1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44 
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68 
69 #define DP_DPRX_ESI_LEN 14
70 
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE			2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
75 
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
78 
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
81 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84 
85 struct dp_link_dpll {
86 	int clock;
87 	struct dpll dpll;
88 };
89 
90 static const struct dp_link_dpll g4x_dpll[] = {
91 	{ 162000,
92 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93 	{ 270000,
94 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96 
97 static const struct dp_link_dpll pch_dpll[] = {
98 	{ 162000,
99 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100 	{ 270000,
101 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103 
104 static const struct dp_link_dpll vlv_dpll[] = {
105 	{ 162000,
106 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107 	{ 270000,
108 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110 
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116 	/*
117 	 * CHV requires to program fractional division for m2.
118 	 * m2 is stored in fixed point format using formula below
119 	 * (m2_int << 22) | m2_fraction
120 	 */
121 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
122 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
124 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126 
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129 
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134 
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145 
146 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148 
149 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
150 {
151 	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
152 }
153 
154 static void intel_dp_link_down(struct intel_encoder *encoder,
155 			       const struct intel_crtc_state *old_crtc_state);
156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
159 					   const struct intel_crtc_state *crtc_state);
160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
161 				      enum pipe pipe);
162 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
163 
164 /* update sink rates from dpcd */
165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
166 {
167 	static const int dp_rates[] = {
168 		162000, 270000, 540000, 810000
169 	};
170 	int i, max_rate;
171 
172 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
173 
174 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
175 		if (dp_rates[i] > max_rate)
176 			break;
177 		intel_dp->sink_rates[i] = dp_rates[i];
178 	}
179 
180 	intel_dp->num_sink_rates = i;
181 }
182 
183 /* Get length of rates array potentially limited by max_rate. */
184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
185 {
186 	int i;
187 
188 	/* Limit results by potentially reduced max rate */
189 	for (i = 0; i < len; i++) {
190 		if (rates[len - i - 1] <= max_rate)
191 			return len - i;
192 	}
193 
194 	return 0;
195 }
196 
197 /* Get length of common rates array potentially limited by max_rate. */
198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
199 					  int max_rate)
200 {
201 	return intel_dp_rate_limit_len(intel_dp->common_rates,
202 				       intel_dp->num_common_rates, max_rate);
203 }
204 
205 /* Theoretical max between source and sink */
206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
207 {
208 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
209 }
210 
211 /* Theoretical max between source and sink */
212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
213 {
214 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
215 	int source_max = intel_dig_port->max_lanes;
216 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
217 	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
218 
219 	return min3(source_max, sink_max, fia_max);
220 }
221 
222 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
223 {
224 	return intel_dp->max_link_lane_count;
225 }
226 
227 int
228 intel_dp_link_required(int pixel_clock, int bpp)
229 {
230 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
231 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
232 }
233 
234 int
235 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
236 {
237 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
238 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
239 	 * is transmitted every LS_Clk per lane, there is no need to account for
240 	 * the channel encoding that is done in the PHY layer here.
241 	 */
242 
243 	return max_link_clock * max_lanes;
244 }
245 
246 static int
247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
248 {
249 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
250 	struct intel_encoder *encoder = &intel_dig_port->base;
251 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
252 	int max_dotclk = dev_priv->max_dotclk_freq;
253 	int ds_max_dotclk;
254 
255 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
256 
257 	if (type != DP_DS_PORT_TYPE_VGA)
258 		return max_dotclk;
259 
260 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
261 						    intel_dp->downstream_ports);
262 
263 	if (ds_max_dotclk != 0)
264 		max_dotclk = min(max_dotclk, ds_max_dotclk);
265 
266 	return max_dotclk;
267 }
268 
269 static int cnl_max_source_rate(struct intel_dp *intel_dp)
270 {
271 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
272 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
273 	enum port port = dig_port->base.port;
274 
275 	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
276 
277 	/* Low voltage SKUs are limited to max of 5.4G */
278 	if (voltage == VOLTAGE_INFO_0_85V)
279 		return 540000;
280 
281 	/* For this SKU 8.1G is supported in all ports */
282 	if (IS_CNL_WITH_PORT_F(dev_priv))
283 		return 810000;
284 
285 	/* For other SKUs, max rate on ports A and D is 5.4G */
286 	if (port == PORT_A || port == PORT_D)
287 		return 540000;
288 
289 	return 810000;
290 }
291 
292 static int icl_max_source_rate(struct intel_dp *intel_dp)
293 {
294 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
295 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
296 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
297 
298 	if (intel_phy_is_combo(dev_priv, phy) &&
299 	    !IS_ELKHARTLAKE(dev_priv) &&
300 	    !intel_dp_is_edp(intel_dp))
301 		return 540000;
302 
303 	return 810000;
304 }
305 
306 static void
307 intel_dp_set_source_rates(struct intel_dp *intel_dp)
308 {
309 	/* The values must be in increasing order */
310 	static const int cnl_rates[] = {
311 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
312 	};
313 	static const int bxt_rates[] = {
314 		162000, 216000, 243000, 270000, 324000, 432000, 540000
315 	};
316 	static const int skl_rates[] = {
317 		162000, 216000, 270000, 324000, 432000, 540000
318 	};
319 	static const int hsw_rates[] = {
320 		162000, 270000, 540000
321 	};
322 	static const int g4x_rates[] = {
323 		162000, 270000
324 	};
325 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
326 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327 	const struct ddi_vbt_port_info *info =
328 		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
329 	const int *source_rates;
330 	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
331 
332 	/* This should only be done once */
333 	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
334 
335 	if (INTEL_GEN(dev_priv) >= 10) {
336 		source_rates = cnl_rates;
337 		size = ARRAY_SIZE(cnl_rates);
338 		if (IS_GEN(dev_priv, 10))
339 			max_rate = cnl_max_source_rate(intel_dp);
340 		else
341 			max_rate = icl_max_source_rate(intel_dp);
342 	} else if (IS_GEN9_LP(dev_priv)) {
343 		source_rates = bxt_rates;
344 		size = ARRAY_SIZE(bxt_rates);
345 	} else if (IS_GEN9_BC(dev_priv)) {
346 		source_rates = skl_rates;
347 		size = ARRAY_SIZE(skl_rates);
348 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
349 		   IS_BROADWELL(dev_priv)) {
350 		source_rates = hsw_rates;
351 		size = ARRAY_SIZE(hsw_rates);
352 	} else {
353 		source_rates = g4x_rates;
354 		size = ARRAY_SIZE(g4x_rates);
355 	}
356 
357 	if (max_rate && vbt_max_rate)
358 		max_rate = min(max_rate, vbt_max_rate);
359 	else if (vbt_max_rate)
360 		max_rate = vbt_max_rate;
361 
362 	if (max_rate)
363 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
364 
365 	intel_dp->source_rates = source_rates;
366 	intel_dp->num_source_rates = size;
367 }
368 
369 static int intersect_rates(const int *source_rates, int source_len,
370 			   const int *sink_rates, int sink_len,
371 			   int *common_rates)
372 {
373 	int i = 0, j = 0, k = 0;
374 
375 	while (i < source_len && j < sink_len) {
376 		if (source_rates[i] == sink_rates[j]) {
377 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
378 				return k;
379 			common_rates[k] = source_rates[i];
380 			++k;
381 			++i;
382 			++j;
383 		} else if (source_rates[i] < sink_rates[j]) {
384 			++i;
385 		} else {
386 			++j;
387 		}
388 	}
389 	return k;
390 }
391 
392 /* return index of rate in rates array, or -1 if not found */
393 static int intel_dp_rate_index(const int *rates, int len, int rate)
394 {
395 	int i;
396 
397 	for (i = 0; i < len; i++)
398 		if (rate == rates[i])
399 			return i;
400 
401 	return -1;
402 }
403 
404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
405 {
406 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
407 
408 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
409 						     intel_dp->num_source_rates,
410 						     intel_dp->sink_rates,
411 						     intel_dp->num_sink_rates,
412 						     intel_dp->common_rates);
413 
414 	/* Paranoia, there should always be something in common. */
415 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
416 		intel_dp->common_rates[0] = 162000;
417 		intel_dp->num_common_rates = 1;
418 	}
419 }
420 
421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
422 				       u8 lane_count)
423 {
424 	/*
425 	 * FIXME: we need to synchronize the current link parameters with
426 	 * hardware readout. Currently fast link training doesn't work on
427 	 * boot-up.
428 	 */
429 	if (link_rate == 0 ||
430 	    link_rate > intel_dp->max_link_rate)
431 		return false;
432 
433 	if (lane_count == 0 ||
434 	    lane_count > intel_dp_max_lane_count(intel_dp))
435 		return false;
436 
437 	return true;
438 }
439 
440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
441 						     int link_rate,
442 						     u8 lane_count)
443 {
444 	const struct drm_display_mode *fixed_mode =
445 		intel_dp->attached_connector->panel.fixed_mode;
446 	int mode_rate, max_rate;
447 
448 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
449 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
450 	if (mode_rate > max_rate)
451 		return false;
452 
453 	return true;
454 }
455 
456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
457 					    int link_rate, u8 lane_count)
458 {
459 	int index;
460 
461 	index = intel_dp_rate_index(intel_dp->common_rates,
462 				    intel_dp->num_common_rates,
463 				    link_rate);
464 	if (index > 0) {
465 		if (intel_dp_is_edp(intel_dp) &&
466 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
467 							      intel_dp->common_rates[index - 1],
468 							      lane_count)) {
469 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
470 			return 0;
471 		}
472 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
473 		intel_dp->max_link_lane_count = lane_count;
474 	} else if (lane_count > 1) {
475 		if (intel_dp_is_edp(intel_dp) &&
476 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
477 							      intel_dp_max_common_rate(intel_dp),
478 							      lane_count >> 1)) {
479 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
480 			return 0;
481 		}
482 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
483 		intel_dp->max_link_lane_count = lane_count >> 1;
484 	} else {
485 		DRM_ERROR("Link Training Unsuccessful\n");
486 		return -1;
487 	}
488 
489 	return 0;
490 }
491 
492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
493 {
494 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
495 		       DP_DSC_FEC_OVERHEAD_FACTOR);
496 }
497 
498 static int
499 small_joiner_ram_size_bits(struct drm_i915_private *i915)
500 {
501 	if (INTEL_GEN(i915) >= 11)
502 		return 7680 * 8;
503 	else
504 		return 6144 * 8;
505 }
506 
507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
508 				       u32 link_clock, u32 lane_count,
509 				       u32 mode_clock, u32 mode_hdisplay)
510 {
511 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
512 	int i;
513 
514 	/*
515 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
516 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
517 	 * for SST -> TimeSlotsPerMTP is 1,
518 	 * for MST -> TimeSlotsPerMTP has to be calculated
519 	 */
520 	bits_per_pixel = (link_clock * lane_count * 8) /
521 			 intel_dp_mode_to_fec_clock(mode_clock);
522 	DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
523 
524 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
526 		mode_hdisplay;
527 	DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
528 
529 	/*
530 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
531 	 * check, output bpp from small joiner RAM check)
532 	 */
533 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
534 
535 	/* Error out if the max bpp is less than smallest allowed valid bpp */
536 	if (bits_per_pixel < valid_dsc_bpp[0]) {
537 		DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
538 			      bits_per_pixel, valid_dsc_bpp[0]);
539 		return 0;
540 	}
541 
542 	/* Find the nearest match in the array of known BPPs from VESA */
543 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
544 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
545 			break;
546 	}
547 	bits_per_pixel = valid_dsc_bpp[i];
548 
549 	/*
550 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
551 	 * fractional part is 0
552 	 */
553 	return bits_per_pixel << 4;
554 }
555 
556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
557 				       int mode_clock, int mode_hdisplay)
558 {
559 	u8 min_slice_count, i;
560 	int max_slice_width;
561 
562 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
563 		min_slice_count = DIV_ROUND_UP(mode_clock,
564 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
565 	else
566 		min_slice_count = DIV_ROUND_UP(mode_clock,
567 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
568 
569 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
570 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
571 		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
572 			      max_slice_width);
573 		return 0;
574 	}
575 	/* Also take into account max slice width */
576 	min_slice_count = min_t(u8, min_slice_count,
577 				DIV_ROUND_UP(mode_hdisplay,
578 					     max_slice_width));
579 
580 	/* Find the closest match to the valid slice count values */
581 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
582 		if (valid_dsc_slicecount[i] >
583 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
584 						    false))
585 			break;
586 		if (min_slice_count  <= valid_dsc_slicecount[i])
587 			return valid_dsc_slicecount[i];
588 	}
589 
590 	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
591 	return 0;
592 }
593 
594 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
595 				  int hdisplay)
596 {
597 	/*
598 	 * Older platforms don't like hdisplay==4096 with DP.
599 	 *
600 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
601 	 * and frame counter increment), but we don't get vblank interrupts,
602 	 * and the pipe underruns immediately. The link also doesn't seem
603 	 * to get trained properly.
604 	 *
605 	 * On CHV the vblank interrupts don't seem to disappear but
606 	 * otherwise the symptoms are similar.
607 	 *
608 	 * TODO: confirm the behaviour on HSW+
609 	 */
610 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
611 }
612 
613 static enum drm_mode_status
614 intel_dp_mode_valid(struct drm_connector *connector,
615 		    struct drm_display_mode *mode)
616 {
617 	struct intel_dp *intel_dp = intel_attached_dp(connector);
618 	struct intel_connector *intel_connector = to_intel_connector(connector);
619 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
620 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
621 	int target_clock = mode->clock;
622 	int max_rate, mode_rate, max_lanes, max_link_clock;
623 	int max_dotclk;
624 	u16 dsc_max_output_bpp = 0;
625 	u8 dsc_slice_count = 0;
626 
627 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
628 		return MODE_NO_DBLESCAN;
629 
630 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
631 
632 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
633 		if (mode->hdisplay > fixed_mode->hdisplay)
634 			return MODE_PANEL;
635 
636 		if (mode->vdisplay > fixed_mode->vdisplay)
637 			return MODE_PANEL;
638 
639 		target_clock = fixed_mode->clock;
640 	}
641 
642 	max_link_clock = intel_dp_max_link_rate(intel_dp);
643 	max_lanes = intel_dp_max_lane_count(intel_dp);
644 
645 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
646 	mode_rate = intel_dp_link_required(target_clock, 18);
647 
648 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
649 		return MODE_H_ILLEGAL;
650 
651 	/*
652 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
653 	 * integer value since we support only integer values of bpp.
654 	 */
655 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
656 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
657 		if (intel_dp_is_edp(intel_dp)) {
658 			dsc_max_output_bpp =
659 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
660 			dsc_slice_count =
661 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
662 								true);
663 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
664 			dsc_max_output_bpp =
665 				intel_dp_dsc_get_output_bpp(dev_priv,
666 							    max_link_clock,
667 							    max_lanes,
668 							    target_clock,
669 							    mode->hdisplay) >> 4;
670 			dsc_slice_count =
671 				intel_dp_dsc_get_slice_count(intel_dp,
672 							     target_clock,
673 							     mode->hdisplay);
674 		}
675 	}
676 
677 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
678 	    target_clock > max_dotclk)
679 		return MODE_CLOCK_HIGH;
680 
681 	if (mode->clock < 10000)
682 		return MODE_CLOCK_LOW;
683 
684 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
685 		return MODE_H_ILLEGAL;
686 
687 	return intel_mode_valid_max_plane_size(dev_priv, mode);
688 }
689 
690 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
691 {
692 	int i;
693 	u32 v = 0;
694 
695 	if (src_bytes > 4)
696 		src_bytes = 4;
697 	for (i = 0; i < src_bytes; i++)
698 		v |= ((u32)src[i]) << ((3 - i) * 8);
699 	return v;
700 }
701 
702 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
703 {
704 	int i;
705 	if (dst_bytes > 4)
706 		dst_bytes = 4;
707 	for (i = 0; i < dst_bytes; i++)
708 		dst[i] = src >> ((3-i) * 8);
709 }
710 
711 static void
712 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
713 static void
714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
715 					      bool force_disable_vdd);
716 static void
717 intel_dp_pps_init(struct intel_dp *intel_dp);
718 
719 static intel_wakeref_t
720 pps_lock(struct intel_dp *intel_dp)
721 {
722 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
723 	intel_wakeref_t wakeref;
724 
725 	/*
726 	 * See intel_power_sequencer_reset() why we need
727 	 * a power domain reference here.
728 	 */
729 	wakeref = intel_display_power_get(dev_priv,
730 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
731 
732 	mutex_lock(&dev_priv->pps_mutex);
733 
734 	return wakeref;
735 }
736 
737 static intel_wakeref_t
738 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
739 {
740 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
741 
742 	mutex_unlock(&dev_priv->pps_mutex);
743 	intel_display_power_put(dev_priv,
744 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
745 				wakeref);
746 	return 0;
747 }
748 
749 #define with_pps_lock(dp, wf) \
750 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
751 
752 static void
753 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
754 {
755 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
756 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757 	enum pipe pipe = intel_dp->pps_pipe;
758 	bool pll_enabled, release_cl_override = false;
759 	enum dpio_phy phy = DPIO_PHY(pipe);
760 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
761 	u32 DP;
762 
763 	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
764 		 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
765 		 pipe_name(pipe), intel_dig_port->base.base.base.id,
766 		 intel_dig_port->base.base.name))
767 		return;
768 
769 	DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
770 		      pipe_name(pipe), intel_dig_port->base.base.base.id,
771 		      intel_dig_port->base.base.name);
772 
773 	/* Preserve the BIOS-computed detected bit. This is
774 	 * supposed to be read-only.
775 	 */
776 	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
777 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
778 	DP |= DP_PORT_WIDTH(1);
779 	DP |= DP_LINK_TRAIN_PAT_1;
780 
781 	if (IS_CHERRYVIEW(dev_priv))
782 		DP |= DP_PIPE_SEL_CHV(pipe);
783 	else
784 		DP |= DP_PIPE_SEL(pipe);
785 
786 	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
787 
788 	/*
789 	 * The DPLL for the pipe must be enabled for this to work.
790 	 * So enable temporarily it if it's not already enabled.
791 	 */
792 	if (!pll_enabled) {
793 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
794 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
795 
796 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
797 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
798 			DRM_ERROR("Failed to force on pll for pipe %c!\n",
799 				  pipe_name(pipe));
800 			return;
801 		}
802 	}
803 
804 	/*
805 	 * Similar magic as in intel_dp_enable_port().
806 	 * We _must_ do this port enable + disable trick
807 	 * to make this power sequencer lock onto the port.
808 	 * Otherwise even VDD force bit won't work.
809 	 */
810 	I915_WRITE(intel_dp->output_reg, DP);
811 	POSTING_READ(intel_dp->output_reg);
812 
813 	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
814 	POSTING_READ(intel_dp->output_reg);
815 
816 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
817 	POSTING_READ(intel_dp->output_reg);
818 
819 	if (!pll_enabled) {
820 		vlv_force_pll_off(dev_priv, pipe);
821 
822 		if (release_cl_override)
823 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
824 	}
825 }
826 
827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
828 {
829 	struct intel_encoder *encoder;
830 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
831 
832 	/*
833 	 * We don't have power sequencer currently.
834 	 * Pick one that's not used by other ports.
835 	 */
836 	for_each_intel_dp(&dev_priv->drm, encoder) {
837 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
838 
839 		if (encoder->type == INTEL_OUTPUT_EDP) {
840 			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
841 				intel_dp->active_pipe != intel_dp->pps_pipe);
842 
843 			if (intel_dp->pps_pipe != INVALID_PIPE)
844 				pipes &= ~(1 << intel_dp->pps_pipe);
845 		} else {
846 			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
847 
848 			if (intel_dp->active_pipe != INVALID_PIPE)
849 				pipes &= ~(1 << intel_dp->active_pipe);
850 		}
851 	}
852 
853 	if (pipes == 0)
854 		return INVALID_PIPE;
855 
856 	return ffs(pipes) - 1;
857 }
858 
859 static enum pipe
860 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
861 {
862 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
863 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
864 	enum pipe pipe;
865 
866 	lockdep_assert_held(&dev_priv->pps_mutex);
867 
868 	/* We should never land here with regular DP ports */
869 	WARN_ON(!intel_dp_is_edp(intel_dp));
870 
871 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
872 		intel_dp->active_pipe != intel_dp->pps_pipe);
873 
874 	if (intel_dp->pps_pipe != INVALID_PIPE)
875 		return intel_dp->pps_pipe;
876 
877 	pipe = vlv_find_free_pps(dev_priv);
878 
879 	/*
880 	 * Didn't find one. This should not happen since there
881 	 * are two power sequencers and up to two eDP ports.
882 	 */
883 	if (WARN_ON(pipe == INVALID_PIPE))
884 		pipe = PIPE_A;
885 
886 	vlv_steal_power_sequencer(dev_priv, pipe);
887 	intel_dp->pps_pipe = pipe;
888 
889 	DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
890 		      pipe_name(intel_dp->pps_pipe),
891 		      intel_dig_port->base.base.base.id,
892 		      intel_dig_port->base.base.name);
893 
894 	/* init power sequencer on this pipe and port */
895 	intel_dp_init_panel_power_sequencer(intel_dp);
896 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
897 
898 	/*
899 	 * Even vdd force doesn't work until we've made
900 	 * the power sequencer lock in on the port.
901 	 */
902 	vlv_power_sequencer_kick(intel_dp);
903 
904 	return intel_dp->pps_pipe;
905 }
906 
907 static int
908 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
909 {
910 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
911 	int backlight_controller = dev_priv->vbt.backlight.controller;
912 
913 	lockdep_assert_held(&dev_priv->pps_mutex);
914 
915 	/* We should never land here with regular DP ports */
916 	WARN_ON(!intel_dp_is_edp(intel_dp));
917 
918 	if (!intel_dp->pps_reset)
919 		return backlight_controller;
920 
921 	intel_dp->pps_reset = false;
922 
923 	/*
924 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
925 	 * has been setup during connector init.
926 	 */
927 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
928 
929 	return backlight_controller;
930 }
931 
932 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
933 			       enum pipe pipe);
934 
935 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
936 			       enum pipe pipe)
937 {
938 	return I915_READ(PP_STATUS(pipe)) & PP_ON;
939 }
940 
941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
942 				enum pipe pipe)
943 {
944 	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
945 }
946 
947 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
948 			 enum pipe pipe)
949 {
950 	return true;
951 }
952 
953 static enum pipe
954 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
955 		     enum port port,
956 		     vlv_pipe_check pipe_check)
957 {
958 	enum pipe pipe;
959 
960 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
961 		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
962 			PANEL_PORT_SELECT_MASK;
963 
964 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
965 			continue;
966 
967 		if (!pipe_check(dev_priv, pipe))
968 			continue;
969 
970 		return pipe;
971 	}
972 
973 	return INVALID_PIPE;
974 }
975 
976 static void
977 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
978 {
979 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
980 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981 	enum port port = intel_dig_port->base.port;
982 
983 	lockdep_assert_held(&dev_priv->pps_mutex);
984 
985 	/* try to find a pipe with this port selected */
986 	/* first pick one where the panel is on */
987 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
988 						  vlv_pipe_has_pp_on);
989 	/* didn't find one? pick one where vdd is on */
990 	if (intel_dp->pps_pipe == INVALID_PIPE)
991 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
992 							  vlv_pipe_has_vdd_on);
993 	/* didn't find one? pick one with just the correct port */
994 	if (intel_dp->pps_pipe == INVALID_PIPE)
995 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
996 							  vlv_pipe_any);
997 
998 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
999 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1000 		DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
1001 			      intel_dig_port->base.base.base.id,
1002 			      intel_dig_port->base.base.name);
1003 		return;
1004 	}
1005 
1006 	DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1007 		      intel_dig_port->base.base.base.id,
1008 		      intel_dig_port->base.base.name,
1009 		      pipe_name(intel_dp->pps_pipe));
1010 
1011 	intel_dp_init_panel_power_sequencer(intel_dp);
1012 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1013 }
1014 
1015 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1016 {
1017 	struct intel_encoder *encoder;
1018 
1019 	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1020 		    !IS_GEN9_LP(dev_priv)))
1021 		return;
1022 
1023 	/*
1024 	 * We can't grab pps_mutex here due to deadlock with power_domain
1025 	 * mutex when power_domain functions are called while holding pps_mutex.
1026 	 * That also means that in order to use pps_pipe the code needs to
1027 	 * hold both a power domain reference and pps_mutex, and the power domain
1028 	 * reference get/put must be done while _not_ holding pps_mutex.
1029 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1030 	 * should use them always.
1031 	 */
1032 
1033 	for_each_intel_dp(&dev_priv->drm, encoder) {
1034 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1035 
1036 		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1037 
1038 		if (encoder->type != INTEL_OUTPUT_EDP)
1039 			continue;
1040 
1041 		if (IS_GEN9_LP(dev_priv))
1042 			intel_dp->pps_reset = true;
1043 		else
1044 			intel_dp->pps_pipe = INVALID_PIPE;
1045 	}
1046 }
1047 
1048 struct pps_registers {
1049 	i915_reg_t pp_ctrl;
1050 	i915_reg_t pp_stat;
1051 	i915_reg_t pp_on;
1052 	i915_reg_t pp_off;
1053 	i915_reg_t pp_div;
1054 };
1055 
1056 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1057 				    struct pps_registers *regs)
1058 {
1059 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1060 	int pps_idx = 0;
1061 
1062 	memset(regs, 0, sizeof(*regs));
1063 
1064 	if (IS_GEN9_LP(dev_priv))
1065 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1066 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1067 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1068 
1069 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1070 	regs->pp_stat = PP_STATUS(pps_idx);
1071 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1072 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1073 
1074 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1075 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1076 		regs->pp_div = INVALID_MMIO_REG;
1077 	else
1078 		regs->pp_div = PP_DIVISOR(pps_idx);
1079 }
1080 
1081 static i915_reg_t
1082 _pp_ctrl_reg(struct intel_dp *intel_dp)
1083 {
1084 	struct pps_registers regs;
1085 
1086 	intel_pps_get_registers(intel_dp, &regs);
1087 
1088 	return regs.pp_ctrl;
1089 }
1090 
1091 static i915_reg_t
1092 _pp_stat_reg(struct intel_dp *intel_dp)
1093 {
1094 	struct pps_registers regs;
1095 
1096 	intel_pps_get_registers(intel_dp, &regs);
1097 
1098 	return regs.pp_stat;
1099 }
1100 
1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1102    This function only applicable when panel PM state is not to be tracked */
1103 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1104 			      void *unused)
1105 {
1106 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1107 						 edp_notifier);
1108 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1109 	intel_wakeref_t wakeref;
1110 
1111 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1112 		return 0;
1113 
1114 	with_pps_lock(intel_dp, wakeref) {
1115 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1116 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1117 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1118 			u32 pp_div;
1119 
1120 			pp_ctrl_reg = PP_CONTROL(pipe);
1121 			pp_div_reg  = PP_DIVISOR(pipe);
1122 			pp_div = I915_READ(pp_div_reg);
1123 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1124 
1125 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1126 			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1127 			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1128 			msleep(intel_dp->panel_power_cycle_delay);
1129 		}
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1136 {
1137 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1138 
1139 	lockdep_assert_held(&dev_priv->pps_mutex);
1140 
1141 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1142 	    intel_dp->pps_pipe == INVALID_PIPE)
1143 		return false;
1144 
1145 	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1146 }
1147 
1148 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1149 {
1150 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1151 
1152 	lockdep_assert_held(&dev_priv->pps_mutex);
1153 
1154 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1155 	    intel_dp->pps_pipe == INVALID_PIPE)
1156 		return false;
1157 
1158 	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1159 }
1160 
1161 static void
1162 intel_dp_check_edp(struct intel_dp *intel_dp)
1163 {
1164 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1165 
1166 	if (!intel_dp_is_edp(intel_dp))
1167 		return;
1168 
1169 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1170 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
1171 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1172 			      I915_READ(_pp_stat_reg(intel_dp)),
1173 			      I915_READ(_pp_ctrl_reg(intel_dp)));
1174 	}
1175 }
1176 
1177 static u32
1178 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1179 {
1180 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1181 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1182 	const unsigned int timeout_ms = 10;
1183 	u32 status;
1184 	bool done;
1185 
1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1187 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1188 				  msecs_to_jiffies_timeout(timeout_ms));
1189 
1190 	/* just trace the final value */
1191 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1192 
1193 	if (!done)
1194 		DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n",
1195 			  intel_dp->aux.name, timeout_ms, status);
1196 #undef C
1197 
1198 	return status;
1199 }
1200 
1201 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1202 {
1203 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1204 
1205 	if (index)
1206 		return 0;
1207 
1208 	/*
1209 	 * The clock divider is based off the hrawclk, and would like to run at
1210 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1211 	 */
1212 	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1213 }
1214 
1215 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1216 {
1217 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1218 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1219 
1220 	if (index)
1221 		return 0;
1222 
1223 	/*
1224 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1225 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1226 	 * divide by 2000 and use that
1227 	 */
1228 	if (dig_port->aux_ch == AUX_CH_A)
1229 		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1230 	else
1231 		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1232 }
1233 
1234 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1235 {
1236 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1237 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1238 
1239 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1240 		/* Workaround for non-ULT HSW */
1241 		switch (index) {
1242 		case 0: return 63;
1243 		case 1: return 72;
1244 		default: return 0;
1245 		}
1246 	}
1247 
1248 	return ilk_get_aux_clock_divider(intel_dp, index);
1249 }
1250 
1251 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1252 {
1253 	/*
1254 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1255 	 * derive the clock from CDCLK automatically). We still implement the
1256 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1257 	 */
1258 	return index ? 0 : 1;
1259 }
1260 
1261 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1262 				int send_bytes,
1263 				u32 aux_clock_divider)
1264 {
1265 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1266 	struct drm_i915_private *dev_priv =
1267 			to_i915(intel_dig_port->base.base.dev);
1268 	u32 precharge, timeout;
1269 
1270 	if (IS_GEN(dev_priv, 6))
1271 		precharge = 3;
1272 	else
1273 		precharge = 5;
1274 
1275 	if (IS_BROADWELL(dev_priv))
1276 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1277 	else
1278 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1279 
1280 	return DP_AUX_CH_CTL_SEND_BUSY |
1281 	       DP_AUX_CH_CTL_DONE |
1282 	       DP_AUX_CH_CTL_INTERRUPT |
1283 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1284 	       timeout |
1285 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1286 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1287 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1288 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1289 }
1290 
1291 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1292 				int send_bytes,
1293 				u32 unused)
1294 {
1295 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296 	struct drm_i915_private *i915 =
1297 			to_i915(intel_dig_port->base.base.dev);
1298 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1299 	u32 ret;
1300 
1301 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1302 	      DP_AUX_CH_CTL_DONE |
1303 	      DP_AUX_CH_CTL_INTERRUPT |
1304 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1305 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1306 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1307 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1308 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1309 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1310 
1311 	if (intel_phy_is_tc(i915, phy) &&
1312 	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1313 		ret |= DP_AUX_CH_CTL_TBT_IO;
1314 
1315 	return ret;
1316 }
1317 
1318 static int
1319 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1320 		  const u8 *send, int send_bytes,
1321 		  u8 *recv, int recv_size,
1322 		  u32 aux_send_ctl_flags)
1323 {
1324 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1325 	struct drm_i915_private *i915 =
1326 			to_i915(intel_dig_port->base.base.dev);
1327 	struct intel_uncore *uncore = &i915->uncore;
1328 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1330 	i915_reg_t ch_ctl, ch_data[5];
1331 	u32 aux_clock_divider;
1332 	enum intel_display_power_domain aux_domain =
1333 		intel_aux_power_domain(intel_dig_port);
1334 	intel_wakeref_t aux_wakeref;
1335 	intel_wakeref_t pps_wakeref;
1336 	int i, ret, recv_bytes;
1337 	int try, clock = 0;
1338 	u32 status;
1339 	bool vdd;
1340 
1341 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1342 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1343 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1344 
1345 	if (is_tc_port)
1346 		intel_tc_port_lock(intel_dig_port);
1347 
1348 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1349 	pps_wakeref = pps_lock(intel_dp);
1350 
1351 	/*
1352 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1353 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1354 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1355 	 * ourselves.
1356 	 */
1357 	vdd = edp_panel_vdd_on(intel_dp);
1358 
1359 	/* dp aux is extremely sensitive to irq latency, hence request the
1360 	 * lowest possible wakeup latency and so prevent the cpu from going into
1361 	 * deep sleep states.
1362 	 */
1363 	pm_qos_update_request(&i915->pm_qos, 0);
1364 
1365 	intel_dp_check_edp(intel_dp);
1366 
1367 	/* Try to wait for any previous AUX channel activity */
1368 	for (try = 0; try < 3; try++) {
1369 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1370 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1371 			break;
1372 		msleep(1);
1373 	}
1374 	/* just trace the final value */
1375 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1376 
1377 	if (try == 3) {
1378 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1379 
1380 		if (status != intel_dp->aux_busy_last_status) {
1381 			WARN(1, "dp_aux_ch not started status 0x%08x\n",
1382 			     status);
1383 			intel_dp->aux_busy_last_status = status;
1384 		}
1385 
1386 		ret = -EBUSY;
1387 		goto out;
1388 	}
1389 
1390 	/* Only 5 data registers! */
1391 	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1392 		ret = -E2BIG;
1393 		goto out;
1394 	}
1395 
1396 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1397 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1398 							  send_bytes,
1399 							  aux_clock_divider);
1400 
1401 		send_ctl |= aux_send_ctl_flags;
1402 
1403 		/* Must try at least 3 times according to DP spec */
1404 		for (try = 0; try < 5; try++) {
1405 			/* Load the send data into the aux channel data registers */
1406 			for (i = 0; i < send_bytes; i += 4)
1407 				intel_uncore_write(uncore,
1408 						   ch_data[i >> 2],
1409 						   intel_dp_pack_aux(send + i,
1410 								     send_bytes - i));
1411 
1412 			/* Send the command and wait for it to complete */
1413 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1414 
1415 			status = intel_dp_aux_wait_done(intel_dp);
1416 
1417 			/* Clear done status and any errors */
1418 			intel_uncore_write(uncore,
1419 					   ch_ctl,
1420 					   status |
1421 					   DP_AUX_CH_CTL_DONE |
1422 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1423 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1424 
1425 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1426 			 *   400us delay required for errors and timeouts
1427 			 *   Timeout errors from the HW already meet this
1428 			 *   requirement so skip to next iteration
1429 			 */
1430 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1431 				continue;
1432 
1433 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1434 				usleep_range(400, 500);
1435 				continue;
1436 			}
1437 			if (status & DP_AUX_CH_CTL_DONE)
1438 				goto done;
1439 		}
1440 	}
1441 
1442 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1443 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1444 		ret = -EBUSY;
1445 		goto out;
1446 	}
1447 
1448 done:
1449 	/* Check for timeout or receive error.
1450 	 * Timeouts occur when the sink is not connected
1451 	 */
1452 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1453 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1454 		ret = -EIO;
1455 		goto out;
1456 	}
1457 
1458 	/* Timeouts occur when the device isn't connected, so they're
1459 	 * "normal" -- don't fill the kernel log with these */
1460 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1461 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1462 		ret = -ETIMEDOUT;
1463 		goto out;
1464 	}
1465 
1466 	/* Unload any bytes sent back from the other side */
1467 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1468 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1469 
1470 	/*
1471 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1472 	 * We have no idea of what happened so we return -EBUSY so
1473 	 * drm layer takes care for the necessary retries.
1474 	 */
1475 	if (recv_bytes == 0 || recv_bytes > 20) {
1476 		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1477 			      recv_bytes);
1478 		ret = -EBUSY;
1479 		goto out;
1480 	}
1481 
1482 	if (recv_bytes > recv_size)
1483 		recv_bytes = recv_size;
1484 
1485 	for (i = 0; i < recv_bytes; i += 4)
1486 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1487 				    recv + i, recv_bytes - i);
1488 
1489 	ret = recv_bytes;
1490 out:
1491 	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1492 
1493 	if (vdd)
1494 		edp_panel_vdd_off(intel_dp, false);
1495 
1496 	pps_unlock(intel_dp, pps_wakeref);
1497 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1498 
1499 	if (is_tc_port)
1500 		intel_tc_port_unlock(intel_dig_port);
1501 
1502 	return ret;
1503 }
1504 
1505 #define BARE_ADDRESS_SIZE	3
1506 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1507 
1508 static void
1509 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1510 		    const struct drm_dp_aux_msg *msg)
1511 {
1512 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1513 	txbuf[1] = (msg->address >> 8) & 0xff;
1514 	txbuf[2] = msg->address & 0xff;
1515 	txbuf[3] = msg->size - 1;
1516 }
1517 
1518 static ssize_t
1519 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1520 {
1521 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1522 	u8 txbuf[20], rxbuf[20];
1523 	size_t txsize, rxsize;
1524 	int ret;
1525 
1526 	intel_dp_aux_header(txbuf, msg);
1527 
1528 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1529 	case DP_AUX_NATIVE_WRITE:
1530 	case DP_AUX_I2C_WRITE:
1531 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1532 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1533 		rxsize = 2; /* 0 or 1 data bytes */
1534 
1535 		if (WARN_ON(txsize > 20))
1536 			return -E2BIG;
1537 
1538 		WARN_ON(!msg->buffer != !msg->size);
1539 
1540 		if (msg->buffer)
1541 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1542 
1543 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1544 					rxbuf, rxsize, 0);
1545 		if (ret > 0) {
1546 			msg->reply = rxbuf[0] >> 4;
1547 
1548 			if (ret > 1) {
1549 				/* Number of bytes written in a short write. */
1550 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1551 			} else {
1552 				/* Return payload size. */
1553 				ret = msg->size;
1554 			}
1555 		}
1556 		break;
1557 
1558 	case DP_AUX_NATIVE_READ:
1559 	case DP_AUX_I2C_READ:
1560 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1561 		rxsize = msg->size + 1;
1562 
1563 		if (WARN_ON(rxsize > 20))
1564 			return -E2BIG;
1565 
1566 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1567 					rxbuf, rxsize, 0);
1568 		if (ret > 0) {
1569 			msg->reply = rxbuf[0] >> 4;
1570 			/*
1571 			 * Assume happy day, and copy the data. The caller is
1572 			 * expected to check msg->reply before touching it.
1573 			 *
1574 			 * Return payload size.
1575 			 */
1576 			ret--;
1577 			memcpy(msg->buffer, rxbuf + 1, ret);
1578 		}
1579 		break;
1580 
1581 	default:
1582 		ret = -EINVAL;
1583 		break;
1584 	}
1585 
1586 	return ret;
1587 }
1588 
1589 
1590 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1591 {
1592 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1593 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1594 	enum aux_ch aux_ch = dig_port->aux_ch;
1595 
1596 	switch (aux_ch) {
1597 	case AUX_CH_B:
1598 	case AUX_CH_C:
1599 	case AUX_CH_D:
1600 		return DP_AUX_CH_CTL(aux_ch);
1601 	default:
1602 		MISSING_CASE(aux_ch);
1603 		return DP_AUX_CH_CTL(AUX_CH_B);
1604 	}
1605 }
1606 
1607 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1608 {
1609 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1610 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1611 	enum aux_ch aux_ch = dig_port->aux_ch;
1612 
1613 	switch (aux_ch) {
1614 	case AUX_CH_B:
1615 	case AUX_CH_C:
1616 	case AUX_CH_D:
1617 		return DP_AUX_CH_DATA(aux_ch, index);
1618 	default:
1619 		MISSING_CASE(aux_ch);
1620 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1621 	}
1622 }
1623 
1624 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1625 {
1626 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1627 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1628 	enum aux_ch aux_ch = dig_port->aux_ch;
1629 
1630 	switch (aux_ch) {
1631 	case AUX_CH_A:
1632 		return DP_AUX_CH_CTL(aux_ch);
1633 	case AUX_CH_B:
1634 	case AUX_CH_C:
1635 	case AUX_CH_D:
1636 		return PCH_DP_AUX_CH_CTL(aux_ch);
1637 	default:
1638 		MISSING_CASE(aux_ch);
1639 		return DP_AUX_CH_CTL(AUX_CH_A);
1640 	}
1641 }
1642 
1643 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1644 {
1645 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647 	enum aux_ch aux_ch = dig_port->aux_ch;
1648 
1649 	switch (aux_ch) {
1650 	case AUX_CH_A:
1651 		return DP_AUX_CH_DATA(aux_ch, index);
1652 	case AUX_CH_B:
1653 	case AUX_CH_C:
1654 	case AUX_CH_D:
1655 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1656 	default:
1657 		MISSING_CASE(aux_ch);
1658 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1659 	}
1660 }
1661 
1662 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1663 {
1664 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666 	enum aux_ch aux_ch = dig_port->aux_ch;
1667 
1668 	switch (aux_ch) {
1669 	case AUX_CH_A:
1670 	case AUX_CH_B:
1671 	case AUX_CH_C:
1672 	case AUX_CH_D:
1673 	case AUX_CH_E:
1674 	case AUX_CH_F:
1675 	case AUX_CH_G:
1676 		return DP_AUX_CH_CTL(aux_ch);
1677 	default:
1678 		MISSING_CASE(aux_ch);
1679 		return DP_AUX_CH_CTL(AUX_CH_A);
1680 	}
1681 }
1682 
1683 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1684 {
1685 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1686 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1687 	enum aux_ch aux_ch = dig_port->aux_ch;
1688 
1689 	switch (aux_ch) {
1690 	case AUX_CH_A:
1691 	case AUX_CH_B:
1692 	case AUX_CH_C:
1693 	case AUX_CH_D:
1694 	case AUX_CH_E:
1695 	case AUX_CH_F:
1696 	case AUX_CH_G:
1697 		return DP_AUX_CH_DATA(aux_ch, index);
1698 	default:
1699 		MISSING_CASE(aux_ch);
1700 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1701 	}
1702 }
1703 
1704 static void
1705 intel_dp_aux_fini(struct intel_dp *intel_dp)
1706 {
1707 	kfree(intel_dp->aux.name);
1708 }
1709 
1710 static void
1711 intel_dp_aux_init(struct intel_dp *intel_dp)
1712 {
1713 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1714 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1715 	struct intel_encoder *encoder = &dig_port->base;
1716 
1717 	if (INTEL_GEN(dev_priv) >= 9) {
1718 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1719 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1720 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1721 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1722 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1723 	} else {
1724 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1725 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1726 	}
1727 
1728 	if (INTEL_GEN(dev_priv) >= 9)
1729 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1730 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1731 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1732 	else if (HAS_PCH_SPLIT(dev_priv))
1733 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1734 	else
1735 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1736 
1737 	if (INTEL_GEN(dev_priv) >= 9)
1738 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1739 	else
1740 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1741 
1742 	drm_dp_aux_init(&intel_dp->aux);
1743 
1744 	/* Failure to allocate our preferred name is not critical */
1745 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1746 				       port_name(encoder->port));
1747 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1748 }
1749 
1750 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1751 {
1752 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1753 
1754 	return max_rate >= 540000;
1755 }
1756 
1757 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1758 {
1759 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1760 
1761 	return max_rate >= 810000;
1762 }
1763 
1764 static void
1765 intel_dp_set_clock(struct intel_encoder *encoder,
1766 		   struct intel_crtc_state *pipe_config)
1767 {
1768 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1769 	const struct dp_link_dpll *divisor = NULL;
1770 	int i, count = 0;
1771 
1772 	if (IS_G4X(dev_priv)) {
1773 		divisor = g4x_dpll;
1774 		count = ARRAY_SIZE(g4x_dpll);
1775 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1776 		divisor = pch_dpll;
1777 		count = ARRAY_SIZE(pch_dpll);
1778 	} else if (IS_CHERRYVIEW(dev_priv)) {
1779 		divisor = chv_dpll;
1780 		count = ARRAY_SIZE(chv_dpll);
1781 	} else if (IS_VALLEYVIEW(dev_priv)) {
1782 		divisor = vlv_dpll;
1783 		count = ARRAY_SIZE(vlv_dpll);
1784 	}
1785 
1786 	if (divisor && count) {
1787 		for (i = 0; i < count; i++) {
1788 			if (pipe_config->port_clock == divisor[i].clock) {
1789 				pipe_config->dpll = divisor[i].dpll;
1790 				pipe_config->clock_set = true;
1791 				break;
1792 			}
1793 		}
1794 	}
1795 }
1796 
1797 static void snprintf_int_array(char *str, size_t len,
1798 			       const int *array, int nelem)
1799 {
1800 	int i;
1801 
1802 	str[0] = '\0';
1803 
1804 	for (i = 0; i < nelem; i++) {
1805 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1806 		if (r >= len)
1807 			return;
1808 		str += r;
1809 		len -= r;
1810 	}
1811 }
1812 
1813 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1814 {
1815 	char str[128]; /* FIXME: too big for stack? */
1816 
1817 	if ((drm_debug & DRM_UT_KMS) == 0)
1818 		return;
1819 
1820 	snprintf_int_array(str, sizeof(str),
1821 			   intel_dp->source_rates, intel_dp->num_source_rates);
1822 	DRM_DEBUG_KMS("source rates: %s\n", str);
1823 
1824 	snprintf_int_array(str, sizeof(str),
1825 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1826 	DRM_DEBUG_KMS("sink rates: %s\n", str);
1827 
1828 	snprintf_int_array(str, sizeof(str),
1829 			   intel_dp->common_rates, intel_dp->num_common_rates);
1830 	DRM_DEBUG_KMS("common rates: %s\n", str);
1831 }
1832 
1833 int
1834 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1835 {
1836 	int len;
1837 
1838 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1839 	if (WARN_ON(len <= 0))
1840 		return 162000;
1841 
1842 	return intel_dp->common_rates[len - 1];
1843 }
1844 
1845 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1846 {
1847 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1848 				    intel_dp->num_sink_rates, rate);
1849 
1850 	if (WARN_ON(i < 0))
1851 		i = 0;
1852 
1853 	return i;
1854 }
1855 
1856 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1857 			   u8 *link_bw, u8 *rate_select)
1858 {
1859 	/* eDP 1.4 rate select method. */
1860 	if (intel_dp->use_rate_select) {
1861 		*link_bw = 0;
1862 		*rate_select =
1863 			intel_dp_rate_select(intel_dp, port_clock);
1864 	} else {
1865 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1866 		*rate_select = 0;
1867 	}
1868 }
1869 
1870 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1871 					 const struct intel_crtc_state *pipe_config)
1872 {
1873 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1874 
1875 	/* On TGL, FEC is supported on all Pipes */
1876 	if (INTEL_GEN(dev_priv) >= 12)
1877 		return true;
1878 
1879 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1880 		return true;
1881 
1882 	return false;
1883 }
1884 
1885 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1886 				  const struct intel_crtc_state *pipe_config)
1887 {
1888 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1889 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1890 }
1891 
1892 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1893 					 const struct intel_crtc_state *pipe_config)
1894 {
1895 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1896 
1897 	if (!INTEL_INFO(dev_priv)->display.has_dsc)
1898 		return false;
1899 
1900 	/* On TGL, DSC is supported on all Pipes */
1901 	if (INTEL_GEN(dev_priv) >= 12)
1902 		return true;
1903 
1904 	if (INTEL_GEN(dev_priv) >= 10 &&
1905 	    pipe_config->cpu_transcoder != TRANSCODER_A)
1906 		return true;
1907 
1908 	return false;
1909 }
1910 
1911 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1912 				  const struct intel_crtc_state *pipe_config)
1913 {
1914 	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1915 		return false;
1916 
1917 	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1918 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1919 }
1920 
1921 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1922 				struct intel_crtc_state *pipe_config)
1923 {
1924 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1925 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1926 	int bpp, bpc;
1927 
1928 	bpp = pipe_config->pipe_bpp;
1929 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1930 
1931 	if (bpc > 0)
1932 		bpp = min(bpp, 3*bpc);
1933 
1934 	if (intel_dp_is_edp(intel_dp)) {
1935 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1936 		if (intel_connector->base.display_info.bpc == 0 &&
1937 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1938 			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1939 				      dev_priv->vbt.edp.bpp);
1940 			bpp = dev_priv->vbt.edp.bpp;
1941 		}
1942 	}
1943 
1944 	return bpp;
1945 }
1946 
1947 /* Adjust link config limits based on compliance test requests. */
1948 void
1949 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1950 				  struct intel_crtc_state *pipe_config,
1951 				  struct link_config_limits *limits)
1952 {
1953 	/* For DP Compliance we override the computed bpp for the pipe */
1954 	if (intel_dp->compliance.test_data.bpc != 0) {
1955 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1956 
1957 		limits->min_bpp = limits->max_bpp = bpp;
1958 		pipe_config->dither_force_disable = bpp == 6 * 3;
1959 
1960 		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1961 	}
1962 
1963 	/* Use values requested by Compliance Test Request */
1964 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1965 		int index;
1966 
1967 		/* Validate the compliance test data since max values
1968 		 * might have changed due to link train fallback.
1969 		 */
1970 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1971 					       intel_dp->compliance.test_lane_count)) {
1972 			index = intel_dp_rate_index(intel_dp->common_rates,
1973 						    intel_dp->num_common_rates,
1974 						    intel_dp->compliance.test_link_rate);
1975 			if (index >= 0)
1976 				limits->min_clock = limits->max_clock = index;
1977 			limits->min_lane_count = limits->max_lane_count =
1978 				intel_dp->compliance.test_lane_count;
1979 		}
1980 	}
1981 }
1982 
1983 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1984 {
1985 	/*
1986 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1987 	 * format of the number of bytes per pixel will be half the number
1988 	 * of bytes of RGB pixel.
1989 	 */
1990 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1991 		bpp /= 2;
1992 
1993 	return bpp;
1994 }
1995 
1996 /* Optimize link config in order: max bpp, min clock, min lanes */
1997 static int
1998 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1999 				  struct intel_crtc_state *pipe_config,
2000 				  const struct link_config_limits *limits)
2001 {
2002 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2003 	int bpp, clock, lane_count;
2004 	int mode_rate, link_clock, link_avail;
2005 
2006 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2007 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2008 
2009 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2010 						   output_bpp);
2011 
2012 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2013 			for (lane_count = limits->min_lane_count;
2014 			     lane_count <= limits->max_lane_count;
2015 			     lane_count <<= 1) {
2016 				link_clock = intel_dp->common_rates[clock];
2017 				link_avail = intel_dp_max_data_rate(link_clock,
2018 								    lane_count);
2019 
2020 				if (mode_rate <= link_avail) {
2021 					pipe_config->lane_count = lane_count;
2022 					pipe_config->pipe_bpp = bpp;
2023 					pipe_config->port_clock = link_clock;
2024 
2025 					return 0;
2026 				}
2027 			}
2028 		}
2029 	}
2030 
2031 	return -EINVAL;
2032 }
2033 
2034 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2035 {
2036 	int i, num_bpc;
2037 	u8 dsc_bpc[3] = {0};
2038 
2039 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2040 						       dsc_bpc);
2041 	for (i = 0; i < num_bpc; i++) {
2042 		if (dsc_max_bpc >= dsc_bpc[i])
2043 			return dsc_bpc[i] * 3;
2044 	}
2045 
2046 	return 0;
2047 }
2048 
2049 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2050 				       struct intel_crtc_state *pipe_config,
2051 				       struct drm_connector_state *conn_state,
2052 				       struct link_config_limits *limits)
2053 {
2054 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2055 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2056 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2057 	u8 dsc_max_bpc;
2058 	int pipe_bpp;
2059 	int ret;
2060 
2061 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2062 		intel_dp_supports_fec(intel_dp, pipe_config);
2063 
2064 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2065 		return -EINVAL;
2066 
2067 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2068 	if (INTEL_GEN(dev_priv) >= 12)
2069 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2070 	else
2071 		dsc_max_bpc = min_t(u8, 10,
2072 				    conn_state->max_requested_bpc);
2073 
2074 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2075 
2076 	/* Min Input BPC for ICL+ is 8 */
2077 	if (pipe_bpp < 8 * 3) {
2078 		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2079 		return -EINVAL;
2080 	}
2081 
2082 	/*
2083 	 * For now enable DSC for max bpp, max link rate, max lane count.
2084 	 * Optimize this later for the minimum possible link rate/lane count
2085 	 * with DSC enabled for the requested mode.
2086 	 */
2087 	pipe_config->pipe_bpp = pipe_bpp;
2088 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2089 	pipe_config->lane_count = limits->max_lane_count;
2090 
2091 	if (intel_dp_is_edp(intel_dp)) {
2092 		pipe_config->dsc.compressed_bpp =
2093 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2094 			      pipe_config->pipe_bpp);
2095 		pipe_config->dsc.slice_count =
2096 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2097 							true);
2098 	} else {
2099 		u16 dsc_max_output_bpp;
2100 		u8 dsc_dp_slice_count;
2101 
2102 		dsc_max_output_bpp =
2103 			intel_dp_dsc_get_output_bpp(dev_priv,
2104 						    pipe_config->port_clock,
2105 						    pipe_config->lane_count,
2106 						    adjusted_mode->crtc_clock,
2107 						    adjusted_mode->crtc_hdisplay);
2108 		dsc_dp_slice_count =
2109 			intel_dp_dsc_get_slice_count(intel_dp,
2110 						     adjusted_mode->crtc_clock,
2111 						     adjusted_mode->crtc_hdisplay);
2112 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2113 			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2114 			return -EINVAL;
2115 		}
2116 		pipe_config->dsc.compressed_bpp = min_t(u16,
2117 							       dsc_max_output_bpp >> 4,
2118 							       pipe_config->pipe_bpp);
2119 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2120 	}
2121 	/*
2122 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2123 	 * is greater than the maximum Cdclock and if slice count is even
2124 	 * then we need to use 2 VDSC instances.
2125 	 */
2126 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2127 		if (pipe_config->dsc.slice_count > 1) {
2128 			pipe_config->dsc.dsc_split = true;
2129 		} else {
2130 			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2131 			return -EINVAL;
2132 		}
2133 	}
2134 
2135 	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
2136 	if (ret < 0) {
2137 		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2138 			      "Compressed BPP = %d\n",
2139 			      pipe_config->pipe_bpp,
2140 			      pipe_config->dsc.compressed_bpp);
2141 		return ret;
2142 	}
2143 
2144 	pipe_config->dsc.compression_enable = true;
2145 	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2146 		      "Compressed Bpp = %d Slice Count = %d\n",
2147 		      pipe_config->pipe_bpp,
2148 		      pipe_config->dsc.compressed_bpp,
2149 		      pipe_config->dsc.slice_count);
2150 
2151 	return 0;
2152 }
2153 
2154 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2155 {
2156 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2157 		return 6 * 3;
2158 	else
2159 		return 8 * 3;
2160 }
2161 
2162 static int
2163 intel_dp_compute_link_config(struct intel_encoder *encoder,
2164 			     struct intel_crtc_state *pipe_config,
2165 			     struct drm_connector_state *conn_state)
2166 {
2167 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2168 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2169 	struct link_config_limits limits;
2170 	int common_len;
2171 	int ret;
2172 
2173 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2174 						    intel_dp->max_link_rate);
2175 
2176 	/* No common link rates between source and sink */
2177 	WARN_ON(common_len <= 0);
2178 
2179 	limits.min_clock = 0;
2180 	limits.max_clock = common_len - 1;
2181 
2182 	limits.min_lane_count = 1;
2183 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2184 
2185 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2186 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2187 
2188 	if (intel_dp_is_edp(intel_dp)) {
2189 		/*
2190 		 * Use the maximum clock and number of lanes the eDP panel
2191 		 * advertizes being capable of. The panels are generally
2192 		 * designed to support only a single clock and lane
2193 		 * configuration, and typically these values correspond to the
2194 		 * native resolution of the panel.
2195 		 */
2196 		limits.min_lane_count = limits.max_lane_count;
2197 		limits.min_clock = limits.max_clock;
2198 	}
2199 
2200 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2201 
2202 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
2203 		      "max rate %d max bpp %d pixel clock %iKHz\n",
2204 		      limits.max_lane_count,
2205 		      intel_dp->common_rates[limits.max_clock],
2206 		      limits.max_bpp, adjusted_mode->crtc_clock);
2207 
2208 	/*
2209 	 * Optimize for slow and wide. This is the place to add alternative
2210 	 * optimization policy.
2211 	 */
2212 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2213 
2214 	/* enable compression if the mode doesn't fit available BW */
2215 	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2216 	if (ret || intel_dp->force_dsc_en) {
2217 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2218 						  conn_state, &limits);
2219 		if (ret < 0)
2220 			return ret;
2221 	}
2222 
2223 	if (pipe_config->dsc.compression_enable) {
2224 		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2225 			      pipe_config->lane_count, pipe_config->port_clock,
2226 			      pipe_config->pipe_bpp,
2227 			      pipe_config->dsc.compressed_bpp);
2228 
2229 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2230 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2231 						     pipe_config->dsc.compressed_bpp),
2232 			      intel_dp_max_data_rate(pipe_config->port_clock,
2233 						     pipe_config->lane_count));
2234 	} else {
2235 		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2236 			      pipe_config->lane_count, pipe_config->port_clock,
2237 			      pipe_config->pipe_bpp);
2238 
2239 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2240 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2241 						     pipe_config->pipe_bpp),
2242 			      intel_dp_max_data_rate(pipe_config->port_clock,
2243 						     pipe_config->lane_count));
2244 	}
2245 	return 0;
2246 }
2247 
2248 static int
2249 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2250 			 struct drm_connector *connector,
2251 			 struct intel_crtc_state *crtc_state)
2252 {
2253 	const struct drm_display_info *info = &connector->display_info;
2254 	const struct drm_display_mode *adjusted_mode =
2255 		&crtc_state->base.adjusted_mode;
2256 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2257 	int ret;
2258 
2259 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2260 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2261 	    !connector->ycbcr_420_allowed)
2262 		return 0;
2263 
2264 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2265 
2266 	/* YCBCR 420 output conversion needs a scaler */
2267 	ret = skl_update_scaler_crtc(crtc_state);
2268 	if (ret) {
2269 		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2270 		return ret;
2271 	}
2272 
2273 	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2274 
2275 	return 0;
2276 }
2277 
2278 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2279 				  const struct drm_connector_state *conn_state)
2280 {
2281 	const struct intel_digital_connector_state *intel_conn_state =
2282 		to_intel_digital_connector_state(conn_state);
2283 	const struct drm_display_mode *adjusted_mode =
2284 		&crtc_state->base.adjusted_mode;
2285 
2286 	/*
2287 	 * Our YCbCr output is always limited range.
2288 	 * crtc_state->limited_color_range only applies to RGB,
2289 	 * and it must never be set for YCbCr or we risk setting
2290 	 * some conflicting bits in PIPECONF which will mess up
2291 	 * the colors on the monitor.
2292 	 */
2293 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2294 		return false;
2295 
2296 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2297 		/*
2298 		 * See:
2299 		 * CEA-861-E - 5.1 Default Encoding Parameters
2300 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2301 		 */
2302 		return crtc_state->pipe_bpp != 18 &&
2303 			drm_default_rgb_quant_range(adjusted_mode) ==
2304 			HDMI_QUANTIZATION_RANGE_LIMITED;
2305 	} else {
2306 		return intel_conn_state->broadcast_rgb ==
2307 			INTEL_BROADCAST_RGB_LIMITED;
2308 	}
2309 }
2310 
2311 int
2312 intel_dp_compute_config(struct intel_encoder *encoder,
2313 			struct intel_crtc_state *pipe_config,
2314 			struct drm_connector_state *conn_state)
2315 {
2316 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2317 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2318 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2319 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2320 	enum port port = encoder->port;
2321 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
2322 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2323 	struct intel_digital_connector_state *intel_conn_state =
2324 		to_intel_digital_connector_state(conn_state);
2325 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2326 					   DP_DPCD_QUIRK_CONSTANT_N);
2327 	int ret = 0, output_bpp;
2328 
2329 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2330 		pipe_config->has_pch_encoder = true;
2331 
2332 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2333 
2334 	if (lspcon->active)
2335 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2336 	else
2337 		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2338 					       pipe_config);
2339 
2340 	if (ret)
2341 		return ret;
2342 
2343 	pipe_config->has_drrs = false;
2344 	if (IS_G4X(dev_priv) || port == PORT_A)
2345 		pipe_config->has_audio = false;
2346 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2347 		pipe_config->has_audio = intel_dp->has_audio;
2348 	else
2349 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2350 
2351 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2352 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2353 				       adjusted_mode);
2354 
2355 		if (INTEL_GEN(dev_priv) >= 9) {
2356 			ret = skl_update_scaler_crtc(pipe_config);
2357 			if (ret)
2358 				return ret;
2359 		}
2360 
2361 		if (HAS_GMCH(dev_priv))
2362 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
2363 						 conn_state->scaling_mode);
2364 		else
2365 			intel_pch_panel_fitting(intel_crtc, pipe_config,
2366 						conn_state->scaling_mode);
2367 	}
2368 
2369 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2370 		return -EINVAL;
2371 
2372 	if (HAS_GMCH(dev_priv) &&
2373 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2374 		return -EINVAL;
2375 
2376 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2377 		return -EINVAL;
2378 
2379 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2380 		return -EINVAL;
2381 
2382 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2383 	if (ret < 0)
2384 		return ret;
2385 
2386 	pipe_config->limited_color_range =
2387 		intel_dp_limited_color_range(pipe_config, conn_state);
2388 
2389 	if (pipe_config->dsc.compression_enable)
2390 		output_bpp = pipe_config->dsc.compressed_bpp;
2391 	else
2392 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2393 
2394 	intel_link_compute_m_n(output_bpp,
2395 			       pipe_config->lane_count,
2396 			       adjusted_mode->crtc_clock,
2397 			       pipe_config->port_clock,
2398 			       &pipe_config->dp_m_n,
2399 			       constant_n, pipe_config->fec_enable);
2400 
2401 	if (intel_connector->panel.downclock_mode != NULL &&
2402 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2403 			pipe_config->has_drrs = true;
2404 			intel_link_compute_m_n(output_bpp,
2405 					       pipe_config->lane_count,
2406 					       intel_connector->panel.downclock_mode->clock,
2407 					       pipe_config->port_clock,
2408 					       &pipe_config->dp_m2_n2,
2409 					       constant_n, pipe_config->fec_enable);
2410 	}
2411 
2412 	if (!HAS_DDI(dev_priv))
2413 		intel_dp_set_clock(encoder, pipe_config);
2414 
2415 	intel_psr_compute_config(intel_dp, pipe_config);
2416 
2417 	intel_hdcp_transcoder_config(intel_connector,
2418 				     pipe_config->cpu_transcoder);
2419 
2420 	return 0;
2421 }
2422 
2423 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2424 			      int link_rate, u8 lane_count,
2425 			      bool link_mst)
2426 {
2427 	intel_dp->link_trained = false;
2428 	intel_dp->link_rate = link_rate;
2429 	intel_dp->lane_count = lane_count;
2430 	intel_dp->link_mst = link_mst;
2431 }
2432 
2433 static void intel_dp_prepare(struct intel_encoder *encoder,
2434 			     const struct intel_crtc_state *pipe_config)
2435 {
2436 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2437 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2438 	enum port port = encoder->port;
2439 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2440 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2441 
2442 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2443 				 pipe_config->lane_count,
2444 				 intel_crtc_has_type(pipe_config,
2445 						     INTEL_OUTPUT_DP_MST));
2446 
2447 	intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2448 	intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2449 
2450 	/*
2451 	 * There are four kinds of DP registers:
2452 	 *
2453 	 * 	IBX PCH
2454 	 * 	SNB CPU
2455 	 *	IVB CPU
2456 	 * 	CPT PCH
2457 	 *
2458 	 * IBX PCH and CPU are the same for almost everything,
2459 	 * except that the CPU DP PLL is configured in this
2460 	 * register
2461 	 *
2462 	 * CPT PCH is quite different, having many bits moved
2463 	 * to the TRANS_DP_CTL register instead. That
2464 	 * configuration happens (oddly) in ironlake_pch_enable
2465 	 */
2466 
2467 	/* Preserve the BIOS-computed detected bit. This is
2468 	 * supposed to be read-only.
2469 	 */
2470 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2471 
2472 	/* Handle DP bits in common between all three register formats */
2473 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2474 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2475 
2476 	/* Split out the IBX/CPU vs CPT settings */
2477 
2478 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2479 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2480 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2481 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2482 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2483 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2484 
2485 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2486 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2487 
2488 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2489 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2490 		u32 trans_dp;
2491 
2492 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2493 
2494 		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2495 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2496 			trans_dp |= TRANS_DP_ENH_FRAMING;
2497 		else
2498 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2499 		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2500 	} else {
2501 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2502 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2503 
2504 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2505 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2506 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2507 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2508 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2509 
2510 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2511 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2512 
2513 		if (IS_CHERRYVIEW(dev_priv))
2514 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2515 		else
2516 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2517 	}
2518 }
2519 
2520 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2521 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2522 
2523 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2524 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2525 
2526 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2527 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2528 
2529 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2530 
2531 static void wait_panel_status(struct intel_dp *intel_dp,
2532 				       u32 mask,
2533 				       u32 value)
2534 {
2535 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2536 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2537 
2538 	lockdep_assert_held(&dev_priv->pps_mutex);
2539 
2540 	intel_pps_verify_state(intel_dp);
2541 
2542 	pp_stat_reg = _pp_stat_reg(intel_dp);
2543 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2544 
2545 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2546 			mask, value,
2547 			I915_READ(pp_stat_reg),
2548 			I915_READ(pp_ctrl_reg));
2549 
2550 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2551 				       mask, value, 5000))
2552 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2553 				I915_READ(pp_stat_reg),
2554 				I915_READ(pp_ctrl_reg));
2555 
2556 	DRM_DEBUG_KMS("Wait complete\n");
2557 }
2558 
2559 static void wait_panel_on(struct intel_dp *intel_dp)
2560 {
2561 	DRM_DEBUG_KMS("Wait for panel power on\n");
2562 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2563 }
2564 
2565 static void wait_panel_off(struct intel_dp *intel_dp)
2566 {
2567 	DRM_DEBUG_KMS("Wait for panel power off time\n");
2568 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2569 }
2570 
2571 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2572 {
2573 	ktime_t panel_power_on_time;
2574 	s64 panel_power_off_duration;
2575 
2576 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2577 
2578 	/* take the difference of currrent time and panel power off time
2579 	 * and then make panel wait for t11_t12 if needed. */
2580 	panel_power_on_time = ktime_get_boottime();
2581 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2582 
2583 	/* When we disable the VDD override bit last we have to do the manual
2584 	 * wait. */
2585 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2586 		wait_remaining_ms_from_jiffies(jiffies,
2587 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2588 
2589 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2590 }
2591 
2592 static void wait_backlight_on(struct intel_dp *intel_dp)
2593 {
2594 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2595 				       intel_dp->backlight_on_delay);
2596 }
2597 
2598 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2599 {
2600 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2601 				       intel_dp->backlight_off_delay);
2602 }
2603 
2604 /* Read the current pp_control value, unlocking the register if it
2605  * is locked
2606  */
2607 
2608 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2609 {
2610 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2611 	u32 control;
2612 
2613 	lockdep_assert_held(&dev_priv->pps_mutex);
2614 
2615 	control = I915_READ(_pp_ctrl_reg(intel_dp));
2616 	if (WARN_ON(!HAS_DDI(dev_priv) &&
2617 		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2618 		control &= ~PANEL_UNLOCK_MASK;
2619 		control |= PANEL_UNLOCK_REGS;
2620 	}
2621 	return control;
2622 }
2623 
2624 /*
2625  * Must be paired with edp_panel_vdd_off().
2626  * Must hold pps_mutex around the whole on/off sequence.
2627  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2628  */
2629 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2630 {
2631 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2632 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2633 	u32 pp;
2634 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2635 	bool need_to_disable = !intel_dp->want_panel_vdd;
2636 
2637 	lockdep_assert_held(&dev_priv->pps_mutex);
2638 
2639 	if (!intel_dp_is_edp(intel_dp))
2640 		return false;
2641 
2642 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2643 	intel_dp->want_panel_vdd = true;
2644 
2645 	if (edp_have_panel_vdd(intel_dp))
2646 		return need_to_disable;
2647 
2648 	intel_display_power_get(dev_priv,
2649 				intel_aux_power_domain(intel_dig_port));
2650 
2651 	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
2652 		      intel_dig_port->base.base.base.id,
2653 		      intel_dig_port->base.base.name);
2654 
2655 	if (!edp_have_panel_power(intel_dp))
2656 		wait_panel_power_cycle(intel_dp);
2657 
2658 	pp = ironlake_get_pp_control(intel_dp);
2659 	pp |= EDP_FORCE_VDD;
2660 
2661 	pp_stat_reg = _pp_stat_reg(intel_dp);
2662 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2663 
2664 	I915_WRITE(pp_ctrl_reg, pp);
2665 	POSTING_READ(pp_ctrl_reg);
2666 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2667 			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2668 	/*
2669 	 * If the panel wasn't on, delay before accessing aux channel
2670 	 */
2671 	if (!edp_have_panel_power(intel_dp)) {
2672 		DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
2673 			      intel_dig_port->base.base.base.id,
2674 			      intel_dig_port->base.base.name);
2675 		msleep(intel_dp->panel_power_up_delay);
2676 	}
2677 
2678 	return need_to_disable;
2679 }
2680 
2681 /*
2682  * Must be paired with intel_edp_panel_vdd_off() or
2683  * intel_edp_panel_off().
2684  * Nested calls to these functions are not allowed since
2685  * we drop the lock. Caller must use some higher level
2686  * locking to prevent nested calls from other threads.
2687  */
2688 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2689 {
2690 	intel_wakeref_t wakeref;
2691 	bool vdd;
2692 
2693 	if (!intel_dp_is_edp(intel_dp))
2694 		return;
2695 
2696 	vdd = false;
2697 	with_pps_lock(intel_dp, wakeref)
2698 		vdd = edp_panel_vdd_on(intel_dp);
2699 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2700 			dp_to_dig_port(intel_dp)->base.base.base.id,
2701 			dp_to_dig_port(intel_dp)->base.base.name);
2702 }
2703 
2704 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2705 {
2706 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2707 	struct intel_digital_port *intel_dig_port =
2708 		dp_to_dig_port(intel_dp);
2709 	u32 pp;
2710 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2711 
2712 	lockdep_assert_held(&dev_priv->pps_mutex);
2713 
2714 	WARN_ON(intel_dp->want_panel_vdd);
2715 
2716 	if (!edp_have_panel_vdd(intel_dp))
2717 		return;
2718 
2719 	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
2720 		      intel_dig_port->base.base.base.id,
2721 		      intel_dig_port->base.base.name);
2722 
2723 	pp = ironlake_get_pp_control(intel_dp);
2724 	pp &= ~EDP_FORCE_VDD;
2725 
2726 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2727 	pp_stat_reg = _pp_stat_reg(intel_dp);
2728 
2729 	I915_WRITE(pp_ctrl_reg, pp);
2730 	POSTING_READ(pp_ctrl_reg);
2731 
2732 	/* Make sure sequencer is idle before allowing subsequent activity */
2733 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2734 	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2735 
2736 	if ((pp & PANEL_POWER_ON) == 0)
2737 		intel_dp->panel_power_off_time = ktime_get_boottime();
2738 
2739 	intel_display_power_put_unchecked(dev_priv,
2740 					  intel_aux_power_domain(intel_dig_port));
2741 }
2742 
2743 static void edp_panel_vdd_work(struct work_struct *__work)
2744 {
2745 	struct intel_dp *intel_dp =
2746 		container_of(to_delayed_work(__work),
2747 			     struct intel_dp, panel_vdd_work);
2748 	intel_wakeref_t wakeref;
2749 
2750 	with_pps_lock(intel_dp, wakeref) {
2751 		if (!intel_dp->want_panel_vdd)
2752 			edp_panel_vdd_off_sync(intel_dp);
2753 	}
2754 }
2755 
2756 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2757 {
2758 	unsigned long delay;
2759 
2760 	/*
2761 	 * Queue the timer to fire a long time from now (relative to the power
2762 	 * down delay) to keep the panel power up across a sequence of
2763 	 * operations.
2764 	 */
2765 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2766 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2767 }
2768 
2769 /*
2770  * Must be paired with edp_panel_vdd_on().
2771  * Must hold pps_mutex around the whole on/off sequence.
2772  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2773  */
2774 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2775 {
2776 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2777 
2778 	lockdep_assert_held(&dev_priv->pps_mutex);
2779 
2780 	if (!intel_dp_is_edp(intel_dp))
2781 		return;
2782 
2783 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2784 			dp_to_dig_port(intel_dp)->base.base.base.id,
2785 			dp_to_dig_port(intel_dp)->base.base.name);
2786 
2787 	intel_dp->want_panel_vdd = false;
2788 
2789 	if (sync)
2790 		edp_panel_vdd_off_sync(intel_dp);
2791 	else
2792 		edp_panel_vdd_schedule_off(intel_dp);
2793 }
2794 
2795 static void edp_panel_on(struct intel_dp *intel_dp)
2796 {
2797 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2798 	u32 pp;
2799 	i915_reg_t pp_ctrl_reg;
2800 
2801 	lockdep_assert_held(&dev_priv->pps_mutex);
2802 
2803 	if (!intel_dp_is_edp(intel_dp))
2804 		return;
2805 
2806 	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
2807 		      dp_to_dig_port(intel_dp)->base.base.base.id,
2808 		      dp_to_dig_port(intel_dp)->base.base.name);
2809 
2810 	if (WARN(edp_have_panel_power(intel_dp),
2811 		 "[ENCODER:%d:%s] panel power already on\n",
2812 		 dp_to_dig_port(intel_dp)->base.base.base.id,
2813 		 dp_to_dig_port(intel_dp)->base.base.name))
2814 		return;
2815 
2816 	wait_panel_power_cycle(intel_dp);
2817 
2818 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2819 	pp = ironlake_get_pp_control(intel_dp);
2820 	if (IS_GEN(dev_priv, 5)) {
2821 		/* ILK workaround: disable reset around power sequence */
2822 		pp &= ~PANEL_POWER_RESET;
2823 		I915_WRITE(pp_ctrl_reg, pp);
2824 		POSTING_READ(pp_ctrl_reg);
2825 	}
2826 
2827 	pp |= PANEL_POWER_ON;
2828 	if (!IS_GEN(dev_priv, 5))
2829 		pp |= PANEL_POWER_RESET;
2830 
2831 	I915_WRITE(pp_ctrl_reg, pp);
2832 	POSTING_READ(pp_ctrl_reg);
2833 
2834 	wait_panel_on(intel_dp);
2835 	intel_dp->last_power_on = jiffies;
2836 
2837 	if (IS_GEN(dev_priv, 5)) {
2838 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2839 		I915_WRITE(pp_ctrl_reg, pp);
2840 		POSTING_READ(pp_ctrl_reg);
2841 	}
2842 }
2843 
2844 void intel_edp_panel_on(struct intel_dp *intel_dp)
2845 {
2846 	intel_wakeref_t wakeref;
2847 
2848 	if (!intel_dp_is_edp(intel_dp))
2849 		return;
2850 
2851 	with_pps_lock(intel_dp, wakeref)
2852 		edp_panel_on(intel_dp);
2853 }
2854 
2855 
2856 static void edp_panel_off(struct intel_dp *intel_dp)
2857 {
2858 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2859 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2860 	u32 pp;
2861 	i915_reg_t pp_ctrl_reg;
2862 
2863 	lockdep_assert_held(&dev_priv->pps_mutex);
2864 
2865 	if (!intel_dp_is_edp(intel_dp))
2866 		return;
2867 
2868 	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
2869 		      dig_port->base.base.base.id, dig_port->base.base.name);
2870 
2871 	WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2872 	     dig_port->base.base.base.id, dig_port->base.base.name);
2873 
2874 	pp = ironlake_get_pp_control(intel_dp);
2875 	/* We need to switch off panel power _and_ force vdd, for otherwise some
2876 	 * panels get very unhappy and cease to work. */
2877 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2878 		EDP_BLC_ENABLE);
2879 
2880 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2881 
2882 	intel_dp->want_panel_vdd = false;
2883 
2884 	I915_WRITE(pp_ctrl_reg, pp);
2885 	POSTING_READ(pp_ctrl_reg);
2886 
2887 	wait_panel_off(intel_dp);
2888 	intel_dp->panel_power_off_time = ktime_get_boottime();
2889 
2890 	/* We got a reference when we enabled the VDD. */
2891 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2892 }
2893 
2894 void intel_edp_panel_off(struct intel_dp *intel_dp)
2895 {
2896 	intel_wakeref_t wakeref;
2897 
2898 	if (!intel_dp_is_edp(intel_dp))
2899 		return;
2900 
2901 	with_pps_lock(intel_dp, wakeref)
2902 		edp_panel_off(intel_dp);
2903 }
2904 
2905 /* Enable backlight in the panel power control. */
2906 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2907 {
2908 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2909 	intel_wakeref_t wakeref;
2910 
2911 	/*
2912 	 * If we enable the backlight right away following a panel power
2913 	 * on, we may see slight flicker as the panel syncs with the eDP
2914 	 * link.  So delay a bit to make sure the image is solid before
2915 	 * allowing it to appear.
2916 	 */
2917 	wait_backlight_on(intel_dp);
2918 
2919 	with_pps_lock(intel_dp, wakeref) {
2920 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2921 		u32 pp;
2922 
2923 		pp = ironlake_get_pp_control(intel_dp);
2924 		pp |= EDP_BLC_ENABLE;
2925 
2926 		I915_WRITE(pp_ctrl_reg, pp);
2927 		POSTING_READ(pp_ctrl_reg);
2928 	}
2929 }
2930 
2931 /* Enable backlight PWM and backlight PP control. */
2932 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2933 			    const struct drm_connector_state *conn_state)
2934 {
2935 	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2936 
2937 	if (!intel_dp_is_edp(intel_dp))
2938 		return;
2939 
2940 	DRM_DEBUG_KMS("\n");
2941 
2942 	intel_panel_enable_backlight(crtc_state, conn_state);
2943 	_intel_edp_backlight_on(intel_dp);
2944 }
2945 
2946 /* Disable backlight in the panel power control. */
2947 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2948 {
2949 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2950 	intel_wakeref_t wakeref;
2951 
2952 	if (!intel_dp_is_edp(intel_dp))
2953 		return;
2954 
2955 	with_pps_lock(intel_dp, wakeref) {
2956 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2957 		u32 pp;
2958 
2959 		pp = ironlake_get_pp_control(intel_dp);
2960 		pp &= ~EDP_BLC_ENABLE;
2961 
2962 		I915_WRITE(pp_ctrl_reg, pp);
2963 		POSTING_READ(pp_ctrl_reg);
2964 	}
2965 
2966 	intel_dp->last_backlight_off = jiffies;
2967 	edp_wait_backlight_off(intel_dp);
2968 }
2969 
2970 /* Disable backlight PP control and backlight PWM. */
2971 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2972 {
2973 	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2974 
2975 	if (!intel_dp_is_edp(intel_dp))
2976 		return;
2977 
2978 	DRM_DEBUG_KMS("\n");
2979 
2980 	_intel_edp_backlight_off(intel_dp);
2981 	intel_panel_disable_backlight(old_conn_state);
2982 }
2983 
2984 /*
2985  * Hook for controlling the panel power control backlight through the bl_power
2986  * sysfs attribute. Take care to handle multiple calls.
2987  */
2988 static void intel_edp_backlight_power(struct intel_connector *connector,
2989 				      bool enable)
2990 {
2991 	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2992 	intel_wakeref_t wakeref;
2993 	bool is_enabled;
2994 
2995 	is_enabled = false;
2996 	with_pps_lock(intel_dp, wakeref)
2997 		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2998 	if (is_enabled == enable)
2999 		return;
3000 
3001 	DRM_DEBUG_KMS("panel power control backlight %s\n",
3002 		      enable ? "enable" : "disable");
3003 
3004 	if (enable)
3005 		_intel_edp_backlight_on(intel_dp);
3006 	else
3007 		_intel_edp_backlight_off(intel_dp);
3008 }
3009 
3010 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3011 {
3012 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3013 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3014 	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
3015 
3016 	I915_STATE_WARN(cur_state != state,
3017 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3018 			dig_port->base.base.base.id, dig_port->base.base.name,
3019 			onoff(state), onoff(cur_state));
3020 }
3021 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3022 
3023 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3024 {
3025 	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
3026 
3027 	I915_STATE_WARN(cur_state != state,
3028 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3029 			onoff(state), onoff(cur_state));
3030 }
3031 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3032 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3033 
3034 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
3035 				const struct intel_crtc_state *pipe_config)
3036 {
3037 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3038 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3039 
3040 	assert_pipe_disabled(dev_priv, crtc->pipe);
3041 	assert_dp_port_disabled(intel_dp);
3042 	assert_edp_pll_disabled(dev_priv);
3043 
3044 	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3045 		      pipe_config->port_clock);
3046 
3047 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3048 
3049 	if (pipe_config->port_clock == 162000)
3050 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3051 	else
3052 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3053 
3054 	I915_WRITE(DP_A, intel_dp->DP);
3055 	POSTING_READ(DP_A);
3056 	udelay(500);
3057 
3058 	/*
3059 	 * [DevILK] Work around required when enabling DP PLL
3060 	 * while a pipe is enabled going to FDI:
3061 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3062 	 * 2. Program DP PLL enable
3063 	 */
3064 	if (IS_GEN(dev_priv, 5))
3065 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3066 
3067 	intel_dp->DP |= DP_PLL_ENABLE;
3068 
3069 	I915_WRITE(DP_A, intel_dp->DP);
3070 	POSTING_READ(DP_A);
3071 	udelay(200);
3072 }
3073 
3074 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
3075 				 const struct intel_crtc_state *old_crtc_state)
3076 {
3077 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3078 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3079 
3080 	assert_pipe_disabled(dev_priv, crtc->pipe);
3081 	assert_dp_port_disabled(intel_dp);
3082 	assert_edp_pll_enabled(dev_priv);
3083 
3084 	DRM_DEBUG_KMS("disabling eDP PLL\n");
3085 
3086 	intel_dp->DP &= ~DP_PLL_ENABLE;
3087 
3088 	I915_WRITE(DP_A, intel_dp->DP);
3089 	POSTING_READ(DP_A);
3090 	udelay(200);
3091 }
3092 
3093 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3094 {
3095 	/*
3096 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3097 	 * be capable of signalling downstream hpd with a long pulse.
3098 	 * Whether or not that means D3 is safe to use is not clear,
3099 	 * but let's assume so until proven otherwise.
3100 	 *
3101 	 * FIXME should really check all downstream ports...
3102 	 */
3103 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3104 		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3105 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3106 }
3107 
3108 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3109 					   const struct intel_crtc_state *crtc_state,
3110 					   bool enable)
3111 {
3112 	int ret;
3113 
3114 	if (!crtc_state->dsc.compression_enable)
3115 		return;
3116 
3117 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3118 				 enable ? DP_DECOMPRESSION_EN : 0);
3119 	if (ret < 0)
3120 		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3121 			      enable ? "enable" : "disable");
3122 }
3123 
3124 /* If the sink supports it, try to set the power state appropriately */
3125 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3126 {
3127 	int ret, i;
3128 
3129 	/* Should have a valid DPCD by this point */
3130 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3131 		return;
3132 
3133 	if (mode != DRM_MODE_DPMS_ON) {
3134 		if (downstream_hpd_needs_d0(intel_dp))
3135 			return;
3136 
3137 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3138 					 DP_SET_POWER_D3);
3139 	} else {
3140 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3141 
3142 		/*
3143 		 * When turning on, we need to retry for 1ms to give the sink
3144 		 * time to wake up.
3145 		 */
3146 		for (i = 0; i < 3; i++) {
3147 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3148 						 DP_SET_POWER_D0);
3149 			if (ret == 1)
3150 				break;
3151 			msleep(1);
3152 		}
3153 
3154 		if (ret == 1 && lspcon->active)
3155 			lspcon_wait_pcon_mode(lspcon);
3156 	}
3157 
3158 	if (ret != 1)
3159 		DRM_DEBUG_KMS("failed to %s sink power state\n",
3160 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3161 }
3162 
3163 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3164 				 enum port port, enum pipe *pipe)
3165 {
3166 	enum pipe p;
3167 
3168 	for_each_pipe(dev_priv, p) {
3169 		u32 val = I915_READ(TRANS_DP_CTL(p));
3170 
3171 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3172 			*pipe = p;
3173 			return true;
3174 		}
3175 	}
3176 
3177 	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3178 
3179 	/* must initialize pipe to something for the asserts */
3180 	*pipe = PIPE_A;
3181 
3182 	return false;
3183 }
3184 
3185 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3186 			   i915_reg_t dp_reg, enum port port,
3187 			   enum pipe *pipe)
3188 {
3189 	bool ret;
3190 	u32 val;
3191 
3192 	val = I915_READ(dp_reg);
3193 
3194 	ret = val & DP_PORT_EN;
3195 
3196 	/* asserts want to know the pipe even if the port is disabled */
3197 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3198 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3199 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3200 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3201 	else if (IS_CHERRYVIEW(dev_priv))
3202 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3203 	else
3204 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3205 
3206 	return ret;
3207 }
3208 
3209 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3210 				  enum pipe *pipe)
3211 {
3212 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3213 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3214 	intel_wakeref_t wakeref;
3215 	bool ret;
3216 
3217 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3218 						     encoder->power_domain);
3219 	if (!wakeref)
3220 		return false;
3221 
3222 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3223 				    encoder->port, pipe);
3224 
3225 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3226 
3227 	return ret;
3228 }
3229 
3230 static void intel_dp_get_config(struct intel_encoder *encoder,
3231 				struct intel_crtc_state *pipe_config)
3232 {
3233 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3234 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3235 	u32 tmp, flags = 0;
3236 	enum port port = encoder->port;
3237 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3238 
3239 	if (encoder->type == INTEL_OUTPUT_EDP)
3240 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3241 	else
3242 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3243 
3244 	tmp = I915_READ(intel_dp->output_reg);
3245 
3246 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3247 
3248 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3249 		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3250 
3251 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3252 			flags |= DRM_MODE_FLAG_PHSYNC;
3253 		else
3254 			flags |= DRM_MODE_FLAG_NHSYNC;
3255 
3256 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3257 			flags |= DRM_MODE_FLAG_PVSYNC;
3258 		else
3259 			flags |= DRM_MODE_FLAG_NVSYNC;
3260 	} else {
3261 		if (tmp & DP_SYNC_HS_HIGH)
3262 			flags |= DRM_MODE_FLAG_PHSYNC;
3263 		else
3264 			flags |= DRM_MODE_FLAG_NHSYNC;
3265 
3266 		if (tmp & DP_SYNC_VS_HIGH)
3267 			flags |= DRM_MODE_FLAG_PVSYNC;
3268 		else
3269 			flags |= DRM_MODE_FLAG_NVSYNC;
3270 	}
3271 
3272 	pipe_config->base.adjusted_mode.flags |= flags;
3273 
3274 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3275 		pipe_config->limited_color_range = true;
3276 
3277 	pipe_config->lane_count =
3278 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3279 
3280 	intel_dp_get_m_n(crtc, pipe_config);
3281 
3282 	if (port == PORT_A) {
3283 		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3284 			pipe_config->port_clock = 162000;
3285 		else
3286 			pipe_config->port_clock = 270000;
3287 	}
3288 
3289 	pipe_config->base.adjusted_mode.crtc_clock =
3290 		intel_dotclock_calculate(pipe_config->port_clock,
3291 					 &pipe_config->dp_m_n);
3292 
3293 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3294 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3295 		/*
3296 		 * This is a big fat ugly hack.
3297 		 *
3298 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3299 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3300 		 * unknown we fail to light up. Yet the same BIOS boots up with
3301 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3302 		 * max, not what it tells us to use.
3303 		 *
3304 		 * Note: This will still be broken if the eDP panel is not lit
3305 		 * up by the BIOS, and thus we can't get the mode at module
3306 		 * load.
3307 		 */
3308 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3309 			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3310 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3311 	}
3312 }
3313 
3314 static void intel_disable_dp(struct intel_encoder *encoder,
3315 			     const struct intel_crtc_state *old_crtc_state,
3316 			     const struct drm_connector_state *old_conn_state)
3317 {
3318 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3319 
3320 	intel_dp->link_trained = false;
3321 
3322 	if (old_crtc_state->has_audio)
3323 		intel_audio_codec_disable(encoder,
3324 					  old_crtc_state, old_conn_state);
3325 
3326 	/* Make sure the panel is off before trying to change the mode. But also
3327 	 * ensure that we have vdd while we switch off the panel. */
3328 	intel_edp_panel_vdd_on(intel_dp);
3329 	intel_edp_backlight_off(old_conn_state);
3330 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3331 	intel_edp_panel_off(intel_dp);
3332 }
3333 
3334 static void g4x_disable_dp(struct intel_encoder *encoder,
3335 			   const struct intel_crtc_state *old_crtc_state,
3336 			   const struct drm_connector_state *old_conn_state)
3337 {
3338 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3339 }
3340 
3341 static void vlv_disable_dp(struct intel_encoder *encoder,
3342 			   const struct intel_crtc_state *old_crtc_state,
3343 			   const struct drm_connector_state *old_conn_state)
3344 {
3345 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3346 }
3347 
3348 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3349 				const struct intel_crtc_state *old_crtc_state,
3350 				const struct drm_connector_state *old_conn_state)
3351 {
3352 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3353 	enum port port = encoder->port;
3354 
3355 	/*
3356 	 * Bspec does not list a specific disable sequence for g4x DP.
3357 	 * Follow the ilk+ sequence (disable pipe before the port) for
3358 	 * g4x DP as it does not suffer from underruns like the normal
3359 	 * g4x modeset sequence (disable pipe after the port).
3360 	 */
3361 	intel_dp_link_down(encoder, old_crtc_state);
3362 
3363 	/* Only ilk+ has port A */
3364 	if (port == PORT_A)
3365 		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3366 }
3367 
3368 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3369 				const struct intel_crtc_state *old_crtc_state,
3370 				const struct drm_connector_state *old_conn_state)
3371 {
3372 	intel_dp_link_down(encoder, old_crtc_state);
3373 }
3374 
3375 static void chv_post_disable_dp(struct intel_encoder *encoder,
3376 				const struct intel_crtc_state *old_crtc_state,
3377 				const struct drm_connector_state *old_conn_state)
3378 {
3379 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3380 
3381 	intel_dp_link_down(encoder, old_crtc_state);
3382 
3383 	vlv_dpio_get(dev_priv);
3384 
3385 	/* Assert data lane reset */
3386 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3387 
3388 	vlv_dpio_put(dev_priv);
3389 }
3390 
3391 static void
3392 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3393 			 u32 *DP,
3394 			 u8 dp_train_pat)
3395 {
3396 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3397 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3398 	enum port port = intel_dig_port->base.port;
3399 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3400 
3401 	if (dp_train_pat & train_pat_mask)
3402 		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3403 			      dp_train_pat & train_pat_mask);
3404 
3405 	if (HAS_DDI(dev_priv)) {
3406 		u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3407 
3408 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3409 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3410 		else
3411 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3412 
3413 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3414 		switch (dp_train_pat & train_pat_mask) {
3415 		case DP_TRAINING_PATTERN_DISABLE:
3416 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3417 
3418 			break;
3419 		case DP_TRAINING_PATTERN_1:
3420 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3421 			break;
3422 		case DP_TRAINING_PATTERN_2:
3423 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3424 			break;
3425 		case DP_TRAINING_PATTERN_3:
3426 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3427 			break;
3428 		case DP_TRAINING_PATTERN_4:
3429 			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3430 			break;
3431 		}
3432 		I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3433 
3434 	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3435 		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3436 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3437 
3438 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3439 		case DP_TRAINING_PATTERN_DISABLE:
3440 			*DP |= DP_LINK_TRAIN_OFF_CPT;
3441 			break;
3442 		case DP_TRAINING_PATTERN_1:
3443 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3444 			break;
3445 		case DP_TRAINING_PATTERN_2:
3446 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3447 			break;
3448 		case DP_TRAINING_PATTERN_3:
3449 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3450 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3451 			break;
3452 		}
3453 
3454 	} else {
3455 		*DP &= ~DP_LINK_TRAIN_MASK;
3456 
3457 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3458 		case DP_TRAINING_PATTERN_DISABLE:
3459 			*DP |= DP_LINK_TRAIN_OFF;
3460 			break;
3461 		case DP_TRAINING_PATTERN_1:
3462 			*DP |= DP_LINK_TRAIN_PAT_1;
3463 			break;
3464 		case DP_TRAINING_PATTERN_2:
3465 			*DP |= DP_LINK_TRAIN_PAT_2;
3466 			break;
3467 		case DP_TRAINING_PATTERN_3:
3468 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3469 			*DP |= DP_LINK_TRAIN_PAT_2;
3470 			break;
3471 		}
3472 	}
3473 }
3474 
3475 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3476 				 const struct intel_crtc_state *old_crtc_state)
3477 {
3478 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3479 
3480 	/* enable with pattern 1 (as per spec) */
3481 
3482 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3483 
3484 	/*
3485 	 * Magic for VLV/CHV. We _must_ first set up the register
3486 	 * without actually enabling the port, and then do another
3487 	 * write to enable the port. Otherwise link training will
3488 	 * fail when the power sequencer is freshly used for this port.
3489 	 */
3490 	intel_dp->DP |= DP_PORT_EN;
3491 	if (old_crtc_state->has_audio)
3492 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3493 
3494 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3495 	POSTING_READ(intel_dp->output_reg);
3496 }
3497 
3498 static void intel_enable_dp(struct intel_encoder *encoder,
3499 			    const struct intel_crtc_state *pipe_config,
3500 			    const struct drm_connector_state *conn_state)
3501 {
3502 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3503 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3504 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3505 	u32 dp_reg = I915_READ(intel_dp->output_reg);
3506 	enum pipe pipe = crtc->pipe;
3507 	intel_wakeref_t wakeref;
3508 
3509 	if (WARN_ON(dp_reg & DP_PORT_EN))
3510 		return;
3511 
3512 	with_pps_lock(intel_dp, wakeref) {
3513 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3514 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3515 
3516 		intel_dp_enable_port(intel_dp, pipe_config);
3517 
3518 		edp_panel_vdd_on(intel_dp);
3519 		edp_panel_on(intel_dp);
3520 		edp_panel_vdd_off(intel_dp, true);
3521 	}
3522 
3523 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3524 		unsigned int lane_mask = 0x0;
3525 
3526 		if (IS_CHERRYVIEW(dev_priv))
3527 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3528 
3529 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3530 				    lane_mask);
3531 	}
3532 
3533 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3534 	intel_dp_start_link_train(intel_dp);
3535 	intel_dp_stop_link_train(intel_dp);
3536 
3537 	if (pipe_config->has_audio) {
3538 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3539 				 pipe_name(pipe));
3540 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3541 	}
3542 }
3543 
3544 static void g4x_enable_dp(struct intel_encoder *encoder,
3545 			  const struct intel_crtc_state *pipe_config,
3546 			  const struct drm_connector_state *conn_state)
3547 {
3548 	intel_enable_dp(encoder, pipe_config, conn_state);
3549 	intel_edp_backlight_on(pipe_config, conn_state);
3550 }
3551 
3552 static void vlv_enable_dp(struct intel_encoder *encoder,
3553 			  const struct intel_crtc_state *pipe_config,
3554 			  const struct drm_connector_state *conn_state)
3555 {
3556 	intel_edp_backlight_on(pipe_config, conn_state);
3557 }
3558 
3559 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3560 			      const struct intel_crtc_state *pipe_config,
3561 			      const struct drm_connector_state *conn_state)
3562 {
3563 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3564 	enum port port = encoder->port;
3565 
3566 	intel_dp_prepare(encoder, pipe_config);
3567 
3568 	/* Only ilk+ has port A */
3569 	if (port == PORT_A)
3570 		ironlake_edp_pll_on(intel_dp, pipe_config);
3571 }
3572 
3573 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3574 {
3575 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3576 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3577 	enum pipe pipe = intel_dp->pps_pipe;
3578 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3579 
3580 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3581 
3582 	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3583 		return;
3584 
3585 	edp_panel_vdd_off_sync(intel_dp);
3586 
3587 	/*
3588 	 * VLV seems to get confused when multiple power sequencers
3589 	 * have the same port selected (even if only one has power/vdd
3590 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3591 	 * CHV on the other hand doesn't seem to mind having the same port
3592 	 * selected in multiple power sequencers, but let's clear the
3593 	 * port select always when logically disconnecting a power sequencer
3594 	 * from a port.
3595 	 */
3596 	DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3597 		      pipe_name(pipe), intel_dig_port->base.base.base.id,
3598 		      intel_dig_port->base.base.name);
3599 	I915_WRITE(pp_on_reg, 0);
3600 	POSTING_READ(pp_on_reg);
3601 
3602 	intel_dp->pps_pipe = INVALID_PIPE;
3603 }
3604 
3605 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3606 				      enum pipe pipe)
3607 {
3608 	struct intel_encoder *encoder;
3609 
3610 	lockdep_assert_held(&dev_priv->pps_mutex);
3611 
3612 	for_each_intel_dp(&dev_priv->drm, encoder) {
3613 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3614 
3615 		WARN(intel_dp->active_pipe == pipe,
3616 		     "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3617 		     pipe_name(pipe), encoder->base.base.id,
3618 		     encoder->base.name);
3619 
3620 		if (intel_dp->pps_pipe != pipe)
3621 			continue;
3622 
3623 		DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3624 			      pipe_name(pipe), encoder->base.base.id,
3625 			      encoder->base.name);
3626 
3627 		/* make sure vdd is off before we steal it */
3628 		vlv_detach_power_sequencer(intel_dp);
3629 	}
3630 }
3631 
3632 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3633 					   const struct intel_crtc_state *crtc_state)
3634 {
3635 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3636 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3637 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3638 
3639 	lockdep_assert_held(&dev_priv->pps_mutex);
3640 
3641 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3642 
3643 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3644 	    intel_dp->pps_pipe != crtc->pipe) {
3645 		/*
3646 		 * If another power sequencer was being used on this
3647 		 * port previously make sure to turn off vdd there while
3648 		 * we still have control of it.
3649 		 */
3650 		vlv_detach_power_sequencer(intel_dp);
3651 	}
3652 
3653 	/*
3654 	 * We may be stealing the power
3655 	 * sequencer from another port.
3656 	 */
3657 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3658 
3659 	intel_dp->active_pipe = crtc->pipe;
3660 
3661 	if (!intel_dp_is_edp(intel_dp))
3662 		return;
3663 
3664 	/* now it's all ours */
3665 	intel_dp->pps_pipe = crtc->pipe;
3666 
3667 	DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3668 		      pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3669 		      encoder->base.name);
3670 
3671 	/* init power sequencer on this pipe and port */
3672 	intel_dp_init_panel_power_sequencer(intel_dp);
3673 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3674 }
3675 
3676 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3677 			      const struct intel_crtc_state *pipe_config,
3678 			      const struct drm_connector_state *conn_state)
3679 {
3680 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3681 
3682 	intel_enable_dp(encoder, pipe_config, conn_state);
3683 }
3684 
3685 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3686 				  const struct intel_crtc_state *pipe_config,
3687 				  const struct drm_connector_state *conn_state)
3688 {
3689 	intel_dp_prepare(encoder, pipe_config);
3690 
3691 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3692 }
3693 
3694 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3695 			      const struct intel_crtc_state *pipe_config,
3696 			      const struct drm_connector_state *conn_state)
3697 {
3698 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3699 
3700 	intel_enable_dp(encoder, pipe_config, conn_state);
3701 
3702 	/* Second common lane will stay alive on its own now */
3703 	chv_phy_release_cl2_override(encoder);
3704 }
3705 
3706 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3707 				  const struct intel_crtc_state *pipe_config,
3708 				  const struct drm_connector_state *conn_state)
3709 {
3710 	intel_dp_prepare(encoder, pipe_config);
3711 
3712 	chv_phy_pre_pll_enable(encoder, pipe_config);
3713 }
3714 
3715 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3716 				    const struct intel_crtc_state *old_crtc_state,
3717 				    const struct drm_connector_state *old_conn_state)
3718 {
3719 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3720 }
3721 
3722 /*
3723  * Fetch AUX CH registers 0x202 - 0x207 which contain
3724  * link status information
3725  */
3726 bool
3727 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3728 {
3729 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3730 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3731 }
3732 
3733 /* These are source-specific values. */
3734 u8
3735 intel_dp_voltage_max(struct intel_dp *intel_dp)
3736 {
3737 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3738 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3739 	enum port port = encoder->port;
3740 
3741 	if (HAS_DDI(dev_priv))
3742 		return intel_ddi_dp_voltage_max(encoder);
3743 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3744 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3745 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3746 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3747 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3748 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3749 	else
3750 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3751 }
3752 
3753 u8
3754 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3755 {
3756 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3757 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3758 	enum port port = encoder->port;
3759 
3760 	if (HAS_DDI(dev_priv)) {
3761 		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3762 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3763 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3764 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3765 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3766 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3767 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3768 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3769 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3770 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3771 		default:
3772 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3773 		}
3774 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3775 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3776 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3777 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3778 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3779 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3780 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3781 		default:
3782 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3783 		}
3784 	} else {
3785 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3786 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3787 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3788 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3789 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3790 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3791 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3792 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3793 		default:
3794 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3795 		}
3796 	}
3797 }
3798 
3799 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3800 {
3801 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3802 	unsigned long demph_reg_value, preemph_reg_value,
3803 		uniqtranscale_reg_value;
3804 	u8 train_set = intel_dp->train_set[0];
3805 
3806 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3807 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3808 		preemph_reg_value = 0x0004000;
3809 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3810 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3811 			demph_reg_value = 0x2B405555;
3812 			uniqtranscale_reg_value = 0x552AB83A;
3813 			break;
3814 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3815 			demph_reg_value = 0x2B404040;
3816 			uniqtranscale_reg_value = 0x5548B83A;
3817 			break;
3818 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3819 			demph_reg_value = 0x2B245555;
3820 			uniqtranscale_reg_value = 0x5560B83A;
3821 			break;
3822 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3823 			demph_reg_value = 0x2B405555;
3824 			uniqtranscale_reg_value = 0x5598DA3A;
3825 			break;
3826 		default:
3827 			return 0;
3828 		}
3829 		break;
3830 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3831 		preemph_reg_value = 0x0002000;
3832 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3833 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3834 			demph_reg_value = 0x2B404040;
3835 			uniqtranscale_reg_value = 0x5552B83A;
3836 			break;
3837 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3838 			demph_reg_value = 0x2B404848;
3839 			uniqtranscale_reg_value = 0x5580B83A;
3840 			break;
3841 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3842 			demph_reg_value = 0x2B404040;
3843 			uniqtranscale_reg_value = 0x55ADDA3A;
3844 			break;
3845 		default:
3846 			return 0;
3847 		}
3848 		break;
3849 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3850 		preemph_reg_value = 0x0000000;
3851 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3852 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3853 			demph_reg_value = 0x2B305555;
3854 			uniqtranscale_reg_value = 0x5570B83A;
3855 			break;
3856 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3857 			demph_reg_value = 0x2B2B4040;
3858 			uniqtranscale_reg_value = 0x55ADDA3A;
3859 			break;
3860 		default:
3861 			return 0;
3862 		}
3863 		break;
3864 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3865 		preemph_reg_value = 0x0006000;
3866 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3867 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3868 			demph_reg_value = 0x1B405555;
3869 			uniqtranscale_reg_value = 0x55ADDA3A;
3870 			break;
3871 		default:
3872 			return 0;
3873 		}
3874 		break;
3875 	default:
3876 		return 0;
3877 	}
3878 
3879 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3880 				 uniqtranscale_reg_value, 0);
3881 
3882 	return 0;
3883 }
3884 
3885 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3886 {
3887 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3888 	u32 deemph_reg_value, margin_reg_value;
3889 	bool uniq_trans_scale = false;
3890 	u8 train_set = intel_dp->train_set[0];
3891 
3892 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3893 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3894 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3895 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3896 			deemph_reg_value = 128;
3897 			margin_reg_value = 52;
3898 			break;
3899 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3900 			deemph_reg_value = 128;
3901 			margin_reg_value = 77;
3902 			break;
3903 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3904 			deemph_reg_value = 128;
3905 			margin_reg_value = 102;
3906 			break;
3907 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3908 			deemph_reg_value = 128;
3909 			margin_reg_value = 154;
3910 			uniq_trans_scale = true;
3911 			break;
3912 		default:
3913 			return 0;
3914 		}
3915 		break;
3916 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3917 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3918 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3919 			deemph_reg_value = 85;
3920 			margin_reg_value = 78;
3921 			break;
3922 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3923 			deemph_reg_value = 85;
3924 			margin_reg_value = 116;
3925 			break;
3926 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3927 			deemph_reg_value = 85;
3928 			margin_reg_value = 154;
3929 			break;
3930 		default:
3931 			return 0;
3932 		}
3933 		break;
3934 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3935 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3936 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3937 			deemph_reg_value = 64;
3938 			margin_reg_value = 104;
3939 			break;
3940 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3941 			deemph_reg_value = 64;
3942 			margin_reg_value = 154;
3943 			break;
3944 		default:
3945 			return 0;
3946 		}
3947 		break;
3948 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3949 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3950 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3951 			deemph_reg_value = 43;
3952 			margin_reg_value = 154;
3953 			break;
3954 		default:
3955 			return 0;
3956 		}
3957 		break;
3958 	default:
3959 		return 0;
3960 	}
3961 
3962 	chv_set_phy_signal_level(encoder, deemph_reg_value,
3963 				 margin_reg_value, uniq_trans_scale);
3964 
3965 	return 0;
3966 }
3967 
3968 static u32
3969 g4x_signal_levels(u8 train_set)
3970 {
3971 	u32 signal_levels = 0;
3972 
3973 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3974 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3975 	default:
3976 		signal_levels |= DP_VOLTAGE_0_4;
3977 		break;
3978 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3979 		signal_levels |= DP_VOLTAGE_0_6;
3980 		break;
3981 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3982 		signal_levels |= DP_VOLTAGE_0_8;
3983 		break;
3984 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3985 		signal_levels |= DP_VOLTAGE_1_2;
3986 		break;
3987 	}
3988 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3989 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3990 	default:
3991 		signal_levels |= DP_PRE_EMPHASIS_0;
3992 		break;
3993 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3994 		signal_levels |= DP_PRE_EMPHASIS_3_5;
3995 		break;
3996 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3997 		signal_levels |= DP_PRE_EMPHASIS_6;
3998 		break;
3999 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4000 		signal_levels |= DP_PRE_EMPHASIS_9_5;
4001 		break;
4002 	}
4003 	return signal_levels;
4004 }
4005 
4006 /* SNB CPU eDP voltage swing and pre-emphasis control */
4007 static u32
4008 snb_cpu_edp_signal_levels(u8 train_set)
4009 {
4010 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4011 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4012 	switch (signal_levels) {
4013 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4014 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4015 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4016 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4017 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4018 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4019 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4020 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4021 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4022 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4023 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4024 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4025 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4026 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4027 	default:
4028 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4029 			      "0x%x\n", signal_levels);
4030 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4031 	}
4032 }
4033 
4034 /* IVB CPU eDP voltage swing and pre-emphasis control */
4035 static u32
4036 ivb_cpu_edp_signal_levels(u8 train_set)
4037 {
4038 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4039 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4040 	switch (signal_levels) {
4041 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4042 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4043 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4044 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4045 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4046 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4047 
4048 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4049 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4050 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4051 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4052 
4053 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4054 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4055 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4056 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4057 
4058 	default:
4059 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4060 			      "0x%x\n", signal_levels);
4061 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4062 	}
4063 }
4064 
4065 void
4066 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4067 {
4068 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4069 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4070 	enum port port = intel_dig_port->base.port;
4071 	u32 signal_levels, mask = 0;
4072 	u8 train_set = intel_dp->train_set[0];
4073 
4074 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4075 		signal_levels = bxt_signal_levels(intel_dp);
4076 	} else if (HAS_DDI(dev_priv)) {
4077 		signal_levels = ddi_signal_levels(intel_dp);
4078 		mask = DDI_BUF_EMP_MASK;
4079 	} else if (IS_CHERRYVIEW(dev_priv)) {
4080 		signal_levels = chv_signal_levels(intel_dp);
4081 	} else if (IS_VALLEYVIEW(dev_priv)) {
4082 		signal_levels = vlv_signal_levels(intel_dp);
4083 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4084 		signal_levels = ivb_cpu_edp_signal_levels(train_set);
4085 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4086 	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4087 		signal_levels = snb_cpu_edp_signal_levels(train_set);
4088 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4089 	} else {
4090 		signal_levels = g4x_signal_levels(train_set);
4091 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4092 	}
4093 
4094 	if (mask)
4095 		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4096 
4097 	DRM_DEBUG_KMS("Using vswing level %d\n",
4098 		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4099 	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4100 		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4101 			DP_TRAIN_PRE_EMPHASIS_SHIFT);
4102 
4103 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4104 
4105 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4106 	POSTING_READ(intel_dp->output_reg);
4107 }
4108 
4109 void
4110 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4111 				       u8 dp_train_pat)
4112 {
4113 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4114 	struct drm_i915_private *dev_priv =
4115 		to_i915(intel_dig_port->base.base.dev);
4116 
4117 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4118 
4119 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4120 	POSTING_READ(intel_dp->output_reg);
4121 }
4122 
4123 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4124 {
4125 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4126 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4127 	enum port port = intel_dig_port->base.port;
4128 	u32 val;
4129 
4130 	if (!HAS_DDI(dev_priv))
4131 		return;
4132 
4133 	val = I915_READ(intel_dp->regs.dp_tp_ctl);
4134 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4135 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4136 	I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4137 
4138 	/*
4139 	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4140 	 * reason we need to set idle transmission mode is to work around a HW
4141 	 * issue where we enable the pipe while not in idle link-training mode.
4142 	 * In this case there is requirement to wait for a minimum number of
4143 	 * idle patterns to be sent.
4144 	 */
4145 	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4146 		return;
4147 
4148 	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4149 				  DP_TP_STATUS_IDLE_DONE, 1))
4150 		DRM_ERROR("Timed out waiting for DP idle patterns\n");
4151 }
4152 
4153 static void
4154 intel_dp_link_down(struct intel_encoder *encoder,
4155 		   const struct intel_crtc_state *old_crtc_state)
4156 {
4157 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4158 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4159 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4160 	enum port port = encoder->port;
4161 	u32 DP = intel_dp->DP;
4162 
4163 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4164 		return;
4165 
4166 	DRM_DEBUG_KMS("\n");
4167 
4168 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4169 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4170 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4171 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4172 	} else {
4173 		DP &= ~DP_LINK_TRAIN_MASK;
4174 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4175 	}
4176 	I915_WRITE(intel_dp->output_reg, DP);
4177 	POSTING_READ(intel_dp->output_reg);
4178 
4179 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4180 	I915_WRITE(intel_dp->output_reg, DP);
4181 	POSTING_READ(intel_dp->output_reg);
4182 
4183 	/*
4184 	 * HW workaround for IBX, we need to move the port
4185 	 * to transcoder A after disabling it to allow the
4186 	 * matching HDMI port to be enabled on transcoder A.
4187 	 */
4188 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4189 		/*
4190 		 * We get CPU/PCH FIFO underruns on the other pipe when
4191 		 * doing the workaround. Sweep them under the rug.
4192 		 */
4193 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4194 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4195 
4196 		/* always enable with pattern 1 (as per spec) */
4197 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4198 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4199 			DP_LINK_TRAIN_PAT_1;
4200 		I915_WRITE(intel_dp->output_reg, DP);
4201 		POSTING_READ(intel_dp->output_reg);
4202 
4203 		DP &= ~DP_PORT_EN;
4204 		I915_WRITE(intel_dp->output_reg, DP);
4205 		POSTING_READ(intel_dp->output_reg);
4206 
4207 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4208 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4209 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4210 	}
4211 
4212 	msleep(intel_dp->panel_power_down_delay);
4213 
4214 	intel_dp->DP = DP;
4215 
4216 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4217 		intel_wakeref_t wakeref;
4218 
4219 		with_pps_lock(intel_dp, wakeref)
4220 			intel_dp->active_pipe = INVALID_PIPE;
4221 	}
4222 }
4223 
4224 static void
4225 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4226 {
4227 	u8 dpcd_ext[6];
4228 
4229 	/*
4230 	 * Prior to DP1.3 the bit represented by
4231 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4232 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4233 	 * the true capability of the panel. The only way to check is to
4234 	 * then compare 0000h and 2200h.
4235 	 */
4236 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4237 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4238 		return;
4239 
4240 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4241 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4242 		DRM_ERROR("DPCD failed read at extended capabilities\n");
4243 		return;
4244 	}
4245 
4246 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4247 		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4248 		return;
4249 	}
4250 
4251 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4252 		return;
4253 
4254 	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4255 		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4256 
4257 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4258 }
4259 
4260 bool
4261 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4262 {
4263 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4264 			     sizeof(intel_dp->dpcd)) < 0)
4265 		return false; /* aux transfer failed */
4266 
4267 	intel_dp_extended_receiver_capabilities(intel_dp);
4268 
4269 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4270 
4271 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4272 }
4273 
4274 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4275 {
4276 	u8 dprx = 0;
4277 
4278 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4279 			      &dprx) != 1)
4280 		return false;
4281 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4282 }
4283 
4284 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4285 {
4286 	/*
4287 	 * Clear the cached register set to avoid using stale values
4288 	 * for the sinks that do not support DSC.
4289 	 */
4290 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4291 
4292 	/* Clear fec_capable to avoid using stale values */
4293 	intel_dp->fec_capable = 0;
4294 
4295 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4296 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4297 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4298 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4299 				     intel_dp->dsc_dpcd,
4300 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4301 			DRM_ERROR("Failed to read DPCD register 0x%x\n",
4302 				  DP_DSC_SUPPORT);
4303 
4304 		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4305 			      (int)sizeof(intel_dp->dsc_dpcd),
4306 			      intel_dp->dsc_dpcd);
4307 
4308 		/* FEC is supported only on DP 1.4 */
4309 		if (!intel_dp_is_edp(intel_dp) &&
4310 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4311 				      &intel_dp->fec_capable) < 0)
4312 			DRM_ERROR("Failed to read FEC DPCD register\n");
4313 
4314 		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4315 	}
4316 }
4317 
4318 static bool
4319 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4320 {
4321 	struct drm_i915_private *dev_priv =
4322 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4323 
4324 	/* this function is meant to be called only once */
4325 	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4326 
4327 	if (!intel_dp_read_dpcd(intel_dp))
4328 		return false;
4329 
4330 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4331 			 drm_dp_is_branch(intel_dp->dpcd));
4332 
4333 	/*
4334 	 * Read the eDP display control registers.
4335 	 *
4336 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4337 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4338 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4339 	 * method). The display control registers should read zero if they're
4340 	 * not supported anyway.
4341 	 */
4342 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4343 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4344 			     sizeof(intel_dp->edp_dpcd))
4345 		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4346 			      intel_dp->edp_dpcd);
4347 
4348 	/*
4349 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4350 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4351 	 */
4352 	intel_psr_init_dpcd(intel_dp);
4353 
4354 	/* Read the eDP 1.4+ supported link rates. */
4355 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4356 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4357 		int i;
4358 
4359 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4360 				sink_rates, sizeof(sink_rates));
4361 
4362 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4363 			int val = le16_to_cpu(sink_rates[i]);
4364 
4365 			if (val == 0)
4366 				break;
4367 
4368 			/* Value read multiplied by 200kHz gives the per-lane
4369 			 * link rate in kHz. The source rates are, however,
4370 			 * stored in terms of LS_Clk kHz. The full conversion
4371 			 * back to symbols is
4372 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4373 			 */
4374 			intel_dp->sink_rates[i] = (val * 200) / 10;
4375 		}
4376 		intel_dp->num_sink_rates = i;
4377 	}
4378 
4379 	/*
4380 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4381 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4382 	 */
4383 	if (intel_dp->num_sink_rates)
4384 		intel_dp->use_rate_select = true;
4385 	else
4386 		intel_dp_set_sink_rates(intel_dp);
4387 
4388 	intel_dp_set_common_rates(intel_dp);
4389 
4390 	/* Read the eDP DSC DPCD registers */
4391 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4392 		intel_dp_get_dsc_sink_cap(intel_dp);
4393 
4394 	return true;
4395 }
4396 
4397 
4398 static bool
4399 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4400 {
4401 	if (!intel_dp_read_dpcd(intel_dp))
4402 		return false;
4403 
4404 	/*
4405 	 * Don't clobber cached eDP rates. Also skip re-reading
4406 	 * the OUI/ID since we know it won't change.
4407 	 */
4408 	if (!intel_dp_is_edp(intel_dp)) {
4409 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4410 				 drm_dp_is_branch(intel_dp->dpcd));
4411 
4412 		intel_dp_set_sink_rates(intel_dp);
4413 		intel_dp_set_common_rates(intel_dp);
4414 	}
4415 
4416 	/*
4417 	 * Some eDP panels do not set a valid value for sink count, that is why
4418 	 * it don't care about read it here and in intel_edp_init_dpcd().
4419 	 */
4420 	if (!intel_dp_is_edp(intel_dp) &&
4421 	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4422 		u8 count;
4423 		ssize_t r;
4424 
4425 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4426 		if (r < 1)
4427 			return false;
4428 
4429 		/*
4430 		 * Sink count can change between short pulse hpd hence
4431 		 * a member variable in intel_dp will track any changes
4432 		 * between short pulse interrupts.
4433 		 */
4434 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4435 
4436 		/*
4437 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4438 		 * a dongle is present but no display. Unless we require to know
4439 		 * if a dongle is present or not, we don't need to update
4440 		 * downstream port information. So, an early return here saves
4441 		 * time from performing other operations which are not required.
4442 		 */
4443 		if (!intel_dp->sink_count)
4444 			return false;
4445 	}
4446 
4447 	if (!drm_dp_is_branch(intel_dp->dpcd))
4448 		return true; /* native DP sink */
4449 
4450 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4451 		return true; /* no per-port downstream info */
4452 
4453 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4454 			     intel_dp->downstream_ports,
4455 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4456 		return false; /* downstream port status fetch failed */
4457 
4458 	return true;
4459 }
4460 
4461 static bool
4462 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4463 {
4464 	u8 mstm_cap;
4465 
4466 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4467 		return false;
4468 
4469 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4470 		return false;
4471 
4472 	return mstm_cap & DP_MST_CAP;
4473 }
4474 
4475 static bool
4476 intel_dp_can_mst(struct intel_dp *intel_dp)
4477 {
4478 	return i915_modparams.enable_dp_mst &&
4479 		intel_dp->can_mst &&
4480 		intel_dp_sink_can_mst(intel_dp);
4481 }
4482 
4483 static void
4484 intel_dp_configure_mst(struct intel_dp *intel_dp)
4485 {
4486 	struct intel_encoder *encoder =
4487 		&dp_to_dig_port(intel_dp)->base;
4488 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4489 
4490 	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4491 		      encoder->base.base.id, encoder->base.name,
4492 		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
4493 		      yesno(i915_modparams.enable_dp_mst));
4494 
4495 	if (!intel_dp->can_mst)
4496 		return;
4497 
4498 	intel_dp->is_mst = sink_can_mst &&
4499 		i915_modparams.enable_dp_mst;
4500 
4501 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4502 					intel_dp->is_mst);
4503 }
4504 
4505 static bool
4506 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4507 {
4508 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4509 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4510 		DP_DPRX_ESI_LEN;
4511 }
4512 
4513 bool
4514 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4515 		       const struct drm_connector_state *conn_state)
4516 {
4517 	/*
4518 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4519 	 * of Color Encoding Format and Content Color Gamut], in order to
4520 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4521 	 */
4522 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4523 		return true;
4524 
4525 	switch (conn_state->colorspace) {
4526 	case DRM_MODE_COLORIMETRY_SYCC_601:
4527 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4528 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4529 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4530 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4531 		return true;
4532 	default:
4533 		break;
4534 	}
4535 
4536 	return false;
4537 }
4538 
4539 static void
4540 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4541 		       const struct intel_crtc_state *crtc_state,
4542 		       const struct drm_connector_state *conn_state)
4543 {
4544 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4545 	struct dp_sdp vsc_sdp = {};
4546 
4547 	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4548 	vsc_sdp.sdp_header.HB0 = 0;
4549 	vsc_sdp.sdp_header.HB1 = 0x7;
4550 
4551 	/*
4552 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4553 	 * Colorimetry Format indication.
4554 	 */
4555 	vsc_sdp.sdp_header.HB2 = 0x5;
4556 
4557 	/*
4558 	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4559 	 * Colorimetry Format indication (HB2 = 05h).
4560 	 */
4561 	vsc_sdp.sdp_header.HB3 = 0x13;
4562 
4563 	/* DP 1.4a spec, Table 2-120 */
4564 	switch (crtc_state->output_format) {
4565 	case INTEL_OUTPUT_FORMAT_YCBCR444:
4566 		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4567 		break;
4568 	case INTEL_OUTPUT_FORMAT_YCBCR420:
4569 		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4570 		break;
4571 	case INTEL_OUTPUT_FORMAT_RGB:
4572 	default:
4573 		/* RGB: DB16[7:4] = 0h */
4574 		break;
4575 	}
4576 
4577 	switch (conn_state->colorspace) {
4578 	case DRM_MODE_COLORIMETRY_BT709_YCC:
4579 		vsc_sdp.db[16] |= 0x1;
4580 		break;
4581 	case DRM_MODE_COLORIMETRY_XVYCC_601:
4582 		vsc_sdp.db[16] |= 0x2;
4583 		break;
4584 	case DRM_MODE_COLORIMETRY_XVYCC_709:
4585 		vsc_sdp.db[16] |= 0x3;
4586 		break;
4587 	case DRM_MODE_COLORIMETRY_SYCC_601:
4588 		vsc_sdp.db[16] |= 0x4;
4589 		break;
4590 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4591 		vsc_sdp.db[16] |= 0x5;
4592 		break;
4593 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4594 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4595 		vsc_sdp.db[16] |= 0x6;
4596 		break;
4597 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4598 		vsc_sdp.db[16] |= 0x7;
4599 		break;
4600 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4601 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4602 		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4603 		break;
4604 	default:
4605 		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4606 
4607 		/* RGB->YCBCR color conversion uses the BT.709 color space. */
4608 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4609 			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4610 		break;
4611 	}
4612 
4613 	/*
4614 	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4615 	 * the following Component Bit Depth values are defined:
4616 	 * 001b = 8bpc.
4617 	 * 010b = 10bpc.
4618 	 * 011b = 12bpc.
4619 	 * 100b = 16bpc.
4620 	 */
4621 	switch (crtc_state->pipe_bpp) {
4622 	case 24: /* 8bpc */
4623 		vsc_sdp.db[17] = 0x1;
4624 		break;
4625 	case 30: /* 10bpc */
4626 		vsc_sdp.db[17] = 0x2;
4627 		break;
4628 	case 36: /* 12bpc */
4629 		vsc_sdp.db[17] = 0x3;
4630 		break;
4631 	case 48: /* 16bpc */
4632 		vsc_sdp.db[17] = 0x4;
4633 		break;
4634 	default:
4635 		MISSING_CASE(crtc_state->pipe_bpp);
4636 		break;
4637 	}
4638 
4639 	/*
4640 	 * Dynamic Range (Bit 7)
4641 	 * 0 = VESA range, 1 = CTA range.
4642 	 * all YCbCr are always limited range
4643 	 */
4644 	vsc_sdp.db[17] |= 0x80;
4645 
4646 	/*
4647 	 * Content Type (Bits 2:0)
4648 	 * 000b = Not defined.
4649 	 * 001b = Graphics.
4650 	 * 010b = Photo.
4651 	 * 011b = Video.
4652 	 * 100b = Game
4653 	 * All other values are RESERVED.
4654 	 * Note: See CTA-861-G for the definition and expected
4655 	 * processing by a stream sink for the above contect types.
4656 	 */
4657 	vsc_sdp.db[18] = 0;
4658 
4659 	intel_dig_port->write_infoframe(&intel_dig_port->base,
4660 			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4661 }
4662 
4663 static void
4664 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4665 					  const struct intel_crtc_state *crtc_state,
4666 					  const struct drm_connector_state *conn_state)
4667 {
4668 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4669 	struct dp_sdp infoframe_sdp = {};
4670 	struct hdmi_drm_infoframe drm_infoframe = {};
4671 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4672 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4673 	ssize_t len;
4674 	int ret;
4675 
4676 	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4677 	if (ret) {
4678 		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4679 		return;
4680 	}
4681 
4682 	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4683 	if (len < 0) {
4684 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4685 		return;
4686 	}
4687 
4688 	if (len != infoframe_size) {
4689 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4690 		return;
4691 	}
4692 
4693 	/*
4694 	 * Set up the infoframe sdp packet for HDR static metadata.
4695 	 * Prepare VSC Header for SU as per DP 1.4a spec,
4696 	 * Table 2-100 and Table 2-101
4697 	 */
4698 
4699 	/* Packet ID, 00h for non-Audio INFOFRAME */
4700 	infoframe_sdp.sdp_header.HB0 = 0;
4701 	/*
4702 	 * Packet Type 80h + Non-audio INFOFRAME Type value
4703 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4704 	 */
4705 	infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4706 	/*
4707 	 * Least Significant Eight Bits of (Data Byte Count – 1)
4708 	 * infoframe_size - 1,
4709 	 */
4710 	infoframe_sdp.sdp_header.HB2 = 0x1D;
4711 	/* INFOFRAME SDP Version Number */
4712 	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4713 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
4714 	infoframe_sdp.db[0] = drm_infoframe.version;
4715 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4716 	infoframe_sdp.db[1] = drm_infoframe.length;
4717 	/*
4718 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4719 	 * HDMI_INFOFRAME_HEADER_SIZE
4720 	 */
4721 	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4722 	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4723 	       HDMI_DRM_INFOFRAME_SIZE);
4724 
4725 	/*
4726 	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
4727 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4728 	 * - Two Data Blocks: 2 bytes
4729 	 *    CTA Header Byte2 (INFOFRAME Version Number)
4730 	 *    CTA Header Byte3 (Length of INFOFRAME)
4731 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4732 	 *
4733 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4734 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4735 	 * will pad rest of the size.
4736 	 */
4737 	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4738 					HDMI_PACKET_TYPE_GAMUT_METADATA,
4739 					&infoframe_sdp,
4740 					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4741 }
4742 
4743 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4744 			 const struct intel_crtc_state *crtc_state,
4745 			 const struct drm_connector_state *conn_state)
4746 {
4747 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4748 		return;
4749 
4750 	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4751 }
4752 
4753 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4754 				  const struct intel_crtc_state *crtc_state,
4755 				  const struct drm_connector_state *conn_state)
4756 {
4757 	if (!conn_state->hdr_output_metadata)
4758 		return;
4759 
4760 	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4761 						  crtc_state,
4762 						  conn_state);
4763 }
4764 
4765 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4766 {
4767 	int status = 0;
4768 	int test_link_rate;
4769 	u8 test_lane_count, test_link_bw;
4770 	/* (DP CTS 1.2)
4771 	 * 4.3.1.11
4772 	 */
4773 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4774 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4775 				   &test_lane_count);
4776 
4777 	if (status <= 0) {
4778 		DRM_DEBUG_KMS("Lane count read failed\n");
4779 		return DP_TEST_NAK;
4780 	}
4781 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4782 
4783 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4784 				   &test_link_bw);
4785 	if (status <= 0) {
4786 		DRM_DEBUG_KMS("Link Rate read failed\n");
4787 		return DP_TEST_NAK;
4788 	}
4789 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4790 
4791 	/* Validate the requested link rate and lane count */
4792 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4793 					test_lane_count))
4794 		return DP_TEST_NAK;
4795 
4796 	intel_dp->compliance.test_lane_count = test_lane_count;
4797 	intel_dp->compliance.test_link_rate = test_link_rate;
4798 
4799 	return DP_TEST_ACK;
4800 }
4801 
4802 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4803 {
4804 	u8 test_pattern;
4805 	u8 test_misc;
4806 	__be16 h_width, v_height;
4807 	int status = 0;
4808 
4809 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4810 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4811 				   &test_pattern);
4812 	if (status <= 0) {
4813 		DRM_DEBUG_KMS("Test pattern read failed\n");
4814 		return DP_TEST_NAK;
4815 	}
4816 	if (test_pattern != DP_COLOR_RAMP)
4817 		return DP_TEST_NAK;
4818 
4819 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4820 				  &h_width, 2);
4821 	if (status <= 0) {
4822 		DRM_DEBUG_KMS("H Width read failed\n");
4823 		return DP_TEST_NAK;
4824 	}
4825 
4826 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4827 				  &v_height, 2);
4828 	if (status <= 0) {
4829 		DRM_DEBUG_KMS("V Height read failed\n");
4830 		return DP_TEST_NAK;
4831 	}
4832 
4833 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4834 				   &test_misc);
4835 	if (status <= 0) {
4836 		DRM_DEBUG_KMS("TEST MISC read failed\n");
4837 		return DP_TEST_NAK;
4838 	}
4839 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4840 		return DP_TEST_NAK;
4841 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4842 		return DP_TEST_NAK;
4843 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4844 	case DP_TEST_BIT_DEPTH_6:
4845 		intel_dp->compliance.test_data.bpc = 6;
4846 		break;
4847 	case DP_TEST_BIT_DEPTH_8:
4848 		intel_dp->compliance.test_data.bpc = 8;
4849 		break;
4850 	default:
4851 		return DP_TEST_NAK;
4852 	}
4853 
4854 	intel_dp->compliance.test_data.video_pattern = test_pattern;
4855 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4856 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4857 	/* Set test active flag here so userspace doesn't interrupt things */
4858 	intel_dp->compliance.test_active = 1;
4859 
4860 	return DP_TEST_ACK;
4861 }
4862 
4863 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4864 {
4865 	u8 test_result = DP_TEST_ACK;
4866 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4867 	struct drm_connector *connector = &intel_connector->base;
4868 
4869 	if (intel_connector->detect_edid == NULL ||
4870 	    connector->edid_corrupt ||
4871 	    intel_dp->aux.i2c_defer_count > 6) {
4872 		/* Check EDID read for NACKs, DEFERs and corruption
4873 		 * (DP CTS 1.2 Core r1.1)
4874 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
4875 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
4876 		 *    4.2.2.6 : EDID corruption detected
4877 		 * Use failsafe mode for all cases
4878 		 */
4879 		if (intel_dp->aux.i2c_nack_count > 0 ||
4880 			intel_dp->aux.i2c_defer_count > 0)
4881 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4882 				      intel_dp->aux.i2c_nack_count,
4883 				      intel_dp->aux.i2c_defer_count);
4884 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4885 	} else {
4886 		struct edid *block = intel_connector->detect_edid;
4887 
4888 		/* We have to write the checksum
4889 		 * of the last block read
4890 		 */
4891 		block += intel_connector->detect_edid->extensions;
4892 
4893 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4894 				       block->checksum) <= 0)
4895 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4896 
4897 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4898 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4899 	}
4900 
4901 	/* Set test active flag here so userspace doesn't interrupt things */
4902 	intel_dp->compliance.test_active = 1;
4903 
4904 	return test_result;
4905 }
4906 
4907 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4908 {
4909 	u8 test_result = DP_TEST_NAK;
4910 	return test_result;
4911 }
4912 
4913 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4914 {
4915 	u8 response = DP_TEST_NAK;
4916 	u8 request = 0;
4917 	int status;
4918 
4919 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4920 	if (status <= 0) {
4921 		DRM_DEBUG_KMS("Could not read test request from sink\n");
4922 		goto update_status;
4923 	}
4924 
4925 	switch (request) {
4926 	case DP_TEST_LINK_TRAINING:
4927 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4928 		response = intel_dp_autotest_link_training(intel_dp);
4929 		break;
4930 	case DP_TEST_LINK_VIDEO_PATTERN:
4931 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4932 		response = intel_dp_autotest_video_pattern(intel_dp);
4933 		break;
4934 	case DP_TEST_LINK_EDID_READ:
4935 		DRM_DEBUG_KMS("EDID test requested\n");
4936 		response = intel_dp_autotest_edid(intel_dp);
4937 		break;
4938 	case DP_TEST_LINK_PHY_TEST_PATTERN:
4939 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4940 		response = intel_dp_autotest_phy_pattern(intel_dp);
4941 		break;
4942 	default:
4943 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4944 		break;
4945 	}
4946 
4947 	if (response & DP_TEST_ACK)
4948 		intel_dp->compliance.test_type = request;
4949 
4950 update_status:
4951 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4952 	if (status <= 0)
4953 		DRM_DEBUG_KMS("Could not write test response to sink\n");
4954 }
4955 
4956 static int
4957 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4958 {
4959 	bool bret;
4960 
4961 	if (intel_dp->is_mst) {
4962 		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4963 		int ret = 0;
4964 		int retry;
4965 		bool handled;
4966 
4967 		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4968 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4969 go_again:
4970 		if (bret == true) {
4971 
4972 			/* check link status - esi[10] = 0x200c */
4973 			if (intel_dp->active_mst_links > 0 &&
4974 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4975 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4976 				intel_dp_start_link_train(intel_dp);
4977 				intel_dp_stop_link_train(intel_dp);
4978 			}
4979 
4980 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4981 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4982 
4983 			if (handled) {
4984 				for (retry = 0; retry < 3; retry++) {
4985 					int wret;
4986 					wret = drm_dp_dpcd_write(&intel_dp->aux,
4987 								 DP_SINK_COUNT_ESI+1,
4988 								 &esi[1], 3);
4989 					if (wret == 3) {
4990 						break;
4991 					}
4992 				}
4993 
4994 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4995 				if (bret == true) {
4996 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4997 					goto go_again;
4998 				}
4999 			} else
5000 				ret = 0;
5001 
5002 			return ret;
5003 		} else {
5004 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5005 			intel_dp->is_mst = false;
5006 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5007 							intel_dp->is_mst);
5008 		}
5009 	}
5010 	return -EINVAL;
5011 }
5012 
5013 static bool
5014 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5015 {
5016 	u8 link_status[DP_LINK_STATUS_SIZE];
5017 
5018 	if (!intel_dp->link_trained)
5019 		return false;
5020 
5021 	/*
5022 	 * While PSR source HW is enabled, it will control main-link sending
5023 	 * frames, enabling and disabling it so trying to do a retrain will fail
5024 	 * as the link would or not be on or it could mix training patterns
5025 	 * and frame data at the same time causing retrain to fail.
5026 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5027 	 * any link status error.
5028 	 */
5029 	if (intel_psr_enabled(intel_dp))
5030 		return false;
5031 
5032 	if (!intel_dp_get_link_status(intel_dp, link_status))
5033 		return false;
5034 
5035 	/*
5036 	 * Validate the cached values of intel_dp->link_rate and
5037 	 * intel_dp->lane_count before attempting to retrain.
5038 	 */
5039 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5040 					intel_dp->lane_count))
5041 		return false;
5042 
5043 	/* Retrain if Channel EQ or CR not ok */
5044 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5045 }
5046 
5047 int intel_dp_retrain_link(struct intel_encoder *encoder,
5048 			  struct drm_modeset_acquire_ctx *ctx)
5049 {
5050 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5051 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
5052 	struct intel_connector *connector = intel_dp->attached_connector;
5053 	struct drm_connector_state *conn_state;
5054 	struct intel_crtc_state *crtc_state;
5055 	struct intel_crtc *crtc;
5056 	int ret;
5057 
5058 	/* FIXME handle the MST connectors as well */
5059 
5060 	if (!connector || connector->base.status != connector_status_connected)
5061 		return 0;
5062 
5063 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5064 			       ctx);
5065 	if (ret)
5066 		return ret;
5067 
5068 	conn_state = connector->base.state;
5069 
5070 	crtc = to_intel_crtc(conn_state->crtc);
5071 	if (!crtc)
5072 		return 0;
5073 
5074 	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5075 	if (ret)
5076 		return ret;
5077 
5078 	crtc_state = to_intel_crtc_state(crtc->base.state);
5079 
5080 	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
5081 
5082 	if (!crtc_state->base.active)
5083 		return 0;
5084 
5085 	if (conn_state->commit &&
5086 	    !try_wait_for_completion(&conn_state->commit->hw_done))
5087 		return 0;
5088 
5089 	if (!intel_dp_needs_link_retrain(intel_dp))
5090 		return 0;
5091 
5092 	/* Suppress underruns caused by re-training */
5093 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5094 	if (crtc_state->has_pch_encoder)
5095 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5096 						      intel_crtc_pch_transcoder(crtc), false);
5097 
5098 	intel_dp_start_link_train(intel_dp);
5099 	intel_dp_stop_link_train(intel_dp);
5100 
5101 	/* Keep underrun reporting disabled until things are stable */
5102 	intel_wait_for_vblank(dev_priv, crtc->pipe);
5103 
5104 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5105 	if (crtc_state->has_pch_encoder)
5106 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5107 						      intel_crtc_pch_transcoder(crtc), true);
5108 
5109 	return 0;
5110 }
5111 
5112 /*
5113  * If display is now connected check links status,
5114  * there has been known issues of link loss triggering
5115  * long pulse.
5116  *
5117  * Some sinks (eg. ASUS PB287Q) seem to perform some
5118  * weird HPD ping pong during modesets. So we can apparently
5119  * end up with HPD going low during a modeset, and then
5120  * going back up soon after. And once that happens we must
5121  * retrain the link to get a picture. That's in case no
5122  * userspace component reacted to intermittent HPD dip.
5123  */
5124 static enum intel_hotplug_state
5125 intel_dp_hotplug(struct intel_encoder *encoder,
5126 		 struct intel_connector *connector,
5127 		 bool irq_received)
5128 {
5129 	struct drm_modeset_acquire_ctx ctx;
5130 	enum intel_hotplug_state state;
5131 	int ret;
5132 
5133 	state = intel_encoder_hotplug(encoder, connector, irq_received);
5134 
5135 	drm_modeset_acquire_init(&ctx, 0);
5136 
5137 	for (;;) {
5138 		ret = intel_dp_retrain_link(encoder, &ctx);
5139 
5140 		if (ret == -EDEADLK) {
5141 			drm_modeset_backoff(&ctx);
5142 			continue;
5143 		}
5144 
5145 		break;
5146 	}
5147 
5148 	drm_modeset_drop_locks(&ctx);
5149 	drm_modeset_acquire_fini(&ctx);
5150 	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
5151 
5152 	/*
5153 	 * Keeping it consistent with intel_ddi_hotplug() and
5154 	 * intel_hdmi_hotplug().
5155 	 */
5156 	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5157 		state = INTEL_HOTPLUG_RETRY;
5158 
5159 	return state;
5160 }
5161 
5162 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5163 {
5164 	u8 val;
5165 
5166 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5167 		return;
5168 
5169 	if (drm_dp_dpcd_readb(&intel_dp->aux,
5170 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5171 		return;
5172 
5173 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5174 
5175 	if (val & DP_AUTOMATED_TEST_REQUEST)
5176 		intel_dp_handle_test_request(intel_dp);
5177 
5178 	if (val & DP_CP_IRQ)
5179 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5180 
5181 	if (val & DP_SINK_SPECIFIC_IRQ)
5182 		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5183 }
5184 
5185 /*
5186  * According to DP spec
5187  * 5.1.2:
5188  *  1. Read DPCD
5189  *  2. Configure link according to Receiver Capabilities
5190  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5191  *  4. Check link status on receipt of hot-plug interrupt
5192  *
5193  * intel_dp_short_pulse -  handles short pulse interrupts
5194  * when full detection is not required.
5195  * Returns %true if short pulse is handled and full detection
5196  * is NOT required and %false otherwise.
5197  */
5198 static bool
5199 intel_dp_short_pulse(struct intel_dp *intel_dp)
5200 {
5201 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5202 	u8 old_sink_count = intel_dp->sink_count;
5203 	bool ret;
5204 
5205 	/*
5206 	 * Clearing compliance test variables to allow capturing
5207 	 * of values for next automated test request.
5208 	 */
5209 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5210 
5211 	/*
5212 	 * Now read the DPCD to see if it's actually running
5213 	 * If the current value of sink count doesn't match with
5214 	 * the value that was stored earlier or dpcd read failed
5215 	 * we need to do full detection
5216 	 */
5217 	ret = intel_dp_get_dpcd(intel_dp);
5218 
5219 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
5220 		/* No need to proceed if we are going to do full detect */
5221 		return false;
5222 	}
5223 
5224 	intel_dp_check_service_irq(intel_dp);
5225 
5226 	/* Handle CEC interrupts, if any */
5227 	drm_dp_cec_irq(&intel_dp->aux);
5228 
5229 	/* defer to the hotplug work for link retraining if needed */
5230 	if (intel_dp_needs_link_retrain(intel_dp))
5231 		return false;
5232 
5233 	intel_psr_short_pulse(intel_dp);
5234 
5235 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5236 		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
5237 		/* Send a Hotplug Uevent to userspace to start modeset */
5238 		drm_kms_helper_hotplug_event(&dev_priv->drm);
5239 	}
5240 
5241 	return true;
5242 }
5243 
5244 /* XXX this is probably wrong for multiple downstream ports */
5245 static enum drm_connector_status
5246 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5247 {
5248 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5249 	u8 *dpcd = intel_dp->dpcd;
5250 	u8 type;
5251 
5252 	if (WARN_ON(intel_dp_is_edp(intel_dp)))
5253 		return connector_status_connected;
5254 
5255 	if (lspcon->active)
5256 		lspcon_resume(lspcon);
5257 
5258 	if (!intel_dp_get_dpcd(intel_dp))
5259 		return connector_status_disconnected;
5260 
5261 	/* if there's no downstream port, we're done */
5262 	if (!drm_dp_is_branch(dpcd))
5263 		return connector_status_connected;
5264 
5265 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5266 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5267 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5268 
5269 		return intel_dp->sink_count ?
5270 		connector_status_connected : connector_status_disconnected;
5271 	}
5272 
5273 	if (intel_dp_can_mst(intel_dp))
5274 		return connector_status_connected;
5275 
5276 	/* If no HPD, poke DDC gently */
5277 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5278 		return connector_status_connected;
5279 
5280 	/* Well we tried, say unknown for unreliable port types */
5281 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5282 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5283 		if (type == DP_DS_PORT_TYPE_VGA ||
5284 		    type == DP_DS_PORT_TYPE_NON_EDID)
5285 			return connector_status_unknown;
5286 	} else {
5287 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5288 			DP_DWN_STRM_PORT_TYPE_MASK;
5289 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5290 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5291 			return connector_status_unknown;
5292 	}
5293 
5294 	/* Anything else is out of spec, warn and ignore */
5295 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5296 	return connector_status_disconnected;
5297 }
5298 
5299 static enum drm_connector_status
5300 edp_detect(struct intel_dp *intel_dp)
5301 {
5302 	return connector_status_connected;
5303 }
5304 
5305 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5306 {
5307 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5308 	u32 bit;
5309 
5310 	switch (encoder->hpd_pin) {
5311 	case HPD_PORT_B:
5312 		bit = SDE_PORTB_HOTPLUG;
5313 		break;
5314 	case HPD_PORT_C:
5315 		bit = SDE_PORTC_HOTPLUG;
5316 		break;
5317 	case HPD_PORT_D:
5318 		bit = SDE_PORTD_HOTPLUG;
5319 		break;
5320 	default:
5321 		MISSING_CASE(encoder->hpd_pin);
5322 		return false;
5323 	}
5324 
5325 	return I915_READ(SDEISR) & bit;
5326 }
5327 
5328 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5329 {
5330 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5331 	u32 bit;
5332 
5333 	switch (encoder->hpd_pin) {
5334 	case HPD_PORT_B:
5335 		bit = SDE_PORTB_HOTPLUG_CPT;
5336 		break;
5337 	case HPD_PORT_C:
5338 		bit = SDE_PORTC_HOTPLUG_CPT;
5339 		break;
5340 	case HPD_PORT_D:
5341 		bit = SDE_PORTD_HOTPLUG_CPT;
5342 		break;
5343 	default:
5344 		MISSING_CASE(encoder->hpd_pin);
5345 		return false;
5346 	}
5347 
5348 	return I915_READ(SDEISR) & bit;
5349 }
5350 
5351 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5352 {
5353 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5354 	u32 bit;
5355 
5356 	switch (encoder->hpd_pin) {
5357 	case HPD_PORT_A:
5358 		bit = SDE_PORTA_HOTPLUG_SPT;
5359 		break;
5360 	case HPD_PORT_E:
5361 		bit = SDE_PORTE_HOTPLUG_SPT;
5362 		break;
5363 	default:
5364 		return cpt_digital_port_connected(encoder);
5365 	}
5366 
5367 	return I915_READ(SDEISR) & bit;
5368 }
5369 
5370 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5371 {
5372 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5373 	u32 bit;
5374 
5375 	switch (encoder->hpd_pin) {
5376 	case HPD_PORT_B:
5377 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5378 		break;
5379 	case HPD_PORT_C:
5380 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5381 		break;
5382 	case HPD_PORT_D:
5383 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5384 		break;
5385 	default:
5386 		MISSING_CASE(encoder->hpd_pin);
5387 		return false;
5388 	}
5389 
5390 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5391 }
5392 
5393 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5394 {
5395 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5396 	u32 bit;
5397 
5398 	switch (encoder->hpd_pin) {
5399 	case HPD_PORT_B:
5400 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5401 		break;
5402 	case HPD_PORT_C:
5403 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5404 		break;
5405 	case HPD_PORT_D:
5406 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5407 		break;
5408 	default:
5409 		MISSING_CASE(encoder->hpd_pin);
5410 		return false;
5411 	}
5412 
5413 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5414 }
5415 
5416 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5417 {
5418 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5419 
5420 	if (encoder->hpd_pin == HPD_PORT_A)
5421 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5422 	else
5423 		return ibx_digital_port_connected(encoder);
5424 }
5425 
5426 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5427 {
5428 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5429 
5430 	if (encoder->hpd_pin == HPD_PORT_A)
5431 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5432 	else
5433 		return cpt_digital_port_connected(encoder);
5434 }
5435 
5436 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5437 {
5438 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5439 
5440 	if (encoder->hpd_pin == HPD_PORT_A)
5441 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5442 	else
5443 		return cpt_digital_port_connected(encoder);
5444 }
5445 
5446 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5447 {
5448 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5449 
5450 	if (encoder->hpd_pin == HPD_PORT_A)
5451 		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5452 	else
5453 		return cpt_digital_port_connected(encoder);
5454 }
5455 
5456 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5457 {
5458 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5459 	u32 bit;
5460 
5461 	switch (encoder->hpd_pin) {
5462 	case HPD_PORT_A:
5463 		bit = BXT_DE_PORT_HP_DDIA;
5464 		break;
5465 	case HPD_PORT_B:
5466 		bit = BXT_DE_PORT_HP_DDIB;
5467 		break;
5468 	case HPD_PORT_C:
5469 		bit = BXT_DE_PORT_HP_DDIC;
5470 		break;
5471 	default:
5472 		MISSING_CASE(encoder->hpd_pin);
5473 		return false;
5474 	}
5475 
5476 	return I915_READ(GEN8_DE_PORT_ISR) & bit;
5477 }
5478 
5479 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
5480 				     struct intel_digital_port *intel_dig_port)
5481 {
5482 	enum port port = intel_dig_port->base.port;
5483 
5484 	if (HAS_PCH_MCC(dev_priv) && port == PORT_C)
5485 		return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5486 
5487 	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
5488 }
5489 
5490 static bool icl_digital_port_connected(struct intel_encoder *encoder)
5491 {
5492 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5493 	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5494 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5495 
5496 	if (intel_phy_is_combo(dev_priv, phy))
5497 		return icl_combo_port_connected(dev_priv, dig_port);
5498 	else if (intel_phy_is_tc(dev_priv, phy))
5499 		return intel_tc_port_connected(dig_port);
5500 	else
5501 		MISSING_CASE(encoder->hpd_pin);
5502 
5503 	return false;
5504 }
5505 
5506 /*
5507  * intel_digital_port_connected - is the specified port connected?
5508  * @encoder: intel_encoder
5509  *
5510  * In cases where there's a connector physically connected but it can't be used
5511  * by our hardware we also return false, since the rest of the driver should
5512  * pretty much treat the port as disconnected. This is relevant for type-C
5513  * (starting on ICL) where there's ownership involved.
5514  *
5515  * Return %true if port is connected, %false otherwise.
5516  */
5517 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5518 {
5519 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5520 
5521 	if (HAS_GMCH(dev_priv)) {
5522 		if (IS_GM45(dev_priv))
5523 			return gm45_digital_port_connected(encoder);
5524 		else
5525 			return g4x_digital_port_connected(encoder);
5526 	}
5527 
5528 	if (INTEL_GEN(dev_priv) >= 11)
5529 		return icl_digital_port_connected(encoder);
5530 	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5531 		return spt_digital_port_connected(encoder);
5532 	else if (IS_GEN9_LP(dev_priv))
5533 		return bxt_digital_port_connected(encoder);
5534 	else if (IS_GEN(dev_priv, 8))
5535 		return bdw_digital_port_connected(encoder);
5536 	else if (IS_GEN(dev_priv, 7))
5537 		return ivb_digital_port_connected(encoder);
5538 	else if (IS_GEN(dev_priv, 6))
5539 		return snb_digital_port_connected(encoder);
5540 	else if (IS_GEN(dev_priv, 5))
5541 		return ilk_digital_port_connected(encoder);
5542 
5543 	MISSING_CASE(INTEL_GEN(dev_priv));
5544 	return false;
5545 }
5546 
5547 bool intel_digital_port_connected(struct intel_encoder *encoder)
5548 {
5549 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5550 	bool is_connected = false;
5551 	intel_wakeref_t wakeref;
5552 
5553 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5554 		is_connected = __intel_digital_port_connected(encoder);
5555 
5556 	return is_connected;
5557 }
5558 
5559 static struct edid *
5560 intel_dp_get_edid(struct intel_dp *intel_dp)
5561 {
5562 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5563 
5564 	/* use cached edid if we have one */
5565 	if (intel_connector->edid) {
5566 		/* invalid edid */
5567 		if (IS_ERR(intel_connector->edid))
5568 			return NULL;
5569 
5570 		return drm_edid_duplicate(intel_connector->edid);
5571 	} else
5572 		return drm_get_edid(&intel_connector->base,
5573 				    &intel_dp->aux.ddc);
5574 }
5575 
5576 static void
5577 intel_dp_set_edid(struct intel_dp *intel_dp)
5578 {
5579 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5580 	struct edid *edid;
5581 
5582 	intel_dp_unset_edid(intel_dp);
5583 	edid = intel_dp_get_edid(intel_dp);
5584 	intel_connector->detect_edid = edid;
5585 
5586 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5587 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5588 }
5589 
5590 static void
5591 intel_dp_unset_edid(struct intel_dp *intel_dp)
5592 {
5593 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5594 
5595 	drm_dp_cec_unset_edid(&intel_dp->aux);
5596 	kfree(intel_connector->detect_edid);
5597 	intel_connector->detect_edid = NULL;
5598 
5599 	intel_dp->has_audio = false;
5600 }
5601 
5602 static int
5603 intel_dp_detect(struct drm_connector *connector,
5604 		struct drm_modeset_acquire_ctx *ctx,
5605 		bool force)
5606 {
5607 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5608 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5609 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5610 	struct intel_encoder *encoder = &dig_port->base;
5611 	enum drm_connector_status status;
5612 
5613 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5614 		      connector->base.id, connector->name);
5615 	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5616 
5617 	/* Can't disconnect eDP */
5618 	if (intel_dp_is_edp(intel_dp))
5619 		status = edp_detect(intel_dp);
5620 	else if (intel_digital_port_connected(encoder))
5621 		status = intel_dp_detect_dpcd(intel_dp);
5622 	else
5623 		status = connector_status_disconnected;
5624 
5625 	if (status == connector_status_disconnected) {
5626 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5627 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5628 
5629 		if (intel_dp->is_mst) {
5630 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5631 				      intel_dp->is_mst,
5632 				      intel_dp->mst_mgr.mst_state);
5633 			intel_dp->is_mst = false;
5634 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5635 							intel_dp->is_mst);
5636 		}
5637 
5638 		goto out;
5639 	}
5640 
5641 	if (intel_dp->reset_link_params) {
5642 		/* Initial max link lane count */
5643 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5644 
5645 		/* Initial max link rate */
5646 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5647 
5648 		intel_dp->reset_link_params = false;
5649 	}
5650 
5651 	intel_dp_print_rates(intel_dp);
5652 
5653 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5654 	if (INTEL_GEN(dev_priv) >= 11)
5655 		intel_dp_get_dsc_sink_cap(intel_dp);
5656 
5657 	intel_dp_configure_mst(intel_dp);
5658 
5659 	if (intel_dp->is_mst) {
5660 		/*
5661 		 * If we are in MST mode then this connector
5662 		 * won't appear connected or have anything
5663 		 * with EDID on it
5664 		 */
5665 		status = connector_status_disconnected;
5666 		goto out;
5667 	}
5668 
5669 	/*
5670 	 * Some external monitors do not signal loss of link synchronization
5671 	 * with an IRQ_HPD, so force a link status check.
5672 	 */
5673 	if (!intel_dp_is_edp(intel_dp)) {
5674 		int ret;
5675 
5676 		ret = intel_dp_retrain_link(encoder, ctx);
5677 		if (ret)
5678 			return ret;
5679 	}
5680 
5681 	/*
5682 	 * Clearing NACK and defer counts to get their exact values
5683 	 * while reading EDID which are required by Compliance tests
5684 	 * 4.2.2.4 and 4.2.2.5
5685 	 */
5686 	intel_dp->aux.i2c_nack_count = 0;
5687 	intel_dp->aux.i2c_defer_count = 0;
5688 
5689 	intel_dp_set_edid(intel_dp);
5690 	if (intel_dp_is_edp(intel_dp) ||
5691 	    to_intel_connector(connector)->detect_edid)
5692 		status = connector_status_connected;
5693 
5694 	intel_dp_check_service_irq(intel_dp);
5695 
5696 out:
5697 	if (status != connector_status_connected && !intel_dp->is_mst)
5698 		intel_dp_unset_edid(intel_dp);
5699 
5700 	/*
5701 	 * Make sure the refs for power wells enabled during detect are
5702 	 * dropped to avoid a new detect cycle triggered by HPD polling.
5703 	 */
5704 	intel_display_power_flush_work(dev_priv);
5705 
5706 	return status;
5707 }
5708 
5709 static void
5710 intel_dp_force(struct drm_connector *connector)
5711 {
5712 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5713 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5714 	struct intel_encoder *intel_encoder = &dig_port->base;
5715 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5716 	enum intel_display_power_domain aux_domain =
5717 		intel_aux_power_domain(dig_port);
5718 	intel_wakeref_t wakeref;
5719 
5720 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5721 		      connector->base.id, connector->name);
5722 	intel_dp_unset_edid(intel_dp);
5723 
5724 	if (connector->status != connector_status_connected)
5725 		return;
5726 
5727 	wakeref = intel_display_power_get(dev_priv, aux_domain);
5728 
5729 	intel_dp_set_edid(intel_dp);
5730 
5731 	intel_display_power_put(dev_priv, aux_domain, wakeref);
5732 }
5733 
5734 static int intel_dp_get_modes(struct drm_connector *connector)
5735 {
5736 	struct intel_connector *intel_connector = to_intel_connector(connector);
5737 	struct edid *edid;
5738 
5739 	edid = intel_connector->detect_edid;
5740 	if (edid) {
5741 		int ret = intel_connector_update_modes(connector, edid);
5742 		if (ret)
5743 			return ret;
5744 	}
5745 
5746 	/* if eDP has no EDID, fall back to fixed mode */
5747 	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5748 	    intel_connector->panel.fixed_mode) {
5749 		struct drm_display_mode *mode;
5750 
5751 		mode = drm_mode_duplicate(connector->dev,
5752 					  intel_connector->panel.fixed_mode);
5753 		if (mode) {
5754 			drm_mode_probed_add(connector, mode);
5755 			return 1;
5756 		}
5757 	}
5758 
5759 	return 0;
5760 }
5761 
5762 static int
5763 intel_dp_connector_register(struct drm_connector *connector)
5764 {
5765 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5766 	int ret;
5767 
5768 	ret = intel_connector_register(connector);
5769 	if (ret)
5770 		return ret;
5771 
5772 	i915_debugfs_connector_add(connector);
5773 
5774 	DRM_DEBUG_KMS("registering %s bus for %s\n",
5775 		      intel_dp->aux.name, connector->kdev->kobj.name);
5776 
5777 	intel_dp->aux.dev = connector->kdev;
5778 	ret = drm_dp_aux_register(&intel_dp->aux);
5779 	if (!ret)
5780 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
5781 	return ret;
5782 }
5783 
5784 static void
5785 intel_dp_connector_unregister(struct drm_connector *connector)
5786 {
5787 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5788 
5789 	drm_dp_cec_unregister_connector(&intel_dp->aux);
5790 	drm_dp_aux_unregister(&intel_dp->aux);
5791 	intel_connector_unregister(connector);
5792 }
5793 
5794 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5795 {
5796 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5797 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5798 
5799 	intel_dp_mst_encoder_cleanup(intel_dig_port);
5800 	if (intel_dp_is_edp(intel_dp)) {
5801 		intel_wakeref_t wakeref;
5802 
5803 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5804 		/*
5805 		 * vdd might still be enabled do to the delayed vdd off.
5806 		 * Make sure vdd is actually turned off here.
5807 		 */
5808 		with_pps_lock(intel_dp, wakeref)
5809 			edp_panel_vdd_off_sync(intel_dp);
5810 
5811 		if (intel_dp->edp_notifier.notifier_call) {
5812 			unregister_reboot_notifier(&intel_dp->edp_notifier);
5813 			intel_dp->edp_notifier.notifier_call = NULL;
5814 		}
5815 	}
5816 
5817 	intel_dp_aux_fini(intel_dp);
5818 }
5819 
5820 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5821 {
5822 	intel_dp_encoder_flush_work(encoder);
5823 
5824 	drm_encoder_cleanup(encoder);
5825 	kfree(enc_to_dig_port(encoder));
5826 }
5827 
5828 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5829 {
5830 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5831 	intel_wakeref_t wakeref;
5832 
5833 	if (!intel_dp_is_edp(intel_dp))
5834 		return;
5835 
5836 	/*
5837 	 * vdd might still be enabled do to the delayed vdd off.
5838 	 * Make sure vdd is actually turned off here.
5839 	 */
5840 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5841 	with_pps_lock(intel_dp, wakeref)
5842 		edp_panel_vdd_off_sync(intel_dp);
5843 }
5844 
5845 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5846 {
5847 	long ret;
5848 
5849 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5850 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5851 					       msecs_to_jiffies(timeout));
5852 
5853 	if (!ret)
5854 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5855 }
5856 
5857 static
5858 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5859 				u8 *an)
5860 {
5861 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5862 	static const struct drm_dp_aux_msg msg = {
5863 		.request = DP_AUX_NATIVE_WRITE,
5864 		.address = DP_AUX_HDCP_AKSV,
5865 		.size = DRM_HDCP_KSV_LEN,
5866 	};
5867 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5868 	ssize_t dpcd_ret;
5869 	int ret;
5870 
5871 	/* Output An first, that's easy */
5872 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5873 				     an, DRM_HDCP_AN_LEN);
5874 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5875 		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5876 			      dpcd_ret);
5877 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5878 	}
5879 
5880 	/*
5881 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5882 	 * order to get it on the wire, we need to create the AUX header as if
5883 	 * we were writing the data, and then tickle the hardware to output the
5884 	 * data once the header is sent out.
5885 	 */
5886 	intel_dp_aux_header(txbuf, &msg);
5887 
5888 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5889 				rxbuf, sizeof(rxbuf),
5890 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5891 	if (ret < 0) {
5892 		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5893 		return ret;
5894 	} else if (ret == 0) {
5895 		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5896 		return -EIO;
5897 	}
5898 
5899 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5900 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5901 		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5902 			      reply);
5903 		return -EIO;
5904 	}
5905 	return 0;
5906 }
5907 
5908 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5909 				   u8 *bksv)
5910 {
5911 	ssize_t ret;
5912 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5913 			       DRM_HDCP_KSV_LEN);
5914 	if (ret != DRM_HDCP_KSV_LEN) {
5915 		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5916 		return ret >= 0 ? -EIO : ret;
5917 	}
5918 	return 0;
5919 }
5920 
5921 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5922 				      u8 *bstatus)
5923 {
5924 	ssize_t ret;
5925 	/*
5926 	 * For some reason the HDMI and DP HDCP specs call this register
5927 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
5928 	 * but in DP it's called BINFO.
5929 	 */
5930 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5931 			       bstatus, DRM_HDCP_BSTATUS_LEN);
5932 	if (ret != DRM_HDCP_BSTATUS_LEN) {
5933 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5934 		return ret >= 0 ? -EIO : ret;
5935 	}
5936 	return 0;
5937 }
5938 
5939 static
5940 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5941 			     u8 *bcaps)
5942 {
5943 	ssize_t ret;
5944 
5945 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5946 			       bcaps, 1);
5947 	if (ret != 1) {
5948 		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5949 		return ret >= 0 ? -EIO : ret;
5950 	}
5951 
5952 	return 0;
5953 }
5954 
5955 static
5956 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5957 				   bool *repeater_present)
5958 {
5959 	ssize_t ret;
5960 	u8 bcaps;
5961 
5962 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5963 	if (ret)
5964 		return ret;
5965 
5966 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5967 	return 0;
5968 }
5969 
5970 static
5971 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5972 				u8 *ri_prime)
5973 {
5974 	ssize_t ret;
5975 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5976 			       ri_prime, DRM_HDCP_RI_LEN);
5977 	if (ret != DRM_HDCP_RI_LEN) {
5978 		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5979 		return ret >= 0 ? -EIO : ret;
5980 	}
5981 	return 0;
5982 }
5983 
5984 static
5985 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5986 				 bool *ksv_ready)
5987 {
5988 	ssize_t ret;
5989 	u8 bstatus;
5990 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5991 			       &bstatus, 1);
5992 	if (ret != 1) {
5993 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5994 		return ret >= 0 ? -EIO : ret;
5995 	}
5996 	*ksv_ready = bstatus & DP_BSTATUS_READY;
5997 	return 0;
5998 }
5999 
6000 static
6001 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6002 				int num_downstream, u8 *ksv_fifo)
6003 {
6004 	ssize_t ret;
6005 	int i;
6006 
6007 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6008 	for (i = 0; i < num_downstream; i += 3) {
6009 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6010 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6011 				       DP_AUX_HDCP_KSV_FIFO,
6012 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
6013 				       len);
6014 		if (ret != len) {
6015 			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6016 				      i, ret);
6017 			return ret >= 0 ? -EIO : ret;
6018 		}
6019 	}
6020 	return 0;
6021 }
6022 
6023 static
6024 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6025 				    int i, u32 *part)
6026 {
6027 	ssize_t ret;
6028 
6029 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6030 		return -EINVAL;
6031 
6032 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6033 			       DP_AUX_HDCP_V_PRIME(i), part,
6034 			       DRM_HDCP_V_PRIME_PART_LEN);
6035 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6036 		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6037 		return ret >= 0 ? -EIO : ret;
6038 	}
6039 	return 0;
6040 }
6041 
6042 static
6043 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6044 				    bool enable)
6045 {
6046 	/* Not used for single stream DisplayPort setups */
6047 	return 0;
6048 }
6049 
6050 static
6051 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6052 {
6053 	ssize_t ret;
6054 	u8 bstatus;
6055 
6056 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6057 			       &bstatus, 1);
6058 	if (ret != 1) {
6059 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6060 		return false;
6061 	}
6062 
6063 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6064 }
6065 
6066 static
6067 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6068 			  bool *hdcp_capable)
6069 {
6070 	ssize_t ret;
6071 	u8 bcaps;
6072 
6073 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6074 	if (ret)
6075 		return ret;
6076 
6077 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6078 	return 0;
6079 }
6080 
6081 struct hdcp2_dp_errata_stream_type {
6082 	u8	msg_id;
6083 	u8	stream_type;
6084 } __packed;
6085 
6086 struct hdcp2_dp_msg_data {
6087 	u8 msg_id;
6088 	u32 offset;
6089 	bool msg_detectable;
6090 	u32 timeout;
6091 	u32 timeout2; /* Added for non_paired situation */
6092 };
6093 
6094 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6095 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6096 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6097 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6098 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6099 	  false, 0, 0 },
6100 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6101 	  false, 0, 0 },
6102 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6103 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6104 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6105 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
6106 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6107 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6108 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6109 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6110 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6111 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6112 	  0, 0 },
6113 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
6114 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6115 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6116 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6117 	  0, 0 },
6118 	{ HDCP_2_2_REP_STREAM_MANAGE,
6119 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6120 	  0, 0 },
6121 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6122 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6123 /* local define to shovel this through the write_2_2 interface */
6124 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6125 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6126 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6127 	  0, 0 },
6128 };
6129 
6130 static inline
6131 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6132 				  u8 *rx_status)
6133 {
6134 	ssize_t ret;
6135 
6136 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6137 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6138 			       HDCP_2_2_DP_RXSTATUS_LEN);
6139 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6140 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6141 		return ret >= 0 ? -EIO : ret;
6142 	}
6143 
6144 	return 0;
6145 }
6146 
6147 static
6148 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6149 				  u8 msg_id, bool *msg_ready)
6150 {
6151 	u8 rx_status;
6152 	int ret;
6153 
6154 	*msg_ready = false;
6155 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6156 	if (ret < 0)
6157 		return ret;
6158 
6159 	switch (msg_id) {
6160 	case HDCP_2_2_AKE_SEND_HPRIME:
6161 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6162 			*msg_ready = true;
6163 		break;
6164 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6165 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6166 			*msg_ready = true;
6167 		break;
6168 	case HDCP_2_2_REP_SEND_RECVID_LIST:
6169 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6170 			*msg_ready = true;
6171 		break;
6172 	default:
6173 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6174 		return -EINVAL;
6175 	}
6176 
6177 	return 0;
6178 }
6179 
6180 static ssize_t
6181 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6182 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6183 {
6184 	struct intel_dp *dp = &intel_dig_port->dp;
6185 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6186 	u8 msg_id = hdcp2_msg_data->msg_id;
6187 	int ret, timeout;
6188 	bool msg_ready = false;
6189 
6190 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6191 		timeout = hdcp2_msg_data->timeout2;
6192 	else
6193 		timeout = hdcp2_msg_data->timeout;
6194 
6195 	/*
6196 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
6197 	 * availability. So Wait for timeout and read the msg.
6198 	 */
6199 	if (!hdcp2_msg_data->msg_detectable) {
6200 		mdelay(timeout);
6201 		ret = 0;
6202 	} else {
6203 		/*
6204 		 * As we want to check the msg availability at timeout, Ignoring
6205 		 * the timeout at wait for CP_IRQ.
6206 		 */
6207 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6208 		ret = hdcp2_detect_msg_availability(intel_dig_port,
6209 						    msg_id, &msg_ready);
6210 		if (!msg_ready)
6211 			ret = -ETIMEDOUT;
6212 	}
6213 
6214 	if (ret)
6215 		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6216 			      hdcp2_msg_data->msg_id, ret, timeout);
6217 
6218 	return ret;
6219 }
6220 
6221 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6222 {
6223 	int i;
6224 
6225 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6226 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6227 			return &hdcp2_dp_msg_data[i];
6228 
6229 	return NULL;
6230 }
6231 
6232 static
6233 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6234 			     void *buf, size_t size)
6235 {
6236 	struct intel_dp *dp = &intel_dig_port->dp;
6237 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6238 	unsigned int offset;
6239 	u8 *byte = buf;
6240 	ssize_t ret, bytes_to_write, len;
6241 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6242 
6243 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6244 	if (!hdcp2_msg_data)
6245 		return -EINVAL;
6246 
6247 	offset = hdcp2_msg_data->offset;
6248 
6249 	/* No msg_id in DP HDCP2.2 msgs */
6250 	bytes_to_write = size - 1;
6251 	byte++;
6252 
6253 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6254 
6255 	while (bytes_to_write) {
6256 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6257 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6258 
6259 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6260 					offset, (void *)byte, len);
6261 		if (ret < 0)
6262 			return ret;
6263 
6264 		bytes_to_write -= ret;
6265 		byte += ret;
6266 		offset += ret;
6267 	}
6268 
6269 	return size;
6270 }
6271 
6272 static
6273 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6274 {
6275 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6276 	u32 dev_cnt;
6277 	ssize_t ret;
6278 
6279 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6280 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6281 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6282 	if (ret != HDCP_2_2_RXINFO_LEN)
6283 		return ret >= 0 ? -EIO : ret;
6284 
6285 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6286 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6287 
6288 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6289 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6290 
6291 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6292 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6293 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6294 
6295 	return ret;
6296 }
6297 
6298 static
6299 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6300 			    u8 msg_id, void *buf, size_t size)
6301 {
6302 	unsigned int offset;
6303 	u8 *byte = buf;
6304 	ssize_t ret, bytes_to_recv, len;
6305 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6306 
6307 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6308 	if (!hdcp2_msg_data)
6309 		return -EINVAL;
6310 	offset = hdcp2_msg_data->offset;
6311 
6312 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6313 	if (ret < 0)
6314 		return ret;
6315 
6316 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6317 		ret = get_receiver_id_list_size(intel_dig_port);
6318 		if (ret < 0)
6319 			return ret;
6320 
6321 		size = ret;
6322 	}
6323 	bytes_to_recv = size - 1;
6324 
6325 	/* DP adaptation msgs has no msg_id */
6326 	byte++;
6327 
6328 	while (bytes_to_recv) {
6329 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6330 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6331 
6332 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6333 				       (void *)byte, len);
6334 		if (ret < 0) {
6335 			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6336 			return ret;
6337 		}
6338 
6339 		bytes_to_recv -= ret;
6340 		byte += ret;
6341 		offset += ret;
6342 	}
6343 	byte = buf;
6344 	*byte = msg_id;
6345 
6346 	return size;
6347 }
6348 
6349 static
6350 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6351 				      bool is_repeater, u8 content_type)
6352 {
6353 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6354 
6355 	if (is_repeater)
6356 		return 0;
6357 
6358 	/*
6359 	 * Errata for DP: As Stream type is used for encryption, Receiver
6360 	 * should be communicated with stream type for the decryption of the
6361 	 * content.
6362 	 * Repeater will be communicated with stream type as a part of it's
6363 	 * auth later in time.
6364 	 */
6365 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6366 	stream_type_msg.stream_type = content_type;
6367 
6368 	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6369 					sizeof(stream_type_msg));
6370 }
6371 
6372 static
6373 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6374 {
6375 	u8 rx_status;
6376 	int ret;
6377 
6378 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6379 	if (ret)
6380 		return ret;
6381 
6382 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6383 		ret = HDCP_REAUTH_REQUEST;
6384 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6385 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6386 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6387 		ret = HDCP_TOPOLOGY_CHANGE;
6388 
6389 	return ret;
6390 }
6391 
6392 static
6393 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6394 			   bool *capable)
6395 {
6396 	u8 rx_caps[3];
6397 	int ret;
6398 
6399 	*capable = false;
6400 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6401 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6402 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6403 	if (ret != HDCP_2_2_RXCAPS_LEN)
6404 		return ret >= 0 ? -EIO : ret;
6405 
6406 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6407 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6408 		*capable = true;
6409 
6410 	return 0;
6411 }
6412 
6413 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6414 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
6415 	.read_bksv = intel_dp_hdcp_read_bksv,
6416 	.read_bstatus = intel_dp_hdcp_read_bstatus,
6417 	.repeater_present = intel_dp_hdcp_repeater_present,
6418 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
6419 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6420 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6421 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6422 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
6423 	.check_link = intel_dp_hdcp_check_link,
6424 	.hdcp_capable = intel_dp_hdcp_capable,
6425 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
6426 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
6427 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
6428 	.check_2_2_link = intel_dp_hdcp2_check_link,
6429 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
6430 	.protocol = HDCP_PROTOCOL_DP,
6431 };
6432 
6433 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6434 {
6435 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6436 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6437 
6438 	lockdep_assert_held(&dev_priv->pps_mutex);
6439 
6440 	if (!edp_have_panel_vdd(intel_dp))
6441 		return;
6442 
6443 	/*
6444 	 * The VDD bit needs a power domain reference, so if the bit is
6445 	 * already enabled when we boot or resume, grab this reference and
6446 	 * schedule a vdd off, so we don't hold on to the reference
6447 	 * indefinitely.
6448 	 */
6449 	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6450 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6451 
6452 	edp_panel_vdd_schedule_off(intel_dp);
6453 }
6454 
6455 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6456 {
6457 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6458 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6459 	enum pipe pipe;
6460 
6461 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6462 				  encoder->port, &pipe))
6463 		return pipe;
6464 
6465 	return INVALID_PIPE;
6466 }
6467 
6468 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6469 {
6470 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6471 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6472 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6473 	intel_wakeref_t wakeref;
6474 
6475 	if (!HAS_DDI(dev_priv))
6476 		intel_dp->DP = I915_READ(intel_dp->output_reg);
6477 
6478 	if (lspcon->active)
6479 		lspcon_resume(lspcon);
6480 
6481 	intel_dp->reset_link_params = true;
6482 
6483 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6484 	    !intel_dp_is_edp(intel_dp))
6485 		return;
6486 
6487 	with_pps_lock(intel_dp, wakeref) {
6488 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6489 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6490 
6491 		if (intel_dp_is_edp(intel_dp)) {
6492 			/*
6493 			 * Reinit the power sequencer, in case BIOS did
6494 			 * something nasty with it.
6495 			 */
6496 			intel_dp_pps_init(intel_dp);
6497 			intel_edp_panel_vdd_sanitize(intel_dp);
6498 		}
6499 	}
6500 }
6501 
6502 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6503 	.force = intel_dp_force,
6504 	.fill_modes = drm_helper_probe_single_connector_modes,
6505 	.atomic_get_property = intel_digital_connector_atomic_get_property,
6506 	.atomic_set_property = intel_digital_connector_atomic_set_property,
6507 	.late_register = intel_dp_connector_register,
6508 	.early_unregister = intel_dp_connector_unregister,
6509 	.destroy = intel_connector_destroy,
6510 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6511 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6512 };
6513 
6514 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6515 	.detect_ctx = intel_dp_detect,
6516 	.get_modes = intel_dp_get_modes,
6517 	.mode_valid = intel_dp_mode_valid,
6518 	.atomic_check = intel_digital_connector_atomic_check,
6519 };
6520 
6521 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6522 	.reset = intel_dp_encoder_reset,
6523 	.destroy = intel_dp_encoder_destroy,
6524 };
6525 
6526 enum irqreturn
6527 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6528 {
6529 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6530 
6531 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6532 		/*
6533 		 * vdd off can generate a long pulse on eDP which
6534 		 * would require vdd on to handle it, and thus we
6535 		 * would end up in an endless cycle of
6536 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6537 		 */
6538 		DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6539 			      intel_dig_port->base.base.base.id,
6540 			      intel_dig_port->base.base.name);
6541 		return IRQ_HANDLED;
6542 	}
6543 
6544 	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6545 		      intel_dig_port->base.base.base.id,
6546 		      intel_dig_port->base.base.name,
6547 		      long_hpd ? "long" : "short");
6548 
6549 	if (long_hpd) {
6550 		intel_dp->reset_link_params = true;
6551 		return IRQ_NONE;
6552 	}
6553 
6554 	if (intel_dp->is_mst) {
6555 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6556 			/*
6557 			 * If we were in MST mode, and device is not
6558 			 * there, get out of MST mode
6559 			 */
6560 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6561 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6562 			intel_dp->is_mst = false;
6563 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6564 							intel_dp->is_mst);
6565 
6566 			return IRQ_NONE;
6567 		}
6568 	}
6569 
6570 	if (!intel_dp->is_mst) {
6571 		bool handled;
6572 
6573 		handled = intel_dp_short_pulse(intel_dp);
6574 
6575 		if (!handled)
6576 			return IRQ_NONE;
6577 	}
6578 
6579 	return IRQ_HANDLED;
6580 }
6581 
6582 /* check the VBT to see whether the eDP is on another port */
6583 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6584 {
6585 	/*
6586 	 * eDP not supported on g4x. so bail out early just
6587 	 * for a bit extra safety in case the VBT is bonkers.
6588 	 */
6589 	if (INTEL_GEN(dev_priv) < 5)
6590 		return false;
6591 
6592 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6593 		return true;
6594 
6595 	return intel_bios_is_port_edp(dev_priv, port);
6596 }
6597 
6598 static void
6599 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6600 {
6601 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6602 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6603 
6604 	if (!IS_G4X(dev_priv) && port != PORT_A)
6605 		intel_attach_force_audio_property(connector);
6606 
6607 	intel_attach_broadcast_rgb_property(connector);
6608 	if (HAS_GMCH(dev_priv))
6609 		drm_connector_attach_max_bpc_property(connector, 6, 10);
6610 	else if (INTEL_GEN(dev_priv) >= 5)
6611 		drm_connector_attach_max_bpc_property(connector, 6, 12);
6612 
6613 	intel_attach_colorspace_property(connector);
6614 
6615 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6616 		drm_object_attach_property(&connector->base,
6617 					   connector->dev->mode_config.hdr_output_metadata_property,
6618 					   0);
6619 
6620 	if (intel_dp_is_edp(intel_dp)) {
6621 		u32 allowed_scalers;
6622 
6623 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6624 		if (!HAS_GMCH(dev_priv))
6625 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6626 
6627 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6628 
6629 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6630 
6631 	}
6632 }
6633 
6634 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6635 {
6636 	intel_dp->panel_power_off_time = ktime_get_boottime();
6637 	intel_dp->last_power_on = jiffies;
6638 	intel_dp->last_backlight_off = jiffies;
6639 }
6640 
6641 static void
6642 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6643 {
6644 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6645 	u32 pp_on, pp_off, pp_ctl;
6646 	struct pps_registers regs;
6647 
6648 	intel_pps_get_registers(intel_dp, &regs);
6649 
6650 	pp_ctl = ironlake_get_pp_control(intel_dp);
6651 
6652 	/* Ensure PPS is unlocked */
6653 	if (!HAS_DDI(dev_priv))
6654 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6655 
6656 	pp_on = I915_READ(regs.pp_on);
6657 	pp_off = I915_READ(regs.pp_off);
6658 
6659 	/* Pull timing values out of registers */
6660 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6661 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6662 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6663 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6664 
6665 	if (i915_mmio_reg_valid(regs.pp_div)) {
6666 		u32 pp_div;
6667 
6668 		pp_div = I915_READ(regs.pp_div);
6669 
6670 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6671 	} else {
6672 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6673 	}
6674 }
6675 
6676 static void
6677 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6678 {
6679 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6680 		      state_name,
6681 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6682 }
6683 
6684 static void
6685 intel_pps_verify_state(struct intel_dp *intel_dp)
6686 {
6687 	struct edp_power_seq hw;
6688 	struct edp_power_seq *sw = &intel_dp->pps_delays;
6689 
6690 	intel_pps_readout_hw_state(intel_dp, &hw);
6691 
6692 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6693 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6694 		DRM_ERROR("PPS state mismatch\n");
6695 		intel_pps_dump_state("sw", sw);
6696 		intel_pps_dump_state("hw", &hw);
6697 	}
6698 }
6699 
6700 static void
6701 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6702 {
6703 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6704 	struct edp_power_seq cur, vbt, spec,
6705 		*final = &intel_dp->pps_delays;
6706 
6707 	lockdep_assert_held(&dev_priv->pps_mutex);
6708 
6709 	/* already initialized? */
6710 	if (final->t11_t12 != 0)
6711 		return;
6712 
6713 	intel_pps_readout_hw_state(intel_dp, &cur);
6714 
6715 	intel_pps_dump_state("cur", &cur);
6716 
6717 	vbt = dev_priv->vbt.edp.pps;
6718 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6719 	 * of 500ms appears to be too short. Ocassionally the panel
6720 	 * just fails to power back on. Increasing the delay to 800ms
6721 	 * seems sufficient to avoid this problem.
6722 	 */
6723 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6724 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6725 		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6726 			      vbt.t11_t12);
6727 	}
6728 	/* T11_T12 delay is special and actually in units of 100ms, but zero
6729 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6730 	 * table multiplies it with 1000 to make it in units of 100usec,
6731 	 * too. */
6732 	vbt.t11_t12 += 100 * 10;
6733 
6734 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6735 	 * our hw here, which are all in 100usec. */
6736 	spec.t1_t3 = 210 * 10;
6737 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6738 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6739 	spec.t10 = 500 * 10;
6740 	/* This one is special and actually in units of 100ms, but zero
6741 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6742 	 * table multiplies it with 1000 to make it in units of 100usec,
6743 	 * too. */
6744 	spec.t11_t12 = (510 + 100) * 10;
6745 
6746 	intel_pps_dump_state("vbt", &vbt);
6747 
6748 	/* Use the max of the register settings and vbt. If both are
6749 	 * unset, fall back to the spec limits. */
6750 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6751 				       spec.field : \
6752 				       max(cur.field, vbt.field))
6753 	assign_final(t1_t3);
6754 	assign_final(t8);
6755 	assign_final(t9);
6756 	assign_final(t10);
6757 	assign_final(t11_t12);
6758 #undef assign_final
6759 
6760 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6761 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
6762 	intel_dp->backlight_on_delay = get_delay(t8);
6763 	intel_dp->backlight_off_delay = get_delay(t9);
6764 	intel_dp->panel_power_down_delay = get_delay(t10);
6765 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6766 #undef get_delay
6767 
6768 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6769 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6770 		      intel_dp->panel_power_cycle_delay);
6771 
6772 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6773 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6774 
6775 	/*
6776 	 * We override the HW backlight delays to 1 because we do manual waits
6777 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
6778 	 * don't do this, we'll end up waiting for the backlight off delay
6779 	 * twice: once when we do the manual sleep, and once when we disable
6780 	 * the panel and wait for the PP_STATUS bit to become zero.
6781 	 */
6782 	final->t8 = 1;
6783 	final->t9 = 1;
6784 
6785 	/*
6786 	 * HW has only a 100msec granularity for t11_t12 so round it up
6787 	 * accordingly.
6788 	 */
6789 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6790 }
6791 
6792 static void
6793 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6794 					      bool force_disable_vdd)
6795 {
6796 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6797 	u32 pp_on, pp_off, port_sel = 0;
6798 	int div = dev_priv->rawclk_freq / 1000;
6799 	struct pps_registers regs;
6800 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6801 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6802 
6803 	lockdep_assert_held(&dev_priv->pps_mutex);
6804 
6805 	intel_pps_get_registers(intel_dp, &regs);
6806 
6807 	/*
6808 	 * On some VLV machines the BIOS can leave the VDD
6809 	 * enabled even on power sequencers which aren't
6810 	 * hooked up to any port. This would mess up the
6811 	 * power domain tracking the first time we pick
6812 	 * one of these power sequencers for use since
6813 	 * edp_panel_vdd_on() would notice that the VDD was
6814 	 * already on and therefore wouldn't grab the power
6815 	 * domain reference. Disable VDD first to avoid this.
6816 	 * This also avoids spuriously turning the VDD on as
6817 	 * soon as the new power sequencer gets initialized.
6818 	 */
6819 	if (force_disable_vdd) {
6820 		u32 pp = ironlake_get_pp_control(intel_dp);
6821 
6822 		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6823 
6824 		if (pp & EDP_FORCE_VDD)
6825 			DRM_DEBUG_KMS("VDD already on, disabling first\n");
6826 
6827 		pp &= ~EDP_FORCE_VDD;
6828 
6829 		I915_WRITE(regs.pp_ctrl, pp);
6830 	}
6831 
6832 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6833 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6834 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6835 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6836 
6837 	/* Haswell doesn't have any port selection bits for the panel
6838 	 * power sequencer any more. */
6839 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6840 		port_sel = PANEL_PORT_SELECT_VLV(port);
6841 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6842 		switch (port) {
6843 		case PORT_A:
6844 			port_sel = PANEL_PORT_SELECT_DPA;
6845 			break;
6846 		case PORT_C:
6847 			port_sel = PANEL_PORT_SELECT_DPC;
6848 			break;
6849 		case PORT_D:
6850 			port_sel = PANEL_PORT_SELECT_DPD;
6851 			break;
6852 		default:
6853 			MISSING_CASE(port);
6854 			break;
6855 		}
6856 	}
6857 
6858 	pp_on |= port_sel;
6859 
6860 	I915_WRITE(regs.pp_on, pp_on);
6861 	I915_WRITE(regs.pp_off, pp_off);
6862 
6863 	/*
6864 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
6865 	 */
6866 	if (i915_mmio_reg_valid(regs.pp_div)) {
6867 		I915_WRITE(regs.pp_div,
6868 			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6869 			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6870 	} else {
6871 		u32 pp_ctl;
6872 
6873 		pp_ctl = I915_READ(regs.pp_ctrl);
6874 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6875 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6876 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6877 	}
6878 
6879 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6880 		      I915_READ(regs.pp_on),
6881 		      I915_READ(regs.pp_off),
6882 		      i915_mmio_reg_valid(regs.pp_div) ?
6883 		      I915_READ(regs.pp_div) :
6884 		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6885 }
6886 
6887 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6888 {
6889 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6890 
6891 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6892 		vlv_initial_power_sequencer_setup(intel_dp);
6893 	} else {
6894 		intel_dp_init_panel_power_sequencer(intel_dp);
6895 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6896 	}
6897 }
6898 
6899 /**
6900  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6901  * @dev_priv: i915 device
6902  * @crtc_state: a pointer to the active intel_crtc_state
6903  * @refresh_rate: RR to be programmed
6904  *
6905  * This function gets called when refresh rate (RR) has to be changed from
6906  * one frequency to another. Switches can be between high and low RR
6907  * supported by the panel or to any other RR based on media playback (in
6908  * this case, RR value needs to be passed from user space).
6909  *
6910  * The caller of this function needs to take a lock on dev_priv->drrs.
6911  */
6912 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6913 				    const struct intel_crtc_state *crtc_state,
6914 				    int refresh_rate)
6915 {
6916 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6917 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6918 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6919 
6920 	if (refresh_rate <= 0) {
6921 		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6922 		return;
6923 	}
6924 
6925 	if (intel_dp == NULL) {
6926 		DRM_DEBUG_KMS("DRRS not supported.\n");
6927 		return;
6928 	}
6929 
6930 	if (!intel_crtc) {
6931 		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6932 		return;
6933 	}
6934 
6935 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6936 		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6937 		return;
6938 	}
6939 
6940 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6941 			refresh_rate)
6942 		index = DRRS_LOW_RR;
6943 
6944 	if (index == dev_priv->drrs.refresh_rate_type) {
6945 		DRM_DEBUG_KMS(
6946 			"DRRS requested for previously set RR...ignoring\n");
6947 		return;
6948 	}
6949 
6950 	if (!crtc_state->base.active) {
6951 		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6952 		return;
6953 	}
6954 
6955 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6956 		switch (index) {
6957 		case DRRS_HIGH_RR:
6958 			intel_dp_set_m_n(crtc_state, M1_N1);
6959 			break;
6960 		case DRRS_LOW_RR:
6961 			intel_dp_set_m_n(crtc_state, M2_N2);
6962 			break;
6963 		case DRRS_MAX_RR:
6964 		default:
6965 			DRM_ERROR("Unsupported refreshrate type\n");
6966 		}
6967 	} else if (INTEL_GEN(dev_priv) > 6) {
6968 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6969 		u32 val;
6970 
6971 		val = I915_READ(reg);
6972 		if (index > DRRS_HIGH_RR) {
6973 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6974 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6975 			else
6976 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6977 		} else {
6978 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6979 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6980 			else
6981 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6982 		}
6983 		I915_WRITE(reg, val);
6984 	}
6985 
6986 	dev_priv->drrs.refresh_rate_type = index;
6987 
6988 	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6989 }
6990 
6991 /**
6992  * intel_edp_drrs_enable - init drrs struct if supported
6993  * @intel_dp: DP struct
6994  * @crtc_state: A pointer to the active crtc state.
6995  *
6996  * Initializes frontbuffer_bits and drrs.dp
6997  */
6998 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6999 			   const struct intel_crtc_state *crtc_state)
7000 {
7001 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7002 
7003 	if (!crtc_state->has_drrs) {
7004 		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
7005 		return;
7006 	}
7007 
7008 	if (dev_priv->psr.enabled) {
7009 		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
7010 		return;
7011 	}
7012 
7013 	mutex_lock(&dev_priv->drrs.mutex);
7014 	if (dev_priv->drrs.dp) {
7015 		DRM_DEBUG_KMS("DRRS already enabled\n");
7016 		goto unlock;
7017 	}
7018 
7019 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7020 
7021 	dev_priv->drrs.dp = intel_dp;
7022 
7023 unlock:
7024 	mutex_unlock(&dev_priv->drrs.mutex);
7025 }
7026 
7027 /**
7028  * intel_edp_drrs_disable - Disable DRRS
7029  * @intel_dp: DP struct
7030  * @old_crtc_state: Pointer to old crtc_state.
7031  *
7032  */
7033 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7034 			    const struct intel_crtc_state *old_crtc_state)
7035 {
7036 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7037 
7038 	if (!old_crtc_state->has_drrs)
7039 		return;
7040 
7041 	mutex_lock(&dev_priv->drrs.mutex);
7042 	if (!dev_priv->drrs.dp) {
7043 		mutex_unlock(&dev_priv->drrs.mutex);
7044 		return;
7045 	}
7046 
7047 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7048 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7049 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7050 
7051 	dev_priv->drrs.dp = NULL;
7052 	mutex_unlock(&dev_priv->drrs.mutex);
7053 
7054 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7055 }
7056 
7057 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7058 {
7059 	struct drm_i915_private *dev_priv =
7060 		container_of(work, typeof(*dev_priv), drrs.work.work);
7061 	struct intel_dp *intel_dp;
7062 
7063 	mutex_lock(&dev_priv->drrs.mutex);
7064 
7065 	intel_dp = dev_priv->drrs.dp;
7066 
7067 	if (!intel_dp)
7068 		goto unlock;
7069 
7070 	/*
7071 	 * The delayed work can race with an invalidate hence we need to
7072 	 * recheck.
7073 	 */
7074 
7075 	if (dev_priv->drrs.busy_frontbuffer_bits)
7076 		goto unlock;
7077 
7078 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7079 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7080 
7081 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7082 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7083 	}
7084 
7085 unlock:
7086 	mutex_unlock(&dev_priv->drrs.mutex);
7087 }
7088 
7089 /**
7090  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7091  * @dev_priv: i915 device
7092  * @frontbuffer_bits: frontbuffer plane tracking bits
7093  *
7094  * This function gets called everytime rendering on the given planes start.
7095  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7096  *
7097  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7098  */
7099 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7100 			       unsigned int frontbuffer_bits)
7101 {
7102 	struct drm_crtc *crtc;
7103 	enum pipe pipe;
7104 
7105 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7106 		return;
7107 
7108 	cancel_delayed_work(&dev_priv->drrs.work);
7109 
7110 	mutex_lock(&dev_priv->drrs.mutex);
7111 	if (!dev_priv->drrs.dp) {
7112 		mutex_unlock(&dev_priv->drrs.mutex);
7113 		return;
7114 	}
7115 
7116 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7117 	pipe = to_intel_crtc(crtc)->pipe;
7118 
7119 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7120 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7121 
7122 	/* invalidate means busy screen hence upclock */
7123 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7124 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7125 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7126 
7127 	mutex_unlock(&dev_priv->drrs.mutex);
7128 }
7129 
7130 /**
7131  * intel_edp_drrs_flush - Restart Idleness DRRS
7132  * @dev_priv: i915 device
7133  * @frontbuffer_bits: frontbuffer plane tracking bits
7134  *
7135  * This function gets called every time rendering on the given planes has
7136  * completed or flip on a crtc is completed. So DRRS should be upclocked
7137  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7138  * if no other planes are dirty.
7139  *
7140  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7141  */
7142 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7143 			  unsigned int frontbuffer_bits)
7144 {
7145 	struct drm_crtc *crtc;
7146 	enum pipe pipe;
7147 
7148 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7149 		return;
7150 
7151 	cancel_delayed_work(&dev_priv->drrs.work);
7152 
7153 	mutex_lock(&dev_priv->drrs.mutex);
7154 	if (!dev_priv->drrs.dp) {
7155 		mutex_unlock(&dev_priv->drrs.mutex);
7156 		return;
7157 	}
7158 
7159 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7160 	pipe = to_intel_crtc(crtc)->pipe;
7161 
7162 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7163 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7164 
7165 	/* flush means busy screen hence upclock */
7166 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7167 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7168 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7169 
7170 	/*
7171 	 * flush also means no more activity hence schedule downclock, if all
7172 	 * other fbs are quiescent too
7173 	 */
7174 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7175 		schedule_delayed_work(&dev_priv->drrs.work,
7176 				msecs_to_jiffies(1000));
7177 	mutex_unlock(&dev_priv->drrs.mutex);
7178 }
7179 
7180 /**
7181  * DOC: Display Refresh Rate Switching (DRRS)
7182  *
7183  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7184  * which enables swtching between low and high refresh rates,
7185  * dynamically, based on the usage scenario. This feature is applicable
7186  * for internal panels.
7187  *
7188  * Indication that the panel supports DRRS is given by the panel EDID, which
7189  * would list multiple refresh rates for one resolution.
7190  *
7191  * DRRS is of 2 types - static and seamless.
7192  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7193  * (may appear as a blink on screen) and is used in dock-undock scenario.
7194  * Seamless DRRS involves changing RR without any visual effect to the user
7195  * and can be used during normal system usage. This is done by programming
7196  * certain registers.
7197  *
7198  * Support for static/seamless DRRS may be indicated in the VBT based on
7199  * inputs from the panel spec.
7200  *
7201  * DRRS saves power by switching to low RR based on usage scenarios.
7202  *
7203  * The implementation is based on frontbuffer tracking implementation.  When
7204  * there is a disturbance on the screen triggered by user activity or a periodic
7205  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7206  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7207  * made.
7208  *
7209  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7210  * and intel_edp_drrs_flush() are called.
7211  *
7212  * DRRS can be further extended to support other internal panels and also
7213  * the scenario of video playback wherein RR is set based on the rate
7214  * requested by userspace.
7215  */
7216 
7217 /**
7218  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7219  * @connector: eDP connector
7220  * @fixed_mode: preferred mode of panel
7221  *
7222  * This function is  called only once at driver load to initialize basic
7223  * DRRS stuff.
7224  *
7225  * Returns:
7226  * Downclock mode if panel supports it, else return NULL.
7227  * DRRS support is determined by the presence of downclock mode (apart
7228  * from VBT setting).
7229  */
7230 static struct drm_display_mode *
7231 intel_dp_drrs_init(struct intel_connector *connector,
7232 		   struct drm_display_mode *fixed_mode)
7233 {
7234 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7235 	struct drm_display_mode *downclock_mode = NULL;
7236 
7237 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7238 	mutex_init(&dev_priv->drrs.mutex);
7239 
7240 	if (INTEL_GEN(dev_priv) <= 6) {
7241 		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7242 		return NULL;
7243 	}
7244 
7245 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7246 		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7247 		return NULL;
7248 	}
7249 
7250 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7251 	if (!downclock_mode) {
7252 		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7253 		return NULL;
7254 	}
7255 
7256 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7257 
7258 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7259 	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7260 	return downclock_mode;
7261 }
7262 
7263 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7264 				     struct intel_connector *intel_connector)
7265 {
7266 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7267 	struct drm_device *dev = &dev_priv->drm;
7268 	struct drm_connector *connector = &intel_connector->base;
7269 	struct drm_display_mode *fixed_mode = NULL;
7270 	struct drm_display_mode *downclock_mode = NULL;
7271 	bool has_dpcd;
7272 	enum pipe pipe = INVALID_PIPE;
7273 	intel_wakeref_t wakeref;
7274 	struct edid *edid;
7275 
7276 	if (!intel_dp_is_edp(intel_dp))
7277 		return true;
7278 
7279 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7280 
7281 	/*
7282 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7283 	 * driver uses the only internal power sequencer available for both
7284 	 * eDP and LVDS bail out early in this case to prevent interfering
7285 	 * with an already powered-on LVDS power sequencer.
7286 	 */
7287 	if (intel_get_lvds_encoder(dev_priv)) {
7288 		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7289 		DRM_INFO("LVDS was detected, not registering eDP\n");
7290 
7291 		return false;
7292 	}
7293 
7294 	with_pps_lock(intel_dp, wakeref) {
7295 		intel_dp_init_panel_power_timestamps(intel_dp);
7296 		intel_dp_pps_init(intel_dp);
7297 		intel_edp_panel_vdd_sanitize(intel_dp);
7298 	}
7299 
7300 	/* Cache DPCD and EDID for edp. */
7301 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7302 
7303 	if (!has_dpcd) {
7304 		/* if this fails, presume the device is a ghost */
7305 		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7306 		goto out_vdd_off;
7307 	}
7308 
7309 	mutex_lock(&dev->mode_config.mutex);
7310 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7311 	if (edid) {
7312 		if (drm_add_edid_modes(connector, edid)) {
7313 			drm_connector_update_edid_property(connector,
7314 								edid);
7315 		} else {
7316 			kfree(edid);
7317 			edid = ERR_PTR(-EINVAL);
7318 		}
7319 	} else {
7320 		edid = ERR_PTR(-ENOENT);
7321 	}
7322 	intel_connector->edid = edid;
7323 
7324 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7325 	if (fixed_mode)
7326 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7327 
7328 	/* fallback to VBT if available for eDP */
7329 	if (!fixed_mode)
7330 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7331 	mutex_unlock(&dev->mode_config.mutex);
7332 
7333 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7334 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7335 		register_reboot_notifier(&intel_dp->edp_notifier);
7336 
7337 		/*
7338 		 * Figure out the current pipe for the initial backlight setup.
7339 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7340 		 * fails just assume pipe A.
7341 		 */
7342 		pipe = vlv_active_pipe(intel_dp);
7343 
7344 		if (pipe != PIPE_A && pipe != PIPE_B)
7345 			pipe = intel_dp->pps_pipe;
7346 
7347 		if (pipe != PIPE_A && pipe != PIPE_B)
7348 			pipe = PIPE_A;
7349 
7350 		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7351 			      pipe_name(pipe));
7352 	}
7353 
7354 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7355 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7356 	intel_panel_setup_backlight(connector, pipe);
7357 
7358 	if (fixed_mode)
7359 		drm_connector_init_panel_orientation_property(
7360 			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7361 
7362 	return true;
7363 
7364 out_vdd_off:
7365 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7366 	/*
7367 	 * vdd might still be enabled do to the delayed vdd off.
7368 	 * Make sure vdd is actually turned off here.
7369 	 */
7370 	with_pps_lock(intel_dp, wakeref)
7371 		edp_panel_vdd_off_sync(intel_dp);
7372 
7373 	return false;
7374 }
7375 
7376 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7377 {
7378 	struct intel_connector *intel_connector;
7379 	struct drm_connector *connector;
7380 
7381 	intel_connector = container_of(work, typeof(*intel_connector),
7382 				       modeset_retry_work);
7383 	connector = &intel_connector->base;
7384 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7385 		      connector->name);
7386 
7387 	/* Grab the locks before changing connector property*/
7388 	mutex_lock(&connector->dev->mode_config.mutex);
7389 	/* Set connector link status to BAD and send a Uevent to notify
7390 	 * userspace to do a modeset.
7391 	 */
7392 	drm_connector_set_link_status_property(connector,
7393 					       DRM_MODE_LINK_STATUS_BAD);
7394 	mutex_unlock(&connector->dev->mode_config.mutex);
7395 	/* Send Hotplug uevent so userspace can reprobe */
7396 	drm_kms_helper_hotplug_event(connector->dev);
7397 }
7398 
7399 bool
7400 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7401 			struct intel_connector *intel_connector)
7402 {
7403 	struct drm_connector *connector = &intel_connector->base;
7404 	struct intel_dp *intel_dp = &intel_dig_port->dp;
7405 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
7406 	struct drm_device *dev = intel_encoder->base.dev;
7407 	struct drm_i915_private *dev_priv = to_i915(dev);
7408 	enum port port = intel_encoder->port;
7409 	enum phy phy = intel_port_to_phy(dev_priv, port);
7410 	int type;
7411 
7412 	/* Initialize the work for modeset in case of link train failure */
7413 	INIT_WORK(&intel_connector->modeset_retry_work,
7414 		  intel_dp_modeset_retry_work_fn);
7415 
7416 	if (WARN(intel_dig_port->max_lanes < 1,
7417 		 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7418 		 intel_dig_port->max_lanes, intel_encoder->base.base.id,
7419 		 intel_encoder->base.name))
7420 		return false;
7421 
7422 	intel_dp_set_source_rates(intel_dp);
7423 
7424 	intel_dp->reset_link_params = true;
7425 	intel_dp->pps_pipe = INVALID_PIPE;
7426 	intel_dp->active_pipe = INVALID_PIPE;
7427 
7428 	/* Preserve the current hw state. */
7429 	intel_dp->DP = I915_READ(intel_dp->output_reg);
7430 	intel_dp->attached_connector = intel_connector;
7431 
7432 	if (intel_dp_is_port_edp(dev_priv, port)) {
7433 		/*
7434 		 * Currently we don't support eDP on TypeC ports, although in
7435 		 * theory it could work on TypeC legacy ports.
7436 		 */
7437 		WARN_ON(intel_phy_is_tc(dev_priv, phy));
7438 		type = DRM_MODE_CONNECTOR_eDP;
7439 	} else {
7440 		type = DRM_MODE_CONNECTOR_DisplayPort;
7441 	}
7442 
7443 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7444 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7445 
7446 	/*
7447 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7448 	 * for DP the encoder type can be set by the caller to
7449 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7450 	 */
7451 	if (type == DRM_MODE_CONNECTOR_eDP)
7452 		intel_encoder->type = INTEL_OUTPUT_EDP;
7453 
7454 	/* eDP only on port B and/or C on vlv/chv */
7455 	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7456 		    intel_dp_is_edp(intel_dp) &&
7457 		    port != PORT_B && port != PORT_C))
7458 		return false;
7459 
7460 	DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
7461 		      type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7462 		      intel_encoder->base.base.id, intel_encoder->base.name);
7463 
7464 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7465 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7466 
7467 	if (!HAS_GMCH(dev_priv))
7468 		connector->interlace_allowed = true;
7469 	connector->doublescan_allowed = 0;
7470 
7471 	if (INTEL_GEN(dev_priv) >= 11)
7472 		connector->ycbcr_420_allowed = true;
7473 
7474 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7475 
7476 	intel_dp_aux_init(intel_dp);
7477 
7478 	intel_connector_attach_encoder(intel_connector, intel_encoder);
7479 
7480 	if (HAS_DDI(dev_priv))
7481 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7482 	else
7483 		intel_connector->get_hw_state = intel_connector_get_hw_state;
7484 
7485 	/* init MST on ports that can support it */
7486 	intel_dp_mst_encoder_init(intel_dig_port,
7487 				  intel_connector->base.base.id);
7488 
7489 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7490 		intel_dp_aux_fini(intel_dp);
7491 		intel_dp_mst_encoder_cleanup(intel_dig_port);
7492 		goto fail;
7493 	}
7494 
7495 	intel_dp_add_properties(intel_dp, connector);
7496 
7497 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7498 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7499 		if (ret)
7500 			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7501 	}
7502 
7503 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7504 	 * 0xd.  Failure to do so will result in spurious interrupts being
7505 	 * generated on the port when a cable is not attached.
7506 	 */
7507 	if (IS_G45(dev_priv)) {
7508 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7509 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7510 	}
7511 
7512 	return true;
7513 
7514 fail:
7515 	drm_connector_cleanup(connector);
7516 
7517 	return false;
7518 }
7519 
7520 bool intel_dp_init(struct drm_i915_private *dev_priv,
7521 		   i915_reg_t output_reg,
7522 		   enum port port)
7523 {
7524 	struct intel_digital_port *intel_dig_port;
7525 	struct intel_encoder *intel_encoder;
7526 	struct drm_encoder *encoder;
7527 	struct intel_connector *intel_connector;
7528 
7529 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7530 	if (!intel_dig_port)
7531 		return false;
7532 
7533 	intel_connector = intel_connector_alloc();
7534 	if (!intel_connector)
7535 		goto err_connector_alloc;
7536 
7537 	intel_encoder = &intel_dig_port->base;
7538 	encoder = &intel_encoder->base;
7539 
7540 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7541 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7542 			     "DP %c", port_name(port)))
7543 		goto err_encoder_init;
7544 
7545 	intel_encoder->hotplug = intel_dp_hotplug;
7546 	intel_encoder->compute_config = intel_dp_compute_config;
7547 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7548 	intel_encoder->get_config = intel_dp_get_config;
7549 	intel_encoder->update_pipe = intel_panel_update_backlight;
7550 	intel_encoder->suspend = intel_dp_encoder_suspend;
7551 	if (IS_CHERRYVIEW(dev_priv)) {
7552 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7553 		intel_encoder->pre_enable = chv_pre_enable_dp;
7554 		intel_encoder->enable = vlv_enable_dp;
7555 		intel_encoder->disable = vlv_disable_dp;
7556 		intel_encoder->post_disable = chv_post_disable_dp;
7557 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7558 	} else if (IS_VALLEYVIEW(dev_priv)) {
7559 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7560 		intel_encoder->pre_enable = vlv_pre_enable_dp;
7561 		intel_encoder->enable = vlv_enable_dp;
7562 		intel_encoder->disable = vlv_disable_dp;
7563 		intel_encoder->post_disable = vlv_post_disable_dp;
7564 	} else {
7565 		intel_encoder->pre_enable = g4x_pre_enable_dp;
7566 		intel_encoder->enable = g4x_enable_dp;
7567 		intel_encoder->disable = g4x_disable_dp;
7568 		intel_encoder->post_disable = g4x_post_disable_dp;
7569 	}
7570 
7571 	intel_dig_port->dp.output_reg = output_reg;
7572 	intel_dig_port->max_lanes = 4;
7573 
7574 	intel_encoder->type = INTEL_OUTPUT_DP;
7575 	intel_encoder->power_domain = intel_port_to_power_domain(port);
7576 	if (IS_CHERRYVIEW(dev_priv)) {
7577 		if (port == PORT_D)
7578 			intel_encoder->pipe_mask = BIT(PIPE_C);
7579 		else
7580 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7581 	} else {
7582 		intel_encoder->pipe_mask = ~0;
7583 	}
7584 	intel_encoder->cloneable = 0;
7585 	intel_encoder->port = port;
7586 
7587 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7588 
7589 	if (port != PORT_A)
7590 		intel_infoframe_init(intel_dig_port);
7591 
7592 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7593 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7594 		goto err_init_connector;
7595 
7596 	return true;
7597 
7598 err_init_connector:
7599 	drm_encoder_cleanup(encoder);
7600 err_encoder_init:
7601 	kfree(intel_connector);
7602 err_connector_alloc:
7603 	kfree(intel_dig_port);
7604 	return false;
7605 }
7606 
7607 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7608 {
7609 	struct intel_encoder *encoder;
7610 
7611 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7612 		struct intel_dp *intel_dp;
7613 
7614 		if (encoder->type != INTEL_OUTPUT_DDI)
7615 			continue;
7616 
7617 		intel_dp = enc_to_intel_dp(&encoder->base);
7618 
7619 		if (!intel_dp->can_mst)
7620 			continue;
7621 
7622 		if (intel_dp->is_mst)
7623 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7624 	}
7625 }
7626 
7627 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7628 {
7629 	struct intel_encoder *encoder;
7630 
7631 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7632 		struct intel_dp *intel_dp;
7633 		int ret;
7634 
7635 		if (encoder->type != INTEL_OUTPUT_DDI)
7636 			continue;
7637 
7638 		intel_dp = enc_to_intel_dp(&encoder->base);
7639 
7640 		if (!intel_dp->can_mst)
7641 			continue;
7642 
7643 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7644 						     true);
7645 		if (ret) {
7646 			intel_dp->is_mst = false;
7647 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7648 							false);
7649 		}
7650 	}
7651 }
7652