1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_hdcp.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/i915_drm.h> 44 45 #include "i915_debugfs.h" 46 #include "i915_drv.h" 47 #include "i915_trace.h" 48 #include "intel_atomic.h" 49 #include "intel_audio.h" 50 #include "intel_connector.h" 51 #include "intel_ddi.h" 52 #include "intel_display_types.h" 53 #include "intel_dp.h" 54 #include "intel_dp_link_training.h" 55 #include "intel_dp_mst.h" 56 #include "intel_dpio_phy.h" 57 #include "intel_fifo_underrun.h" 58 #include "intel_hdcp.h" 59 #include "intel_hdmi.h" 60 #include "intel_hotplug.h" 61 #include "intel_lspcon.h" 62 #include "intel_lvds.h" 63 #include "intel_panel.h" 64 #include "intel_psr.h" 65 #include "intel_sideband.h" 66 #include "intel_tc.h" 67 #include "intel_vdsc.h" 68 69 #define DP_DPRX_ESI_LEN 14 70 71 /* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */ 72 #define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER 61440 73 #define DP_DSC_MIN_SUPPORTED_BPC 8 74 #define DP_DSC_MAX_SUPPORTED_BPC 10 75 76 /* DP DSC throughput values used for slice count calculations KPixels/s */ 77 #define DP_DSC_PEAK_PIXEL_RATE 2720000 78 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 79 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 80 81 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 82 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 83 84 /* Compliance test status bits */ 85 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 86 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 87 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 88 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 89 90 struct dp_link_dpll { 91 int clock; 92 struct dpll dpll; 93 }; 94 95 static const struct dp_link_dpll g4x_dpll[] = { 96 { 162000, 97 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 98 { 270000, 99 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 100 }; 101 102 static const struct dp_link_dpll pch_dpll[] = { 103 { 162000, 104 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 105 { 270000, 106 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 107 }; 108 109 static const struct dp_link_dpll vlv_dpll[] = { 110 { 162000, 111 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 112 { 270000, 113 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 114 }; 115 116 /* 117 * CHV supports eDP 1.4 that have more link rates. 118 * Below only provides the fixed rate but exclude variable rate. 119 */ 120 static const struct dp_link_dpll chv_dpll[] = { 121 /* 122 * CHV requires to program fractional division for m2. 123 * m2 is stored in fixed point format using formula below 124 * (m2_int << 22) | m2_fraction 125 */ 126 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 127 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 128 { 270000, /* m2_int = 27, m2_fraction = 0 */ 129 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 130 }; 131 132 /* Constants for DP DSC configurations */ 133 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 134 135 /* With Single pipe configuration, HW is capable of supporting maximum 136 * of 4 slices per line. 137 */ 138 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 139 140 /** 141 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 142 * @intel_dp: DP struct 143 * 144 * If a CPU or PCH DP output is attached to an eDP panel, this function 145 * will return true, and false otherwise. 146 */ 147 bool intel_dp_is_edp(struct intel_dp *intel_dp) 148 { 149 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 150 151 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 152 } 153 154 static struct intel_dp *intel_attached_dp(struct drm_connector *connector) 155 { 156 return enc_to_intel_dp(&intel_attached_encoder(connector)->base); 157 } 158 159 static void intel_dp_link_down(struct intel_encoder *encoder, 160 const struct intel_crtc_state *old_crtc_state); 161 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 162 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 163 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 164 const struct intel_crtc_state *crtc_state); 165 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 166 enum pipe pipe); 167 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 168 169 /* update sink rates from dpcd */ 170 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 171 { 172 static const int dp_rates[] = { 173 162000, 270000, 540000, 810000 174 }; 175 int i, max_rate; 176 177 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 178 179 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 180 if (dp_rates[i] > max_rate) 181 break; 182 intel_dp->sink_rates[i] = dp_rates[i]; 183 } 184 185 intel_dp->num_sink_rates = i; 186 } 187 188 /* Get length of rates array potentially limited by max_rate. */ 189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 190 { 191 int i; 192 193 /* Limit results by potentially reduced max rate */ 194 for (i = 0; i < len; i++) { 195 if (rates[len - i - 1] <= max_rate) 196 return len - i; 197 } 198 199 return 0; 200 } 201 202 /* Get length of common rates array potentially limited by max_rate. */ 203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 204 int max_rate) 205 { 206 return intel_dp_rate_limit_len(intel_dp->common_rates, 207 intel_dp->num_common_rates, max_rate); 208 } 209 210 /* Theoretical max between source and sink */ 211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 212 { 213 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 214 } 215 216 /* Theoretical max between source and sink */ 217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 218 { 219 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 220 int source_max = intel_dig_port->max_lanes; 221 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 222 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); 223 224 return min3(source_max, sink_max, fia_max); 225 } 226 227 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 228 { 229 return intel_dp->max_link_lane_count; 230 } 231 232 int 233 intel_dp_link_required(int pixel_clock, int bpp) 234 { 235 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 236 return DIV_ROUND_UP(pixel_clock * bpp, 8); 237 } 238 239 int 240 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 241 { 242 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 243 * link rate that is generally expressed in Gbps. Since, 8 bits of data 244 * is transmitted every LS_Clk per lane, there is no need to account for 245 * the channel encoding that is done in the PHY layer here. 246 */ 247 248 return max_link_clock * max_lanes; 249 } 250 251 static int 252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 253 { 254 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 255 struct intel_encoder *encoder = &intel_dig_port->base; 256 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 257 int max_dotclk = dev_priv->max_dotclk_freq; 258 int ds_max_dotclk; 259 260 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 261 262 if (type != DP_DS_PORT_TYPE_VGA) 263 return max_dotclk; 264 265 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 266 intel_dp->downstream_ports); 267 268 if (ds_max_dotclk != 0) 269 max_dotclk = min(max_dotclk, ds_max_dotclk); 270 271 return max_dotclk; 272 } 273 274 static int cnl_max_source_rate(struct intel_dp *intel_dp) 275 { 276 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 277 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 278 enum port port = dig_port->base.port; 279 280 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 281 282 /* Low voltage SKUs are limited to max of 5.4G */ 283 if (voltage == VOLTAGE_INFO_0_85V) 284 return 540000; 285 286 /* For this SKU 8.1G is supported in all ports */ 287 if (IS_CNL_WITH_PORT_F(dev_priv)) 288 return 810000; 289 290 /* For other SKUs, max rate on ports A and D is 5.4G */ 291 if (port == PORT_A || port == PORT_D) 292 return 540000; 293 294 return 810000; 295 } 296 297 static int icl_max_source_rate(struct intel_dp *intel_dp) 298 { 299 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 300 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 301 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 302 303 if (intel_phy_is_combo(dev_priv, phy) && 304 !IS_ELKHARTLAKE(dev_priv) && 305 !intel_dp_is_edp(intel_dp)) 306 return 540000; 307 308 return 810000; 309 } 310 311 static void 312 intel_dp_set_source_rates(struct intel_dp *intel_dp) 313 { 314 /* The values must be in increasing order */ 315 static const int cnl_rates[] = { 316 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 317 }; 318 static const int bxt_rates[] = { 319 162000, 216000, 243000, 270000, 324000, 432000, 540000 320 }; 321 static const int skl_rates[] = { 322 162000, 216000, 270000, 324000, 432000, 540000 323 }; 324 static const int hsw_rates[] = { 325 162000, 270000, 540000 326 }; 327 static const int g4x_rates[] = { 328 162000, 270000 329 }; 330 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 331 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 332 const struct ddi_vbt_port_info *info = 333 &dev_priv->vbt.ddi_port_info[dig_port->base.port]; 334 const int *source_rates; 335 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate; 336 337 /* This should only be done once */ 338 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates); 339 340 if (INTEL_GEN(dev_priv) >= 10) { 341 source_rates = cnl_rates; 342 size = ARRAY_SIZE(cnl_rates); 343 if (IS_GEN(dev_priv, 10)) 344 max_rate = cnl_max_source_rate(intel_dp); 345 else 346 max_rate = icl_max_source_rate(intel_dp); 347 } else if (IS_GEN9_LP(dev_priv)) { 348 source_rates = bxt_rates; 349 size = ARRAY_SIZE(bxt_rates); 350 } else if (IS_GEN9_BC(dev_priv)) { 351 source_rates = skl_rates; 352 size = ARRAY_SIZE(skl_rates); 353 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 354 IS_BROADWELL(dev_priv)) { 355 source_rates = hsw_rates; 356 size = ARRAY_SIZE(hsw_rates); 357 } else { 358 source_rates = g4x_rates; 359 size = ARRAY_SIZE(g4x_rates); 360 } 361 362 if (max_rate && vbt_max_rate) 363 max_rate = min(max_rate, vbt_max_rate); 364 else if (vbt_max_rate) 365 max_rate = vbt_max_rate; 366 367 if (max_rate) 368 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 369 370 intel_dp->source_rates = source_rates; 371 intel_dp->num_source_rates = size; 372 } 373 374 static int intersect_rates(const int *source_rates, int source_len, 375 const int *sink_rates, int sink_len, 376 int *common_rates) 377 { 378 int i = 0, j = 0, k = 0; 379 380 while (i < source_len && j < sink_len) { 381 if (source_rates[i] == sink_rates[j]) { 382 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 383 return k; 384 common_rates[k] = source_rates[i]; 385 ++k; 386 ++i; 387 ++j; 388 } else if (source_rates[i] < sink_rates[j]) { 389 ++i; 390 } else { 391 ++j; 392 } 393 } 394 return k; 395 } 396 397 /* return index of rate in rates array, or -1 if not found */ 398 static int intel_dp_rate_index(const int *rates, int len, int rate) 399 { 400 int i; 401 402 for (i = 0; i < len; i++) 403 if (rate == rates[i]) 404 return i; 405 406 return -1; 407 } 408 409 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 410 { 411 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); 412 413 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 414 intel_dp->num_source_rates, 415 intel_dp->sink_rates, 416 intel_dp->num_sink_rates, 417 intel_dp->common_rates); 418 419 /* Paranoia, there should always be something in common. */ 420 if (WARN_ON(intel_dp->num_common_rates == 0)) { 421 intel_dp->common_rates[0] = 162000; 422 intel_dp->num_common_rates = 1; 423 } 424 } 425 426 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 427 u8 lane_count) 428 { 429 /* 430 * FIXME: we need to synchronize the current link parameters with 431 * hardware readout. Currently fast link training doesn't work on 432 * boot-up. 433 */ 434 if (link_rate == 0 || 435 link_rate > intel_dp->max_link_rate) 436 return false; 437 438 if (lane_count == 0 || 439 lane_count > intel_dp_max_lane_count(intel_dp)) 440 return false; 441 442 return true; 443 } 444 445 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 446 int link_rate, 447 u8 lane_count) 448 { 449 const struct drm_display_mode *fixed_mode = 450 intel_dp->attached_connector->panel.fixed_mode; 451 int mode_rate, max_rate; 452 453 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 454 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 455 if (mode_rate > max_rate) 456 return false; 457 458 return true; 459 } 460 461 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 462 int link_rate, u8 lane_count) 463 { 464 int index; 465 466 index = intel_dp_rate_index(intel_dp->common_rates, 467 intel_dp->num_common_rates, 468 link_rate); 469 if (index > 0) { 470 if (intel_dp_is_edp(intel_dp) && 471 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 472 intel_dp->common_rates[index - 1], 473 lane_count)) { 474 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 475 return 0; 476 } 477 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 478 intel_dp->max_link_lane_count = lane_count; 479 } else if (lane_count > 1) { 480 if (intel_dp_is_edp(intel_dp) && 481 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 482 intel_dp_max_common_rate(intel_dp), 483 lane_count >> 1)) { 484 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 485 return 0; 486 } 487 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 488 intel_dp->max_link_lane_count = lane_count >> 1; 489 } else { 490 DRM_ERROR("Link Training Unsuccessful\n"); 491 return -1; 492 } 493 494 return 0; 495 } 496 497 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 498 { 499 return div_u64(mul_u32_u32(mode_clock, 1000000U), 500 DP_DSC_FEC_OVERHEAD_FACTOR); 501 } 502 503 static u16 intel_dp_dsc_get_output_bpp(u32 link_clock, u32 lane_count, 504 u32 mode_clock, u32 mode_hdisplay) 505 { 506 u32 bits_per_pixel, max_bpp_small_joiner_ram; 507 int i; 508 509 /* 510 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 511 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 512 * for SST -> TimeSlotsPerMTP is 1, 513 * for MST -> TimeSlotsPerMTP has to be calculated 514 */ 515 bits_per_pixel = (link_clock * lane_count * 8) / 516 intel_dp_mode_to_fec_clock(mode_clock); 517 DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel); 518 519 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 520 max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER / mode_hdisplay; 521 DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram); 522 523 /* 524 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 525 * check, output bpp from small joiner RAM check) 526 */ 527 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 528 529 /* Error out if the max bpp is less than smallest allowed valid bpp */ 530 if (bits_per_pixel < valid_dsc_bpp[0]) { 531 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n", 532 bits_per_pixel, valid_dsc_bpp[0]); 533 return 0; 534 } 535 536 /* Find the nearest match in the array of known BPPs from VESA */ 537 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 538 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 539 break; 540 } 541 bits_per_pixel = valid_dsc_bpp[i]; 542 543 /* 544 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 545 * fractional part is 0 546 */ 547 return bits_per_pixel << 4; 548 } 549 550 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 551 int mode_clock, int mode_hdisplay) 552 { 553 u8 min_slice_count, i; 554 int max_slice_width; 555 556 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 557 min_slice_count = DIV_ROUND_UP(mode_clock, 558 DP_DSC_MAX_ENC_THROUGHPUT_0); 559 else 560 min_slice_count = DIV_ROUND_UP(mode_clock, 561 DP_DSC_MAX_ENC_THROUGHPUT_1); 562 563 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 564 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 565 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n", 566 max_slice_width); 567 return 0; 568 } 569 /* Also take into account max slice width */ 570 min_slice_count = min_t(u8, min_slice_count, 571 DIV_ROUND_UP(mode_hdisplay, 572 max_slice_width)); 573 574 /* Find the closest match to the valid slice count values */ 575 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 576 if (valid_dsc_slicecount[i] > 577 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 578 false)) 579 break; 580 if (min_slice_count <= valid_dsc_slicecount[i]) 581 return valid_dsc_slicecount[i]; 582 } 583 584 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count); 585 return 0; 586 } 587 588 static enum drm_mode_status 589 intel_dp_mode_valid(struct drm_connector *connector, 590 struct drm_display_mode *mode) 591 { 592 struct intel_dp *intel_dp = intel_attached_dp(connector); 593 struct intel_connector *intel_connector = to_intel_connector(connector); 594 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 595 struct drm_i915_private *dev_priv = to_i915(connector->dev); 596 int target_clock = mode->clock; 597 int max_rate, mode_rate, max_lanes, max_link_clock; 598 int max_dotclk; 599 u16 dsc_max_output_bpp = 0; 600 u8 dsc_slice_count = 0; 601 602 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 603 return MODE_NO_DBLESCAN; 604 605 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 606 607 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 608 if (mode->hdisplay > fixed_mode->hdisplay) 609 return MODE_PANEL; 610 611 if (mode->vdisplay > fixed_mode->vdisplay) 612 return MODE_PANEL; 613 614 target_clock = fixed_mode->clock; 615 } 616 617 max_link_clock = intel_dp_max_link_rate(intel_dp); 618 max_lanes = intel_dp_max_lane_count(intel_dp); 619 620 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 621 mode_rate = intel_dp_link_required(target_clock, 18); 622 623 /* 624 * Output bpp is stored in 6.4 format so right shift by 4 to get the 625 * integer value since we support only integer values of bpp. 626 */ 627 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 628 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 629 if (intel_dp_is_edp(intel_dp)) { 630 dsc_max_output_bpp = 631 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 632 dsc_slice_count = 633 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 634 true); 635 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 636 dsc_max_output_bpp = 637 intel_dp_dsc_get_output_bpp(max_link_clock, 638 max_lanes, 639 target_clock, 640 mode->hdisplay) >> 4; 641 dsc_slice_count = 642 intel_dp_dsc_get_slice_count(intel_dp, 643 target_clock, 644 mode->hdisplay); 645 } 646 } 647 648 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 649 target_clock > max_dotclk) 650 return MODE_CLOCK_HIGH; 651 652 if (mode->clock < 10000) 653 return MODE_CLOCK_LOW; 654 655 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 656 return MODE_H_ILLEGAL; 657 658 return MODE_OK; 659 } 660 661 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 662 { 663 int i; 664 u32 v = 0; 665 666 if (src_bytes > 4) 667 src_bytes = 4; 668 for (i = 0; i < src_bytes; i++) 669 v |= ((u32)src[i]) << ((3 - i) * 8); 670 return v; 671 } 672 673 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 674 { 675 int i; 676 if (dst_bytes > 4) 677 dst_bytes = 4; 678 for (i = 0; i < dst_bytes; i++) 679 dst[i] = src >> ((3-i) * 8); 680 } 681 682 static void 683 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 684 static void 685 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 686 bool force_disable_vdd); 687 static void 688 intel_dp_pps_init(struct intel_dp *intel_dp); 689 690 static intel_wakeref_t 691 pps_lock(struct intel_dp *intel_dp) 692 { 693 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 694 intel_wakeref_t wakeref; 695 696 /* 697 * See intel_power_sequencer_reset() why we need 698 * a power domain reference here. 699 */ 700 wakeref = intel_display_power_get(dev_priv, 701 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 702 703 mutex_lock(&dev_priv->pps_mutex); 704 705 return wakeref; 706 } 707 708 static intel_wakeref_t 709 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 710 { 711 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 712 713 mutex_unlock(&dev_priv->pps_mutex); 714 intel_display_power_put(dev_priv, 715 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 716 wakeref); 717 return 0; 718 } 719 720 #define with_pps_lock(dp, wf) \ 721 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 722 723 static void 724 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 725 { 726 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 727 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 728 enum pipe pipe = intel_dp->pps_pipe; 729 bool pll_enabled, release_cl_override = false; 730 enum dpio_phy phy = DPIO_PHY(pipe); 731 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 732 u32 DP; 733 734 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, 735 "skipping pipe %c power sequencer kick due to port %c being active\n", 736 pipe_name(pipe), port_name(intel_dig_port->base.port))) 737 return; 738 739 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n", 740 pipe_name(pipe), port_name(intel_dig_port->base.port)); 741 742 /* Preserve the BIOS-computed detected bit. This is 743 * supposed to be read-only. 744 */ 745 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 746 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 747 DP |= DP_PORT_WIDTH(1); 748 DP |= DP_LINK_TRAIN_PAT_1; 749 750 if (IS_CHERRYVIEW(dev_priv)) 751 DP |= DP_PIPE_SEL_CHV(pipe); 752 else 753 DP |= DP_PIPE_SEL(pipe); 754 755 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; 756 757 /* 758 * The DPLL for the pipe must be enabled for this to work. 759 * So enable temporarily it if it's not already enabled. 760 */ 761 if (!pll_enabled) { 762 release_cl_override = IS_CHERRYVIEW(dev_priv) && 763 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 764 765 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 766 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 767 DRM_ERROR("Failed to force on pll for pipe %c!\n", 768 pipe_name(pipe)); 769 return; 770 } 771 } 772 773 /* 774 * Similar magic as in intel_dp_enable_port(). 775 * We _must_ do this port enable + disable trick 776 * to make this power sequencer lock onto the port. 777 * Otherwise even VDD force bit won't work. 778 */ 779 I915_WRITE(intel_dp->output_reg, DP); 780 POSTING_READ(intel_dp->output_reg); 781 782 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); 783 POSTING_READ(intel_dp->output_reg); 784 785 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); 786 POSTING_READ(intel_dp->output_reg); 787 788 if (!pll_enabled) { 789 vlv_force_pll_off(dev_priv, pipe); 790 791 if (release_cl_override) 792 chv_phy_powergate_ch(dev_priv, phy, ch, false); 793 } 794 } 795 796 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 797 { 798 struct intel_encoder *encoder; 799 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 800 801 /* 802 * We don't have power sequencer currently. 803 * Pick one that's not used by other ports. 804 */ 805 for_each_intel_dp(&dev_priv->drm, encoder) { 806 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 807 808 if (encoder->type == INTEL_OUTPUT_EDP) { 809 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 810 intel_dp->active_pipe != intel_dp->pps_pipe); 811 812 if (intel_dp->pps_pipe != INVALID_PIPE) 813 pipes &= ~(1 << intel_dp->pps_pipe); 814 } else { 815 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE); 816 817 if (intel_dp->active_pipe != INVALID_PIPE) 818 pipes &= ~(1 << intel_dp->active_pipe); 819 } 820 } 821 822 if (pipes == 0) 823 return INVALID_PIPE; 824 825 return ffs(pipes) - 1; 826 } 827 828 static enum pipe 829 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 830 { 831 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 832 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 833 enum pipe pipe; 834 835 lockdep_assert_held(&dev_priv->pps_mutex); 836 837 /* We should never land here with regular DP ports */ 838 WARN_ON(!intel_dp_is_edp(intel_dp)); 839 840 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 841 intel_dp->active_pipe != intel_dp->pps_pipe); 842 843 if (intel_dp->pps_pipe != INVALID_PIPE) 844 return intel_dp->pps_pipe; 845 846 pipe = vlv_find_free_pps(dev_priv); 847 848 /* 849 * Didn't find one. This should not happen since there 850 * are two power sequencers and up to two eDP ports. 851 */ 852 if (WARN_ON(pipe == INVALID_PIPE)) 853 pipe = PIPE_A; 854 855 vlv_steal_power_sequencer(dev_priv, pipe); 856 intel_dp->pps_pipe = pipe; 857 858 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n", 859 pipe_name(intel_dp->pps_pipe), 860 port_name(intel_dig_port->base.port)); 861 862 /* init power sequencer on this pipe and port */ 863 intel_dp_init_panel_power_sequencer(intel_dp); 864 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 865 866 /* 867 * Even vdd force doesn't work until we've made 868 * the power sequencer lock in on the port. 869 */ 870 vlv_power_sequencer_kick(intel_dp); 871 872 return intel_dp->pps_pipe; 873 } 874 875 static int 876 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 877 { 878 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 879 int backlight_controller = dev_priv->vbt.backlight.controller; 880 881 lockdep_assert_held(&dev_priv->pps_mutex); 882 883 /* We should never land here with regular DP ports */ 884 WARN_ON(!intel_dp_is_edp(intel_dp)); 885 886 if (!intel_dp->pps_reset) 887 return backlight_controller; 888 889 intel_dp->pps_reset = false; 890 891 /* 892 * Only the HW needs to be reprogrammed, the SW state is fixed and 893 * has been setup during connector init. 894 */ 895 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 896 897 return backlight_controller; 898 } 899 900 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 901 enum pipe pipe); 902 903 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 904 enum pipe pipe) 905 { 906 return I915_READ(PP_STATUS(pipe)) & PP_ON; 907 } 908 909 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 910 enum pipe pipe) 911 { 912 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD; 913 } 914 915 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 916 enum pipe pipe) 917 { 918 return true; 919 } 920 921 static enum pipe 922 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 923 enum port port, 924 vlv_pipe_check pipe_check) 925 { 926 enum pipe pipe; 927 928 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 929 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) & 930 PANEL_PORT_SELECT_MASK; 931 932 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 933 continue; 934 935 if (!pipe_check(dev_priv, pipe)) 936 continue; 937 938 return pipe; 939 } 940 941 return INVALID_PIPE; 942 } 943 944 static void 945 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 946 { 947 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 948 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 949 enum port port = intel_dig_port->base.port; 950 951 lockdep_assert_held(&dev_priv->pps_mutex); 952 953 /* try to find a pipe with this port selected */ 954 /* first pick one where the panel is on */ 955 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 956 vlv_pipe_has_pp_on); 957 /* didn't find one? pick one where vdd is on */ 958 if (intel_dp->pps_pipe == INVALID_PIPE) 959 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 960 vlv_pipe_has_vdd_on); 961 /* didn't find one? pick one with just the correct port */ 962 if (intel_dp->pps_pipe == INVALID_PIPE) 963 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 964 vlv_pipe_any); 965 966 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 967 if (intel_dp->pps_pipe == INVALID_PIPE) { 968 DRM_DEBUG_KMS("no initial power sequencer for port %c\n", 969 port_name(port)); 970 return; 971 } 972 973 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n", 974 port_name(port), pipe_name(intel_dp->pps_pipe)); 975 976 intel_dp_init_panel_power_sequencer(intel_dp); 977 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 978 } 979 980 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 981 { 982 struct intel_encoder *encoder; 983 984 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 985 !IS_GEN9_LP(dev_priv))) 986 return; 987 988 /* 989 * We can't grab pps_mutex here due to deadlock with power_domain 990 * mutex when power_domain functions are called while holding pps_mutex. 991 * That also means that in order to use pps_pipe the code needs to 992 * hold both a power domain reference and pps_mutex, and the power domain 993 * reference get/put must be done while _not_ holding pps_mutex. 994 * pps_{lock,unlock}() do these steps in the correct order, so one 995 * should use them always. 996 */ 997 998 for_each_intel_dp(&dev_priv->drm, encoder) { 999 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 1000 1001 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 1002 1003 if (encoder->type != INTEL_OUTPUT_EDP) 1004 continue; 1005 1006 if (IS_GEN9_LP(dev_priv)) 1007 intel_dp->pps_reset = true; 1008 else 1009 intel_dp->pps_pipe = INVALID_PIPE; 1010 } 1011 } 1012 1013 struct pps_registers { 1014 i915_reg_t pp_ctrl; 1015 i915_reg_t pp_stat; 1016 i915_reg_t pp_on; 1017 i915_reg_t pp_off; 1018 i915_reg_t pp_div; 1019 }; 1020 1021 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1022 struct pps_registers *regs) 1023 { 1024 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1025 int pps_idx = 0; 1026 1027 memset(regs, 0, sizeof(*regs)); 1028 1029 if (IS_GEN9_LP(dev_priv)) 1030 pps_idx = bxt_power_sequencer_idx(intel_dp); 1031 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1032 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1033 1034 regs->pp_ctrl = PP_CONTROL(pps_idx); 1035 regs->pp_stat = PP_STATUS(pps_idx); 1036 regs->pp_on = PP_ON_DELAYS(pps_idx); 1037 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1038 1039 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1040 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1041 regs->pp_div = INVALID_MMIO_REG; 1042 else 1043 regs->pp_div = PP_DIVISOR(pps_idx); 1044 } 1045 1046 static i915_reg_t 1047 _pp_ctrl_reg(struct intel_dp *intel_dp) 1048 { 1049 struct pps_registers regs; 1050 1051 intel_pps_get_registers(intel_dp, ®s); 1052 1053 return regs.pp_ctrl; 1054 } 1055 1056 static i915_reg_t 1057 _pp_stat_reg(struct intel_dp *intel_dp) 1058 { 1059 struct pps_registers regs; 1060 1061 intel_pps_get_registers(intel_dp, ®s); 1062 1063 return regs.pp_stat; 1064 } 1065 1066 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1067 This function only applicable when panel PM state is not to be tracked */ 1068 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1069 void *unused) 1070 { 1071 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1072 edp_notifier); 1073 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1074 intel_wakeref_t wakeref; 1075 1076 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1077 return 0; 1078 1079 with_pps_lock(intel_dp, wakeref) { 1080 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1081 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1082 i915_reg_t pp_ctrl_reg, pp_div_reg; 1083 u32 pp_div; 1084 1085 pp_ctrl_reg = PP_CONTROL(pipe); 1086 pp_div_reg = PP_DIVISOR(pipe); 1087 pp_div = I915_READ(pp_div_reg); 1088 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1089 1090 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1091 I915_WRITE(pp_div_reg, pp_div | 0x1F); 1092 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS); 1093 msleep(intel_dp->panel_power_cycle_delay); 1094 } 1095 } 1096 1097 return 0; 1098 } 1099 1100 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1101 { 1102 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1103 1104 lockdep_assert_held(&dev_priv->pps_mutex); 1105 1106 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1107 intel_dp->pps_pipe == INVALID_PIPE) 1108 return false; 1109 1110 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; 1111 } 1112 1113 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1114 { 1115 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1116 1117 lockdep_assert_held(&dev_priv->pps_mutex); 1118 1119 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1120 intel_dp->pps_pipe == INVALID_PIPE) 1121 return false; 1122 1123 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1124 } 1125 1126 static void 1127 intel_dp_check_edp(struct intel_dp *intel_dp) 1128 { 1129 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1130 1131 if (!intel_dp_is_edp(intel_dp)) 1132 return; 1133 1134 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1135 WARN(1, "eDP powered off while attempting aux channel communication.\n"); 1136 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", 1137 I915_READ(_pp_stat_reg(intel_dp)), 1138 I915_READ(_pp_ctrl_reg(intel_dp))); 1139 } 1140 } 1141 1142 static u32 1143 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1144 { 1145 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1146 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1147 u32 status; 1148 bool done; 1149 1150 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1151 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1152 msecs_to_jiffies_timeout(10)); 1153 1154 /* just trace the final value */ 1155 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1156 1157 if (!done) 1158 DRM_ERROR("dp aux hw did not signal timeout!\n"); 1159 #undef C 1160 1161 return status; 1162 } 1163 1164 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1165 { 1166 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1167 1168 if (index) 1169 return 0; 1170 1171 /* 1172 * The clock divider is based off the hrawclk, and would like to run at 1173 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1174 */ 1175 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1176 } 1177 1178 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1179 { 1180 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1181 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1182 1183 if (index) 1184 return 0; 1185 1186 /* 1187 * The clock divider is based off the cdclk or PCH rawclk, and would 1188 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1189 * divide by 2000 and use that 1190 */ 1191 if (dig_port->aux_ch == AUX_CH_A) 1192 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000); 1193 else 1194 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1195 } 1196 1197 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1198 { 1199 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1200 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1201 1202 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1203 /* Workaround for non-ULT HSW */ 1204 switch (index) { 1205 case 0: return 63; 1206 case 1: return 72; 1207 default: return 0; 1208 } 1209 } 1210 1211 return ilk_get_aux_clock_divider(intel_dp, index); 1212 } 1213 1214 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1215 { 1216 /* 1217 * SKL doesn't need us to program the AUX clock divider (Hardware will 1218 * derive the clock from CDCLK automatically). We still implement the 1219 * get_aux_clock_divider vfunc to plug-in into the existing code. 1220 */ 1221 return index ? 0 : 1; 1222 } 1223 1224 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1225 int send_bytes, 1226 u32 aux_clock_divider) 1227 { 1228 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1229 struct drm_i915_private *dev_priv = 1230 to_i915(intel_dig_port->base.base.dev); 1231 u32 precharge, timeout; 1232 1233 if (IS_GEN(dev_priv, 6)) 1234 precharge = 3; 1235 else 1236 precharge = 5; 1237 1238 if (IS_BROADWELL(dev_priv)) 1239 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1240 else 1241 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1242 1243 return DP_AUX_CH_CTL_SEND_BUSY | 1244 DP_AUX_CH_CTL_DONE | 1245 DP_AUX_CH_CTL_INTERRUPT | 1246 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1247 timeout | 1248 DP_AUX_CH_CTL_RECEIVE_ERROR | 1249 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1250 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1251 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1252 } 1253 1254 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1255 int send_bytes, 1256 u32 unused) 1257 { 1258 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1259 struct drm_i915_private *i915 = 1260 to_i915(intel_dig_port->base.base.dev); 1261 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1262 u32 ret; 1263 1264 ret = DP_AUX_CH_CTL_SEND_BUSY | 1265 DP_AUX_CH_CTL_DONE | 1266 DP_AUX_CH_CTL_INTERRUPT | 1267 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1268 DP_AUX_CH_CTL_TIME_OUT_MAX | 1269 DP_AUX_CH_CTL_RECEIVE_ERROR | 1270 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1271 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1272 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1273 1274 if (intel_phy_is_tc(i915, phy) && 1275 intel_dig_port->tc_mode == TC_PORT_TBT_ALT) 1276 ret |= DP_AUX_CH_CTL_TBT_IO; 1277 1278 return ret; 1279 } 1280 1281 static int 1282 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1283 const u8 *send, int send_bytes, 1284 u8 *recv, int recv_size, 1285 u32 aux_send_ctl_flags) 1286 { 1287 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1288 struct drm_i915_private *i915 = 1289 to_i915(intel_dig_port->base.base.dev); 1290 struct intel_uncore *uncore = &i915->uncore; 1291 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1292 bool is_tc_port = intel_phy_is_tc(i915, phy); 1293 i915_reg_t ch_ctl, ch_data[5]; 1294 u32 aux_clock_divider; 1295 enum intel_display_power_domain aux_domain = 1296 intel_aux_power_domain(intel_dig_port); 1297 intel_wakeref_t aux_wakeref; 1298 intel_wakeref_t pps_wakeref; 1299 int i, ret, recv_bytes; 1300 int try, clock = 0; 1301 u32 status; 1302 bool vdd; 1303 1304 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1305 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1306 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1307 1308 if (is_tc_port) 1309 intel_tc_port_lock(intel_dig_port); 1310 1311 aux_wakeref = intel_display_power_get(i915, aux_domain); 1312 pps_wakeref = pps_lock(intel_dp); 1313 1314 /* 1315 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1316 * In such cases we want to leave VDD enabled and it's up to upper layers 1317 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1318 * ourselves. 1319 */ 1320 vdd = edp_panel_vdd_on(intel_dp); 1321 1322 /* dp aux is extremely sensitive to irq latency, hence request the 1323 * lowest possible wakeup latency and so prevent the cpu from going into 1324 * deep sleep states. 1325 */ 1326 pm_qos_update_request(&i915->pm_qos, 0); 1327 1328 intel_dp_check_edp(intel_dp); 1329 1330 /* Try to wait for any previous AUX channel activity */ 1331 for (try = 0; try < 3; try++) { 1332 status = intel_uncore_read_notrace(uncore, ch_ctl); 1333 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1334 break; 1335 msleep(1); 1336 } 1337 /* just trace the final value */ 1338 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1339 1340 if (try == 3) { 1341 static u32 last_status = -1; 1342 const u32 status = intel_uncore_read(uncore, ch_ctl); 1343 1344 if (status != last_status) { 1345 WARN(1, "dp_aux_ch not started status 0x%08x\n", 1346 status); 1347 last_status = status; 1348 } 1349 1350 ret = -EBUSY; 1351 goto out; 1352 } 1353 1354 /* Only 5 data registers! */ 1355 if (WARN_ON(send_bytes > 20 || recv_size > 20)) { 1356 ret = -E2BIG; 1357 goto out; 1358 } 1359 1360 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1361 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1362 send_bytes, 1363 aux_clock_divider); 1364 1365 send_ctl |= aux_send_ctl_flags; 1366 1367 /* Must try at least 3 times according to DP spec */ 1368 for (try = 0; try < 5; try++) { 1369 /* Load the send data into the aux channel data registers */ 1370 for (i = 0; i < send_bytes; i += 4) 1371 intel_uncore_write(uncore, 1372 ch_data[i >> 2], 1373 intel_dp_pack_aux(send + i, 1374 send_bytes - i)); 1375 1376 /* Send the command and wait for it to complete */ 1377 intel_uncore_write(uncore, ch_ctl, send_ctl); 1378 1379 status = intel_dp_aux_wait_done(intel_dp); 1380 1381 /* Clear done status and any errors */ 1382 intel_uncore_write(uncore, 1383 ch_ctl, 1384 status | 1385 DP_AUX_CH_CTL_DONE | 1386 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1387 DP_AUX_CH_CTL_RECEIVE_ERROR); 1388 1389 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1390 * 400us delay required for errors and timeouts 1391 * Timeout errors from the HW already meet this 1392 * requirement so skip to next iteration 1393 */ 1394 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1395 continue; 1396 1397 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1398 usleep_range(400, 500); 1399 continue; 1400 } 1401 if (status & DP_AUX_CH_CTL_DONE) 1402 goto done; 1403 } 1404 } 1405 1406 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1407 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); 1408 ret = -EBUSY; 1409 goto out; 1410 } 1411 1412 done: 1413 /* Check for timeout or receive error. 1414 * Timeouts occur when the sink is not connected 1415 */ 1416 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1417 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); 1418 ret = -EIO; 1419 goto out; 1420 } 1421 1422 /* Timeouts occur when the device isn't connected, so they're 1423 * "normal" -- don't fill the kernel log with these */ 1424 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1425 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); 1426 ret = -ETIMEDOUT; 1427 goto out; 1428 } 1429 1430 /* Unload any bytes sent back from the other side */ 1431 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1432 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1433 1434 /* 1435 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1436 * We have no idea of what happened so we return -EBUSY so 1437 * drm layer takes care for the necessary retries. 1438 */ 1439 if (recv_bytes == 0 || recv_bytes > 20) { 1440 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n", 1441 recv_bytes); 1442 ret = -EBUSY; 1443 goto out; 1444 } 1445 1446 if (recv_bytes > recv_size) 1447 recv_bytes = recv_size; 1448 1449 for (i = 0; i < recv_bytes; i += 4) 1450 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1451 recv + i, recv_bytes - i); 1452 1453 ret = recv_bytes; 1454 out: 1455 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1456 1457 if (vdd) 1458 edp_panel_vdd_off(intel_dp, false); 1459 1460 pps_unlock(intel_dp, pps_wakeref); 1461 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1462 1463 if (is_tc_port) 1464 intel_tc_port_unlock(intel_dig_port); 1465 1466 return ret; 1467 } 1468 1469 #define BARE_ADDRESS_SIZE 3 1470 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1471 1472 static void 1473 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1474 const struct drm_dp_aux_msg *msg) 1475 { 1476 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1477 txbuf[1] = (msg->address >> 8) & 0xff; 1478 txbuf[2] = msg->address & 0xff; 1479 txbuf[3] = msg->size - 1; 1480 } 1481 1482 static ssize_t 1483 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1484 { 1485 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1486 u8 txbuf[20], rxbuf[20]; 1487 size_t txsize, rxsize; 1488 int ret; 1489 1490 intel_dp_aux_header(txbuf, msg); 1491 1492 switch (msg->request & ~DP_AUX_I2C_MOT) { 1493 case DP_AUX_NATIVE_WRITE: 1494 case DP_AUX_I2C_WRITE: 1495 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1496 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1497 rxsize = 2; /* 0 or 1 data bytes */ 1498 1499 if (WARN_ON(txsize > 20)) 1500 return -E2BIG; 1501 1502 WARN_ON(!msg->buffer != !msg->size); 1503 1504 if (msg->buffer) 1505 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1506 1507 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1508 rxbuf, rxsize, 0); 1509 if (ret > 0) { 1510 msg->reply = rxbuf[0] >> 4; 1511 1512 if (ret > 1) { 1513 /* Number of bytes written in a short write. */ 1514 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1515 } else { 1516 /* Return payload size. */ 1517 ret = msg->size; 1518 } 1519 } 1520 break; 1521 1522 case DP_AUX_NATIVE_READ: 1523 case DP_AUX_I2C_READ: 1524 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1525 rxsize = msg->size + 1; 1526 1527 if (WARN_ON(rxsize > 20)) 1528 return -E2BIG; 1529 1530 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1531 rxbuf, rxsize, 0); 1532 if (ret > 0) { 1533 msg->reply = rxbuf[0] >> 4; 1534 /* 1535 * Assume happy day, and copy the data. The caller is 1536 * expected to check msg->reply before touching it. 1537 * 1538 * Return payload size. 1539 */ 1540 ret--; 1541 memcpy(msg->buffer, rxbuf + 1, ret); 1542 } 1543 break; 1544 1545 default: 1546 ret = -EINVAL; 1547 break; 1548 } 1549 1550 return ret; 1551 } 1552 1553 1554 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1555 { 1556 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1557 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1558 enum aux_ch aux_ch = dig_port->aux_ch; 1559 1560 switch (aux_ch) { 1561 case AUX_CH_B: 1562 case AUX_CH_C: 1563 case AUX_CH_D: 1564 return DP_AUX_CH_CTL(aux_ch); 1565 default: 1566 MISSING_CASE(aux_ch); 1567 return DP_AUX_CH_CTL(AUX_CH_B); 1568 } 1569 } 1570 1571 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1572 { 1573 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1574 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1575 enum aux_ch aux_ch = dig_port->aux_ch; 1576 1577 switch (aux_ch) { 1578 case AUX_CH_B: 1579 case AUX_CH_C: 1580 case AUX_CH_D: 1581 return DP_AUX_CH_DATA(aux_ch, index); 1582 default: 1583 MISSING_CASE(aux_ch); 1584 return DP_AUX_CH_DATA(AUX_CH_B, index); 1585 } 1586 } 1587 1588 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1589 { 1590 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1591 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1592 enum aux_ch aux_ch = dig_port->aux_ch; 1593 1594 switch (aux_ch) { 1595 case AUX_CH_A: 1596 return DP_AUX_CH_CTL(aux_ch); 1597 case AUX_CH_B: 1598 case AUX_CH_C: 1599 case AUX_CH_D: 1600 return PCH_DP_AUX_CH_CTL(aux_ch); 1601 default: 1602 MISSING_CASE(aux_ch); 1603 return DP_AUX_CH_CTL(AUX_CH_A); 1604 } 1605 } 1606 1607 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1608 { 1609 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1610 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1611 enum aux_ch aux_ch = dig_port->aux_ch; 1612 1613 switch (aux_ch) { 1614 case AUX_CH_A: 1615 return DP_AUX_CH_DATA(aux_ch, index); 1616 case AUX_CH_B: 1617 case AUX_CH_C: 1618 case AUX_CH_D: 1619 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1620 default: 1621 MISSING_CASE(aux_ch); 1622 return DP_AUX_CH_DATA(AUX_CH_A, index); 1623 } 1624 } 1625 1626 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1627 { 1628 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1629 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1630 enum aux_ch aux_ch = dig_port->aux_ch; 1631 1632 switch (aux_ch) { 1633 case AUX_CH_A: 1634 case AUX_CH_B: 1635 case AUX_CH_C: 1636 case AUX_CH_D: 1637 case AUX_CH_E: 1638 case AUX_CH_F: 1639 return DP_AUX_CH_CTL(aux_ch); 1640 default: 1641 MISSING_CASE(aux_ch); 1642 return DP_AUX_CH_CTL(AUX_CH_A); 1643 } 1644 } 1645 1646 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1647 { 1648 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1649 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1650 enum aux_ch aux_ch = dig_port->aux_ch; 1651 1652 switch (aux_ch) { 1653 case AUX_CH_A: 1654 case AUX_CH_B: 1655 case AUX_CH_C: 1656 case AUX_CH_D: 1657 case AUX_CH_E: 1658 case AUX_CH_F: 1659 return DP_AUX_CH_DATA(aux_ch, index); 1660 default: 1661 MISSING_CASE(aux_ch); 1662 return DP_AUX_CH_DATA(AUX_CH_A, index); 1663 } 1664 } 1665 1666 static void 1667 intel_dp_aux_fini(struct intel_dp *intel_dp) 1668 { 1669 kfree(intel_dp->aux.name); 1670 } 1671 1672 static void 1673 intel_dp_aux_init(struct intel_dp *intel_dp) 1674 { 1675 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1676 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1677 struct intel_encoder *encoder = &dig_port->base; 1678 1679 if (INTEL_GEN(dev_priv) >= 9) { 1680 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1681 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1682 } else if (HAS_PCH_SPLIT(dev_priv)) { 1683 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1684 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1685 } else { 1686 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1687 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1688 } 1689 1690 if (INTEL_GEN(dev_priv) >= 9) 1691 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1692 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1693 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1694 else if (HAS_PCH_SPLIT(dev_priv)) 1695 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1696 else 1697 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1698 1699 if (INTEL_GEN(dev_priv) >= 9) 1700 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1701 else 1702 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1703 1704 drm_dp_aux_init(&intel_dp->aux); 1705 1706 /* Failure to allocate our preferred name is not critical */ 1707 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", 1708 port_name(encoder->port)); 1709 intel_dp->aux.transfer = intel_dp_aux_transfer; 1710 } 1711 1712 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1713 { 1714 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1715 1716 return max_rate >= 540000; 1717 } 1718 1719 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1720 { 1721 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1722 1723 return max_rate >= 810000; 1724 } 1725 1726 static void 1727 intel_dp_set_clock(struct intel_encoder *encoder, 1728 struct intel_crtc_state *pipe_config) 1729 { 1730 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1731 const struct dp_link_dpll *divisor = NULL; 1732 int i, count = 0; 1733 1734 if (IS_G4X(dev_priv)) { 1735 divisor = g4x_dpll; 1736 count = ARRAY_SIZE(g4x_dpll); 1737 } else if (HAS_PCH_SPLIT(dev_priv)) { 1738 divisor = pch_dpll; 1739 count = ARRAY_SIZE(pch_dpll); 1740 } else if (IS_CHERRYVIEW(dev_priv)) { 1741 divisor = chv_dpll; 1742 count = ARRAY_SIZE(chv_dpll); 1743 } else if (IS_VALLEYVIEW(dev_priv)) { 1744 divisor = vlv_dpll; 1745 count = ARRAY_SIZE(vlv_dpll); 1746 } 1747 1748 if (divisor && count) { 1749 for (i = 0; i < count; i++) { 1750 if (pipe_config->port_clock == divisor[i].clock) { 1751 pipe_config->dpll = divisor[i].dpll; 1752 pipe_config->clock_set = true; 1753 break; 1754 } 1755 } 1756 } 1757 } 1758 1759 static void snprintf_int_array(char *str, size_t len, 1760 const int *array, int nelem) 1761 { 1762 int i; 1763 1764 str[0] = '\0'; 1765 1766 for (i = 0; i < nelem; i++) { 1767 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1768 if (r >= len) 1769 return; 1770 str += r; 1771 len -= r; 1772 } 1773 } 1774 1775 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1776 { 1777 char str[128]; /* FIXME: too big for stack? */ 1778 1779 if ((drm_debug & DRM_UT_KMS) == 0) 1780 return; 1781 1782 snprintf_int_array(str, sizeof(str), 1783 intel_dp->source_rates, intel_dp->num_source_rates); 1784 DRM_DEBUG_KMS("source rates: %s\n", str); 1785 1786 snprintf_int_array(str, sizeof(str), 1787 intel_dp->sink_rates, intel_dp->num_sink_rates); 1788 DRM_DEBUG_KMS("sink rates: %s\n", str); 1789 1790 snprintf_int_array(str, sizeof(str), 1791 intel_dp->common_rates, intel_dp->num_common_rates); 1792 DRM_DEBUG_KMS("common rates: %s\n", str); 1793 } 1794 1795 int 1796 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1797 { 1798 int len; 1799 1800 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1801 if (WARN_ON(len <= 0)) 1802 return 162000; 1803 1804 return intel_dp->common_rates[len - 1]; 1805 } 1806 1807 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1808 { 1809 int i = intel_dp_rate_index(intel_dp->sink_rates, 1810 intel_dp->num_sink_rates, rate); 1811 1812 if (WARN_ON(i < 0)) 1813 i = 0; 1814 1815 return i; 1816 } 1817 1818 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1819 u8 *link_bw, u8 *rate_select) 1820 { 1821 /* eDP 1.4 rate select method. */ 1822 if (intel_dp->use_rate_select) { 1823 *link_bw = 0; 1824 *rate_select = 1825 intel_dp_rate_select(intel_dp, port_clock); 1826 } else { 1827 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1828 *rate_select = 0; 1829 } 1830 } 1831 1832 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1833 const struct intel_crtc_state *pipe_config) 1834 { 1835 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1836 1837 return INTEL_GEN(dev_priv) >= 11 && 1838 pipe_config->cpu_transcoder != TRANSCODER_A; 1839 } 1840 1841 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1842 const struct intel_crtc_state *pipe_config) 1843 { 1844 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1845 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1846 } 1847 1848 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp, 1849 const struct intel_crtc_state *pipe_config) 1850 { 1851 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1852 1853 return INTEL_GEN(dev_priv) >= 10 && 1854 pipe_config->cpu_transcoder != TRANSCODER_A; 1855 } 1856 1857 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1858 const struct intel_crtc_state *pipe_config) 1859 { 1860 if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable) 1861 return false; 1862 1863 return intel_dp_source_supports_dsc(intel_dp, pipe_config) && 1864 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1865 } 1866 1867 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1868 struct intel_crtc_state *pipe_config) 1869 { 1870 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1871 struct intel_connector *intel_connector = intel_dp->attached_connector; 1872 int bpp, bpc; 1873 1874 bpp = pipe_config->pipe_bpp; 1875 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1876 1877 if (bpc > 0) 1878 bpp = min(bpp, 3*bpc); 1879 1880 if (intel_dp_is_edp(intel_dp)) { 1881 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1882 if (intel_connector->base.display_info.bpc == 0 && 1883 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1884 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", 1885 dev_priv->vbt.edp.bpp); 1886 bpp = dev_priv->vbt.edp.bpp; 1887 } 1888 } 1889 1890 return bpp; 1891 } 1892 1893 /* Adjust link config limits based on compliance test requests. */ 1894 void 1895 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1896 struct intel_crtc_state *pipe_config, 1897 struct link_config_limits *limits) 1898 { 1899 /* For DP Compliance we override the computed bpp for the pipe */ 1900 if (intel_dp->compliance.test_data.bpc != 0) { 1901 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1902 1903 limits->min_bpp = limits->max_bpp = bpp; 1904 pipe_config->dither_force_disable = bpp == 6 * 3; 1905 1906 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); 1907 } 1908 1909 /* Use values requested by Compliance Test Request */ 1910 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 1911 int index; 1912 1913 /* Validate the compliance test data since max values 1914 * might have changed due to link train fallback. 1915 */ 1916 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 1917 intel_dp->compliance.test_lane_count)) { 1918 index = intel_dp_rate_index(intel_dp->common_rates, 1919 intel_dp->num_common_rates, 1920 intel_dp->compliance.test_link_rate); 1921 if (index >= 0) 1922 limits->min_clock = limits->max_clock = index; 1923 limits->min_lane_count = limits->max_lane_count = 1924 intel_dp->compliance.test_lane_count; 1925 } 1926 } 1927 } 1928 1929 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 1930 { 1931 /* 1932 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1933 * format of the number of bytes per pixel will be half the number 1934 * of bytes of RGB pixel. 1935 */ 1936 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1937 bpp /= 2; 1938 1939 return bpp; 1940 } 1941 1942 /* Optimize link config in order: max bpp, min clock, min lanes */ 1943 static int 1944 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 1945 struct intel_crtc_state *pipe_config, 1946 const struct link_config_limits *limits) 1947 { 1948 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 1949 int bpp, clock, lane_count; 1950 int mode_rate, link_clock, link_avail; 1951 1952 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 1953 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 1954 1955 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 1956 output_bpp); 1957 1958 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 1959 for (lane_count = limits->min_lane_count; 1960 lane_count <= limits->max_lane_count; 1961 lane_count <<= 1) { 1962 link_clock = intel_dp->common_rates[clock]; 1963 link_avail = intel_dp_max_data_rate(link_clock, 1964 lane_count); 1965 1966 if (mode_rate <= link_avail) { 1967 pipe_config->lane_count = lane_count; 1968 pipe_config->pipe_bpp = bpp; 1969 pipe_config->port_clock = link_clock; 1970 1971 return 0; 1972 } 1973 } 1974 } 1975 } 1976 1977 return -EINVAL; 1978 } 1979 1980 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 1981 { 1982 int i, num_bpc; 1983 u8 dsc_bpc[3] = {0}; 1984 1985 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 1986 dsc_bpc); 1987 for (i = 0; i < num_bpc; i++) { 1988 if (dsc_max_bpc >= dsc_bpc[i]) 1989 return dsc_bpc[i] * 3; 1990 } 1991 1992 return 0; 1993 } 1994 1995 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 1996 struct intel_crtc_state *pipe_config, 1997 struct drm_connector_state *conn_state, 1998 struct link_config_limits *limits) 1999 { 2000 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2001 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2002 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2003 u8 dsc_max_bpc; 2004 int pipe_bpp; 2005 int ret; 2006 2007 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2008 intel_dp_supports_fec(intel_dp, pipe_config); 2009 2010 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2011 return -EINVAL; 2012 2013 dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC, 2014 conn_state->max_requested_bpc); 2015 2016 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2017 if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) { 2018 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n"); 2019 return -EINVAL; 2020 } 2021 2022 /* 2023 * For now enable DSC for max bpp, max link rate, max lane count. 2024 * Optimize this later for the minimum possible link rate/lane count 2025 * with DSC enabled for the requested mode. 2026 */ 2027 pipe_config->pipe_bpp = pipe_bpp; 2028 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2029 pipe_config->lane_count = limits->max_lane_count; 2030 2031 if (intel_dp_is_edp(intel_dp)) { 2032 pipe_config->dsc_params.compressed_bpp = 2033 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2034 pipe_config->pipe_bpp); 2035 pipe_config->dsc_params.slice_count = 2036 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2037 true); 2038 } else { 2039 u16 dsc_max_output_bpp; 2040 u8 dsc_dp_slice_count; 2041 2042 dsc_max_output_bpp = 2043 intel_dp_dsc_get_output_bpp(pipe_config->port_clock, 2044 pipe_config->lane_count, 2045 adjusted_mode->crtc_clock, 2046 adjusted_mode->crtc_hdisplay); 2047 dsc_dp_slice_count = 2048 intel_dp_dsc_get_slice_count(intel_dp, 2049 adjusted_mode->crtc_clock, 2050 adjusted_mode->crtc_hdisplay); 2051 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2052 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n"); 2053 return -EINVAL; 2054 } 2055 pipe_config->dsc_params.compressed_bpp = min_t(u16, 2056 dsc_max_output_bpp >> 4, 2057 pipe_config->pipe_bpp); 2058 pipe_config->dsc_params.slice_count = dsc_dp_slice_count; 2059 } 2060 /* 2061 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2062 * is greater than the maximum Cdclock and if slice count is even 2063 * then we need to use 2 VDSC instances. 2064 */ 2065 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 2066 if (pipe_config->dsc_params.slice_count > 1) { 2067 pipe_config->dsc_params.dsc_split = true; 2068 } else { 2069 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n"); 2070 return -EINVAL; 2071 } 2072 } 2073 2074 ret = intel_dp_compute_dsc_params(intel_dp, pipe_config); 2075 if (ret < 0) { 2076 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d " 2077 "Compressed BPP = %d\n", 2078 pipe_config->pipe_bpp, 2079 pipe_config->dsc_params.compressed_bpp); 2080 return ret; 2081 } 2082 2083 pipe_config->dsc_params.compression_enable = true; 2084 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d " 2085 "Compressed Bpp = %d Slice Count = %d\n", 2086 pipe_config->pipe_bpp, 2087 pipe_config->dsc_params.compressed_bpp, 2088 pipe_config->dsc_params.slice_count); 2089 2090 return 0; 2091 } 2092 2093 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2094 { 2095 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2096 return 6 * 3; 2097 else 2098 return 8 * 3; 2099 } 2100 2101 static int 2102 intel_dp_compute_link_config(struct intel_encoder *encoder, 2103 struct intel_crtc_state *pipe_config, 2104 struct drm_connector_state *conn_state) 2105 { 2106 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2107 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2108 struct link_config_limits limits; 2109 int common_len; 2110 int ret; 2111 2112 common_len = intel_dp_common_len_rate_limit(intel_dp, 2113 intel_dp->max_link_rate); 2114 2115 /* No common link rates between source and sink */ 2116 WARN_ON(common_len <= 0); 2117 2118 limits.min_clock = 0; 2119 limits.max_clock = common_len - 1; 2120 2121 limits.min_lane_count = 1; 2122 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2123 2124 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2125 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2126 2127 if (intel_dp_is_edp(intel_dp)) { 2128 /* 2129 * Use the maximum clock and number of lanes the eDP panel 2130 * advertizes being capable of. The panels are generally 2131 * designed to support only a single clock and lane 2132 * configuration, and typically these values correspond to the 2133 * native resolution of the panel. 2134 */ 2135 limits.min_lane_count = limits.max_lane_count; 2136 limits.min_clock = limits.max_clock; 2137 } 2138 2139 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2140 2141 DRM_DEBUG_KMS("DP link computation with max lane count %i " 2142 "max rate %d max bpp %d pixel clock %iKHz\n", 2143 limits.max_lane_count, 2144 intel_dp->common_rates[limits.max_clock], 2145 limits.max_bpp, adjusted_mode->crtc_clock); 2146 2147 /* 2148 * Optimize for slow and wide. This is the place to add alternative 2149 * optimization policy. 2150 */ 2151 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2152 2153 /* enable compression if the mode doesn't fit available BW */ 2154 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en); 2155 if (ret || intel_dp->force_dsc_en) { 2156 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2157 conn_state, &limits); 2158 if (ret < 0) 2159 return ret; 2160 } 2161 2162 if (pipe_config->dsc_params.compression_enable) { 2163 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2164 pipe_config->lane_count, pipe_config->port_clock, 2165 pipe_config->pipe_bpp, 2166 pipe_config->dsc_params.compressed_bpp); 2167 2168 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2169 intel_dp_link_required(adjusted_mode->crtc_clock, 2170 pipe_config->dsc_params.compressed_bpp), 2171 intel_dp_max_data_rate(pipe_config->port_clock, 2172 pipe_config->lane_count)); 2173 } else { 2174 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", 2175 pipe_config->lane_count, pipe_config->port_clock, 2176 pipe_config->pipe_bpp); 2177 2178 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2179 intel_dp_link_required(adjusted_mode->crtc_clock, 2180 pipe_config->pipe_bpp), 2181 intel_dp_max_data_rate(pipe_config->port_clock, 2182 pipe_config->lane_count)); 2183 } 2184 return 0; 2185 } 2186 2187 static int 2188 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2189 struct drm_connector *connector, 2190 struct intel_crtc_state *crtc_state) 2191 { 2192 const struct drm_display_info *info = &connector->display_info; 2193 const struct drm_display_mode *adjusted_mode = 2194 &crtc_state->base.adjusted_mode; 2195 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 2196 int ret; 2197 2198 if (!drm_mode_is_420_only(info, adjusted_mode) || 2199 !intel_dp_get_colorimetry_status(intel_dp) || 2200 !connector->ycbcr_420_allowed) 2201 return 0; 2202 2203 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2204 2205 /* YCBCR 420 output conversion needs a scaler */ 2206 ret = skl_update_scaler_crtc(crtc_state); 2207 if (ret) { 2208 DRM_DEBUG_KMS("Scaler allocation for output failed\n"); 2209 return ret; 2210 } 2211 2212 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN); 2213 2214 return 0; 2215 } 2216 2217 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2218 const struct drm_connector_state *conn_state) 2219 { 2220 const struct intel_digital_connector_state *intel_conn_state = 2221 to_intel_digital_connector_state(conn_state); 2222 const struct drm_display_mode *adjusted_mode = 2223 &crtc_state->base.adjusted_mode; 2224 2225 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2226 /* 2227 * See: 2228 * CEA-861-E - 5.1 Default Encoding Parameters 2229 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2230 */ 2231 return crtc_state->pipe_bpp != 18 && 2232 drm_default_rgb_quant_range(adjusted_mode) == 2233 HDMI_QUANTIZATION_RANGE_LIMITED; 2234 } else { 2235 return intel_conn_state->broadcast_rgb == 2236 INTEL_BROADCAST_RGB_LIMITED; 2237 } 2238 } 2239 2240 int 2241 intel_dp_compute_config(struct intel_encoder *encoder, 2242 struct intel_crtc_state *pipe_config, 2243 struct drm_connector_state *conn_state) 2244 { 2245 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2246 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2247 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2248 struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base); 2249 enum port port = encoder->port; 2250 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); 2251 struct intel_connector *intel_connector = intel_dp->attached_connector; 2252 struct intel_digital_connector_state *intel_conn_state = 2253 to_intel_digital_connector_state(conn_state); 2254 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 2255 DP_DPCD_QUIRK_CONSTANT_N); 2256 int ret = 0, output_bpp; 2257 2258 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2259 pipe_config->has_pch_encoder = true; 2260 2261 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2262 if (lspcon->active) 2263 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2264 else 2265 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base, 2266 pipe_config); 2267 2268 if (ret) 2269 return ret; 2270 2271 pipe_config->has_drrs = false; 2272 if (IS_G4X(dev_priv) || port == PORT_A) 2273 pipe_config->has_audio = false; 2274 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2275 pipe_config->has_audio = intel_dp->has_audio; 2276 else 2277 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2278 2279 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2280 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2281 adjusted_mode); 2282 2283 if (INTEL_GEN(dev_priv) >= 9) { 2284 ret = skl_update_scaler_crtc(pipe_config); 2285 if (ret) 2286 return ret; 2287 } 2288 2289 if (HAS_GMCH(dev_priv)) 2290 intel_gmch_panel_fitting(intel_crtc, pipe_config, 2291 conn_state->scaling_mode); 2292 else 2293 intel_pch_panel_fitting(intel_crtc, pipe_config, 2294 conn_state->scaling_mode); 2295 } 2296 2297 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2298 return -EINVAL; 2299 2300 if (HAS_GMCH(dev_priv) && 2301 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2302 return -EINVAL; 2303 2304 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2305 return -EINVAL; 2306 2307 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2308 if (ret < 0) 2309 return ret; 2310 2311 pipe_config->limited_color_range = 2312 intel_dp_limited_color_range(pipe_config, conn_state); 2313 2314 if (pipe_config->dsc_params.compression_enable) 2315 output_bpp = pipe_config->dsc_params.compressed_bpp; 2316 else 2317 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2318 2319 intel_link_compute_m_n(output_bpp, 2320 pipe_config->lane_count, 2321 adjusted_mode->crtc_clock, 2322 pipe_config->port_clock, 2323 &pipe_config->dp_m_n, 2324 constant_n, pipe_config->fec_enable); 2325 2326 if (intel_connector->panel.downclock_mode != NULL && 2327 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2328 pipe_config->has_drrs = true; 2329 intel_link_compute_m_n(output_bpp, 2330 pipe_config->lane_count, 2331 intel_connector->panel.downclock_mode->clock, 2332 pipe_config->port_clock, 2333 &pipe_config->dp_m2_n2, 2334 constant_n, pipe_config->fec_enable); 2335 } 2336 2337 if (!HAS_DDI(dev_priv)) 2338 intel_dp_set_clock(encoder, pipe_config); 2339 2340 intel_psr_compute_config(intel_dp, pipe_config); 2341 2342 return 0; 2343 } 2344 2345 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2346 int link_rate, u8 lane_count, 2347 bool link_mst) 2348 { 2349 intel_dp->link_trained = false; 2350 intel_dp->link_rate = link_rate; 2351 intel_dp->lane_count = lane_count; 2352 intel_dp->link_mst = link_mst; 2353 } 2354 2355 static void intel_dp_prepare(struct intel_encoder *encoder, 2356 const struct intel_crtc_state *pipe_config) 2357 { 2358 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2359 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2360 enum port port = encoder->port; 2361 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 2362 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2363 2364 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2365 pipe_config->lane_count, 2366 intel_crtc_has_type(pipe_config, 2367 INTEL_OUTPUT_DP_MST)); 2368 2369 /* 2370 * There are four kinds of DP registers: 2371 * 2372 * IBX PCH 2373 * SNB CPU 2374 * IVB CPU 2375 * CPT PCH 2376 * 2377 * IBX PCH and CPU are the same for almost everything, 2378 * except that the CPU DP PLL is configured in this 2379 * register 2380 * 2381 * CPT PCH is quite different, having many bits moved 2382 * to the TRANS_DP_CTL register instead. That 2383 * configuration happens (oddly) in ironlake_pch_enable 2384 */ 2385 2386 /* Preserve the BIOS-computed detected bit. This is 2387 * supposed to be read-only. 2388 */ 2389 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 2390 2391 /* Handle DP bits in common between all three register formats */ 2392 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2393 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2394 2395 /* Split out the IBX/CPU vs CPT settings */ 2396 2397 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2398 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2399 intel_dp->DP |= DP_SYNC_HS_HIGH; 2400 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2401 intel_dp->DP |= DP_SYNC_VS_HIGH; 2402 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2403 2404 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2405 intel_dp->DP |= DP_ENHANCED_FRAMING; 2406 2407 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2408 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2409 u32 trans_dp; 2410 2411 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2412 2413 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 2414 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2415 trans_dp |= TRANS_DP_ENH_FRAMING; 2416 else 2417 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2418 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); 2419 } else { 2420 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2421 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2422 2423 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2424 intel_dp->DP |= DP_SYNC_HS_HIGH; 2425 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2426 intel_dp->DP |= DP_SYNC_VS_HIGH; 2427 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2428 2429 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2430 intel_dp->DP |= DP_ENHANCED_FRAMING; 2431 2432 if (IS_CHERRYVIEW(dev_priv)) 2433 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2434 else 2435 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2436 } 2437 } 2438 2439 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2440 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2441 2442 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2443 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2444 2445 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2446 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2447 2448 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2449 2450 static void wait_panel_status(struct intel_dp *intel_dp, 2451 u32 mask, 2452 u32 value) 2453 { 2454 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2455 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2456 2457 lockdep_assert_held(&dev_priv->pps_mutex); 2458 2459 intel_pps_verify_state(intel_dp); 2460 2461 pp_stat_reg = _pp_stat_reg(intel_dp); 2462 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2463 2464 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", 2465 mask, value, 2466 I915_READ(pp_stat_reg), 2467 I915_READ(pp_ctrl_reg)); 2468 2469 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2470 mask, value, 5000)) 2471 DRM_ERROR("Panel status timeout: status %08x control %08x\n", 2472 I915_READ(pp_stat_reg), 2473 I915_READ(pp_ctrl_reg)); 2474 2475 DRM_DEBUG_KMS("Wait complete\n"); 2476 } 2477 2478 static void wait_panel_on(struct intel_dp *intel_dp) 2479 { 2480 DRM_DEBUG_KMS("Wait for panel power on\n"); 2481 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2482 } 2483 2484 static void wait_panel_off(struct intel_dp *intel_dp) 2485 { 2486 DRM_DEBUG_KMS("Wait for panel power off time\n"); 2487 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2488 } 2489 2490 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2491 { 2492 ktime_t panel_power_on_time; 2493 s64 panel_power_off_duration; 2494 2495 DRM_DEBUG_KMS("Wait for panel power cycle\n"); 2496 2497 /* take the difference of currrent time and panel power off time 2498 * and then make panel wait for t11_t12 if needed. */ 2499 panel_power_on_time = ktime_get_boottime(); 2500 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2501 2502 /* When we disable the VDD override bit last we have to do the manual 2503 * wait. */ 2504 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2505 wait_remaining_ms_from_jiffies(jiffies, 2506 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2507 2508 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2509 } 2510 2511 static void wait_backlight_on(struct intel_dp *intel_dp) 2512 { 2513 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2514 intel_dp->backlight_on_delay); 2515 } 2516 2517 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2518 { 2519 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2520 intel_dp->backlight_off_delay); 2521 } 2522 2523 /* Read the current pp_control value, unlocking the register if it 2524 * is locked 2525 */ 2526 2527 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) 2528 { 2529 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2530 u32 control; 2531 2532 lockdep_assert_held(&dev_priv->pps_mutex); 2533 2534 control = I915_READ(_pp_ctrl_reg(intel_dp)); 2535 if (WARN_ON(!HAS_DDI(dev_priv) && 2536 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2537 control &= ~PANEL_UNLOCK_MASK; 2538 control |= PANEL_UNLOCK_REGS; 2539 } 2540 return control; 2541 } 2542 2543 /* 2544 * Must be paired with edp_panel_vdd_off(). 2545 * Must hold pps_mutex around the whole on/off sequence. 2546 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2547 */ 2548 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2549 { 2550 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2551 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2552 u32 pp; 2553 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2554 bool need_to_disable = !intel_dp->want_panel_vdd; 2555 2556 lockdep_assert_held(&dev_priv->pps_mutex); 2557 2558 if (!intel_dp_is_edp(intel_dp)) 2559 return false; 2560 2561 cancel_delayed_work(&intel_dp->panel_vdd_work); 2562 intel_dp->want_panel_vdd = true; 2563 2564 if (edp_have_panel_vdd(intel_dp)) 2565 return need_to_disable; 2566 2567 intel_display_power_get(dev_priv, 2568 intel_aux_power_domain(intel_dig_port)); 2569 2570 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n", 2571 port_name(intel_dig_port->base.port)); 2572 2573 if (!edp_have_panel_power(intel_dp)) 2574 wait_panel_power_cycle(intel_dp); 2575 2576 pp = ironlake_get_pp_control(intel_dp); 2577 pp |= EDP_FORCE_VDD; 2578 2579 pp_stat_reg = _pp_stat_reg(intel_dp); 2580 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2581 2582 I915_WRITE(pp_ctrl_reg, pp); 2583 POSTING_READ(pp_ctrl_reg); 2584 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2585 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2586 /* 2587 * If the panel wasn't on, delay before accessing aux channel 2588 */ 2589 if (!edp_have_panel_power(intel_dp)) { 2590 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n", 2591 port_name(intel_dig_port->base.port)); 2592 msleep(intel_dp->panel_power_up_delay); 2593 } 2594 2595 return need_to_disable; 2596 } 2597 2598 /* 2599 * Must be paired with intel_edp_panel_vdd_off() or 2600 * intel_edp_panel_off(). 2601 * Nested calls to these functions are not allowed since 2602 * we drop the lock. Caller must use some higher level 2603 * locking to prevent nested calls from other threads. 2604 */ 2605 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2606 { 2607 intel_wakeref_t wakeref; 2608 bool vdd; 2609 2610 if (!intel_dp_is_edp(intel_dp)) 2611 return; 2612 2613 vdd = false; 2614 with_pps_lock(intel_dp, wakeref) 2615 vdd = edp_panel_vdd_on(intel_dp); 2616 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n", 2617 port_name(dp_to_dig_port(intel_dp)->base.port)); 2618 } 2619 2620 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2621 { 2622 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2623 struct intel_digital_port *intel_dig_port = 2624 dp_to_dig_port(intel_dp); 2625 u32 pp; 2626 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2627 2628 lockdep_assert_held(&dev_priv->pps_mutex); 2629 2630 WARN_ON(intel_dp->want_panel_vdd); 2631 2632 if (!edp_have_panel_vdd(intel_dp)) 2633 return; 2634 2635 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n", 2636 port_name(intel_dig_port->base.port)); 2637 2638 pp = ironlake_get_pp_control(intel_dp); 2639 pp &= ~EDP_FORCE_VDD; 2640 2641 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2642 pp_stat_reg = _pp_stat_reg(intel_dp); 2643 2644 I915_WRITE(pp_ctrl_reg, pp); 2645 POSTING_READ(pp_ctrl_reg); 2646 2647 /* Make sure sequencer is idle before allowing subsequent activity */ 2648 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2649 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2650 2651 if ((pp & PANEL_POWER_ON) == 0) 2652 intel_dp->panel_power_off_time = ktime_get_boottime(); 2653 2654 intel_display_power_put_unchecked(dev_priv, 2655 intel_aux_power_domain(intel_dig_port)); 2656 } 2657 2658 static void edp_panel_vdd_work(struct work_struct *__work) 2659 { 2660 struct intel_dp *intel_dp = 2661 container_of(to_delayed_work(__work), 2662 struct intel_dp, panel_vdd_work); 2663 intel_wakeref_t wakeref; 2664 2665 with_pps_lock(intel_dp, wakeref) { 2666 if (!intel_dp->want_panel_vdd) 2667 edp_panel_vdd_off_sync(intel_dp); 2668 } 2669 } 2670 2671 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 2672 { 2673 unsigned long delay; 2674 2675 /* 2676 * Queue the timer to fire a long time from now (relative to the power 2677 * down delay) to keep the panel power up across a sequence of 2678 * operations. 2679 */ 2680 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 2681 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 2682 } 2683 2684 /* 2685 * Must be paired with edp_panel_vdd_on(). 2686 * Must hold pps_mutex around the whole on/off sequence. 2687 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2688 */ 2689 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 2690 { 2691 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2692 2693 lockdep_assert_held(&dev_priv->pps_mutex); 2694 2695 if (!intel_dp_is_edp(intel_dp)) 2696 return; 2697 2698 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on", 2699 port_name(dp_to_dig_port(intel_dp)->base.port)); 2700 2701 intel_dp->want_panel_vdd = false; 2702 2703 if (sync) 2704 edp_panel_vdd_off_sync(intel_dp); 2705 else 2706 edp_panel_vdd_schedule_off(intel_dp); 2707 } 2708 2709 static void edp_panel_on(struct intel_dp *intel_dp) 2710 { 2711 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2712 u32 pp; 2713 i915_reg_t pp_ctrl_reg; 2714 2715 lockdep_assert_held(&dev_priv->pps_mutex); 2716 2717 if (!intel_dp_is_edp(intel_dp)) 2718 return; 2719 2720 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n", 2721 port_name(dp_to_dig_port(intel_dp)->base.port)); 2722 2723 if (WARN(edp_have_panel_power(intel_dp), 2724 "eDP port %c panel power already on\n", 2725 port_name(dp_to_dig_port(intel_dp)->base.port))) 2726 return; 2727 2728 wait_panel_power_cycle(intel_dp); 2729 2730 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2731 pp = ironlake_get_pp_control(intel_dp); 2732 if (IS_GEN(dev_priv, 5)) { 2733 /* ILK workaround: disable reset around power sequence */ 2734 pp &= ~PANEL_POWER_RESET; 2735 I915_WRITE(pp_ctrl_reg, pp); 2736 POSTING_READ(pp_ctrl_reg); 2737 } 2738 2739 pp |= PANEL_POWER_ON; 2740 if (!IS_GEN(dev_priv, 5)) 2741 pp |= PANEL_POWER_RESET; 2742 2743 I915_WRITE(pp_ctrl_reg, pp); 2744 POSTING_READ(pp_ctrl_reg); 2745 2746 wait_panel_on(intel_dp); 2747 intel_dp->last_power_on = jiffies; 2748 2749 if (IS_GEN(dev_priv, 5)) { 2750 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 2751 I915_WRITE(pp_ctrl_reg, pp); 2752 POSTING_READ(pp_ctrl_reg); 2753 } 2754 } 2755 2756 void intel_edp_panel_on(struct intel_dp *intel_dp) 2757 { 2758 intel_wakeref_t wakeref; 2759 2760 if (!intel_dp_is_edp(intel_dp)) 2761 return; 2762 2763 with_pps_lock(intel_dp, wakeref) 2764 edp_panel_on(intel_dp); 2765 } 2766 2767 2768 static void edp_panel_off(struct intel_dp *intel_dp) 2769 { 2770 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2771 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2772 u32 pp; 2773 i915_reg_t pp_ctrl_reg; 2774 2775 lockdep_assert_held(&dev_priv->pps_mutex); 2776 2777 if (!intel_dp_is_edp(intel_dp)) 2778 return; 2779 2780 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n", 2781 port_name(dig_port->base.port)); 2782 2783 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n", 2784 port_name(dig_port->base.port)); 2785 2786 pp = ironlake_get_pp_control(intel_dp); 2787 /* We need to switch off panel power _and_ force vdd, for otherwise some 2788 * panels get very unhappy and cease to work. */ 2789 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 2790 EDP_BLC_ENABLE); 2791 2792 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2793 2794 intel_dp->want_panel_vdd = false; 2795 2796 I915_WRITE(pp_ctrl_reg, pp); 2797 POSTING_READ(pp_ctrl_reg); 2798 2799 wait_panel_off(intel_dp); 2800 intel_dp->panel_power_off_time = ktime_get_boottime(); 2801 2802 /* We got a reference when we enabled the VDD. */ 2803 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 2804 } 2805 2806 void intel_edp_panel_off(struct intel_dp *intel_dp) 2807 { 2808 intel_wakeref_t wakeref; 2809 2810 if (!intel_dp_is_edp(intel_dp)) 2811 return; 2812 2813 with_pps_lock(intel_dp, wakeref) 2814 edp_panel_off(intel_dp); 2815 } 2816 2817 /* Enable backlight in the panel power control. */ 2818 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 2819 { 2820 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2821 intel_wakeref_t wakeref; 2822 2823 /* 2824 * If we enable the backlight right away following a panel power 2825 * on, we may see slight flicker as the panel syncs with the eDP 2826 * link. So delay a bit to make sure the image is solid before 2827 * allowing it to appear. 2828 */ 2829 wait_backlight_on(intel_dp); 2830 2831 with_pps_lock(intel_dp, wakeref) { 2832 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2833 u32 pp; 2834 2835 pp = ironlake_get_pp_control(intel_dp); 2836 pp |= EDP_BLC_ENABLE; 2837 2838 I915_WRITE(pp_ctrl_reg, pp); 2839 POSTING_READ(pp_ctrl_reg); 2840 } 2841 } 2842 2843 /* Enable backlight PWM and backlight PP control. */ 2844 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 2845 const struct drm_connector_state *conn_state) 2846 { 2847 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder); 2848 2849 if (!intel_dp_is_edp(intel_dp)) 2850 return; 2851 2852 DRM_DEBUG_KMS("\n"); 2853 2854 intel_panel_enable_backlight(crtc_state, conn_state); 2855 _intel_edp_backlight_on(intel_dp); 2856 } 2857 2858 /* Disable backlight in the panel power control. */ 2859 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 2860 { 2861 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2862 intel_wakeref_t wakeref; 2863 2864 if (!intel_dp_is_edp(intel_dp)) 2865 return; 2866 2867 with_pps_lock(intel_dp, wakeref) { 2868 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2869 u32 pp; 2870 2871 pp = ironlake_get_pp_control(intel_dp); 2872 pp &= ~EDP_BLC_ENABLE; 2873 2874 I915_WRITE(pp_ctrl_reg, pp); 2875 POSTING_READ(pp_ctrl_reg); 2876 } 2877 2878 intel_dp->last_backlight_off = jiffies; 2879 edp_wait_backlight_off(intel_dp); 2880 } 2881 2882 /* Disable backlight PP control and backlight PWM. */ 2883 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 2884 { 2885 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder); 2886 2887 if (!intel_dp_is_edp(intel_dp)) 2888 return; 2889 2890 DRM_DEBUG_KMS("\n"); 2891 2892 _intel_edp_backlight_off(intel_dp); 2893 intel_panel_disable_backlight(old_conn_state); 2894 } 2895 2896 /* 2897 * Hook for controlling the panel power control backlight through the bl_power 2898 * sysfs attribute. Take care to handle multiple calls. 2899 */ 2900 static void intel_edp_backlight_power(struct intel_connector *connector, 2901 bool enable) 2902 { 2903 struct intel_dp *intel_dp = intel_attached_dp(&connector->base); 2904 intel_wakeref_t wakeref; 2905 bool is_enabled; 2906 2907 is_enabled = false; 2908 with_pps_lock(intel_dp, wakeref) 2909 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 2910 if (is_enabled == enable) 2911 return; 2912 2913 DRM_DEBUG_KMS("panel power control backlight %s\n", 2914 enable ? "enable" : "disable"); 2915 2916 if (enable) 2917 _intel_edp_backlight_on(intel_dp); 2918 else 2919 _intel_edp_backlight_off(intel_dp); 2920 } 2921 2922 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 2923 { 2924 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2925 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2926 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN; 2927 2928 I915_STATE_WARN(cur_state != state, 2929 "DP port %c state assertion failure (expected %s, current %s)\n", 2930 port_name(dig_port->base.port), 2931 onoff(state), onoff(cur_state)); 2932 } 2933 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 2934 2935 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 2936 { 2937 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE; 2938 2939 I915_STATE_WARN(cur_state != state, 2940 "eDP PLL state assertion failure (expected %s, current %s)\n", 2941 onoff(state), onoff(cur_state)); 2942 } 2943 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 2944 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 2945 2946 static void ironlake_edp_pll_on(struct intel_dp *intel_dp, 2947 const struct intel_crtc_state *pipe_config) 2948 { 2949 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 2950 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2951 2952 assert_pipe_disabled(dev_priv, crtc->pipe); 2953 assert_dp_port_disabled(intel_dp); 2954 assert_edp_pll_disabled(dev_priv); 2955 2956 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n", 2957 pipe_config->port_clock); 2958 2959 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 2960 2961 if (pipe_config->port_clock == 162000) 2962 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 2963 else 2964 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 2965 2966 I915_WRITE(DP_A, intel_dp->DP); 2967 POSTING_READ(DP_A); 2968 udelay(500); 2969 2970 /* 2971 * [DevILK] Work around required when enabling DP PLL 2972 * while a pipe is enabled going to FDI: 2973 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 2974 * 2. Program DP PLL enable 2975 */ 2976 if (IS_GEN(dev_priv, 5)) 2977 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 2978 2979 intel_dp->DP |= DP_PLL_ENABLE; 2980 2981 I915_WRITE(DP_A, intel_dp->DP); 2982 POSTING_READ(DP_A); 2983 udelay(200); 2984 } 2985 2986 static void ironlake_edp_pll_off(struct intel_dp *intel_dp, 2987 const struct intel_crtc_state *old_crtc_state) 2988 { 2989 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 2990 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2991 2992 assert_pipe_disabled(dev_priv, crtc->pipe); 2993 assert_dp_port_disabled(intel_dp); 2994 assert_edp_pll_enabled(dev_priv); 2995 2996 DRM_DEBUG_KMS("disabling eDP PLL\n"); 2997 2998 intel_dp->DP &= ~DP_PLL_ENABLE; 2999 3000 I915_WRITE(DP_A, intel_dp->DP); 3001 POSTING_READ(DP_A); 3002 udelay(200); 3003 } 3004 3005 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3006 { 3007 /* 3008 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3009 * be capable of signalling downstream hpd with a long pulse. 3010 * Whether or not that means D3 is safe to use is not clear, 3011 * but let's assume so until proven otherwise. 3012 * 3013 * FIXME should really check all downstream ports... 3014 */ 3015 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3016 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 3017 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3018 } 3019 3020 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3021 const struct intel_crtc_state *crtc_state, 3022 bool enable) 3023 { 3024 int ret; 3025 3026 if (!crtc_state->dsc_params.compression_enable) 3027 return; 3028 3029 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3030 enable ? DP_DECOMPRESSION_EN : 0); 3031 if (ret < 0) 3032 DRM_DEBUG_KMS("Failed to %s sink decompression state\n", 3033 enable ? "enable" : "disable"); 3034 } 3035 3036 /* If the sink supports it, try to set the power state appropriately */ 3037 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 3038 { 3039 int ret, i; 3040 3041 /* Should have a valid DPCD by this point */ 3042 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3043 return; 3044 3045 if (mode != DRM_MODE_DPMS_ON) { 3046 if (downstream_hpd_needs_d0(intel_dp)) 3047 return; 3048 3049 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3050 DP_SET_POWER_D3); 3051 } else { 3052 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3053 3054 /* 3055 * When turning on, we need to retry for 1ms to give the sink 3056 * time to wake up. 3057 */ 3058 for (i = 0; i < 3; i++) { 3059 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3060 DP_SET_POWER_D0); 3061 if (ret == 1) 3062 break; 3063 msleep(1); 3064 } 3065 3066 if (ret == 1 && lspcon->active) 3067 lspcon_wait_pcon_mode(lspcon); 3068 } 3069 3070 if (ret != 1) 3071 DRM_DEBUG_KMS("failed to %s sink power state\n", 3072 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 3073 } 3074 3075 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3076 enum port port, enum pipe *pipe) 3077 { 3078 enum pipe p; 3079 3080 for_each_pipe(dev_priv, p) { 3081 u32 val = I915_READ(TRANS_DP_CTL(p)); 3082 3083 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3084 *pipe = p; 3085 return true; 3086 } 3087 } 3088 3089 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port)); 3090 3091 /* must initialize pipe to something for the asserts */ 3092 *pipe = PIPE_A; 3093 3094 return false; 3095 } 3096 3097 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3098 i915_reg_t dp_reg, enum port port, 3099 enum pipe *pipe) 3100 { 3101 bool ret; 3102 u32 val; 3103 3104 val = I915_READ(dp_reg); 3105 3106 ret = val & DP_PORT_EN; 3107 3108 /* asserts want to know the pipe even if the port is disabled */ 3109 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3110 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3111 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3112 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3113 else if (IS_CHERRYVIEW(dev_priv)) 3114 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3115 else 3116 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3117 3118 return ret; 3119 } 3120 3121 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3122 enum pipe *pipe) 3123 { 3124 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3125 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3126 intel_wakeref_t wakeref; 3127 bool ret; 3128 3129 wakeref = intel_display_power_get_if_enabled(dev_priv, 3130 encoder->power_domain); 3131 if (!wakeref) 3132 return false; 3133 3134 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3135 encoder->port, pipe); 3136 3137 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3138 3139 return ret; 3140 } 3141 3142 static void intel_dp_get_config(struct intel_encoder *encoder, 3143 struct intel_crtc_state *pipe_config) 3144 { 3145 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3146 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3147 u32 tmp, flags = 0; 3148 enum port port = encoder->port; 3149 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3150 3151 if (encoder->type == INTEL_OUTPUT_EDP) 3152 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3153 else 3154 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3155 3156 tmp = I915_READ(intel_dp->output_reg); 3157 3158 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3159 3160 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3161 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 3162 3163 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3164 flags |= DRM_MODE_FLAG_PHSYNC; 3165 else 3166 flags |= DRM_MODE_FLAG_NHSYNC; 3167 3168 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3169 flags |= DRM_MODE_FLAG_PVSYNC; 3170 else 3171 flags |= DRM_MODE_FLAG_NVSYNC; 3172 } else { 3173 if (tmp & DP_SYNC_HS_HIGH) 3174 flags |= DRM_MODE_FLAG_PHSYNC; 3175 else 3176 flags |= DRM_MODE_FLAG_NHSYNC; 3177 3178 if (tmp & DP_SYNC_VS_HIGH) 3179 flags |= DRM_MODE_FLAG_PVSYNC; 3180 else 3181 flags |= DRM_MODE_FLAG_NVSYNC; 3182 } 3183 3184 pipe_config->base.adjusted_mode.flags |= flags; 3185 3186 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3187 pipe_config->limited_color_range = true; 3188 3189 pipe_config->lane_count = 3190 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3191 3192 intel_dp_get_m_n(crtc, pipe_config); 3193 3194 if (port == PORT_A) { 3195 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3196 pipe_config->port_clock = 162000; 3197 else 3198 pipe_config->port_clock = 270000; 3199 } 3200 3201 pipe_config->base.adjusted_mode.crtc_clock = 3202 intel_dotclock_calculate(pipe_config->port_clock, 3203 &pipe_config->dp_m_n); 3204 3205 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3206 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3207 /* 3208 * This is a big fat ugly hack. 3209 * 3210 * Some machines in UEFI boot mode provide us a VBT that has 18 3211 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3212 * unknown we fail to light up. Yet the same BIOS boots up with 3213 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3214 * max, not what it tells us to use. 3215 * 3216 * Note: This will still be broken if the eDP panel is not lit 3217 * up by the BIOS, and thus we can't get the mode at module 3218 * load. 3219 */ 3220 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3221 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3222 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3223 } 3224 } 3225 3226 static void intel_disable_dp(struct intel_encoder *encoder, 3227 const struct intel_crtc_state *old_crtc_state, 3228 const struct drm_connector_state *old_conn_state) 3229 { 3230 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3231 3232 intel_dp->link_trained = false; 3233 3234 if (old_crtc_state->has_audio) 3235 intel_audio_codec_disable(encoder, 3236 old_crtc_state, old_conn_state); 3237 3238 /* Make sure the panel is off before trying to change the mode. But also 3239 * ensure that we have vdd while we switch off the panel. */ 3240 intel_edp_panel_vdd_on(intel_dp); 3241 intel_edp_backlight_off(old_conn_state); 3242 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3243 intel_edp_panel_off(intel_dp); 3244 } 3245 3246 static void g4x_disable_dp(struct intel_encoder *encoder, 3247 const struct intel_crtc_state *old_crtc_state, 3248 const struct drm_connector_state *old_conn_state) 3249 { 3250 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3251 } 3252 3253 static void vlv_disable_dp(struct intel_encoder *encoder, 3254 const struct intel_crtc_state *old_crtc_state, 3255 const struct drm_connector_state *old_conn_state) 3256 { 3257 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3258 } 3259 3260 static void g4x_post_disable_dp(struct intel_encoder *encoder, 3261 const struct intel_crtc_state *old_crtc_state, 3262 const struct drm_connector_state *old_conn_state) 3263 { 3264 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3265 enum port port = encoder->port; 3266 3267 /* 3268 * Bspec does not list a specific disable sequence for g4x DP. 3269 * Follow the ilk+ sequence (disable pipe before the port) for 3270 * g4x DP as it does not suffer from underruns like the normal 3271 * g4x modeset sequence (disable pipe after the port). 3272 */ 3273 intel_dp_link_down(encoder, old_crtc_state); 3274 3275 /* Only ilk+ has port A */ 3276 if (port == PORT_A) 3277 ironlake_edp_pll_off(intel_dp, old_crtc_state); 3278 } 3279 3280 static void vlv_post_disable_dp(struct intel_encoder *encoder, 3281 const struct intel_crtc_state *old_crtc_state, 3282 const struct drm_connector_state *old_conn_state) 3283 { 3284 intel_dp_link_down(encoder, old_crtc_state); 3285 } 3286 3287 static void chv_post_disable_dp(struct intel_encoder *encoder, 3288 const struct intel_crtc_state *old_crtc_state, 3289 const struct drm_connector_state *old_conn_state) 3290 { 3291 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3292 3293 intel_dp_link_down(encoder, old_crtc_state); 3294 3295 vlv_dpio_get(dev_priv); 3296 3297 /* Assert data lane reset */ 3298 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3299 3300 vlv_dpio_put(dev_priv); 3301 } 3302 3303 static void 3304 _intel_dp_set_link_train(struct intel_dp *intel_dp, 3305 u32 *DP, 3306 u8 dp_train_pat) 3307 { 3308 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3309 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3310 enum port port = intel_dig_port->base.port; 3311 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 3312 3313 if (dp_train_pat & train_pat_mask) 3314 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n", 3315 dp_train_pat & train_pat_mask); 3316 3317 if (HAS_DDI(dev_priv)) { 3318 u32 temp = I915_READ(DP_TP_CTL(port)); 3319 3320 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) 3321 temp |= DP_TP_CTL_SCRAMBLE_DISABLE; 3322 else 3323 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; 3324 3325 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3326 switch (dp_train_pat & train_pat_mask) { 3327 case DP_TRAINING_PATTERN_DISABLE: 3328 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; 3329 3330 break; 3331 case DP_TRAINING_PATTERN_1: 3332 temp |= DP_TP_CTL_LINK_TRAIN_PAT1; 3333 break; 3334 case DP_TRAINING_PATTERN_2: 3335 temp |= DP_TP_CTL_LINK_TRAIN_PAT2; 3336 break; 3337 case DP_TRAINING_PATTERN_3: 3338 temp |= DP_TP_CTL_LINK_TRAIN_PAT3; 3339 break; 3340 case DP_TRAINING_PATTERN_4: 3341 temp |= DP_TP_CTL_LINK_TRAIN_PAT4; 3342 break; 3343 } 3344 I915_WRITE(DP_TP_CTL(port), temp); 3345 3346 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3347 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3348 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3349 3350 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3351 case DP_TRAINING_PATTERN_DISABLE: 3352 *DP |= DP_LINK_TRAIN_OFF_CPT; 3353 break; 3354 case DP_TRAINING_PATTERN_1: 3355 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3356 break; 3357 case DP_TRAINING_PATTERN_2: 3358 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3359 break; 3360 case DP_TRAINING_PATTERN_3: 3361 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3362 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3363 break; 3364 } 3365 3366 } else { 3367 *DP &= ~DP_LINK_TRAIN_MASK; 3368 3369 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3370 case DP_TRAINING_PATTERN_DISABLE: 3371 *DP |= DP_LINK_TRAIN_OFF; 3372 break; 3373 case DP_TRAINING_PATTERN_1: 3374 *DP |= DP_LINK_TRAIN_PAT_1; 3375 break; 3376 case DP_TRAINING_PATTERN_2: 3377 *DP |= DP_LINK_TRAIN_PAT_2; 3378 break; 3379 case DP_TRAINING_PATTERN_3: 3380 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3381 *DP |= DP_LINK_TRAIN_PAT_2; 3382 break; 3383 } 3384 } 3385 } 3386 3387 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3388 const struct intel_crtc_state *old_crtc_state) 3389 { 3390 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3391 3392 /* enable with pattern 1 (as per spec) */ 3393 3394 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3395 3396 /* 3397 * Magic for VLV/CHV. We _must_ first set up the register 3398 * without actually enabling the port, and then do another 3399 * write to enable the port. Otherwise link training will 3400 * fail when the power sequencer is freshly used for this port. 3401 */ 3402 intel_dp->DP |= DP_PORT_EN; 3403 if (old_crtc_state->has_audio) 3404 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3405 3406 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3407 POSTING_READ(intel_dp->output_reg); 3408 } 3409 3410 static void intel_enable_dp(struct intel_encoder *encoder, 3411 const struct intel_crtc_state *pipe_config, 3412 const struct drm_connector_state *conn_state) 3413 { 3414 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3415 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3416 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3417 u32 dp_reg = I915_READ(intel_dp->output_reg); 3418 enum pipe pipe = crtc->pipe; 3419 intel_wakeref_t wakeref; 3420 3421 if (WARN_ON(dp_reg & DP_PORT_EN)) 3422 return; 3423 3424 with_pps_lock(intel_dp, wakeref) { 3425 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3426 vlv_init_panel_power_sequencer(encoder, pipe_config); 3427 3428 intel_dp_enable_port(intel_dp, pipe_config); 3429 3430 edp_panel_vdd_on(intel_dp); 3431 edp_panel_on(intel_dp); 3432 edp_panel_vdd_off(intel_dp, true); 3433 } 3434 3435 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3436 unsigned int lane_mask = 0x0; 3437 3438 if (IS_CHERRYVIEW(dev_priv)) 3439 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3440 3441 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3442 lane_mask); 3443 } 3444 3445 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3446 intel_dp_start_link_train(intel_dp); 3447 intel_dp_stop_link_train(intel_dp); 3448 3449 if (pipe_config->has_audio) { 3450 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", 3451 pipe_name(pipe)); 3452 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3453 } 3454 } 3455 3456 static void g4x_enable_dp(struct intel_encoder *encoder, 3457 const struct intel_crtc_state *pipe_config, 3458 const struct drm_connector_state *conn_state) 3459 { 3460 intel_enable_dp(encoder, pipe_config, conn_state); 3461 intel_edp_backlight_on(pipe_config, conn_state); 3462 } 3463 3464 static void vlv_enable_dp(struct intel_encoder *encoder, 3465 const struct intel_crtc_state *pipe_config, 3466 const struct drm_connector_state *conn_state) 3467 { 3468 intel_edp_backlight_on(pipe_config, conn_state); 3469 } 3470 3471 static void g4x_pre_enable_dp(struct intel_encoder *encoder, 3472 const struct intel_crtc_state *pipe_config, 3473 const struct drm_connector_state *conn_state) 3474 { 3475 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3476 enum port port = encoder->port; 3477 3478 intel_dp_prepare(encoder, pipe_config); 3479 3480 /* Only ilk+ has port A */ 3481 if (port == PORT_A) 3482 ironlake_edp_pll_on(intel_dp, pipe_config); 3483 } 3484 3485 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3486 { 3487 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3488 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3489 enum pipe pipe = intel_dp->pps_pipe; 3490 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3491 3492 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3493 3494 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) 3495 return; 3496 3497 edp_panel_vdd_off_sync(intel_dp); 3498 3499 /* 3500 * VLV seems to get confused when multiple power sequencers 3501 * have the same port selected (even if only one has power/vdd 3502 * enabled). The failure manifests as vlv_wait_port_ready() failing 3503 * CHV on the other hand doesn't seem to mind having the same port 3504 * selected in multiple power sequencers, but let's clear the 3505 * port select always when logically disconnecting a power sequencer 3506 * from a port. 3507 */ 3508 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n", 3509 pipe_name(pipe), port_name(intel_dig_port->base.port)); 3510 I915_WRITE(pp_on_reg, 0); 3511 POSTING_READ(pp_on_reg); 3512 3513 intel_dp->pps_pipe = INVALID_PIPE; 3514 } 3515 3516 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3517 enum pipe pipe) 3518 { 3519 struct intel_encoder *encoder; 3520 3521 lockdep_assert_held(&dev_priv->pps_mutex); 3522 3523 for_each_intel_dp(&dev_priv->drm, encoder) { 3524 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3525 enum port port = encoder->port; 3526 3527 WARN(intel_dp->active_pipe == pipe, 3528 "stealing pipe %c power sequencer from active (e)DP port %c\n", 3529 pipe_name(pipe), port_name(port)); 3530 3531 if (intel_dp->pps_pipe != pipe) 3532 continue; 3533 3534 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n", 3535 pipe_name(pipe), port_name(port)); 3536 3537 /* make sure vdd is off before we steal it */ 3538 vlv_detach_power_sequencer(intel_dp); 3539 } 3540 } 3541 3542 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3543 const struct intel_crtc_state *crtc_state) 3544 { 3545 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3546 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3547 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 3548 3549 lockdep_assert_held(&dev_priv->pps_mutex); 3550 3551 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3552 3553 if (intel_dp->pps_pipe != INVALID_PIPE && 3554 intel_dp->pps_pipe != crtc->pipe) { 3555 /* 3556 * If another power sequencer was being used on this 3557 * port previously make sure to turn off vdd there while 3558 * we still have control of it. 3559 */ 3560 vlv_detach_power_sequencer(intel_dp); 3561 } 3562 3563 /* 3564 * We may be stealing the power 3565 * sequencer from another port. 3566 */ 3567 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3568 3569 intel_dp->active_pipe = crtc->pipe; 3570 3571 if (!intel_dp_is_edp(intel_dp)) 3572 return; 3573 3574 /* now it's all ours */ 3575 intel_dp->pps_pipe = crtc->pipe; 3576 3577 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n", 3578 pipe_name(intel_dp->pps_pipe), port_name(encoder->port)); 3579 3580 /* init power sequencer on this pipe and port */ 3581 intel_dp_init_panel_power_sequencer(intel_dp); 3582 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3583 } 3584 3585 static void vlv_pre_enable_dp(struct intel_encoder *encoder, 3586 const struct intel_crtc_state *pipe_config, 3587 const struct drm_connector_state *conn_state) 3588 { 3589 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3590 3591 intel_enable_dp(encoder, pipe_config, conn_state); 3592 } 3593 3594 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, 3595 const struct intel_crtc_state *pipe_config, 3596 const struct drm_connector_state *conn_state) 3597 { 3598 intel_dp_prepare(encoder, pipe_config); 3599 3600 vlv_phy_pre_pll_enable(encoder, pipe_config); 3601 } 3602 3603 static void chv_pre_enable_dp(struct intel_encoder *encoder, 3604 const struct intel_crtc_state *pipe_config, 3605 const struct drm_connector_state *conn_state) 3606 { 3607 chv_phy_pre_encoder_enable(encoder, pipe_config); 3608 3609 intel_enable_dp(encoder, pipe_config, conn_state); 3610 3611 /* Second common lane will stay alive on its own now */ 3612 chv_phy_release_cl2_override(encoder); 3613 } 3614 3615 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, 3616 const struct intel_crtc_state *pipe_config, 3617 const struct drm_connector_state *conn_state) 3618 { 3619 intel_dp_prepare(encoder, pipe_config); 3620 3621 chv_phy_pre_pll_enable(encoder, pipe_config); 3622 } 3623 3624 static void chv_dp_post_pll_disable(struct intel_encoder *encoder, 3625 const struct intel_crtc_state *old_crtc_state, 3626 const struct drm_connector_state *old_conn_state) 3627 { 3628 chv_phy_post_pll_disable(encoder, old_crtc_state); 3629 } 3630 3631 /* 3632 * Fetch AUX CH registers 0x202 - 0x207 which contain 3633 * link status information 3634 */ 3635 bool 3636 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3637 { 3638 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 3639 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 3640 } 3641 3642 /* These are source-specific values. */ 3643 u8 3644 intel_dp_voltage_max(struct intel_dp *intel_dp) 3645 { 3646 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3647 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3648 enum port port = encoder->port; 3649 3650 if (HAS_DDI(dev_priv)) 3651 return intel_ddi_dp_voltage_max(encoder); 3652 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3653 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3654 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3655 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3656 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3657 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3658 else 3659 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3660 } 3661 3662 u8 3663 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) 3664 { 3665 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3666 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3667 enum port port = encoder->port; 3668 3669 if (HAS_DDI(dev_priv)) { 3670 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); 3671 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3672 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3673 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3674 return DP_TRAIN_PRE_EMPH_LEVEL_3; 3675 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3676 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3677 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3678 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3679 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3680 default: 3681 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3682 } 3683 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3684 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3685 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3686 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3687 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3688 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3689 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3690 default: 3691 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3692 } 3693 } else { 3694 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3695 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3696 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3697 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3698 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3699 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3700 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3701 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3702 default: 3703 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3704 } 3705 } 3706 } 3707 3708 static u32 vlv_signal_levels(struct intel_dp *intel_dp) 3709 { 3710 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3711 unsigned long demph_reg_value, preemph_reg_value, 3712 uniqtranscale_reg_value; 3713 u8 train_set = intel_dp->train_set[0]; 3714 3715 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3716 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3717 preemph_reg_value = 0x0004000; 3718 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3719 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3720 demph_reg_value = 0x2B405555; 3721 uniqtranscale_reg_value = 0x552AB83A; 3722 break; 3723 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3724 demph_reg_value = 0x2B404040; 3725 uniqtranscale_reg_value = 0x5548B83A; 3726 break; 3727 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3728 demph_reg_value = 0x2B245555; 3729 uniqtranscale_reg_value = 0x5560B83A; 3730 break; 3731 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3732 demph_reg_value = 0x2B405555; 3733 uniqtranscale_reg_value = 0x5598DA3A; 3734 break; 3735 default: 3736 return 0; 3737 } 3738 break; 3739 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3740 preemph_reg_value = 0x0002000; 3741 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3742 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3743 demph_reg_value = 0x2B404040; 3744 uniqtranscale_reg_value = 0x5552B83A; 3745 break; 3746 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3747 demph_reg_value = 0x2B404848; 3748 uniqtranscale_reg_value = 0x5580B83A; 3749 break; 3750 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3751 demph_reg_value = 0x2B404040; 3752 uniqtranscale_reg_value = 0x55ADDA3A; 3753 break; 3754 default: 3755 return 0; 3756 } 3757 break; 3758 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3759 preemph_reg_value = 0x0000000; 3760 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3761 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3762 demph_reg_value = 0x2B305555; 3763 uniqtranscale_reg_value = 0x5570B83A; 3764 break; 3765 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3766 demph_reg_value = 0x2B2B4040; 3767 uniqtranscale_reg_value = 0x55ADDA3A; 3768 break; 3769 default: 3770 return 0; 3771 } 3772 break; 3773 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3774 preemph_reg_value = 0x0006000; 3775 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3776 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3777 demph_reg_value = 0x1B405555; 3778 uniqtranscale_reg_value = 0x55ADDA3A; 3779 break; 3780 default: 3781 return 0; 3782 } 3783 break; 3784 default: 3785 return 0; 3786 } 3787 3788 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 3789 uniqtranscale_reg_value, 0); 3790 3791 return 0; 3792 } 3793 3794 static u32 chv_signal_levels(struct intel_dp *intel_dp) 3795 { 3796 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3797 u32 deemph_reg_value, margin_reg_value; 3798 bool uniq_trans_scale = false; 3799 u8 train_set = intel_dp->train_set[0]; 3800 3801 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3802 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3803 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3804 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3805 deemph_reg_value = 128; 3806 margin_reg_value = 52; 3807 break; 3808 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3809 deemph_reg_value = 128; 3810 margin_reg_value = 77; 3811 break; 3812 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3813 deemph_reg_value = 128; 3814 margin_reg_value = 102; 3815 break; 3816 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3817 deemph_reg_value = 128; 3818 margin_reg_value = 154; 3819 uniq_trans_scale = true; 3820 break; 3821 default: 3822 return 0; 3823 } 3824 break; 3825 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3826 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3827 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3828 deemph_reg_value = 85; 3829 margin_reg_value = 78; 3830 break; 3831 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3832 deemph_reg_value = 85; 3833 margin_reg_value = 116; 3834 break; 3835 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3836 deemph_reg_value = 85; 3837 margin_reg_value = 154; 3838 break; 3839 default: 3840 return 0; 3841 } 3842 break; 3843 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3844 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3845 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3846 deemph_reg_value = 64; 3847 margin_reg_value = 104; 3848 break; 3849 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3850 deemph_reg_value = 64; 3851 margin_reg_value = 154; 3852 break; 3853 default: 3854 return 0; 3855 } 3856 break; 3857 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3858 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3859 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3860 deemph_reg_value = 43; 3861 margin_reg_value = 154; 3862 break; 3863 default: 3864 return 0; 3865 } 3866 break; 3867 default: 3868 return 0; 3869 } 3870 3871 chv_set_phy_signal_level(encoder, deemph_reg_value, 3872 margin_reg_value, uniq_trans_scale); 3873 3874 return 0; 3875 } 3876 3877 static u32 3878 g4x_signal_levels(u8 train_set) 3879 { 3880 u32 signal_levels = 0; 3881 3882 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3883 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3884 default: 3885 signal_levels |= DP_VOLTAGE_0_4; 3886 break; 3887 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3888 signal_levels |= DP_VOLTAGE_0_6; 3889 break; 3890 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3891 signal_levels |= DP_VOLTAGE_0_8; 3892 break; 3893 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3894 signal_levels |= DP_VOLTAGE_1_2; 3895 break; 3896 } 3897 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3898 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3899 default: 3900 signal_levels |= DP_PRE_EMPHASIS_0; 3901 break; 3902 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3903 signal_levels |= DP_PRE_EMPHASIS_3_5; 3904 break; 3905 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3906 signal_levels |= DP_PRE_EMPHASIS_6; 3907 break; 3908 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3909 signal_levels |= DP_PRE_EMPHASIS_9_5; 3910 break; 3911 } 3912 return signal_levels; 3913 } 3914 3915 /* SNB CPU eDP voltage swing and pre-emphasis control */ 3916 static u32 3917 snb_cpu_edp_signal_levels(u8 train_set) 3918 { 3919 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 3920 DP_TRAIN_PRE_EMPHASIS_MASK); 3921 switch (signal_levels) { 3922 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3923 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3924 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 3925 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3926 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 3927 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3928 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3929 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 3930 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3931 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3932 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 3933 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3934 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3935 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 3936 default: 3937 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 3938 "0x%x\n", signal_levels); 3939 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 3940 } 3941 } 3942 3943 /* IVB CPU eDP voltage swing and pre-emphasis control */ 3944 static u32 3945 ivb_cpu_edp_signal_levels(u8 train_set) 3946 { 3947 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 3948 DP_TRAIN_PRE_EMPHASIS_MASK); 3949 switch (signal_levels) { 3950 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3951 return EDP_LINK_TRAIN_400MV_0DB_IVB; 3952 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3953 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 3954 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3955 return EDP_LINK_TRAIN_400MV_6DB_IVB; 3956 3957 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3958 return EDP_LINK_TRAIN_600MV_0DB_IVB; 3959 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3960 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 3961 3962 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3963 return EDP_LINK_TRAIN_800MV_0DB_IVB; 3964 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3965 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 3966 3967 default: 3968 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 3969 "0x%x\n", signal_levels); 3970 return EDP_LINK_TRAIN_500MV_0DB_IVB; 3971 } 3972 } 3973 3974 void 3975 intel_dp_set_signal_levels(struct intel_dp *intel_dp) 3976 { 3977 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3978 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3979 enum port port = intel_dig_port->base.port; 3980 u32 signal_levels, mask = 0; 3981 u8 train_set = intel_dp->train_set[0]; 3982 3983 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) { 3984 signal_levels = bxt_signal_levels(intel_dp); 3985 } else if (HAS_DDI(dev_priv)) { 3986 signal_levels = ddi_signal_levels(intel_dp); 3987 mask = DDI_BUF_EMP_MASK; 3988 } else if (IS_CHERRYVIEW(dev_priv)) { 3989 signal_levels = chv_signal_levels(intel_dp); 3990 } else if (IS_VALLEYVIEW(dev_priv)) { 3991 signal_levels = vlv_signal_levels(intel_dp); 3992 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3993 signal_levels = ivb_cpu_edp_signal_levels(train_set); 3994 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 3995 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) { 3996 signal_levels = snb_cpu_edp_signal_levels(train_set); 3997 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 3998 } else { 3999 signal_levels = g4x_signal_levels(train_set); 4000 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; 4001 } 4002 4003 if (mask) 4004 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); 4005 4006 DRM_DEBUG_KMS("Using vswing level %d\n", 4007 train_set & DP_TRAIN_VOLTAGE_SWING_MASK); 4008 DRM_DEBUG_KMS("Using pre-emphasis level %d\n", 4009 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4010 DP_TRAIN_PRE_EMPHASIS_SHIFT); 4011 4012 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; 4013 4014 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4015 POSTING_READ(intel_dp->output_reg); 4016 } 4017 4018 void 4019 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4020 u8 dp_train_pat) 4021 { 4022 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4023 struct drm_i915_private *dev_priv = 4024 to_i915(intel_dig_port->base.base.dev); 4025 4026 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); 4027 4028 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4029 POSTING_READ(intel_dp->output_reg); 4030 } 4031 4032 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 4033 { 4034 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4035 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4036 enum port port = intel_dig_port->base.port; 4037 u32 val; 4038 4039 if (!HAS_DDI(dev_priv)) 4040 return; 4041 4042 val = I915_READ(DP_TP_CTL(port)); 4043 val &= ~DP_TP_CTL_LINK_TRAIN_MASK; 4044 val |= DP_TP_CTL_LINK_TRAIN_IDLE; 4045 I915_WRITE(DP_TP_CTL(port), val); 4046 4047 /* 4048 * On PORT_A we can have only eDP in SST mode. There the only reason 4049 * we need to set idle transmission mode is to work around a HW issue 4050 * where we enable the pipe while not in idle link-training mode. 4051 * In this case there is requirement to wait for a minimum number of 4052 * idle patterns to be sent. 4053 */ 4054 if (port == PORT_A) 4055 return; 4056 4057 if (intel_de_wait_for_set(dev_priv, DP_TP_STATUS(port), 4058 DP_TP_STATUS_IDLE_DONE, 1)) 4059 DRM_ERROR("Timed out waiting for DP idle patterns\n"); 4060 } 4061 4062 static void 4063 intel_dp_link_down(struct intel_encoder *encoder, 4064 const struct intel_crtc_state *old_crtc_state) 4065 { 4066 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4067 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 4068 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 4069 enum port port = encoder->port; 4070 u32 DP = intel_dp->DP; 4071 4072 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) 4073 return; 4074 4075 DRM_DEBUG_KMS("\n"); 4076 4077 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4078 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4079 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4080 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4081 } else { 4082 DP &= ~DP_LINK_TRAIN_MASK; 4083 DP |= DP_LINK_TRAIN_PAT_IDLE; 4084 } 4085 I915_WRITE(intel_dp->output_reg, DP); 4086 POSTING_READ(intel_dp->output_reg); 4087 4088 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4089 I915_WRITE(intel_dp->output_reg, DP); 4090 POSTING_READ(intel_dp->output_reg); 4091 4092 /* 4093 * HW workaround for IBX, we need to move the port 4094 * to transcoder A after disabling it to allow the 4095 * matching HDMI port to be enabled on transcoder A. 4096 */ 4097 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4098 /* 4099 * We get CPU/PCH FIFO underruns on the other pipe when 4100 * doing the workaround. Sweep them under the rug. 4101 */ 4102 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4103 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4104 4105 /* always enable with pattern 1 (as per spec) */ 4106 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4107 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4108 DP_LINK_TRAIN_PAT_1; 4109 I915_WRITE(intel_dp->output_reg, DP); 4110 POSTING_READ(intel_dp->output_reg); 4111 4112 DP &= ~DP_PORT_EN; 4113 I915_WRITE(intel_dp->output_reg, DP); 4114 POSTING_READ(intel_dp->output_reg); 4115 4116 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4117 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4118 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4119 } 4120 4121 msleep(intel_dp->panel_power_down_delay); 4122 4123 intel_dp->DP = DP; 4124 4125 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4126 intel_wakeref_t wakeref; 4127 4128 with_pps_lock(intel_dp, wakeref) 4129 intel_dp->active_pipe = INVALID_PIPE; 4130 } 4131 } 4132 4133 static void 4134 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4135 { 4136 u8 dpcd_ext[6]; 4137 4138 /* 4139 * Prior to DP1.3 the bit represented by 4140 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4141 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4142 * the true capability of the panel. The only way to check is to 4143 * then compare 0000h and 2200h. 4144 */ 4145 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4146 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4147 return; 4148 4149 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4150 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4151 DRM_ERROR("DPCD failed read at extended capabilities\n"); 4152 return; 4153 } 4154 4155 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4156 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n"); 4157 return; 4158 } 4159 4160 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4161 return; 4162 4163 DRM_DEBUG_KMS("Base DPCD: %*ph\n", 4164 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4165 4166 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4167 } 4168 4169 bool 4170 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4171 { 4172 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4173 sizeof(intel_dp->dpcd)) < 0) 4174 return false; /* aux transfer failed */ 4175 4176 intel_dp_extended_receiver_capabilities(intel_dp); 4177 4178 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); 4179 4180 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4181 } 4182 4183 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4184 { 4185 u8 dprx = 0; 4186 4187 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4188 &dprx) != 1) 4189 return false; 4190 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4191 } 4192 4193 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4194 { 4195 /* 4196 * Clear the cached register set to avoid using stale values 4197 * for the sinks that do not support DSC. 4198 */ 4199 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4200 4201 /* Clear fec_capable to avoid using stale values */ 4202 intel_dp->fec_capable = 0; 4203 4204 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4205 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4206 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4207 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4208 intel_dp->dsc_dpcd, 4209 sizeof(intel_dp->dsc_dpcd)) < 0) 4210 DRM_ERROR("Failed to read DPCD register 0x%x\n", 4211 DP_DSC_SUPPORT); 4212 4213 DRM_DEBUG_KMS("DSC DPCD: %*ph\n", 4214 (int)sizeof(intel_dp->dsc_dpcd), 4215 intel_dp->dsc_dpcd); 4216 4217 /* FEC is supported only on DP 1.4 */ 4218 if (!intel_dp_is_edp(intel_dp) && 4219 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4220 &intel_dp->fec_capable) < 0) 4221 DRM_ERROR("Failed to read FEC DPCD register\n"); 4222 4223 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable); 4224 } 4225 } 4226 4227 static bool 4228 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4229 { 4230 struct drm_i915_private *dev_priv = 4231 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4232 4233 /* this function is meant to be called only once */ 4234 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0); 4235 4236 if (!intel_dp_read_dpcd(intel_dp)) 4237 return false; 4238 4239 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4240 drm_dp_is_branch(intel_dp->dpcd)); 4241 4242 /* 4243 * Read the eDP display control registers. 4244 * 4245 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4246 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4247 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4248 * method). The display control registers should read zero if they're 4249 * not supported anyway. 4250 */ 4251 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4252 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4253 sizeof(intel_dp->edp_dpcd)) 4254 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd), 4255 intel_dp->edp_dpcd); 4256 4257 /* 4258 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4259 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4260 */ 4261 intel_psr_init_dpcd(intel_dp); 4262 4263 /* Read the eDP 1.4+ supported link rates. */ 4264 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4265 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4266 int i; 4267 4268 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4269 sink_rates, sizeof(sink_rates)); 4270 4271 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4272 int val = le16_to_cpu(sink_rates[i]); 4273 4274 if (val == 0) 4275 break; 4276 4277 /* Value read multiplied by 200kHz gives the per-lane 4278 * link rate in kHz. The source rates are, however, 4279 * stored in terms of LS_Clk kHz. The full conversion 4280 * back to symbols is 4281 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4282 */ 4283 intel_dp->sink_rates[i] = (val * 200) / 10; 4284 } 4285 intel_dp->num_sink_rates = i; 4286 } 4287 4288 /* 4289 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4290 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4291 */ 4292 if (intel_dp->num_sink_rates) 4293 intel_dp->use_rate_select = true; 4294 else 4295 intel_dp_set_sink_rates(intel_dp); 4296 4297 intel_dp_set_common_rates(intel_dp); 4298 4299 /* Read the eDP DSC DPCD registers */ 4300 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4301 intel_dp_get_dsc_sink_cap(intel_dp); 4302 4303 return true; 4304 } 4305 4306 4307 static bool 4308 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4309 { 4310 if (!intel_dp_read_dpcd(intel_dp)) 4311 return false; 4312 4313 /* 4314 * Don't clobber cached eDP rates. Also skip re-reading 4315 * the OUI/ID since we know it won't change. 4316 */ 4317 if (!intel_dp_is_edp(intel_dp)) { 4318 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4319 drm_dp_is_branch(intel_dp->dpcd)); 4320 4321 intel_dp_set_sink_rates(intel_dp); 4322 intel_dp_set_common_rates(intel_dp); 4323 } 4324 4325 /* 4326 * Some eDP panels do not set a valid value for sink count, that is why 4327 * it don't care about read it here and in intel_edp_init_dpcd(). 4328 */ 4329 if (!intel_dp_is_edp(intel_dp) && 4330 !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) { 4331 u8 count; 4332 ssize_t r; 4333 4334 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4335 if (r < 1) 4336 return false; 4337 4338 /* 4339 * Sink count can change between short pulse hpd hence 4340 * a member variable in intel_dp will track any changes 4341 * between short pulse interrupts. 4342 */ 4343 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4344 4345 /* 4346 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4347 * a dongle is present but no display. Unless we require to know 4348 * if a dongle is present or not, we don't need to update 4349 * downstream port information. So, an early return here saves 4350 * time from performing other operations which are not required. 4351 */ 4352 if (!intel_dp->sink_count) 4353 return false; 4354 } 4355 4356 if (!drm_dp_is_branch(intel_dp->dpcd)) 4357 return true; /* native DP sink */ 4358 4359 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4360 return true; /* no per-port downstream info */ 4361 4362 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4363 intel_dp->downstream_ports, 4364 DP_MAX_DOWNSTREAM_PORTS) < 0) 4365 return false; /* downstream port status fetch failed */ 4366 4367 return true; 4368 } 4369 4370 static bool 4371 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4372 { 4373 u8 mstm_cap; 4374 4375 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4376 return false; 4377 4378 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4379 return false; 4380 4381 return mstm_cap & DP_MST_CAP; 4382 } 4383 4384 static bool 4385 intel_dp_can_mst(struct intel_dp *intel_dp) 4386 { 4387 return i915_modparams.enable_dp_mst && 4388 intel_dp->can_mst && 4389 intel_dp_sink_can_mst(intel_dp); 4390 } 4391 4392 static void 4393 intel_dp_configure_mst(struct intel_dp *intel_dp) 4394 { 4395 struct intel_encoder *encoder = 4396 &dp_to_dig_port(intel_dp)->base; 4397 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4398 4399 DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n", 4400 port_name(encoder->port), yesno(intel_dp->can_mst), 4401 yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst)); 4402 4403 if (!intel_dp->can_mst) 4404 return; 4405 4406 intel_dp->is_mst = sink_can_mst && 4407 i915_modparams.enable_dp_mst; 4408 4409 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4410 intel_dp->is_mst); 4411 } 4412 4413 static bool 4414 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4415 { 4416 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4417 sink_irq_vector, DP_DPRX_ESI_LEN) == 4418 DP_DPRX_ESI_LEN; 4419 } 4420 4421 static void 4422 intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp, 4423 const struct intel_crtc_state *crtc_state) 4424 { 4425 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4426 struct dp_sdp vsc_sdp = {}; 4427 4428 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */ 4429 vsc_sdp.sdp_header.HB0 = 0; 4430 vsc_sdp.sdp_header.HB1 = 0x7; 4431 4432 /* 4433 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 4434 * Colorimetry Format indication. 4435 */ 4436 vsc_sdp.sdp_header.HB2 = 0x5; 4437 4438 /* 4439 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/ 4440 * Colorimetry Format indication (HB2 = 05h). 4441 */ 4442 vsc_sdp.sdp_header.HB3 = 0x13; 4443 4444 /* 4445 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h 4446 * DB16[3:0] DP 1.4a spec, Table 2-120 4447 */ 4448 vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/ 4449 /* RGB->YCBCR color conversion uses the BT.709 color space. */ 4450 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */ 4451 4452 /* 4453 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only, 4454 * the following Component Bit Depth values are defined: 4455 * 001b = 8bpc. 4456 * 010b = 10bpc. 4457 * 011b = 12bpc. 4458 * 100b = 16bpc. 4459 */ 4460 switch (crtc_state->pipe_bpp) { 4461 case 24: /* 8bpc */ 4462 vsc_sdp.db[17] = 0x1; 4463 break; 4464 case 30: /* 10bpc */ 4465 vsc_sdp.db[17] = 0x2; 4466 break; 4467 case 36: /* 12bpc */ 4468 vsc_sdp.db[17] = 0x3; 4469 break; 4470 case 48: /* 16bpc */ 4471 vsc_sdp.db[17] = 0x4; 4472 break; 4473 default: 4474 MISSING_CASE(crtc_state->pipe_bpp); 4475 break; 4476 } 4477 4478 /* 4479 * Dynamic Range (Bit 7) 4480 * 0 = VESA range, 1 = CTA range. 4481 * all YCbCr are always limited range 4482 */ 4483 vsc_sdp.db[17] |= 0x80; 4484 4485 /* 4486 * Content Type (Bits 2:0) 4487 * 000b = Not defined. 4488 * 001b = Graphics. 4489 * 010b = Photo. 4490 * 011b = Video. 4491 * 100b = Game 4492 * All other values are RESERVED. 4493 * Note: See CTA-861-G for the definition and expected 4494 * processing by a stream sink for the above contect types. 4495 */ 4496 vsc_sdp.db[18] = 0; 4497 4498 intel_dig_port->write_infoframe(&intel_dig_port->base, 4499 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp)); 4500 } 4501 4502 void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp, 4503 const struct intel_crtc_state *crtc_state) 4504 { 4505 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420) 4506 return; 4507 4508 intel_pixel_encoding_setup_vsc(intel_dp, crtc_state); 4509 } 4510 4511 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 4512 { 4513 int status = 0; 4514 int test_link_rate; 4515 u8 test_lane_count, test_link_bw; 4516 /* (DP CTS 1.2) 4517 * 4.3.1.11 4518 */ 4519 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 4520 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 4521 &test_lane_count); 4522 4523 if (status <= 0) { 4524 DRM_DEBUG_KMS("Lane count read failed\n"); 4525 return DP_TEST_NAK; 4526 } 4527 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 4528 4529 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 4530 &test_link_bw); 4531 if (status <= 0) { 4532 DRM_DEBUG_KMS("Link Rate read failed\n"); 4533 return DP_TEST_NAK; 4534 } 4535 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 4536 4537 /* Validate the requested link rate and lane count */ 4538 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 4539 test_lane_count)) 4540 return DP_TEST_NAK; 4541 4542 intel_dp->compliance.test_lane_count = test_lane_count; 4543 intel_dp->compliance.test_link_rate = test_link_rate; 4544 4545 return DP_TEST_ACK; 4546 } 4547 4548 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 4549 { 4550 u8 test_pattern; 4551 u8 test_misc; 4552 __be16 h_width, v_height; 4553 int status = 0; 4554 4555 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 4556 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 4557 &test_pattern); 4558 if (status <= 0) { 4559 DRM_DEBUG_KMS("Test pattern read failed\n"); 4560 return DP_TEST_NAK; 4561 } 4562 if (test_pattern != DP_COLOR_RAMP) 4563 return DP_TEST_NAK; 4564 4565 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 4566 &h_width, 2); 4567 if (status <= 0) { 4568 DRM_DEBUG_KMS("H Width read failed\n"); 4569 return DP_TEST_NAK; 4570 } 4571 4572 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 4573 &v_height, 2); 4574 if (status <= 0) { 4575 DRM_DEBUG_KMS("V Height read failed\n"); 4576 return DP_TEST_NAK; 4577 } 4578 4579 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 4580 &test_misc); 4581 if (status <= 0) { 4582 DRM_DEBUG_KMS("TEST MISC read failed\n"); 4583 return DP_TEST_NAK; 4584 } 4585 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 4586 return DP_TEST_NAK; 4587 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 4588 return DP_TEST_NAK; 4589 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 4590 case DP_TEST_BIT_DEPTH_6: 4591 intel_dp->compliance.test_data.bpc = 6; 4592 break; 4593 case DP_TEST_BIT_DEPTH_8: 4594 intel_dp->compliance.test_data.bpc = 8; 4595 break; 4596 default: 4597 return DP_TEST_NAK; 4598 } 4599 4600 intel_dp->compliance.test_data.video_pattern = test_pattern; 4601 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 4602 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 4603 /* Set test active flag here so userspace doesn't interrupt things */ 4604 intel_dp->compliance.test_active = 1; 4605 4606 return DP_TEST_ACK; 4607 } 4608 4609 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 4610 { 4611 u8 test_result = DP_TEST_ACK; 4612 struct intel_connector *intel_connector = intel_dp->attached_connector; 4613 struct drm_connector *connector = &intel_connector->base; 4614 4615 if (intel_connector->detect_edid == NULL || 4616 connector->edid_corrupt || 4617 intel_dp->aux.i2c_defer_count > 6) { 4618 /* Check EDID read for NACKs, DEFERs and corruption 4619 * (DP CTS 1.2 Core r1.1) 4620 * 4.2.2.4 : Failed EDID read, I2C_NAK 4621 * 4.2.2.5 : Failed EDID read, I2C_DEFER 4622 * 4.2.2.6 : EDID corruption detected 4623 * Use failsafe mode for all cases 4624 */ 4625 if (intel_dp->aux.i2c_nack_count > 0 || 4626 intel_dp->aux.i2c_defer_count > 0) 4627 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", 4628 intel_dp->aux.i2c_nack_count, 4629 intel_dp->aux.i2c_defer_count); 4630 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 4631 } else { 4632 struct edid *block = intel_connector->detect_edid; 4633 4634 /* We have to write the checksum 4635 * of the last block read 4636 */ 4637 block += intel_connector->detect_edid->extensions; 4638 4639 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 4640 block->checksum) <= 0) 4641 DRM_DEBUG_KMS("Failed to write EDID checksum\n"); 4642 4643 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 4644 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 4645 } 4646 4647 /* Set test active flag here so userspace doesn't interrupt things */ 4648 intel_dp->compliance.test_active = 1; 4649 4650 return test_result; 4651 } 4652 4653 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 4654 { 4655 u8 test_result = DP_TEST_NAK; 4656 return test_result; 4657 } 4658 4659 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 4660 { 4661 u8 response = DP_TEST_NAK; 4662 u8 request = 0; 4663 int status; 4664 4665 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 4666 if (status <= 0) { 4667 DRM_DEBUG_KMS("Could not read test request from sink\n"); 4668 goto update_status; 4669 } 4670 4671 switch (request) { 4672 case DP_TEST_LINK_TRAINING: 4673 DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); 4674 response = intel_dp_autotest_link_training(intel_dp); 4675 break; 4676 case DP_TEST_LINK_VIDEO_PATTERN: 4677 DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); 4678 response = intel_dp_autotest_video_pattern(intel_dp); 4679 break; 4680 case DP_TEST_LINK_EDID_READ: 4681 DRM_DEBUG_KMS("EDID test requested\n"); 4682 response = intel_dp_autotest_edid(intel_dp); 4683 break; 4684 case DP_TEST_LINK_PHY_TEST_PATTERN: 4685 DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); 4686 response = intel_dp_autotest_phy_pattern(intel_dp); 4687 break; 4688 default: 4689 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); 4690 break; 4691 } 4692 4693 if (response & DP_TEST_ACK) 4694 intel_dp->compliance.test_type = request; 4695 4696 update_status: 4697 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 4698 if (status <= 0) 4699 DRM_DEBUG_KMS("Could not write test response to sink\n"); 4700 } 4701 4702 static int 4703 intel_dp_check_mst_status(struct intel_dp *intel_dp) 4704 { 4705 bool bret; 4706 4707 if (intel_dp->is_mst) { 4708 u8 esi[DP_DPRX_ESI_LEN] = { 0 }; 4709 int ret = 0; 4710 int retry; 4711 bool handled; 4712 4713 WARN_ON_ONCE(intel_dp->active_mst_links < 0); 4714 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4715 go_again: 4716 if (bret == true) { 4717 4718 /* check link status - esi[10] = 0x200c */ 4719 if (intel_dp->active_mst_links > 0 && 4720 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 4721 DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); 4722 intel_dp_start_link_train(intel_dp); 4723 intel_dp_stop_link_train(intel_dp); 4724 } 4725 4726 DRM_DEBUG_KMS("got esi %3ph\n", esi); 4727 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 4728 4729 if (handled) { 4730 for (retry = 0; retry < 3; retry++) { 4731 int wret; 4732 wret = drm_dp_dpcd_write(&intel_dp->aux, 4733 DP_SINK_COUNT_ESI+1, 4734 &esi[1], 3); 4735 if (wret == 3) { 4736 break; 4737 } 4738 } 4739 4740 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4741 if (bret == true) { 4742 DRM_DEBUG_KMS("got esi2 %3ph\n", esi); 4743 goto go_again; 4744 } 4745 } else 4746 ret = 0; 4747 4748 return ret; 4749 } else { 4750 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); 4751 intel_dp->is_mst = false; 4752 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4753 intel_dp->is_mst); 4754 } 4755 } 4756 return -EINVAL; 4757 } 4758 4759 static bool 4760 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 4761 { 4762 u8 link_status[DP_LINK_STATUS_SIZE]; 4763 4764 if (!intel_dp->link_trained) 4765 return false; 4766 4767 /* 4768 * While PSR source HW is enabled, it will control main-link sending 4769 * frames, enabling and disabling it so trying to do a retrain will fail 4770 * as the link would or not be on or it could mix training patterns 4771 * and frame data at the same time causing retrain to fail. 4772 * Also when exiting PSR, HW will retrain the link anyways fixing 4773 * any link status error. 4774 */ 4775 if (intel_psr_enabled(intel_dp)) 4776 return false; 4777 4778 if (!intel_dp_get_link_status(intel_dp, link_status)) 4779 return false; 4780 4781 /* 4782 * Validate the cached values of intel_dp->link_rate and 4783 * intel_dp->lane_count before attempting to retrain. 4784 */ 4785 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 4786 intel_dp->lane_count)) 4787 return false; 4788 4789 /* Retrain if Channel EQ or CR not ok */ 4790 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 4791 } 4792 4793 int intel_dp_retrain_link(struct intel_encoder *encoder, 4794 struct drm_modeset_acquire_ctx *ctx) 4795 { 4796 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4797 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 4798 struct intel_connector *connector = intel_dp->attached_connector; 4799 struct drm_connector_state *conn_state; 4800 struct intel_crtc_state *crtc_state; 4801 struct intel_crtc *crtc; 4802 int ret; 4803 4804 /* FIXME handle the MST connectors as well */ 4805 4806 if (!connector || connector->base.status != connector_status_connected) 4807 return 0; 4808 4809 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 4810 ctx); 4811 if (ret) 4812 return ret; 4813 4814 conn_state = connector->base.state; 4815 4816 crtc = to_intel_crtc(conn_state->crtc); 4817 if (!crtc) 4818 return 0; 4819 4820 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 4821 if (ret) 4822 return ret; 4823 4824 crtc_state = to_intel_crtc_state(crtc->base.state); 4825 4826 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state)); 4827 4828 if (!crtc_state->base.active) 4829 return 0; 4830 4831 if (conn_state->commit && 4832 !try_wait_for_completion(&conn_state->commit->hw_done)) 4833 return 0; 4834 4835 if (!intel_dp_needs_link_retrain(intel_dp)) 4836 return 0; 4837 4838 /* Suppress underruns caused by re-training */ 4839 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 4840 if (crtc_state->has_pch_encoder) 4841 intel_set_pch_fifo_underrun_reporting(dev_priv, 4842 intel_crtc_pch_transcoder(crtc), false); 4843 4844 intel_dp_start_link_train(intel_dp); 4845 intel_dp_stop_link_train(intel_dp); 4846 4847 /* Keep underrun reporting disabled until things are stable */ 4848 intel_wait_for_vblank(dev_priv, crtc->pipe); 4849 4850 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 4851 if (crtc_state->has_pch_encoder) 4852 intel_set_pch_fifo_underrun_reporting(dev_priv, 4853 intel_crtc_pch_transcoder(crtc), true); 4854 4855 return 0; 4856 } 4857 4858 /* 4859 * If display is now connected check links status, 4860 * there has been known issues of link loss triggering 4861 * long pulse. 4862 * 4863 * Some sinks (eg. ASUS PB287Q) seem to perform some 4864 * weird HPD ping pong during modesets. So we can apparently 4865 * end up with HPD going low during a modeset, and then 4866 * going back up soon after. And once that happens we must 4867 * retrain the link to get a picture. That's in case no 4868 * userspace component reacted to intermittent HPD dip. 4869 */ 4870 static enum intel_hotplug_state 4871 intel_dp_hotplug(struct intel_encoder *encoder, 4872 struct intel_connector *connector, 4873 bool irq_received) 4874 { 4875 struct drm_modeset_acquire_ctx ctx; 4876 enum intel_hotplug_state state; 4877 int ret; 4878 4879 state = intel_encoder_hotplug(encoder, connector, irq_received); 4880 4881 drm_modeset_acquire_init(&ctx, 0); 4882 4883 for (;;) { 4884 ret = intel_dp_retrain_link(encoder, &ctx); 4885 4886 if (ret == -EDEADLK) { 4887 drm_modeset_backoff(&ctx); 4888 continue; 4889 } 4890 4891 break; 4892 } 4893 4894 drm_modeset_drop_locks(&ctx); 4895 drm_modeset_acquire_fini(&ctx); 4896 WARN(ret, "Acquiring modeset locks failed with %i\n", ret); 4897 4898 /* 4899 * Keeping it consistent with intel_ddi_hotplug() and 4900 * intel_hdmi_hotplug(). 4901 */ 4902 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received) 4903 state = INTEL_HOTPLUG_RETRY; 4904 4905 return state; 4906 } 4907 4908 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 4909 { 4910 u8 val; 4911 4912 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 4913 return; 4914 4915 if (drm_dp_dpcd_readb(&intel_dp->aux, 4916 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 4917 return; 4918 4919 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 4920 4921 if (val & DP_AUTOMATED_TEST_REQUEST) 4922 intel_dp_handle_test_request(intel_dp); 4923 4924 if (val & DP_CP_IRQ) 4925 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 4926 4927 if (val & DP_SINK_SPECIFIC_IRQ) 4928 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n"); 4929 } 4930 4931 /* 4932 * According to DP spec 4933 * 5.1.2: 4934 * 1. Read DPCD 4935 * 2. Configure link according to Receiver Capabilities 4936 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 4937 * 4. Check link status on receipt of hot-plug interrupt 4938 * 4939 * intel_dp_short_pulse - handles short pulse interrupts 4940 * when full detection is not required. 4941 * Returns %true if short pulse is handled and full detection 4942 * is NOT required and %false otherwise. 4943 */ 4944 static bool 4945 intel_dp_short_pulse(struct intel_dp *intel_dp) 4946 { 4947 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4948 u8 old_sink_count = intel_dp->sink_count; 4949 bool ret; 4950 4951 /* 4952 * Clearing compliance test variables to allow capturing 4953 * of values for next automated test request. 4954 */ 4955 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 4956 4957 /* 4958 * Now read the DPCD to see if it's actually running 4959 * If the current value of sink count doesn't match with 4960 * the value that was stored earlier or dpcd read failed 4961 * we need to do full detection 4962 */ 4963 ret = intel_dp_get_dpcd(intel_dp); 4964 4965 if ((old_sink_count != intel_dp->sink_count) || !ret) { 4966 /* No need to proceed if we are going to do full detect */ 4967 return false; 4968 } 4969 4970 intel_dp_check_service_irq(intel_dp); 4971 4972 /* Handle CEC interrupts, if any */ 4973 drm_dp_cec_irq(&intel_dp->aux); 4974 4975 /* defer to the hotplug work for link retraining if needed */ 4976 if (intel_dp_needs_link_retrain(intel_dp)) 4977 return false; 4978 4979 intel_psr_short_pulse(intel_dp); 4980 4981 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 4982 DRM_DEBUG_KMS("Link Training Compliance Test requested\n"); 4983 /* Send a Hotplug Uevent to userspace to start modeset */ 4984 drm_kms_helper_hotplug_event(&dev_priv->drm); 4985 } 4986 4987 return true; 4988 } 4989 4990 /* XXX this is probably wrong for multiple downstream ports */ 4991 static enum drm_connector_status 4992 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 4993 { 4994 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 4995 u8 *dpcd = intel_dp->dpcd; 4996 u8 type; 4997 4998 if (WARN_ON(intel_dp_is_edp(intel_dp))) 4999 return connector_status_connected; 5000 5001 if (lspcon->active) 5002 lspcon_resume(lspcon); 5003 5004 if (!intel_dp_get_dpcd(intel_dp)) 5005 return connector_status_disconnected; 5006 5007 /* if there's no downstream port, we're done */ 5008 if (!drm_dp_is_branch(dpcd)) 5009 return connector_status_connected; 5010 5011 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5012 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5013 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5014 5015 return intel_dp->sink_count ? 5016 connector_status_connected : connector_status_disconnected; 5017 } 5018 5019 if (intel_dp_can_mst(intel_dp)) 5020 return connector_status_connected; 5021 5022 /* If no HPD, poke DDC gently */ 5023 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5024 return connector_status_connected; 5025 5026 /* Well we tried, say unknown for unreliable port types */ 5027 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5028 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5029 if (type == DP_DS_PORT_TYPE_VGA || 5030 type == DP_DS_PORT_TYPE_NON_EDID) 5031 return connector_status_unknown; 5032 } else { 5033 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5034 DP_DWN_STRM_PORT_TYPE_MASK; 5035 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5036 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5037 return connector_status_unknown; 5038 } 5039 5040 /* Anything else is out of spec, warn and ignore */ 5041 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); 5042 return connector_status_disconnected; 5043 } 5044 5045 static enum drm_connector_status 5046 edp_detect(struct intel_dp *intel_dp) 5047 { 5048 return connector_status_connected; 5049 } 5050 5051 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 5052 { 5053 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5054 u32 bit; 5055 5056 switch (encoder->hpd_pin) { 5057 case HPD_PORT_B: 5058 bit = SDE_PORTB_HOTPLUG; 5059 break; 5060 case HPD_PORT_C: 5061 bit = SDE_PORTC_HOTPLUG; 5062 break; 5063 case HPD_PORT_D: 5064 bit = SDE_PORTD_HOTPLUG; 5065 break; 5066 default: 5067 MISSING_CASE(encoder->hpd_pin); 5068 return false; 5069 } 5070 5071 return I915_READ(SDEISR) & bit; 5072 } 5073 5074 static bool cpt_digital_port_connected(struct intel_encoder *encoder) 5075 { 5076 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5077 u32 bit; 5078 5079 switch (encoder->hpd_pin) { 5080 case HPD_PORT_B: 5081 bit = SDE_PORTB_HOTPLUG_CPT; 5082 break; 5083 case HPD_PORT_C: 5084 bit = SDE_PORTC_HOTPLUG_CPT; 5085 break; 5086 case HPD_PORT_D: 5087 bit = SDE_PORTD_HOTPLUG_CPT; 5088 break; 5089 default: 5090 MISSING_CASE(encoder->hpd_pin); 5091 return false; 5092 } 5093 5094 return I915_READ(SDEISR) & bit; 5095 } 5096 5097 static bool spt_digital_port_connected(struct intel_encoder *encoder) 5098 { 5099 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5100 u32 bit; 5101 5102 switch (encoder->hpd_pin) { 5103 case HPD_PORT_A: 5104 bit = SDE_PORTA_HOTPLUG_SPT; 5105 break; 5106 case HPD_PORT_E: 5107 bit = SDE_PORTE_HOTPLUG_SPT; 5108 break; 5109 default: 5110 return cpt_digital_port_connected(encoder); 5111 } 5112 5113 return I915_READ(SDEISR) & bit; 5114 } 5115 5116 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 5117 { 5118 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5119 u32 bit; 5120 5121 switch (encoder->hpd_pin) { 5122 case HPD_PORT_B: 5123 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 5124 break; 5125 case HPD_PORT_C: 5126 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 5127 break; 5128 case HPD_PORT_D: 5129 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 5130 break; 5131 default: 5132 MISSING_CASE(encoder->hpd_pin); 5133 return false; 5134 } 5135 5136 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5137 } 5138 5139 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 5140 { 5141 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5142 u32 bit; 5143 5144 switch (encoder->hpd_pin) { 5145 case HPD_PORT_B: 5146 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 5147 break; 5148 case HPD_PORT_C: 5149 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 5150 break; 5151 case HPD_PORT_D: 5152 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 5153 break; 5154 default: 5155 MISSING_CASE(encoder->hpd_pin); 5156 return false; 5157 } 5158 5159 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5160 } 5161 5162 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 5163 { 5164 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5165 5166 if (encoder->hpd_pin == HPD_PORT_A) 5167 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5168 else 5169 return ibx_digital_port_connected(encoder); 5170 } 5171 5172 static bool snb_digital_port_connected(struct intel_encoder *encoder) 5173 { 5174 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5175 5176 if (encoder->hpd_pin == HPD_PORT_A) 5177 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5178 else 5179 return cpt_digital_port_connected(encoder); 5180 } 5181 5182 static bool ivb_digital_port_connected(struct intel_encoder *encoder) 5183 { 5184 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5185 5186 if (encoder->hpd_pin == HPD_PORT_A) 5187 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB; 5188 else 5189 return cpt_digital_port_connected(encoder); 5190 } 5191 5192 static bool bdw_digital_port_connected(struct intel_encoder *encoder) 5193 { 5194 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5195 5196 if (encoder->hpd_pin == HPD_PORT_A) 5197 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; 5198 else 5199 return cpt_digital_port_connected(encoder); 5200 } 5201 5202 static bool bxt_digital_port_connected(struct intel_encoder *encoder) 5203 { 5204 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5205 u32 bit; 5206 5207 switch (encoder->hpd_pin) { 5208 case HPD_PORT_A: 5209 bit = BXT_DE_PORT_HP_DDIA; 5210 break; 5211 case HPD_PORT_B: 5212 bit = BXT_DE_PORT_HP_DDIB; 5213 break; 5214 case HPD_PORT_C: 5215 bit = BXT_DE_PORT_HP_DDIC; 5216 break; 5217 default: 5218 MISSING_CASE(encoder->hpd_pin); 5219 return false; 5220 } 5221 5222 return I915_READ(GEN8_DE_PORT_ISR) & bit; 5223 } 5224 5225 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv, 5226 struct intel_digital_port *intel_dig_port) 5227 { 5228 enum port port = intel_dig_port->base.port; 5229 5230 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port); 5231 } 5232 5233 static bool icl_digital_port_connected(struct intel_encoder *encoder) 5234 { 5235 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5236 struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); 5237 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 5238 5239 if (intel_phy_is_combo(dev_priv, phy)) 5240 return icl_combo_port_connected(dev_priv, dig_port); 5241 else if (intel_phy_is_tc(dev_priv, phy)) 5242 return intel_tc_port_connected(dig_port); 5243 else 5244 MISSING_CASE(encoder->hpd_pin); 5245 5246 return false; 5247 } 5248 5249 /* 5250 * intel_digital_port_connected - is the specified port connected? 5251 * @encoder: intel_encoder 5252 * 5253 * In cases where there's a connector physically connected but it can't be used 5254 * by our hardware we also return false, since the rest of the driver should 5255 * pretty much treat the port as disconnected. This is relevant for type-C 5256 * (starting on ICL) where there's ownership involved. 5257 * 5258 * Return %true if port is connected, %false otherwise. 5259 */ 5260 static bool __intel_digital_port_connected(struct intel_encoder *encoder) 5261 { 5262 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5263 5264 if (HAS_GMCH(dev_priv)) { 5265 if (IS_GM45(dev_priv)) 5266 return gm45_digital_port_connected(encoder); 5267 else 5268 return g4x_digital_port_connected(encoder); 5269 } 5270 5271 if (INTEL_GEN(dev_priv) >= 11) 5272 return icl_digital_port_connected(encoder); 5273 else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv)) 5274 return spt_digital_port_connected(encoder); 5275 else if (IS_GEN9_LP(dev_priv)) 5276 return bxt_digital_port_connected(encoder); 5277 else if (IS_GEN(dev_priv, 8)) 5278 return bdw_digital_port_connected(encoder); 5279 else if (IS_GEN(dev_priv, 7)) 5280 return ivb_digital_port_connected(encoder); 5281 else if (IS_GEN(dev_priv, 6)) 5282 return snb_digital_port_connected(encoder); 5283 else if (IS_GEN(dev_priv, 5)) 5284 return ilk_digital_port_connected(encoder); 5285 5286 MISSING_CASE(INTEL_GEN(dev_priv)); 5287 return false; 5288 } 5289 5290 bool intel_digital_port_connected(struct intel_encoder *encoder) 5291 { 5292 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5293 bool is_connected = false; 5294 intel_wakeref_t wakeref; 5295 5296 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 5297 is_connected = __intel_digital_port_connected(encoder); 5298 5299 return is_connected; 5300 } 5301 5302 static struct edid * 5303 intel_dp_get_edid(struct intel_dp *intel_dp) 5304 { 5305 struct intel_connector *intel_connector = intel_dp->attached_connector; 5306 5307 /* use cached edid if we have one */ 5308 if (intel_connector->edid) { 5309 /* invalid edid */ 5310 if (IS_ERR(intel_connector->edid)) 5311 return NULL; 5312 5313 return drm_edid_duplicate(intel_connector->edid); 5314 } else 5315 return drm_get_edid(&intel_connector->base, 5316 &intel_dp->aux.ddc); 5317 } 5318 5319 static void 5320 intel_dp_set_edid(struct intel_dp *intel_dp) 5321 { 5322 struct intel_connector *intel_connector = intel_dp->attached_connector; 5323 struct edid *edid; 5324 5325 intel_dp_unset_edid(intel_dp); 5326 edid = intel_dp_get_edid(intel_dp); 5327 intel_connector->detect_edid = edid; 5328 5329 intel_dp->has_audio = drm_detect_monitor_audio(edid); 5330 drm_dp_cec_set_edid(&intel_dp->aux, edid); 5331 } 5332 5333 static void 5334 intel_dp_unset_edid(struct intel_dp *intel_dp) 5335 { 5336 struct intel_connector *intel_connector = intel_dp->attached_connector; 5337 5338 drm_dp_cec_unset_edid(&intel_dp->aux); 5339 kfree(intel_connector->detect_edid); 5340 intel_connector->detect_edid = NULL; 5341 5342 intel_dp->has_audio = false; 5343 } 5344 5345 static int 5346 intel_dp_detect(struct drm_connector *connector, 5347 struct drm_modeset_acquire_ctx *ctx, 5348 bool force) 5349 { 5350 struct drm_i915_private *dev_priv = to_i915(connector->dev); 5351 struct intel_dp *intel_dp = intel_attached_dp(connector); 5352 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5353 struct intel_encoder *encoder = &dig_port->base; 5354 enum drm_connector_status status; 5355 5356 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5357 connector->base.id, connector->name); 5358 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 5359 5360 /* Can't disconnect eDP */ 5361 if (intel_dp_is_edp(intel_dp)) 5362 status = edp_detect(intel_dp); 5363 else if (intel_digital_port_connected(encoder)) 5364 status = intel_dp_detect_dpcd(intel_dp); 5365 else 5366 status = connector_status_disconnected; 5367 5368 if (status == connector_status_disconnected) { 5369 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5370 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 5371 5372 if (intel_dp->is_mst) { 5373 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 5374 intel_dp->is_mst, 5375 intel_dp->mst_mgr.mst_state); 5376 intel_dp->is_mst = false; 5377 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5378 intel_dp->is_mst); 5379 } 5380 5381 goto out; 5382 } 5383 5384 if (intel_dp->reset_link_params) { 5385 /* Initial max link lane count */ 5386 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 5387 5388 /* Initial max link rate */ 5389 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 5390 5391 intel_dp->reset_link_params = false; 5392 } 5393 5394 intel_dp_print_rates(intel_dp); 5395 5396 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 5397 if (INTEL_GEN(dev_priv) >= 11) 5398 intel_dp_get_dsc_sink_cap(intel_dp); 5399 5400 intel_dp_configure_mst(intel_dp); 5401 5402 if (intel_dp->is_mst) { 5403 /* 5404 * If we are in MST mode then this connector 5405 * won't appear connected or have anything 5406 * with EDID on it 5407 */ 5408 status = connector_status_disconnected; 5409 goto out; 5410 } 5411 5412 /* 5413 * Some external monitors do not signal loss of link synchronization 5414 * with an IRQ_HPD, so force a link status check. 5415 */ 5416 if (!intel_dp_is_edp(intel_dp)) { 5417 int ret; 5418 5419 ret = intel_dp_retrain_link(encoder, ctx); 5420 if (ret) 5421 return ret; 5422 } 5423 5424 /* 5425 * Clearing NACK and defer counts to get their exact values 5426 * while reading EDID which are required by Compliance tests 5427 * 4.2.2.4 and 4.2.2.5 5428 */ 5429 intel_dp->aux.i2c_nack_count = 0; 5430 intel_dp->aux.i2c_defer_count = 0; 5431 5432 intel_dp_set_edid(intel_dp); 5433 if (intel_dp_is_edp(intel_dp) || 5434 to_intel_connector(connector)->detect_edid) 5435 status = connector_status_connected; 5436 5437 intel_dp_check_service_irq(intel_dp); 5438 5439 out: 5440 if (status != connector_status_connected && !intel_dp->is_mst) 5441 intel_dp_unset_edid(intel_dp); 5442 5443 /* 5444 * Make sure the refs for power wells enabled during detect are 5445 * dropped to avoid a new detect cycle triggered by HPD polling. 5446 */ 5447 intel_display_power_flush_work(dev_priv); 5448 5449 return status; 5450 } 5451 5452 static void 5453 intel_dp_force(struct drm_connector *connector) 5454 { 5455 struct intel_dp *intel_dp = intel_attached_dp(connector); 5456 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5457 struct intel_encoder *intel_encoder = &dig_port->base; 5458 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 5459 enum intel_display_power_domain aux_domain = 5460 intel_aux_power_domain(dig_port); 5461 intel_wakeref_t wakeref; 5462 5463 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5464 connector->base.id, connector->name); 5465 intel_dp_unset_edid(intel_dp); 5466 5467 if (connector->status != connector_status_connected) 5468 return; 5469 5470 wakeref = intel_display_power_get(dev_priv, aux_domain); 5471 5472 intel_dp_set_edid(intel_dp); 5473 5474 intel_display_power_put(dev_priv, aux_domain, wakeref); 5475 } 5476 5477 static int intel_dp_get_modes(struct drm_connector *connector) 5478 { 5479 struct intel_connector *intel_connector = to_intel_connector(connector); 5480 struct edid *edid; 5481 5482 edid = intel_connector->detect_edid; 5483 if (edid) { 5484 int ret = intel_connector_update_modes(connector, edid); 5485 if (ret) 5486 return ret; 5487 } 5488 5489 /* if eDP has no EDID, fall back to fixed mode */ 5490 if (intel_dp_is_edp(intel_attached_dp(connector)) && 5491 intel_connector->panel.fixed_mode) { 5492 struct drm_display_mode *mode; 5493 5494 mode = drm_mode_duplicate(connector->dev, 5495 intel_connector->panel.fixed_mode); 5496 if (mode) { 5497 drm_mode_probed_add(connector, mode); 5498 return 1; 5499 } 5500 } 5501 5502 return 0; 5503 } 5504 5505 static int 5506 intel_dp_connector_register(struct drm_connector *connector) 5507 { 5508 struct intel_dp *intel_dp = intel_attached_dp(connector); 5509 struct drm_device *dev = connector->dev; 5510 int ret; 5511 5512 ret = intel_connector_register(connector); 5513 if (ret) 5514 return ret; 5515 5516 i915_debugfs_connector_add(connector); 5517 5518 DRM_DEBUG_KMS("registering %s bus for %s\n", 5519 intel_dp->aux.name, connector->kdev->kobj.name); 5520 5521 intel_dp->aux.dev = connector->kdev; 5522 ret = drm_dp_aux_register(&intel_dp->aux); 5523 if (!ret) 5524 drm_dp_cec_register_connector(&intel_dp->aux, 5525 connector->name, dev->dev); 5526 return ret; 5527 } 5528 5529 static void 5530 intel_dp_connector_unregister(struct drm_connector *connector) 5531 { 5532 struct intel_dp *intel_dp = intel_attached_dp(connector); 5533 5534 drm_dp_cec_unregister_connector(&intel_dp->aux); 5535 drm_dp_aux_unregister(&intel_dp->aux); 5536 intel_connector_unregister(connector); 5537 } 5538 5539 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 5540 { 5541 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 5542 struct intel_dp *intel_dp = &intel_dig_port->dp; 5543 5544 intel_dp_mst_encoder_cleanup(intel_dig_port); 5545 if (intel_dp_is_edp(intel_dp)) { 5546 intel_wakeref_t wakeref; 5547 5548 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5549 /* 5550 * vdd might still be enabled do to the delayed vdd off. 5551 * Make sure vdd is actually turned off here. 5552 */ 5553 with_pps_lock(intel_dp, wakeref) 5554 edp_panel_vdd_off_sync(intel_dp); 5555 5556 if (intel_dp->edp_notifier.notifier_call) { 5557 unregister_reboot_notifier(&intel_dp->edp_notifier); 5558 intel_dp->edp_notifier.notifier_call = NULL; 5559 } 5560 } 5561 5562 intel_dp_aux_fini(intel_dp); 5563 } 5564 5565 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 5566 { 5567 intel_dp_encoder_flush_work(encoder); 5568 5569 drm_encoder_cleanup(encoder); 5570 kfree(enc_to_dig_port(encoder)); 5571 } 5572 5573 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 5574 { 5575 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); 5576 intel_wakeref_t wakeref; 5577 5578 if (!intel_dp_is_edp(intel_dp)) 5579 return; 5580 5581 /* 5582 * vdd might still be enabled do to the delayed vdd off. 5583 * Make sure vdd is actually turned off here. 5584 */ 5585 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5586 with_pps_lock(intel_dp, wakeref) 5587 edp_panel_vdd_off_sync(intel_dp); 5588 } 5589 5590 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 5591 { 5592 long ret; 5593 5594 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 5595 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, 5596 msecs_to_jiffies(timeout)); 5597 5598 if (!ret) 5599 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 5600 } 5601 5602 static 5603 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 5604 u8 *an) 5605 { 5606 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base); 5607 static const struct drm_dp_aux_msg msg = { 5608 .request = DP_AUX_NATIVE_WRITE, 5609 .address = DP_AUX_HDCP_AKSV, 5610 .size = DRM_HDCP_KSV_LEN, 5611 }; 5612 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 5613 ssize_t dpcd_ret; 5614 int ret; 5615 5616 /* Output An first, that's easy */ 5617 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 5618 an, DRM_HDCP_AN_LEN); 5619 if (dpcd_ret != DRM_HDCP_AN_LEN) { 5620 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n", 5621 dpcd_ret); 5622 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 5623 } 5624 5625 /* 5626 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 5627 * order to get it on the wire, we need to create the AUX header as if 5628 * we were writing the data, and then tickle the hardware to output the 5629 * data once the header is sent out. 5630 */ 5631 intel_dp_aux_header(txbuf, &msg); 5632 5633 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 5634 rxbuf, sizeof(rxbuf), 5635 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 5636 if (ret < 0) { 5637 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret); 5638 return ret; 5639 } else if (ret == 0) { 5640 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n"); 5641 return -EIO; 5642 } 5643 5644 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 5645 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 5646 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 5647 reply); 5648 return -EIO; 5649 } 5650 return 0; 5651 } 5652 5653 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 5654 u8 *bksv) 5655 { 5656 ssize_t ret; 5657 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 5658 DRM_HDCP_KSV_LEN); 5659 if (ret != DRM_HDCP_KSV_LEN) { 5660 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret); 5661 return ret >= 0 ? -EIO : ret; 5662 } 5663 return 0; 5664 } 5665 5666 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 5667 u8 *bstatus) 5668 { 5669 ssize_t ret; 5670 /* 5671 * For some reason the HDMI and DP HDCP specs call this register 5672 * definition by different names. In the HDMI spec, it's called BSTATUS, 5673 * but in DP it's called BINFO. 5674 */ 5675 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 5676 bstatus, DRM_HDCP_BSTATUS_LEN); 5677 if (ret != DRM_HDCP_BSTATUS_LEN) { 5678 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5679 return ret >= 0 ? -EIO : ret; 5680 } 5681 return 0; 5682 } 5683 5684 static 5685 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 5686 u8 *bcaps) 5687 { 5688 ssize_t ret; 5689 5690 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 5691 bcaps, 1); 5692 if (ret != 1) { 5693 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret); 5694 return ret >= 0 ? -EIO : ret; 5695 } 5696 5697 return 0; 5698 } 5699 5700 static 5701 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 5702 bool *repeater_present) 5703 { 5704 ssize_t ret; 5705 u8 bcaps; 5706 5707 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 5708 if (ret) 5709 return ret; 5710 5711 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 5712 return 0; 5713 } 5714 5715 static 5716 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 5717 u8 *ri_prime) 5718 { 5719 ssize_t ret; 5720 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 5721 ri_prime, DRM_HDCP_RI_LEN); 5722 if (ret != DRM_HDCP_RI_LEN) { 5723 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret); 5724 return ret >= 0 ? -EIO : ret; 5725 } 5726 return 0; 5727 } 5728 5729 static 5730 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 5731 bool *ksv_ready) 5732 { 5733 ssize_t ret; 5734 u8 bstatus; 5735 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5736 &bstatus, 1); 5737 if (ret != 1) { 5738 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5739 return ret >= 0 ? -EIO : ret; 5740 } 5741 *ksv_ready = bstatus & DP_BSTATUS_READY; 5742 return 0; 5743 } 5744 5745 static 5746 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 5747 int num_downstream, u8 *ksv_fifo) 5748 { 5749 ssize_t ret; 5750 int i; 5751 5752 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 5753 for (i = 0; i < num_downstream; i += 3) { 5754 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 5755 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5756 DP_AUX_HDCP_KSV_FIFO, 5757 ksv_fifo + i * DRM_HDCP_KSV_LEN, 5758 len); 5759 if (ret != len) { 5760 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n", 5761 i, ret); 5762 return ret >= 0 ? -EIO : ret; 5763 } 5764 } 5765 return 0; 5766 } 5767 5768 static 5769 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 5770 int i, u32 *part) 5771 { 5772 ssize_t ret; 5773 5774 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 5775 return -EINVAL; 5776 5777 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5778 DP_AUX_HDCP_V_PRIME(i), part, 5779 DRM_HDCP_V_PRIME_PART_LEN); 5780 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 5781 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 5782 return ret >= 0 ? -EIO : ret; 5783 } 5784 return 0; 5785 } 5786 5787 static 5788 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 5789 bool enable) 5790 { 5791 /* Not used for single stream DisplayPort setups */ 5792 return 0; 5793 } 5794 5795 static 5796 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 5797 { 5798 ssize_t ret; 5799 u8 bstatus; 5800 5801 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5802 &bstatus, 1); 5803 if (ret != 1) { 5804 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5805 return false; 5806 } 5807 5808 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 5809 } 5810 5811 static 5812 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 5813 bool *hdcp_capable) 5814 { 5815 ssize_t ret; 5816 u8 bcaps; 5817 5818 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 5819 if (ret) 5820 return ret; 5821 5822 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 5823 return 0; 5824 } 5825 5826 struct hdcp2_dp_errata_stream_type { 5827 u8 msg_id; 5828 u8 stream_type; 5829 } __packed; 5830 5831 struct hdcp2_dp_msg_data { 5832 u8 msg_id; 5833 u32 offset; 5834 bool msg_detectable; 5835 u32 timeout; 5836 u32 timeout2; /* Added for non_paired situation */ 5837 }; 5838 5839 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { 5840 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, 5841 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 5842 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, 5843 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 5844 false, 0, 0 }, 5845 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 5846 false, 0, 0 }, 5847 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 5848 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 5849 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, 5850 { HDCP_2_2_AKE_SEND_PAIRING_INFO, 5851 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 5852 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, 5853 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, 5854 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 5855 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, 5856 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 5857 0, 0 }, 5858 { HDCP_2_2_REP_SEND_RECVID_LIST, 5859 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 5860 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, 5861 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 5862 0, 0 }, 5863 { HDCP_2_2_REP_STREAM_MANAGE, 5864 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 5865 0, 0 }, 5866 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 5867 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, 5868 /* local define to shovel this through the write_2_2 interface */ 5869 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 5870 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, 5871 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 5872 0, 0 }, 5873 }; 5874 5875 static inline 5876 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 5877 u8 *rx_status) 5878 { 5879 ssize_t ret; 5880 5881 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5882 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 5883 HDCP_2_2_DP_RXSTATUS_LEN); 5884 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 5885 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5886 return ret >= 0 ? -EIO : ret; 5887 } 5888 5889 return 0; 5890 } 5891 5892 static 5893 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 5894 u8 msg_id, bool *msg_ready) 5895 { 5896 u8 rx_status; 5897 int ret; 5898 5899 *msg_ready = false; 5900 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 5901 if (ret < 0) 5902 return ret; 5903 5904 switch (msg_id) { 5905 case HDCP_2_2_AKE_SEND_HPRIME: 5906 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 5907 *msg_ready = true; 5908 break; 5909 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 5910 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 5911 *msg_ready = true; 5912 break; 5913 case HDCP_2_2_REP_SEND_RECVID_LIST: 5914 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 5915 *msg_ready = true; 5916 break; 5917 default: 5918 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 5919 return -EINVAL; 5920 } 5921 5922 return 0; 5923 } 5924 5925 static ssize_t 5926 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 5927 const struct hdcp2_dp_msg_data *hdcp2_msg_data) 5928 { 5929 struct intel_dp *dp = &intel_dig_port->dp; 5930 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 5931 u8 msg_id = hdcp2_msg_data->msg_id; 5932 int ret, timeout; 5933 bool msg_ready = false; 5934 5935 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 5936 timeout = hdcp2_msg_data->timeout2; 5937 else 5938 timeout = hdcp2_msg_data->timeout; 5939 5940 /* 5941 * There is no way to detect the CERT, LPRIME and STREAM_READY 5942 * availability. So Wait for timeout and read the msg. 5943 */ 5944 if (!hdcp2_msg_data->msg_detectable) { 5945 mdelay(timeout); 5946 ret = 0; 5947 } else { 5948 /* 5949 * As we want to check the msg availability at timeout, Ignoring 5950 * the timeout at wait for CP_IRQ. 5951 */ 5952 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 5953 ret = hdcp2_detect_msg_availability(intel_dig_port, 5954 msg_id, &msg_ready); 5955 if (!msg_ready) 5956 ret = -ETIMEDOUT; 5957 } 5958 5959 if (ret) 5960 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n", 5961 hdcp2_msg_data->msg_id, ret, timeout); 5962 5963 return ret; 5964 } 5965 5966 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 5967 { 5968 int i; 5969 5970 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) 5971 if (hdcp2_dp_msg_data[i].msg_id == msg_id) 5972 return &hdcp2_dp_msg_data[i]; 5973 5974 return NULL; 5975 } 5976 5977 static 5978 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 5979 void *buf, size_t size) 5980 { 5981 struct intel_dp *dp = &intel_dig_port->dp; 5982 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 5983 unsigned int offset; 5984 u8 *byte = buf; 5985 ssize_t ret, bytes_to_write, len; 5986 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 5987 5988 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 5989 if (!hdcp2_msg_data) 5990 return -EINVAL; 5991 5992 offset = hdcp2_msg_data->offset; 5993 5994 /* No msg_id in DP HDCP2.2 msgs */ 5995 bytes_to_write = size - 1; 5996 byte++; 5997 5998 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 5999 6000 while (bytes_to_write) { 6001 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 6002 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 6003 6004 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 6005 offset, (void *)byte, len); 6006 if (ret < 0) 6007 return ret; 6008 6009 bytes_to_write -= ret; 6010 byte += ret; 6011 offset += ret; 6012 } 6013 6014 return size; 6015 } 6016 6017 static 6018 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6019 { 6020 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6021 u32 dev_cnt; 6022 ssize_t ret; 6023 6024 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6025 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6026 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6027 if (ret != HDCP_2_2_RXINFO_LEN) 6028 return ret >= 0 ? -EIO : ret; 6029 6030 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6031 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6032 6033 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6034 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6035 6036 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6037 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6038 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6039 6040 return ret; 6041 } 6042 6043 static 6044 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6045 u8 msg_id, void *buf, size_t size) 6046 { 6047 unsigned int offset; 6048 u8 *byte = buf; 6049 ssize_t ret, bytes_to_recv, len; 6050 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6051 6052 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6053 if (!hdcp2_msg_data) 6054 return -EINVAL; 6055 offset = hdcp2_msg_data->offset; 6056 6057 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6058 if (ret < 0) 6059 return ret; 6060 6061 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6062 ret = get_receiver_id_list_size(intel_dig_port); 6063 if (ret < 0) 6064 return ret; 6065 6066 size = ret; 6067 } 6068 bytes_to_recv = size - 1; 6069 6070 /* DP adaptation msgs has no msg_id */ 6071 byte++; 6072 6073 while (bytes_to_recv) { 6074 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6075 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6076 6077 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6078 (void *)byte, len); 6079 if (ret < 0) { 6080 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret); 6081 return ret; 6082 } 6083 6084 bytes_to_recv -= ret; 6085 byte += ret; 6086 offset += ret; 6087 } 6088 byte = buf; 6089 *byte = msg_id; 6090 6091 return size; 6092 } 6093 6094 static 6095 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6096 bool is_repeater, u8 content_type) 6097 { 6098 struct hdcp2_dp_errata_stream_type stream_type_msg; 6099 6100 if (is_repeater) 6101 return 0; 6102 6103 /* 6104 * Errata for DP: As Stream type is used for encryption, Receiver 6105 * should be communicated with stream type for the decryption of the 6106 * content. 6107 * Repeater will be communicated with stream type as a part of it's 6108 * auth later in time. 6109 */ 6110 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6111 stream_type_msg.stream_type = content_type; 6112 6113 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6114 sizeof(stream_type_msg)); 6115 } 6116 6117 static 6118 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6119 { 6120 u8 rx_status; 6121 int ret; 6122 6123 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6124 if (ret) 6125 return ret; 6126 6127 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6128 ret = HDCP_REAUTH_REQUEST; 6129 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6130 ret = HDCP_LINK_INTEGRITY_FAILURE; 6131 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6132 ret = HDCP_TOPOLOGY_CHANGE; 6133 6134 return ret; 6135 } 6136 6137 static 6138 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6139 bool *capable) 6140 { 6141 u8 rx_caps[3]; 6142 int ret; 6143 6144 *capable = false; 6145 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6146 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6147 rx_caps, HDCP_2_2_RXCAPS_LEN); 6148 if (ret != HDCP_2_2_RXCAPS_LEN) 6149 return ret >= 0 ? -EIO : ret; 6150 6151 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6152 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6153 *capable = true; 6154 6155 return 0; 6156 } 6157 6158 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6159 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6160 .read_bksv = intel_dp_hdcp_read_bksv, 6161 .read_bstatus = intel_dp_hdcp_read_bstatus, 6162 .repeater_present = intel_dp_hdcp_repeater_present, 6163 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6164 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6165 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6166 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6167 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6168 .check_link = intel_dp_hdcp_check_link, 6169 .hdcp_capable = intel_dp_hdcp_capable, 6170 .write_2_2_msg = intel_dp_hdcp2_write_msg, 6171 .read_2_2_msg = intel_dp_hdcp2_read_msg, 6172 .config_stream_type = intel_dp_hdcp2_config_stream_type, 6173 .check_2_2_link = intel_dp_hdcp2_check_link, 6174 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 6175 .protocol = HDCP_PROTOCOL_DP, 6176 }; 6177 6178 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6179 { 6180 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6181 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6182 6183 lockdep_assert_held(&dev_priv->pps_mutex); 6184 6185 if (!edp_have_panel_vdd(intel_dp)) 6186 return; 6187 6188 /* 6189 * The VDD bit needs a power domain reference, so if the bit is 6190 * already enabled when we boot or resume, grab this reference and 6191 * schedule a vdd off, so we don't hold on to the reference 6192 * indefinitely. 6193 */ 6194 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); 6195 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6196 6197 edp_panel_vdd_schedule_off(intel_dp); 6198 } 6199 6200 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6201 { 6202 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6203 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6204 enum pipe pipe; 6205 6206 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6207 encoder->port, &pipe)) 6208 return pipe; 6209 6210 return INVALID_PIPE; 6211 } 6212 6213 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6214 { 6215 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6216 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 6217 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6218 intel_wakeref_t wakeref; 6219 6220 if (!HAS_DDI(dev_priv)) 6221 intel_dp->DP = I915_READ(intel_dp->output_reg); 6222 6223 if (lspcon->active) 6224 lspcon_resume(lspcon); 6225 6226 intel_dp->reset_link_params = true; 6227 6228 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6229 !intel_dp_is_edp(intel_dp)) 6230 return; 6231 6232 with_pps_lock(intel_dp, wakeref) { 6233 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6234 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6235 6236 if (intel_dp_is_edp(intel_dp)) { 6237 /* 6238 * Reinit the power sequencer, in case BIOS did 6239 * something nasty with it. 6240 */ 6241 intel_dp_pps_init(intel_dp); 6242 intel_edp_panel_vdd_sanitize(intel_dp); 6243 } 6244 } 6245 } 6246 6247 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6248 .force = intel_dp_force, 6249 .fill_modes = drm_helper_probe_single_connector_modes, 6250 .atomic_get_property = intel_digital_connector_atomic_get_property, 6251 .atomic_set_property = intel_digital_connector_atomic_set_property, 6252 .late_register = intel_dp_connector_register, 6253 .early_unregister = intel_dp_connector_unregister, 6254 .destroy = intel_connector_destroy, 6255 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6256 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6257 }; 6258 6259 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6260 .detect_ctx = intel_dp_detect, 6261 .get_modes = intel_dp_get_modes, 6262 .mode_valid = intel_dp_mode_valid, 6263 .atomic_check = intel_digital_connector_atomic_check, 6264 }; 6265 6266 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6267 .reset = intel_dp_encoder_reset, 6268 .destroy = intel_dp_encoder_destroy, 6269 }; 6270 6271 enum irqreturn 6272 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 6273 { 6274 struct intel_dp *intel_dp = &intel_dig_port->dp; 6275 6276 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { 6277 /* 6278 * vdd off can generate a long pulse on eDP which 6279 * would require vdd on to handle it, and thus we 6280 * would end up in an endless cycle of 6281 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." 6282 */ 6283 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n", 6284 port_name(intel_dig_port->base.port)); 6285 return IRQ_HANDLED; 6286 } 6287 6288 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n", 6289 port_name(intel_dig_port->base.port), 6290 long_hpd ? "long" : "short"); 6291 6292 if (long_hpd) { 6293 intel_dp->reset_link_params = true; 6294 return IRQ_NONE; 6295 } 6296 6297 if (intel_dp->is_mst) { 6298 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { 6299 /* 6300 * If we were in MST mode, and device is not 6301 * there, get out of MST mode 6302 */ 6303 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 6304 intel_dp->is_mst, intel_dp->mst_mgr.mst_state); 6305 intel_dp->is_mst = false; 6306 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6307 intel_dp->is_mst); 6308 6309 return IRQ_NONE; 6310 } 6311 } 6312 6313 if (!intel_dp->is_mst) { 6314 bool handled; 6315 6316 handled = intel_dp_short_pulse(intel_dp); 6317 6318 if (!handled) 6319 return IRQ_NONE; 6320 } 6321 6322 return IRQ_HANDLED; 6323 } 6324 6325 /* check the VBT to see whether the eDP is on another port */ 6326 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6327 { 6328 /* 6329 * eDP not supported on g4x. so bail out early just 6330 * for a bit extra safety in case the VBT is bonkers. 6331 */ 6332 if (INTEL_GEN(dev_priv) < 5) 6333 return false; 6334 6335 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 6336 return true; 6337 6338 return intel_bios_is_port_edp(dev_priv, port); 6339 } 6340 6341 static void 6342 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6343 { 6344 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6345 enum port port = dp_to_dig_port(intel_dp)->base.port; 6346 6347 if (!IS_G4X(dev_priv) && port != PORT_A) 6348 intel_attach_force_audio_property(connector); 6349 6350 intel_attach_broadcast_rgb_property(connector); 6351 if (HAS_GMCH(dev_priv)) 6352 drm_connector_attach_max_bpc_property(connector, 6, 10); 6353 else if (INTEL_GEN(dev_priv) >= 5) 6354 drm_connector_attach_max_bpc_property(connector, 6, 12); 6355 6356 if (intel_dp_is_edp(intel_dp)) { 6357 u32 allowed_scalers; 6358 6359 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 6360 if (!HAS_GMCH(dev_priv)) 6361 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 6362 6363 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 6364 6365 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 6366 6367 } 6368 } 6369 6370 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 6371 { 6372 intel_dp->panel_power_off_time = ktime_get_boottime(); 6373 intel_dp->last_power_on = jiffies; 6374 intel_dp->last_backlight_off = jiffies; 6375 } 6376 6377 static void 6378 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 6379 { 6380 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6381 u32 pp_on, pp_off, pp_ctl; 6382 struct pps_registers regs; 6383 6384 intel_pps_get_registers(intel_dp, ®s); 6385 6386 pp_ctl = ironlake_get_pp_control(intel_dp); 6387 6388 /* Ensure PPS is unlocked */ 6389 if (!HAS_DDI(dev_priv)) 6390 I915_WRITE(regs.pp_ctrl, pp_ctl); 6391 6392 pp_on = I915_READ(regs.pp_on); 6393 pp_off = I915_READ(regs.pp_off); 6394 6395 /* Pull timing values out of registers */ 6396 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 6397 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 6398 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 6399 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 6400 6401 if (i915_mmio_reg_valid(regs.pp_div)) { 6402 u32 pp_div; 6403 6404 pp_div = I915_READ(regs.pp_div); 6405 6406 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 6407 } else { 6408 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 6409 } 6410 } 6411 6412 static void 6413 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 6414 { 6415 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 6416 state_name, 6417 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 6418 } 6419 6420 static void 6421 intel_pps_verify_state(struct intel_dp *intel_dp) 6422 { 6423 struct edp_power_seq hw; 6424 struct edp_power_seq *sw = &intel_dp->pps_delays; 6425 6426 intel_pps_readout_hw_state(intel_dp, &hw); 6427 6428 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 6429 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 6430 DRM_ERROR("PPS state mismatch\n"); 6431 intel_pps_dump_state("sw", sw); 6432 intel_pps_dump_state("hw", &hw); 6433 } 6434 } 6435 6436 static void 6437 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 6438 { 6439 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6440 struct edp_power_seq cur, vbt, spec, 6441 *final = &intel_dp->pps_delays; 6442 6443 lockdep_assert_held(&dev_priv->pps_mutex); 6444 6445 /* already initialized? */ 6446 if (final->t11_t12 != 0) 6447 return; 6448 6449 intel_pps_readout_hw_state(intel_dp, &cur); 6450 6451 intel_pps_dump_state("cur", &cur); 6452 6453 vbt = dev_priv->vbt.edp.pps; 6454 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 6455 * of 500ms appears to be too short. Ocassionally the panel 6456 * just fails to power back on. Increasing the delay to 800ms 6457 * seems sufficient to avoid this problem. 6458 */ 6459 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 6460 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 6461 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n", 6462 vbt.t11_t12); 6463 } 6464 /* T11_T12 delay is special and actually in units of 100ms, but zero 6465 * based in the hw (so we need to add 100 ms). But the sw vbt 6466 * table multiplies it with 1000 to make it in units of 100usec, 6467 * too. */ 6468 vbt.t11_t12 += 100 * 10; 6469 6470 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 6471 * our hw here, which are all in 100usec. */ 6472 spec.t1_t3 = 210 * 10; 6473 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 6474 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 6475 spec.t10 = 500 * 10; 6476 /* This one is special and actually in units of 100ms, but zero 6477 * based in the hw (so we need to add 100 ms). But the sw vbt 6478 * table multiplies it with 1000 to make it in units of 100usec, 6479 * too. */ 6480 spec.t11_t12 = (510 + 100) * 10; 6481 6482 intel_pps_dump_state("vbt", &vbt); 6483 6484 /* Use the max of the register settings and vbt. If both are 6485 * unset, fall back to the spec limits. */ 6486 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 6487 spec.field : \ 6488 max(cur.field, vbt.field)) 6489 assign_final(t1_t3); 6490 assign_final(t8); 6491 assign_final(t9); 6492 assign_final(t10); 6493 assign_final(t11_t12); 6494 #undef assign_final 6495 6496 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 6497 intel_dp->panel_power_up_delay = get_delay(t1_t3); 6498 intel_dp->backlight_on_delay = get_delay(t8); 6499 intel_dp->backlight_off_delay = get_delay(t9); 6500 intel_dp->panel_power_down_delay = get_delay(t10); 6501 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 6502 #undef get_delay 6503 6504 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", 6505 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, 6506 intel_dp->panel_power_cycle_delay); 6507 6508 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", 6509 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); 6510 6511 /* 6512 * We override the HW backlight delays to 1 because we do manual waits 6513 * on them. For T8, even BSpec recommends doing it. For T9, if we 6514 * don't do this, we'll end up waiting for the backlight off delay 6515 * twice: once when we do the manual sleep, and once when we disable 6516 * the panel and wait for the PP_STATUS bit to become zero. 6517 */ 6518 final->t8 = 1; 6519 final->t9 = 1; 6520 6521 /* 6522 * HW has only a 100msec granularity for t11_t12 so round it up 6523 * accordingly. 6524 */ 6525 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 6526 } 6527 6528 static void 6529 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 6530 bool force_disable_vdd) 6531 { 6532 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6533 u32 pp_on, pp_off, port_sel = 0; 6534 int div = dev_priv->rawclk_freq / 1000; 6535 struct pps_registers regs; 6536 enum port port = dp_to_dig_port(intel_dp)->base.port; 6537 const struct edp_power_seq *seq = &intel_dp->pps_delays; 6538 6539 lockdep_assert_held(&dev_priv->pps_mutex); 6540 6541 intel_pps_get_registers(intel_dp, ®s); 6542 6543 /* 6544 * On some VLV machines the BIOS can leave the VDD 6545 * enabled even on power sequencers which aren't 6546 * hooked up to any port. This would mess up the 6547 * power domain tracking the first time we pick 6548 * one of these power sequencers for use since 6549 * edp_panel_vdd_on() would notice that the VDD was 6550 * already on and therefore wouldn't grab the power 6551 * domain reference. Disable VDD first to avoid this. 6552 * This also avoids spuriously turning the VDD on as 6553 * soon as the new power sequencer gets initialized. 6554 */ 6555 if (force_disable_vdd) { 6556 u32 pp = ironlake_get_pp_control(intel_dp); 6557 6558 WARN(pp & PANEL_POWER_ON, "Panel power already on\n"); 6559 6560 if (pp & EDP_FORCE_VDD) 6561 DRM_DEBUG_KMS("VDD already on, disabling first\n"); 6562 6563 pp &= ~EDP_FORCE_VDD; 6564 6565 I915_WRITE(regs.pp_ctrl, pp); 6566 } 6567 6568 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 6569 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 6570 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 6571 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 6572 6573 /* Haswell doesn't have any port selection bits for the panel 6574 * power sequencer any more. */ 6575 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6576 port_sel = PANEL_PORT_SELECT_VLV(port); 6577 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 6578 switch (port) { 6579 case PORT_A: 6580 port_sel = PANEL_PORT_SELECT_DPA; 6581 break; 6582 case PORT_C: 6583 port_sel = PANEL_PORT_SELECT_DPC; 6584 break; 6585 case PORT_D: 6586 port_sel = PANEL_PORT_SELECT_DPD; 6587 break; 6588 default: 6589 MISSING_CASE(port); 6590 break; 6591 } 6592 } 6593 6594 pp_on |= port_sel; 6595 6596 I915_WRITE(regs.pp_on, pp_on); 6597 I915_WRITE(regs.pp_off, pp_off); 6598 6599 /* 6600 * Compute the divisor for the pp clock, simply match the Bspec formula. 6601 */ 6602 if (i915_mmio_reg_valid(regs.pp_div)) { 6603 I915_WRITE(regs.pp_div, 6604 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | 6605 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 6606 } else { 6607 u32 pp_ctl; 6608 6609 pp_ctl = I915_READ(regs.pp_ctrl); 6610 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 6611 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 6612 I915_WRITE(regs.pp_ctrl, pp_ctl); 6613 } 6614 6615 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 6616 I915_READ(regs.pp_on), 6617 I915_READ(regs.pp_off), 6618 i915_mmio_reg_valid(regs.pp_div) ? 6619 I915_READ(regs.pp_div) : 6620 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 6621 } 6622 6623 static void intel_dp_pps_init(struct intel_dp *intel_dp) 6624 { 6625 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6626 6627 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6628 vlv_initial_power_sequencer_setup(intel_dp); 6629 } else { 6630 intel_dp_init_panel_power_sequencer(intel_dp); 6631 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 6632 } 6633 } 6634 6635 /** 6636 * intel_dp_set_drrs_state - program registers for RR switch to take effect 6637 * @dev_priv: i915 device 6638 * @crtc_state: a pointer to the active intel_crtc_state 6639 * @refresh_rate: RR to be programmed 6640 * 6641 * This function gets called when refresh rate (RR) has to be changed from 6642 * one frequency to another. Switches can be between high and low RR 6643 * supported by the panel or to any other RR based on media playback (in 6644 * this case, RR value needs to be passed from user space). 6645 * 6646 * The caller of this function needs to take a lock on dev_priv->drrs. 6647 */ 6648 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 6649 const struct intel_crtc_state *crtc_state, 6650 int refresh_rate) 6651 { 6652 struct intel_dp *intel_dp = dev_priv->drrs.dp; 6653 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 6654 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 6655 6656 if (refresh_rate <= 0) { 6657 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); 6658 return; 6659 } 6660 6661 if (intel_dp == NULL) { 6662 DRM_DEBUG_KMS("DRRS not supported.\n"); 6663 return; 6664 } 6665 6666 if (!intel_crtc) { 6667 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); 6668 return; 6669 } 6670 6671 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 6672 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); 6673 return; 6674 } 6675 6676 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == 6677 refresh_rate) 6678 index = DRRS_LOW_RR; 6679 6680 if (index == dev_priv->drrs.refresh_rate_type) { 6681 DRM_DEBUG_KMS( 6682 "DRRS requested for previously set RR...ignoring\n"); 6683 return; 6684 } 6685 6686 if (!crtc_state->base.active) { 6687 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); 6688 return; 6689 } 6690 6691 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 6692 switch (index) { 6693 case DRRS_HIGH_RR: 6694 intel_dp_set_m_n(crtc_state, M1_N1); 6695 break; 6696 case DRRS_LOW_RR: 6697 intel_dp_set_m_n(crtc_state, M2_N2); 6698 break; 6699 case DRRS_MAX_RR: 6700 default: 6701 DRM_ERROR("Unsupported refreshrate type\n"); 6702 } 6703 } else if (INTEL_GEN(dev_priv) > 6) { 6704 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 6705 u32 val; 6706 6707 val = I915_READ(reg); 6708 if (index > DRRS_HIGH_RR) { 6709 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6710 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6711 else 6712 val |= PIPECONF_EDP_RR_MODE_SWITCH; 6713 } else { 6714 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6715 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6716 else 6717 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 6718 } 6719 I915_WRITE(reg, val); 6720 } 6721 6722 dev_priv->drrs.refresh_rate_type = index; 6723 6724 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); 6725 } 6726 6727 /** 6728 * intel_edp_drrs_enable - init drrs struct if supported 6729 * @intel_dp: DP struct 6730 * @crtc_state: A pointer to the active crtc state. 6731 * 6732 * Initializes frontbuffer_bits and drrs.dp 6733 */ 6734 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 6735 const struct intel_crtc_state *crtc_state) 6736 { 6737 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6738 6739 if (!crtc_state->has_drrs) { 6740 DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); 6741 return; 6742 } 6743 6744 if (dev_priv->psr.enabled) { 6745 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n"); 6746 return; 6747 } 6748 6749 mutex_lock(&dev_priv->drrs.mutex); 6750 if (dev_priv->drrs.dp) { 6751 DRM_DEBUG_KMS("DRRS already enabled\n"); 6752 goto unlock; 6753 } 6754 6755 dev_priv->drrs.busy_frontbuffer_bits = 0; 6756 6757 dev_priv->drrs.dp = intel_dp; 6758 6759 unlock: 6760 mutex_unlock(&dev_priv->drrs.mutex); 6761 } 6762 6763 /** 6764 * intel_edp_drrs_disable - Disable DRRS 6765 * @intel_dp: DP struct 6766 * @old_crtc_state: Pointer to old crtc_state. 6767 * 6768 */ 6769 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 6770 const struct intel_crtc_state *old_crtc_state) 6771 { 6772 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6773 6774 if (!old_crtc_state->has_drrs) 6775 return; 6776 6777 mutex_lock(&dev_priv->drrs.mutex); 6778 if (!dev_priv->drrs.dp) { 6779 mutex_unlock(&dev_priv->drrs.mutex); 6780 return; 6781 } 6782 6783 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6784 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 6785 intel_dp->attached_connector->panel.fixed_mode->vrefresh); 6786 6787 dev_priv->drrs.dp = NULL; 6788 mutex_unlock(&dev_priv->drrs.mutex); 6789 6790 cancel_delayed_work_sync(&dev_priv->drrs.work); 6791 } 6792 6793 static void intel_edp_drrs_downclock_work(struct work_struct *work) 6794 { 6795 struct drm_i915_private *dev_priv = 6796 container_of(work, typeof(*dev_priv), drrs.work.work); 6797 struct intel_dp *intel_dp; 6798 6799 mutex_lock(&dev_priv->drrs.mutex); 6800 6801 intel_dp = dev_priv->drrs.dp; 6802 6803 if (!intel_dp) 6804 goto unlock; 6805 6806 /* 6807 * The delayed work can race with an invalidate hence we need to 6808 * recheck. 6809 */ 6810 6811 if (dev_priv->drrs.busy_frontbuffer_bits) 6812 goto unlock; 6813 6814 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 6815 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 6816 6817 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6818 intel_dp->attached_connector->panel.downclock_mode->vrefresh); 6819 } 6820 6821 unlock: 6822 mutex_unlock(&dev_priv->drrs.mutex); 6823 } 6824 6825 /** 6826 * intel_edp_drrs_invalidate - Disable Idleness DRRS 6827 * @dev_priv: i915 device 6828 * @frontbuffer_bits: frontbuffer plane tracking bits 6829 * 6830 * This function gets called everytime rendering on the given planes start. 6831 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 6832 * 6833 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 6834 */ 6835 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 6836 unsigned int frontbuffer_bits) 6837 { 6838 struct drm_crtc *crtc; 6839 enum pipe pipe; 6840 6841 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 6842 return; 6843 6844 cancel_delayed_work(&dev_priv->drrs.work); 6845 6846 mutex_lock(&dev_priv->drrs.mutex); 6847 if (!dev_priv->drrs.dp) { 6848 mutex_unlock(&dev_priv->drrs.mutex); 6849 return; 6850 } 6851 6852 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 6853 pipe = to_intel_crtc(crtc)->pipe; 6854 6855 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 6856 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 6857 6858 /* invalidate means busy screen hence upclock */ 6859 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6860 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6861 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 6862 6863 mutex_unlock(&dev_priv->drrs.mutex); 6864 } 6865 6866 /** 6867 * intel_edp_drrs_flush - Restart Idleness DRRS 6868 * @dev_priv: i915 device 6869 * @frontbuffer_bits: frontbuffer plane tracking bits 6870 * 6871 * This function gets called every time rendering on the given planes has 6872 * completed or flip on a crtc is completed. So DRRS should be upclocked 6873 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 6874 * if no other planes are dirty. 6875 * 6876 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 6877 */ 6878 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 6879 unsigned int frontbuffer_bits) 6880 { 6881 struct drm_crtc *crtc; 6882 enum pipe pipe; 6883 6884 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 6885 return; 6886 6887 cancel_delayed_work(&dev_priv->drrs.work); 6888 6889 mutex_lock(&dev_priv->drrs.mutex); 6890 if (!dev_priv->drrs.dp) { 6891 mutex_unlock(&dev_priv->drrs.mutex); 6892 return; 6893 } 6894 6895 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 6896 pipe = to_intel_crtc(crtc)->pipe; 6897 6898 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 6899 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 6900 6901 /* flush means busy screen hence upclock */ 6902 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6903 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6904 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 6905 6906 /* 6907 * flush also means no more activity hence schedule downclock, if all 6908 * other fbs are quiescent too 6909 */ 6910 if (!dev_priv->drrs.busy_frontbuffer_bits) 6911 schedule_delayed_work(&dev_priv->drrs.work, 6912 msecs_to_jiffies(1000)); 6913 mutex_unlock(&dev_priv->drrs.mutex); 6914 } 6915 6916 /** 6917 * DOC: Display Refresh Rate Switching (DRRS) 6918 * 6919 * Display Refresh Rate Switching (DRRS) is a power conservation feature 6920 * which enables swtching between low and high refresh rates, 6921 * dynamically, based on the usage scenario. This feature is applicable 6922 * for internal panels. 6923 * 6924 * Indication that the panel supports DRRS is given by the panel EDID, which 6925 * would list multiple refresh rates for one resolution. 6926 * 6927 * DRRS is of 2 types - static and seamless. 6928 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 6929 * (may appear as a blink on screen) and is used in dock-undock scenario. 6930 * Seamless DRRS involves changing RR without any visual effect to the user 6931 * and can be used during normal system usage. This is done by programming 6932 * certain registers. 6933 * 6934 * Support for static/seamless DRRS may be indicated in the VBT based on 6935 * inputs from the panel spec. 6936 * 6937 * DRRS saves power by switching to low RR based on usage scenarios. 6938 * 6939 * The implementation is based on frontbuffer tracking implementation. When 6940 * there is a disturbance on the screen triggered by user activity or a periodic 6941 * system activity, DRRS is disabled (RR is changed to high RR). When there is 6942 * no movement on screen, after a timeout of 1 second, a switch to low RR is 6943 * made. 6944 * 6945 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 6946 * and intel_edp_drrs_flush() are called. 6947 * 6948 * DRRS can be further extended to support other internal panels and also 6949 * the scenario of video playback wherein RR is set based on the rate 6950 * requested by userspace. 6951 */ 6952 6953 /** 6954 * intel_dp_drrs_init - Init basic DRRS work and mutex. 6955 * @connector: eDP connector 6956 * @fixed_mode: preferred mode of panel 6957 * 6958 * This function is called only once at driver load to initialize basic 6959 * DRRS stuff. 6960 * 6961 * Returns: 6962 * Downclock mode if panel supports it, else return NULL. 6963 * DRRS support is determined by the presence of downclock mode (apart 6964 * from VBT setting). 6965 */ 6966 static struct drm_display_mode * 6967 intel_dp_drrs_init(struct intel_connector *connector, 6968 struct drm_display_mode *fixed_mode) 6969 { 6970 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 6971 struct drm_display_mode *downclock_mode = NULL; 6972 6973 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 6974 mutex_init(&dev_priv->drrs.mutex); 6975 6976 if (INTEL_GEN(dev_priv) <= 6) { 6977 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); 6978 return NULL; 6979 } 6980 6981 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 6982 DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); 6983 return NULL; 6984 } 6985 6986 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 6987 if (!downclock_mode) { 6988 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); 6989 return NULL; 6990 } 6991 6992 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 6993 6994 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 6995 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); 6996 return downclock_mode; 6997 } 6998 6999 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7000 struct intel_connector *intel_connector) 7001 { 7002 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7003 struct drm_device *dev = &dev_priv->drm; 7004 struct drm_connector *connector = &intel_connector->base; 7005 struct drm_display_mode *fixed_mode = NULL; 7006 struct drm_display_mode *downclock_mode = NULL; 7007 bool has_dpcd; 7008 enum pipe pipe = INVALID_PIPE; 7009 intel_wakeref_t wakeref; 7010 struct edid *edid; 7011 7012 if (!intel_dp_is_edp(intel_dp)) 7013 return true; 7014 7015 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7016 7017 /* 7018 * On IBX/CPT we may get here with LVDS already registered. Since the 7019 * driver uses the only internal power sequencer available for both 7020 * eDP and LVDS bail out early in this case to prevent interfering 7021 * with an already powered-on LVDS power sequencer. 7022 */ 7023 if (intel_get_lvds_encoder(dev_priv)) { 7024 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7025 DRM_INFO("LVDS was detected, not registering eDP\n"); 7026 7027 return false; 7028 } 7029 7030 with_pps_lock(intel_dp, wakeref) { 7031 intel_dp_init_panel_power_timestamps(intel_dp); 7032 intel_dp_pps_init(intel_dp); 7033 intel_edp_panel_vdd_sanitize(intel_dp); 7034 } 7035 7036 /* Cache DPCD and EDID for edp. */ 7037 has_dpcd = intel_edp_init_dpcd(intel_dp); 7038 7039 if (!has_dpcd) { 7040 /* if this fails, presume the device is a ghost */ 7041 DRM_INFO("failed to retrieve link info, disabling eDP\n"); 7042 goto out_vdd_off; 7043 } 7044 7045 mutex_lock(&dev->mode_config.mutex); 7046 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7047 if (edid) { 7048 if (drm_add_edid_modes(connector, edid)) { 7049 drm_connector_update_edid_property(connector, 7050 edid); 7051 } else { 7052 kfree(edid); 7053 edid = ERR_PTR(-EINVAL); 7054 } 7055 } else { 7056 edid = ERR_PTR(-ENOENT); 7057 } 7058 intel_connector->edid = edid; 7059 7060 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7061 if (fixed_mode) 7062 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7063 7064 /* fallback to VBT if available for eDP */ 7065 if (!fixed_mode) 7066 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7067 mutex_unlock(&dev->mode_config.mutex); 7068 7069 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7070 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7071 register_reboot_notifier(&intel_dp->edp_notifier); 7072 7073 /* 7074 * Figure out the current pipe for the initial backlight setup. 7075 * If the current pipe isn't valid, try the PPS pipe, and if that 7076 * fails just assume pipe A. 7077 */ 7078 pipe = vlv_active_pipe(intel_dp); 7079 7080 if (pipe != PIPE_A && pipe != PIPE_B) 7081 pipe = intel_dp->pps_pipe; 7082 7083 if (pipe != PIPE_A && pipe != PIPE_B) 7084 pipe = PIPE_A; 7085 7086 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", 7087 pipe_name(pipe)); 7088 } 7089 7090 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7091 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7092 intel_panel_setup_backlight(connector, pipe); 7093 7094 if (fixed_mode) 7095 drm_connector_init_panel_orientation_property( 7096 connector, fixed_mode->hdisplay, fixed_mode->vdisplay); 7097 7098 return true; 7099 7100 out_vdd_off: 7101 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7102 /* 7103 * vdd might still be enabled do to the delayed vdd off. 7104 * Make sure vdd is actually turned off here. 7105 */ 7106 with_pps_lock(intel_dp, wakeref) 7107 edp_panel_vdd_off_sync(intel_dp); 7108 7109 return false; 7110 } 7111 7112 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7113 { 7114 struct intel_connector *intel_connector; 7115 struct drm_connector *connector; 7116 7117 intel_connector = container_of(work, typeof(*intel_connector), 7118 modeset_retry_work); 7119 connector = &intel_connector->base; 7120 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7121 connector->name); 7122 7123 /* Grab the locks before changing connector property*/ 7124 mutex_lock(&connector->dev->mode_config.mutex); 7125 /* Set connector link status to BAD and send a Uevent to notify 7126 * userspace to do a modeset. 7127 */ 7128 drm_connector_set_link_status_property(connector, 7129 DRM_MODE_LINK_STATUS_BAD); 7130 mutex_unlock(&connector->dev->mode_config.mutex); 7131 /* Send Hotplug uevent so userspace can reprobe */ 7132 drm_kms_helper_hotplug_event(connector->dev); 7133 } 7134 7135 bool 7136 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 7137 struct intel_connector *intel_connector) 7138 { 7139 struct drm_connector *connector = &intel_connector->base; 7140 struct intel_dp *intel_dp = &intel_dig_port->dp; 7141 struct intel_encoder *intel_encoder = &intel_dig_port->base; 7142 struct drm_device *dev = intel_encoder->base.dev; 7143 struct drm_i915_private *dev_priv = to_i915(dev); 7144 enum port port = intel_encoder->port; 7145 enum phy phy = intel_port_to_phy(dev_priv, port); 7146 int type; 7147 7148 /* Initialize the work for modeset in case of link train failure */ 7149 INIT_WORK(&intel_connector->modeset_retry_work, 7150 intel_dp_modeset_retry_work_fn); 7151 7152 if (WARN(intel_dig_port->max_lanes < 1, 7153 "Not enough lanes (%d) for DP on port %c\n", 7154 intel_dig_port->max_lanes, port_name(port))) 7155 return false; 7156 7157 intel_dp_set_source_rates(intel_dp); 7158 7159 intel_dp->reset_link_params = true; 7160 intel_dp->pps_pipe = INVALID_PIPE; 7161 intel_dp->active_pipe = INVALID_PIPE; 7162 7163 /* Preserve the current hw state. */ 7164 intel_dp->DP = I915_READ(intel_dp->output_reg); 7165 intel_dp->attached_connector = intel_connector; 7166 7167 if (intel_dp_is_port_edp(dev_priv, port)) { 7168 /* 7169 * Currently we don't support eDP on TypeC ports, although in 7170 * theory it could work on TypeC legacy ports. 7171 */ 7172 WARN_ON(intel_phy_is_tc(dev_priv, phy)); 7173 type = DRM_MODE_CONNECTOR_eDP; 7174 } else { 7175 type = DRM_MODE_CONNECTOR_DisplayPort; 7176 } 7177 7178 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7179 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7180 7181 /* 7182 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7183 * for DP the encoder type can be set by the caller to 7184 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7185 */ 7186 if (type == DRM_MODE_CONNECTOR_eDP) 7187 intel_encoder->type = INTEL_OUTPUT_EDP; 7188 7189 /* eDP only on port B and/or C on vlv/chv */ 7190 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 7191 intel_dp_is_edp(intel_dp) && 7192 port != PORT_B && port != PORT_C)) 7193 return false; 7194 7195 DRM_DEBUG_KMS("Adding %s connector on port %c\n", 7196 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7197 port_name(port)); 7198 7199 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7200 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7201 7202 if (!HAS_GMCH(dev_priv)) 7203 connector->interlace_allowed = true; 7204 connector->doublescan_allowed = 0; 7205 7206 if (INTEL_GEN(dev_priv) >= 11) 7207 connector->ycbcr_420_allowed = true; 7208 7209 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7210 7211 intel_dp_aux_init(intel_dp); 7212 7213 intel_connector_attach_encoder(intel_connector, intel_encoder); 7214 7215 if (HAS_DDI(dev_priv)) 7216 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7217 else 7218 intel_connector->get_hw_state = intel_connector_get_hw_state; 7219 7220 /* init MST on ports that can support it */ 7221 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) && 7222 (port == PORT_B || port == PORT_C || 7223 port == PORT_D || port == PORT_F)) 7224 intel_dp_mst_encoder_init(intel_dig_port, 7225 intel_connector->base.base.id); 7226 7227 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7228 intel_dp_aux_fini(intel_dp); 7229 intel_dp_mst_encoder_cleanup(intel_dig_port); 7230 goto fail; 7231 } 7232 7233 intel_dp_add_properties(intel_dp, connector); 7234 7235 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7236 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 7237 if (ret) 7238 DRM_DEBUG_KMS("HDCP init failed, skipping.\n"); 7239 } 7240 7241 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7242 * 0xd. Failure to do so will result in spurious interrupts being 7243 * generated on the port when a cable is not attached. 7244 */ 7245 if (IS_G45(dev_priv)) { 7246 u32 temp = I915_READ(PEG_BAND_GAP_DATA); 7247 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); 7248 } 7249 7250 return true; 7251 7252 fail: 7253 drm_connector_cleanup(connector); 7254 7255 return false; 7256 } 7257 7258 bool intel_dp_init(struct drm_i915_private *dev_priv, 7259 i915_reg_t output_reg, 7260 enum port port) 7261 { 7262 struct intel_digital_port *intel_dig_port; 7263 struct intel_encoder *intel_encoder; 7264 struct drm_encoder *encoder; 7265 struct intel_connector *intel_connector; 7266 7267 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 7268 if (!intel_dig_port) 7269 return false; 7270 7271 intel_connector = intel_connector_alloc(); 7272 if (!intel_connector) 7273 goto err_connector_alloc; 7274 7275 intel_encoder = &intel_dig_port->base; 7276 encoder = &intel_encoder->base; 7277 7278 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7279 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7280 "DP %c", port_name(port))) 7281 goto err_encoder_init; 7282 7283 intel_encoder->hotplug = intel_dp_hotplug; 7284 intel_encoder->compute_config = intel_dp_compute_config; 7285 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7286 intel_encoder->get_config = intel_dp_get_config; 7287 intel_encoder->update_pipe = intel_panel_update_backlight; 7288 intel_encoder->suspend = intel_dp_encoder_suspend; 7289 if (IS_CHERRYVIEW(dev_priv)) { 7290 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7291 intel_encoder->pre_enable = chv_pre_enable_dp; 7292 intel_encoder->enable = vlv_enable_dp; 7293 intel_encoder->disable = vlv_disable_dp; 7294 intel_encoder->post_disable = chv_post_disable_dp; 7295 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 7296 } else if (IS_VALLEYVIEW(dev_priv)) { 7297 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 7298 intel_encoder->pre_enable = vlv_pre_enable_dp; 7299 intel_encoder->enable = vlv_enable_dp; 7300 intel_encoder->disable = vlv_disable_dp; 7301 intel_encoder->post_disable = vlv_post_disable_dp; 7302 } else { 7303 intel_encoder->pre_enable = g4x_pre_enable_dp; 7304 intel_encoder->enable = g4x_enable_dp; 7305 intel_encoder->disable = g4x_disable_dp; 7306 intel_encoder->post_disable = g4x_post_disable_dp; 7307 } 7308 7309 intel_dig_port->dp.output_reg = output_reg; 7310 intel_dig_port->max_lanes = 4; 7311 7312 intel_encoder->type = INTEL_OUTPUT_DP; 7313 intel_encoder->power_domain = intel_port_to_power_domain(port); 7314 if (IS_CHERRYVIEW(dev_priv)) { 7315 if (port == PORT_D) 7316 intel_encoder->crtc_mask = 1 << 2; 7317 else 7318 intel_encoder->crtc_mask = (1 << 0) | (1 << 1); 7319 } else { 7320 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); 7321 } 7322 intel_encoder->cloneable = 0; 7323 intel_encoder->port = port; 7324 7325 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 7326 7327 if (port != PORT_A) 7328 intel_infoframe_init(intel_dig_port); 7329 7330 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 7331 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 7332 goto err_init_connector; 7333 7334 return true; 7335 7336 err_init_connector: 7337 drm_encoder_cleanup(encoder); 7338 err_encoder_init: 7339 kfree(intel_connector); 7340 err_connector_alloc: 7341 kfree(intel_dig_port); 7342 return false; 7343 } 7344 7345 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 7346 { 7347 struct intel_encoder *encoder; 7348 7349 for_each_intel_encoder(&dev_priv->drm, encoder) { 7350 struct intel_dp *intel_dp; 7351 7352 if (encoder->type != INTEL_OUTPUT_DDI) 7353 continue; 7354 7355 intel_dp = enc_to_intel_dp(&encoder->base); 7356 7357 if (!intel_dp->can_mst) 7358 continue; 7359 7360 if (intel_dp->is_mst) 7361 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 7362 } 7363 } 7364 7365 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 7366 { 7367 struct intel_encoder *encoder; 7368 7369 for_each_intel_encoder(&dev_priv->drm, encoder) { 7370 struct intel_dp *intel_dp; 7371 int ret; 7372 7373 if (encoder->type != INTEL_OUTPUT_DDI) 7374 continue; 7375 7376 intel_dp = enc_to_intel_dp(&encoder->base); 7377 7378 if (!intel_dp->can_mst) 7379 continue; 7380 7381 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr); 7382 if (ret) { 7383 intel_dp->is_mst = false; 7384 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 7385 false); 7386 } 7387 } 7388 } 7389