1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_hdcp.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/i915_drm.h> 44 45 #include "i915_debugfs.h" 46 #include "i915_drv.h" 47 #include "i915_trace.h" 48 #include "intel_atomic.h" 49 #include "intel_audio.h" 50 #include "intel_connector.h" 51 #include "intel_ddi.h" 52 #include "intel_display_types.h" 53 #include "intel_dp.h" 54 #include "intel_dp_link_training.h" 55 #include "intel_dp_mst.h" 56 #include "intel_dpio_phy.h" 57 #include "intel_fifo_underrun.h" 58 #include "intel_hdcp.h" 59 #include "intel_hdmi.h" 60 #include "intel_hotplug.h" 61 #include "intel_lspcon.h" 62 #include "intel_lvds.h" 63 #include "intel_panel.h" 64 #include "intel_psr.h" 65 #include "intel_sideband.h" 66 #include "intel_tc.h" 67 #include "intel_vdsc.h" 68 69 #define DP_DPRX_ESI_LEN 14 70 71 /* DP DSC throughput values used for slice count calculations KPixels/s */ 72 #define DP_DSC_PEAK_PIXEL_RATE 2720000 73 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 74 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 75 76 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 77 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 78 79 /* Compliance test status bits */ 80 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 81 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 82 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 83 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 84 85 struct dp_link_dpll { 86 int clock; 87 struct dpll dpll; 88 }; 89 90 static const struct dp_link_dpll g4x_dpll[] = { 91 { 162000, 92 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 93 { 270000, 94 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 95 }; 96 97 static const struct dp_link_dpll pch_dpll[] = { 98 { 162000, 99 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 100 { 270000, 101 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 102 }; 103 104 static const struct dp_link_dpll vlv_dpll[] = { 105 { 162000, 106 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 107 { 270000, 108 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 109 }; 110 111 /* 112 * CHV supports eDP 1.4 that have more link rates. 113 * Below only provides the fixed rate but exclude variable rate. 114 */ 115 static const struct dp_link_dpll chv_dpll[] = { 116 /* 117 * CHV requires to program fractional division for m2. 118 * m2 is stored in fixed point format using formula below 119 * (m2_int << 22) | m2_fraction 120 */ 121 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 122 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 123 { 270000, /* m2_int = 27, m2_fraction = 0 */ 124 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 125 }; 126 127 /* Constants for DP DSC configurations */ 128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 129 130 /* With Single pipe configuration, HW is capable of supporting maximum 131 * of 4 slices per line. 132 */ 133 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 134 135 /** 136 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 137 * @intel_dp: DP struct 138 * 139 * If a CPU or PCH DP output is attached to an eDP panel, this function 140 * will return true, and false otherwise. 141 */ 142 bool intel_dp_is_edp(struct intel_dp *intel_dp) 143 { 144 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 145 146 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 147 } 148 149 static struct intel_dp *intel_attached_dp(struct drm_connector *connector) 150 { 151 return enc_to_intel_dp(&intel_attached_encoder(connector)->base); 152 } 153 154 static void intel_dp_link_down(struct intel_encoder *encoder, 155 const struct intel_crtc_state *old_crtc_state); 156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 159 const struct intel_crtc_state *crtc_state); 160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 161 enum pipe pipe); 162 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 163 164 /* update sink rates from dpcd */ 165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 166 { 167 static const int dp_rates[] = { 168 162000, 270000, 540000, 810000 169 }; 170 int i, max_rate; 171 172 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 173 174 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 175 if (dp_rates[i] > max_rate) 176 break; 177 intel_dp->sink_rates[i] = dp_rates[i]; 178 } 179 180 intel_dp->num_sink_rates = i; 181 } 182 183 /* Get length of rates array potentially limited by max_rate. */ 184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 185 { 186 int i; 187 188 /* Limit results by potentially reduced max rate */ 189 for (i = 0; i < len; i++) { 190 if (rates[len - i - 1] <= max_rate) 191 return len - i; 192 } 193 194 return 0; 195 } 196 197 /* Get length of common rates array potentially limited by max_rate. */ 198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 199 int max_rate) 200 { 201 return intel_dp_rate_limit_len(intel_dp->common_rates, 202 intel_dp->num_common_rates, max_rate); 203 } 204 205 /* Theoretical max between source and sink */ 206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 207 { 208 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 209 } 210 211 /* Theoretical max between source and sink */ 212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 213 { 214 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 215 int source_max = intel_dig_port->max_lanes; 216 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 217 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); 218 219 return min3(source_max, sink_max, fia_max); 220 } 221 222 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 223 { 224 return intel_dp->max_link_lane_count; 225 } 226 227 int 228 intel_dp_link_required(int pixel_clock, int bpp) 229 { 230 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 231 return DIV_ROUND_UP(pixel_clock * bpp, 8); 232 } 233 234 int 235 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 236 { 237 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 238 * link rate that is generally expressed in Gbps. Since, 8 bits of data 239 * is transmitted every LS_Clk per lane, there is no need to account for 240 * the channel encoding that is done in the PHY layer here. 241 */ 242 243 return max_link_clock * max_lanes; 244 } 245 246 static int 247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 248 { 249 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 250 struct intel_encoder *encoder = &intel_dig_port->base; 251 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 252 int max_dotclk = dev_priv->max_dotclk_freq; 253 int ds_max_dotclk; 254 255 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 256 257 if (type != DP_DS_PORT_TYPE_VGA) 258 return max_dotclk; 259 260 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 261 intel_dp->downstream_ports); 262 263 if (ds_max_dotclk != 0) 264 max_dotclk = min(max_dotclk, ds_max_dotclk); 265 266 return max_dotclk; 267 } 268 269 static int cnl_max_source_rate(struct intel_dp *intel_dp) 270 { 271 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 272 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 273 enum port port = dig_port->base.port; 274 275 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 276 277 /* Low voltage SKUs are limited to max of 5.4G */ 278 if (voltage == VOLTAGE_INFO_0_85V) 279 return 540000; 280 281 /* For this SKU 8.1G is supported in all ports */ 282 if (IS_CNL_WITH_PORT_F(dev_priv)) 283 return 810000; 284 285 /* For other SKUs, max rate on ports A and D is 5.4G */ 286 if (port == PORT_A || port == PORT_D) 287 return 540000; 288 289 return 810000; 290 } 291 292 static int icl_max_source_rate(struct intel_dp *intel_dp) 293 { 294 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 295 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 296 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 297 298 if (intel_phy_is_combo(dev_priv, phy) && 299 !IS_ELKHARTLAKE(dev_priv) && 300 !intel_dp_is_edp(intel_dp)) 301 return 540000; 302 303 return 810000; 304 } 305 306 static void 307 intel_dp_set_source_rates(struct intel_dp *intel_dp) 308 { 309 /* The values must be in increasing order */ 310 static const int cnl_rates[] = { 311 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 312 }; 313 static const int bxt_rates[] = { 314 162000, 216000, 243000, 270000, 324000, 432000, 540000 315 }; 316 static const int skl_rates[] = { 317 162000, 216000, 270000, 324000, 432000, 540000 318 }; 319 static const int hsw_rates[] = { 320 162000, 270000, 540000 321 }; 322 static const int g4x_rates[] = { 323 162000, 270000 324 }; 325 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 326 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 327 const struct ddi_vbt_port_info *info = 328 &dev_priv->vbt.ddi_port_info[dig_port->base.port]; 329 const int *source_rates; 330 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate; 331 332 /* This should only be done once */ 333 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates); 334 335 if (INTEL_GEN(dev_priv) >= 10) { 336 source_rates = cnl_rates; 337 size = ARRAY_SIZE(cnl_rates); 338 if (IS_GEN(dev_priv, 10)) 339 max_rate = cnl_max_source_rate(intel_dp); 340 else 341 max_rate = icl_max_source_rate(intel_dp); 342 } else if (IS_GEN9_LP(dev_priv)) { 343 source_rates = bxt_rates; 344 size = ARRAY_SIZE(bxt_rates); 345 } else if (IS_GEN9_BC(dev_priv)) { 346 source_rates = skl_rates; 347 size = ARRAY_SIZE(skl_rates); 348 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 349 IS_BROADWELL(dev_priv)) { 350 source_rates = hsw_rates; 351 size = ARRAY_SIZE(hsw_rates); 352 } else { 353 source_rates = g4x_rates; 354 size = ARRAY_SIZE(g4x_rates); 355 } 356 357 if (max_rate && vbt_max_rate) 358 max_rate = min(max_rate, vbt_max_rate); 359 else if (vbt_max_rate) 360 max_rate = vbt_max_rate; 361 362 if (max_rate) 363 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 364 365 intel_dp->source_rates = source_rates; 366 intel_dp->num_source_rates = size; 367 } 368 369 static int intersect_rates(const int *source_rates, int source_len, 370 const int *sink_rates, int sink_len, 371 int *common_rates) 372 { 373 int i = 0, j = 0, k = 0; 374 375 while (i < source_len && j < sink_len) { 376 if (source_rates[i] == sink_rates[j]) { 377 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 378 return k; 379 common_rates[k] = source_rates[i]; 380 ++k; 381 ++i; 382 ++j; 383 } else if (source_rates[i] < sink_rates[j]) { 384 ++i; 385 } else { 386 ++j; 387 } 388 } 389 return k; 390 } 391 392 /* return index of rate in rates array, or -1 if not found */ 393 static int intel_dp_rate_index(const int *rates, int len, int rate) 394 { 395 int i; 396 397 for (i = 0; i < len; i++) 398 if (rate == rates[i]) 399 return i; 400 401 return -1; 402 } 403 404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 405 { 406 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); 407 408 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 409 intel_dp->num_source_rates, 410 intel_dp->sink_rates, 411 intel_dp->num_sink_rates, 412 intel_dp->common_rates); 413 414 /* Paranoia, there should always be something in common. */ 415 if (WARN_ON(intel_dp->num_common_rates == 0)) { 416 intel_dp->common_rates[0] = 162000; 417 intel_dp->num_common_rates = 1; 418 } 419 } 420 421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 422 u8 lane_count) 423 { 424 /* 425 * FIXME: we need to synchronize the current link parameters with 426 * hardware readout. Currently fast link training doesn't work on 427 * boot-up. 428 */ 429 if (link_rate == 0 || 430 link_rate > intel_dp->max_link_rate) 431 return false; 432 433 if (lane_count == 0 || 434 lane_count > intel_dp_max_lane_count(intel_dp)) 435 return false; 436 437 return true; 438 } 439 440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 441 int link_rate, 442 u8 lane_count) 443 { 444 const struct drm_display_mode *fixed_mode = 445 intel_dp->attached_connector->panel.fixed_mode; 446 int mode_rate, max_rate; 447 448 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 449 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 450 if (mode_rate > max_rate) 451 return false; 452 453 return true; 454 } 455 456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 457 int link_rate, u8 lane_count) 458 { 459 int index; 460 461 index = intel_dp_rate_index(intel_dp->common_rates, 462 intel_dp->num_common_rates, 463 link_rate); 464 if (index > 0) { 465 if (intel_dp_is_edp(intel_dp) && 466 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 467 intel_dp->common_rates[index - 1], 468 lane_count)) { 469 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 470 return 0; 471 } 472 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 473 intel_dp->max_link_lane_count = lane_count; 474 } else if (lane_count > 1) { 475 if (intel_dp_is_edp(intel_dp) && 476 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 477 intel_dp_max_common_rate(intel_dp), 478 lane_count >> 1)) { 479 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 480 return 0; 481 } 482 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 483 intel_dp->max_link_lane_count = lane_count >> 1; 484 } else { 485 DRM_ERROR("Link Training Unsuccessful\n"); 486 return -1; 487 } 488 489 return 0; 490 } 491 492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 493 { 494 return div_u64(mul_u32_u32(mode_clock, 1000000U), 495 DP_DSC_FEC_OVERHEAD_FACTOR); 496 } 497 498 static int 499 small_joiner_ram_size_bits(struct drm_i915_private *i915) 500 { 501 if (INTEL_GEN(i915) >= 11) 502 return 7680 * 8; 503 else 504 return 6144 * 8; 505 } 506 507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, 508 u32 link_clock, u32 lane_count, 509 u32 mode_clock, u32 mode_hdisplay) 510 { 511 u32 bits_per_pixel, max_bpp_small_joiner_ram; 512 int i; 513 514 /* 515 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 516 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 517 * for SST -> TimeSlotsPerMTP is 1, 518 * for MST -> TimeSlotsPerMTP has to be calculated 519 */ 520 bits_per_pixel = (link_clock * lane_count * 8) / 521 intel_dp_mode_to_fec_clock(mode_clock); 522 DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel); 523 524 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 525 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / 526 mode_hdisplay; 527 DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram); 528 529 /* 530 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 531 * check, output bpp from small joiner RAM check) 532 */ 533 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 534 535 /* Error out if the max bpp is less than smallest allowed valid bpp */ 536 if (bits_per_pixel < valid_dsc_bpp[0]) { 537 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n", 538 bits_per_pixel, valid_dsc_bpp[0]); 539 return 0; 540 } 541 542 /* Find the nearest match in the array of known BPPs from VESA */ 543 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 544 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 545 break; 546 } 547 bits_per_pixel = valid_dsc_bpp[i]; 548 549 /* 550 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 551 * fractional part is 0 552 */ 553 return bits_per_pixel << 4; 554 } 555 556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 557 int mode_clock, int mode_hdisplay) 558 { 559 u8 min_slice_count, i; 560 int max_slice_width; 561 562 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 563 min_slice_count = DIV_ROUND_UP(mode_clock, 564 DP_DSC_MAX_ENC_THROUGHPUT_0); 565 else 566 min_slice_count = DIV_ROUND_UP(mode_clock, 567 DP_DSC_MAX_ENC_THROUGHPUT_1); 568 569 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 570 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 571 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n", 572 max_slice_width); 573 return 0; 574 } 575 /* Also take into account max slice width */ 576 min_slice_count = min_t(u8, min_slice_count, 577 DIV_ROUND_UP(mode_hdisplay, 578 max_slice_width)); 579 580 /* Find the closest match to the valid slice count values */ 581 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 582 if (valid_dsc_slicecount[i] > 583 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 584 false)) 585 break; 586 if (min_slice_count <= valid_dsc_slicecount[i]) 587 return valid_dsc_slicecount[i]; 588 } 589 590 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count); 591 return 0; 592 } 593 594 static enum drm_mode_status 595 intel_dp_mode_valid(struct drm_connector *connector, 596 struct drm_display_mode *mode) 597 { 598 struct intel_dp *intel_dp = intel_attached_dp(connector); 599 struct intel_connector *intel_connector = to_intel_connector(connector); 600 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 601 struct drm_i915_private *dev_priv = to_i915(connector->dev); 602 int target_clock = mode->clock; 603 int max_rate, mode_rate, max_lanes, max_link_clock; 604 int max_dotclk; 605 u16 dsc_max_output_bpp = 0; 606 u8 dsc_slice_count = 0; 607 608 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 609 return MODE_NO_DBLESCAN; 610 611 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 612 613 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 614 if (mode->hdisplay > fixed_mode->hdisplay) 615 return MODE_PANEL; 616 617 if (mode->vdisplay > fixed_mode->vdisplay) 618 return MODE_PANEL; 619 620 target_clock = fixed_mode->clock; 621 } 622 623 max_link_clock = intel_dp_max_link_rate(intel_dp); 624 max_lanes = intel_dp_max_lane_count(intel_dp); 625 626 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 627 mode_rate = intel_dp_link_required(target_clock, 18); 628 629 /* 630 * Output bpp is stored in 6.4 format so right shift by 4 to get the 631 * integer value since we support only integer values of bpp. 632 */ 633 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 634 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 635 if (intel_dp_is_edp(intel_dp)) { 636 dsc_max_output_bpp = 637 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 638 dsc_slice_count = 639 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 640 true); 641 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 642 dsc_max_output_bpp = 643 intel_dp_dsc_get_output_bpp(dev_priv, 644 max_link_clock, 645 max_lanes, 646 target_clock, 647 mode->hdisplay) >> 4; 648 dsc_slice_count = 649 intel_dp_dsc_get_slice_count(intel_dp, 650 target_clock, 651 mode->hdisplay); 652 } 653 } 654 655 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 656 target_clock > max_dotclk) 657 return MODE_CLOCK_HIGH; 658 659 if (mode->clock < 10000) 660 return MODE_CLOCK_LOW; 661 662 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 663 return MODE_H_ILLEGAL; 664 665 return intel_mode_valid_max_plane_size(dev_priv, mode); 666 } 667 668 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 669 { 670 int i; 671 u32 v = 0; 672 673 if (src_bytes > 4) 674 src_bytes = 4; 675 for (i = 0; i < src_bytes; i++) 676 v |= ((u32)src[i]) << ((3 - i) * 8); 677 return v; 678 } 679 680 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 681 { 682 int i; 683 if (dst_bytes > 4) 684 dst_bytes = 4; 685 for (i = 0; i < dst_bytes; i++) 686 dst[i] = src >> ((3-i) * 8); 687 } 688 689 static void 690 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 691 static void 692 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 693 bool force_disable_vdd); 694 static void 695 intel_dp_pps_init(struct intel_dp *intel_dp); 696 697 static intel_wakeref_t 698 pps_lock(struct intel_dp *intel_dp) 699 { 700 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 701 intel_wakeref_t wakeref; 702 703 /* 704 * See intel_power_sequencer_reset() why we need 705 * a power domain reference here. 706 */ 707 wakeref = intel_display_power_get(dev_priv, 708 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 709 710 mutex_lock(&dev_priv->pps_mutex); 711 712 return wakeref; 713 } 714 715 static intel_wakeref_t 716 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 717 { 718 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 719 720 mutex_unlock(&dev_priv->pps_mutex); 721 intel_display_power_put(dev_priv, 722 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 723 wakeref); 724 return 0; 725 } 726 727 #define with_pps_lock(dp, wf) \ 728 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 729 730 static void 731 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 732 { 733 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 734 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 735 enum pipe pipe = intel_dp->pps_pipe; 736 bool pll_enabled, release_cl_override = false; 737 enum dpio_phy phy = DPIO_PHY(pipe); 738 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 739 u32 DP; 740 741 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, 742 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n", 743 pipe_name(pipe), intel_dig_port->base.base.base.id, 744 intel_dig_port->base.base.name)) 745 return; 746 747 DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n", 748 pipe_name(pipe), intel_dig_port->base.base.base.id, 749 intel_dig_port->base.base.name); 750 751 /* Preserve the BIOS-computed detected bit. This is 752 * supposed to be read-only. 753 */ 754 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 755 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 756 DP |= DP_PORT_WIDTH(1); 757 DP |= DP_LINK_TRAIN_PAT_1; 758 759 if (IS_CHERRYVIEW(dev_priv)) 760 DP |= DP_PIPE_SEL_CHV(pipe); 761 else 762 DP |= DP_PIPE_SEL(pipe); 763 764 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; 765 766 /* 767 * The DPLL for the pipe must be enabled for this to work. 768 * So enable temporarily it if it's not already enabled. 769 */ 770 if (!pll_enabled) { 771 release_cl_override = IS_CHERRYVIEW(dev_priv) && 772 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 773 774 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 775 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 776 DRM_ERROR("Failed to force on pll for pipe %c!\n", 777 pipe_name(pipe)); 778 return; 779 } 780 } 781 782 /* 783 * Similar magic as in intel_dp_enable_port(). 784 * We _must_ do this port enable + disable trick 785 * to make this power sequencer lock onto the port. 786 * Otherwise even VDD force bit won't work. 787 */ 788 I915_WRITE(intel_dp->output_reg, DP); 789 POSTING_READ(intel_dp->output_reg); 790 791 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); 792 POSTING_READ(intel_dp->output_reg); 793 794 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); 795 POSTING_READ(intel_dp->output_reg); 796 797 if (!pll_enabled) { 798 vlv_force_pll_off(dev_priv, pipe); 799 800 if (release_cl_override) 801 chv_phy_powergate_ch(dev_priv, phy, ch, false); 802 } 803 } 804 805 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 806 { 807 struct intel_encoder *encoder; 808 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 809 810 /* 811 * We don't have power sequencer currently. 812 * Pick one that's not used by other ports. 813 */ 814 for_each_intel_dp(&dev_priv->drm, encoder) { 815 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 816 817 if (encoder->type == INTEL_OUTPUT_EDP) { 818 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 819 intel_dp->active_pipe != intel_dp->pps_pipe); 820 821 if (intel_dp->pps_pipe != INVALID_PIPE) 822 pipes &= ~(1 << intel_dp->pps_pipe); 823 } else { 824 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE); 825 826 if (intel_dp->active_pipe != INVALID_PIPE) 827 pipes &= ~(1 << intel_dp->active_pipe); 828 } 829 } 830 831 if (pipes == 0) 832 return INVALID_PIPE; 833 834 return ffs(pipes) - 1; 835 } 836 837 static enum pipe 838 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 839 { 840 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 841 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 842 enum pipe pipe; 843 844 lockdep_assert_held(&dev_priv->pps_mutex); 845 846 /* We should never land here with regular DP ports */ 847 WARN_ON(!intel_dp_is_edp(intel_dp)); 848 849 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 850 intel_dp->active_pipe != intel_dp->pps_pipe); 851 852 if (intel_dp->pps_pipe != INVALID_PIPE) 853 return intel_dp->pps_pipe; 854 855 pipe = vlv_find_free_pps(dev_priv); 856 857 /* 858 * Didn't find one. This should not happen since there 859 * are two power sequencers and up to two eDP ports. 860 */ 861 if (WARN_ON(pipe == INVALID_PIPE)) 862 pipe = PIPE_A; 863 864 vlv_steal_power_sequencer(dev_priv, pipe); 865 intel_dp->pps_pipe = pipe; 866 867 DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n", 868 pipe_name(intel_dp->pps_pipe), 869 intel_dig_port->base.base.base.id, 870 intel_dig_port->base.base.name); 871 872 /* init power sequencer on this pipe and port */ 873 intel_dp_init_panel_power_sequencer(intel_dp); 874 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 875 876 /* 877 * Even vdd force doesn't work until we've made 878 * the power sequencer lock in on the port. 879 */ 880 vlv_power_sequencer_kick(intel_dp); 881 882 return intel_dp->pps_pipe; 883 } 884 885 static int 886 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 887 { 888 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 889 int backlight_controller = dev_priv->vbt.backlight.controller; 890 891 lockdep_assert_held(&dev_priv->pps_mutex); 892 893 /* We should never land here with regular DP ports */ 894 WARN_ON(!intel_dp_is_edp(intel_dp)); 895 896 if (!intel_dp->pps_reset) 897 return backlight_controller; 898 899 intel_dp->pps_reset = false; 900 901 /* 902 * Only the HW needs to be reprogrammed, the SW state is fixed and 903 * has been setup during connector init. 904 */ 905 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 906 907 return backlight_controller; 908 } 909 910 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 911 enum pipe pipe); 912 913 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 914 enum pipe pipe) 915 { 916 return I915_READ(PP_STATUS(pipe)) & PP_ON; 917 } 918 919 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 920 enum pipe pipe) 921 { 922 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD; 923 } 924 925 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 926 enum pipe pipe) 927 { 928 return true; 929 } 930 931 static enum pipe 932 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 933 enum port port, 934 vlv_pipe_check pipe_check) 935 { 936 enum pipe pipe; 937 938 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 939 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) & 940 PANEL_PORT_SELECT_MASK; 941 942 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 943 continue; 944 945 if (!pipe_check(dev_priv, pipe)) 946 continue; 947 948 return pipe; 949 } 950 951 return INVALID_PIPE; 952 } 953 954 static void 955 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 956 { 957 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 958 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 959 enum port port = intel_dig_port->base.port; 960 961 lockdep_assert_held(&dev_priv->pps_mutex); 962 963 /* try to find a pipe with this port selected */ 964 /* first pick one where the panel is on */ 965 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 966 vlv_pipe_has_pp_on); 967 /* didn't find one? pick one where vdd is on */ 968 if (intel_dp->pps_pipe == INVALID_PIPE) 969 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 970 vlv_pipe_has_vdd_on); 971 /* didn't find one? pick one with just the correct port */ 972 if (intel_dp->pps_pipe == INVALID_PIPE) 973 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 974 vlv_pipe_any); 975 976 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 977 if (intel_dp->pps_pipe == INVALID_PIPE) { 978 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n", 979 intel_dig_port->base.base.base.id, 980 intel_dig_port->base.base.name); 981 return; 982 } 983 984 DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n", 985 intel_dig_port->base.base.base.id, 986 intel_dig_port->base.base.name, 987 pipe_name(intel_dp->pps_pipe)); 988 989 intel_dp_init_panel_power_sequencer(intel_dp); 990 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 991 } 992 993 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 994 { 995 struct intel_encoder *encoder; 996 997 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 998 !IS_GEN9_LP(dev_priv))) 999 return; 1000 1001 /* 1002 * We can't grab pps_mutex here due to deadlock with power_domain 1003 * mutex when power_domain functions are called while holding pps_mutex. 1004 * That also means that in order to use pps_pipe the code needs to 1005 * hold both a power domain reference and pps_mutex, and the power domain 1006 * reference get/put must be done while _not_ holding pps_mutex. 1007 * pps_{lock,unlock}() do these steps in the correct order, so one 1008 * should use them always. 1009 */ 1010 1011 for_each_intel_dp(&dev_priv->drm, encoder) { 1012 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 1013 1014 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 1015 1016 if (encoder->type != INTEL_OUTPUT_EDP) 1017 continue; 1018 1019 if (IS_GEN9_LP(dev_priv)) 1020 intel_dp->pps_reset = true; 1021 else 1022 intel_dp->pps_pipe = INVALID_PIPE; 1023 } 1024 } 1025 1026 struct pps_registers { 1027 i915_reg_t pp_ctrl; 1028 i915_reg_t pp_stat; 1029 i915_reg_t pp_on; 1030 i915_reg_t pp_off; 1031 i915_reg_t pp_div; 1032 }; 1033 1034 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1035 struct pps_registers *regs) 1036 { 1037 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1038 int pps_idx = 0; 1039 1040 memset(regs, 0, sizeof(*regs)); 1041 1042 if (IS_GEN9_LP(dev_priv)) 1043 pps_idx = bxt_power_sequencer_idx(intel_dp); 1044 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1045 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1046 1047 regs->pp_ctrl = PP_CONTROL(pps_idx); 1048 regs->pp_stat = PP_STATUS(pps_idx); 1049 regs->pp_on = PP_ON_DELAYS(pps_idx); 1050 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1051 1052 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1053 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1054 regs->pp_div = INVALID_MMIO_REG; 1055 else 1056 regs->pp_div = PP_DIVISOR(pps_idx); 1057 } 1058 1059 static i915_reg_t 1060 _pp_ctrl_reg(struct intel_dp *intel_dp) 1061 { 1062 struct pps_registers regs; 1063 1064 intel_pps_get_registers(intel_dp, ®s); 1065 1066 return regs.pp_ctrl; 1067 } 1068 1069 static i915_reg_t 1070 _pp_stat_reg(struct intel_dp *intel_dp) 1071 { 1072 struct pps_registers regs; 1073 1074 intel_pps_get_registers(intel_dp, ®s); 1075 1076 return regs.pp_stat; 1077 } 1078 1079 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1080 This function only applicable when panel PM state is not to be tracked */ 1081 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1082 void *unused) 1083 { 1084 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1085 edp_notifier); 1086 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1087 intel_wakeref_t wakeref; 1088 1089 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1090 return 0; 1091 1092 with_pps_lock(intel_dp, wakeref) { 1093 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1094 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1095 i915_reg_t pp_ctrl_reg, pp_div_reg; 1096 u32 pp_div; 1097 1098 pp_ctrl_reg = PP_CONTROL(pipe); 1099 pp_div_reg = PP_DIVISOR(pipe); 1100 pp_div = I915_READ(pp_div_reg); 1101 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1102 1103 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1104 I915_WRITE(pp_div_reg, pp_div | 0x1F); 1105 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS); 1106 msleep(intel_dp->panel_power_cycle_delay); 1107 } 1108 } 1109 1110 return 0; 1111 } 1112 1113 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1114 { 1115 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1116 1117 lockdep_assert_held(&dev_priv->pps_mutex); 1118 1119 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1120 intel_dp->pps_pipe == INVALID_PIPE) 1121 return false; 1122 1123 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; 1124 } 1125 1126 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1127 { 1128 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1129 1130 lockdep_assert_held(&dev_priv->pps_mutex); 1131 1132 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1133 intel_dp->pps_pipe == INVALID_PIPE) 1134 return false; 1135 1136 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1137 } 1138 1139 static void 1140 intel_dp_check_edp(struct intel_dp *intel_dp) 1141 { 1142 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1143 1144 if (!intel_dp_is_edp(intel_dp)) 1145 return; 1146 1147 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1148 WARN(1, "eDP powered off while attempting aux channel communication.\n"); 1149 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", 1150 I915_READ(_pp_stat_reg(intel_dp)), 1151 I915_READ(_pp_ctrl_reg(intel_dp))); 1152 } 1153 } 1154 1155 static u32 1156 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1157 { 1158 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1159 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1160 u32 status; 1161 bool done; 1162 1163 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1164 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1165 msecs_to_jiffies_timeout(10)); 1166 1167 /* just trace the final value */ 1168 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1169 1170 if (!done) 1171 DRM_ERROR("dp aux hw did not signal timeout!\n"); 1172 #undef C 1173 1174 return status; 1175 } 1176 1177 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1178 { 1179 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1180 1181 if (index) 1182 return 0; 1183 1184 /* 1185 * The clock divider is based off the hrawclk, and would like to run at 1186 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1187 */ 1188 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1189 } 1190 1191 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1192 { 1193 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1194 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1195 1196 if (index) 1197 return 0; 1198 1199 /* 1200 * The clock divider is based off the cdclk or PCH rawclk, and would 1201 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1202 * divide by 2000 and use that 1203 */ 1204 if (dig_port->aux_ch == AUX_CH_A) 1205 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000); 1206 else 1207 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1208 } 1209 1210 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1211 { 1212 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1213 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1214 1215 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1216 /* Workaround for non-ULT HSW */ 1217 switch (index) { 1218 case 0: return 63; 1219 case 1: return 72; 1220 default: return 0; 1221 } 1222 } 1223 1224 return ilk_get_aux_clock_divider(intel_dp, index); 1225 } 1226 1227 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1228 { 1229 /* 1230 * SKL doesn't need us to program the AUX clock divider (Hardware will 1231 * derive the clock from CDCLK automatically). We still implement the 1232 * get_aux_clock_divider vfunc to plug-in into the existing code. 1233 */ 1234 return index ? 0 : 1; 1235 } 1236 1237 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1238 int send_bytes, 1239 u32 aux_clock_divider) 1240 { 1241 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1242 struct drm_i915_private *dev_priv = 1243 to_i915(intel_dig_port->base.base.dev); 1244 u32 precharge, timeout; 1245 1246 if (IS_GEN(dev_priv, 6)) 1247 precharge = 3; 1248 else 1249 precharge = 5; 1250 1251 if (IS_BROADWELL(dev_priv)) 1252 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1253 else 1254 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1255 1256 return DP_AUX_CH_CTL_SEND_BUSY | 1257 DP_AUX_CH_CTL_DONE | 1258 DP_AUX_CH_CTL_INTERRUPT | 1259 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1260 timeout | 1261 DP_AUX_CH_CTL_RECEIVE_ERROR | 1262 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1263 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1264 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1265 } 1266 1267 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1268 int send_bytes, 1269 u32 unused) 1270 { 1271 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1272 u32 ret; 1273 1274 ret = DP_AUX_CH_CTL_SEND_BUSY | 1275 DP_AUX_CH_CTL_DONE | 1276 DP_AUX_CH_CTL_INTERRUPT | 1277 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1278 DP_AUX_CH_CTL_TIME_OUT_MAX | 1279 DP_AUX_CH_CTL_RECEIVE_ERROR | 1280 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1281 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1282 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1283 1284 if (intel_dig_port->tc_mode == TC_PORT_TBT_ALT) 1285 ret |= DP_AUX_CH_CTL_TBT_IO; 1286 1287 return ret; 1288 } 1289 1290 static int 1291 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1292 const u8 *send, int send_bytes, 1293 u8 *recv, int recv_size, 1294 u32 aux_send_ctl_flags) 1295 { 1296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1297 struct drm_i915_private *i915 = 1298 to_i915(intel_dig_port->base.base.dev); 1299 struct intel_uncore *uncore = &i915->uncore; 1300 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1301 bool is_tc_port = intel_phy_is_tc(i915, phy); 1302 i915_reg_t ch_ctl, ch_data[5]; 1303 u32 aux_clock_divider; 1304 enum intel_display_power_domain aux_domain = 1305 intel_aux_power_domain(intel_dig_port); 1306 intel_wakeref_t aux_wakeref; 1307 intel_wakeref_t pps_wakeref; 1308 int i, ret, recv_bytes; 1309 int try, clock = 0; 1310 u32 status; 1311 bool vdd; 1312 1313 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1314 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1315 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1316 1317 if (is_tc_port) 1318 intel_tc_port_lock(intel_dig_port); 1319 1320 aux_wakeref = intel_display_power_get(i915, aux_domain); 1321 pps_wakeref = pps_lock(intel_dp); 1322 1323 /* 1324 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1325 * In such cases we want to leave VDD enabled and it's up to upper layers 1326 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1327 * ourselves. 1328 */ 1329 vdd = edp_panel_vdd_on(intel_dp); 1330 1331 /* dp aux is extremely sensitive to irq latency, hence request the 1332 * lowest possible wakeup latency and so prevent the cpu from going into 1333 * deep sleep states. 1334 */ 1335 pm_qos_update_request(&i915->pm_qos, 0); 1336 1337 intel_dp_check_edp(intel_dp); 1338 1339 /* Try to wait for any previous AUX channel activity */ 1340 for (try = 0; try < 3; try++) { 1341 status = intel_uncore_read_notrace(uncore, ch_ctl); 1342 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1343 break; 1344 msleep(1); 1345 } 1346 /* just trace the final value */ 1347 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1348 1349 if (try == 3) { 1350 const u32 status = intel_uncore_read(uncore, ch_ctl); 1351 1352 if (status != intel_dp->aux_busy_last_status) { 1353 WARN(1, "dp_aux_ch not started status 0x%08x\n", 1354 status); 1355 intel_dp->aux_busy_last_status = status; 1356 } 1357 1358 ret = -EBUSY; 1359 goto out; 1360 } 1361 1362 /* Only 5 data registers! */ 1363 if (WARN_ON(send_bytes > 20 || recv_size > 20)) { 1364 ret = -E2BIG; 1365 goto out; 1366 } 1367 1368 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1369 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1370 send_bytes, 1371 aux_clock_divider); 1372 1373 send_ctl |= aux_send_ctl_flags; 1374 1375 /* Must try at least 3 times according to DP spec */ 1376 for (try = 0; try < 5; try++) { 1377 /* Load the send data into the aux channel data registers */ 1378 for (i = 0; i < send_bytes; i += 4) 1379 intel_uncore_write(uncore, 1380 ch_data[i >> 2], 1381 intel_dp_pack_aux(send + i, 1382 send_bytes - i)); 1383 1384 /* Send the command and wait for it to complete */ 1385 intel_uncore_write(uncore, ch_ctl, send_ctl); 1386 1387 status = intel_dp_aux_wait_done(intel_dp); 1388 1389 /* Clear done status and any errors */ 1390 intel_uncore_write(uncore, 1391 ch_ctl, 1392 status | 1393 DP_AUX_CH_CTL_DONE | 1394 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1395 DP_AUX_CH_CTL_RECEIVE_ERROR); 1396 1397 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1398 * 400us delay required for errors and timeouts 1399 * Timeout errors from the HW already meet this 1400 * requirement so skip to next iteration 1401 */ 1402 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1403 continue; 1404 1405 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1406 usleep_range(400, 500); 1407 continue; 1408 } 1409 if (status & DP_AUX_CH_CTL_DONE) 1410 goto done; 1411 } 1412 } 1413 1414 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1415 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); 1416 ret = -EBUSY; 1417 goto out; 1418 } 1419 1420 done: 1421 /* Check for timeout or receive error. 1422 * Timeouts occur when the sink is not connected 1423 */ 1424 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1425 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); 1426 ret = -EIO; 1427 goto out; 1428 } 1429 1430 /* Timeouts occur when the device isn't connected, so they're 1431 * "normal" -- don't fill the kernel log with these */ 1432 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1433 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); 1434 ret = -ETIMEDOUT; 1435 goto out; 1436 } 1437 1438 /* Unload any bytes sent back from the other side */ 1439 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1440 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1441 1442 /* 1443 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1444 * We have no idea of what happened so we return -EBUSY so 1445 * drm layer takes care for the necessary retries. 1446 */ 1447 if (recv_bytes == 0 || recv_bytes > 20) { 1448 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n", 1449 recv_bytes); 1450 ret = -EBUSY; 1451 goto out; 1452 } 1453 1454 if (recv_bytes > recv_size) 1455 recv_bytes = recv_size; 1456 1457 for (i = 0; i < recv_bytes; i += 4) 1458 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1459 recv + i, recv_bytes - i); 1460 1461 ret = recv_bytes; 1462 out: 1463 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1464 1465 if (vdd) 1466 edp_panel_vdd_off(intel_dp, false); 1467 1468 pps_unlock(intel_dp, pps_wakeref); 1469 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1470 1471 if (is_tc_port) 1472 intel_tc_port_unlock(intel_dig_port); 1473 1474 return ret; 1475 } 1476 1477 #define BARE_ADDRESS_SIZE 3 1478 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1479 1480 static void 1481 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1482 const struct drm_dp_aux_msg *msg) 1483 { 1484 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1485 txbuf[1] = (msg->address >> 8) & 0xff; 1486 txbuf[2] = msg->address & 0xff; 1487 txbuf[3] = msg->size - 1; 1488 } 1489 1490 static ssize_t 1491 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1492 { 1493 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1494 u8 txbuf[20], rxbuf[20]; 1495 size_t txsize, rxsize; 1496 int ret; 1497 1498 intel_dp_aux_header(txbuf, msg); 1499 1500 switch (msg->request & ~DP_AUX_I2C_MOT) { 1501 case DP_AUX_NATIVE_WRITE: 1502 case DP_AUX_I2C_WRITE: 1503 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1504 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1505 rxsize = 2; /* 0 or 1 data bytes */ 1506 1507 if (WARN_ON(txsize > 20)) 1508 return -E2BIG; 1509 1510 WARN_ON(!msg->buffer != !msg->size); 1511 1512 if (msg->buffer) 1513 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1514 1515 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1516 rxbuf, rxsize, 0); 1517 if (ret > 0) { 1518 msg->reply = rxbuf[0] >> 4; 1519 1520 if (ret > 1) { 1521 /* Number of bytes written in a short write. */ 1522 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1523 } else { 1524 /* Return payload size. */ 1525 ret = msg->size; 1526 } 1527 } 1528 break; 1529 1530 case DP_AUX_NATIVE_READ: 1531 case DP_AUX_I2C_READ: 1532 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1533 rxsize = msg->size + 1; 1534 1535 if (WARN_ON(rxsize > 20)) 1536 return -E2BIG; 1537 1538 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1539 rxbuf, rxsize, 0); 1540 if (ret > 0) { 1541 msg->reply = rxbuf[0] >> 4; 1542 /* 1543 * Assume happy day, and copy the data. The caller is 1544 * expected to check msg->reply before touching it. 1545 * 1546 * Return payload size. 1547 */ 1548 ret--; 1549 memcpy(msg->buffer, rxbuf + 1, ret); 1550 } 1551 break; 1552 1553 default: 1554 ret = -EINVAL; 1555 break; 1556 } 1557 1558 return ret; 1559 } 1560 1561 1562 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1563 { 1564 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1565 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1566 enum aux_ch aux_ch = dig_port->aux_ch; 1567 1568 switch (aux_ch) { 1569 case AUX_CH_B: 1570 case AUX_CH_C: 1571 case AUX_CH_D: 1572 return DP_AUX_CH_CTL(aux_ch); 1573 default: 1574 MISSING_CASE(aux_ch); 1575 return DP_AUX_CH_CTL(AUX_CH_B); 1576 } 1577 } 1578 1579 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1580 { 1581 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1582 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1583 enum aux_ch aux_ch = dig_port->aux_ch; 1584 1585 switch (aux_ch) { 1586 case AUX_CH_B: 1587 case AUX_CH_C: 1588 case AUX_CH_D: 1589 return DP_AUX_CH_DATA(aux_ch, index); 1590 default: 1591 MISSING_CASE(aux_ch); 1592 return DP_AUX_CH_DATA(AUX_CH_B, index); 1593 } 1594 } 1595 1596 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1597 { 1598 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1599 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1600 enum aux_ch aux_ch = dig_port->aux_ch; 1601 1602 switch (aux_ch) { 1603 case AUX_CH_A: 1604 return DP_AUX_CH_CTL(aux_ch); 1605 case AUX_CH_B: 1606 case AUX_CH_C: 1607 case AUX_CH_D: 1608 return PCH_DP_AUX_CH_CTL(aux_ch); 1609 default: 1610 MISSING_CASE(aux_ch); 1611 return DP_AUX_CH_CTL(AUX_CH_A); 1612 } 1613 } 1614 1615 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1616 { 1617 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1618 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1619 enum aux_ch aux_ch = dig_port->aux_ch; 1620 1621 switch (aux_ch) { 1622 case AUX_CH_A: 1623 return DP_AUX_CH_DATA(aux_ch, index); 1624 case AUX_CH_B: 1625 case AUX_CH_C: 1626 case AUX_CH_D: 1627 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1628 default: 1629 MISSING_CASE(aux_ch); 1630 return DP_AUX_CH_DATA(AUX_CH_A, index); 1631 } 1632 } 1633 1634 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1635 { 1636 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1637 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1638 enum aux_ch aux_ch = dig_port->aux_ch; 1639 1640 switch (aux_ch) { 1641 case AUX_CH_A: 1642 case AUX_CH_B: 1643 case AUX_CH_C: 1644 case AUX_CH_D: 1645 case AUX_CH_E: 1646 case AUX_CH_F: 1647 return DP_AUX_CH_CTL(aux_ch); 1648 default: 1649 MISSING_CASE(aux_ch); 1650 return DP_AUX_CH_CTL(AUX_CH_A); 1651 } 1652 } 1653 1654 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1655 { 1656 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1657 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1658 enum aux_ch aux_ch = dig_port->aux_ch; 1659 1660 switch (aux_ch) { 1661 case AUX_CH_A: 1662 case AUX_CH_B: 1663 case AUX_CH_C: 1664 case AUX_CH_D: 1665 case AUX_CH_E: 1666 case AUX_CH_F: 1667 return DP_AUX_CH_DATA(aux_ch, index); 1668 default: 1669 MISSING_CASE(aux_ch); 1670 return DP_AUX_CH_DATA(AUX_CH_A, index); 1671 } 1672 } 1673 1674 static void 1675 intel_dp_aux_fini(struct intel_dp *intel_dp) 1676 { 1677 kfree(intel_dp->aux.name); 1678 } 1679 1680 static void 1681 intel_dp_aux_init(struct intel_dp *intel_dp) 1682 { 1683 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1684 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1685 struct intel_encoder *encoder = &dig_port->base; 1686 1687 if (INTEL_GEN(dev_priv) >= 9) { 1688 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1689 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1690 } else if (HAS_PCH_SPLIT(dev_priv)) { 1691 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1692 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1693 } else { 1694 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1695 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1696 } 1697 1698 if (INTEL_GEN(dev_priv) >= 9) 1699 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1700 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1701 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1702 else if (HAS_PCH_SPLIT(dev_priv)) 1703 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1704 else 1705 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1706 1707 if (INTEL_GEN(dev_priv) >= 9) 1708 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1709 else 1710 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1711 1712 drm_dp_aux_init(&intel_dp->aux); 1713 1714 /* Failure to allocate our preferred name is not critical */ 1715 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", 1716 port_name(encoder->port)); 1717 intel_dp->aux.transfer = intel_dp_aux_transfer; 1718 } 1719 1720 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1721 { 1722 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1723 1724 return max_rate >= 540000; 1725 } 1726 1727 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1728 { 1729 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1730 1731 return max_rate >= 810000; 1732 } 1733 1734 static void 1735 intel_dp_set_clock(struct intel_encoder *encoder, 1736 struct intel_crtc_state *pipe_config) 1737 { 1738 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1739 const struct dp_link_dpll *divisor = NULL; 1740 int i, count = 0; 1741 1742 if (IS_G4X(dev_priv)) { 1743 divisor = g4x_dpll; 1744 count = ARRAY_SIZE(g4x_dpll); 1745 } else if (HAS_PCH_SPLIT(dev_priv)) { 1746 divisor = pch_dpll; 1747 count = ARRAY_SIZE(pch_dpll); 1748 } else if (IS_CHERRYVIEW(dev_priv)) { 1749 divisor = chv_dpll; 1750 count = ARRAY_SIZE(chv_dpll); 1751 } else if (IS_VALLEYVIEW(dev_priv)) { 1752 divisor = vlv_dpll; 1753 count = ARRAY_SIZE(vlv_dpll); 1754 } 1755 1756 if (divisor && count) { 1757 for (i = 0; i < count; i++) { 1758 if (pipe_config->port_clock == divisor[i].clock) { 1759 pipe_config->dpll = divisor[i].dpll; 1760 pipe_config->clock_set = true; 1761 break; 1762 } 1763 } 1764 } 1765 } 1766 1767 static void snprintf_int_array(char *str, size_t len, 1768 const int *array, int nelem) 1769 { 1770 int i; 1771 1772 str[0] = '\0'; 1773 1774 for (i = 0; i < nelem; i++) { 1775 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1776 if (r >= len) 1777 return; 1778 str += r; 1779 len -= r; 1780 } 1781 } 1782 1783 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1784 { 1785 char str[128]; /* FIXME: too big for stack? */ 1786 1787 if ((drm_debug & DRM_UT_KMS) == 0) 1788 return; 1789 1790 snprintf_int_array(str, sizeof(str), 1791 intel_dp->source_rates, intel_dp->num_source_rates); 1792 DRM_DEBUG_KMS("source rates: %s\n", str); 1793 1794 snprintf_int_array(str, sizeof(str), 1795 intel_dp->sink_rates, intel_dp->num_sink_rates); 1796 DRM_DEBUG_KMS("sink rates: %s\n", str); 1797 1798 snprintf_int_array(str, sizeof(str), 1799 intel_dp->common_rates, intel_dp->num_common_rates); 1800 DRM_DEBUG_KMS("common rates: %s\n", str); 1801 } 1802 1803 int 1804 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1805 { 1806 int len; 1807 1808 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1809 if (WARN_ON(len <= 0)) 1810 return 162000; 1811 1812 return intel_dp->common_rates[len - 1]; 1813 } 1814 1815 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1816 { 1817 int i = intel_dp_rate_index(intel_dp->sink_rates, 1818 intel_dp->num_sink_rates, rate); 1819 1820 if (WARN_ON(i < 0)) 1821 i = 0; 1822 1823 return i; 1824 } 1825 1826 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1827 u8 *link_bw, u8 *rate_select) 1828 { 1829 /* eDP 1.4 rate select method. */ 1830 if (intel_dp->use_rate_select) { 1831 *link_bw = 0; 1832 *rate_select = 1833 intel_dp_rate_select(intel_dp, port_clock); 1834 } else { 1835 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1836 *rate_select = 0; 1837 } 1838 } 1839 1840 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1841 const struct intel_crtc_state *pipe_config) 1842 { 1843 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1844 1845 /* On TGL, FEC is supported on all Pipes */ 1846 if (INTEL_GEN(dev_priv) >= 12) 1847 return true; 1848 1849 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A) 1850 return true; 1851 1852 return false; 1853 } 1854 1855 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1856 const struct intel_crtc_state *pipe_config) 1857 { 1858 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1859 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1860 } 1861 1862 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp, 1863 const struct intel_crtc_state *pipe_config) 1864 { 1865 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1866 1867 /* On TGL, DSC is supported on all Pipes */ 1868 if (INTEL_GEN(dev_priv) >= 12) 1869 return true; 1870 1871 if (INTEL_GEN(dev_priv) >= 10 && 1872 pipe_config->cpu_transcoder != TRANSCODER_A) 1873 return true; 1874 1875 return false; 1876 } 1877 1878 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1879 const struct intel_crtc_state *pipe_config) 1880 { 1881 if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable) 1882 return false; 1883 1884 return intel_dp_source_supports_dsc(intel_dp, pipe_config) && 1885 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1886 } 1887 1888 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1889 struct intel_crtc_state *pipe_config) 1890 { 1891 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1892 struct intel_connector *intel_connector = intel_dp->attached_connector; 1893 int bpp, bpc; 1894 1895 bpp = pipe_config->pipe_bpp; 1896 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1897 1898 if (bpc > 0) 1899 bpp = min(bpp, 3*bpc); 1900 1901 if (intel_dp_is_edp(intel_dp)) { 1902 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1903 if (intel_connector->base.display_info.bpc == 0 && 1904 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1905 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", 1906 dev_priv->vbt.edp.bpp); 1907 bpp = dev_priv->vbt.edp.bpp; 1908 } 1909 } 1910 1911 return bpp; 1912 } 1913 1914 /* Adjust link config limits based on compliance test requests. */ 1915 void 1916 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1917 struct intel_crtc_state *pipe_config, 1918 struct link_config_limits *limits) 1919 { 1920 /* For DP Compliance we override the computed bpp for the pipe */ 1921 if (intel_dp->compliance.test_data.bpc != 0) { 1922 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1923 1924 limits->min_bpp = limits->max_bpp = bpp; 1925 pipe_config->dither_force_disable = bpp == 6 * 3; 1926 1927 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); 1928 } 1929 1930 /* Use values requested by Compliance Test Request */ 1931 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 1932 int index; 1933 1934 /* Validate the compliance test data since max values 1935 * might have changed due to link train fallback. 1936 */ 1937 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 1938 intel_dp->compliance.test_lane_count)) { 1939 index = intel_dp_rate_index(intel_dp->common_rates, 1940 intel_dp->num_common_rates, 1941 intel_dp->compliance.test_link_rate); 1942 if (index >= 0) 1943 limits->min_clock = limits->max_clock = index; 1944 limits->min_lane_count = limits->max_lane_count = 1945 intel_dp->compliance.test_lane_count; 1946 } 1947 } 1948 } 1949 1950 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 1951 { 1952 /* 1953 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1954 * format of the number of bytes per pixel will be half the number 1955 * of bytes of RGB pixel. 1956 */ 1957 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1958 bpp /= 2; 1959 1960 return bpp; 1961 } 1962 1963 /* Optimize link config in order: max bpp, min clock, min lanes */ 1964 static int 1965 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 1966 struct intel_crtc_state *pipe_config, 1967 const struct link_config_limits *limits) 1968 { 1969 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 1970 int bpp, clock, lane_count; 1971 int mode_rate, link_clock, link_avail; 1972 1973 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 1974 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 1975 1976 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 1977 output_bpp); 1978 1979 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 1980 for (lane_count = limits->min_lane_count; 1981 lane_count <= limits->max_lane_count; 1982 lane_count <<= 1) { 1983 link_clock = intel_dp->common_rates[clock]; 1984 link_avail = intel_dp_max_data_rate(link_clock, 1985 lane_count); 1986 1987 if (mode_rate <= link_avail) { 1988 pipe_config->lane_count = lane_count; 1989 pipe_config->pipe_bpp = bpp; 1990 pipe_config->port_clock = link_clock; 1991 1992 return 0; 1993 } 1994 } 1995 } 1996 } 1997 1998 return -EINVAL; 1999 } 2000 2001 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 2002 { 2003 int i, num_bpc; 2004 u8 dsc_bpc[3] = {0}; 2005 2006 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 2007 dsc_bpc); 2008 for (i = 0; i < num_bpc; i++) { 2009 if (dsc_max_bpc >= dsc_bpc[i]) 2010 return dsc_bpc[i] * 3; 2011 } 2012 2013 return 0; 2014 } 2015 2016 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2017 struct intel_crtc_state *pipe_config, 2018 struct drm_connector_state *conn_state, 2019 struct link_config_limits *limits) 2020 { 2021 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2022 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2023 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2024 u8 dsc_max_bpc; 2025 int pipe_bpp; 2026 int ret; 2027 2028 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2029 intel_dp_supports_fec(intel_dp, pipe_config); 2030 2031 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2032 return -EINVAL; 2033 2034 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 2035 if (INTEL_GEN(dev_priv) >= 12) 2036 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc); 2037 else 2038 dsc_max_bpc = min_t(u8, 10, 2039 conn_state->max_requested_bpc); 2040 2041 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2042 2043 /* Min Input BPC for ICL+ is 8 */ 2044 if (pipe_bpp < 8 * 3) { 2045 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n"); 2046 return -EINVAL; 2047 } 2048 2049 /* 2050 * For now enable DSC for max bpp, max link rate, max lane count. 2051 * Optimize this later for the minimum possible link rate/lane count 2052 * with DSC enabled for the requested mode. 2053 */ 2054 pipe_config->pipe_bpp = pipe_bpp; 2055 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2056 pipe_config->lane_count = limits->max_lane_count; 2057 2058 if (intel_dp_is_edp(intel_dp)) { 2059 pipe_config->dsc_params.compressed_bpp = 2060 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2061 pipe_config->pipe_bpp); 2062 pipe_config->dsc_params.slice_count = 2063 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2064 true); 2065 } else { 2066 u16 dsc_max_output_bpp; 2067 u8 dsc_dp_slice_count; 2068 2069 dsc_max_output_bpp = 2070 intel_dp_dsc_get_output_bpp(dev_priv, 2071 pipe_config->port_clock, 2072 pipe_config->lane_count, 2073 adjusted_mode->crtc_clock, 2074 adjusted_mode->crtc_hdisplay); 2075 dsc_dp_slice_count = 2076 intel_dp_dsc_get_slice_count(intel_dp, 2077 adjusted_mode->crtc_clock, 2078 adjusted_mode->crtc_hdisplay); 2079 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2080 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n"); 2081 return -EINVAL; 2082 } 2083 pipe_config->dsc_params.compressed_bpp = min_t(u16, 2084 dsc_max_output_bpp >> 4, 2085 pipe_config->pipe_bpp); 2086 pipe_config->dsc_params.slice_count = dsc_dp_slice_count; 2087 } 2088 /* 2089 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2090 * is greater than the maximum Cdclock and if slice count is even 2091 * then we need to use 2 VDSC instances. 2092 */ 2093 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 2094 if (pipe_config->dsc_params.slice_count > 1) { 2095 pipe_config->dsc_params.dsc_split = true; 2096 } else { 2097 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n"); 2098 return -EINVAL; 2099 } 2100 } 2101 2102 ret = intel_dp_compute_dsc_params(intel_dp, pipe_config); 2103 if (ret < 0) { 2104 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d " 2105 "Compressed BPP = %d\n", 2106 pipe_config->pipe_bpp, 2107 pipe_config->dsc_params.compressed_bpp); 2108 return ret; 2109 } 2110 2111 pipe_config->dsc_params.compression_enable = true; 2112 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d " 2113 "Compressed Bpp = %d Slice Count = %d\n", 2114 pipe_config->pipe_bpp, 2115 pipe_config->dsc_params.compressed_bpp, 2116 pipe_config->dsc_params.slice_count); 2117 2118 return 0; 2119 } 2120 2121 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2122 { 2123 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2124 return 6 * 3; 2125 else 2126 return 8 * 3; 2127 } 2128 2129 static int 2130 intel_dp_compute_link_config(struct intel_encoder *encoder, 2131 struct intel_crtc_state *pipe_config, 2132 struct drm_connector_state *conn_state) 2133 { 2134 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2135 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2136 struct link_config_limits limits; 2137 int common_len; 2138 int ret; 2139 2140 common_len = intel_dp_common_len_rate_limit(intel_dp, 2141 intel_dp->max_link_rate); 2142 2143 /* No common link rates between source and sink */ 2144 WARN_ON(common_len <= 0); 2145 2146 limits.min_clock = 0; 2147 limits.max_clock = common_len - 1; 2148 2149 limits.min_lane_count = 1; 2150 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2151 2152 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2153 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2154 2155 if (intel_dp_is_edp(intel_dp)) { 2156 /* 2157 * Use the maximum clock and number of lanes the eDP panel 2158 * advertizes being capable of. The panels are generally 2159 * designed to support only a single clock and lane 2160 * configuration, and typically these values correspond to the 2161 * native resolution of the panel. 2162 */ 2163 limits.min_lane_count = limits.max_lane_count; 2164 limits.min_clock = limits.max_clock; 2165 } 2166 2167 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2168 2169 DRM_DEBUG_KMS("DP link computation with max lane count %i " 2170 "max rate %d max bpp %d pixel clock %iKHz\n", 2171 limits.max_lane_count, 2172 intel_dp->common_rates[limits.max_clock], 2173 limits.max_bpp, adjusted_mode->crtc_clock); 2174 2175 /* 2176 * Optimize for slow and wide. This is the place to add alternative 2177 * optimization policy. 2178 */ 2179 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2180 2181 /* enable compression if the mode doesn't fit available BW */ 2182 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en); 2183 if (ret || intel_dp->force_dsc_en) { 2184 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2185 conn_state, &limits); 2186 if (ret < 0) 2187 return ret; 2188 } 2189 2190 if (pipe_config->dsc_params.compression_enable) { 2191 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2192 pipe_config->lane_count, pipe_config->port_clock, 2193 pipe_config->pipe_bpp, 2194 pipe_config->dsc_params.compressed_bpp); 2195 2196 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2197 intel_dp_link_required(adjusted_mode->crtc_clock, 2198 pipe_config->dsc_params.compressed_bpp), 2199 intel_dp_max_data_rate(pipe_config->port_clock, 2200 pipe_config->lane_count)); 2201 } else { 2202 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", 2203 pipe_config->lane_count, pipe_config->port_clock, 2204 pipe_config->pipe_bpp); 2205 2206 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2207 intel_dp_link_required(adjusted_mode->crtc_clock, 2208 pipe_config->pipe_bpp), 2209 intel_dp_max_data_rate(pipe_config->port_clock, 2210 pipe_config->lane_count)); 2211 } 2212 return 0; 2213 } 2214 2215 static int 2216 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2217 struct drm_connector *connector, 2218 struct intel_crtc_state *crtc_state) 2219 { 2220 const struct drm_display_info *info = &connector->display_info; 2221 const struct drm_display_mode *adjusted_mode = 2222 &crtc_state->base.adjusted_mode; 2223 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 2224 int ret; 2225 2226 if (!drm_mode_is_420_only(info, adjusted_mode) || 2227 !intel_dp_get_colorimetry_status(intel_dp) || 2228 !connector->ycbcr_420_allowed) 2229 return 0; 2230 2231 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2232 2233 /* YCBCR 420 output conversion needs a scaler */ 2234 ret = skl_update_scaler_crtc(crtc_state); 2235 if (ret) { 2236 DRM_DEBUG_KMS("Scaler allocation for output failed\n"); 2237 return ret; 2238 } 2239 2240 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN); 2241 2242 return 0; 2243 } 2244 2245 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2246 const struct drm_connector_state *conn_state) 2247 { 2248 const struct intel_digital_connector_state *intel_conn_state = 2249 to_intel_digital_connector_state(conn_state); 2250 const struct drm_display_mode *adjusted_mode = 2251 &crtc_state->base.adjusted_mode; 2252 2253 /* 2254 * Our YCbCr output is always limited range. 2255 * crtc_state->limited_color_range only applies to RGB, 2256 * and it must never be set for YCbCr or we risk setting 2257 * some conflicting bits in PIPECONF which will mess up 2258 * the colors on the monitor. 2259 */ 2260 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2261 return false; 2262 2263 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2264 /* 2265 * See: 2266 * CEA-861-E - 5.1 Default Encoding Parameters 2267 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2268 */ 2269 return crtc_state->pipe_bpp != 18 && 2270 drm_default_rgb_quant_range(adjusted_mode) == 2271 HDMI_QUANTIZATION_RANGE_LIMITED; 2272 } else { 2273 return intel_conn_state->broadcast_rgb == 2274 INTEL_BROADCAST_RGB_LIMITED; 2275 } 2276 } 2277 2278 int 2279 intel_dp_compute_config(struct intel_encoder *encoder, 2280 struct intel_crtc_state *pipe_config, 2281 struct drm_connector_state *conn_state) 2282 { 2283 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2284 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2285 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2286 struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base); 2287 enum port port = encoder->port; 2288 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); 2289 struct intel_connector *intel_connector = intel_dp->attached_connector; 2290 struct intel_digital_connector_state *intel_conn_state = 2291 to_intel_digital_connector_state(conn_state); 2292 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 2293 DP_DPCD_QUIRK_CONSTANT_N); 2294 int ret = 0, output_bpp; 2295 2296 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2297 pipe_config->has_pch_encoder = true; 2298 2299 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2300 if (lspcon->active) 2301 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2302 else 2303 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base, 2304 pipe_config); 2305 2306 if (ret) 2307 return ret; 2308 2309 pipe_config->has_drrs = false; 2310 if (IS_G4X(dev_priv) || port == PORT_A) 2311 pipe_config->has_audio = false; 2312 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2313 pipe_config->has_audio = intel_dp->has_audio; 2314 else 2315 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2316 2317 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2318 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2319 adjusted_mode); 2320 2321 if (INTEL_GEN(dev_priv) >= 9) { 2322 ret = skl_update_scaler_crtc(pipe_config); 2323 if (ret) 2324 return ret; 2325 } 2326 2327 if (HAS_GMCH(dev_priv)) 2328 intel_gmch_panel_fitting(intel_crtc, pipe_config, 2329 conn_state->scaling_mode); 2330 else 2331 intel_pch_panel_fitting(intel_crtc, pipe_config, 2332 conn_state->scaling_mode); 2333 } 2334 2335 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2336 return -EINVAL; 2337 2338 if (HAS_GMCH(dev_priv) && 2339 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2340 return -EINVAL; 2341 2342 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2343 return -EINVAL; 2344 2345 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2346 if (ret < 0) 2347 return ret; 2348 2349 pipe_config->limited_color_range = 2350 intel_dp_limited_color_range(pipe_config, conn_state); 2351 2352 if (pipe_config->dsc_params.compression_enable) 2353 output_bpp = pipe_config->dsc_params.compressed_bpp; 2354 else 2355 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2356 2357 intel_link_compute_m_n(output_bpp, 2358 pipe_config->lane_count, 2359 adjusted_mode->crtc_clock, 2360 pipe_config->port_clock, 2361 &pipe_config->dp_m_n, 2362 constant_n, pipe_config->fec_enable); 2363 2364 if (intel_connector->panel.downclock_mode != NULL && 2365 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2366 pipe_config->has_drrs = true; 2367 intel_link_compute_m_n(output_bpp, 2368 pipe_config->lane_count, 2369 intel_connector->panel.downclock_mode->clock, 2370 pipe_config->port_clock, 2371 &pipe_config->dp_m2_n2, 2372 constant_n, pipe_config->fec_enable); 2373 } 2374 2375 if (!HAS_DDI(dev_priv)) 2376 intel_dp_set_clock(encoder, pipe_config); 2377 2378 intel_psr_compute_config(intel_dp, pipe_config); 2379 2380 intel_hdcp_transcoder_config(intel_connector, 2381 pipe_config->cpu_transcoder); 2382 2383 return 0; 2384 } 2385 2386 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2387 int link_rate, u8 lane_count, 2388 bool link_mst) 2389 { 2390 intel_dp->link_trained = false; 2391 intel_dp->link_rate = link_rate; 2392 intel_dp->lane_count = lane_count; 2393 intel_dp->link_mst = link_mst; 2394 } 2395 2396 static void intel_dp_prepare(struct intel_encoder *encoder, 2397 const struct intel_crtc_state *pipe_config) 2398 { 2399 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2400 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2401 enum port port = encoder->port; 2402 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 2403 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2404 2405 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2406 pipe_config->lane_count, 2407 intel_crtc_has_type(pipe_config, 2408 INTEL_OUTPUT_DP_MST)); 2409 2410 intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port); 2411 intel_dp->regs.dp_tp_status = DP_TP_STATUS(port); 2412 2413 /* 2414 * There are four kinds of DP registers: 2415 * 2416 * IBX PCH 2417 * SNB CPU 2418 * IVB CPU 2419 * CPT PCH 2420 * 2421 * IBX PCH and CPU are the same for almost everything, 2422 * except that the CPU DP PLL is configured in this 2423 * register 2424 * 2425 * CPT PCH is quite different, having many bits moved 2426 * to the TRANS_DP_CTL register instead. That 2427 * configuration happens (oddly) in ironlake_pch_enable 2428 */ 2429 2430 /* Preserve the BIOS-computed detected bit. This is 2431 * supposed to be read-only. 2432 */ 2433 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 2434 2435 /* Handle DP bits in common between all three register formats */ 2436 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2437 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2438 2439 /* Split out the IBX/CPU vs CPT settings */ 2440 2441 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2442 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2443 intel_dp->DP |= DP_SYNC_HS_HIGH; 2444 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2445 intel_dp->DP |= DP_SYNC_VS_HIGH; 2446 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2447 2448 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2449 intel_dp->DP |= DP_ENHANCED_FRAMING; 2450 2451 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2452 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2453 u32 trans_dp; 2454 2455 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2456 2457 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 2458 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2459 trans_dp |= TRANS_DP_ENH_FRAMING; 2460 else 2461 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2462 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); 2463 } else { 2464 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2465 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2466 2467 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2468 intel_dp->DP |= DP_SYNC_HS_HIGH; 2469 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2470 intel_dp->DP |= DP_SYNC_VS_HIGH; 2471 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2472 2473 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2474 intel_dp->DP |= DP_ENHANCED_FRAMING; 2475 2476 if (IS_CHERRYVIEW(dev_priv)) 2477 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2478 else 2479 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2480 } 2481 } 2482 2483 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2484 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2485 2486 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2487 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2488 2489 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2490 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2491 2492 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2493 2494 static void wait_panel_status(struct intel_dp *intel_dp, 2495 u32 mask, 2496 u32 value) 2497 { 2498 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2499 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2500 2501 lockdep_assert_held(&dev_priv->pps_mutex); 2502 2503 intel_pps_verify_state(intel_dp); 2504 2505 pp_stat_reg = _pp_stat_reg(intel_dp); 2506 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2507 2508 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", 2509 mask, value, 2510 I915_READ(pp_stat_reg), 2511 I915_READ(pp_ctrl_reg)); 2512 2513 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2514 mask, value, 5000)) 2515 DRM_ERROR("Panel status timeout: status %08x control %08x\n", 2516 I915_READ(pp_stat_reg), 2517 I915_READ(pp_ctrl_reg)); 2518 2519 DRM_DEBUG_KMS("Wait complete\n"); 2520 } 2521 2522 static void wait_panel_on(struct intel_dp *intel_dp) 2523 { 2524 DRM_DEBUG_KMS("Wait for panel power on\n"); 2525 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2526 } 2527 2528 static void wait_panel_off(struct intel_dp *intel_dp) 2529 { 2530 DRM_DEBUG_KMS("Wait for panel power off time\n"); 2531 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2532 } 2533 2534 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2535 { 2536 ktime_t panel_power_on_time; 2537 s64 panel_power_off_duration; 2538 2539 DRM_DEBUG_KMS("Wait for panel power cycle\n"); 2540 2541 /* take the difference of currrent time and panel power off time 2542 * and then make panel wait for t11_t12 if needed. */ 2543 panel_power_on_time = ktime_get_boottime(); 2544 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2545 2546 /* When we disable the VDD override bit last we have to do the manual 2547 * wait. */ 2548 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2549 wait_remaining_ms_from_jiffies(jiffies, 2550 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2551 2552 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2553 } 2554 2555 static void wait_backlight_on(struct intel_dp *intel_dp) 2556 { 2557 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2558 intel_dp->backlight_on_delay); 2559 } 2560 2561 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2562 { 2563 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2564 intel_dp->backlight_off_delay); 2565 } 2566 2567 /* Read the current pp_control value, unlocking the register if it 2568 * is locked 2569 */ 2570 2571 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) 2572 { 2573 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2574 u32 control; 2575 2576 lockdep_assert_held(&dev_priv->pps_mutex); 2577 2578 control = I915_READ(_pp_ctrl_reg(intel_dp)); 2579 if (WARN_ON(!HAS_DDI(dev_priv) && 2580 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2581 control &= ~PANEL_UNLOCK_MASK; 2582 control |= PANEL_UNLOCK_REGS; 2583 } 2584 return control; 2585 } 2586 2587 /* 2588 * Must be paired with edp_panel_vdd_off(). 2589 * Must hold pps_mutex around the whole on/off sequence. 2590 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2591 */ 2592 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2593 { 2594 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2595 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2596 u32 pp; 2597 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2598 bool need_to_disable = !intel_dp->want_panel_vdd; 2599 2600 lockdep_assert_held(&dev_priv->pps_mutex); 2601 2602 if (!intel_dp_is_edp(intel_dp)) 2603 return false; 2604 2605 cancel_delayed_work(&intel_dp->panel_vdd_work); 2606 intel_dp->want_panel_vdd = true; 2607 2608 if (edp_have_panel_vdd(intel_dp)) 2609 return need_to_disable; 2610 2611 intel_display_power_get(dev_priv, 2612 intel_aux_power_domain(intel_dig_port)); 2613 2614 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n", 2615 intel_dig_port->base.base.base.id, 2616 intel_dig_port->base.base.name); 2617 2618 if (!edp_have_panel_power(intel_dp)) 2619 wait_panel_power_cycle(intel_dp); 2620 2621 pp = ironlake_get_pp_control(intel_dp); 2622 pp |= EDP_FORCE_VDD; 2623 2624 pp_stat_reg = _pp_stat_reg(intel_dp); 2625 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2626 2627 I915_WRITE(pp_ctrl_reg, pp); 2628 POSTING_READ(pp_ctrl_reg); 2629 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2630 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2631 /* 2632 * If the panel wasn't on, delay before accessing aux channel 2633 */ 2634 if (!edp_have_panel_power(intel_dp)) { 2635 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n", 2636 intel_dig_port->base.base.base.id, 2637 intel_dig_port->base.base.name); 2638 msleep(intel_dp->panel_power_up_delay); 2639 } 2640 2641 return need_to_disable; 2642 } 2643 2644 /* 2645 * Must be paired with intel_edp_panel_vdd_off() or 2646 * intel_edp_panel_off(). 2647 * Nested calls to these functions are not allowed since 2648 * we drop the lock. Caller must use some higher level 2649 * locking to prevent nested calls from other threads. 2650 */ 2651 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2652 { 2653 intel_wakeref_t wakeref; 2654 bool vdd; 2655 2656 if (!intel_dp_is_edp(intel_dp)) 2657 return; 2658 2659 vdd = false; 2660 with_pps_lock(intel_dp, wakeref) 2661 vdd = edp_panel_vdd_on(intel_dp); 2662 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n", 2663 dp_to_dig_port(intel_dp)->base.base.base.id, 2664 dp_to_dig_port(intel_dp)->base.base.name); 2665 } 2666 2667 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2668 { 2669 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2670 struct intel_digital_port *intel_dig_port = 2671 dp_to_dig_port(intel_dp); 2672 u32 pp; 2673 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2674 2675 lockdep_assert_held(&dev_priv->pps_mutex); 2676 2677 WARN_ON(intel_dp->want_panel_vdd); 2678 2679 if (!edp_have_panel_vdd(intel_dp)) 2680 return; 2681 2682 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n", 2683 intel_dig_port->base.base.base.id, 2684 intel_dig_port->base.base.name); 2685 2686 pp = ironlake_get_pp_control(intel_dp); 2687 pp &= ~EDP_FORCE_VDD; 2688 2689 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2690 pp_stat_reg = _pp_stat_reg(intel_dp); 2691 2692 I915_WRITE(pp_ctrl_reg, pp); 2693 POSTING_READ(pp_ctrl_reg); 2694 2695 /* Make sure sequencer is idle before allowing subsequent activity */ 2696 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2697 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2698 2699 if ((pp & PANEL_POWER_ON) == 0) 2700 intel_dp->panel_power_off_time = ktime_get_boottime(); 2701 2702 intel_display_power_put_unchecked(dev_priv, 2703 intel_aux_power_domain(intel_dig_port)); 2704 } 2705 2706 static void edp_panel_vdd_work(struct work_struct *__work) 2707 { 2708 struct intel_dp *intel_dp = 2709 container_of(to_delayed_work(__work), 2710 struct intel_dp, panel_vdd_work); 2711 intel_wakeref_t wakeref; 2712 2713 with_pps_lock(intel_dp, wakeref) { 2714 if (!intel_dp->want_panel_vdd) 2715 edp_panel_vdd_off_sync(intel_dp); 2716 } 2717 } 2718 2719 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 2720 { 2721 unsigned long delay; 2722 2723 /* 2724 * Queue the timer to fire a long time from now (relative to the power 2725 * down delay) to keep the panel power up across a sequence of 2726 * operations. 2727 */ 2728 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 2729 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 2730 } 2731 2732 /* 2733 * Must be paired with edp_panel_vdd_on(). 2734 * Must hold pps_mutex around the whole on/off sequence. 2735 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2736 */ 2737 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 2738 { 2739 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2740 2741 lockdep_assert_held(&dev_priv->pps_mutex); 2742 2743 if (!intel_dp_is_edp(intel_dp)) 2744 return; 2745 2746 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on", 2747 dp_to_dig_port(intel_dp)->base.base.base.id, 2748 dp_to_dig_port(intel_dp)->base.base.name); 2749 2750 intel_dp->want_panel_vdd = false; 2751 2752 if (sync) 2753 edp_panel_vdd_off_sync(intel_dp); 2754 else 2755 edp_panel_vdd_schedule_off(intel_dp); 2756 } 2757 2758 static void edp_panel_on(struct intel_dp *intel_dp) 2759 { 2760 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2761 u32 pp; 2762 i915_reg_t pp_ctrl_reg; 2763 2764 lockdep_assert_held(&dev_priv->pps_mutex); 2765 2766 if (!intel_dp_is_edp(intel_dp)) 2767 return; 2768 2769 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n", 2770 dp_to_dig_port(intel_dp)->base.base.base.id, 2771 dp_to_dig_port(intel_dp)->base.base.name); 2772 2773 if (WARN(edp_have_panel_power(intel_dp), 2774 "[ENCODER:%d:%s] panel power already on\n", 2775 dp_to_dig_port(intel_dp)->base.base.base.id, 2776 dp_to_dig_port(intel_dp)->base.base.name)) 2777 return; 2778 2779 wait_panel_power_cycle(intel_dp); 2780 2781 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2782 pp = ironlake_get_pp_control(intel_dp); 2783 if (IS_GEN(dev_priv, 5)) { 2784 /* ILK workaround: disable reset around power sequence */ 2785 pp &= ~PANEL_POWER_RESET; 2786 I915_WRITE(pp_ctrl_reg, pp); 2787 POSTING_READ(pp_ctrl_reg); 2788 } 2789 2790 pp |= PANEL_POWER_ON; 2791 if (!IS_GEN(dev_priv, 5)) 2792 pp |= PANEL_POWER_RESET; 2793 2794 I915_WRITE(pp_ctrl_reg, pp); 2795 POSTING_READ(pp_ctrl_reg); 2796 2797 wait_panel_on(intel_dp); 2798 intel_dp->last_power_on = jiffies; 2799 2800 if (IS_GEN(dev_priv, 5)) { 2801 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 2802 I915_WRITE(pp_ctrl_reg, pp); 2803 POSTING_READ(pp_ctrl_reg); 2804 } 2805 } 2806 2807 void intel_edp_panel_on(struct intel_dp *intel_dp) 2808 { 2809 intel_wakeref_t wakeref; 2810 2811 if (!intel_dp_is_edp(intel_dp)) 2812 return; 2813 2814 with_pps_lock(intel_dp, wakeref) 2815 edp_panel_on(intel_dp); 2816 } 2817 2818 2819 static void edp_panel_off(struct intel_dp *intel_dp) 2820 { 2821 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2822 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2823 u32 pp; 2824 i915_reg_t pp_ctrl_reg; 2825 2826 lockdep_assert_held(&dev_priv->pps_mutex); 2827 2828 if (!intel_dp_is_edp(intel_dp)) 2829 return; 2830 2831 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n", 2832 dig_port->base.base.base.id, dig_port->base.base.name); 2833 2834 WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n", 2835 dig_port->base.base.base.id, dig_port->base.base.name); 2836 2837 pp = ironlake_get_pp_control(intel_dp); 2838 /* We need to switch off panel power _and_ force vdd, for otherwise some 2839 * panels get very unhappy and cease to work. */ 2840 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 2841 EDP_BLC_ENABLE); 2842 2843 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2844 2845 intel_dp->want_panel_vdd = false; 2846 2847 I915_WRITE(pp_ctrl_reg, pp); 2848 POSTING_READ(pp_ctrl_reg); 2849 2850 wait_panel_off(intel_dp); 2851 intel_dp->panel_power_off_time = ktime_get_boottime(); 2852 2853 /* We got a reference when we enabled the VDD. */ 2854 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 2855 } 2856 2857 void intel_edp_panel_off(struct intel_dp *intel_dp) 2858 { 2859 intel_wakeref_t wakeref; 2860 2861 if (!intel_dp_is_edp(intel_dp)) 2862 return; 2863 2864 with_pps_lock(intel_dp, wakeref) 2865 edp_panel_off(intel_dp); 2866 } 2867 2868 /* Enable backlight in the panel power control. */ 2869 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 2870 { 2871 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2872 intel_wakeref_t wakeref; 2873 2874 /* 2875 * If we enable the backlight right away following a panel power 2876 * on, we may see slight flicker as the panel syncs with the eDP 2877 * link. So delay a bit to make sure the image is solid before 2878 * allowing it to appear. 2879 */ 2880 wait_backlight_on(intel_dp); 2881 2882 with_pps_lock(intel_dp, wakeref) { 2883 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2884 u32 pp; 2885 2886 pp = ironlake_get_pp_control(intel_dp); 2887 pp |= EDP_BLC_ENABLE; 2888 2889 I915_WRITE(pp_ctrl_reg, pp); 2890 POSTING_READ(pp_ctrl_reg); 2891 } 2892 } 2893 2894 /* Enable backlight PWM and backlight PP control. */ 2895 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 2896 const struct drm_connector_state *conn_state) 2897 { 2898 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder); 2899 2900 if (!intel_dp_is_edp(intel_dp)) 2901 return; 2902 2903 DRM_DEBUG_KMS("\n"); 2904 2905 intel_panel_enable_backlight(crtc_state, conn_state); 2906 _intel_edp_backlight_on(intel_dp); 2907 } 2908 2909 /* Disable backlight in the panel power control. */ 2910 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 2911 { 2912 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2913 intel_wakeref_t wakeref; 2914 2915 if (!intel_dp_is_edp(intel_dp)) 2916 return; 2917 2918 with_pps_lock(intel_dp, wakeref) { 2919 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2920 u32 pp; 2921 2922 pp = ironlake_get_pp_control(intel_dp); 2923 pp &= ~EDP_BLC_ENABLE; 2924 2925 I915_WRITE(pp_ctrl_reg, pp); 2926 POSTING_READ(pp_ctrl_reg); 2927 } 2928 2929 intel_dp->last_backlight_off = jiffies; 2930 edp_wait_backlight_off(intel_dp); 2931 } 2932 2933 /* Disable backlight PP control and backlight PWM. */ 2934 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 2935 { 2936 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder); 2937 2938 if (!intel_dp_is_edp(intel_dp)) 2939 return; 2940 2941 DRM_DEBUG_KMS("\n"); 2942 2943 _intel_edp_backlight_off(intel_dp); 2944 intel_panel_disable_backlight(old_conn_state); 2945 } 2946 2947 /* 2948 * Hook for controlling the panel power control backlight through the bl_power 2949 * sysfs attribute. Take care to handle multiple calls. 2950 */ 2951 static void intel_edp_backlight_power(struct intel_connector *connector, 2952 bool enable) 2953 { 2954 struct intel_dp *intel_dp = intel_attached_dp(&connector->base); 2955 intel_wakeref_t wakeref; 2956 bool is_enabled; 2957 2958 is_enabled = false; 2959 with_pps_lock(intel_dp, wakeref) 2960 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 2961 if (is_enabled == enable) 2962 return; 2963 2964 DRM_DEBUG_KMS("panel power control backlight %s\n", 2965 enable ? "enable" : "disable"); 2966 2967 if (enable) 2968 _intel_edp_backlight_on(intel_dp); 2969 else 2970 _intel_edp_backlight_off(intel_dp); 2971 } 2972 2973 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 2974 { 2975 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2976 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2977 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN; 2978 2979 I915_STATE_WARN(cur_state != state, 2980 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", 2981 dig_port->base.base.base.id, dig_port->base.base.name, 2982 onoff(state), onoff(cur_state)); 2983 } 2984 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 2985 2986 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 2987 { 2988 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE; 2989 2990 I915_STATE_WARN(cur_state != state, 2991 "eDP PLL state assertion failure (expected %s, current %s)\n", 2992 onoff(state), onoff(cur_state)); 2993 } 2994 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 2995 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 2996 2997 static void ironlake_edp_pll_on(struct intel_dp *intel_dp, 2998 const struct intel_crtc_state *pipe_config) 2999 { 3000 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3001 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3002 3003 assert_pipe_disabled(dev_priv, crtc->pipe); 3004 assert_dp_port_disabled(intel_dp); 3005 assert_edp_pll_disabled(dev_priv); 3006 3007 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n", 3008 pipe_config->port_clock); 3009 3010 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 3011 3012 if (pipe_config->port_clock == 162000) 3013 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 3014 else 3015 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 3016 3017 I915_WRITE(DP_A, intel_dp->DP); 3018 POSTING_READ(DP_A); 3019 udelay(500); 3020 3021 /* 3022 * [DevILK] Work around required when enabling DP PLL 3023 * while a pipe is enabled going to FDI: 3024 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 3025 * 2. Program DP PLL enable 3026 */ 3027 if (IS_GEN(dev_priv, 5)) 3028 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 3029 3030 intel_dp->DP |= DP_PLL_ENABLE; 3031 3032 I915_WRITE(DP_A, intel_dp->DP); 3033 POSTING_READ(DP_A); 3034 udelay(200); 3035 } 3036 3037 static void ironlake_edp_pll_off(struct intel_dp *intel_dp, 3038 const struct intel_crtc_state *old_crtc_state) 3039 { 3040 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 3041 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3042 3043 assert_pipe_disabled(dev_priv, crtc->pipe); 3044 assert_dp_port_disabled(intel_dp); 3045 assert_edp_pll_enabled(dev_priv); 3046 3047 DRM_DEBUG_KMS("disabling eDP PLL\n"); 3048 3049 intel_dp->DP &= ~DP_PLL_ENABLE; 3050 3051 I915_WRITE(DP_A, intel_dp->DP); 3052 POSTING_READ(DP_A); 3053 udelay(200); 3054 } 3055 3056 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3057 { 3058 /* 3059 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3060 * be capable of signalling downstream hpd with a long pulse. 3061 * Whether or not that means D3 is safe to use is not clear, 3062 * but let's assume so until proven otherwise. 3063 * 3064 * FIXME should really check all downstream ports... 3065 */ 3066 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3067 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 3068 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3069 } 3070 3071 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3072 const struct intel_crtc_state *crtc_state, 3073 bool enable) 3074 { 3075 int ret; 3076 3077 if (!crtc_state->dsc_params.compression_enable) 3078 return; 3079 3080 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3081 enable ? DP_DECOMPRESSION_EN : 0); 3082 if (ret < 0) 3083 DRM_DEBUG_KMS("Failed to %s sink decompression state\n", 3084 enable ? "enable" : "disable"); 3085 } 3086 3087 /* If the sink supports it, try to set the power state appropriately */ 3088 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 3089 { 3090 int ret, i; 3091 3092 /* Should have a valid DPCD by this point */ 3093 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3094 return; 3095 3096 if (mode != DRM_MODE_DPMS_ON) { 3097 if (downstream_hpd_needs_d0(intel_dp)) 3098 return; 3099 3100 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3101 DP_SET_POWER_D3); 3102 } else { 3103 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3104 3105 /* 3106 * When turning on, we need to retry for 1ms to give the sink 3107 * time to wake up. 3108 */ 3109 for (i = 0; i < 3; i++) { 3110 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3111 DP_SET_POWER_D0); 3112 if (ret == 1) 3113 break; 3114 msleep(1); 3115 } 3116 3117 if (ret == 1 && lspcon->active) 3118 lspcon_wait_pcon_mode(lspcon); 3119 } 3120 3121 if (ret != 1) 3122 DRM_DEBUG_KMS("failed to %s sink power state\n", 3123 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 3124 } 3125 3126 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3127 enum port port, enum pipe *pipe) 3128 { 3129 enum pipe p; 3130 3131 for_each_pipe(dev_priv, p) { 3132 u32 val = I915_READ(TRANS_DP_CTL(p)); 3133 3134 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3135 *pipe = p; 3136 return true; 3137 } 3138 } 3139 3140 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port)); 3141 3142 /* must initialize pipe to something for the asserts */ 3143 *pipe = PIPE_A; 3144 3145 return false; 3146 } 3147 3148 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3149 i915_reg_t dp_reg, enum port port, 3150 enum pipe *pipe) 3151 { 3152 bool ret; 3153 u32 val; 3154 3155 val = I915_READ(dp_reg); 3156 3157 ret = val & DP_PORT_EN; 3158 3159 /* asserts want to know the pipe even if the port is disabled */ 3160 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3161 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3162 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3163 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3164 else if (IS_CHERRYVIEW(dev_priv)) 3165 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3166 else 3167 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3168 3169 return ret; 3170 } 3171 3172 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3173 enum pipe *pipe) 3174 { 3175 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3176 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3177 intel_wakeref_t wakeref; 3178 bool ret; 3179 3180 wakeref = intel_display_power_get_if_enabled(dev_priv, 3181 encoder->power_domain); 3182 if (!wakeref) 3183 return false; 3184 3185 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3186 encoder->port, pipe); 3187 3188 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3189 3190 return ret; 3191 } 3192 3193 static void intel_dp_get_config(struct intel_encoder *encoder, 3194 struct intel_crtc_state *pipe_config) 3195 { 3196 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3197 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3198 u32 tmp, flags = 0; 3199 enum port port = encoder->port; 3200 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3201 3202 if (encoder->type == INTEL_OUTPUT_EDP) 3203 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3204 else 3205 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3206 3207 tmp = I915_READ(intel_dp->output_reg); 3208 3209 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3210 3211 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3212 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 3213 3214 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3215 flags |= DRM_MODE_FLAG_PHSYNC; 3216 else 3217 flags |= DRM_MODE_FLAG_NHSYNC; 3218 3219 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3220 flags |= DRM_MODE_FLAG_PVSYNC; 3221 else 3222 flags |= DRM_MODE_FLAG_NVSYNC; 3223 } else { 3224 if (tmp & DP_SYNC_HS_HIGH) 3225 flags |= DRM_MODE_FLAG_PHSYNC; 3226 else 3227 flags |= DRM_MODE_FLAG_NHSYNC; 3228 3229 if (tmp & DP_SYNC_VS_HIGH) 3230 flags |= DRM_MODE_FLAG_PVSYNC; 3231 else 3232 flags |= DRM_MODE_FLAG_NVSYNC; 3233 } 3234 3235 pipe_config->base.adjusted_mode.flags |= flags; 3236 3237 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3238 pipe_config->limited_color_range = true; 3239 3240 pipe_config->lane_count = 3241 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3242 3243 intel_dp_get_m_n(crtc, pipe_config); 3244 3245 if (port == PORT_A) { 3246 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3247 pipe_config->port_clock = 162000; 3248 else 3249 pipe_config->port_clock = 270000; 3250 } 3251 3252 pipe_config->base.adjusted_mode.crtc_clock = 3253 intel_dotclock_calculate(pipe_config->port_clock, 3254 &pipe_config->dp_m_n); 3255 3256 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3257 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3258 /* 3259 * This is a big fat ugly hack. 3260 * 3261 * Some machines in UEFI boot mode provide us a VBT that has 18 3262 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3263 * unknown we fail to light up. Yet the same BIOS boots up with 3264 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3265 * max, not what it tells us to use. 3266 * 3267 * Note: This will still be broken if the eDP panel is not lit 3268 * up by the BIOS, and thus we can't get the mode at module 3269 * load. 3270 */ 3271 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3272 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3273 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3274 } 3275 } 3276 3277 static void intel_disable_dp(struct intel_encoder *encoder, 3278 const struct intel_crtc_state *old_crtc_state, 3279 const struct drm_connector_state *old_conn_state) 3280 { 3281 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3282 3283 intel_dp->link_trained = false; 3284 3285 if (old_crtc_state->has_audio) 3286 intel_audio_codec_disable(encoder, 3287 old_crtc_state, old_conn_state); 3288 3289 /* Make sure the panel is off before trying to change the mode. But also 3290 * ensure that we have vdd while we switch off the panel. */ 3291 intel_edp_panel_vdd_on(intel_dp); 3292 intel_edp_backlight_off(old_conn_state); 3293 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3294 intel_edp_panel_off(intel_dp); 3295 } 3296 3297 static void g4x_disable_dp(struct intel_encoder *encoder, 3298 const struct intel_crtc_state *old_crtc_state, 3299 const struct drm_connector_state *old_conn_state) 3300 { 3301 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3302 } 3303 3304 static void vlv_disable_dp(struct intel_encoder *encoder, 3305 const struct intel_crtc_state *old_crtc_state, 3306 const struct drm_connector_state *old_conn_state) 3307 { 3308 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3309 } 3310 3311 static void g4x_post_disable_dp(struct intel_encoder *encoder, 3312 const struct intel_crtc_state *old_crtc_state, 3313 const struct drm_connector_state *old_conn_state) 3314 { 3315 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3316 enum port port = encoder->port; 3317 3318 /* 3319 * Bspec does not list a specific disable sequence for g4x DP. 3320 * Follow the ilk+ sequence (disable pipe before the port) for 3321 * g4x DP as it does not suffer from underruns like the normal 3322 * g4x modeset sequence (disable pipe after the port). 3323 */ 3324 intel_dp_link_down(encoder, old_crtc_state); 3325 3326 /* Only ilk+ has port A */ 3327 if (port == PORT_A) 3328 ironlake_edp_pll_off(intel_dp, old_crtc_state); 3329 } 3330 3331 static void vlv_post_disable_dp(struct intel_encoder *encoder, 3332 const struct intel_crtc_state *old_crtc_state, 3333 const struct drm_connector_state *old_conn_state) 3334 { 3335 intel_dp_link_down(encoder, old_crtc_state); 3336 } 3337 3338 static void chv_post_disable_dp(struct intel_encoder *encoder, 3339 const struct intel_crtc_state *old_crtc_state, 3340 const struct drm_connector_state *old_conn_state) 3341 { 3342 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3343 3344 intel_dp_link_down(encoder, old_crtc_state); 3345 3346 vlv_dpio_get(dev_priv); 3347 3348 /* Assert data lane reset */ 3349 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3350 3351 vlv_dpio_put(dev_priv); 3352 } 3353 3354 static void 3355 _intel_dp_set_link_train(struct intel_dp *intel_dp, 3356 u32 *DP, 3357 u8 dp_train_pat) 3358 { 3359 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3360 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3361 enum port port = intel_dig_port->base.port; 3362 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 3363 3364 if (dp_train_pat & train_pat_mask) 3365 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n", 3366 dp_train_pat & train_pat_mask); 3367 3368 if (HAS_DDI(dev_priv)) { 3369 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl); 3370 3371 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) 3372 temp |= DP_TP_CTL_SCRAMBLE_DISABLE; 3373 else 3374 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; 3375 3376 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3377 switch (dp_train_pat & train_pat_mask) { 3378 case DP_TRAINING_PATTERN_DISABLE: 3379 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; 3380 3381 break; 3382 case DP_TRAINING_PATTERN_1: 3383 temp |= DP_TP_CTL_LINK_TRAIN_PAT1; 3384 break; 3385 case DP_TRAINING_PATTERN_2: 3386 temp |= DP_TP_CTL_LINK_TRAIN_PAT2; 3387 break; 3388 case DP_TRAINING_PATTERN_3: 3389 temp |= DP_TP_CTL_LINK_TRAIN_PAT3; 3390 break; 3391 case DP_TRAINING_PATTERN_4: 3392 temp |= DP_TP_CTL_LINK_TRAIN_PAT4; 3393 break; 3394 } 3395 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp); 3396 3397 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3398 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3399 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3400 3401 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3402 case DP_TRAINING_PATTERN_DISABLE: 3403 *DP |= DP_LINK_TRAIN_OFF_CPT; 3404 break; 3405 case DP_TRAINING_PATTERN_1: 3406 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3407 break; 3408 case DP_TRAINING_PATTERN_2: 3409 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3410 break; 3411 case DP_TRAINING_PATTERN_3: 3412 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3413 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3414 break; 3415 } 3416 3417 } else { 3418 *DP &= ~DP_LINK_TRAIN_MASK; 3419 3420 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3421 case DP_TRAINING_PATTERN_DISABLE: 3422 *DP |= DP_LINK_TRAIN_OFF; 3423 break; 3424 case DP_TRAINING_PATTERN_1: 3425 *DP |= DP_LINK_TRAIN_PAT_1; 3426 break; 3427 case DP_TRAINING_PATTERN_2: 3428 *DP |= DP_LINK_TRAIN_PAT_2; 3429 break; 3430 case DP_TRAINING_PATTERN_3: 3431 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3432 *DP |= DP_LINK_TRAIN_PAT_2; 3433 break; 3434 } 3435 } 3436 } 3437 3438 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3439 const struct intel_crtc_state *old_crtc_state) 3440 { 3441 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3442 3443 /* enable with pattern 1 (as per spec) */ 3444 3445 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3446 3447 /* 3448 * Magic for VLV/CHV. We _must_ first set up the register 3449 * without actually enabling the port, and then do another 3450 * write to enable the port. Otherwise link training will 3451 * fail when the power sequencer is freshly used for this port. 3452 */ 3453 intel_dp->DP |= DP_PORT_EN; 3454 if (old_crtc_state->has_audio) 3455 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3456 3457 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3458 POSTING_READ(intel_dp->output_reg); 3459 } 3460 3461 static void intel_enable_dp(struct intel_encoder *encoder, 3462 const struct intel_crtc_state *pipe_config, 3463 const struct drm_connector_state *conn_state) 3464 { 3465 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3466 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3467 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3468 u32 dp_reg = I915_READ(intel_dp->output_reg); 3469 enum pipe pipe = crtc->pipe; 3470 intel_wakeref_t wakeref; 3471 3472 if (WARN_ON(dp_reg & DP_PORT_EN)) 3473 return; 3474 3475 with_pps_lock(intel_dp, wakeref) { 3476 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3477 vlv_init_panel_power_sequencer(encoder, pipe_config); 3478 3479 intel_dp_enable_port(intel_dp, pipe_config); 3480 3481 edp_panel_vdd_on(intel_dp); 3482 edp_panel_on(intel_dp); 3483 edp_panel_vdd_off(intel_dp, true); 3484 } 3485 3486 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3487 unsigned int lane_mask = 0x0; 3488 3489 if (IS_CHERRYVIEW(dev_priv)) 3490 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3491 3492 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3493 lane_mask); 3494 } 3495 3496 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3497 intel_dp_start_link_train(intel_dp); 3498 intel_dp_stop_link_train(intel_dp); 3499 3500 if (pipe_config->has_audio) { 3501 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", 3502 pipe_name(pipe)); 3503 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3504 } 3505 } 3506 3507 static void g4x_enable_dp(struct intel_encoder *encoder, 3508 const struct intel_crtc_state *pipe_config, 3509 const struct drm_connector_state *conn_state) 3510 { 3511 intel_enable_dp(encoder, pipe_config, conn_state); 3512 intel_edp_backlight_on(pipe_config, conn_state); 3513 } 3514 3515 static void vlv_enable_dp(struct intel_encoder *encoder, 3516 const struct intel_crtc_state *pipe_config, 3517 const struct drm_connector_state *conn_state) 3518 { 3519 intel_edp_backlight_on(pipe_config, conn_state); 3520 } 3521 3522 static void g4x_pre_enable_dp(struct intel_encoder *encoder, 3523 const struct intel_crtc_state *pipe_config, 3524 const struct drm_connector_state *conn_state) 3525 { 3526 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3527 enum port port = encoder->port; 3528 3529 intel_dp_prepare(encoder, pipe_config); 3530 3531 /* Only ilk+ has port A */ 3532 if (port == PORT_A) 3533 ironlake_edp_pll_on(intel_dp, pipe_config); 3534 } 3535 3536 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3537 { 3538 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3539 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3540 enum pipe pipe = intel_dp->pps_pipe; 3541 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3542 3543 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3544 3545 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) 3546 return; 3547 3548 edp_panel_vdd_off_sync(intel_dp); 3549 3550 /* 3551 * VLV seems to get confused when multiple power sequencers 3552 * have the same port selected (even if only one has power/vdd 3553 * enabled). The failure manifests as vlv_wait_port_ready() failing 3554 * CHV on the other hand doesn't seem to mind having the same port 3555 * selected in multiple power sequencers, but let's clear the 3556 * port select always when logically disconnecting a power sequencer 3557 * from a port. 3558 */ 3559 DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n", 3560 pipe_name(pipe), intel_dig_port->base.base.base.id, 3561 intel_dig_port->base.base.name); 3562 I915_WRITE(pp_on_reg, 0); 3563 POSTING_READ(pp_on_reg); 3564 3565 intel_dp->pps_pipe = INVALID_PIPE; 3566 } 3567 3568 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3569 enum pipe pipe) 3570 { 3571 struct intel_encoder *encoder; 3572 3573 lockdep_assert_held(&dev_priv->pps_mutex); 3574 3575 for_each_intel_dp(&dev_priv->drm, encoder) { 3576 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3577 3578 WARN(intel_dp->active_pipe == pipe, 3579 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n", 3580 pipe_name(pipe), encoder->base.base.id, 3581 encoder->base.name); 3582 3583 if (intel_dp->pps_pipe != pipe) 3584 continue; 3585 3586 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n", 3587 pipe_name(pipe), encoder->base.base.id, 3588 encoder->base.name); 3589 3590 /* make sure vdd is off before we steal it */ 3591 vlv_detach_power_sequencer(intel_dp); 3592 } 3593 } 3594 3595 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3596 const struct intel_crtc_state *crtc_state) 3597 { 3598 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3599 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3600 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 3601 3602 lockdep_assert_held(&dev_priv->pps_mutex); 3603 3604 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3605 3606 if (intel_dp->pps_pipe != INVALID_PIPE && 3607 intel_dp->pps_pipe != crtc->pipe) { 3608 /* 3609 * If another power sequencer was being used on this 3610 * port previously make sure to turn off vdd there while 3611 * we still have control of it. 3612 */ 3613 vlv_detach_power_sequencer(intel_dp); 3614 } 3615 3616 /* 3617 * We may be stealing the power 3618 * sequencer from another port. 3619 */ 3620 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3621 3622 intel_dp->active_pipe = crtc->pipe; 3623 3624 if (!intel_dp_is_edp(intel_dp)) 3625 return; 3626 3627 /* now it's all ours */ 3628 intel_dp->pps_pipe = crtc->pipe; 3629 3630 DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n", 3631 pipe_name(intel_dp->pps_pipe), encoder->base.base.id, 3632 encoder->base.name); 3633 3634 /* init power sequencer on this pipe and port */ 3635 intel_dp_init_panel_power_sequencer(intel_dp); 3636 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3637 } 3638 3639 static void vlv_pre_enable_dp(struct intel_encoder *encoder, 3640 const struct intel_crtc_state *pipe_config, 3641 const struct drm_connector_state *conn_state) 3642 { 3643 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3644 3645 intel_enable_dp(encoder, pipe_config, conn_state); 3646 } 3647 3648 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, 3649 const struct intel_crtc_state *pipe_config, 3650 const struct drm_connector_state *conn_state) 3651 { 3652 intel_dp_prepare(encoder, pipe_config); 3653 3654 vlv_phy_pre_pll_enable(encoder, pipe_config); 3655 } 3656 3657 static void chv_pre_enable_dp(struct intel_encoder *encoder, 3658 const struct intel_crtc_state *pipe_config, 3659 const struct drm_connector_state *conn_state) 3660 { 3661 chv_phy_pre_encoder_enable(encoder, pipe_config); 3662 3663 intel_enable_dp(encoder, pipe_config, conn_state); 3664 3665 /* Second common lane will stay alive on its own now */ 3666 chv_phy_release_cl2_override(encoder); 3667 } 3668 3669 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, 3670 const struct intel_crtc_state *pipe_config, 3671 const struct drm_connector_state *conn_state) 3672 { 3673 intel_dp_prepare(encoder, pipe_config); 3674 3675 chv_phy_pre_pll_enable(encoder, pipe_config); 3676 } 3677 3678 static void chv_dp_post_pll_disable(struct intel_encoder *encoder, 3679 const struct intel_crtc_state *old_crtc_state, 3680 const struct drm_connector_state *old_conn_state) 3681 { 3682 chv_phy_post_pll_disable(encoder, old_crtc_state); 3683 } 3684 3685 /* 3686 * Fetch AUX CH registers 0x202 - 0x207 which contain 3687 * link status information 3688 */ 3689 bool 3690 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3691 { 3692 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 3693 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 3694 } 3695 3696 /* These are source-specific values. */ 3697 u8 3698 intel_dp_voltage_max(struct intel_dp *intel_dp) 3699 { 3700 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3701 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3702 enum port port = encoder->port; 3703 3704 if (HAS_DDI(dev_priv)) 3705 return intel_ddi_dp_voltage_max(encoder); 3706 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3707 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3708 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3709 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3710 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3711 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3712 else 3713 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3714 } 3715 3716 u8 3717 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) 3718 { 3719 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3720 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3721 enum port port = encoder->port; 3722 3723 if (HAS_DDI(dev_priv)) { 3724 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); 3725 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3726 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3727 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3728 return DP_TRAIN_PRE_EMPH_LEVEL_3; 3729 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3730 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3731 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3732 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3733 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3734 default: 3735 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3736 } 3737 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3738 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3739 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3740 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3741 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3742 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3743 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3744 default: 3745 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3746 } 3747 } else { 3748 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3749 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3750 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3751 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3752 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3753 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3754 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3755 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3756 default: 3757 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3758 } 3759 } 3760 } 3761 3762 static u32 vlv_signal_levels(struct intel_dp *intel_dp) 3763 { 3764 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3765 unsigned long demph_reg_value, preemph_reg_value, 3766 uniqtranscale_reg_value; 3767 u8 train_set = intel_dp->train_set[0]; 3768 3769 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3770 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3771 preemph_reg_value = 0x0004000; 3772 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3773 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3774 demph_reg_value = 0x2B405555; 3775 uniqtranscale_reg_value = 0x552AB83A; 3776 break; 3777 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3778 demph_reg_value = 0x2B404040; 3779 uniqtranscale_reg_value = 0x5548B83A; 3780 break; 3781 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3782 demph_reg_value = 0x2B245555; 3783 uniqtranscale_reg_value = 0x5560B83A; 3784 break; 3785 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3786 demph_reg_value = 0x2B405555; 3787 uniqtranscale_reg_value = 0x5598DA3A; 3788 break; 3789 default: 3790 return 0; 3791 } 3792 break; 3793 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3794 preemph_reg_value = 0x0002000; 3795 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3796 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3797 demph_reg_value = 0x2B404040; 3798 uniqtranscale_reg_value = 0x5552B83A; 3799 break; 3800 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3801 demph_reg_value = 0x2B404848; 3802 uniqtranscale_reg_value = 0x5580B83A; 3803 break; 3804 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3805 demph_reg_value = 0x2B404040; 3806 uniqtranscale_reg_value = 0x55ADDA3A; 3807 break; 3808 default: 3809 return 0; 3810 } 3811 break; 3812 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3813 preemph_reg_value = 0x0000000; 3814 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3815 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3816 demph_reg_value = 0x2B305555; 3817 uniqtranscale_reg_value = 0x5570B83A; 3818 break; 3819 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3820 demph_reg_value = 0x2B2B4040; 3821 uniqtranscale_reg_value = 0x55ADDA3A; 3822 break; 3823 default: 3824 return 0; 3825 } 3826 break; 3827 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3828 preemph_reg_value = 0x0006000; 3829 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3830 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3831 demph_reg_value = 0x1B405555; 3832 uniqtranscale_reg_value = 0x55ADDA3A; 3833 break; 3834 default: 3835 return 0; 3836 } 3837 break; 3838 default: 3839 return 0; 3840 } 3841 3842 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 3843 uniqtranscale_reg_value, 0); 3844 3845 return 0; 3846 } 3847 3848 static u32 chv_signal_levels(struct intel_dp *intel_dp) 3849 { 3850 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3851 u32 deemph_reg_value, margin_reg_value; 3852 bool uniq_trans_scale = false; 3853 u8 train_set = intel_dp->train_set[0]; 3854 3855 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3856 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3857 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3858 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3859 deemph_reg_value = 128; 3860 margin_reg_value = 52; 3861 break; 3862 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3863 deemph_reg_value = 128; 3864 margin_reg_value = 77; 3865 break; 3866 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3867 deemph_reg_value = 128; 3868 margin_reg_value = 102; 3869 break; 3870 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3871 deemph_reg_value = 128; 3872 margin_reg_value = 154; 3873 uniq_trans_scale = true; 3874 break; 3875 default: 3876 return 0; 3877 } 3878 break; 3879 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3880 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3881 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3882 deemph_reg_value = 85; 3883 margin_reg_value = 78; 3884 break; 3885 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3886 deemph_reg_value = 85; 3887 margin_reg_value = 116; 3888 break; 3889 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3890 deemph_reg_value = 85; 3891 margin_reg_value = 154; 3892 break; 3893 default: 3894 return 0; 3895 } 3896 break; 3897 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3898 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3899 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3900 deemph_reg_value = 64; 3901 margin_reg_value = 104; 3902 break; 3903 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3904 deemph_reg_value = 64; 3905 margin_reg_value = 154; 3906 break; 3907 default: 3908 return 0; 3909 } 3910 break; 3911 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3912 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3913 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3914 deemph_reg_value = 43; 3915 margin_reg_value = 154; 3916 break; 3917 default: 3918 return 0; 3919 } 3920 break; 3921 default: 3922 return 0; 3923 } 3924 3925 chv_set_phy_signal_level(encoder, deemph_reg_value, 3926 margin_reg_value, uniq_trans_scale); 3927 3928 return 0; 3929 } 3930 3931 static u32 3932 g4x_signal_levels(u8 train_set) 3933 { 3934 u32 signal_levels = 0; 3935 3936 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3937 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3938 default: 3939 signal_levels |= DP_VOLTAGE_0_4; 3940 break; 3941 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3942 signal_levels |= DP_VOLTAGE_0_6; 3943 break; 3944 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3945 signal_levels |= DP_VOLTAGE_0_8; 3946 break; 3947 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3948 signal_levels |= DP_VOLTAGE_1_2; 3949 break; 3950 } 3951 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3952 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3953 default: 3954 signal_levels |= DP_PRE_EMPHASIS_0; 3955 break; 3956 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3957 signal_levels |= DP_PRE_EMPHASIS_3_5; 3958 break; 3959 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3960 signal_levels |= DP_PRE_EMPHASIS_6; 3961 break; 3962 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3963 signal_levels |= DP_PRE_EMPHASIS_9_5; 3964 break; 3965 } 3966 return signal_levels; 3967 } 3968 3969 /* SNB CPU eDP voltage swing and pre-emphasis control */ 3970 static u32 3971 snb_cpu_edp_signal_levels(u8 train_set) 3972 { 3973 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 3974 DP_TRAIN_PRE_EMPHASIS_MASK); 3975 switch (signal_levels) { 3976 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3977 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3978 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 3979 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3980 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 3981 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3982 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3983 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 3984 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3985 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3986 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 3987 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3988 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3989 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 3990 default: 3991 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 3992 "0x%x\n", signal_levels); 3993 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 3994 } 3995 } 3996 3997 /* IVB CPU eDP voltage swing and pre-emphasis control */ 3998 static u32 3999 ivb_cpu_edp_signal_levels(u8 train_set) 4000 { 4001 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4002 DP_TRAIN_PRE_EMPHASIS_MASK); 4003 switch (signal_levels) { 4004 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4005 return EDP_LINK_TRAIN_400MV_0DB_IVB; 4006 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4007 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 4008 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4009 return EDP_LINK_TRAIN_400MV_6DB_IVB; 4010 4011 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4012 return EDP_LINK_TRAIN_600MV_0DB_IVB; 4013 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4014 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 4015 4016 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4017 return EDP_LINK_TRAIN_800MV_0DB_IVB; 4018 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4019 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 4020 4021 default: 4022 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4023 "0x%x\n", signal_levels); 4024 return EDP_LINK_TRAIN_500MV_0DB_IVB; 4025 } 4026 } 4027 4028 void 4029 intel_dp_set_signal_levels(struct intel_dp *intel_dp) 4030 { 4031 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4032 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4033 enum port port = intel_dig_port->base.port; 4034 u32 signal_levels, mask = 0; 4035 u8 train_set = intel_dp->train_set[0]; 4036 4037 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) { 4038 signal_levels = bxt_signal_levels(intel_dp); 4039 } else if (HAS_DDI(dev_priv)) { 4040 signal_levels = ddi_signal_levels(intel_dp); 4041 mask = DDI_BUF_EMP_MASK; 4042 } else if (IS_CHERRYVIEW(dev_priv)) { 4043 signal_levels = chv_signal_levels(intel_dp); 4044 } else if (IS_VALLEYVIEW(dev_priv)) { 4045 signal_levels = vlv_signal_levels(intel_dp); 4046 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 4047 signal_levels = ivb_cpu_edp_signal_levels(train_set); 4048 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 4049 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) { 4050 signal_levels = snb_cpu_edp_signal_levels(train_set); 4051 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 4052 } else { 4053 signal_levels = g4x_signal_levels(train_set); 4054 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; 4055 } 4056 4057 if (mask) 4058 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); 4059 4060 DRM_DEBUG_KMS("Using vswing level %d\n", 4061 train_set & DP_TRAIN_VOLTAGE_SWING_MASK); 4062 DRM_DEBUG_KMS("Using pre-emphasis level %d\n", 4063 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4064 DP_TRAIN_PRE_EMPHASIS_SHIFT); 4065 4066 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; 4067 4068 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4069 POSTING_READ(intel_dp->output_reg); 4070 } 4071 4072 void 4073 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4074 u8 dp_train_pat) 4075 { 4076 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4077 struct drm_i915_private *dev_priv = 4078 to_i915(intel_dig_port->base.base.dev); 4079 4080 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); 4081 4082 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4083 POSTING_READ(intel_dp->output_reg); 4084 } 4085 4086 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 4087 { 4088 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4089 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4090 enum port port = intel_dig_port->base.port; 4091 u32 val; 4092 4093 if (!HAS_DDI(dev_priv)) 4094 return; 4095 4096 val = I915_READ(intel_dp->regs.dp_tp_ctl); 4097 val &= ~DP_TP_CTL_LINK_TRAIN_MASK; 4098 val |= DP_TP_CTL_LINK_TRAIN_IDLE; 4099 I915_WRITE(intel_dp->regs.dp_tp_ctl, val); 4100 4101 /* 4102 * Until TGL on PORT_A we can have only eDP in SST mode. There the only 4103 * reason we need to set idle transmission mode is to work around a HW 4104 * issue where we enable the pipe while not in idle link-training mode. 4105 * In this case there is requirement to wait for a minimum number of 4106 * idle patterns to be sent. 4107 */ 4108 if (port == PORT_A && INTEL_GEN(dev_priv) < 12) 4109 return; 4110 4111 if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status, 4112 DP_TP_STATUS_IDLE_DONE, 1)) 4113 DRM_ERROR("Timed out waiting for DP idle patterns\n"); 4114 } 4115 4116 static void 4117 intel_dp_link_down(struct intel_encoder *encoder, 4118 const struct intel_crtc_state *old_crtc_state) 4119 { 4120 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4121 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 4122 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 4123 enum port port = encoder->port; 4124 u32 DP = intel_dp->DP; 4125 4126 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) 4127 return; 4128 4129 DRM_DEBUG_KMS("\n"); 4130 4131 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4132 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4133 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4134 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4135 } else { 4136 DP &= ~DP_LINK_TRAIN_MASK; 4137 DP |= DP_LINK_TRAIN_PAT_IDLE; 4138 } 4139 I915_WRITE(intel_dp->output_reg, DP); 4140 POSTING_READ(intel_dp->output_reg); 4141 4142 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4143 I915_WRITE(intel_dp->output_reg, DP); 4144 POSTING_READ(intel_dp->output_reg); 4145 4146 /* 4147 * HW workaround for IBX, we need to move the port 4148 * to transcoder A after disabling it to allow the 4149 * matching HDMI port to be enabled on transcoder A. 4150 */ 4151 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4152 /* 4153 * We get CPU/PCH FIFO underruns on the other pipe when 4154 * doing the workaround. Sweep them under the rug. 4155 */ 4156 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4157 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4158 4159 /* always enable with pattern 1 (as per spec) */ 4160 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4161 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4162 DP_LINK_TRAIN_PAT_1; 4163 I915_WRITE(intel_dp->output_reg, DP); 4164 POSTING_READ(intel_dp->output_reg); 4165 4166 DP &= ~DP_PORT_EN; 4167 I915_WRITE(intel_dp->output_reg, DP); 4168 POSTING_READ(intel_dp->output_reg); 4169 4170 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4171 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4172 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4173 } 4174 4175 msleep(intel_dp->panel_power_down_delay); 4176 4177 intel_dp->DP = DP; 4178 4179 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4180 intel_wakeref_t wakeref; 4181 4182 with_pps_lock(intel_dp, wakeref) 4183 intel_dp->active_pipe = INVALID_PIPE; 4184 } 4185 } 4186 4187 static void 4188 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4189 { 4190 u8 dpcd_ext[6]; 4191 4192 /* 4193 * Prior to DP1.3 the bit represented by 4194 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4195 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4196 * the true capability of the panel. The only way to check is to 4197 * then compare 0000h and 2200h. 4198 */ 4199 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4200 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4201 return; 4202 4203 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4204 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4205 DRM_ERROR("DPCD failed read at extended capabilities\n"); 4206 return; 4207 } 4208 4209 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4210 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n"); 4211 return; 4212 } 4213 4214 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4215 return; 4216 4217 DRM_DEBUG_KMS("Base DPCD: %*ph\n", 4218 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4219 4220 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4221 } 4222 4223 bool 4224 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4225 { 4226 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4227 sizeof(intel_dp->dpcd)) < 0) 4228 return false; /* aux transfer failed */ 4229 4230 intel_dp_extended_receiver_capabilities(intel_dp); 4231 4232 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); 4233 4234 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4235 } 4236 4237 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4238 { 4239 u8 dprx = 0; 4240 4241 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4242 &dprx) != 1) 4243 return false; 4244 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4245 } 4246 4247 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4248 { 4249 /* 4250 * Clear the cached register set to avoid using stale values 4251 * for the sinks that do not support DSC. 4252 */ 4253 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4254 4255 /* Clear fec_capable to avoid using stale values */ 4256 intel_dp->fec_capable = 0; 4257 4258 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4259 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4260 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4261 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4262 intel_dp->dsc_dpcd, 4263 sizeof(intel_dp->dsc_dpcd)) < 0) 4264 DRM_ERROR("Failed to read DPCD register 0x%x\n", 4265 DP_DSC_SUPPORT); 4266 4267 DRM_DEBUG_KMS("DSC DPCD: %*ph\n", 4268 (int)sizeof(intel_dp->dsc_dpcd), 4269 intel_dp->dsc_dpcd); 4270 4271 /* FEC is supported only on DP 1.4 */ 4272 if (!intel_dp_is_edp(intel_dp) && 4273 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4274 &intel_dp->fec_capable) < 0) 4275 DRM_ERROR("Failed to read FEC DPCD register\n"); 4276 4277 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable); 4278 } 4279 } 4280 4281 static bool 4282 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4283 { 4284 struct drm_i915_private *dev_priv = 4285 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4286 4287 /* this function is meant to be called only once */ 4288 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0); 4289 4290 if (!intel_dp_read_dpcd(intel_dp)) 4291 return false; 4292 4293 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4294 drm_dp_is_branch(intel_dp->dpcd)); 4295 4296 /* 4297 * Read the eDP display control registers. 4298 * 4299 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4300 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4301 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4302 * method). The display control registers should read zero if they're 4303 * not supported anyway. 4304 */ 4305 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4306 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4307 sizeof(intel_dp->edp_dpcd)) 4308 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd), 4309 intel_dp->edp_dpcd); 4310 4311 /* 4312 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4313 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4314 */ 4315 intel_psr_init_dpcd(intel_dp); 4316 4317 /* Read the eDP 1.4+ supported link rates. */ 4318 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4319 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4320 int i; 4321 4322 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4323 sink_rates, sizeof(sink_rates)); 4324 4325 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4326 int val = le16_to_cpu(sink_rates[i]); 4327 4328 if (val == 0) 4329 break; 4330 4331 /* Value read multiplied by 200kHz gives the per-lane 4332 * link rate in kHz. The source rates are, however, 4333 * stored in terms of LS_Clk kHz. The full conversion 4334 * back to symbols is 4335 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4336 */ 4337 intel_dp->sink_rates[i] = (val * 200) / 10; 4338 } 4339 intel_dp->num_sink_rates = i; 4340 } 4341 4342 /* 4343 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4344 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4345 */ 4346 if (intel_dp->num_sink_rates) 4347 intel_dp->use_rate_select = true; 4348 else 4349 intel_dp_set_sink_rates(intel_dp); 4350 4351 intel_dp_set_common_rates(intel_dp); 4352 4353 /* Read the eDP DSC DPCD registers */ 4354 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4355 intel_dp_get_dsc_sink_cap(intel_dp); 4356 4357 return true; 4358 } 4359 4360 4361 static bool 4362 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4363 { 4364 if (!intel_dp_read_dpcd(intel_dp)) 4365 return false; 4366 4367 /* 4368 * Don't clobber cached eDP rates. Also skip re-reading 4369 * the OUI/ID since we know it won't change. 4370 */ 4371 if (!intel_dp_is_edp(intel_dp)) { 4372 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4373 drm_dp_is_branch(intel_dp->dpcd)); 4374 4375 intel_dp_set_sink_rates(intel_dp); 4376 intel_dp_set_common_rates(intel_dp); 4377 } 4378 4379 /* 4380 * Some eDP panels do not set a valid value for sink count, that is why 4381 * it don't care about read it here and in intel_edp_init_dpcd(). 4382 */ 4383 if (!intel_dp_is_edp(intel_dp) && 4384 !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) { 4385 u8 count; 4386 ssize_t r; 4387 4388 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4389 if (r < 1) 4390 return false; 4391 4392 /* 4393 * Sink count can change between short pulse hpd hence 4394 * a member variable in intel_dp will track any changes 4395 * between short pulse interrupts. 4396 */ 4397 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4398 4399 /* 4400 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4401 * a dongle is present but no display. Unless we require to know 4402 * if a dongle is present or not, we don't need to update 4403 * downstream port information. So, an early return here saves 4404 * time from performing other operations which are not required. 4405 */ 4406 if (!intel_dp->sink_count) 4407 return false; 4408 } 4409 4410 if (!drm_dp_is_branch(intel_dp->dpcd)) 4411 return true; /* native DP sink */ 4412 4413 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4414 return true; /* no per-port downstream info */ 4415 4416 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4417 intel_dp->downstream_ports, 4418 DP_MAX_DOWNSTREAM_PORTS) < 0) 4419 return false; /* downstream port status fetch failed */ 4420 4421 return true; 4422 } 4423 4424 static bool 4425 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4426 { 4427 u8 mstm_cap; 4428 4429 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4430 return false; 4431 4432 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4433 return false; 4434 4435 return mstm_cap & DP_MST_CAP; 4436 } 4437 4438 static bool 4439 intel_dp_can_mst(struct intel_dp *intel_dp) 4440 { 4441 return i915_modparams.enable_dp_mst && 4442 intel_dp->can_mst && 4443 intel_dp_sink_can_mst(intel_dp); 4444 } 4445 4446 static void 4447 intel_dp_configure_mst(struct intel_dp *intel_dp) 4448 { 4449 struct intel_encoder *encoder = 4450 &dp_to_dig_port(intel_dp)->base; 4451 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4452 4453 DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support? port: %s, sink: %s, modparam: %s\n", 4454 encoder->base.base.id, encoder->base.name, 4455 yesno(intel_dp->can_mst), yesno(sink_can_mst), 4456 yesno(i915_modparams.enable_dp_mst)); 4457 4458 if (!intel_dp->can_mst) 4459 return; 4460 4461 intel_dp->is_mst = sink_can_mst && 4462 i915_modparams.enable_dp_mst; 4463 4464 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4465 intel_dp->is_mst); 4466 } 4467 4468 static bool 4469 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4470 { 4471 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4472 sink_irq_vector, DP_DPRX_ESI_LEN) == 4473 DP_DPRX_ESI_LEN; 4474 } 4475 4476 static void 4477 intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp, 4478 const struct intel_crtc_state *crtc_state) 4479 { 4480 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4481 struct dp_sdp vsc_sdp = {}; 4482 4483 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */ 4484 vsc_sdp.sdp_header.HB0 = 0; 4485 vsc_sdp.sdp_header.HB1 = 0x7; 4486 4487 /* 4488 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 4489 * Colorimetry Format indication. 4490 */ 4491 vsc_sdp.sdp_header.HB2 = 0x5; 4492 4493 /* 4494 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/ 4495 * Colorimetry Format indication (HB2 = 05h). 4496 */ 4497 vsc_sdp.sdp_header.HB3 = 0x13; 4498 4499 /* 4500 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h 4501 * DB16[3:0] DP 1.4a spec, Table 2-120 4502 */ 4503 vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/ 4504 /* RGB->YCBCR color conversion uses the BT.709 color space. */ 4505 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */ 4506 4507 /* 4508 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only, 4509 * the following Component Bit Depth values are defined: 4510 * 001b = 8bpc. 4511 * 010b = 10bpc. 4512 * 011b = 12bpc. 4513 * 100b = 16bpc. 4514 */ 4515 switch (crtc_state->pipe_bpp) { 4516 case 24: /* 8bpc */ 4517 vsc_sdp.db[17] = 0x1; 4518 break; 4519 case 30: /* 10bpc */ 4520 vsc_sdp.db[17] = 0x2; 4521 break; 4522 case 36: /* 12bpc */ 4523 vsc_sdp.db[17] = 0x3; 4524 break; 4525 case 48: /* 16bpc */ 4526 vsc_sdp.db[17] = 0x4; 4527 break; 4528 default: 4529 MISSING_CASE(crtc_state->pipe_bpp); 4530 break; 4531 } 4532 4533 /* 4534 * Dynamic Range (Bit 7) 4535 * 0 = VESA range, 1 = CTA range. 4536 * all YCbCr are always limited range 4537 */ 4538 vsc_sdp.db[17] |= 0x80; 4539 4540 /* 4541 * Content Type (Bits 2:0) 4542 * 000b = Not defined. 4543 * 001b = Graphics. 4544 * 010b = Photo. 4545 * 011b = Video. 4546 * 100b = Game 4547 * All other values are RESERVED. 4548 * Note: See CTA-861-G for the definition and expected 4549 * processing by a stream sink for the above contect types. 4550 */ 4551 vsc_sdp.db[18] = 0; 4552 4553 intel_dig_port->write_infoframe(&intel_dig_port->base, 4554 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp)); 4555 } 4556 4557 void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp, 4558 const struct intel_crtc_state *crtc_state) 4559 { 4560 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420) 4561 return; 4562 4563 intel_pixel_encoding_setup_vsc(intel_dp, crtc_state); 4564 } 4565 4566 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 4567 { 4568 int status = 0; 4569 int test_link_rate; 4570 u8 test_lane_count, test_link_bw; 4571 /* (DP CTS 1.2) 4572 * 4.3.1.11 4573 */ 4574 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 4575 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 4576 &test_lane_count); 4577 4578 if (status <= 0) { 4579 DRM_DEBUG_KMS("Lane count read failed\n"); 4580 return DP_TEST_NAK; 4581 } 4582 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 4583 4584 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 4585 &test_link_bw); 4586 if (status <= 0) { 4587 DRM_DEBUG_KMS("Link Rate read failed\n"); 4588 return DP_TEST_NAK; 4589 } 4590 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 4591 4592 /* Validate the requested link rate and lane count */ 4593 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 4594 test_lane_count)) 4595 return DP_TEST_NAK; 4596 4597 intel_dp->compliance.test_lane_count = test_lane_count; 4598 intel_dp->compliance.test_link_rate = test_link_rate; 4599 4600 return DP_TEST_ACK; 4601 } 4602 4603 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 4604 { 4605 u8 test_pattern; 4606 u8 test_misc; 4607 __be16 h_width, v_height; 4608 int status = 0; 4609 4610 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 4611 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 4612 &test_pattern); 4613 if (status <= 0) { 4614 DRM_DEBUG_KMS("Test pattern read failed\n"); 4615 return DP_TEST_NAK; 4616 } 4617 if (test_pattern != DP_COLOR_RAMP) 4618 return DP_TEST_NAK; 4619 4620 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 4621 &h_width, 2); 4622 if (status <= 0) { 4623 DRM_DEBUG_KMS("H Width read failed\n"); 4624 return DP_TEST_NAK; 4625 } 4626 4627 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 4628 &v_height, 2); 4629 if (status <= 0) { 4630 DRM_DEBUG_KMS("V Height read failed\n"); 4631 return DP_TEST_NAK; 4632 } 4633 4634 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 4635 &test_misc); 4636 if (status <= 0) { 4637 DRM_DEBUG_KMS("TEST MISC read failed\n"); 4638 return DP_TEST_NAK; 4639 } 4640 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 4641 return DP_TEST_NAK; 4642 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 4643 return DP_TEST_NAK; 4644 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 4645 case DP_TEST_BIT_DEPTH_6: 4646 intel_dp->compliance.test_data.bpc = 6; 4647 break; 4648 case DP_TEST_BIT_DEPTH_8: 4649 intel_dp->compliance.test_data.bpc = 8; 4650 break; 4651 default: 4652 return DP_TEST_NAK; 4653 } 4654 4655 intel_dp->compliance.test_data.video_pattern = test_pattern; 4656 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 4657 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 4658 /* Set test active flag here so userspace doesn't interrupt things */ 4659 intel_dp->compliance.test_active = 1; 4660 4661 return DP_TEST_ACK; 4662 } 4663 4664 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 4665 { 4666 u8 test_result = DP_TEST_ACK; 4667 struct intel_connector *intel_connector = intel_dp->attached_connector; 4668 struct drm_connector *connector = &intel_connector->base; 4669 4670 if (intel_connector->detect_edid == NULL || 4671 connector->edid_corrupt || 4672 intel_dp->aux.i2c_defer_count > 6) { 4673 /* Check EDID read for NACKs, DEFERs and corruption 4674 * (DP CTS 1.2 Core r1.1) 4675 * 4.2.2.4 : Failed EDID read, I2C_NAK 4676 * 4.2.2.5 : Failed EDID read, I2C_DEFER 4677 * 4.2.2.6 : EDID corruption detected 4678 * Use failsafe mode for all cases 4679 */ 4680 if (intel_dp->aux.i2c_nack_count > 0 || 4681 intel_dp->aux.i2c_defer_count > 0) 4682 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", 4683 intel_dp->aux.i2c_nack_count, 4684 intel_dp->aux.i2c_defer_count); 4685 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 4686 } else { 4687 struct edid *block = intel_connector->detect_edid; 4688 4689 /* We have to write the checksum 4690 * of the last block read 4691 */ 4692 block += intel_connector->detect_edid->extensions; 4693 4694 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 4695 block->checksum) <= 0) 4696 DRM_DEBUG_KMS("Failed to write EDID checksum\n"); 4697 4698 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 4699 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 4700 } 4701 4702 /* Set test active flag here so userspace doesn't interrupt things */ 4703 intel_dp->compliance.test_active = 1; 4704 4705 return test_result; 4706 } 4707 4708 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 4709 { 4710 u8 test_result = DP_TEST_NAK; 4711 return test_result; 4712 } 4713 4714 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 4715 { 4716 u8 response = DP_TEST_NAK; 4717 u8 request = 0; 4718 int status; 4719 4720 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 4721 if (status <= 0) { 4722 DRM_DEBUG_KMS("Could not read test request from sink\n"); 4723 goto update_status; 4724 } 4725 4726 switch (request) { 4727 case DP_TEST_LINK_TRAINING: 4728 DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); 4729 response = intel_dp_autotest_link_training(intel_dp); 4730 break; 4731 case DP_TEST_LINK_VIDEO_PATTERN: 4732 DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); 4733 response = intel_dp_autotest_video_pattern(intel_dp); 4734 break; 4735 case DP_TEST_LINK_EDID_READ: 4736 DRM_DEBUG_KMS("EDID test requested\n"); 4737 response = intel_dp_autotest_edid(intel_dp); 4738 break; 4739 case DP_TEST_LINK_PHY_TEST_PATTERN: 4740 DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); 4741 response = intel_dp_autotest_phy_pattern(intel_dp); 4742 break; 4743 default: 4744 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); 4745 break; 4746 } 4747 4748 if (response & DP_TEST_ACK) 4749 intel_dp->compliance.test_type = request; 4750 4751 update_status: 4752 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 4753 if (status <= 0) 4754 DRM_DEBUG_KMS("Could not write test response to sink\n"); 4755 } 4756 4757 static int 4758 intel_dp_check_mst_status(struct intel_dp *intel_dp) 4759 { 4760 bool bret; 4761 4762 if (intel_dp->is_mst) { 4763 u8 esi[DP_DPRX_ESI_LEN] = { 0 }; 4764 int ret = 0; 4765 int retry; 4766 bool handled; 4767 4768 WARN_ON_ONCE(intel_dp->active_mst_links < 0); 4769 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4770 go_again: 4771 if (bret == true) { 4772 4773 /* check link status - esi[10] = 0x200c */ 4774 if (intel_dp->active_mst_links > 0 && 4775 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 4776 DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); 4777 intel_dp_start_link_train(intel_dp); 4778 intel_dp_stop_link_train(intel_dp); 4779 } 4780 4781 DRM_DEBUG_KMS("got esi %3ph\n", esi); 4782 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 4783 4784 if (handled) { 4785 for (retry = 0; retry < 3; retry++) { 4786 int wret; 4787 wret = drm_dp_dpcd_write(&intel_dp->aux, 4788 DP_SINK_COUNT_ESI+1, 4789 &esi[1], 3); 4790 if (wret == 3) { 4791 break; 4792 } 4793 } 4794 4795 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4796 if (bret == true) { 4797 DRM_DEBUG_KMS("got esi2 %3ph\n", esi); 4798 goto go_again; 4799 } 4800 } else 4801 ret = 0; 4802 4803 return ret; 4804 } else { 4805 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); 4806 intel_dp->is_mst = false; 4807 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4808 intel_dp->is_mst); 4809 } 4810 } 4811 return -EINVAL; 4812 } 4813 4814 static bool 4815 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 4816 { 4817 u8 link_status[DP_LINK_STATUS_SIZE]; 4818 4819 if (!intel_dp->link_trained) 4820 return false; 4821 4822 /* 4823 * While PSR source HW is enabled, it will control main-link sending 4824 * frames, enabling and disabling it so trying to do a retrain will fail 4825 * as the link would or not be on or it could mix training patterns 4826 * and frame data at the same time causing retrain to fail. 4827 * Also when exiting PSR, HW will retrain the link anyways fixing 4828 * any link status error. 4829 */ 4830 if (intel_psr_enabled(intel_dp)) 4831 return false; 4832 4833 if (!intel_dp_get_link_status(intel_dp, link_status)) 4834 return false; 4835 4836 /* 4837 * Validate the cached values of intel_dp->link_rate and 4838 * intel_dp->lane_count before attempting to retrain. 4839 */ 4840 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 4841 intel_dp->lane_count)) 4842 return false; 4843 4844 /* Retrain if Channel EQ or CR not ok */ 4845 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 4846 } 4847 4848 int intel_dp_retrain_link(struct intel_encoder *encoder, 4849 struct drm_modeset_acquire_ctx *ctx) 4850 { 4851 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4852 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 4853 struct intel_connector *connector = intel_dp->attached_connector; 4854 struct drm_connector_state *conn_state; 4855 struct intel_crtc_state *crtc_state; 4856 struct intel_crtc *crtc; 4857 int ret; 4858 4859 /* FIXME handle the MST connectors as well */ 4860 4861 if (!connector || connector->base.status != connector_status_connected) 4862 return 0; 4863 4864 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 4865 ctx); 4866 if (ret) 4867 return ret; 4868 4869 conn_state = connector->base.state; 4870 4871 crtc = to_intel_crtc(conn_state->crtc); 4872 if (!crtc) 4873 return 0; 4874 4875 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 4876 if (ret) 4877 return ret; 4878 4879 crtc_state = to_intel_crtc_state(crtc->base.state); 4880 4881 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state)); 4882 4883 if (!crtc_state->base.active) 4884 return 0; 4885 4886 if (conn_state->commit && 4887 !try_wait_for_completion(&conn_state->commit->hw_done)) 4888 return 0; 4889 4890 if (!intel_dp_needs_link_retrain(intel_dp)) 4891 return 0; 4892 4893 /* Suppress underruns caused by re-training */ 4894 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 4895 if (crtc_state->has_pch_encoder) 4896 intel_set_pch_fifo_underrun_reporting(dev_priv, 4897 intel_crtc_pch_transcoder(crtc), false); 4898 4899 intel_dp_start_link_train(intel_dp); 4900 intel_dp_stop_link_train(intel_dp); 4901 4902 /* Keep underrun reporting disabled until things are stable */ 4903 intel_wait_for_vblank(dev_priv, crtc->pipe); 4904 4905 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 4906 if (crtc_state->has_pch_encoder) 4907 intel_set_pch_fifo_underrun_reporting(dev_priv, 4908 intel_crtc_pch_transcoder(crtc), true); 4909 4910 return 0; 4911 } 4912 4913 /* 4914 * If display is now connected check links status, 4915 * there has been known issues of link loss triggering 4916 * long pulse. 4917 * 4918 * Some sinks (eg. ASUS PB287Q) seem to perform some 4919 * weird HPD ping pong during modesets. So we can apparently 4920 * end up with HPD going low during a modeset, and then 4921 * going back up soon after. And once that happens we must 4922 * retrain the link to get a picture. That's in case no 4923 * userspace component reacted to intermittent HPD dip. 4924 */ 4925 static enum intel_hotplug_state 4926 intel_dp_hotplug(struct intel_encoder *encoder, 4927 struct intel_connector *connector, 4928 bool irq_received) 4929 { 4930 struct drm_modeset_acquire_ctx ctx; 4931 enum intel_hotplug_state state; 4932 int ret; 4933 4934 state = intel_encoder_hotplug(encoder, connector, irq_received); 4935 4936 drm_modeset_acquire_init(&ctx, 0); 4937 4938 for (;;) { 4939 ret = intel_dp_retrain_link(encoder, &ctx); 4940 4941 if (ret == -EDEADLK) { 4942 drm_modeset_backoff(&ctx); 4943 continue; 4944 } 4945 4946 break; 4947 } 4948 4949 drm_modeset_drop_locks(&ctx); 4950 drm_modeset_acquire_fini(&ctx); 4951 WARN(ret, "Acquiring modeset locks failed with %i\n", ret); 4952 4953 /* 4954 * Keeping it consistent with intel_ddi_hotplug() and 4955 * intel_hdmi_hotplug(). 4956 */ 4957 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received) 4958 state = INTEL_HOTPLUG_RETRY; 4959 4960 return state; 4961 } 4962 4963 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 4964 { 4965 u8 val; 4966 4967 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 4968 return; 4969 4970 if (drm_dp_dpcd_readb(&intel_dp->aux, 4971 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 4972 return; 4973 4974 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 4975 4976 if (val & DP_AUTOMATED_TEST_REQUEST) 4977 intel_dp_handle_test_request(intel_dp); 4978 4979 if (val & DP_CP_IRQ) 4980 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 4981 4982 if (val & DP_SINK_SPECIFIC_IRQ) 4983 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n"); 4984 } 4985 4986 /* 4987 * According to DP spec 4988 * 5.1.2: 4989 * 1. Read DPCD 4990 * 2. Configure link according to Receiver Capabilities 4991 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 4992 * 4. Check link status on receipt of hot-plug interrupt 4993 * 4994 * intel_dp_short_pulse - handles short pulse interrupts 4995 * when full detection is not required. 4996 * Returns %true if short pulse is handled and full detection 4997 * is NOT required and %false otherwise. 4998 */ 4999 static bool 5000 intel_dp_short_pulse(struct intel_dp *intel_dp) 5001 { 5002 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 5003 u8 old_sink_count = intel_dp->sink_count; 5004 bool ret; 5005 5006 /* 5007 * Clearing compliance test variables to allow capturing 5008 * of values for next automated test request. 5009 */ 5010 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5011 5012 /* 5013 * Now read the DPCD to see if it's actually running 5014 * If the current value of sink count doesn't match with 5015 * the value that was stored earlier or dpcd read failed 5016 * we need to do full detection 5017 */ 5018 ret = intel_dp_get_dpcd(intel_dp); 5019 5020 if ((old_sink_count != intel_dp->sink_count) || !ret) { 5021 /* No need to proceed if we are going to do full detect */ 5022 return false; 5023 } 5024 5025 intel_dp_check_service_irq(intel_dp); 5026 5027 /* Handle CEC interrupts, if any */ 5028 drm_dp_cec_irq(&intel_dp->aux); 5029 5030 /* defer to the hotplug work for link retraining if needed */ 5031 if (intel_dp_needs_link_retrain(intel_dp)) 5032 return false; 5033 5034 intel_psr_short_pulse(intel_dp); 5035 5036 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 5037 DRM_DEBUG_KMS("Link Training Compliance Test requested\n"); 5038 /* Send a Hotplug Uevent to userspace to start modeset */ 5039 drm_kms_helper_hotplug_event(&dev_priv->drm); 5040 } 5041 5042 return true; 5043 } 5044 5045 /* XXX this is probably wrong for multiple downstream ports */ 5046 static enum drm_connector_status 5047 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 5048 { 5049 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 5050 u8 *dpcd = intel_dp->dpcd; 5051 u8 type; 5052 5053 if (WARN_ON(intel_dp_is_edp(intel_dp))) 5054 return connector_status_connected; 5055 5056 if (lspcon->active) 5057 lspcon_resume(lspcon); 5058 5059 if (!intel_dp_get_dpcd(intel_dp)) 5060 return connector_status_disconnected; 5061 5062 /* if there's no downstream port, we're done */ 5063 if (!drm_dp_is_branch(dpcd)) 5064 return connector_status_connected; 5065 5066 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5067 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5068 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5069 5070 return intel_dp->sink_count ? 5071 connector_status_connected : connector_status_disconnected; 5072 } 5073 5074 if (intel_dp_can_mst(intel_dp)) 5075 return connector_status_connected; 5076 5077 /* If no HPD, poke DDC gently */ 5078 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5079 return connector_status_connected; 5080 5081 /* Well we tried, say unknown for unreliable port types */ 5082 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5083 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5084 if (type == DP_DS_PORT_TYPE_VGA || 5085 type == DP_DS_PORT_TYPE_NON_EDID) 5086 return connector_status_unknown; 5087 } else { 5088 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5089 DP_DWN_STRM_PORT_TYPE_MASK; 5090 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5091 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5092 return connector_status_unknown; 5093 } 5094 5095 /* Anything else is out of spec, warn and ignore */ 5096 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); 5097 return connector_status_disconnected; 5098 } 5099 5100 static enum drm_connector_status 5101 edp_detect(struct intel_dp *intel_dp) 5102 { 5103 return connector_status_connected; 5104 } 5105 5106 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 5107 { 5108 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5109 u32 bit; 5110 5111 switch (encoder->hpd_pin) { 5112 case HPD_PORT_B: 5113 bit = SDE_PORTB_HOTPLUG; 5114 break; 5115 case HPD_PORT_C: 5116 bit = SDE_PORTC_HOTPLUG; 5117 break; 5118 case HPD_PORT_D: 5119 bit = SDE_PORTD_HOTPLUG; 5120 break; 5121 default: 5122 MISSING_CASE(encoder->hpd_pin); 5123 return false; 5124 } 5125 5126 return I915_READ(SDEISR) & bit; 5127 } 5128 5129 static bool cpt_digital_port_connected(struct intel_encoder *encoder) 5130 { 5131 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5132 u32 bit; 5133 5134 switch (encoder->hpd_pin) { 5135 case HPD_PORT_B: 5136 bit = SDE_PORTB_HOTPLUG_CPT; 5137 break; 5138 case HPD_PORT_C: 5139 bit = SDE_PORTC_HOTPLUG_CPT; 5140 break; 5141 case HPD_PORT_D: 5142 bit = SDE_PORTD_HOTPLUG_CPT; 5143 break; 5144 default: 5145 MISSING_CASE(encoder->hpd_pin); 5146 return false; 5147 } 5148 5149 return I915_READ(SDEISR) & bit; 5150 } 5151 5152 static bool spt_digital_port_connected(struct intel_encoder *encoder) 5153 { 5154 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5155 u32 bit; 5156 5157 switch (encoder->hpd_pin) { 5158 case HPD_PORT_A: 5159 bit = SDE_PORTA_HOTPLUG_SPT; 5160 break; 5161 case HPD_PORT_E: 5162 bit = SDE_PORTE_HOTPLUG_SPT; 5163 break; 5164 default: 5165 return cpt_digital_port_connected(encoder); 5166 } 5167 5168 return I915_READ(SDEISR) & bit; 5169 } 5170 5171 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 5172 { 5173 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5174 u32 bit; 5175 5176 switch (encoder->hpd_pin) { 5177 case HPD_PORT_B: 5178 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 5179 break; 5180 case HPD_PORT_C: 5181 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 5182 break; 5183 case HPD_PORT_D: 5184 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 5185 break; 5186 default: 5187 MISSING_CASE(encoder->hpd_pin); 5188 return false; 5189 } 5190 5191 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5192 } 5193 5194 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 5195 { 5196 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5197 u32 bit; 5198 5199 switch (encoder->hpd_pin) { 5200 case HPD_PORT_B: 5201 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 5202 break; 5203 case HPD_PORT_C: 5204 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 5205 break; 5206 case HPD_PORT_D: 5207 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 5208 break; 5209 default: 5210 MISSING_CASE(encoder->hpd_pin); 5211 return false; 5212 } 5213 5214 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5215 } 5216 5217 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 5218 { 5219 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5220 5221 if (encoder->hpd_pin == HPD_PORT_A) 5222 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5223 else 5224 return ibx_digital_port_connected(encoder); 5225 } 5226 5227 static bool snb_digital_port_connected(struct intel_encoder *encoder) 5228 { 5229 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5230 5231 if (encoder->hpd_pin == HPD_PORT_A) 5232 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5233 else 5234 return cpt_digital_port_connected(encoder); 5235 } 5236 5237 static bool ivb_digital_port_connected(struct intel_encoder *encoder) 5238 { 5239 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5240 5241 if (encoder->hpd_pin == HPD_PORT_A) 5242 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB; 5243 else 5244 return cpt_digital_port_connected(encoder); 5245 } 5246 5247 static bool bdw_digital_port_connected(struct intel_encoder *encoder) 5248 { 5249 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5250 5251 if (encoder->hpd_pin == HPD_PORT_A) 5252 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; 5253 else 5254 return cpt_digital_port_connected(encoder); 5255 } 5256 5257 static bool bxt_digital_port_connected(struct intel_encoder *encoder) 5258 { 5259 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5260 u32 bit; 5261 5262 switch (encoder->hpd_pin) { 5263 case HPD_PORT_A: 5264 bit = BXT_DE_PORT_HP_DDIA; 5265 break; 5266 case HPD_PORT_B: 5267 bit = BXT_DE_PORT_HP_DDIB; 5268 break; 5269 case HPD_PORT_C: 5270 bit = BXT_DE_PORT_HP_DDIC; 5271 break; 5272 default: 5273 MISSING_CASE(encoder->hpd_pin); 5274 return false; 5275 } 5276 5277 return I915_READ(GEN8_DE_PORT_ISR) & bit; 5278 } 5279 5280 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv, 5281 struct intel_digital_port *intel_dig_port) 5282 { 5283 enum port port = intel_dig_port->base.port; 5284 5285 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port); 5286 } 5287 5288 static bool icl_digital_port_connected(struct intel_encoder *encoder) 5289 { 5290 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5291 struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); 5292 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 5293 5294 if (intel_phy_is_combo(dev_priv, phy)) 5295 return icl_combo_port_connected(dev_priv, dig_port); 5296 else if (intel_phy_is_tc(dev_priv, phy)) 5297 return intel_tc_port_connected(dig_port); 5298 else 5299 MISSING_CASE(encoder->hpd_pin); 5300 5301 return false; 5302 } 5303 5304 /* 5305 * intel_digital_port_connected - is the specified port connected? 5306 * @encoder: intel_encoder 5307 * 5308 * In cases where there's a connector physically connected but it can't be used 5309 * by our hardware we also return false, since the rest of the driver should 5310 * pretty much treat the port as disconnected. This is relevant for type-C 5311 * (starting on ICL) where there's ownership involved. 5312 * 5313 * Return %true if port is connected, %false otherwise. 5314 */ 5315 static bool __intel_digital_port_connected(struct intel_encoder *encoder) 5316 { 5317 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5318 5319 if (HAS_GMCH(dev_priv)) { 5320 if (IS_GM45(dev_priv)) 5321 return gm45_digital_port_connected(encoder); 5322 else 5323 return g4x_digital_port_connected(encoder); 5324 } 5325 5326 if (INTEL_GEN(dev_priv) >= 11) 5327 return icl_digital_port_connected(encoder); 5328 else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv)) 5329 return spt_digital_port_connected(encoder); 5330 else if (IS_GEN9_LP(dev_priv)) 5331 return bxt_digital_port_connected(encoder); 5332 else if (IS_GEN(dev_priv, 8)) 5333 return bdw_digital_port_connected(encoder); 5334 else if (IS_GEN(dev_priv, 7)) 5335 return ivb_digital_port_connected(encoder); 5336 else if (IS_GEN(dev_priv, 6)) 5337 return snb_digital_port_connected(encoder); 5338 else if (IS_GEN(dev_priv, 5)) 5339 return ilk_digital_port_connected(encoder); 5340 5341 MISSING_CASE(INTEL_GEN(dev_priv)); 5342 return false; 5343 } 5344 5345 bool intel_digital_port_connected(struct intel_encoder *encoder) 5346 { 5347 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5348 bool is_connected = false; 5349 intel_wakeref_t wakeref; 5350 5351 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 5352 is_connected = __intel_digital_port_connected(encoder); 5353 5354 return is_connected; 5355 } 5356 5357 static struct edid * 5358 intel_dp_get_edid(struct intel_dp *intel_dp) 5359 { 5360 struct intel_connector *intel_connector = intel_dp->attached_connector; 5361 5362 /* use cached edid if we have one */ 5363 if (intel_connector->edid) { 5364 /* invalid edid */ 5365 if (IS_ERR(intel_connector->edid)) 5366 return NULL; 5367 5368 return drm_edid_duplicate(intel_connector->edid); 5369 } else 5370 return drm_get_edid(&intel_connector->base, 5371 &intel_dp->aux.ddc); 5372 } 5373 5374 static void 5375 intel_dp_set_edid(struct intel_dp *intel_dp) 5376 { 5377 struct intel_connector *intel_connector = intel_dp->attached_connector; 5378 struct edid *edid; 5379 5380 intel_dp_unset_edid(intel_dp); 5381 edid = intel_dp_get_edid(intel_dp); 5382 intel_connector->detect_edid = edid; 5383 5384 intel_dp->has_audio = drm_detect_monitor_audio(edid); 5385 drm_dp_cec_set_edid(&intel_dp->aux, edid); 5386 } 5387 5388 static void 5389 intel_dp_unset_edid(struct intel_dp *intel_dp) 5390 { 5391 struct intel_connector *intel_connector = intel_dp->attached_connector; 5392 5393 drm_dp_cec_unset_edid(&intel_dp->aux); 5394 kfree(intel_connector->detect_edid); 5395 intel_connector->detect_edid = NULL; 5396 5397 intel_dp->has_audio = false; 5398 } 5399 5400 static int 5401 intel_dp_detect(struct drm_connector *connector, 5402 struct drm_modeset_acquire_ctx *ctx, 5403 bool force) 5404 { 5405 struct drm_i915_private *dev_priv = to_i915(connector->dev); 5406 struct intel_dp *intel_dp = intel_attached_dp(connector); 5407 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5408 struct intel_encoder *encoder = &dig_port->base; 5409 enum drm_connector_status status; 5410 5411 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5412 connector->base.id, connector->name); 5413 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 5414 5415 /* Can't disconnect eDP */ 5416 if (intel_dp_is_edp(intel_dp)) 5417 status = edp_detect(intel_dp); 5418 else if (intel_digital_port_connected(encoder)) 5419 status = intel_dp_detect_dpcd(intel_dp); 5420 else 5421 status = connector_status_disconnected; 5422 5423 if (status == connector_status_disconnected) { 5424 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5425 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 5426 5427 if (intel_dp->is_mst) { 5428 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 5429 intel_dp->is_mst, 5430 intel_dp->mst_mgr.mst_state); 5431 intel_dp->is_mst = false; 5432 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5433 intel_dp->is_mst); 5434 } 5435 5436 goto out; 5437 } 5438 5439 if (intel_dp->reset_link_params) { 5440 /* Initial max link lane count */ 5441 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 5442 5443 /* Initial max link rate */ 5444 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 5445 5446 intel_dp->reset_link_params = false; 5447 } 5448 5449 intel_dp_print_rates(intel_dp); 5450 5451 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 5452 if (INTEL_GEN(dev_priv) >= 11) 5453 intel_dp_get_dsc_sink_cap(intel_dp); 5454 5455 intel_dp_configure_mst(intel_dp); 5456 5457 if (intel_dp->is_mst) { 5458 /* 5459 * If we are in MST mode then this connector 5460 * won't appear connected or have anything 5461 * with EDID on it 5462 */ 5463 status = connector_status_disconnected; 5464 goto out; 5465 } 5466 5467 /* 5468 * Some external monitors do not signal loss of link synchronization 5469 * with an IRQ_HPD, so force a link status check. 5470 */ 5471 if (!intel_dp_is_edp(intel_dp)) { 5472 int ret; 5473 5474 ret = intel_dp_retrain_link(encoder, ctx); 5475 if (ret) 5476 return ret; 5477 } 5478 5479 /* 5480 * Clearing NACK and defer counts to get their exact values 5481 * while reading EDID which are required by Compliance tests 5482 * 4.2.2.4 and 4.2.2.5 5483 */ 5484 intel_dp->aux.i2c_nack_count = 0; 5485 intel_dp->aux.i2c_defer_count = 0; 5486 5487 intel_dp_set_edid(intel_dp); 5488 if (intel_dp_is_edp(intel_dp) || 5489 to_intel_connector(connector)->detect_edid) 5490 status = connector_status_connected; 5491 5492 intel_dp_check_service_irq(intel_dp); 5493 5494 out: 5495 if (status != connector_status_connected && !intel_dp->is_mst) 5496 intel_dp_unset_edid(intel_dp); 5497 5498 return status; 5499 } 5500 5501 static void 5502 intel_dp_force(struct drm_connector *connector) 5503 { 5504 struct intel_dp *intel_dp = intel_attached_dp(connector); 5505 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5506 struct intel_encoder *intel_encoder = &dig_port->base; 5507 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 5508 enum intel_display_power_domain aux_domain = 5509 intel_aux_power_domain(dig_port); 5510 intel_wakeref_t wakeref; 5511 5512 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5513 connector->base.id, connector->name); 5514 intel_dp_unset_edid(intel_dp); 5515 5516 if (connector->status != connector_status_connected) 5517 return; 5518 5519 wakeref = intel_display_power_get(dev_priv, aux_domain); 5520 5521 intel_dp_set_edid(intel_dp); 5522 5523 intel_display_power_put(dev_priv, aux_domain, wakeref); 5524 } 5525 5526 static int intel_dp_get_modes(struct drm_connector *connector) 5527 { 5528 struct intel_connector *intel_connector = to_intel_connector(connector); 5529 struct edid *edid; 5530 5531 edid = intel_connector->detect_edid; 5532 if (edid) { 5533 int ret = intel_connector_update_modes(connector, edid); 5534 if (ret) 5535 return ret; 5536 } 5537 5538 /* if eDP has no EDID, fall back to fixed mode */ 5539 if (intel_dp_is_edp(intel_attached_dp(connector)) && 5540 intel_connector->panel.fixed_mode) { 5541 struct drm_display_mode *mode; 5542 5543 mode = drm_mode_duplicate(connector->dev, 5544 intel_connector->panel.fixed_mode); 5545 if (mode) { 5546 drm_mode_probed_add(connector, mode); 5547 return 1; 5548 } 5549 } 5550 5551 return 0; 5552 } 5553 5554 static int 5555 intel_dp_connector_register(struct drm_connector *connector) 5556 { 5557 struct intel_dp *intel_dp = intel_attached_dp(connector); 5558 int ret; 5559 5560 ret = intel_connector_register(connector); 5561 if (ret) 5562 return ret; 5563 5564 i915_debugfs_connector_add(connector); 5565 5566 DRM_DEBUG_KMS("registering %s bus for %s\n", 5567 intel_dp->aux.name, connector->kdev->kobj.name); 5568 5569 intel_dp->aux.dev = connector->kdev; 5570 ret = drm_dp_aux_register(&intel_dp->aux); 5571 if (!ret) 5572 drm_dp_cec_register_connector(&intel_dp->aux, connector); 5573 return ret; 5574 } 5575 5576 static void 5577 intel_dp_connector_unregister(struct drm_connector *connector) 5578 { 5579 struct intel_dp *intel_dp = intel_attached_dp(connector); 5580 5581 drm_dp_cec_unregister_connector(&intel_dp->aux); 5582 drm_dp_aux_unregister(&intel_dp->aux); 5583 intel_connector_unregister(connector); 5584 } 5585 5586 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 5587 { 5588 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 5589 struct intel_dp *intel_dp = &intel_dig_port->dp; 5590 5591 intel_dp_mst_encoder_cleanup(intel_dig_port); 5592 if (intel_dp_is_edp(intel_dp)) { 5593 intel_wakeref_t wakeref; 5594 5595 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5596 /* 5597 * vdd might still be enabled do to the delayed vdd off. 5598 * Make sure vdd is actually turned off here. 5599 */ 5600 with_pps_lock(intel_dp, wakeref) 5601 edp_panel_vdd_off_sync(intel_dp); 5602 5603 if (intel_dp->edp_notifier.notifier_call) { 5604 unregister_reboot_notifier(&intel_dp->edp_notifier); 5605 intel_dp->edp_notifier.notifier_call = NULL; 5606 } 5607 } 5608 5609 intel_dp_aux_fini(intel_dp); 5610 } 5611 5612 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 5613 { 5614 intel_dp_encoder_flush_work(encoder); 5615 5616 drm_encoder_cleanup(encoder); 5617 kfree(enc_to_dig_port(encoder)); 5618 } 5619 5620 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 5621 { 5622 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); 5623 intel_wakeref_t wakeref; 5624 5625 if (!intel_dp_is_edp(intel_dp)) 5626 return; 5627 5628 /* 5629 * vdd might still be enabled do to the delayed vdd off. 5630 * Make sure vdd is actually turned off here. 5631 */ 5632 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5633 with_pps_lock(intel_dp, wakeref) 5634 edp_panel_vdd_off_sync(intel_dp); 5635 } 5636 5637 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 5638 { 5639 long ret; 5640 5641 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 5642 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, 5643 msecs_to_jiffies(timeout)); 5644 5645 if (!ret) 5646 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 5647 } 5648 5649 static 5650 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 5651 u8 *an) 5652 { 5653 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base); 5654 static const struct drm_dp_aux_msg msg = { 5655 .request = DP_AUX_NATIVE_WRITE, 5656 .address = DP_AUX_HDCP_AKSV, 5657 .size = DRM_HDCP_KSV_LEN, 5658 }; 5659 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 5660 ssize_t dpcd_ret; 5661 int ret; 5662 5663 /* Output An first, that's easy */ 5664 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 5665 an, DRM_HDCP_AN_LEN); 5666 if (dpcd_ret != DRM_HDCP_AN_LEN) { 5667 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n", 5668 dpcd_ret); 5669 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 5670 } 5671 5672 /* 5673 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 5674 * order to get it on the wire, we need to create the AUX header as if 5675 * we were writing the data, and then tickle the hardware to output the 5676 * data once the header is sent out. 5677 */ 5678 intel_dp_aux_header(txbuf, &msg); 5679 5680 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 5681 rxbuf, sizeof(rxbuf), 5682 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 5683 if (ret < 0) { 5684 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret); 5685 return ret; 5686 } else if (ret == 0) { 5687 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n"); 5688 return -EIO; 5689 } 5690 5691 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 5692 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 5693 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 5694 reply); 5695 return -EIO; 5696 } 5697 return 0; 5698 } 5699 5700 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 5701 u8 *bksv) 5702 { 5703 ssize_t ret; 5704 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 5705 DRM_HDCP_KSV_LEN); 5706 if (ret != DRM_HDCP_KSV_LEN) { 5707 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret); 5708 return ret >= 0 ? -EIO : ret; 5709 } 5710 return 0; 5711 } 5712 5713 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 5714 u8 *bstatus) 5715 { 5716 ssize_t ret; 5717 /* 5718 * For some reason the HDMI and DP HDCP specs call this register 5719 * definition by different names. In the HDMI spec, it's called BSTATUS, 5720 * but in DP it's called BINFO. 5721 */ 5722 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 5723 bstatus, DRM_HDCP_BSTATUS_LEN); 5724 if (ret != DRM_HDCP_BSTATUS_LEN) { 5725 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5726 return ret >= 0 ? -EIO : ret; 5727 } 5728 return 0; 5729 } 5730 5731 static 5732 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 5733 u8 *bcaps) 5734 { 5735 ssize_t ret; 5736 5737 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 5738 bcaps, 1); 5739 if (ret != 1) { 5740 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret); 5741 return ret >= 0 ? -EIO : ret; 5742 } 5743 5744 return 0; 5745 } 5746 5747 static 5748 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 5749 bool *repeater_present) 5750 { 5751 ssize_t ret; 5752 u8 bcaps; 5753 5754 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 5755 if (ret) 5756 return ret; 5757 5758 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 5759 return 0; 5760 } 5761 5762 static 5763 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 5764 u8 *ri_prime) 5765 { 5766 ssize_t ret; 5767 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 5768 ri_prime, DRM_HDCP_RI_LEN); 5769 if (ret != DRM_HDCP_RI_LEN) { 5770 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret); 5771 return ret >= 0 ? -EIO : ret; 5772 } 5773 return 0; 5774 } 5775 5776 static 5777 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 5778 bool *ksv_ready) 5779 { 5780 ssize_t ret; 5781 u8 bstatus; 5782 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5783 &bstatus, 1); 5784 if (ret != 1) { 5785 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5786 return ret >= 0 ? -EIO : ret; 5787 } 5788 *ksv_ready = bstatus & DP_BSTATUS_READY; 5789 return 0; 5790 } 5791 5792 static 5793 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 5794 int num_downstream, u8 *ksv_fifo) 5795 { 5796 ssize_t ret; 5797 int i; 5798 5799 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 5800 for (i = 0; i < num_downstream; i += 3) { 5801 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 5802 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5803 DP_AUX_HDCP_KSV_FIFO, 5804 ksv_fifo + i * DRM_HDCP_KSV_LEN, 5805 len); 5806 if (ret != len) { 5807 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n", 5808 i, ret); 5809 return ret >= 0 ? -EIO : ret; 5810 } 5811 } 5812 return 0; 5813 } 5814 5815 static 5816 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 5817 int i, u32 *part) 5818 { 5819 ssize_t ret; 5820 5821 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 5822 return -EINVAL; 5823 5824 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5825 DP_AUX_HDCP_V_PRIME(i), part, 5826 DRM_HDCP_V_PRIME_PART_LEN); 5827 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 5828 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 5829 return ret >= 0 ? -EIO : ret; 5830 } 5831 return 0; 5832 } 5833 5834 static 5835 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 5836 bool enable) 5837 { 5838 /* Not used for single stream DisplayPort setups */ 5839 return 0; 5840 } 5841 5842 static 5843 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 5844 { 5845 ssize_t ret; 5846 u8 bstatus; 5847 5848 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5849 &bstatus, 1); 5850 if (ret != 1) { 5851 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5852 return false; 5853 } 5854 5855 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 5856 } 5857 5858 static 5859 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 5860 bool *hdcp_capable) 5861 { 5862 ssize_t ret; 5863 u8 bcaps; 5864 5865 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 5866 if (ret) 5867 return ret; 5868 5869 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 5870 return 0; 5871 } 5872 5873 struct hdcp2_dp_errata_stream_type { 5874 u8 msg_id; 5875 u8 stream_type; 5876 } __packed; 5877 5878 struct hdcp2_dp_msg_data { 5879 u8 msg_id; 5880 u32 offset; 5881 bool msg_detectable; 5882 u32 timeout; 5883 u32 timeout2; /* Added for non_paired situation */ 5884 }; 5885 5886 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { 5887 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, 5888 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 5889 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, 5890 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 5891 false, 0, 0 }, 5892 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 5893 false, 0, 0 }, 5894 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 5895 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 5896 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, 5897 { HDCP_2_2_AKE_SEND_PAIRING_INFO, 5898 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 5899 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, 5900 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, 5901 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 5902 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, 5903 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 5904 0, 0 }, 5905 { HDCP_2_2_REP_SEND_RECVID_LIST, 5906 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 5907 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, 5908 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 5909 0, 0 }, 5910 { HDCP_2_2_REP_STREAM_MANAGE, 5911 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 5912 0, 0 }, 5913 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 5914 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, 5915 /* local define to shovel this through the write_2_2 interface */ 5916 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 5917 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, 5918 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 5919 0, 0 }, 5920 }; 5921 5922 static inline 5923 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 5924 u8 *rx_status) 5925 { 5926 ssize_t ret; 5927 5928 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5929 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 5930 HDCP_2_2_DP_RXSTATUS_LEN); 5931 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 5932 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5933 return ret >= 0 ? -EIO : ret; 5934 } 5935 5936 return 0; 5937 } 5938 5939 static 5940 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 5941 u8 msg_id, bool *msg_ready) 5942 { 5943 u8 rx_status; 5944 int ret; 5945 5946 *msg_ready = false; 5947 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 5948 if (ret < 0) 5949 return ret; 5950 5951 switch (msg_id) { 5952 case HDCP_2_2_AKE_SEND_HPRIME: 5953 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 5954 *msg_ready = true; 5955 break; 5956 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 5957 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 5958 *msg_ready = true; 5959 break; 5960 case HDCP_2_2_REP_SEND_RECVID_LIST: 5961 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 5962 *msg_ready = true; 5963 break; 5964 default: 5965 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 5966 return -EINVAL; 5967 } 5968 5969 return 0; 5970 } 5971 5972 static ssize_t 5973 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 5974 const struct hdcp2_dp_msg_data *hdcp2_msg_data) 5975 { 5976 struct intel_dp *dp = &intel_dig_port->dp; 5977 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 5978 u8 msg_id = hdcp2_msg_data->msg_id; 5979 int ret, timeout; 5980 bool msg_ready = false; 5981 5982 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 5983 timeout = hdcp2_msg_data->timeout2; 5984 else 5985 timeout = hdcp2_msg_data->timeout; 5986 5987 /* 5988 * There is no way to detect the CERT, LPRIME and STREAM_READY 5989 * availability. So Wait for timeout and read the msg. 5990 */ 5991 if (!hdcp2_msg_data->msg_detectable) { 5992 mdelay(timeout); 5993 ret = 0; 5994 } else { 5995 /* 5996 * As we want to check the msg availability at timeout, Ignoring 5997 * the timeout at wait for CP_IRQ. 5998 */ 5999 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 6000 ret = hdcp2_detect_msg_availability(intel_dig_port, 6001 msg_id, &msg_ready); 6002 if (!msg_ready) 6003 ret = -ETIMEDOUT; 6004 } 6005 6006 if (ret) 6007 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n", 6008 hdcp2_msg_data->msg_id, ret, timeout); 6009 6010 return ret; 6011 } 6012 6013 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 6014 { 6015 int i; 6016 6017 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) 6018 if (hdcp2_dp_msg_data[i].msg_id == msg_id) 6019 return &hdcp2_dp_msg_data[i]; 6020 6021 return NULL; 6022 } 6023 6024 static 6025 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 6026 void *buf, size_t size) 6027 { 6028 struct intel_dp *dp = &intel_dig_port->dp; 6029 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6030 unsigned int offset; 6031 u8 *byte = buf; 6032 ssize_t ret, bytes_to_write, len; 6033 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6034 6035 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 6036 if (!hdcp2_msg_data) 6037 return -EINVAL; 6038 6039 offset = hdcp2_msg_data->offset; 6040 6041 /* No msg_id in DP HDCP2.2 msgs */ 6042 bytes_to_write = size - 1; 6043 byte++; 6044 6045 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 6046 6047 while (bytes_to_write) { 6048 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 6049 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 6050 6051 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 6052 offset, (void *)byte, len); 6053 if (ret < 0) 6054 return ret; 6055 6056 bytes_to_write -= ret; 6057 byte += ret; 6058 offset += ret; 6059 } 6060 6061 return size; 6062 } 6063 6064 static 6065 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6066 { 6067 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6068 u32 dev_cnt; 6069 ssize_t ret; 6070 6071 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6072 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6073 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6074 if (ret != HDCP_2_2_RXINFO_LEN) 6075 return ret >= 0 ? -EIO : ret; 6076 6077 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6078 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6079 6080 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6081 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6082 6083 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6084 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6085 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6086 6087 return ret; 6088 } 6089 6090 static 6091 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6092 u8 msg_id, void *buf, size_t size) 6093 { 6094 unsigned int offset; 6095 u8 *byte = buf; 6096 ssize_t ret, bytes_to_recv, len; 6097 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6098 6099 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6100 if (!hdcp2_msg_data) 6101 return -EINVAL; 6102 offset = hdcp2_msg_data->offset; 6103 6104 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6105 if (ret < 0) 6106 return ret; 6107 6108 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6109 ret = get_receiver_id_list_size(intel_dig_port); 6110 if (ret < 0) 6111 return ret; 6112 6113 size = ret; 6114 } 6115 bytes_to_recv = size - 1; 6116 6117 /* DP adaptation msgs has no msg_id */ 6118 byte++; 6119 6120 while (bytes_to_recv) { 6121 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6122 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6123 6124 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6125 (void *)byte, len); 6126 if (ret < 0) { 6127 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret); 6128 return ret; 6129 } 6130 6131 bytes_to_recv -= ret; 6132 byte += ret; 6133 offset += ret; 6134 } 6135 byte = buf; 6136 *byte = msg_id; 6137 6138 return size; 6139 } 6140 6141 static 6142 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6143 bool is_repeater, u8 content_type) 6144 { 6145 struct hdcp2_dp_errata_stream_type stream_type_msg; 6146 6147 if (is_repeater) 6148 return 0; 6149 6150 /* 6151 * Errata for DP: As Stream type is used for encryption, Receiver 6152 * should be communicated with stream type for the decryption of the 6153 * content. 6154 * Repeater will be communicated with stream type as a part of it's 6155 * auth later in time. 6156 */ 6157 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6158 stream_type_msg.stream_type = content_type; 6159 6160 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6161 sizeof(stream_type_msg)); 6162 } 6163 6164 static 6165 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6166 { 6167 u8 rx_status; 6168 int ret; 6169 6170 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6171 if (ret) 6172 return ret; 6173 6174 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6175 ret = HDCP_REAUTH_REQUEST; 6176 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6177 ret = HDCP_LINK_INTEGRITY_FAILURE; 6178 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6179 ret = HDCP_TOPOLOGY_CHANGE; 6180 6181 return ret; 6182 } 6183 6184 static 6185 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6186 bool *capable) 6187 { 6188 u8 rx_caps[3]; 6189 int ret; 6190 6191 *capable = false; 6192 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6193 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6194 rx_caps, HDCP_2_2_RXCAPS_LEN); 6195 if (ret != HDCP_2_2_RXCAPS_LEN) 6196 return ret >= 0 ? -EIO : ret; 6197 6198 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6199 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6200 *capable = true; 6201 6202 return 0; 6203 } 6204 6205 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6206 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6207 .read_bksv = intel_dp_hdcp_read_bksv, 6208 .read_bstatus = intel_dp_hdcp_read_bstatus, 6209 .repeater_present = intel_dp_hdcp_repeater_present, 6210 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6211 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6212 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6213 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6214 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6215 .check_link = intel_dp_hdcp_check_link, 6216 .hdcp_capable = intel_dp_hdcp_capable, 6217 .write_2_2_msg = intel_dp_hdcp2_write_msg, 6218 .read_2_2_msg = intel_dp_hdcp2_read_msg, 6219 .config_stream_type = intel_dp_hdcp2_config_stream_type, 6220 .check_2_2_link = intel_dp_hdcp2_check_link, 6221 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 6222 .protocol = HDCP_PROTOCOL_DP, 6223 }; 6224 6225 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6226 { 6227 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6228 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6229 6230 lockdep_assert_held(&dev_priv->pps_mutex); 6231 6232 if (!edp_have_panel_vdd(intel_dp)) 6233 return; 6234 6235 /* 6236 * The VDD bit needs a power domain reference, so if the bit is 6237 * already enabled when we boot or resume, grab this reference and 6238 * schedule a vdd off, so we don't hold on to the reference 6239 * indefinitely. 6240 */ 6241 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); 6242 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6243 6244 edp_panel_vdd_schedule_off(intel_dp); 6245 } 6246 6247 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6248 { 6249 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6250 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6251 enum pipe pipe; 6252 6253 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6254 encoder->port, &pipe)) 6255 return pipe; 6256 6257 return INVALID_PIPE; 6258 } 6259 6260 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6261 { 6262 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6263 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 6264 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6265 intel_wakeref_t wakeref; 6266 6267 if (!HAS_DDI(dev_priv)) 6268 intel_dp->DP = I915_READ(intel_dp->output_reg); 6269 6270 if (lspcon->active) 6271 lspcon_resume(lspcon); 6272 6273 intel_dp->reset_link_params = true; 6274 6275 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6276 !intel_dp_is_edp(intel_dp)) 6277 return; 6278 6279 with_pps_lock(intel_dp, wakeref) { 6280 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6281 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6282 6283 if (intel_dp_is_edp(intel_dp)) { 6284 /* 6285 * Reinit the power sequencer, in case BIOS did 6286 * something nasty with it. 6287 */ 6288 intel_dp_pps_init(intel_dp); 6289 intel_edp_panel_vdd_sanitize(intel_dp); 6290 } 6291 } 6292 } 6293 6294 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6295 .force = intel_dp_force, 6296 .fill_modes = drm_helper_probe_single_connector_modes, 6297 .atomic_get_property = intel_digital_connector_atomic_get_property, 6298 .atomic_set_property = intel_digital_connector_atomic_set_property, 6299 .late_register = intel_dp_connector_register, 6300 .early_unregister = intel_dp_connector_unregister, 6301 .destroy = intel_connector_destroy, 6302 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6303 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6304 }; 6305 6306 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6307 .detect_ctx = intel_dp_detect, 6308 .get_modes = intel_dp_get_modes, 6309 .mode_valid = intel_dp_mode_valid, 6310 .atomic_check = intel_digital_connector_atomic_check, 6311 }; 6312 6313 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6314 .reset = intel_dp_encoder_reset, 6315 .destroy = intel_dp_encoder_destroy, 6316 }; 6317 6318 enum irqreturn 6319 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 6320 { 6321 struct intel_dp *intel_dp = &intel_dig_port->dp; 6322 6323 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { 6324 /* 6325 * vdd off can generate a long pulse on eDP which 6326 * would require vdd on to handle it, and thus we 6327 * would end up in an endless cycle of 6328 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." 6329 */ 6330 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n", 6331 intel_dig_port->base.base.base.id, 6332 intel_dig_port->base.base.name); 6333 return IRQ_HANDLED; 6334 } 6335 6336 DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n", 6337 intel_dig_port->base.base.base.id, 6338 intel_dig_port->base.base.name, 6339 long_hpd ? "long" : "short"); 6340 6341 if (long_hpd) { 6342 intel_dp->reset_link_params = true; 6343 return IRQ_NONE; 6344 } 6345 6346 if (intel_dp->is_mst) { 6347 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { 6348 /* 6349 * If we were in MST mode, and device is not 6350 * there, get out of MST mode 6351 */ 6352 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 6353 intel_dp->is_mst, intel_dp->mst_mgr.mst_state); 6354 intel_dp->is_mst = false; 6355 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6356 intel_dp->is_mst); 6357 6358 return IRQ_NONE; 6359 } 6360 } 6361 6362 if (!intel_dp->is_mst) { 6363 bool handled; 6364 6365 handled = intel_dp_short_pulse(intel_dp); 6366 6367 if (!handled) 6368 return IRQ_NONE; 6369 } 6370 6371 return IRQ_HANDLED; 6372 } 6373 6374 /* check the VBT to see whether the eDP is on another port */ 6375 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6376 { 6377 /* 6378 * eDP not supported on g4x. so bail out early just 6379 * for a bit extra safety in case the VBT is bonkers. 6380 */ 6381 if (INTEL_GEN(dev_priv) < 5) 6382 return false; 6383 6384 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 6385 return true; 6386 6387 return intel_bios_is_port_edp(dev_priv, port); 6388 } 6389 6390 static void 6391 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6392 { 6393 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6394 enum port port = dp_to_dig_port(intel_dp)->base.port; 6395 6396 if (!IS_G4X(dev_priv) && port != PORT_A) 6397 intel_attach_force_audio_property(connector); 6398 6399 intel_attach_broadcast_rgb_property(connector); 6400 if (HAS_GMCH(dev_priv)) 6401 drm_connector_attach_max_bpc_property(connector, 6, 10); 6402 else if (INTEL_GEN(dev_priv) >= 5) 6403 drm_connector_attach_max_bpc_property(connector, 6, 12); 6404 6405 if (intel_dp_is_edp(intel_dp)) { 6406 u32 allowed_scalers; 6407 6408 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 6409 if (!HAS_GMCH(dev_priv)) 6410 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 6411 6412 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 6413 6414 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 6415 6416 } 6417 } 6418 6419 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 6420 { 6421 intel_dp->panel_power_off_time = ktime_get_boottime(); 6422 intel_dp->last_power_on = jiffies; 6423 intel_dp->last_backlight_off = jiffies; 6424 } 6425 6426 static void 6427 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 6428 { 6429 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6430 u32 pp_on, pp_off, pp_ctl; 6431 struct pps_registers regs; 6432 6433 intel_pps_get_registers(intel_dp, ®s); 6434 6435 pp_ctl = ironlake_get_pp_control(intel_dp); 6436 6437 /* Ensure PPS is unlocked */ 6438 if (!HAS_DDI(dev_priv)) 6439 I915_WRITE(regs.pp_ctrl, pp_ctl); 6440 6441 pp_on = I915_READ(regs.pp_on); 6442 pp_off = I915_READ(regs.pp_off); 6443 6444 /* Pull timing values out of registers */ 6445 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 6446 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 6447 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 6448 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 6449 6450 if (i915_mmio_reg_valid(regs.pp_div)) { 6451 u32 pp_div; 6452 6453 pp_div = I915_READ(regs.pp_div); 6454 6455 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 6456 } else { 6457 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 6458 } 6459 } 6460 6461 static void 6462 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 6463 { 6464 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 6465 state_name, 6466 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 6467 } 6468 6469 static void 6470 intel_pps_verify_state(struct intel_dp *intel_dp) 6471 { 6472 struct edp_power_seq hw; 6473 struct edp_power_seq *sw = &intel_dp->pps_delays; 6474 6475 intel_pps_readout_hw_state(intel_dp, &hw); 6476 6477 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 6478 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 6479 DRM_ERROR("PPS state mismatch\n"); 6480 intel_pps_dump_state("sw", sw); 6481 intel_pps_dump_state("hw", &hw); 6482 } 6483 } 6484 6485 static void 6486 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 6487 { 6488 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6489 struct edp_power_seq cur, vbt, spec, 6490 *final = &intel_dp->pps_delays; 6491 6492 lockdep_assert_held(&dev_priv->pps_mutex); 6493 6494 /* already initialized? */ 6495 if (final->t11_t12 != 0) 6496 return; 6497 6498 intel_pps_readout_hw_state(intel_dp, &cur); 6499 6500 intel_pps_dump_state("cur", &cur); 6501 6502 vbt = dev_priv->vbt.edp.pps; 6503 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 6504 * of 500ms appears to be too short. Ocassionally the panel 6505 * just fails to power back on. Increasing the delay to 800ms 6506 * seems sufficient to avoid this problem. 6507 */ 6508 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 6509 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 6510 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n", 6511 vbt.t11_t12); 6512 } 6513 /* T11_T12 delay is special and actually in units of 100ms, but zero 6514 * based in the hw (so we need to add 100 ms). But the sw vbt 6515 * table multiplies it with 1000 to make it in units of 100usec, 6516 * too. */ 6517 vbt.t11_t12 += 100 * 10; 6518 6519 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 6520 * our hw here, which are all in 100usec. */ 6521 spec.t1_t3 = 210 * 10; 6522 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 6523 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 6524 spec.t10 = 500 * 10; 6525 /* This one is special and actually in units of 100ms, but zero 6526 * based in the hw (so we need to add 100 ms). But the sw vbt 6527 * table multiplies it with 1000 to make it in units of 100usec, 6528 * too. */ 6529 spec.t11_t12 = (510 + 100) * 10; 6530 6531 intel_pps_dump_state("vbt", &vbt); 6532 6533 /* Use the max of the register settings and vbt. If both are 6534 * unset, fall back to the spec limits. */ 6535 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 6536 spec.field : \ 6537 max(cur.field, vbt.field)) 6538 assign_final(t1_t3); 6539 assign_final(t8); 6540 assign_final(t9); 6541 assign_final(t10); 6542 assign_final(t11_t12); 6543 #undef assign_final 6544 6545 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 6546 intel_dp->panel_power_up_delay = get_delay(t1_t3); 6547 intel_dp->backlight_on_delay = get_delay(t8); 6548 intel_dp->backlight_off_delay = get_delay(t9); 6549 intel_dp->panel_power_down_delay = get_delay(t10); 6550 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 6551 #undef get_delay 6552 6553 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", 6554 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, 6555 intel_dp->panel_power_cycle_delay); 6556 6557 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", 6558 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); 6559 6560 /* 6561 * We override the HW backlight delays to 1 because we do manual waits 6562 * on them. For T8, even BSpec recommends doing it. For T9, if we 6563 * don't do this, we'll end up waiting for the backlight off delay 6564 * twice: once when we do the manual sleep, and once when we disable 6565 * the panel and wait for the PP_STATUS bit to become zero. 6566 */ 6567 final->t8 = 1; 6568 final->t9 = 1; 6569 6570 /* 6571 * HW has only a 100msec granularity for t11_t12 so round it up 6572 * accordingly. 6573 */ 6574 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 6575 } 6576 6577 static void 6578 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 6579 bool force_disable_vdd) 6580 { 6581 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6582 u32 pp_on, pp_off, port_sel = 0; 6583 int div = dev_priv->rawclk_freq / 1000; 6584 struct pps_registers regs; 6585 enum port port = dp_to_dig_port(intel_dp)->base.port; 6586 const struct edp_power_seq *seq = &intel_dp->pps_delays; 6587 6588 lockdep_assert_held(&dev_priv->pps_mutex); 6589 6590 intel_pps_get_registers(intel_dp, ®s); 6591 6592 /* 6593 * On some VLV machines the BIOS can leave the VDD 6594 * enabled even on power sequencers which aren't 6595 * hooked up to any port. This would mess up the 6596 * power domain tracking the first time we pick 6597 * one of these power sequencers for use since 6598 * edp_panel_vdd_on() would notice that the VDD was 6599 * already on and therefore wouldn't grab the power 6600 * domain reference. Disable VDD first to avoid this. 6601 * This also avoids spuriously turning the VDD on as 6602 * soon as the new power sequencer gets initialized. 6603 */ 6604 if (force_disable_vdd) { 6605 u32 pp = ironlake_get_pp_control(intel_dp); 6606 6607 WARN(pp & PANEL_POWER_ON, "Panel power already on\n"); 6608 6609 if (pp & EDP_FORCE_VDD) 6610 DRM_DEBUG_KMS("VDD already on, disabling first\n"); 6611 6612 pp &= ~EDP_FORCE_VDD; 6613 6614 I915_WRITE(regs.pp_ctrl, pp); 6615 } 6616 6617 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 6618 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 6619 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 6620 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 6621 6622 /* Haswell doesn't have any port selection bits for the panel 6623 * power sequencer any more. */ 6624 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6625 port_sel = PANEL_PORT_SELECT_VLV(port); 6626 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 6627 switch (port) { 6628 case PORT_A: 6629 port_sel = PANEL_PORT_SELECT_DPA; 6630 break; 6631 case PORT_C: 6632 port_sel = PANEL_PORT_SELECT_DPC; 6633 break; 6634 case PORT_D: 6635 port_sel = PANEL_PORT_SELECT_DPD; 6636 break; 6637 default: 6638 MISSING_CASE(port); 6639 break; 6640 } 6641 } 6642 6643 pp_on |= port_sel; 6644 6645 I915_WRITE(regs.pp_on, pp_on); 6646 I915_WRITE(regs.pp_off, pp_off); 6647 6648 /* 6649 * Compute the divisor for the pp clock, simply match the Bspec formula. 6650 */ 6651 if (i915_mmio_reg_valid(regs.pp_div)) { 6652 I915_WRITE(regs.pp_div, 6653 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | 6654 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 6655 } else { 6656 u32 pp_ctl; 6657 6658 pp_ctl = I915_READ(regs.pp_ctrl); 6659 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 6660 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 6661 I915_WRITE(regs.pp_ctrl, pp_ctl); 6662 } 6663 6664 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 6665 I915_READ(regs.pp_on), 6666 I915_READ(regs.pp_off), 6667 i915_mmio_reg_valid(regs.pp_div) ? 6668 I915_READ(regs.pp_div) : 6669 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 6670 } 6671 6672 static void intel_dp_pps_init(struct intel_dp *intel_dp) 6673 { 6674 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6675 6676 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6677 vlv_initial_power_sequencer_setup(intel_dp); 6678 } else { 6679 intel_dp_init_panel_power_sequencer(intel_dp); 6680 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 6681 } 6682 } 6683 6684 /** 6685 * intel_dp_set_drrs_state - program registers for RR switch to take effect 6686 * @dev_priv: i915 device 6687 * @crtc_state: a pointer to the active intel_crtc_state 6688 * @refresh_rate: RR to be programmed 6689 * 6690 * This function gets called when refresh rate (RR) has to be changed from 6691 * one frequency to another. Switches can be between high and low RR 6692 * supported by the panel or to any other RR based on media playback (in 6693 * this case, RR value needs to be passed from user space). 6694 * 6695 * The caller of this function needs to take a lock on dev_priv->drrs. 6696 */ 6697 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 6698 const struct intel_crtc_state *crtc_state, 6699 int refresh_rate) 6700 { 6701 struct intel_dp *intel_dp = dev_priv->drrs.dp; 6702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 6703 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 6704 6705 if (refresh_rate <= 0) { 6706 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); 6707 return; 6708 } 6709 6710 if (intel_dp == NULL) { 6711 DRM_DEBUG_KMS("DRRS not supported.\n"); 6712 return; 6713 } 6714 6715 if (!intel_crtc) { 6716 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); 6717 return; 6718 } 6719 6720 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 6721 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); 6722 return; 6723 } 6724 6725 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == 6726 refresh_rate) 6727 index = DRRS_LOW_RR; 6728 6729 if (index == dev_priv->drrs.refresh_rate_type) { 6730 DRM_DEBUG_KMS( 6731 "DRRS requested for previously set RR...ignoring\n"); 6732 return; 6733 } 6734 6735 if (!crtc_state->base.active) { 6736 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); 6737 return; 6738 } 6739 6740 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 6741 switch (index) { 6742 case DRRS_HIGH_RR: 6743 intel_dp_set_m_n(crtc_state, M1_N1); 6744 break; 6745 case DRRS_LOW_RR: 6746 intel_dp_set_m_n(crtc_state, M2_N2); 6747 break; 6748 case DRRS_MAX_RR: 6749 default: 6750 DRM_ERROR("Unsupported refreshrate type\n"); 6751 } 6752 } else if (INTEL_GEN(dev_priv) > 6) { 6753 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 6754 u32 val; 6755 6756 val = I915_READ(reg); 6757 if (index > DRRS_HIGH_RR) { 6758 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6759 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6760 else 6761 val |= PIPECONF_EDP_RR_MODE_SWITCH; 6762 } else { 6763 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6764 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6765 else 6766 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 6767 } 6768 I915_WRITE(reg, val); 6769 } 6770 6771 dev_priv->drrs.refresh_rate_type = index; 6772 6773 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); 6774 } 6775 6776 /** 6777 * intel_edp_drrs_enable - init drrs struct if supported 6778 * @intel_dp: DP struct 6779 * @crtc_state: A pointer to the active crtc state. 6780 * 6781 * Initializes frontbuffer_bits and drrs.dp 6782 */ 6783 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 6784 const struct intel_crtc_state *crtc_state) 6785 { 6786 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6787 6788 if (!crtc_state->has_drrs) { 6789 DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); 6790 return; 6791 } 6792 6793 if (dev_priv->psr.enabled) { 6794 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n"); 6795 return; 6796 } 6797 6798 mutex_lock(&dev_priv->drrs.mutex); 6799 if (dev_priv->drrs.dp) { 6800 DRM_DEBUG_KMS("DRRS already enabled\n"); 6801 goto unlock; 6802 } 6803 6804 dev_priv->drrs.busy_frontbuffer_bits = 0; 6805 6806 dev_priv->drrs.dp = intel_dp; 6807 6808 unlock: 6809 mutex_unlock(&dev_priv->drrs.mutex); 6810 } 6811 6812 /** 6813 * intel_edp_drrs_disable - Disable DRRS 6814 * @intel_dp: DP struct 6815 * @old_crtc_state: Pointer to old crtc_state. 6816 * 6817 */ 6818 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 6819 const struct intel_crtc_state *old_crtc_state) 6820 { 6821 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6822 6823 if (!old_crtc_state->has_drrs) 6824 return; 6825 6826 mutex_lock(&dev_priv->drrs.mutex); 6827 if (!dev_priv->drrs.dp) { 6828 mutex_unlock(&dev_priv->drrs.mutex); 6829 return; 6830 } 6831 6832 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6833 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 6834 intel_dp->attached_connector->panel.fixed_mode->vrefresh); 6835 6836 dev_priv->drrs.dp = NULL; 6837 mutex_unlock(&dev_priv->drrs.mutex); 6838 6839 cancel_delayed_work_sync(&dev_priv->drrs.work); 6840 } 6841 6842 static void intel_edp_drrs_downclock_work(struct work_struct *work) 6843 { 6844 struct drm_i915_private *dev_priv = 6845 container_of(work, typeof(*dev_priv), drrs.work.work); 6846 struct intel_dp *intel_dp; 6847 6848 mutex_lock(&dev_priv->drrs.mutex); 6849 6850 intel_dp = dev_priv->drrs.dp; 6851 6852 if (!intel_dp) 6853 goto unlock; 6854 6855 /* 6856 * The delayed work can race with an invalidate hence we need to 6857 * recheck. 6858 */ 6859 6860 if (dev_priv->drrs.busy_frontbuffer_bits) 6861 goto unlock; 6862 6863 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 6864 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 6865 6866 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6867 intel_dp->attached_connector->panel.downclock_mode->vrefresh); 6868 } 6869 6870 unlock: 6871 mutex_unlock(&dev_priv->drrs.mutex); 6872 } 6873 6874 /** 6875 * intel_edp_drrs_invalidate - Disable Idleness DRRS 6876 * @dev_priv: i915 device 6877 * @frontbuffer_bits: frontbuffer plane tracking bits 6878 * 6879 * This function gets called everytime rendering on the given planes start. 6880 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 6881 * 6882 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 6883 */ 6884 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 6885 unsigned int frontbuffer_bits) 6886 { 6887 struct drm_crtc *crtc; 6888 enum pipe pipe; 6889 6890 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 6891 return; 6892 6893 cancel_delayed_work(&dev_priv->drrs.work); 6894 6895 mutex_lock(&dev_priv->drrs.mutex); 6896 if (!dev_priv->drrs.dp) { 6897 mutex_unlock(&dev_priv->drrs.mutex); 6898 return; 6899 } 6900 6901 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 6902 pipe = to_intel_crtc(crtc)->pipe; 6903 6904 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 6905 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 6906 6907 /* invalidate means busy screen hence upclock */ 6908 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6909 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6910 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 6911 6912 mutex_unlock(&dev_priv->drrs.mutex); 6913 } 6914 6915 /** 6916 * intel_edp_drrs_flush - Restart Idleness DRRS 6917 * @dev_priv: i915 device 6918 * @frontbuffer_bits: frontbuffer plane tracking bits 6919 * 6920 * This function gets called every time rendering on the given planes has 6921 * completed or flip on a crtc is completed. So DRRS should be upclocked 6922 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 6923 * if no other planes are dirty. 6924 * 6925 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 6926 */ 6927 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 6928 unsigned int frontbuffer_bits) 6929 { 6930 struct drm_crtc *crtc; 6931 enum pipe pipe; 6932 6933 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 6934 return; 6935 6936 cancel_delayed_work(&dev_priv->drrs.work); 6937 6938 mutex_lock(&dev_priv->drrs.mutex); 6939 if (!dev_priv->drrs.dp) { 6940 mutex_unlock(&dev_priv->drrs.mutex); 6941 return; 6942 } 6943 6944 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 6945 pipe = to_intel_crtc(crtc)->pipe; 6946 6947 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 6948 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 6949 6950 /* flush means busy screen hence upclock */ 6951 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6952 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6953 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 6954 6955 /* 6956 * flush also means no more activity hence schedule downclock, if all 6957 * other fbs are quiescent too 6958 */ 6959 if (!dev_priv->drrs.busy_frontbuffer_bits) 6960 schedule_delayed_work(&dev_priv->drrs.work, 6961 msecs_to_jiffies(1000)); 6962 mutex_unlock(&dev_priv->drrs.mutex); 6963 } 6964 6965 /** 6966 * DOC: Display Refresh Rate Switching (DRRS) 6967 * 6968 * Display Refresh Rate Switching (DRRS) is a power conservation feature 6969 * which enables swtching between low and high refresh rates, 6970 * dynamically, based on the usage scenario. This feature is applicable 6971 * for internal panels. 6972 * 6973 * Indication that the panel supports DRRS is given by the panel EDID, which 6974 * would list multiple refresh rates for one resolution. 6975 * 6976 * DRRS is of 2 types - static and seamless. 6977 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 6978 * (may appear as a blink on screen) and is used in dock-undock scenario. 6979 * Seamless DRRS involves changing RR without any visual effect to the user 6980 * and can be used during normal system usage. This is done by programming 6981 * certain registers. 6982 * 6983 * Support for static/seamless DRRS may be indicated in the VBT based on 6984 * inputs from the panel spec. 6985 * 6986 * DRRS saves power by switching to low RR based on usage scenarios. 6987 * 6988 * The implementation is based on frontbuffer tracking implementation. When 6989 * there is a disturbance on the screen triggered by user activity or a periodic 6990 * system activity, DRRS is disabled (RR is changed to high RR). When there is 6991 * no movement on screen, after a timeout of 1 second, a switch to low RR is 6992 * made. 6993 * 6994 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 6995 * and intel_edp_drrs_flush() are called. 6996 * 6997 * DRRS can be further extended to support other internal panels and also 6998 * the scenario of video playback wherein RR is set based on the rate 6999 * requested by userspace. 7000 */ 7001 7002 /** 7003 * intel_dp_drrs_init - Init basic DRRS work and mutex. 7004 * @connector: eDP connector 7005 * @fixed_mode: preferred mode of panel 7006 * 7007 * This function is called only once at driver load to initialize basic 7008 * DRRS stuff. 7009 * 7010 * Returns: 7011 * Downclock mode if panel supports it, else return NULL. 7012 * DRRS support is determined by the presence of downclock mode (apart 7013 * from VBT setting). 7014 */ 7015 static struct drm_display_mode * 7016 intel_dp_drrs_init(struct intel_connector *connector, 7017 struct drm_display_mode *fixed_mode) 7018 { 7019 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 7020 struct drm_display_mode *downclock_mode = NULL; 7021 7022 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 7023 mutex_init(&dev_priv->drrs.mutex); 7024 7025 if (INTEL_GEN(dev_priv) <= 6) { 7026 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); 7027 return NULL; 7028 } 7029 7030 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 7031 DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); 7032 return NULL; 7033 } 7034 7035 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 7036 if (!downclock_mode) { 7037 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); 7038 return NULL; 7039 } 7040 7041 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 7042 7043 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 7044 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); 7045 return downclock_mode; 7046 } 7047 7048 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7049 struct intel_connector *intel_connector) 7050 { 7051 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7052 struct drm_device *dev = &dev_priv->drm; 7053 struct drm_connector *connector = &intel_connector->base; 7054 struct drm_display_mode *fixed_mode = NULL; 7055 struct drm_display_mode *downclock_mode = NULL; 7056 bool has_dpcd; 7057 enum pipe pipe = INVALID_PIPE; 7058 intel_wakeref_t wakeref; 7059 struct edid *edid; 7060 7061 if (!intel_dp_is_edp(intel_dp)) 7062 return true; 7063 7064 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7065 7066 /* 7067 * On IBX/CPT we may get here with LVDS already registered. Since the 7068 * driver uses the only internal power sequencer available for both 7069 * eDP and LVDS bail out early in this case to prevent interfering 7070 * with an already powered-on LVDS power sequencer. 7071 */ 7072 if (intel_get_lvds_encoder(dev_priv)) { 7073 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7074 DRM_INFO("LVDS was detected, not registering eDP\n"); 7075 7076 return false; 7077 } 7078 7079 with_pps_lock(intel_dp, wakeref) { 7080 intel_dp_init_panel_power_timestamps(intel_dp); 7081 intel_dp_pps_init(intel_dp); 7082 intel_edp_panel_vdd_sanitize(intel_dp); 7083 } 7084 7085 /* Cache DPCD and EDID for edp. */ 7086 has_dpcd = intel_edp_init_dpcd(intel_dp); 7087 7088 if (!has_dpcd) { 7089 /* if this fails, presume the device is a ghost */ 7090 DRM_INFO("failed to retrieve link info, disabling eDP\n"); 7091 goto out_vdd_off; 7092 } 7093 7094 mutex_lock(&dev->mode_config.mutex); 7095 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7096 if (edid) { 7097 if (drm_add_edid_modes(connector, edid)) { 7098 drm_connector_update_edid_property(connector, 7099 edid); 7100 } else { 7101 kfree(edid); 7102 edid = ERR_PTR(-EINVAL); 7103 } 7104 } else { 7105 edid = ERR_PTR(-ENOENT); 7106 } 7107 intel_connector->edid = edid; 7108 7109 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7110 if (fixed_mode) 7111 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7112 7113 /* fallback to VBT if available for eDP */ 7114 if (!fixed_mode) 7115 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7116 mutex_unlock(&dev->mode_config.mutex); 7117 7118 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7119 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7120 register_reboot_notifier(&intel_dp->edp_notifier); 7121 7122 /* 7123 * Figure out the current pipe for the initial backlight setup. 7124 * If the current pipe isn't valid, try the PPS pipe, and if that 7125 * fails just assume pipe A. 7126 */ 7127 pipe = vlv_active_pipe(intel_dp); 7128 7129 if (pipe != PIPE_A && pipe != PIPE_B) 7130 pipe = intel_dp->pps_pipe; 7131 7132 if (pipe != PIPE_A && pipe != PIPE_B) 7133 pipe = PIPE_A; 7134 7135 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", 7136 pipe_name(pipe)); 7137 } 7138 7139 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7140 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7141 intel_panel_setup_backlight(connector, pipe); 7142 7143 if (fixed_mode) 7144 drm_connector_init_panel_orientation_property( 7145 connector, fixed_mode->hdisplay, fixed_mode->vdisplay); 7146 7147 return true; 7148 7149 out_vdd_off: 7150 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7151 /* 7152 * vdd might still be enabled do to the delayed vdd off. 7153 * Make sure vdd is actually turned off here. 7154 */ 7155 with_pps_lock(intel_dp, wakeref) 7156 edp_panel_vdd_off_sync(intel_dp); 7157 7158 return false; 7159 } 7160 7161 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7162 { 7163 struct intel_connector *intel_connector; 7164 struct drm_connector *connector; 7165 7166 intel_connector = container_of(work, typeof(*intel_connector), 7167 modeset_retry_work); 7168 connector = &intel_connector->base; 7169 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7170 connector->name); 7171 7172 /* Grab the locks before changing connector property*/ 7173 mutex_lock(&connector->dev->mode_config.mutex); 7174 /* Set connector link status to BAD and send a Uevent to notify 7175 * userspace to do a modeset. 7176 */ 7177 drm_connector_set_link_status_property(connector, 7178 DRM_MODE_LINK_STATUS_BAD); 7179 mutex_unlock(&connector->dev->mode_config.mutex); 7180 /* Send Hotplug uevent so userspace can reprobe */ 7181 drm_kms_helper_hotplug_event(connector->dev); 7182 } 7183 7184 bool 7185 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 7186 struct intel_connector *intel_connector) 7187 { 7188 struct drm_connector *connector = &intel_connector->base; 7189 struct intel_dp *intel_dp = &intel_dig_port->dp; 7190 struct intel_encoder *intel_encoder = &intel_dig_port->base; 7191 struct drm_device *dev = intel_encoder->base.dev; 7192 struct drm_i915_private *dev_priv = to_i915(dev); 7193 enum port port = intel_encoder->port; 7194 enum phy phy = intel_port_to_phy(dev_priv, port); 7195 int type; 7196 7197 /* Initialize the work for modeset in case of link train failure */ 7198 INIT_WORK(&intel_connector->modeset_retry_work, 7199 intel_dp_modeset_retry_work_fn); 7200 7201 if (WARN(intel_dig_port->max_lanes < 1, 7202 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 7203 intel_dig_port->max_lanes, intel_encoder->base.base.id, 7204 intel_encoder->base.name)) 7205 return false; 7206 7207 intel_dp_set_source_rates(intel_dp); 7208 7209 intel_dp->reset_link_params = true; 7210 intel_dp->pps_pipe = INVALID_PIPE; 7211 intel_dp->active_pipe = INVALID_PIPE; 7212 7213 /* Preserve the current hw state. */ 7214 intel_dp->DP = I915_READ(intel_dp->output_reg); 7215 intel_dp->attached_connector = intel_connector; 7216 7217 if (intel_dp_is_port_edp(dev_priv, port)) { 7218 /* 7219 * Currently we don't support eDP on TypeC ports, although in 7220 * theory it could work on TypeC legacy ports. 7221 */ 7222 WARN_ON(intel_phy_is_tc(dev_priv, phy)); 7223 type = DRM_MODE_CONNECTOR_eDP; 7224 } else { 7225 type = DRM_MODE_CONNECTOR_DisplayPort; 7226 } 7227 7228 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7229 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7230 7231 /* 7232 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7233 * for DP the encoder type can be set by the caller to 7234 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7235 */ 7236 if (type == DRM_MODE_CONNECTOR_eDP) 7237 intel_encoder->type = INTEL_OUTPUT_EDP; 7238 7239 /* eDP only on port B and/or C on vlv/chv */ 7240 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 7241 intel_dp_is_edp(intel_dp) && 7242 port != PORT_B && port != PORT_C)) 7243 return false; 7244 7245 DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n", 7246 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7247 intel_encoder->base.base.id, intel_encoder->base.name); 7248 7249 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7250 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7251 7252 if (!HAS_GMCH(dev_priv)) 7253 connector->interlace_allowed = true; 7254 connector->doublescan_allowed = 0; 7255 7256 if (INTEL_GEN(dev_priv) >= 11) 7257 connector->ycbcr_420_allowed = true; 7258 7259 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7260 7261 intel_dp_aux_init(intel_dp); 7262 7263 intel_connector_attach_encoder(intel_connector, intel_encoder); 7264 7265 if (HAS_DDI(dev_priv)) 7266 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7267 else 7268 intel_connector->get_hw_state = intel_connector_get_hw_state; 7269 7270 /* init MST on ports that can support it */ 7271 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) && 7272 (port == PORT_B || port == PORT_C || 7273 port == PORT_D || port == PORT_F)) 7274 intel_dp_mst_encoder_init(intel_dig_port, 7275 intel_connector->base.base.id); 7276 7277 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7278 intel_dp_aux_fini(intel_dp); 7279 intel_dp_mst_encoder_cleanup(intel_dig_port); 7280 goto fail; 7281 } 7282 7283 intel_dp_add_properties(intel_dp, connector); 7284 7285 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7286 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 7287 if (ret) 7288 DRM_DEBUG_KMS("HDCP init failed, skipping.\n"); 7289 } 7290 7291 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7292 * 0xd. Failure to do so will result in spurious interrupts being 7293 * generated on the port when a cable is not attached. 7294 */ 7295 if (IS_G45(dev_priv)) { 7296 u32 temp = I915_READ(PEG_BAND_GAP_DATA); 7297 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); 7298 } 7299 7300 return true; 7301 7302 fail: 7303 drm_connector_cleanup(connector); 7304 7305 return false; 7306 } 7307 7308 bool intel_dp_init(struct drm_i915_private *dev_priv, 7309 i915_reg_t output_reg, 7310 enum port port) 7311 { 7312 struct intel_digital_port *intel_dig_port; 7313 struct intel_encoder *intel_encoder; 7314 struct drm_encoder *encoder; 7315 struct intel_connector *intel_connector; 7316 7317 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 7318 if (!intel_dig_port) 7319 return false; 7320 7321 intel_connector = intel_connector_alloc(); 7322 if (!intel_connector) 7323 goto err_connector_alloc; 7324 7325 intel_encoder = &intel_dig_port->base; 7326 encoder = &intel_encoder->base; 7327 7328 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7329 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7330 "DP %c", port_name(port))) 7331 goto err_encoder_init; 7332 7333 intel_encoder->hotplug = intel_dp_hotplug; 7334 intel_encoder->compute_config = intel_dp_compute_config; 7335 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7336 intel_encoder->get_config = intel_dp_get_config; 7337 intel_encoder->update_pipe = intel_panel_update_backlight; 7338 intel_encoder->suspend = intel_dp_encoder_suspend; 7339 if (IS_CHERRYVIEW(dev_priv)) { 7340 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7341 intel_encoder->pre_enable = chv_pre_enable_dp; 7342 intel_encoder->enable = vlv_enable_dp; 7343 intel_encoder->disable = vlv_disable_dp; 7344 intel_encoder->post_disable = chv_post_disable_dp; 7345 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 7346 } else if (IS_VALLEYVIEW(dev_priv)) { 7347 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 7348 intel_encoder->pre_enable = vlv_pre_enable_dp; 7349 intel_encoder->enable = vlv_enable_dp; 7350 intel_encoder->disable = vlv_disable_dp; 7351 intel_encoder->post_disable = vlv_post_disable_dp; 7352 } else { 7353 intel_encoder->pre_enable = g4x_pre_enable_dp; 7354 intel_encoder->enable = g4x_enable_dp; 7355 intel_encoder->disable = g4x_disable_dp; 7356 intel_encoder->post_disable = g4x_post_disable_dp; 7357 } 7358 7359 intel_dig_port->dp.output_reg = output_reg; 7360 intel_dig_port->max_lanes = 4; 7361 7362 intel_encoder->type = INTEL_OUTPUT_DP; 7363 intel_encoder->power_domain = intel_port_to_power_domain(port); 7364 if (IS_CHERRYVIEW(dev_priv)) { 7365 if (port == PORT_D) 7366 intel_encoder->crtc_mask = BIT(PIPE_C); 7367 else 7368 intel_encoder->crtc_mask = BIT(PIPE_A) | BIT(PIPE_B); 7369 } else { 7370 intel_encoder->crtc_mask = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C); 7371 } 7372 intel_encoder->cloneable = 0; 7373 intel_encoder->port = port; 7374 7375 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 7376 7377 if (port != PORT_A) 7378 intel_infoframe_init(intel_dig_port); 7379 7380 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 7381 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 7382 goto err_init_connector; 7383 7384 return true; 7385 7386 err_init_connector: 7387 drm_encoder_cleanup(encoder); 7388 err_encoder_init: 7389 kfree(intel_connector); 7390 err_connector_alloc: 7391 kfree(intel_dig_port); 7392 return false; 7393 } 7394 7395 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 7396 { 7397 struct intel_encoder *encoder; 7398 7399 for_each_intel_encoder(&dev_priv->drm, encoder) { 7400 struct intel_dp *intel_dp; 7401 7402 if (encoder->type != INTEL_OUTPUT_DDI) 7403 continue; 7404 7405 intel_dp = enc_to_intel_dp(&encoder->base); 7406 7407 if (!intel_dp->can_mst) 7408 continue; 7409 7410 if (intel_dp->is_mst) 7411 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 7412 } 7413 } 7414 7415 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 7416 { 7417 struct intel_encoder *encoder; 7418 7419 for_each_intel_encoder(&dev_priv->drm, encoder) { 7420 struct intel_dp *intel_dp; 7421 int ret; 7422 7423 if (encoder->type != INTEL_OUTPUT_DDI) 7424 continue; 7425 7426 intel_dp = enc_to_intel_dp(&encoder->base); 7427 7428 if (!intel_dp->can_mst) 7429 continue; 7430 7431 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr); 7432 if (ret) { 7433 intel_dp->is_mst = false; 7434 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 7435 false); 7436 } 7437 } 7438 } 7439