1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_hdcp.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/i915_drm.h> 44 45 #include "i915_debugfs.h" 46 #include "i915_drv.h" 47 #include "i915_trace.h" 48 #include "intel_atomic.h" 49 #include "intel_audio.h" 50 #include "intel_connector.h" 51 #include "intel_ddi.h" 52 #include "intel_display_types.h" 53 #include "intel_dp.h" 54 #include "intel_dp_link_training.h" 55 #include "intel_dp_mst.h" 56 #include "intel_dpio_phy.h" 57 #include "intel_fifo_underrun.h" 58 #include "intel_hdcp.h" 59 #include "intel_hdmi.h" 60 #include "intel_hotplug.h" 61 #include "intel_lspcon.h" 62 #include "intel_lvds.h" 63 #include "intel_panel.h" 64 #include "intel_psr.h" 65 #include "intel_sideband.h" 66 #include "intel_tc.h" 67 #include "intel_vdsc.h" 68 69 #define DP_DPRX_ESI_LEN 14 70 71 /* DP DSC throughput values used for slice count calculations KPixels/s */ 72 #define DP_DSC_PEAK_PIXEL_RATE 2720000 73 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 74 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 75 76 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 77 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 78 79 /* Compliance test status bits */ 80 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 81 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 82 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 83 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 84 85 struct dp_link_dpll { 86 int clock; 87 struct dpll dpll; 88 }; 89 90 static const struct dp_link_dpll g4x_dpll[] = { 91 { 162000, 92 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 93 { 270000, 94 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 95 }; 96 97 static const struct dp_link_dpll pch_dpll[] = { 98 { 162000, 99 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 100 { 270000, 101 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 102 }; 103 104 static const struct dp_link_dpll vlv_dpll[] = { 105 { 162000, 106 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 107 { 270000, 108 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 109 }; 110 111 /* 112 * CHV supports eDP 1.4 that have more link rates. 113 * Below only provides the fixed rate but exclude variable rate. 114 */ 115 static const struct dp_link_dpll chv_dpll[] = { 116 /* 117 * CHV requires to program fractional division for m2. 118 * m2 is stored in fixed point format using formula below 119 * (m2_int << 22) | m2_fraction 120 */ 121 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 122 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 123 { 270000, /* m2_int = 27, m2_fraction = 0 */ 124 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 125 }; 126 127 /* Constants for DP DSC configurations */ 128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 129 130 /* With Single pipe configuration, HW is capable of supporting maximum 131 * of 4 slices per line. 132 */ 133 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 134 135 /** 136 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 137 * @intel_dp: DP struct 138 * 139 * If a CPU or PCH DP output is attached to an eDP panel, this function 140 * will return true, and false otherwise. 141 */ 142 bool intel_dp_is_edp(struct intel_dp *intel_dp) 143 { 144 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 145 146 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 147 } 148 149 static struct intel_dp *intel_attached_dp(struct intel_connector *connector) 150 { 151 return enc_to_intel_dp(intel_attached_encoder(connector)); 152 } 153 154 static void intel_dp_link_down(struct intel_encoder *encoder, 155 const struct intel_crtc_state *old_crtc_state); 156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 159 const struct intel_crtc_state *crtc_state); 160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 161 enum pipe pipe); 162 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 163 164 /* update sink rates from dpcd */ 165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 166 { 167 static const int dp_rates[] = { 168 162000, 270000, 540000, 810000 169 }; 170 int i, max_rate; 171 172 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 173 174 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 175 if (dp_rates[i] > max_rate) 176 break; 177 intel_dp->sink_rates[i] = dp_rates[i]; 178 } 179 180 intel_dp->num_sink_rates = i; 181 } 182 183 /* Get length of rates array potentially limited by max_rate. */ 184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 185 { 186 int i; 187 188 /* Limit results by potentially reduced max rate */ 189 for (i = 0; i < len; i++) { 190 if (rates[len - i - 1] <= max_rate) 191 return len - i; 192 } 193 194 return 0; 195 } 196 197 /* Get length of common rates array potentially limited by max_rate. */ 198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 199 int max_rate) 200 { 201 return intel_dp_rate_limit_len(intel_dp->common_rates, 202 intel_dp->num_common_rates, max_rate); 203 } 204 205 /* Theoretical max between source and sink */ 206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 207 { 208 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 209 } 210 211 /* Theoretical max between source and sink */ 212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 213 { 214 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 215 int source_max = intel_dig_port->max_lanes; 216 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 217 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); 218 219 return min3(source_max, sink_max, fia_max); 220 } 221 222 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 223 { 224 return intel_dp->max_link_lane_count; 225 } 226 227 int 228 intel_dp_link_required(int pixel_clock, int bpp) 229 { 230 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 231 return DIV_ROUND_UP(pixel_clock * bpp, 8); 232 } 233 234 int 235 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 236 { 237 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 238 * link rate that is generally expressed in Gbps. Since, 8 bits of data 239 * is transmitted every LS_Clk per lane, there is no need to account for 240 * the channel encoding that is done in the PHY layer here. 241 */ 242 243 return max_link_clock * max_lanes; 244 } 245 246 static int 247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 248 { 249 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 250 struct intel_encoder *encoder = &intel_dig_port->base; 251 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 252 int max_dotclk = dev_priv->max_dotclk_freq; 253 int ds_max_dotclk; 254 255 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 256 257 if (type != DP_DS_PORT_TYPE_VGA) 258 return max_dotclk; 259 260 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 261 intel_dp->downstream_ports); 262 263 if (ds_max_dotclk != 0) 264 max_dotclk = min(max_dotclk, ds_max_dotclk); 265 266 return max_dotclk; 267 } 268 269 static int cnl_max_source_rate(struct intel_dp *intel_dp) 270 { 271 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 272 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 273 enum port port = dig_port->base.port; 274 275 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 276 277 /* Low voltage SKUs are limited to max of 5.4G */ 278 if (voltage == VOLTAGE_INFO_0_85V) 279 return 540000; 280 281 /* For this SKU 8.1G is supported in all ports */ 282 if (IS_CNL_WITH_PORT_F(dev_priv)) 283 return 810000; 284 285 /* For other SKUs, max rate on ports A and D is 5.4G */ 286 if (port == PORT_A || port == PORT_D) 287 return 540000; 288 289 return 810000; 290 } 291 292 static int icl_max_source_rate(struct intel_dp *intel_dp) 293 { 294 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 295 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 296 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 297 298 if (intel_phy_is_combo(dev_priv, phy) && 299 !IS_ELKHARTLAKE(dev_priv) && 300 !intel_dp_is_edp(intel_dp)) 301 return 540000; 302 303 return 810000; 304 } 305 306 static void 307 intel_dp_set_source_rates(struct intel_dp *intel_dp) 308 { 309 /* The values must be in increasing order */ 310 static const int cnl_rates[] = { 311 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 312 }; 313 static const int bxt_rates[] = { 314 162000, 216000, 243000, 270000, 324000, 432000, 540000 315 }; 316 static const int skl_rates[] = { 317 162000, 216000, 270000, 324000, 432000, 540000 318 }; 319 static const int hsw_rates[] = { 320 162000, 270000, 540000 321 }; 322 static const int g4x_rates[] = { 323 162000, 270000 324 }; 325 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 326 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 327 const struct ddi_vbt_port_info *info = 328 &dev_priv->vbt.ddi_port_info[dig_port->base.port]; 329 const int *source_rates; 330 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate; 331 332 /* This should only be done once */ 333 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates); 334 335 if (INTEL_GEN(dev_priv) >= 10) { 336 source_rates = cnl_rates; 337 size = ARRAY_SIZE(cnl_rates); 338 if (IS_GEN(dev_priv, 10)) 339 max_rate = cnl_max_source_rate(intel_dp); 340 else 341 max_rate = icl_max_source_rate(intel_dp); 342 } else if (IS_GEN9_LP(dev_priv)) { 343 source_rates = bxt_rates; 344 size = ARRAY_SIZE(bxt_rates); 345 } else if (IS_GEN9_BC(dev_priv)) { 346 source_rates = skl_rates; 347 size = ARRAY_SIZE(skl_rates); 348 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 349 IS_BROADWELL(dev_priv)) { 350 source_rates = hsw_rates; 351 size = ARRAY_SIZE(hsw_rates); 352 } else { 353 source_rates = g4x_rates; 354 size = ARRAY_SIZE(g4x_rates); 355 } 356 357 if (max_rate && vbt_max_rate) 358 max_rate = min(max_rate, vbt_max_rate); 359 else if (vbt_max_rate) 360 max_rate = vbt_max_rate; 361 362 if (max_rate) 363 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 364 365 intel_dp->source_rates = source_rates; 366 intel_dp->num_source_rates = size; 367 } 368 369 static int intersect_rates(const int *source_rates, int source_len, 370 const int *sink_rates, int sink_len, 371 int *common_rates) 372 { 373 int i = 0, j = 0, k = 0; 374 375 while (i < source_len && j < sink_len) { 376 if (source_rates[i] == sink_rates[j]) { 377 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 378 return k; 379 common_rates[k] = source_rates[i]; 380 ++k; 381 ++i; 382 ++j; 383 } else if (source_rates[i] < sink_rates[j]) { 384 ++i; 385 } else { 386 ++j; 387 } 388 } 389 return k; 390 } 391 392 /* return index of rate in rates array, or -1 if not found */ 393 static int intel_dp_rate_index(const int *rates, int len, int rate) 394 { 395 int i; 396 397 for (i = 0; i < len; i++) 398 if (rate == rates[i]) 399 return i; 400 401 return -1; 402 } 403 404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 405 { 406 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); 407 408 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 409 intel_dp->num_source_rates, 410 intel_dp->sink_rates, 411 intel_dp->num_sink_rates, 412 intel_dp->common_rates); 413 414 /* Paranoia, there should always be something in common. */ 415 if (WARN_ON(intel_dp->num_common_rates == 0)) { 416 intel_dp->common_rates[0] = 162000; 417 intel_dp->num_common_rates = 1; 418 } 419 } 420 421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 422 u8 lane_count) 423 { 424 /* 425 * FIXME: we need to synchronize the current link parameters with 426 * hardware readout. Currently fast link training doesn't work on 427 * boot-up. 428 */ 429 if (link_rate == 0 || 430 link_rate > intel_dp->max_link_rate) 431 return false; 432 433 if (lane_count == 0 || 434 lane_count > intel_dp_max_lane_count(intel_dp)) 435 return false; 436 437 return true; 438 } 439 440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 441 int link_rate, 442 u8 lane_count) 443 { 444 const struct drm_display_mode *fixed_mode = 445 intel_dp->attached_connector->panel.fixed_mode; 446 int mode_rate, max_rate; 447 448 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 449 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 450 if (mode_rate > max_rate) 451 return false; 452 453 return true; 454 } 455 456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 457 int link_rate, u8 lane_count) 458 { 459 int index; 460 461 index = intel_dp_rate_index(intel_dp->common_rates, 462 intel_dp->num_common_rates, 463 link_rate); 464 if (index > 0) { 465 if (intel_dp_is_edp(intel_dp) && 466 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 467 intel_dp->common_rates[index - 1], 468 lane_count)) { 469 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 470 return 0; 471 } 472 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 473 intel_dp->max_link_lane_count = lane_count; 474 } else if (lane_count > 1) { 475 if (intel_dp_is_edp(intel_dp) && 476 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 477 intel_dp_max_common_rate(intel_dp), 478 lane_count >> 1)) { 479 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 480 return 0; 481 } 482 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 483 intel_dp->max_link_lane_count = lane_count >> 1; 484 } else { 485 DRM_ERROR("Link Training Unsuccessful\n"); 486 return -1; 487 } 488 489 return 0; 490 } 491 492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 493 { 494 return div_u64(mul_u32_u32(mode_clock, 1000000U), 495 DP_DSC_FEC_OVERHEAD_FACTOR); 496 } 497 498 static int 499 small_joiner_ram_size_bits(struct drm_i915_private *i915) 500 { 501 if (INTEL_GEN(i915) >= 11) 502 return 7680 * 8; 503 else 504 return 6144 * 8; 505 } 506 507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, 508 u32 link_clock, u32 lane_count, 509 u32 mode_clock, u32 mode_hdisplay) 510 { 511 u32 bits_per_pixel, max_bpp_small_joiner_ram; 512 int i; 513 514 /* 515 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 516 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 517 * for SST -> TimeSlotsPerMTP is 1, 518 * for MST -> TimeSlotsPerMTP has to be calculated 519 */ 520 bits_per_pixel = (link_clock * lane_count * 8) / 521 intel_dp_mode_to_fec_clock(mode_clock); 522 DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel); 523 524 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 525 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / 526 mode_hdisplay; 527 DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram); 528 529 /* 530 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 531 * check, output bpp from small joiner RAM check) 532 */ 533 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 534 535 /* Error out if the max bpp is less than smallest allowed valid bpp */ 536 if (bits_per_pixel < valid_dsc_bpp[0]) { 537 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n", 538 bits_per_pixel, valid_dsc_bpp[0]); 539 return 0; 540 } 541 542 /* Find the nearest match in the array of known BPPs from VESA */ 543 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 544 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 545 break; 546 } 547 bits_per_pixel = valid_dsc_bpp[i]; 548 549 /* 550 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 551 * fractional part is 0 552 */ 553 return bits_per_pixel << 4; 554 } 555 556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 557 int mode_clock, int mode_hdisplay) 558 { 559 u8 min_slice_count, i; 560 int max_slice_width; 561 562 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 563 min_slice_count = DIV_ROUND_UP(mode_clock, 564 DP_DSC_MAX_ENC_THROUGHPUT_0); 565 else 566 min_slice_count = DIV_ROUND_UP(mode_clock, 567 DP_DSC_MAX_ENC_THROUGHPUT_1); 568 569 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 570 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 571 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n", 572 max_slice_width); 573 return 0; 574 } 575 /* Also take into account max slice width */ 576 min_slice_count = min_t(u8, min_slice_count, 577 DIV_ROUND_UP(mode_hdisplay, 578 max_slice_width)); 579 580 /* Find the closest match to the valid slice count values */ 581 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 582 if (valid_dsc_slicecount[i] > 583 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 584 false)) 585 break; 586 if (min_slice_count <= valid_dsc_slicecount[i]) 587 return valid_dsc_slicecount[i]; 588 } 589 590 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count); 591 return 0; 592 } 593 594 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, 595 int hdisplay) 596 { 597 /* 598 * Older platforms don't like hdisplay==4096 with DP. 599 * 600 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline 601 * and frame counter increment), but we don't get vblank interrupts, 602 * and the pipe underruns immediately. The link also doesn't seem 603 * to get trained properly. 604 * 605 * On CHV the vblank interrupts don't seem to disappear but 606 * otherwise the symptoms are similar. 607 * 608 * TODO: confirm the behaviour on HSW+ 609 */ 610 return hdisplay == 4096 && !HAS_DDI(dev_priv); 611 } 612 613 static enum drm_mode_status 614 intel_dp_mode_valid(struct drm_connector *connector, 615 struct drm_display_mode *mode) 616 { 617 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 618 struct intel_connector *intel_connector = to_intel_connector(connector); 619 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 620 struct drm_i915_private *dev_priv = to_i915(connector->dev); 621 int target_clock = mode->clock; 622 int max_rate, mode_rate, max_lanes, max_link_clock; 623 int max_dotclk; 624 u16 dsc_max_output_bpp = 0; 625 u8 dsc_slice_count = 0; 626 627 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 628 return MODE_NO_DBLESCAN; 629 630 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 631 632 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 633 if (mode->hdisplay > fixed_mode->hdisplay) 634 return MODE_PANEL; 635 636 if (mode->vdisplay > fixed_mode->vdisplay) 637 return MODE_PANEL; 638 639 target_clock = fixed_mode->clock; 640 } 641 642 max_link_clock = intel_dp_max_link_rate(intel_dp); 643 max_lanes = intel_dp_max_lane_count(intel_dp); 644 645 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 646 mode_rate = intel_dp_link_required(target_clock, 18); 647 648 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) 649 return MODE_H_ILLEGAL; 650 651 /* 652 * Output bpp is stored in 6.4 format so right shift by 4 to get the 653 * integer value since we support only integer values of bpp. 654 */ 655 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 656 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 657 if (intel_dp_is_edp(intel_dp)) { 658 dsc_max_output_bpp = 659 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 660 dsc_slice_count = 661 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 662 true); 663 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 664 dsc_max_output_bpp = 665 intel_dp_dsc_get_output_bpp(dev_priv, 666 max_link_clock, 667 max_lanes, 668 target_clock, 669 mode->hdisplay) >> 4; 670 dsc_slice_count = 671 intel_dp_dsc_get_slice_count(intel_dp, 672 target_clock, 673 mode->hdisplay); 674 } 675 } 676 677 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 678 target_clock > max_dotclk) 679 return MODE_CLOCK_HIGH; 680 681 if (mode->clock < 10000) 682 return MODE_CLOCK_LOW; 683 684 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 685 return MODE_H_ILLEGAL; 686 687 return intel_mode_valid_max_plane_size(dev_priv, mode); 688 } 689 690 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 691 { 692 int i; 693 u32 v = 0; 694 695 if (src_bytes > 4) 696 src_bytes = 4; 697 for (i = 0; i < src_bytes; i++) 698 v |= ((u32)src[i]) << ((3 - i) * 8); 699 return v; 700 } 701 702 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 703 { 704 int i; 705 if (dst_bytes > 4) 706 dst_bytes = 4; 707 for (i = 0; i < dst_bytes; i++) 708 dst[i] = src >> ((3-i) * 8); 709 } 710 711 static void 712 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 713 static void 714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 715 bool force_disable_vdd); 716 static void 717 intel_dp_pps_init(struct intel_dp *intel_dp); 718 719 static intel_wakeref_t 720 pps_lock(struct intel_dp *intel_dp) 721 { 722 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 723 intel_wakeref_t wakeref; 724 725 /* 726 * See intel_power_sequencer_reset() why we need 727 * a power domain reference here. 728 */ 729 wakeref = intel_display_power_get(dev_priv, 730 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 731 732 mutex_lock(&dev_priv->pps_mutex); 733 734 return wakeref; 735 } 736 737 static intel_wakeref_t 738 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 739 { 740 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 741 742 mutex_unlock(&dev_priv->pps_mutex); 743 intel_display_power_put(dev_priv, 744 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 745 wakeref); 746 return 0; 747 } 748 749 #define with_pps_lock(dp, wf) \ 750 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 751 752 static void 753 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 754 { 755 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 756 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 757 enum pipe pipe = intel_dp->pps_pipe; 758 bool pll_enabled, release_cl_override = false; 759 enum dpio_phy phy = DPIO_PHY(pipe); 760 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 761 u32 DP; 762 763 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, 764 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n", 765 pipe_name(pipe), intel_dig_port->base.base.base.id, 766 intel_dig_port->base.base.name)) 767 return; 768 769 DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n", 770 pipe_name(pipe), intel_dig_port->base.base.base.id, 771 intel_dig_port->base.base.name); 772 773 /* Preserve the BIOS-computed detected bit. This is 774 * supposed to be read-only. 775 */ 776 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 777 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 778 DP |= DP_PORT_WIDTH(1); 779 DP |= DP_LINK_TRAIN_PAT_1; 780 781 if (IS_CHERRYVIEW(dev_priv)) 782 DP |= DP_PIPE_SEL_CHV(pipe); 783 else 784 DP |= DP_PIPE_SEL(pipe); 785 786 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; 787 788 /* 789 * The DPLL for the pipe must be enabled for this to work. 790 * So enable temporarily it if it's not already enabled. 791 */ 792 if (!pll_enabled) { 793 release_cl_override = IS_CHERRYVIEW(dev_priv) && 794 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 795 796 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 797 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 798 DRM_ERROR("Failed to force on pll for pipe %c!\n", 799 pipe_name(pipe)); 800 return; 801 } 802 } 803 804 /* 805 * Similar magic as in intel_dp_enable_port(). 806 * We _must_ do this port enable + disable trick 807 * to make this power sequencer lock onto the port. 808 * Otherwise even VDD force bit won't work. 809 */ 810 I915_WRITE(intel_dp->output_reg, DP); 811 POSTING_READ(intel_dp->output_reg); 812 813 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); 814 POSTING_READ(intel_dp->output_reg); 815 816 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); 817 POSTING_READ(intel_dp->output_reg); 818 819 if (!pll_enabled) { 820 vlv_force_pll_off(dev_priv, pipe); 821 822 if (release_cl_override) 823 chv_phy_powergate_ch(dev_priv, phy, ch, false); 824 } 825 } 826 827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 828 { 829 struct intel_encoder *encoder; 830 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 831 832 /* 833 * We don't have power sequencer currently. 834 * Pick one that's not used by other ports. 835 */ 836 for_each_intel_dp(&dev_priv->drm, encoder) { 837 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 838 839 if (encoder->type == INTEL_OUTPUT_EDP) { 840 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 841 intel_dp->active_pipe != intel_dp->pps_pipe); 842 843 if (intel_dp->pps_pipe != INVALID_PIPE) 844 pipes &= ~(1 << intel_dp->pps_pipe); 845 } else { 846 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE); 847 848 if (intel_dp->active_pipe != INVALID_PIPE) 849 pipes &= ~(1 << intel_dp->active_pipe); 850 } 851 } 852 853 if (pipes == 0) 854 return INVALID_PIPE; 855 856 return ffs(pipes) - 1; 857 } 858 859 static enum pipe 860 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 861 { 862 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 863 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 864 enum pipe pipe; 865 866 lockdep_assert_held(&dev_priv->pps_mutex); 867 868 /* We should never land here with regular DP ports */ 869 WARN_ON(!intel_dp_is_edp(intel_dp)); 870 871 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 872 intel_dp->active_pipe != intel_dp->pps_pipe); 873 874 if (intel_dp->pps_pipe != INVALID_PIPE) 875 return intel_dp->pps_pipe; 876 877 pipe = vlv_find_free_pps(dev_priv); 878 879 /* 880 * Didn't find one. This should not happen since there 881 * are two power sequencers and up to two eDP ports. 882 */ 883 if (WARN_ON(pipe == INVALID_PIPE)) 884 pipe = PIPE_A; 885 886 vlv_steal_power_sequencer(dev_priv, pipe); 887 intel_dp->pps_pipe = pipe; 888 889 DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n", 890 pipe_name(intel_dp->pps_pipe), 891 intel_dig_port->base.base.base.id, 892 intel_dig_port->base.base.name); 893 894 /* init power sequencer on this pipe and port */ 895 intel_dp_init_panel_power_sequencer(intel_dp); 896 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 897 898 /* 899 * Even vdd force doesn't work until we've made 900 * the power sequencer lock in on the port. 901 */ 902 vlv_power_sequencer_kick(intel_dp); 903 904 return intel_dp->pps_pipe; 905 } 906 907 static int 908 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 909 { 910 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 911 int backlight_controller = dev_priv->vbt.backlight.controller; 912 913 lockdep_assert_held(&dev_priv->pps_mutex); 914 915 /* We should never land here with regular DP ports */ 916 WARN_ON(!intel_dp_is_edp(intel_dp)); 917 918 if (!intel_dp->pps_reset) 919 return backlight_controller; 920 921 intel_dp->pps_reset = false; 922 923 /* 924 * Only the HW needs to be reprogrammed, the SW state is fixed and 925 * has been setup during connector init. 926 */ 927 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 928 929 return backlight_controller; 930 } 931 932 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 933 enum pipe pipe); 934 935 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 936 enum pipe pipe) 937 { 938 return I915_READ(PP_STATUS(pipe)) & PP_ON; 939 } 940 941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 942 enum pipe pipe) 943 { 944 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD; 945 } 946 947 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 948 enum pipe pipe) 949 { 950 return true; 951 } 952 953 static enum pipe 954 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 955 enum port port, 956 vlv_pipe_check pipe_check) 957 { 958 enum pipe pipe; 959 960 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 961 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) & 962 PANEL_PORT_SELECT_MASK; 963 964 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 965 continue; 966 967 if (!pipe_check(dev_priv, pipe)) 968 continue; 969 970 return pipe; 971 } 972 973 return INVALID_PIPE; 974 } 975 976 static void 977 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 978 { 979 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 980 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 981 enum port port = intel_dig_port->base.port; 982 983 lockdep_assert_held(&dev_priv->pps_mutex); 984 985 /* try to find a pipe with this port selected */ 986 /* first pick one where the panel is on */ 987 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 988 vlv_pipe_has_pp_on); 989 /* didn't find one? pick one where vdd is on */ 990 if (intel_dp->pps_pipe == INVALID_PIPE) 991 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 992 vlv_pipe_has_vdd_on); 993 /* didn't find one? pick one with just the correct port */ 994 if (intel_dp->pps_pipe == INVALID_PIPE) 995 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 996 vlv_pipe_any); 997 998 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 999 if (intel_dp->pps_pipe == INVALID_PIPE) { 1000 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n", 1001 intel_dig_port->base.base.base.id, 1002 intel_dig_port->base.base.name); 1003 return; 1004 } 1005 1006 DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n", 1007 intel_dig_port->base.base.base.id, 1008 intel_dig_port->base.base.name, 1009 pipe_name(intel_dp->pps_pipe)); 1010 1011 intel_dp_init_panel_power_sequencer(intel_dp); 1012 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 1013 } 1014 1015 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 1016 { 1017 struct intel_encoder *encoder; 1018 1019 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 1020 !IS_GEN9_LP(dev_priv))) 1021 return; 1022 1023 /* 1024 * We can't grab pps_mutex here due to deadlock with power_domain 1025 * mutex when power_domain functions are called while holding pps_mutex. 1026 * That also means that in order to use pps_pipe the code needs to 1027 * hold both a power domain reference and pps_mutex, and the power domain 1028 * reference get/put must be done while _not_ holding pps_mutex. 1029 * pps_{lock,unlock}() do these steps in the correct order, so one 1030 * should use them always. 1031 */ 1032 1033 for_each_intel_dp(&dev_priv->drm, encoder) { 1034 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1035 1036 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 1037 1038 if (encoder->type != INTEL_OUTPUT_EDP) 1039 continue; 1040 1041 if (IS_GEN9_LP(dev_priv)) 1042 intel_dp->pps_reset = true; 1043 else 1044 intel_dp->pps_pipe = INVALID_PIPE; 1045 } 1046 } 1047 1048 struct pps_registers { 1049 i915_reg_t pp_ctrl; 1050 i915_reg_t pp_stat; 1051 i915_reg_t pp_on; 1052 i915_reg_t pp_off; 1053 i915_reg_t pp_div; 1054 }; 1055 1056 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1057 struct pps_registers *regs) 1058 { 1059 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1060 int pps_idx = 0; 1061 1062 memset(regs, 0, sizeof(*regs)); 1063 1064 if (IS_GEN9_LP(dev_priv)) 1065 pps_idx = bxt_power_sequencer_idx(intel_dp); 1066 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1067 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1068 1069 regs->pp_ctrl = PP_CONTROL(pps_idx); 1070 regs->pp_stat = PP_STATUS(pps_idx); 1071 regs->pp_on = PP_ON_DELAYS(pps_idx); 1072 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1073 1074 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1075 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1076 regs->pp_div = INVALID_MMIO_REG; 1077 else 1078 regs->pp_div = PP_DIVISOR(pps_idx); 1079 } 1080 1081 static i915_reg_t 1082 _pp_ctrl_reg(struct intel_dp *intel_dp) 1083 { 1084 struct pps_registers regs; 1085 1086 intel_pps_get_registers(intel_dp, ®s); 1087 1088 return regs.pp_ctrl; 1089 } 1090 1091 static i915_reg_t 1092 _pp_stat_reg(struct intel_dp *intel_dp) 1093 { 1094 struct pps_registers regs; 1095 1096 intel_pps_get_registers(intel_dp, ®s); 1097 1098 return regs.pp_stat; 1099 } 1100 1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1102 This function only applicable when panel PM state is not to be tracked */ 1103 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1104 void *unused) 1105 { 1106 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1107 edp_notifier); 1108 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1109 intel_wakeref_t wakeref; 1110 1111 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1112 return 0; 1113 1114 with_pps_lock(intel_dp, wakeref) { 1115 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1116 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1117 i915_reg_t pp_ctrl_reg, pp_div_reg; 1118 u32 pp_div; 1119 1120 pp_ctrl_reg = PP_CONTROL(pipe); 1121 pp_div_reg = PP_DIVISOR(pipe); 1122 pp_div = I915_READ(pp_div_reg); 1123 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1124 1125 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1126 I915_WRITE(pp_div_reg, pp_div | 0x1F); 1127 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS); 1128 msleep(intel_dp->panel_power_cycle_delay); 1129 } 1130 } 1131 1132 return 0; 1133 } 1134 1135 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1136 { 1137 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1138 1139 lockdep_assert_held(&dev_priv->pps_mutex); 1140 1141 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1142 intel_dp->pps_pipe == INVALID_PIPE) 1143 return false; 1144 1145 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; 1146 } 1147 1148 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1149 { 1150 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1151 1152 lockdep_assert_held(&dev_priv->pps_mutex); 1153 1154 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1155 intel_dp->pps_pipe == INVALID_PIPE) 1156 return false; 1157 1158 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1159 } 1160 1161 static void 1162 intel_dp_check_edp(struct intel_dp *intel_dp) 1163 { 1164 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1165 1166 if (!intel_dp_is_edp(intel_dp)) 1167 return; 1168 1169 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1170 WARN(1, "eDP powered off while attempting aux channel communication.\n"); 1171 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", 1172 I915_READ(_pp_stat_reg(intel_dp)), 1173 I915_READ(_pp_ctrl_reg(intel_dp))); 1174 } 1175 } 1176 1177 static u32 1178 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1179 { 1180 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1181 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1182 const unsigned int timeout_ms = 10; 1183 u32 status; 1184 bool done; 1185 1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1187 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1188 msecs_to_jiffies_timeout(timeout_ms)); 1189 1190 /* just trace the final value */ 1191 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1192 1193 if (!done) 1194 DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n", 1195 intel_dp->aux.name, timeout_ms, status); 1196 #undef C 1197 1198 return status; 1199 } 1200 1201 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1202 { 1203 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1204 1205 if (index) 1206 return 0; 1207 1208 /* 1209 * The clock divider is based off the hrawclk, and would like to run at 1210 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1211 */ 1212 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1213 } 1214 1215 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1216 { 1217 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1218 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1219 1220 if (index) 1221 return 0; 1222 1223 /* 1224 * The clock divider is based off the cdclk or PCH rawclk, and would 1225 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1226 * divide by 2000 and use that 1227 */ 1228 if (dig_port->aux_ch == AUX_CH_A) 1229 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000); 1230 else 1231 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1232 } 1233 1234 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1235 { 1236 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1237 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1238 1239 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1240 /* Workaround for non-ULT HSW */ 1241 switch (index) { 1242 case 0: return 63; 1243 case 1: return 72; 1244 default: return 0; 1245 } 1246 } 1247 1248 return ilk_get_aux_clock_divider(intel_dp, index); 1249 } 1250 1251 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1252 { 1253 /* 1254 * SKL doesn't need us to program the AUX clock divider (Hardware will 1255 * derive the clock from CDCLK automatically). We still implement the 1256 * get_aux_clock_divider vfunc to plug-in into the existing code. 1257 */ 1258 return index ? 0 : 1; 1259 } 1260 1261 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1262 int send_bytes, 1263 u32 aux_clock_divider) 1264 { 1265 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1266 struct drm_i915_private *dev_priv = 1267 to_i915(intel_dig_port->base.base.dev); 1268 u32 precharge, timeout; 1269 1270 if (IS_GEN(dev_priv, 6)) 1271 precharge = 3; 1272 else 1273 precharge = 5; 1274 1275 if (IS_BROADWELL(dev_priv)) 1276 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1277 else 1278 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1279 1280 return DP_AUX_CH_CTL_SEND_BUSY | 1281 DP_AUX_CH_CTL_DONE | 1282 DP_AUX_CH_CTL_INTERRUPT | 1283 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1284 timeout | 1285 DP_AUX_CH_CTL_RECEIVE_ERROR | 1286 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1287 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1288 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1289 } 1290 1291 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1292 int send_bytes, 1293 u32 unused) 1294 { 1295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1296 struct drm_i915_private *i915 = 1297 to_i915(intel_dig_port->base.base.dev); 1298 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1299 u32 ret; 1300 1301 ret = DP_AUX_CH_CTL_SEND_BUSY | 1302 DP_AUX_CH_CTL_DONE | 1303 DP_AUX_CH_CTL_INTERRUPT | 1304 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1305 DP_AUX_CH_CTL_TIME_OUT_MAX | 1306 DP_AUX_CH_CTL_RECEIVE_ERROR | 1307 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1308 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1309 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1310 1311 if (intel_phy_is_tc(i915, phy) && 1312 intel_dig_port->tc_mode == TC_PORT_TBT_ALT) 1313 ret |= DP_AUX_CH_CTL_TBT_IO; 1314 1315 return ret; 1316 } 1317 1318 static int 1319 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1320 const u8 *send, int send_bytes, 1321 u8 *recv, int recv_size, 1322 u32 aux_send_ctl_flags) 1323 { 1324 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1325 struct drm_i915_private *i915 = 1326 to_i915(intel_dig_port->base.base.dev); 1327 struct intel_uncore *uncore = &i915->uncore; 1328 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1329 bool is_tc_port = intel_phy_is_tc(i915, phy); 1330 i915_reg_t ch_ctl, ch_data[5]; 1331 u32 aux_clock_divider; 1332 enum intel_display_power_domain aux_domain = 1333 intel_aux_power_domain(intel_dig_port); 1334 intel_wakeref_t aux_wakeref; 1335 intel_wakeref_t pps_wakeref; 1336 int i, ret, recv_bytes; 1337 int try, clock = 0; 1338 u32 status; 1339 bool vdd; 1340 1341 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1342 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1343 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1344 1345 if (is_tc_port) 1346 intel_tc_port_lock(intel_dig_port); 1347 1348 aux_wakeref = intel_display_power_get(i915, aux_domain); 1349 pps_wakeref = pps_lock(intel_dp); 1350 1351 /* 1352 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1353 * In such cases we want to leave VDD enabled and it's up to upper layers 1354 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1355 * ourselves. 1356 */ 1357 vdd = edp_panel_vdd_on(intel_dp); 1358 1359 /* dp aux is extremely sensitive to irq latency, hence request the 1360 * lowest possible wakeup latency and so prevent the cpu from going into 1361 * deep sleep states. 1362 */ 1363 pm_qos_update_request(&i915->pm_qos, 0); 1364 1365 intel_dp_check_edp(intel_dp); 1366 1367 /* Try to wait for any previous AUX channel activity */ 1368 for (try = 0; try < 3; try++) { 1369 status = intel_uncore_read_notrace(uncore, ch_ctl); 1370 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1371 break; 1372 msleep(1); 1373 } 1374 /* just trace the final value */ 1375 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1376 1377 if (try == 3) { 1378 const u32 status = intel_uncore_read(uncore, ch_ctl); 1379 1380 if (status != intel_dp->aux_busy_last_status) { 1381 WARN(1, "dp_aux_ch not started status 0x%08x\n", 1382 status); 1383 intel_dp->aux_busy_last_status = status; 1384 } 1385 1386 ret = -EBUSY; 1387 goto out; 1388 } 1389 1390 /* Only 5 data registers! */ 1391 if (WARN_ON(send_bytes > 20 || recv_size > 20)) { 1392 ret = -E2BIG; 1393 goto out; 1394 } 1395 1396 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1397 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1398 send_bytes, 1399 aux_clock_divider); 1400 1401 send_ctl |= aux_send_ctl_flags; 1402 1403 /* Must try at least 3 times according to DP spec */ 1404 for (try = 0; try < 5; try++) { 1405 /* Load the send data into the aux channel data registers */ 1406 for (i = 0; i < send_bytes; i += 4) 1407 intel_uncore_write(uncore, 1408 ch_data[i >> 2], 1409 intel_dp_pack_aux(send + i, 1410 send_bytes - i)); 1411 1412 /* Send the command and wait for it to complete */ 1413 intel_uncore_write(uncore, ch_ctl, send_ctl); 1414 1415 status = intel_dp_aux_wait_done(intel_dp); 1416 1417 /* Clear done status and any errors */ 1418 intel_uncore_write(uncore, 1419 ch_ctl, 1420 status | 1421 DP_AUX_CH_CTL_DONE | 1422 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1423 DP_AUX_CH_CTL_RECEIVE_ERROR); 1424 1425 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1426 * 400us delay required for errors and timeouts 1427 * Timeout errors from the HW already meet this 1428 * requirement so skip to next iteration 1429 */ 1430 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1431 continue; 1432 1433 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1434 usleep_range(400, 500); 1435 continue; 1436 } 1437 if (status & DP_AUX_CH_CTL_DONE) 1438 goto done; 1439 } 1440 } 1441 1442 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1443 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); 1444 ret = -EBUSY; 1445 goto out; 1446 } 1447 1448 done: 1449 /* Check for timeout or receive error. 1450 * Timeouts occur when the sink is not connected 1451 */ 1452 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1453 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); 1454 ret = -EIO; 1455 goto out; 1456 } 1457 1458 /* Timeouts occur when the device isn't connected, so they're 1459 * "normal" -- don't fill the kernel log with these */ 1460 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1461 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); 1462 ret = -ETIMEDOUT; 1463 goto out; 1464 } 1465 1466 /* Unload any bytes sent back from the other side */ 1467 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1468 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1469 1470 /* 1471 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1472 * We have no idea of what happened so we return -EBUSY so 1473 * drm layer takes care for the necessary retries. 1474 */ 1475 if (recv_bytes == 0 || recv_bytes > 20) { 1476 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n", 1477 recv_bytes); 1478 ret = -EBUSY; 1479 goto out; 1480 } 1481 1482 if (recv_bytes > recv_size) 1483 recv_bytes = recv_size; 1484 1485 for (i = 0; i < recv_bytes; i += 4) 1486 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1487 recv + i, recv_bytes - i); 1488 1489 ret = recv_bytes; 1490 out: 1491 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1492 1493 if (vdd) 1494 edp_panel_vdd_off(intel_dp, false); 1495 1496 pps_unlock(intel_dp, pps_wakeref); 1497 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1498 1499 if (is_tc_port) 1500 intel_tc_port_unlock(intel_dig_port); 1501 1502 return ret; 1503 } 1504 1505 #define BARE_ADDRESS_SIZE 3 1506 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1507 1508 static void 1509 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1510 const struct drm_dp_aux_msg *msg) 1511 { 1512 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1513 txbuf[1] = (msg->address >> 8) & 0xff; 1514 txbuf[2] = msg->address & 0xff; 1515 txbuf[3] = msg->size - 1; 1516 } 1517 1518 static ssize_t 1519 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1520 { 1521 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1522 u8 txbuf[20], rxbuf[20]; 1523 size_t txsize, rxsize; 1524 int ret; 1525 1526 intel_dp_aux_header(txbuf, msg); 1527 1528 switch (msg->request & ~DP_AUX_I2C_MOT) { 1529 case DP_AUX_NATIVE_WRITE: 1530 case DP_AUX_I2C_WRITE: 1531 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1532 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1533 rxsize = 2; /* 0 or 1 data bytes */ 1534 1535 if (WARN_ON(txsize > 20)) 1536 return -E2BIG; 1537 1538 WARN_ON(!msg->buffer != !msg->size); 1539 1540 if (msg->buffer) 1541 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1542 1543 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1544 rxbuf, rxsize, 0); 1545 if (ret > 0) { 1546 msg->reply = rxbuf[0] >> 4; 1547 1548 if (ret > 1) { 1549 /* Number of bytes written in a short write. */ 1550 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1551 } else { 1552 /* Return payload size. */ 1553 ret = msg->size; 1554 } 1555 } 1556 break; 1557 1558 case DP_AUX_NATIVE_READ: 1559 case DP_AUX_I2C_READ: 1560 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1561 rxsize = msg->size + 1; 1562 1563 if (WARN_ON(rxsize > 20)) 1564 return -E2BIG; 1565 1566 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1567 rxbuf, rxsize, 0); 1568 if (ret > 0) { 1569 msg->reply = rxbuf[0] >> 4; 1570 /* 1571 * Assume happy day, and copy the data. The caller is 1572 * expected to check msg->reply before touching it. 1573 * 1574 * Return payload size. 1575 */ 1576 ret--; 1577 memcpy(msg->buffer, rxbuf + 1, ret); 1578 } 1579 break; 1580 1581 default: 1582 ret = -EINVAL; 1583 break; 1584 } 1585 1586 return ret; 1587 } 1588 1589 1590 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1591 { 1592 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1593 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1594 enum aux_ch aux_ch = dig_port->aux_ch; 1595 1596 switch (aux_ch) { 1597 case AUX_CH_B: 1598 case AUX_CH_C: 1599 case AUX_CH_D: 1600 return DP_AUX_CH_CTL(aux_ch); 1601 default: 1602 MISSING_CASE(aux_ch); 1603 return DP_AUX_CH_CTL(AUX_CH_B); 1604 } 1605 } 1606 1607 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1608 { 1609 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1610 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1611 enum aux_ch aux_ch = dig_port->aux_ch; 1612 1613 switch (aux_ch) { 1614 case AUX_CH_B: 1615 case AUX_CH_C: 1616 case AUX_CH_D: 1617 return DP_AUX_CH_DATA(aux_ch, index); 1618 default: 1619 MISSING_CASE(aux_ch); 1620 return DP_AUX_CH_DATA(AUX_CH_B, index); 1621 } 1622 } 1623 1624 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1625 { 1626 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1627 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1628 enum aux_ch aux_ch = dig_port->aux_ch; 1629 1630 switch (aux_ch) { 1631 case AUX_CH_A: 1632 return DP_AUX_CH_CTL(aux_ch); 1633 case AUX_CH_B: 1634 case AUX_CH_C: 1635 case AUX_CH_D: 1636 return PCH_DP_AUX_CH_CTL(aux_ch); 1637 default: 1638 MISSING_CASE(aux_ch); 1639 return DP_AUX_CH_CTL(AUX_CH_A); 1640 } 1641 } 1642 1643 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1644 { 1645 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1646 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1647 enum aux_ch aux_ch = dig_port->aux_ch; 1648 1649 switch (aux_ch) { 1650 case AUX_CH_A: 1651 return DP_AUX_CH_DATA(aux_ch, index); 1652 case AUX_CH_B: 1653 case AUX_CH_C: 1654 case AUX_CH_D: 1655 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1656 default: 1657 MISSING_CASE(aux_ch); 1658 return DP_AUX_CH_DATA(AUX_CH_A, index); 1659 } 1660 } 1661 1662 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1663 { 1664 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1665 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1666 enum aux_ch aux_ch = dig_port->aux_ch; 1667 1668 switch (aux_ch) { 1669 case AUX_CH_A: 1670 case AUX_CH_B: 1671 case AUX_CH_C: 1672 case AUX_CH_D: 1673 case AUX_CH_E: 1674 case AUX_CH_F: 1675 case AUX_CH_G: 1676 return DP_AUX_CH_CTL(aux_ch); 1677 default: 1678 MISSING_CASE(aux_ch); 1679 return DP_AUX_CH_CTL(AUX_CH_A); 1680 } 1681 } 1682 1683 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1684 { 1685 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1686 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1687 enum aux_ch aux_ch = dig_port->aux_ch; 1688 1689 switch (aux_ch) { 1690 case AUX_CH_A: 1691 case AUX_CH_B: 1692 case AUX_CH_C: 1693 case AUX_CH_D: 1694 case AUX_CH_E: 1695 case AUX_CH_F: 1696 case AUX_CH_G: 1697 return DP_AUX_CH_DATA(aux_ch, index); 1698 default: 1699 MISSING_CASE(aux_ch); 1700 return DP_AUX_CH_DATA(AUX_CH_A, index); 1701 } 1702 } 1703 1704 static void 1705 intel_dp_aux_fini(struct intel_dp *intel_dp) 1706 { 1707 kfree(intel_dp->aux.name); 1708 } 1709 1710 static void 1711 intel_dp_aux_init(struct intel_dp *intel_dp) 1712 { 1713 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1714 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1715 struct intel_encoder *encoder = &dig_port->base; 1716 1717 if (INTEL_GEN(dev_priv) >= 9) { 1718 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1719 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1720 } else if (HAS_PCH_SPLIT(dev_priv)) { 1721 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1722 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1723 } else { 1724 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1725 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1726 } 1727 1728 if (INTEL_GEN(dev_priv) >= 9) 1729 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1730 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1731 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1732 else if (HAS_PCH_SPLIT(dev_priv)) 1733 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1734 else 1735 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1736 1737 if (INTEL_GEN(dev_priv) >= 9) 1738 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1739 else 1740 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1741 1742 drm_dp_aux_init(&intel_dp->aux); 1743 1744 /* Failure to allocate our preferred name is not critical */ 1745 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", 1746 port_name(encoder->port)); 1747 intel_dp->aux.transfer = intel_dp_aux_transfer; 1748 } 1749 1750 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1751 { 1752 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1753 1754 return max_rate >= 540000; 1755 } 1756 1757 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1758 { 1759 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1760 1761 return max_rate >= 810000; 1762 } 1763 1764 static void 1765 intel_dp_set_clock(struct intel_encoder *encoder, 1766 struct intel_crtc_state *pipe_config) 1767 { 1768 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1769 const struct dp_link_dpll *divisor = NULL; 1770 int i, count = 0; 1771 1772 if (IS_G4X(dev_priv)) { 1773 divisor = g4x_dpll; 1774 count = ARRAY_SIZE(g4x_dpll); 1775 } else if (HAS_PCH_SPLIT(dev_priv)) { 1776 divisor = pch_dpll; 1777 count = ARRAY_SIZE(pch_dpll); 1778 } else if (IS_CHERRYVIEW(dev_priv)) { 1779 divisor = chv_dpll; 1780 count = ARRAY_SIZE(chv_dpll); 1781 } else if (IS_VALLEYVIEW(dev_priv)) { 1782 divisor = vlv_dpll; 1783 count = ARRAY_SIZE(vlv_dpll); 1784 } 1785 1786 if (divisor && count) { 1787 for (i = 0; i < count; i++) { 1788 if (pipe_config->port_clock == divisor[i].clock) { 1789 pipe_config->dpll = divisor[i].dpll; 1790 pipe_config->clock_set = true; 1791 break; 1792 } 1793 } 1794 } 1795 } 1796 1797 static void snprintf_int_array(char *str, size_t len, 1798 const int *array, int nelem) 1799 { 1800 int i; 1801 1802 str[0] = '\0'; 1803 1804 for (i = 0; i < nelem; i++) { 1805 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1806 if (r >= len) 1807 return; 1808 str += r; 1809 len -= r; 1810 } 1811 } 1812 1813 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1814 { 1815 char str[128]; /* FIXME: too big for stack? */ 1816 1817 if (!drm_debug_enabled(DRM_UT_KMS)) 1818 return; 1819 1820 snprintf_int_array(str, sizeof(str), 1821 intel_dp->source_rates, intel_dp->num_source_rates); 1822 DRM_DEBUG_KMS("source rates: %s\n", str); 1823 1824 snprintf_int_array(str, sizeof(str), 1825 intel_dp->sink_rates, intel_dp->num_sink_rates); 1826 DRM_DEBUG_KMS("sink rates: %s\n", str); 1827 1828 snprintf_int_array(str, sizeof(str), 1829 intel_dp->common_rates, intel_dp->num_common_rates); 1830 DRM_DEBUG_KMS("common rates: %s\n", str); 1831 } 1832 1833 int 1834 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1835 { 1836 int len; 1837 1838 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1839 if (WARN_ON(len <= 0)) 1840 return 162000; 1841 1842 return intel_dp->common_rates[len - 1]; 1843 } 1844 1845 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1846 { 1847 int i = intel_dp_rate_index(intel_dp->sink_rates, 1848 intel_dp->num_sink_rates, rate); 1849 1850 if (WARN_ON(i < 0)) 1851 i = 0; 1852 1853 return i; 1854 } 1855 1856 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1857 u8 *link_bw, u8 *rate_select) 1858 { 1859 /* eDP 1.4 rate select method. */ 1860 if (intel_dp->use_rate_select) { 1861 *link_bw = 0; 1862 *rate_select = 1863 intel_dp_rate_select(intel_dp, port_clock); 1864 } else { 1865 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1866 *rate_select = 0; 1867 } 1868 } 1869 1870 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1871 const struct intel_crtc_state *pipe_config) 1872 { 1873 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1874 1875 /* On TGL, FEC is supported on all Pipes */ 1876 if (INTEL_GEN(dev_priv) >= 12) 1877 return true; 1878 1879 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A) 1880 return true; 1881 1882 return false; 1883 } 1884 1885 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1886 const struct intel_crtc_state *pipe_config) 1887 { 1888 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1889 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1890 } 1891 1892 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1893 const struct intel_crtc_state *crtc_state) 1894 { 1895 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 1896 1897 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable) 1898 return false; 1899 1900 return intel_dsc_source_support(encoder, crtc_state) && 1901 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1902 } 1903 1904 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1905 struct intel_crtc_state *pipe_config) 1906 { 1907 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1908 struct intel_connector *intel_connector = intel_dp->attached_connector; 1909 int bpp, bpc; 1910 1911 bpp = pipe_config->pipe_bpp; 1912 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1913 1914 if (bpc > 0) 1915 bpp = min(bpp, 3*bpc); 1916 1917 if (intel_dp_is_edp(intel_dp)) { 1918 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1919 if (intel_connector->base.display_info.bpc == 0 && 1920 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1921 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", 1922 dev_priv->vbt.edp.bpp); 1923 bpp = dev_priv->vbt.edp.bpp; 1924 } 1925 } 1926 1927 return bpp; 1928 } 1929 1930 /* Adjust link config limits based on compliance test requests. */ 1931 void 1932 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1933 struct intel_crtc_state *pipe_config, 1934 struct link_config_limits *limits) 1935 { 1936 /* For DP Compliance we override the computed bpp for the pipe */ 1937 if (intel_dp->compliance.test_data.bpc != 0) { 1938 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1939 1940 limits->min_bpp = limits->max_bpp = bpp; 1941 pipe_config->dither_force_disable = bpp == 6 * 3; 1942 1943 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); 1944 } 1945 1946 /* Use values requested by Compliance Test Request */ 1947 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 1948 int index; 1949 1950 /* Validate the compliance test data since max values 1951 * might have changed due to link train fallback. 1952 */ 1953 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 1954 intel_dp->compliance.test_lane_count)) { 1955 index = intel_dp_rate_index(intel_dp->common_rates, 1956 intel_dp->num_common_rates, 1957 intel_dp->compliance.test_link_rate); 1958 if (index >= 0) 1959 limits->min_clock = limits->max_clock = index; 1960 limits->min_lane_count = limits->max_lane_count = 1961 intel_dp->compliance.test_lane_count; 1962 } 1963 } 1964 } 1965 1966 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 1967 { 1968 /* 1969 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1970 * format of the number of bytes per pixel will be half the number 1971 * of bytes of RGB pixel. 1972 */ 1973 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1974 bpp /= 2; 1975 1976 return bpp; 1977 } 1978 1979 /* Optimize link config in order: max bpp, min clock, min lanes */ 1980 static int 1981 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 1982 struct intel_crtc_state *pipe_config, 1983 const struct link_config_limits *limits) 1984 { 1985 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 1986 int bpp, clock, lane_count; 1987 int mode_rate, link_clock, link_avail; 1988 1989 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 1990 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 1991 1992 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 1993 output_bpp); 1994 1995 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 1996 for (lane_count = limits->min_lane_count; 1997 lane_count <= limits->max_lane_count; 1998 lane_count <<= 1) { 1999 link_clock = intel_dp->common_rates[clock]; 2000 link_avail = intel_dp_max_data_rate(link_clock, 2001 lane_count); 2002 2003 if (mode_rate <= link_avail) { 2004 pipe_config->lane_count = lane_count; 2005 pipe_config->pipe_bpp = bpp; 2006 pipe_config->port_clock = link_clock; 2007 2008 return 0; 2009 } 2010 } 2011 } 2012 } 2013 2014 return -EINVAL; 2015 } 2016 2017 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 2018 { 2019 int i, num_bpc; 2020 u8 dsc_bpc[3] = {0}; 2021 2022 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 2023 dsc_bpc); 2024 for (i = 0; i < num_bpc; i++) { 2025 if (dsc_max_bpc >= dsc_bpc[i]) 2026 return dsc_bpc[i] * 3; 2027 } 2028 2029 return 0; 2030 } 2031 2032 #define DSC_SUPPORTED_VERSION_MIN 1 2033 2034 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder, 2035 struct intel_crtc_state *crtc_state) 2036 { 2037 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2038 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 2039 u8 line_buf_depth; 2040 int ret; 2041 2042 ret = intel_dsc_compute_params(encoder, crtc_state); 2043 if (ret) 2044 return ret; 2045 2046 /* 2047 * Slice Height of 8 works for all currently available panels. So start 2048 * with that if pic_height is an integral multiple of 8. Eventually add 2049 * logic to try multiple slice heights. 2050 */ 2051 if (vdsc_cfg->pic_height % 8 == 0) 2052 vdsc_cfg->slice_height = 8; 2053 else if (vdsc_cfg->pic_height % 4 == 0) 2054 vdsc_cfg->slice_height = 4; 2055 else 2056 vdsc_cfg->slice_height = 2; 2057 2058 vdsc_cfg->dsc_version_major = 2059 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2060 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; 2061 vdsc_cfg->dsc_version_minor = 2062 min(DSC_SUPPORTED_VERSION_MIN, 2063 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2064 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT); 2065 2066 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & 2067 DP_DSC_RGB; 2068 2069 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd); 2070 if (!line_buf_depth) { 2071 DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n"); 2072 return -EINVAL; 2073 } 2074 2075 if (vdsc_cfg->dsc_version_minor == 2) 2076 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ? 2077 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth; 2078 else 2079 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ? 2080 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth; 2081 2082 vdsc_cfg->block_pred_enable = 2083 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & 2084 DP_DSC_BLK_PREDICTION_IS_SUPPORTED; 2085 2086 return drm_dsc_compute_rc_parameters(vdsc_cfg); 2087 } 2088 2089 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2090 struct intel_crtc_state *pipe_config, 2091 struct drm_connector_state *conn_state, 2092 struct link_config_limits *limits) 2093 { 2094 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2095 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2096 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2097 u8 dsc_max_bpc; 2098 int pipe_bpp; 2099 int ret; 2100 2101 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2102 intel_dp_supports_fec(intel_dp, pipe_config); 2103 2104 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2105 return -EINVAL; 2106 2107 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 2108 if (INTEL_GEN(dev_priv) >= 12) 2109 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc); 2110 else 2111 dsc_max_bpc = min_t(u8, 10, 2112 conn_state->max_requested_bpc); 2113 2114 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2115 2116 /* Min Input BPC for ICL+ is 8 */ 2117 if (pipe_bpp < 8 * 3) { 2118 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n"); 2119 return -EINVAL; 2120 } 2121 2122 /* 2123 * For now enable DSC for max bpp, max link rate, max lane count. 2124 * Optimize this later for the minimum possible link rate/lane count 2125 * with DSC enabled for the requested mode. 2126 */ 2127 pipe_config->pipe_bpp = pipe_bpp; 2128 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2129 pipe_config->lane_count = limits->max_lane_count; 2130 2131 if (intel_dp_is_edp(intel_dp)) { 2132 pipe_config->dsc.compressed_bpp = 2133 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2134 pipe_config->pipe_bpp); 2135 pipe_config->dsc.slice_count = 2136 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2137 true); 2138 } else { 2139 u16 dsc_max_output_bpp; 2140 u8 dsc_dp_slice_count; 2141 2142 dsc_max_output_bpp = 2143 intel_dp_dsc_get_output_bpp(dev_priv, 2144 pipe_config->port_clock, 2145 pipe_config->lane_count, 2146 adjusted_mode->crtc_clock, 2147 adjusted_mode->crtc_hdisplay); 2148 dsc_dp_slice_count = 2149 intel_dp_dsc_get_slice_count(intel_dp, 2150 adjusted_mode->crtc_clock, 2151 adjusted_mode->crtc_hdisplay); 2152 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2153 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n"); 2154 return -EINVAL; 2155 } 2156 pipe_config->dsc.compressed_bpp = min_t(u16, 2157 dsc_max_output_bpp >> 4, 2158 pipe_config->pipe_bpp); 2159 pipe_config->dsc.slice_count = dsc_dp_slice_count; 2160 } 2161 /* 2162 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2163 * is greater than the maximum Cdclock and if slice count is even 2164 * then we need to use 2 VDSC instances. 2165 */ 2166 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 2167 if (pipe_config->dsc.slice_count > 1) { 2168 pipe_config->dsc.dsc_split = true; 2169 } else { 2170 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n"); 2171 return -EINVAL; 2172 } 2173 } 2174 2175 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config); 2176 if (ret < 0) { 2177 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d " 2178 "Compressed BPP = %d\n", 2179 pipe_config->pipe_bpp, 2180 pipe_config->dsc.compressed_bpp); 2181 return ret; 2182 } 2183 2184 pipe_config->dsc.compression_enable = true; 2185 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d " 2186 "Compressed Bpp = %d Slice Count = %d\n", 2187 pipe_config->pipe_bpp, 2188 pipe_config->dsc.compressed_bpp, 2189 pipe_config->dsc.slice_count); 2190 2191 return 0; 2192 } 2193 2194 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2195 { 2196 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2197 return 6 * 3; 2198 else 2199 return 8 * 3; 2200 } 2201 2202 static int 2203 intel_dp_compute_link_config(struct intel_encoder *encoder, 2204 struct intel_crtc_state *pipe_config, 2205 struct drm_connector_state *conn_state) 2206 { 2207 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2208 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2209 struct link_config_limits limits; 2210 int common_len; 2211 int ret; 2212 2213 common_len = intel_dp_common_len_rate_limit(intel_dp, 2214 intel_dp->max_link_rate); 2215 2216 /* No common link rates between source and sink */ 2217 WARN_ON(common_len <= 0); 2218 2219 limits.min_clock = 0; 2220 limits.max_clock = common_len - 1; 2221 2222 limits.min_lane_count = 1; 2223 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2224 2225 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2226 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2227 2228 if (intel_dp_is_edp(intel_dp)) { 2229 /* 2230 * Use the maximum clock and number of lanes the eDP panel 2231 * advertizes being capable of. The panels are generally 2232 * designed to support only a single clock and lane 2233 * configuration, and typically these values correspond to the 2234 * native resolution of the panel. 2235 */ 2236 limits.min_lane_count = limits.max_lane_count; 2237 limits.min_clock = limits.max_clock; 2238 } 2239 2240 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2241 2242 DRM_DEBUG_KMS("DP link computation with max lane count %i " 2243 "max rate %d max bpp %d pixel clock %iKHz\n", 2244 limits.max_lane_count, 2245 intel_dp->common_rates[limits.max_clock], 2246 limits.max_bpp, adjusted_mode->crtc_clock); 2247 2248 /* 2249 * Optimize for slow and wide. This is the place to add alternative 2250 * optimization policy. 2251 */ 2252 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2253 2254 /* enable compression if the mode doesn't fit available BW */ 2255 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en); 2256 if (ret || intel_dp->force_dsc_en) { 2257 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2258 conn_state, &limits); 2259 if (ret < 0) 2260 return ret; 2261 } 2262 2263 if (pipe_config->dsc.compression_enable) { 2264 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2265 pipe_config->lane_count, pipe_config->port_clock, 2266 pipe_config->pipe_bpp, 2267 pipe_config->dsc.compressed_bpp); 2268 2269 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2270 intel_dp_link_required(adjusted_mode->crtc_clock, 2271 pipe_config->dsc.compressed_bpp), 2272 intel_dp_max_data_rate(pipe_config->port_clock, 2273 pipe_config->lane_count)); 2274 } else { 2275 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", 2276 pipe_config->lane_count, pipe_config->port_clock, 2277 pipe_config->pipe_bpp); 2278 2279 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2280 intel_dp_link_required(adjusted_mode->crtc_clock, 2281 pipe_config->pipe_bpp), 2282 intel_dp_max_data_rate(pipe_config->port_clock, 2283 pipe_config->lane_count)); 2284 } 2285 return 0; 2286 } 2287 2288 static int 2289 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2290 struct drm_connector *connector, 2291 struct intel_crtc_state *crtc_state) 2292 { 2293 const struct drm_display_info *info = &connector->display_info; 2294 const struct drm_display_mode *adjusted_mode = 2295 &crtc_state->hw.adjusted_mode; 2296 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2297 int ret; 2298 2299 if (!drm_mode_is_420_only(info, adjusted_mode) || 2300 !intel_dp_get_colorimetry_status(intel_dp) || 2301 !connector->ycbcr_420_allowed) 2302 return 0; 2303 2304 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2305 2306 /* YCBCR 420 output conversion needs a scaler */ 2307 ret = skl_update_scaler_crtc(crtc_state); 2308 if (ret) { 2309 DRM_DEBUG_KMS("Scaler allocation for output failed\n"); 2310 return ret; 2311 } 2312 2313 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN); 2314 2315 return 0; 2316 } 2317 2318 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2319 const struct drm_connector_state *conn_state) 2320 { 2321 const struct intel_digital_connector_state *intel_conn_state = 2322 to_intel_digital_connector_state(conn_state); 2323 const struct drm_display_mode *adjusted_mode = 2324 &crtc_state->hw.adjusted_mode; 2325 2326 /* 2327 * Our YCbCr output is always limited range. 2328 * crtc_state->limited_color_range only applies to RGB, 2329 * and it must never be set for YCbCr or we risk setting 2330 * some conflicting bits in PIPECONF which will mess up 2331 * the colors on the monitor. 2332 */ 2333 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2334 return false; 2335 2336 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2337 /* 2338 * See: 2339 * CEA-861-E - 5.1 Default Encoding Parameters 2340 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2341 */ 2342 return crtc_state->pipe_bpp != 18 && 2343 drm_default_rgb_quant_range(adjusted_mode) == 2344 HDMI_QUANTIZATION_RANGE_LIMITED; 2345 } else { 2346 return intel_conn_state->broadcast_rgb == 2347 INTEL_BROADCAST_RGB_LIMITED; 2348 } 2349 } 2350 2351 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv, 2352 enum port port) 2353 { 2354 if (IS_G4X(dev_priv)) 2355 return false; 2356 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A) 2357 return false; 2358 2359 return true; 2360 } 2361 2362 int 2363 intel_dp_compute_config(struct intel_encoder *encoder, 2364 struct intel_crtc_state *pipe_config, 2365 struct drm_connector_state *conn_state) 2366 { 2367 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2368 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2369 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2370 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder); 2371 enum port port = encoder->port; 2372 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc); 2373 struct intel_connector *intel_connector = intel_dp->attached_connector; 2374 struct intel_digital_connector_state *intel_conn_state = 2375 to_intel_digital_connector_state(conn_state); 2376 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 2377 DP_DPCD_QUIRK_CONSTANT_N); 2378 int ret = 0, output_bpp; 2379 2380 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2381 pipe_config->has_pch_encoder = true; 2382 2383 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2384 2385 if (lspcon->active) 2386 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2387 else 2388 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base, 2389 pipe_config); 2390 2391 if (ret) 2392 return ret; 2393 2394 pipe_config->has_drrs = false; 2395 if (!intel_dp_port_has_audio(dev_priv, port)) 2396 pipe_config->has_audio = false; 2397 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2398 pipe_config->has_audio = intel_dp->has_audio; 2399 else 2400 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2401 2402 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2403 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2404 adjusted_mode); 2405 2406 if (INTEL_GEN(dev_priv) >= 9) { 2407 ret = skl_update_scaler_crtc(pipe_config); 2408 if (ret) 2409 return ret; 2410 } 2411 2412 if (HAS_GMCH(dev_priv)) 2413 intel_gmch_panel_fitting(intel_crtc, pipe_config, 2414 conn_state->scaling_mode); 2415 else 2416 intel_pch_panel_fitting(intel_crtc, pipe_config, 2417 conn_state->scaling_mode); 2418 } 2419 2420 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2421 return -EINVAL; 2422 2423 if (HAS_GMCH(dev_priv) && 2424 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2425 return -EINVAL; 2426 2427 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2428 return -EINVAL; 2429 2430 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) 2431 return -EINVAL; 2432 2433 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2434 if (ret < 0) 2435 return ret; 2436 2437 pipe_config->limited_color_range = 2438 intel_dp_limited_color_range(pipe_config, conn_state); 2439 2440 if (pipe_config->dsc.compression_enable) 2441 output_bpp = pipe_config->dsc.compressed_bpp; 2442 else 2443 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2444 2445 intel_link_compute_m_n(output_bpp, 2446 pipe_config->lane_count, 2447 adjusted_mode->crtc_clock, 2448 pipe_config->port_clock, 2449 &pipe_config->dp_m_n, 2450 constant_n, pipe_config->fec_enable); 2451 2452 if (intel_connector->panel.downclock_mode != NULL && 2453 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2454 pipe_config->has_drrs = true; 2455 intel_link_compute_m_n(output_bpp, 2456 pipe_config->lane_count, 2457 intel_connector->panel.downclock_mode->clock, 2458 pipe_config->port_clock, 2459 &pipe_config->dp_m2_n2, 2460 constant_n, pipe_config->fec_enable); 2461 } 2462 2463 if (!HAS_DDI(dev_priv)) 2464 intel_dp_set_clock(encoder, pipe_config); 2465 2466 intel_psr_compute_config(intel_dp, pipe_config); 2467 2468 return 0; 2469 } 2470 2471 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2472 int link_rate, u8 lane_count, 2473 bool link_mst) 2474 { 2475 intel_dp->link_trained = false; 2476 intel_dp->link_rate = link_rate; 2477 intel_dp->lane_count = lane_count; 2478 intel_dp->link_mst = link_mst; 2479 } 2480 2481 static void intel_dp_prepare(struct intel_encoder *encoder, 2482 const struct intel_crtc_state *pipe_config) 2483 { 2484 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2485 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2486 enum port port = encoder->port; 2487 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 2488 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2489 2490 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2491 pipe_config->lane_count, 2492 intel_crtc_has_type(pipe_config, 2493 INTEL_OUTPUT_DP_MST)); 2494 2495 intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port); 2496 intel_dp->regs.dp_tp_status = DP_TP_STATUS(port); 2497 2498 /* 2499 * There are four kinds of DP registers: 2500 * 2501 * IBX PCH 2502 * SNB CPU 2503 * IVB CPU 2504 * CPT PCH 2505 * 2506 * IBX PCH and CPU are the same for almost everything, 2507 * except that the CPU DP PLL is configured in this 2508 * register 2509 * 2510 * CPT PCH is quite different, having many bits moved 2511 * to the TRANS_DP_CTL register instead. That 2512 * configuration happens (oddly) in ilk_pch_enable 2513 */ 2514 2515 /* Preserve the BIOS-computed detected bit. This is 2516 * supposed to be read-only. 2517 */ 2518 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 2519 2520 /* Handle DP bits in common between all three register formats */ 2521 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2522 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2523 2524 /* Split out the IBX/CPU vs CPT settings */ 2525 2526 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2527 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2528 intel_dp->DP |= DP_SYNC_HS_HIGH; 2529 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2530 intel_dp->DP |= DP_SYNC_VS_HIGH; 2531 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2532 2533 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2534 intel_dp->DP |= DP_ENHANCED_FRAMING; 2535 2536 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2537 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2538 u32 trans_dp; 2539 2540 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2541 2542 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 2543 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2544 trans_dp |= TRANS_DP_ENH_FRAMING; 2545 else 2546 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2547 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); 2548 } else { 2549 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2550 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2551 2552 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2553 intel_dp->DP |= DP_SYNC_HS_HIGH; 2554 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2555 intel_dp->DP |= DP_SYNC_VS_HIGH; 2556 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2557 2558 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2559 intel_dp->DP |= DP_ENHANCED_FRAMING; 2560 2561 if (IS_CHERRYVIEW(dev_priv)) 2562 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2563 else 2564 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2565 } 2566 } 2567 2568 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2569 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2570 2571 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2572 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2573 2574 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2575 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2576 2577 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2578 2579 static void wait_panel_status(struct intel_dp *intel_dp, 2580 u32 mask, 2581 u32 value) 2582 { 2583 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2584 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2585 2586 lockdep_assert_held(&dev_priv->pps_mutex); 2587 2588 intel_pps_verify_state(intel_dp); 2589 2590 pp_stat_reg = _pp_stat_reg(intel_dp); 2591 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2592 2593 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", 2594 mask, value, 2595 I915_READ(pp_stat_reg), 2596 I915_READ(pp_ctrl_reg)); 2597 2598 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2599 mask, value, 5000)) 2600 DRM_ERROR("Panel status timeout: status %08x control %08x\n", 2601 I915_READ(pp_stat_reg), 2602 I915_READ(pp_ctrl_reg)); 2603 2604 DRM_DEBUG_KMS("Wait complete\n"); 2605 } 2606 2607 static void wait_panel_on(struct intel_dp *intel_dp) 2608 { 2609 DRM_DEBUG_KMS("Wait for panel power on\n"); 2610 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2611 } 2612 2613 static void wait_panel_off(struct intel_dp *intel_dp) 2614 { 2615 DRM_DEBUG_KMS("Wait for panel power off time\n"); 2616 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2617 } 2618 2619 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2620 { 2621 ktime_t panel_power_on_time; 2622 s64 panel_power_off_duration; 2623 2624 DRM_DEBUG_KMS("Wait for panel power cycle\n"); 2625 2626 /* take the difference of currrent time and panel power off time 2627 * and then make panel wait for t11_t12 if needed. */ 2628 panel_power_on_time = ktime_get_boottime(); 2629 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2630 2631 /* When we disable the VDD override bit last we have to do the manual 2632 * wait. */ 2633 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2634 wait_remaining_ms_from_jiffies(jiffies, 2635 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2636 2637 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2638 } 2639 2640 static void wait_backlight_on(struct intel_dp *intel_dp) 2641 { 2642 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2643 intel_dp->backlight_on_delay); 2644 } 2645 2646 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2647 { 2648 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2649 intel_dp->backlight_off_delay); 2650 } 2651 2652 /* Read the current pp_control value, unlocking the register if it 2653 * is locked 2654 */ 2655 2656 static u32 ilk_get_pp_control(struct intel_dp *intel_dp) 2657 { 2658 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2659 u32 control; 2660 2661 lockdep_assert_held(&dev_priv->pps_mutex); 2662 2663 control = I915_READ(_pp_ctrl_reg(intel_dp)); 2664 if (WARN_ON(!HAS_DDI(dev_priv) && 2665 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2666 control &= ~PANEL_UNLOCK_MASK; 2667 control |= PANEL_UNLOCK_REGS; 2668 } 2669 return control; 2670 } 2671 2672 /* 2673 * Must be paired with edp_panel_vdd_off(). 2674 * Must hold pps_mutex around the whole on/off sequence. 2675 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2676 */ 2677 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2678 { 2679 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2680 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2681 u32 pp; 2682 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2683 bool need_to_disable = !intel_dp->want_panel_vdd; 2684 2685 lockdep_assert_held(&dev_priv->pps_mutex); 2686 2687 if (!intel_dp_is_edp(intel_dp)) 2688 return false; 2689 2690 cancel_delayed_work(&intel_dp->panel_vdd_work); 2691 intel_dp->want_panel_vdd = true; 2692 2693 if (edp_have_panel_vdd(intel_dp)) 2694 return need_to_disable; 2695 2696 intel_display_power_get(dev_priv, 2697 intel_aux_power_domain(intel_dig_port)); 2698 2699 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n", 2700 intel_dig_port->base.base.base.id, 2701 intel_dig_port->base.base.name); 2702 2703 if (!edp_have_panel_power(intel_dp)) 2704 wait_panel_power_cycle(intel_dp); 2705 2706 pp = ilk_get_pp_control(intel_dp); 2707 pp |= EDP_FORCE_VDD; 2708 2709 pp_stat_reg = _pp_stat_reg(intel_dp); 2710 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2711 2712 I915_WRITE(pp_ctrl_reg, pp); 2713 POSTING_READ(pp_ctrl_reg); 2714 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2715 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2716 /* 2717 * If the panel wasn't on, delay before accessing aux channel 2718 */ 2719 if (!edp_have_panel_power(intel_dp)) { 2720 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n", 2721 intel_dig_port->base.base.base.id, 2722 intel_dig_port->base.base.name); 2723 msleep(intel_dp->panel_power_up_delay); 2724 } 2725 2726 return need_to_disable; 2727 } 2728 2729 /* 2730 * Must be paired with intel_edp_panel_vdd_off() or 2731 * intel_edp_panel_off(). 2732 * Nested calls to these functions are not allowed since 2733 * we drop the lock. Caller must use some higher level 2734 * locking to prevent nested calls from other threads. 2735 */ 2736 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2737 { 2738 intel_wakeref_t wakeref; 2739 bool vdd; 2740 2741 if (!intel_dp_is_edp(intel_dp)) 2742 return; 2743 2744 vdd = false; 2745 with_pps_lock(intel_dp, wakeref) 2746 vdd = edp_panel_vdd_on(intel_dp); 2747 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n", 2748 dp_to_dig_port(intel_dp)->base.base.base.id, 2749 dp_to_dig_port(intel_dp)->base.base.name); 2750 } 2751 2752 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2753 { 2754 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2755 struct intel_digital_port *intel_dig_port = 2756 dp_to_dig_port(intel_dp); 2757 u32 pp; 2758 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2759 2760 lockdep_assert_held(&dev_priv->pps_mutex); 2761 2762 WARN_ON(intel_dp->want_panel_vdd); 2763 2764 if (!edp_have_panel_vdd(intel_dp)) 2765 return; 2766 2767 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n", 2768 intel_dig_port->base.base.base.id, 2769 intel_dig_port->base.base.name); 2770 2771 pp = ilk_get_pp_control(intel_dp); 2772 pp &= ~EDP_FORCE_VDD; 2773 2774 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2775 pp_stat_reg = _pp_stat_reg(intel_dp); 2776 2777 I915_WRITE(pp_ctrl_reg, pp); 2778 POSTING_READ(pp_ctrl_reg); 2779 2780 /* Make sure sequencer is idle before allowing subsequent activity */ 2781 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2782 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2783 2784 if ((pp & PANEL_POWER_ON) == 0) 2785 intel_dp->panel_power_off_time = ktime_get_boottime(); 2786 2787 intel_display_power_put_unchecked(dev_priv, 2788 intel_aux_power_domain(intel_dig_port)); 2789 } 2790 2791 static void edp_panel_vdd_work(struct work_struct *__work) 2792 { 2793 struct intel_dp *intel_dp = 2794 container_of(to_delayed_work(__work), 2795 struct intel_dp, panel_vdd_work); 2796 intel_wakeref_t wakeref; 2797 2798 with_pps_lock(intel_dp, wakeref) { 2799 if (!intel_dp->want_panel_vdd) 2800 edp_panel_vdd_off_sync(intel_dp); 2801 } 2802 } 2803 2804 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 2805 { 2806 unsigned long delay; 2807 2808 /* 2809 * Queue the timer to fire a long time from now (relative to the power 2810 * down delay) to keep the panel power up across a sequence of 2811 * operations. 2812 */ 2813 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 2814 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 2815 } 2816 2817 /* 2818 * Must be paired with edp_panel_vdd_on(). 2819 * Must hold pps_mutex around the whole on/off sequence. 2820 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2821 */ 2822 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 2823 { 2824 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2825 2826 lockdep_assert_held(&dev_priv->pps_mutex); 2827 2828 if (!intel_dp_is_edp(intel_dp)) 2829 return; 2830 2831 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on", 2832 dp_to_dig_port(intel_dp)->base.base.base.id, 2833 dp_to_dig_port(intel_dp)->base.base.name); 2834 2835 intel_dp->want_panel_vdd = false; 2836 2837 if (sync) 2838 edp_panel_vdd_off_sync(intel_dp); 2839 else 2840 edp_panel_vdd_schedule_off(intel_dp); 2841 } 2842 2843 static void edp_panel_on(struct intel_dp *intel_dp) 2844 { 2845 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2846 u32 pp; 2847 i915_reg_t pp_ctrl_reg; 2848 2849 lockdep_assert_held(&dev_priv->pps_mutex); 2850 2851 if (!intel_dp_is_edp(intel_dp)) 2852 return; 2853 2854 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n", 2855 dp_to_dig_port(intel_dp)->base.base.base.id, 2856 dp_to_dig_port(intel_dp)->base.base.name); 2857 2858 if (WARN(edp_have_panel_power(intel_dp), 2859 "[ENCODER:%d:%s] panel power already on\n", 2860 dp_to_dig_port(intel_dp)->base.base.base.id, 2861 dp_to_dig_port(intel_dp)->base.base.name)) 2862 return; 2863 2864 wait_panel_power_cycle(intel_dp); 2865 2866 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2867 pp = ilk_get_pp_control(intel_dp); 2868 if (IS_GEN(dev_priv, 5)) { 2869 /* ILK workaround: disable reset around power sequence */ 2870 pp &= ~PANEL_POWER_RESET; 2871 I915_WRITE(pp_ctrl_reg, pp); 2872 POSTING_READ(pp_ctrl_reg); 2873 } 2874 2875 pp |= PANEL_POWER_ON; 2876 if (!IS_GEN(dev_priv, 5)) 2877 pp |= PANEL_POWER_RESET; 2878 2879 I915_WRITE(pp_ctrl_reg, pp); 2880 POSTING_READ(pp_ctrl_reg); 2881 2882 wait_panel_on(intel_dp); 2883 intel_dp->last_power_on = jiffies; 2884 2885 if (IS_GEN(dev_priv, 5)) { 2886 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 2887 I915_WRITE(pp_ctrl_reg, pp); 2888 POSTING_READ(pp_ctrl_reg); 2889 } 2890 } 2891 2892 void intel_edp_panel_on(struct intel_dp *intel_dp) 2893 { 2894 intel_wakeref_t wakeref; 2895 2896 if (!intel_dp_is_edp(intel_dp)) 2897 return; 2898 2899 with_pps_lock(intel_dp, wakeref) 2900 edp_panel_on(intel_dp); 2901 } 2902 2903 2904 static void edp_panel_off(struct intel_dp *intel_dp) 2905 { 2906 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2907 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2908 u32 pp; 2909 i915_reg_t pp_ctrl_reg; 2910 2911 lockdep_assert_held(&dev_priv->pps_mutex); 2912 2913 if (!intel_dp_is_edp(intel_dp)) 2914 return; 2915 2916 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n", 2917 dig_port->base.base.base.id, dig_port->base.base.name); 2918 2919 WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n", 2920 dig_port->base.base.base.id, dig_port->base.base.name); 2921 2922 pp = ilk_get_pp_control(intel_dp); 2923 /* We need to switch off panel power _and_ force vdd, for otherwise some 2924 * panels get very unhappy and cease to work. */ 2925 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 2926 EDP_BLC_ENABLE); 2927 2928 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2929 2930 intel_dp->want_panel_vdd = false; 2931 2932 I915_WRITE(pp_ctrl_reg, pp); 2933 POSTING_READ(pp_ctrl_reg); 2934 2935 wait_panel_off(intel_dp); 2936 intel_dp->panel_power_off_time = ktime_get_boottime(); 2937 2938 /* We got a reference when we enabled the VDD. */ 2939 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 2940 } 2941 2942 void intel_edp_panel_off(struct intel_dp *intel_dp) 2943 { 2944 intel_wakeref_t wakeref; 2945 2946 if (!intel_dp_is_edp(intel_dp)) 2947 return; 2948 2949 with_pps_lock(intel_dp, wakeref) 2950 edp_panel_off(intel_dp); 2951 } 2952 2953 /* Enable backlight in the panel power control. */ 2954 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 2955 { 2956 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2957 intel_wakeref_t wakeref; 2958 2959 /* 2960 * If we enable the backlight right away following a panel power 2961 * on, we may see slight flicker as the panel syncs with the eDP 2962 * link. So delay a bit to make sure the image is solid before 2963 * allowing it to appear. 2964 */ 2965 wait_backlight_on(intel_dp); 2966 2967 with_pps_lock(intel_dp, wakeref) { 2968 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2969 u32 pp; 2970 2971 pp = ilk_get_pp_control(intel_dp); 2972 pp |= EDP_BLC_ENABLE; 2973 2974 I915_WRITE(pp_ctrl_reg, pp); 2975 POSTING_READ(pp_ctrl_reg); 2976 } 2977 } 2978 2979 /* Enable backlight PWM and backlight PP control. */ 2980 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 2981 const struct drm_connector_state *conn_state) 2982 { 2983 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); 2984 2985 if (!intel_dp_is_edp(intel_dp)) 2986 return; 2987 2988 DRM_DEBUG_KMS("\n"); 2989 2990 intel_panel_enable_backlight(crtc_state, conn_state); 2991 _intel_edp_backlight_on(intel_dp); 2992 } 2993 2994 /* Disable backlight in the panel power control. */ 2995 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 2996 { 2997 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2998 intel_wakeref_t wakeref; 2999 3000 if (!intel_dp_is_edp(intel_dp)) 3001 return; 3002 3003 with_pps_lock(intel_dp, wakeref) { 3004 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3005 u32 pp; 3006 3007 pp = ilk_get_pp_control(intel_dp); 3008 pp &= ~EDP_BLC_ENABLE; 3009 3010 I915_WRITE(pp_ctrl_reg, pp); 3011 POSTING_READ(pp_ctrl_reg); 3012 } 3013 3014 intel_dp->last_backlight_off = jiffies; 3015 edp_wait_backlight_off(intel_dp); 3016 } 3017 3018 /* Disable backlight PP control and backlight PWM. */ 3019 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 3020 { 3021 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); 3022 3023 if (!intel_dp_is_edp(intel_dp)) 3024 return; 3025 3026 DRM_DEBUG_KMS("\n"); 3027 3028 _intel_edp_backlight_off(intel_dp); 3029 intel_panel_disable_backlight(old_conn_state); 3030 } 3031 3032 /* 3033 * Hook for controlling the panel power control backlight through the bl_power 3034 * sysfs attribute. Take care to handle multiple calls. 3035 */ 3036 static void intel_edp_backlight_power(struct intel_connector *connector, 3037 bool enable) 3038 { 3039 struct intel_dp *intel_dp = intel_attached_dp(connector); 3040 intel_wakeref_t wakeref; 3041 bool is_enabled; 3042 3043 is_enabled = false; 3044 with_pps_lock(intel_dp, wakeref) 3045 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 3046 if (is_enabled == enable) 3047 return; 3048 3049 DRM_DEBUG_KMS("panel power control backlight %s\n", 3050 enable ? "enable" : "disable"); 3051 3052 if (enable) 3053 _intel_edp_backlight_on(intel_dp); 3054 else 3055 _intel_edp_backlight_off(intel_dp); 3056 } 3057 3058 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 3059 { 3060 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3061 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3062 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN; 3063 3064 I915_STATE_WARN(cur_state != state, 3065 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", 3066 dig_port->base.base.base.id, dig_port->base.base.name, 3067 onoff(state), onoff(cur_state)); 3068 } 3069 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 3070 3071 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 3072 { 3073 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE; 3074 3075 I915_STATE_WARN(cur_state != state, 3076 "eDP PLL state assertion failure (expected %s, current %s)\n", 3077 onoff(state), onoff(cur_state)); 3078 } 3079 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 3080 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 3081 3082 static void ilk_edp_pll_on(struct intel_dp *intel_dp, 3083 const struct intel_crtc_state *pipe_config) 3084 { 3085 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3086 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3087 3088 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 3089 assert_dp_port_disabled(intel_dp); 3090 assert_edp_pll_disabled(dev_priv); 3091 3092 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n", 3093 pipe_config->port_clock); 3094 3095 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 3096 3097 if (pipe_config->port_clock == 162000) 3098 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 3099 else 3100 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 3101 3102 I915_WRITE(DP_A, intel_dp->DP); 3103 POSTING_READ(DP_A); 3104 udelay(500); 3105 3106 /* 3107 * [DevILK] Work around required when enabling DP PLL 3108 * while a pipe is enabled going to FDI: 3109 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 3110 * 2. Program DP PLL enable 3111 */ 3112 if (IS_GEN(dev_priv, 5)) 3113 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 3114 3115 intel_dp->DP |= DP_PLL_ENABLE; 3116 3117 I915_WRITE(DP_A, intel_dp->DP); 3118 POSTING_READ(DP_A); 3119 udelay(200); 3120 } 3121 3122 static void ilk_edp_pll_off(struct intel_dp *intel_dp, 3123 const struct intel_crtc_state *old_crtc_state) 3124 { 3125 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3126 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3127 3128 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 3129 assert_dp_port_disabled(intel_dp); 3130 assert_edp_pll_enabled(dev_priv); 3131 3132 DRM_DEBUG_KMS("disabling eDP PLL\n"); 3133 3134 intel_dp->DP &= ~DP_PLL_ENABLE; 3135 3136 I915_WRITE(DP_A, intel_dp->DP); 3137 POSTING_READ(DP_A); 3138 udelay(200); 3139 } 3140 3141 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3142 { 3143 /* 3144 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3145 * be capable of signalling downstream hpd with a long pulse. 3146 * Whether or not that means D3 is safe to use is not clear, 3147 * but let's assume so until proven otherwise. 3148 * 3149 * FIXME should really check all downstream ports... 3150 */ 3151 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3152 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 3153 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3154 } 3155 3156 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3157 const struct intel_crtc_state *crtc_state, 3158 bool enable) 3159 { 3160 int ret; 3161 3162 if (!crtc_state->dsc.compression_enable) 3163 return; 3164 3165 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3166 enable ? DP_DECOMPRESSION_EN : 0); 3167 if (ret < 0) 3168 DRM_DEBUG_KMS("Failed to %s sink decompression state\n", 3169 enable ? "enable" : "disable"); 3170 } 3171 3172 /* If the sink supports it, try to set the power state appropriately */ 3173 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 3174 { 3175 int ret, i; 3176 3177 /* Should have a valid DPCD by this point */ 3178 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3179 return; 3180 3181 if (mode != DRM_MODE_DPMS_ON) { 3182 if (downstream_hpd_needs_d0(intel_dp)) 3183 return; 3184 3185 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3186 DP_SET_POWER_D3); 3187 } else { 3188 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3189 3190 /* 3191 * When turning on, we need to retry for 1ms to give the sink 3192 * time to wake up. 3193 */ 3194 for (i = 0; i < 3; i++) { 3195 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3196 DP_SET_POWER_D0); 3197 if (ret == 1) 3198 break; 3199 msleep(1); 3200 } 3201 3202 if (ret == 1 && lspcon->active) 3203 lspcon_wait_pcon_mode(lspcon); 3204 } 3205 3206 if (ret != 1) 3207 DRM_DEBUG_KMS("failed to %s sink power state\n", 3208 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 3209 } 3210 3211 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3212 enum port port, enum pipe *pipe) 3213 { 3214 enum pipe p; 3215 3216 for_each_pipe(dev_priv, p) { 3217 u32 val = I915_READ(TRANS_DP_CTL(p)); 3218 3219 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3220 *pipe = p; 3221 return true; 3222 } 3223 } 3224 3225 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port)); 3226 3227 /* must initialize pipe to something for the asserts */ 3228 *pipe = PIPE_A; 3229 3230 return false; 3231 } 3232 3233 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3234 i915_reg_t dp_reg, enum port port, 3235 enum pipe *pipe) 3236 { 3237 bool ret; 3238 u32 val; 3239 3240 val = I915_READ(dp_reg); 3241 3242 ret = val & DP_PORT_EN; 3243 3244 /* asserts want to know the pipe even if the port is disabled */ 3245 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3246 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3247 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3248 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3249 else if (IS_CHERRYVIEW(dev_priv)) 3250 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3251 else 3252 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3253 3254 return ret; 3255 } 3256 3257 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3258 enum pipe *pipe) 3259 { 3260 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3261 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3262 intel_wakeref_t wakeref; 3263 bool ret; 3264 3265 wakeref = intel_display_power_get_if_enabled(dev_priv, 3266 encoder->power_domain); 3267 if (!wakeref) 3268 return false; 3269 3270 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3271 encoder->port, pipe); 3272 3273 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3274 3275 return ret; 3276 } 3277 3278 static void intel_dp_get_config(struct intel_encoder *encoder, 3279 struct intel_crtc_state *pipe_config) 3280 { 3281 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3282 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3283 u32 tmp, flags = 0; 3284 enum port port = encoder->port; 3285 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3286 3287 if (encoder->type == INTEL_OUTPUT_EDP) 3288 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3289 else 3290 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3291 3292 tmp = I915_READ(intel_dp->output_reg); 3293 3294 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3295 3296 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3297 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 3298 3299 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3300 flags |= DRM_MODE_FLAG_PHSYNC; 3301 else 3302 flags |= DRM_MODE_FLAG_NHSYNC; 3303 3304 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3305 flags |= DRM_MODE_FLAG_PVSYNC; 3306 else 3307 flags |= DRM_MODE_FLAG_NVSYNC; 3308 } else { 3309 if (tmp & DP_SYNC_HS_HIGH) 3310 flags |= DRM_MODE_FLAG_PHSYNC; 3311 else 3312 flags |= DRM_MODE_FLAG_NHSYNC; 3313 3314 if (tmp & DP_SYNC_VS_HIGH) 3315 flags |= DRM_MODE_FLAG_PVSYNC; 3316 else 3317 flags |= DRM_MODE_FLAG_NVSYNC; 3318 } 3319 3320 pipe_config->hw.adjusted_mode.flags |= flags; 3321 3322 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3323 pipe_config->limited_color_range = true; 3324 3325 pipe_config->lane_count = 3326 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3327 3328 intel_dp_get_m_n(crtc, pipe_config); 3329 3330 if (port == PORT_A) { 3331 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3332 pipe_config->port_clock = 162000; 3333 else 3334 pipe_config->port_clock = 270000; 3335 } 3336 3337 pipe_config->hw.adjusted_mode.crtc_clock = 3338 intel_dotclock_calculate(pipe_config->port_clock, 3339 &pipe_config->dp_m_n); 3340 3341 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3342 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3343 /* 3344 * This is a big fat ugly hack. 3345 * 3346 * Some machines in UEFI boot mode provide us a VBT that has 18 3347 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3348 * unknown we fail to light up. Yet the same BIOS boots up with 3349 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3350 * max, not what it tells us to use. 3351 * 3352 * Note: This will still be broken if the eDP panel is not lit 3353 * up by the BIOS, and thus we can't get the mode at module 3354 * load. 3355 */ 3356 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3357 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3358 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3359 } 3360 } 3361 3362 static void intel_disable_dp(struct intel_encoder *encoder, 3363 const struct intel_crtc_state *old_crtc_state, 3364 const struct drm_connector_state *old_conn_state) 3365 { 3366 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3367 3368 intel_dp->link_trained = false; 3369 3370 if (old_crtc_state->has_audio) 3371 intel_audio_codec_disable(encoder, 3372 old_crtc_state, old_conn_state); 3373 3374 /* Make sure the panel is off before trying to change the mode. But also 3375 * ensure that we have vdd while we switch off the panel. */ 3376 intel_edp_panel_vdd_on(intel_dp); 3377 intel_edp_backlight_off(old_conn_state); 3378 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3379 intel_edp_panel_off(intel_dp); 3380 } 3381 3382 static void g4x_disable_dp(struct intel_encoder *encoder, 3383 const struct intel_crtc_state *old_crtc_state, 3384 const struct drm_connector_state *old_conn_state) 3385 { 3386 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3387 } 3388 3389 static void vlv_disable_dp(struct intel_encoder *encoder, 3390 const struct intel_crtc_state *old_crtc_state, 3391 const struct drm_connector_state *old_conn_state) 3392 { 3393 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3394 } 3395 3396 static void g4x_post_disable_dp(struct intel_encoder *encoder, 3397 const struct intel_crtc_state *old_crtc_state, 3398 const struct drm_connector_state *old_conn_state) 3399 { 3400 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3401 enum port port = encoder->port; 3402 3403 /* 3404 * Bspec does not list a specific disable sequence for g4x DP. 3405 * Follow the ilk+ sequence (disable pipe before the port) for 3406 * g4x DP as it does not suffer from underruns like the normal 3407 * g4x modeset sequence (disable pipe after the port). 3408 */ 3409 intel_dp_link_down(encoder, old_crtc_state); 3410 3411 /* Only ilk+ has port A */ 3412 if (port == PORT_A) 3413 ilk_edp_pll_off(intel_dp, old_crtc_state); 3414 } 3415 3416 static void vlv_post_disable_dp(struct intel_encoder *encoder, 3417 const struct intel_crtc_state *old_crtc_state, 3418 const struct drm_connector_state *old_conn_state) 3419 { 3420 intel_dp_link_down(encoder, old_crtc_state); 3421 } 3422 3423 static void chv_post_disable_dp(struct intel_encoder *encoder, 3424 const struct intel_crtc_state *old_crtc_state, 3425 const struct drm_connector_state *old_conn_state) 3426 { 3427 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3428 3429 intel_dp_link_down(encoder, old_crtc_state); 3430 3431 vlv_dpio_get(dev_priv); 3432 3433 /* Assert data lane reset */ 3434 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3435 3436 vlv_dpio_put(dev_priv); 3437 } 3438 3439 static void 3440 _intel_dp_set_link_train(struct intel_dp *intel_dp, 3441 u32 *DP, 3442 u8 dp_train_pat) 3443 { 3444 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3445 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3446 enum port port = intel_dig_port->base.port; 3447 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 3448 3449 if (dp_train_pat & train_pat_mask) 3450 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n", 3451 dp_train_pat & train_pat_mask); 3452 3453 if (HAS_DDI(dev_priv)) { 3454 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl); 3455 3456 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) 3457 temp |= DP_TP_CTL_SCRAMBLE_DISABLE; 3458 else 3459 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; 3460 3461 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3462 switch (dp_train_pat & train_pat_mask) { 3463 case DP_TRAINING_PATTERN_DISABLE: 3464 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; 3465 3466 break; 3467 case DP_TRAINING_PATTERN_1: 3468 temp |= DP_TP_CTL_LINK_TRAIN_PAT1; 3469 break; 3470 case DP_TRAINING_PATTERN_2: 3471 temp |= DP_TP_CTL_LINK_TRAIN_PAT2; 3472 break; 3473 case DP_TRAINING_PATTERN_3: 3474 temp |= DP_TP_CTL_LINK_TRAIN_PAT3; 3475 break; 3476 case DP_TRAINING_PATTERN_4: 3477 temp |= DP_TP_CTL_LINK_TRAIN_PAT4; 3478 break; 3479 } 3480 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp); 3481 3482 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3483 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3484 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3485 3486 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3487 case DP_TRAINING_PATTERN_DISABLE: 3488 *DP |= DP_LINK_TRAIN_OFF_CPT; 3489 break; 3490 case DP_TRAINING_PATTERN_1: 3491 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3492 break; 3493 case DP_TRAINING_PATTERN_2: 3494 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3495 break; 3496 case DP_TRAINING_PATTERN_3: 3497 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3498 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3499 break; 3500 } 3501 3502 } else { 3503 *DP &= ~DP_LINK_TRAIN_MASK; 3504 3505 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3506 case DP_TRAINING_PATTERN_DISABLE: 3507 *DP |= DP_LINK_TRAIN_OFF; 3508 break; 3509 case DP_TRAINING_PATTERN_1: 3510 *DP |= DP_LINK_TRAIN_PAT_1; 3511 break; 3512 case DP_TRAINING_PATTERN_2: 3513 *DP |= DP_LINK_TRAIN_PAT_2; 3514 break; 3515 case DP_TRAINING_PATTERN_3: 3516 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3517 *DP |= DP_LINK_TRAIN_PAT_2; 3518 break; 3519 } 3520 } 3521 } 3522 3523 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3524 const struct intel_crtc_state *old_crtc_state) 3525 { 3526 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3527 3528 /* enable with pattern 1 (as per spec) */ 3529 3530 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3531 3532 /* 3533 * Magic for VLV/CHV. We _must_ first set up the register 3534 * without actually enabling the port, and then do another 3535 * write to enable the port. Otherwise link training will 3536 * fail when the power sequencer is freshly used for this port. 3537 */ 3538 intel_dp->DP |= DP_PORT_EN; 3539 if (old_crtc_state->has_audio) 3540 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3541 3542 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3543 POSTING_READ(intel_dp->output_reg); 3544 } 3545 3546 static void intel_enable_dp(struct intel_encoder *encoder, 3547 const struct intel_crtc_state *pipe_config, 3548 const struct drm_connector_state *conn_state) 3549 { 3550 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3551 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3552 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3553 u32 dp_reg = I915_READ(intel_dp->output_reg); 3554 enum pipe pipe = crtc->pipe; 3555 intel_wakeref_t wakeref; 3556 3557 if (WARN_ON(dp_reg & DP_PORT_EN)) 3558 return; 3559 3560 with_pps_lock(intel_dp, wakeref) { 3561 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3562 vlv_init_panel_power_sequencer(encoder, pipe_config); 3563 3564 intel_dp_enable_port(intel_dp, pipe_config); 3565 3566 edp_panel_vdd_on(intel_dp); 3567 edp_panel_on(intel_dp); 3568 edp_panel_vdd_off(intel_dp, true); 3569 } 3570 3571 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3572 unsigned int lane_mask = 0x0; 3573 3574 if (IS_CHERRYVIEW(dev_priv)) 3575 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3576 3577 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3578 lane_mask); 3579 } 3580 3581 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3582 intel_dp_start_link_train(intel_dp); 3583 intel_dp_stop_link_train(intel_dp); 3584 3585 if (pipe_config->has_audio) { 3586 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", 3587 pipe_name(pipe)); 3588 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3589 } 3590 } 3591 3592 static void g4x_enable_dp(struct intel_encoder *encoder, 3593 const struct intel_crtc_state *pipe_config, 3594 const struct drm_connector_state *conn_state) 3595 { 3596 intel_enable_dp(encoder, pipe_config, conn_state); 3597 intel_edp_backlight_on(pipe_config, conn_state); 3598 } 3599 3600 static void vlv_enable_dp(struct intel_encoder *encoder, 3601 const struct intel_crtc_state *pipe_config, 3602 const struct drm_connector_state *conn_state) 3603 { 3604 intel_edp_backlight_on(pipe_config, conn_state); 3605 } 3606 3607 static void g4x_pre_enable_dp(struct intel_encoder *encoder, 3608 const struct intel_crtc_state *pipe_config, 3609 const struct drm_connector_state *conn_state) 3610 { 3611 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3612 enum port port = encoder->port; 3613 3614 intel_dp_prepare(encoder, pipe_config); 3615 3616 /* Only ilk+ has port A */ 3617 if (port == PORT_A) 3618 ilk_edp_pll_on(intel_dp, pipe_config); 3619 } 3620 3621 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3622 { 3623 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3624 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3625 enum pipe pipe = intel_dp->pps_pipe; 3626 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3627 3628 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3629 3630 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) 3631 return; 3632 3633 edp_panel_vdd_off_sync(intel_dp); 3634 3635 /* 3636 * VLV seems to get confused when multiple power sequencers 3637 * have the same port selected (even if only one has power/vdd 3638 * enabled). The failure manifests as vlv_wait_port_ready() failing 3639 * CHV on the other hand doesn't seem to mind having the same port 3640 * selected in multiple power sequencers, but let's clear the 3641 * port select always when logically disconnecting a power sequencer 3642 * from a port. 3643 */ 3644 DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n", 3645 pipe_name(pipe), intel_dig_port->base.base.base.id, 3646 intel_dig_port->base.base.name); 3647 I915_WRITE(pp_on_reg, 0); 3648 POSTING_READ(pp_on_reg); 3649 3650 intel_dp->pps_pipe = INVALID_PIPE; 3651 } 3652 3653 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3654 enum pipe pipe) 3655 { 3656 struct intel_encoder *encoder; 3657 3658 lockdep_assert_held(&dev_priv->pps_mutex); 3659 3660 for_each_intel_dp(&dev_priv->drm, encoder) { 3661 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3662 3663 WARN(intel_dp->active_pipe == pipe, 3664 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n", 3665 pipe_name(pipe), encoder->base.base.id, 3666 encoder->base.name); 3667 3668 if (intel_dp->pps_pipe != pipe) 3669 continue; 3670 3671 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n", 3672 pipe_name(pipe), encoder->base.base.id, 3673 encoder->base.name); 3674 3675 /* make sure vdd is off before we steal it */ 3676 vlv_detach_power_sequencer(intel_dp); 3677 } 3678 } 3679 3680 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3681 const struct intel_crtc_state *crtc_state) 3682 { 3683 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3684 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3685 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3686 3687 lockdep_assert_held(&dev_priv->pps_mutex); 3688 3689 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3690 3691 if (intel_dp->pps_pipe != INVALID_PIPE && 3692 intel_dp->pps_pipe != crtc->pipe) { 3693 /* 3694 * If another power sequencer was being used on this 3695 * port previously make sure to turn off vdd there while 3696 * we still have control of it. 3697 */ 3698 vlv_detach_power_sequencer(intel_dp); 3699 } 3700 3701 /* 3702 * We may be stealing the power 3703 * sequencer from another port. 3704 */ 3705 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3706 3707 intel_dp->active_pipe = crtc->pipe; 3708 3709 if (!intel_dp_is_edp(intel_dp)) 3710 return; 3711 3712 /* now it's all ours */ 3713 intel_dp->pps_pipe = crtc->pipe; 3714 3715 DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n", 3716 pipe_name(intel_dp->pps_pipe), encoder->base.base.id, 3717 encoder->base.name); 3718 3719 /* init power sequencer on this pipe and port */ 3720 intel_dp_init_panel_power_sequencer(intel_dp); 3721 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3722 } 3723 3724 static void vlv_pre_enable_dp(struct intel_encoder *encoder, 3725 const struct intel_crtc_state *pipe_config, 3726 const struct drm_connector_state *conn_state) 3727 { 3728 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3729 3730 intel_enable_dp(encoder, pipe_config, conn_state); 3731 } 3732 3733 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, 3734 const struct intel_crtc_state *pipe_config, 3735 const struct drm_connector_state *conn_state) 3736 { 3737 intel_dp_prepare(encoder, pipe_config); 3738 3739 vlv_phy_pre_pll_enable(encoder, pipe_config); 3740 } 3741 3742 static void chv_pre_enable_dp(struct intel_encoder *encoder, 3743 const struct intel_crtc_state *pipe_config, 3744 const struct drm_connector_state *conn_state) 3745 { 3746 chv_phy_pre_encoder_enable(encoder, pipe_config); 3747 3748 intel_enable_dp(encoder, pipe_config, conn_state); 3749 3750 /* Second common lane will stay alive on its own now */ 3751 chv_phy_release_cl2_override(encoder); 3752 } 3753 3754 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, 3755 const struct intel_crtc_state *pipe_config, 3756 const struct drm_connector_state *conn_state) 3757 { 3758 intel_dp_prepare(encoder, pipe_config); 3759 3760 chv_phy_pre_pll_enable(encoder, pipe_config); 3761 } 3762 3763 static void chv_dp_post_pll_disable(struct intel_encoder *encoder, 3764 const struct intel_crtc_state *old_crtc_state, 3765 const struct drm_connector_state *old_conn_state) 3766 { 3767 chv_phy_post_pll_disable(encoder, old_crtc_state); 3768 } 3769 3770 /* 3771 * Fetch AUX CH registers 0x202 - 0x207 which contain 3772 * link status information 3773 */ 3774 bool 3775 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3776 { 3777 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 3778 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 3779 } 3780 3781 /* These are source-specific values. */ 3782 u8 3783 intel_dp_voltage_max(struct intel_dp *intel_dp) 3784 { 3785 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3786 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3787 enum port port = encoder->port; 3788 3789 if (HAS_DDI(dev_priv)) 3790 return intel_ddi_dp_voltage_max(encoder); 3791 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3792 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3793 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3794 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3795 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3796 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3797 else 3798 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3799 } 3800 3801 u8 3802 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) 3803 { 3804 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3805 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3806 enum port port = encoder->port; 3807 3808 if (HAS_DDI(dev_priv)) { 3809 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); 3810 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3811 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3812 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3813 return DP_TRAIN_PRE_EMPH_LEVEL_3; 3814 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3815 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3816 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3817 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3818 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3819 default: 3820 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3821 } 3822 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3823 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3824 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3825 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3826 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3827 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3828 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3829 default: 3830 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3831 } 3832 } else { 3833 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3834 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3835 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3836 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3837 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3838 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3839 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3840 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3841 default: 3842 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3843 } 3844 } 3845 } 3846 3847 static u32 vlv_signal_levels(struct intel_dp *intel_dp) 3848 { 3849 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3850 unsigned long demph_reg_value, preemph_reg_value, 3851 uniqtranscale_reg_value; 3852 u8 train_set = intel_dp->train_set[0]; 3853 3854 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3855 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3856 preemph_reg_value = 0x0004000; 3857 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3858 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3859 demph_reg_value = 0x2B405555; 3860 uniqtranscale_reg_value = 0x552AB83A; 3861 break; 3862 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3863 demph_reg_value = 0x2B404040; 3864 uniqtranscale_reg_value = 0x5548B83A; 3865 break; 3866 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3867 demph_reg_value = 0x2B245555; 3868 uniqtranscale_reg_value = 0x5560B83A; 3869 break; 3870 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3871 demph_reg_value = 0x2B405555; 3872 uniqtranscale_reg_value = 0x5598DA3A; 3873 break; 3874 default: 3875 return 0; 3876 } 3877 break; 3878 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3879 preemph_reg_value = 0x0002000; 3880 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3881 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3882 demph_reg_value = 0x2B404040; 3883 uniqtranscale_reg_value = 0x5552B83A; 3884 break; 3885 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3886 demph_reg_value = 0x2B404848; 3887 uniqtranscale_reg_value = 0x5580B83A; 3888 break; 3889 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3890 demph_reg_value = 0x2B404040; 3891 uniqtranscale_reg_value = 0x55ADDA3A; 3892 break; 3893 default: 3894 return 0; 3895 } 3896 break; 3897 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3898 preemph_reg_value = 0x0000000; 3899 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3900 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3901 demph_reg_value = 0x2B305555; 3902 uniqtranscale_reg_value = 0x5570B83A; 3903 break; 3904 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3905 demph_reg_value = 0x2B2B4040; 3906 uniqtranscale_reg_value = 0x55ADDA3A; 3907 break; 3908 default: 3909 return 0; 3910 } 3911 break; 3912 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3913 preemph_reg_value = 0x0006000; 3914 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3915 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3916 demph_reg_value = 0x1B405555; 3917 uniqtranscale_reg_value = 0x55ADDA3A; 3918 break; 3919 default: 3920 return 0; 3921 } 3922 break; 3923 default: 3924 return 0; 3925 } 3926 3927 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 3928 uniqtranscale_reg_value, 0); 3929 3930 return 0; 3931 } 3932 3933 static u32 chv_signal_levels(struct intel_dp *intel_dp) 3934 { 3935 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3936 u32 deemph_reg_value, margin_reg_value; 3937 bool uniq_trans_scale = false; 3938 u8 train_set = intel_dp->train_set[0]; 3939 3940 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3941 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3942 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3943 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3944 deemph_reg_value = 128; 3945 margin_reg_value = 52; 3946 break; 3947 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3948 deemph_reg_value = 128; 3949 margin_reg_value = 77; 3950 break; 3951 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3952 deemph_reg_value = 128; 3953 margin_reg_value = 102; 3954 break; 3955 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3956 deemph_reg_value = 128; 3957 margin_reg_value = 154; 3958 uniq_trans_scale = true; 3959 break; 3960 default: 3961 return 0; 3962 } 3963 break; 3964 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3965 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3966 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3967 deemph_reg_value = 85; 3968 margin_reg_value = 78; 3969 break; 3970 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3971 deemph_reg_value = 85; 3972 margin_reg_value = 116; 3973 break; 3974 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3975 deemph_reg_value = 85; 3976 margin_reg_value = 154; 3977 break; 3978 default: 3979 return 0; 3980 } 3981 break; 3982 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3983 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3984 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3985 deemph_reg_value = 64; 3986 margin_reg_value = 104; 3987 break; 3988 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3989 deemph_reg_value = 64; 3990 margin_reg_value = 154; 3991 break; 3992 default: 3993 return 0; 3994 } 3995 break; 3996 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3997 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3998 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3999 deemph_reg_value = 43; 4000 margin_reg_value = 154; 4001 break; 4002 default: 4003 return 0; 4004 } 4005 break; 4006 default: 4007 return 0; 4008 } 4009 4010 chv_set_phy_signal_level(encoder, deemph_reg_value, 4011 margin_reg_value, uniq_trans_scale); 4012 4013 return 0; 4014 } 4015 4016 static u32 4017 g4x_signal_levels(u8 train_set) 4018 { 4019 u32 signal_levels = 0; 4020 4021 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4023 default: 4024 signal_levels |= DP_VOLTAGE_0_4; 4025 break; 4026 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4027 signal_levels |= DP_VOLTAGE_0_6; 4028 break; 4029 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4030 signal_levels |= DP_VOLTAGE_0_8; 4031 break; 4032 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4033 signal_levels |= DP_VOLTAGE_1_2; 4034 break; 4035 } 4036 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4037 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4038 default: 4039 signal_levels |= DP_PRE_EMPHASIS_0; 4040 break; 4041 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4042 signal_levels |= DP_PRE_EMPHASIS_3_5; 4043 break; 4044 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4045 signal_levels |= DP_PRE_EMPHASIS_6; 4046 break; 4047 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4048 signal_levels |= DP_PRE_EMPHASIS_9_5; 4049 break; 4050 } 4051 return signal_levels; 4052 } 4053 4054 /* SNB CPU eDP voltage swing and pre-emphasis control */ 4055 static u32 4056 snb_cpu_edp_signal_levels(u8 train_set) 4057 { 4058 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4059 DP_TRAIN_PRE_EMPHASIS_MASK); 4060 switch (signal_levels) { 4061 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4062 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4063 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4064 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4065 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 4066 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4067 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4068 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 4069 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4070 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4071 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 4072 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4073 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4074 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 4075 default: 4076 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4077 "0x%x\n", signal_levels); 4078 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4079 } 4080 } 4081 4082 /* IVB CPU eDP voltage swing and pre-emphasis control */ 4083 static u32 4084 ivb_cpu_edp_signal_levels(u8 train_set) 4085 { 4086 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4087 DP_TRAIN_PRE_EMPHASIS_MASK); 4088 switch (signal_levels) { 4089 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4090 return EDP_LINK_TRAIN_400MV_0DB_IVB; 4091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4092 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 4093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4094 return EDP_LINK_TRAIN_400MV_6DB_IVB; 4095 4096 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4097 return EDP_LINK_TRAIN_600MV_0DB_IVB; 4098 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4099 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 4100 4101 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4102 return EDP_LINK_TRAIN_800MV_0DB_IVB; 4103 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4104 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 4105 4106 default: 4107 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4108 "0x%x\n", signal_levels); 4109 return EDP_LINK_TRAIN_500MV_0DB_IVB; 4110 } 4111 } 4112 4113 void 4114 intel_dp_set_signal_levels(struct intel_dp *intel_dp) 4115 { 4116 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4117 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4118 enum port port = intel_dig_port->base.port; 4119 u32 signal_levels, mask = 0; 4120 u8 train_set = intel_dp->train_set[0]; 4121 4122 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) { 4123 signal_levels = bxt_signal_levels(intel_dp); 4124 } else if (HAS_DDI(dev_priv)) { 4125 signal_levels = ddi_signal_levels(intel_dp); 4126 mask = DDI_BUF_EMP_MASK; 4127 } else if (IS_CHERRYVIEW(dev_priv)) { 4128 signal_levels = chv_signal_levels(intel_dp); 4129 } else if (IS_VALLEYVIEW(dev_priv)) { 4130 signal_levels = vlv_signal_levels(intel_dp); 4131 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 4132 signal_levels = ivb_cpu_edp_signal_levels(train_set); 4133 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 4134 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) { 4135 signal_levels = snb_cpu_edp_signal_levels(train_set); 4136 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 4137 } else { 4138 signal_levels = g4x_signal_levels(train_set); 4139 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; 4140 } 4141 4142 if (mask) 4143 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); 4144 4145 DRM_DEBUG_KMS("Using vswing level %d\n", 4146 train_set & DP_TRAIN_VOLTAGE_SWING_MASK); 4147 DRM_DEBUG_KMS("Using pre-emphasis level %d\n", 4148 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4149 DP_TRAIN_PRE_EMPHASIS_SHIFT); 4150 4151 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; 4152 4153 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4154 POSTING_READ(intel_dp->output_reg); 4155 } 4156 4157 void 4158 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4159 u8 dp_train_pat) 4160 { 4161 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4162 struct drm_i915_private *dev_priv = 4163 to_i915(intel_dig_port->base.base.dev); 4164 4165 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); 4166 4167 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4168 POSTING_READ(intel_dp->output_reg); 4169 } 4170 4171 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 4172 { 4173 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4174 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4175 enum port port = intel_dig_port->base.port; 4176 u32 val; 4177 4178 if (!HAS_DDI(dev_priv)) 4179 return; 4180 4181 val = I915_READ(intel_dp->regs.dp_tp_ctl); 4182 val &= ~DP_TP_CTL_LINK_TRAIN_MASK; 4183 val |= DP_TP_CTL_LINK_TRAIN_IDLE; 4184 I915_WRITE(intel_dp->regs.dp_tp_ctl, val); 4185 4186 /* 4187 * Until TGL on PORT_A we can have only eDP in SST mode. There the only 4188 * reason we need to set idle transmission mode is to work around a HW 4189 * issue where we enable the pipe while not in idle link-training mode. 4190 * In this case there is requirement to wait for a minimum number of 4191 * idle patterns to be sent. 4192 */ 4193 if (port == PORT_A && INTEL_GEN(dev_priv) < 12) 4194 return; 4195 4196 if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status, 4197 DP_TP_STATUS_IDLE_DONE, 1)) 4198 DRM_ERROR("Timed out waiting for DP idle patterns\n"); 4199 } 4200 4201 static void 4202 intel_dp_link_down(struct intel_encoder *encoder, 4203 const struct intel_crtc_state *old_crtc_state) 4204 { 4205 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4206 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4207 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4208 enum port port = encoder->port; 4209 u32 DP = intel_dp->DP; 4210 4211 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) 4212 return; 4213 4214 DRM_DEBUG_KMS("\n"); 4215 4216 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4217 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4218 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4219 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4220 } else { 4221 DP &= ~DP_LINK_TRAIN_MASK; 4222 DP |= DP_LINK_TRAIN_PAT_IDLE; 4223 } 4224 I915_WRITE(intel_dp->output_reg, DP); 4225 POSTING_READ(intel_dp->output_reg); 4226 4227 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4228 I915_WRITE(intel_dp->output_reg, DP); 4229 POSTING_READ(intel_dp->output_reg); 4230 4231 /* 4232 * HW workaround for IBX, we need to move the port 4233 * to transcoder A after disabling it to allow the 4234 * matching HDMI port to be enabled on transcoder A. 4235 */ 4236 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4237 /* 4238 * We get CPU/PCH FIFO underruns on the other pipe when 4239 * doing the workaround. Sweep them under the rug. 4240 */ 4241 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4242 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4243 4244 /* always enable with pattern 1 (as per spec) */ 4245 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4246 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4247 DP_LINK_TRAIN_PAT_1; 4248 I915_WRITE(intel_dp->output_reg, DP); 4249 POSTING_READ(intel_dp->output_reg); 4250 4251 DP &= ~DP_PORT_EN; 4252 I915_WRITE(intel_dp->output_reg, DP); 4253 POSTING_READ(intel_dp->output_reg); 4254 4255 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4256 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4257 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4258 } 4259 4260 msleep(intel_dp->panel_power_down_delay); 4261 4262 intel_dp->DP = DP; 4263 4264 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4265 intel_wakeref_t wakeref; 4266 4267 with_pps_lock(intel_dp, wakeref) 4268 intel_dp->active_pipe = INVALID_PIPE; 4269 } 4270 } 4271 4272 static void 4273 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4274 { 4275 u8 dpcd_ext[6]; 4276 4277 /* 4278 * Prior to DP1.3 the bit represented by 4279 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4280 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4281 * the true capability of the panel. The only way to check is to 4282 * then compare 0000h and 2200h. 4283 */ 4284 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4285 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4286 return; 4287 4288 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4289 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4290 DRM_ERROR("DPCD failed read at extended capabilities\n"); 4291 return; 4292 } 4293 4294 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4295 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n"); 4296 return; 4297 } 4298 4299 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4300 return; 4301 4302 DRM_DEBUG_KMS("Base DPCD: %*ph\n", 4303 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4304 4305 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4306 } 4307 4308 bool 4309 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4310 { 4311 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4312 sizeof(intel_dp->dpcd)) < 0) 4313 return false; /* aux transfer failed */ 4314 4315 intel_dp_extended_receiver_capabilities(intel_dp); 4316 4317 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); 4318 4319 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4320 } 4321 4322 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4323 { 4324 u8 dprx = 0; 4325 4326 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4327 &dprx) != 1) 4328 return false; 4329 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4330 } 4331 4332 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4333 { 4334 /* 4335 * Clear the cached register set to avoid using stale values 4336 * for the sinks that do not support DSC. 4337 */ 4338 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4339 4340 /* Clear fec_capable to avoid using stale values */ 4341 intel_dp->fec_capable = 0; 4342 4343 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4344 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4345 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4346 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4347 intel_dp->dsc_dpcd, 4348 sizeof(intel_dp->dsc_dpcd)) < 0) 4349 DRM_ERROR("Failed to read DPCD register 0x%x\n", 4350 DP_DSC_SUPPORT); 4351 4352 DRM_DEBUG_KMS("DSC DPCD: %*ph\n", 4353 (int)sizeof(intel_dp->dsc_dpcd), 4354 intel_dp->dsc_dpcd); 4355 4356 /* FEC is supported only on DP 1.4 */ 4357 if (!intel_dp_is_edp(intel_dp) && 4358 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4359 &intel_dp->fec_capable) < 0) 4360 DRM_ERROR("Failed to read FEC DPCD register\n"); 4361 4362 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable); 4363 } 4364 } 4365 4366 static bool 4367 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4368 { 4369 struct drm_i915_private *dev_priv = 4370 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4371 4372 /* this function is meant to be called only once */ 4373 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0); 4374 4375 if (!intel_dp_read_dpcd(intel_dp)) 4376 return false; 4377 4378 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4379 drm_dp_is_branch(intel_dp->dpcd)); 4380 4381 /* 4382 * Read the eDP display control registers. 4383 * 4384 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4385 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4386 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4387 * method). The display control registers should read zero if they're 4388 * not supported anyway. 4389 */ 4390 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4391 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4392 sizeof(intel_dp->edp_dpcd)) 4393 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd), 4394 intel_dp->edp_dpcd); 4395 4396 /* 4397 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4398 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4399 */ 4400 intel_psr_init_dpcd(intel_dp); 4401 4402 /* Read the eDP 1.4+ supported link rates. */ 4403 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4404 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4405 int i; 4406 4407 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4408 sink_rates, sizeof(sink_rates)); 4409 4410 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4411 int val = le16_to_cpu(sink_rates[i]); 4412 4413 if (val == 0) 4414 break; 4415 4416 /* Value read multiplied by 200kHz gives the per-lane 4417 * link rate in kHz. The source rates are, however, 4418 * stored in terms of LS_Clk kHz. The full conversion 4419 * back to symbols is 4420 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4421 */ 4422 intel_dp->sink_rates[i] = (val * 200) / 10; 4423 } 4424 intel_dp->num_sink_rates = i; 4425 } 4426 4427 /* 4428 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4429 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4430 */ 4431 if (intel_dp->num_sink_rates) 4432 intel_dp->use_rate_select = true; 4433 else 4434 intel_dp_set_sink_rates(intel_dp); 4435 4436 intel_dp_set_common_rates(intel_dp); 4437 4438 /* Read the eDP DSC DPCD registers */ 4439 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4440 intel_dp_get_dsc_sink_cap(intel_dp); 4441 4442 return true; 4443 } 4444 4445 4446 static bool 4447 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4448 { 4449 if (!intel_dp_read_dpcd(intel_dp)) 4450 return false; 4451 4452 /* 4453 * Don't clobber cached eDP rates. Also skip re-reading 4454 * the OUI/ID since we know it won't change. 4455 */ 4456 if (!intel_dp_is_edp(intel_dp)) { 4457 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4458 drm_dp_is_branch(intel_dp->dpcd)); 4459 4460 intel_dp_set_sink_rates(intel_dp); 4461 intel_dp_set_common_rates(intel_dp); 4462 } 4463 4464 /* 4465 * Some eDP panels do not set a valid value for sink count, that is why 4466 * it don't care about read it here and in intel_edp_init_dpcd(). 4467 */ 4468 if (!intel_dp_is_edp(intel_dp) && 4469 !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) { 4470 u8 count; 4471 ssize_t r; 4472 4473 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4474 if (r < 1) 4475 return false; 4476 4477 /* 4478 * Sink count can change between short pulse hpd hence 4479 * a member variable in intel_dp will track any changes 4480 * between short pulse interrupts. 4481 */ 4482 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4483 4484 /* 4485 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4486 * a dongle is present but no display. Unless we require to know 4487 * if a dongle is present or not, we don't need to update 4488 * downstream port information. So, an early return here saves 4489 * time from performing other operations which are not required. 4490 */ 4491 if (!intel_dp->sink_count) 4492 return false; 4493 } 4494 4495 if (!drm_dp_is_branch(intel_dp->dpcd)) 4496 return true; /* native DP sink */ 4497 4498 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4499 return true; /* no per-port downstream info */ 4500 4501 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4502 intel_dp->downstream_ports, 4503 DP_MAX_DOWNSTREAM_PORTS) < 0) 4504 return false; /* downstream port status fetch failed */ 4505 4506 return true; 4507 } 4508 4509 static bool 4510 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4511 { 4512 u8 mstm_cap; 4513 4514 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4515 return false; 4516 4517 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4518 return false; 4519 4520 return mstm_cap & DP_MST_CAP; 4521 } 4522 4523 static bool 4524 intel_dp_can_mst(struct intel_dp *intel_dp) 4525 { 4526 return i915_modparams.enable_dp_mst && 4527 intel_dp->can_mst && 4528 intel_dp_sink_can_mst(intel_dp); 4529 } 4530 4531 static void 4532 intel_dp_configure_mst(struct intel_dp *intel_dp) 4533 { 4534 struct intel_encoder *encoder = 4535 &dp_to_dig_port(intel_dp)->base; 4536 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4537 4538 DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n", 4539 encoder->base.base.id, encoder->base.name, 4540 yesno(intel_dp->can_mst), yesno(sink_can_mst), 4541 yesno(i915_modparams.enable_dp_mst)); 4542 4543 if (!intel_dp->can_mst) 4544 return; 4545 4546 intel_dp->is_mst = sink_can_mst && 4547 i915_modparams.enable_dp_mst; 4548 4549 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4550 intel_dp->is_mst); 4551 } 4552 4553 static bool 4554 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4555 { 4556 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4557 sink_irq_vector, DP_DPRX_ESI_LEN) == 4558 DP_DPRX_ESI_LEN; 4559 } 4560 4561 bool 4562 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, 4563 const struct drm_connector_state *conn_state) 4564 { 4565 /* 4566 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication 4567 * of Color Encoding Format and Content Color Gamut], in order to 4568 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. 4569 */ 4570 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4571 return true; 4572 4573 switch (conn_state->colorspace) { 4574 case DRM_MODE_COLORIMETRY_SYCC_601: 4575 case DRM_MODE_COLORIMETRY_OPYCC_601: 4576 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4577 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4578 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4579 return true; 4580 default: 4581 break; 4582 } 4583 4584 return false; 4585 } 4586 4587 static void 4588 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp, 4589 const struct intel_crtc_state *crtc_state, 4590 const struct drm_connector_state *conn_state) 4591 { 4592 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4593 struct dp_sdp vsc_sdp = {}; 4594 4595 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */ 4596 vsc_sdp.sdp_header.HB0 = 0; 4597 vsc_sdp.sdp_header.HB1 = 0x7; 4598 4599 /* 4600 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 4601 * Colorimetry Format indication. 4602 */ 4603 vsc_sdp.sdp_header.HB2 = 0x5; 4604 4605 /* 4606 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/ 4607 * Colorimetry Format indication (HB2 = 05h). 4608 */ 4609 vsc_sdp.sdp_header.HB3 = 0x13; 4610 4611 /* DP 1.4a spec, Table 2-120 */ 4612 switch (crtc_state->output_format) { 4613 case INTEL_OUTPUT_FORMAT_YCBCR444: 4614 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */ 4615 break; 4616 case INTEL_OUTPUT_FORMAT_YCBCR420: 4617 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */ 4618 break; 4619 case INTEL_OUTPUT_FORMAT_RGB: 4620 default: 4621 /* RGB: DB16[7:4] = 0h */ 4622 break; 4623 } 4624 4625 switch (conn_state->colorspace) { 4626 case DRM_MODE_COLORIMETRY_BT709_YCC: 4627 vsc_sdp.db[16] |= 0x1; 4628 break; 4629 case DRM_MODE_COLORIMETRY_XVYCC_601: 4630 vsc_sdp.db[16] |= 0x2; 4631 break; 4632 case DRM_MODE_COLORIMETRY_XVYCC_709: 4633 vsc_sdp.db[16] |= 0x3; 4634 break; 4635 case DRM_MODE_COLORIMETRY_SYCC_601: 4636 vsc_sdp.db[16] |= 0x4; 4637 break; 4638 case DRM_MODE_COLORIMETRY_OPYCC_601: 4639 vsc_sdp.db[16] |= 0x5; 4640 break; 4641 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4642 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4643 vsc_sdp.db[16] |= 0x6; 4644 break; 4645 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4646 vsc_sdp.db[16] |= 0x7; 4647 break; 4648 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 4649 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 4650 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */ 4651 break; 4652 default: 4653 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */ 4654 4655 /* RGB->YCBCR color conversion uses the BT.709 color space. */ 4656 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4657 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */ 4658 break; 4659 } 4660 4661 /* 4662 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only, 4663 * the following Component Bit Depth values are defined: 4664 * 001b = 8bpc. 4665 * 010b = 10bpc. 4666 * 011b = 12bpc. 4667 * 100b = 16bpc. 4668 */ 4669 switch (crtc_state->pipe_bpp) { 4670 case 24: /* 8bpc */ 4671 vsc_sdp.db[17] = 0x1; 4672 break; 4673 case 30: /* 10bpc */ 4674 vsc_sdp.db[17] = 0x2; 4675 break; 4676 case 36: /* 12bpc */ 4677 vsc_sdp.db[17] = 0x3; 4678 break; 4679 case 48: /* 16bpc */ 4680 vsc_sdp.db[17] = 0x4; 4681 break; 4682 default: 4683 MISSING_CASE(crtc_state->pipe_bpp); 4684 break; 4685 } 4686 4687 /* 4688 * Dynamic Range (Bit 7) 4689 * 0 = VESA range, 1 = CTA range. 4690 * all YCbCr are always limited range 4691 */ 4692 vsc_sdp.db[17] |= 0x80; 4693 4694 /* 4695 * Content Type (Bits 2:0) 4696 * 000b = Not defined. 4697 * 001b = Graphics. 4698 * 010b = Photo. 4699 * 011b = Video. 4700 * 100b = Game 4701 * All other values are RESERVED. 4702 * Note: See CTA-861-G for the definition and expected 4703 * processing by a stream sink for the above contect types. 4704 */ 4705 vsc_sdp.db[18] = 0; 4706 4707 intel_dig_port->write_infoframe(&intel_dig_port->base, 4708 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp)); 4709 } 4710 4711 static void 4712 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, 4713 const struct intel_crtc_state *crtc_state, 4714 const struct drm_connector_state *conn_state) 4715 { 4716 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4717 struct dp_sdp infoframe_sdp = {}; 4718 struct hdmi_drm_infoframe drm_infoframe = {}; 4719 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; 4720 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; 4721 ssize_t len; 4722 int ret; 4723 4724 ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state); 4725 if (ret) { 4726 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n"); 4727 return; 4728 } 4729 4730 len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf)); 4731 if (len < 0) { 4732 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n"); 4733 return; 4734 } 4735 4736 if (len != infoframe_size) { 4737 DRM_DEBUG_KMS("wrong static hdr metadata size\n"); 4738 return; 4739 } 4740 4741 /* 4742 * Set up the infoframe sdp packet for HDR static metadata. 4743 * Prepare VSC Header for SU as per DP 1.4a spec, 4744 * Table 2-100 and Table 2-101 4745 */ 4746 4747 /* Packet ID, 00h for non-Audio INFOFRAME */ 4748 infoframe_sdp.sdp_header.HB0 = 0; 4749 /* 4750 * Packet Type 80h + Non-audio INFOFRAME Type value 4751 * HDMI_INFOFRAME_TYPE_DRM: 0x87, 4752 */ 4753 infoframe_sdp.sdp_header.HB1 = drm_infoframe.type; 4754 /* 4755 * Least Significant Eight Bits of (Data Byte Count – 1) 4756 * infoframe_size - 1, 4757 */ 4758 infoframe_sdp.sdp_header.HB2 = 0x1D; 4759 /* INFOFRAME SDP Version Number */ 4760 infoframe_sdp.sdp_header.HB3 = (0x13 << 2); 4761 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 4762 infoframe_sdp.db[0] = drm_infoframe.version; 4763 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 4764 infoframe_sdp.db[1] = drm_infoframe.length; 4765 /* 4766 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after 4767 * HDMI_INFOFRAME_HEADER_SIZE 4768 */ 4769 BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2); 4770 memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], 4771 HDMI_DRM_INFOFRAME_SIZE); 4772 4773 /* 4774 * Size of DP infoframe sdp packet for HDR static metadata is consist of 4775 * - DP SDP Header(struct dp_sdp_header): 4 bytes 4776 * - Two Data Blocks: 2 bytes 4777 * CTA Header Byte2 (INFOFRAME Version Number) 4778 * CTA Header Byte3 (Length of INFOFRAME) 4779 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes 4780 * 4781 * Prior to GEN11's GMP register size is identical to DP HDR static metadata 4782 * infoframe size. But GEN11+ has larger than that size, write_infoframe 4783 * will pad rest of the size. 4784 */ 4785 intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state, 4786 HDMI_PACKET_TYPE_GAMUT_METADATA, 4787 &infoframe_sdp, 4788 sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE); 4789 } 4790 4791 void intel_dp_vsc_enable(struct intel_dp *intel_dp, 4792 const struct intel_crtc_state *crtc_state, 4793 const struct drm_connector_state *conn_state) 4794 { 4795 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) 4796 return; 4797 4798 intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state); 4799 } 4800 4801 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp, 4802 const struct intel_crtc_state *crtc_state, 4803 const struct drm_connector_state *conn_state) 4804 { 4805 if (!conn_state->hdr_output_metadata) 4806 return; 4807 4808 intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp, 4809 crtc_state, 4810 conn_state); 4811 } 4812 4813 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 4814 { 4815 int status = 0; 4816 int test_link_rate; 4817 u8 test_lane_count, test_link_bw; 4818 /* (DP CTS 1.2) 4819 * 4.3.1.11 4820 */ 4821 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 4822 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 4823 &test_lane_count); 4824 4825 if (status <= 0) { 4826 DRM_DEBUG_KMS("Lane count read failed\n"); 4827 return DP_TEST_NAK; 4828 } 4829 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 4830 4831 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 4832 &test_link_bw); 4833 if (status <= 0) { 4834 DRM_DEBUG_KMS("Link Rate read failed\n"); 4835 return DP_TEST_NAK; 4836 } 4837 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 4838 4839 /* Validate the requested link rate and lane count */ 4840 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 4841 test_lane_count)) 4842 return DP_TEST_NAK; 4843 4844 intel_dp->compliance.test_lane_count = test_lane_count; 4845 intel_dp->compliance.test_link_rate = test_link_rate; 4846 4847 return DP_TEST_ACK; 4848 } 4849 4850 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 4851 { 4852 u8 test_pattern; 4853 u8 test_misc; 4854 __be16 h_width, v_height; 4855 int status = 0; 4856 4857 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 4858 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 4859 &test_pattern); 4860 if (status <= 0) { 4861 DRM_DEBUG_KMS("Test pattern read failed\n"); 4862 return DP_TEST_NAK; 4863 } 4864 if (test_pattern != DP_COLOR_RAMP) 4865 return DP_TEST_NAK; 4866 4867 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 4868 &h_width, 2); 4869 if (status <= 0) { 4870 DRM_DEBUG_KMS("H Width read failed\n"); 4871 return DP_TEST_NAK; 4872 } 4873 4874 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 4875 &v_height, 2); 4876 if (status <= 0) { 4877 DRM_DEBUG_KMS("V Height read failed\n"); 4878 return DP_TEST_NAK; 4879 } 4880 4881 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 4882 &test_misc); 4883 if (status <= 0) { 4884 DRM_DEBUG_KMS("TEST MISC read failed\n"); 4885 return DP_TEST_NAK; 4886 } 4887 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 4888 return DP_TEST_NAK; 4889 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 4890 return DP_TEST_NAK; 4891 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 4892 case DP_TEST_BIT_DEPTH_6: 4893 intel_dp->compliance.test_data.bpc = 6; 4894 break; 4895 case DP_TEST_BIT_DEPTH_8: 4896 intel_dp->compliance.test_data.bpc = 8; 4897 break; 4898 default: 4899 return DP_TEST_NAK; 4900 } 4901 4902 intel_dp->compliance.test_data.video_pattern = test_pattern; 4903 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 4904 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 4905 /* Set test active flag here so userspace doesn't interrupt things */ 4906 intel_dp->compliance.test_active = true; 4907 4908 return DP_TEST_ACK; 4909 } 4910 4911 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 4912 { 4913 u8 test_result = DP_TEST_ACK; 4914 struct intel_connector *intel_connector = intel_dp->attached_connector; 4915 struct drm_connector *connector = &intel_connector->base; 4916 4917 if (intel_connector->detect_edid == NULL || 4918 connector->edid_corrupt || 4919 intel_dp->aux.i2c_defer_count > 6) { 4920 /* Check EDID read for NACKs, DEFERs and corruption 4921 * (DP CTS 1.2 Core r1.1) 4922 * 4.2.2.4 : Failed EDID read, I2C_NAK 4923 * 4.2.2.5 : Failed EDID read, I2C_DEFER 4924 * 4.2.2.6 : EDID corruption detected 4925 * Use failsafe mode for all cases 4926 */ 4927 if (intel_dp->aux.i2c_nack_count > 0 || 4928 intel_dp->aux.i2c_defer_count > 0) 4929 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", 4930 intel_dp->aux.i2c_nack_count, 4931 intel_dp->aux.i2c_defer_count); 4932 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 4933 } else { 4934 struct edid *block = intel_connector->detect_edid; 4935 4936 /* We have to write the checksum 4937 * of the last block read 4938 */ 4939 block += intel_connector->detect_edid->extensions; 4940 4941 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 4942 block->checksum) <= 0) 4943 DRM_DEBUG_KMS("Failed to write EDID checksum\n"); 4944 4945 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 4946 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 4947 } 4948 4949 /* Set test active flag here so userspace doesn't interrupt things */ 4950 intel_dp->compliance.test_active = true; 4951 4952 return test_result; 4953 } 4954 4955 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 4956 { 4957 u8 test_result = DP_TEST_NAK; 4958 return test_result; 4959 } 4960 4961 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 4962 { 4963 u8 response = DP_TEST_NAK; 4964 u8 request = 0; 4965 int status; 4966 4967 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 4968 if (status <= 0) { 4969 DRM_DEBUG_KMS("Could not read test request from sink\n"); 4970 goto update_status; 4971 } 4972 4973 switch (request) { 4974 case DP_TEST_LINK_TRAINING: 4975 DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); 4976 response = intel_dp_autotest_link_training(intel_dp); 4977 break; 4978 case DP_TEST_LINK_VIDEO_PATTERN: 4979 DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); 4980 response = intel_dp_autotest_video_pattern(intel_dp); 4981 break; 4982 case DP_TEST_LINK_EDID_READ: 4983 DRM_DEBUG_KMS("EDID test requested\n"); 4984 response = intel_dp_autotest_edid(intel_dp); 4985 break; 4986 case DP_TEST_LINK_PHY_TEST_PATTERN: 4987 DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); 4988 response = intel_dp_autotest_phy_pattern(intel_dp); 4989 break; 4990 default: 4991 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); 4992 break; 4993 } 4994 4995 if (response & DP_TEST_ACK) 4996 intel_dp->compliance.test_type = request; 4997 4998 update_status: 4999 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 5000 if (status <= 0) 5001 DRM_DEBUG_KMS("Could not write test response to sink\n"); 5002 } 5003 5004 static int 5005 intel_dp_check_mst_status(struct intel_dp *intel_dp) 5006 { 5007 bool bret; 5008 5009 if (intel_dp->is_mst) { 5010 u8 esi[DP_DPRX_ESI_LEN] = { 0 }; 5011 int ret = 0; 5012 int retry; 5013 bool handled; 5014 5015 WARN_ON_ONCE(intel_dp->active_mst_links < 0); 5016 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 5017 go_again: 5018 if (bret == true) { 5019 5020 /* check link status - esi[10] = 0x200c */ 5021 if (intel_dp->active_mst_links > 0 && 5022 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 5023 DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); 5024 intel_dp_start_link_train(intel_dp); 5025 intel_dp_stop_link_train(intel_dp); 5026 } 5027 5028 DRM_DEBUG_KMS("got esi %3ph\n", esi); 5029 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 5030 5031 if (handled) { 5032 for (retry = 0; retry < 3; retry++) { 5033 int wret; 5034 wret = drm_dp_dpcd_write(&intel_dp->aux, 5035 DP_SINK_COUNT_ESI+1, 5036 &esi[1], 3); 5037 if (wret == 3) { 5038 break; 5039 } 5040 } 5041 5042 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 5043 if (bret == true) { 5044 DRM_DEBUG_KMS("got esi2 %3ph\n", esi); 5045 goto go_again; 5046 } 5047 } else 5048 ret = 0; 5049 5050 return ret; 5051 } else { 5052 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); 5053 intel_dp->is_mst = false; 5054 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5055 intel_dp->is_mst); 5056 } 5057 } 5058 return -EINVAL; 5059 } 5060 5061 static bool 5062 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 5063 { 5064 u8 link_status[DP_LINK_STATUS_SIZE]; 5065 5066 if (!intel_dp->link_trained) 5067 return false; 5068 5069 /* 5070 * While PSR source HW is enabled, it will control main-link sending 5071 * frames, enabling and disabling it so trying to do a retrain will fail 5072 * as the link would or not be on or it could mix training patterns 5073 * and frame data at the same time causing retrain to fail. 5074 * Also when exiting PSR, HW will retrain the link anyways fixing 5075 * any link status error. 5076 */ 5077 if (intel_psr_enabled(intel_dp)) 5078 return false; 5079 5080 if (!intel_dp_get_link_status(intel_dp, link_status)) 5081 return false; 5082 5083 /* 5084 * Validate the cached values of intel_dp->link_rate and 5085 * intel_dp->lane_count before attempting to retrain. 5086 */ 5087 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 5088 intel_dp->lane_count)) 5089 return false; 5090 5091 /* Retrain if Channel EQ or CR not ok */ 5092 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 5093 } 5094 5095 int intel_dp_retrain_link(struct intel_encoder *encoder, 5096 struct drm_modeset_acquire_ctx *ctx) 5097 { 5098 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5099 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5100 struct intel_connector *connector = intel_dp->attached_connector; 5101 struct drm_connector_state *conn_state; 5102 struct intel_crtc_state *crtc_state; 5103 struct intel_crtc *crtc; 5104 int ret; 5105 5106 /* FIXME handle the MST connectors as well */ 5107 5108 if (!connector || connector->base.status != connector_status_connected) 5109 return 0; 5110 5111 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 5112 ctx); 5113 if (ret) 5114 return ret; 5115 5116 conn_state = connector->base.state; 5117 5118 crtc = to_intel_crtc(conn_state->crtc); 5119 if (!crtc) 5120 return 0; 5121 5122 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5123 if (ret) 5124 return ret; 5125 5126 crtc_state = to_intel_crtc_state(crtc->base.state); 5127 5128 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state)); 5129 5130 if (!crtc_state->hw.active) 5131 return 0; 5132 5133 if (conn_state->commit && 5134 !try_wait_for_completion(&conn_state->commit->hw_done)) 5135 return 0; 5136 5137 if (!intel_dp_needs_link_retrain(intel_dp)) 5138 return 0; 5139 5140 /* Suppress underruns caused by re-training */ 5141 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 5142 if (crtc_state->has_pch_encoder) 5143 intel_set_pch_fifo_underrun_reporting(dev_priv, 5144 intel_crtc_pch_transcoder(crtc), false); 5145 5146 intel_dp_start_link_train(intel_dp); 5147 intel_dp_stop_link_train(intel_dp); 5148 5149 /* Keep underrun reporting disabled until things are stable */ 5150 intel_wait_for_vblank(dev_priv, crtc->pipe); 5151 5152 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 5153 if (crtc_state->has_pch_encoder) 5154 intel_set_pch_fifo_underrun_reporting(dev_priv, 5155 intel_crtc_pch_transcoder(crtc), true); 5156 5157 return 0; 5158 } 5159 5160 /* 5161 * If display is now connected check links status, 5162 * there has been known issues of link loss triggering 5163 * long pulse. 5164 * 5165 * Some sinks (eg. ASUS PB287Q) seem to perform some 5166 * weird HPD ping pong during modesets. So we can apparently 5167 * end up with HPD going low during a modeset, and then 5168 * going back up soon after. And once that happens we must 5169 * retrain the link to get a picture. That's in case no 5170 * userspace component reacted to intermittent HPD dip. 5171 */ 5172 static enum intel_hotplug_state 5173 intel_dp_hotplug(struct intel_encoder *encoder, 5174 struct intel_connector *connector, 5175 bool irq_received) 5176 { 5177 struct drm_modeset_acquire_ctx ctx; 5178 enum intel_hotplug_state state; 5179 int ret; 5180 5181 state = intel_encoder_hotplug(encoder, connector, irq_received); 5182 5183 drm_modeset_acquire_init(&ctx, 0); 5184 5185 for (;;) { 5186 ret = intel_dp_retrain_link(encoder, &ctx); 5187 5188 if (ret == -EDEADLK) { 5189 drm_modeset_backoff(&ctx); 5190 continue; 5191 } 5192 5193 break; 5194 } 5195 5196 drm_modeset_drop_locks(&ctx); 5197 drm_modeset_acquire_fini(&ctx); 5198 WARN(ret, "Acquiring modeset locks failed with %i\n", ret); 5199 5200 /* 5201 * Keeping it consistent with intel_ddi_hotplug() and 5202 * intel_hdmi_hotplug(). 5203 */ 5204 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received) 5205 state = INTEL_HOTPLUG_RETRY; 5206 5207 return state; 5208 } 5209 5210 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 5211 { 5212 u8 val; 5213 5214 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5215 return; 5216 5217 if (drm_dp_dpcd_readb(&intel_dp->aux, 5218 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 5219 return; 5220 5221 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 5222 5223 if (val & DP_AUTOMATED_TEST_REQUEST) 5224 intel_dp_handle_test_request(intel_dp); 5225 5226 if (val & DP_CP_IRQ) 5227 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 5228 5229 if (val & DP_SINK_SPECIFIC_IRQ) 5230 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n"); 5231 } 5232 5233 /* 5234 * According to DP spec 5235 * 5.1.2: 5236 * 1. Read DPCD 5237 * 2. Configure link according to Receiver Capabilities 5238 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 5239 * 4. Check link status on receipt of hot-plug interrupt 5240 * 5241 * intel_dp_short_pulse - handles short pulse interrupts 5242 * when full detection is not required. 5243 * Returns %true if short pulse is handled and full detection 5244 * is NOT required and %false otherwise. 5245 */ 5246 static bool 5247 intel_dp_short_pulse(struct intel_dp *intel_dp) 5248 { 5249 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 5250 u8 old_sink_count = intel_dp->sink_count; 5251 bool ret; 5252 5253 /* 5254 * Clearing compliance test variables to allow capturing 5255 * of values for next automated test request. 5256 */ 5257 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5258 5259 /* 5260 * Now read the DPCD to see if it's actually running 5261 * If the current value of sink count doesn't match with 5262 * the value that was stored earlier or dpcd read failed 5263 * we need to do full detection 5264 */ 5265 ret = intel_dp_get_dpcd(intel_dp); 5266 5267 if ((old_sink_count != intel_dp->sink_count) || !ret) { 5268 /* No need to proceed if we are going to do full detect */ 5269 return false; 5270 } 5271 5272 intel_dp_check_service_irq(intel_dp); 5273 5274 /* Handle CEC interrupts, if any */ 5275 drm_dp_cec_irq(&intel_dp->aux); 5276 5277 /* defer to the hotplug work for link retraining if needed */ 5278 if (intel_dp_needs_link_retrain(intel_dp)) 5279 return false; 5280 5281 intel_psr_short_pulse(intel_dp); 5282 5283 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 5284 DRM_DEBUG_KMS("Link Training Compliance Test requested\n"); 5285 /* Send a Hotplug Uevent to userspace to start modeset */ 5286 drm_kms_helper_hotplug_event(&dev_priv->drm); 5287 } 5288 5289 return true; 5290 } 5291 5292 /* XXX this is probably wrong for multiple downstream ports */ 5293 static enum drm_connector_status 5294 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 5295 { 5296 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 5297 u8 *dpcd = intel_dp->dpcd; 5298 u8 type; 5299 5300 if (WARN_ON(intel_dp_is_edp(intel_dp))) 5301 return connector_status_connected; 5302 5303 if (lspcon->active) 5304 lspcon_resume(lspcon); 5305 5306 if (!intel_dp_get_dpcd(intel_dp)) 5307 return connector_status_disconnected; 5308 5309 /* if there's no downstream port, we're done */ 5310 if (!drm_dp_is_branch(dpcd)) 5311 return connector_status_connected; 5312 5313 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5314 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5315 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5316 5317 return intel_dp->sink_count ? 5318 connector_status_connected : connector_status_disconnected; 5319 } 5320 5321 if (intel_dp_can_mst(intel_dp)) 5322 return connector_status_connected; 5323 5324 /* If no HPD, poke DDC gently */ 5325 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5326 return connector_status_connected; 5327 5328 /* Well we tried, say unknown for unreliable port types */ 5329 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5330 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5331 if (type == DP_DS_PORT_TYPE_VGA || 5332 type == DP_DS_PORT_TYPE_NON_EDID) 5333 return connector_status_unknown; 5334 } else { 5335 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5336 DP_DWN_STRM_PORT_TYPE_MASK; 5337 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5338 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5339 return connector_status_unknown; 5340 } 5341 5342 /* Anything else is out of spec, warn and ignore */ 5343 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); 5344 return connector_status_disconnected; 5345 } 5346 5347 static enum drm_connector_status 5348 edp_detect(struct intel_dp *intel_dp) 5349 { 5350 return connector_status_connected; 5351 } 5352 5353 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 5354 { 5355 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5356 u32 bit; 5357 5358 switch (encoder->hpd_pin) { 5359 case HPD_PORT_B: 5360 bit = SDE_PORTB_HOTPLUG; 5361 break; 5362 case HPD_PORT_C: 5363 bit = SDE_PORTC_HOTPLUG; 5364 break; 5365 case HPD_PORT_D: 5366 bit = SDE_PORTD_HOTPLUG; 5367 break; 5368 default: 5369 MISSING_CASE(encoder->hpd_pin); 5370 return false; 5371 } 5372 5373 return I915_READ(SDEISR) & bit; 5374 } 5375 5376 static bool cpt_digital_port_connected(struct intel_encoder *encoder) 5377 { 5378 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5379 u32 bit; 5380 5381 switch (encoder->hpd_pin) { 5382 case HPD_PORT_B: 5383 bit = SDE_PORTB_HOTPLUG_CPT; 5384 break; 5385 case HPD_PORT_C: 5386 bit = SDE_PORTC_HOTPLUG_CPT; 5387 break; 5388 case HPD_PORT_D: 5389 bit = SDE_PORTD_HOTPLUG_CPT; 5390 break; 5391 default: 5392 MISSING_CASE(encoder->hpd_pin); 5393 return false; 5394 } 5395 5396 return I915_READ(SDEISR) & bit; 5397 } 5398 5399 static bool spt_digital_port_connected(struct intel_encoder *encoder) 5400 { 5401 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5402 u32 bit; 5403 5404 switch (encoder->hpd_pin) { 5405 case HPD_PORT_A: 5406 bit = SDE_PORTA_HOTPLUG_SPT; 5407 break; 5408 case HPD_PORT_E: 5409 bit = SDE_PORTE_HOTPLUG_SPT; 5410 break; 5411 default: 5412 return cpt_digital_port_connected(encoder); 5413 } 5414 5415 return I915_READ(SDEISR) & bit; 5416 } 5417 5418 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 5419 { 5420 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5421 u32 bit; 5422 5423 switch (encoder->hpd_pin) { 5424 case HPD_PORT_B: 5425 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 5426 break; 5427 case HPD_PORT_C: 5428 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 5429 break; 5430 case HPD_PORT_D: 5431 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 5432 break; 5433 default: 5434 MISSING_CASE(encoder->hpd_pin); 5435 return false; 5436 } 5437 5438 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5439 } 5440 5441 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 5442 { 5443 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5444 u32 bit; 5445 5446 switch (encoder->hpd_pin) { 5447 case HPD_PORT_B: 5448 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 5449 break; 5450 case HPD_PORT_C: 5451 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 5452 break; 5453 case HPD_PORT_D: 5454 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 5455 break; 5456 default: 5457 MISSING_CASE(encoder->hpd_pin); 5458 return false; 5459 } 5460 5461 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5462 } 5463 5464 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 5465 { 5466 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5467 5468 if (encoder->hpd_pin == HPD_PORT_A) 5469 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5470 else 5471 return ibx_digital_port_connected(encoder); 5472 } 5473 5474 static bool snb_digital_port_connected(struct intel_encoder *encoder) 5475 { 5476 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5477 5478 if (encoder->hpd_pin == HPD_PORT_A) 5479 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5480 else 5481 return cpt_digital_port_connected(encoder); 5482 } 5483 5484 static bool ivb_digital_port_connected(struct intel_encoder *encoder) 5485 { 5486 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5487 5488 if (encoder->hpd_pin == HPD_PORT_A) 5489 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB; 5490 else 5491 return cpt_digital_port_connected(encoder); 5492 } 5493 5494 static bool bdw_digital_port_connected(struct intel_encoder *encoder) 5495 { 5496 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5497 5498 if (encoder->hpd_pin == HPD_PORT_A) 5499 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; 5500 else 5501 return cpt_digital_port_connected(encoder); 5502 } 5503 5504 static bool bxt_digital_port_connected(struct intel_encoder *encoder) 5505 { 5506 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5507 u32 bit; 5508 5509 switch (encoder->hpd_pin) { 5510 case HPD_PORT_A: 5511 bit = BXT_DE_PORT_HP_DDIA; 5512 break; 5513 case HPD_PORT_B: 5514 bit = BXT_DE_PORT_HP_DDIB; 5515 break; 5516 case HPD_PORT_C: 5517 bit = BXT_DE_PORT_HP_DDIC; 5518 break; 5519 default: 5520 MISSING_CASE(encoder->hpd_pin); 5521 return false; 5522 } 5523 5524 return I915_READ(GEN8_DE_PORT_ISR) & bit; 5525 } 5526 5527 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv, 5528 enum phy phy) 5529 { 5530 if (HAS_PCH_MCC(dev_priv) && phy == PHY_C) 5531 return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1); 5532 5533 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy); 5534 } 5535 5536 static bool icp_digital_port_connected(struct intel_encoder *encoder) 5537 { 5538 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5539 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5540 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 5541 5542 if (intel_phy_is_combo(dev_priv, phy)) 5543 return intel_combo_phy_connected(dev_priv, phy); 5544 else if (intel_phy_is_tc(dev_priv, phy)) 5545 return intel_tc_port_connected(dig_port); 5546 else 5547 MISSING_CASE(encoder->hpd_pin); 5548 5549 return false; 5550 } 5551 5552 /* 5553 * intel_digital_port_connected - is the specified port connected? 5554 * @encoder: intel_encoder 5555 * 5556 * In cases where there's a connector physically connected but it can't be used 5557 * by our hardware we also return false, since the rest of the driver should 5558 * pretty much treat the port as disconnected. This is relevant for type-C 5559 * (starting on ICL) where there's ownership involved. 5560 * 5561 * Return %true if port is connected, %false otherwise. 5562 */ 5563 static bool __intel_digital_port_connected(struct intel_encoder *encoder) 5564 { 5565 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5566 5567 if (HAS_GMCH(dev_priv)) { 5568 if (IS_GM45(dev_priv)) 5569 return gm45_digital_port_connected(encoder); 5570 else 5571 return g4x_digital_port_connected(encoder); 5572 } 5573 5574 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 5575 return icp_digital_port_connected(encoder); 5576 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 5577 return spt_digital_port_connected(encoder); 5578 else if (IS_GEN9_LP(dev_priv)) 5579 return bxt_digital_port_connected(encoder); 5580 else if (IS_GEN(dev_priv, 8)) 5581 return bdw_digital_port_connected(encoder); 5582 else if (IS_GEN(dev_priv, 7)) 5583 return ivb_digital_port_connected(encoder); 5584 else if (IS_GEN(dev_priv, 6)) 5585 return snb_digital_port_connected(encoder); 5586 else if (IS_GEN(dev_priv, 5)) 5587 return ilk_digital_port_connected(encoder); 5588 5589 MISSING_CASE(INTEL_GEN(dev_priv)); 5590 return false; 5591 } 5592 5593 bool intel_digital_port_connected(struct intel_encoder *encoder) 5594 { 5595 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5596 bool is_connected = false; 5597 intel_wakeref_t wakeref; 5598 5599 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 5600 is_connected = __intel_digital_port_connected(encoder); 5601 5602 return is_connected; 5603 } 5604 5605 static struct edid * 5606 intel_dp_get_edid(struct intel_dp *intel_dp) 5607 { 5608 struct intel_connector *intel_connector = intel_dp->attached_connector; 5609 5610 /* use cached edid if we have one */ 5611 if (intel_connector->edid) { 5612 /* invalid edid */ 5613 if (IS_ERR(intel_connector->edid)) 5614 return NULL; 5615 5616 return drm_edid_duplicate(intel_connector->edid); 5617 } else 5618 return drm_get_edid(&intel_connector->base, 5619 &intel_dp->aux.ddc); 5620 } 5621 5622 static void 5623 intel_dp_set_edid(struct intel_dp *intel_dp) 5624 { 5625 struct intel_connector *intel_connector = intel_dp->attached_connector; 5626 struct edid *edid; 5627 5628 intel_dp_unset_edid(intel_dp); 5629 edid = intel_dp_get_edid(intel_dp); 5630 intel_connector->detect_edid = edid; 5631 5632 intel_dp->has_audio = drm_detect_monitor_audio(edid); 5633 drm_dp_cec_set_edid(&intel_dp->aux, edid); 5634 } 5635 5636 static void 5637 intel_dp_unset_edid(struct intel_dp *intel_dp) 5638 { 5639 struct intel_connector *intel_connector = intel_dp->attached_connector; 5640 5641 drm_dp_cec_unset_edid(&intel_dp->aux); 5642 kfree(intel_connector->detect_edid); 5643 intel_connector->detect_edid = NULL; 5644 5645 intel_dp->has_audio = false; 5646 } 5647 5648 static int 5649 intel_dp_detect(struct drm_connector *connector, 5650 struct drm_modeset_acquire_ctx *ctx, 5651 bool force) 5652 { 5653 struct drm_i915_private *dev_priv = to_i915(connector->dev); 5654 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5655 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5656 struct intel_encoder *encoder = &dig_port->base; 5657 enum drm_connector_status status; 5658 5659 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5660 connector->base.id, connector->name); 5661 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 5662 5663 /* Can't disconnect eDP */ 5664 if (intel_dp_is_edp(intel_dp)) 5665 status = edp_detect(intel_dp); 5666 else if (intel_digital_port_connected(encoder)) 5667 status = intel_dp_detect_dpcd(intel_dp); 5668 else 5669 status = connector_status_disconnected; 5670 5671 if (status == connector_status_disconnected) { 5672 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5673 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 5674 5675 if (intel_dp->is_mst) { 5676 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 5677 intel_dp->is_mst, 5678 intel_dp->mst_mgr.mst_state); 5679 intel_dp->is_mst = false; 5680 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5681 intel_dp->is_mst); 5682 } 5683 5684 goto out; 5685 } 5686 5687 if (intel_dp->reset_link_params) { 5688 /* Initial max link lane count */ 5689 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 5690 5691 /* Initial max link rate */ 5692 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 5693 5694 intel_dp->reset_link_params = false; 5695 } 5696 5697 intel_dp_print_rates(intel_dp); 5698 5699 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 5700 if (INTEL_GEN(dev_priv) >= 11) 5701 intel_dp_get_dsc_sink_cap(intel_dp); 5702 5703 intel_dp_configure_mst(intel_dp); 5704 5705 if (intel_dp->is_mst) { 5706 /* 5707 * If we are in MST mode then this connector 5708 * won't appear connected or have anything 5709 * with EDID on it 5710 */ 5711 status = connector_status_disconnected; 5712 goto out; 5713 } 5714 5715 /* 5716 * Some external monitors do not signal loss of link synchronization 5717 * with an IRQ_HPD, so force a link status check. 5718 */ 5719 if (!intel_dp_is_edp(intel_dp)) { 5720 int ret; 5721 5722 ret = intel_dp_retrain_link(encoder, ctx); 5723 if (ret) 5724 return ret; 5725 } 5726 5727 /* 5728 * Clearing NACK and defer counts to get their exact values 5729 * while reading EDID which are required by Compliance tests 5730 * 4.2.2.4 and 4.2.2.5 5731 */ 5732 intel_dp->aux.i2c_nack_count = 0; 5733 intel_dp->aux.i2c_defer_count = 0; 5734 5735 intel_dp_set_edid(intel_dp); 5736 if (intel_dp_is_edp(intel_dp) || 5737 to_intel_connector(connector)->detect_edid) 5738 status = connector_status_connected; 5739 5740 intel_dp_check_service_irq(intel_dp); 5741 5742 out: 5743 if (status != connector_status_connected && !intel_dp->is_mst) 5744 intel_dp_unset_edid(intel_dp); 5745 5746 /* 5747 * Make sure the refs for power wells enabled during detect are 5748 * dropped to avoid a new detect cycle triggered by HPD polling. 5749 */ 5750 intel_display_power_flush_work(dev_priv); 5751 5752 return status; 5753 } 5754 5755 static void 5756 intel_dp_force(struct drm_connector *connector) 5757 { 5758 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5759 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5760 struct intel_encoder *intel_encoder = &dig_port->base; 5761 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 5762 enum intel_display_power_domain aux_domain = 5763 intel_aux_power_domain(dig_port); 5764 intel_wakeref_t wakeref; 5765 5766 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5767 connector->base.id, connector->name); 5768 intel_dp_unset_edid(intel_dp); 5769 5770 if (connector->status != connector_status_connected) 5771 return; 5772 5773 wakeref = intel_display_power_get(dev_priv, aux_domain); 5774 5775 intel_dp_set_edid(intel_dp); 5776 5777 intel_display_power_put(dev_priv, aux_domain, wakeref); 5778 } 5779 5780 static int intel_dp_get_modes(struct drm_connector *connector) 5781 { 5782 struct intel_connector *intel_connector = to_intel_connector(connector); 5783 struct edid *edid; 5784 5785 edid = intel_connector->detect_edid; 5786 if (edid) { 5787 int ret = intel_connector_update_modes(connector, edid); 5788 if (ret) 5789 return ret; 5790 } 5791 5792 /* if eDP has no EDID, fall back to fixed mode */ 5793 if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) && 5794 intel_connector->panel.fixed_mode) { 5795 struct drm_display_mode *mode; 5796 5797 mode = drm_mode_duplicate(connector->dev, 5798 intel_connector->panel.fixed_mode); 5799 if (mode) { 5800 drm_mode_probed_add(connector, mode); 5801 return 1; 5802 } 5803 } 5804 5805 return 0; 5806 } 5807 5808 static int 5809 intel_dp_connector_register(struct drm_connector *connector) 5810 { 5811 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5812 int ret; 5813 5814 ret = intel_connector_register(connector); 5815 if (ret) 5816 return ret; 5817 5818 i915_debugfs_connector_add(connector); 5819 5820 DRM_DEBUG_KMS("registering %s bus for %s\n", 5821 intel_dp->aux.name, connector->kdev->kobj.name); 5822 5823 intel_dp->aux.dev = connector->kdev; 5824 ret = drm_dp_aux_register(&intel_dp->aux); 5825 if (!ret) 5826 drm_dp_cec_register_connector(&intel_dp->aux, connector); 5827 return ret; 5828 } 5829 5830 static void 5831 intel_dp_connector_unregister(struct drm_connector *connector) 5832 { 5833 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5834 5835 drm_dp_cec_unregister_connector(&intel_dp->aux); 5836 drm_dp_aux_unregister(&intel_dp->aux); 5837 intel_connector_unregister(connector); 5838 } 5839 5840 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 5841 { 5842 struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder)); 5843 struct intel_dp *intel_dp = &intel_dig_port->dp; 5844 5845 intel_dp_mst_encoder_cleanup(intel_dig_port); 5846 if (intel_dp_is_edp(intel_dp)) { 5847 intel_wakeref_t wakeref; 5848 5849 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5850 /* 5851 * vdd might still be enabled do to the delayed vdd off. 5852 * Make sure vdd is actually turned off here. 5853 */ 5854 with_pps_lock(intel_dp, wakeref) 5855 edp_panel_vdd_off_sync(intel_dp); 5856 5857 if (intel_dp->edp_notifier.notifier_call) { 5858 unregister_reboot_notifier(&intel_dp->edp_notifier); 5859 intel_dp->edp_notifier.notifier_call = NULL; 5860 } 5861 } 5862 5863 intel_dp_aux_fini(intel_dp); 5864 } 5865 5866 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 5867 { 5868 intel_dp_encoder_flush_work(encoder); 5869 5870 drm_encoder_cleanup(encoder); 5871 kfree(enc_to_dig_port(to_intel_encoder(encoder))); 5872 } 5873 5874 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 5875 { 5876 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); 5877 intel_wakeref_t wakeref; 5878 5879 if (!intel_dp_is_edp(intel_dp)) 5880 return; 5881 5882 /* 5883 * vdd might still be enabled do to the delayed vdd off. 5884 * Make sure vdd is actually turned off here. 5885 */ 5886 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5887 with_pps_lock(intel_dp, wakeref) 5888 edp_panel_vdd_off_sync(intel_dp); 5889 } 5890 5891 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 5892 { 5893 long ret; 5894 5895 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 5896 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, 5897 msecs_to_jiffies(timeout)); 5898 5899 if (!ret) 5900 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 5901 } 5902 5903 static 5904 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 5905 u8 *an) 5906 { 5907 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base)); 5908 static const struct drm_dp_aux_msg msg = { 5909 .request = DP_AUX_NATIVE_WRITE, 5910 .address = DP_AUX_HDCP_AKSV, 5911 .size = DRM_HDCP_KSV_LEN, 5912 }; 5913 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 5914 ssize_t dpcd_ret; 5915 int ret; 5916 5917 /* Output An first, that's easy */ 5918 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 5919 an, DRM_HDCP_AN_LEN); 5920 if (dpcd_ret != DRM_HDCP_AN_LEN) { 5921 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n", 5922 dpcd_ret); 5923 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 5924 } 5925 5926 /* 5927 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 5928 * order to get it on the wire, we need to create the AUX header as if 5929 * we were writing the data, and then tickle the hardware to output the 5930 * data once the header is sent out. 5931 */ 5932 intel_dp_aux_header(txbuf, &msg); 5933 5934 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 5935 rxbuf, sizeof(rxbuf), 5936 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 5937 if (ret < 0) { 5938 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret); 5939 return ret; 5940 } else if (ret == 0) { 5941 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n"); 5942 return -EIO; 5943 } 5944 5945 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 5946 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 5947 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 5948 reply); 5949 return -EIO; 5950 } 5951 return 0; 5952 } 5953 5954 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 5955 u8 *bksv) 5956 { 5957 ssize_t ret; 5958 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 5959 DRM_HDCP_KSV_LEN); 5960 if (ret != DRM_HDCP_KSV_LEN) { 5961 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret); 5962 return ret >= 0 ? -EIO : ret; 5963 } 5964 return 0; 5965 } 5966 5967 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 5968 u8 *bstatus) 5969 { 5970 ssize_t ret; 5971 /* 5972 * For some reason the HDMI and DP HDCP specs call this register 5973 * definition by different names. In the HDMI spec, it's called BSTATUS, 5974 * but in DP it's called BINFO. 5975 */ 5976 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 5977 bstatus, DRM_HDCP_BSTATUS_LEN); 5978 if (ret != DRM_HDCP_BSTATUS_LEN) { 5979 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5980 return ret >= 0 ? -EIO : ret; 5981 } 5982 return 0; 5983 } 5984 5985 static 5986 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 5987 u8 *bcaps) 5988 { 5989 ssize_t ret; 5990 5991 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 5992 bcaps, 1); 5993 if (ret != 1) { 5994 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret); 5995 return ret >= 0 ? -EIO : ret; 5996 } 5997 5998 return 0; 5999 } 6000 6001 static 6002 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 6003 bool *repeater_present) 6004 { 6005 ssize_t ret; 6006 u8 bcaps; 6007 6008 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6009 if (ret) 6010 return ret; 6011 6012 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 6013 return 0; 6014 } 6015 6016 static 6017 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 6018 u8 *ri_prime) 6019 { 6020 ssize_t ret; 6021 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 6022 ri_prime, DRM_HDCP_RI_LEN); 6023 if (ret != DRM_HDCP_RI_LEN) { 6024 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret); 6025 return ret >= 0 ? -EIO : ret; 6026 } 6027 return 0; 6028 } 6029 6030 static 6031 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 6032 bool *ksv_ready) 6033 { 6034 ssize_t ret; 6035 u8 bstatus; 6036 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6037 &bstatus, 1); 6038 if (ret != 1) { 6039 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6040 return ret >= 0 ? -EIO : ret; 6041 } 6042 *ksv_ready = bstatus & DP_BSTATUS_READY; 6043 return 0; 6044 } 6045 6046 static 6047 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 6048 int num_downstream, u8 *ksv_fifo) 6049 { 6050 ssize_t ret; 6051 int i; 6052 6053 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 6054 for (i = 0; i < num_downstream; i += 3) { 6055 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 6056 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6057 DP_AUX_HDCP_KSV_FIFO, 6058 ksv_fifo + i * DRM_HDCP_KSV_LEN, 6059 len); 6060 if (ret != len) { 6061 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n", 6062 i, ret); 6063 return ret >= 0 ? -EIO : ret; 6064 } 6065 } 6066 return 0; 6067 } 6068 6069 static 6070 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 6071 int i, u32 *part) 6072 { 6073 ssize_t ret; 6074 6075 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 6076 return -EINVAL; 6077 6078 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6079 DP_AUX_HDCP_V_PRIME(i), part, 6080 DRM_HDCP_V_PRIME_PART_LEN); 6081 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 6082 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 6083 return ret >= 0 ? -EIO : ret; 6084 } 6085 return 0; 6086 } 6087 6088 static 6089 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 6090 bool enable) 6091 { 6092 /* Not used for single stream DisplayPort setups */ 6093 return 0; 6094 } 6095 6096 static 6097 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 6098 { 6099 ssize_t ret; 6100 u8 bstatus; 6101 6102 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6103 &bstatus, 1); 6104 if (ret != 1) { 6105 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6106 return false; 6107 } 6108 6109 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 6110 } 6111 6112 static 6113 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 6114 bool *hdcp_capable) 6115 { 6116 ssize_t ret; 6117 u8 bcaps; 6118 6119 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6120 if (ret) 6121 return ret; 6122 6123 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 6124 return 0; 6125 } 6126 6127 struct hdcp2_dp_errata_stream_type { 6128 u8 msg_id; 6129 u8 stream_type; 6130 } __packed; 6131 6132 struct hdcp2_dp_msg_data { 6133 u8 msg_id; 6134 u32 offset; 6135 bool msg_detectable; 6136 u32 timeout; 6137 u32 timeout2; /* Added for non_paired situation */ 6138 }; 6139 6140 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { 6141 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, 6142 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 6143 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, 6144 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 6145 false, 0, 0 }, 6146 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 6147 false, 0, 0 }, 6148 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 6149 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 6150 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, 6151 { HDCP_2_2_AKE_SEND_PAIRING_INFO, 6152 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 6153 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, 6154 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, 6155 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 6156 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, 6157 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 6158 0, 0 }, 6159 { HDCP_2_2_REP_SEND_RECVID_LIST, 6160 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 6161 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, 6162 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 6163 0, 0 }, 6164 { HDCP_2_2_REP_STREAM_MANAGE, 6165 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 6166 0, 0 }, 6167 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 6168 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, 6169 /* local define to shovel this through the write_2_2 interface */ 6170 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 6171 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, 6172 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 6173 0, 0 }, 6174 }; 6175 6176 static inline 6177 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 6178 u8 *rx_status) 6179 { 6180 ssize_t ret; 6181 6182 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6183 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 6184 HDCP_2_2_DP_RXSTATUS_LEN); 6185 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 6186 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6187 return ret >= 0 ? -EIO : ret; 6188 } 6189 6190 return 0; 6191 } 6192 6193 static 6194 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 6195 u8 msg_id, bool *msg_ready) 6196 { 6197 u8 rx_status; 6198 int ret; 6199 6200 *msg_ready = false; 6201 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6202 if (ret < 0) 6203 return ret; 6204 6205 switch (msg_id) { 6206 case HDCP_2_2_AKE_SEND_HPRIME: 6207 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 6208 *msg_ready = true; 6209 break; 6210 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 6211 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 6212 *msg_ready = true; 6213 break; 6214 case HDCP_2_2_REP_SEND_RECVID_LIST: 6215 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6216 *msg_ready = true; 6217 break; 6218 default: 6219 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 6220 return -EINVAL; 6221 } 6222 6223 return 0; 6224 } 6225 6226 static ssize_t 6227 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 6228 const struct hdcp2_dp_msg_data *hdcp2_msg_data) 6229 { 6230 struct intel_dp *dp = &intel_dig_port->dp; 6231 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6232 u8 msg_id = hdcp2_msg_data->msg_id; 6233 int ret, timeout; 6234 bool msg_ready = false; 6235 6236 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 6237 timeout = hdcp2_msg_data->timeout2; 6238 else 6239 timeout = hdcp2_msg_data->timeout; 6240 6241 /* 6242 * There is no way to detect the CERT, LPRIME and STREAM_READY 6243 * availability. So Wait for timeout and read the msg. 6244 */ 6245 if (!hdcp2_msg_data->msg_detectable) { 6246 mdelay(timeout); 6247 ret = 0; 6248 } else { 6249 /* 6250 * As we want to check the msg availability at timeout, Ignoring 6251 * the timeout at wait for CP_IRQ. 6252 */ 6253 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 6254 ret = hdcp2_detect_msg_availability(intel_dig_port, 6255 msg_id, &msg_ready); 6256 if (!msg_ready) 6257 ret = -ETIMEDOUT; 6258 } 6259 6260 if (ret) 6261 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n", 6262 hdcp2_msg_data->msg_id, ret, timeout); 6263 6264 return ret; 6265 } 6266 6267 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 6268 { 6269 int i; 6270 6271 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) 6272 if (hdcp2_dp_msg_data[i].msg_id == msg_id) 6273 return &hdcp2_dp_msg_data[i]; 6274 6275 return NULL; 6276 } 6277 6278 static 6279 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 6280 void *buf, size_t size) 6281 { 6282 struct intel_dp *dp = &intel_dig_port->dp; 6283 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6284 unsigned int offset; 6285 u8 *byte = buf; 6286 ssize_t ret, bytes_to_write, len; 6287 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6288 6289 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 6290 if (!hdcp2_msg_data) 6291 return -EINVAL; 6292 6293 offset = hdcp2_msg_data->offset; 6294 6295 /* No msg_id in DP HDCP2.2 msgs */ 6296 bytes_to_write = size - 1; 6297 byte++; 6298 6299 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 6300 6301 while (bytes_to_write) { 6302 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 6303 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 6304 6305 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 6306 offset, (void *)byte, len); 6307 if (ret < 0) 6308 return ret; 6309 6310 bytes_to_write -= ret; 6311 byte += ret; 6312 offset += ret; 6313 } 6314 6315 return size; 6316 } 6317 6318 static 6319 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6320 { 6321 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6322 u32 dev_cnt; 6323 ssize_t ret; 6324 6325 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6326 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6327 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6328 if (ret != HDCP_2_2_RXINFO_LEN) 6329 return ret >= 0 ? -EIO : ret; 6330 6331 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6332 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6333 6334 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6335 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6336 6337 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6338 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6339 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6340 6341 return ret; 6342 } 6343 6344 static 6345 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6346 u8 msg_id, void *buf, size_t size) 6347 { 6348 unsigned int offset; 6349 u8 *byte = buf; 6350 ssize_t ret, bytes_to_recv, len; 6351 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6352 6353 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6354 if (!hdcp2_msg_data) 6355 return -EINVAL; 6356 offset = hdcp2_msg_data->offset; 6357 6358 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6359 if (ret < 0) 6360 return ret; 6361 6362 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6363 ret = get_receiver_id_list_size(intel_dig_port); 6364 if (ret < 0) 6365 return ret; 6366 6367 size = ret; 6368 } 6369 bytes_to_recv = size - 1; 6370 6371 /* DP adaptation msgs has no msg_id */ 6372 byte++; 6373 6374 while (bytes_to_recv) { 6375 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6376 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6377 6378 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6379 (void *)byte, len); 6380 if (ret < 0) { 6381 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret); 6382 return ret; 6383 } 6384 6385 bytes_to_recv -= ret; 6386 byte += ret; 6387 offset += ret; 6388 } 6389 byte = buf; 6390 *byte = msg_id; 6391 6392 return size; 6393 } 6394 6395 static 6396 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6397 bool is_repeater, u8 content_type) 6398 { 6399 struct hdcp2_dp_errata_stream_type stream_type_msg; 6400 6401 if (is_repeater) 6402 return 0; 6403 6404 /* 6405 * Errata for DP: As Stream type is used for encryption, Receiver 6406 * should be communicated with stream type for the decryption of the 6407 * content. 6408 * Repeater will be communicated with stream type as a part of it's 6409 * auth later in time. 6410 */ 6411 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6412 stream_type_msg.stream_type = content_type; 6413 6414 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6415 sizeof(stream_type_msg)); 6416 } 6417 6418 static 6419 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6420 { 6421 u8 rx_status; 6422 int ret; 6423 6424 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6425 if (ret) 6426 return ret; 6427 6428 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6429 ret = HDCP_REAUTH_REQUEST; 6430 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6431 ret = HDCP_LINK_INTEGRITY_FAILURE; 6432 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6433 ret = HDCP_TOPOLOGY_CHANGE; 6434 6435 return ret; 6436 } 6437 6438 static 6439 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6440 bool *capable) 6441 { 6442 u8 rx_caps[3]; 6443 int ret; 6444 6445 *capable = false; 6446 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6447 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6448 rx_caps, HDCP_2_2_RXCAPS_LEN); 6449 if (ret != HDCP_2_2_RXCAPS_LEN) 6450 return ret >= 0 ? -EIO : ret; 6451 6452 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6453 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6454 *capable = true; 6455 6456 return 0; 6457 } 6458 6459 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6460 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6461 .read_bksv = intel_dp_hdcp_read_bksv, 6462 .read_bstatus = intel_dp_hdcp_read_bstatus, 6463 .repeater_present = intel_dp_hdcp_repeater_present, 6464 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6465 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6466 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6467 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6468 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6469 .check_link = intel_dp_hdcp_check_link, 6470 .hdcp_capable = intel_dp_hdcp_capable, 6471 .write_2_2_msg = intel_dp_hdcp2_write_msg, 6472 .read_2_2_msg = intel_dp_hdcp2_read_msg, 6473 .config_stream_type = intel_dp_hdcp2_config_stream_type, 6474 .check_2_2_link = intel_dp_hdcp2_check_link, 6475 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 6476 .protocol = HDCP_PROTOCOL_DP, 6477 }; 6478 6479 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6480 { 6481 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6482 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6483 6484 lockdep_assert_held(&dev_priv->pps_mutex); 6485 6486 if (!edp_have_panel_vdd(intel_dp)) 6487 return; 6488 6489 /* 6490 * The VDD bit needs a power domain reference, so if the bit is 6491 * already enabled when we boot or resume, grab this reference and 6492 * schedule a vdd off, so we don't hold on to the reference 6493 * indefinitely. 6494 */ 6495 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); 6496 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6497 6498 edp_panel_vdd_schedule_off(intel_dp); 6499 } 6500 6501 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6502 { 6503 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6504 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6505 enum pipe pipe; 6506 6507 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6508 encoder->port, &pipe)) 6509 return pipe; 6510 6511 return INVALID_PIPE; 6512 } 6513 6514 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6515 { 6516 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6517 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder)); 6518 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6519 intel_wakeref_t wakeref; 6520 6521 if (!HAS_DDI(dev_priv)) 6522 intel_dp->DP = I915_READ(intel_dp->output_reg); 6523 6524 if (lspcon->active) 6525 lspcon_resume(lspcon); 6526 6527 intel_dp->reset_link_params = true; 6528 6529 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6530 !intel_dp_is_edp(intel_dp)) 6531 return; 6532 6533 with_pps_lock(intel_dp, wakeref) { 6534 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6535 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6536 6537 if (intel_dp_is_edp(intel_dp)) { 6538 /* 6539 * Reinit the power sequencer, in case BIOS did 6540 * something nasty with it. 6541 */ 6542 intel_dp_pps_init(intel_dp); 6543 intel_edp_panel_vdd_sanitize(intel_dp); 6544 } 6545 } 6546 } 6547 6548 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6549 .force = intel_dp_force, 6550 .fill_modes = drm_helper_probe_single_connector_modes, 6551 .atomic_get_property = intel_digital_connector_atomic_get_property, 6552 .atomic_set_property = intel_digital_connector_atomic_set_property, 6553 .late_register = intel_dp_connector_register, 6554 .early_unregister = intel_dp_connector_unregister, 6555 .destroy = intel_connector_destroy, 6556 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6557 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6558 }; 6559 6560 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6561 .detect_ctx = intel_dp_detect, 6562 .get_modes = intel_dp_get_modes, 6563 .mode_valid = intel_dp_mode_valid, 6564 .atomic_check = intel_digital_connector_atomic_check, 6565 }; 6566 6567 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6568 .reset = intel_dp_encoder_reset, 6569 .destroy = intel_dp_encoder_destroy, 6570 }; 6571 6572 enum irqreturn 6573 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 6574 { 6575 struct intel_dp *intel_dp = &intel_dig_port->dp; 6576 6577 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { 6578 /* 6579 * vdd off can generate a long pulse on eDP which 6580 * would require vdd on to handle it, and thus we 6581 * would end up in an endless cycle of 6582 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." 6583 */ 6584 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n", 6585 intel_dig_port->base.base.base.id, 6586 intel_dig_port->base.base.name); 6587 return IRQ_HANDLED; 6588 } 6589 6590 DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n", 6591 intel_dig_port->base.base.base.id, 6592 intel_dig_port->base.base.name, 6593 long_hpd ? "long" : "short"); 6594 6595 if (long_hpd) { 6596 intel_dp->reset_link_params = true; 6597 return IRQ_NONE; 6598 } 6599 6600 if (intel_dp->is_mst) { 6601 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { 6602 /* 6603 * If we were in MST mode, and device is not 6604 * there, get out of MST mode 6605 */ 6606 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 6607 intel_dp->is_mst, intel_dp->mst_mgr.mst_state); 6608 intel_dp->is_mst = false; 6609 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6610 intel_dp->is_mst); 6611 6612 return IRQ_NONE; 6613 } 6614 } 6615 6616 if (!intel_dp->is_mst) { 6617 bool handled; 6618 6619 handled = intel_dp_short_pulse(intel_dp); 6620 6621 if (!handled) 6622 return IRQ_NONE; 6623 } 6624 6625 return IRQ_HANDLED; 6626 } 6627 6628 /* check the VBT to see whether the eDP is on another port */ 6629 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6630 { 6631 /* 6632 * eDP not supported on g4x. so bail out early just 6633 * for a bit extra safety in case the VBT is bonkers. 6634 */ 6635 if (INTEL_GEN(dev_priv) < 5) 6636 return false; 6637 6638 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 6639 return true; 6640 6641 return intel_bios_is_port_edp(dev_priv, port); 6642 } 6643 6644 static void 6645 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6646 { 6647 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6648 enum port port = dp_to_dig_port(intel_dp)->base.port; 6649 6650 if (!IS_G4X(dev_priv) && port != PORT_A) 6651 intel_attach_force_audio_property(connector); 6652 6653 intel_attach_broadcast_rgb_property(connector); 6654 if (HAS_GMCH(dev_priv)) 6655 drm_connector_attach_max_bpc_property(connector, 6, 10); 6656 else if (INTEL_GEN(dev_priv) >= 5) 6657 drm_connector_attach_max_bpc_property(connector, 6, 12); 6658 6659 intel_attach_colorspace_property(connector); 6660 6661 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11) 6662 drm_object_attach_property(&connector->base, 6663 connector->dev->mode_config.hdr_output_metadata_property, 6664 0); 6665 6666 if (intel_dp_is_edp(intel_dp)) { 6667 u32 allowed_scalers; 6668 6669 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 6670 if (!HAS_GMCH(dev_priv)) 6671 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 6672 6673 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 6674 6675 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 6676 6677 } 6678 } 6679 6680 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 6681 { 6682 intel_dp->panel_power_off_time = ktime_get_boottime(); 6683 intel_dp->last_power_on = jiffies; 6684 intel_dp->last_backlight_off = jiffies; 6685 } 6686 6687 static void 6688 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 6689 { 6690 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6691 u32 pp_on, pp_off, pp_ctl; 6692 struct pps_registers regs; 6693 6694 intel_pps_get_registers(intel_dp, ®s); 6695 6696 pp_ctl = ilk_get_pp_control(intel_dp); 6697 6698 /* Ensure PPS is unlocked */ 6699 if (!HAS_DDI(dev_priv)) 6700 I915_WRITE(regs.pp_ctrl, pp_ctl); 6701 6702 pp_on = I915_READ(regs.pp_on); 6703 pp_off = I915_READ(regs.pp_off); 6704 6705 /* Pull timing values out of registers */ 6706 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 6707 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 6708 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 6709 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 6710 6711 if (i915_mmio_reg_valid(regs.pp_div)) { 6712 u32 pp_div; 6713 6714 pp_div = I915_READ(regs.pp_div); 6715 6716 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 6717 } else { 6718 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 6719 } 6720 } 6721 6722 static void 6723 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 6724 { 6725 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 6726 state_name, 6727 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 6728 } 6729 6730 static void 6731 intel_pps_verify_state(struct intel_dp *intel_dp) 6732 { 6733 struct edp_power_seq hw; 6734 struct edp_power_seq *sw = &intel_dp->pps_delays; 6735 6736 intel_pps_readout_hw_state(intel_dp, &hw); 6737 6738 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 6739 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 6740 DRM_ERROR("PPS state mismatch\n"); 6741 intel_pps_dump_state("sw", sw); 6742 intel_pps_dump_state("hw", &hw); 6743 } 6744 } 6745 6746 static void 6747 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 6748 { 6749 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6750 struct edp_power_seq cur, vbt, spec, 6751 *final = &intel_dp->pps_delays; 6752 6753 lockdep_assert_held(&dev_priv->pps_mutex); 6754 6755 /* already initialized? */ 6756 if (final->t11_t12 != 0) 6757 return; 6758 6759 intel_pps_readout_hw_state(intel_dp, &cur); 6760 6761 intel_pps_dump_state("cur", &cur); 6762 6763 vbt = dev_priv->vbt.edp.pps; 6764 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 6765 * of 500ms appears to be too short. Ocassionally the panel 6766 * just fails to power back on. Increasing the delay to 800ms 6767 * seems sufficient to avoid this problem. 6768 */ 6769 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 6770 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 6771 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n", 6772 vbt.t11_t12); 6773 } 6774 /* T11_T12 delay is special and actually in units of 100ms, but zero 6775 * based in the hw (so we need to add 100 ms). But the sw vbt 6776 * table multiplies it with 1000 to make it in units of 100usec, 6777 * too. */ 6778 vbt.t11_t12 += 100 * 10; 6779 6780 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 6781 * our hw here, which are all in 100usec. */ 6782 spec.t1_t3 = 210 * 10; 6783 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 6784 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 6785 spec.t10 = 500 * 10; 6786 /* This one is special and actually in units of 100ms, but zero 6787 * based in the hw (so we need to add 100 ms). But the sw vbt 6788 * table multiplies it with 1000 to make it in units of 100usec, 6789 * too. */ 6790 spec.t11_t12 = (510 + 100) * 10; 6791 6792 intel_pps_dump_state("vbt", &vbt); 6793 6794 /* Use the max of the register settings and vbt. If both are 6795 * unset, fall back to the spec limits. */ 6796 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 6797 spec.field : \ 6798 max(cur.field, vbt.field)) 6799 assign_final(t1_t3); 6800 assign_final(t8); 6801 assign_final(t9); 6802 assign_final(t10); 6803 assign_final(t11_t12); 6804 #undef assign_final 6805 6806 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 6807 intel_dp->panel_power_up_delay = get_delay(t1_t3); 6808 intel_dp->backlight_on_delay = get_delay(t8); 6809 intel_dp->backlight_off_delay = get_delay(t9); 6810 intel_dp->panel_power_down_delay = get_delay(t10); 6811 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 6812 #undef get_delay 6813 6814 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", 6815 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, 6816 intel_dp->panel_power_cycle_delay); 6817 6818 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", 6819 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); 6820 6821 /* 6822 * We override the HW backlight delays to 1 because we do manual waits 6823 * on them. For T8, even BSpec recommends doing it. For T9, if we 6824 * don't do this, we'll end up waiting for the backlight off delay 6825 * twice: once when we do the manual sleep, and once when we disable 6826 * the panel and wait for the PP_STATUS bit to become zero. 6827 */ 6828 final->t8 = 1; 6829 final->t9 = 1; 6830 6831 /* 6832 * HW has only a 100msec granularity for t11_t12 so round it up 6833 * accordingly. 6834 */ 6835 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 6836 } 6837 6838 static void 6839 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 6840 bool force_disable_vdd) 6841 { 6842 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6843 u32 pp_on, pp_off, port_sel = 0; 6844 int div = dev_priv->rawclk_freq / 1000; 6845 struct pps_registers regs; 6846 enum port port = dp_to_dig_port(intel_dp)->base.port; 6847 const struct edp_power_seq *seq = &intel_dp->pps_delays; 6848 6849 lockdep_assert_held(&dev_priv->pps_mutex); 6850 6851 intel_pps_get_registers(intel_dp, ®s); 6852 6853 /* 6854 * On some VLV machines the BIOS can leave the VDD 6855 * enabled even on power sequencers which aren't 6856 * hooked up to any port. This would mess up the 6857 * power domain tracking the first time we pick 6858 * one of these power sequencers for use since 6859 * edp_panel_vdd_on() would notice that the VDD was 6860 * already on and therefore wouldn't grab the power 6861 * domain reference. Disable VDD first to avoid this. 6862 * This also avoids spuriously turning the VDD on as 6863 * soon as the new power sequencer gets initialized. 6864 */ 6865 if (force_disable_vdd) { 6866 u32 pp = ilk_get_pp_control(intel_dp); 6867 6868 WARN(pp & PANEL_POWER_ON, "Panel power already on\n"); 6869 6870 if (pp & EDP_FORCE_VDD) 6871 DRM_DEBUG_KMS("VDD already on, disabling first\n"); 6872 6873 pp &= ~EDP_FORCE_VDD; 6874 6875 I915_WRITE(regs.pp_ctrl, pp); 6876 } 6877 6878 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 6879 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 6880 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 6881 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 6882 6883 /* Haswell doesn't have any port selection bits for the panel 6884 * power sequencer any more. */ 6885 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6886 port_sel = PANEL_PORT_SELECT_VLV(port); 6887 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 6888 switch (port) { 6889 case PORT_A: 6890 port_sel = PANEL_PORT_SELECT_DPA; 6891 break; 6892 case PORT_C: 6893 port_sel = PANEL_PORT_SELECT_DPC; 6894 break; 6895 case PORT_D: 6896 port_sel = PANEL_PORT_SELECT_DPD; 6897 break; 6898 default: 6899 MISSING_CASE(port); 6900 break; 6901 } 6902 } 6903 6904 pp_on |= port_sel; 6905 6906 I915_WRITE(regs.pp_on, pp_on); 6907 I915_WRITE(regs.pp_off, pp_off); 6908 6909 /* 6910 * Compute the divisor for the pp clock, simply match the Bspec formula. 6911 */ 6912 if (i915_mmio_reg_valid(regs.pp_div)) { 6913 I915_WRITE(regs.pp_div, 6914 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | 6915 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 6916 } else { 6917 u32 pp_ctl; 6918 6919 pp_ctl = I915_READ(regs.pp_ctrl); 6920 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 6921 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 6922 I915_WRITE(regs.pp_ctrl, pp_ctl); 6923 } 6924 6925 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 6926 I915_READ(regs.pp_on), 6927 I915_READ(regs.pp_off), 6928 i915_mmio_reg_valid(regs.pp_div) ? 6929 I915_READ(regs.pp_div) : 6930 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 6931 } 6932 6933 static void intel_dp_pps_init(struct intel_dp *intel_dp) 6934 { 6935 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6936 6937 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6938 vlv_initial_power_sequencer_setup(intel_dp); 6939 } else { 6940 intel_dp_init_panel_power_sequencer(intel_dp); 6941 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 6942 } 6943 } 6944 6945 /** 6946 * intel_dp_set_drrs_state - program registers for RR switch to take effect 6947 * @dev_priv: i915 device 6948 * @crtc_state: a pointer to the active intel_crtc_state 6949 * @refresh_rate: RR to be programmed 6950 * 6951 * This function gets called when refresh rate (RR) has to be changed from 6952 * one frequency to another. Switches can be between high and low RR 6953 * supported by the panel or to any other RR based on media playback (in 6954 * this case, RR value needs to be passed from user space). 6955 * 6956 * The caller of this function needs to take a lock on dev_priv->drrs. 6957 */ 6958 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 6959 const struct intel_crtc_state *crtc_state, 6960 int refresh_rate) 6961 { 6962 struct intel_dp *intel_dp = dev_priv->drrs.dp; 6963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 6964 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 6965 6966 if (refresh_rate <= 0) { 6967 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); 6968 return; 6969 } 6970 6971 if (intel_dp == NULL) { 6972 DRM_DEBUG_KMS("DRRS not supported.\n"); 6973 return; 6974 } 6975 6976 if (!intel_crtc) { 6977 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); 6978 return; 6979 } 6980 6981 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 6982 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); 6983 return; 6984 } 6985 6986 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == 6987 refresh_rate) 6988 index = DRRS_LOW_RR; 6989 6990 if (index == dev_priv->drrs.refresh_rate_type) { 6991 DRM_DEBUG_KMS( 6992 "DRRS requested for previously set RR...ignoring\n"); 6993 return; 6994 } 6995 6996 if (!crtc_state->hw.active) { 6997 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); 6998 return; 6999 } 7000 7001 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 7002 switch (index) { 7003 case DRRS_HIGH_RR: 7004 intel_dp_set_m_n(crtc_state, M1_N1); 7005 break; 7006 case DRRS_LOW_RR: 7007 intel_dp_set_m_n(crtc_state, M2_N2); 7008 break; 7009 case DRRS_MAX_RR: 7010 default: 7011 DRM_ERROR("Unsupported refreshrate type\n"); 7012 } 7013 } else if (INTEL_GEN(dev_priv) > 6) { 7014 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 7015 u32 val; 7016 7017 val = I915_READ(reg); 7018 if (index > DRRS_HIGH_RR) { 7019 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7020 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7021 else 7022 val |= PIPECONF_EDP_RR_MODE_SWITCH; 7023 } else { 7024 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7025 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7026 else 7027 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 7028 } 7029 I915_WRITE(reg, val); 7030 } 7031 7032 dev_priv->drrs.refresh_rate_type = index; 7033 7034 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); 7035 } 7036 7037 /** 7038 * intel_edp_drrs_enable - init drrs struct if supported 7039 * @intel_dp: DP struct 7040 * @crtc_state: A pointer to the active crtc state. 7041 * 7042 * Initializes frontbuffer_bits and drrs.dp 7043 */ 7044 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 7045 const struct intel_crtc_state *crtc_state) 7046 { 7047 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7048 7049 if (!crtc_state->has_drrs) { 7050 DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); 7051 return; 7052 } 7053 7054 if (dev_priv->psr.enabled) { 7055 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n"); 7056 return; 7057 } 7058 7059 mutex_lock(&dev_priv->drrs.mutex); 7060 if (dev_priv->drrs.dp) { 7061 DRM_DEBUG_KMS("DRRS already enabled\n"); 7062 goto unlock; 7063 } 7064 7065 dev_priv->drrs.busy_frontbuffer_bits = 0; 7066 7067 dev_priv->drrs.dp = intel_dp; 7068 7069 unlock: 7070 mutex_unlock(&dev_priv->drrs.mutex); 7071 } 7072 7073 /** 7074 * intel_edp_drrs_disable - Disable DRRS 7075 * @intel_dp: DP struct 7076 * @old_crtc_state: Pointer to old crtc_state. 7077 * 7078 */ 7079 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 7080 const struct intel_crtc_state *old_crtc_state) 7081 { 7082 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7083 7084 if (!old_crtc_state->has_drrs) 7085 return; 7086 7087 mutex_lock(&dev_priv->drrs.mutex); 7088 if (!dev_priv->drrs.dp) { 7089 mutex_unlock(&dev_priv->drrs.mutex); 7090 return; 7091 } 7092 7093 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7094 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 7095 intel_dp->attached_connector->panel.fixed_mode->vrefresh); 7096 7097 dev_priv->drrs.dp = NULL; 7098 mutex_unlock(&dev_priv->drrs.mutex); 7099 7100 cancel_delayed_work_sync(&dev_priv->drrs.work); 7101 } 7102 7103 static void intel_edp_drrs_downclock_work(struct work_struct *work) 7104 { 7105 struct drm_i915_private *dev_priv = 7106 container_of(work, typeof(*dev_priv), drrs.work.work); 7107 struct intel_dp *intel_dp; 7108 7109 mutex_lock(&dev_priv->drrs.mutex); 7110 7111 intel_dp = dev_priv->drrs.dp; 7112 7113 if (!intel_dp) 7114 goto unlock; 7115 7116 /* 7117 * The delayed work can race with an invalidate hence we need to 7118 * recheck. 7119 */ 7120 7121 if (dev_priv->drrs.busy_frontbuffer_bits) 7122 goto unlock; 7123 7124 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 7125 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7126 7127 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7128 intel_dp->attached_connector->panel.downclock_mode->vrefresh); 7129 } 7130 7131 unlock: 7132 mutex_unlock(&dev_priv->drrs.mutex); 7133 } 7134 7135 /** 7136 * intel_edp_drrs_invalidate - Disable Idleness DRRS 7137 * @dev_priv: i915 device 7138 * @frontbuffer_bits: frontbuffer plane tracking bits 7139 * 7140 * This function gets called everytime rendering on the given planes start. 7141 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 7142 * 7143 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7144 */ 7145 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 7146 unsigned int frontbuffer_bits) 7147 { 7148 struct drm_crtc *crtc; 7149 enum pipe pipe; 7150 7151 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7152 return; 7153 7154 cancel_delayed_work(&dev_priv->drrs.work); 7155 7156 mutex_lock(&dev_priv->drrs.mutex); 7157 if (!dev_priv->drrs.dp) { 7158 mutex_unlock(&dev_priv->drrs.mutex); 7159 return; 7160 } 7161 7162 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7163 pipe = to_intel_crtc(crtc)->pipe; 7164 7165 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7166 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 7167 7168 /* invalidate means busy screen hence upclock */ 7169 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7170 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7171 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7172 7173 mutex_unlock(&dev_priv->drrs.mutex); 7174 } 7175 7176 /** 7177 * intel_edp_drrs_flush - Restart Idleness DRRS 7178 * @dev_priv: i915 device 7179 * @frontbuffer_bits: frontbuffer plane tracking bits 7180 * 7181 * This function gets called every time rendering on the given planes has 7182 * completed or flip on a crtc is completed. So DRRS should be upclocked 7183 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 7184 * if no other planes are dirty. 7185 * 7186 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7187 */ 7188 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 7189 unsigned int frontbuffer_bits) 7190 { 7191 struct drm_crtc *crtc; 7192 enum pipe pipe; 7193 7194 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7195 return; 7196 7197 cancel_delayed_work(&dev_priv->drrs.work); 7198 7199 mutex_lock(&dev_priv->drrs.mutex); 7200 if (!dev_priv->drrs.dp) { 7201 mutex_unlock(&dev_priv->drrs.mutex); 7202 return; 7203 } 7204 7205 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7206 pipe = to_intel_crtc(crtc)->pipe; 7207 7208 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7209 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 7210 7211 /* flush means busy screen hence upclock */ 7212 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7213 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7214 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7215 7216 /* 7217 * flush also means no more activity hence schedule downclock, if all 7218 * other fbs are quiescent too 7219 */ 7220 if (!dev_priv->drrs.busy_frontbuffer_bits) 7221 schedule_delayed_work(&dev_priv->drrs.work, 7222 msecs_to_jiffies(1000)); 7223 mutex_unlock(&dev_priv->drrs.mutex); 7224 } 7225 7226 /** 7227 * DOC: Display Refresh Rate Switching (DRRS) 7228 * 7229 * Display Refresh Rate Switching (DRRS) is a power conservation feature 7230 * which enables swtching between low and high refresh rates, 7231 * dynamically, based on the usage scenario. This feature is applicable 7232 * for internal panels. 7233 * 7234 * Indication that the panel supports DRRS is given by the panel EDID, which 7235 * would list multiple refresh rates for one resolution. 7236 * 7237 * DRRS is of 2 types - static and seamless. 7238 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 7239 * (may appear as a blink on screen) and is used in dock-undock scenario. 7240 * Seamless DRRS involves changing RR without any visual effect to the user 7241 * and can be used during normal system usage. This is done by programming 7242 * certain registers. 7243 * 7244 * Support for static/seamless DRRS may be indicated in the VBT based on 7245 * inputs from the panel spec. 7246 * 7247 * DRRS saves power by switching to low RR based on usage scenarios. 7248 * 7249 * The implementation is based on frontbuffer tracking implementation. When 7250 * there is a disturbance on the screen triggered by user activity or a periodic 7251 * system activity, DRRS is disabled (RR is changed to high RR). When there is 7252 * no movement on screen, after a timeout of 1 second, a switch to low RR is 7253 * made. 7254 * 7255 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 7256 * and intel_edp_drrs_flush() are called. 7257 * 7258 * DRRS can be further extended to support other internal panels and also 7259 * the scenario of video playback wherein RR is set based on the rate 7260 * requested by userspace. 7261 */ 7262 7263 /** 7264 * intel_dp_drrs_init - Init basic DRRS work and mutex. 7265 * @connector: eDP connector 7266 * @fixed_mode: preferred mode of panel 7267 * 7268 * This function is called only once at driver load to initialize basic 7269 * DRRS stuff. 7270 * 7271 * Returns: 7272 * Downclock mode if panel supports it, else return NULL. 7273 * DRRS support is determined by the presence of downclock mode (apart 7274 * from VBT setting). 7275 */ 7276 static struct drm_display_mode * 7277 intel_dp_drrs_init(struct intel_connector *connector, 7278 struct drm_display_mode *fixed_mode) 7279 { 7280 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 7281 struct drm_display_mode *downclock_mode = NULL; 7282 7283 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 7284 mutex_init(&dev_priv->drrs.mutex); 7285 7286 if (INTEL_GEN(dev_priv) <= 6) { 7287 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); 7288 return NULL; 7289 } 7290 7291 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 7292 DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); 7293 return NULL; 7294 } 7295 7296 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 7297 if (!downclock_mode) { 7298 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); 7299 return NULL; 7300 } 7301 7302 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 7303 7304 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 7305 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); 7306 return downclock_mode; 7307 } 7308 7309 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7310 struct intel_connector *intel_connector) 7311 { 7312 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7313 struct drm_device *dev = &dev_priv->drm; 7314 struct drm_connector *connector = &intel_connector->base; 7315 struct drm_display_mode *fixed_mode = NULL; 7316 struct drm_display_mode *downclock_mode = NULL; 7317 bool has_dpcd; 7318 enum pipe pipe = INVALID_PIPE; 7319 intel_wakeref_t wakeref; 7320 struct edid *edid; 7321 7322 if (!intel_dp_is_edp(intel_dp)) 7323 return true; 7324 7325 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7326 7327 /* 7328 * On IBX/CPT we may get here with LVDS already registered. Since the 7329 * driver uses the only internal power sequencer available for both 7330 * eDP and LVDS bail out early in this case to prevent interfering 7331 * with an already powered-on LVDS power sequencer. 7332 */ 7333 if (intel_get_lvds_encoder(dev_priv)) { 7334 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7335 DRM_INFO("LVDS was detected, not registering eDP\n"); 7336 7337 return false; 7338 } 7339 7340 with_pps_lock(intel_dp, wakeref) { 7341 intel_dp_init_panel_power_timestamps(intel_dp); 7342 intel_dp_pps_init(intel_dp); 7343 intel_edp_panel_vdd_sanitize(intel_dp); 7344 } 7345 7346 /* Cache DPCD and EDID for edp. */ 7347 has_dpcd = intel_edp_init_dpcd(intel_dp); 7348 7349 if (!has_dpcd) { 7350 /* if this fails, presume the device is a ghost */ 7351 DRM_INFO("failed to retrieve link info, disabling eDP\n"); 7352 goto out_vdd_off; 7353 } 7354 7355 mutex_lock(&dev->mode_config.mutex); 7356 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7357 if (edid) { 7358 if (drm_add_edid_modes(connector, edid)) { 7359 drm_connector_update_edid_property(connector, 7360 edid); 7361 } else { 7362 kfree(edid); 7363 edid = ERR_PTR(-EINVAL); 7364 } 7365 } else { 7366 edid = ERR_PTR(-ENOENT); 7367 } 7368 intel_connector->edid = edid; 7369 7370 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7371 if (fixed_mode) 7372 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7373 7374 /* fallback to VBT if available for eDP */ 7375 if (!fixed_mode) 7376 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7377 mutex_unlock(&dev->mode_config.mutex); 7378 7379 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7380 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7381 register_reboot_notifier(&intel_dp->edp_notifier); 7382 7383 /* 7384 * Figure out the current pipe for the initial backlight setup. 7385 * If the current pipe isn't valid, try the PPS pipe, and if that 7386 * fails just assume pipe A. 7387 */ 7388 pipe = vlv_active_pipe(intel_dp); 7389 7390 if (pipe != PIPE_A && pipe != PIPE_B) 7391 pipe = intel_dp->pps_pipe; 7392 7393 if (pipe != PIPE_A && pipe != PIPE_B) 7394 pipe = PIPE_A; 7395 7396 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", 7397 pipe_name(pipe)); 7398 } 7399 7400 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7401 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7402 intel_panel_setup_backlight(connector, pipe); 7403 7404 if (fixed_mode) 7405 drm_connector_init_panel_orientation_property( 7406 connector, fixed_mode->hdisplay, fixed_mode->vdisplay); 7407 7408 return true; 7409 7410 out_vdd_off: 7411 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7412 /* 7413 * vdd might still be enabled do to the delayed vdd off. 7414 * Make sure vdd is actually turned off here. 7415 */ 7416 with_pps_lock(intel_dp, wakeref) 7417 edp_panel_vdd_off_sync(intel_dp); 7418 7419 return false; 7420 } 7421 7422 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7423 { 7424 struct intel_connector *intel_connector; 7425 struct drm_connector *connector; 7426 7427 intel_connector = container_of(work, typeof(*intel_connector), 7428 modeset_retry_work); 7429 connector = &intel_connector->base; 7430 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7431 connector->name); 7432 7433 /* Grab the locks before changing connector property*/ 7434 mutex_lock(&connector->dev->mode_config.mutex); 7435 /* Set connector link status to BAD and send a Uevent to notify 7436 * userspace to do a modeset. 7437 */ 7438 drm_connector_set_link_status_property(connector, 7439 DRM_MODE_LINK_STATUS_BAD); 7440 mutex_unlock(&connector->dev->mode_config.mutex); 7441 /* Send Hotplug uevent so userspace can reprobe */ 7442 drm_kms_helper_hotplug_event(connector->dev); 7443 } 7444 7445 bool 7446 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 7447 struct intel_connector *intel_connector) 7448 { 7449 struct drm_connector *connector = &intel_connector->base; 7450 struct intel_dp *intel_dp = &intel_dig_port->dp; 7451 struct intel_encoder *intel_encoder = &intel_dig_port->base; 7452 struct drm_device *dev = intel_encoder->base.dev; 7453 struct drm_i915_private *dev_priv = to_i915(dev); 7454 enum port port = intel_encoder->port; 7455 enum phy phy = intel_port_to_phy(dev_priv, port); 7456 int type; 7457 7458 /* Initialize the work for modeset in case of link train failure */ 7459 INIT_WORK(&intel_connector->modeset_retry_work, 7460 intel_dp_modeset_retry_work_fn); 7461 7462 if (WARN(intel_dig_port->max_lanes < 1, 7463 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 7464 intel_dig_port->max_lanes, intel_encoder->base.base.id, 7465 intel_encoder->base.name)) 7466 return false; 7467 7468 intel_dp_set_source_rates(intel_dp); 7469 7470 intel_dp->reset_link_params = true; 7471 intel_dp->pps_pipe = INVALID_PIPE; 7472 intel_dp->active_pipe = INVALID_PIPE; 7473 7474 /* Preserve the current hw state. */ 7475 intel_dp->DP = I915_READ(intel_dp->output_reg); 7476 intel_dp->attached_connector = intel_connector; 7477 7478 if (intel_dp_is_port_edp(dev_priv, port)) { 7479 /* 7480 * Currently we don't support eDP on TypeC ports, although in 7481 * theory it could work on TypeC legacy ports. 7482 */ 7483 WARN_ON(intel_phy_is_tc(dev_priv, phy)); 7484 type = DRM_MODE_CONNECTOR_eDP; 7485 } else { 7486 type = DRM_MODE_CONNECTOR_DisplayPort; 7487 } 7488 7489 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7490 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7491 7492 /* 7493 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7494 * for DP the encoder type can be set by the caller to 7495 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7496 */ 7497 if (type == DRM_MODE_CONNECTOR_eDP) 7498 intel_encoder->type = INTEL_OUTPUT_EDP; 7499 7500 /* eDP only on port B and/or C on vlv/chv */ 7501 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 7502 intel_dp_is_edp(intel_dp) && 7503 port != PORT_B && port != PORT_C)) 7504 return false; 7505 7506 DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n", 7507 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7508 intel_encoder->base.base.id, intel_encoder->base.name); 7509 7510 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7511 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7512 7513 if (!HAS_GMCH(dev_priv)) 7514 connector->interlace_allowed = true; 7515 connector->doublescan_allowed = 0; 7516 7517 if (INTEL_GEN(dev_priv) >= 11) 7518 connector->ycbcr_420_allowed = true; 7519 7520 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7521 7522 intel_dp_aux_init(intel_dp); 7523 7524 intel_connector_attach_encoder(intel_connector, intel_encoder); 7525 7526 if (HAS_DDI(dev_priv)) 7527 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7528 else 7529 intel_connector->get_hw_state = intel_connector_get_hw_state; 7530 7531 /* init MST on ports that can support it */ 7532 intel_dp_mst_encoder_init(intel_dig_port, 7533 intel_connector->base.base.id); 7534 7535 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7536 intel_dp_aux_fini(intel_dp); 7537 intel_dp_mst_encoder_cleanup(intel_dig_port); 7538 goto fail; 7539 } 7540 7541 intel_dp_add_properties(intel_dp, connector); 7542 7543 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7544 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 7545 if (ret) 7546 DRM_DEBUG_KMS("HDCP init failed, skipping.\n"); 7547 } 7548 7549 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7550 * 0xd. Failure to do so will result in spurious interrupts being 7551 * generated on the port when a cable is not attached. 7552 */ 7553 if (IS_G45(dev_priv)) { 7554 u32 temp = I915_READ(PEG_BAND_GAP_DATA); 7555 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); 7556 } 7557 7558 return true; 7559 7560 fail: 7561 drm_connector_cleanup(connector); 7562 7563 return false; 7564 } 7565 7566 bool intel_dp_init(struct drm_i915_private *dev_priv, 7567 i915_reg_t output_reg, 7568 enum port port) 7569 { 7570 struct intel_digital_port *intel_dig_port; 7571 struct intel_encoder *intel_encoder; 7572 struct drm_encoder *encoder; 7573 struct intel_connector *intel_connector; 7574 7575 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 7576 if (!intel_dig_port) 7577 return false; 7578 7579 intel_connector = intel_connector_alloc(); 7580 if (!intel_connector) 7581 goto err_connector_alloc; 7582 7583 intel_encoder = &intel_dig_port->base; 7584 encoder = &intel_encoder->base; 7585 7586 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7587 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7588 "DP %c", port_name(port))) 7589 goto err_encoder_init; 7590 7591 intel_encoder->hotplug = intel_dp_hotplug; 7592 intel_encoder->compute_config = intel_dp_compute_config; 7593 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7594 intel_encoder->get_config = intel_dp_get_config; 7595 intel_encoder->update_pipe = intel_panel_update_backlight; 7596 intel_encoder->suspend = intel_dp_encoder_suspend; 7597 if (IS_CHERRYVIEW(dev_priv)) { 7598 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7599 intel_encoder->pre_enable = chv_pre_enable_dp; 7600 intel_encoder->enable = vlv_enable_dp; 7601 intel_encoder->disable = vlv_disable_dp; 7602 intel_encoder->post_disable = chv_post_disable_dp; 7603 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 7604 } else if (IS_VALLEYVIEW(dev_priv)) { 7605 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 7606 intel_encoder->pre_enable = vlv_pre_enable_dp; 7607 intel_encoder->enable = vlv_enable_dp; 7608 intel_encoder->disable = vlv_disable_dp; 7609 intel_encoder->post_disable = vlv_post_disable_dp; 7610 } else { 7611 intel_encoder->pre_enable = g4x_pre_enable_dp; 7612 intel_encoder->enable = g4x_enable_dp; 7613 intel_encoder->disable = g4x_disable_dp; 7614 intel_encoder->post_disable = g4x_post_disable_dp; 7615 } 7616 7617 intel_dig_port->dp.output_reg = output_reg; 7618 intel_dig_port->max_lanes = 4; 7619 7620 intel_encoder->type = INTEL_OUTPUT_DP; 7621 intel_encoder->power_domain = intel_port_to_power_domain(port); 7622 if (IS_CHERRYVIEW(dev_priv)) { 7623 if (port == PORT_D) 7624 intel_encoder->pipe_mask = BIT(PIPE_C); 7625 else 7626 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); 7627 } else { 7628 intel_encoder->pipe_mask = ~0; 7629 } 7630 intel_encoder->cloneable = 0; 7631 intel_encoder->port = port; 7632 7633 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 7634 7635 if (port != PORT_A) 7636 intel_infoframe_init(intel_dig_port); 7637 7638 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 7639 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 7640 goto err_init_connector; 7641 7642 return true; 7643 7644 err_init_connector: 7645 drm_encoder_cleanup(encoder); 7646 err_encoder_init: 7647 kfree(intel_connector); 7648 err_connector_alloc: 7649 kfree(intel_dig_port); 7650 return false; 7651 } 7652 7653 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 7654 { 7655 struct intel_encoder *encoder; 7656 7657 for_each_intel_encoder(&dev_priv->drm, encoder) { 7658 struct intel_dp *intel_dp; 7659 7660 if (encoder->type != INTEL_OUTPUT_DDI) 7661 continue; 7662 7663 intel_dp = enc_to_intel_dp(encoder); 7664 7665 if (!intel_dp->can_mst) 7666 continue; 7667 7668 if (intel_dp->is_mst) 7669 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 7670 } 7671 } 7672 7673 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 7674 { 7675 struct intel_encoder *encoder; 7676 7677 for_each_intel_encoder(&dev_priv->drm, encoder) { 7678 struct intel_dp *intel_dp; 7679 int ret; 7680 7681 if (encoder->type != INTEL_OUTPUT_DDI) 7682 continue; 7683 7684 intel_dp = enc_to_intel_dp(encoder); 7685 7686 if (!intel_dp->can_mst) 7687 continue; 7688 7689 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, 7690 true); 7691 if (ret) { 7692 intel_dp->is_mst = false; 7693 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 7694 false); 7695 } 7696 } 7697 } 7698