1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44 
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_dp.h"
52 #include "intel_dp_link_training.h"
53 #include "intel_dp_mst.h"
54 #include "intel_dpio_phy.h"
55 #include "intel_drv.h"
56 #include "intel_fifo_underrun.h"
57 #include "intel_hdcp.h"
58 #include "intel_hdmi.h"
59 #include "intel_hotplug.h"
60 #include "intel_lspcon.h"
61 #include "intel_lvds.h"
62 #include "intel_panel.h"
63 #include "intel_psr.h"
64 #include "intel_sideband.h"
65 #include "intel_vdsc.h"
66 
67 #define DP_DPRX_ESI_LEN 14
68 
69 /* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
70 #define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440
71 #define DP_DSC_MIN_SUPPORTED_BPC		8
72 #define DP_DSC_MAX_SUPPORTED_BPC		10
73 
74 /* DP DSC throughput values used for slice count calculations KPixels/s */
75 #define DP_DSC_PEAK_PIXEL_RATE			2720000
76 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
77 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
78 
79 /* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
80 #define DP_DSC_FEC_OVERHEAD_FACTOR		976
81 
82 /* Compliance test status bits  */
83 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
84 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
85 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
86 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
87 
88 struct dp_link_dpll {
89 	int clock;
90 	struct dpll dpll;
91 };
92 
93 static const struct dp_link_dpll g4x_dpll[] = {
94 	{ 162000,
95 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
96 	{ 270000,
97 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
98 };
99 
100 static const struct dp_link_dpll pch_dpll[] = {
101 	{ 162000,
102 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
103 	{ 270000,
104 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
105 };
106 
107 static const struct dp_link_dpll vlv_dpll[] = {
108 	{ 162000,
109 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
110 	{ 270000,
111 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
112 };
113 
114 /*
115  * CHV supports eDP 1.4 that have  more link rates.
116  * Below only provides the fixed rate but exclude variable rate.
117  */
118 static const struct dp_link_dpll chv_dpll[] = {
119 	/*
120 	 * CHV requires to program fractional division for m2.
121 	 * m2 is stored in fixed point format using formula below
122 	 * (m2_int << 22) | m2_fraction
123 	 */
124 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
125 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
126 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
127 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
128 };
129 
130 /* Constants for DP DSC configurations */
131 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
132 
133 /* With Single pipe configuration, HW is capable of supporting maximum
134  * of 4 slices per line.
135  */
136 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
137 
138 /**
139  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
140  * @intel_dp: DP struct
141  *
142  * If a CPU or PCH DP output is attached to an eDP panel, this function
143  * will return true, and false otherwise.
144  */
145 bool intel_dp_is_edp(struct intel_dp *intel_dp)
146 {
147 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
148 
149 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
150 }
151 
152 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
153 {
154 	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
155 }
156 
157 static void intel_dp_link_down(struct intel_encoder *encoder,
158 			       const struct intel_crtc_state *old_crtc_state);
159 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
160 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
161 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
162 					   const struct intel_crtc_state *crtc_state);
163 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
164 				      enum pipe pipe);
165 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
166 
167 /* update sink rates from dpcd */
168 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
169 {
170 	static const int dp_rates[] = {
171 		162000, 270000, 540000, 810000
172 	};
173 	int i, max_rate;
174 
175 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
176 
177 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
178 		if (dp_rates[i] > max_rate)
179 			break;
180 		intel_dp->sink_rates[i] = dp_rates[i];
181 	}
182 
183 	intel_dp->num_sink_rates = i;
184 }
185 
186 /* Get length of rates array potentially limited by max_rate. */
187 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
188 {
189 	int i;
190 
191 	/* Limit results by potentially reduced max rate */
192 	for (i = 0; i < len; i++) {
193 		if (rates[len - i - 1] <= max_rate)
194 			return len - i;
195 	}
196 
197 	return 0;
198 }
199 
200 /* Get length of common rates array potentially limited by max_rate. */
201 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
202 					  int max_rate)
203 {
204 	return intel_dp_rate_limit_len(intel_dp->common_rates,
205 				       intel_dp->num_common_rates, max_rate);
206 }
207 
208 /* Theoretical max between source and sink */
209 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
210 {
211 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
212 }
213 
214 static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
215 {
216 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
217 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
218 	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
219 	intel_wakeref_t wakeref;
220 	u32 lane_info;
221 
222 	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
223 		return 4;
224 
225 	lane_info = 0;
226 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
227 		lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
228 			     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
229 				DP_LANE_ASSIGNMENT_SHIFT(tc_port);
230 
231 	switch (lane_info) {
232 	default:
233 		MISSING_CASE(lane_info);
234 	case 1:
235 	case 2:
236 	case 4:
237 	case 8:
238 		return 1;
239 	case 3:
240 	case 12:
241 		return 2;
242 	case 15:
243 		return 4;
244 	}
245 }
246 
247 /* Theoretical max between source and sink */
248 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
249 {
250 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
251 	int source_max = intel_dig_port->max_lanes;
252 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
253 	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
254 
255 	return min3(source_max, sink_max, fia_max);
256 }
257 
258 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
259 {
260 	return intel_dp->max_link_lane_count;
261 }
262 
263 int
264 intel_dp_link_required(int pixel_clock, int bpp)
265 {
266 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
267 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
268 }
269 
270 int
271 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
272 {
273 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
274 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
275 	 * is transmitted every LS_Clk per lane, there is no need to account for
276 	 * the channel encoding that is done in the PHY layer here.
277 	 */
278 
279 	return max_link_clock * max_lanes;
280 }
281 
282 static int
283 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
284 {
285 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
286 	struct intel_encoder *encoder = &intel_dig_port->base;
287 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
288 	int max_dotclk = dev_priv->max_dotclk_freq;
289 	int ds_max_dotclk;
290 
291 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
292 
293 	if (type != DP_DS_PORT_TYPE_VGA)
294 		return max_dotclk;
295 
296 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
297 						    intel_dp->downstream_ports);
298 
299 	if (ds_max_dotclk != 0)
300 		max_dotclk = min(max_dotclk, ds_max_dotclk);
301 
302 	return max_dotclk;
303 }
304 
305 static int cnl_max_source_rate(struct intel_dp *intel_dp)
306 {
307 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
308 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
309 	enum port port = dig_port->base.port;
310 
311 	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
312 
313 	/* Low voltage SKUs are limited to max of 5.4G */
314 	if (voltage == VOLTAGE_INFO_0_85V)
315 		return 540000;
316 
317 	/* For this SKU 8.1G is supported in all ports */
318 	if (IS_CNL_WITH_PORT_F(dev_priv))
319 		return 810000;
320 
321 	/* For other SKUs, max rate on ports A and D is 5.4G */
322 	if (port == PORT_A || port == PORT_D)
323 		return 540000;
324 
325 	return 810000;
326 }
327 
328 static int icl_max_source_rate(struct intel_dp *intel_dp)
329 {
330 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
332 	enum port port = dig_port->base.port;
333 
334 	if (intel_port_is_combophy(dev_priv, port) &&
335 	    !IS_ELKHARTLAKE(dev_priv) &&
336 	    !intel_dp_is_edp(intel_dp))
337 		return 540000;
338 
339 	return 810000;
340 }
341 
342 static void
343 intel_dp_set_source_rates(struct intel_dp *intel_dp)
344 {
345 	/* The values must be in increasing order */
346 	static const int cnl_rates[] = {
347 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
348 	};
349 	static const int bxt_rates[] = {
350 		162000, 216000, 243000, 270000, 324000, 432000, 540000
351 	};
352 	static const int skl_rates[] = {
353 		162000, 216000, 270000, 324000, 432000, 540000
354 	};
355 	static const int hsw_rates[] = {
356 		162000, 270000, 540000
357 	};
358 	static const int g4x_rates[] = {
359 		162000, 270000
360 	};
361 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
362 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
363 	const struct ddi_vbt_port_info *info =
364 		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
365 	const int *source_rates;
366 	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
367 
368 	/* This should only be done once */
369 	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
370 
371 	if (INTEL_GEN(dev_priv) >= 10) {
372 		source_rates = cnl_rates;
373 		size = ARRAY_SIZE(cnl_rates);
374 		if (IS_GEN(dev_priv, 10))
375 			max_rate = cnl_max_source_rate(intel_dp);
376 		else
377 			max_rate = icl_max_source_rate(intel_dp);
378 	} else if (IS_GEN9_LP(dev_priv)) {
379 		source_rates = bxt_rates;
380 		size = ARRAY_SIZE(bxt_rates);
381 	} else if (IS_GEN9_BC(dev_priv)) {
382 		source_rates = skl_rates;
383 		size = ARRAY_SIZE(skl_rates);
384 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
385 		   IS_BROADWELL(dev_priv)) {
386 		source_rates = hsw_rates;
387 		size = ARRAY_SIZE(hsw_rates);
388 	} else {
389 		source_rates = g4x_rates;
390 		size = ARRAY_SIZE(g4x_rates);
391 	}
392 
393 	if (max_rate && vbt_max_rate)
394 		max_rate = min(max_rate, vbt_max_rate);
395 	else if (vbt_max_rate)
396 		max_rate = vbt_max_rate;
397 
398 	if (max_rate)
399 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
400 
401 	intel_dp->source_rates = source_rates;
402 	intel_dp->num_source_rates = size;
403 }
404 
405 static int intersect_rates(const int *source_rates, int source_len,
406 			   const int *sink_rates, int sink_len,
407 			   int *common_rates)
408 {
409 	int i = 0, j = 0, k = 0;
410 
411 	while (i < source_len && j < sink_len) {
412 		if (source_rates[i] == sink_rates[j]) {
413 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
414 				return k;
415 			common_rates[k] = source_rates[i];
416 			++k;
417 			++i;
418 			++j;
419 		} else if (source_rates[i] < sink_rates[j]) {
420 			++i;
421 		} else {
422 			++j;
423 		}
424 	}
425 	return k;
426 }
427 
428 /* return index of rate in rates array, or -1 if not found */
429 static int intel_dp_rate_index(const int *rates, int len, int rate)
430 {
431 	int i;
432 
433 	for (i = 0; i < len; i++)
434 		if (rate == rates[i])
435 			return i;
436 
437 	return -1;
438 }
439 
440 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
441 {
442 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
443 
444 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
445 						     intel_dp->num_source_rates,
446 						     intel_dp->sink_rates,
447 						     intel_dp->num_sink_rates,
448 						     intel_dp->common_rates);
449 
450 	/* Paranoia, there should always be something in common. */
451 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
452 		intel_dp->common_rates[0] = 162000;
453 		intel_dp->num_common_rates = 1;
454 	}
455 }
456 
457 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
458 				       u8 lane_count)
459 {
460 	/*
461 	 * FIXME: we need to synchronize the current link parameters with
462 	 * hardware readout. Currently fast link training doesn't work on
463 	 * boot-up.
464 	 */
465 	if (link_rate == 0 ||
466 	    link_rate > intel_dp->max_link_rate)
467 		return false;
468 
469 	if (lane_count == 0 ||
470 	    lane_count > intel_dp_max_lane_count(intel_dp))
471 		return false;
472 
473 	return true;
474 }
475 
476 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
477 						     int link_rate,
478 						     u8 lane_count)
479 {
480 	const struct drm_display_mode *fixed_mode =
481 		intel_dp->attached_connector->panel.fixed_mode;
482 	int mode_rate, max_rate;
483 
484 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
485 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
486 	if (mode_rate > max_rate)
487 		return false;
488 
489 	return true;
490 }
491 
492 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
493 					    int link_rate, u8 lane_count)
494 {
495 	int index;
496 
497 	index = intel_dp_rate_index(intel_dp->common_rates,
498 				    intel_dp->num_common_rates,
499 				    link_rate);
500 	if (index > 0) {
501 		if (intel_dp_is_edp(intel_dp) &&
502 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
503 							      intel_dp->common_rates[index - 1],
504 							      lane_count)) {
505 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
506 			return 0;
507 		}
508 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
509 		intel_dp->max_link_lane_count = lane_count;
510 	} else if (lane_count > 1) {
511 		if (intel_dp_is_edp(intel_dp) &&
512 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
513 							      intel_dp_max_common_rate(intel_dp),
514 							      lane_count >> 1)) {
515 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
516 			return 0;
517 		}
518 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
519 		intel_dp->max_link_lane_count = lane_count >> 1;
520 	} else {
521 		DRM_ERROR("Link Training Unsuccessful\n");
522 		return -1;
523 	}
524 
525 	return 0;
526 }
527 
528 static enum drm_mode_status
529 intel_dp_mode_valid(struct drm_connector *connector,
530 		    struct drm_display_mode *mode)
531 {
532 	struct intel_dp *intel_dp = intel_attached_dp(connector);
533 	struct intel_connector *intel_connector = to_intel_connector(connector);
534 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
535 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
536 	int target_clock = mode->clock;
537 	int max_rate, mode_rate, max_lanes, max_link_clock;
538 	int max_dotclk;
539 	u16 dsc_max_output_bpp = 0;
540 	u8 dsc_slice_count = 0;
541 
542 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
543 		return MODE_NO_DBLESCAN;
544 
545 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
546 
547 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
548 		if (mode->hdisplay > fixed_mode->hdisplay)
549 			return MODE_PANEL;
550 
551 		if (mode->vdisplay > fixed_mode->vdisplay)
552 			return MODE_PANEL;
553 
554 		target_clock = fixed_mode->clock;
555 	}
556 
557 	max_link_clock = intel_dp_max_link_rate(intel_dp);
558 	max_lanes = intel_dp_max_lane_count(intel_dp);
559 
560 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
561 	mode_rate = intel_dp_link_required(target_clock, 18);
562 
563 	/*
564 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
565 	 * integer value since we support only integer values of bpp.
566 	 */
567 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
568 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
569 		if (intel_dp_is_edp(intel_dp)) {
570 			dsc_max_output_bpp =
571 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
572 			dsc_slice_count =
573 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
574 								true);
575 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
576 			dsc_max_output_bpp =
577 				intel_dp_dsc_get_output_bpp(max_link_clock,
578 							    max_lanes,
579 							    target_clock,
580 							    mode->hdisplay) >> 4;
581 			dsc_slice_count =
582 				intel_dp_dsc_get_slice_count(intel_dp,
583 							     target_clock,
584 							     mode->hdisplay);
585 		}
586 	}
587 
588 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
589 	    target_clock > max_dotclk)
590 		return MODE_CLOCK_HIGH;
591 
592 	if (mode->clock < 10000)
593 		return MODE_CLOCK_LOW;
594 
595 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
596 		return MODE_H_ILLEGAL;
597 
598 	return MODE_OK;
599 }
600 
601 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
602 {
603 	int i;
604 	u32 v = 0;
605 
606 	if (src_bytes > 4)
607 		src_bytes = 4;
608 	for (i = 0; i < src_bytes; i++)
609 		v |= ((u32)src[i]) << ((3 - i) * 8);
610 	return v;
611 }
612 
613 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
614 {
615 	int i;
616 	if (dst_bytes > 4)
617 		dst_bytes = 4;
618 	for (i = 0; i < dst_bytes; i++)
619 		dst[i] = src >> ((3-i) * 8);
620 }
621 
622 static void
623 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
624 static void
625 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
626 					      bool force_disable_vdd);
627 static void
628 intel_dp_pps_init(struct intel_dp *intel_dp);
629 
630 static intel_wakeref_t
631 pps_lock(struct intel_dp *intel_dp)
632 {
633 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
634 	intel_wakeref_t wakeref;
635 
636 	/*
637 	 * See intel_power_sequencer_reset() why we need
638 	 * a power domain reference here.
639 	 */
640 	wakeref = intel_display_power_get(dev_priv,
641 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
642 
643 	mutex_lock(&dev_priv->pps_mutex);
644 
645 	return wakeref;
646 }
647 
648 static intel_wakeref_t
649 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
650 {
651 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
652 
653 	mutex_unlock(&dev_priv->pps_mutex);
654 	intel_display_power_put(dev_priv,
655 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
656 				wakeref);
657 	return 0;
658 }
659 
660 #define with_pps_lock(dp, wf) \
661 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
662 
663 static void
664 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
665 {
666 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
667 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
668 	enum pipe pipe = intel_dp->pps_pipe;
669 	bool pll_enabled, release_cl_override = false;
670 	enum dpio_phy phy = DPIO_PHY(pipe);
671 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
672 	u32 DP;
673 
674 	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
675 		 "skipping pipe %c power sequencer kick due to port %c being active\n",
676 		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
677 		return;
678 
679 	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
680 		      pipe_name(pipe), port_name(intel_dig_port->base.port));
681 
682 	/* Preserve the BIOS-computed detected bit. This is
683 	 * supposed to be read-only.
684 	 */
685 	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
686 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
687 	DP |= DP_PORT_WIDTH(1);
688 	DP |= DP_LINK_TRAIN_PAT_1;
689 
690 	if (IS_CHERRYVIEW(dev_priv))
691 		DP |= DP_PIPE_SEL_CHV(pipe);
692 	else
693 		DP |= DP_PIPE_SEL(pipe);
694 
695 	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
696 
697 	/*
698 	 * The DPLL for the pipe must be enabled for this to work.
699 	 * So enable temporarily it if it's not already enabled.
700 	 */
701 	if (!pll_enabled) {
702 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
703 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
704 
705 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
706 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
707 			DRM_ERROR("Failed to force on pll for pipe %c!\n",
708 				  pipe_name(pipe));
709 			return;
710 		}
711 	}
712 
713 	/*
714 	 * Similar magic as in intel_dp_enable_port().
715 	 * We _must_ do this port enable + disable trick
716 	 * to make this power sequencer lock onto the port.
717 	 * Otherwise even VDD force bit won't work.
718 	 */
719 	I915_WRITE(intel_dp->output_reg, DP);
720 	POSTING_READ(intel_dp->output_reg);
721 
722 	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
723 	POSTING_READ(intel_dp->output_reg);
724 
725 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
726 	POSTING_READ(intel_dp->output_reg);
727 
728 	if (!pll_enabled) {
729 		vlv_force_pll_off(dev_priv, pipe);
730 
731 		if (release_cl_override)
732 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
733 	}
734 }
735 
736 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
737 {
738 	struct intel_encoder *encoder;
739 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
740 
741 	/*
742 	 * We don't have power sequencer currently.
743 	 * Pick one that's not used by other ports.
744 	 */
745 	for_each_intel_dp(&dev_priv->drm, encoder) {
746 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
747 
748 		if (encoder->type == INTEL_OUTPUT_EDP) {
749 			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
750 				intel_dp->active_pipe != intel_dp->pps_pipe);
751 
752 			if (intel_dp->pps_pipe != INVALID_PIPE)
753 				pipes &= ~(1 << intel_dp->pps_pipe);
754 		} else {
755 			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
756 
757 			if (intel_dp->active_pipe != INVALID_PIPE)
758 				pipes &= ~(1 << intel_dp->active_pipe);
759 		}
760 	}
761 
762 	if (pipes == 0)
763 		return INVALID_PIPE;
764 
765 	return ffs(pipes) - 1;
766 }
767 
768 static enum pipe
769 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
770 {
771 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
772 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
773 	enum pipe pipe;
774 
775 	lockdep_assert_held(&dev_priv->pps_mutex);
776 
777 	/* We should never land here with regular DP ports */
778 	WARN_ON(!intel_dp_is_edp(intel_dp));
779 
780 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
781 		intel_dp->active_pipe != intel_dp->pps_pipe);
782 
783 	if (intel_dp->pps_pipe != INVALID_PIPE)
784 		return intel_dp->pps_pipe;
785 
786 	pipe = vlv_find_free_pps(dev_priv);
787 
788 	/*
789 	 * Didn't find one. This should not happen since there
790 	 * are two power sequencers and up to two eDP ports.
791 	 */
792 	if (WARN_ON(pipe == INVALID_PIPE))
793 		pipe = PIPE_A;
794 
795 	vlv_steal_power_sequencer(dev_priv, pipe);
796 	intel_dp->pps_pipe = pipe;
797 
798 	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
799 		      pipe_name(intel_dp->pps_pipe),
800 		      port_name(intel_dig_port->base.port));
801 
802 	/* init power sequencer on this pipe and port */
803 	intel_dp_init_panel_power_sequencer(intel_dp);
804 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
805 
806 	/*
807 	 * Even vdd force doesn't work until we've made
808 	 * the power sequencer lock in on the port.
809 	 */
810 	vlv_power_sequencer_kick(intel_dp);
811 
812 	return intel_dp->pps_pipe;
813 }
814 
815 static int
816 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
817 {
818 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
819 	int backlight_controller = dev_priv->vbt.backlight.controller;
820 
821 	lockdep_assert_held(&dev_priv->pps_mutex);
822 
823 	/* We should never land here with regular DP ports */
824 	WARN_ON(!intel_dp_is_edp(intel_dp));
825 
826 	if (!intel_dp->pps_reset)
827 		return backlight_controller;
828 
829 	intel_dp->pps_reset = false;
830 
831 	/*
832 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
833 	 * has been setup during connector init.
834 	 */
835 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
836 
837 	return backlight_controller;
838 }
839 
840 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
841 			       enum pipe pipe);
842 
843 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
844 			       enum pipe pipe)
845 {
846 	return I915_READ(PP_STATUS(pipe)) & PP_ON;
847 }
848 
849 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
850 				enum pipe pipe)
851 {
852 	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
853 }
854 
855 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
856 			 enum pipe pipe)
857 {
858 	return true;
859 }
860 
861 static enum pipe
862 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
863 		     enum port port,
864 		     vlv_pipe_check pipe_check)
865 {
866 	enum pipe pipe;
867 
868 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
869 		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
870 			PANEL_PORT_SELECT_MASK;
871 
872 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
873 			continue;
874 
875 		if (!pipe_check(dev_priv, pipe))
876 			continue;
877 
878 		return pipe;
879 	}
880 
881 	return INVALID_PIPE;
882 }
883 
884 static void
885 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
886 {
887 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
888 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
889 	enum port port = intel_dig_port->base.port;
890 
891 	lockdep_assert_held(&dev_priv->pps_mutex);
892 
893 	/* try to find a pipe with this port selected */
894 	/* first pick one where the panel is on */
895 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
896 						  vlv_pipe_has_pp_on);
897 	/* didn't find one? pick one where vdd is on */
898 	if (intel_dp->pps_pipe == INVALID_PIPE)
899 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
900 							  vlv_pipe_has_vdd_on);
901 	/* didn't find one? pick one with just the correct port */
902 	if (intel_dp->pps_pipe == INVALID_PIPE)
903 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
904 							  vlv_pipe_any);
905 
906 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
907 	if (intel_dp->pps_pipe == INVALID_PIPE) {
908 		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
909 			      port_name(port));
910 		return;
911 	}
912 
913 	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
914 		      port_name(port), pipe_name(intel_dp->pps_pipe));
915 
916 	intel_dp_init_panel_power_sequencer(intel_dp);
917 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
918 }
919 
920 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
921 {
922 	struct intel_encoder *encoder;
923 
924 	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
925 		    !IS_GEN9_LP(dev_priv)))
926 		return;
927 
928 	/*
929 	 * We can't grab pps_mutex here due to deadlock with power_domain
930 	 * mutex when power_domain functions are called while holding pps_mutex.
931 	 * That also means that in order to use pps_pipe the code needs to
932 	 * hold both a power domain reference and pps_mutex, and the power domain
933 	 * reference get/put must be done while _not_ holding pps_mutex.
934 	 * pps_{lock,unlock}() do these steps in the correct order, so one
935 	 * should use them always.
936 	 */
937 
938 	for_each_intel_dp(&dev_priv->drm, encoder) {
939 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
940 
941 		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
942 
943 		if (encoder->type != INTEL_OUTPUT_EDP)
944 			continue;
945 
946 		if (IS_GEN9_LP(dev_priv))
947 			intel_dp->pps_reset = true;
948 		else
949 			intel_dp->pps_pipe = INVALID_PIPE;
950 	}
951 }
952 
953 struct pps_registers {
954 	i915_reg_t pp_ctrl;
955 	i915_reg_t pp_stat;
956 	i915_reg_t pp_on;
957 	i915_reg_t pp_off;
958 	i915_reg_t pp_div;
959 };
960 
961 static void intel_pps_get_registers(struct intel_dp *intel_dp,
962 				    struct pps_registers *regs)
963 {
964 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
965 	int pps_idx = 0;
966 
967 	memset(regs, 0, sizeof(*regs));
968 
969 	if (IS_GEN9_LP(dev_priv))
970 		pps_idx = bxt_power_sequencer_idx(intel_dp);
971 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
972 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
973 
974 	regs->pp_ctrl = PP_CONTROL(pps_idx);
975 	regs->pp_stat = PP_STATUS(pps_idx);
976 	regs->pp_on = PP_ON_DELAYS(pps_idx);
977 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
978 
979 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
980 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
981 		regs->pp_div = INVALID_MMIO_REG;
982 	else
983 		regs->pp_div = PP_DIVISOR(pps_idx);
984 }
985 
986 static i915_reg_t
987 _pp_ctrl_reg(struct intel_dp *intel_dp)
988 {
989 	struct pps_registers regs;
990 
991 	intel_pps_get_registers(intel_dp, &regs);
992 
993 	return regs.pp_ctrl;
994 }
995 
996 static i915_reg_t
997 _pp_stat_reg(struct intel_dp *intel_dp)
998 {
999 	struct pps_registers regs;
1000 
1001 	intel_pps_get_registers(intel_dp, &regs);
1002 
1003 	return regs.pp_stat;
1004 }
1005 
1006 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1007    This function only applicable when panel PM state is not to be tracked */
1008 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1009 			      void *unused)
1010 {
1011 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1012 						 edp_notifier);
1013 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1014 	intel_wakeref_t wakeref;
1015 
1016 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1017 		return 0;
1018 
1019 	with_pps_lock(intel_dp, wakeref) {
1020 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1021 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1022 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1023 			u32 pp_div;
1024 
1025 			pp_ctrl_reg = PP_CONTROL(pipe);
1026 			pp_div_reg  = PP_DIVISOR(pipe);
1027 			pp_div = I915_READ(pp_div_reg);
1028 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1029 
1030 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1031 			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1032 			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1033 			msleep(intel_dp->panel_power_cycle_delay);
1034 		}
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1041 {
1042 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1043 
1044 	lockdep_assert_held(&dev_priv->pps_mutex);
1045 
1046 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1047 	    intel_dp->pps_pipe == INVALID_PIPE)
1048 		return false;
1049 
1050 	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1051 }
1052 
1053 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1054 {
1055 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1056 
1057 	lockdep_assert_held(&dev_priv->pps_mutex);
1058 
1059 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1060 	    intel_dp->pps_pipe == INVALID_PIPE)
1061 		return false;
1062 
1063 	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1064 }
1065 
1066 static void
1067 intel_dp_check_edp(struct intel_dp *intel_dp)
1068 {
1069 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1070 
1071 	if (!intel_dp_is_edp(intel_dp))
1072 		return;
1073 
1074 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1075 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
1076 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1077 			      I915_READ(_pp_stat_reg(intel_dp)),
1078 			      I915_READ(_pp_ctrl_reg(intel_dp)));
1079 	}
1080 }
1081 
1082 static u32
1083 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1084 {
1085 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1086 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1087 	u32 status;
1088 	bool done;
1089 
1090 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1091 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1092 				  msecs_to_jiffies_timeout(10));
1093 
1094 	/* just trace the final value */
1095 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1096 
1097 	if (!done)
1098 		DRM_ERROR("dp aux hw did not signal timeout!\n");
1099 #undef C
1100 
1101 	return status;
1102 }
1103 
1104 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1105 {
1106 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1107 
1108 	if (index)
1109 		return 0;
1110 
1111 	/*
1112 	 * The clock divider is based off the hrawclk, and would like to run at
1113 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1114 	 */
1115 	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1116 }
1117 
1118 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1119 {
1120 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1121 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1122 
1123 	if (index)
1124 		return 0;
1125 
1126 	/*
1127 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1128 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1129 	 * divide by 2000 and use that
1130 	 */
1131 	if (dig_port->aux_ch == AUX_CH_A)
1132 		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1133 	else
1134 		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1135 }
1136 
1137 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1138 {
1139 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1140 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1141 
1142 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1143 		/* Workaround for non-ULT HSW */
1144 		switch (index) {
1145 		case 0: return 63;
1146 		case 1: return 72;
1147 		default: return 0;
1148 		}
1149 	}
1150 
1151 	return ilk_get_aux_clock_divider(intel_dp, index);
1152 }
1153 
1154 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1155 {
1156 	/*
1157 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1158 	 * derive the clock from CDCLK automatically). We still implement the
1159 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1160 	 */
1161 	return index ? 0 : 1;
1162 }
1163 
1164 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1165 				int send_bytes,
1166 				u32 aux_clock_divider)
1167 {
1168 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1169 	struct drm_i915_private *dev_priv =
1170 			to_i915(intel_dig_port->base.base.dev);
1171 	u32 precharge, timeout;
1172 
1173 	if (IS_GEN(dev_priv, 6))
1174 		precharge = 3;
1175 	else
1176 		precharge = 5;
1177 
1178 	if (IS_BROADWELL(dev_priv))
1179 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1180 	else
1181 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1182 
1183 	return DP_AUX_CH_CTL_SEND_BUSY |
1184 	       DP_AUX_CH_CTL_DONE |
1185 	       DP_AUX_CH_CTL_INTERRUPT |
1186 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1187 	       timeout |
1188 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1189 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1190 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1191 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1192 }
1193 
1194 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1195 				int send_bytes,
1196 				u32 unused)
1197 {
1198 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1199 	u32 ret;
1200 
1201 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1202 	      DP_AUX_CH_CTL_DONE |
1203 	      DP_AUX_CH_CTL_INTERRUPT |
1204 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1205 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1206 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1207 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1208 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1209 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1210 
1211 	if (intel_dig_port->tc_type == TC_PORT_TBT)
1212 		ret |= DP_AUX_CH_CTL_TBT_IO;
1213 
1214 	return ret;
1215 }
1216 
1217 static int
1218 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1219 		  const u8 *send, int send_bytes,
1220 		  u8 *recv, int recv_size,
1221 		  u32 aux_send_ctl_flags)
1222 {
1223 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1224 	struct drm_i915_private *i915 =
1225 			to_i915(intel_dig_port->base.base.dev);
1226 	struct intel_uncore *uncore = &i915->uncore;
1227 	i915_reg_t ch_ctl, ch_data[5];
1228 	u32 aux_clock_divider;
1229 	enum intel_display_power_domain aux_domain =
1230 		intel_aux_power_domain(intel_dig_port);
1231 	intel_wakeref_t aux_wakeref;
1232 	intel_wakeref_t pps_wakeref;
1233 	int i, ret, recv_bytes;
1234 	int try, clock = 0;
1235 	u32 status;
1236 	bool vdd;
1237 
1238 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1239 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1240 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1241 
1242 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1243 	pps_wakeref = pps_lock(intel_dp);
1244 
1245 	/*
1246 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1247 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1248 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1249 	 * ourselves.
1250 	 */
1251 	vdd = edp_panel_vdd_on(intel_dp);
1252 
1253 	/* dp aux is extremely sensitive to irq latency, hence request the
1254 	 * lowest possible wakeup latency and so prevent the cpu from going into
1255 	 * deep sleep states.
1256 	 */
1257 	pm_qos_update_request(&i915->pm_qos, 0);
1258 
1259 	intel_dp_check_edp(intel_dp);
1260 
1261 	/* Try to wait for any previous AUX channel activity */
1262 	for (try = 0; try < 3; try++) {
1263 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1264 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1265 			break;
1266 		msleep(1);
1267 	}
1268 	/* just trace the final value */
1269 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1270 
1271 	if (try == 3) {
1272 		static u32 last_status = -1;
1273 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1274 
1275 		if (status != last_status) {
1276 			WARN(1, "dp_aux_ch not started status 0x%08x\n",
1277 			     status);
1278 			last_status = status;
1279 		}
1280 
1281 		ret = -EBUSY;
1282 		goto out;
1283 	}
1284 
1285 	/* Only 5 data registers! */
1286 	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1287 		ret = -E2BIG;
1288 		goto out;
1289 	}
1290 
1291 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1292 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1293 							  send_bytes,
1294 							  aux_clock_divider);
1295 
1296 		send_ctl |= aux_send_ctl_flags;
1297 
1298 		/* Must try at least 3 times according to DP spec */
1299 		for (try = 0; try < 5; try++) {
1300 			/* Load the send data into the aux channel data registers */
1301 			for (i = 0; i < send_bytes; i += 4)
1302 				intel_uncore_write(uncore,
1303 						   ch_data[i >> 2],
1304 						   intel_dp_pack_aux(send + i,
1305 								     send_bytes - i));
1306 
1307 			/* Send the command and wait for it to complete */
1308 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1309 
1310 			status = intel_dp_aux_wait_done(intel_dp);
1311 
1312 			/* Clear done status and any errors */
1313 			intel_uncore_write(uncore,
1314 					   ch_ctl,
1315 					   status |
1316 					   DP_AUX_CH_CTL_DONE |
1317 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1318 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1319 
1320 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1321 			 *   400us delay required for errors and timeouts
1322 			 *   Timeout errors from the HW already meet this
1323 			 *   requirement so skip to next iteration
1324 			 */
1325 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1326 				continue;
1327 
1328 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1329 				usleep_range(400, 500);
1330 				continue;
1331 			}
1332 			if (status & DP_AUX_CH_CTL_DONE)
1333 				goto done;
1334 		}
1335 	}
1336 
1337 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1338 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1339 		ret = -EBUSY;
1340 		goto out;
1341 	}
1342 
1343 done:
1344 	/* Check for timeout or receive error.
1345 	 * Timeouts occur when the sink is not connected
1346 	 */
1347 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1348 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1349 		ret = -EIO;
1350 		goto out;
1351 	}
1352 
1353 	/* Timeouts occur when the device isn't connected, so they're
1354 	 * "normal" -- don't fill the kernel log with these */
1355 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1356 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1357 		ret = -ETIMEDOUT;
1358 		goto out;
1359 	}
1360 
1361 	/* Unload any bytes sent back from the other side */
1362 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1363 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1364 
1365 	/*
1366 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1367 	 * We have no idea of what happened so we return -EBUSY so
1368 	 * drm layer takes care for the necessary retries.
1369 	 */
1370 	if (recv_bytes == 0 || recv_bytes > 20) {
1371 		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1372 			      recv_bytes);
1373 		ret = -EBUSY;
1374 		goto out;
1375 	}
1376 
1377 	if (recv_bytes > recv_size)
1378 		recv_bytes = recv_size;
1379 
1380 	for (i = 0; i < recv_bytes; i += 4)
1381 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1382 				    recv + i, recv_bytes - i);
1383 
1384 	ret = recv_bytes;
1385 out:
1386 	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1387 
1388 	if (vdd)
1389 		edp_panel_vdd_off(intel_dp, false);
1390 
1391 	pps_unlock(intel_dp, pps_wakeref);
1392 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1393 
1394 	return ret;
1395 }
1396 
1397 #define BARE_ADDRESS_SIZE	3
1398 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1399 
1400 static void
1401 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1402 		    const struct drm_dp_aux_msg *msg)
1403 {
1404 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1405 	txbuf[1] = (msg->address >> 8) & 0xff;
1406 	txbuf[2] = msg->address & 0xff;
1407 	txbuf[3] = msg->size - 1;
1408 }
1409 
1410 static ssize_t
1411 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1412 {
1413 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1414 	u8 txbuf[20], rxbuf[20];
1415 	size_t txsize, rxsize;
1416 	int ret;
1417 
1418 	intel_dp_aux_header(txbuf, msg);
1419 
1420 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1421 	case DP_AUX_NATIVE_WRITE:
1422 	case DP_AUX_I2C_WRITE:
1423 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1424 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1425 		rxsize = 2; /* 0 or 1 data bytes */
1426 
1427 		if (WARN_ON(txsize > 20))
1428 			return -E2BIG;
1429 
1430 		WARN_ON(!msg->buffer != !msg->size);
1431 
1432 		if (msg->buffer)
1433 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1434 
1435 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1436 					rxbuf, rxsize, 0);
1437 		if (ret > 0) {
1438 			msg->reply = rxbuf[0] >> 4;
1439 
1440 			if (ret > 1) {
1441 				/* Number of bytes written in a short write. */
1442 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1443 			} else {
1444 				/* Return payload size. */
1445 				ret = msg->size;
1446 			}
1447 		}
1448 		break;
1449 
1450 	case DP_AUX_NATIVE_READ:
1451 	case DP_AUX_I2C_READ:
1452 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1453 		rxsize = msg->size + 1;
1454 
1455 		if (WARN_ON(rxsize > 20))
1456 			return -E2BIG;
1457 
1458 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1459 					rxbuf, rxsize, 0);
1460 		if (ret > 0) {
1461 			msg->reply = rxbuf[0] >> 4;
1462 			/*
1463 			 * Assume happy day, and copy the data. The caller is
1464 			 * expected to check msg->reply before touching it.
1465 			 *
1466 			 * Return payload size.
1467 			 */
1468 			ret--;
1469 			memcpy(msg->buffer, rxbuf + 1, ret);
1470 		}
1471 		break;
1472 
1473 	default:
1474 		ret = -EINVAL;
1475 		break;
1476 	}
1477 
1478 	return ret;
1479 }
1480 
1481 
1482 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1483 {
1484 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1485 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1486 	enum aux_ch aux_ch = dig_port->aux_ch;
1487 
1488 	switch (aux_ch) {
1489 	case AUX_CH_B:
1490 	case AUX_CH_C:
1491 	case AUX_CH_D:
1492 		return DP_AUX_CH_CTL(aux_ch);
1493 	default:
1494 		MISSING_CASE(aux_ch);
1495 		return DP_AUX_CH_CTL(AUX_CH_B);
1496 	}
1497 }
1498 
1499 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1500 {
1501 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1502 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1503 	enum aux_ch aux_ch = dig_port->aux_ch;
1504 
1505 	switch (aux_ch) {
1506 	case AUX_CH_B:
1507 	case AUX_CH_C:
1508 	case AUX_CH_D:
1509 		return DP_AUX_CH_DATA(aux_ch, index);
1510 	default:
1511 		MISSING_CASE(aux_ch);
1512 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1513 	}
1514 }
1515 
1516 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1517 {
1518 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1519 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1520 	enum aux_ch aux_ch = dig_port->aux_ch;
1521 
1522 	switch (aux_ch) {
1523 	case AUX_CH_A:
1524 		return DP_AUX_CH_CTL(aux_ch);
1525 	case AUX_CH_B:
1526 	case AUX_CH_C:
1527 	case AUX_CH_D:
1528 		return PCH_DP_AUX_CH_CTL(aux_ch);
1529 	default:
1530 		MISSING_CASE(aux_ch);
1531 		return DP_AUX_CH_CTL(AUX_CH_A);
1532 	}
1533 }
1534 
1535 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1536 {
1537 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1538 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1539 	enum aux_ch aux_ch = dig_port->aux_ch;
1540 
1541 	switch (aux_ch) {
1542 	case AUX_CH_A:
1543 		return DP_AUX_CH_DATA(aux_ch, index);
1544 	case AUX_CH_B:
1545 	case AUX_CH_C:
1546 	case AUX_CH_D:
1547 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1548 	default:
1549 		MISSING_CASE(aux_ch);
1550 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1551 	}
1552 }
1553 
1554 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1555 {
1556 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1557 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1558 	enum aux_ch aux_ch = dig_port->aux_ch;
1559 
1560 	switch (aux_ch) {
1561 	case AUX_CH_A:
1562 	case AUX_CH_B:
1563 	case AUX_CH_C:
1564 	case AUX_CH_D:
1565 	case AUX_CH_E:
1566 	case AUX_CH_F:
1567 		return DP_AUX_CH_CTL(aux_ch);
1568 	default:
1569 		MISSING_CASE(aux_ch);
1570 		return DP_AUX_CH_CTL(AUX_CH_A);
1571 	}
1572 }
1573 
1574 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1575 {
1576 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1577 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1578 	enum aux_ch aux_ch = dig_port->aux_ch;
1579 
1580 	switch (aux_ch) {
1581 	case AUX_CH_A:
1582 	case AUX_CH_B:
1583 	case AUX_CH_C:
1584 	case AUX_CH_D:
1585 	case AUX_CH_E:
1586 	case AUX_CH_F:
1587 		return DP_AUX_CH_DATA(aux_ch, index);
1588 	default:
1589 		MISSING_CASE(aux_ch);
1590 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1591 	}
1592 }
1593 
1594 static void
1595 intel_dp_aux_fini(struct intel_dp *intel_dp)
1596 {
1597 	kfree(intel_dp->aux.name);
1598 }
1599 
1600 static void
1601 intel_dp_aux_init(struct intel_dp *intel_dp)
1602 {
1603 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1604 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1605 	struct intel_encoder *encoder = &dig_port->base;
1606 
1607 	if (INTEL_GEN(dev_priv) >= 9) {
1608 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1609 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1610 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1611 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1612 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1613 	} else {
1614 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1615 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1616 	}
1617 
1618 	if (INTEL_GEN(dev_priv) >= 9)
1619 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1620 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1621 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1622 	else if (HAS_PCH_SPLIT(dev_priv))
1623 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1624 	else
1625 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1626 
1627 	if (INTEL_GEN(dev_priv) >= 9)
1628 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1629 	else
1630 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1631 
1632 	drm_dp_aux_init(&intel_dp->aux);
1633 
1634 	/* Failure to allocate our preferred name is not critical */
1635 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1636 				       port_name(encoder->port));
1637 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1638 }
1639 
1640 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1641 {
1642 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1643 
1644 	return max_rate >= 540000;
1645 }
1646 
1647 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1648 {
1649 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1650 
1651 	return max_rate >= 810000;
1652 }
1653 
1654 static void
1655 intel_dp_set_clock(struct intel_encoder *encoder,
1656 		   struct intel_crtc_state *pipe_config)
1657 {
1658 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1659 	const struct dp_link_dpll *divisor = NULL;
1660 	int i, count = 0;
1661 
1662 	if (IS_G4X(dev_priv)) {
1663 		divisor = g4x_dpll;
1664 		count = ARRAY_SIZE(g4x_dpll);
1665 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1666 		divisor = pch_dpll;
1667 		count = ARRAY_SIZE(pch_dpll);
1668 	} else if (IS_CHERRYVIEW(dev_priv)) {
1669 		divisor = chv_dpll;
1670 		count = ARRAY_SIZE(chv_dpll);
1671 	} else if (IS_VALLEYVIEW(dev_priv)) {
1672 		divisor = vlv_dpll;
1673 		count = ARRAY_SIZE(vlv_dpll);
1674 	}
1675 
1676 	if (divisor && count) {
1677 		for (i = 0; i < count; i++) {
1678 			if (pipe_config->port_clock == divisor[i].clock) {
1679 				pipe_config->dpll = divisor[i].dpll;
1680 				pipe_config->clock_set = true;
1681 				break;
1682 			}
1683 		}
1684 	}
1685 }
1686 
1687 static void snprintf_int_array(char *str, size_t len,
1688 			       const int *array, int nelem)
1689 {
1690 	int i;
1691 
1692 	str[0] = '\0';
1693 
1694 	for (i = 0; i < nelem; i++) {
1695 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1696 		if (r >= len)
1697 			return;
1698 		str += r;
1699 		len -= r;
1700 	}
1701 }
1702 
1703 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1704 {
1705 	char str[128]; /* FIXME: too big for stack? */
1706 
1707 	if ((drm_debug & DRM_UT_KMS) == 0)
1708 		return;
1709 
1710 	snprintf_int_array(str, sizeof(str),
1711 			   intel_dp->source_rates, intel_dp->num_source_rates);
1712 	DRM_DEBUG_KMS("source rates: %s\n", str);
1713 
1714 	snprintf_int_array(str, sizeof(str),
1715 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1716 	DRM_DEBUG_KMS("sink rates: %s\n", str);
1717 
1718 	snprintf_int_array(str, sizeof(str),
1719 			   intel_dp->common_rates, intel_dp->num_common_rates);
1720 	DRM_DEBUG_KMS("common rates: %s\n", str);
1721 }
1722 
1723 int
1724 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1725 {
1726 	int len;
1727 
1728 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1729 	if (WARN_ON(len <= 0))
1730 		return 162000;
1731 
1732 	return intel_dp->common_rates[len - 1];
1733 }
1734 
1735 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1736 {
1737 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1738 				    intel_dp->num_sink_rates, rate);
1739 
1740 	if (WARN_ON(i < 0))
1741 		i = 0;
1742 
1743 	return i;
1744 }
1745 
1746 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1747 			   u8 *link_bw, u8 *rate_select)
1748 {
1749 	/* eDP 1.4 rate select method. */
1750 	if (intel_dp->use_rate_select) {
1751 		*link_bw = 0;
1752 		*rate_select =
1753 			intel_dp_rate_select(intel_dp, port_clock);
1754 	} else {
1755 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1756 		*rate_select = 0;
1757 	}
1758 }
1759 
1760 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1761 					 const struct intel_crtc_state *pipe_config)
1762 {
1763 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1764 
1765 	return INTEL_GEN(dev_priv) >= 11 &&
1766 		pipe_config->cpu_transcoder != TRANSCODER_A;
1767 }
1768 
1769 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1770 				  const struct intel_crtc_state *pipe_config)
1771 {
1772 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1773 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1774 }
1775 
1776 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1777 					 const struct intel_crtc_state *pipe_config)
1778 {
1779 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1780 
1781 	return INTEL_GEN(dev_priv) >= 10 &&
1782 		pipe_config->cpu_transcoder != TRANSCODER_A;
1783 }
1784 
1785 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1786 				  const struct intel_crtc_state *pipe_config)
1787 {
1788 	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1789 		return false;
1790 
1791 	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1792 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1793 }
1794 
1795 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1796 				struct intel_crtc_state *pipe_config)
1797 {
1798 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1799 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1800 	int bpp, bpc;
1801 
1802 	bpp = pipe_config->pipe_bpp;
1803 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1804 
1805 	if (bpc > 0)
1806 		bpp = min(bpp, 3*bpc);
1807 
1808 	if (intel_dp_is_edp(intel_dp)) {
1809 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1810 		if (intel_connector->base.display_info.bpc == 0 &&
1811 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1812 			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1813 				      dev_priv->vbt.edp.bpp);
1814 			bpp = dev_priv->vbt.edp.bpp;
1815 		}
1816 	}
1817 
1818 	return bpp;
1819 }
1820 
1821 /* Adjust link config limits based on compliance test requests. */
1822 void
1823 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1824 				  struct intel_crtc_state *pipe_config,
1825 				  struct link_config_limits *limits)
1826 {
1827 	/* For DP Compliance we override the computed bpp for the pipe */
1828 	if (intel_dp->compliance.test_data.bpc != 0) {
1829 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1830 
1831 		limits->min_bpp = limits->max_bpp = bpp;
1832 		pipe_config->dither_force_disable = bpp == 6 * 3;
1833 
1834 		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1835 	}
1836 
1837 	/* Use values requested by Compliance Test Request */
1838 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1839 		int index;
1840 
1841 		/* Validate the compliance test data since max values
1842 		 * might have changed due to link train fallback.
1843 		 */
1844 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1845 					       intel_dp->compliance.test_lane_count)) {
1846 			index = intel_dp_rate_index(intel_dp->common_rates,
1847 						    intel_dp->num_common_rates,
1848 						    intel_dp->compliance.test_link_rate);
1849 			if (index >= 0)
1850 				limits->min_clock = limits->max_clock = index;
1851 			limits->min_lane_count = limits->max_lane_count =
1852 				intel_dp->compliance.test_lane_count;
1853 		}
1854 	}
1855 }
1856 
1857 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1858 {
1859 	/*
1860 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1861 	 * format of the number of bytes per pixel will be half the number
1862 	 * of bytes of RGB pixel.
1863 	 */
1864 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1865 		bpp /= 2;
1866 
1867 	return bpp;
1868 }
1869 
1870 /* Optimize link config in order: max bpp, min clock, min lanes */
1871 static int
1872 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1873 				  struct intel_crtc_state *pipe_config,
1874 				  const struct link_config_limits *limits)
1875 {
1876 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1877 	int bpp, clock, lane_count;
1878 	int mode_rate, link_clock, link_avail;
1879 
1880 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1881 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1882 						   bpp);
1883 
1884 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1885 			for (lane_count = limits->min_lane_count;
1886 			     lane_count <= limits->max_lane_count;
1887 			     lane_count <<= 1) {
1888 				link_clock = intel_dp->common_rates[clock];
1889 				link_avail = intel_dp_max_data_rate(link_clock,
1890 								    lane_count);
1891 
1892 				if (mode_rate <= link_avail) {
1893 					pipe_config->lane_count = lane_count;
1894 					pipe_config->pipe_bpp = bpp;
1895 					pipe_config->port_clock = link_clock;
1896 
1897 					return 0;
1898 				}
1899 			}
1900 		}
1901 	}
1902 
1903 	return -EINVAL;
1904 }
1905 
1906 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
1907 {
1908 	int i, num_bpc;
1909 	u8 dsc_bpc[3] = {0};
1910 
1911 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
1912 						       dsc_bpc);
1913 	for (i = 0; i < num_bpc; i++) {
1914 		if (dsc_max_bpc >= dsc_bpc[i])
1915 			return dsc_bpc[i] * 3;
1916 	}
1917 
1918 	return 0;
1919 }
1920 
1921 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
1922 				       struct intel_crtc_state *pipe_config,
1923 				       struct drm_connector_state *conn_state,
1924 				       struct link_config_limits *limits)
1925 {
1926 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1927 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1928 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1929 	u8 dsc_max_bpc;
1930 	int pipe_bpp;
1931 	int ret;
1932 
1933 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
1934 		intel_dp_supports_fec(intel_dp, pipe_config);
1935 
1936 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1937 		return -EINVAL;
1938 
1939 	dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
1940 			    conn_state->max_requested_bpc);
1941 
1942 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
1943 	if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
1944 		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1945 		return -EINVAL;
1946 	}
1947 
1948 	/*
1949 	 * For now enable DSC for max bpp, max link rate, max lane count.
1950 	 * Optimize this later for the minimum possible link rate/lane count
1951 	 * with DSC enabled for the requested mode.
1952 	 */
1953 	pipe_config->pipe_bpp = pipe_bpp;
1954 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
1955 	pipe_config->lane_count = limits->max_lane_count;
1956 
1957 	if (intel_dp_is_edp(intel_dp)) {
1958 		pipe_config->dsc_params.compressed_bpp =
1959 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
1960 			      pipe_config->pipe_bpp);
1961 		pipe_config->dsc_params.slice_count =
1962 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
1963 							true);
1964 	} else {
1965 		u16 dsc_max_output_bpp;
1966 		u8 dsc_dp_slice_count;
1967 
1968 		dsc_max_output_bpp =
1969 			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
1970 						    pipe_config->lane_count,
1971 						    adjusted_mode->crtc_clock,
1972 						    adjusted_mode->crtc_hdisplay);
1973 		dsc_dp_slice_count =
1974 			intel_dp_dsc_get_slice_count(intel_dp,
1975 						     adjusted_mode->crtc_clock,
1976 						     adjusted_mode->crtc_hdisplay);
1977 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
1978 			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1979 			return -EINVAL;
1980 		}
1981 		pipe_config->dsc_params.compressed_bpp = min_t(u16,
1982 							       dsc_max_output_bpp >> 4,
1983 							       pipe_config->pipe_bpp);
1984 		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
1985 	}
1986 	/*
1987 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
1988 	 * is greater than the maximum Cdclock and if slice count is even
1989 	 * then we need to use 2 VDSC instances.
1990 	 */
1991 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
1992 		if (pipe_config->dsc_params.slice_count > 1) {
1993 			pipe_config->dsc_params.dsc_split = true;
1994 		} else {
1995 			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1996 			return -EINVAL;
1997 		}
1998 	}
1999 
2000 	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
2001 	if (ret < 0) {
2002 		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2003 			      "Compressed BPP = %d\n",
2004 			      pipe_config->pipe_bpp,
2005 			      pipe_config->dsc_params.compressed_bpp);
2006 		return ret;
2007 	}
2008 
2009 	pipe_config->dsc_params.compression_enable = true;
2010 	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2011 		      "Compressed Bpp = %d Slice Count = %d\n",
2012 		      pipe_config->pipe_bpp,
2013 		      pipe_config->dsc_params.compressed_bpp,
2014 		      pipe_config->dsc_params.slice_count);
2015 
2016 	return 0;
2017 }
2018 
2019 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2020 {
2021 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2022 		return 6 * 3;
2023 	else
2024 		return 8 * 3;
2025 }
2026 
2027 static int
2028 intel_dp_compute_link_config(struct intel_encoder *encoder,
2029 			     struct intel_crtc_state *pipe_config,
2030 			     struct drm_connector_state *conn_state)
2031 {
2032 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2033 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2034 	struct link_config_limits limits;
2035 	int common_len;
2036 	int ret;
2037 
2038 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2039 						    intel_dp->max_link_rate);
2040 
2041 	/* No common link rates between source and sink */
2042 	WARN_ON(common_len <= 0);
2043 
2044 	limits.min_clock = 0;
2045 	limits.max_clock = common_len - 1;
2046 
2047 	limits.min_lane_count = 1;
2048 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2049 
2050 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2051 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2052 
2053 	if (intel_dp_is_edp(intel_dp)) {
2054 		/*
2055 		 * Use the maximum clock and number of lanes the eDP panel
2056 		 * advertizes being capable of. The panels are generally
2057 		 * designed to support only a single clock and lane
2058 		 * configuration, and typically these values correspond to the
2059 		 * native resolution of the panel.
2060 		 */
2061 		limits.min_lane_count = limits.max_lane_count;
2062 		limits.min_clock = limits.max_clock;
2063 	}
2064 
2065 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2066 
2067 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
2068 		      "max rate %d max bpp %d pixel clock %iKHz\n",
2069 		      limits.max_lane_count,
2070 		      intel_dp->common_rates[limits.max_clock],
2071 		      limits.max_bpp, adjusted_mode->crtc_clock);
2072 
2073 	/*
2074 	 * Optimize for slow and wide. This is the place to add alternative
2075 	 * optimization policy.
2076 	 */
2077 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2078 
2079 	/* enable compression if the mode doesn't fit available BW */
2080 	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2081 	if (ret || intel_dp->force_dsc_en) {
2082 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2083 						  conn_state, &limits);
2084 		if (ret < 0)
2085 			return ret;
2086 	}
2087 
2088 	if (pipe_config->dsc_params.compression_enable) {
2089 		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2090 			      pipe_config->lane_count, pipe_config->port_clock,
2091 			      pipe_config->pipe_bpp,
2092 			      pipe_config->dsc_params.compressed_bpp);
2093 
2094 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2095 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2096 						     pipe_config->dsc_params.compressed_bpp),
2097 			      intel_dp_max_data_rate(pipe_config->port_clock,
2098 						     pipe_config->lane_count));
2099 	} else {
2100 		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2101 			      pipe_config->lane_count, pipe_config->port_clock,
2102 			      pipe_config->pipe_bpp);
2103 
2104 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2105 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2106 						     pipe_config->pipe_bpp),
2107 			      intel_dp_max_data_rate(pipe_config->port_clock,
2108 						     pipe_config->lane_count));
2109 	}
2110 	return 0;
2111 }
2112 
2113 static int
2114 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2115 			 struct drm_connector *connector,
2116 			 struct intel_crtc_state *crtc_state)
2117 {
2118 	const struct drm_display_info *info = &connector->display_info;
2119 	const struct drm_display_mode *adjusted_mode =
2120 		&crtc_state->base.adjusted_mode;
2121 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2122 	int ret;
2123 
2124 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2125 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2126 	    !connector->ycbcr_420_allowed)
2127 		return 0;
2128 
2129 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2130 
2131 	/* YCBCR 420 output conversion needs a scaler */
2132 	ret = skl_update_scaler_crtc(crtc_state);
2133 	if (ret) {
2134 		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2135 		return ret;
2136 	}
2137 
2138 	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2139 
2140 	return 0;
2141 }
2142 
2143 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2144 				  const struct drm_connector_state *conn_state)
2145 {
2146 	const struct intel_digital_connector_state *intel_conn_state =
2147 		to_intel_digital_connector_state(conn_state);
2148 	const struct drm_display_mode *adjusted_mode =
2149 		&crtc_state->base.adjusted_mode;
2150 
2151 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2152 		/*
2153 		 * See:
2154 		 * CEA-861-E - 5.1 Default Encoding Parameters
2155 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2156 		 */
2157 		return crtc_state->pipe_bpp != 18 &&
2158 			drm_default_rgb_quant_range(adjusted_mode) ==
2159 			HDMI_QUANTIZATION_RANGE_LIMITED;
2160 	} else {
2161 		return intel_conn_state->broadcast_rgb ==
2162 			INTEL_BROADCAST_RGB_LIMITED;
2163 	}
2164 }
2165 
2166 int
2167 intel_dp_compute_config(struct intel_encoder *encoder,
2168 			struct intel_crtc_state *pipe_config,
2169 			struct drm_connector_state *conn_state)
2170 {
2171 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2172 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2173 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2174 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2175 	enum port port = encoder->port;
2176 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
2177 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2178 	struct intel_digital_connector_state *intel_conn_state =
2179 		to_intel_digital_connector_state(conn_state);
2180 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2181 					   DP_DPCD_QUIRK_CONSTANT_N);
2182 	int ret = 0, output_bpp;
2183 
2184 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2185 		pipe_config->has_pch_encoder = true;
2186 
2187 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2188 	if (lspcon->active)
2189 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2190 	else
2191 		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2192 					       pipe_config);
2193 
2194 	if (ret)
2195 		return ret;
2196 
2197 	pipe_config->has_drrs = false;
2198 	if (IS_G4X(dev_priv) || port == PORT_A)
2199 		pipe_config->has_audio = false;
2200 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2201 		pipe_config->has_audio = intel_dp->has_audio;
2202 	else
2203 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2204 
2205 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2206 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2207 				       adjusted_mode);
2208 
2209 		if (INTEL_GEN(dev_priv) >= 9) {
2210 			ret = skl_update_scaler_crtc(pipe_config);
2211 			if (ret)
2212 				return ret;
2213 		}
2214 
2215 		if (HAS_GMCH(dev_priv))
2216 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
2217 						 conn_state->scaling_mode);
2218 		else
2219 			intel_pch_panel_fitting(intel_crtc, pipe_config,
2220 						conn_state->scaling_mode);
2221 	}
2222 
2223 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2224 		return -EINVAL;
2225 
2226 	if (HAS_GMCH(dev_priv) &&
2227 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2228 		return -EINVAL;
2229 
2230 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2231 		return -EINVAL;
2232 
2233 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2234 	if (ret < 0)
2235 		return ret;
2236 
2237 	pipe_config->limited_color_range =
2238 		intel_dp_limited_color_range(pipe_config, conn_state);
2239 
2240 	if (pipe_config->dsc_params.compression_enable)
2241 		output_bpp = pipe_config->dsc_params.compressed_bpp;
2242 	else
2243 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2244 
2245 	intel_link_compute_m_n(output_bpp,
2246 			       pipe_config->lane_count,
2247 			       adjusted_mode->crtc_clock,
2248 			       pipe_config->port_clock,
2249 			       &pipe_config->dp_m_n,
2250 			       constant_n);
2251 
2252 	if (intel_connector->panel.downclock_mode != NULL &&
2253 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2254 			pipe_config->has_drrs = true;
2255 			intel_link_compute_m_n(output_bpp,
2256 					       pipe_config->lane_count,
2257 					       intel_connector->panel.downclock_mode->clock,
2258 					       pipe_config->port_clock,
2259 					       &pipe_config->dp_m2_n2,
2260 					       constant_n);
2261 	}
2262 
2263 	if (!HAS_DDI(dev_priv))
2264 		intel_dp_set_clock(encoder, pipe_config);
2265 
2266 	intel_psr_compute_config(intel_dp, pipe_config);
2267 
2268 	return 0;
2269 }
2270 
2271 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2272 			      int link_rate, u8 lane_count,
2273 			      bool link_mst)
2274 {
2275 	intel_dp->link_trained = false;
2276 	intel_dp->link_rate = link_rate;
2277 	intel_dp->lane_count = lane_count;
2278 	intel_dp->link_mst = link_mst;
2279 }
2280 
2281 static void intel_dp_prepare(struct intel_encoder *encoder,
2282 			     const struct intel_crtc_state *pipe_config)
2283 {
2284 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2285 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2286 	enum port port = encoder->port;
2287 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2288 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2289 
2290 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2291 				 pipe_config->lane_count,
2292 				 intel_crtc_has_type(pipe_config,
2293 						     INTEL_OUTPUT_DP_MST));
2294 
2295 	/*
2296 	 * There are four kinds of DP registers:
2297 	 *
2298 	 * 	IBX PCH
2299 	 * 	SNB CPU
2300 	 *	IVB CPU
2301 	 * 	CPT PCH
2302 	 *
2303 	 * IBX PCH and CPU are the same for almost everything,
2304 	 * except that the CPU DP PLL is configured in this
2305 	 * register
2306 	 *
2307 	 * CPT PCH is quite different, having many bits moved
2308 	 * to the TRANS_DP_CTL register instead. That
2309 	 * configuration happens (oddly) in ironlake_pch_enable
2310 	 */
2311 
2312 	/* Preserve the BIOS-computed detected bit. This is
2313 	 * supposed to be read-only.
2314 	 */
2315 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2316 
2317 	/* Handle DP bits in common between all three register formats */
2318 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2319 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2320 
2321 	/* Split out the IBX/CPU vs CPT settings */
2322 
2323 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2324 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2325 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2326 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2327 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2328 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2329 
2330 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2331 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2332 
2333 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2334 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2335 		u32 trans_dp;
2336 
2337 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2338 
2339 		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2340 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2341 			trans_dp |= TRANS_DP_ENH_FRAMING;
2342 		else
2343 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2344 		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2345 	} else {
2346 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2347 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2348 
2349 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2350 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2351 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2352 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2353 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2354 
2355 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2356 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2357 
2358 		if (IS_CHERRYVIEW(dev_priv))
2359 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2360 		else
2361 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2362 	}
2363 }
2364 
2365 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2366 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2367 
2368 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2369 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2370 
2371 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2372 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2373 
2374 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2375 
2376 static void wait_panel_status(struct intel_dp *intel_dp,
2377 				       u32 mask,
2378 				       u32 value)
2379 {
2380 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2381 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2382 
2383 	lockdep_assert_held(&dev_priv->pps_mutex);
2384 
2385 	intel_pps_verify_state(intel_dp);
2386 
2387 	pp_stat_reg = _pp_stat_reg(intel_dp);
2388 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2389 
2390 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2391 			mask, value,
2392 			I915_READ(pp_stat_reg),
2393 			I915_READ(pp_ctrl_reg));
2394 
2395 	if (intel_wait_for_register(&dev_priv->uncore,
2396 				    pp_stat_reg, mask, value,
2397 				    5000))
2398 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2399 				I915_READ(pp_stat_reg),
2400 				I915_READ(pp_ctrl_reg));
2401 
2402 	DRM_DEBUG_KMS("Wait complete\n");
2403 }
2404 
2405 static void wait_panel_on(struct intel_dp *intel_dp)
2406 {
2407 	DRM_DEBUG_KMS("Wait for panel power on\n");
2408 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2409 }
2410 
2411 static void wait_panel_off(struct intel_dp *intel_dp)
2412 {
2413 	DRM_DEBUG_KMS("Wait for panel power off time\n");
2414 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2415 }
2416 
2417 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2418 {
2419 	ktime_t panel_power_on_time;
2420 	s64 panel_power_off_duration;
2421 
2422 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2423 
2424 	/* take the difference of currrent time and panel power off time
2425 	 * and then make panel wait for t11_t12 if needed. */
2426 	panel_power_on_time = ktime_get_boottime();
2427 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2428 
2429 	/* When we disable the VDD override bit last we have to do the manual
2430 	 * wait. */
2431 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2432 		wait_remaining_ms_from_jiffies(jiffies,
2433 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2434 
2435 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2436 }
2437 
2438 static void wait_backlight_on(struct intel_dp *intel_dp)
2439 {
2440 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2441 				       intel_dp->backlight_on_delay);
2442 }
2443 
2444 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2445 {
2446 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2447 				       intel_dp->backlight_off_delay);
2448 }
2449 
2450 /* Read the current pp_control value, unlocking the register if it
2451  * is locked
2452  */
2453 
2454 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2455 {
2456 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2457 	u32 control;
2458 
2459 	lockdep_assert_held(&dev_priv->pps_mutex);
2460 
2461 	control = I915_READ(_pp_ctrl_reg(intel_dp));
2462 	if (WARN_ON(!HAS_DDI(dev_priv) &&
2463 		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2464 		control &= ~PANEL_UNLOCK_MASK;
2465 		control |= PANEL_UNLOCK_REGS;
2466 	}
2467 	return control;
2468 }
2469 
2470 /*
2471  * Must be paired with edp_panel_vdd_off().
2472  * Must hold pps_mutex around the whole on/off sequence.
2473  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2474  */
2475 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2476 {
2477 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2478 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2479 	u32 pp;
2480 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2481 	bool need_to_disable = !intel_dp->want_panel_vdd;
2482 
2483 	lockdep_assert_held(&dev_priv->pps_mutex);
2484 
2485 	if (!intel_dp_is_edp(intel_dp))
2486 		return false;
2487 
2488 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2489 	intel_dp->want_panel_vdd = true;
2490 
2491 	if (edp_have_panel_vdd(intel_dp))
2492 		return need_to_disable;
2493 
2494 	intel_display_power_get(dev_priv,
2495 				intel_aux_power_domain(intel_dig_port));
2496 
2497 	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2498 		      port_name(intel_dig_port->base.port));
2499 
2500 	if (!edp_have_panel_power(intel_dp))
2501 		wait_panel_power_cycle(intel_dp);
2502 
2503 	pp = ironlake_get_pp_control(intel_dp);
2504 	pp |= EDP_FORCE_VDD;
2505 
2506 	pp_stat_reg = _pp_stat_reg(intel_dp);
2507 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2508 
2509 	I915_WRITE(pp_ctrl_reg, pp);
2510 	POSTING_READ(pp_ctrl_reg);
2511 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2512 			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2513 	/*
2514 	 * If the panel wasn't on, delay before accessing aux channel
2515 	 */
2516 	if (!edp_have_panel_power(intel_dp)) {
2517 		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2518 			      port_name(intel_dig_port->base.port));
2519 		msleep(intel_dp->panel_power_up_delay);
2520 	}
2521 
2522 	return need_to_disable;
2523 }
2524 
2525 /*
2526  * Must be paired with intel_edp_panel_vdd_off() or
2527  * intel_edp_panel_off().
2528  * Nested calls to these functions are not allowed since
2529  * we drop the lock. Caller must use some higher level
2530  * locking to prevent nested calls from other threads.
2531  */
2532 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2533 {
2534 	intel_wakeref_t wakeref;
2535 	bool vdd;
2536 
2537 	if (!intel_dp_is_edp(intel_dp))
2538 		return;
2539 
2540 	vdd = false;
2541 	with_pps_lock(intel_dp, wakeref)
2542 		vdd = edp_panel_vdd_on(intel_dp);
2543 	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2544 	     port_name(dp_to_dig_port(intel_dp)->base.port));
2545 }
2546 
2547 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2548 {
2549 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2550 	struct intel_digital_port *intel_dig_port =
2551 		dp_to_dig_port(intel_dp);
2552 	u32 pp;
2553 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2554 
2555 	lockdep_assert_held(&dev_priv->pps_mutex);
2556 
2557 	WARN_ON(intel_dp->want_panel_vdd);
2558 
2559 	if (!edp_have_panel_vdd(intel_dp))
2560 		return;
2561 
2562 	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2563 		      port_name(intel_dig_port->base.port));
2564 
2565 	pp = ironlake_get_pp_control(intel_dp);
2566 	pp &= ~EDP_FORCE_VDD;
2567 
2568 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2569 	pp_stat_reg = _pp_stat_reg(intel_dp);
2570 
2571 	I915_WRITE(pp_ctrl_reg, pp);
2572 	POSTING_READ(pp_ctrl_reg);
2573 
2574 	/* Make sure sequencer is idle before allowing subsequent activity */
2575 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2576 	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2577 
2578 	if ((pp & PANEL_POWER_ON) == 0)
2579 		intel_dp->panel_power_off_time = ktime_get_boottime();
2580 
2581 	intel_display_power_put_unchecked(dev_priv,
2582 					  intel_aux_power_domain(intel_dig_port));
2583 }
2584 
2585 static void edp_panel_vdd_work(struct work_struct *__work)
2586 {
2587 	struct intel_dp *intel_dp =
2588 		container_of(to_delayed_work(__work),
2589 			     struct intel_dp, panel_vdd_work);
2590 	intel_wakeref_t wakeref;
2591 
2592 	with_pps_lock(intel_dp, wakeref) {
2593 		if (!intel_dp->want_panel_vdd)
2594 			edp_panel_vdd_off_sync(intel_dp);
2595 	}
2596 }
2597 
2598 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2599 {
2600 	unsigned long delay;
2601 
2602 	/*
2603 	 * Queue the timer to fire a long time from now (relative to the power
2604 	 * down delay) to keep the panel power up across a sequence of
2605 	 * operations.
2606 	 */
2607 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2608 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2609 }
2610 
2611 /*
2612  * Must be paired with edp_panel_vdd_on().
2613  * Must hold pps_mutex around the whole on/off sequence.
2614  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2615  */
2616 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2617 {
2618 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2619 
2620 	lockdep_assert_held(&dev_priv->pps_mutex);
2621 
2622 	if (!intel_dp_is_edp(intel_dp))
2623 		return;
2624 
2625 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2626 	     port_name(dp_to_dig_port(intel_dp)->base.port));
2627 
2628 	intel_dp->want_panel_vdd = false;
2629 
2630 	if (sync)
2631 		edp_panel_vdd_off_sync(intel_dp);
2632 	else
2633 		edp_panel_vdd_schedule_off(intel_dp);
2634 }
2635 
2636 static void edp_panel_on(struct intel_dp *intel_dp)
2637 {
2638 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2639 	u32 pp;
2640 	i915_reg_t pp_ctrl_reg;
2641 
2642 	lockdep_assert_held(&dev_priv->pps_mutex);
2643 
2644 	if (!intel_dp_is_edp(intel_dp))
2645 		return;
2646 
2647 	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2648 		      port_name(dp_to_dig_port(intel_dp)->base.port));
2649 
2650 	if (WARN(edp_have_panel_power(intel_dp),
2651 		 "eDP port %c panel power already on\n",
2652 		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2653 		return;
2654 
2655 	wait_panel_power_cycle(intel_dp);
2656 
2657 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2658 	pp = ironlake_get_pp_control(intel_dp);
2659 	if (IS_GEN(dev_priv, 5)) {
2660 		/* ILK workaround: disable reset around power sequence */
2661 		pp &= ~PANEL_POWER_RESET;
2662 		I915_WRITE(pp_ctrl_reg, pp);
2663 		POSTING_READ(pp_ctrl_reg);
2664 	}
2665 
2666 	pp |= PANEL_POWER_ON;
2667 	if (!IS_GEN(dev_priv, 5))
2668 		pp |= PANEL_POWER_RESET;
2669 
2670 	I915_WRITE(pp_ctrl_reg, pp);
2671 	POSTING_READ(pp_ctrl_reg);
2672 
2673 	wait_panel_on(intel_dp);
2674 	intel_dp->last_power_on = jiffies;
2675 
2676 	if (IS_GEN(dev_priv, 5)) {
2677 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2678 		I915_WRITE(pp_ctrl_reg, pp);
2679 		POSTING_READ(pp_ctrl_reg);
2680 	}
2681 }
2682 
2683 void intel_edp_panel_on(struct intel_dp *intel_dp)
2684 {
2685 	intel_wakeref_t wakeref;
2686 
2687 	if (!intel_dp_is_edp(intel_dp))
2688 		return;
2689 
2690 	with_pps_lock(intel_dp, wakeref)
2691 		edp_panel_on(intel_dp);
2692 }
2693 
2694 
2695 static void edp_panel_off(struct intel_dp *intel_dp)
2696 {
2697 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2698 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2699 	u32 pp;
2700 	i915_reg_t pp_ctrl_reg;
2701 
2702 	lockdep_assert_held(&dev_priv->pps_mutex);
2703 
2704 	if (!intel_dp_is_edp(intel_dp))
2705 		return;
2706 
2707 	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2708 		      port_name(dig_port->base.port));
2709 
2710 	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2711 	     port_name(dig_port->base.port));
2712 
2713 	pp = ironlake_get_pp_control(intel_dp);
2714 	/* We need to switch off panel power _and_ force vdd, for otherwise some
2715 	 * panels get very unhappy and cease to work. */
2716 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2717 		EDP_BLC_ENABLE);
2718 
2719 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2720 
2721 	intel_dp->want_panel_vdd = false;
2722 
2723 	I915_WRITE(pp_ctrl_reg, pp);
2724 	POSTING_READ(pp_ctrl_reg);
2725 
2726 	wait_panel_off(intel_dp);
2727 	intel_dp->panel_power_off_time = ktime_get_boottime();
2728 
2729 	/* We got a reference when we enabled the VDD. */
2730 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2731 }
2732 
2733 void intel_edp_panel_off(struct intel_dp *intel_dp)
2734 {
2735 	intel_wakeref_t wakeref;
2736 
2737 	if (!intel_dp_is_edp(intel_dp))
2738 		return;
2739 
2740 	with_pps_lock(intel_dp, wakeref)
2741 		edp_panel_off(intel_dp);
2742 }
2743 
2744 /* Enable backlight in the panel power control. */
2745 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2746 {
2747 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2748 	intel_wakeref_t wakeref;
2749 
2750 	/*
2751 	 * If we enable the backlight right away following a panel power
2752 	 * on, we may see slight flicker as the panel syncs with the eDP
2753 	 * link.  So delay a bit to make sure the image is solid before
2754 	 * allowing it to appear.
2755 	 */
2756 	wait_backlight_on(intel_dp);
2757 
2758 	with_pps_lock(intel_dp, wakeref) {
2759 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2760 		u32 pp;
2761 
2762 		pp = ironlake_get_pp_control(intel_dp);
2763 		pp |= EDP_BLC_ENABLE;
2764 
2765 		I915_WRITE(pp_ctrl_reg, pp);
2766 		POSTING_READ(pp_ctrl_reg);
2767 	}
2768 }
2769 
2770 /* Enable backlight PWM and backlight PP control. */
2771 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2772 			    const struct drm_connector_state *conn_state)
2773 {
2774 	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2775 
2776 	if (!intel_dp_is_edp(intel_dp))
2777 		return;
2778 
2779 	DRM_DEBUG_KMS("\n");
2780 
2781 	intel_panel_enable_backlight(crtc_state, conn_state);
2782 	_intel_edp_backlight_on(intel_dp);
2783 }
2784 
2785 /* Disable backlight in the panel power control. */
2786 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2787 {
2788 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2789 	intel_wakeref_t wakeref;
2790 
2791 	if (!intel_dp_is_edp(intel_dp))
2792 		return;
2793 
2794 	with_pps_lock(intel_dp, wakeref) {
2795 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2796 		u32 pp;
2797 
2798 		pp = ironlake_get_pp_control(intel_dp);
2799 		pp &= ~EDP_BLC_ENABLE;
2800 
2801 		I915_WRITE(pp_ctrl_reg, pp);
2802 		POSTING_READ(pp_ctrl_reg);
2803 	}
2804 
2805 	intel_dp->last_backlight_off = jiffies;
2806 	edp_wait_backlight_off(intel_dp);
2807 }
2808 
2809 /* Disable backlight PP control and backlight PWM. */
2810 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2811 {
2812 	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2813 
2814 	if (!intel_dp_is_edp(intel_dp))
2815 		return;
2816 
2817 	DRM_DEBUG_KMS("\n");
2818 
2819 	_intel_edp_backlight_off(intel_dp);
2820 	intel_panel_disable_backlight(old_conn_state);
2821 }
2822 
2823 /*
2824  * Hook for controlling the panel power control backlight through the bl_power
2825  * sysfs attribute. Take care to handle multiple calls.
2826  */
2827 static void intel_edp_backlight_power(struct intel_connector *connector,
2828 				      bool enable)
2829 {
2830 	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2831 	intel_wakeref_t wakeref;
2832 	bool is_enabled;
2833 
2834 	is_enabled = false;
2835 	with_pps_lock(intel_dp, wakeref)
2836 		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2837 	if (is_enabled == enable)
2838 		return;
2839 
2840 	DRM_DEBUG_KMS("panel power control backlight %s\n",
2841 		      enable ? "enable" : "disable");
2842 
2843 	if (enable)
2844 		_intel_edp_backlight_on(intel_dp);
2845 	else
2846 		_intel_edp_backlight_off(intel_dp);
2847 }
2848 
2849 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2850 {
2851 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2852 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2853 	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2854 
2855 	I915_STATE_WARN(cur_state != state,
2856 			"DP port %c state assertion failure (expected %s, current %s)\n",
2857 			port_name(dig_port->base.port),
2858 			onoff(state), onoff(cur_state));
2859 }
2860 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2861 
2862 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2863 {
2864 	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2865 
2866 	I915_STATE_WARN(cur_state != state,
2867 			"eDP PLL state assertion failure (expected %s, current %s)\n",
2868 			onoff(state), onoff(cur_state));
2869 }
2870 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2871 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2872 
2873 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2874 				const struct intel_crtc_state *pipe_config)
2875 {
2876 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2877 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2878 
2879 	assert_pipe_disabled(dev_priv, crtc->pipe);
2880 	assert_dp_port_disabled(intel_dp);
2881 	assert_edp_pll_disabled(dev_priv);
2882 
2883 	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2884 		      pipe_config->port_clock);
2885 
2886 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2887 
2888 	if (pipe_config->port_clock == 162000)
2889 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2890 	else
2891 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2892 
2893 	I915_WRITE(DP_A, intel_dp->DP);
2894 	POSTING_READ(DP_A);
2895 	udelay(500);
2896 
2897 	/*
2898 	 * [DevILK] Work around required when enabling DP PLL
2899 	 * while a pipe is enabled going to FDI:
2900 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2901 	 * 2. Program DP PLL enable
2902 	 */
2903 	if (IS_GEN(dev_priv, 5))
2904 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2905 
2906 	intel_dp->DP |= DP_PLL_ENABLE;
2907 
2908 	I915_WRITE(DP_A, intel_dp->DP);
2909 	POSTING_READ(DP_A);
2910 	udelay(200);
2911 }
2912 
2913 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
2914 				 const struct intel_crtc_state *old_crtc_state)
2915 {
2916 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2917 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2918 
2919 	assert_pipe_disabled(dev_priv, crtc->pipe);
2920 	assert_dp_port_disabled(intel_dp);
2921 	assert_edp_pll_enabled(dev_priv);
2922 
2923 	DRM_DEBUG_KMS("disabling eDP PLL\n");
2924 
2925 	intel_dp->DP &= ~DP_PLL_ENABLE;
2926 
2927 	I915_WRITE(DP_A, intel_dp->DP);
2928 	POSTING_READ(DP_A);
2929 	udelay(200);
2930 }
2931 
2932 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
2933 {
2934 	/*
2935 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
2936 	 * be capable of signalling downstream hpd with a long pulse.
2937 	 * Whether or not that means D3 is safe to use is not clear,
2938 	 * but let's assume so until proven otherwise.
2939 	 *
2940 	 * FIXME should really check all downstream ports...
2941 	 */
2942 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
2943 		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
2944 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
2945 }
2946 
2947 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
2948 					   const struct intel_crtc_state *crtc_state,
2949 					   bool enable)
2950 {
2951 	int ret;
2952 
2953 	if (!crtc_state->dsc_params.compression_enable)
2954 		return;
2955 
2956 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
2957 				 enable ? DP_DECOMPRESSION_EN : 0);
2958 	if (ret < 0)
2959 		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
2960 			      enable ? "enable" : "disable");
2961 }
2962 
2963 /* If the sink supports it, try to set the power state appropriately */
2964 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2965 {
2966 	int ret, i;
2967 
2968 	/* Should have a valid DPCD by this point */
2969 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2970 		return;
2971 
2972 	if (mode != DRM_MODE_DPMS_ON) {
2973 		if (downstream_hpd_needs_d0(intel_dp))
2974 			return;
2975 
2976 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2977 					 DP_SET_POWER_D3);
2978 	} else {
2979 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2980 
2981 		/*
2982 		 * When turning on, we need to retry for 1ms to give the sink
2983 		 * time to wake up.
2984 		 */
2985 		for (i = 0; i < 3; i++) {
2986 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2987 						 DP_SET_POWER_D0);
2988 			if (ret == 1)
2989 				break;
2990 			msleep(1);
2991 		}
2992 
2993 		if (ret == 1 && lspcon->active)
2994 			lspcon_wait_pcon_mode(lspcon);
2995 	}
2996 
2997 	if (ret != 1)
2998 		DRM_DEBUG_KMS("failed to %s sink power state\n",
2999 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3000 }
3001 
3002 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3003 				 enum port port, enum pipe *pipe)
3004 {
3005 	enum pipe p;
3006 
3007 	for_each_pipe(dev_priv, p) {
3008 		u32 val = I915_READ(TRANS_DP_CTL(p));
3009 
3010 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3011 			*pipe = p;
3012 			return true;
3013 		}
3014 	}
3015 
3016 	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3017 
3018 	/* must initialize pipe to something for the asserts */
3019 	*pipe = PIPE_A;
3020 
3021 	return false;
3022 }
3023 
3024 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3025 			   i915_reg_t dp_reg, enum port port,
3026 			   enum pipe *pipe)
3027 {
3028 	bool ret;
3029 	u32 val;
3030 
3031 	val = I915_READ(dp_reg);
3032 
3033 	ret = val & DP_PORT_EN;
3034 
3035 	/* asserts want to know the pipe even if the port is disabled */
3036 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3037 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3038 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3039 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3040 	else if (IS_CHERRYVIEW(dev_priv))
3041 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3042 	else
3043 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3044 
3045 	return ret;
3046 }
3047 
3048 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3049 				  enum pipe *pipe)
3050 {
3051 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3052 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3053 	intel_wakeref_t wakeref;
3054 	bool ret;
3055 
3056 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3057 						     encoder->power_domain);
3058 	if (!wakeref)
3059 		return false;
3060 
3061 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3062 				    encoder->port, pipe);
3063 
3064 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3065 
3066 	return ret;
3067 }
3068 
3069 static void intel_dp_get_config(struct intel_encoder *encoder,
3070 				struct intel_crtc_state *pipe_config)
3071 {
3072 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3073 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3074 	u32 tmp, flags = 0;
3075 	enum port port = encoder->port;
3076 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3077 
3078 	if (encoder->type == INTEL_OUTPUT_EDP)
3079 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3080 	else
3081 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3082 
3083 	tmp = I915_READ(intel_dp->output_reg);
3084 
3085 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3086 
3087 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3088 		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3089 
3090 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3091 			flags |= DRM_MODE_FLAG_PHSYNC;
3092 		else
3093 			flags |= DRM_MODE_FLAG_NHSYNC;
3094 
3095 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3096 			flags |= DRM_MODE_FLAG_PVSYNC;
3097 		else
3098 			flags |= DRM_MODE_FLAG_NVSYNC;
3099 	} else {
3100 		if (tmp & DP_SYNC_HS_HIGH)
3101 			flags |= DRM_MODE_FLAG_PHSYNC;
3102 		else
3103 			flags |= DRM_MODE_FLAG_NHSYNC;
3104 
3105 		if (tmp & DP_SYNC_VS_HIGH)
3106 			flags |= DRM_MODE_FLAG_PVSYNC;
3107 		else
3108 			flags |= DRM_MODE_FLAG_NVSYNC;
3109 	}
3110 
3111 	pipe_config->base.adjusted_mode.flags |= flags;
3112 
3113 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3114 		pipe_config->limited_color_range = true;
3115 
3116 	pipe_config->lane_count =
3117 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3118 
3119 	intel_dp_get_m_n(crtc, pipe_config);
3120 
3121 	if (port == PORT_A) {
3122 		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3123 			pipe_config->port_clock = 162000;
3124 		else
3125 			pipe_config->port_clock = 270000;
3126 	}
3127 
3128 	pipe_config->base.adjusted_mode.crtc_clock =
3129 		intel_dotclock_calculate(pipe_config->port_clock,
3130 					 &pipe_config->dp_m_n);
3131 
3132 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3133 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3134 		/*
3135 		 * This is a big fat ugly hack.
3136 		 *
3137 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3138 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3139 		 * unknown we fail to light up. Yet the same BIOS boots up with
3140 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3141 		 * max, not what it tells us to use.
3142 		 *
3143 		 * Note: This will still be broken if the eDP panel is not lit
3144 		 * up by the BIOS, and thus we can't get the mode at module
3145 		 * load.
3146 		 */
3147 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3148 			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3149 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3150 	}
3151 }
3152 
3153 static void intel_disable_dp(struct intel_encoder *encoder,
3154 			     const struct intel_crtc_state *old_crtc_state,
3155 			     const struct drm_connector_state *old_conn_state)
3156 {
3157 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3158 
3159 	intel_dp->link_trained = false;
3160 
3161 	if (old_crtc_state->has_audio)
3162 		intel_audio_codec_disable(encoder,
3163 					  old_crtc_state, old_conn_state);
3164 
3165 	/* Make sure the panel is off before trying to change the mode. But also
3166 	 * ensure that we have vdd while we switch off the panel. */
3167 	intel_edp_panel_vdd_on(intel_dp);
3168 	intel_edp_backlight_off(old_conn_state);
3169 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3170 	intel_edp_panel_off(intel_dp);
3171 }
3172 
3173 static void g4x_disable_dp(struct intel_encoder *encoder,
3174 			   const struct intel_crtc_state *old_crtc_state,
3175 			   const struct drm_connector_state *old_conn_state)
3176 {
3177 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3178 }
3179 
3180 static void vlv_disable_dp(struct intel_encoder *encoder,
3181 			   const struct intel_crtc_state *old_crtc_state,
3182 			   const struct drm_connector_state *old_conn_state)
3183 {
3184 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3185 }
3186 
3187 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3188 				const struct intel_crtc_state *old_crtc_state,
3189 				const struct drm_connector_state *old_conn_state)
3190 {
3191 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3192 	enum port port = encoder->port;
3193 
3194 	/*
3195 	 * Bspec does not list a specific disable sequence for g4x DP.
3196 	 * Follow the ilk+ sequence (disable pipe before the port) for
3197 	 * g4x DP as it does not suffer from underruns like the normal
3198 	 * g4x modeset sequence (disable pipe after the port).
3199 	 */
3200 	intel_dp_link_down(encoder, old_crtc_state);
3201 
3202 	/* Only ilk+ has port A */
3203 	if (port == PORT_A)
3204 		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3205 }
3206 
3207 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3208 				const struct intel_crtc_state *old_crtc_state,
3209 				const struct drm_connector_state *old_conn_state)
3210 {
3211 	intel_dp_link_down(encoder, old_crtc_state);
3212 }
3213 
3214 static void chv_post_disable_dp(struct intel_encoder *encoder,
3215 				const struct intel_crtc_state *old_crtc_state,
3216 				const struct drm_connector_state *old_conn_state)
3217 {
3218 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3219 
3220 	intel_dp_link_down(encoder, old_crtc_state);
3221 
3222 	vlv_dpio_get(dev_priv);
3223 
3224 	/* Assert data lane reset */
3225 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3226 
3227 	vlv_dpio_put(dev_priv);
3228 }
3229 
3230 static void
3231 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3232 			 u32 *DP,
3233 			 u8 dp_train_pat)
3234 {
3235 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3236 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3237 	enum port port = intel_dig_port->base.port;
3238 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3239 
3240 	if (dp_train_pat & train_pat_mask)
3241 		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3242 			      dp_train_pat & train_pat_mask);
3243 
3244 	if (HAS_DDI(dev_priv)) {
3245 		u32 temp = I915_READ(DP_TP_CTL(port));
3246 
3247 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3248 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3249 		else
3250 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3251 
3252 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3253 		switch (dp_train_pat & train_pat_mask) {
3254 		case DP_TRAINING_PATTERN_DISABLE:
3255 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3256 
3257 			break;
3258 		case DP_TRAINING_PATTERN_1:
3259 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3260 			break;
3261 		case DP_TRAINING_PATTERN_2:
3262 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3263 			break;
3264 		case DP_TRAINING_PATTERN_3:
3265 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3266 			break;
3267 		case DP_TRAINING_PATTERN_4:
3268 			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3269 			break;
3270 		}
3271 		I915_WRITE(DP_TP_CTL(port), temp);
3272 
3273 	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3274 		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3275 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3276 
3277 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3278 		case DP_TRAINING_PATTERN_DISABLE:
3279 			*DP |= DP_LINK_TRAIN_OFF_CPT;
3280 			break;
3281 		case DP_TRAINING_PATTERN_1:
3282 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3283 			break;
3284 		case DP_TRAINING_PATTERN_2:
3285 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3286 			break;
3287 		case DP_TRAINING_PATTERN_3:
3288 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3289 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3290 			break;
3291 		}
3292 
3293 	} else {
3294 		*DP &= ~DP_LINK_TRAIN_MASK;
3295 
3296 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3297 		case DP_TRAINING_PATTERN_DISABLE:
3298 			*DP |= DP_LINK_TRAIN_OFF;
3299 			break;
3300 		case DP_TRAINING_PATTERN_1:
3301 			*DP |= DP_LINK_TRAIN_PAT_1;
3302 			break;
3303 		case DP_TRAINING_PATTERN_2:
3304 			*DP |= DP_LINK_TRAIN_PAT_2;
3305 			break;
3306 		case DP_TRAINING_PATTERN_3:
3307 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3308 			*DP |= DP_LINK_TRAIN_PAT_2;
3309 			break;
3310 		}
3311 	}
3312 }
3313 
3314 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3315 				 const struct intel_crtc_state *old_crtc_state)
3316 {
3317 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3318 
3319 	/* enable with pattern 1 (as per spec) */
3320 
3321 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3322 
3323 	/*
3324 	 * Magic for VLV/CHV. We _must_ first set up the register
3325 	 * without actually enabling the port, and then do another
3326 	 * write to enable the port. Otherwise link training will
3327 	 * fail when the power sequencer is freshly used for this port.
3328 	 */
3329 	intel_dp->DP |= DP_PORT_EN;
3330 	if (old_crtc_state->has_audio)
3331 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3332 
3333 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3334 	POSTING_READ(intel_dp->output_reg);
3335 }
3336 
3337 static void intel_enable_dp(struct intel_encoder *encoder,
3338 			    const struct intel_crtc_state *pipe_config,
3339 			    const struct drm_connector_state *conn_state)
3340 {
3341 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3342 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3343 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3344 	u32 dp_reg = I915_READ(intel_dp->output_reg);
3345 	enum pipe pipe = crtc->pipe;
3346 	intel_wakeref_t wakeref;
3347 
3348 	if (WARN_ON(dp_reg & DP_PORT_EN))
3349 		return;
3350 
3351 	with_pps_lock(intel_dp, wakeref) {
3352 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3353 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3354 
3355 		intel_dp_enable_port(intel_dp, pipe_config);
3356 
3357 		edp_panel_vdd_on(intel_dp);
3358 		edp_panel_on(intel_dp);
3359 		edp_panel_vdd_off(intel_dp, true);
3360 	}
3361 
3362 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3363 		unsigned int lane_mask = 0x0;
3364 
3365 		if (IS_CHERRYVIEW(dev_priv))
3366 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3367 
3368 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3369 				    lane_mask);
3370 	}
3371 
3372 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3373 	intel_dp_start_link_train(intel_dp);
3374 	intel_dp_stop_link_train(intel_dp);
3375 
3376 	if (pipe_config->has_audio) {
3377 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3378 				 pipe_name(pipe));
3379 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3380 	}
3381 }
3382 
3383 static void g4x_enable_dp(struct intel_encoder *encoder,
3384 			  const struct intel_crtc_state *pipe_config,
3385 			  const struct drm_connector_state *conn_state)
3386 {
3387 	intel_enable_dp(encoder, pipe_config, conn_state);
3388 	intel_edp_backlight_on(pipe_config, conn_state);
3389 }
3390 
3391 static void vlv_enable_dp(struct intel_encoder *encoder,
3392 			  const struct intel_crtc_state *pipe_config,
3393 			  const struct drm_connector_state *conn_state)
3394 {
3395 	intel_edp_backlight_on(pipe_config, conn_state);
3396 }
3397 
3398 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3399 			      const struct intel_crtc_state *pipe_config,
3400 			      const struct drm_connector_state *conn_state)
3401 {
3402 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3403 	enum port port = encoder->port;
3404 
3405 	intel_dp_prepare(encoder, pipe_config);
3406 
3407 	/* Only ilk+ has port A */
3408 	if (port == PORT_A)
3409 		ironlake_edp_pll_on(intel_dp, pipe_config);
3410 }
3411 
3412 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3413 {
3414 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3415 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3416 	enum pipe pipe = intel_dp->pps_pipe;
3417 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3418 
3419 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3420 
3421 	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3422 		return;
3423 
3424 	edp_panel_vdd_off_sync(intel_dp);
3425 
3426 	/*
3427 	 * VLV seems to get confused when multiple power sequencers
3428 	 * have the same port selected (even if only one has power/vdd
3429 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3430 	 * CHV on the other hand doesn't seem to mind having the same port
3431 	 * selected in multiple power sequencers, but let's clear the
3432 	 * port select always when logically disconnecting a power sequencer
3433 	 * from a port.
3434 	 */
3435 	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3436 		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3437 	I915_WRITE(pp_on_reg, 0);
3438 	POSTING_READ(pp_on_reg);
3439 
3440 	intel_dp->pps_pipe = INVALID_PIPE;
3441 }
3442 
3443 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3444 				      enum pipe pipe)
3445 {
3446 	struct intel_encoder *encoder;
3447 
3448 	lockdep_assert_held(&dev_priv->pps_mutex);
3449 
3450 	for_each_intel_dp(&dev_priv->drm, encoder) {
3451 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3452 		enum port port = encoder->port;
3453 
3454 		WARN(intel_dp->active_pipe == pipe,
3455 		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
3456 		     pipe_name(pipe), port_name(port));
3457 
3458 		if (intel_dp->pps_pipe != pipe)
3459 			continue;
3460 
3461 		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3462 			      pipe_name(pipe), port_name(port));
3463 
3464 		/* make sure vdd is off before we steal it */
3465 		vlv_detach_power_sequencer(intel_dp);
3466 	}
3467 }
3468 
3469 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3470 					   const struct intel_crtc_state *crtc_state)
3471 {
3472 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3473 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3474 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3475 
3476 	lockdep_assert_held(&dev_priv->pps_mutex);
3477 
3478 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3479 
3480 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3481 	    intel_dp->pps_pipe != crtc->pipe) {
3482 		/*
3483 		 * If another power sequencer was being used on this
3484 		 * port previously make sure to turn off vdd there while
3485 		 * we still have control of it.
3486 		 */
3487 		vlv_detach_power_sequencer(intel_dp);
3488 	}
3489 
3490 	/*
3491 	 * We may be stealing the power
3492 	 * sequencer from another port.
3493 	 */
3494 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3495 
3496 	intel_dp->active_pipe = crtc->pipe;
3497 
3498 	if (!intel_dp_is_edp(intel_dp))
3499 		return;
3500 
3501 	/* now it's all ours */
3502 	intel_dp->pps_pipe = crtc->pipe;
3503 
3504 	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3505 		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3506 
3507 	/* init power sequencer on this pipe and port */
3508 	intel_dp_init_panel_power_sequencer(intel_dp);
3509 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3510 }
3511 
3512 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3513 			      const struct intel_crtc_state *pipe_config,
3514 			      const struct drm_connector_state *conn_state)
3515 {
3516 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3517 
3518 	intel_enable_dp(encoder, pipe_config, conn_state);
3519 }
3520 
3521 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3522 				  const struct intel_crtc_state *pipe_config,
3523 				  const struct drm_connector_state *conn_state)
3524 {
3525 	intel_dp_prepare(encoder, pipe_config);
3526 
3527 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3528 }
3529 
3530 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3531 			      const struct intel_crtc_state *pipe_config,
3532 			      const struct drm_connector_state *conn_state)
3533 {
3534 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3535 
3536 	intel_enable_dp(encoder, pipe_config, conn_state);
3537 
3538 	/* Second common lane will stay alive on its own now */
3539 	chv_phy_release_cl2_override(encoder);
3540 }
3541 
3542 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3543 				  const struct intel_crtc_state *pipe_config,
3544 				  const struct drm_connector_state *conn_state)
3545 {
3546 	intel_dp_prepare(encoder, pipe_config);
3547 
3548 	chv_phy_pre_pll_enable(encoder, pipe_config);
3549 }
3550 
3551 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3552 				    const struct intel_crtc_state *old_crtc_state,
3553 				    const struct drm_connector_state *old_conn_state)
3554 {
3555 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3556 }
3557 
3558 /*
3559  * Fetch AUX CH registers 0x202 - 0x207 which contain
3560  * link status information
3561  */
3562 bool
3563 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3564 {
3565 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3566 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3567 }
3568 
3569 /* These are source-specific values. */
3570 u8
3571 intel_dp_voltage_max(struct intel_dp *intel_dp)
3572 {
3573 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3574 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3575 	enum port port = encoder->port;
3576 
3577 	if (HAS_DDI(dev_priv))
3578 		return intel_ddi_dp_voltage_max(encoder);
3579 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3580 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3581 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3582 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3583 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3584 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3585 	else
3586 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3587 }
3588 
3589 u8
3590 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3591 {
3592 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3593 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3594 	enum port port = encoder->port;
3595 
3596 	if (HAS_DDI(dev_priv)) {
3597 		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3598 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3599 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3600 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3601 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3602 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3603 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3604 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3605 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3606 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3607 		default:
3608 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3609 		}
3610 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3611 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3612 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3613 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3614 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3615 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3616 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3617 		default:
3618 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3619 		}
3620 	} else {
3621 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3622 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3623 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3624 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3625 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3626 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3627 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3628 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3629 		default:
3630 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3631 		}
3632 	}
3633 }
3634 
3635 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3636 {
3637 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3638 	unsigned long demph_reg_value, preemph_reg_value,
3639 		uniqtranscale_reg_value;
3640 	u8 train_set = intel_dp->train_set[0];
3641 
3642 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3643 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3644 		preemph_reg_value = 0x0004000;
3645 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3646 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3647 			demph_reg_value = 0x2B405555;
3648 			uniqtranscale_reg_value = 0x552AB83A;
3649 			break;
3650 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3651 			demph_reg_value = 0x2B404040;
3652 			uniqtranscale_reg_value = 0x5548B83A;
3653 			break;
3654 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3655 			demph_reg_value = 0x2B245555;
3656 			uniqtranscale_reg_value = 0x5560B83A;
3657 			break;
3658 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3659 			demph_reg_value = 0x2B405555;
3660 			uniqtranscale_reg_value = 0x5598DA3A;
3661 			break;
3662 		default:
3663 			return 0;
3664 		}
3665 		break;
3666 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3667 		preemph_reg_value = 0x0002000;
3668 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3669 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3670 			demph_reg_value = 0x2B404040;
3671 			uniqtranscale_reg_value = 0x5552B83A;
3672 			break;
3673 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3674 			demph_reg_value = 0x2B404848;
3675 			uniqtranscale_reg_value = 0x5580B83A;
3676 			break;
3677 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3678 			demph_reg_value = 0x2B404040;
3679 			uniqtranscale_reg_value = 0x55ADDA3A;
3680 			break;
3681 		default:
3682 			return 0;
3683 		}
3684 		break;
3685 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3686 		preemph_reg_value = 0x0000000;
3687 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3688 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3689 			demph_reg_value = 0x2B305555;
3690 			uniqtranscale_reg_value = 0x5570B83A;
3691 			break;
3692 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3693 			demph_reg_value = 0x2B2B4040;
3694 			uniqtranscale_reg_value = 0x55ADDA3A;
3695 			break;
3696 		default:
3697 			return 0;
3698 		}
3699 		break;
3700 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3701 		preemph_reg_value = 0x0006000;
3702 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3703 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3704 			demph_reg_value = 0x1B405555;
3705 			uniqtranscale_reg_value = 0x55ADDA3A;
3706 			break;
3707 		default:
3708 			return 0;
3709 		}
3710 		break;
3711 	default:
3712 		return 0;
3713 	}
3714 
3715 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3716 				 uniqtranscale_reg_value, 0);
3717 
3718 	return 0;
3719 }
3720 
3721 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3722 {
3723 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3724 	u32 deemph_reg_value, margin_reg_value;
3725 	bool uniq_trans_scale = false;
3726 	u8 train_set = intel_dp->train_set[0];
3727 
3728 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3729 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3730 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3731 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3732 			deemph_reg_value = 128;
3733 			margin_reg_value = 52;
3734 			break;
3735 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3736 			deemph_reg_value = 128;
3737 			margin_reg_value = 77;
3738 			break;
3739 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3740 			deemph_reg_value = 128;
3741 			margin_reg_value = 102;
3742 			break;
3743 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3744 			deemph_reg_value = 128;
3745 			margin_reg_value = 154;
3746 			uniq_trans_scale = true;
3747 			break;
3748 		default:
3749 			return 0;
3750 		}
3751 		break;
3752 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3753 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3754 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3755 			deemph_reg_value = 85;
3756 			margin_reg_value = 78;
3757 			break;
3758 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3759 			deemph_reg_value = 85;
3760 			margin_reg_value = 116;
3761 			break;
3762 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3763 			deemph_reg_value = 85;
3764 			margin_reg_value = 154;
3765 			break;
3766 		default:
3767 			return 0;
3768 		}
3769 		break;
3770 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3771 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3772 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3773 			deemph_reg_value = 64;
3774 			margin_reg_value = 104;
3775 			break;
3776 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3777 			deemph_reg_value = 64;
3778 			margin_reg_value = 154;
3779 			break;
3780 		default:
3781 			return 0;
3782 		}
3783 		break;
3784 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3785 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3786 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3787 			deemph_reg_value = 43;
3788 			margin_reg_value = 154;
3789 			break;
3790 		default:
3791 			return 0;
3792 		}
3793 		break;
3794 	default:
3795 		return 0;
3796 	}
3797 
3798 	chv_set_phy_signal_level(encoder, deemph_reg_value,
3799 				 margin_reg_value, uniq_trans_scale);
3800 
3801 	return 0;
3802 }
3803 
3804 static u32
3805 g4x_signal_levels(u8 train_set)
3806 {
3807 	u32 signal_levels = 0;
3808 
3809 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3810 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3811 	default:
3812 		signal_levels |= DP_VOLTAGE_0_4;
3813 		break;
3814 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3815 		signal_levels |= DP_VOLTAGE_0_6;
3816 		break;
3817 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3818 		signal_levels |= DP_VOLTAGE_0_8;
3819 		break;
3820 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3821 		signal_levels |= DP_VOLTAGE_1_2;
3822 		break;
3823 	}
3824 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3825 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3826 	default:
3827 		signal_levels |= DP_PRE_EMPHASIS_0;
3828 		break;
3829 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3830 		signal_levels |= DP_PRE_EMPHASIS_3_5;
3831 		break;
3832 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3833 		signal_levels |= DP_PRE_EMPHASIS_6;
3834 		break;
3835 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3836 		signal_levels |= DP_PRE_EMPHASIS_9_5;
3837 		break;
3838 	}
3839 	return signal_levels;
3840 }
3841 
3842 /* SNB CPU eDP voltage swing and pre-emphasis control */
3843 static u32
3844 snb_cpu_edp_signal_levels(u8 train_set)
3845 {
3846 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3847 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3848 	switch (signal_levels) {
3849 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3850 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3851 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3852 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3853 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3854 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3855 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3856 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3857 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3858 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3859 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3860 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3861 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3862 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3863 	default:
3864 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3865 			      "0x%x\n", signal_levels);
3866 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3867 	}
3868 }
3869 
3870 /* IVB CPU eDP voltage swing and pre-emphasis control */
3871 static u32
3872 ivb_cpu_edp_signal_levels(u8 train_set)
3873 {
3874 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3875 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3876 	switch (signal_levels) {
3877 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3878 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3879 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3880 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3881 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3882 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
3883 
3884 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3885 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3886 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3887 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3888 
3889 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3890 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3891 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3892 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3893 
3894 	default:
3895 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3896 			      "0x%x\n", signal_levels);
3897 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
3898 	}
3899 }
3900 
3901 void
3902 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3903 {
3904 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3905 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3906 	enum port port = intel_dig_port->base.port;
3907 	u32 signal_levels, mask = 0;
3908 	u8 train_set = intel_dp->train_set[0];
3909 
3910 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3911 		signal_levels = bxt_signal_levels(intel_dp);
3912 	} else if (HAS_DDI(dev_priv)) {
3913 		signal_levels = ddi_signal_levels(intel_dp);
3914 		mask = DDI_BUF_EMP_MASK;
3915 	} else if (IS_CHERRYVIEW(dev_priv)) {
3916 		signal_levels = chv_signal_levels(intel_dp);
3917 	} else if (IS_VALLEYVIEW(dev_priv)) {
3918 		signal_levels = vlv_signal_levels(intel_dp);
3919 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3920 		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3921 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3922 	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3923 		signal_levels = snb_cpu_edp_signal_levels(train_set);
3924 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3925 	} else {
3926 		signal_levels = g4x_signal_levels(train_set);
3927 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3928 	}
3929 
3930 	if (mask)
3931 		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3932 
3933 	DRM_DEBUG_KMS("Using vswing level %d\n",
3934 		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3935 	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3936 		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3937 			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3938 
3939 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3940 
3941 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3942 	POSTING_READ(intel_dp->output_reg);
3943 }
3944 
3945 void
3946 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3947 				       u8 dp_train_pat)
3948 {
3949 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3950 	struct drm_i915_private *dev_priv =
3951 		to_i915(intel_dig_port->base.base.dev);
3952 
3953 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3954 
3955 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3956 	POSTING_READ(intel_dp->output_reg);
3957 }
3958 
3959 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3960 {
3961 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3962 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3963 	enum port port = intel_dig_port->base.port;
3964 	u32 val;
3965 
3966 	if (!HAS_DDI(dev_priv))
3967 		return;
3968 
3969 	val = I915_READ(DP_TP_CTL(port));
3970 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3971 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3972 	I915_WRITE(DP_TP_CTL(port), val);
3973 
3974 	/*
3975 	 * On PORT_A we can have only eDP in SST mode. There the only reason
3976 	 * we need to set idle transmission mode is to work around a HW issue
3977 	 * where we enable the pipe while not in idle link-training mode.
3978 	 * In this case there is requirement to wait for a minimum number of
3979 	 * idle patterns to be sent.
3980 	 */
3981 	if (port == PORT_A)
3982 		return;
3983 
3984 	if (intel_wait_for_register(&dev_priv->uncore, DP_TP_STATUS(port),
3985 				    DP_TP_STATUS_IDLE_DONE,
3986 				    DP_TP_STATUS_IDLE_DONE,
3987 				    1))
3988 		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3989 }
3990 
3991 static void
3992 intel_dp_link_down(struct intel_encoder *encoder,
3993 		   const struct intel_crtc_state *old_crtc_state)
3994 {
3995 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3996 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3997 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3998 	enum port port = encoder->port;
3999 	u32 DP = intel_dp->DP;
4000 
4001 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4002 		return;
4003 
4004 	DRM_DEBUG_KMS("\n");
4005 
4006 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4007 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4008 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4009 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4010 	} else {
4011 		DP &= ~DP_LINK_TRAIN_MASK;
4012 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4013 	}
4014 	I915_WRITE(intel_dp->output_reg, DP);
4015 	POSTING_READ(intel_dp->output_reg);
4016 
4017 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4018 	I915_WRITE(intel_dp->output_reg, DP);
4019 	POSTING_READ(intel_dp->output_reg);
4020 
4021 	/*
4022 	 * HW workaround for IBX, we need to move the port
4023 	 * to transcoder A after disabling it to allow the
4024 	 * matching HDMI port to be enabled on transcoder A.
4025 	 */
4026 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4027 		/*
4028 		 * We get CPU/PCH FIFO underruns on the other pipe when
4029 		 * doing the workaround. Sweep them under the rug.
4030 		 */
4031 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4032 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4033 
4034 		/* always enable with pattern 1 (as per spec) */
4035 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4036 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4037 			DP_LINK_TRAIN_PAT_1;
4038 		I915_WRITE(intel_dp->output_reg, DP);
4039 		POSTING_READ(intel_dp->output_reg);
4040 
4041 		DP &= ~DP_PORT_EN;
4042 		I915_WRITE(intel_dp->output_reg, DP);
4043 		POSTING_READ(intel_dp->output_reg);
4044 
4045 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4046 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4047 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4048 	}
4049 
4050 	msleep(intel_dp->panel_power_down_delay);
4051 
4052 	intel_dp->DP = DP;
4053 
4054 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4055 		intel_wakeref_t wakeref;
4056 
4057 		with_pps_lock(intel_dp, wakeref)
4058 			intel_dp->active_pipe = INVALID_PIPE;
4059 	}
4060 }
4061 
4062 static void
4063 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4064 {
4065 	u8 dpcd_ext[6];
4066 
4067 	/*
4068 	 * Prior to DP1.3 the bit represented by
4069 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4070 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4071 	 * the true capability of the panel. The only way to check is to
4072 	 * then compare 0000h and 2200h.
4073 	 */
4074 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4075 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4076 		return;
4077 
4078 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4079 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4080 		DRM_ERROR("DPCD failed read at extended capabilities\n");
4081 		return;
4082 	}
4083 
4084 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4085 		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4086 		return;
4087 	}
4088 
4089 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4090 		return;
4091 
4092 	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4093 		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4094 
4095 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4096 }
4097 
4098 bool
4099 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4100 {
4101 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4102 			     sizeof(intel_dp->dpcd)) < 0)
4103 		return false; /* aux transfer failed */
4104 
4105 	intel_dp_extended_receiver_capabilities(intel_dp);
4106 
4107 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4108 
4109 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4110 }
4111 
4112 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4113 {
4114 	u8 dprx = 0;
4115 
4116 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4117 			      &dprx) != 1)
4118 		return false;
4119 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4120 }
4121 
4122 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4123 {
4124 	/*
4125 	 * Clear the cached register set to avoid using stale values
4126 	 * for the sinks that do not support DSC.
4127 	 */
4128 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4129 
4130 	/* Clear fec_capable to avoid using stale values */
4131 	intel_dp->fec_capable = 0;
4132 
4133 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4134 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4135 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4136 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4137 				     intel_dp->dsc_dpcd,
4138 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4139 			DRM_ERROR("Failed to read DPCD register 0x%x\n",
4140 				  DP_DSC_SUPPORT);
4141 
4142 		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4143 			      (int)sizeof(intel_dp->dsc_dpcd),
4144 			      intel_dp->dsc_dpcd);
4145 
4146 		/* FEC is supported only on DP 1.4 */
4147 		if (!intel_dp_is_edp(intel_dp) &&
4148 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4149 				      &intel_dp->fec_capable) < 0)
4150 			DRM_ERROR("Failed to read FEC DPCD register\n");
4151 
4152 		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4153 	}
4154 }
4155 
4156 static bool
4157 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4158 {
4159 	struct drm_i915_private *dev_priv =
4160 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4161 
4162 	/* this function is meant to be called only once */
4163 	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4164 
4165 	if (!intel_dp_read_dpcd(intel_dp))
4166 		return false;
4167 
4168 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4169 			 drm_dp_is_branch(intel_dp->dpcd));
4170 
4171 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4172 		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4173 			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4174 
4175 	/*
4176 	 * Read the eDP display control registers.
4177 	 *
4178 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4179 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4180 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4181 	 * method). The display control registers should read zero if they're
4182 	 * not supported anyway.
4183 	 */
4184 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4185 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4186 			     sizeof(intel_dp->edp_dpcd))
4187 		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4188 			      intel_dp->edp_dpcd);
4189 
4190 	/*
4191 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4192 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4193 	 */
4194 	intel_psr_init_dpcd(intel_dp);
4195 
4196 	/* Read the eDP 1.4+ supported link rates. */
4197 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4198 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4199 		int i;
4200 
4201 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4202 				sink_rates, sizeof(sink_rates));
4203 
4204 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4205 			int val = le16_to_cpu(sink_rates[i]);
4206 
4207 			if (val == 0)
4208 				break;
4209 
4210 			/* Value read multiplied by 200kHz gives the per-lane
4211 			 * link rate in kHz. The source rates are, however,
4212 			 * stored in terms of LS_Clk kHz. The full conversion
4213 			 * back to symbols is
4214 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4215 			 */
4216 			intel_dp->sink_rates[i] = (val * 200) / 10;
4217 		}
4218 		intel_dp->num_sink_rates = i;
4219 	}
4220 
4221 	/*
4222 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4223 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4224 	 */
4225 	if (intel_dp->num_sink_rates)
4226 		intel_dp->use_rate_select = true;
4227 	else
4228 		intel_dp_set_sink_rates(intel_dp);
4229 
4230 	intel_dp_set_common_rates(intel_dp);
4231 
4232 	/* Read the eDP DSC DPCD registers */
4233 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4234 		intel_dp_get_dsc_sink_cap(intel_dp);
4235 
4236 	return true;
4237 }
4238 
4239 
4240 static bool
4241 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4242 {
4243 	if (!intel_dp_read_dpcd(intel_dp))
4244 		return false;
4245 
4246 	/* Don't clobber cached eDP rates. */
4247 	if (!intel_dp_is_edp(intel_dp)) {
4248 		intel_dp_set_sink_rates(intel_dp);
4249 		intel_dp_set_common_rates(intel_dp);
4250 	}
4251 
4252 	/*
4253 	 * Some eDP panels do not set a valid value for sink count, that is why
4254 	 * it don't care about read it here and in intel_edp_init_dpcd().
4255 	 */
4256 	if (!intel_dp_is_edp(intel_dp)) {
4257 		u8 count;
4258 		ssize_t r;
4259 
4260 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4261 		if (r < 1)
4262 			return false;
4263 
4264 		/*
4265 		 * Sink count can change between short pulse hpd hence
4266 		 * a member variable in intel_dp will track any changes
4267 		 * between short pulse interrupts.
4268 		 */
4269 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4270 
4271 		/*
4272 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4273 		 * a dongle is present but no display. Unless we require to know
4274 		 * if a dongle is present or not, we don't need to update
4275 		 * downstream port information. So, an early return here saves
4276 		 * time from performing other operations which are not required.
4277 		 */
4278 		if (!intel_dp->sink_count)
4279 			return false;
4280 	}
4281 
4282 	if (!drm_dp_is_branch(intel_dp->dpcd))
4283 		return true; /* native DP sink */
4284 
4285 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4286 		return true; /* no per-port downstream info */
4287 
4288 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4289 			     intel_dp->downstream_ports,
4290 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4291 		return false; /* downstream port status fetch failed */
4292 
4293 	return true;
4294 }
4295 
4296 static bool
4297 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4298 {
4299 	u8 mstm_cap;
4300 
4301 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4302 		return false;
4303 
4304 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4305 		return false;
4306 
4307 	return mstm_cap & DP_MST_CAP;
4308 }
4309 
4310 static bool
4311 intel_dp_can_mst(struct intel_dp *intel_dp)
4312 {
4313 	return i915_modparams.enable_dp_mst &&
4314 		intel_dp->can_mst &&
4315 		intel_dp_sink_can_mst(intel_dp);
4316 }
4317 
4318 static void
4319 intel_dp_configure_mst(struct intel_dp *intel_dp)
4320 {
4321 	struct intel_encoder *encoder =
4322 		&dp_to_dig_port(intel_dp)->base;
4323 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4324 
4325 	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
4326 		      port_name(encoder->port), yesno(intel_dp->can_mst),
4327 		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4328 
4329 	if (!intel_dp->can_mst)
4330 		return;
4331 
4332 	intel_dp->is_mst = sink_can_mst &&
4333 		i915_modparams.enable_dp_mst;
4334 
4335 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4336 					intel_dp->is_mst);
4337 }
4338 
4339 static bool
4340 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4341 {
4342 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4343 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4344 		DP_DPRX_ESI_LEN;
4345 }
4346 
4347 u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
4348 				int mode_clock, int mode_hdisplay)
4349 {
4350 	u16 bits_per_pixel, max_bpp_small_joiner_ram;
4351 	int i;
4352 
4353 	/*
4354 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
4355 	 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
4356 	 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
4357 	 * for MST -> TimeSlotsPerMTP has to be calculated
4358 	 */
4359 	bits_per_pixel = (link_clock * lane_count * 8 *
4360 			  DP_DSC_FEC_OVERHEAD_FACTOR) /
4361 		mode_clock;
4362 
4363 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
4364 	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
4365 		mode_hdisplay;
4366 
4367 	/*
4368 	 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
4369 	 * check, output bpp from small joiner RAM check)
4370 	 */
4371 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
4372 
4373 	/* Error out if the max bpp is less than smallest allowed valid bpp */
4374 	if (bits_per_pixel < valid_dsc_bpp[0]) {
4375 		DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
4376 		return 0;
4377 	}
4378 
4379 	/* Find the nearest match in the array of known BPPs from VESA */
4380 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
4381 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
4382 			break;
4383 	}
4384 	bits_per_pixel = valid_dsc_bpp[i];
4385 
4386 	/*
4387 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
4388 	 * fractional part is 0
4389 	 */
4390 	return bits_per_pixel << 4;
4391 }
4392 
4393 u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
4394 				int mode_clock,
4395 				int mode_hdisplay)
4396 {
4397 	u8 min_slice_count, i;
4398 	int max_slice_width;
4399 
4400 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
4401 		min_slice_count = DIV_ROUND_UP(mode_clock,
4402 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
4403 	else
4404 		min_slice_count = DIV_ROUND_UP(mode_clock,
4405 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
4406 
4407 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
4408 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
4409 		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
4410 			      max_slice_width);
4411 		return 0;
4412 	}
4413 	/* Also take into account max slice width */
4414 	min_slice_count = min_t(u8, min_slice_count,
4415 				DIV_ROUND_UP(mode_hdisplay,
4416 					     max_slice_width));
4417 
4418 	/* Find the closest match to the valid slice count values */
4419 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
4420 		if (valid_dsc_slicecount[i] >
4421 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
4422 						    false))
4423 			break;
4424 		if (min_slice_count  <= valid_dsc_slicecount[i])
4425 			return valid_dsc_slicecount[i];
4426 	}
4427 
4428 	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
4429 	return 0;
4430 }
4431 
4432 static void
4433 intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp,
4434 			       const struct intel_crtc_state *crtc_state)
4435 {
4436 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4437 	struct dp_sdp vsc_sdp = {};
4438 
4439 	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4440 	vsc_sdp.sdp_header.HB0 = 0;
4441 	vsc_sdp.sdp_header.HB1 = 0x7;
4442 
4443 	/*
4444 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4445 	 * Colorimetry Format indication.
4446 	 */
4447 	vsc_sdp.sdp_header.HB2 = 0x5;
4448 
4449 	/*
4450 	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4451 	 * Colorimetry Format indication (HB2 = 05h).
4452 	 */
4453 	vsc_sdp.sdp_header.HB3 = 0x13;
4454 
4455 	/*
4456 	 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h
4457 	 * DB16[3:0] DP 1.4a spec, Table 2-120
4458 	 */
4459 	vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/
4460 	/* RGB->YCBCR color conversion uses the BT.709 color space. */
4461 	vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4462 
4463 	/*
4464 	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4465 	 * the following Component Bit Depth values are defined:
4466 	 * 001b = 8bpc.
4467 	 * 010b = 10bpc.
4468 	 * 011b = 12bpc.
4469 	 * 100b = 16bpc.
4470 	 */
4471 	switch (crtc_state->pipe_bpp) {
4472 	case 24: /* 8bpc */
4473 		vsc_sdp.db[17] = 0x1;
4474 		break;
4475 	case 30: /* 10bpc */
4476 		vsc_sdp.db[17] = 0x2;
4477 		break;
4478 	case 36: /* 12bpc */
4479 		vsc_sdp.db[17] = 0x3;
4480 		break;
4481 	case 48: /* 16bpc */
4482 		vsc_sdp.db[17] = 0x4;
4483 		break;
4484 	default:
4485 		MISSING_CASE(crtc_state->pipe_bpp);
4486 		break;
4487 	}
4488 
4489 	/*
4490 	 * Dynamic Range (Bit 7)
4491 	 * 0 = VESA range, 1 = CTA range.
4492 	 * all YCbCr are always limited range
4493 	 */
4494 	vsc_sdp.db[17] |= 0x80;
4495 
4496 	/*
4497 	 * Content Type (Bits 2:0)
4498 	 * 000b = Not defined.
4499 	 * 001b = Graphics.
4500 	 * 010b = Photo.
4501 	 * 011b = Video.
4502 	 * 100b = Game
4503 	 * All other values are RESERVED.
4504 	 * Note: See CTA-861-G for the definition and expected
4505 	 * processing by a stream sink for the above contect types.
4506 	 */
4507 	vsc_sdp.db[18] = 0;
4508 
4509 	intel_dig_port->write_infoframe(&intel_dig_port->base,
4510 			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4511 }
4512 
4513 void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp,
4514 			       const struct intel_crtc_state *crtc_state)
4515 {
4516 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420)
4517 		return;
4518 
4519 	intel_pixel_encoding_setup_vsc(intel_dp, crtc_state);
4520 }
4521 
4522 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4523 {
4524 	int status = 0;
4525 	int test_link_rate;
4526 	u8 test_lane_count, test_link_bw;
4527 	/* (DP CTS 1.2)
4528 	 * 4.3.1.11
4529 	 */
4530 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4531 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4532 				   &test_lane_count);
4533 
4534 	if (status <= 0) {
4535 		DRM_DEBUG_KMS("Lane count read failed\n");
4536 		return DP_TEST_NAK;
4537 	}
4538 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4539 
4540 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4541 				   &test_link_bw);
4542 	if (status <= 0) {
4543 		DRM_DEBUG_KMS("Link Rate read failed\n");
4544 		return DP_TEST_NAK;
4545 	}
4546 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4547 
4548 	/* Validate the requested link rate and lane count */
4549 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4550 					test_lane_count))
4551 		return DP_TEST_NAK;
4552 
4553 	intel_dp->compliance.test_lane_count = test_lane_count;
4554 	intel_dp->compliance.test_link_rate = test_link_rate;
4555 
4556 	return DP_TEST_ACK;
4557 }
4558 
4559 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4560 {
4561 	u8 test_pattern;
4562 	u8 test_misc;
4563 	__be16 h_width, v_height;
4564 	int status = 0;
4565 
4566 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4567 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4568 				   &test_pattern);
4569 	if (status <= 0) {
4570 		DRM_DEBUG_KMS("Test pattern read failed\n");
4571 		return DP_TEST_NAK;
4572 	}
4573 	if (test_pattern != DP_COLOR_RAMP)
4574 		return DP_TEST_NAK;
4575 
4576 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4577 				  &h_width, 2);
4578 	if (status <= 0) {
4579 		DRM_DEBUG_KMS("H Width read failed\n");
4580 		return DP_TEST_NAK;
4581 	}
4582 
4583 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4584 				  &v_height, 2);
4585 	if (status <= 0) {
4586 		DRM_DEBUG_KMS("V Height read failed\n");
4587 		return DP_TEST_NAK;
4588 	}
4589 
4590 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4591 				   &test_misc);
4592 	if (status <= 0) {
4593 		DRM_DEBUG_KMS("TEST MISC read failed\n");
4594 		return DP_TEST_NAK;
4595 	}
4596 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4597 		return DP_TEST_NAK;
4598 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4599 		return DP_TEST_NAK;
4600 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4601 	case DP_TEST_BIT_DEPTH_6:
4602 		intel_dp->compliance.test_data.bpc = 6;
4603 		break;
4604 	case DP_TEST_BIT_DEPTH_8:
4605 		intel_dp->compliance.test_data.bpc = 8;
4606 		break;
4607 	default:
4608 		return DP_TEST_NAK;
4609 	}
4610 
4611 	intel_dp->compliance.test_data.video_pattern = test_pattern;
4612 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4613 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4614 	/* Set test active flag here so userspace doesn't interrupt things */
4615 	intel_dp->compliance.test_active = 1;
4616 
4617 	return DP_TEST_ACK;
4618 }
4619 
4620 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4621 {
4622 	u8 test_result = DP_TEST_ACK;
4623 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4624 	struct drm_connector *connector = &intel_connector->base;
4625 
4626 	if (intel_connector->detect_edid == NULL ||
4627 	    connector->edid_corrupt ||
4628 	    intel_dp->aux.i2c_defer_count > 6) {
4629 		/* Check EDID read for NACKs, DEFERs and corruption
4630 		 * (DP CTS 1.2 Core r1.1)
4631 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
4632 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
4633 		 *    4.2.2.6 : EDID corruption detected
4634 		 * Use failsafe mode for all cases
4635 		 */
4636 		if (intel_dp->aux.i2c_nack_count > 0 ||
4637 			intel_dp->aux.i2c_defer_count > 0)
4638 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4639 				      intel_dp->aux.i2c_nack_count,
4640 				      intel_dp->aux.i2c_defer_count);
4641 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4642 	} else {
4643 		struct edid *block = intel_connector->detect_edid;
4644 
4645 		/* We have to write the checksum
4646 		 * of the last block read
4647 		 */
4648 		block += intel_connector->detect_edid->extensions;
4649 
4650 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4651 				       block->checksum) <= 0)
4652 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4653 
4654 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4655 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4656 	}
4657 
4658 	/* Set test active flag here so userspace doesn't interrupt things */
4659 	intel_dp->compliance.test_active = 1;
4660 
4661 	return test_result;
4662 }
4663 
4664 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4665 {
4666 	u8 test_result = DP_TEST_NAK;
4667 	return test_result;
4668 }
4669 
4670 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4671 {
4672 	u8 response = DP_TEST_NAK;
4673 	u8 request = 0;
4674 	int status;
4675 
4676 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4677 	if (status <= 0) {
4678 		DRM_DEBUG_KMS("Could not read test request from sink\n");
4679 		goto update_status;
4680 	}
4681 
4682 	switch (request) {
4683 	case DP_TEST_LINK_TRAINING:
4684 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4685 		response = intel_dp_autotest_link_training(intel_dp);
4686 		break;
4687 	case DP_TEST_LINK_VIDEO_PATTERN:
4688 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4689 		response = intel_dp_autotest_video_pattern(intel_dp);
4690 		break;
4691 	case DP_TEST_LINK_EDID_READ:
4692 		DRM_DEBUG_KMS("EDID test requested\n");
4693 		response = intel_dp_autotest_edid(intel_dp);
4694 		break;
4695 	case DP_TEST_LINK_PHY_TEST_PATTERN:
4696 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4697 		response = intel_dp_autotest_phy_pattern(intel_dp);
4698 		break;
4699 	default:
4700 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4701 		break;
4702 	}
4703 
4704 	if (response & DP_TEST_ACK)
4705 		intel_dp->compliance.test_type = request;
4706 
4707 update_status:
4708 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4709 	if (status <= 0)
4710 		DRM_DEBUG_KMS("Could not write test response to sink\n");
4711 }
4712 
4713 static int
4714 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4715 {
4716 	bool bret;
4717 
4718 	if (intel_dp->is_mst) {
4719 		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4720 		int ret = 0;
4721 		int retry;
4722 		bool handled;
4723 
4724 		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4725 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4726 go_again:
4727 		if (bret == true) {
4728 
4729 			/* check link status - esi[10] = 0x200c */
4730 			if (intel_dp->active_mst_links > 0 &&
4731 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4732 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4733 				intel_dp_start_link_train(intel_dp);
4734 				intel_dp_stop_link_train(intel_dp);
4735 			}
4736 
4737 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4738 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4739 
4740 			if (handled) {
4741 				for (retry = 0; retry < 3; retry++) {
4742 					int wret;
4743 					wret = drm_dp_dpcd_write(&intel_dp->aux,
4744 								 DP_SINK_COUNT_ESI+1,
4745 								 &esi[1], 3);
4746 					if (wret == 3) {
4747 						break;
4748 					}
4749 				}
4750 
4751 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4752 				if (bret == true) {
4753 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4754 					goto go_again;
4755 				}
4756 			} else
4757 				ret = 0;
4758 
4759 			return ret;
4760 		} else {
4761 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4762 			intel_dp->is_mst = false;
4763 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4764 							intel_dp->is_mst);
4765 		}
4766 	}
4767 	return -EINVAL;
4768 }
4769 
4770 static bool
4771 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4772 {
4773 	u8 link_status[DP_LINK_STATUS_SIZE];
4774 
4775 	if (!intel_dp->link_trained)
4776 		return false;
4777 
4778 	/*
4779 	 * While PSR source HW is enabled, it will control main-link sending
4780 	 * frames, enabling and disabling it so trying to do a retrain will fail
4781 	 * as the link would or not be on or it could mix training patterns
4782 	 * and frame data at the same time causing retrain to fail.
4783 	 * Also when exiting PSR, HW will retrain the link anyways fixing
4784 	 * any link status error.
4785 	 */
4786 	if (intel_psr_enabled(intel_dp))
4787 		return false;
4788 
4789 	if (!intel_dp_get_link_status(intel_dp, link_status))
4790 		return false;
4791 
4792 	/*
4793 	 * Validate the cached values of intel_dp->link_rate and
4794 	 * intel_dp->lane_count before attempting to retrain.
4795 	 */
4796 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4797 					intel_dp->lane_count))
4798 		return false;
4799 
4800 	/* Retrain if Channel EQ or CR not ok */
4801 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4802 }
4803 
4804 int intel_dp_retrain_link(struct intel_encoder *encoder,
4805 			  struct drm_modeset_acquire_ctx *ctx)
4806 {
4807 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4808 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4809 	struct intel_connector *connector = intel_dp->attached_connector;
4810 	struct drm_connector_state *conn_state;
4811 	struct intel_crtc_state *crtc_state;
4812 	struct intel_crtc *crtc;
4813 	int ret;
4814 
4815 	/* FIXME handle the MST connectors as well */
4816 
4817 	if (!connector || connector->base.status != connector_status_connected)
4818 		return 0;
4819 
4820 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4821 			       ctx);
4822 	if (ret)
4823 		return ret;
4824 
4825 	conn_state = connector->base.state;
4826 
4827 	crtc = to_intel_crtc(conn_state->crtc);
4828 	if (!crtc)
4829 		return 0;
4830 
4831 	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4832 	if (ret)
4833 		return ret;
4834 
4835 	crtc_state = to_intel_crtc_state(crtc->base.state);
4836 
4837 	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4838 
4839 	if (!crtc_state->base.active)
4840 		return 0;
4841 
4842 	if (conn_state->commit &&
4843 	    !try_wait_for_completion(&conn_state->commit->hw_done))
4844 		return 0;
4845 
4846 	if (!intel_dp_needs_link_retrain(intel_dp))
4847 		return 0;
4848 
4849 	/* Suppress underruns caused by re-training */
4850 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4851 	if (crtc_state->has_pch_encoder)
4852 		intel_set_pch_fifo_underrun_reporting(dev_priv,
4853 						      intel_crtc_pch_transcoder(crtc), false);
4854 
4855 	intel_dp_start_link_train(intel_dp);
4856 	intel_dp_stop_link_train(intel_dp);
4857 
4858 	/* Keep underrun reporting disabled until things are stable */
4859 	intel_wait_for_vblank(dev_priv, crtc->pipe);
4860 
4861 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4862 	if (crtc_state->has_pch_encoder)
4863 		intel_set_pch_fifo_underrun_reporting(dev_priv,
4864 						      intel_crtc_pch_transcoder(crtc), true);
4865 
4866 	return 0;
4867 }
4868 
4869 /*
4870  * If display is now connected check links status,
4871  * there has been known issues of link loss triggering
4872  * long pulse.
4873  *
4874  * Some sinks (eg. ASUS PB287Q) seem to perform some
4875  * weird HPD ping pong during modesets. So we can apparently
4876  * end up with HPD going low during a modeset, and then
4877  * going back up soon after. And once that happens we must
4878  * retrain the link to get a picture. That's in case no
4879  * userspace component reacted to intermittent HPD dip.
4880  */
4881 static bool intel_dp_hotplug(struct intel_encoder *encoder,
4882 			     struct intel_connector *connector)
4883 {
4884 	struct drm_modeset_acquire_ctx ctx;
4885 	bool changed;
4886 	int ret;
4887 
4888 	changed = intel_encoder_hotplug(encoder, connector);
4889 
4890 	drm_modeset_acquire_init(&ctx, 0);
4891 
4892 	for (;;) {
4893 		ret = intel_dp_retrain_link(encoder, &ctx);
4894 
4895 		if (ret == -EDEADLK) {
4896 			drm_modeset_backoff(&ctx);
4897 			continue;
4898 		}
4899 
4900 		break;
4901 	}
4902 
4903 	drm_modeset_drop_locks(&ctx);
4904 	drm_modeset_acquire_fini(&ctx);
4905 	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4906 
4907 	return changed;
4908 }
4909 
4910 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
4911 {
4912 	u8 val;
4913 
4914 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
4915 		return;
4916 
4917 	if (drm_dp_dpcd_readb(&intel_dp->aux,
4918 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
4919 		return;
4920 
4921 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
4922 
4923 	if (val & DP_AUTOMATED_TEST_REQUEST)
4924 		intel_dp_handle_test_request(intel_dp);
4925 
4926 	if (val & DP_CP_IRQ)
4927 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4928 
4929 	if (val & DP_SINK_SPECIFIC_IRQ)
4930 		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4931 }
4932 
4933 /*
4934  * According to DP spec
4935  * 5.1.2:
4936  *  1. Read DPCD
4937  *  2. Configure link according to Receiver Capabilities
4938  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4939  *  4. Check link status on receipt of hot-plug interrupt
4940  *
4941  * intel_dp_short_pulse -  handles short pulse interrupts
4942  * when full detection is not required.
4943  * Returns %true if short pulse is handled and full detection
4944  * is NOT required and %false otherwise.
4945  */
4946 static bool
4947 intel_dp_short_pulse(struct intel_dp *intel_dp)
4948 {
4949 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4950 	u8 old_sink_count = intel_dp->sink_count;
4951 	bool ret;
4952 
4953 	/*
4954 	 * Clearing compliance test variables to allow capturing
4955 	 * of values for next automated test request.
4956 	 */
4957 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4958 
4959 	/*
4960 	 * Now read the DPCD to see if it's actually running
4961 	 * If the current value of sink count doesn't match with
4962 	 * the value that was stored earlier or dpcd read failed
4963 	 * we need to do full detection
4964 	 */
4965 	ret = intel_dp_get_dpcd(intel_dp);
4966 
4967 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
4968 		/* No need to proceed if we are going to do full detect */
4969 		return false;
4970 	}
4971 
4972 	intel_dp_check_service_irq(intel_dp);
4973 
4974 	/* Handle CEC interrupts, if any */
4975 	drm_dp_cec_irq(&intel_dp->aux);
4976 
4977 	/* defer to the hotplug work for link retraining if needed */
4978 	if (intel_dp_needs_link_retrain(intel_dp))
4979 		return false;
4980 
4981 	intel_psr_short_pulse(intel_dp);
4982 
4983 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4984 		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4985 		/* Send a Hotplug Uevent to userspace to start modeset */
4986 		drm_kms_helper_hotplug_event(&dev_priv->drm);
4987 	}
4988 
4989 	return true;
4990 }
4991 
4992 /* XXX this is probably wrong for multiple downstream ports */
4993 static enum drm_connector_status
4994 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4995 {
4996 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4997 	u8 *dpcd = intel_dp->dpcd;
4998 	u8 type;
4999 
5000 	if (WARN_ON(intel_dp_is_edp(intel_dp)))
5001 		return connector_status_connected;
5002 
5003 	if (lspcon->active)
5004 		lspcon_resume(lspcon);
5005 
5006 	if (!intel_dp_get_dpcd(intel_dp))
5007 		return connector_status_disconnected;
5008 
5009 	/* if there's no downstream port, we're done */
5010 	if (!drm_dp_is_branch(dpcd))
5011 		return connector_status_connected;
5012 
5013 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5014 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5015 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5016 
5017 		return intel_dp->sink_count ?
5018 		connector_status_connected : connector_status_disconnected;
5019 	}
5020 
5021 	if (intel_dp_can_mst(intel_dp))
5022 		return connector_status_connected;
5023 
5024 	/* If no HPD, poke DDC gently */
5025 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5026 		return connector_status_connected;
5027 
5028 	/* Well we tried, say unknown for unreliable port types */
5029 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5030 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5031 		if (type == DP_DS_PORT_TYPE_VGA ||
5032 		    type == DP_DS_PORT_TYPE_NON_EDID)
5033 			return connector_status_unknown;
5034 	} else {
5035 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5036 			DP_DWN_STRM_PORT_TYPE_MASK;
5037 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5038 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5039 			return connector_status_unknown;
5040 	}
5041 
5042 	/* Anything else is out of spec, warn and ignore */
5043 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5044 	return connector_status_disconnected;
5045 }
5046 
5047 static enum drm_connector_status
5048 edp_detect(struct intel_dp *intel_dp)
5049 {
5050 	return connector_status_connected;
5051 }
5052 
5053 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5054 {
5055 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5056 	u32 bit;
5057 
5058 	switch (encoder->hpd_pin) {
5059 	case HPD_PORT_B:
5060 		bit = SDE_PORTB_HOTPLUG;
5061 		break;
5062 	case HPD_PORT_C:
5063 		bit = SDE_PORTC_HOTPLUG;
5064 		break;
5065 	case HPD_PORT_D:
5066 		bit = SDE_PORTD_HOTPLUG;
5067 		break;
5068 	default:
5069 		MISSING_CASE(encoder->hpd_pin);
5070 		return false;
5071 	}
5072 
5073 	return I915_READ(SDEISR) & bit;
5074 }
5075 
5076 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5077 {
5078 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5079 	u32 bit;
5080 
5081 	switch (encoder->hpd_pin) {
5082 	case HPD_PORT_B:
5083 		bit = SDE_PORTB_HOTPLUG_CPT;
5084 		break;
5085 	case HPD_PORT_C:
5086 		bit = SDE_PORTC_HOTPLUG_CPT;
5087 		break;
5088 	case HPD_PORT_D:
5089 		bit = SDE_PORTD_HOTPLUG_CPT;
5090 		break;
5091 	default:
5092 		MISSING_CASE(encoder->hpd_pin);
5093 		return false;
5094 	}
5095 
5096 	return I915_READ(SDEISR) & bit;
5097 }
5098 
5099 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5100 {
5101 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5102 	u32 bit;
5103 
5104 	switch (encoder->hpd_pin) {
5105 	case HPD_PORT_A:
5106 		bit = SDE_PORTA_HOTPLUG_SPT;
5107 		break;
5108 	case HPD_PORT_E:
5109 		bit = SDE_PORTE_HOTPLUG_SPT;
5110 		break;
5111 	default:
5112 		return cpt_digital_port_connected(encoder);
5113 	}
5114 
5115 	return I915_READ(SDEISR) & bit;
5116 }
5117 
5118 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5119 {
5120 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5121 	u32 bit;
5122 
5123 	switch (encoder->hpd_pin) {
5124 	case HPD_PORT_B:
5125 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5126 		break;
5127 	case HPD_PORT_C:
5128 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5129 		break;
5130 	case HPD_PORT_D:
5131 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5132 		break;
5133 	default:
5134 		MISSING_CASE(encoder->hpd_pin);
5135 		return false;
5136 	}
5137 
5138 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5139 }
5140 
5141 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5142 {
5143 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5144 	u32 bit;
5145 
5146 	switch (encoder->hpd_pin) {
5147 	case HPD_PORT_B:
5148 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5149 		break;
5150 	case HPD_PORT_C:
5151 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5152 		break;
5153 	case HPD_PORT_D:
5154 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5155 		break;
5156 	default:
5157 		MISSING_CASE(encoder->hpd_pin);
5158 		return false;
5159 	}
5160 
5161 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5162 }
5163 
5164 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5165 {
5166 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5167 
5168 	if (encoder->hpd_pin == HPD_PORT_A)
5169 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5170 	else
5171 		return ibx_digital_port_connected(encoder);
5172 }
5173 
5174 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5175 {
5176 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5177 
5178 	if (encoder->hpd_pin == HPD_PORT_A)
5179 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5180 	else
5181 		return cpt_digital_port_connected(encoder);
5182 }
5183 
5184 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5185 {
5186 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5187 
5188 	if (encoder->hpd_pin == HPD_PORT_A)
5189 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5190 	else
5191 		return cpt_digital_port_connected(encoder);
5192 }
5193 
5194 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5195 {
5196 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5197 
5198 	if (encoder->hpd_pin == HPD_PORT_A)
5199 		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5200 	else
5201 		return cpt_digital_port_connected(encoder);
5202 }
5203 
5204 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5205 {
5206 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5207 	u32 bit;
5208 
5209 	switch (encoder->hpd_pin) {
5210 	case HPD_PORT_A:
5211 		bit = BXT_DE_PORT_HP_DDIA;
5212 		break;
5213 	case HPD_PORT_B:
5214 		bit = BXT_DE_PORT_HP_DDIB;
5215 		break;
5216 	case HPD_PORT_C:
5217 		bit = BXT_DE_PORT_HP_DDIC;
5218 		break;
5219 	default:
5220 		MISSING_CASE(encoder->hpd_pin);
5221 		return false;
5222 	}
5223 
5224 	return I915_READ(GEN8_DE_PORT_ISR) & bit;
5225 }
5226 
5227 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
5228 				     struct intel_digital_port *intel_dig_port)
5229 {
5230 	enum port port = intel_dig_port->base.port;
5231 
5232 	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
5233 }
5234 
5235 static const char *tc_type_name(enum tc_port_type type)
5236 {
5237 	static const char * const names[] = {
5238 		[TC_PORT_UNKNOWN] = "unknown",
5239 		[TC_PORT_LEGACY] = "legacy",
5240 		[TC_PORT_TYPEC] = "typec",
5241 		[TC_PORT_TBT] = "tbt",
5242 	};
5243 
5244 	if (WARN_ON(type >= ARRAY_SIZE(names)))
5245 		type = TC_PORT_UNKNOWN;
5246 
5247 	return names[type];
5248 }
5249 
5250 static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
5251 				    struct intel_digital_port *intel_dig_port,
5252 				    bool is_legacy, bool is_typec, bool is_tbt)
5253 {
5254 	enum port port = intel_dig_port->base.port;
5255 	enum tc_port_type old_type = intel_dig_port->tc_type;
5256 
5257 	WARN_ON(is_legacy + is_typec + is_tbt != 1);
5258 
5259 	if (is_legacy)
5260 		intel_dig_port->tc_type = TC_PORT_LEGACY;
5261 	else if (is_typec)
5262 		intel_dig_port->tc_type = TC_PORT_TYPEC;
5263 	else if (is_tbt)
5264 		intel_dig_port->tc_type = TC_PORT_TBT;
5265 	else
5266 		return;
5267 
5268 	/* Types are not supposed to be changed at runtime. */
5269 	WARN_ON(old_type != TC_PORT_UNKNOWN &&
5270 		old_type != intel_dig_port->tc_type);
5271 
5272 	if (old_type != intel_dig_port->tc_type)
5273 		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
5274 			      tc_type_name(intel_dig_port->tc_type));
5275 }
5276 
5277 /*
5278  * This function implements the first part of the Connect Flow described by our
5279  * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
5280  * lanes, EDID, etc) is done as needed in the typical places.
5281  *
5282  * Unlike the other ports, type-C ports are not available to use as soon as we
5283  * get a hotplug. The type-C PHYs can be shared between multiple controllers:
5284  * display, USB, etc. As a result, handshaking through FIA is required around
5285  * connect and disconnect to cleanly transfer ownership with the controller and
5286  * set the type-C power state.
5287  *
5288  * We could opt to only do the connect flow when we actually try to use the AUX
5289  * channels or do a modeset, then immediately run the disconnect flow after
5290  * usage, but there are some implications on this for a dynamic environment:
5291  * things may go away or change behind our backs. So for now our driver is
5292  * always trying to acquire ownership of the controller as soon as it gets an
5293  * interrupt (or polls state and sees a port is connected) and only gives it
5294  * back when it sees a disconnect. Implementation of a more fine-grained model
5295  * will require a lot of coordination with user space and thorough testing for
5296  * the extra possible cases.
5297  */
5298 static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
5299 			       struct intel_digital_port *dig_port)
5300 {
5301 	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
5302 	u32 val;
5303 
5304 	if (dig_port->tc_type != TC_PORT_LEGACY &&
5305 	    dig_port->tc_type != TC_PORT_TYPEC)
5306 		return true;
5307 
5308 	val = I915_READ(PORT_TX_DFLEXDPPMS);
5309 	if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
5310 		DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
5311 		WARN_ON(dig_port->tc_legacy_port);
5312 		return false;
5313 	}
5314 
5315 	/*
5316 	 * This function may be called many times in a row without an HPD event
5317 	 * in between, so try to avoid the write when we can.
5318 	 */
5319 	val = I915_READ(PORT_TX_DFLEXDPCSSS);
5320 	if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
5321 		val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
5322 		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
5323 	}
5324 
5325 	/*
5326 	 * Now we have to re-check the live state, in case the port recently
5327 	 * became disconnected. Not necessary for legacy mode.
5328 	 */
5329 	if (dig_port->tc_type == TC_PORT_TYPEC &&
5330 	    !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
5331 		DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5332 		icl_tc_phy_disconnect(dev_priv, dig_port);
5333 		return false;
5334 	}
5335 
5336 	return true;
5337 }
5338 
5339 /*
5340  * See the comment at the connect function. This implements the Disconnect
5341  * Flow.
5342  */
5343 void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
5344 			   struct intel_digital_port *dig_port)
5345 {
5346 	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
5347 
5348 	if (dig_port->tc_type == TC_PORT_UNKNOWN)
5349 		return;
5350 
5351 	/*
5352 	 * TBT disconnection flow is read the live status, what was done in
5353 	 * caller.
5354 	 */
5355 	if (dig_port->tc_type == TC_PORT_TYPEC ||
5356 	    dig_port->tc_type == TC_PORT_LEGACY) {
5357 		u32 val;
5358 
5359 		val = I915_READ(PORT_TX_DFLEXDPCSSS);
5360 		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
5361 		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
5362 	}
5363 
5364 	DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
5365 		      port_name(dig_port->base.port),
5366 		      tc_type_name(dig_port->tc_type));
5367 
5368 	dig_port->tc_type = TC_PORT_UNKNOWN;
5369 }
5370 
5371 /*
5372  * The type-C ports are different because even when they are connected, they may
5373  * not be available/usable by the graphics driver: see the comment on
5374  * icl_tc_phy_connect(). So in our driver instead of adding the additional
5375  * concept of "usable" and make everything check for "connected and usable" we
5376  * define a port as "connected" when it is not only connected, but also when it
5377  * is usable by the rest of the driver. That maintains the old assumption that
5378  * connected ports are usable, and avoids exposing to the users objects they
5379  * can't really use.
5380  */
5381 static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
5382 				  struct intel_digital_port *intel_dig_port)
5383 {
5384 	enum port port = intel_dig_port->base.port;
5385 	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
5386 	bool is_legacy, is_typec, is_tbt;
5387 	u32 dpsp;
5388 
5389 	/*
5390 	 * Complain if we got a legacy port HPD, but VBT didn't mark the port as
5391 	 * legacy. Treat the port as legacy from now on.
5392 	 */
5393 	if (!intel_dig_port->tc_legacy_port &&
5394 	    I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)) {
5395 		DRM_ERROR("VBT incorrectly claims port %c is not TypeC legacy\n",
5396 			  port_name(port));
5397 		intel_dig_port->tc_legacy_port = true;
5398 	}
5399 	is_legacy = intel_dig_port->tc_legacy_port;
5400 
5401 	/*
5402 	 * The spec says we shouldn't be using the ISR bits for detecting
5403 	 * between TC and TBT. We should use DFLEXDPSP.
5404 	 */
5405 	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
5406 	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
5407 	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);
5408 
5409 	if (!is_legacy && !is_typec && !is_tbt) {
5410 		icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5411 
5412 		return false;
5413 	}
5414 
5415 	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
5416 				is_tbt);
5417 
5418 	if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
5419 		return false;
5420 
5421 	return true;
5422 }
5423 
5424 static bool icl_digital_port_connected(struct intel_encoder *encoder)
5425 {
5426 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5427 	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5428 
5429 	if (intel_port_is_combophy(dev_priv, encoder->port))
5430 		return icl_combo_port_connected(dev_priv, dig_port);
5431 	else if (intel_port_is_tc(dev_priv, encoder->port))
5432 		return icl_tc_port_connected(dev_priv, dig_port);
5433 	else
5434 		MISSING_CASE(encoder->hpd_pin);
5435 
5436 	return false;
5437 }
5438 
5439 /*
5440  * intel_digital_port_connected - is the specified port connected?
5441  * @encoder: intel_encoder
5442  *
5443  * In cases where there's a connector physically connected but it can't be used
5444  * by our hardware we also return false, since the rest of the driver should
5445  * pretty much treat the port as disconnected. This is relevant for type-C
5446  * (starting on ICL) where there's ownership involved.
5447  *
5448  * Return %true if port is connected, %false otherwise.
5449  */
5450 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5451 {
5452 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5453 
5454 	if (HAS_GMCH(dev_priv)) {
5455 		if (IS_GM45(dev_priv))
5456 			return gm45_digital_port_connected(encoder);
5457 		else
5458 			return g4x_digital_port_connected(encoder);
5459 	}
5460 
5461 	if (INTEL_GEN(dev_priv) >= 11)
5462 		return icl_digital_port_connected(encoder);
5463 	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5464 		return spt_digital_port_connected(encoder);
5465 	else if (IS_GEN9_LP(dev_priv))
5466 		return bxt_digital_port_connected(encoder);
5467 	else if (IS_GEN(dev_priv, 8))
5468 		return bdw_digital_port_connected(encoder);
5469 	else if (IS_GEN(dev_priv, 7))
5470 		return ivb_digital_port_connected(encoder);
5471 	else if (IS_GEN(dev_priv, 6))
5472 		return snb_digital_port_connected(encoder);
5473 	else if (IS_GEN(dev_priv, 5))
5474 		return ilk_digital_port_connected(encoder);
5475 
5476 	MISSING_CASE(INTEL_GEN(dev_priv));
5477 	return false;
5478 }
5479 
5480 bool intel_digital_port_connected(struct intel_encoder *encoder)
5481 {
5482 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5483 	bool is_connected = false;
5484 	intel_wakeref_t wakeref;
5485 
5486 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5487 		is_connected = __intel_digital_port_connected(encoder);
5488 
5489 	return is_connected;
5490 }
5491 
5492 static struct edid *
5493 intel_dp_get_edid(struct intel_dp *intel_dp)
5494 {
5495 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5496 
5497 	/* use cached edid if we have one */
5498 	if (intel_connector->edid) {
5499 		/* invalid edid */
5500 		if (IS_ERR(intel_connector->edid))
5501 			return NULL;
5502 
5503 		return drm_edid_duplicate(intel_connector->edid);
5504 	} else
5505 		return drm_get_edid(&intel_connector->base,
5506 				    &intel_dp->aux.ddc);
5507 }
5508 
5509 static void
5510 intel_dp_set_edid(struct intel_dp *intel_dp)
5511 {
5512 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5513 	struct edid *edid;
5514 
5515 	intel_dp_unset_edid(intel_dp);
5516 	edid = intel_dp_get_edid(intel_dp);
5517 	intel_connector->detect_edid = edid;
5518 
5519 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5520 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5521 }
5522 
5523 static void
5524 intel_dp_unset_edid(struct intel_dp *intel_dp)
5525 {
5526 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5527 
5528 	drm_dp_cec_unset_edid(&intel_dp->aux);
5529 	kfree(intel_connector->detect_edid);
5530 	intel_connector->detect_edid = NULL;
5531 
5532 	intel_dp->has_audio = false;
5533 }
5534 
5535 static int
5536 intel_dp_detect(struct drm_connector *connector,
5537 		struct drm_modeset_acquire_ctx *ctx,
5538 		bool force)
5539 {
5540 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5541 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5542 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5543 	struct intel_encoder *encoder = &dig_port->base;
5544 	enum drm_connector_status status;
5545 
5546 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5547 		      connector->base.id, connector->name);
5548 	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5549 
5550 	/* Can't disconnect eDP */
5551 	if (intel_dp_is_edp(intel_dp))
5552 		status = edp_detect(intel_dp);
5553 	else if (intel_digital_port_connected(encoder))
5554 		status = intel_dp_detect_dpcd(intel_dp);
5555 	else
5556 		status = connector_status_disconnected;
5557 
5558 	if (status == connector_status_disconnected) {
5559 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5560 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5561 
5562 		if (intel_dp->is_mst) {
5563 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5564 				      intel_dp->is_mst,
5565 				      intel_dp->mst_mgr.mst_state);
5566 			intel_dp->is_mst = false;
5567 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5568 							intel_dp->is_mst);
5569 		}
5570 
5571 		goto out;
5572 	}
5573 
5574 	if (intel_dp->reset_link_params) {
5575 		/* Initial max link lane count */
5576 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5577 
5578 		/* Initial max link rate */
5579 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5580 
5581 		intel_dp->reset_link_params = false;
5582 	}
5583 
5584 	intel_dp_print_rates(intel_dp);
5585 
5586 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5587 	if (INTEL_GEN(dev_priv) >= 11)
5588 		intel_dp_get_dsc_sink_cap(intel_dp);
5589 
5590 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
5591 			 drm_dp_is_branch(intel_dp->dpcd));
5592 
5593 	intel_dp_configure_mst(intel_dp);
5594 
5595 	if (intel_dp->is_mst) {
5596 		/*
5597 		 * If we are in MST mode then this connector
5598 		 * won't appear connected or have anything
5599 		 * with EDID on it
5600 		 */
5601 		status = connector_status_disconnected;
5602 		goto out;
5603 	}
5604 
5605 	/*
5606 	 * Some external monitors do not signal loss of link synchronization
5607 	 * with an IRQ_HPD, so force a link status check.
5608 	 */
5609 	if (!intel_dp_is_edp(intel_dp)) {
5610 		int ret;
5611 
5612 		ret = intel_dp_retrain_link(encoder, ctx);
5613 		if (ret)
5614 			return ret;
5615 	}
5616 
5617 	/*
5618 	 * Clearing NACK and defer counts to get their exact values
5619 	 * while reading EDID which are required by Compliance tests
5620 	 * 4.2.2.4 and 4.2.2.5
5621 	 */
5622 	intel_dp->aux.i2c_nack_count = 0;
5623 	intel_dp->aux.i2c_defer_count = 0;
5624 
5625 	intel_dp_set_edid(intel_dp);
5626 	if (intel_dp_is_edp(intel_dp) ||
5627 	    to_intel_connector(connector)->detect_edid)
5628 		status = connector_status_connected;
5629 
5630 	intel_dp_check_service_irq(intel_dp);
5631 
5632 out:
5633 	if (status != connector_status_connected && !intel_dp->is_mst)
5634 		intel_dp_unset_edid(intel_dp);
5635 
5636 	return status;
5637 }
5638 
5639 static void
5640 intel_dp_force(struct drm_connector *connector)
5641 {
5642 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5643 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5644 	struct intel_encoder *intel_encoder = &dig_port->base;
5645 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5646 	enum intel_display_power_domain aux_domain =
5647 		intel_aux_power_domain(dig_port);
5648 	intel_wakeref_t wakeref;
5649 
5650 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5651 		      connector->base.id, connector->name);
5652 	intel_dp_unset_edid(intel_dp);
5653 
5654 	if (connector->status != connector_status_connected)
5655 		return;
5656 
5657 	wakeref = intel_display_power_get(dev_priv, aux_domain);
5658 
5659 	intel_dp_set_edid(intel_dp);
5660 
5661 	intel_display_power_put(dev_priv, aux_domain, wakeref);
5662 }
5663 
5664 static int intel_dp_get_modes(struct drm_connector *connector)
5665 {
5666 	struct intel_connector *intel_connector = to_intel_connector(connector);
5667 	struct edid *edid;
5668 
5669 	edid = intel_connector->detect_edid;
5670 	if (edid) {
5671 		int ret = intel_connector_update_modes(connector, edid);
5672 		if (ret)
5673 			return ret;
5674 	}
5675 
5676 	/* if eDP has no EDID, fall back to fixed mode */
5677 	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5678 	    intel_connector->panel.fixed_mode) {
5679 		struct drm_display_mode *mode;
5680 
5681 		mode = drm_mode_duplicate(connector->dev,
5682 					  intel_connector->panel.fixed_mode);
5683 		if (mode) {
5684 			drm_mode_probed_add(connector, mode);
5685 			return 1;
5686 		}
5687 	}
5688 
5689 	return 0;
5690 }
5691 
5692 static int
5693 intel_dp_connector_register(struct drm_connector *connector)
5694 {
5695 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5696 	struct drm_device *dev = connector->dev;
5697 	int ret;
5698 
5699 	ret = intel_connector_register(connector);
5700 	if (ret)
5701 		return ret;
5702 
5703 	i915_debugfs_connector_add(connector);
5704 
5705 	DRM_DEBUG_KMS("registering %s bus for %s\n",
5706 		      intel_dp->aux.name, connector->kdev->kobj.name);
5707 
5708 	intel_dp->aux.dev = connector->kdev;
5709 	ret = drm_dp_aux_register(&intel_dp->aux);
5710 	if (!ret)
5711 		drm_dp_cec_register_connector(&intel_dp->aux,
5712 					      connector->name, dev->dev);
5713 	return ret;
5714 }
5715 
5716 static void
5717 intel_dp_connector_unregister(struct drm_connector *connector)
5718 {
5719 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5720 
5721 	drm_dp_cec_unregister_connector(&intel_dp->aux);
5722 	drm_dp_aux_unregister(&intel_dp->aux);
5723 	intel_connector_unregister(connector);
5724 }
5725 
5726 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5727 {
5728 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5729 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5730 
5731 	intel_dp_mst_encoder_cleanup(intel_dig_port);
5732 	if (intel_dp_is_edp(intel_dp)) {
5733 		intel_wakeref_t wakeref;
5734 
5735 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5736 		/*
5737 		 * vdd might still be enabled do to the delayed vdd off.
5738 		 * Make sure vdd is actually turned off here.
5739 		 */
5740 		with_pps_lock(intel_dp, wakeref)
5741 			edp_panel_vdd_off_sync(intel_dp);
5742 
5743 		if (intel_dp->edp_notifier.notifier_call) {
5744 			unregister_reboot_notifier(&intel_dp->edp_notifier);
5745 			intel_dp->edp_notifier.notifier_call = NULL;
5746 		}
5747 	}
5748 
5749 	intel_dp_aux_fini(intel_dp);
5750 }
5751 
5752 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5753 {
5754 	intel_dp_encoder_flush_work(encoder);
5755 
5756 	drm_encoder_cleanup(encoder);
5757 	kfree(enc_to_dig_port(encoder));
5758 }
5759 
5760 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5761 {
5762 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5763 	intel_wakeref_t wakeref;
5764 
5765 	if (!intel_dp_is_edp(intel_dp))
5766 		return;
5767 
5768 	/*
5769 	 * vdd might still be enabled do to the delayed vdd off.
5770 	 * Make sure vdd is actually turned off here.
5771 	 */
5772 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5773 	with_pps_lock(intel_dp, wakeref)
5774 		edp_panel_vdd_off_sync(intel_dp);
5775 }
5776 
5777 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5778 {
5779 	long ret;
5780 
5781 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5782 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5783 					       msecs_to_jiffies(timeout));
5784 
5785 	if (!ret)
5786 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5787 }
5788 
5789 static
5790 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5791 				u8 *an)
5792 {
5793 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5794 	static const struct drm_dp_aux_msg msg = {
5795 		.request = DP_AUX_NATIVE_WRITE,
5796 		.address = DP_AUX_HDCP_AKSV,
5797 		.size = DRM_HDCP_KSV_LEN,
5798 	};
5799 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5800 	ssize_t dpcd_ret;
5801 	int ret;
5802 
5803 	/* Output An first, that's easy */
5804 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5805 				     an, DRM_HDCP_AN_LEN);
5806 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5807 		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5808 			      dpcd_ret);
5809 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5810 	}
5811 
5812 	/*
5813 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5814 	 * order to get it on the wire, we need to create the AUX header as if
5815 	 * we were writing the data, and then tickle the hardware to output the
5816 	 * data once the header is sent out.
5817 	 */
5818 	intel_dp_aux_header(txbuf, &msg);
5819 
5820 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5821 				rxbuf, sizeof(rxbuf),
5822 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5823 	if (ret < 0) {
5824 		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5825 		return ret;
5826 	} else if (ret == 0) {
5827 		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5828 		return -EIO;
5829 	}
5830 
5831 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5832 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5833 		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5834 			      reply);
5835 		return -EIO;
5836 	}
5837 	return 0;
5838 }
5839 
5840 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5841 				   u8 *bksv)
5842 {
5843 	ssize_t ret;
5844 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5845 			       DRM_HDCP_KSV_LEN);
5846 	if (ret != DRM_HDCP_KSV_LEN) {
5847 		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5848 		return ret >= 0 ? -EIO : ret;
5849 	}
5850 	return 0;
5851 }
5852 
5853 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5854 				      u8 *bstatus)
5855 {
5856 	ssize_t ret;
5857 	/*
5858 	 * For some reason the HDMI and DP HDCP specs call this register
5859 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
5860 	 * but in DP it's called BINFO.
5861 	 */
5862 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5863 			       bstatus, DRM_HDCP_BSTATUS_LEN);
5864 	if (ret != DRM_HDCP_BSTATUS_LEN) {
5865 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5866 		return ret >= 0 ? -EIO : ret;
5867 	}
5868 	return 0;
5869 }
5870 
5871 static
5872 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5873 			     u8 *bcaps)
5874 {
5875 	ssize_t ret;
5876 
5877 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5878 			       bcaps, 1);
5879 	if (ret != 1) {
5880 		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5881 		return ret >= 0 ? -EIO : ret;
5882 	}
5883 
5884 	return 0;
5885 }
5886 
5887 static
5888 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5889 				   bool *repeater_present)
5890 {
5891 	ssize_t ret;
5892 	u8 bcaps;
5893 
5894 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5895 	if (ret)
5896 		return ret;
5897 
5898 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5899 	return 0;
5900 }
5901 
5902 static
5903 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5904 				u8 *ri_prime)
5905 {
5906 	ssize_t ret;
5907 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5908 			       ri_prime, DRM_HDCP_RI_LEN);
5909 	if (ret != DRM_HDCP_RI_LEN) {
5910 		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5911 		return ret >= 0 ? -EIO : ret;
5912 	}
5913 	return 0;
5914 }
5915 
5916 static
5917 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5918 				 bool *ksv_ready)
5919 {
5920 	ssize_t ret;
5921 	u8 bstatus;
5922 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5923 			       &bstatus, 1);
5924 	if (ret != 1) {
5925 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5926 		return ret >= 0 ? -EIO : ret;
5927 	}
5928 	*ksv_ready = bstatus & DP_BSTATUS_READY;
5929 	return 0;
5930 }
5931 
5932 static
5933 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5934 				int num_downstream, u8 *ksv_fifo)
5935 {
5936 	ssize_t ret;
5937 	int i;
5938 
5939 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5940 	for (i = 0; i < num_downstream; i += 3) {
5941 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5942 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5943 				       DP_AUX_HDCP_KSV_FIFO,
5944 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
5945 				       len);
5946 		if (ret != len) {
5947 			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
5948 				      i, ret);
5949 			return ret >= 0 ? -EIO : ret;
5950 		}
5951 	}
5952 	return 0;
5953 }
5954 
5955 static
5956 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5957 				    int i, u32 *part)
5958 {
5959 	ssize_t ret;
5960 
5961 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5962 		return -EINVAL;
5963 
5964 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5965 			       DP_AUX_HDCP_V_PRIME(i), part,
5966 			       DRM_HDCP_V_PRIME_PART_LEN);
5967 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5968 		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5969 		return ret >= 0 ? -EIO : ret;
5970 	}
5971 	return 0;
5972 }
5973 
5974 static
5975 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5976 				    bool enable)
5977 {
5978 	/* Not used for single stream DisplayPort setups */
5979 	return 0;
5980 }
5981 
5982 static
5983 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5984 {
5985 	ssize_t ret;
5986 	u8 bstatus;
5987 
5988 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5989 			       &bstatus, 1);
5990 	if (ret != 1) {
5991 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5992 		return false;
5993 	}
5994 
5995 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5996 }
5997 
5998 static
5999 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6000 			  bool *hdcp_capable)
6001 {
6002 	ssize_t ret;
6003 	u8 bcaps;
6004 
6005 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6006 	if (ret)
6007 		return ret;
6008 
6009 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6010 	return 0;
6011 }
6012 
6013 struct hdcp2_dp_errata_stream_type {
6014 	u8	msg_id;
6015 	u8	stream_type;
6016 } __packed;
6017 
6018 static struct hdcp2_dp_msg_data {
6019 	u8 msg_id;
6020 	u32 offset;
6021 	bool msg_detectable;
6022 	u32 timeout;
6023 	u32 timeout2; /* Added for non_paired situation */
6024 	} hdcp2_msg_data[] = {
6025 		{HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0},
6026 		{HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6027 				false, HDCP_2_2_CERT_TIMEOUT_MS, 0},
6028 		{HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6029 				false, 0, 0},
6030 		{HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6031 				false, 0, 0},
6032 		{HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6033 				true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6034 				HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS},
6035 		{HDCP_2_2_AKE_SEND_PAIRING_INFO,
6036 				DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6037 				HDCP_2_2_PAIRING_TIMEOUT_MS, 0},
6038 		{HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0},
6039 		{HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6040 				false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0},
6041 		{HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6042 				0, 0},
6043 		{HDCP_2_2_REP_SEND_RECVID_LIST,
6044 				DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6045 				HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0},
6046 		{HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6047 				0, 0},
6048 		{HDCP_2_2_REP_STREAM_MANAGE,
6049 				DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6050 				0, 0},
6051 		{HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6052 				false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0},
6053 /* local define to shovel this through the write_2_2 interface */
6054 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6055 		{HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6056 				DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6057 				0, 0},
6058 		};
6059 
6060 static inline
6061 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6062 				  u8 *rx_status)
6063 {
6064 	ssize_t ret;
6065 
6066 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6067 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6068 			       HDCP_2_2_DP_RXSTATUS_LEN);
6069 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6070 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6071 		return ret >= 0 ? -EIO : ret;
6072 	}
6073 
6074 	return 0;
6075 }
6076 
6077 static
6078 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6079 				  u8 msg_id, bool *msg_ready)
6080 {
6081 	u8 rx_status;
6082 	int ret;
6083 
6084 	*msg_ready = false;
6085 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6086 	if (ret < 0)
6087 		return ret;
6088 
6089 	switch (msg_id) {
6090 	case HDCP_2_2_AKE_SEND_HPRIME:
6091 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6092 			*msg_ready = true;
6093 		break;
6094 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6095 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6096 			*msg_ready = true;
6097 		break;
6098 	case HDCP_2_2_REP_SEND_RECVID_LIST:
6099 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6100 			*msg_ready = true;
6101 		break;
6102 	default:
6103 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6104 		return -EINVAL;
6105 	}
6106 
6107 	return 0;
6108 }
6109 
6110 static ssize_t
6111 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6112 			    struct hdcp2_dp_msg_data *hdcp2_msg_data)
6113 {
6114 	struct intel_dp *dp = &intel_dig_port->dp;
6115 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6116 	u8 msg_id = hdcp2_msg_data->msg_id;
6117 	int ret, timeout;
6118 	bool msg_ready = false;
6119 
6120 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6121 		timeout = hdcp2_msg_data->timeout2;
6122 	else
6123 		timeout = hdcp2_msg_data->timeout;
6124 
6125 	/*
6126 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
6127 	 * availability. So Wait for timeout and read the msg.
6128 	 */
6129 	if (!hdcp2_msg_data->msg_detectable) {
6130 		mdelay(timeout);
6131 		ret = 0;
6132 	} else {
6133 		/*
6134 		 * As we want to check the msg availability at timeout, Ignoring
6135 		 * the timeout at wait for CP_IRQ.
6136 		 */
6137 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6138 		ret = hdcp2_detect_msg_availability(intel_dig_port,
6139 						    msg_id, &msg_ready);
6140 		if (!msg_ready)
6141 			ret = -ETIMEDOUT;
6142 	}
6143 
6144 	if (ret)
6145 		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6146 			      hdcp2_msg_data->msg_id, ret, timeout);
6147 
6148 	return ret;
6149 }
6150 
6151 static struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6152 {
6153 	int i;
6154 
6155 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
6156 		if (hdcp2_msg_data[i].msg_id == msg_id)
6157 			return &hdcp2_msg_data[i];
6158 
6159 	return NULL;
6160 }
6161 
6162 static
6163 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6164 			     void *buf, size_t size)
6165 {
6166 	struct intel_dp *dp = &intel_dig_port->dp;
6167 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6168 	unsigned int offset;
6169 	u8 *byte = buf;
6170 	ssize_t ret, bytes_to_write, len;
6171 	struct hdcp2_dp_msg_data *hdcp2_msg_data;
6172 
6173 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6174 	if (!hdcp2_msg_data)
6175 		return -EINVAL;
6176 
6177 	offset = hdcp2_msg_data->offset;
6178 
6179 	/* No msg_id in DP HDCP2.2 msgs */
6180 	bytes_to_write = size - 1;
6181 	byte++;
6182 
6183 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6184 
6185 	while (bytes_to_write) {
6186 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6187 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6188 
6189 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6190 					offset, (void *)byte, len);
6191 		if (ret < 0)
6192 			return ret;
6193 
6194 		bytes_to_write -= ret;
6195 		byte += ret;
6196 		offset += ret;
6197 	}
6198 
6199 	return size;
6200 }
6201 
6202 static
6203 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6204 {
6205 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6206 	u32 dev_cnt;
6207 	ssize_t ret;
6208 
6209 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6210 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6211 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6212 	if (ret != HDCP_2_2_RXINFO_LEN)
6213 		return ret >= 0 ? -EIO : ret;
6214 
6215 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6216 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6217 
6218 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6219 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6220 
6221 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6222 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6223 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6224 
6225 	return ret;
6226 }
6227 
6228 static
6229 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6230 			    u8 msg_id, void *buf, size_t size)
6231 {
6232 	unsigned int offset;
6233 	u8 *byte = buf;
6234 	ssize_t ret, bytes_to_recv, len;
6235 	struct hdcp2_dp_msg_data *hdcp2_msg_data;
6236 
6237 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6238 	if (!hdcp2_msg_data)
6239 		return -EINVAL;
6240 	offset = hdcp2_msg_data->offset;
6241 
6242 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6243 	if (ret < 0)
6244 		return ret;
6245 
6246 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6247 		ret = get_receiver_id_list_size(intel_dig_port);
6248 		if (ret < 0)
6249 			return ret;
6250 
6251 		size = ret;
6252 	}
6253 	bytes_to_recv = size - 1;
6254 
6255 	/* DP adaptation msgs has no msg_id */
6256 	byte++;
6257 
6258 	while (bytes_to_recv) {
6259 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6260 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6261 
6262 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6263 				       (void *)byte, len);
6264 		if (ret < 0) {
6265 			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6266 			return ret;
6267 		}
6268 
6269 		bytes_to_recv -= ret;
6270 		byte += ret;
6271 		offset += ret;
6272 	}
6273 	byte = buf;
6274 	*byte = msg_id;
6275 
6276 	return size;
6277 }
6278 
6279 static
6280 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6281 				      bool is_repeater, u8 content_type)
6282 {
6283 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6284 
6285 	if (is_repeater)
6286 		return 0;
6287 
6288 	/*
6289 	 * Errata for DP: As Stream type is used for encryption, Receiver
6290 	 * should be communicated with stream type for the decryption of the
6291 	 * content.
6292 	 * Repeater will be communicated with stream type as a part of it's
6293 	 * auth later in time.
6294 	 */
6295 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6296 	stream_type_msg.stream_type = content_type;
6297 
6298 	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6299 					sizeof(stream_type_msg));
6300 }
6301 
6302 static
6303 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6304 {
6305 	u8 rx_status;
6306 	int ret;
6307 
6308 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6309 	if (ret)
6310 		return ret;
6311 
6312 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6313 		ret = HDCP_REAUTH_REQUEST;
6314 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6315 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6316 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6317 		ret = HDCP_TOPOLOGY_CHANGE;
6318 
6319 	return ret;
6320 }
6321 
6322 static
6323 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6324 			   bool *capable)
6325 {
6326 	u8 rx_caps[3];
6327 	int ret;
6328 
6329 	*capable = false;
6330 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6331 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6332 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6333 	if (ret != HDCP_2_2_RXCAPS_LEN)
6334 		return ret >= 0 ? -EIO : ret;
6335 
6336 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6337 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6338 		*capable = true;
6339 
6340 	return 0;
6341 }
6342 
6343 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6344 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
6345 	.read_bksv = intel_dp_hdcp_read_bksv,
6346 	.read_bstatus = intel_dp_hdcp_read_bstatus,
6347 	.repeater_present = intel_dp_hdcp_repeater_present,
6348 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
6349 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6350 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6351 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6352 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
6353 	.check_link = intel_dp_hdcp_check_link,
6354 	.hdcp_capable = intel_dp_hdcp_capable,
6355 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
6356 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
6357 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
6358 	.check_2_2_link = intel_dp_hdcp2_check_link,
6359 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
6360 	.protocol = HDCP_PROTOCOL_DP,
6361 };
6362 
6363 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6364 {
6365 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6366 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6367 
6368 	lockdep_assert_held(&dev_priv->pps_mutex);
6369 
6370 	if (!edp_have_panel_vdd(intel_dp))
6371 		return;
6372 
6373 	/*
6374 	 * The VDD bit needs a power domain reference, so if the bit is
6375 	 * already enabled when we boot or resume, grab this reference and
6376 	 * schedule a vdd off, so we don't hold on to the reference
6377 	 * indefinitely.
6378 	 */
6379 	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6380 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6381 
6382 	edp_panel_vdd_schedule_off(intel_dp);
6383 }
6384 
6385 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6386 {
6387 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6388 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6389 	enum pipe pipe;
6390 
6391 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6392 				  encoder->port, &pipe))
6393 		return pipe;
6394 
6395 	return INVALID_PIPE;
6396 }
6397 
6398 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6399 {
6400 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6401 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6402 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6403 	intel_wakeref_t wakeref;
6404 
6405 	if (!HAS_DDI(dev_priv))
6406 		intel_dp->DP = I915_READ(intel_dp->output_reg);
6407 
6408 	if (lspcon->active)
6409 		lspcon_resume(lspcon);
6410 
6411 	intel_dp->reset_link_params = true;
6412 
6413 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6414 	    !intel_dp_is_edp(intel_dp))
6415 		return;
6416 
6417 	with_pps_lock(intel_dp, wakeref) {
6418 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6419 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6420 
6421 		if (intel_dp_is_edp(intel_dp)) {
6422 			/*
6423 			 * Reinit the power sequencer, in case BIOS did
6424 			 * something nasty with it.
6425 			 */
6426 			intel_dp_pps_init(intel_dp);
6427 			intel_edp_panel_vdd_sanitize(intel_dp);
6428 		}
6429 	}
6430 }
6431 
6432 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6433 	.force = intel_dp_force,
6434 	.fill_modes = drm_helper_probe_single_connector_modes,
6435 	.atomic_get_property = intel_digital_connector_atomic_get_property,
6436 	.atomic_set_property = intel_digital_connector_atomic_set_property,
6437 	.late_register = intel_dp_connector_register,
6438 	.early_unregister = intel_dp_connector_unregister,
6439 	.destroy = intel_connector_destroy,
6440 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6441 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6442 };
6443 
6444 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6445 	.detect_ctx = intel_dp_detect,
6446 	.get_modes = intel_dp_get_modes,
6447 	.mode_valid = intel_dp_mode_valid,
6448 	.atomic_check = intel_digital_connector_atomic_check,
6449 };
6450 
6451 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6452 	.reset = intel_dp_encoder_reset,
6453 	.destroy = intel_dp_encoder_destroy,
6454 };
6455 
6456 enum irqreturn
6457 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6458 {
6459 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6460 
6461 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6462 		/*
6463 		 * vdd off can generate a long pulse on eDP which
6464 		 * would require vdd on to handle it, and thus we
6465 		 * would end up in an endless cycle of
6466 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6467 		 */
6468 		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6469 			      port_name(intel_dig_port->base.port));
6470 		return IRQ_HANDLED;
6471 	}
6472 
6473 	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6474 		      port_name(intel_dig_port->base.port),
6475 		      long_hpd ? "long" : "short");
6476 
6477 	if (long_hpd) {
6478 		intel_dp->reset_link_params = true;
6479 		return IRQ_NONE;
6480 	}
6481 
6482 	if (intel_dp->is_mst) {
6483 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6484 			/*
6485 			 * If we were in MST mode, and device is not
6486 			 * there, get out of MST mode
6487 			 */
6488 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6489 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6490 			intel_dp->is_mst = false;
6491 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6492 							intel_dp->is_mst);
6493 
6494 			return IRQ_NONE;
6495 		}
6496 	}
6497 
6498 	if (!intel_dp->is_mst) {
6499 		bool handled;
6500 
6501 		handled = intel_dp_short_pulse(intel_dp);
6502 
6503 		if (!handled)
6504 			return IRQ_NONE;
6505 	}
6506 
6507 	return IRQ_HANDLED;
6508 }
6509 
6510 /* check the VBT to see whether the eDP is on another port */
6511 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6512 {
6513 	/*
6514 	 * eDP not supported on g4x. so bail out early just
6515 	 * for a bit extra safety in case the VBT is bonkers.
6516 	 */
6517 	if (INTEL_GEN(dev_priv) < 5)
6518 		return false;
6519 
6520 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6521 		return true;
6522 
6523 	return intel_bios_is_port_edp(dev_priv, port);
6524 }
6525 
6526 static void
6527 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6528 {
6529 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6530 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6531 
6532 	if (!IS_G4X(dev_priv) && port != PORT_A)
6533 		intel_attach_force_audio_property(connector);
6534 
6535 	intel_attach_broadcast_rgb_property(connector);
6536 	if (HAS_GMCH(dev_priv))
6537 		drm_connector_attach_max_bpc_property(connector, 6, 10);
6538 	else if (INTEL_GEN(dev_priv) >= 5)
6539 		drm_connector_attach_max_bpc_property(connector, 6, 12);
6540 
6541 	if (intel_dp_is_edp(intel_dp)) {
6542 		u32 allowed_scalers;
6543 
6544 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6545 		if (!HAS_GMCH(dev_priv))
6546 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6547 
6548 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6549 
6550 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6551 
6552 	}
6553 }
6554 
6555 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6556 {
6557 	intel_dp->panel_power_off_time = ktime_get_boottime();
6558 	intel_dp->last_power_on = jiffies;
6559 	intel_dp->last_backlight_off = jiffies;
6560 }
6561 
6562 static void
6563 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6564 {
6565 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6566 	u32 pp_on, pp_off, pp_ctl;
6567 	struct pps_registers regs;
6568 
6569 	intel_pps_get_registers(intel_dp, &regs);
6570 
6571 	pp_ctl = ironlake_get_pp_control(intel_dp);
6572 
6573 	/* Ensure PPS is unlocked */
6574 	if (!HAS_DDI(dev_priv))
6575 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6576 
6577 	pp_on = I915_READ(regs.pp_on);
6578 	pp_off = I915_READ(regs.pp_off);
6579 
6580 	/* Pull timing values out of registers */
6581 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6582 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6583 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6584 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6585 
6586 	if (i915_mmio_reg_valid(regs.pp_div)) {
6587 		u32 pp_div;
6588 
6589 		pp_div = I915_READ(regs.pp_div);
6590 
6591 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6592 	} else {
6593 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6594 	}
6595 }
6596 
6597 static void
6598 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6599 {
6600 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6601 		      state_name,
6602 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6603 }
6604 
6605 static void
6606 intel_pps_verify_state(struct intel_dp *intel_dp)
6607 {
6608 	struct edp_power_seq hw;
6609 	struct edp_power_seq *sw = &intel_dp->pps_delays;
6610 
6611 	intel_pps_readout_hw_state(intel_dp, &hw);
6612 
6613 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6614 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6615 		DRM_ERROR("PPS state mismatch\n");
6616 		intel_pps_dump_state("sw", sw);
6617 		intel_pps_dump_state("hw", &hw);
6618 	}
6619 }
6620 
6621 static void
6622 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6623 {
6624 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6625 	struct edp_power_seq cur, vbt, spec,
6626 		*final = &intel_dp->pps_delays;
6627 
6628 	lockdep_assert_held(&dev_priv->pps_mutex);
6629 
6630 	/* already initialized? */
6631 	if (final->t11_t12 != 0)
6632 		return;
6633 
6634 	intel_pps_readout_hw_state(intel_dp, &cur);
6635 
6636 	intel_pps_dump_state("cur", &cur);
6637 
6638 	vbt = dev_priv->vbt.edp.pps;
6639 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6640 	 * of 500ms appears to be too short. Ocassionally the panel
6641 	 * just fails to power back on. Increasing the delay to 800ms
6642 	 * seems sufficient to avoid this problem.
6643 	 */
6644 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6645 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6646 		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6647 			      vbt.t11_t12);
6648 	}
6649 	/* T11_T12 delay is special and actually in units of 100ms, but zero
6650 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6651 	 * table multiplies it with 1000 to make it in units of 100usec,
6652 	 * too. */
6653 	vbt.t11_t12 += 100 * 10;
6654 
6655 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6656 	 * our hw here, which are all in 100usec. */
6657 	spec.t1_t3 = 210 * 10;
6658 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6659 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6660 	spec.t10 = 500 * 10;
6661 	/* This one is special and actually in units of 100ms, but zero
6662 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6663 	 * table multiplies it with 1000 to make it in units of 100usec,
6664 	 * too. */
6665 	spec.t11_t12 = (510 + 100) * 10;
6666 
6667 	intel_pps_dump_state("vbt", &vbt);
6668 
6669 	/* Use the max of the register settings and vbt. If both are
6670 	 * unset, fall back to the spec limits. */
6671 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6672 				       spec.field : \
6673 				       max(cur.field, vbt.field))
6674 	assign_final(t1_t3);
6675 	assign_final(t8);
6676 	assign_final(t9);
6677 	assign_final(t10);
6678 	assign_final(t11_t12);
6679 #undef assign_final
6680 
6681 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6682 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
6683 	intel_dp->backlight_on_delay = get_delay(t8);
6684 	intel_dp->backlight_off_delay = get_delay(t9);
6685 	intel_dp->panel_power_down_delay = get_delay(t10);
6686 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6687 #undef get_delay
6688 
6689 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6690 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6691 		      intel_dp->panel_power_cycle_delay);
6692 
6693 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6694 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6695 
6696 	/*
6697 	 * We override the HW backlight delays to 1 because we do manual waits
6698 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
6699 	 * don't do this, we'll end up waiting for the backlight off delay
6700 	 * twice: once when we do the manual sleep, and once when we disable
6701 	 * the panel and wait for the PP_STATUS bit to become zero.
6702 	 */
6703 	final->t8 = 1;
6704 	final->t9 = 1;
6705 
6706 	/*
6707 	 * HW has only a 100msec granularity for t11_t12 so round it up
6708 	 * accordingly.
6709 	 */
6710 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6711 }
6712 
6713 static void
6714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6715 					      bool force_disable_vdd)
6716 {
6717 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6718 	u32 pp_on, pp_off, port_sel = 0;
6719 	int div = dev_priv->rawclk_freq / 1000;
6720 	struct pps_registers regs;
6721 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6722 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6723 
6724 	lockdep_assert_held(&dev_priv->pps_mutex);
6725 
6726 	intel_pps_get_registers(intel_dp, &regs);
6727 
6728 	/*
6729 	 * On some VLV machines the BIOS can leave the VDD
6730 	 * enabled even on power sequencers which aren't
6731 	 * hooked up to any port. This would mess up the
6732 	 * power domain tracking the first time we pick
6733 	 * one of these power sequencers for use since
6734 	 * edp_panel_vdd_on() would notice that the VDD was
6735 	 * already on and therefore wouldn't grab the power
6736 	 * domain reference. Disable VDD first to avoid this.
6737 	 * This also avoids spuriously turning the VDD on as
6738 	 * soon as the new power sequencer gets initialized.
6739 	 */
6740 	if (force_disable_vdd) {
6741 		u32 pp = ironlake_get_pp_control(intel_dp);
6742 
6743 		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6744 
6745 		if (pp & EDP_FORCE_VDD)
6746 			DRM_DEBUG_KMS("VDD already on, disabling first\n");
6747 
6748 		pp &= ~EDP_FORCE_VDD;
6749 
6750 		I915_WRITE(regs.pp_ctrl, pp);
6751 	}
6752 
6753 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6754 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6755 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6756 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6757 
6758 	/* Haswell doesn't have any port selection bits for the panel
6759 	 * power sequencer any more. */
6760 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6761 		port_sel = PANEL_PORT_SELECT_VLV(port);
6762 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6763 		switch (port) {
6764 		case PORT_A:
6765 			port_sel = PANEL_PORT_SELECT_DPA;
6766 			break;
6767 		case PORT_C:
6768 			port_sel = PANEL_PORT_SELECT_DPC;
6769 			break;
6770 		case PORT_D:
6771 			port_sel = PANEL_PORT_SELECT_DPD;
6772 			break;
6773 		default:
6774 			MISSING_CASE(port);
6775 			break;
6776 		}
6777 	}
6778 
6779 	pp_on |= port_sel;
6780 
6781 	I915_WRITE(regs.pp_on, pp_on);
6782 	I915_WRITE(regs.pp_off, pp_off);
6783 
6784 	/*
6785 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
6786 	 */
6787 	if (i915_mmio_reg_valid(regs.pp_div)) {
6788 		I915_WRITE(regs.pp_div,
6789 			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6790 			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6791 	} else {
6792 		u32 pp_ctl;
6793 
6794 		pp_ctl = I915_READ(regs.pp_ctrl);
6795 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6796 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6797 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6798 	}
6799 
6800 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6801 		      I915_READ(regs.pp_on),
6802 		      I915_READ(regs.pp_off),
6803 		      i915_mmio_reg_valid(regs.pp_div) ?
6804 		      I915_READ(regs.pp_div) :
6805 		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6806 }
6807 
6808 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6809 {
6810 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6811 
6812 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6813 		vlv_initial_power_sequencer_setup(intel_dp);
6814 	} else {
6815 		intel_dp_init_panel_power_sequencer(intel_dp);
6816 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6817 	}
6818 }
6819 
6820 /**
6821  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6822  * @dev_priv: i915 device
6823  * @crtc_state: a pointer to the active intel_crtc_state
6824  * @refresh_rate: RR to be programmed
6825  *
6826  * This function gets called when refresh rate (RR) has to be changed from
6827  * one frequency to another. Switches can be between high and low RR
6828  * supported by the panel or to any other RR based on media playback (in
6829  * this case, RR value needs to be passed from user space).
6830  *
6831  * The caller of this function needs to take a lock on dev_priv->drrs.
6832  */
6833 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6834 				    const struct intel_crtc_state *crtc_state,
6835 				    int refresh_rate)
6836 {
6837 	struct intel_encoder *encoder;
6838 	struct intel_digital_port *dig_port = NULL;
6839 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6840 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6841 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6842 
6843 	if (refresh_rate <= 0) {
6844 		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6845 		return;
6846 	}
6847 
6848 	if (intel_dp == NULL) {
6849 		DRM_DEBUG_KMS("DRRS not supported.\n");
6850 		return;
6851 	}
6852 
6853 	dig_port = dp_to_dig_port(intel_dp);
6854 	encoder = &dig_port->base;
6855 
6856 	if (!intel_crtc) {
6857 		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6858 		return;
6859 	}
6860 
6861 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6862 		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6863 		return;
6864 	}
6865 
6866 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6867 			refresh_rate)
6868 		index = DRRS_LOW_RR;
6869 
6870 	if (index == dev_priv->drrs.refresh_rate_type) {
6871 		DRM_DEBUG_KMS(
6872 			"DRRS requested for previously set RR...ignoring\n");
6873 		return;
6874 	}
6875 
6876 	if (!crtc_state->base.active) {
6877 		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6878 		return;
6879 	}
6880 
6881 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6882 		switch (index) {
6883 		case DRRS_HIGH_RR:
6884 			intel_dp_set_m_n(crtc_state, M1_N1);
6885 			break;
6886 		case DRRS_LOW_RR:
6887 			intel_dp_set_m_n(crtc_state, M2_N2);
6888 			break;
6889 		case DRRS_MAX_RR:
6890 		default:
6891 			DRM_ERROR("Unsupported refreshrate type\n");
6892 		}
6893 	} else if (INTEL_GEN(dev_priv) > 6) {
6894 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6895 		u32 val;
6896 
6897 		val = I915_READ(reg);
6898 		if (index > DRRS_HIGH_RR) {
6899 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6900 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6901 			else
6902 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6903 		} else {
6904 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6905 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6906 			else
6907 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6908 		}
6909 		I915_WRITE(reg, val);
6910 	}
6911 
6912 	dev_priv->drrs.refresh_rate_type = index;
6913 
6914 	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6915 }
6916 
6917 /**
6918  * intel_edp_drrs_enable - init drrs struct if supported
6919  * @intel_dp: DP struct
6920  * @crtc_state: A pointer to the active crtc state.
6921  *
6922  * Initializes frontbuffer_bits and drrs.dp
6923  */
6924 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6925 			   const struct intel_crtc_state *crtc_state)
6926 {
6927 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6928 
6929 	if (!crtc_state->has_drrs) {
6930 		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
6931 		return;
6932 	}
6933 
6934 	if (dev_priv->psr.enabled) {
6935 		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
6936 		return;
6937 	}
6938 
6939 	mutex_lock(&dev_priv->drrs.mutex);
6940 	if (dev_priv->drrs.dp) {
6941 		DRM_DEBUG_KMS("DRRS already enabled\n");
6942 		goto unlock;
6943 	}
6944 
6945 	dev_priv->drrs.busy_frontbuffer_bits = 0;
6946 
6947 	dev_priv->drrs.dp = intel_dp;
6948 
6949 unlock:
6950 	mutex_unlock(&dev_priv->drrs.mutex);
6951 }
6952 
6953 /**
6954  * intel_edp_drrs_disable - Disable DRRS
6955  * @intel_dp: DP struct
6956  * @old_crtc_state: Pointer to old crtc_state.
6957  *
6958  */
6959 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6960 			    const struct intel_crtc_state *old_crtc_state)
6961 {
6962 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6963 
6964 	if (!old_crtc_state->has_drrs)
6965 		return;
6966 
6967 	mutex_lock(&dev_priv->drrs.mutex);
6968 	if (!dev_priv->drrs.dp) {
6969 		mutex_unlock(&dev_priv->drrs.mutex);
6970 		return;
6971 	}
6972 
6973 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6974 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
6975 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
6976 
6977 	dev_priv->drrs.dp = NULL;
6978 	mutex_unlock(&dev_priv->drrs.mutex);
6979 
6980 	cancel_delayed_work_sync(&dev_priv->drrs.work);
6981 }
6982 
6983 static void intel_edp_drrs_downclock_work(struct work_struct *work)
6984 {
6985 	struct drm_i915_private *dev_priv =
6986 		container_of(work, typeof(*dev_priv), drrs.work.work);
6987 	struct intel_dp *intel_dp;
6988 
6989 	mutex_lock(&dev_priv->drrs.mutex);
6990 
6991 	intel_dp = dev_priv->drrs.dp;
6992 
6993 	if (!intel_dp)
6994 		goto unlock;
6995 
6996 	/*
6997 	 * The delayed work can race with an invalidate hence we need to
6998 	 * recheck.
6999 	 */
7000 
7001 	if (dev_priv->drrs.busy_frontbuffer_bits)
7002 		goto unlock;
7003 
7004 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7005 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7006 
7007 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7008 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7009 	}
7010 
7011 unlock:
7012 	mutex_unlock(&dev_priv->drrs.mutex);
7013 }
7014 
7015 /**
7016  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7017  * @dev_priv: i915 device
7018  * @frontbuffer_bits: frontbuffer plane tracking bits
7019  *
7020  * This function gets called everytime rendering on the given planes start.
7021  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7022  *
7023  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7024  */
7025 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7026 			       unsigned int frontbuffer_bits)
7027 {
7028 	struct drm_crtc *crtc;
7029 	enum pipe pipe;
7030 
7031 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7032 		return;
7033 
7034 	cancel_delayed_work(&dev_priv->drrs.work);
7035 
7036 	mutex_lock(&dev_priv->drrs.mutex);
7037 	if (!dev_priv->drrs.dp) {
7038 		mutex_unlock(&dev_priv->drrs.mutex);
7039 		return;
7040 	}
7041 
7042 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7043 	pipe = to_intel_crtc(crtc)->pipe;
7044 
7045 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7046 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7047 
7048 	/* invalidate means busy screen hence upclock */
7049 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7050 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7051 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7052 
7053 	mutex_unlock(&dev_priv->drrs.mutex);
7054 }
7055 
7056 /**
7057  * intel_edp_drrs_flush - Restart Idleness DRRS
7058  * @dev_priv: i915 device
7059  * @frontbuffer_bits: frontbuffer plane tracking bits
7060  *
7061  * This function gets called every time rendering on the given planes has
7062  * completed or flip on a crtc is completed. So DRRS should be upclocked
7063  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7064  * if no other planes are dirty.
7065  *
7066  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7067  */
7068 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7069 			  unsigned int frontbuffer_bits)
7070 {
7071 	struct drm_crtc *crtc;
7072 	enum pipe pipe;
7073 
7074 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7075 		return;
7076 
7077 	cancel_delayed_work(&dev_priv->drrs.work);
7078 
7079 	mutex_lock(&dev_priv->drrs.mutex);
7080 	if (!dev_priv->drrs.dp) {
7081 		mutex_unlock(&dev_priv->drrs.mutex);
7082 		return;
7083 	}
7084 
7085 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7086 	pipe = to_intel_crtc(crtc)->pipe;
7087 
7088 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7089 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7090 
7091 	/* flush means busy screen hence upclock */
7092 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7093 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7094 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7095 
7096 	/*
7097 	 * flush also means no more activity hence schedule downclock, if all
7098 	 * other fbs are quiescent too
7099 	 */
7100 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7101 		schedule_delayed_work(&dev_priv->drrs.work,
7102 				msecs_to_jiffies(1000));
7103 	mutex_unlock(&dev_priv->drrs.mutex);
7104 }
7105 
7106 /**
7107  * DOC: Display Refresh Rate Switching (DRRS)
7108  *
7109  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7110  * which enables swtching between low and high refresh rates,
7111  * dynamically, based on the usage scenario. This feature is applicable
7112  * for internal panels.
7113  *
7114  * Indication that the panel supports DRRS is given by the panel EDID, which
7115  * would list multiple refresh rates for one resolution.
7116  *
7117  * DRRS is of 2 types - static and seamless.
7118  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7119  * (may appear as a blink on screen) and is used in dock-undock scenario.
7120  * Seamless DRRS involves changing RR without any visual effect to the user
7121  * and can be used during normal system usage. This is done by programming
7122  * certain registers.
7123  *
7124  * Support for static/seamless DRRS may be indicated in the VBT based on
7125  * inputs from the panel spec.
7126  *
7127  * DRRS saves power by switching to low RR based on usage scenarios.
7128  *
7129  * The implementation is based on frontbuffer tracking implementation.  When
7130  * there is a disturbance on the screen triggered by user activity or a periodic
7131  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7132  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7133  * made.
7134  *
7135  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7136  * and intel_edp_drrs_flush() are called.
7137  *
7138  * DRRS can be further extended to support other internal panels and also
7139  * the scenario of video playback wherein RR is set based on the rate
7140  * requested by userspace.
7141  */
7142 
7143 /**
7144  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7145  * @connector: eDP connector
7146  * @fixed_mode: preferred mode of panel
7147  *
7148  * This function is  called only once at driver load to initialize basic
7149  * DRRS stuff.
7150  *
7151  * Returns:
7152  * Downclock mode if panel supports it, else return NULL.
7153  * DRRS support is determined by the presence of downclock mode (apart
7154  * from VBT setting).
7155  */
7156 static struct drm_display_mode *
7157 intel_dp_drrs_init(struct intel_connector *connector,
7158 		   struct drm_display_mode *fixed_mode)
7159 {
7160 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7161 	struct drm_display_mode *downclock_mode = NULL;
7162 
7163 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7164 	mutex_init(&dev_priv->drrs.mutex);
7165 
7166 	if (INTEL_GEN(dev_priv) <= 6) {
7167 		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7168 		return NULL;
7169 	}
7170 
7171 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7172 		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7173 		return NULL;
7174 	}
7175 
7176 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7177 	if (!downclock_mode) {
7178 		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7179 		return NULL;
7180 	}
7181 
7182 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7183 
7184 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7185 	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7186 	return downclock_mode;
7187 }
7188 
7189 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7190 				     struct intel_connector *intel_connector)
7191 {
7192 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7193 	struct drm_device *dev = &dev_priv->drm;
7194 	struct drm_connector *connector = &intel_connector->base;
7195 	struct drm_display_mode *fixed_mode = NULL;
7196 	struct drm_display_mode *downclock_mode = NULL;
7197 	bool has_dpcd;
7198 	enum pipe pipe = INVALID_PIPE;
7199 	intel_wakeref_t wakeref;
7200 	struct edid *edid;
7201 
7202 	if (!intel_dp_is_edp(intel_dp))
7203 		return true;
7204 
7205 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7206 
7207 	/*
7208 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7209 	 * driver uses the only internal power sequencer available for both
7210 	 * eDP and LVDS bail out early in this case to prevent interfering
7211 	 * with an already powered-on LVDS power sequencer.
7212 	 */
7213 	if (intel_get_lvds_encoder(dev_priv)) {
7214 		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7215 		DRM_INFO("LVDS was detected, not registering eDP\n");
7216 
7217 		return false;
7218 	}
7219 
7220 	with_pps_lock(intel_dp, wakeref) {
7221 		intel_dp_init_panel_power_timestamps(intel_dp);
7222 		intel_dp_pps_init(intel_dp);
7223 		intel_edp_panel_vdd_sanitize(intel_dp);
7224 	}
7225 
7226 	/* Cache DPCD and EDID for edp. */
7227 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7228 
7229 	if (!has_dpcd) {
7230 		/* if this fails, presume the device is a ghost */
7231 		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7232 		goto out_vdd_off;
7233 	}
7234 
7235 	mutex_lock(&dev->mode_config.mutex);
7236 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7237 	if (edid) {
7238 		if (drm_add_edid_modes(connector, edid)) {
7239 			drm_connector_update_edid_property(connector,
7240 								edid);
7241 		} else {
7242 			kfree(edid);
7243 			edid = ERR_PTR(-EINVAL);
7244 		}
7245 	} else {
7246 		edid = ERR_PTR(-ENOENT);
7247 	}
7248 	intel_connector->edid = edid;
7249 
7250 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7251 	if (fixed_mode)
7252 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7253 
7254 	/* fallback to VBT if available for eDP */
7255 	if (!fixed_mode)
7256 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7257 	mutex_unlock(&dev->mode_config.mutex);
7258 
7259 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7260 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7261 		register_reboot_notifier(&intel_dp->edp_notifier);
7262 
7263 		/*
7264 		 * Figure out the current pipe for the initial backlight setup.
7265 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7266 		 * fails just assume pipe A.
7267 		 */
7268 		pipe = vlv_active_pipe(intel_dp);
7269 
7270 		if (pipe != PIPE_A && pipe != PIPE_B)
7271 			pipe = intel_dp->pps_pipe;
7272 
7273 		if (pipe != PIPE_A && pipe != PIPE_B)
7274 			pipe = PIPE_A;
7275 
7276 		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7277 			      pipe_name(pipe));
7278 	}
7279 
7280 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7281 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7282 	intel_panel_setup_backlight(connector, pipe);
7283 
7284 	if (fixed_mode)
7285 		drm_connector_init_panel_orientation_property(
7286 			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7287 
7288 	return true;
7289 
7290 out_vdd_off:
7291 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7292 	/*
7293 	 * vdd might still be enabled do to the delayed vdd off.
7294 	 * Make sure vdd is actually turned off here.
7295 	 */
7296 	with_pps_lock(intel_dp, wakeref)
7297 		edp_panel_vdd_off_sync(intel_dp);
7298 
7299 	return false;
7300 }
7301 
7302 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7303 {
7304 	struct intel_connector *intel_connector;
7305 	struct drm_connector *connector;
7306 
7307 	intel_connector = container_of(work, typeof(*intel_connector),
7308 				       modeset_retry_work);
7309 	connector = &intel_connector->base;
7310 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7311 		      connector->name);
7312 
7313 	/* Grab the locks before changing connector property*/
7314 	mutex_lock(&connector->dev->mode_config.mutex);
7315 	/* Set connector link status to BAD and send a Uevent to notify
7316 	 * userspace to do a modeset.
7317 	 */
7318 	drm_connector_set_link_status_property(connector,
7319 					       DRM_MODE_LINK_STATUS_BAD);
7320 	mutex_unlock(&connector->dev->mode_config.mutex);
7321 	/* Send Hotplug uevent so userspace can reprobe */
7322 	drm_kms_helper_hotplug_event(connector->dev);
7323 }
7324 
7325 bool
7326 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7327 			struct intel_connector *intel_connector)
7328 {
7329 	struct drm_connector *connector = &intel_connector->base;
7330 	struct intel_dp *intel_dp = &intel_dig_port->dp;
7331 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
7332 	struct drm_device *dev = intel_encoder->base.dev;
7333 	struct drm_i915_private *dev_priv = to_i915(dev);
7334 	enum port port = intel_encoder->port;
7335 	int type;
7336 
7337 	/* Initialize the work for modeset in case of link train failure */
7338 	INIT_WORK(&intel_connector->modeset_retry_work,
7339 		  intel_dp_modeset_retry_work_fn);
7340 
7341 	if (WARN(intel_dig_port->max_lanes < 1,
7342 		 "Not enough lanes (%d) for DP on port %c\n",
7343 		 intel_dig_port->max_lanes, port_name(port)))
7344 		return false;
7345 
7346 	intel_dp_set_source_rates(intel_dp);
7347 
7348 	intel_dp->reset_link_params = true;
7349 	intel_dp->pps_pipe = INVALID_PIPE;
7350 	intel_dp->active_pipe = INVALID_PIPE;
7351 
7352 	/* Preserve the current hw state. */
7353 	intel_dp->DP = I915_READ(intel_dp->output_reg);
7354 	intel_dp->attached_connector = intel_connector;
7355 
7356 	if (intel_dp_is_port_edp(dev_priv, port)) {
7357 		/*
7358 		 * Currently we don't support eDP on TypeC ports, although in
7359 		 * theory it could work on TypeC legacy ports.
7360 		 */
7361 		WARN_ON(intel_port_is_tc(dev_priv, port));
7362 		type = DRM_MODE_CONNECTOR_eDP;
7363 	} else {
7364 		type = DRM_MODE_CONNECTOR_DisplayPort;
7365 	}
7366 
7367 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7368 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7369 
7370 	/*
7371 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7372 	 * for DP the encoder type can be set by the caller to
7373 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7374 	 */
7375 	if (type == DRM_MODE_CONNECTOR_eDP)
7376 		intel_encoder->type = INTEL_OUTPUT_EDP;
7377 
7378 	/* eDP only on port B and/or C on vlv/chv */
7379 	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7380 		    intel_dp_is_edp(intel_dp) &&
7381 		    port != PORT_B && port != PORT_C))
7382 		return false;
7383 
7384 	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
7385 			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7386 			port_name(port));
7387 
7388 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7389 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7390 
7391 	if (!HAS_GMCH(dev_priv))
7392 		connector->interlace_allowed = true;
7393 	connector->doublescan_allowed = 0;
7394 
7395 	if (INTEL_GEN(dev_priv) >= 11)
7396 		connector->ycbcr_420_allowed = true;
7397 
7398 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7399 
7400 	intel_dp_aux_init(intel_dp);
7401 
7402 	intel_connector_attach_encoder(intel_connector, intel_encoder);
7403 
7404 	if (HAS_DDI(dev_priv))
7405 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7406 	else
7407 		intel_connector->get_hw_state = intel_connector_get_hw_state;
7408 
7409 	/* init MST on ports that can support it */
7410 	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7411 	    (port == PORT_B || port == PORT_C ||
7412 	     port == PORT_D || port == PORT_F))
7413 		intel_dp_mst_encoder_init(intel_dig_port,
7414 					  intel_connector->base.base.id);
7415 
7416 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7417 		intel_dp_aux_fini(intel_dp);
7418 		intel_dp_mst_encoder_cleanup(intel_dig_port);
7419 		goto fail;
7420 	}
7421 
7422 	intel_dp_add_properties(intel_dp, connector);
7423 
7424 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7425 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7426 		if (ret)
7427 			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7428 	}
7429 
7430 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7431 	 * 0xd.  Failure to do so will result in spurious interrupts being
7432 	 * generated on the port when a cable is not attached.
7433 	 */
7434 	if (IS_G45(dev_priv)) {
7435 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7436 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7437 	}
7438 
7439 	return true;
7440 
7441 fail:
7442 	drm_connector_cleanup(connector);
7443 
7444 	return false;
7445 }
7446 
7447 bool intel_dp_init(struct drm_i915_private *dev_priv,
7448 		   i915_reg_t output_reg,
7449 		   enum port port)
7450 {
7451 	struct intel_digital_port *intel_dig_port;
7452 	struct intel_encoder *intel_encoder;
7453 	struct drm_encoder *encoder;
7454 	struct intel_connector *intel_connector;
7455 
7456 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7457 	if (!intel_dig_port)
7458 		return false;
7459 
7460 	intel_connector = intel_connector_alloc();
7461 	if (!intel_connector)
7462 		goto err_connector_alloc;
7463 
7464 	intel_encoder = &intel_dig_port->base;
7465 	encoder = &intel_encoder->base;
7466 
7467 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7468 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7469 			     "DP %c", port_name(port)))
7470 		goto err_encoder_init;
7471 
7472 	intel_encoder->hotplug = intel_dp_hotplug;
7473 	intel_encoder->compute_config = intel_dp_compute_config;
7474 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7475 	intel_encoder->get_config = intel_dp_get_config;
7476 	intel_encoder->update_pipe = intel_panel_update_backlight;
7477 	intel_encoder->suspend = intel_dp_encoder_suspend;
7478 	if (IS_CHERRYVIEW(dev_priv)) {
7479 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7480 		intel_encoder->pre_enable = chv_pre_enable_dp;
7481 		intel_encoder->enable = vlv_enable_dp;
7482 		intel_encoder->disable = vlv_disable_dp;
7483 		intel_encoder->post_disable = chv_post_disable_dp;
7484 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7485 	} else if (IS_VALLEYVIEW(dev_priv)) {
7486 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7487 		intel_encoder->pre_enable = vlv_pre_enable_dp;
7488 		intel_encoder->enable = vlv_enable_dp;
7489 		intel_encoder->disable = vlv_disable_dp;
7490 		intel_encoder->post_disable = vlv_post_disable_dp;
7491 	} else {
7492 		intel_encoder->pre_enable = g4x_pre_enable_dp;
7493 		intel_encoder->enable = g4x_enable_dp;
7494 		intel_encoder->disable = g4x_disable_dp;
7495 		intel_encoder->post_disable = g4x_post_disable_dp;
7496 	}
7497 
7498 	intel_dig_port->dp.output_reg = output_reg;
7499 	intel_dig_port->max_lanes = 4;
7500 
7501 	intel_encoder->type = INTEL_OUTPUT_DP;
7502 	intel_encoder->power_domain = intel_port_to_power_domain(port);
7503 	if (IS_CHERRYVIEW(dev_priv)) {
7504 		if (port == PORT_D)
7505 			intel_encoder->crtc_mask = 1 << 2;
7506 		else
7507 			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
7508 	} else {
7509 		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
7510 	}
7511 	intel_encoder->cloneable = 0;
7512 	intel_encoder->port = port;
7513 
7514 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7515 
7516 	if (port != PORT_A)
7517 		intel_infoframe_init(intel_dig_port);
7518 
7519 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7520 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7521 		goto err_init_connector;
7522 
7523 	return true;
7524 
7525 err_init_connector:
7526 	drm_encoder_cleanup(encoder);
7527 err_encoder_init:
7528 	kfree(intel_connector);
7529 err_connector_alloc:
7530 	kfree(intel_dig_port);
7531 	return false;
7532 }
7533 
7534 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7535 {
7536 	struct intel_encoder *encoder;
7537 
7538 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7539 		struct intel_dp *intel_dp;
7540 
7541 		if (encoder->type != INTEL_OUTPUT_DDI)
7542 			continue;
7543 
7544 		intel_dp = enc_to_intel_dp(&encoder->base);
7545 
7546 		if (!intel_dp->can_mst)
7547 			continue;
7548 
7549 		if (intel_dp->is_mst)
7550 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7551 	}
7552 }
7553 
7554 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7555 {
7556 	struct intel_encoder *encoder;
7557 
7558 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7559 		struct intel_dp *intel_dp;
7560 		int ret;
7561 
7562 		if (encoder->type != INTEL_OUTPUT_DDI)
7563 			continue;
7564 
7565 		intel_dp = enc_to_intel_dp(&encoder->base);
7566 
7567 		if (!intel_dp->can_mst)
7568 			continue;
7569 
7570 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7571 		if (ret) {
7572 			intel_dp->is_mst = false;
7573 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7574 							false);
7575 		}
7576 	}
7577 }
7578