_off, pp_off);
6582 
6583 	/*
6584 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
6585 	 */
6586 	if (i915_mmio_reg_valid(regs.pp_div)) {
6587 		I915_WRITE(regs.pp_div,
6588 			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6589 			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6590 	} else {
6591 		u32 pp_ctl;
6592 
6593 		pp_ctl = I915_READ(regs.pp_ctrl);
6594 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6595 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6596 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6597 	}
6598 
6599 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6600 		      I915_READ(regs.pp_on),
6601 		      I915_READ(regs.pp_off),
6602 		      i915_mmio_reg_valid(regs.pp_div) ?
6603 		      I915_READ(regs.pp_div) :
6604 		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6605 }
6606 
6607 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6608 {
6609 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6610 
6611 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6612 		vlv_initial_power_sequencer_setup(intel_dp);
6613 	} else {
6614 		intel_dp_init_panel_power_sequencer(intel_dp);
6615 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6616 	}
6617 }
6618 
6619 /**
6620  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6621  * @dev_priv: i915 device
6622  * @crtc_state: a pointer to the active intel_crtc_state
6623  * @refresh_rate: RR to be programmed
6624  *
6625  * This function gets called when refresh rate (RR) has to be changed from
6626  * one frequency to another. Switches can be between high and low RR
6627  * supported by the panel or to any other RR based on media playback (in
6628  * this case, RR value needs to be passed from user space).
6629  *
6630  * The caller of this function needs to take a lock on dev_priv->drrs.
6631  */
6632 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6633 				    const struct intel_crtc_state *crtc_state,
6634 				    int refresh_rate)
6635 {
6636 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6637 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6638 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6639 
6640 	if (refresh_rate <= 0) {
6641 		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6642 		return;
6643 	}
6644 
6645 	if (intel_dp == NULL) {
6646 		DRM_DEBUG_KMS("DRRS not supported.\n");
6647 		return;
6648 	}
6649 
6650 	if (!intel_crtc) {
6651 		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6652 		return;
6653 	}
6654 
6655 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6656 		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6657 		return;
6658 	}
6659 
6660 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6661 			refresh_rate)
6662 		index = DRRS_LOW_RR;
6663 
6664 	if (index == dev_priv->drrs.refresh_rate_type) {
6665 		DRM_DEBUG_KMS(
6666 			"DRRS requested for previously set RR...ignoring\n");
6667 		return;
6668 	}
6669 
6670 	if (!crtc_state->base.active) {
6671 		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6672 		return;
6673 	}
6674 
6675 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6676 		switch (index) {
6677 		case DRRS_HIGH_RR:
6678 			intel_dp_set_m_n(crtc_state, M1_N1);
6679 			break;
6680 		case DRRS_LOW_RR:
6681 			intel_dp_set_m_n(crtc_state, M2_N2);
6682 			break;
6683 		case DRRS_MAX_RR:
6684 		default:
6685 			DRM_ERROR("Unsupported refreshrate type\n");
6686 		}
6687 	} else if (INTEL_GEN(dev_priv) > 6) {
6688 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6689 		u32 val;
6690 
6691 		val = I915_READ(reg);
6692 		if (index > DRRS_HIGH_RR) {
6693 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6694 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6695 			else
6696 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6697 		} else {
6698 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6699 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6700 			else
6701 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6702 		}
6703 		I915_WRITE(reg, val);
6704 	}
6705 
6706 	dev_priv->drrs.refresh_rate_type = index;
6707 
6708 	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6709 }
6710 
6711 /**
6712  * intel_edp_drrs_enable - init drrs struct if supported
6713  * @intel_dp: DP struct
6714  * @crtc_state: A pointer to the active crtc state.
6715  *
6716  * Initializes frontbuffer_bits and drrs.dp
6717  */
6718 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6719 			   const struct intel_crtc_state *crtc_state)
6720 {
6721 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6722 
6723 	if (!crtc_state->has_drrs) {
6724 		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
6725 		return;
6726 	}
6727 
6728 	if (dev_priv->psr.enabled) {
6729 		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
6730 		return;
6731 	}
6732 
6733 	mutex_lock(&dev_priv->drrs.mutex);
6734 	if (dev_priv->drrs.dp) {
6735 		DRM_DEBUG_KMS("DRRS already enabled\n");
6736 		goto unlock;
6737 	}
6738 
6739 	dev_priv->drrs.busy_frontbuffer_bits = 0;
6740 
6741 	dev_priv->drrs.dp = intel_dp;
6742 
6743 unlock:
6744 	mutex_unlock(&dev_priv->drrs.mutex);
6745 }
6746 
6747 /**
6748  * intel_edp_drrs_disable - Disable DRRS
6749  * @intel_dp: DP struct
6750  * @old_crtc_state: Pointer to old crtc_state.
6751  *
6752  */
6753 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6754 			    const struct intel_crtc_state *old_crtc_state)
6755 {
6756 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6757 
6758 	if (!old_crtc_state->has_drrs)
6759 		return;
6760 
6761 	mutex_lock(&dev_priv->drrs.mutex);
6762 	if (!dev_priv->drrs.dp) {
6763 		mutex_unlock(&dev_priv->drrs.mutex);
6764 		return;
6765 	}
6766 
6767 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6768 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
6769 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
6770 
6771 	dev_priv->drrs.dp = NULL;
6772 	mutex_unlock(&dev_priv->drrs.mutex);
6773 
6774 	cancel_delayed_work_sync(&dev_priv->drrs.work);
6775 }
6776 
6777 static void intel_edp_drrs_downclock_work(struct work_struct *work)
6778 {
6779 	struct drm_i915_private *dev_priv =
6780 		container_of(work, typeof(*dev_priv), drrs.work.work);
6781 	struct intel_dp *intel_dp;
6782 
6783 	mutex_lock(&dev_priv->drrs.mutex);
6784 
6785 	intel_dp = dev_priv->drrs.dp;
6786 
6787 	if (!intel_dp)
6788 		goto unlock;
6789 
6790 	/*
6791 	 * The delayed work can race with an invalidate hence we need to
6792 	 * recheck.
6793 	 */
6794 
6795 	if (dev_priv->drrs.busy_frontbuffer_bits)
6796 		goto unlock;
6797 
6798 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
6799 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
6800 
6801 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6802 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
6803 	}
6804 
6805 unlock:
6806 	mutex_unlock(&dev_priv->drrs.mutex);
6807 }
6808 
6809 /**
6810  * intel_edp_drrs_invalidate - Disable Idleness DRRS
6811  * @dev_priv: i915 device
6812  * @frontbuffer_bits: frontbuffer plane tracking bits
6813  *
6814  * This function gets called everytime rendering on the given planes start.
6815  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6816  *
6817  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6818  */
6819 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
6820 			       unsigned int frontbuffer_bits)
6821 {
6822 	struct drm_crtc *crtc;
6823 	enum pipe pipe;
6824 
6825 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6826 		return;
6827 
6828 	cancel_delayed_work(&dev_priv->drrs.work);
6829 
6830 	mutex_lock(&dev_priv->drrs.mutex);
6831 	if (!dev_priv->drrs.dp) {
6832 		mutex_unlock(&dev_priv->drrs.mutex);
6833 		return;
6834 	}
6835 
6836 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6837 	pipe = to_intel_crtc(crtc)->pipe;
6838 
6839 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6840 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
6841 
6842 	/* invalidate means busy screen hence upclock */
6843 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6844 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6845 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6846 
6847 	mutex_unlock(&dev_priv->drrs.mutex);
6848 }
6849 
6850 /**
6851  * intel_edp_drrs_flush - Restart Idleness DRRS
6852  * @dev_priv: i915 device
6853  * @frontbuffer_bits: frontbuffer plane tracking bits
6854  *
6855  * This function gets called every time rendering on the given planes has
6856  * completed or flip on a crtc is completed. So DRRS should be upclocked
6857  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
6858  * if no other planes are dirty.
6859  *
6860  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6861  */
6862 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
6863 			  unsigned int frontbuffer_bits)
6864 {
6865 	struct drm_crtc *crtc;
6866 	enum pipe pipe;
6867 
6868 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6869 		return;
6870 
6871 	cancel_delayed_work(&dev_priv->drrs.work);
6872 
6873 	mutex_lock(&dev_priv->drrs.mutex);
6874 	if (!dev_priv->drrs.dp) {
6875 		mutex_unlock(&dev_priv->drrs.mutex);
6876 		return;
6877 	}
6878 
6879 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6880 	pipe = to_intel_crtc(crtc)->pipe;
6881 
6882 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6883 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
6884 
6885 	/* flush means busy screen hence upclock */
6886 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6887 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6888 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6889 
6890 	/*
6891 	 * flush also means no more activity hence schedule downclock, if all
6892 	 * other fbs are quiescent too
6893 	 */
6894 	if (!dev_priv->drrs.busy_frontbuffer_bits)
6895 		schedule_delayed_work(&dev_priv->drrs.work,
6896 				msecs_to_jiffies(1000));
6897 	mutex_unlock(&dev_priv->drrs.mutex);
6898 }
6899 
6900 /**
6901  * DOC: Display Refresh Rate Switching (DRRS)
6902  *
6903  * Display Refresh Rate Switching (DRRS) is a power conservation feature
6904  * which enables swtching between low and high refresh rates,
6905  * dynamically, based on the usage scenario. This feature is applicable
6906  * for internal panels.
6907  *
6908  * Indication that the panel supports DRRS is given by the panel EDID, which
6909  * would list multiple refresh rates for one resolution.
6910  *
6911  * DRRS is of 2 types - static and seamless.
6912  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
6913  * (may appear as a blink on screen) and is used in dock-undock scenario.
6914  * Seamless DRRS involves changing RR without any visual effect to the user
6915  * and can be used during normal system usage. This is done by programming
6916  * certain registers.
6917  *
6918  * Support for static/seamless DRRS may be indicated in the VBT based on
6919  * inputs from the panel spec.
6920  *
6921  * DRRS saves power by switching to low RR based on usage scenarios.
6922  *
6923  * The implementation is based on frontbuffer tracking implementation.  When
6924  * there is a disturbance on the screen triggered by user activity or a periodic
6925  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
6926  * no movement on screen, after a timeout of 1 second, a switch to low RR is
6927  * made.
6928  *
6929  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
6930  * and intel_edp_drrs_flush() are called.
6931  *
6932  * DRRS can be further extended to support other internal panels and also
6933  * the scenario of video playback wherein RR is set based on the rate
6934  * requested by userspace.
6935  */
6936 
6937 /**
6938  * intel_dp_drrs_init - Init basic DRRS work and mutex.
6939  * @connector: eDP connector
6940  * @fixed_mode: preferred mode of panel
6941  *
6942  * This function is  called only once at driver load to initialize basic
6943  * DRRS stuff.
6944  *
6945  * Returns:
6946  * Downclock mode if panel supports it, else return NULL.
6947  * DRRS support is determined by the presence of downclock mode (apart
6948  * from VBT setting).
6949  */
6950 static struct drm_display_mode *
6951 intel_dp_drrs_init(struct intel_connector *connector,
6952 		   struct drm_display_mode *fixed_mode)
6953 {
6954 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6955 	struct drm_display_mode *downclock_mode = NULL;
6956 
6957 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
6958 	mutex_init(&dev_priv->drrs.mutex);
6959 
6960 	if (INTEL_GEN(dev_priv) <= 6) {
6961 		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
6962 		return NULL;
6963 	}
6964 
6965 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6966 		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6967 		return NULL;
6968 	}
6969 
6970 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
6971 	if (!downclock_mode) {
6972 		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6973 		return NULL;
6974 	}
6975 
6976 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6977 
6978 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6979 	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6980 	return downclock_mode;
6981 }
6982 
6983 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6984 				     struct intel_connector *intel_connector)
6985 {
6986 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6987 	struct drm_device *dev = &dev_priv->drm;
6988 	struct drm_connector *connector = &intel_connector->base;
6989 	struct drm_display_mode *fixed_mode = NULL;
6990 	struct drm_display_mode *downclock_mode = NULL;
6991 	bool has_dpcd;
6992 	enum pipe pipe = INVALID_PIPE;
6993 	intel_wakeref_t wakeref;
6994 	struct edid *edid;
6995 
6996 	if (!intel_dp_is_edp(intel_dp))
6997 		return true;
6998 
6999 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7000 
7001 	/*
7002 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7003 	 * driver uses the only internal power sequencer available for both
7004 	 * eDP and LVDS bail out early in this case to prevent interfering
7005 	 * with an already powered-on LVDS power sequencer.
7006 	 */
7007 	if (intel_get_lvds_encoder(dev_priv)) {
7008 		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7009 		DRM_INFO("LVDS was detected, not registering eDP\n");
7010 
7011 		return false;
7012 	}
7013 
7014 	with_pps_lock(intel_dp, wakeref) {
7015 		intel_dp_init_panel_power_timestamps(intel_dp);
7016 		intel_dp_pps_init(intel_dp);
7017 		intel_edp_panel_vdd_sanitize(intel_dp);
7018 	}
7019 
7020 	/* Cache DPCD and EDID for edp. */
7021 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7022 
7023 	if (!has_dpcd) {
7024 		/* if this fails, presume the device is a ghost */
7025 		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7026 		goto out_vdd_off;
7027 	}
7028 
7029 	mutex_lock(&dev->mode_config.mutex);
7030 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7031 	if (edid) {
7032 		if (drm_add_edid_modes(connector, edid)) {
7033 			drm_connector_update_edid_property(connector,
7034 								edid);
7035 		} else {
7036 			kfree(edid);
7037 			edid = ERR_PTR(-EINVAL);
7038 		}
7039 	} else {
7040 		edid = ERR_PTR(-ENOENT);
7041 	}
7042 	intel_connector->edid = edid;
7043 
7044 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7045 	if (fixed_mode)
7046 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7047 
7048 	/* fallback to VBT if available for eDP */
7049 	if (!fixed_mode)
7050 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7051 	mutex_unlock(&dev->mode_config.mutex);
7052 
7053 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7054 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7055 		register_reboot_notifier(&intel_dp->edp_notifier);
7056 
7057 		/*
7058 		 * Figure out the current pipe for the initial backlight setup.
7059 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7060 		 * fails just assume pipe A.
7061 		 */
7062 		pipe = vlv_active_pipe(intel_dp);
7063 
7064 		if (pipe != PIPE_A && pipe != PIPE_B)
7065 			pipe = intel_dp->pps_pipe;
7066 
7067 		if (pipe != PIPE_A && pipe != PIPE_B)
7068 			pipe = PIPE_A;
7069 
7070 		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7071 			      pipe_name(pipe));
7072 	}
7073 
7074 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7075 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7076 	intel_panel_setup_backlight(connector, pipe);
7077 
7078 	if (fixed_mode)
7079 		drm_connector_init_panel_orientation_property(
7080 			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7081 
7082 	return true;
7083 
7084 out_vdd_off:
7085 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7086 	/*
7087 	 * vdd might still be enabled do to the delayed vdd off.
7088 	 * Make sure vdd is actually turned off here.
7089 	 */
7090 	with_pps_lock(intel_dp, wakeref)
7091 		edp_panel_vdd_off_sync(intel_dp);
7092 
7093 	return false;
7094 }
7095 
7096 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7097 {
7098 	struct intel_connector *intel_connector;
7099 	struct drm_connector *connector;
7100 
7101 	intel_connector = container_of(work, typeof(*intel_connector),
7102 				       modeset_retry_work);
7103 	connector = &intel_connector->base;
7104 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7105 		      connector->name);
7106 
7107 	/* Grab the locks before changing connector property*/
7108 	mutex_lock(&connector->dev->mode_config.mutex);
7109 	/* Set connector link status to BAD and send a Uevent to notify
7110 	 * userspace to do a modeset.
7111 	 */
7112 	drm_connector_set_link_status_property(connector,
7113 					       DRM_MODE_LINK_STATUS_BAD);
7114 	mutex_unlock(&connector->dev->mode_config.mutex);
7115 	/* Send Hotplug uevent so userspace can reprobe */
7116 	drm_kms_helper_hotplug_event(connector->dev);
7117 }
7118 
7119 bool
7120 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7121 			struct intel_connector *intel_connector)
7122 {
7123 	struct drm_connector *connector = &intel_connector->base;
7124 	struct intel_dp *intel_dp = &intel_dig_port->dp;
7125 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
7126 	struct drm_device *dev = intel_encoder->base.dev;
7127 	struct drm_i915_private *dev_priv = to_i915(dev);
7128 	enum port port = intel_encoder->port;
7129 	enum phy phy = intel_port_to_phy(dev_priv, port);
7130 	int type;
7131 
7132 	/* Initialize the work for modeset in case of link train failure */
7133 	INIT_WORK(&intel_connector->modeset_retry_work,
7134 		  intel_dp_modeset_retry_work_fn);
7135 
7136 	if (WARN(intel_dig_port->max_lanes < 1,
7137 		 "Not enough lanes (%d) for DP on port %c\n",
7138 		 intel_dig_port->max_lanes, port_name(port)))
7139 		return false;
7140 
7141 	intel_dp_set_source_rates(intel_dp);
7142 
7143 	intel_dp->reset_link_params = true;
7144 	intel_dp->pps_pipe = INVALID_PIPE;
7145 	intel_dp->active_pipe = INVALID_PIPE;
7146 
7147 	/* Preserve the current hw state. */
7148 	intel_dp->DP = I915_READ(intel_dp->output_reg);
7149 	intel_dp->attached_connector = intel_connector;
7150 
7151 	if (intel_dp_is_port_edp(dev_priv, port)) {
7152 		/*
7153 		 * Currently we don't support eDP on TypeC ports, although in
7154 		 * theory it could work on TypeC legacy ports.
7155 		 */
7156 		WARN_ON(intel_phy_is_tc(dev_priv, phy));
7157 		type = DRM_MODE_CONNECTOR_eDP;
7158 	} else {
7159 		type = DRM_MODE_CONNECTOR_DisplayPort;
7160 	}
7161 
7162 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7163 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7164 
7165 	/*
7166 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7167 	 * for DP the encoder type can be set by the caller to
7168 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7169 	 */
7170 	if (type == DRM_MODE_CONNECTOR_eDP)
7171 		intel_encoder->type = INTEL_OUTPUT_EDP;
7172 
7173 	/* eDP only on port B and/or C on vlv/chv */
7174 	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7175 		    intel_dp_is_edp(intel_dp) &&
7176 		    port != PORT_B && port != PORT_C))
7177 		return false;
7178 
7179 	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
7180 			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7181 			port_name(port));
7182 
7183 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7184 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7185 
7186 	if (!HAS_GMCH(dev_priv))
7187 		connector->interlace_allowed = true;
7188 	connector->doublescan_allowed = 0;
7189 
7190 	if (INTEL_GEN(dev_priv) >= 11)
7191 		connector->ycbcr_420_allowed = true;
7192 
7193 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7194 
7195 	intel_dp_aux_init(intel_dp);
7196 
7197 	intel_connector_attach_encoder(intel_connector, intel_encoder);
7198 
7199 	if (HAS_DDI(dev_priv))
7200 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7201 	else
7202 		intel_connector->get_hw_state = intel_connector_get_hw_state;
7203 
7204 	/* init MST on ports that can support it */
7205 	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7206 	    (port == PORT_B || port == PORT_C ||
7207 	     port == PORT_D || port == PORT_F))
7208 		intel_dp_mst_encoder_init(intel_dig_port,
7209 					  intel_connector->base.base.id);
7210 
7211 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7212 		intel_dp_aux_fini(intel_dp);
7213 		intel_dp_mst_encoder_cleanup(intel_dig_port);
7214 		goto fail;
7215 	}
7216 
7217 	intel_dp_add_properties(intel_dp, connector);
7218 
7219 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7220 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7221 		if (ret)
7222 			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7223 	}
7224 
7225 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7226 	 * 0xd.  Failure to do so will result in spurious interrupts being
7227 	 * generated on the port when a cable is not attached.
7228 	 */
7229 	if (IS_G45(dev_priv)) {
7230 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7231 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7232 	}
7233 
7234 	return true;
7235 
7236 fail:
7237 	drm_connector_cleanup(connector);
7238 
7239 	return false;
7240 }
7241 
7242 bool intel_dp_init(struct drm_i915_private *dev_priv,
7243 		   i915_reg_t output_reg,
7244 		   enum port port)
7245 {
7246 	struct intel_digital_port *intel_dig_port;
7247 	struct intel_encoder *intel_encoder;
7248 	struct drm_encoder *encoder;
7249 	struct intel_connector *intel_connector;
7250 
7251 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7252 	if (!intel_dig_port)
7253 		return false;
7254 
7255 	intel_connector = intel_connector_alloc();
7256 	if (!intel_connector)
7257 		goto err_connector_alloc;
7258 
7259 	intel_encoder = &intel_dig_port->base;
7260 	encoder = &intel_encoder->base;
7261 
7262 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7263 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7264 			     "DP %c", port_name(port)))
7265 		goto err_encoder_init;
7266 
7267 	intel_encoder->hotplug = intel_dp_hotplug;
7268 	intel_encoder->compute_config = intel_dp_compute_config;
7269 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7270 	intel_encoder->get_config = intel_dp_get_config;
7271 	intel_encoder->update_pipe = intel_panel_update_backlight;
7272 	intel_encoder->suspend = intel_dp_encoder_suspend;
7273 	if (IS_CHERRYVIEW(dev_priv)) {
7274 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7275 		intel_encoder->pre_enable = chv_pre_enable_dp;
7276 		intel_encoder->enable = vlv_enable_dp;
7277 		intel_encoder->disable = vlv_disable_dp;
7278 		intel_encoder->post_disable = chv_post_disable_dp;
7279 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7280 	} else if (IS_VALLEYVIEW(dev_priv)) {
7281 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7282 		intel_encoder->pre_enable = vlv_pre_enable_dp;
7283 		intel_encoder->enable = vlv_enable_dp;
7284 		intel_encoder->disable = vlv_disable_dp;
7285 		intel_encoder->post_disable = vlv_post_disable_dp;
7286 	} else {
7287 		intel_encoder->pre_enable = g4x_pre_enable_dp;
7288 		intel_encoder->enable = g4x_enable_dp;
7289 		intel_encoder->disable = g4x_disable_dp;
7290 		intel_encoder->post_disable = g4x_post_disable_dp;
7291 	}
7292 
7293 	intel_dig_port->dp.output_reg = output_reg;
7294 	intel_dig_port->max_lanes = 4;
7295 
7296 	intel_encoder->type = INTEL_OUTPUT_DP;
7297 	intel_encoder->power_domain = intel_port_to_power_domain(port);
7298 	if (IS_CHERRYVIEW(dev_priv)) {
7299 		if (port == PORT_D)
7300 			intel_encoder->crtc_mask = 1 << 2;
7301 		else
7302 			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
7303 	} else {
7304 		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
7305 	}
7306 	intel_encoder->cloneable = 0;
7307 	intel_encoder->port = port;
7308 
7309 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7310 
7311 	if (port != PORT_A)
7312 		intel_infoframe_init(intel_dig_port);
7313 
7314 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7315 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7316 		goto err_init_connector;
7317 
7318 	return true;
7319 
7320 err_init_connector:
7321 	drm_encoder_cleanup(encoder);
7322 err_encoder_init:
7323 	kfree(intel_connector);
7324 err_connector_alloc:
7325 	kfree(intel_dig_port);
7326 	return false;
7327 }
7328 
7329 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7330 {
7331 	struct intel_encoder *encoder;
7332 
7333 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7334 		struct intel_dp *intel_dp;
7335 
7336 		if (encoder->type != INTEL_OUTPUT_DDI)
7337 			continue;
7338 
7339 		intel_dp = enc_to_intel_dp(&encoder->base);
7340 
7341 		if (!intel_dp->can_mst)
7342 			continue;
7343 
7344 		if (intel_dp->is_mst)
7345 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7346 	}
7347 }
7348 
7349 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7350 {
7351 	struct intel_encoder *encoder;
7352 
7353 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7354 		struct intel_dp *intel_dp;
7355 		int ret;
7356 
7357 		if (encoder->type != INTEL_OUTPUT_DDI)
7358 			continue;
7359 
7360 		intel_dp = enc_to_intel_dp(&encoder->base);
7361 
7362 		if (!intel_dp->can_mst)
7363 			continue;
7364 
7365 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7366 		if (ret) {
7367 			intel_dp->is_mst = false;
7368 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7369 							false);
7370 		}
7371 	}
7372 }
7373