1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_hdcp.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/i915_drm.h> 44 45 #include "i915_debugfs.h" 46 #include "i915_drv.h" 47 #include "i915_trace.h" 48 #include "intel_atomic.h" 49 #include "intel_audio.h" 50 #include "intel_connector.h" 51 #include "intel_ddi.h" 52 #include "intel_display_types.h" 53 #include "intel_dp.h" 54 #include "intel_dp_link_training.h" 55 #include "intel_dp_mst.h" 56 #include "intel_dpio_phy.h" 57 #include "intel_fifo_underrun.h" 58 #include "intel_hdcp.h" 59 #include "intel_hdmi.h" 60 #include "intel_hotplug.h" 61 #include "intel_lspcon.h" 62 #include "intel_lvds.h" 63 #include "intel_panel.h" 64 #include "intel_psr.h" 65 #include "intel_sideband.h" 66 #include "intel_tc.h" 67 #include "intel_vdsc.h" 68 69 #define DP_DPRX_ESI_LEN 14 70 71 /* DP DSC throughput values used for slice count calculations KPixels/s */ 72 #define DP_DSC_PEAK_PIXEL_RATE 2720000 73 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 74 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 75 76 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 77 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 78 79 /* Compliance test status bits */ 80 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 81 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 82 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 83 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 84 85 struct dp_link_dpll { 86 int clock; 87 struct dpll dpll; 88 }; 89 90 static const struct dp_link_dpll g4x_dpll[] = { 91 { 162000, 92 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 93 { 270000, 94 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 95 }; 96 97 static const struct dp_link_dpll pch_dpll[] = { 98 { 162000, 99 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 100 { 270000, 101 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 102 }; 103 104 static const struct dp_link_dpll vlv_dpll[] = { 105 { 162000, 106 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 107 { 270000, 108 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 109 }; 110 111 /* 112 * CHV supports eDP 1.4 that have more link rates. 113 * Below only provides the fixed rate but exclude variable rate. 114 */ 115 static const struct dp_link_dpll chv_dpll[] = { 116 /* 117 * CHV requires to program fractional division for m2. 118 * m2 is stored in fixed point format using formula below 119 * (m2_int << 22) | m2_fraction 120 */ 121 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 122 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 123 { 270000, /* m2_int = 27, m2_fraction = 0 */ 124 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 125 }; 126 127 /* Constants for DP DSC configurations */ 128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 129 130 /* With Single pipe configuration, HW is capable of supporting maximum 131 * of 4 slices per line. 132 */ 133 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 134 135 /** 136 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 137 * @intel_dp: DP struct 138 * 139 * If a CPU or PCH DP output is attached to an eDP panel, this function 140 * will return true, and false otherwise. 141 */ 142 bool intel_dp_is_edp(struct intel_dp *intel_dp) 143 { 144 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 145 146 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 147 } 148 149 static struct intel_dp *intel_attached_dp(struct drm_connector *connector) 150 { 151 return enc_to_intel_dp(&intel_attached_encoder(connector)->base); 152 } 153 154 static void intel_dp_link_down(struct intel_encoder *encoder, 155 const struct intel_crtc_state *old_crtc_state); 156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 159 const struct intel_crtc_state *crtc_state); 160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 161 enum pipe pipe); 162 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 163 164 /* update sink rates from dpcd */ 165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 166 { 167 static const int dp_rates[] = { 168 162000, 270000, 540000, 810000 169 }; 170 int i, max_rate; 171 172 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 173 174 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 175 if (dp_rates[i] > max_rate) 176 break; 177 intel_dp->sink_rates[i] = dp_rates[i]; 178 } 179 180 intel_dp->num_sink_rates = i; 181 } 182 183 /* Get length of rates array potentially limited by max_rate. */ 184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 185 { 186 int i; 187 188 /* Limit results by potentially reduced max rate */ 189 for (i = 0; i < len; i++) { 190 if (rates[len - i - 1] <= max_rate) 191 return len - i; 192 } 193 194 return 0; 195 } 196 197 /* Get length of common rates array potentially limited by max_rate. */ 198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 199 int max_rate) 200 { 201 return intel_dp_rate_limit_len(intel_dp->common_rates, 202 intel_dp->num_common_rates, max_rate); 203 } 204 205 /* Theoretical max between source and sink */ 206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 207 { 208 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 209 } 210 211 /* Theoretical max between source and sink */ 212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 213 { 214 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 215 int source_max = intel_dig_port->max_lanes; 216 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 217 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); 218 219 return min3(source_max, sink_max, fia_max); 220 } 221 222 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 223 { 224 return intel_dp->max_link_lane_count; 225 } 226 227 int 228 intel_dp_link_required(int pixel_clock, int bpp) 229 { 230 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 231 return DIV_ROUND_UP(pixel_clock * bpp, 8); 232 } 233 234 int 235 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 236 { 237 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 238 * link rate that is generally expressed in Gbps. Since, 8 bits of data 239 * is transmitted every LS_Clk per lane, there is no need to account for 240 * the channel encoding that is done in the PHY layer here. 241 */ 242 243 return max_link_clock * max_lanes; 244 } 245 246 static int 247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 248 { 249 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 250 struct intel_encoder *encoder = &intel_dig_port->base; 251 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 252 int max_dotclk = dev_priv->max_dotclk_freq; 253 int ds_max_dotclk; 254 255 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 256 257 if (type != DP_DS_PORT_TYPE_VGA) 258 return max_dotclk; 259 260 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 261 intel_dp->downstream_ports); 262 263 if (ds_max_dotclk != 0) 264 max_dotclk = min(max_dotclk, ds_max_dotclk); 265 266 return max_dotclk; 267 } 268 269 static int cnl_max_source_rate(struct intel_dp *intel_dp) 270 { 271 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 272 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 273 enum port port = dig_port->base.port; 274 275 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 276 277 /* Low voltage SKUs are limited to max of 5.4G */ 278 if (voltage == VOLTAGE_INFO_0_85V) 279 return 540000; 280 281 /* For this SKU 8.1G is supported in all ports */ 282 if (IS_CNL_WITH_PORT_F(dev_priv)) 283 return 810000; 284 285 /* For other SKUs, max rate on ports A and D is 5.4G */ 286 if (port == PORT_A || port == PORT_D) 287 return 540000; 288 289 return 810000; 290 } 291 292 static int icl_max_source_rate(struct intel_dp *intel_dp) 293 { 294 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 295 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 296 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 297 298 if (intel_phy_is_combo(dev_priv, phy) && 299 !IS_ELKHARTLAKE(dev_priv) && 300 !intel_dp_is_edp(intel_dp)) 301 return 540000; 302 303 return 810000; 304 } 305 306 static void 307 intel_dp_set_source_rates(struct intel_dp *intel_dp) 308 { 309 /* The values must be in increasing order */ 310 static const int cnl_rates[] = { 311 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 312 }; 313 static const int bxt_rates[] = { 314 162000, 216000, 243000, 270000, 324000, 432000, 540000 315 }; 316 static const int skl_rates[] = { 317 162000, 216000, 270000, 324000, 432000, 540000 318 }; 319 static const int hsw_rates[] = { 320 162000, 270000, 540000 321 }; 322 static const int g4x_rates[] = { 323 162000, 270000 324 }; 325 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 326 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 327 const struct ddi_vbt_port_info *info = 328 &dev_priv->vbt.ddi_port_info[dig_port->base.port]; 329 const int *source_rates; 330 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate; 331 332 /* This should only be done once */ 333 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates); 334 335 if (INTEL_GEN(dev_priv) >= 10) { 336 source_rates = cnl_rates; 337 size = ARRAY_SIZE(cnl_rates); 338 if (IS_GEN(dev_priv, 10)) 339 max_rate = cnl_max_source_rate(intel_dp); 340 else 341 max_rate = icl_max_source_rate(intel_dp); 342 } else if (IS_GEN9_LP(dev_priv)) { 343 source_rates = bxt_rates; 344 size = ARRAY_SIZE(bxt_rates); 345 } else if (IS_GEN9_BC(dev_priv)) { 346 source_rates = skl_rates; 347 size = ARRAY_SIZE(skl_rates); 348 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 349 IS_BROADWELL(dev_priv)) { 350 source_rates = hsw_rates; 351 size = ARRAY_SIZE(hsw_rates); 352 } else { 353 source_rates = g4x_rates; 354 size = ARRAY_SIZE(g4x_rates); 355 } 356 357 if (max_rate && vbt_max_rate) 358 max_rate = min(max_rate, vbt_max_rate); 359 else if (vbt_max_rate) 360 max_rate = vbt_max_rate; 361 362 if (max_rate) 363 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 364 365 intel_dp->source_rates = source_rates; 366 intel_dp->num_source_rates = size; 367 } 368 369 static int intersect_rates(const int *source_rates, int source_len, 370 const int *sink_rates, int sink_len, 371 int *common_rates) 372 { 373 int i = 0, j = 0, k = 0; 374 375 while (i < source_len && j < sink_len) { 376 if (source_rates[i] == sink_rates[j]) { 377 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 378 return k; 379 common_rates[k] = source_rates[i]; 380 ++k; 381 ++i; 382 ++j; 383 } else if (source_rates[i] < sink_rates[j]) { 384 ++i; 385 } else { 386 ++j; 387 } 388 } 389 return k; 390 } 391 392 /* return index of rate in rates array, or -1 if not found */ 393 static int intel_dp_rate_index(const int *rates, int len, int rate) 394 { 395 int i; 396 397 for (i = 0; i < len; i++) 398 if (rate == rates[i]) 399 return i; 400 401 return -1; 402 } 403 404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 405 { 406 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); 407 408 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 409 intel_dp->num_source_rates, 410 intel_dp->sink_rates, 411 intel_dp->num_sink_rates, 412 intel_dp->common_rates); 413 414 /* Paranoia, there should always be something in common. */ 415 if (WARN_ON(intel_dp->num_common_rates == 0)) { 416 intel_dp->common_rates[0] = 162000; 417 intel_dp->num_common_rates = 1; 418 } 419 } 420 421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 422 u8 lane_count) 423 { 424 /* 425 * FIXME: we need to synchronize the current link parameters with 426 * hardware readout. Currently fast link training doesn't work on 427 * boot-up. 428 */ 429 if (link_rate == 0 || 430 link_rate > intel_dp->max_link_rate) 431 return false; 432 433 if (lane_count == 0 || 434 lane_count > intel_dp_max_lane_count(intel_dp)) 435 return false; 436 437 return true; 438 } 439 440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 441 int link_rate, 442 u8 lane_count) 443 { 444 const struct drm_display_mode *fixed_mode = 445 intel_dp->attached_connector->panel.fixed_mode; 446 int mode_rate, max_rate; 447 448 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 449 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 450 if (mode_rate > max_rate) 451 return false; 452 453 return true; 454 } 455 456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 457 int link_rate, u8 lane_count) 458 { 459 int index; 460 461 index = intel_dp_rate_index(intel_dp->common_rates, 462 intel_dp->num_common_rates, 463 link_rate); 464 if (index > 0) { 465 if (intel_dp_is_edp(intel_dp) && 466 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 467 intel_dp->common_rates[index - 1], 468 lane_count)) { 469 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 470 return 0; 471 } 472 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 473 intel_dp->max_link_lane_count = lane_count; 474 } else if (lane_count > 1) { 475 if (intel_dp_is_edp(intel_dp) && 476 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 477 intel_dp_max_common_rate(intel_dp), 478 lane_count >> 1)) { 479 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 480 return 0; 481 } 482 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 483 intel_dp->max_link_lane_count = lane_count >> 1; 484 } else { 485 DRM_ERROR("Link Training Unsuccessful\n"); 486 return -1; 487 } 488 489 return 0; 490 } 491 492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 493 { 494 return div_u64(mul_u32_u32(mode_clock, 1000000U), 495 DP_DSC_FEC_OVERHEAD_FACTOR); 496 } 497 498 static int 499 small_joiner_ram_size_bits(struct drm_i915_private *i915) 500 { 501 if (INTEL_GEN(i915) >= 11) 502 return 7680 * 8; 503 else 504 return 6144 * 8; 505 } 506 507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, 508 u32 link_clock, u32 lane_count, 509 u32 mode_clock, u32 mode_hdisplay) 510 { 511 u32 bits_per_pixel, max_bpp_small_joiner_ram; 512 int i; 513 514 /* 515 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 516 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 517 * for SST -> TimeSlotsPerMTP is 1, 518 * for MST -> TimeSlotsPerMTP has to be calculated 519 */ 520 bits_per_pixel = (link_clock * lane_count * 8) / 521 intel_dp_mode_to_fec_clock(mode_clock); 522 DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel); 523 524 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 525 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / 526 mode_hdisplay; 527 DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram); 528 529 /* 530 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 531 * check, output bpp from small joiner RAM check) 532 */ 533 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 534 535 /* Error out if the max bpp is less than smallest allowed valid bpp */ 536 if (bits_per_pixel < valid_dsc_bpp[0]) { 537 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n", 538 bits_per_pixel, valid_dsc_bpp[0]); 539 return 0; 540 } 541 542 /* Find the nearest match in the array of known BPPs from VESA */ 543 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 544 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 545 break; 546 } 547 bits_per_pixel = valid_dsc_bpp[i]; 548 549 /* 550 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 551 * fractional part is 0 552 */ 553 return bits_per_pixel << 4; 554 } 555 556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 557 int mode_clock, int mode_hdisplay) 558 { 559 u8 min_slice_count, i; 560 int max_slice_width; 561 562 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 563 min_slice_count = DIV_ROUND_UP(mode_clock, 564 DP_DSC_MAX_ENC_THROUGHPUT_0); 565 else 566 min_slice_count = DIV_ROUND_UP(mode_clock, 567 DP_DSC_MAX_ENC_THROUGHPUT_1); 568 569 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 570 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 571 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n", 572 max_slice_width); 573 return 0; 574 } 575 /* Also take into account max slice width */ 576 min_slice_count = min_t(u8, min_slice_count, 577 DIV_ROUND_UP(mode_hdisplay, 578 max_slice_width)); 579 580 /* Find the closest match to the valid slice count values */ 581 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 582 if (valid_dsc_slicecount[i] > 583 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 584 false)) 585 break; 586 if (min_slice_count <= valid_dsc_slicecount[i]) 587 return valid_dsc_slicecount[i]; 588 } 589 590 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count); 591 return 0; 592 } 593 594 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, 595 int hdisplay) 596 { 597 /* 598 * Older platforms don't like hdisplay==4096 with DP. 599 * 600 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline 601 * and frame counter increment), but we don't get vblank interrupts, 602 * and the pipe underruns immediately. The link also doesn't seem 603 * to get trained properly. 604 * 605 * On CHV the vblank interrupts don't seem to disappear but 606 * otherwise the symptoms are similar. 607 * 608 * TODO: confirm the behaviour on HSW+ 609 */ 610 return hdisplay == 4096 && !HAS_DDI(dev_priv); 611 } 612 613 static enum drm_mode_status 614 intel_dp_mode_valid(struct drm_connector *connector, 615 struct drm_display_mode *mode) 616 { 617 struct intel_dp *intel_dp = intel_attached_dp(connector); 618 struct intel_connector *intel_connector = to_intel_connector(connector); 619 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 620 struct drm_i915_private *dev_priv = to_i915(connector->dev); 621 int target_clock = mode->clock; 622 int max_rate, mode_rate, max_lanes, max_link_clock; 623 int max_dotclk; 624 u16 dsc_max_output_bpp = 0; 625 u8 dsc_slice_count = 0; 626 627 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 628 return MODE_NO_DBLESCAN; 629 630 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 631 632 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 633 if (mode->hdisplay > fixed_mode->hdisplay) 634 return MODE_PANEL; 635 636 if (mode->vdisplay > fixed_mode->vdisplay) 637 return MODE_PANEL; 638 639 target_clock = fixed_mode->clock; 640 } 641 642 max_link_clock = intel_dp_max_link_rate(intel_dp); 643 max_lanes = intel_dp_max_lane_count(intel_dp); 644 645 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 646 mode_rate = intel_dp_link_required(target_clock, 18); 647 648 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) 649 return MODE_H_ILLEGAL; 650 651 /* 652 * Output bpp is stored in 6.4 format so right shift by 4 to get the 653 * integer value since we support only integer values of bpp. 654 */ 655 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 656 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 657 if (intel_dp_is_edp(intel_dp)) { 658 dsc_max_output_bpp = 659 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 660 dsc_slice_count = 661 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 662 true); 663 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 664 dsc_max_output_bpp = 665 intel_dp_dsc_get_output_bpp(dev_priv, 666 max_link_clock, 667 max_lanes, 668 target_clock, 669 mode->hdisplay) >> 4; 670 dsc_slice_count = 671 intel_dp_dsc_get_slice_count(intel_dp, 672 target_clock, 673 mode->hdisplay); 674 } 675 } 676 677 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 678 target_clock > max_dotclk) 679 return MODE_CLOCK_HIGH; 680 681 if (mode->clock < 10000) 682 return MODE_CLOCK_LOW; 683 684 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 685 return MODE_H_ILLEGAL; 686 687 return intel_mode_valid_max_plane_size(dev_priv, mode); 688 } 689 690 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 691 { 692 int i; 693 u32 v = 0; 694 695 if (src_bytes > 4) 696 src_bytes = 4; 697 for (i = 0; i < src_bytes; i++) 698 v |= ((u32)src[i]) << ((3 - i) * 8); 699 return v; 700 } 701 702 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 703 { 704 int i; 705 if (dst_bytes > 4) 706 dst_bytes = 4; 707 for (i = 0; i < dst_bytes; i++) 708 dst[i] = src >> ((3-i) * 8); 709 } 710 711 static void 712 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 713 static void 714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 715 bool force_disable_vdd); 716 static void 717 intel_dp_pps_init(struct intel_dp *intel_dp); 718 719 static intel_wakeref_t 720 pps_lock(struct intel_dp *intel_dp) 721 { 722 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 723 intel_wakeref_t wakeref; 724 725 /* 726 * See intel_power_sequencer_reset() why we need 727 * a power domain reference here. 728 */ 729 wakeref = intel_display_power_get(dev_priv, 730 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 731 732 mutex_lock(&dev_priv->pps_mutex); 733 734 return wakeref; 735 } 736 737 static intel_wakeref_t 738 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 739 { 740 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 741 742 mutex_unlock(&dev_priv->pps_mutex); 743 intel_display_power_put(dev_priv, 744 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 745 wakeref); 746 return 0; 747 } 748 749 #define with_pps_lock(dp, wf) \ 750 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 751 752 static void 753 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 754 { 755 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 756 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 757 enum pipe pipe = intel_dp->pps_pipe; 758 bool pll_enabled, release_cl_override = false; 759 enum dpio_phy phy = DPIO_PHY(pipe); 760 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 761 u32 DP; 762 763 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, 764 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n", 765 pipe_name(pipe), intel_dig_port->base.base.base.id, 766 intel_dig_port->base.base.name)) 767 return; 768 769 DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n", 770 pipe_name(pipe), intel_dig_port->base.base.base.id, 771 intel_dig_port->base.base.name); 772 773 /* Preserve the BIOS-computed detected bit. This is 774 * supposed to be read-only. 775 */ 776 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 777 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 778 DP |= DP_PORT_WIDTH(1); 779 DP |= DP_LINK_TRAIN_PAT_1; 780 781 if (IS_CHERRYVIEW(dev_priv)) 782 DP |= DP_PIPE_SEL_CHV(pipe); 783 else 784 DP |= DP_PIPE_SEL(pipe); 785 786 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; 787 788 /* 789 * The DPLL for the pipe must be enabled for this to work. 790 * So enable temporarily it if it's not already enabled. 791 */ 792 if (!pll_enabled) { 793 release_cl_override = IS_CHERRYVIEW(dev_priv) && 794 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 795 796 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 797 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 798 DRM_ERROR("Failed to force on pll for pipe %c!\n", 799 pipe_name(pipe)); 800 return; 801 } 802 } 803 804 /* 805 * Similar magic as in intel_dp_enable_port(). 806 * We _must_ do this port enable + disable trick 807 * to make this power sequencer lock onto the port. 808 * Otherwise even VDD force bit won't work. 809 */ 810 I915_WRITE(intel_dp->output_reg, DP); 811 POSTING_READ(intel_dp->output_reg); 812 813 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); 814 POSTING_READ(intel_dp->output_reg); 815 816 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); 817 POSTING_READ(intel_dp->output_reg); 818 819 if (!pll_enabled) { 820 vlv_force_pll_off(dev_priv, pipe); 821 822 if (release_cl_override) 823 chv_phy_powergate_ch(dev_priv, phy, ch, false); 824 } 825 } 826 827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 828 { 829 struct intel_encoder *encoder; 830 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 831 832 /* 833 * We don't have power sequencer currently. 834 * Pick one that's not used by other ports. 835 */ 836 for_each_intel_dp(&dev_priv->drm, encoder) { 837 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 838 839 if (encoder->type == INTEL_OUTPUT_EDP) { 840 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 841 intel_dp->active_pipe != intel_dp->pps_pipe); 842 843 if (intel_dp->pps_pipe != INVALID_PIPE) 844 pipes &= ~(1 << intel_dp->pps_pipe); 845 } else { 846 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE); 847 848 if (intel_dp->active_pipe != INVALID_PIPE) 849 pipes &= ~(1 << intel_dp->active_pipe); 850 } 851 } 852 853 if (pipes == 0) 854 return INVALID_PIPE; 855 856 return ffs(pipes) - 1; 857 } 858 859 static enum pipe 860 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 861 { 862 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 863 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 864 enum pipe pipe; 865 866 lockdep_assert_held(&dev_priv->pps_mutex); 867 868 /* We should never land here with regular DP ports */ 869 WARN_ON(!intel_dp_is_edp(intel_dp)); 870 871 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 872 intel_dp->active_pipe != intel_dp->pps_pipe); 873 874 if (intel_dp->pps_pipe != INVALID_PIPE) 875 return intel_dp->pps_pipe; 876 877 pipe = vlv_find_free_pps(dev_priv); 878 879 /* 880 * Didn't find one. This should not happen since there 881 * are two power sequencers and up to two eDP ports. 882 */ 883 if (WARN_ON(pipe == INVALID_PIPE)) 884 pipe = PIPE_A; 885 886 vlv_steal_power_sequencer(dev_priv, pipe); 887 intel_dp->pps_pipe = pipe; 888 889 DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n", 890 pipe_name(intel_dp->pps_pipe), 891 intel_dig_port->base.base.base.id, 892 intel_dig_port->base.base.name); 893 894 /* init power sequencer on this pipe and port */ 895 intel_dp_init_panel_power_sequencer(intel_dp); 896 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 897 898 /* 899 * Even vdd force doesn't work until we've made 900 * the power sequencer lock in on the port. 901 */ 902 vlv_power_sequencer_kick(intel_dp); 903 904 return intel_dp->pps_pipe; 905 } 906 907 static int 908 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 909 { 910 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 911 int backlight_controller = dev_priv->vbt.backlight.controller; 912 913 lockdep_assert_held(&dev_priv->pps_mutex); 914 915 /* We should never land here with regular DP ports */ 916 WARN_ON(!intel_dp_is_edp(intel_dp)); 917 918 if (!intel_dp->pps_reset) 919 return backlight_controller; 920 921 intel_dp->pps_reset = false; 922 923 /* 924 * Only the HW needs to be reprogrammed, the SW state is fixed and 925 * has been setup during connector init. 926 */ 927 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 928 929 return backlight_controller; 930 } 931 932 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 933 enum pipe pipe); 934 935 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 936 enum pipe pipe) 937 { 938 return I915_READ(PP_STATUS(pipe)) & PP_ON; 939 } 940 941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 942 enum pipe pipe) 943 { 944 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD; 945 } 946 947 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 948 enum pipe pipe) 949 { 950 return true; 951 } 952 953 static enum pipe 954 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 955 enum port port, 956 vlv_pipe_check pipe_check) 957 { 958 enum pipe pipe; 959 960 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 961 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) & 962 PANEL_PORT_SELECT_MASK; 963 964 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 965 continue; 966 967 if (!pipe_check(dev_priv, pipe)) 968 continue; 969 970 return pipe; 971 } 972 973 return INVALID_PIPE; 974 } 975 976 static void 977 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 978 { 979 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 980 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 981 enum port port = intel_dig_port->base.port; 982 983 lockdep_assert_held(&dev_priv->pps_mutex); 984 985 /* try to find a pipe with this port selected */ 986 /* first pick one where the panel is on */ 987 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 988 vlv_pipe_has_pp_on); 989 /* didn't find one? pick one where vdd is on */ 990 if (intel_dp->pps_pipe == INVALID_PIPE) 991 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 992 vlv_pipe_has_vdd_on); 993 /* didn't find one? pick one with just the correct port */ 994 if (intel_dp->pps_pipe == INVALID_PIPE) 995 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 996 vlv_pipe_any); 997 998 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 999 if (intel_dp->pps_pipe == INVALID_PIPE) { 1000 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n", 1001 intel_dig_port->base.base.base.id, 1002 intel_dig_port->base.base.name); 1003 return; 1004 } 1005 1006 DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n", 1007 intel_dig_port->base.base.base.id, 1008 intel_dig_port->base.base.name, 1009 pipe_name(intel_dp->pps_pipe)); 1010 1011 intel_dp_init_panel_power_sequencer(intel_dp); 1012 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 1013 } 1014 1015 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 1016 { 1017 struct intel_encoder *encoder; 1018 1019 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 1020 !IS_GEN9_LP(dev_priv))) 1021 return; 1022 1023 /* 1024 * We can't grab pps_mutex here due to deadlock with power_domain 1025 * mutex when power_domain functions are called while holding pps_mutex. 1026 * That also means that in order to use pps_pipe the code needs to 1027 * hold both a power domain reference and pps_mutex, and the power domain 1028 * reference get/put must be done while _not_ holding pps_mutex. 1029 * pps_{lock,unlock}() do these steps in the correct order, so one 1030 * should use them always. 1031 */ 1032 1033 for_each_intel_dp(&dev_priv->drm, encoder) { 1034 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 1035 1036 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 1037 1038 if (encoder->type != INTEL_OUTPUT_EDP) 1039 continue; 1040 1041 if (IS_GEN9_LP(dev_priv)) 1042 intel_dp->pps_reset = true; 1043 else 1044 intel_dp->pps_pipe = INVALID_PIPE; 1045 } 1046 } 1047 1048 struct pps_registers { 1049 i915_reg_t pp_ctrl; 1050 i915_reg_t pp_stat; 1051 i915_reg_t pp_on; 1052 i915_reg_t pp_off; 1053 i915_reg_t pp_div; 1054 }; 1055 1056 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1057 struct pps_registers *regs) 1058 { 1059 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1060 int pps_idx = 0; 1061 1062 memset(regs, 0, sizeof(*regs)); 1063 1064 if (IS_GEN9_LP(dev_priv)) 1065 pps_idx = bxt_power_sequencer_idx(intel_dp); 1066 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1067 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1068 1069 regs->pp_ctrl = PP_CONTROL(pps_idx); 1070 regs->pp_stat = PP_STATUS(pps_idx); 1071 regs->pp_on = PP_ON_DELAYS(pps_idx); 1072 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1073 1074 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1075 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1076 regs->pp_div = INVALID_MMIO_REG; 1077 else 1078 regs->pp_div = PP_DIVISOR(pps_idx); 1079 } 1080 1081 static i915_reg_t 1082 _pp_ctrl_reg(struct intel_dp *intel_dp) 1083 { 1084 struct pps_registers regs; 1085 1086 intel_pps_get_registers(intel_dp, ®s); 1087 1088 return regs.pp_ctrl; 1089 } 1090 1091 static i915_reg_t 1092 _pp_stat_reg(struct intel_dp *intel_dp) 1093 { 1094 struct pps_registers regs; 1095 1096 intel_pps_get_registers(intel_dp, ®s); 1097 1098 return regs.pp_stat; 1099 } 1100 1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1102 This function only applicable when panel PM state is not to be tracked */ 1103 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1104 void *unused) 1105 { 1106 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1107 edp_notifier); 1108 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1109 intel_wakeref_t wakeref; 1110 1111 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1112 return 0; 1113 1114 with_pps_lock(intel_dp, wakeref) { 1115 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1116 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1117 i915_reg_t pp_ctrl_reg, pp_div_reg; 1118 u32 pp_div; 1119 1120 pp_ctrl_reg = PP_CONTROL(pipe); 1121 pp_div_reg = PP_DIVISOR(pipe); 1122 pp_div = I915_READ(pp_div_reg); 1123 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1124 1125 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1126 I915_WRITE(pp_div_reg, pp_div | 0x1F); 1127 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS); 1128 msleep(intel_dp->panel_power_cycle_delay); 1129 } 1130 } 1131 1132 return 0; 1133 } 1134 1135 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1136 { 1137 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1138 1139 lockdep_assert_held(&dev_priv->pps_mutex); 1140 1141 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1142 intel_dp->pps_pipe == INVALID_PIPE) 1143 return false; 1144 1145 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; 1146 } 1147 1148 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1149 { 1150 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1151 1152 lockdep_assert_held(&dev_priv->pps_mutex); 1153 1154 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1155 intel_dp->pps_pipe == INVALID_PIPE) 1156 return false; 1157 1158 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1159 } 1160 1161 static void 1162 intel_dp_check_edp(struct intel_dp *intel_dp) 1163 { 1164 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1165 1166 if (!intel_dp_is_edp(intel_dp)) 1167 return; 1168 1169 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1170 WARN(1, "eDP powered off while attempting aux channel communication.\n"); 1171 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", 1172 I915_READ(_pp_stat_reg(intel_dp)), 1173 I915_READ(_pp_ctrl_reg(intel_dp))); 1174 } 1175 } 1176 1177 static u32 1178 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1179 { 1180 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1181 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1182 const unsigned int timeout_ms = 10; 1183 u32 status; 1184 bool done; 1185 1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1187 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1188 msecs_to_jiffies_timeout(timeout_ms)); 1189 1190 /* just trace the final value */ 1191 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1192 1193 if (!done) 1194 DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n", 1195 intel_dp->aux.name, timeout_ms, status); 1196 #undef C 1197 1198 return status; 1199 } 1200 1201 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1202 { 1203 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1204 1205 if (index) 1206 return 0; 1207 1208 /* 1209 * The clock divider is based off the hrawclk, and would like to run at 1210 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1211 */ 1212 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1213 } 1214 1215 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1216 { 1217 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1218 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1219 1220 if (index) 1221 return 0; 1222 1223 /* 1224 * The clock divider is based off the cdclk or PCH rawclk, and would 1225 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1226 * divide by 2000 and use that 1227 */ 1228 if (dig_port->aux_ch == AUX_CH_A) 1229 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000); 1230 else 1231 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1232 } 1233 1234 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1235 { 1236 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1237 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1238 1239 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1240 /* Workaround for non-ULT HSW */ 1241 switch (index) { 1242 case 0: return 63; 1243 case 1: return 72; 1244 default: return 0; 1245 } 1246 } 1247 1248 return ilk_get_aux_clock_divider(intel_dp, index); 1249 } 1250 1251 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1252 { 1253 /* 1254 * SKL doesn't need us to program the AUX clock divider (Hardware will 1255 * derive the clock from CDCLK automatically). We still implement the 1256 * get_aux_clock_divider vfunc to plug-in into the existing code. 1257 */ 1258 return index ? 0 : 1; 1259 } 1260 1261 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1262 int send_bytes, 1263 u32 aux_clock_divider) 1264 { 1265 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1266 struct drm_i915_private *dev_priv = 1267 to_i915(intel_dig_port->base.base.dev); 1268 u32 precharge, timeout; 1269 1270 if (IS_GEN(dev_priv, 6)) 1271 precharge = 3; 1272 else 1273 precharge = 5; 1274 1275 if (IS_BROADWELL(dev_priv)) 1276 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1277 else 1278 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1279 1280 return DP_AUX_CH_CTL_SEND_BUSY | 1281 DP_AUX_CH_CTL_DONE | 1282 DP_AUX_CH_CTL_INTERRUPT | 1283 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1284 timeout | 1285 DP_AUX_CH_CTL_RECEIVE_ERROR | 1286 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1287 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1288 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1289 } 1290 1291 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1292 int send_bytes, 1293 u32 unused) 1294 { 1295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1296 struct drm_i915_private *i915 = 1297 to_i915(intel_dig_port->base.base.dev); 1298 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1299 u32 ret; 1300 1301 ret = DP_AUX_CH_CTL_SEND_BUSY | 1302 DP_AUX_CH_CTL_DONE | 1303 DP_AUX_CH_CTL_INTERRUPT | 1304 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1305 DP_AUX_CH_CTL_TIME_OUT_MAX | 1306 DP_AUX_CH_CTL_RECEIVE_ERROR | 1307 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1308 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1309 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1310 1311 if (intel_phy_is_tc(i915, phy) && 1312 intel_dig_port->tc_mode == TC_PORT_TBT_ALT) 1313 ret |= DP_AUX_CH_CTL_TBT_IO; 1314 1315 return ret; 1316 } 1317 1318 static int 1319 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1320 const u8 *send, int send_bytes, 1321 u8 *recv, int recv_size, 1322 u32 aux_send_ctl_flags) 1323 { 1324 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1325 struct drm_i915_private *i915 = 1326 to_i915(intel_dig_port->base.base.dev); 1327 struct intel_uncore *uncore = &i915->uncore; 1328 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1329 bool is_tc_port = intel_phy_is_tc(i915, phy); 1330 i915_reg_t ch_ctl, ch_data[5]; 1331 u32 aux_clock_divider; 1332 enum intel_display_power_domain aux_domain = 1333 intel_aux_power_domain(intel_dig_port); 1334 intel_wakeref_t aux_wakeref; 1335 intel_wakeref_t pps_wakeref; 1336 int i, ret, recv_bytes; 1337 int try, clock = 0; 1338 u32 status; 1339 bool vdd; 1340 1341 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1342 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1343 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1344 1345 if (is_tc_port) 1346 intel_tc_port_lock(intel_dig_port); 1347 1348 aux_wakeref = intel_display_power_get(i915, aux_domain); 1349 pps_wakeref = pps_lock(intel_dp); 1350 1351 /* 1352 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1353 * In such cases we want to leave VDD enabled and it's up to upper layers 1354 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1355 * ourselves. 1356 */ 1357 vdd = edp_panel_vdd_on(intel_dp); 1358 1359 /* dp aux is extremely sensitive to irq latency, hence request the 1360 * lowest possible wakeup latency and so prevent the cpu from going into 1361 * deep sleep states. 1362 */ 1363 pm_qos_update_request(&i915->pm_qos, 0); 1364 1365 intel_dp_check_edp(intel_dp); 1366 1367 /* Try to wait for any previous AUX channel activity */ 1368 for (try = 0; try < 3; try++) { 1369 status = intel_uncore_read_notrace(uncore, ch_ctl); 1370 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1371 break; 1372 msleep(1); 1373 } 1374 /* just trace the final value */ 1375 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1376 1377 if (try == 3) { 1378 const u32 status = intel_uncore_read(uncore, ch_ctl); 1379 1380 if (status != intel_dp->aux_busy_last_status) { 1381 WARN(1, "dp_aux_ch not started status 0x%08x\n", 1382 status); 1383 intel_dp->aux_busy_last_status = status; 1384 } 1385 1386 ret = -EBUSY; 1387 goto out; 1388 } 1389 1390 /* Only 5 data registers! */ 1391 if (WARN_ON(send_bytes > 20 || recv_size > 20)) { 1392 ret = -E2BIG; 1393 goto out; 1394 } 1395 1396 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1397 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1398 send_bytes, 1399 aux_clock_divider); 1400 1401 send_ctl |= aux_send_ctl_flags; 1402 1403 /* Must try at least 3 times according to DP spec */ 1404 for (try = 0; try < 5; try++) { 1405 /* Load the send data into the aux channel data registers */ 1406 for (i = 0; i < send_bytes; i += 4) 1407 intel_uncore_write(uncore, 1408 ch_data[i >> 2], 1409 intel_dp_pack_aux(send + i, 1410 send_bytes - i)); 1411 1412 /* Send the command and wait for it to complete */ 1413 intel_uncore_write(uncore, ch_ctl, send_ctl); 1414 1415 status = intel_dp_aux_wait_done(intel_dp); 1416 1417 /* Clear done status and any errors */ 1418 intel_uncore_write(uncore, 1419 ch_ctl, 1420 status | 1421 DP_AUX_CH_CTL_DONE | 1422 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1423 DP_AUX_CH_CTL_RECEIVE_ERROR); 1424 1425 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1426 * 400us delay required for errors and timeouts 1427 * Timeout errors from the HW already meet this 1428 * requirement so skip to next iteration 1429 */ 1430 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1431 continue; 1432 1433 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1434 usleep_range(400, 500); 1435 continue; 1436 } 1437 if (status & DP_AUX_CH_CTL_DONE) 1438 goto done; 1439 } 1440 } 1441 1442 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1443 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); 1444 ret = -EBUSY; 1445 goto out; 1446 } 1447 1448 done: 1449 /* Check for timeout or receive error. 1450 * Timeouts occur when the sink is not connected 1451 */ 1452 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1453 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); 1454 ret = -EIO; 1455 goto out; 1456 } 1457 1458 /* Timeouts occur when the device isn't connected, so they're 1459 * "normal" -- don't fill the kernel log with these */ 1460 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1461 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); 1462 ret = -ETIMEDOUT; 1463 goto out; 1464 } 1465 1466 /* Unload any bytes sent back from the other side */ 1467 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1468 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1469 1470 /* 1471 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1472 * We have no idea of what happened so we return -EBUSY so 1473 * drm layer takes care for the necessary retries. 1474 */ 1475 if (recv_bytes == 0 || recv_bytes > 20) { 1476 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n", 1477 recv_bytes); 1478 ret = -EBUSY; 1479 goto out; 1480 } 1481 1482 if (recv_bytes > recv_size) 1483 recv_bytes = recv_size; 1484 1485 for (i = 0; i < recv_bytes; i += 4) 1486 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1487 recv + i, recv_bytes - i); 1488 1489 ret = recv_bytes; 1490 out: 1491 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1492 1493 if (vdd) 1494 edp_panel_vdd_off(intel_dp, false); 1495 1496 pps_unlock(intel_dp, pps_wakeref); 1497 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1498 1499 if (is_tc_port) 1500 intel_tc_port_unlock(intel_dig_port); 1501 1502 return ret; 1503 } 1504 1505 #define BARE_ADDRESS_SIZE 3 1506 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1507 1508 static void 1509 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1510 const struct drm_dp_aux_msg *msg) 1511 { 1512 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1513 txbuf[1] = (msg->address >> 8) & 0xff; 1514 txbuf[2] = msg->address & 0xff; 1515 txbuf[3] = msg->size - 1; 1516 } 1517 1518 static ssize_t 1519 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1520 { 1521 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1522 u8 txbuf[20], rxbuf[20]; 1523 size_t txsize, rxsize; 1524 int ret; 1525 1526 intel_dp_aux_header(txbuf, msg); 1527 1528 switch (msg->request & ~DP_AUX_I2C_MOT) { 1529 case DP_AUX_NATIVE_WRITE: 1530 case DP_AUX_I2C_WRITE: 1531 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1532 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1533 rxsize = 2; /* 0 or 1 data bytes */ 1534 1535 if (WARN_ON(txsize > 20)) 1536 return -E2BIG; 1537 1538 WARN_ON(!msg->buffer != !msg->size); 1539 1540 if (msg->buffer) 1541 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1542 1543 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1544 rxbuf, rxsize, 0); 1545 if (ret > 0) { 1546 msg->reply = rxbuf[0] >> 4; 1547 1548 if (ret > 1) { 1549 /* Number of bytes written in a short write. */ 1550 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1551 } else { 1552 /* Return payload size. */ 1553 ret = msg->size; 1554 } 1555 } 1556 break; 1557 1558 case DP_AUX_NATIVE_READ: 1559 case DP_AUX_I2C_READ: 1560 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1561 rxsize = msg->size + 1; 1562 1563 if (WARN_ON(rxsize > 20)) 1564 return -E2BIG; 1565 1566 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1567 rxbuf, rxsize, 0); 1568 if (ret > 0) { 1569 msg->reply = rxbuf[0] >> 4; 1570 /* 1571 * Assume happy day, and copy the data. The caller is 1572 * expected to check msg->reply before touching it. 1573 * 1574 * Return payload size. 1575 */ 1576 ret--; 1577 memcpy(msg->buffer, rxbuf + 1, ret); 1578 } 1579 break; 1580 1581 default: 1582 ret = -EINVAL; 1583 break; 1584 } 1585 1586 return ret; 1587 } 1588 1589 1590 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1591 { 1592 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1593 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1594 enum aux_ch aux_ch = dig_port->aux_ch; 1595 1596 switch (aux_ch) { 1597 case AUX_CH_B: 1598 case AUX_CH_C: 1599 case AUX_CH_D: 1600 return DP_AUX_CH_CTL(aux_ch); 1601 default: 1602 MISSING_CASE(aux_ch); 1603 return DP_AUX_CH_CTL(AUX_CH_B); 1604 } 1605 } 1606 1607 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1608 { 1609 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1610 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1611 enum aux_ch aux_ch = dig_port->aux_ch; 1612 1613 switch (aux_ch) { 1614 case AUX_CH_B: 1615 case AUX_CH_C: 1616 case AUX_CH_D: 1617 return DP_AUX_CH_DATA(aux_ch, index); 1618 default: 1619 MISSING_CASE(aux_ch); 1620 return DP_AUX_CH_DATA(AUX_CH_B, index); 1621 } 1622 } 1623 1624 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1625 { 1626 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1627 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1628 enum aux_ch aux_ch = dig_port->aux_ch; 1629 1630 switch (aux_ch) { 1631 case AUX_CH_A: 1632 return DP_AUX_CH_CTL(aux_ch); 1633 case AUX_CH_B: 1634 case AUX_CH_C: 1635 case AUX_CH_D: 1636 return PCH_DP_AUX_CH_CTL(aux_ch); 1637 default: 1638 MISSING_CASE(aux_ch); 1639 return DP_AUX_CH_CTL(AUX_CH_A); 1640 } 1641 } 1642 1643 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1644 { 1645 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1646 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1647 enum aux_ch aux_ch = dig_port->aux_ch; 1648 1649 switch (aux_ch) { 1650 case AUX_CH_A: 1651 return DP_AUX_CH_DATA(aux_ch, index); 1652 case AUX_CH_B: 1653 case AUX_CH_C: 1654 case AUX_CH_D: 1655 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1656 default: 1657 MISSING_CASE(aux_ch); 1658 return DP_AUX_CH_DATA(AUX_CH_A, index); 1659 } 1660 } 1661 1662 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1663 { 1664 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1665 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1666 enum aux_ch aux_ch = dig_port->aux_ch; 1667 1668 switch (aux_ch) { 1669 case AUX_CH_A: 1670 case AUX_CH_B: 1671 case AUX_CH_C: 1672 case AUX_CH_D: 1673 case AUX_CH_E: 1674 case AUX_CH_F: 1675 case AUX_CH_G: 1676 return DP_AUX_CH_CTL(aux_ch); 1677 default: 1678 MISSING_CASE(aux_ch); 1679 return DP_AUX_CH_CTL(AUX_CH_A); 1680 } 1681 } 1682 1683 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1684 { 1685 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1686 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1687 enum aux_ch aux_ch = dig_port->aux_ch; 1688 1689 switch (aux_ch) { 1690 case AUX_CH_A: 1691 case AUX_CH_B: 1692 case AUX_CH_C: 1693 case AUX_CH_D: 1694 case AUX_CH_E: 1695 case AUX_CH_F: 1696 case AUX_CH_G: 1697 return DP_AUX_CH_DATA(aux_ch, index); 1698 default: 1699 MISSING_CASE(aux_ch); 1700 return DP_AUX_CH_DATA(AUX_CH_A, index); 1701 } 1702 } 1703 1704 static void 1705 intel_dp_aux_fini(struct intel_dp *intel_dp) 1706 { 1707 kfree(intel_dp->aux.name); 1708 } 1709 1710 static void 1711 intel_dp_aux_init(struct intel_dp *intel_dp) 1712 { 1713 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1714 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1715 struct intel_encoder *encoder = &dig_port->base; 1716 1717 if (INTEL_GEN(dev_priv) >= 9) { 1718 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1719 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1720 } else if (HAS_PCH_SPLIT(dev_priv)) { 1721 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1722 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1723 } else { 1724 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1725 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1726 } 1727 1728 if (INTEL_GEN(dev_priv) >= 9) 1729 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1730 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1731 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1732 else if (HAS_PCH_SPLIT(dev_priv)) 1733 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1734 else 1735 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1736 1737 if (INTEL_GEN(dev_priv) >= 9) 1738 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1739 else 1740 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1741 1742 drm_dp_aux_init(&intel_dp->aux); 1743 1744 /* Failure to allocate our preferred name is not critical */ 1745 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", 1746 port_name(encoder->port)); 1747 intel_dp->aux.transfer = intel_dp_aux_transfer; 1748 } 1749 1750 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1751 { 1752 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1753 1754 return max_rate >= 540000; 1755 } 1756 1757 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1758 { 1759 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1760 1761 return max_rate >= 810000; 1762 } 1763 1764 static void 1765 intel_dp_set_clock(struct intel_encoder *encoder, 1766 struct intel_crtc_state *pipe_config) 1767 { 1768 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1769 const struct dp_link_dpll *divisor = NULL; 1770 int i, count = 0; 1771 1772 if (IS_G4X(dev_priv)) { 1773 divisor = g4x_dpll; 1774 count = ARRAY_SIZE(g4x_dpll); 1775 } else if (HAS_PCH_SPLIT(dev_priv)) { 1776 divisor = pch_dpll; 1777 count = ARRAY_SIZE(pch_dpll); 1778 } else if (IS_CHERRYVIEW(dev_priv)) { 1779 divisor = chv_dpll; 1780 count = ARRAY_SIZE(chv_dpll); 1781 } else if (IS_VALLEYVIEW(dev_priv)) { 1782 divisor = vlv_dpll; 1783 count = ARRAY_SIZE(vlv_dpll); 1784 } 1785 1786 if (divisor && count) { 1787 for (i = 0; i < count; i++) { 1788 if (pipe_config->port_clock == divisor[i].clock) { 1789 pipe_config->dpll = divisor[i].dpll; 1790 pipe_config->clock_set = true; 1791 break; 1792 } 1793 } 1794 } 1795 } 1796 1797 static void snprintf_int_array(char *str, size_t len, 1798 const int *array, int nelem) 1799 { 1800 int i; 1801 1802 str[0] = '\0'; 1803 1804 for (i = 0; i < nelem; i++) { 1805 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1806 if (r >= len) 1807 return; 1808 str += r; 1809 len -= r; 1810 } 1811 } 1812 1813 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1814 { 1815 char str[128]; /* FIXME: too big for stack? */ 1816 1817 if ((drm_debug & DRM_UT_KMS) == 0) 1818 return; 1819 1820 snprintf_int_array(str, sizeof(str), 1821 intel_dp->source_rates, intel_dp->num_source_rates); 1822 DRM_DEBUG_KMS("source rates: %s\n", str); 1823 1824 snprintf_int_array(str, sizeof(str), 1825 intel_dp->sink_rates, intel_dp->num_sink_rates); 1826 DRM_DEBUG_KMS("sink rates: %s\n", str); 1827 1828 snprintf_int_array(str, sizeof(str), 1829 intel_dp->common_rates, intel_dp->num_common_rates); 1830 DRM_DEBUG_KMS("common rates: %s\n", str); 1831 } 1832 1833 int 1834 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1835 { 1836 int len; 1837 1838 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1839 if (WARN_ON(len <= 0)) 1840 return 162000; 1841 1842 return intel_dp->common_rates[len - 1]; 1843 } 1844 1845 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1846 { 1847 int i = intel_dp_rate_index(intel_dp->sink_rates, 1848 intel_dp->num_sink_rates, rate); 1849 1850 if (WARN_ON(i < 0)) 1851 i = 0; 1852 1853 return i; 1854 } 1855 1856 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1857 u8 *link_bw, u8 *rate_select) 1858 { 1859 /* eDP 1.4 rate select method. */ 1860 if (intel_dp->use_rate_select) { 1861 *link_bw = 0; 1862 *rate_select = 1863 intel_dp_rate_select(intel_dp, port_clock); 1864 } else { 1865 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1866 *rate_select = 0; 1867 } 1868 } 1869 1870 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1871 const struct intel_crtc_state *pipe_config) 1872 { 1873 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1874 1875 /* On TGL, FEC is supported on all Pipes */ 1876 if (INTEL_GEN(dev_priv) >= 12) 1877 return true; 1878 1879 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A) 1880 return true; 1881 1882 return false; 1883 } 1884 1885 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1886 const struct intel_crtc_state *pipe_config) 1887 { 1888 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1889 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1890 } 1891 1892 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp, 1893 const struct intel_crtc_state *pipe_config) 1894 { 1895 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1896 1897 if (!INTEL_INFO(dev_priv)->display.has_dsc) 1898 return false; 1899 1900 /* On TGL, DSC is supported on all Pipes */ 1901 if (INTEL_GEN(dev_priv) >= 12) 1902 return true; 1903 1904 if (INTEL_GEN(dev_priv) >= 10 && 1905 pipe_config->cpu_transcoder != TRANSCODER_A) 1906 return true; 1907 1908 return false; 1909 } 1910 1911 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1912 const struct intel_crtc_state *pipe_config) 1913 { 1914 if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable) 1915 return false; 1916 1917 return intel_dp_source_supports_dsc(intel_dp, pipe_config) && 1918 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1919 } 1920 1921 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1922 struct intel_crtc_state *pipe_config) 1923 { 1924 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1925 struct intel_connector *intel_connector = intel_dp->attached_connector; 1926 int bpp, bpc; 1927 1928 bpp = pipe_config->pipe_bpp; 1929 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1930 1931 if (bpc > 0) 1932 bpp = min(bpp, 3*bpc); 1933 1934 if (intel_dp_is_edp(intel_dp)) { 1935 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1936 if (intel_connector->base.display_info.bpc == 0 && 1937 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1938 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", 1939 dev_priv->vbt.edp.bpp); 1940 bpp = dev_priv->vbt.edp.bpp; 1941 } 1942 } 1943 1944 return bpp; 1945 } 1946 1947 /* Adjust link config limits based on compliance test requests. */ 1948 void 1949 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1950 struct intel_crtc_state *pipe_config, 1951 struct link_config_limits *limits) 1952 { 1953 /* For DP Compliance we override the computed bpp for the pipe */ 1954 if (intel_dp->compliance.test_data.bpc != 0) { 1955 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1956 1957 limits->min_bpp = limits->max_bpp = bpp; 1958 pipe_config->dither_force_disable = bpp == 6 * 3; 1959 1960 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); 1961 } 1962 1963 /* Use values requested by Compliance Test Request */ 1964 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 1965 int index; 1966 1967 /* Validate the compliance test data since max values 1968 * might have changed due to link train fallback. 1969 */ 1970 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 1971 intel_dp->compliance.test_lane_count)) { 1972 index = intel_dp_rate_index(intel_dp->common_rates, 1973 intel_dp->num_common_rates, 1974 intel_dp->compliance.test_link_rate); 1975 if (index >= 0) 1976 limits->min_clock = limits->max_clock = index; 1977 limits->min_lane_count = limits->max_lane_count = 1978 intel_dp->compliance.test_lane_count; 1979 } 1980 } 1981 } 1982 1983 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 1984 { 1985 /* 1986 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1987 * format of the number of bytes per pixel will be half the number 1988 * of bytes of RGB pixel. 1989 */ 1990 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1991 bpp /= 2; 1992 1993 return bpp; 1994 } 1995 1996 /* Optimize link config in order: max bpp, min clock, min lanes */ 1997 static int 1998 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 1999 struct intel_crtc_state *pipe_config, 2000 const struct link_config_limits *limits) 2001 { 2002 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2003 int bpp, clock, lane_count; 2004 int mode_rate, link_clock, link_avail; 2005 2006 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 2007 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 2008 2009 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 2010 output_bpp); 2011 2012 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 2013 for (lane_count = limits->min_lane_count; 2014 lane_count <= limits->max_lane_count; 2015 lane_count <<= 1) { 2016 link_clock = intel_dp->common_rates[clock]; 2017 link_avail = intel_dp_max_data_rate(link_clock, 2018 lane_count); 2019 2020 if (mode_rate <= link_avail) { 2021 pipe_config->lane_count = lane_count; 2022 pipe_config->pipe_bpp = bpp; 2023 pipe_config->port_clock = link_clock; 2024 2025 return 0; 2026 } 2027 } 2028 } 2029 } 2030 2031 return -EINVAL; 2032 } 2033 2034 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 2035 { 2036 int i, num_bpc; 2037 u8 dsc_bpc[3] = {0}; 2038 2039 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 2040 dsc_bpc); 2041 for (i = 0; i < num_bpc; i++) { 2042 if (dsc_max_bpc >= dsc_bpc[i]) 2043 return dsc_bpc[i] * 3; 2044 } 2045 2046 return 0; 2047 } 2048 2049 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2050 struct intel_crtc_state *pipe_config, 2051 struct drm_connector_state *conn_state, 2052 struct link_config_limits *limits) 2053 { 2054 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2055 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2056 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2057 u8 dsc_max_bpc; 2058 int pipe_bpp; 2059 int ret; 2060 2061 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2062 intel_dp_supports_fec(intel_dp, pipe_config); 2063 2064 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2065 return -EINVAL; 2066 2067 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 2068 if (INTEL_GEN(dev_priv) >= 12) 2069 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc); 2070 else 2071 dsc_max_bpc = min_t(u8, 10, 2072 conn_state->max_requested_bpc); 2073 2074 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2075 2076 /* Min Input BPC for ICL+ is 8 */ 2077 if (pipe_bpp < 8 * 3) { 2078 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n"); 2079 return -EINVAL; 2080 } 2081 2082 /* 2083 * For now enable DSC for max bpp, max link rate, max lane count. 2084 * Optimize this later for the minimum possible link rate/lane count 2085 * with DSC enabled for the requested mode. 2086 */ 2087 pipe_config->pipe_bpp = pipe_bpp; 2088 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2089 pipe_config->lane_count = limits->max_lane_count; 2090 2091 if (intel_dp_is_edp(intel_dp)) { 2092 pipe_config->dsc.compressed_bpp = 2093 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2094 pipe_config->pipe_bpp); 2095 pipe_config->dsc.slice_count = 2096 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2097 true); 2098 } else { 2099 u16 dsc_max_output_bpp; 2100 u8 dsc_dp_slice_count; 2101 2102 dsc_max_output_bpp = 2103 intel_dp_dsc_get_output_bpp(dev_priv, 2104 pipe_config->port_clock, 2105 pipe_config->lane_count, 2106 adjusted_mode->crtc_clock, 2107 adjusted_mode->crtc_hdisplay); 2108 dsc_dp_slice_count = 2109 intel_dp_dsc_get_slice_count(intel_dp, 2110 adjusted_mode->crtc_clock, 2111 adjusted_mode->crtc_hdisplay); 2112 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2113 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n"); 2114 return -EINVAL; 2115 } 2116 pipe_config->dsc.compressed_bpp = min_t(u16, 2117 dsc_max_output_bpp >> 4, 2118 pipe_config->pipe_bpp); 2119 pipe_config->dsc.slice_count = dsc_dp_slice_count; 2120 } 2121 /* 2122 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2123 * is greater than the maximum Cdclock and if slice count is even 2124 * then we need to use 2 VDSC instances. 2125 */ 2126 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 2127 if (pipe_config->dsc.slice_count > 1) { 2128 pipe_config->dsc.dsc_split = true; 2129 } else { 2130 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n"); 2131 return -EINVAL; 2132 } 2133 } 2134 2135 ret = intel_dp_compute_dsc_params(intel_dp, pipe_config); 2136 if (ret < 0) { 2137 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d " 2138 "Compressed BPP = %d\n", 2139 pipe_config->pipe_bpp, 2140 pipe_config->dsc.compressed_bpp); 2141 return ret; 2142 } 2143 2144 pipe_config->dsc.compression_enable = true; 2145 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d " 2146 "Compressed Bpp = %d Slice Count = %d\n", 2147 pipe_config->pipe_bpp, 2148 pipe_config->dsc.compressed_bpp, 2149 pipe_config->dsc.slice_count); 2150 2151 return 0; 2152 } 2153 2154 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2155 { 2156 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2157 return 6 * 3; 2158 else 2159 return 8 * 3; 2160 } 2161 2162 static int 2163 intel_dp_compute_link_config(struct intel_encoder *encoder, 2164 struct intel_crtc_state *pipe_config, 2165 struct drm_connector_state *conn_state) 2166 { 2167 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2168 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2169 struct link_config_limits limits; 2170 int common_len; 2171 int ret; 2172 2173 common_len = intel_dp_common_len_rate_limit(intel_dp, 2174 intel_dp->max_link_rate); 2175 2176 /* No common link rates between source and sink */ 2177 WARN_ON(common_len <= 0); 2178 2179 limits.min_clock = 0; 2180 limits.max_clock = common_len - 1; 2181 2182 limits.min_lane_count = 1; 2183 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2184 2185 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2186 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2187 2188 if (intel_dp_is_edp(intel_dp)) { 2189 /* 2190 * Use the maximum clock and number of lanes the eDP panel 2191 * advertizes being capable of. The panels are generally 2192 * designed to support only a single clock and lane 2193 * configuration, and typically these values correspond to the 2194 * native resolution of the panel. 2195 */ 2196 limits.min_lane_count = limits.max_lane_count; 2197 limits.min_clock = limits.max_clock; 2198 } 2199 2200 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2201 2202 DRM_DEBUG_KMS("DP link computation with max lane count %i " 2203 "max rate %d max bpp %d pixel clock %iKHz\n", 2204 limits.max_lane_count, 2205 intel_dp->common_rates[limits.max_clock], 2206 limits.max_bpp, adjusted_mode->crtc_clock); 2207 2208 /* 2209 * Optimize for slow and wide. This is the place to add alternative 2210 * optimization policy. 2211 */ 2212 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2213 2214 /* enable compression if the mode doesn't fit available BW */ 2215 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en); 2216 if (ret || intel_dp->force_dsc_en) { 2217 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2218 conn_state, &limits); 2219 if (ret < 0) 2220 return ret; 2221 } 2222 2223 if (pipe_config->dsc.compression_enable) { 2224 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2225 pipe_config->lane_count, pipe_config->port_clock, 2226 pipe_config->pipe_bpp, 2227 pipe_config->dsc.compressed_bpp); 2228 2229 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2230 intel_dp_link_required(adjusted_mode->crtc_clock, 2231 pipe_config->dsc.compressed_bpp), 2232 intel_dp_max_data_rate(pipe_config->port_clock, 2233 pipe_config->lane_count)); 2234 } else { 2235 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", 2236 pipe_config->lane_count, pipe_config->port_clock, 2237 pipe_config->pipe_bpp); 2238 2239 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2240 intel_dp_link_required(adjusted_mode->crtc_clock, 2241 pipe_config->pipe_bpp), 2242 intel_dp_max_data_rate(pipe_config->port_clock, 2243 pipe_config->lane_count)); 2244 } 2245 return 0; 2246 } 2247 2248 static int 2249 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2250 struct drm_connector *connector, 2251 struct intel_crtc_state *crtc_state) 2252 { 2253 const struct drm_display_info *info = &connector->display_info; 2254 const struct drm_display_mode *adjusted_mode = 2255 &crtc_state->base.adjusted_mode; 2256 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 2257 int ret; 2258 2259 if (!drm_mode_is_420_only(info, adjusted_mode) || 2260 !intel_dp_get_colorimetry_status(intel_dp) || 2261 !connector->ycbcr_420_allowed) 2262 return 0; 2263 2264 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2265 2266 /* YCBCR 420 output conversion needs a scaler */ 2267 ret = skl_update_scaler_crtc(crtc_state); 2268 if (ret) { 2269 DRM_DEBUG_KMS("Scaler allocation for output failed\n"); 2270 return ret; 2271 } 2272 2273 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN); 2274 2275 return 0; 2276 } 2277 2278 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2279 const struct drm_connector_state *conn_state) 2280 { 2281 const struct intel_digital_connector_state *intel_conn_state = 2282 to_intel_digital_connector_state(conn_state); 2283 const struct drm_display_mode *adjusted_mode = 2284 &crtc_state->base.adjusted_mode; 2285 2286 /* 2287 * Our YCbCr output is always limited range. 2288 * crtc_state->limited_color_range only applies to RGB, 2289 * and it must never be set for YCbCr or we risk setting 2290 * some conflicting bits in PIPECONF which will mess up 2291 * the colors on the monitor. 2292 */ 2293 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2294 return false; 2295 2296 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2297 /* 2298 * See: 2299 * CEA-861-E - 5.1 Default Encoding Parameters 2300 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2301 */ 2302 return crtc_state->pipe_bpp != 18 && 2303 drm_default_rgb_quant_range(adjusted_mode) == 2304 HDMI_QUANTIZATION_RANGE_LIMITED; 2305 } else { 2306 return intel_conn_state->broadcast_rgb == 2307 INTEL_BROADCAST_RGB_LIMITED; 2308 } 2309 } 2310 2311 int 2312 intel_dp_compute_config(struct intel_encoder *encoder, 2313 struct intel_crtc_state *pipe_config, 2314 struct drm_connector_state *conn_state) 2315 { 2316 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2317 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2318 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2319 struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base); 2320 enum port port = encoder->port; 2321 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); 2322 struct intel_connector *intel_connector = intel_dp->attached_connector; 2323 struct intel_digital_connector_state *intel_conn_state = 2324 to_intel_digital_connector_state(conn_state); 2325 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 2326 DP_DPCD_QUIRK_CONSTANT_N); 2327 int ret = 0, output_bpp; 2328 2329 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2330 pipe_config->has_pch_encoder = true; 2331 2332 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2333 2334 if (lspcon->active) 2335 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2336 else 2337 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base, 2338 pipe_config); 2339 2340 if (ret) 2341 return ret; 2342 2343 pipe_config->has_drrs = false; 2344 if (IS_G4X(dev_priv) || port == PORT_A) 2345 pipe_config->has_audio = false; 2346 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2347 pipe_config->has_audio = intel_dp->has_audio; 2348 else 2349 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2350 2351 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2352 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2353 adjusted_mode); 2354 2355 if (INTEL_GEN(dev_priv) >= 9) { 2356 ret = skl_update_scaler_crtc(pipe_config); 2357 if (ret) 2358 return ret; 2359 } 2360 2361 if (HAS_GMCH(dev_priv)) 2362 intel_gmch_panel_fitting(intel_crtc, pipe_config, 2363 conn_state->scaling_mode); 2364 else 2365 intel_pch_panel_fitting(intel_crtc, pipe_config, 2366 conn_state->scaling_mode); 2367 } 2368 2369 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2370 return -EINVAL; 2371 2372 if (HAS_GMCH(dev_priv) && 2373 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2374 return -EINVAL; 2375 2376 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2377 return -EINVAL; 2378 2379 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) 2380 return -EINVAL; 2381 2382 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2383 if (ret < 0) 2384 return ret; 2385 2386 pipe_config->limited_color_range = 2387 intel_dp_limited_color_range(pipe_config, conn_state); 2388 2389 if (pipe_config->dsc.compression_enable) 2390 output_bpp = pipe_config->dsc.compressed_bpp; 2391 else 2392 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2393 2394 intel_link_compute_m_n(output_bpp, 2395 pipe_config->lane_count, 2396 adjusted_mode->crtc_clock, 2397 pipe_config->port_clock, 2398 &pipe_config->dp_m_n, 2399 constant_n, pipe_config->fec_enable); 2400 2401 if (intel_connector->panel.downclock_mode != NULL && 2402 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2403 pipe_config->has_drrs = true; 2404 intel_link_compute_m_n(output_bpp, 2405 pipe_config->lane_count, 2406 intel_connector->panel.downclock_mode->clock, 2407 pipe_config->port_clock, 2408 &pipe_config->dp_m2_n2, 2409 constant_n, pipe_config->fec_enable); 2410 } 2411 2412 if (!HAS_DDI(dev_priv)) 2413 intel_dp_set_clock(encoder, pipe_config); 2414 2415 intel_psr_compute_config(intel_dp, pipe_config); 2416 2417 intel_hdcp_transcoder_config(intel_connector, 2418 pipe_config->cpu_transcoder); 2419 2420 return 0; 2421 } 2422 2423 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2424 int link_rate, u8 lane_count, 2425 bool link_mst) 2426 { 2427 intel_dp->link_trained = false; 2428 intel_dp->link_rate = link_rate; 2429 intel_dp->lane_count = lane_count; 2430 intel_dp->link_mst = link_mst; 2431 } 2432 2433 static void intel_dp_prepare(struct intel_encoder *encoder, 2434 const struct intel_crtc_state *pipe_config) 2435 { 2436 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2437 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2438 enum port port = encoder->port; 2439 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 2440 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2441 2442 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2443 pipe_config->lane_count, 2444 intel_crtc_has_type(pipe_config, 2445 INTEL_OUTPUT_DP_MST)); 2446 2447 intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port); 2448 intel_dp->regs.dp_tp_status = DP_TP_STATUS(port); 2449 2450 /* 2451 * There are four kinds of DP registers: 2452 * 2453 * IBX PCH 2454 * SNB CPU 2455 * IVB CPU 2456 * CPT PCH 2457 * 2458 * IBX PCH and CPU are the same for almost everything, 2459 * except that the CPU DP PLL is configured in this 2460 * register 2461 * 2462 * CPT PCH is quite different, having many bits moved 2463 * to the TRANS_DP_CTL register instead. That 2464 * configuration happens (oddly) in ironlake_pch_enable 2465 */ 2466 2467 /* Preserve the BIOS-computed detected bit. This is 2468 * supposed to be read-only. 2469 */ 2470 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 2471 2472 /* Handle DP bits in common between all three register formats */ 2473 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2474 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2475 2476 /* Split out the IBX/CPU vs CPT settings */ 2477 2478 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2479 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2480 intel_dp->DP |= DP_SYNC_HS_HIGH; 2481 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2482 intel_dp->DP |= DP_SYNC_VS_HIGH; 2483 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2484 2485 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2486 intel_dp->DP |= DP_ENHANCED_FRAMING; 2487 2488 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2489 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2490 u32 trans_dp; 2491 2492 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2493 2494 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 2495 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2496 trans_dp |= TRANS_DP_ENH_FRAMING; 2497 else 2498 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2499 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); 2500 } else { 2501 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2502 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2503 2504 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2505 intel_dp->DP |= DP_SYNC_HS_HIGH; 2506 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2507 intel_dp->DP |= DP_SYNC_VS_HIGH; 2508 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2509 2510 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2511 intel_dp->DP |= DP_ENHANCED_FRAMING; 2512 2513 if (IS_CHERRYVIEW(dev_priv)) 2514 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2515 else 2516 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2517 } 2518 } 2519 2520 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2521 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2522 2523 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2524 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2525 2526 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2527 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2528 2529 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2530 2531 static void wait_panel_status(struct intel_dp *intel_dp, 2532 u32 mask, 2533 u32 value) 2534 { 2535 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2536 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2537 2538 lockdep_assert_held(&dev_priv->pps_mutex); 2539 2540 intel_pps_verify_state(intel_dp); 2541 2542 pp_stat_reg = _pp_stat_reg(intel_dp); 2543 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2544 2545 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", 2546 mask, value, 2547 I915_READ(pp_stat_reg), 2548 I915_READ(pp_ctrl_reg)); 2549 2550 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2551 mask, value, 5000)) 2552 DRM_ERROR("Panel status timeout: status %08x control %08x\n", 2553 I915_READ(pp_stat_reg), 2554 I915_READ(pp_ctrl_reg)); 2555 2556 DRM_DEBUG_KMS("Wait complete\n"); 2557 } 2558 2559 static void wait_panel_on(struct intel_dp *intel_dp) 2560 { 2561 DRM_DEBUG_KMS("Wait for panel power on\n"); 2562 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2563 } 2564 2565 static void wait_panel_off(struct intel_dp *intel_dp) 2566 { 2567 DRM_DEBUG_KMS("Wait for panel power off time\n"); 2568 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2569 } 2570 2571 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2572 { 2573 ktime_t panel_power_on_time; 2574 s64 panel_power_off_duration; 2575 2576 DRM_DEBUG_KMS("Wait for panel power cycle\n"); 2577 2578 /* take the difference of currrent time and panel power off time 2579 * and then make panel wait for t11_t12 if needed. */ 2580 panel_power_on_time = ktime_get_boottime(); 2581 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2582 2583 /* When we disable the VDD override bit last we have to do the manual 2584 * wait. */ 2585 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2586 wait_remaining_ms_from_jiffies(jiffies, 2587 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2588 2589 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2590 } 2591 2592 static void wait_backlight_on(struct intel_dp *intel_dp) 2593 { 2594 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2595 intel_dp->backlight_on_delay); 2596 } 2597 2598 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2599 { 2600 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2601 intel_dp->backlight_off_delay); 2602 } 2603 2604 /* Read the current pp_control value, unlocking the register if it 2605 * is locked 2606 */ 2607 2608 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) 2609 { 2610 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2611 u32 control; 2612 2613 lockdep_assert_held(&dev_priv->pps_mutex); 2614 2615 control = I915_READ(_pp_ctrl_reg(intel_dp)); 2616 if (WARN_ON(!HAS_DDI(dev_priv) && 2617 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2618 control &= ~PANEL_UNLOCK_MASK; 2619 control |= PANEL_UNLOCK_REGS; 2620 } 2621 return control; 2622 } 2623 2624 /* 2625 * Must be paired with edp_panel_vdd_off(). 2626 * Must hold pps_mutex around the whole on/off sequence. 2627 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2628 */ 2629 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2630 { 2631 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2632 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2633 u32 pp; 2634 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2635 bool need_to_disable = !intel_dp->want_panel_vdd; 2636 2637 lockdep_assert_held(&dev_priv->pps_mutex); 2638 2639 if (!intel_dp_is_edp(intel_dp)) 2640 return false; 2641 2642 cancel_delayed_work(&intel_dp->panel_vdd_work); 2643 intel_dp->want_panel_vdd = true; 2644 2645 if (edp_have_panel_vdd(intel_dp)) 2646 return need_to_disable; 2647 2648 intel_display_power_get(dev_priv, 2649 intel_aux_power_domain(intel_dig_port)); 2650 2651 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n", 2652 intel_dig_port->base.base.base.id, 2653 intel_dig_port->base.base.name); 2654 2655 if (!edp_have_panel_power(intel_dp)) 2656 wait_panel_power_cycle(intel_dp); 2657 2658 pp = ironlake_get_pp_control(intel_dp); 2659 pp |= EDP_FORCE_VDD; 2660 2661 pp_stat_reg = _pp_stat_reg(intel_dp); 2662 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2663 2664 I915_WRITE(pp_ctrl_reg, pp); 2665 POSTING_READ(pp_ctrl_reg); 2666 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2667 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2668 /* 2669 * If the panel wasn't on, delay before accessing aux channel 2670 */ 2671 if (!edp_have_panel_power(intel_dp)) { 2672 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n", 2673 intel_dig_port->base.base.base.id, 2674 intel_dig_port->base.base.name); 2675 msleep(intel_dp->panel_power_up_delay); 2676 } 2677 2678 return need_to_disable; 2679 } 2680 2681 /* 2682 * Must be paired with intel_edp_panel_vdd_off() or 2683 * intel_edp_panel_off(). 2684 * Nested calls to these functions are not allowed since 2685 * we drop the lock. Caller must use some higher level 2686 * locking to prevent nested calls from other threads. 2687 */ 2688 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2689 { 2690 intel_wakeref_t wakeref; 2691 bool vdd; 2692 2693 if (!intel_dp_is_edp(intel_dp)) 2694 return; 2695 2696 vdd = false; 2697 with_pps_lock(intel_dp, wakeref) 2698 vdd = edp_panel_vdd_on(intel_dp); 2699 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n", 2700 dp_to_dig_port(intel_dp)->base.base.base.id, 2701 dp_to_dig_port(intel_dp)->base.base.name); 2702 } 2703 2704 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2705 { 2706 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2707 struct intel_digital_port *intel_dig_port = 2708 dp_to_dig_port(intel_dp); 2709 u32 pp; 2710 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2711 2712 lockdep_assert_held(&dev_priv->pps_mutex); 2713 2714 WARN_ON(intel_dp->want_panel_vdd); 2715 2716 if (!edp_have_panel_vdd(intel_dp)) 2717 return; 2718 2719 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n", 2720 intel_dig_port->base.base.base.id, 2721 intel_dig_port->base.base.name); 2722 2723 pp = ironlake_get_pp_control(intel_dp); 2724 pp &= ~EDP_FORCE_VDD; 2725 2726 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2727 pp_stat_reg = _pp_stat_reg(intel_dp); 2728 2729 I915_WRITE(pp_ctrl_reg, pp); 2730 POSTING_READ(pp_ctrl_reg); 2731 2732 /* Make sure sequencer is idle before allowing subsequent activity */ 2733 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2734 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2735 2736 if ((pp & PANEL_POWER_ON) == 0) 2737 intel_dp->panel_power_off_time = ktime_get_boottime(); 2738 2739 intel_display_power_put_unchecked(dev_priv, 2740 intel_aux_power_domain(intel_dig_port)); 2741 } 2742 2743 static void edp_panel_vdd_work(struct work_struct *__work) 2744 { 2745 struct intel_dp *intel_dp = 2746 container_of(to_delayed_work(__work), 2747 struct intel_dp, panel_vdd_work); 2748 intel_wakeref_t wakeref; 2749 2750 with_pps_lock(intel_dp, wakeref) { 2751 if (!intel_dp->want_panel_vdd) 2752 edp_panel_vdd_off_sync(intel_dp); 2753 } 2754 } 2755 2756 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 2757 { 2758 unsigned long delay; 2759 2760 /* 2761 * Queue the timer to fire a long time from now (relative to the power 2762 * down delay) to keep the panel power up across a sequence of 2763 * operations. 2764 */ 2765 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 2766 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 2767 } 2768 2769 /* 2770 * Must be paired with edp_panel_vdd_on(). 2771 * Must hold pps_mutex around the whole on/off sequence. 2772 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2773 */ 2774 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 2775 { 2776 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2777 2778 lockdep_assert_held(&dev_priv->pps_mutex); 2779 2780 if (!intel_dp_is_edp(intel_dp)) 2781 return; 2782 2783 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on", 2784 dp_to_dig_port(intel_dp)->base.base.base.id, 2785 dp_to_dig_port(intel_dp)->base.base.name); 2786 2787 intel_dp->want_panel_vdd = false; 2788 2789 if (sync) 2790 edp_panel_vdd_off_sync(intel_dp); 2791 else 2792 edp_panel_vdd_schedule_off(intel_dp); 2793 } 2794 2795 static void edp_panel_on(struct intel_dp *intel_dp) 2796 { 2797 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2798 u32 pp; 2799 i915_reg_t pp_ctrl_reg; 2800 2801 lockdep_assert_held(&dev_priv->pps_mutex); 2802 2803 if (!intel_dp_is_edp(intel_dp)) 2804 return; 2805 2806 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n", 2807 dp_to_dig_port(intel_dp)->base.base.base.id, 2808 dp_to_dig_port(intel_dp)->base.base.name); 2809 2810 if (WARN(edp_have_panel_power(intel_dp), 2811 "[ENCODER:%d:%s] panel power already on\n", 2812 dp_to_dig_port(intel_dp)->base.base.base.id, 2813 dp_to_dig_port(intel_dp)->base.base.name)) 2814 return; 2815 2816 wait_panel_power_cycle(intel_dp); 2817 2818 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2819 pp = ironlake_get_pp_control(intel_dp); 2820 if (IS_GEN(dev_priv, 5)) { 2821 /* ILK workaround: disable reset around power sequence */ 2822 pp &= ~PANEL_POWER_RESET; 2823 I915_WRITE(pp_ctrl_reg, pp); 2824 POSTING_READ(pp_ctrl_reg); 2825 } 2826 2827 pp |= PANEL_POWER_ON; 2828 if (!IS_GEN(dev_priv, 5)) 2829 pp |= PANEL_POWER_RESET; 2830 2831 I915_WRITE(pp_ctrl_reg, pp); 2832 POSTING_READ(pp_ctrl_reg); 2833 2834 wait_panel_on(intel_dp); 2835 intel_dp->last_power_on = jiffies; 2836 2837 if (IS_GEN(dev_priv, 5)) { 2838 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 2839 I915_WRITE(pp_ctrl_reg, pp); 2840 POSTING_READ(pp_ctrl_reg); 2841 } 2842 } 2843 2844 void intel_edp_panel_on(struct intel_dp *intel_dp) 2845 { 2846 intel_wakeref_t wakeref; 2847 2848 if (!intel_dp_is_edp(intel_dp)) 2849 return; 2850 2851 with_pps_lock(intel_dp, wakeref) 2852 edp_panel_on(intel_dp); 2853 } 2854 2855 2856 static void edp_panel_off(struct intel_dp *intel_dp) 2857 { 2858 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2859 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2860 u32 pp; 2861 i915_reg_t pp_ctrl_reg; 2862 2863 lockdep_assert_held(&dev_priv->pps_mutex); 2864 2865 if (!intel_dp_is_edp(intel_dp)) 2866 return; 2867 2868 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n", 2869 dig_port->base.base.base.id, dig_port->base.base.name); 2870 2871 WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n", 2872 dig_port->base.base.base.id, dig_port->base.base.name); 2873 2874 pp = ironlake_get_pp_control(intel_dp); 2875 /* We need to switch off panel power _and_ force vdd, for otherwise some 2876 * panels get very unhappy and cease to work. */ 2877 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 2878 EDP_BLC_ENABLE); 2879 2880 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2881 2882 intel_dp->want_panel_vdd = false; 2883 2884 I915_WRITE(pp_ctrl_reg, pp); 2885 POSTING_READ(pp_ctrl_reg); 2886 2887 wait_panel_off(intel_dp); 2888 intel_dp->panel_power_off_time = ktime_get_boottime(); 2889 2890 /* We got a reference when we enabled the VDD. */ 2891 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 2892 } 2893 2894 void intel_edp_panel_off(struct intel_dp *intel_dp) 2895 { 2896 intel_wakeref_t wakeref; 2897 2898 if (!intel_dp_is_edp(intel_dp)) 2899 return; 2900 2901 with_pps_lock(intel_dp, wakeref) 2902 edp_panel_off(intel_dp); 2903 } 2904 2905 /* Enable backlight in the panel power control. */ 2906 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 2907 { 2908 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2909 intel_wakeref_t wakeref; 2910 2911 /* 2912 * If we enable the backlight right away following a panel power 2913 * on, we may see slight flicker as the panel syncs with the eDP 2914 * link. So delay a bit to make sure the image is solid before 2915 * allowing it to appear. 2916 */ 2917 wait_backlight_on(intel_dp); 2918 2919 with_pps_lock(intel_dp, wakeref) { 2920 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2921 u32 pp; 2922 2923 pp = ironlake_get_pp_control(intel_dp); 2924 pp |= EDP_BLC_ENABLE; 2925 2926 I915_WRITE(pp_ctrl_reg, pp); 2927 POSTING_READ(pp_ctrl_reg); 2928 } 2929 } 2930 2931 /* Enable backlight PWM and backlight PP control. */ 2932 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 2933 const struct drm_connector_state *conn_state) 2934 { 2935 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder); 2936 2937 if (!intel_dp_is_edp(intel_dp)) 2938 return; 2939 2940 DRM_DEBUG_KMS("\n"); 2941 2942 intel_panel_enable_backlight(crtc_state, conn_state); 2943 _intel_edp_backlight_on(intel_dp); 2944 } 2945 2946 /* Disable backlight in the panel power control. */ 2947 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 2948 { 2949 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2950 intel_wakeref_t wakeref; 2951 2952 if (!intel_dp_is_edp(intel_dp)) 2953 return; 2954 2955 with_pps_lock(intel_dp, wakeref) { 2956 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2957 u32 pp; 2958 2959 pp = ironlake_get_pp_control(intel_dp); 2960 pp &= ~EDP_BLC_ENABLE; 2961 2962 I915_WRITE(pp_ctrl_reg, pp); 2963 POSTING_READ(pp_ctrl_reg); 2964 } 2965 2966 intel_dp->last_backlight_off = jiffies; 2967 edp_wait_backlight_off(intel_dp); 2968 } 2969 2970 /* Disable backlight PP control and backlight PWM. */ 2971 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 2972 { 2973 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder); 2974 2975 if (!intel_dp_is_edp(intel_dp)) 2976 return; 2977 2978 DRM_DEBUG_KMS("\n"); 2979 2980 _intel_edp_backlight_off(intel_dp); 2981 intel_panel_disable_backlight(old_conn_state); 2982 } 2983 2984 /* 2985 * Hook for controlling the panel power control backlight through the bl_power 2986 * sysfs attribute. Take care to handle multiple calls. 2987 */ 2988 static void intel_edp_backlight_power(struct intel_connector *connector, 2989 bool enable) 2990 { 2991 struct intel_dp *intel_dp = intel_attached_dp(&connector->base); 2992 intel_wakeref_t wakeref; 2993 bool is_enabled; 2994 2995 is_enabled = false; 2996 with_pps_lock(intel_dp, wakeref) 2997 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 2998 if (is_enabled == enable) 2999 return; 3000 3001 DRM_DEBUG_KMS("panel power control backlight %s\n", 3002 enable ? "enable" : "disable"); 3003 3004 if (enable) 3005 _intel_edp_backlight_on(intel_dp); 3006 else 3007 _intel_edp_backlight_off(intel_dp); 3008 } 3009 3010 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 3011 { 3012 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3013 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3014 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN; 3015 3016 I915_STATE_WARN(cur_state != state, 3017 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", 3018 dig_port->base.base.base.id, dig_port->base.base.name, 3019 onoff(state), onoff(cur_state)); 3020 } 3021 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 3022 3023 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 3024 { 3025 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE; 3026 3027 I915_STATE_WARN(cur_state != state, 3028 "eDP PLL state assertion failure (expected %s, current %s)\n", 3029 onoff(state), onoff(cur_state)); 3030 } 3031 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 3032 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 3033 3034 static void ironlake_edp_pll_on(struct intel_dp *intel_dp, 3035 const struct intel_crtc_state *pipe_config) 3036 { 3037 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3038 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3039 3040 assert_pipe_disabled(dev_priv, crtc->pipe); 3041 assert_dp_port_disabled(intel_dp); 3042 assert_edp_pll_disabled(dev_priv); 3043 3044 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n", 3045 pipe_config->port_clock); 3046 3047 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 3048 3049 if (pipe_config->port_clock == 162000) 3050 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 3051 else 3052 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 3053 3054 I915_WRITE(DP_A, intel_dp->DP); 3055 POSTING_READ(DP_A); 3056 udelay(500); 3057 3058 /* 3059 * [DevILK] Work around required when enabling DP PLL 3060 * while a pipe is enabled going to FDI: 3061 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 3062 * 2. Program DP PLL enable 3063 */ 3064 if (IS_GEN(dev_priv, 5)) 3065 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 3066 3067 intel_dp->DP |= DP_PLL_ENABLE; 3068 3069 I915_WRITE(DP_A, intel_dp->DP); 3070 POSTING_READ(DP_A); 3071 udelay(200); 3072 } 3073 3074 static void ironlake_edp_pll_off(struct intel_dp *intel_dp, 3075 const struct intel_crtc_state *old_crtc_state) 3076 { 3077 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 3078 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3079 3080 assert_pipe_disabled(dev_priv, crtc->pipe); 3081 assert_dp_port_disabled(intel_dp); 3082 assert_edp_pll_enabled(dev_priv); 3083 3084 DRM_DEBUG_KMS("disabling eDP PLL\n"); 3085 3086 intel_dp->DP &= ~DP_PLL_ENABLE; 3087 3088 I915_WRITE(DP_A, intel_dp->DP); 3089 POSTING_READ(DP_A); 3090 udelay(200); 3091 } 3092 3093 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3094 { 3095 /* 3096 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3097 * be capable of signalling downstream hpd with a long pulse. 3098 * Whether or not that means D3 is safe to use is not clear, 3099 * but let's assume so until proven otherwise. 3100 * 3101 * FIXME should really check all downstream ports... 3102 */ 3103 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3104 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 3105 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3106 } 3107 3108 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3109 const struct intel_crtc_state *crtc_state, 3110 bool enable) 3111 { 3112 int ret; 3113 3114 if (!crtc_state->dsc.compression_enable) 3115 return; 3116 3117 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3118 enable ? DP_DECOMPRESSION_EN : 0); 3119 if (ret < 0) 3120 DRM_DEBUG_KMS("Failed to %s sink decompression state\n", 3121 enable ? "enable" : "disable"); 3122 } 3123 3124 /* If the sink supports it, try to set the power state appropriately */ 3125 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 3126 { 3127 int ret, i; 3128 3129 /* Should have a valid DPCD by this point */ 3130 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3131 return; 3132 3133 if (mode != DRM_MODE_DPMS_ON) { 3134 if (downstream_hpd_needs_d0(intel_dp)) 3135 return; 3136 3137 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3138 DP_SET_POWER_D3); 3139 } else { 3140 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3141 3142 /* 3143 * When turning on, we need to retry for 1ms to give the sink 3144 * time to wake up. 3145 */ 3146 for (i = 0; i < 3; i++) { 3147 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3148 DP_SET_POWER_D0); 3149 if (ret == 1) 3150 break; 3151 msleep(1); 3152 } 3153 3154 if (ret == 1 && lspcon->active) 3155 lspcon_wait_pcon_mode(lspcon); 3156 } 3157 3158 if (ret != 1) 3159 DRM_DEBUG_KMS("failed to %s sink power state\n", 3160 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 3161 } 3162 3163 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3164 enum port port, enum pipe *pipe) 3165 { 3166 enum pipe p; 3167 3168 for_each_pipe(dev_priv, p) { 3169 u32 val = I915_READ(TRANS_DP_CTL(p)); 3170 3171 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3172 *pipe = p; 3173 return true; 3174 } 3175 } 3176 3177 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port)); 3178 3179 /* must initialize pipe to something for the asserts */ 3180 *pipe = PIPE_A; 3181 3182 return false; 3183 } 3184 3185 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3186 i915_reg_t dp_reg, enum port port, 3187 enum pipe *pipe) 3188 { 3189 bool ret; 3190 u32 val; 3191 3192 val = I915_READ(dp_reg); 3193 3194 ret = val & DP_PORT_EN; 3195 3196 /* asserts want to know the pipe even if the port is disabled */ 3197 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3198 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3199 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3200 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3201 else if (IS_CHERRYVIEW(dev_priv)) 3202 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3203 else 3204 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3205 3206 return ret; 3207 } 3208 3209 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3210 enum pipe *pipe) 3211 { 3212 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3213 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3214 intel_wakeref_t wakeref; 3215 bool ret; 3216 3217 wakeref = intel_display_power_get_if_enabled(dev_priv, 3218 encoder->power_domain); 3219 if (!wakeref) 3220 return false; 3221 3222 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3223 encoder->port, pipe); 3224 3225 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3226 3227 return ret; 3228 } 3229 3230 static void intel_dp_get_config(struct intel_encoder *encoder, 3231 struct intel_crtc_state *pipe_config) 3232 { 3233 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3234 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3235 u32 tmp, flags = 0; 3236 enum port port = encoder->port; 3237 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3238 3239 if (encoder->type == INTEL_OUTPUT_EDP) 3240 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3241 else 3242 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3243 3244 tmp = I915_READ(intel_dp->output_reg); 3245 3246 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3247 3248 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3249 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 3250 3251 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3252 flags |= DRM_MODE_FLAG_PHSYNC; 3253 else 3254 flags |= DRM_MODE_FLAG_NHSYNC; 3255 3256 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3257 flags |= DRM_MODE_FLAG_PVSYNC; 3258 else 3259 flags |= DRM_MODE_FLAG_NVSYNC; 3260 } else { 3261 if (tmp & DP_SYNC_HS_HIGH) 3262 flags |= DRM_MODE_FLAG_PHSYNC; 3263 else 3264 flags |= DRM_MODE_FLAG_NHSYNC; 3265 3266 if (tmp & DP_SYNC_VS_HIGH) 3267 flags |= DRM_MODE_FLAG_PVSYNC; 3268 else 3269 flags |= DRM_MODE_FLAG_NVSYNC; 3270 } 3271 3272 pipe_config->base.adjusted_mode.flags |= flags; 3273 3274 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3275 pipe_config->limited_color_range = true; 3276 3277 pipe_config->lane_count = 3278 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3279 3280 intel_dp_get_m_n(crtc, pipe_config); 3281 3282 if (port == PORT_A) { 3283 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3284 pipe_config->port_clock = 162000; 3285 else 3286 pipe_config->port_clock = 270000; 3287 } 3288 3289 pipe_config->base.adjusted_mode.crtc_clock = 3290 intel_dotclock_calculate(pipe_config->port_clock, 3291 &pipe_config->dp_m_n); 3292 3293 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3294 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3295 /* 3296 * This is a big fat ugly hack. 3297 * 3298 * Some machines in UEFI boot mode provide us a VBT that has 18 3299 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3300 * unknown we fail to light up. Yet the same BIOS boots up with 3301 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3302 * max, not what it tells us to use. 3303 * 3304 * Note: This will still be broken if the eDP panel is not lit 3305 * up by the BIOS, and thus we can't get the mode at module 3306 * load. 3307 */ 3308 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3309 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3310 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3311 } 3312 } 3313 3314 static void intel_disable_dp(struct intel_encoder *encoder, 3315 const struct intel_crtc_state *old_crtc_state, 3316 const struct drm_connector_state *old_conn_state) 3317 { 3318 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3319 3320 intel_dp->link_trained = false; 3321 3322 if (old_crtc_state->has_audio) 3323 intel_audio_codec_disable(encoder, 3324 old_crtc_state, old_conn_state); 3325 3326 /* Make sure the panel is off before trying to change the mode. But also 3327 * ensure that we have vdd while we switch off the panel. */ 3328 intel_edp_panel_vdd_on(intel_dp); 3329 intel_edp_backlight_off(old_conn_state); 3330 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3331 intel_edp_panel_off(intel_dp); 3332 } 3333 3334 static void g4x_disable_dp(struct intel_encoder *encoder, 3335 const struct intel_crtc_state *old_crtc_state, 3336 const struct drm_connector_state *old_conn_state) 3337 { 3338 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3339 } 3340 3341 static void vlv_disable_dp(struct intel_encoder *encoder, 3342 const struct intel_crtc_state *old_crtc_state, 3343 const struct drm_connector_state *old_conn_state) 3344 { 3345 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3346 } 3347 3348 static void g4x_post_disable_dp(struct intel_encoder *encoder, 3349 const struct intel_crtc_state *old_crtc_state, 3350 const struct drm_connector_state *old_conn_state) 3351 { 3352 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3353 enum port port = encoder->port; 3354 3355 /* 3356 * Bspec does not list a specific disable sequence for g4x DP. 3357 * Follow the ilk+ sequence (disable pipe before the port) for 3358 * g4x DP as it does not suffer from underruns like the normal 3359 * g4x modeset sequence (disable pipe after the port). 3360 */ 3361 intel_dp_link_down(encoder, old_crtc_state); 3362 3363 /* Only ilk+ has port A */ 3364 if (port == PORT_A) 3365 ironlake_edp_pll_off(intel_dp, old_crtc_state); 3366 } 3367 3368 static void vlv_post_disable_dp(struct intel_encoder *encoder, 3369 const struct intel_crtc_state *old_crtc_state, 3370 const struct drm_connector_state *old_conn_state) 3371 { 3372 intel_dp_link_down(encoder, old_crtc_state); 3373 } 3374 3375 static void chv_post_disable_dp(struct intel_encoder *encoder, 3376 const struct intel_crtc_state *old_crtc_state, 3377 const struct drm_connector_state *old_conn_state) 3378 { 3379 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3380 3381 intel_dp_link_down(encoder, old_crtc_state); 3382 3383 vlv_dpio_get(dev_priv); 3384 3385 /* Assert data lane reset */ 3386 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3387 3388 vlv_dpio_put(dev_priv); 3389 } 3390 3391 static void 3392 _intel_dp_set_link_train(struct intel_dp *intel_dp, 3393 u32 *DP, 3394 u8 dp_train_pat) 3395 { 3396 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3397 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3398 enum port port = intel_dig_port->base.port; 3399 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 3400 3401 if (dp_train_pat & train_pat_mask) 3402 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n", 3403 dp_train_pat & train_pat_mask); 3404 3405 if (HAS_DDI(dev_priv)) { 3406 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl); 3407 3408 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) 3409 temp |= DP_TP_CTL_SCRAMBLE_DISABLE; 3410 else 3411 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; 3412 3413 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3414 switch (dp_train_pat & train_pat_mask) { 3415 case DP_TRAINING_PATTERN_DISABLE: 3416 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; 3417 3418 break; 3419 case DP_TRAINING_PATTERN_1: 3420 temp |= DP_TP_CTL_LINK_TRAIN_PAT1; 3421 break; 3422 case DP_TRAINING_PATTERN_2: 3423 temp |= DP_TP_CTL_LINK_TRAIN_PAT2; 3424 break; 3425 case DP_TRAINING_PATTERN_3: 3426 temp |= DP_TP_CTL_LINK_TRAIN_PAT3; 3427 break; 3428 case DP_TRAINING_PATTERN_4: 3429 temp |= DP_TP_CTL_LINK_TRAIN_PAT4; 3430 break; 3431 } 3432 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp); 3433 3434 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3435 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3436 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3437 3438 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3439 case DP_TRAINING_PATTERN_DISABLE: 3440 *DP |= DP_LINK_TRAIN_OFF_CPT; 3441 break; 3442 case DP_TRAINING_PATTERN_1: 3443 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3444 break; 3445 case DP_TRAINING_PATTERN_2: 3446 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3447 break; 3448 case DP_TRAINING_PATTERN_3: 3449 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3450 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3451 break; 3452 } 3453 3454 } else { 3455 *DP &= ~DP_LINK_TRAIN_MASK; 3456 3457 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3458 case DP_TRAINING_PATTERN_DISABLE: 3459 *DP |= DP_LINK_TRAIN_OFF; 3460 break; 3461 case DP_TRAINING_PATTERN_1: 3462 *DP |= DP_LINK_TRAIN_PAT_1; 3463 break; 3464 case DP_TRAINING_PATTERN_2: 3465 *DP |= DP_LINK_TRAIN_PAT_2; 3466 break; 3467 case DP_TRAINING_PATTERN_3: 3468 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3469 *DP |= DP_LINK_TRAIN_PAT_2; 3470 break; 3471 } 3472 } 3473 } 3474 3475 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3476 const struct intel_crtc_state *old_crtc_state) 3477 { 3478 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3479 3480 /* enable with pattern 1 (as per spec) */ 3481 3482 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3483 3484 /* 3485 * Magic for VLV/CHV. We _must_ first set up the register 3486 * without actually enabling the port, and then do another 3487 * write to enable the port. Otherwise link training will 3488 * fail when the power sequencer is freshly used for this port. 3489 */ 3490 intel_dp->DP |= DP_PORT_EN; 3491 if (old_crtc_state->has_audio) 3492 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3493 3494 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3495 POSTING_READ(intel_dp->output_reg); 3496 } 3497 3498 static void intel_enable_dp(struct intel_encoder *encoder, 3499 const struct intel_crtc_state *pipe_config, 3500 const struct drm_connector_state *conn_state) 3501 { 3502 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3503 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3504 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3505 u32 dp_reg = I915_READ(intel_dp->output_reg); 3506 enum pipe pipe = crtc->pipe; 3507 intel_wakeref_t wakeref; 3508 3509 if (WARN_ON(dp_reg & DP_PORT_EN)) 3510 return; 3511 3512 with_pps_lock(intel_dp, wakeref) { 3513 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3514 vlv_init_panel_power_sequencer(encoder, pipe_config); 3515 3516 intel_dp_enable_port(intel_dp, pipe_config); 3517 3518 edp_panel_vdd_on(intel_dp); 3519 edp_panel_on(intel_dp); 3520 edp_panel_vdd_off(intel_dp, true); 3521 } 3522 3523 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3524 unsigned int lane_mask = 0x0; 3525 3526 if (IS_CHERRYVIEW(dev_priv)) 3527 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3528 3529 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3530 lane_mask); 3531 } 3532 3533 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3534 intel_dp_start_link_train(intel_dp); 3535 intel_dp_stop_link_train(intel_dp); 3536 3537 if (pipe_config->has_audio) { 3538 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", 3539 pipe_name(pipe)); 3540 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3541 } 3542 } 3543 3544 static void g4x_enable_dp(struct intel_encoder *encoder, 3545 const struct intel_crtc_state *pipe_config, 3546 const struct drm_connector_state *conn_state) 3547 { 3548 intel_enable_dp(encoder, pipe_config, conn_state); 3549 intel_edp_backlight_on(pipe_config, conn_state); 3550 } 3551 3552 static void vlv_enable_dp(struct intel_encoder *encoder, 3553 const struct intel_crtc_state *pipe_config, 3554 const struct drm_connector_state *conn_state) 3555 { 3556 intel_edp_backlight_on(pipe_config, conn_state); 3557 } 3558 3559 static void g4x_pre_enable_dp(struct intel_encoder *encoder, 3560 const struct intel_crtc_state *pipe_config, 3561 const struct drm_connector_state *conn_state) 3562 { 3563 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3564 enum port port = encoder->port; 3565 3566 intel_dp_prepare(encoder, pipe_config); 3567 3568 /* Only ilk+ has port A */ 3569 if (port == PORT_A) 3570 ironlake_edp_pll_on(intel_dp, pipe_config); 3571 } 3572 3573 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3574 { 3575 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3576 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3577 enum pipe pipe = intel_dp->pps_pipe; 3578 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3579 3580 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3581 3582 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) 3583 return; 3584 3585 edp_panel_vdd_off_sync(intel_dp); 3586 3587 /* 3588 * VLV seems to get confused when multiple power sequencers 3589 * have the same port selected (even if only one has power/vdd 3590 * enabled). The failure manifests as vlv_wait_port_ready() failing 3591 * CHV on the other hand doesn't seem to mind having the same port 3592 * selected in multiple power sequencers, but let's clear the 3593 * port select always when logically disconnecting a power sequencer 3594 * from a port. 3595 */ 3596 DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n", 3597 pipe_name(pipe), intel_dig_port->base.base.base.id, 3598 intel_dig_port->base.base.name); 3599 I915_WRITE(pp_on_reg, 0); 3600 POSTING_READ(pp_on_reg); 3601 3602 intel_dp->pps_pipe = INVALID_PIPE; 3603 } 3604 3605 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3606 enum pipe pipe) 3607 { 3608 struct intel_encoder *encoder; 3609 3610 lockdep_assert_held(&dev_priv->pps_mutex); 3611 3612 for_each_intel_dp(&dev_priv->drm, encoder) { 3613 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3614 3615 WARN(intel_dp->active_pipe == pipe, 3616 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n", 3617 pipe_name(pipe), encoder->base.base.id, 3618 encoder->base.name); 3619 3620 if (intel_dp->pps_pipe != pipe) 3621 continue; 3622 3623 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n", 3624 pipe_name(pipe), encoder->base.base.id, 3625 encoder->base.name); 3626 3627 /* make sure vdd is off before we steal it */ 3628 vlv_detach_power_sequencer(intel_dp); 3629 } 3630 } 3631 3632 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3633 const struct intel_crtc_state *crtc_state) 3634 { 3635 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3636 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3637 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 3638 3639 lockdep_assert_held(&dev_priv->pps_mutex); 3640 3641 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3642 3643 if (intel_dp->pps_pipe != INVALID_PIPE && 3644 intel_dp->pps_pipe != crtc->pipe) { 3645 /* 3646 * If another power sequencer was being used on this 3647 * port previously make sure to turn off vdd there while 3648 * we still have control of it. 3649 */ 3650 vlv_detach_power_sequencer(intel_dp); 3651 } 3652 3653 /* 3654 * We may be stealing the power 3655 * sequencer from another port. 3656 */ 3657 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3658 3659 intel_dp->active_pipe = crtc->pipe; 3660 3661 if (!intel_dp_is_edp(intel_dp)) 3662 return; 3663 3664 /* now it's all ours */ 3665 intel_dp->pps_pipe = crtc->pipe; 3666 3667 DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n", 3668 pipe_name(intel_dp->pps_pipe), encoder->base.base.id, 3669 encoder->base.name); 3670 3671 /* init power sequencer on this pipe and port */ 3672 intel_dp_init_panel_power_sequencer(intel_dp); 3673 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3674 } 3675 3676 static void vlv_pre_enable_dp(struct intel_encoder *encoder, 3677 const struct intel_crtc_state *pipe_config, 3678 const struct drm_connector_state *conn_state) 3679 { 3680 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3681 3682 intel_enable_dp(encoder, pipe_config, conn_state); 3683 } 3684 3685 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, 3686 const struct intel_crtc_state *pipe_config, 3687 const struct drm_connector_state *conn_state) 3688 { 3689 intel_dp_prepare(encoder, pipe_config); 3690 3691 vlv_phy_pre_pll_enable(encoder, pipe_config); 3692 } 3693 3694 static void chv_pre_enable_dp(struct intel_encoder *encoder, 3695 const struct intel_crtc_state *pipe_config, 3696 const struct drm_connector_state *conn_state) 3697 { 3698 chv_phy_pre_encoder_enable(encoder, pipe_config); 3699 3700 intel_enable_dp(encoder, pipe_config, conn_state); 3701 3702 /* Second common lane will stay alive on its own now */ 3703 chv_phy_release_cl2_override(encoder); 3704 } 3705 3706 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, 3707 const struct intel_crtc_state *pipe_config, 3708 const struct drm_connector_state *conn_state) 3709 { 3710 intel_dp_prepare(encoder, pipe_config); 3711 3712 chv_phy_pre_pll_enable(encoder, pipe_config); 3713 } 3714 3715 static void chv_dp_post_pll_disable(struct intel_encoder *encoder, 3716 const struct intel_crtc_state *old_crtc_state, 3717 const struct drm_connector_state *old_conn_state) 3718 { 3719 chv_phy_post_pll_disable(encoder, old_crtc_state); 3720 } 3721 3722 /* 3723 * Fetch AUX CH registers 0x202 - 0x207 which contain 3724 * link status information 3725 */ 3726 bool 3727 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3728 { 3729 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 3730 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 3731 } 3732 3733 /* These are source-specific values. */ 3734 u8 3735 intel_dp_voltage_max(struct intel_dp *intel_dp) 3736 { 3737 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3738 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3739 enum port port = encoder->port; 3740 3741 if (HAS_DDI(dev_priv)) 3742 return intel_ddi_dp_voltage_max(encoder); 3743 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3744 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3745 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3746 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3747 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3748 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3749 else 3750 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3751 } 3752 3753 u8 3754 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) 3755 { 3756 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3757 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3758 enum port port = encoder->port; 3759 3760 if (HAS_DDI(dev_priv)) { 3761 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); 3762 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3763 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3764 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3765 return DP_TRAIN_PRE_EMPH_LEVEL_3; 3766 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3767 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3768 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3769 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3770 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3771 default: 3772 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3773 } 3774 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3775 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3776 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3777 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3778 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3779 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3780 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3781 default: 3782 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3783 } 3784 } else { 3785 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3786 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3787 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3788 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3789 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3790 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3791 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3792 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3793 default: 3794 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3795 } 3796 } 3797 } 3798 3799 static u32 vlv_signal_levels(struct intel_dp *intel_dp) 3800 { 3801 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3802 unsigned long demph_reg_value, preemph_reg_value, 3803 uniqtranscale_reg_value; 3804 u8 train_set = intel_dp->train_set[0]; 3805 3806 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3807 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3808 preemph_reg_value = 0x0004000; 3809 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3810 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3811 demph_reg_value = 0x2B405555; 3812 uniqtranscale_reg_value = 0x552AB83A; 3813 break; 3814 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3815 demph_reg_value = 0x2B404040; 3816 uniqtranscale_reg_value = 0x5548B83A; 3817 break; 3818 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3819 demph_reg_value = 0x2B245555; 3820 uniqtranscale_reg_value = 0x5560B83A; 3821 break; 3822 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3823 demph_reg_value = 0x2B405555; 3824 uniqtranscale_reg_value = 0x5598DA3A; 3825 break; 3826 default: 3827 return 0; 3828 } 3829 break; 3830 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3831 preemph_reg_value = 0x0002000; 3832 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3833 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3834 demph_reg_value = 0x2B404040; 3835 uniqtranscale_reg_value = 0x5552B83A; 3836 break; 3837 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3838 demph_reg_value = 0x2B404848; 3839 uniqtranscale_reg_value = 0x5580B83A; 3840 break; 3841 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3842 demph_reg_value = 0x2B404040; 3843 uniqtranscale_reg_value = 0x55ADDA3A; 3844 break; 3845 default: 3846 return 0; 3847 } 3848 break; 3849 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3850 preemph_reg_value = 0x0000000; 3851 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3852 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3853 demph_reg_value = 0x2B305555; 3854 uniqtranscale_reg_value = 0x5570B83A; 3855 break; 3856 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3857 demph_reg_value = 0x2B2B4040; 3858 uniqtranscale_reg_value = 0x55ADDA3A; 3859 break; 3860 default: 3861 return 0; 3862 } 3863 break; 3864 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3865 preemph_reg_value = 0x0006000; 3866 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3867 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3868 demph_reg_value = 0x1B405555; 3869 uniqtranscale_reg_value = 0x55ADDA3A; 3870 break; 3871 default: 3872 return 0; 3873 } 3874 break; 3875 default: 3876 return 0; 3877 } 3878 3879 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 3880 uniqtranscale_reg_value, 0); 3881 3882 return 0; 3883 } 3884 3885 static u32 chv_signal_levels(struct intel_dp *intel_dp) 3886 { 3887 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3888 u32 deemph_reg_value, margin_reg_value; 3889 bool uniq_trans_scale = false; 3890 u8 train_set = intel_dp->train_set[0]; 3891 3892 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3893 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3894 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3895 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3896 deemph_reg_value = 128; 3897 margin_reg_value = 52; 3898 break; 3899 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3900 deemph_reg_value = 128; 3901 margin_reg_value = 77; 3902 break; 3903 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3904 deemph_reg_value = 128; 3905 margin_reg_value = 102; 3906 break; 3907 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3908 deemph_reg_value = 128; 3909 margin_reg_value = 154; 3910 uniq_trans_scale = true; 3911 break; 3912 default: 3913 return 0; 3914 } 3915 break; 3916 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3917 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3918 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3919 deemph_reg_value = 85; 3920 margin_reg_value = 78; 3921 break; 3922 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3923 deemph_reg_value = 85; 3924 margin_reg_value = 116; 3925 break; 3926 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3927 deemph_reg_value = 85; 3928 margin_reg_value = 154; 3929 break; 3930 default: 3931 return 0; 3932 } 3933 break; 3934 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3935 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3936 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3937 deemph_reg_value = 64; 3938 margin_reg_value = 104; 3939 break; 3940 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3941 deemph_reg_value = 64; 3942 margin_reg_value = 154; 3943 break; 3944 default: 3945 return 0; 3946 } 3947 break; 3948 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3949 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3950 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3951 deemph_reg_value = 43; 3952 margin_reg_value = 154; 3953 break; 3954 default: 3955 return 0; 3956 } 3957 break; 3958 default: 3959 return 0; 3960 } 3961 3962 chv_set_phy_signal_level(encoder, deemph_reg_value, 3963 margin_reg_value, uniq_trans_scale); 3964 3965 return 0; 3966 } 3967 3968 static u32 3969 g4x_signal_levels(u8 train_set) 3970 { 3971 u32 signal_levels = 0; 3972 3973 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3974 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3975 default: 3976 signal_levels |= DP_VOLTAGE_0_4; 3977 break; 3978 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3979 signal_levels |= DP_VOLTAGE_0_6; 3980 break; 3981 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3982 signal_levels |= DP_VOLTAGE_0_8; 3983 break; 3984 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3985 signal_levels |= DP_VOLTAGE_1_2; 3986 break; 3987 } 3988 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3989 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3990 default: 3991 signal_levels |= DP_PRE_EMPHASIS_0; 3992 break; 3993 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3994 signal_levels |= DP_PRE_EMPHASIS_3_5; 3995 break; 3996 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3997 signal_levels |= DP_PRE_EMPHASIS_6; 3998 break; 3999 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4000 signal_levels |= DP_PRE_EMPHASIS_9_5; 4001 break; 4002 } 4003 return signal_levels; 4004 } 4005 4006 /* SNB CPU eDP voltage swing and pre-emphasis control */ 4007 static u32 4008 snb_cpu_edp_signal_levels(u8 train_set) 4009 { 4010 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4011 DP_TRAIN_PRE_EMPHASIS_MASK); 4012 switch (signal_levels) { 4013 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4014 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4015 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4016 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4017 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 4018 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4019 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4020 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 4021 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4023 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 4024 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4025 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4026 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 4027 default: 4028 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4029 "0x%x\n", signal_levels); 4030 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4031 } 4032 } 4033 4034 /* IVB CPU eDP voltage swing and pre-emphasis control */ 4035 static u32 4036 ivb_cpu_edp_signal_levels(u8 train_set) 4037 { 4038 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4039 DP_TRAIN_PRE_EMPHASIS_MASK); 4040 switch (signal_levels) { 4041 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4042 return EDP_LINK_TRAIN_400MV_0DB_IVB; 4043 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4044 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 4045 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4046 return EDP_LINK_TRAIN_400MV_6DB_IVB; 4047 4048 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4049 return EDP_LINK_TRAIN_600MV_0DB_IVB; 4050 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4051 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 4052 4053 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4054 return EDP_LINK_TRAIN_800MV_0DB_IVB; 4055 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4056 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 4057 4058 default: 4059 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4060 "0x%x\n", signal_levels); 4061 return EDP_LINK_TRAIN_500MV_0DB_IVB; 4062 } 4063 } 4064 4065 void 4066 intel_dp_set_signal_levels(struct intel_dp *intel_dp) 4067 { 4068 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4069 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4070 enum port port = intel_dig_port->base.port; 4071 u32 signal_levels, mask = 0; 4072 u8 train_set = intel_dp->train_set[0]; 4073 4074 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) { 4075 signal_levels = bxt_signal_levels(intel_dp); 4076 } else if (HAS_DDI(dev_priv)) { 4077 signal_levels = ddi_signal_levels(intel_dp); 4078 mask = DDI_BUF_EMP_MASK; 4079 } else if (IS_CHERRYVIEW(dev_priv)) { 4080 signal_levels = chv_signal_levels(intel_dp); 4081 } else if (IS_VALLEYVIEW(dev_priv)) { 4082 signal_levels = vlv_signal_levels(intel_dp); 4083 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 4084 signal_levels = ivb_cpu_edp_signal_levels(train_set); 4085 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 4086 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) { 4087 signal_levels = snb_cpu_edp_signal_levels(train_set); 4088 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 4089 } else { 4090 signal_levels = g4x_signal_levels(train_set); 4091 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; 4092 } 4093 4094 if (mask) 4095 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); 4096 4097 DRM_DEBUG_KMS("Using vswing level %d\n", 4098 train_set & DP_TRAIN_VOLTAGE_SWING_MASK); 4099 DRM_DEBUG_KMS("Using pre-emphasis level %d\n", 4100 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4101 DP_TRAIN_PRE_EMPHASIS_SHIFT); 4102 4103 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; 4104 4105 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4106 POSTING_READ(intel_dp->output_reg); 4107 } 4108 4109 void 4110 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4111 u8 dp_train_pat) 4112 { 4113 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4114 struct drm_i915_private *dev_priv = 4115 to_i915(intel_dig_port->base.base.dev); 4116 4117 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); 4118 4119 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4120 POSTING_READ(intel_dp->output_reg); 4121 } 4122 4123 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 4124 { 4125 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4126 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4127 enum port port = intel_dig_port->base.port; 4128 u32 val; 4129 4130 if (!HAS_DDI(dev_priv)) 4131 return; 4132 4133 val = I915_READ(intel_dp->regs.dp_tp_ctl); 4134 val &= ~DP_TP_CTL_LINK_TRAIN_MASK; 4135 val |= DP_TP_CTL_LINK_TRAIN_IDLE; 4136 I915_WRITE(intel_dp->regs.dp_tp_ctl, val); 4137 4138 /* 4139 * Until TGL on PORT_A we can have only eDP in SST mode. There the only 4140 * reason we need to set idle transmission mode is to work around a HW 4141 * issue where we enable the pipe while not in idle link-training mode. 4142 * In this case there is requirement to wait for a minimum number of 4143 * idle patterns to be sent. 4144 */ 4145 if (port == PORT_A && INTEL_GEN(dev_priv) < 12) 4146 return; 4147 4148 if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status, 4149 DP_TP_STATUS_IDLE_DONE, 1)) 4150 DRM_ERROR("Timed out waiting for DP idle patterns\n"); 4151 } 4152 4153 static void 4154 intel_dp_link_down(struct intel_encoder *encoder, 4155 const struct intel_crtc_state *old_crtc_state) 4156 { 4157 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4158 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 4159 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 4160 enum port port = encoder->port; 4161 u32 DP = intel_dp->DP; 4162 4163 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) 4164 return; 4165 4166 DRM_DEBUG_KMS("\n"); 4167 4168 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4169 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4170 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4171 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4172 } else { 4173 DP &= ~DP_LINK_TRAIN_MASK; 4174 DP |= DP_LINK_TRAIN_PAT_IDLE; 4175 } 4176 I915_WRITE(intel_dp->output_reg, DP); 4177 POSTING_READ(intel_dp->output_reg); 4178 4179 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4180 I915_WRITE(intel_dp->output_reg, DP); 4181 POSTING_READ(intel_dp->output_reg); 4182 4183 /* 4184 * HW workaround for IBX, we need to move the port 4185 * to transcoder A after disabling it to allow the 4186 * matching HDMI port to be enabled on transcoder A. 4187 */ 4188 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4189 /* 4190 * We get CPU/PCH FIFO underruns on the other pipe when 4191 * doing the workaround. Sweep them under the rug. 4192 */ 4193 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4194 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4195 4196 /* always enable with pattern 1 (as per spec) */ 4197 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4198 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4199 DP_LINK_TRAIN_PAT_1; 4200 I915_WRITE(intel_dp->output_reg, DP); 4201 POSTING_READ(intel_dp->output_reg); 4202 4203 DP &= ~DP_PORT_EN; 4204 I915_WRITE(intel_dp->output_reg, DP); 4205 POSTING_READ(intel_dp->output_reg); 4206 4207 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4208 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4209 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4210 } 4211 4212 msleep(intel_dp->panel_power_down_delay); 4213 4214 intel_dp->DP = DP; 4215 4216 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4217 intel_wakeref_t wakeref; 4218 4219 with_pps_lock(intel_dp, wakeref) 4220 intel_dp->active_pipe = INVALID_PIPE; 4221 } 4222 } 4223 4224 static void 4225 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4226 { 4227 u8 dpcd_ext[6]; 4228 4229 /* 4230 * Prior to DP1.3 the bit represented by 4231 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4232 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4233 * the true capability of the panel. The only way to check is to 4234 * then compare 0000h and 2200h. 4235 */ 4236 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4237 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4238 return; 4239 4240 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4241 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4242 DRM_ERROR("DPCD failed read at extended capabilities\n"); 4243 return; 4244 } 4245 4246 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4247 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n"); 4248 return; 4249 } 4250 4251 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4252 return; 4253 4254 DRM_DEBUG_KMS("Base DPCD: %*ph\n", 4255 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4256 4257 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4258 } 4259 4260 bool 4261 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4262 { 4263 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4264 sizeof(intel_dp->dpcd)) < 0) 4265 return false; /* aux transfer failed */ 4266 4267 intel_dp_extended_receiver_capabilities(intel_dp); 4268 4269 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); 4270 4271 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4272 } 4273 4274 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4275 { 4276 u8 dprx = 0; 4277 4278 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4279 &dprx) != 1) 4280 return false; 4281 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4282 } 4283 4284 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4285 { 4286 /* 4287 * Clear the cached register set to avoid using stale values 4288 * for the sinks that do not support DSC. 4289 */ 4290 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4291 4292 /* Clear fec_capable to avoid using stale values */ 4293 intel_dp->fec_capable = 0; 4294 4295 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4296 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4297 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4298 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4299 intel_dp->dsc_dpcd, 4300 sizeof(intel_dp->dsc_dpcd)) < 0) 4301 DRM_ERROR("Failed to read DPCD register 0x%x\n", 4302 DP_DSC_SUPPORT); 4303 4304 DRM_DEBUG_KMS("DSC DPCD: %*ph\n", 4305 (int)sizeof(intel_dp->dsc_dpcd), 4306 intel_dp->dsc_dpcd); 4307 4308 /* FEC is supported only on DP 1.4 */ 4309 if (!intel_dp_is_edp(intel_dp) && 4310 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4311 &intel_dp->fec_capable) < 0) 4312 DRM_ERROR("Failed to read FEC DPCD register\n"); 4313 4314 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable); 4315 } 4316 } 4317 4318 static bool 4319 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4320 { 4321 struct drm_i915_private *dev_priv = 4322 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4323 4324 /* this function is meant to be called only once */ 4325 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0); 4326 4327 if (!intel_dp_read_dpcd(intel_dp)) 4328 return false; 4329 4330 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4331 drm_dp_is_branch(intel_dp->dpcd)); 4332 4333 /* 4334 * Read the eDP display control registers. 4335 * 4336 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4337 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4338 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4339 * method). The display control registers should read zero if they're 4340 * not supported anyway. 4341 */ 4342 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4343 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4344 sizeof(intel_dp->edp_dpcd)) 4345 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd), 4346 intel_dp->edp_dpcd); 4347 4348 /* 4349 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4350 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4351 */ 4352 intel_psr_init_dpcd(intel_dp); 4353 4354 /* Read the eDP 1.4+ supported link rates. */ 4355 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4356 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4357 int i; 4358 4359 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4360 sink_rates, sizeof(sink_rates)); 4361 4362 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4363 int val = le16_to_cpu(sink_rates[i]); 4364 4365 if (val == 0) 4366 break; 4367 4368 /* Value read multiplied by 200kHz gives the per-lane 4369 * link rate in kHz. The source rates are, however, 4370 * stored in terms of LS_Clk kHz. The full conversion 4371 * back to symbols is 4372 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4373 */ 4374 intel_dp->sink_rates[i] = (val * 200) / 10; 4375 } 4376 intel_dp->num_sink_rates = i; 4377 } 4378 4379 /* 4380 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4381 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4382 */ 4383 if (intel_dp->num_sink_rates) 4384 intel_dp->use_rate_select = true; 4385 else 4386 intel_dp_set_sink_rates(intel_dp); 4387 4388 intel_dp_set_common_rates(intel_dp); 4389 4390 /* Read the eDP DSC DPCD registers */ 4391 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4392 intel_dp_get_dsc_sink_cap(intel_dp); 4393 4394 return true; 4395 } 4396 4397 4398 static bool 4399 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4400 { 4401 if (!intel_dp_read_dpcd(intel_dp)) 4402 return false; 4403 4404 /* 4405 * Don't clobber cached eDP rates. Also skip re-reading 4406 * the OUI/ID since we know it won't change. 4407 */ 4408 if (!intel_dp_is_edp(intel_dp)) { 4409 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4410 drm_dp_is_branch(intel_dp->dpcd)); 4411 4412 intel_dp_set_sink_rates(intel_dp); 4413 intel_dp_set_common_rates(intel_dp); 4414 } 4415 4416 /* 4417 * Some eDP panels do not set a valid value for sink count, that is why 4418 * it don't care about read it here and in intel_edp_init_dpcd(). 4419 */ 4420 if (!intel_dp_is_edp(intel_dp) && 4421 !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) { 4422 u8 count; 4423 ssize_t r; 4424 4425 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4426 if (r < 1) 4427 return false; 4428 4429 /* 4430 * Sink count can change between short pulse hpd hence 4431 * a member variable in intel_dp will track any changes 4432 * between short pulse interrupts. 4433 */ 4434 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4435 4436 /* 4437 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4438 * a dongle is present but no display. Unless we require to know 4439 * if a dongle is present or not, we don't need to update 4440 * downstream port information. So, an early return here saves 4441 * time from performing other operations which are not required. 4442 */ 4443 if (!intel_dp->sink_count) 4444 return false; 4445 } 4446 4447 if (!drm_dp_is_branch(intel_dp->dpcd)) 4448 return true; /* native DP sink */ 4449 4450 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4451 return true; /* no per-port downstream info */ 4452 4453 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4454 intel_dp->downstream_ports, 4455 DP_MAX_DOWNSTREAM_PORTS) < 0) 4456 return false; /* downstream port status fetch failed */ 4457 4458 return true; 4459 } 4460 4461 static bool 4462 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4463 { 4464 u8 mstm_cap; 4465 4466 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4467 return false; 4468 4469 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4470 return false; 4471 4472 return mstm_cap & DP_MST_CAP; 4473 } 4474 4475 static bool 4476 intel_dp_can_mst(struct intel_dp *intel_dp) 4477 { 4478 return i915_modparams.enable_dp_mst && 4479 intel_dp->can_mst && 4480 intel_dp_sink_can_mst(intel_dp); 4481 } 4482 4483 static void 4484 intel_dp_configure_mst(struct intel_dp *intel_dp) 4485 { 4486 struct intel_encoder *encoder = 4487 &dp_to_dig_port(intel_dp)->base; 4488 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4489 4490 DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n", 4491 encoder->base.base.id, encoder->base.name, 4492 yesno(intel_dp->can_mst), yesno(sink_can_mst), 4493 yesno(i915_modparams.enable_dp_mst)); 4494 4495 if (!intel_dp->can_mst) 4496 return; 4497 4498 intel_dp->is_mst = sink_can_mst && 4499 i915_modparams.enable_dp_mst; 4500 4501 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4502 intel_dp->is_mst); 4503 } 4504 4505 static bool 4506 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4507 { 4508 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4509 sink_irq_vector, DP_DPRX_ESI_LEN) == 4510 DP_DPRX_ESI_LEN; 4511 } 4512 4513 bool 4514 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, 4515 const struct drm_connector_state *conn_state) 4516 { 4517 /* 4518 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication 4519 * of Color Encoding Format and Content Color Gamut], in order to 4520 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. 4521 */ 4522 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4523 return true; 4524 4525 switch (conn_state->colorspace) { 4526 case DRM_MODE_COLORIMETRY_SYCC_601: 4527 case DRM_MODE_COLORIMETRY_OPYCC_601: 4528 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4529 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4530 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4531 return true; 4532 default: 4533 break; 4534 } 4535 4536 return false; 4537 } 4538 4539 static void 4540 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp, 4541 const struct intel_crtc_state *crtc_state, 4542 const struct drm_connector_state *conn_state) 4543 { 4544 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4545 struct dp_sdp vsc_sdp = {}; 4546 4547 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */ 4548 vsc_sdp.sdp_header.HB0 = 0; 4549 vsc_sdp.sdp_header.HB1 = 0x7; 4550 4551 /* 4552 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 4553 * Colorimetry Format indication. 4554 */ 4555 vsc_sdp.sdp_header.HB2 = 0x5; 4556 4557 /* 4558 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/ 4559 * Colorimetry Format indication (HB2 = 05h). 4560 */ 4561 vsc_sdp.sdp_header.HB3 = 0x13; 4562 4563 /* DP 1.4a spec, Table 2-120 */ 4564 switch (crtc_state->output_format) { 4565 case INTEL_OUTPUT_FORMAT_YCBCR444: 4566 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */ 4567 break; 4568 case INTEL_OUTPUT_FORMAT_YCBCR420: 4569 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */ 4570 break; 4571 case INTEL_OUTPUT_FORMAT_RGB: 4572 default: 4573 /* RGB: DB16[7:4] = 0h */ 4574 break; 4575 } 4576 4577 switch (conn_state->colorspace) { 4578 case DRM_MODE_COLORIMETRY_BT709_YCC: 4579 vsc_sdp.db[16] |= 0x1; 4580 break; 4581 case DRM_MODE_COLORIMETRY_XVYCC_601: 4582 vsc_sdp.db[16] |= 0x2; 4583 break; 4584 case DRM_MODE_COLORIMETRY_XVYCC_709: 4585 vsc_sdp.db[16] |= 0x3; 4586 break; 4587 case DRM_MODE_COLORIMETRY_SYCC_601: 4588 vsc_sdp.db[16] |= 0x4; 4589 break; 4590 case DRM_MODE_COLORIMETRY_OPYCC_601: 4591 vsc_sdp.db[16] |= 0x5; 4592 break; 4593 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4594 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4595 vsc_sdp.db[16] |= 0x6; 4596 break; 4597 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4598 vsc_sdp.db[16] |= 0x7; 4599 break; 4600 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 4601 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 4602 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */ 4603 break; 4604 default: 4605 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */ 4606 4607 /* RGB->YCBCR color conversion uses the BT.709 color space. */ 4608 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4609 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */ 4610 break; 4611 } 4612 4613 /* 4614 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only, 4615 * the following Component Bit Depth values are defined: 4616 * 001b = 8bpc. 4617 * 010b = 10bpc. 4618 * 011b = 12bpc. 4619 * 100b = 16bpc. 4620 */ 4621 switch (crtc_state->pipe_bpp) { 4622 case 24: /* 8bpc */ 4623 vsc_sdp.db[17] = 0x1; 4624 break; 4625 case 30: /* 10bpc */ 4626 vsc_sdp.db[17] = 0x2; 4627 break; 4628 case 36: /* 12bpc */ 4629 vsc_sdp.db[17] = 0x3; 4630 break; 4631 case 48: /* 16bpc */ 4632 vsc_sdp.db[17] = 0x4; 4633 break; 4634 default: 4635 MISSING_CASE(crtc_state->pipe_bpp); 4636 break; 4637 } 4638 4639 /* 4640 * Dynamic Range (Bit 7) 4641 * 0 = VESA range, 1 = CTA range. 4642 * all YCbCr are always limited range 4643 */ 4644 vsc_sdp.db[17] |= 0x80; 4645 4646 /* 4647 * Content Type (Bits 2:0) 4648 * 000b = Not defined. 4649 * 001b = Graphics. 4650 * 010b = Photo. 4651 * 011b = Video. 4652 * 100b = Game 4653 * All other values are RESERVED. 4654 * Note: See CTA-861-G for the definition and expected 4655 * processing by a stream sink for the above contect types. 4656 */ 4657 vsc_sdp.db[18] = 0; 4658 4659 intel_dig_port->write_infoframe(&intel_dig_port->base, 4660 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp)); 4661 } 4662 4663 static void 4664 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, 4665 const struct intel_crtc_state *crtc_state, 4666 const struct drm_connector_state *conn_state) 4667 { 4668 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4669 struct dp_sdp infoframe_sdp = {}; 4670 struct hdmi_drm_infoframe drm_infoframe = {}; 4671 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; 4672 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; 4673 ssize_t len; 4674 int ret; 4675 4676 ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state); 4677 if (ret) { 4678 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n"); 4679 return; 4680 } 4681 4682 len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf)); 4683 if (len < 0) { 4684 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n"); 4685 return; 4686 } 4687 4688 if (len != infoframe_size) { 4689 DRM_DEBUG_KMS("wrong static hdr metadata size\n"); 4690 return; 4691 } 4692 4693 /* 4694 * Set up the infoframe sdp packet for HDR static metadata. 4695 * Prepare VSC Header for SU as per DP 1.4a spec, 4696 * Table 2-100 and Table 2-101 4697 */ 4698 4699 /* Packet ID, 00h for non-Audio INFOFRAME */ 4700 infoframe_sdp.sdp_header.HB0 = 0; 4701 /* 4702 * Packet Type 80h + Non-audio INFOFRAME Type value 4703 * HDMI_INFOFRAME_TYPE_DRM: 0x87, 4704 */ 4705 infoframe_sdp.sdp_header.HB1 = drm_infoframe.type; 4706 /* 4707 * Least Significant Eight Bits of (Data Byte Count – 1) 4708 * infoframe_size - 1, 4709 */ 4710 infoframe_sdp.sdp_header.HB2 = 0x1D; 4711 /* INFOFRAME SDP Version Number */ 4712 infoframe_sdp.sdp_header.HB3 = (0x13 << 2); 4713 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 4714 infoframe_sdp.db[0] = drm_infoframe.version; 4715 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 4716 infoframe_sdp.db[1] = drm_infoframe.length; 4717 /* 4718 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after 4719 * HDMI_INFOFRAME_HEADER_SIZE 4720 */ 4721 BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2); 4722 memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], 4723 HDMI_DRM_INFOFRAME_SIZE); 4724 4725 /* 4726 * Size of DP infoframe sdp packet for HDR static metadata is consist of 4727 * - DP SDP Header(struct dp_sdp_header): 4 bytes 4728 * - Two Data Blocks: 2 bytes 4729 * CTA Header Byte2 (INFOFRAME Version Number) 4730 * CTA Header Byte3 (Length of INFOFRAME) 4731 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes 4732 * 4733 * Prior to GEN11's GMP register size is identical to DP HDR static metadata 4734 * infoframe size. But GEN11+ has larger than that size, write_infoframe 4735 * will pad rest of the size. 4736 */ 4737 intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state, 4738 HDMI_PACKET_TYPE_GAMUT_METADATA, 4739 &infoframe_sdp, 4740 sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE); 4741 } 4742 4743 void intel_dp_vsc_enable(struct intel_dp *intel_dp, 4744 const struct intel_crtc_state *crtc_state, 4745 const struct drm_connector_state *conn_state) 4746 { 4747 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) 4748 return; 4749 4750 intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state); 4751 } 4752 4753 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp, 4754 const struct intel_crtc_state *crtc_state, 4755 const struct drm_connector_state *conn_state) 4756 { 4757 if (!conn_state->hdr_output_metadata) 4758 return; 4759 4760 intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp, 4761 crtc_state, 4762 conn_state); 4763 } 4764 4765 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 4766 { 4767 int status = 0; 4768 int test_link_rate; 4769 u8 test_lane_count, test_link_bw; 4770 /* (DP CTS 1.2) 4771 * 4.3.1.11 4772 */ 4773 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 4774 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 4775 &test_lane_count); 4776 4777 if (status <= 0) { 4778 DRM_DEBUG_KMS("Lane count read failed\n"); 4779 return DP_TEST_NAK; 4780 } 4781 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 4782 4783 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 4784 &test_link_bw); 4785 if (status <= 0) { 4786 DRM_DEBUG_KMS("Link Rate read failed\n"); 4787 return DP_TEST_NAK; 4788 } 4789 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 4790 4791 /* Validate the requested link rate and lane count */ 4792 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 4793 test_lane_count)) 4794 return DP_TEST_NAK; 4795 4796 intel_dp->compliance.test_lane_count = test_lane_count; 4797 intel_dp->compliance.test_link_rate = test_link_rate; 4798 4799 return DP_TEST_ACK; 4800 } 4801 4802 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 4803 { 4804 u8 test_pattern; 4805 u8 test_misc; 4806 __be16 h_width, v_height; 4807 int status = 0; 4808 4809 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 4810 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 4811 &test_pattern); 4812 if (status <= 0) { 4813 DRM_DEBUG_KMS("Test pattern read failed\n"); 4814 return DP_TEST_NAK; 4815 } 4816 if (test_pattern != DP_COLOR_RAMP) 4817 return DP_TEST_NAK; 4818 4819 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 4820 &h_width, 2); 4821 if (status <= 0) { 4822 DRM_DEBUG_KMS("H Width read failed\n"); 4823 return DP_TEST_NAK; 4824 } 4825 4826 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 4827 &v_height, 2); 4828 if (status <= 0) { 4829 DRM_DEBUG_KMS("V Height read failed\n"); 4830 return DP_TEST_NAK; 4831 } 4832 4833 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 4834 &test_misc); 4835 if (status <= 0) { 4836 DRM_DEBUG_KMS("TEST MISC read failed\n"); 4837 return DP_TEST_NAK; 4838 } 4839 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 4840 return DP_TEST_NAK; 4841 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 4842 return DP_TEST_NAK; 4843 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 4844 case DP_TEST_BIT_DEPTH_6: 4845 intel_dp->compliance.test_data.bpc = 6; 4846 break; 4847 case DP_TEST_BIT_DEPTH_8: 4848 intel_dp->compliance.test_data.bpc = 8; 4849 break; 4850 default: 4851 return DP_TEST_NAK; 4852 } 4853 4854 intel_dp->compliance.test_data.video_pattern = test_pattern; 4855 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 4856 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 4857 /* Set test active flag here so userspace doesn't interrupt things */ 4858 intel_dp->compliance.test_active = 1; 4859 4860 return DP_TEST_ACK; 4861 } 4862 4863 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 4864 { 4865 u8 test_result = DP_TEST_ACK; 4866 struct intel_connector *intel_connector = intel_dp->attached_connector; 4867 struct drm_connector *connector = &intel_connector->base; 4868 4869 if (intel_connector->detect_edid == NULL || 4870 connector->edid_corrupt || 4871 intel_dp->aux.i2c_defer_count > 6) { 4872 /* Check EDID read for NACKs, DEFERs and corruption 4873 * (DP CTS 1.2 Core r1.1) 4874 * 4.2.2.4 : Failed EDID read, I2C_NAK 4875 * 4.2.2.5 : Failed EDID read, I2C_DEFER 4876 * 4.2.2.6 : EDID corruption detected 4877 * Use failsafe mode for all cases 4878 */ 4879 if (intel_dp->aux.i2c_nack_count > 0 || 4880 intel_dp->aux.i2c_defer_count > 0) 4881 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", 4882 intel_dp->aux.i2c_nack_count, 4883 intel_dp->aux.i2c_defer_count); 4884 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 4885 } else { 4886 struct edid *block = intel_connector->detect_edid; 4887 4888 /* We have to write the checksum 4889 * of the last block read 4890 */ 4891 block += intel_connector->detect_edid->extensions; 4892 4893 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 4894 block->checksum) <= 0) 4895 DRM_DEBUG_KMS("Failed to write EDID checksum\n"); 4896 4897 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 4898 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 4899 } 4900 4901 /* Set test active flag here so userspace doesn't interrupt things */ 4902 intel_dp->compliance.test_active = 1; 4903 4904 return test_result; 4905 } 4906 4907 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 4908 { 4909 u8 test_result = DP_TEST_NAK; 4910 return test_result; 4911 } 4912 4913 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 4914 { 4915 u8 response = DP_TEST_NAK; 4916 u8 request = 0; 4917 int status; 4918 4919 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 4920 if (status <= 0) { 4921 DRM_DEBUG_KMS("Could not read test request from sink\n"); 4922 goto update_status; 4923 } 4924 4925 switch (request) { 4926 case DP_TEST_LINK_TRAINING: 4927 DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); 4928 response = intel_dp_autotest_link_training(intel_dp); 4929 break; 4930 case DP_TEST_LINK_VIDEO_PATTERN: 4931 DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); 4932 response = intel_dp_autotest_video_pattern(intel_dp); 4933 break; 4934 case DP_TEST_LINK_EDID_READ: 4935 DRM_DEBUG_KMS("EDID test requested\n"); 4936 response = intel_dp_autotest_edid(intel_dp); 4937 break; 4938 case DP_TEST_LINK_PHY_TEST_PATTERN: 4939 DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); 4940 response = intel_dp_autotest_phy_pattern(intel_dp); 4941 break; 4942 default: 4943 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); 4944 break; 4945 } 4946 4947 if (response & DP_TEST_ACK) 4948 intel_dp->compliance.test_type = request; 4949 4950 update_status: 4951 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 4952 if (status <= 0) 4953 DRM_DEBUG_KMS("Could not write test response to sink\n"); 4954 } 4955 4956 static int 4957 intel_dp_check_mst_status(struct intel_dp *intel_dp) 4958 { 4959 bool bret; 4960 4961 if (intel_dp->is_mst) { 4962 u8 esi[DP_DPRX_ESI_LEN] = { 0 }; 4963 int ret = 0; 4964 int retry; 4965 bool handled; 4966 4967 WARN_ON_ONCE(intel_dp->active_mst_links < 0); 4968 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4969 go_again: 4970 if (bret == true) { 4971 4972 /* check link status - esi[10] = 0x200c */ 4973 if (intel_dp->active_mst_links > 0 && 4974 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 4975 DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); 4976 intel_dp_start_link_train(intel_dp); 4977 intel_dp_stop_link_train(intel_dp); 4978 } 4979 4980 DRM_DEBUG_KMS("got esi %3ph\n", esi); 4981 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 4982 4983 if (handled) { 4984 for (retry = 0; retry < 3; retry++) { 4985 int wret; 4986 wret = drm_dp_dpcd_write(&intel_dp->aux, 4987 DP_SINK_COUNT_ESI+1, 4988 &esi[1], 3); 4989 if (wret == 3) { 4990 break; 4991 } 4992 } 4993 4994 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4995 if (bret == true) { 4996 DRM_DEBUG_KMS("got esi2 %3ph\n", esi); 4997 goto go_again; 4998 } 4999 } else 5000 ret = 0; 5001 5002 return ret; 5003 } else { 5004 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); 5005 intel_dp->is_mst = false; 5006 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5007 intel_dp->is_mst); 5008 } 5009 } 5010 return -EINVAL; 5011 } 5012 5013 static bool 5014 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 5015 { 5016 u8 link_status[DP_LINK_STATUS_SIZE]; 5017 5018 if (!intel_dp->link_trained) 5019 return false; 5020 5021 /* 5022 * While PSR source HW is enabled, it will control main-link sending 5023 * frames, enabling and disabling it so trying to do a retrain will fail 5024 * as the link would or not be on or it could mix training patterns 5025 * and frame data at the same time causing retrain to fail. 5026 * Also when exiting PSR, HW will retrain the link anyways fixing 5027 * any link status error. 5028 */ 5029 if (intel_psr_enabled(intel_dp)) 5030 return false; 5031 5032 if (!intel_dp_get_link_status(intel_dp, link_status)) 5033 return false; 5034 5035 /* 5036 * Validate the cached values of intel_dp->link_rate and 5037 * intel_dp->lane_count before attempting to retrain. 5038 */ 5039 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 5040 intel_dp->lane_count)) 5041 return false; 5042 5043 /* Retrain if Channel EQ or CR not ok */ 5044 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 5045 } 5046 5047 int intel_dp_retrain_link(struct intel_encoder *encoder, 5048 struct drm_modeset_acquire_ctx *ctx) 5049 { 5050 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5051 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 5052 struct intel_connector *connector = intel_dp->attached_connector; 5053 struct drm_connector_state *conn_state; 5054 struct intel_crtc_state *crtc_state; 5055 struct intel_crtc *crtc; 5056 int ret; 5057 5058 /* FIXME handle the MST connectors as well */ 5059 5060 if (!connector || connector->base.status != connector_status_connected) 5061 return 0; 5062 5063 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 5064 ctx); 5065 if (ret) 5066 return ret; 5067 5068 conn_state = connector->base.state; 5069 5070 crtc = to_intel_crtc(conn_state->crtc); 5071 if (!crtc) 5072 return 0; 5073 5074 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5075 if (ret) 5076 return ret; 5077 5078 crtc_state = to_intel_crtc_state(crtc->base.state); 5079 5080 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state)); 5081 5082 if (!crtc_state->base.active) 5083 return 0; 5084 5085 if (conn_state->commit && 5086 !try_wait_for_completion(&conn_state->commit->hw_done)) 5087 return 0; 5088 5089 if (!intel_dp_needs_link_retrain(intel_dp)) 5090 return 0; 5091 5092 /* Suppress underruns caused by re-training */ 5093 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 5094 if (crtc_state->has_pch_encoder) 5095 intel_set_pch_fifo_underrun_reporting(dev_priv, 5096 intel_crtc_pch_transcoder(crtc), false); 5097 5098 intel_dp_start_link_train(intel_dp); 5099 intel_dp_stop_link_train(intel_dp); 5100 5101 /* Keep underrun reporting disabled until things are stable */ 5102 intel_wait_for_vblank(dev_priv, crtc->pipe); 5103 5104 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 5105 if (crtc_state->has_pch_encoder) 5106 intel_set_pch_fifo_underrun_reporting(dev_priv, 5107 intel_crtc_pch_transcoder(crtc), true); 5108 5109 return 0; 5110 } 5111 5112 /* 5113 * If display is now connected check links status, 5114 * there has been known issues of link loss triggering 5115 * long pulse. 5116 * 5117 * Some sinks (eg. ASUS PB287Q) seem to perform some 5118 * weird HPD ping pong during modesets. So we can apparently 5119 * end up with HPD going low during a modeset, and then 5120 * going back up soon after. And once that happens we must 5121 * retrain the link to get a picture. That's in case no 5122 * userspace component reacted to intermittent HPD dip. 5123 */ 5124 static enum intel_hotplug_state 5125 intel_dp_hotplug(struct intel_encoder *encoder, 5126 struct intel_connector *connector, 5127 bool irq_received) 5128 { 5129 struct drm_modeset_acquire_ctx ctx; 5130 enum intel_hotplug_state state; 5131 int ret; 5132 5133 state = intel_encoder_hotplug(encoder, connector, irq_received); 5134 5135 drm_modeset_acquire_init(&ctx, 0); 5136 5137 for (;;) { 5138 ret = intel_dp_retrain_link(encoder, &ctx); 5139 5140 if (ret == -EDEADLK) { 5141 drm_modeset_backoff(&ctx); 5142 continue; 5143 } 5144 5145 break; 5146 } 5147 5148 drm_modeset_drop_locks(&ctx); 5149 drm_modeset_acquire_fini(&ctx); 5150 WARN(ret, "Acquiring modeset locks failed with %i\n", ret); 5151 5152 /* 5153 * Keeping it consistent with intel_ddi_hotplug() and 5154 * intel_hdmi_hotplug(). 5155 */ 5156 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received) 5157 state = INTEL_HOTPLUG_RETRY; 5158 5159 return state; 5160 } 5161 5162 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 5163 { 5164 u8 val; 5165 5166 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5167 return; 5168 5169 if (drm_dp_dpcd_readb(&intel_dp->aux, 5170 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 5171 return; 5172 5173 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 5174 5175 if (val & DP_AUTOMATED_TEST_REQUEST) 5176 intel_dp_handle_test_request(intel_dp); 5177 5178 if (val & DP_CP_IRQ) 5179 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 5180 5181 if (val & DP_SINK_SPECIFIC_IRQ) 5182 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n"); 5183 } 5184 5185 /* 5186 * According to DP spec 5187 * 5.1.2: 5188 * 1. Read DPCD 5189 * 2. Configure link according to Receiver Capabilities 5190 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 5191 * 4. Check link status on receipt of hot-plug interrupt 5192 * 5193 * intel_dp_short_pulse - handles short pulse interrupts 5194 * when full detection is not required. 5195 * Returns %true if short pulse is handled and full detection 5196 * is NOT required and %false otherwise. 5197 */ 5198 static bool 5199 intel_dp_short_pulse(struct intel_dp *intel_dp) 5200 { 5201 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 5202 u8 old_sink_count = intel_dp->sink_count; 5203 bool ret; 5204 5205 /* 5206 * Clearing compliance test variables to allow capturing 5207 * of values for next automated test request. 5208 */ 5209 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5210 5211 /* 5212 * Now read the DPCD to see if it's actually running 5213 * If the current value of sink count doesn't match with 5214 * the value that was stored earlier or dpcd read failed 5215 * we need to do full detection 5216 */ 5217 ret = intel_dp_get_dpcd(intel_dp); 5218 5219 if ((old_sink_count != intel_dp->sink_count) || !ret) { 5220 /* No need to proceed if we are going to do full detect */ 5221 return false; 5222 } 5223 5224 intel_dp_check_service_irq(intel_dp); 5225 5226 /* Handle CEC interrupts, if any */ 5227 drm_dp_cec_irq(&intel_dp->aux); 5228 5229 /* defer to the hotplug work for link retraining if needed */ 5230 if (intel_dp_needs_link_retrain(intel_dp)) 5231 return false; 5232 5233 intel_psr_short_pulse(intel_dp); 5234 5235 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 5236 DRM_DEBUG_KMS("Link Training Compliance Test requested\n"); 5237 /* Send a Hotplug Uevent to userspace to start modeset */ 5238 drm_kms_helper_hotplug_event(&dev_priv->drm); 5239 } 5240 5241 return true; 5242 } 5243 5244 /* XXX this is probably wrong for multiple downstream ports */ 5245 static enum drm_connector_status 5246 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 5247 { 5248 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 5249 u8 *dpcd = intel_dp->dpcd; 5250 u8 type; 5251 5252 if (WARN_ON(intel_dp_is_edp(intel_dp))) 5253 return connector_status_connected; 5254 5255 if (lspcon->active) 5256 lspcon_resume(lspcon); 5257 5258 if (!intel_dp_get_dpcd(intel_dp)) 5259 return connector_status_disconnected; 5260 5261 /* if there's no downstream port, we're done */ 5262 if (!drm_dp_is_branch(dpcd)) 5263 return connector_status_connected; 5264 5265 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5266 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5267 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5268 5269 return intel_dp->sink_count ? 5270 connector_status_connected : connector_status_disconnected; 5271 } 5272 5273 if (intel_dp_can_mst(intel_dp)) 5274 return connector_status_connected; 5275 5276 /* If no HPD, poke DDC gently */ 5277 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5278 return connector_status_connected; 5279 5280 /* Well we tried, say unknown for unreliable port types */ 5281 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5282 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5283 if (type == DP_DS_PORT_TYPE_VGA || 5284 type == DP_DS_PORT_TYPE_NON_EDID) 5285 return connector_status_unknown; 5286 } else { 5287 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5288 DP_DWN_STRM_PORT_TYPE_MASK; 5289 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5290 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5291 return connector_status_unknown; 5292 } 5293 5294 /* Anything else is out of spec, warn and ignore */ 5295 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); 5296 return connector_status_disconnected; 5297 } 5298 5299 static enum drm_connector_status 5300 edp_detect(struct intel_dp *intel_dp) 5301 { 5302 return connector_status_connected; 5303 } 5304 5305 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 5306 { 5307 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5308 u32 bit; 5309 5310 switch (encoder->hpd_pin) { 5311 case HPD_PORT_B: 5312 bit = SDE_PORTB_HOTPLUG; 5313 break; 5314 case HPD_PORT_C: 5315 bit = SDE_PORTC_HOTPLUG; 5316 break; 5317 case HPD_PORT_D: 5318 bit = SDE_PORTD_HOTPLUG; 5319 break; 5320 default: 5321 MISSING_CASE(encoder->hpd_pin); 5322 return false; 5323 } 5324 5325 return I915_READ(SDEISR) & bit; 5326 } 5327 5328 static bool cpt_digital_port_connected(struct intel_encoder *encoder) 5329 { 5330 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5331 u32 bit; 5332 5333 switch (encoder->hpd_pin) { 5334 case HPD_PORT_B: 5335 bit = SDE_PORTB_HOTPLUG_CPT; 5336 break; 5337 case HPD_PORT_C: 5338 bit = SDE_PORTC_HOTPLUG_CPT; 5339 break; 5340 case HPD_PORT_D: 5341 bit = SDE_PORTD_HOTPLUG_CPT; 5342 break; 5343 default: 5344 MISSING_CASE(encoder->hpd_pin); 5345 return false; 5346 } 5347 5348 return I915_READ(SDEISR) & bit; 5349 } 5350 5351 static bool spt_digital_port_connected(struct intel_encoder *encoder) 5352 { 5353 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5354 u32 bit; 5355 5356 switch (encoder->hpd_pin) { 5357 case HPD_PORT_A: 5358 bit = SDE_PORTA_HOTPLUG_SPT; 5359 break; 5360 case HPD_PORT_E: 5361 bit = SDE_PORTE_HOTPLUG_SPT; 5362 break; 5363 default: 5364 return cpt_digital_port_connected(encoder); 5365 } 5366 5367 return I915_READ(SDEISR) & bit; 5368 } 5369 5370 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 5371 { 5372 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5373 u32 bit; 5374 5375 switch (encoder->hpd_pin) { 5376 case HPD_PORT_B: 5377 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 5378 break; 5379 case HPD_PORT_C: 5380 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 5381 break; 5382 case HPD_PORT_D: 5383 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 5384 break; 5385 default: 5386 MISSING_CASE(encoder->hpd_pin); 5387 return false; 5388 } 5389 5390 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5391 } 5392 5393 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 5394 { 5395 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5396 u32 bit; 5397 5398 switch (encoder->hpd_pin) { 5399 case HPD_PORT_B: 5400 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 5401 break; 5402 case HPD_PORT_C: 5403 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 5404 break; 5405 case HPD_PORT_D: 5406 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 5407 break; 5408 default: 5409 MISSING_CASE(encoder->hpd_pin); 5410 return false; 5411 } 5412 5413 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5414 } 5415 5416 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 5417 { 5418 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5419 5420 if (encoder->hpd_pin == HPD_PORT_A) 5421 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5422 else 5423 return ibx_digital_port_connected(encoder); 5424 } 5425 5426 static bool snb_digital_port_connected(struct intel_encoder *encoder) 5427 { 5428 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5429 5430 if (encoder->hpd_pin == HPD_PORT_A) 5431 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5432 else 5433 return cpt_digital_port_connected(encoder); 5434 } 5435 5436 static bool ivb_digital_port_connected(struct intel_encoder *encoder) 5437 { 5438 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5439 5440 if (encoder->hpd_pin == HPD_PORT_A) 5441 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB; 5442 else 5443 return cpt_digital_port_connected(encoder); 5444 } 5445 5446 static bool bdw_digital_port_connected(struct intel_encoder *encoder) 5447 { 5448 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5449 5450 if (encoder->hpd_pin == HPD_PORT_A) 5451 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; 5452 else 5453 return cpt_digital_port_connected(encoder); 5454 } 5455 5456 static bool bxt_digital_port_connected(struct intel_encoder *encoder) 5457 { 5458 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5459 u32 bit; 5460 5461 switch (encoder->hpd_pin) { 5462 case HPD_PORT_A: 5463 bit = BXT_DE_PORT_HP_DDIA; 5464 break; 5465 case HPD_PORT_B: 5466 bit = BXT_DE_PORT_HP_DDIB; 5467 break; 5468 case HPD_PORT_C: 5469 bit = BXT_DE_PORT_HP_DDIC; 5470 break; 5471 default: 5472 MISSING_CASE(encoder->hpd_pin); 5473 return false; 5474 } 5475 5476 return I915_READ(GEN8_DE_PORT_ISR) & bit; 5477 } 5478 5479 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv, 5480 struct intel_digital_port *intel_dig_port) 5481 { 5482 enum port port = intel_dig_port->base.port; 5483 5484 if (HAS_PCH_MCC(dev_priv) && port == PORT_C) 5485 return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1); 5486 5487 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port); 5488 } 5489 5490 static bool icl_digital_port_connected(struct intel_encoder *encoder) 5491 { 5492 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5493 struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); 5494 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 5495 5496 if (intel_phy_is_combo(dev_priv, phy)) 5497 return icl_combo_port_connected(dev_priv, dig_port); 5498 else if (intel_phy_is_tc(dev_priv, phy)) 5499 return intel_tc_port_connected(dig_port); 5500 else 5501 MISSING_CASE(encoder->hpd_pin); 5502 5503 return false; 5504 } 5505 5506 /* 5507 * intel_digital_port_connected - is the specified port connected? 5508 * @encoder: intel_encoder 5509 * 5510 * In cases where there's a connector physically connected but it can't be used 5511 * by our hardware we also return false, since the rest of the driver should 5512 * pretty much treat the port as disconnected. This is relevant for type-C 5513 * (starting on ICL) where there's ownership involved. 5514 * 5515 * Return %true if port is connected, %false otherwise. 5516 */ 5517 static bool __intel_digital_port_connected(struct intel_encoder *encoder) 5518 { 5519 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5520 5521 if (HAS_GMCH(dev_priv)) { 5522 if (IS_GM45(dev_priv)) 5523 return gm45_digital_port_connected(encoder); 5524 else 5525 return g4x_digital_port_connected(encoder); 5526 } 5527 5528 if (INTEL_GEN(dev_priv) >= 11) 5529 return icl_digital_port_connected(encoder); 5530 else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv)) 5531 return spt_digital_port_connected(encoder); 5532 else if (IS_GEN9_LP(dev_priv)) 5533 return bxt_digital_port_connected(encoder); 5534 else if (IS_GEN(dev_priv, 8)) 5535 return bdw_digital_port_connected(encoder); 5536 else if (IS_GEN(dev_priv, 7)) 5537 return ivb_digital_port_connected(encoder); 5538 else if (IS_GEN(dev_priv, 6)) 5539 return snb_digital_port_connected(encoder); 5540 else if (IS_GEN(dev_priv, 5)) 5541 return ilk_digital_port_connected(encoder); 5542 5543 MISSING_CASE(INTEL_GEN(dev_priv)); 5544 return false; 5545 } 5546 5547 bool intel_digital_port_connected(struct intel_encoder *encoder) 5548 { 5549 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5550 bool is_connected = false; 5551 intel_wakeref_t wakeref; 5552 5553 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 5554 is_connected = __intel_digital_port_connected(encoder); 5555 5556 return is_connected; 5557 } 5558 5559 static struct edid * 5560 intel_dp_get_edid(struct intel_dp *intel_dp) 5561 { 5562 struct intel_connector *intel_connector = intel_dp->attached_connector; 5563 5564 /* use cached edid if we have one */ 5565 if (intel_connector->edid) { 5566 /* invalid edid */ 5567 if (IS_ERR(intel_connector->edid)) 5568 return NULL; 5569 5570 return drm_edid_duplicate(intel_connector->edid); 5571 } else 5572 return drm_get_edid(&intel_connector->base, 5573 &intel_dp->aux.ddc); 5574 } 5575 5576 static void 5577 intel_dp_set_edid(struct intel_dp *intel_dp) 5578 { 5579 struct intel_connector *intel_connector = intel_dp->attached_connector; 5580 struct edid *edid; 5581 5582 intel_dp_unset_edid(intel_dp); 5583 edid = intel_dp_get_edid(intel_dp); 5584 intel_connector->detect_edid = edid; 5585 5586 intel_dp->has_audio = drm_detect_monitor_audio(edid); 5587 drm_dp_cec_set_edid(&intel_dp->aux, edid); 5588 } 5589 5590 static void 5591 intel_dp_unset_edid(struct intel_dp *intel_dp) 5592 { 5593 struct intel_connector *intel_connector = intel_dp->attached_connector; 5594 5595 drm_dp_cec_unset_edid(&intel_dp->aux); 5596 kfree(intel_connector->detect_edid); 5597 intel_connector->detect_edid = NULL; 5598 5599 intel_dp->has_audio = false; 5600 } 5601 5602 static int 5603 intel_dp_detect(struct drm_connector *connector, 5604 struct drm_modeset_acquire_ctx *ctx, 5605 bool force) 5606 { 5607 struct drm_i915_private *dev_priv = to_i915(connector->dev); 5608 struct intel_dp *intel_dp = intel_attached_dp(connector); 5609 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5610 struct intel_encoder *encoder = &dig_port->base; 5611 enum drm_connector_status status; 5612 5613 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5614 connector->base.id, connector->name); 5615 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 5616 5617 /* Can't disconnect eDP */ 5618 if (intel_dp_is_edp(intel_dp)) 5619 status = edp_detect(intel_dp); 5620 else if (intel_digital_port_connected(encoder)) 5621 status = intel_dp_detect_dpcd(intel_dp); 5622 else 5623 status = connector_status_disconnected; 5624 5625 if (status == connector_status_disconnected) { 5626 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5627 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 5628 5629 if (intel_dp->is_mst) { 5630 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 5631 intel_dp->is_mst, 5632 intel_dp->mst_mgr.mst_state); 5633 intel_dp->is_mst = false; 5634 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5635 intel_dp->is_mst); 5636 } 5637 5638 goto out; 5639 } 5640 5641 if (intel_dp->reset_link_params) { 5642 /* Initial max link lane count */ 5643 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 5644 5645 /* Initial max link rate */ 5646 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 5647 5648 intel_dp->reset_link_params = false; 5649 } 5650 5651 intel_dp_print_rates(intel_dp); 5652 5653 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 5654 if (INTEL_GEN(dev_priv) >= 11) 5655 intel_dp_get_dsc_sink_cap(intel_dp); 5656 5657 intel_dp_configure_mst(intel_dp); 5658 5659 if (intel_dp->is_mst) { 5660 /* 5661 * If we are in MST mode then this connector 5662 * won't appear connected or have anything 5663 * with EDID on it 5664 */ 5665 status = connector_status_disconnected; 5666 goto out; 5667 } 5668 5669 /* 5670 * Some external monitors do not signal loss of link synchronization 5671 * with an IRQ_HPD, so force a link status check. 5672 */ 5673 if (!intel_dp_is_edp(intel_dp)) { 5674 int ret; 5675 5676 ret = intel_dp_retrain_link(encoder, ctx); 5677 if (ret) 5678 return ret; 5679 } 5680 5681 /* 5682 * Clearing NACK and defer counts to get their exact values 5683 * while reading EDID which are required by Compliance tests 5684 * 4.2.2.4 and 4.2.2.5 5685 */ 5686 intel_dp->aux.i2c_nack_count = 0; 5687 intel_dp->aux.i2c_defer_count = 0; 5688 5689 intel_dp_set_edid(intel_dp); 5690 if (intel_dp_is_edp(intel_dp) || 5691 to_intel_connector(connector)->detect_edid) 5692 status = connector_status_connected; 5693 5694 intel_dp_check_service_irq(intel_dp); 5695 5696 out: 5697 if (status != connector_status_connected && !intel_dp->is_mst) 5698 intel_dp_unset_edid(intel_dp); 5699 5700 /* 5701 * Make sure the refs for power wells enabled during detect are 5702 * dropped to avoid a new detect cycle triggered by HPD polling. 5703 */ 5704 intel_display_power_flush_work(dev_priv); 5705 5706 return status; 5707 } 5708 5709 static void 5710 intel_dp_force(struct drm_connector *connector) 5711 { 5712 struct intel_dp *intel_dp = intel_attached_dp(connector); 5713 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5714 struct intel_encoder *intel_encoder = &dig_port->base; 5715 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 5716 enum intel_display_power_domain aux_domain = 5717 intel_aux_power_domain(dig_port); 5718 intel_wakeref_t wakeref; 5719 5720 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5721 connector->base.id, connector->name); 5722 intel_dp_unset_edid(intel_dp); 5723 5724 if (connector->status != connector_status_connected) 5725 return; 5726 5727 wakeref = intel_display_power_get(dev_priv, aux_domain); 5728 5729 intel_dp_set_edid(intel_dp); 5730 5731 intel_display_power_put(dev_priv, aux_domain, wakeref); 5732 } 5733 5734 static int intel_dp_get_modes(struct drm_connector *connector) 5735 { 5736 struct intel_connector *intel_connector = to_intel_connector(connector); 5737 struct edid *edid; 5738 5739 edid = intel_connector->detect_edid; 5740 if (edid) { 5741 int ret = intel_connector_update_modes(connector, edid); 5742 if (ret) 5743 return ret; 5744 } 5745 5746 /* if eDP has no EDID, fall back to fixed mode */ 5747 if (intel_dp_is_edp(intel_attached_dp(connector)) && 5748 intel_connector->panel.fixed_mode) { 5749 struct drm_display_mode *mode; 5750 5751 mode = drm_mode_duplicate(connector->dev, 5752 intel_connector->panel.fixed_mode); 5753 if (mode) { 5754 drm_mode_probed_add(connector, mode); 5755 return 1; 5756 } 5757 } 5758 5759 return 0; 5760 } 5761 5762 static int 5763 intel_dp_connector_register(struct drm_connector *connector) 5764 { 5765 struct intel_dp *intel_dp = intel_attached_dp(connector); 5766 int ret; 5767 5768 ret = intel_connector_register(connector); 5769 if (ret) 5770 return ret; 5771 5772 i915_debugfs_connector_add(connector); 5773 5774 DRM_DEBUG_KMS("registering %s bus for %s\n", 5775 intel_dp->aux.name, connector->kdev->kobj.name); 5776 5777 intel_dp->aux.dev = connector->kdev; 5778 ret = drm_dp_aux_register(&intel_dp->aux); 5779 if (!ret) 5780 drm_dp_cec_register_connector(&intel_dp->aux, connector); 5781 return ret; 5782 } 5783 5784 static void 5785 intel_dp_connector_unregister(struct drm_connector *connector) 5786 { 5787 struct intel_dp *intel_dp = intel_attached_dp(connector); 5788 5789 drm_dp_cec_unregister_connector(&intel_dp->aux); 5790 drm_dp_aux_unregister(&intel_dp->aux); 5791 intel_connector_unregister(connector); 5792 } 5793 5794 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 5795 { 5796 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 5797 struct intel_dp *intel_dp = &intel_dig_port->dp; 5798 5799 intel_dp_mst_encoder_cleanup(intel_dig_port); 5800 if (intel_dp_is_edp(intel_dp)) { 5801 intel_wakeref_t wakeref; 5802 5803 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5804 /* 5805 * vdd might still be enabled do to the delayed vdd off. 5806 * Make sure vdd is actually turned off here. 5807 */ 5808 with_pps_lock(intel_dp, wakeref) 5809 edp_panel_vdd_off_sync(intel_dp); 5810 5811 if (intel_dp->edp_notifier.notifier_call) { 5812 unregister_reboot_notifier(&intel_dp->edp_notifier); 5813 intel_dp->edp_notifier.notifier_call = NULL; 5814 } 5815 } 5816 5817 intel_dp_aux_fini(intel_dp); 5818 } 5819 5820 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 5821 { 5822 intel_dp_encoder_flush_work(encoder); 5823 5824 drm_encoder_cleanup(encoder); 5825 kfree(enc_to_dig_port(encoder)); 5826 } 5827 5828 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 5829 { 5830 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); 5831 intel_wakeref_t wakeref; 5832 5833 if (!intel_dp_is_edp(intel_dp)) 5834 return; 5835 5836 /* 5837 * vdd might still be enabled do to the delayed vdd off. 5838 * Make sure vdd is actually turned off here. 5839 */ 5840 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5841 with_pps_lock(intel_dp, wakeref) 5842 edp_panel_vdd_off_sync(intel_dp); 5843 } 5844 5845 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 5846 { 5847 long ret; 5848 5849 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 5850 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, 5851 msecs_to_jiffies(timeout)); 5852 5853 if (!ret) 5854 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 5855 } 5856 5857 static 5858 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 5859 u8 *an) 5860 { 5861 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base); 5862 static const struct drm_dp_aux_msg msg = { 5863 .request = DP_AUX_NATIVE_WRITE, 5864 .address = DP_AUX_HDCP_AKSV, 5865 .size = DRM_HDCP_KSV_LEN, 5866 }; 5867 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 5868 ssize_t dpcd_ret; 5869 int ret; 5870 5871 /* Output An first, that's easy */ 5872 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 5873 an, DRM_HDCP_AN_LEN); 5874 if (dpcd_ret != DRM_HDCP_AN_LEN) { 5875 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n", 5876 dpcd_ret); 5877 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 5878 } 5879 5880 /* 5881 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 5882 * order to get it on the wire, we need to create the AUX header as if 5883 * we were writing the data, and then tickle the hardware to output the 5884 * data once the header is sent out. 5885 */ 5886 intel_dp_aux_header(txbuf, &msg); 5887 5888 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 5889 rxbuf, sizeof(rxbuf), 5890 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 5891 if (ret < 0) { 5892 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret); 5893 return ret; 5894 } else if (ret == 0) { 5895 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n"); 5896 return -EIO; 5897 } 5898 5899 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 5900 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 5901 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 5902 reply); 5903 return -EIO; 5904 } 5905 return 0; 5906 } 5907 5908 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 5909 u8 *bksv) 5910 { 5911 ssize_t ret; 5912 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 5913 DRM_HDCP_KSV_LEN); 5914 if (ret != DRM_HDCP_KSV_LEN) { 5915 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret); 5916 return ret >= 0 ? -EIO : ret; 5917 } 5918 return 0; 5919 } 5920 5921 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 5922 u8 *bstatus) 5923 { 5924 ssize_t ret; 5925 /* 5926 * For some reason the HDMI and DP HDCP specs call this register 5927 * definition by different names. In the HDMI spec, it's called BSTATUS, 5928 * but in DP it's called BINFO. 5929 */ 5930 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 5931 bstatus, DRM_HDCP_BSTATUS_LEN); 5932 if (ret != DRM_HDCP_BSTATUS_LEN) { 5933 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5934 return ret >= 0 ? -EIO : ret; 5935 } 5936 return 0; 5937 } 5938 5939 static 5940 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 5941 u8 *bcaps) 5942 { 5943 ssize_t ret; 5944 5945 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 5946 bcaps, 1); 5947 if (ret != 1) { 5948 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret); 5949 return ret >= 0 ? -EIO : ret; 5950 } 5951 5952 return 0; 5953 } 5954 5955 static 5956 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 5957 bool *repeater_present) 5958 { 5959 ssize_t ret; 5960 u8 bcaps; 5961 5962 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 5963 if (ret) 5964 return ret; 5965 5966 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 5967 return 0; 5968 } 5969 5970 static 5971 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 5972 u8 *ri_prime) 5973 { 5974 ssize_t ret; 5975 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 5976 ri_prime, DRM_HDCP_RI_LEN); 5977 if (ret != DRM_HDCP_RI_LEN) { 5978 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret); 5979 return ret >= 0 ? -EIO : ret; 5980 } 5981 return 0; 5982 } 5983 5984 static 5985 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 5986 bool *ksv_ready) 5987 { 5988 ssize_t ret; 5989 u8 bstatus; 5990 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5991 &bstatus, 1); 5992 if (ret != 1) { 5993 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5994 return ret >= 0 ? -EIO : ret; 5995 } 5996 *ksv_ready = bstatus & DP_BSTATUS_READY; 5997 return 0; 5998 } 5999 6000 static 6001 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 6002 int num_downstream, u8 *ksv_fifo) 6003 { 6004 ssize_t ret; 6005 int i; 6006 6007 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 6008 for (i = 0; i < num_downstream; i += 3) { 6009 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 6010 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6011 DP_AUX_HDCP_KSV_FIFO, 6012 ksv_fifo + i * DRM_HDCP_KSV_LEN, 6013 len); 6014 if (ret != len) { 6015 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n", 6016 i, ret); 6017 return ret >= 0 ? -EIO : ret; 6018 } 6019 } 6020 return 0; 6021 } 6022 6023 static 6024 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 6025 int i, u32 *part) 6026 { 6027 ssize_t ret; 6028 6029 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 6030 return -EINVAL; 6031 6032 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6033 DP_AUX_HDCP_V_PRIME(i), part, 6034 DRM_HDCP_V_PRIME_PART_LEN); 6035 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 6036 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 6037 return ret >= 0 ? -EIO : ret; 6038 } 6039 return 0; 6040 } 6041 6042 static 6043 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 6044 bool enable) 6045 { 6046 /* Not used for single stream DisplayPort setups */ 6047 return 0; 6048 } 6049 6050 static 6051 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 6052 { 6053 ssize_t ret; 6054 u8 bstatus; 6055 6056 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6057 &bstatus, 1); 6058 if (ret != 1) { 6059 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6060 return false; 6061 } 6062 6063 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 6064 } 6065 6066 static 6067 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 6068 bool *hdcp_capable) 6069 { 6070 ssize_t ret; 6071 u8 bcaps; 6072 6073 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6074 if (ret) 6075 return ret; 6076 6077 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 6078 return 0; 6079 } 6080 6081 struct hdcp2_dp_errata_stream_type { 6082 u8 msg_id; 6083 u8 stream_type; 6084 } __packed; 6085 6086 struct hdcp2_dp_msg_data { 6087 u8 msg_id; 6088 u32 offset; 6089 bool msg_detectable; 6090 u32 timeout; 6091 u32 timeout2; /* Added for non_paired situation */ 6092 }; 6093 6094 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { 6095 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, 6096 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 6097 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, 6098 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 6099 false, 0, 0 }, 6100 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 6101 false, 0, 0 }, 6102 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 6103 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 6104 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, 6105 { HDCP_2_2_AKE_SEND_PAIRING_INFO, 6106 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 6107 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, 6108 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, 6109 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 6110 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, 6111 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 6112 0, 0 }, 6113 { HDCP_2_2_REP_SEND_RECVID_LIST, 6114 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 6115 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, 6116 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 6117 0, 0 }, 6118 { HDCP_2_2_REP_STREAM_MANAGE, 6119 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 6120 0, 0 }, 6121 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 6122 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, 6123 /* local define to shovel this through the write_2_2 interface */ 6124 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 6125 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, 6126 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 6127 0, 0 }, 6128 }; 6129 6130 static inline 6131 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 6132 u8 *rx_status) 6133 { 6134 ssize_t ret; 6135 6136 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6137 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 6138 HDCP_2_2_DP_RXSTATUS_LEN); 6139 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 6140 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6141 return ret >= 0 ? -EIO : ret; 6142 } 6143 6144 return 0; 6145 } 6146 6147 static 6148 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 6149 u8 msg_id, bool *msg_ready) 6150 { 6151 u8 rx_status; 6152 int ret; 6153 6154 *msg_ready = false; 6155 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6156 if (ret < 0) 6157 return ret; 6158 6159 switch (msg_id) { 6160 case HDCP_2_2_AKE_SEND_HPRIME: 6161 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 6162 *msg_ready = true; 6163 break; 6164 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 6165 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 6166 *msg_ready = true; 6167 break; 6168 case HDCP_2_2_REP_SEND_RECVID_LIST: 6169 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6170 *msg_ready = true; 6171 break; 6172 default: 6173 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 6174 return -EINVAL; 6175 } 6176 6177 return 0; 6178 } 6179 6180 static ssize_t 6181 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 6182 const struct hdcp2_dp_msg_data *hdcp2_msg_data) 6183 { 6184 struct intel_dp *dp = &intel_dig_port->dp; 6185 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6186 u8 msg_id = hdcp2_msg_data->msg_id; 6187 int ret, timeout; 6188 bool msg_ready = false; 6189 6190 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 6191 timeout = hdcp2_msg_data->timeout2; 6192 else 6193 timeout = hdcp2_msg_data->timeout; 6194 6195 /* 6196 * There is no way to detect the CERT, LPRIME and STREAM_READY 6197 * availability. So Wait for timeout and read the msg. 6198 */ 6199 if (!hdcp2_msg_data->msg_detectable) { 6200 mdelay(timeout); 6201 ret = 0; 6202 } else { 6203 /* 6204 * As we want to check the msg availability at timeout, Ignoring 6205 * the timeout at wait for CP_IRQ. 6206 */ 6207 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 6208 ret = hdcp2_detect_msg_availability(intel_dig_port, 6209 msg_id, &msg_ready); 6210 if (!msg_ready) 6211 ret = -ETIMEDOUT; 6212 } 6213 6214 if (ret) 6215 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n", 6216 hdcp2_msg_data->msg_id, ret, timeout); 6217 6218 return ret; 6219 } 6220 6221 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 6222 { 6223 int i; 6224 6225 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) 6226 if (hdcp2_dp_msg_data[i].msg_id == msg_id) 6227 return &hdcp2_dp_msg_data[i]; 6228 6229 return NULL; 6230 } 6231 6232 static 6233 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 6234 void *buf, size_t size) 6235 { 6236 struct intel_dp *dp = &intel_dig_port->dp; 6237 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6238 unsigned int offset; 6239 u8 *byte = buf; 6240 ssize_t ret, bytes_to_write, len; 6241 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6242 6243 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 6244 if (!hdcp2_msg_data) 6245 return -EINVAL; 6246 6247 offset = hdcp2_msg_data->offset; 6248 6249 /* No msg_id in DP HDCP2.2 msgs */ 6250 bytes_to_write = size - 1; 6251 byte++; 6252 6253 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 6254 6255 while (bytes_to_write) { 6256 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 6257 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 6258 6259 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 6260 offset, (void *)byte, len); 6261 if (ret < 0) 6262 return ret; 6263 6264 bytes_to_write -= ret; 6265 byte += ret; 6266 offset += ret; 6267 } 6268 6269 return size; 6270 } 6271 6272 static 6273 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6274 { 6275 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6276 u32 dev_cnt; 6277 ssize_t ret; 6278 6279 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6280 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6281 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6282 if (ret != HDCP_2_2_RXINFO_LEN) 6283 return ret >= 0 ? -EIO : ret; 6284 6285 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6286 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6287 6288 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6289 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6290 6291 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6292 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6293 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6294 6295 return ret; 6296 } 6297 6298 static 6299 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6300 u8 msg_id, void *buf, size_t size) 6301 { 6302 unsigned int offset; 6303 u8 *byte = buf; 6304 ssize_t ret, bytes_to_recv, len; 6305 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6306 6307 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6308 if (!hdcp2_msg_data) 6309 return -EINVAL; 6310 offset = hdcp2_msg_data->offset; 6311 6312 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6313 if (ret < 0) 6314 return ret; 6315 6316 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6317 ret = get_receiver_id_list_size(intel_dig_port); 6318 if (ret < 0) 6319 return ret; 6320 6321 size = ret; 6322 } 6323 bytes_to_recv = size - 1; 6324 6325 /* DP adaptation msgs has no msg_id */ 6326 byte++; 6327 6328 while (bytes_to_recv) { 6329 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6330 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6331 6332 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6333 (void *)byte, len); 6334 if (ret < 0) { 6335 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret); 6336 return ret; 6337 } 6338 6339 bytes_to_recv -= ret; 6340 byte += ret; 6341 offset += ret; 6342 } 6343 byte = buf; 6344 *byte = msg_id; 6345 6346 return size; 6347 } 6348 6349 static 6350 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6351 bool is_repeater, u8 content_type) 6352 { 6353 struct hdcp2_dp_errata_stream_type stream_type_msg; 6354 6355 if (is_repeater) 6356 return 0; 6357 6358 /* 6359 * Errata for DP: As Stream type is used for encryption, Receiver 6360 * should be communicated with stream type for the decryption of the 6361 * content. 6362 * Repeater will be communicated with stream type as a part of it's 6363 * auth later in time. 6364 */ 6365 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6366 stream_type_msg.stream_type = content_type; 6367 6368 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6369 sizeof(stream_type_msg)); 6370 } 6371 6372 static 6373 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6374 { 6375 u8 rx_status; 6376 int ret; 6377 6378 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6379 if (ret) 6380 return ret; 6381 6382 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6383 ret = HDCP_REAUTH_REQUEST; 6384 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6385 ret = HDCP_LINK_INTEGRITY_FAILURE; 6386 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6387 ret = HDCP_TOPOLOGY_CHANGE; 6388 6389 return ret; 6390 } 6391 6392 static 6393 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6394 bool *capable) 6395 { 6396 u8 rx_caps[3]; 6397 int ret; 6398 6399 *capable = false; 6400 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6401 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6402 rx_caps, HDCP_2_2_RXCAPS_LEN); 6403 if (ret != HDCP_2_2_RXCAPS_LEN) 6404 return ret >= 0 ? -EIO : ret; 6405 6406 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6407 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6408 *capable = true; 6409 6410 return 0; 6411 } 6412 6413 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6414 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6415 .read_bksv = intel_dp_hdcp_read_bksv, 6416 .read_bstatus = intel_dp_hdcp_read_bstatus, 6417 .repeater_present = intel_dp_hdcp_repeater_present, 6418 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6419 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6420 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6421 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6422 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6423 .check_link = intel_dp_hdcp_check_link, 6424 .hdcp_capable = intel_dp_hdcp_capable, 6425 .write_2_2_msg = intel_dp_hdcp2_write_msg, 6426 .read_2_2_msg = intel_dp_hdcp2_read_msg, 6427 .config_stream_type = intel_dp_hdcp2_config_stream_type, 6428 .check_2_2_link = intel_dp_hdcp2_check_link, 6429 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 6430 .protocol = HDCP_PROTOCOL_DP, 6431 }; 6432 6433 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6434 { 6435 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6436 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6437 6438 lockdep_assert_held(&dev_priv->pps_mutex); 6439 6440 if (!edp_have_panel_vdd(intel_dp)) 6441 return; 6442 6443 /* 6444 * The VDD bit needs a power domain reference, so if the bit is 6445 * already enabled when we boot or resume, grab this reference and 6446 * schedule a vdd off, so we don't hold on to the reference 6447 * indefinitely. 6448 */ 6449 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); 6450 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6451 6452 edp_panel_vdd_schedule_off(intel_dp); 6453 } 6454 6455 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6456 { 6457 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6458 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6459 enum pipe pipe; 6460 6461 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6462 encoder->port, &pipe)) 6463 return pipe; 6464 6465 return INVALID_PIPE; 6466 } 6467 6468 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6469 { 6470 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6471 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 6472 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6473 intel_wakeref_t wakeref; 6474 6475 if (!HAS_DDI(dev_priv)) 6476 intel_dp->DP = I915_READ(intel_dp->output_reg); 6477 6478 if (lspcon->active) 6479 lspcon_resume(lspcon); 6480 6481 intel_dp->reset_link_params = true; 6482 6483 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6484 !intel_dp_is_edp(intel_dp)) 6485 return; 6486 6487 with_pps_lock(intel_dp, wakeref) { 6488 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6489 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6490 6491 if (intel_dp_is_edp(intel_dp)) { 6492 /* 6493 * Reinit the power sequencer, in case BIOS did 6494 * something nasty with it. 6495 */ 6496 intel_dp_pps_init(intel_dp); 6497 intel_edp_panel_vdd_sanitize(intel_dp); 6498 } 6499 } 6500 } 6501 6502 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6503 .force = intel_dp_force, 6504 .fill_modes = drm_helper_probe_single_connector_modes, 6505 .atomic_get_property = intel_digital_connector_atomic_get_property, 6506 .atomic_set_property = intel_digital_connector_atomic_set_property, 6507 .late_register = intel_dp_connector_register, 6508 .early_unregister = intel_dp_connector_unregister, 6509 .destroy = intel_connector_destroy, 6510 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6511 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6512 }; 6513 6514 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6515 .detect_ctx = intel_dp_detect, 6516 .get_modes = intel_dp_get_modes, 6517 .mode_valid = intel_dp_mode_valid, 6518 .atomic_check = intel_digital_connector_atomic_check, 6519 }; 6520 6521 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6522 .reset = intel_dp_encoder_reset, 6523 .destroy = intel_dp_encoder_destroy, 6524 }; 6525 6526 enum irqreturn 6527 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 6528 { 6529 struct intel_dp *intel_dp = &intel_dig_port->dp; 6530 6531 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { 6532 /* 6533 * vdd off can generate a long pulse on eDP which 6534 * would require vdd on to handle it, and thus we 6535 * would end up in an endless cycle of 6536 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." 6537 */ 6538 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n", 6539 intel_dig_port->base.base.base.id, 6540 intel_dig_port->base.base.name); 6541 return IRQ_HANDLED; 6542 } 6543 6544 DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n", 6545 intel_dig_port->base.base.base.id, 6546 intel_dig_port->base.base.name, 6547 long_hpd ? "long" : "short"); 6548 6549 if (long_hpd) { 6550 intel_dp->reset_link_params = true; 6551 return IRQ_NONE; 6552 } 6553 6554 if (intel_dp->is_mst) { 6555 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { 6556 /* 6557 * If we were in MST mode, and device is not 6558 * there, get out of MST mode 6559 */ 6560 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 6561 intel_dp->is_mst, intel_dp->mst_mgr.mst_state); 6562 intel_dp->is_mst = false; 6563 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6564 intel_dp->is_mst); 6565 6566 return IRQ_NONE; 6567 } 6568 } 6569 6570 if (!intel_dp->is_mst) { 6571 bool handled; 6572 6573 handled = intel_dp_short_pulse(intel_dp); 6574 6575 if (!handled) 6576 return IRQ_NONE; 6577 } 6578 6579 return IRQ_HANDLED; 6580 } 6581 6582 /* check the VBT to see whether the eDP is on another port */ 6583 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6584 { 6585 /* 6586 * eDP not supported on g4x. so bail out early just 6587 * for a bit extra safety in case the VBT is bonkers. 6588 */ 6589 if (INTEL_GEN(dev_priv) < 5) 6590 return false; 6591 6592 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 6593 return true; 6594 6595 return intel_bios_is_port_edp(dev_priv, port); 6596 } 6597 6598 static void 6599 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6600 { 6601 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6602 enum port port = dp_to_dig_port(intel_dp)->base.port; 6603 6604 if (!IS_G4X(dev_priv) && port != PORT_A) 6605 intel_attach_force_audio_property(connector); 6606 6607 intel_attach_broadcast_rgb_property(connector); 6608 if (HAS_GMCH(dev_priv)) 6609 drm_connector_attach_max_bpc_property(connector, 6, 10); 6610 else if (INTEL_GEN(dev_priv) >= 5) 6611 drm_connector_attach_max_bpc_property(connector, 6, 12); 6612 6613 intel_attach_colorspace_property(connector); 6614 6615 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11) 6616 drm_object_attach_property(&connector->base, 6617 connector->dev->mode_config.hdr_output_metadata_property, 6618 0); 6619 6620 if (intel_dp_is_edp(intel_dp)) { 6621 u32 allowed_scalers; 6622 6623 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 6624 if (!HAS_GMCH(dev_priv)) 6625 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 6626 6627 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 6628 6629 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 6630 6631 } 6632 } 6633 6634 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 6635 { 6636 intel_dp->panel_power_off_time = ktime_get_boottime(); 6637 intel_dp->last_power_on = jiffies; 6638 intel_dp->last_backlight_off = jiffies; 6639 } 6640 6641 static void 6642 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 6643 { 6644 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6645 u32 pp_on, pp_off, pp_ctl; 6646 struct pps_registers regs; 6647 6648 intel_pps_get_registers(intel_dp, ®s); 6649 6650 pp_ctl = ironlake_get_pp_control(intel_dp); 6651 6652 /* Ensure PPS is unlocked */ 6653 if (!HAS_DDI(dev_priv)) 6654 I915_WRITE(regs.pp_ctrl, pp_ctl); 6655 6656 pp_on = I915_READ(regs.pp_on); 6657 pp_off = I915_READ(regs.pp_off); 6658 6659 /* Pull timing values out of registers */ 6660 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 6661 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 6662 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 6663 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 6664 6665 if (i915_mmio_reg_valid(regs.pp_div)) { 6666 u32 pp_div; 6667 6668 pp_div = I915_READ(regs.pp_div); 6669 6670 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 6671 } else { 6672 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 6673 } 6674 } 6675 6676 static void 6677 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 6678 { 6679 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 6680 state_name, 6681 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 6682 } 6683 6684 static void 6685 intel_pps_verify_state(struct intel_dp *intel_dp) 6686 { 6687 struct edp_power_seq hw; 6688 struct edp_power_seq *sw = &intel_dp->pps_delays; 6689 6690 intel_pps_readout_hw_state(intel_dp, &hw); 6691 6692 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 6693 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 6694 DRM_ERROR("PPS state mismatch\n"); 6695 intel_pps_dump_state("sw", sw); 6696 intel_pps_dump_state("hw", &hw); 6697 } 6698 } 6699 6700 static void 6701 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 6702 { 6703 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6704 struct edp_power_seq cur, vbt, spec, 6705 *final = &intel_dp->pps_delays; 6706 6707 lockdep_assert_held(&dev_priv->pps_mutex); 6708 6709 /* already initialized? */ 6710 if (final->t11_t12 != 0) 6711 return; 6712 6713 intel_pps_readout_hw_state(intel_dp, &cur); 6714 6715 intel_pps_dump_state("cur", &cur); 6716 6717 vbt = dev_priv->vbt.edp.pps; 6718 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 6719 * of 500ms appears to be too short. Ocassionally the panel 6720 * just fails to power back on. Increasing the delay to 800ms 6721 * seems sufficient to avoid this problem. 6722 */ 6723 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 6724 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 6725 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n", 6726 vbt.t11_t12); 6727 } 6728 /* T11_T12 delay is special and actually in units of 100ms, but zero 6729 * based in the hw (so we need to add 100 ms). But the sw vbt 6730 * table multiplies it with 1000 to make it in units of 100usec, 6731 * too. */ 6732 vbt.t11_t12 += 100 * 10; 6733 6734 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 6735 * our hw here, which are all in 100usec. */ 6736 spec.t1_t3 = 210 * 10; 6737 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 6738 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 6739 spec.t10 = 500 * 10; 6740 /* This one is special and actually in units of 100ms, but zero 6741 * based in the hw (so we need to add 100 ms). But the sw vbt 6742 * table multiplies it with 1000 to make it in units of 100usec, 6743 * too. */ 6744 spec.t11_t12 = (510 + 100) * 10; 6745 6746 intel_pps_dump_state("vbt", &vbt); 6747 6748 /* Use the max of the register settings and vbt. If both are 6749 * unset, fall back to the spec limits. */ 6750 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 6751 spec.field : \ 6752 max(cur.field, vbt.field)) 6753 assign_final(t1_t3); 6754 assign_final(t8); 6755 assign_final(t9); 6756 assign_final(t10); 6757 assign_final(t11_t12); 6758 #undef assign_final 6759 6760 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 6761 intel_dp->panel_power_up_delay = get_delay(t1_t3); 6762 intel_dp->backlight_on_delay = get_delay(t8); 6763 intel_dp->backlight_off_delay = get_delay(t9); 6764 intel_dp->panel_power_down_delay = get_delay(t10); 6765 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 6766 #undef get_delay 6767 6768 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", 6769 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, 6770 intel_dp->panel_power_cycle_delay); 6771 6772 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", 6773 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); 6774 6775 /* 6776 * We override the HW backlight delays to 1 because we do manual waits 6777 * on them. For T8, even BSpec recommends doing it. For T9, if we 6778 * don't do this, we'll end up waiting for the backlight off delay 6779 * twice: once when we do the manual sleep, and once when we disable 6780 * the panel and wait for the PP_STATUS bit to become zero. 6781 */ 6782 final->t8 = 1; 6783 final->t9 = 1; 6784 6785 /* 6786 * HW has only a 100msec granularity for t11_t12 so round it up 6787 * accordingly. 6788 */ 6789 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 6790 } 6791 6792 static void 6793 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 6794 bool force_disable_vdd) 6795 { 6796 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6797 u32 pp_on, pp_off, port_sel = 0; 6798 int div = dev_priv->rawclk_freq / 1000; 6799 struct pps_registers regs; 6800 enum port port = dp_to_dig_port(intel_dp)->base.port; 6801 const struct edp_power_seq *seq = &intel_dp->pps_delays; 6802 6803 lockdep_assert_held(&dev_priv->pps_mutex); 6804 6805 intel_pps_get_registers(intel_dp, ®s); 6806 6807 /* 6808 * On some VLV machines the BIOS can leave the VDD 6809 * enabled even on power sequencers which aren't 6810 * hooked up to any port. This would mess up the 6811 * power domain tracking the first time we pick 6812 * one of these power sequencers for use since 6813 * edp_panel_vdd_on() would notice that the VDD was 6814 * already on and therefore wouldn't grab the power 6815 * domain reference. Disable VDD first to avoid this. 6816 * This also avoids spuriously turning the VDD on as 6817 * soon as the new power sequencer gets initialized. 6818 */ 6819 if (force_disable_vdd) { 6820 u32 pp = ironlake_get_pp_control(intel_dp); 6821 6822 WARN(pp & PANEL_POWER_ON, "Panel power already on\n"); 6823 6824 if (pp & EDP_FORCE_VDD) 6825 DRM_DEBUG_KMS("VDD already on, disabling first\n"); 6826 6827 pp &= ~EDP_FORCE_VDD; 6828 6829 I915_WRITE(regs.pp_ctrl, pp); 6830 } 6831 6832 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 6833 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 6834 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 6835 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 6836 6837 /* Haswell doesn't have any port selection bits for the panel 6838 * power sequencer any more. */ 6839 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6840 port_sel = PANEL_PORT_SELECT_VLV(port); 6841 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 6842 switch (port) { 6843 case PORT_A: 6844 port_sel = PANEL_PORT_SELECT_DPA; 6845 break; 6846 case PORT_C: 6847 port_sel = PANEL_PORT_SELECT_DPC; 6848 break; 6849 case PORT_D: 6850 port_sel = PANEL_PORT_SELECT_DPD; 6851 break; 6852 default: 6853 MISSING_CASE(port); 6854 break; 6855 } 6856 } 6857 6858 pp_on |= port_sel; 6859 6860 I915_WRITE(regs.pp_on, pp_on); 6861 I915_WRITE(regs.pp_off, pp_off); 6862 6863 /* 6864 * Compute the divisor for the pp clock, simply match the Bspec formula. 6865 */ 6866 if (i915_mmio_reg_valid(regs.pp_div)) { 6867 I915_WRITE(regs.pp_div, 6868 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | 6869 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 6870 } else { 6871 u32 pp_ctl; 6872 6873 pp_ctl = I915_READ(regs.pp_ctrl); 6874 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 6875 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 6876 I915_WRITE(regs.pp_ctrl, pp_ctl); 6877 } 6878 6879 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 6880 I915_READ(regs.pp_on), 6881 I915_READ(regs.pp_off), 6882 i915_mmio_reg_valid(regs.pp_div) ? 6883 I915_READ(regs.pp_div) : 6884 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 6885 } 6886 6887 static void intel_dp_pps_init(struct intel_dp *intel_dp) 6888 { 6889 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6890 6891 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6892 vlv_initial_power_sequencer_setup(intel_dp); 6893 } else { 6894 intel_dp_init_panel_power_sequencer(intel_dp); 6895 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 6896 } 6897 } 6898 6899 /** 6900 * intel_dp_set_drrs_state - program registers for RR switch to take effect 6901 * @dev_priv: i915 device 6902 * @crtc_state: a pointer to the active intel_crtc_state 6903 * @refresh_rate: RR to be programmed 6904 * 6905 * This function gets called when refresh rate (RR) has to be changed from 6906 * one frequency to another. Switches can be between high and low RR 6907 * supported by the panel or to any other RR based on media playback (in 6908 * this case, RR value needs to be passed from user space). 6909 * 6910 * The caller of this function needs to take a lock on dev_priv->drrs. 6911 */ 6912 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 6913 const struct intel_crtc_state *crtc_state, 6914 int refresh_rate) 6915 { 6916 struct intel_dp *intel_dp = dev_priv->drrs.dp; 6917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 6918 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 6919 6920 if (refresh_rate <= 0) { 6921 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); 6922 return; 6923 } 6924 6925 if (intel_dp == NULL) { 6926 DRM_DEBUG_KMS("DRRS not supported.\n"); 6927 return; 6928 } 6929 6930 if (!intel_crtc) { 6931 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); 6932 return; 6933 } 6934 6935 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 6936 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); 6937 return; 6938 } 6939 6940 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == 6941 refresh_rate) 6942 index = DRRS_LOW_RR; 6943 6944 if (index == dev_priv->drrs.refresh_rate_type) { 6945 DRM_DEBUG_KMS( 6946 "DRRS requested for previously set RR...ignoring\n"); 6947 return; 6948 } 6949 6950 if (!crtc_state->base.active) { 6951 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); 6952 return; 6953 } 6954 6955 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 6956 switch (index) { 6957 case DRRS_HIGH_RR: 6958 intel_dp_set_m_n(crtc_state, M1_N1); 6959 break; 6960 case DRRS_LOW_RR: 6961 intel_dp_set_m_n(crtc_state, M2_N2); 6962 break; 6963 case DRRS_MAX_RR: 6964 default: 6965 DRM_ERROR("Unsupported refreshrate type\n"); 6966 } 6967 } else if (INTEL_GEN(dev_priv) > 6) { 6968 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 6969 u32 val; 6970 6971 val = I915_READ(reg); 6972 if (index > DRRS_HIGH_RR) { 6973 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6974 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6975 else 6976 val |= PIPECONF_EDP_RR_MODE_SWITCH; 6977 } else { 6978 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6979 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6980 else 6981 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 6982 } 6983 I915_WRITE(reg, val); 6984 } 6985 6986 dev_priv->drrs.refresh_rate_type = index; 6987 6988 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); 6989 } 6990 6991 /** 6992 * intel_edp_drrs_enable - init drrs struct if supported 6993 * @intel_dp: DP struct 6994 * @crtc_state: A pointer to the active crtc state. 6995 * 6996 * Initializes frontbuffer_bits and drrs.dp 6997 */ 6998 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 6999 const struct intel_crtc_state *crtc_state) 7000 { 7001 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7002 7003 if (!crtc_state->has_drrs) { 7004 DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); 7005 return; 7006 } 7007 7008 if (dev_priv->psr.enabled) { 7009 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n"); 7010 return; 7011 } 7012 7013 mutex_lock(&dev_priv->drrs.mutex); 7014 if (dev_priv->drrs.dp) { 7015 DRM_DEBUG_KMS("DRRS already enabled\n"); 7016 goto unlock; 7017 } 7018 7019 dev_priv->drrs.busy_frontbuffer_bits = 0; 7020 7021 dev_priv->drrs.dp = intel_dp; 7022 7023 unlock: 7024 mutex_unlock(&dev_priv->drrs.mutex); 7025 } 7026 7027 /** 7028 * intel_edp_drrs_disable - Disable DRRS 7029 * @intel_dp: DP struct 7030 * @old_crtc_state: Pointer to old crtc_state. 7031 * 7032 */ 7033 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 7034 const struct intel_crtc_state *old_crtc_state) 7035 { 7036 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7037 7038 if (!old_crtc_state->has_drrs) 7039 return; 7040 7041 mutex_lock(&dev_priv->drrs.mutex); 7042 if (!dev_priv->drrs.dp) { 7043 mutex_unlock(&dev_priv->drrs.mutex); 7044 return; 7045 } 7046 7047 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7048 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 7049 intel_dp->attached_connector->panel.fixed_mode->vrefresh); 7050 7051 dev_priv->drrs.dp = NULL; 7052 mutex_unlock(&dev_priv->drrs.mutex); 7053 7054 cancel_delayed_work_sync(&dev_priv->drrs.work); 7055 } 7056 7057 static void intel_edp_drrs_downclock_work(struct work_struct *work) 7058 { 7059 struct drm_i915_private *dev_priv = 7060 container_of(work, typeof(*dev_priv), drrs.work.work); 7061 struct intel_dp *intel_dp; 7062 7063 mutex_lock(&dev_priv->drrs.mutex); 7064 7065 intel_dp = dev_priv->drrs.dp; 7066 7067 if (!intel_dp) 7068 goto unlock; 7069 7070 /* 7071 * The delayed work can race with an invalidate hence we need to 7072 * recheck. 7073 */ 7074 7075 if (dev_priv->drrs.busy_frontbuffer_bits) 7076 goto unlock; 7077 7078 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 7079 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7080 7081 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7082 intel_dp->attached_connector->panel.downclock_mode->vrefresh); 7083 } 7084 7085 unlock: 7086 mutex_unlock(&dev_priv->drrs.mutex); 7087 } 7088 7089 /** 7090 * intel_edp_drrs_invalidate - Disable Idleness DRRS 7091 * @dev_priv: i915 device 7092 * @frontbuffer_bits: frontbuffer plane tracking bits 7093 * 7094 * This function gets called everytime rendering on the given planes start. 7095 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 7096 * 7097 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7098 */ 7099 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 7100 unsigned int frontbuffer_bits) 7101 { 7102 struct drm_crtc *crtc; 7103 enum pipe pipe; 7104 7105 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7106 return; 7107 7108 cancel_delayed_work(&dev_priv->drrs.work); 7109 7110 mutex_lock(&dev_priv->drrs.mutex); 7111 if (!dev_priv->drrs.dp) { 7112 mutex_unlock(&dev_priv->drrs.mutex); 7113 return; 7114 } 7115 7116 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7117 pipe = to_intel_crtc(crtc)->pipe; 7118 7119 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7120 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 7121 7122 /* invalidate means busy screen hence upclock */ 7123 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7124 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7125 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7126 7127 mutex_unlock(&dev_priv->drrs.mutex); 7128 } 7129 7130 /** 7131 * intel_edp_drrs_flush - Restart Idleness DRRS 7132 * @dev_priv: i915 device 7133 * @frontbuffer_bits: frontbuffer plane tracking bits 7134 * 7135 * This function gets called every time rendering on the given planes has 7136 * completed or flip on a crtc is completed. So DRRS should be upclocked 7137 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 7138 * if no other planes are dirty. 7139 * 7140 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7141 */ 7142 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 7143 unsigned int frontbuffer_bits) 7144 { 7145 struct drm_crtc *crtc; 7146 enum pipe pipe; 7147 7148 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7149 return; 7150 7151 cancel_delayed_work(&dev_priv->drrs.work); 7152 7153 mutex_lock(&dev_priv->drrs.mutex); 7154 if (!dev_priv->drrs.dp) { 7155 mutex_unlock(&dev_priv->drrs.mutex); 7156 return; 7157 } 7158 7159 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7160 pipe = to_intel_crtc(crtc)->pipe; 7161 7162 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7163 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 7164 7165 /* flush means busy screen hence upclock */ 7166 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7167 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7168 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7169 7170 /* 7171 * flush also means no more activity hence schedule downclock, if all 7172 * other fbs are quiescent too 7173 */ 7174 if (!dev_priv->drrs.busy_frontbuffer_bits) 7175 schedule_delayed_work(&dev_priv->drrs.work, 7176 msecs_to_jiffies(1000)); 7177 mutex_unlock(&dev_priv->drrs.mutex); 7178 } 7179 7180 /** 7181 * DOC: Display Refresh Rate Switching (DRRS) 7182 * 7183 * Display Refresh Rate Switching (DRRS) is a power conservation feature 7184 * which enables swtching between low and high refresh rates, 7185 * dynamically, based on the usage scenario. This feature is applicable 7186 * for internal panels. 7187 * 7188 * Indication that the panel supports DRRS is given by the panel EDID, which 7189 * would list multiple refresh rates for one resolution. 7190 * 7191 * DRRS is of 2 types - static and seamless. 7192 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 7193 * (may appear as a blink on screen) and is used in dock-undock scenario. 7194 * Seamless DRRS involves changing RR without any visual effect to the user 7195 * and can be used during normal system usage. This is done by programming 7196 * certain registers. 7197 * 7198 * Support for static/seamless DRRS may be indicated in the VBT based on 7199 * inputs from the panel spec. 7200 * 7201 * DRRS saves power by switching to low RR based on usage scenarios. 7202 * 7203 * The implementation is based on frontbuffer tracking implementation. When 7204 * there is a disturbance on the screen triggered by user activity or a periodic 7205 * system activity, DRRS is disabled (RR is changed to high RR). When there is 7206 * no movement on screen, after a timeout of 1 second, a switch to low RR is 7207 * made. 7208 * 7209 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 7210 * and intel_edp_drrs_flush() are called. 7211 * 7212 * DRRS can be further extended to support other internal panels and also 7213 * the scenario of video playback wherein RR is set based on the rate 7214 * requested by userspace. 7215 */ 7216 7217 /** 7218 * intel_dp_drrs_init - Init basic DRRS work and mutex. 7219 * @connector: eDP connector 7220 * @fixed_mode: preferred mode of panel 7221 * 7222 * This function is called only once at driver load to initialize basic 7223 * DRRS stuff. 7224 * 7225 * Returns: 7226 * Downclock mode if panel supports it, else return NULL. 7227 * DRRS support is determined by the presence of downclock mode (apart 7228 * from VBT setting). 7229 */ 7230 static struct drm_display_mode * 7231 intel_dp_drrs_init(struct intel_connector *connector, 7232 struct drm_display_mode *fixed_mode) 7233 { 7234 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 7235 struct drm_display_mode *downclock_mode = NULL; 7236 7237 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 7238 mutex_init(&dev_priv->drrs.mutex); 7239 7240 if (INTEL_GEN(dev_priv) <= 6) { 7241 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); 7242 return NULL; 7243 } 7244 7245 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 7246 DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); 7247 return NULL; 7248 } 7249 7250 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 7251 if (!downclock_mode) { 7252 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); 7253 return NULL; 7254 } 7255 7256 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 7257 7258 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 7259 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); 7260 return downclock_mode; 7261 } 7262 7263 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7264 struct intel_connector *intel_connector) 7265 { 7266 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7267 struct drm_device *dev = &dev_priv->drm; 7268 struct drm_connector *connector = &intel_connector->base; 7269 struct drm_display_mode *fixed_mode = NULL; 7270 struct drm_display_mode *downclock_mode = NULL; 7271 bool has_dpcd; 7272 enum pipe pipe = INVALID_PIPE; 7273 intel_wakeref_t wakeref; 7274 struct edid *edid; 7275 7276 if (!intel_dp_is_edp(intel_dp)) 7277 return true; 7278 7279 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7280 7281 /* 7282 * On IBX/CPT we may get here with LVDS already registered. Since the 7283 * driver uses the only internal power sequencer available for both 7284 * eDP and LVDS bail out early in this case to prevent interfering 7285 * with an already powered-on LVDS power sequencer. 7286 */ 7287 if (intel_get_lvds_encoder(dev_priv)) { 7288 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7289 DRM_INFO("LVDS was detected, not registering eDP\n"); 7290 7291 return false; 7292 } 7293 7294 with_pps_lock(intel_dp, wakeref) { 7295 intel_dp_init_panel_power_timestamps(intel_dp); 7296 intel_dp_pps_init(intel_dp); 7297 intel_edp_panel_vdd_sanitize(intel_dp); 7298 } 7299 7300 /* Cache DPCD and EDID for edp. */ 7301 has_dpcd = intel_edp_init_dpcd(intel_dp); 7302 7303 if (!has_dpcd) { 7304 /* if this fails, presume the device is a ghost */ 7305 DRM_INFO("failed to retrieve link info, disabling eDP\n"); 7306 goto out_vdd_off; 7307 } 7308 7309 mutex_lock(&dev->mode_config.mutex); 7310 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7311 if (edid) { 7312 if (drm_add_edid_modes(connector, edid)) { 7313 drm_connector_update_edid_property(connector, 7314 edid); 7315 } else { 7316 kfree(edid); 7317 edid = ERR_PTR(-EINVAL); 7318 } 7319 } else { 7320 edid = ERR_PTR(-ENOENT); 7321 } 7322 intel_connector->edid = edid; 7323 7324 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7325 if (fixed_mode) 7326 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7327 7328 /* fallback to VBT if available for eDP */ 7329 if (!fixed_mode) 7330 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7331 mutex_unlock(&dev->mode_config.mutex); 7332 7333 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7334 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7335 register_reboot_notifier(&intel_dp->edp_notifier); 7336 7337 /* 7338 * Figure out the current pipe for the initial backlight setup. 7339 * If the current pipe isn't valid, try the PPS pipe, and if that 7340 * fails just assume pipe A. 7341 */ 7342 pipe = vlv_active_pipe(intel_dp); 7343 7344 if (pipe != PIPE_A && pipe != PIPE_B) 7345 pipe = intel_dp->pps_pipe; 7346 7347 if (pipe != PIPE_A && pipe != PIPE_B) 7348 pipe = PIPE_A; 7349 7350 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", 7351 pipe_name(pipe)); 7352 } 7353 7354 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7355 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7356 intel_panel_setup_backlight(connector, pipe); 7357 7358 if (fixed_mode) 7359 drm_connector_init_panel_orientation_property( 7360 connector, fixed_mode->hdisplay, fixed_mode->vdisplay); 7361 7362 return true; 7363 7364 out_vdd_off: 7365 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7366 /* 7367 * vdd might still be enabled do to the delayed vdd off. 7368 * Make sure vdd is actually turned off here. 7369 */ 7370 with_pps_lock(intel_dp, wakeref) 7371 edp_panel_vdd_off_sync(intel_dp); 7372 7373 return false; 7374 } 7375 7376 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7377 { 7378 struct intel_connector *intel_connector; 7379 struct drm_connector *connector; 7380 7381 intel_connector = container_of(work, typeof(*intel_connector), 7382 modeset_retry_work); 7383 connector = &intel_connector->base; 7384 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7385 connector->name); 7386 7387 /* Grab the locks before changing connector property*/ 7388 mutex_lock(&connector->dev->mode_config.mutex); 7389 /* Set connector link status to BAD and send a Uevent to notify 7390 * userspace to do a modeset. 7391 */ 7392 drm_connector_set_link_status_property(connector, 7393 DRM_MODE_LINK_STATUS_BAD); 7394 mutex_unlock(&connector->dev->mode_config.mutex); 7395 /* Send Hotplug uevent so userspace can reprobe */ 7396 drm_kms_helper_hotplug_event(connector->dev); 7397 } 7398 7399 bool 7400 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 7401 struct intel_connector *intel_connector) 7402 { 7403 struct drm_connector *connector = &intel_connector->base; 7404 struct intel_dp *intel_dp = &intel_dig_port->dp; 7405 struct intel_encoder *intel_encoder = &intel_dig_port->base; 7406 struct drm_device *dev = intel_encoder->base.dev; 7407 struct drm_i915_private *dev_priv = to_i915(dev); 7408 enum port port = intel_encoder->port; 7409 enum phy phy = intel_port_to_phy(dev_priv, port); 7410 int type; 7411 7412 /* Initialize the work for modeset in case of link train failure */ 7413 INIT_WORK(&intel_connector->modeset_retry_work, 7414 intel_dp_modeset_retry_work_fn); 7415 7416 if (WARN(intel_dig_port->max_lanes < 1, 7417 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 7418 intel_dig_port->max_lanes, intel_encoder->base.base.id, 7419 intel_encoder->base.name)) 7420 return false; 7421 7422 intel_dp_set_source_rates(intel_dp); 7423 7424 intel_dp->reset_link_params = true; 7425 intel_dp->pps_pipe = INVALID_PIPE; 7426 intel_dp->active_pipe = INVALID_PIPE; 7427 7428 /* Preserve the current hw state. */ 7429 intel_dp->DP = I915_READ(intel_dp->output_reg); 7430 intel_dp->attached_connector = intel_connector; 7431 7432 if (intel_dp_is_port_edp(dev_priv, port)) { 7433 /* 7434 * Currently we don't support eDP on TypeC ports, although in 7435 * theory it could work on TypeC legacy ports. 7436 */ 7437 WARN_ON(intel_phy_is_tc(dev_priv, phy)); 7438 type = DRM_MODE_CONNECTOR_eDP; 7439 } else { 7440 type = DRM_MODE_CONNECTOR_DisplayPort; 7441 } 7442 7443 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7444 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7445 7446 /* 7447 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7448 * for DP the encoder type can be set by the caller to 7449 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7450 */ 7451 if (type == DRM_MODE_CONNECTOR_eDP) 7452 intel_encoder->type = INTEL_OUTPUT_EDP; 7453 7454 /* eDP only on port B and/or C on vlv/chv */ 7455 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 7456 intel_dp_is_edp(intel_dp) && 7457 port != PORT_B && port != PORT_C)) 7458 return false; 7459 7460 DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n", 7461 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7462 intel_encoder->base.base.id, intel_encoder->base.name); 7463 7464 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7465 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7466 7467 if (!HAS_GMCH(dev_priv)) 7468 connector->interlace_allowed = true; 7469 connector->doublescan_allowed = 0; 7470 7471 if (INTEL_GEN(dev_priv) >= 11) 7472 connector->ycbcr_420_allowed = true; 7473 7474 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7475 7476 intel_dp_aux_init(intel_dp); 7477 7478 intel_connector_attach_encoder(intel_connector, intel_encoder); 7479 7480 if (HAS_DDI(dev_priv)) 7481 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7482 else 7483 intel_connector->get_hw_state = intel_connector_get_hw_state; 7484 7485 /* init MST on ports that can support it */ 7486 intel_dp_mst_encoder_init(intel_dig_port, 7487 intel_connector->base.base.id); 7488 7489 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7490 intel_dp_aux_fini(intel_dp); 7491 intel_dp_mst_encoder_cleanup(intel_dig_port); 7492 goto fail; 7493 } 7494 7495 intel_dp_add_properties(intel_dp, connector); 7496 7497 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7498 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 7499 if (ret) 7500 DRM_DEBUG_KMS("HDCP init failed, skipping.\n"); 7501 } 7502 7503 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7504 * 0xd. Failure to do so will result in spurious interrupts being 7505 * generated on the port when a cable is not attached. 7506 */ 7507 if (IS_G45(dev_priv)) { 7508 u32 temp = I915_READ(PEG_BAND_GAP_DATA); 7509 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); 7510 } 7511 7512 return true; 7513 7514 fail: 7515 drm_connector_cleanup(connector); 7516 7517 return false; 7518 } 7519 7520 bool intel_dp_init(struct drm_i915_private *dev_priv, 7521 i915_reg_t output_reg, 7522 enum port port) 7523 { 7524 struct intel_digital_port *intel_dig_port; 7525 struct intel_encoder *intel_encoder; 7526 struct drm_encoder *encoder; 7527 struct intel_connector *intel_connector; 7528 7529 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 7530 if (!intel_dig_port) 7531 return false; 7532 7533 intel_connector = intel_connector_alloc(); 7534 if (!intel_connector) 7535 goto err_connector_alloc; 7536 7537 intel_encoder = &intel_dig_port->base; 7538 encoder = &intel_encoder->base; 7539 7540 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7541 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7542 "DP %c", port_name(port))) 7543 goto err_encoder_init; 7544 7545 intel_encoder->hotplug = intel_dp_hotplug; 7546 intel_encoder->compute_config = intel_dp_compute_config; 7547 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7548 intel_encoder->get_config = intel_dp_get_config; 7549 intel_encoder->update_pipe = intel_panel_update_backlight; 7550 intel_encoder->suspend = intel_dp_encoder_suspend; 7551 if (IS_CHERRYVIEW(dev_priv)) { 7552 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7553 intel_encoder->pre_enable = chv_pre_enable_dp; 7554 intel_encoder->enable = vlv_enable_dp; 7555 intel_encoder->disable = vlv_disable_dp; 7556 intel_encoder->post_disable = chv_post_disable_dp; 7557 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 7558 } else if (IS_VALLEYVIEW(dev_priv)) { 7559 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 7560 intel_encoder->pre_enable = vlv_pre_enable_dp; 7561 intel_encoder->enable = vlv_enable_dp; 7562 intel_encoder->disable = vlv_disable_dp; 7563 intel_encoder->post_disable = vlv_post_disable_dp; 7564 } else { 7565 intel_encoder->pre_enable = g4x_pre_enable_dp; 7566 intel_encoder->enable = g4x_enable_dp; 7567 intel_encoder->disable = g4x_disable_dp; 7568 intel_encoder->post_disable = g4x_post_disable_dp; 7569 } 7570 7571 intel_dig_port->dp.output_reg = output_reg; 7572 intel_dig_port->max_lanes = 4; 7573 7574 intel_encoder->type = INTEL_OUTPUT_DP; 7575 intel_encoder->power_domain = intel_port_to_power_domain(port); 7576 if (IS_CHERRYVIEW(dev_priv)) { 7577 if (port == PORT_D) 7578 intel_encoder->pipe_mask = BIT(PIPE_C); 7579 else 7580 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); 7581 } else { 7582 intel_encoder->pipe_mask = ~0; 7583 } 7584 intel_encoder->cloneable = 0; 7585 intel_encoder->port = port; 7586 7587 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 7588 7589 if (port != PORT_A) 7590 intel_infoframe_init(intel_dig_port); 7591 7592 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 7593 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 7594 goto err_init_connector; 7595 7596 return true; 7597 7598 err_init_connector: 7599 drm_encoder_cleanup(encoder); 7600 err_encoder_init: 7601 kfree(intel_connector); 7602 err_connector_alloc: 7603 kfree(intel_dig_port); 7604 return false; 7605 } 7606 7607 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 7608 { 7609 struct intel_encoder *encoder; 7610 7611 for_each_intel_encoder(&dev_priv->drm, encoder) { 7612 struct intel_dp *intel_dp; 7613 7614 if (encoder->type != INTEL_OUTPUT_DDI) 7615 continue; 7616 7617 intel_dp = enc_to_intel_dp(&encoder->base); 7618 7619 if (!intel_dp->can_mst) 7620 continue; 7621 7622 if (intel_dp->is_mst) 7623 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 7624 } 7625 } 7626 7627 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 7628 { 7629 struct intel_encoder *encoder; 7630 7631 for_each_intel_encoder(&dev_priv->drm, encoder) { 7632 struct intel_dp *intel_dp; 7633 int ret; 7634 7635 if (encoder->type != INTEL_OUTPUT_DDI) 7636 continue; 7637 7638 intel_dp = enc_to_intel_dp(&encoder->base); 7639 7640 if (!intel_dp->can_mst) 7641 continue; 7642 7643 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, 7644 true); 7645 if (ret) { 7646 intel_dp->is_mst = false; 7647 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 7648 false); 7649 } 7650 } 7651 } 7652