1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_types.h"
52 #include "intel_dp.h"
53 #include "intel_dp_link_training.h"
54 #include "intel_dp_mst.h"
55 #include "intel_dpio_phy.h"
56 #include "intel_fifo_underrun.h"
57 #include "intel_hdcp.h"
58 #include "intel_hdmi.h"
59 #include "intel_hotplug.h"
60 #include "intel_lspcon.h"
61 #include "intel_lvds.h"
62 #include "intel_panel.h"
63 #include "intel_psr.h"
64 #include "intel_sideband.h"
65 #include "intel_tc.h"
66 #include "intel_vdsc.h"
67 
68 #define DP_DPRX_ESI_LEN 14
69 
70 /* DP DSC throughput values used for slice count calculations KPixels/s */
71 #define DP_DSC_PEAK_PIXEL_RATE			2720000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
74 
75 /* DP DSC FEC Overhead factor = 1/(0.972261) */
76 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
77 
78 /* Compliance test status bits  */
79 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
80 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 
84 struct dp_link_dpll {
85 	int clock;
86 	struct dpll dpll;
87 };
88 
89 static const struct dp_link_dpll g4x_dpll[] = {
90 	{ 162000,
91 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
92 	{ 270000,
93 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
94 };
95 
96 static const struct dp_link_dpll pch_dpll[] = {
97 	{ 162000,
98 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
99 	{ 270000,
100 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
101 };
102 
103 static const struct dp_link_dpll vlv_dpll[] = {
104 	{ 162000,
105 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
106 	{ 270000,
107 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
108 };
109 
110 /*
111  * CHV supports eDP 1.4 that have  more link rates.
112  * Below only provides the fixed rate but exclude variable rate.
113  */
114 static const struct dp_link_dpll chv_dpll[] = {
115 	/*
116 	 * CHV requires to program fractional division for m2.
117 	 * m2 is stored in fixed point format using formula below
118 	 * (m2_int << 22) | m2_fraction
119 	 */
120 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
121 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
122 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
123 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
124 };
125 
126 /* Constants for DP DSC configurations */
127 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
128 
129 /* With Single pipe configuration, HW is capable of supporting maximum
130  * of 4 slices per line.
131  */
132 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
133 
134 /**
135  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
136  * @intel_dp: DP struct
137  *
138  * If a CPU or PCH DP output is attached to an eDP panel, this function
139  * will return true, and false otherwise.
140  */
141 bool intel_dp_is_edp(struct intel_dp *intel_dp)
142 {
143 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
144 
145 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
146 }
147 
148 static void intel_dp_link_down(struct intel_encoder *encoder,
149 			       const struct intel_crtc_state *old_crtc_state);
150 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
151 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
152 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
153 					   const struct intel_crtc_state *crtc_state);
154 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
155 				      enum pipe pipe);
156 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
157 
158 /* update sink rates from dpcd */
159 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
160 {
161 	static const int dp_rates[] = {
162 		162000, 270000, 540000, 810000
163 	};
164 	int i, max_rate;
165 
166 	if (drm_dp_has_quirk(&intel_dp->desc, 0,
167 			     DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
168 		/* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
169 		static const int quirk_rates[] = { 162000, 270000, 324000 };
170 
171 		memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
172 		intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
173 
174 		return;
175 	}
176 
177 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178 
179 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
180 		if (dp_rates[i] > max_rate)
181 			break;
182 		intel_dp->sink_rates[i] = dp_rates[i];
183 	}
184 
185 	intel_dp->num_sink_rates = i;
186 }
187 
188 /* Get length of rates array potentially limited by max_rate. */
189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
190 {
191 	int i;
192 
193 	/* Limit results by potentially reduced max rate */
194 	for (i = 0; i < len; i++) {
195 		if (rates[len - i - 1] <= max_rate)
196 			return len - i;
197 	}
198 
199 	return 0;
200 }
201 
202 /* Get length of common rates array potentially limited by max_rate. */
203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
204 					  int max_rate)
205 {
206 	return intel_dp_rate_limit_len(intel_dp->common_rates,
207 				       intel_dp->num_common_rates, max_rate);
208 }
209 
210 /* Theoretical max between source and sink */
211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212 {
213 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 }
215 
216 /* Theoretical max between source and sink */
217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 {
219 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220 	int source_max = intel_dig_port->max_lanes;
221 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222 	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
223 
224 	return min3(source_max, sink_max, fia_max);
225 }
226 
227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 {
229 	return intel_dp->max_link_lane_count;
230 }
231 
232 int
233 intel_dp_link_required(int pixel_clock, int bpp)
234 {
235 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
236 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 }
238 
239 int
240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
241 {
242 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
243 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
244 	 * is transmitted every LS_Clk per lane, there is no need to account for
245 	 * the channel encoding that is done in the PHY layer here.
246 	 */
247 
248 	return max_link_clock * max_lanes;
249 }
250 
251 static int
252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
253 {
254 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
255 	struct intel_encoder *encoder = &intel_dig_port->base;
256 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
257 	int max_dotclk = dev_priv->max_dotclk_freq;
258 	int ds_max_dotclk;
259 
260 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
261 
262 	if (type != DP_DS_PORT_TYPE_VGA)
263 		return max_dotclk;
264 
265 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
266 						    intel_dp->downstream_ports);
267 
268 	if (ds_max_dotclk != 0)
269 		max_dotclk = min(max_dotclk, ds_max_dotclk);
270 
271 	return max_dotclk;
272 }
273 
274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 {
276 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
277 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
278 	enum port port = dig_port->base.port;
279 
280 	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281 
282 	/* Low voltage SKUs are limited to max of 5.4G */
283 	if (voltage == VOLTAGE_INFO_0_85V)
284 		return 540000;
285 
286 	/* For this SKU 8.1G is supported in all ports */
287 	if (IS_CNL_WITH_PORT_F(dev_priv))
288 		return 810000;
289 
290 	/* For other SKUs, max rate on ports A and D is 5.4G */
291 	if (port == PORT_A || port == PORT_D)
292 		return 540000;
293 
294 	return 810000;
295 }
296 
297 static int icl_max_source_rate(struct intel_dp *intel_dp)
298 {
299 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302 
303 	if (intel_phy_is_combo(dev_priv, phy) &&
304 	    !IS_ELKHARTLAKE(dev_priv) &&
305 	    !intel_dp_is_edp(intel_dp))
306 		return 540000;
307 
308 	return 810000;
309 }
310 
311 static void
312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
313 {
314 	/* The values must be in increasing order */
315 	static const int cnl_rates[] = {
316 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
317 	};
318 	static const int bxt_rates[] = {
319 		162000, 216000, 243000, 270000, 324000, 432000, 540000
320 	};
321 	static const int skl_rates[] = {
322 		162000, 216000, 270000, 324000, 432000, 540000
323 	};
324 	static const int hsw_rates[] = {
325 		162000, 270000, 540000
326 	};
327 	static const int g4x_rates[] = {
328 		162000, 270000
329 	};
330 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331 	struct intel_encoder *encoder = &dig_port->base;
332 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
333 	const int *source_rates;
334 	int size, max_rate = 0, vbt_max_rate;
335 
336 	/* This should only be done once */
337 	drm_WARN_ON(&dev_priv->drm,
338 		    intel_dp->source_rates || intel_dp->num_source_rates);
339 
340 	if (INTEL_GEN(dev_priv) >= 10) {
341 		source_rates = cnl_rates;
342 		size = ARRAY_SIZE(cnl_rates);
343 		if (IS_GEN(dev_priv, 10))
344 			max_rate = cnl_max_source_rate(intel_dp);
345 		else
346 			max_rate = icl_max_source_rate(intel_dp);
347 	} else if (IS_GEN9_LP(dev_priv)) {
348 		source_rates = bxt_rates;
349 		size = ARRAY_SIZE(bxt_rates);
350 	} else if (IS_GEN9_BC(dev_priv)) {
351 		source_rates = skl_rates;
352 		size = ARRAY_SIZE(skl_rates);
353 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
354 		   IS_BROADWELL(dev_priv)) {
355 		source_rates = hsw_rates;
356 		size = ARRAY_SIZE(hsw_rates);
357 	} else {
358 		source_rates = g4x_rates;
359 		size = ARRAY_SIZE(g4x_rates);
360 	}
361 
362 	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
363 	if (max_rate && vbt_max_rate)
364 		max_rate = min(max_rate, vbt_max_rate);
365 	else if (vbt_max_rate)
366 		max_rate = vbt_max_rate;
367 
368 	if (max_rate)
369 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
370 
371 	intel_dp->source_rates = source_rates;
372 	intel_dp->num_source_rates = size;
373 }
374 
375 static int intersect_rates(const int *source_rates, int source_len,
376 			   const int *sink_rates, int sink_len,
377 			   int *common_rates)
378 {
379 	int i = 0, j = 0, k = 0;
380 
381 	while (i < source_len && j < sink_len) {
382 		if (source_rates[i] == sink_rates[j]) {
383 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
384 				return k;
385 			common_rates[k] = source_rates[i];
386 			++k;
387 			++i;
388 			++j;
389 		} else if (source_rates[i] < sink_rates[j]) {
390 			++i;
391 		} else {
392 			++j;
393 		}
394 	}
395 	return k;
396 }
397 
398 /* return index of rate in rates array, or -1 if not found */
399 static int intel_dp_rate_index(const int *rates, int len, int rate)
400 {
401 	int i;
402 
403 	for (i = 0; i < len; i++)
404 		if (rate == rates[i])
405 			return i;
406 
407 	return -1;
408 }
409 
410 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
411 {
412 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
413 
414 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
415 						     intel_dp->num_source_rates,
416 						     intel_dp->sink_rates,
417 						     intel_dp->num_sink_rates,
418 						     intel_dp->common_rates);
419 
420 	/* Paranoia, there should always be something in common. */
421 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
422 		intel_dp->common_rates[0] = 162000;
423 		intel_dp->num_common_rates = 1;
424 	}
425 }
426 
427 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
428 				       u8 lane_count)
429 {
430 	/*
431 	 * FIXME: we need to synchronize the current link parameters with
432 	 * hardware readout. Currently fast link training doesn't work on
433 	 * boot-up.
434 	 */
435 	if (link_rate == 0 ||
436 	    link_rate > intel_dp->max_link_rate)
437 		return false;
438 
439 	if (lane_count == 0 ||
440 	    lane_count > intel_dp_max_lane_count(intel_dp))
441 		return false;
442 
443 	return true;
444 }
445 
446 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
447 						     int link_rate,
448 						     u8 lane_count)
449 {
450 	const struct drm_display_mode *fixed_mode =
451 		intel_dp->attached_connector->panel.fixed_mode;
452 	int mode_rate, max_rate;
453 
454 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
455 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
456 	if (mode_rate > max_rate)
457 		return false;
458 
459 	return true;
460 }
461 
462 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
463 					    int link_rate, u8 lane_count)
464 {
465 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
466 	int index;
467 
468 	index = intel_dp_rate_index(intel_dp->common_rates,
469 				    intel_dp->num_common_rates,
470 				    link_rate);
471 	if (index > 0) {
472 		if (intel_dp_is_edp(intel_dp) &&
473 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
474 							      intel_dp->common_rates[index - 1],
475 							      lane_count)) {
476 			drm_dbg_kms(&i915->drm,
477 				    "Retrying Link training for eDP with same parameters\n");
478 			return 0;
479 		}
480 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
481 		intel_dp->max_link_lane_count = lane_count;
482 	} else if (lane_count > 1) {
483 		if (intel_dp_is_edp(intel_dp) &&
484 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
485 							      intel_dp_max_common_rate(intel_dp),
486 							      lane_count >> 1)) {
487 			drm_dbg_kms(&i915->drm,
488 				    "Retrying Link training for eDP with same parameters\n");
489 			return 0;
490 		}
491 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
492 		intel_dp->max_link_lane_count = lane_count >> 1;
493 	} else {
494 		drm_err(&i915->drm, "Link Training Unsuccessful\n");
495 		return -1;
496 	}
497 
498 	return 0;
499 }
500 
501 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
502 {
503 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
504 		       DP_DSC_FEC_OVERHEAD_FACTOR);
505 }
506 
507 static int
508 small_joiner_ram_size_bits(struct drm_i915_private *i915)
509 {
510 	if (INTEL_GEN(i915) >= 11)
511 		return 7680 * 8;
512 	else
513 		return 6144 * 8;
514 }
515 
516 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
517 				       u32 link_clock, u32 lane_count,
518 				       u32 mode_clock, u32 mode_hdisplay)
519 {
520 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
521 	int i;
522 
523 	/*
524 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
525 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
526 	 * for SST -> TimeSlotsPerMTP is 1,
527 	 * for MST -> TimeSlotsPerMTP has to be calculated
528 	 */
529 	bits_per_pixel = (link_clock * lane_count * 8) /
530 			 intel_dp_mode_to_fec_clock(mode_clock);
531 	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
532 
533 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
534 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
535 		mode_hdisplay;
536 	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
537 		    max_bpp_small_joiner_ram);
538 
539 	/*
540 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
541 	 * check, output bpp from small joiner RAM check)
542 	 */
543 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
544 
545 	/* Error out if the max bpp is less than smallest allowed valid bpp */
546 	if (bits_per_pixel < valid_dsc_bpp[0]) {
547 		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
548 			    bits_per_pixel, valid_dsc_bpp[0]);
549 		return 0;
550 	}
551 
552 	/* Find the nearest match in the array of known BPPs from VESA */
553 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
554 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
555 			break;
556 	}
557 	bits_per_pixel = valid_dsc_bpp[i];
558 
559 	/*
560 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
561 	 * fractional part is 0
562 	 */
563 	return bits_per_pixel << 4;
564 }
565 
566 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
567 				       int mode_clock, int mode_hdisplay)
568 {
569 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
570 	u8 min_slice_count, i;
571 	int max_slice_width;
572 
573 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
574 		min_slice_count = DIV_ROUND_UP(mode_clock,
575 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
576 	else
577 		min_slice_count = DIV_ROUND_UP(mode_clock,
578 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
579 
580 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
581 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
582 		drm_dbg_kms(&i915->drm,
583 			    "Unsupported slice width %d by DP DSC Sink device\n",
584 			    max_slice_width);
585 		return 0;
586 	}
587 	/* Also take into account max slice width */
588 	min_slice_count = min_t(u8, min_slice_count,
589 				DIV_ROUND_UP(mode_hdisplay,
590 					     max_slice_width));
591 
592 	/* Find the closest match to the valid slice count values */
593 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
594 		if (valid_dsc_slicecount[i] >
595 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
596 						    false))
597 			break;
598 		if (min_slice_count  <= valid_dsc_slicecount[i])
599 			return valid_dsc_slicecount[i];
600 	}
601 
602 	drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
603 		    min_slice_count);
604 	return 0;
605 }
606 
607 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
608 				  int hdisplay)
609 {
610 	/*
611 	 * Older platforms don't like hdisplay==4096 with DP.
612 	 *
613 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
614 	 * and frame counter increment), but we don't get vblank interrupts,
615 	 * and the pipe underruns immediately. The link also doesn't seem
616 	 * to get trained properly.
617 	 *
618 	 * On CHV the vblank interrupts don't seem to disappear but
619 	 * otherwise the symptoms are similar.
620 	 *
621 	 * TODO: confirm the behaviour on HSW+
622 	 */
623 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
624 }
625 
626 static enum drm_mode_status
627 intel_dp_mode_valid(struct drm_connector *connector,
628 		    struct drm_display_mode *mode)
629 {
630 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
631 	struct intel_connector *intel_connector = to_intel_connector(connector);
632 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
633 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
634 	int target_clock = mode->clock;
635 	int max_rate, mode_rate, max_lanes, max_link_clock;
636 	int max_dotclk;
637 	u16 dsc_max_output_bpp = 0;
638 	u8 dsc_slice_count = 0;
639 
640 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
641 		return MODE_NO_DBLESCAN;
642 
643 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
644 
645 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
646 		if (mode->hdisplay > fixed_mode->hdisplay)
647 			return MODE_PANEL;
648 
649 		if (mode->vdisplay > fixed_mode->vdisplay)
650 			return MODE_PANEL;
651 
652 		target_clock = fixed_mode->clock;
653 	}
654 
655 	max_link_clock = intel_dp_max_link_rate(intel_dp);
656 	max_lanes = intel_dp_max_lane_count(intel_dp);
657 
658 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
659 	mode_rate = intel_dp_link_required(target_clock, 18);
660 
661 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
662 		return MODE_H_ILLEGAL;
663 
664 	/*
665 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
666 	 * integer value since we support only integer values of bpp.
667 	 */
668 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
669 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
670 		if (intel_dp_is_edp(intel_dp)) {
671 			dsc_max_output_bpp =
672 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
673 			dsc_slice_count =
674 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
675 								true);
676 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
677 			dsc_max_output_bpp =
678 				intel_dp_dsc_get_output_bpp(dev_priv,
679 							    max_link_clock,
680 							    max_lanes,
681 							    target_clock,
682 							    mode->hdisplay) >> 4;
683 			dsc_slice_count =
684 				intel_dp_dsc_get_slice_count(intel_dp,
685 							     target_clock,
686 							     mode->hdisplay);
687 		}
688 	}
689 
690 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
691 	    target_clock > max_dotclk)
692 		return MODE_CLOCK_HIGH;
693 
694 	if (mode->clock < 10000)
695 		return MODE_CLOCK_LOW;
696 
697 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
698 		return MODE_H_ILLEGAL;
699 
700 	return intel_mode_valid_max_plane_size(dev_priv, mode);
701 }
702 
703 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
704 {
705 	int i;
706 	u32 v = 0;
707 
708 	if (src_bytes > 4)
709 		src_bytes = 4;
710 	for (i = 0; i < src_bytes; i++)
711 		v |= ((u32)src[i]) << ((3 - i) * 8);
712 	return v;
713 }
714 
715 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
716 {
717 	int i;
718 	if (dst_bytes > 4)
719 		dst_bytes = 4;
720 	for (i = 0; i < dst_bytes; i++)
721 		dst[i] = src >> ((3-i) * 8);
722 }
723 
724 static void
725 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
726 static void
727 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
728 					      bool force_disable_vdd);
729 static void
730 intel_dp_pps_init(struct intel_dp *intel_dp);
731 
732 static intel_wakeref_t
733 pps_lock(struct intel_dp *intel_dp)
734 {
735 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
736 	intel_wakeref_t wakeref;
737 
738 	/*
739 	 * See intel_power_sequencer_reset() why we need
740 	 * a power domain reference here.
741 	 */
742 	wakeref = intel_display_power_get(dev_priv,
743 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
744 
745 	mutex_lock(&dev_priv->pps_mutex);
746 
747 	return wakeref;
748 }
749 
750 static intel_wakeref_t
751 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
752 {
753 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
754 
755 	mutex_unlock(&dev_priv->pps_mutex);
756 	intel_display_power_put(dev_priv,
757 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
758 				wakeref);
759 	return 0;
760 }
761 
762 #define with_pps_lock(dp, wf) \
763 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
764 
765 static void
766 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
767 {
768 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
769 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
770 	enum pipe pipe = intel_dp->pps_pipe;
771 	bool pll_enabled, release_cl_override = false;
772 	enum dpio_phy phy = DPIO_PHY(pipe);
773 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
774 	u32 DP;
775 
776 	if (drm_WARN(&dev_priv->drm,
777 		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
778 		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
779 		     pipe_name(pipe), intel_dig_port->base.base.base.id,
780 		     intel_dig_port->base.base.name))
781 		return;
782 
783 	drm_dbg_kms(&dev_priv->drm,
784 		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
785 		    pipe_name(pipe), intel_dig_port->base.base.base.id,
786 		    intel_dig_port->base.base.name);
787 
788 	/* Preserve the BIOS-computed detected bit. This is
789 	 * supposed to be read-only.
790 	 */
791 	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
792 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
793 	DP |= DP_PORT_WIDTH(1);
794 	DP |= DP_LINK_TRAIN_PAT_1;
795 
796 	if (IS_CHERRYVIEW(dev_priv))
797 		DP |= DP_PIPE_SEL_CHV(pipe);
798 	else
799 		DP |= DP_PIPE_SEL(pipe);
800 
801 	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
802 
803 	/*
804 	 * The DPLL for the pipe must be enabled for this to work.
805 	 * So enable temporarily it if it's not already enabled.
806 	 */
807 	if (!pll_enabled) {
808 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
809 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
810 
811 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
812 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
813 			drm_err(&dev_priv->drm,
814 				"Failed to force on pll for pipe %c!\n",
815 				pipe_name(pipe));
816 			return;
817 		}
818 	}
819 
820 	/*
821 	 * Similar magic as in intel_dp_enable_port().
822 	 * We _must_ do this port enable + disable trick
823 	 * to make this power sequencer lock onto the port.
824 	 * Otherwise even VDD force bit won't work.
825 	 */
826 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
827 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
828 
829 	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
830 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
831 
832 	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
833 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
834 
835 	if (!pll_enabled) {
836 		vlv_force_pll_off(dev_priv, pipe);
837 
838 		if (release_cl_override)
839 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
840 	}
841 }
842 
843 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
844 {
845 	struct intel_encoder *encoder;
846 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
847 
848 	/*
849 	 * We don't have power sequencer currently.
850 	 * Pick one that's not used by other ports.
851 	 */
852 	for_each_intel_dp(&dev_priv->drm, encoder) {
853 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
854 
855 		if (encoder->type == INTEL_OUTPUT_EDP) {
856 			drm_WARN_ON(&dev_priv->drm,
857 				    intel_dp->active_pipe != INVALID_PIPE &&
858 				    intel_dp->active_pipe !=
859 				    intel_dp->pps_pipe);
860 
861 			if (intel_dp->pps_pipe != INVALID_PIPE)
862 				pipes &= ~(1 << intel_dp->pps_pipe);
863 		} else {
864 			drm_WARN_ON(&dev_priv->drm,
865 				    intel_dp->pps_pipe != INVALID_PIPE);
866 
867 			if (intel_dp->active_pipe != INVALID_PIPE)
868 				pipes &= ~(1 << intel_dp->active_pipe);
869 		}
870 	}
871 
872 	if (pipes == 0)
873 		return INVALID_PIPE;
874 
875 	return ffs(pipes) - 1;
876 }
877 
878 static enum pipe
879 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
880 {
881 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
882 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
883 	enum pipe pipe;
884 
885 	lockdep_assert_held(&dev_priv->pps_mutex);
886 
887 	/* We should never land here with regular DP ports */
888 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
889 
890 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
891 		    intel_dp->active_pipe != intel_dp->pps_pipe);
892 
893 	if (intel_dp->pps_pipe != INVALID_PIPE)
894 		return intel_dp->pps_pipe;
895 
896 	pipe = vlv_find_free_pps(dev_priv);
897 
898 	/*
899 	 * Didn't find one. This should not happen since there
900 	 * are two power sequencers and up to two eDP ports.
901 	 */
902 	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
903 		pipe = PIPE_A;
904 
905 	vlv_steal_power_sequencer(dev_priv, pipe);
906 	intel_dp->pps_pipe = pipe;
907 
908 	drm_dbg_kms(&dev_priv->drm,
909 		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
910 		    pipe_name(intel_dp->pps_pipe),
911 		    intel_dig_port->base.base.base.id,
912 		    intel_dig_port->base.base.name);
913 
914 	/* init power sequencer on this pipe and port */
915 	intel_dp_init_panel_power_sequencer(intel_dp);
916 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
917 
918 	/*
919 	 * Even vdd force doesn't work until we've made
920 	 * the power sequencer lock in on the port.
921 	 */
922 	vlv_power_sequencer_kick(intel_dp);
923 
924 	return intel_dp->pps_pipe;
925 }
926 
927 static int
928 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
929 {
930 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
931 	int backlight_controller = dev_priv->vbt.backlight.controller;
932 
933 	lockdep_assert_held(&dev_priv->pps_mutex);
934 
935 	/* We should never land here with regular DP ports */
936 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
937 
938 	if (!intel_dp->pps_reset)
939 		return backlight_controller;
940 
941 	intel_dp->pps_reset = false;
942 
943 	/*
944 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
945 	 * has been setup during connector init.
946 	 */
947 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
948 
949 	return backlight_controller;
950 }
951 
952 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
953 			       enum pipe pipe);
954 
955 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
956 			       enum pipe pipe)
957 {
958 	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
959 }
960 
961 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
962 				enum pipe pipe)
963 {
964 	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
965 }
966 
967 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
968 			 enum pipe pipe)
969 {
970 	return true;
971 }
972 
973 static enum pipe
974 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
975 		     enum port port,
976 		     vlv_pipe_check pipe_check)
977 {
978 	enum pipe pipe;
979 
980 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
981 		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
982 			PANEL_PORT_SELECT_MASK;
983 
984 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
985 			continue;
986 
987 		if (!pipe_check(dev_priv, pipe))
988 			continue;
989 
990 		return pipe;
991 	}
992 
993 	return INVALID_PIPE;
994 }
995 
996 static void
997 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
998 {
999 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1000 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1001 	enum port port = intel_dig_port->base.port;
1002 
1003 	lockdep_assert_held(&dev_priv->pps_mutex);
1004 
1005 	/* try to find a pipe with this port selected */
1006 	/* first pick one where the panel is on */
1007 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1008 						  vlv_pipe_has_pp_on);
1009 	/* didn't find one? pick one where vdd is on */
1010 	if (intel_dp->pps_pipe == INVALID_PIPE)
1011 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1012 							  vlv_pipe_has_vdd_on);
1013 	/* didn't find one? pick one with just the correct port */
1014 	if (intel_dp->pps_pipe == INVALID_PIPE)
1015 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1016 							  vlv_pipe_any);
1017 
1018 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1019 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1020 		drm_dbg_kms(&dev_priv->drm,
1021 			    "no initial power sequencer for [ENCODER:%d:%s]\n",
1022 			    intel_dig_port->base.base.base.id,
1023 			    intel_dig_port->base.base.name);
1024 		return;
1025 	}
1026 
1027 	drm_dbg_kms(&dev_priv->drm,
1028 		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1029 		    intel_dig_port->base.base.base.id,
1030 		    intel_dig_port->base.base.name,
1031 		    pipe_name(intel_dp->pps_pipe));
1032 
1033 	intel_dp_init_panel_power_sequencer(intel_dp);
1034 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1035 }
1036 
1037 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1038 {
1039 	struct intel_encoder *encoder;
1040 
1041 	if (drm_WARN_ON(&dev_priv->drm,
1042 			!(IS_VALLEYVIEW(dev_priv) ||
1043 			  IS_CHERRYVIEW(dev_priv) ||
1044 			  IS_GEN9_LP(dev_priv))))
1045 		return;
1046 
1047 	/*
1048 	 * We can't grab pps_mutex here due to deadlock with power_domain
1049 	 * mutex when power_domain functions are called while holding pps_mutex.
1050 	 * That also means that in order to use pps_pipe the code needs to
1051 	 * hold both a power domain reference and pps_mutex, and the power domain
1052 	 * reference get/put must be done while _not_ holding pps_mutex.
1053 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1054 	 * should use them always.
1055 	 */
1056 
1057 	for_each_intel_dp(&dev_priv->drm, encoder) {
1058 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1059 
1060 		drm_WARN_ON(&dev_priv->drm,
1061 			    intel_dp->active_pipe != INVALID_PIPE);
1062 
1063 		if (encoder->type != INTEL_OUTPUT_EDP)
1064 			continue;
1065 
1066 		if (IS_GEN9_LP(dev_priv))
1067 			intel_dp->pps_reset = true;
1068 		else
1069 			intel_dp->pps_pipe = INVALID_PIPE;
1070 	}
1071 }
1072 
1073 struct pps_registers {
1074 	i915_reg_t pp_ctrl;
1075 	i915_reg_t pp_stat;
1076 	i915_reg_t pp_on;
1077 	i915_reg_t pp_off;
1078 	i915_reg_t pp_div;
1079 };
1080 
1081 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1082 				    struct pps_registers *regs)
1083 {
1084 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1085 	int pps_idx = 0;
1086 
1087 	memset(regs, 0, sizeof(*regs));
1088 
1089 	if (IS_GEN9_LP(dev_priv))
1090 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1091 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1092 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1093 
1094 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1095 	regs->pp_stat = PP_STATUS(pps_idx);
1096 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1097 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1098 
1099 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1100 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1101 		regs->pp_div = INVALID_MMIO_REG;
1102 	else
1103 		regs->pp_div = PP_DIVISOR(pps_idx);
1104 }
1105 
1106 static i915_reg_t
1107 _pp_ctrl_reg(struct intel_dp *intel_dp)
1108 {
1109 	struct pps_registers regs;
1110 
1111 	intel_pps_get_registers(intel_dp, &regs);
1112 
1113 	return regs.pp_ctrl;
1114 }
1115 
1116 static i915_reg_t
1117 _pp_stat_reg(struct intel_dp *intel_dp)
1118 {
1119 	struct pps_registers regs;
1120 
1121 	intel_pps_get_registers(intel_dp, &regs);
1122 
1123 	return regs.pp_stat;
1124 }
1125 
1126 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1127    This function only applicable when panel PM state is not to be tracked */
1128 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1129 			      void *unused)
1130 {
1131 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1132 						 edp_notifier);
1133 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1134 	intel_wakeref_t wakeref;
1135 
1136 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1137 		return 0;
1138 
1139 	with_pps_lock(intel_dp, wakeref) {
1140 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1141 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1142 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1143 			u32 pp_div;
1144 
1145 			pp_ctrl_reg = PP_CONTROL(pipe);
1146 			pp_div_reg  = PP_DIVISOR(pipe);
1147 			pp_div = intel_de_read(dev_priv, pp_div_reg);
1148 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1149 
1150 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1151 			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1152 			intel_de_write(dev_priv, pp_ctrl_reg,
1153 				       PANEL_UNLOCK_REGS);
1154 			msleep(intel_dp->panel_power_cycle_delay);
1155 		}
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1162 {
1163 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1164 
1165 	lockdep_assert_held(&dev_priv->pps_mutex);
1166 
1167 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1168 	    intel_dp->pps_pipe == INVALID_PIPE)
1169 		return false;
1170 
1171 	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1172 }
1173 
1174 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1175 {
1176 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1177 
1178 	lockdep_assert_held(&dev_priv->pps_mutex);
1179 
1180 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1181 	    intel_dp->pps_pipe == INVALID_PIPE)
1182 		return false;
1183 
1184 	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1185 }
1186 
1187 static void
1188 intel_dp_check_edp(struct intel_dp *intel_dp)
1189 {
1190 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1191 
1192 	if (!intel_dp_is_edp(intel_dp))
1193 		return;
1194 
1195 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1196 		drm_WARN(&dev_priv->drm, 1,
1197 			 "eDP powered off while attempting aux channel communication.\n");
1198 		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1199 			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1200 			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1201 	}
1202 }
1203 
1204 static u32
1205 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1206 {
1207 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1208 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1209 	const unsigned int timeout_ms = 10;
1210 	u32 status;
1211 	bool done;
1212 
1213 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1214 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1215 				  msecs_to_jiffies_timeout(timeout_ms));
1216 
1217 	/* just trace the final value */
1218 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1219 
1220 	if (!done)
1221 		drm_err(&i915->drm,
1222 			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1223 			intel_dp->aux.name, timeout_ms, status);
1224 #undef C
1225 
1226 	return status;
1227 }
1228 
1229 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1230 {
1231 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1232 
1233 	if (index)
1234 		return 0;
1235 
1236 	/*
1237 	 * The clock divider is based off the hrawclk, and would like to run at
1238 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1239 	 */
1240 	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1241 }
1242 
1243 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1244 {
1245 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1246 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1247 	u32 freq;
1248 
1249 	if (index)
1250 		return 0;
1251 
1252 	/*
1253 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1254 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1255 	 * divide by 2000 and use that
1256 	 */
1257 	if (dig_port->aux_ch == AUX_CH_A)
1258 		freq = dev_priv->cdclk.hw.cdclk;
1259 	else
1260 		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1261 	return DIV_ROUND_CLOSEST(freq, 2000);
1262 }
1263 
1264 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1265 {
1266 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1267 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1268 
1269 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1270 		/* Workaround for non-ULT HSW */
1271 		switch (index) {
1272 		case 0: return 63;
1273 		case 1: return 72;
1274 		default: return 0;
1275 		}
1276 	}
1277 
1278 	return ilk_get_aux_clock_divider(intel_dp, index);
1279 }
1280 
1281 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1282 {
1283 	/*
1284 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1285 	 * derive the clock from CDCLK automatically). We still implement the
1286 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1287 	 */
1288 	return index ? 0 : 1;
1289 }
1290 
1291 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1292 				int send_bytes,
1293 				u32 aux_clock_divider)
1294 {
1295 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296 	struct drm_i915_private *dev_priv =
1297 			to_i915(intel_dig_port->base.base.dev);
1298 	u32 precharge, timeout;
1299 
1300 	if (IS_GEN(dev_priv, 6))
1301 		precharge = 3;
1302 	else
1303 		precharge = 5;
1304 
1305 	if (IS_BROADWELL(dev_priv))
1306 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1307 	else
1308 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1309 
1310 	return DP_AUX_CH_CTL_SEND_BUSY |
1311 	       DP_AUX_CH_CTL_DONE |
1312 	       DP_AUX_CH_CTL_INTERRUPT |
1313 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1314 	       timeout |
1315 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1316 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1317 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1318 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1319 }
1320 
1321 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1322 				int send_bytes,
1323 				u32 unused)
1324 {
1325 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1326 	struct drm_i915_private *i915 =
1327 			to_i915(intel_dig_port->base.base.dev);
1328 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329 	u32 ret;
1330 
1331 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1332 	      DP_AUX_CH_CTL_DONE |
1333 	      DP_AUX_CH_CTL_INTERRUPT |
1334 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1335 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1336 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1337 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1338 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1339 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1340 
1341 	if (intel_phy_is_tc(i915, phy) &&
1342 	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1343 		ret |= DP_AUX_CH_CTL_TBT_IO;
1344 
1345 	return ret;
1346 }
1347 
1348 static int
1349 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1350 		  const u8 *send, int send_bytes,
1351 		  u8 *recv, int recv_size,
1352 		  u32 aux_send_ctl_flags)
1353 {
1354 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1355 	struct drm_i915_private *i915 =
1356 			to_i915(intel_dig_port->base.base.dev);
1357 	struct intel_uncore *uncore = &i915->uncore;
1358 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1359 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1360 	i915_reg_t ch_ctl, ch_data[5];
1361 	u32 aux_clock_divider;
1362 	enum intel_display_power_domain aux_domain;
1363 	intel_wakeref_t aux_wakeref;
1364 	intel_wakeref_t pps_wakeref;
1365 	int i, ret, recv_bytes;
1366 	int try, clock = 0;
1367 	u32 status;
1368 	bool vdd;
1369 
1370 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1371 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1372 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1373 
1374 	if (is_tc_port)
1375 		intel_tc_port_lock(intel_dig_port);
1376 
1377 	aux_domain = intel_aux_power_domain(intel_dig_port);
1378 
1379 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1380 	pps_wakeref = pps_lock(intel_dp);
1381 
1382 	/*
1383 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1384 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1385 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1386 	 * ourselves.
1387 	 */
1388 	vdd = edp_panel_vdd_on(intel_dp);
1389 
1390 	/* dp aux is extremely sensitive to irq latency, hence request the
1391 	 * lowest possible wakeup latency and so prevent the cpu from going into
1392 	 * deep sleep states.
1393 	 */
1394 	cpu_latency_qos_update_request(&i915->pm_qos, 0);
1395 
1396 	intel_dp_check_edp(intel_dp);
1397 
1398 	/* Try to wait for any previous AUX channel activity */
1399 	for (try = 0; try < 3; try++) {
1400 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1401 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1402 			break;
1403 		msleep(1);
1404 	}
1405 	/* just trace the final value */
1406 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1407 
1408 	if (try == 3) {
1409 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1410 
1411 		if (status != intel_dp->aux_busy_last_status) {
1412 			drm_WARN(&i915->drm, 1,
1413 				 "%s: not started (status 0x%08x)\n",
1414 				 intel_dp->aux.name, status);
1415 			intel_dp->aux_busy_last_status = status;
1416 		}
1417 
1418 		ret = -EBUSY;
1419 		goto out;
1420 	}
1421 
1422 	/* Only 5 data registers! */
1423 	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1424 		ret = -E2BIG;
1425 		goto out;
1426 	}
1427 
1428 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1429 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1430 							  send_bytes,
1431 							  aux_clock_divider);
1432 
1433 		send_ctl |= aux_send_ctl_flags;
1434 
1435 		/* Must try at least 3 times according to DP spec */
1436 		for (try = 0; try < 5; try++) {
1437 			/* Load the send data into the aux channel data registers */
1438 			for (i = 0; i < send_bytes; i += 4)
1439 				intel_uncore_write(uncore,
1440 						   ch_data[i >> 2],
1441 						   intel_dp_pack_aux(send + i,
1442 								     send_bytes - i));
1443 
1444 			/* Send the command and wait for it to complete */
1445 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1446 
1447 			status = intel_dp_aux_wait_done(intel_dp);
1448 
1449 			/* Clear done status and any errors */
1450 			intel_uncore_write(uncore,
1451 					   ch_ctl,
1452 					   status |
1453 					   DP_AUX_CH_CTL_DONE |
1454 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1455 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1456 
1457 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1458 			 *   400us delay required for errors and timeouts
1459 			 *   Timeout errors from the HW already meet this
1460 			 *   requirement so skip to next iteration
1461 			 */
1462 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1463 				continue;
1464 
1465 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1466 				usleep_range(400, 500);
1467 				continue;
1468 			}
1469 			if (status & DP_AUX_CH_CTL_DONE)
1470 				goto done;
1471 		}
1472 	}
1473 
1474 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1475 		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1476 			intel_dp->aux.name, status);
1477 		ret = -EBUSY;
1478 		goto out;
1479 	}
1480 
1481 done:
1482 	/* Check for timeout or receive error.
1483 	 * Timeouts occur when the sink is not connected
1484 	 */
1485 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1486 		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1487 			intel_dp->aux.name, status);
1488 		ret = -EIO;
1489 		goto out;
1490 	}
1491 
1492 	/* Timeouts occur when the device isn't connected, so they're
1493 	 * "normal" -- don't fill the kernel log with these */
1494 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1495 		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1496 			    intel_dp->aux.name, status);
1497 		ret = -ETIMEDOUT;
1498 		goto out;
1499 	}
1500 
1501 	/* Unload any bytes sent back from the other side */
1502 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1503 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1504 
1505 	/*
1506 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1507 	 * We have no idea of what happened so we return -EBUSY so
1508 	 * drm layer takes care for the necessary retries.
1509 	 */
1510 	if (recv_bytes == 0 || recv_bytes > 20) {
1511 		drm_dbg_kms(&i915->drm,
1512 			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
1513 			    intel_dp->aux.name, recv_bytes);
1514 		ret = -EBUSY;
1515 		goto out;
1516 	}
1517 
1518 	if (recv_bytes > recv_size)
1519 		recv_bytes = recv_size;
1520 
1521 	for (i = 0; i < recv_bytes; i += 4)
1522 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1523 				    recv + i, recv_bytes - i);
1524 
1525 	ret = recv_bytes;
1526 out:
1527 	cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1528 
1529 	if (vdd)
1530 		edp_panel_vdd_off(intel_dp, false);
1531 
1532 	pps_unlock(intel_dp, pps_wakeref);
1533 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1534 
1535 	if (is_tc_port)
1536 		intel_tc_port_unlock(intel_dig_port);
1537 
1538 	return ret;
1539 }
1540 
1541 #define BARE_ADDRESS_SIZE	3
1542 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1543 
1544 static void
1545 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1546 		    const struct drm_dp_aux_msg *msg)
1547 {
1548 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1549 	txbuf[1] = (msg->address >> 8) & 0xff;
1550 	txbuf[2] = msg->address & 0xff;
1551 	txbuf[3] = msg->size - 1;
1552 }
1553 
1554 static ssize_t
1555 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1556 {
1557 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1558 	u8 txbuf[20], rxbuf[20];
1559 	size_t txsize, rxsize;
1560 	int ret;
1561 
1562 	intel_dp_aux_header(txbuf, msg);
1563 
1564 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1565 	case DP_AUX_NATIVE_WRITE:
1566 	case DP_AUX_I2C_WRITE:
1567 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1568 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1569 		rxsize = 2; /* 0 or 1 data bytes */
1570 
1571 		if (WARN_ON(txsize > 20))
1572 			return -E2BIG;
1573 
1574 		WARN_ON(!msg->buffer != !msg->size);
1575 
1576 		if (msg->buffer)
1577 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1578 
1579 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1580 					rxbuf, rxsize, 0);
1581 		if (ret > 0) {
1582 			msg->reply = rxbuf[0] >> 4;
1583 
1584 			if (ret > 1) {
1585 				/* Number of bytes written in a short write. */
1586 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1587 			} else {
1588 				/* Return payload size. */
1589 				ret = msg->size;
1590 			}
1591 		}
1592 		break;
1593 
1594 	case DP_AUX_NATIVE_READ:
1595 	case DP_AUX_I2C_READ:
1596 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1597 		rxsize = msg->size + 1;
1598 
1599 		if (WARN_ON(rxsize > 20))
1600 			return -E2BIG;
1601 
1602 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1603 					rxbuf, rxsize, 0);
1604 		if (ret > 0) {
1605 			msg->reply = rxbuf[0] >> 4;
1606 			/*
1607 			 * Assume happy day, and copy the data. The caller is
1608 			 * expected to check msg->reply before touching it.
1609 			 *
1610 			 * Return payload size.
1611 			 */
1612 			ret--;
1613 			memcpy(msg->buffer, rxbuf + 1, ret);
1614 		}
1615 		break;
1616 
1617 	default:
1618 		ret = -EINVAL;
1619 		break;
1620 	}
1621 
1622 	return ret;
1623 }
1624 
1625 
1626 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1627 {
1628 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1629 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1630 	enum aux_ch aux_ch = dig_port->aux_ch;
1631 
1632 	switch (aux_ch) {
1633 	case AUX_CH_B:
1634 	case AUX_CH_C:
1635 	case AUX_CH_D:
1636 		return DP_AUX_CH_CTL(aux_ch);
1637 	default:
1638 		MISSING_CASE(aux_ch);
1639 		return DP_AUX_CH_CTL(AUX_CH_B);
1640 	}
1641 }
1642 
1643 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1644 {
1645 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647 	enum aux_ch aux_ch = dig_port->aux_ch;
1648 
1649 	switch (aux_ch) {
1650 	case AUX_CH_B:
1651 	case AUX_CH_C:
1652 	case AUX_CH_D:
1653 		return DP_AUX_CH_DATA(aux_ch, index);
1654 	default:
1655 		MISSING_CASE(aux_ch);
1656 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1657 	}
1658 }
1659 
1660 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1661 {
1662 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1663 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1664 	enum aux_ch aux_ch = dig_port->aux_ch;
1665 
1666 	switch (aux_ch) {
1667 	case AUX_CH_A:
1668 		return DP_AUX_CH_CTL(aux_ch);
1669 	case AUX_CH_B:
1670 	case AUX_CH_C:
1671 	case AUX_CH_D:
1672 		return PCH_DP_AUX_CH_CTL(aux_ch);
1673 	default:
1674 		MISSING_CASE(aux_ch);
1675 		return DP_AUX_CH_CTL(AUX_CH_A);
1676 	}
1677 }
1678 
1679 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1680 {
1681 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1682 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1683 	enum aux_ch aux_ch = dig_port->aux_ch;
1684 
1685 	switch (aux_ch) {
1686 	case AUX_CH_A:
1687 		return DP_AUX_CH_DATA(aux_ch, index);
1688 	case AUX_CH_B:
1689 	case AUX_CH_C:
1690 	case AUX_CH_D:
1691 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1692 	default:
1693 		MISSING_CASE(aux_ch);
1694 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1695 	}
1696 }
1697 
1698 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1699 {
1700 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1701 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1702 	enum aux_ch aux_ch = dig_port->aux_ch;
1703 
1704 	switch (aux_ch) {
1705 	case AUX_CH_A:
1706 	case AUX_CH_B:
1707 	case AUX_CH_C:
1708 	case AUX_CH_D:
1709 	case AUX_CH_E:
1710 	case AUX_CH_F:
1711 	case AUX_CH_G:
1712 		return DP_AUX_CH_CTL(aux_ch);
1713 	default:
1714 		MISSING_CASE(aux_ch);
1715 		return DP_AUX_CH_CTL(AUX_CH_A);
1716 	}
1717 }
1718 
1719 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1720 {
1721 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1722 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1723 	enum aux_ch aux_ch = dig_port->aux_ch;
1724 
1725 	switch (aux_ch) {
1726 	case AUX_CH_A:
1727 	case AUX_CH_B:
1728 	case AUX_CH_C:
1729 	case AUX_CH_D:
1730 	case AUX_CH_E:
1731 	case AUX_CH_F:
1732 	case AUX_CH_G:
1733 		return DP_AUX_CH_DATA(aux_ch, index);
1734 	default:
1735 		MISSING_CASE(aux_ch);
1736 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1737 	}
1738 }
1739 
1740 static void
1741 intel_dp_aux_fini(struct intel_dp *intel_dp)
1742 {
1743 	kfree(intel_dp->aux.name);
1744 }
1745 
1746 static void
1747 intel_dp_aux_init(struct intel_dp *intel_dp)
1748 {
1749 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1750 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1751 	struct intel_encoder *encoder = &dig_port->base;
1752 
1753 	if (INTEL_GEN(dev_priv) >= 9) {
1754 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1755 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1756 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1757 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1758 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1759 	} else {
1760 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1761 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1762 	}
1763 
1764 	if (INTEL_GEN(dev_priv) >= 9)
1765 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1766 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1767 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1768 	else if (HAS_PCH_SPLIT(dev_priv))
1769 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1770 	else
1771 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1772 
1773 	if (INTEL_GEN(dev_priv) >= 9)
1774 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1775 	else
1776 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1777 
1778 	drm_dp_aux_init(&intel_dp->aux);
1779 
1780 	/* Failure to allocate our preferred name is not critical */
1781 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1782 				       aux_ch_name(dig_port->aux_ch),
1783 				       port_name(encoder->port));
1784 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1785 }
1786 
1787 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1788 {
1789 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1790 
1791 	return max_rate >= 540000;
1792 }
1793 
1794 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1795 {
1796 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1797 
1798 	return max_rate >= 810000;
1799 }
1800 
1801 static void
1802 intel_dp_set_clock(struct intel_encoder *encoder,
1803 		   struct intel_crtc_state *pipe_config)
1804 {
1805 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1806 	const struct dp_link_dpll *divisor = NULL;
1807 	int i, count = 0;
1808 
1809 	if (IS_G4X(dev_priv)) {
1810 		divisor = g4x_dpll;
1811 		count = ARRAY_SIZE(g4x_dpll);
1812 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1813 		divisor = pch_dpll;
1814 		count = ARRAY_SIZE(pch_dpll);
1815 	} else if (IS_CHERRYVIEW(dev_priv)) {
1816 		divisor = chv_dpll;
1817 		count = ARRAY_SIZE(chv_dpll);
1818 	} else if (IS_VALLEYVIEW(dev_priv)) {
1819 		divisor = vlv_dpll;
1820 		count = ARRAY_SIZE(vlv_dpll);
1821 	}
1822 
1823 	if (divisor && count) {
1824 		for (i = 0; i < count; i++) {
1825 			if (pipe_config->port_clock == divisor[i].clock) {
1826 				pipe_config->dpll = divisor[i].dpll;
1827 				pipe_config->clock_set = true;
1828 				break;
1829 			}
1830 		}
1831 	}
1832 }
1833 
1834 static void snprintf_int_array(char *str, size_t len,
1835 			       const int *array, int nelem)
1836 {
1837 	int i;
1838 
1839 	str[0] = '\0';
1840 
1841 	for (i = 0; i < nelem; i++) {
1842 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1843 		if (r >= len)
1844 			return;
1845 		str += r;
1846 		len -= r;
1847 	}
1848 }
1849 
1850 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1851 {
1852 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1853 	char str[128]; /* FIXME: too big for stack? */
1854 
1855 	if (!drm_debug_enabled(DRM_UT_KMS))
1856 		return;
1857 
1858 	snprintf_int_array(str, sizeof(str),
1859 			   intel_dp->source_rates, intel_dp->num_source_rates);
1860 	drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1861 
1862 	snprintf_int_array(str, sizeof(str),
1863 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1864 	drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1865 
1866 	snprintf_int_array(str, sizeof(str),
1867 			   intel_dp->common_rates, intel_dp->num_common_rates);
1868 	drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1869 }
1870 
1871 int
1872 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1873 {
1874 	int len;
1875 
1876 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1877 	if (WARN_ON(len <= 0))
1878 		return 162000;
1879 
1880 	return intel_dp->common_rates[len - 1];
1881 }
1882 
1883 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1884 {
1885 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1886 				    intel_dp->num_sink_rates, rate);
1887 
1888 	if (WARN_ON(i < 0))
1889 		i = 0;
1890 
1891 	return i;
1892 }
1893 
1894 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1895 			   u8 *link_bw, u8 *rate_select)
1896 {
1897 	/* eDP 1.4 rate select method. */
1898 	if (intel_dp->use_rate_select) {
1899 		*link_bw = 0;
1900 		*rate_select =
1901 			intel_dp_rate_select(intel_dp, port_clock);
1902 	} else {
1903 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1904 		*rate_select = 0;
1905 	}
1906 }
1907 
1908 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1909 					 const struct intel_crtc_state *pipe_config)
1910 {
1911 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1912 
1913 	/* On TGL, FEC is supported on all Pipes */
1914 	if (INTEL_GEN(dev_priv) >= 12)
1915 		return true;
1916 
1917 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1918 		return true;
1919 
1920 	return false;
1921 }
1922 
1923 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1924 				  const struct intel_crtc_state *pipe_config)
1925 {
1926 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1927 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1928 }
1929 
1930 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1931 				  const struct intel_crtc_state *crtc_state)
1932 {
1933 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1934 
1935 	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1936 		return false;
1937 
1938 	return intel_dsc_source_support(encoder, crtc_state) &&
1939 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1940 }
1941 
1942 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1943 				struct intel_crtc_state *pipe_config)
1944 {
1945 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1946 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1947 	int bpp, bpc;
1948 
1949 	bpp = pipe_config->pipe_bpp;
1950 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1951 
1952 	if (bpc > 0)
1953 		bpp = min(bpp, 3*bpc);
1954 
1955 	if (intel_dp_is_edp(intel_dp)) {
1956 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1957 		if (intel_connector->base.display_info.bpc == 0 &&
1958 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1959 			drm_dbg_kms(&dev_priv->drm,
1960 				    "clamping bpp for eDP panel to BIOS-provided %i\n",
1961 				    dev_priv->vbt.edp.bpp);
1962 			bpp = dev_priv->vbt.edp.bpp;
1963 		}
1964 	}
1965 
1966 	return bpp;
1967 }
1968 
1969 /* Adjust link config limits based on compliance test requests. */
1970 void
1971 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1972 				  struct intel_crtc_state *pipe_config,
1973 				  struct link_config_limits *limits)
1974 {
1975 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1976 
1977 	/* For DP Compliance we override the computed bpp for the pipe */
1978 	if (intel_dp->compliance.test_data.bpc != 0) {
1979 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1980 
1981 		limits->min_bpp = limits->max_bpp = bpp;
1982 		pipe_config->dither_force_disable = bpp == 6 * 3;
1983 
1984 		drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
1985 	}
1986 
1987 	/* Use values requested by Compliance Test Request */
1988 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1989 		int index;
1990 
1991 		/* Validate the compliance test data since max values
1992 		 * might have changed due to link train fallback.
1993 		 */
1994 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1995 					       intel_dp->compliance.test_lane_count)) {
1996 			index = intel_dp_rate_index(intel_dp->common_rates,
1997 						    intel_dp->num_common_rates,
1998 						    intel_dp->compliance.test_link_rate);
1999 			if (index >= 0)
2000 				limits->min_clock = limits->max_clock = index;
2001 			limits->min_lane_count = limits->max_lane_count =
2002 				intel_dp->compliance.test_lane_count;
2003 		}
2004 	}
2005 }
2006 
2007 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2008 {
2009 	/*
2010 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2011 	 * format of the number of bytes per pixel will be half the number
2012 	 * of bytes of RGB pixel.
2013 	 */
2014 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2015 		bpp /= 2;
2016 
2017 	return bpp;
2018 }
2019 
2020 /* Optimize link config in order: max bpp, min clock, min lanes */
2021 static int
2022 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2023 				  struct intel_crtc_state *pipe_config,
2024 				  const struct link_config_limits *limits)
2025 {
2026 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2027 	int bpp, clock, lane_count;
2028 	int mode_rate, link_clock, link_avail;
2029 
2030 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2031 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2032 
2033 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2034 						   output_bpp);
2035 
2036 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2037 			for (lane_count = limits->min_lane_count;
2038 			     lane_count <= limits->max_lane_count;
2039 			     lane_count <<= 1) {
2040 				link_clock = intel_dp->common_rates[clock];
2041 				link_avail = intel_dp_max_data_rate(link_clock,
2042 								    lane_count);
2043 
2044 				if (mode_rate <= link_avail) {
2045 					pipe_config->lane_count = lane_count;
2046 					pipe_config->pipe_bpp = bpp;
2047 					pipe_config->port_clock = link_clock;
2048 
2049 					return 0;
2050 				}
2051 			}
2052 		}
2053 	}
2054 
2055 	return -EINVAL;
2056 }
2057 
2058 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2059 {
2060 	int i, num_bpc;
2061 	u8 dsc_bpc[3] = {0};
2062 
2063 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2064 						       dsc_bpc);
2065 	for (i = 0; i < num_bpc; i++) {
2066 		if (dsc_max_bpc >= dsc_bpc[i])
2067 			return dsc_bpc[i] * 3;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 #define DSC_SUPPORTED_VERSION_MIN		1
2074 
2075 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2076 				       struct intel_crtc_state *crtc_state)
2077 {
2078 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2079 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2080 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2081 	u8 line_buf_depth;
2082 	int ret;
2083 
2084 	ret = intel_dsc_compute_params(encoder, crtc_state);
2085 	if (ret)
2086 		return ret;
2087 
2088 	/*
2089 	 * Slice Height of 8 works for all currently available panels. So start
2090 	 * with that if pic_height is an integral multiple of 8. Eventually add
2091 	 * logic to try multiple slice heights.
2092 	 */
2093 	if (vdsc_cfg->pic_height % 8 == 0)
2094 		vdsc_cfg->slice_height = 8;
2095 	else if (vdsc_cfg->pic_height % 4 == 0)
2096 		vdsc_cfg->slice_height = 4;
2097 	else
2098 		vdsc_cfg->slice_height = 2;
2099 
2100 	vdsc_cfg->dsc_version_major =
2101 		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2102 		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2103 	vdsc_cfg->dsc_version_minor =
2104 		min(DSC_SUPPORTED_VERSION_MIN,
2105 		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2106 		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2107 
2108 	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2109 		DP_DSC_RGB;
2110 
2111 	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2112 	if (!line_buf_depth) {
2113 		drm_dbg_kms(&i915->drm,
2114 			    "DSC Sink Line Buffer Depth invalid\n");
2115 		return -EINVAL;
2116 	}
2117 
2118 	if (vdsc_cfg->dsc_version_minor == 2)
2119 		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2120 			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2121 	else
2122 		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2123 			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2124 
2125 	vdsc_cfg->block_pred_enable =
2126 		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2127 		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2128 
2129 	return drm_dsc_compute_rc_parameters(vdsc_cfg);
2130 }
2131 
2132 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2133 				       struct intel_crtc_state *pipe_config,
2134 				       struct drm_connector_state *conn_state,
2135 				       struct link_config_limits *limits)
2136 {
2137 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2138 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2139 	const struct drm_display_mode *adjusted_mode =
2140 		&pipe_config->hw.adjusted_mode;
2141 	u8 dsc_max_bpc;
2142 	int pipe_bpp;
2143 	int ret;
2144 
2145 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2146 		intel_dp_supports_fec(intel_dp, pipe_config);
2147 
2148 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2149 		return -EINVAL;
2150 
2151 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2152 	if (INTEL_GEN(dev_priv) >= 12)
2153 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2154 	else
2155 		dsc_max_bpc = min_t(u8, 10,
2156 				    conn_state->max_requested_bpc);
2157 
2158 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2159 
2160 	/* Min Input BPC for ICL+ is 8 */
2161 	if (pipe_bpp < 8 * 3) {
2162 		drm_dbg_kms(&dev_priv->drm,
2163 			    "No DSC support for less than 8bpc\n");
2164 		return -EINVAL;
2165 	}
2166 
2167 	/*
2168 	 * For now enable DSC for max bpp, max link rate, max lane count.
2169 	 * Optimize this later for the minimum possible link rate/lane count
2170 	 * with DSC enabled for the requested mode.
2171 	 */
2172 	pipe_config->pipe_bpp = pipe_bpp;
2173 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2174 	pipe_config->lane_count = limits->max_lane_count;
2175 
2176 	if (intel_dp_is_edp(intel_dp)) {
2177 		pipe_config->dsc.compressed_bpp =
2178 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2179 			      pipe_config->pipe_bpp);
2180 		pipe_config->dsc.slice_count =
2181 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2182 							true);
2183 	} else {
2184 		u16 dsc_max_output_bpp;
2185 		u8 dsc_dp_slice_count;
2186 
2187 		dsc_max_output_bpp =
2188 			intel_dp_dsc_get_output_bpp(dev_priv,
2189 						    pipe_config->port_clock,
2190 						    pipe_config->lane_count,
2191 						    adjusted_mode->crtc_clock,
2192 						    adjusted_mode->crtc_hdisplay);
2193 		dsc_dp_slice_count =
2194 			intel_dp_dsc_get_slice_count(intel_dp,
2195 						     adjusted_mode->crtc_clock,
2196 						     adjusted_mode->crtc_hdisplay);
2197 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2198 			drm_dbg_kms(&dev_priv->drm,
2199 				    "Compressed BPP/Slice Count not supported\n");
2200 			return -EINVAL;
2201 		}
2202 		pipe_config->dsc.compressed_bpp = min_t(u16,
2203 							       dsc_max_output_bpp >> 4,
2204 							       pipe_config->pipe_bpp);
2205 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2206 	}
2207 	/*
2208 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2209 	 * is greater than the maximum Cdclock and if slice count is even
2210 	 * then we need to use 2 VDSC instances.
2211 	 */
2212 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2213 		if (pipe_config->dsc.slice_count > 1) {
2214 			pipe_config->dsc.dsc_split = true;
2215 		} else {
2216 			drm_dbg_kms(&dev_priv->drm,
2217 				    "Cannot split stream to use 2 VDSC instances\n");
2218 			return -EINVAL;
2219 		}
2220 	}
2221 
2222 	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2223 	if (ret < 0) {
2224 		drm_dbg_kms(&dev_priv->drm,
2225 			    "Cannot compute valid DSC parameters for Input Bpp = %d "
2226 			    "Compressed BPP = %d\n",
2227 			    pipe_config->pipe_bpp,
2228 			    pipe_config->dsc.compressed_bpp);
2229 		return ret;
2230 	}
2231 
2232 	pipe_config->dsc.compression_enable = true;
2233 	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2234 		    "Compressed Bpp = %d Slice Count = %d\n",
2235 		    pipe_config->pipe_bpp,
2236 		    pipe_config->dsc.compressed_bpp,
2237 		    pipe_config->dsc.slice_count);
2238 
2239 	return 0;
2240 }
2241 
2242 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2243 {
2244 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2245 		return 6 * 3;
2246 	else
2247 		return 8 * 3;
2248 }
2249 
2250 static int
2251 intel_dp_compute_link_config(struct intel_encoder *encoder,
2252 			     struct intel_crtc_state *pipe_config,
2253 			     struct drm_connector_state *conn_state)
2254 {
2255 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2256 	const struct drm_display_mode *adjusted_mode =
2257 		&pipe_config->hw.adjusted_mode;
2258 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2259 	struct link_config_limits limits;
2260 	int common_len;
2261 	int ret;
2262 
2263 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2264 						    intel_dp->max_link_rate);
2265 
2266 	/* No common link rates between source and sink */
2267 	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2268 
2269 	limits.min_clock = 0;
2270 	limits.max_clock = common_len - 1;
2271 
2272 	limits.min_lane_count = 1;
2273 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2274 
2275 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2276 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2277 
2278 	if (intel_dp_is_edp(intel_dp)) {
2279 		/*
2280 		 * Use the maximum clock and number of lanes the eDP panel
2281 		 * advertizes being capable of. The panels are generally
2282 		 * designed to support only a single clock and lane
2283 		 * configuration, and typically these values correspond to the
2284 		 * native resolution of the panel.
2285 		 */
2286 		limits.min_lane_count = limits.max_lane_count;
2287 		limits.min_clock = limits.max_clock;
2288 	}
2289 
2290 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2291 
2292 	drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2293 		    "max rate %d max bpp %d pixel clock %iKHz\n",
2294 		    limits.max_lane_count,
2295 		    intel_dp->common_rates[limits.max_clock],
2296 		    limits.max_bpp, adjusted_mode->crtc_clock);
2297 
2298 	/*
2299 	 * Optimize for slow and wide. This is the place to add alternative
2300 	 * optimization policy.
2301 	 */
2302 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2303 
2304 	/* enable compression if the mode doesn't fit available BW */
2305 	drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2306 	if (ret || intel_dp->force_dsc_en) {
2307 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2308 						  conn_state, &limits);
2309 		if (ret < 0)
2310 			return ret;
2311 	}
2312 
2313 	if (pipe_config->dsc.compression_enable) {
2314 		drm_dbg_kms(&i915->drm,
2315 			    "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2316 			    pipe_config->lane_count, pipe_config->port_clock,
2317 			    pipe_config->pipe_bpp,
2318 			    pipe_config->dsc.compressed_bpp);
2319 
2320 		drm_dbg_kms(&i915->drm,
2321 			    "DP link rate required %i available %i\n",
2322 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2323 						   pipe_config->dsc.compressed_bpp),
2324 			    intel_dp_max_data_rate(pipe_config->port_clock,
2325 						   pipe_config->lane_count));
2326 	} else {
2327 		drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2328 			    pipe_config->lane_count, pipe_config->port_clock,
2329 			    pipe_config->pipe_bpp);
2330 
2331 		drm_dbg_kms(&i915->drm,
2332 			    "DP link rate required %i available %i\n",
2333 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2334 						   pipe_config->pipe_bpp),
2335 			    intel_dp_max_data_rate(pipe_config->port_clock,
2336 						   pipe_config->lane_count));
2337 	}
2338 	return 0;
2339 }
2340 
2341 static int
2342 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2343 			 struct intel_crtc_state *crtc_state,
2344 			 const struct drm_connector_state *conn_state)
2345 {
2346 	struct drm_connector *connector = conn_state->connector;
2347 	const struct drm_display_info *info = &connector->display_info;
2348 	const struct drm_display_mode *adjusted_mode =
2349 		&crtc_state->hw.adjusted_mode;
2350 
2351 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2352 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2353 	    !connector->ycbcr_420_allowed)
2354 		return 0;
2355 
2356 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2357 
2358 	return intel_pch_panel_fitting(crtc_state, conn_state);
2359 }
2360 
2361 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2362 				  const struct drm_connector_state *conn_state)
2363 {
2364 	const struct intel_digital_connector_state *intel_conn_state =
2365 		to_intel_digital_connector_state(conn_state);
2366 	const struct drm_display_mode *adjusted_mode =
2367 		&crtc_state->hw.adjusted_mode;
2368 
2369 	/*
2370 	 * Our YCbCr output is always limited range.
2371 	 * crtc_state->limited_color_range only applies to RGB,
2372 	 * and it must never be set for YCbCr or we risk setting
2373 	 * some conflicting bits in PIPECONF which will mess up
2374 	 * the colors on the monitor.
2375 	 */
2376 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2377 		return false;
2378 
2379 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2380 		/*
2381 		 * See:
2382 		 * CEA-861-E - 5.1 Default Encoding Parameters
2383 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2384 		 */
2385 		return crtc_state->pipe_bpp != 18 &&
2386 			drm_default_rgb_quant_range(adjusted_mode) ==
2387 			HDMI_QUANTIZATION_RANGE_LIMITED;
2388 	} else {
2389 		return intel_conn_state->broadcast_rgb ==
2390 			INTEL_BROADCAST_RGB_LIMITED;
2391 	}
2392 }
2393 
2394 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2395 				    enum port port)
2396 {
2397 	if (IS_G4X(dev_priv))
2398 		return false;
2399 	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2400 		return false;
2401 
2402 	return true;
2403 }
2404 
2405 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2406 					     const struct drm_connector_state *conn_state,
2407 					     struct drm_dp_vsc_sdp *vsc)
2408 {
2409 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2410 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2411 
2412 	/*
2413 	 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2414 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2415 	 * Colorimetry Format indication.
2416 	 */
2417 	vsc->revision = 0x5;
2418 	vsc->length = 0x13;
2419 
2420 	/* DP 1.4a spec, Table 2-120 */
2421 	switch (crtc_state->output_format) {
2422 	case INTEL_OUTPUT_FORMAT_YCBCR444:
2423 		vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2424 		break;
2425 	case INTEL_OUTPUT_FORMAT_YCBCR420:
2426 		vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2427 		break;
2428 	case INTEL_OUTPUT_FORMAT_RGB:
2429 	default:
2430 		vsc->pixelformat = DP_PIXELFORMAT_RGB;
2431 	}
2432 
2433 	switch (conn_state->colorspace) {
2434 	case DRM_MODE_COLORIMETRY_BT709_YCC:
2435 		vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2436 		break;
2437 	case DRM_MODE_COLORIMETRY_XVYCC_601:
2438 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2439 		break;
2440 	case DRM_MODE_COLORIMETRY_XVYCC_709:
2441 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2442 		break;
2443 	case DRM_MODE_COLORIMETRY_SYCC_601:
2444 		vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2445 		break;
2446 	case DRM_MODE_COLORIMETRY_OPYCC_601:
2447 		vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2448 		break;
2449 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2450 		vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2451 		break;
2452 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
2453 		vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2454 		break;
2455 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
2456 		vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2457 		break;
2458 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2459 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2460 		vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2461 		break;
2462 	default:
2463 		/*
2464 		 * RGB->YCBCR color conversion uses the BT.709
2465 		 * color space.
2466 		 */
2467 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2468 			vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2469 		else
2470 			vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2471 		break;
2472 	}
2473 
2474 	vsc->bpc = crtc_state->pipe_bpp / 3;
2475 
2476 	/* only RGB pixelformat supports 6 bpc */
2477 	drm_WARN_ON(&dev_priv->drm,
2478 		    vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2479 
2480 	/* all YCbCr are always limited range */
2481 	vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2482 	vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2483 }
2484 
2485 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2486 				     struct intel_crtc_state *crtc_state,
2487 				     const struct drm_connector_state *conn_state)
2488 {
2489 	struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2490 
2491 	/* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2492 	if (crtc_state->has_psr)
2493 		return;
2494 
2495 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2496 		return;
2497 
2498 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2499 	vsc->sdp_type = DP_SDP_VSC;
2500 	intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2501 					 &crtc_state->infoframes.vsc);
2502 }
2503 
2504 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2505 				  const struct intel_crtc_state *crtc_state,
2506 				  const struct drm_connector_state *conn_state,
2507 				  struct drm_dp_vsc_sdp *vsc)
2508 {
2509 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2510 
2511 	vsc->sdp_type = DP_SDP_VSC;
2512 
2513 	if (dev_priv->psr.psr2_enabled) {
2514 		if (dev_priv->psr.colorimetry_support &&
2515 		    intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2516 			/* [PSR2, +Colorimetry] */
2517 			intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2518 							 vsc);
2519 		} else {
2520 			/*
2521 			 * [PSR2, -Colorimetry]
2522 			 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2523 			 * 3D stereo + PSR/PSR2 + Y-coordinate.
2524 			 */
2525 			vsc->revision = 0x4;
2526 			vsc->length = 0xe;
2527 		}
2528 	} else {
2529 		/*
2530 		 * [PSR1]
2531 		 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2532 		 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2533 		 * higher).
2534 		 */
2535 		vsc->revision = 0x2;
2536 		vsc->length = 0x8;
2537 	}
2538 }
2539 
2540 static void
2541 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2542 					    struct intel_crtc_state *crtc_state,
2543 					    const struct drm_connector_state *conn_state)
2544 {
2545 	int ret;
2546 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2547 	struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2548 
2549 	if (!conn_state->hdr_output_metadata)
2550 		return;
2551 
2552 	ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2553 
2554 	if (ret) {
2555 		drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2556 		return;
2557 	}
2558 
2559 	crtc_state->infoframes.enable |=
2560 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2561 }
2562 
2563 int
2564 intel_dp_compute_config(struct intel_encoder *encoder,
2565 			struct intel_crtc_state *pipe_config,
2566 			struct drm_connector_state *conn_state)
2567 {
2568 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2569 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2570 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2571 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2572 	enum port port = encoder->port;
2573 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2574 	struct intel_digital_connector_state *intel_conn_state =
2575 		to_intel_digital_connector_state(conn_state);
2576 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2577 					   DP_DPCD_QUIRK_CONSTANT_N);
2578 	int ret = 0, output_bpp;
2579 
2580 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2581 		pipe_config->has_pch_encoder = true;
2582 
2583 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2584 
2585 	if (lspcon->active)
2586 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2587 	else
2588 		ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2589 					       conn_state);
2590 	if (ret)
2591 		return ret;
2592 
2593 	pipe_config->has_drrs = false;
2594 	if (!intel_dp_port_has_audio(dev_priv, port))
2595 		pipe_config->has_audio = false;
2596 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2597 		pipe_config->has_audio = intel_dp->has_audio;
2598 	else
2599 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2600 
2601 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2602 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2603 				       adjusted_mode);
2604 
2605 		if (HAS_GMCH(dev_priv))
2606 			ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2607 		else
2608 			ret = intel_pch_panel_fitting(pipe_config, conn_state);
2609 		if (ret)
2610 			return ret;
2611 	}
2612 
2613 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2614 		return -EINVAL;
2615 
2616 	if (HAS_GMCH(dev_priv) &&
2617 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2618 		return -EINVAL;
2619 
2620 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2621 		return -EINVAL;
2622 
2623 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2624 		return -EINVAL;
2625 
2626 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2627 	if (ret < 0)
2628 		return ret;
2629 
2630 	pipe_config->limited_color_range =
2631 		intel_dp_limited_color_range(pipe_config, conn_state);
2632 
2633 	if (pipe_config->dsc.compression_enable)
2634 		output_bpp = pipe_config->dsc.compressed_bpp;
2635 	else
2636 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2637 
2638 	intel_link_compute_m_n(output_bpp,
2639 			       pipe_config->lane_count,
2640 			       adjusted_mode->crtc_clock,
2641 			       pipe_config->port_clock,
2642 			       &pipe_config->dp_m_n,
2643 			       constant_n, pipe_config->fec_enable);
2644 
2645 	if (intel_connector->panel.downclock_mode != NULL &&
2646 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2647 			pipe_config->has_drrs = true;
2648 			intel_link_compute_m_n(output_bpp,
2649 					       pipe_config->lane_count,
2650 					       intel_connector->panel.downclock_mode->clock,
2651 					       pipe_config->port_clock,
2652 					       &pipe_config->dp_m2_n2,
2653 					       constant_n, pipe_config->fec_enable);
2654 	}
2655 
2656 	if (!HAS_DDI(dev_priv))
2657 		intel_dp_set_clock(encoder, pipe_config);
2658 
2659 	intel_psr_compute_config(intel_dp, pipe_config);
2660 	intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2661 	intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2662 
2663 	return 0;
2664 }
2665 
2666 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2667 			      int link_rate, u8 lane_count,
2668 			      bool link_mst)
2669 {
2670 	intel_dp->link_trained = false;
2671 	intel_dp->link_rate = link_rate;
2672 	intel_dp->lane_count = lane_count;
2673 	intel_dp->link_mst = link_mst;
2674 }
2675 
2676 static void intel_dp_prepare(struct intel_encoder *encoder,
2677 			     const struct intel_crtc_state *pipe_config)
2678 {
2679 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2680 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2681 	enum port port = encoder->port;
2682 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2683 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2684 
2685 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2686 				 pipe_config->lane_count,
2687 				 intel_crtc_has_type(pipe_config,
2688 						     INTEL_OUTPUT_DP_MST));
2689 
2690 	/*
2691 	 * There are four kinds of DP registers:
2692 	 *
2693 	 * 	IBX PCH
2694 	 * 	SNB CPU
2695 	 *	IVB CPU
2696 	 * 	CPT PCH
2697 	 *
2698 	 * IBX PCH and CPU are the same for almost everything,
2699 	 * except that the CPU DP PLL is configured in this
2700 	 * register
2701 	 *
2702 	 * CPT PCH is quite different, having many bits moved
2703 	 * to the TRANS_DP_CTL register instead. That
2704 	 * configuration happens (oddly) in ilk_pch_enable
2705 	 */
2706 
2707 	/* Preserve the BIOS-computed detected bit. This is
2708 	 * supposed to be read-only.
2709 	 */
2710 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2711 
2712 	/* Handle DP bits in common between all three register formats */
2713 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2714 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2715 
2716 	/* Split out the IBX/CPU vs CPT settings */
2717 
2718 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2719 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2720 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2721 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2722 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2723 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2724 
2725 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2726 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2727 
2728 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2729 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2730 		u32 trans_dp;
2731 
2732 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2733 
2734 		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2735 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2736 			trans_dp |= TRANS_DP_ENH_FRAMING;
2737 		else
2738 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2739 		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2740 	} else {
2741 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2742 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2743 
2744 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2745 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2746 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2747 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2748 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2749 
2750 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2751 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2752 
2753 		if (IS_CHERRYVIEW(dev_priv))
2754 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2755 		else
2756 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2757 	}
2758 }
2759 
2760 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2761 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2762 
2763 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2764 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2765 
2766 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2767 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2768 
2769 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2770 
2771 static void wait_panel_status(struct intel_dp *intel_dp,
2772 				       u32 mask,
2773 				       u32 value)
2774 {
2775 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2776 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2777 
2778 	lockdep_assert_held(&dev_priv->pps_mutex);
2779 
2780 	intel_pps_verify_state(intel_dp);
2781 
2782 	pp_stat_reg = _pp_stat_reg(intel_dp);
2783 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2784 
2785 	drm_dbg_kms(&dev_priv->drm,
2786 		    "mask %08x value %08x status %08x control %08x\n",
2787 		    mask, value,
2788 		    intel_de_read(dev_priv, pp_stat_reg),
2789 		    intel_de_read(dev_priv, pp_ctrl_reg));
2790 
2791 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2792 				       mask, value, 5000))
2793 		drm_err(&dev_priv->drm,
2794 			"Panel status timeout: status %08x control %08x\n",
2795 			intel_de_read(dev_priv, pp_stat_reg),
2796 			intel_de_read(dev_priv, pp_ctrl_reg));
2797 
2798 	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2799 }
2800 
2801 static void wait_panel_on(struct intel_dp *intel_dp)
2802 {
2803 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2804 
2805 	drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2806 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2807 }
2808 
2809 static void wait_panel_off(struct intel_dp *intel_dp)
2810 {
2811 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2812 
2813 	drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2814 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2815 }
2816 
2817 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2818 {
2819 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2820 	ktime_t panel_power_on_time;
2821 	s64 panel_power_off_duration;
2822 
2823 	drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2824 
2825 	/* take the difference of currrent time and panel power off time
2826 	 * and then make panel wait for t11_t12 if needed. */
2827 	panel_power_on_time = ktime_get_boottime();
2828 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2829 
2830 	/* When we disable the VDD override bit last we have to do the manual
2831 	 * wait. */
2832 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2833 		wait_remaining_ms_from_jiffies(jiffies,
2834 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2835 
2836 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2837 }
2838 
2839 static void wait_backlight_on(struct intel_dp *intel_dp)
2840 {
2841 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2842 				       intel_dp->backlight_on_delay);
2843 }
2844 
2845 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2846 {
2847 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2848 				       intel_dp->backlight_off_delay);
2849 }
2850 
2851 /* Read the current pp_control value, unlocking the register if it
2852  * is locked
2853  */
2854 
2855 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2856 {
2857 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2858 	u32 control;
2859 
2860 	lockdep_assert_held(&dev_priv->pps_mutex);
2861 
2862 	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2863 	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2864 			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2865 		control &= ~PANEL_UNLOCK_MASK;
2866 		control |= PANEL_UNLOCK_REGS;
2867 	}
2868 	return control;
2869 }
2870 
2871 /*
2872  * Must be paired with edp_panel_vdd_off().
2873  * Must hold pps_mutex around the whole on/off sequence.
2874  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2875  */
2876 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2877 {
2878 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2879 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2880 	u32 pp;
2881 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2882 	bool need_to_disable = !intel_dp->want_panel_vdd;
2883 
2884 	lockdep_assert_held(&dev_priv->pps_mutex);
2885 
2886 	if (!intel_dp_is_edp(intel_dp))
2887 		return false;
2888 
2889 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2890 	intel_dp->want_panel_vdd = true;
2891 
2892 	if (edp_have_panel_vdd(intel_dp))
2893 		return need_to_disable;
2894 
2895 	intel_display_power_get(dev_priv,
2896 				intel_aux_power_domain(intel_dig_port));
2897 
2898 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2899 		    intel_dig_port->base.base.base.id,
2900 		    intel_dig_port->base.base.name);
2901 
2902 	if (!edp_have_panel_power(intel_dp))
2903 		wait_panel_power_cycle(intel_dp);
2904 
2905 	pp = ilk_get_pp_control(intel_dp);
2906 	pp |= EDP_FORCE_VDD;
2907 
2908 	pp_stat_reg = _pp_stat_reg(intel_dp);
2909 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2910 
2911 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2912 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2913 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2914 		    intel_de_read(dev_priv, pp_stat_reg),
2915 		    intel_de_read(dev_priv, pp_ctrl_reg));
2916 	/*
2917 	 * If the panel wasn't on, delay before accessing aux channel
2918 	 */
2919 	if (!edp_have_panel_power(intel_dp)) {
2920 		drm_dbg_kms(&dev_priv->drm,
2921 			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
2922 			    intel_dig_port->base.base.base.id,
2923 			    intel_dig_port->base.base.name);
2924 		msleep(intel_dp->panel_power_up_delay);
2925 	}
2926 
2927 	return need_to_disable;
2928 }
2929 
2930 /*
2931  * Must be paired with intel_edp_panel_vdd_off() or
2932  * intel_edp_panel_off().
2933  * Nested calls to these functions are not allowed since
2934  * we drop the lock. Caller must use some higher level
2935  * locking to prevent nested calls from other threads.
2936  */
2937 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2938 {
2939 	intel_wakeref_t wakeref;
2940 	bool vdd;
2941 
2942 	if (!intel_dp_is_edp(intel_dp))
2943 		return;
2944 
2945 	vdd = false;
2946 	with_pps_lock(intel_dp, wakeref)
2947 		vdd = edp_panel_vdd_on(intel_dp);
2948 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2949 			dp_to_dig_port(intel_dp)->base.base.base.id,
2950 			dp_to_dig_port(intel_dp)->base.base.name);
2951 }
2952 
2953 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2954 {
2955 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2956 	struct intel_digital_port *intel_dig_port =
2957 		dp_to_dig_port(intel_dp);
2958 	u32 pp;
2959 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2960 
2961 	lockdep_assert_held(&dev_priv->pps_mutex);
2962 
2963 	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2964 
2965 	if (!edp_have_panel_vdd(intel_dp))
2966 		return;
2967 
2968 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2969 		    intel_dig_port->base.base.base.id,
2970 		    intel_dig_port->base.base.name);
2971 
2972 	pp = ilk_get_pp_control(intel_dp);
2973 	pp &= ~EDP_FORCE_VDD;
2974 
2975 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2976 	pp_stat_reg = _pp_stat_reg(intel_dp);
2977 
2978 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2979 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2980 
2981 	/* Make sure sequencer is idle before allowing subsequent activity */
2982 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2983 		    intel_de_read(dev_priv, pp_stat_reg),
2984 		    intel_de_read(dev_priv, pp_ctrl_reg));
2985 
2986 	if ((pp & PANEL_POWER_ON) == 0)
2987 		intel_dp->panel_power_off_time = ktime_get_boottime();
2988 
2989 	intel_display_power_put_unchecked(dev_priv,
2990 					  intel_aux_power_domain(intel_dig_port));
2991 }
2992 
2993 static void edp_panel_vdd_work(struct work_struct *__work)
2994 {
2995 	struct intel_dp *intel_dp =
2996 		container_of(to_delayed_work(__work),
2997 			     struct intel_dp, panel_vdd_work);
2998 	intel_wakeref_t wakeref;
2999 
3000 	with_pps_lock(intel_dp, wakeref) {
3001 		if (!intel_dp->want_panel_vdd)
3002 			edp_panel_vdd_off_sync(intel_dp);
3003 	}
3004 }
3005 
3006 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3007 {
3008 	unsigned long delay;
3009 
3010 	/*
3011 	 * Queue the timer to fire a long time from now (relative to the power
3012 	 * down delay) to keep the panel power up across a sequence of
3013 	 * operations.
3014 	 */
3015 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3016 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3017 }
3018 
3019 /*
3020  * Must be paired with edp_panel_vdd_on().
3021  * Must hold pps_mutex around the whole on/off sequence.
3022  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3023  */
3024 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3025 {
3026 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3027 
3028 	lockdep_assert_held(&dev_priv->pps_mutex);
3029 
3030 	if (!intel_dp_is_edp(intel_dp))
3031 		return;
3032 
3033 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3034 			dp_to_dig_port(intel_dp)->base.base.base.id,
3035 			dp_to_dig_port(intel_dp)->base.base.name);
3036 
3037 	intel_dp->want_panel_vdd = false;
3038 
3039 	if (sync)
3040 		edp_panel_vdd_off_sync(intel_dp);
3041 	else
3042 		edp_panel_vdd_schedule_off(intel_dp);
3043 }
3044 
3045 static void edp_panel_on(struct intel_dp *intel_dp)
3046 {
3047 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3048 	u32 pp;
3049 	i915_reg_t pp_ctrl_reg;
3050 
3051 	lockdep_assert_held(&dev_priv->pps_mutex);
3052 
3053 	if (!intel_dp_is_edp(intel_dp))
3054 		return;
3055 
3056 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3057 		    dp_to_dig_port(intel_dp)->base.base.base.id,
3058 		    dp_to_dig_port(intel_dp)->base.base.name);
3059 
3060 	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3061 		     "[ENCODER:%d:%s] panel power already on\n",
3062 		     dp_to_dig_port(intel_dp)->base.base.base.id,
3063 		     dp_to_dig_port(intel_dp)->base.base.name))
3064 		return;
3065 
3066 	wait_panel_power_cycle(intel_dp);
3067 
3068 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3069 	pp = ilk_get_pp_control(intel_dp);
3070 	if (IS_GEN(dev_priv, 5)) {
3071 		/* ILK workaround: disable reset around power sequence */
3072 		pp &= ~PANEL_POWER_RESET;
3073 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3074 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3075 	}
3076 
3077 	pp |= PANEL_POWER_ON;
3078 	if (!IS_GEN(dev_priv, 5))
3079 		pp |= PANEL_POWER_RESET;
3080 
3081 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3082 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3083 
3084 	wait_panel_on(intel_dp);
3085 	intel_dp->last_power_on = jiffies;
3086 
3087 	if (IS_GEN(dev_priv, 5)) {
3088 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3089 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3090 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3091 	}
3092 }
3093 
3094 void intel_edp_panel_on(struct intel_dp *intel_dp)
3095 {
3096 	intel_wakeref_t wakeref;
3097 
3098 	if (!intel_dp_is_edp(intel_dp))
3099 		return;
3100 
3101 	with_pps_lock(intel_dp, wakeref)
3102 		edp_panel_on(intel_dp);
3103 }
3104 
3105 
3106 static void edp_panel_off(struct intel_dp *intel_dp)
3107 {
3108 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3109 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3110 	u32 pp;
3111 	i915_reg_t pp_ctrl_reg;
3112 
3113 	lockdep_assert_held(&dev_priv->pps_mutex);
3114 
3115 	if (!intel_dp_is_edp(intel_dp))
3116 		return;
3117 
3118 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3119 		    dig_port->base.base.base.id, dig_port->base.base.name);
3120 
3121 	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3122 		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3123 		 dig_port->base.base.base.id, dig_port->base.base.name);
3124 
3125 	pp = ilk_get_pp_control(intel_dp);
3126 	/* We need to switch off panel power _and_ force vdd, for otherwise some
3127 	 * panels get very unhappy and cease to work. */
3128 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3129 		EDP_BLC_ENABLE);
3130 
3131 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3132 
3133 	intel_dp->want_panel_vdd = false;
3134 
3135 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3136 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3137 
3138 	wait_panel_off(intel_dp);
3139 	intel_dp->panel_power_off_time = ktime_get_boottime();
3140 
3141 	/* We got a reference when we enabled the VDD. */
3142 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3143 }
3144 
3145 void intel_edp_panel_off(struct intel_dp *intel_dp)
3146 {
3147 	intel_wakeref_t wakeref;
3148 
3149 	if (!intel_dp_is_edp(intel_dp))
3150 		return;
3151 
3152 	with_pps_lock(intel_dp, wakeref)
3153 		edp_panel_off(intel_dp);
3154 }
3155 
3156 /* Enable backlight in the panel power control. */
3157 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3158 {
3159 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3160 	intel_wakeref_t wakeref;
3161 
3162 	/*
3163 	 * If we enable the backlight right away following a panel power
3164 	 * on, we may see slight flicker as the panel syncs with the eDP
3165 	 * link.  So delay a bit to make sure the image is solid before
3166 	 * allowing it to appear.
3167 	 */
3168 	wait_backlight_on(intel_dp);
3169 
3170 	with_pps_lock(intel_dp, wakeref) {
3171 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3172 		u32 pp;
3173 
3174 		pp = ilk_get_pp_control(intel_dp);
3175 		pp |= EDP_BLC_ENABLE;
3176 
3177 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3178 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3179 	}
3180 }
3181 
3182 /* Enable backlight PWM and backlight PP control. */
3183 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3184 			    const struct drm_connector_state *conn_state)
3185 {
3186 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3187 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3188 
3189 	if (!intel_dp_is_edp(intel_dp))
3190 		return;
3191 
3192 	drm_dbg_kms(&i915->drm, "\n");
3193 
3194 	intel_panel_enable_backlight(crtc_state, conn_state);
3195 	_intel_edp_backlight_on(intel_dp);
3196 }
3197 
3198 /* Disable backlight in the panel power control. */
3199 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3200 {
3201 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3202 	intel_wakeref_t wakeref;
3203 
3204 	if (!intel_dp_is_edp(intel_dp))
3205 		return;
3206 
3207 	with_pps_lock(intel_dp, wakeref) {
3208 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3209 		u32 pp;
3210 
3211 		pp = ilk_get_pp_control(intel_dp);
3212 		pp &= ~EDP_BLC_ENABLE;
3213 
3214 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3215 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3216 	}
3217 
3218 	intel_dp->last_backlight_off = jiffies;
3219 	edp_wait_backlight_off(intel_dp);
3220 }
3221 
3222 /* Disable backlight PP control and backlight PWM. */
3223 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3224 {
3225 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3226 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3227 
3228 	if (!intel_dp_is_edp(intel_dp))
3229 		return;
3230 
3231 	drm_dbg_kms(&i915->drm, "\n");
3232 
3233 	_intel_edp_backlight_off(intel_dp);
3234 	intel_panel_disable_backlight(old_conn_state);
3235 }
3236 
3237 /*
3238  * Hook for controlling the panel power control backlight through the bl_power
3239  * sysfs attribute. Take care to handle multiple calls.
3240  */
3241 static void intel_edp_backlight_power(struct intel_connector *connector,
3242 				      bool enable)
3243 {
3244 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
3245 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3246 	intel_wakeref_t wakeref;
3247 	bool is_enabled;
3248 
3249 	is_enabled = false;
3250 	with_pps_lock(intel_dp, wakeref)
3251 		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3252 	if (is_enabled == enable)
3253 		return;
3254 
3255 	drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3256 		    enable ? "enable" : "disable");
3257 
3258 	if (enable)
3259 		_intel_edp_backlight_on(intel_dp);
3260 	else
3261 		_intel_edp_backlight_off(intel_dp);
3262 }
3263 
3264 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3265 {
3266 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3267 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3268 	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3269 
3270 	I915_STATE_WARN(cur_state != state,
3271 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3272 			dig_port->base.base.base.id, dig_port->base.base.name,
3273 			onoff(state), onoff(cur_state));
3274 }
3275 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3276 
3277 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3278 {
3279 	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3280 
3281 	I915_STATE_WARN(cur_state != state,
3282 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3283 			onoff(state), onoff(cur_state));
3284 }
3285 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3286 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3287 
3288 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3289 			   const struct intel_crtc_state *pipe_config)
3290 {
3291 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3292 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3293 
3294 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3295 	assert_dp_port_disabled(intel_dp);
3296 	assert_edp_pll_disabled(dev_priv);
3297 
3298 	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3299 		    pipe_config->port_clock);
3300 
3301 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3302 
3303 	if (pipe_config->port_clock == 162000)
3304 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3305 	else
3306 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3307 
3308 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3309 	intel_de_posting_read(dev_priv, DP_A);
3310 	udelay(500);
3311 
3312 	/*
3313 	 * [DevILK] Work around required when enabling DP PLL
3314 	 * while a pipe is enabled going to FDI:
3315 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3316 	 * 2. Program DP PLL enable
3317 	 */
3318 	if (IS_GEN(dev_priv, 5))
3319 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3320 
3321 	intel_dp->DP |= DP_PLL_ENABLE;
3322 
3323 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3324 	intel_de_posting_read(dev_priv, DP_A);
3325 	udelay(200);
3326 }
3327 
3328 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3329 			    const struct intel_crtc_state *old_crtc_state)
3330 {
3331 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3332 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3333 
3334 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3335 	assert_dp_port_disabled(intel_dp);
3336 	assert_edp_pll_enabled(dev_priv);
3337 
3338 	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3339 
3340 	intel_dp->DP &= ~DP_PLL_ENABLE;
3341 
3342 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3343 	intel_de_posting_read(dev_priv, DP_A);
3344 	udelay(200);
3345 }
3346 
3347 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3348 {
3349 	/*
3350 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3351 	 * be capable of signalling downstream hpd with a long pulse.
3352 	 * Whether or not that means D3 is safe to use is not clear,
3353 	 * but let's assume so until proven otherwise.
3354 	 *
3355 	 * FIXME should really check all downstream ports...
3356 	 */
3357 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3358 		drm_dp_is_branch(intel_dp->dpcd) &&
3359 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3360 }
3361 
3362 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3363 					   const struct intel_crtc_state *crtc_state,
3364 					   bool enable)
3365 {
3366 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3367 	int ret;
3368 
3369 	if (!crtc_state->dsc.compression_enable)
3370 		return;
3371 
3372 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3373 				 enable ? DP_DECOMPRESSION_EN : 0);
3374 	if (ret < 0)
3375 		drm_dbg_kms(&i915->drm,
3376 			    "Failed to %s sink decompression state\n",
3377 			    enable ? "enable" : "disable");
3378 }
3379 
3380 /* If the sink supports it, try to set the power state appropriately */
3381 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3382 {
3383 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3384 	int ret, i;
3385 
3386 	/* Should have a valid DPCD by this point */
3387 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3388 		return;
3389 
3390 	if (mode != DRM_MODE_DPMS_ON) {
3391 		if (downstream_hpd_needs_d0(intel_dp))
3392 			return;
3393 
3394 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3395 					 DP_SET_POWER_D3);
3396 	} else {
3397 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3398 
3399 		/*
3400 		 * When turning on, we need to retry for 1ms to give the sink
3401 		 * time to wake up.
3402 		 */
3403 		for (i = 0; i < 3; i++) {
3404 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3405 						 DP_SET_POWER_D0);
3406 			if (ret == 1)
3407 				break;
3408 			msleep(1);
3409 		}
3410 
3411 		if (ret == 1 && lspcon->active)
3412 			lspcon_wait_pcon_mode(lspcon);
3413 	}
3414 
3415 	if (ret != 1)
3416 		drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
3417 			    mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3418 }
3419 
3420 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3421 				 enum port port, enum pipe *pipe)
3422 {
3423 	enum pipe p;
3424 
3425 	for_each_pipe(dev_priv, p) {
3426 		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3427 
3428 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3429 			*pipe = p;
3430 			return true;
3431 		}
3432 	}
3433 
3434 	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3435 		    port_name(port));
3436 
3437 	/* must initialize pipe to something for the asserts */
3438 	*pipe = PIPE_A;
3439 
3440 	return false;
3441 }
3442 
3443 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3444 			   i915_reg_t dp_reg, enum port port,
3445 			   enum pipe *pipe)
3446 {
3447 	bool ret;
3448 	u32 val;
3449 
3450 	val = intel_de_read(dev_priv, dp_reg);
3451 
3452 	ret = val & DP_PORT_EN;
3453 
3454 	/* asserts want to know the pipe even if the port is disabled */
3455 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3456 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3457 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3458 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3459 	else if (IS_CHERRYVIEW(dev_priv))
3460 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3461 	else
3462 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3463 
3464 	return ret;
3465 }
3466 
3467 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3468 				  enum pipe *pipe)
3469 {
3470 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3471 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3472 	intel_wakeref_t wakeref;
3473 	bool ret;
3474 
3475 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3476 						     encoder->power_domain);
3477 	if (!wakeref)
3478 		return false;
3479 
3480 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3481 				    encoder->port, pipe);
3482 
3483 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3484 
3485 	return ret;
3486 }
3487 
3488 static void intel_dp_get_config(struct intel_encoder *encoder,
3489 				struct intel_crtc_state *pipe_config)
3490 {
3491 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3492 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3493 	u32 tmp, flags = 0;
3494 	enum port port = encoder->port;
3495 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3496 
3497 	if (encoder->type == INTEL_OUTPUT_EDP)
3498 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3499 	else
3500 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3501 
3502 	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3503 
3504 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3505 
3506 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3507 		u32 trans_dp = intel_de_read(dev_priv,
3508 					     TRANS_DP_CTL(crtc->pipe));
3509 
3510 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3511 			flags |= DRM_MODE_FLAG_PHSYNC;
3512 		else
3513 			flags |= DRM_MODE_FLAG_NHSYNC;
3514 
3515 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3516 			flags |= DRM_MODE_FLAG_PVSYNC;
3517 		else
3518 			flags |= DRM_MODE_FLAG_NVSYNC;
3519 	} else {
3520 		if (tmp & DP_SYNC_HS_HIGH)
3521 			flags |= DRM_MODE_FLAG_PHSYNC;
3522 		else
3523 			flags |= DRM_MODE_FLAG_NHSYNC;
3524 
3525 		if (tmp & DP_SYNC_VS_HIGH)
3526 			flags |= DRM_MODE_FLAG_PVSYNC;
3527 		else
3528 			flags |= DRM_MODE_FLAG_NVSYNC;
3529 	}
3530 
3531 	pipe_config->hw.adjusted_mode.flags |= flags;
3532 
3533 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3534 		pipe_config->limited_color_range = true;
3535 
3536 	pipe_config->lane_count =
3537 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3538 
3539 	intel_dp_get_m_n(crtc, pipe_config);
3540 
3541 	if (port == PORT_A) {
3542 		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3543 			pipe_config->port_clock = 162000;
3544 		else
3545 			pipe_config->port_clock = 270000;
3546 	}
3547 
3548 	pipe_config->hw.adjusted_mode.crtc_clock =
3549 		intel_dotclock_calculate(pipe_config->port_clock,
3550 					 &pipe_config->dp_m_n);
3551 
3552 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3553 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3554 		/*
3555 		 * This is a big fat ugly hack.
3556 		 *
3557 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3558 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3559 		 * unknown we fail to light up. Yet the same BIOS boots up with
3560 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3561 		 * max, not what it tells us to use.
3562 		 *
3563 		 * Note: This will still be broken if the eDP panel is not lit
3564 		 * up by the BIOS, and thus we can't get the mode at module
3565 		 * load.
3566 		 */
3567 		drm_dbg_kms(&dev_priv->drm,
3568 			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3569 			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3570 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3571 	}
3572 }
3573 
3574 static void intel_disable_dp(struct intel_atomic_state *state,
3575 			     struct intel_encoder *encoder,
3576 			     const struct intel_crtc_state *old_crtc_state,
3577 			     const struct drm_connector_state *old_conn_state)
3578 {
3579 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3580 
3581 	intel_dp->link_trained = false;
3582 
3583 	if (old_crtc_state->has_audio)
3584 		intel_audio_codec_disable(encoder,
3585 					  old_crtc_state, old_conn_state);
3586 
3587 	/* Make sure the panel is off before trying to change the mode. But also
3588 	 * ensure that we have vdd while we switch off the panel. */
3589 	intel_edp_panel_vdd_on(intel_dp);
3590 	intel_edp_backlight_off(old_conn_state);
3591 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3592 	intel_edp_panel_off(intel_dp);
3593 }
3594 
3595 static void g4x_disable_dp(struct intel_atomic_state *state,
3596 			   struct intel_encoder *encoder,
3597 			   const struct intel_crtc_state *old_crtc_state,
3598 			   const struct drm_connector_state *old_conn_state)
3599 {
3600 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3601 }
3602 
3603 static void vlv_disable_dp(struct intel_atomic_state *state,
3604 			   struct intel_encoder *encoder,
3605 			   const struct intel_crtc_state *old_crtc_state,
3606 			   const struct drm_connector_state *old_conn_state)
3607 {
3608 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3609 }
3610 
3611 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3612 				struct intel_encoder *encoder,
3613 				const struct intel_crtc_state *old_crtc_state,
3614 				const struct drm_connector_state *old_conn_state)
3615 {
3616 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3617 	enum port port = encoder->port;
3618 
3619 	/*
3620 	 * Bspec does not list a specific disable sequence for g4x DP.
3621 	 * Follow the ilk+ sequence (disable pipe before the port) for
3622 	 * g4x DP as it does not suffer from underruns like the normal
3623 	 * g4x modeset sequence (disable pipe after the port).
3624 	 */
3625 	intel_dp_link_down(encoder, old_crtc_state);
3626 
3627 	/* Only ilk+ has port A */
3628 	if (port == PORT_A)
3629 		ilk_edp_pll_off(intel_dp, old_crtc_state);
3630 }
3631 
3632 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3633 				struct intel_encoder *encoder,
3634 				const struct intel_crtc_state *old_crtc_state,
3635 				const struct drm_connector_state *old_conn_state)
3636 {
3637 	intel_dp_link_down(encoder, old_crtc_state);
3638 }
3639 
3640 static void chv_post_disable_dp(struct intel_atomic_state *state,
3641 				struct intel_encoder *encoder,
3642 				const struct intel_crtc_state *old_crtc_state,
3643 				const struct drm_connector_state *old_conn_state)
3644 {
3645 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3646 
3647 	intel_dp_link_down(encoder, old_crtc_state);
3648 
3649 	vlv_dpio_get(dev_priv);
3650 
3651 	/* Assert data lane reset */
3652 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3653 
3654 	vlv_dpio_put(dev_priv);
3655 }
3656 
3657 static void
3658 cpt_set_link_train(struct intel_dp *intel_dp,
3659 		   u8 dp_train_pat)
3660 {
3661 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3662 	u32 *DP = &intel_dp->DP;
3663 
3664 	*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3665 
3666 	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3667 	case DP_TRAINING_PATTERN_DISABLE:
3668 		*DP |= DP_LINK_TRAIN_OFF_CPT;
3669 		break;
3670 	case DP_TRAINING_PATTERN_1:
3671 		*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3672 		break;
3673 	case DP_TRAINING_PATTERN_2:
3674 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3675 		break;
3676 	case DP_TRAINING_PATTERN_3:
3677 		drm_dbg_kms(&dev_priv->drm,
3678 			    "TPS3 not supported, using TPS2 instead\n");
3679 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3680 		break;
3681 	}
3682 
3683 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3684 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3685 }
3686 
3687 static void
3688 g4x_set_link_train(struct intel_dp *intel_dp,
3689 		   u8 dp_train_pat)
3690 {
3691 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3692 	u32 *DP = &intel_dp->DP;
3693 
3694 	*DP &= ~DP_LINK_TRAIN_MASK;
3695 
3696 	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3697 	case DP_TRAINING_PATTERN_DISABLE:
3698 		*DP |= DP_LINK_TRAIN_OFF;
3699 		break;
3700 	case DP_TRAINING_PATTERN_1:
3701 		*DP |= DP_LINK_TRAIN_PAT_1;
3702 		break;
3703 	case DP_TRAINING_PATTERN_2:
3704 		*DP |= DP_LINK_TRAIN_PAT_2;
3705 		break;
3706 	case DP_TRAINING_PATTERN_3:
3707 		drm_dbg_kms(&dev_priv->drm,
3708 			    "TPS3 not supported, using TPS2 instead\n");
3709 		*DP |= DP_LINK_TRAIN_PAT_2;
3710 		break;
3711 	}
3712 
3713 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3714 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3715 }
3716 
3717 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3718 				 const struct intel_crtc_state *old_crtc_state)
3719 {
3720 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3721 
3722 	/* enable with pattern 1 (as per spec) */
3723 
3724 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3725 
3726 	/*
3727 	 * Magic for VLV/CHV. We _must_ first set up the register
3728 	 * without actually enabling the port, and then do another
3729 	 * write to enable the port. Otherwise link training will
3730 	 * fail when the power sequencer is freshly used for this port.
3731 	 */
3732 	intel_dp->DP |= DP_PORT_EN;
3733 	if (old_crtc_state->has_audio)
3734 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3735 
3736 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3737 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3738 }
3739 
3740 static void intel_enable_dp(struct intel_atomic_state *state,
3741 			    struct intel_encoder *encoder,
3742 			    const struct intel_crtc_state *pipe_config,
3743 			    const struct drm_connector_state *conn_state)
3744 {
3745 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3746 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3747 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3748 	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3749 	enum pipe pipe = crtc->pipe;
3750 	intel_wakeref_t wakeref;
3751 
3752 	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3753 		return;
3754 
3755 	with_pps_lock(intel_dp, wakeref) {
3756 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3757 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3758 
3759 		intel_dp_enable_port(intel_dp, pipe_config);
3760 
3761 		edp_panel_vdd_on(intel_dp);
3762 		edp_panel_on(intel_dp);
3763 		edp_panel_vdd_off(intel_dp, true);
3764 	}
3765 
3766 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3767 		unsigned int lane_mask = 0x0;
3768 
3769 		if (IS_CHERRYVIEW(dev_priv))
3770 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3771 
3772 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3773 				    lane_mask);
3774 	}
3775 
3776 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3777 	intel_dp_start_link_train(intel_dp);
3778 	intel_dp_stop_link_train(intel_dp);
3779 
3780 	if (pipe_config->has_audio) {
3781 		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3782 			pipe_name(pipe));
3783 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3784 	}
3785 }
3786 
3787 static void g4x_enable_dp(struct intel_atomic_state *state,
3788 			  struct intel_encoder *encoder,
3789 			  const struct intel_crtc_state *pipe_config,
3790 			  const struct drm_connector_state *conn_state)
3791 {
3792 	intel_enable_dp(state, encoder, pipe_config, conn_state);
3793 	intel_edp_backlight_on(pipe_config, conn_state);
3794 }
3795 
3796 static void vlv_enable_dp(struct intel_atomic_state *state,
3797 			  struct intel_encoder *encoder,
3798 			  const struct intel_crtc_state *pipe_config,
3799 			  const struct drm_connector_state *conn_state)
3800 {
3801 	intel_edp_backlight_on(pipe_config, conn_state);
3802 }
3803 
3804 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3805 			      struct intel_encoder *encoder,
3806 			      const struct intel_crtc_state *pipe_config,
3807 			      const struct drm_connector_state *conn_state)
3808 {
3809 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3810 	enum port port = encoder->port;
3811 
3812 	intel_dp_prepare(encoder, pipe_config);
3813 
3814 	/* Only ilk+ has port A */
3815 	if (port == PORT_A)
3816 		ilk_edp_pll_on(intel_dp, pipe_config);
3817 }
3818 
3819 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3820 {
3821 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3822 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3823 	enum pipe pipe = intel_dp->pps_pipe;
3824 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3825 
3826 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3827 
3828 	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3829 		return;
3830 
3831 	edp_panel_vdd_off_sync(intel_dp);
3832 
3833 	/*
3834 	 * VLV seems to get confused when multiple power sequencers
3835 	 * have the same port selected (even if only one has power/vdd
3836 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3837 	 * CHV on the other hand doesn't seem to mind having the same port
3838 	 * selected in multiple power sequencers, but let's clear the
3839 	 * port select always when logically disconnecting a power sequencer
3840 	 * from a port.
3841 	 */
3842 	drm_dbg_kms(&dev_priv->drm,
3843 		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3844 		    pipe_name(pipe), intel_dig_port->base.base.base.id,
3845 		    intel_dig_port->base.base.name);
3846 	intel_de_write(dev_priv, pp_on_reg, 0);
3847 	intel_de_posting_read(dev_priv, pp_on_reg);
3848 
3849 	intel_dp->pps_pipe = INVALID_PIPE;
3850 }
3851 
3852 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3853 				      enum pipe pipe)
3854 {
3855 	struct intel_encoder *encoder;
3856 
3857 	lockdep_assert_held(&dev_priv->pps_mutex);
3858 
3859 	for_each_intel_dp(&dev_priv->drm, encoder) {
3860 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3861 
3862 		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3863 			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3864 			 pipe_name(pipe), encoder->base.base.id,
3865 			 encoder->base.name);
3866 
3867 		if (intel_dp->pps_pipe != pipe)
3868 			continue;
3869 
3870 		drm_dbg_kms(&dev_priv->drm,
3871 			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3872 			    pipe_name(pipe), encoder->base.base.id,
3873 			    encoder->base.name);
3874 
3875 		/* make sure vdd is off before we steal it */
3876 		vlv_detach_power_sequencer(intel_dp);
3877 	}
3878 }
3879 
3880 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3881 					   const struct intel_crtc_state *crtc_state)
3882 {
3883 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3884 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3885 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3886 
3887 	lockdep_assert_held(&dev_priv->pps_mutex);
3888 
3889 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3890 
3891 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3892 	    intel_dp->pps_pipe != crtc->pipe) {
3893 		/*
3894 		 * If another power sequencer was being used on this
3895 		 * port previously make sure to turn off vdd there while
3896 		 * we still have control of it.
3897 		 */
3898 		vlv_detach_power_sequencer(intel_dp);
3899 	}
3900 
3901 	/*
3902 	 * We may be stealing the power
3903 	 * sequencer from another port.
3904 	 */
3905 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3906 
3907 	intel_dp->active_pipe = crtc->pipe;
3908 
3909 	if (!intel_dp_is_edp(intel_dp))
3910 		return;
3911 
3912 	/* now it's all ours */
3913 	intel_dp->pps_pipe = crtc->pipe;
3914 
3915 	drm_dbg_kms(&dev_priv->drm,
3916 		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3917 		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3918 		    encoder->base.name);
3919 
3920 	/* init power sequencer on this pipe and port */
3921 	intel_dp_init_panel_power_sequencer(intel_dp);
3922 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3923 }
3924 
3925 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
3926 			      struct intel_encoder *encoder,
3927 			      const struct intel_crtc_state *pipe_config,
3928 			      const struct drm_connector_state *conn_state)
3929 {
3930 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3931 
3932 	intel_enable_dp(state, encoder, pipe_config, conn_state);
3933 }
3934 
3935 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
3936 				  struct intel_encoder *encoder,
3937 				  const struct intel_crtc_state *pipe_config,
3938 				  const struct drm_connector_state *conn_state)
3939 {
3940 	intel_dp_prepare(encoder, pipe_config);
3941 
3942 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3943 }
3944 
3945 static void chv_pre_enable_dp(struct intel_atomic_state *state,
3946 			      struct intel_encoder *encoder,
3947 			      const struct intel_crtc_state *pipe_config,
3948 			      const struct drm_connector_state *conn_state)
3949 {
3950 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3951 
3952 	intel_enable_dp(state, encoder, pipe_config, conn_state);
3953 
3954 	/* Second common lane will stay alive on its own now */
3955 	chv_phy_release_cl2_override(encoder);
3956 }
3957 
3958 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
3959 				  struct intel_encoder *encoder,
3960 				  const struct intel_crtc_state *pipe_config,
3961 				  const struct drm_connector_state *conn_state)
3962 {
3963 	intel_dp_prepare(encoder, pipe_config);
3964 
3965 	chv_phy_pre_pll_enable(encoder, pipe_config);
3966 }
3967 
3968 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
3969 				    struct intel_encoder *encoder,
3970 				    const struct intel_crtc_state *old_crtc_state,
3971 				    const struct drm_connector_state *old_conn_state)
3972 {
3973 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3974 }
3975 
3976 /*
3977  * Fetch AUX CH registers 0x202 - 0x207 which contain
3978  * link status information
3979  */
3980 bool
3981 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3982 {
3983 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3984 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3985 }
3986 
3987 /* These are source-specific values. */
3988 u8
3989 intel_dp_voltage_max(struct intel_dp *intel_dp)
3990 {
3991 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3992 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3993 	enum port port = encoder->port;
3994 
3995 	if (HAS_DDI(dev_priv))
3996 		return intel_ddi_dp_voltage_max(encoder);
3997 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3998 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3999 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
4000 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4001 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
4002 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4003 	else
4004 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4005 }
4006 
4007 u8
4008 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
4009 {
4010 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4011 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4012 	enum port port = encoder->port;
4013 
4014 	if (HAS_DDI(dev_priv)) {
4015 		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
4016 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4017 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4018 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4019 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
4020 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4021 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
4022 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4023 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
4024 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4025 		default:
4026 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
4027 		}
4028 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4029 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4030 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4031 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
4032 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4033 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4034 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
4035 		default:
4036 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
4037 		}
4038 	} else {
4039 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4040 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4041 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
4042 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4043 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
4044 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4045 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
4046 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4047 		default:
4048 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
4049 		}
4050 	}
4051 }
4052 
4053 static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4054 {
4055 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4056 	unsigned long demph_reg_value, preemph_reg_value,
4057 		uniqtranscale_reg_value;
4058 	u8 train_set = intel_dp->train_set[0];
4059 
4060 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4061 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4062 		preemph_reg_value = 0x0004000;
4063 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4064 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4065 			demph_reg_value = 0x2B405555;
4066 			uniqtranscale_reg_value = 0x552AB83A;
4067 			break;
4068 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4069 			demph_reg_value = 0x2B404040;
4070 			uniqtranscale_reg_value = 0x5548B83A;
4071 			break;
4072 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4073 			demph_reg_value = 0x2B245555;
4074 			uniqtranscale_reg_value = 0x5560B83A;
4075 			break;
4076 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4077 			demph_reg_value = 0x2B405555;
4078 			uniqtranscale_reg_value = 0x5598DA3A;
4079 			break;
4080 		default:
4081 			return;
4082 		}
4083 		break;
4084 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4085 		preemph_reg_value = 0x0002000;
4086 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4087 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4088 			demph_reg_value = 0x2B404040;
4089 			uniqtranscale_reg_value = 0x5552B83A;
4090 			break;
4091 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4092 			demph_reg_value = 0x2B404848;
4093 			uniqtranscale_reg_value = 0x5580B83A;
4094 			break;
4095 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4096 			demph_reg_value = 0x2B404040;
4097 			uniqtranscale_reg_value = 0x55ADDA3A;
4098 			break;
4099 		default:
4100 			return;
4101 		}
4102 		break;
4103 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4104 		preemph_reg_value = 0x0000000;
4105 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4106 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4107 			demph_reg_value = 0x2B305555;
4108 			uniqtranscale_reg_value = 0x5570B83A;
4109 			break;
4110 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4111 			demph_reg_value = 0x2B2B4040;
4112 			uniqtranscale_reg_value = 0x55ADDA3A;
4113 			break;
4114 		default:
4115 			return;
4116 		}
4117 		break;
4118 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4119 		preemph_reg_value = 0x0006000;
4120 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4121 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4122 			demph_reg_value = 0x1B405555;
4123 			uniqtranscale_reg_value = 0x55ADDA3A;
4124 			break;
4125 		default:
4126 			return;
4127 		}
4128 		break;
4129 	default:
4130 		return;
4131 	}
4132 
4133 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4134 				 uniqtranscale_reg_value, 0);
4135 }
4136 
4137 static void chv_set_signal_levels(struct intel_dp *intel_dp)
4138 {
4139 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4140 	u32 deemph_reg_value, margin_reg_value;
4141 	bool uniq_trans_scale = false;
4142 	u8 train_set = intel_dp->train_set[0];
4143 
4144 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4145 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4146 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4147 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4148 			deemph_reg_value = 128;
4149 			margin_reg_value = 52;
4150 			break;
4151 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4152 			deemph_reg_value = 128;
4153 			margin_reg_value = 77;
4154 			break;
4155 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4156 			deemph_reg_value = 128;
4157 			margin_reg_value = 102;
4158 			break;
4159 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4160 			deemph_reg_value = 128;
4161 			margin_reg_value = 154;
4162 			uniq_trans_scale = true;
4163 			break;
4164 		default:
4165 			return;
4166 		}
4167 		break;
4168 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4169 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4170 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4171 			deemph_reg_value = 85;
4172 			margin_reg_value = 78;
4173 			break;
4174 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4175 			deemph_reg_value = 85;
4176 			margin_reg_value = 116;
4177 			break;
4178 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4179 			deemph_reg_value = 85;
4180 			margin_reg_value = 154;
4181 			break;
4182 		default:
4183 			return;
4184 		}
4185 		break;
4186 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4187 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4188 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4189 			deemph_reg_value = 64;
4190 			margin_reg_value = 104;
4191 			break;
4192 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4193 			deemph_reg_value = 64;
4194 			margin_reg_value = 154;
4195 			break;
4196 		default:
4197 			return;
4198 		}
4199 		break;
4200 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4201 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4202 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4203 			deemph_reg_value = 43;
4204 			margin_reg_value = 154;
4205 			break;
4206 		default:
4207 			return;
4208 		}
4209 		break;
4210 	default:
4211 		return;
4212 	}
4213 
4214 	chv_set_phy_signal_level(encoder, deemph_reg_value,
4215 				 margin_reg_value, uniq_trans_scale);
4216 }
4217 
4218 static u32 g4x_signal_levels(u8 train_set)
4219 {
4220 	u32 signal_levels = 0;
4221 
4222 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4223 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4224 	default:
4225 		signal_levels |= DP_VOLTAGE_0_4;
4226 		break;
4227 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4228 		signal_levels |= DP_VOLTAGE_0_6;
4229 		break;
4230 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4231 		signal_levels |= DP_VOLTAGE_0_8;
4232 		break;
4233 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4234 		signal_levels |= DP_VOLTAGE_1_2;
4235 		break;
4236 	}
4237 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4238 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4239 	default:
4240 		signal_levels |= DP_PRE_EMPHASIS_0;
4241 		break;
4242 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4243 		signal_levels |= DP_PRE_EMPHASIS_3_5;
4244 		break;
4245 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4246 		signal_levels |= DP_PRE_EMPHASIS_6;
4247 		break;
4248 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4249 		signal_levels |= DP_PRE_EMPHASIS_9_5;
4250 		break;
4251 	}
4252 	return signal_levels;
4253 }
4254 
4255 static void
4256 g4x_set_signal_levels(struct intel_dp *intel_dp)
4257 {
4258 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4259 	u8 train_set = intel_dp->train_set[0];
4260 	u32 signal_levels;
4261 
4262 	signal_levels = g4x_signal_levels(train_set);
4263 
4264 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4265 		    signal_levels);
4266 
4267 	intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4268 	intel_dp->DP |= signal_levels;
4269 
4270 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4271 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4272 }
4273 
4274 /* SNB CPU eDP voltage swing and pre-emphasis control */
4275 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4276 {
4277 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4278 					DP_TRAIN_PRE_EMPHASIS_MASK);
4279 
4280 	switch (signal_levels) {
4281 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4282 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4283 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4284 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4285 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4286 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4287 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4288 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4289 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4290 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4291 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4292 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4293 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4294 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4295 	default:
4296 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4297 			      "0x%x\n", signal_levels);
4298 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4299 	}
4300 }
4301 
4302 static void
4303 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4304 {
4305 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4306 	u8 train_set = intel_dp->train_set[0];
4307 	u32 signal_levels;
4308 
4309 	signal_levels = snb_cpu_edp_signal_levels(train_set);
4310 
4311 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4312 		    signal_levels);
4313 
4314 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4315 	intel_dp->DP |= signal_levels;
4316 
4317 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4318 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4319 }
4320 
4321 /* IVB CPU eDP voltage swing and pre-emphasis control */
4322 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4323 {
4324 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4325 					DP_TRAIN_PRE_EMPHASIS_MASK);
4326 
4327 	switch (signal_levels) {
4328 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4329 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4330 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4331 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4332 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4333 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4334 
4335 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4336 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4337 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4338 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4339 
4340 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4341 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4342 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4343 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4344 
4345 	default:
4346 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4347 			      "0x%x\n", signal_levels);
4348 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4349 	}
4350 }
4351 
4352 static void
4353 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4354 {
4355 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4356 	u8 train_set = intel_dp->train_set[0];
4357 	u32 signal_levels;
4358 
4359 	signal_levels = ivb_cpu_edp_signal_levels(train_set);
4360 
4361 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4362 		    signal_levels);
4363 
4364 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4365 	intel_dp->DP |= signal_levels;
4366 
4367 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4368 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4369 }
4370 
4371 void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4372 {
4373 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4374 	u8 train_set = intel_dp->train_set[0];
4375 
4376 	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4377 		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4378 		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4379 	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4380 		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4381 		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
4382 		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4383 		    " (max)" : "");
4384 
4385 	intel_dp->set_signal_levels(intel_dp);
4386 }
4387 
4388 void
4389 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4390 				       u8 dp_train_pat)
4391 {
4392 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4393 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4394 
4395 	if (dp_train_pat & train_pat_mask)
4396 		drm_dbg_kms(&dev_priv->drm,
4397 			    "Using DP training pattern TPS%d\n",
4398 			    dp_train_pat & train_pat_mask);
4399 
4400 	intel_dp->set_link_train(intel_dp, dp_train_pat);
4401 }
4402 
4403 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4404 {
4405 	if (intel_dp->set_idle_link_train)
4406 		intel_dp->set_idle_link_train(intel_dp);
4407 }
4408 
4409 static void
4410 intel_dp_link_down(struct intel_encoder *encoder,
4411 		   const struct intel_crtc_state *old_crtc_state)
4412 {
4413 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4414 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4415 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4416 	enum port port = encoder->port;
4417 	u32 DP = intel_dp->DP;
4418 
4419 	if (drm_WARN_ON(&dev_priv->drm,
4420 			(intel_de_read(dev_priv, intel_dp->output_reg) &
4421 			 DP_PORT_EN) == 0))
4422 		return;
4423 
4424 	drm_dbg_kms(&dev_priv->drm, "\n");
4425 
4426 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4427 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4428 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4429 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4430 	} else {
4431 		DP &= ~DP_LINK_TRAIN_MASK;
4432 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4433 	}
4434 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4435 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4436 
4437 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4438 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4439 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4440 
4441 	/*
4442 	 * HW workaround for IBX, we need to move the port
4443 	 * to transcoder A after disabling it to allow the
4444 	 * matching HDMI port to be enabled on transcoder A.
4445 	 */
4446 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4447 		/*
4448 		 * We get CPU/PCH FIFO underruns on the other pipe when
4449 		 * doing the workaround. Sweep them under the rug.
4450 		 */
4451 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4452 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4453 
4454 		/* always enable with pattern 1 (as per spec) */
4455 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4456 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4457 			DP_LINK_TRAIN_PAT_1;
4458 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4459 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4460 
4461 		DP &= ~DP_PORT_EN;
4462 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4463 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4464 
4465 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4466 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4467 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4468 	}
4469 
4470 	msleep(intel_dp->panel_power_down_delay);
4471 
4472 	intel_dp->DP = DP;
4473 
4474 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4475 		intel_wakeref_t wakeref;
4476 
4477 		with_pps_lock(intel_dp, wakeref)
4478 			intel_dp->active_pipe = INVALID_PIPE;
4479 	}
4480 }
4481 
4482 static void
4483 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4484 {
4485 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4486 	u8 dpcd_ext[6];
4487 
4488 	/*
4489 	 * Prior to DP1.3 the bit represented by
4490 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4491 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4492 	 * the true capability of the panel. The only way to check is to
4493 	 * then compare 0000h and 2200h.
4494 	 */
4495 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4496 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4497 		return;
4498 
4499 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4500 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4501 		drm_err(&i915->drm,
4502 			"DPCD failed read at extended capabilities\n");
4503 		return;
4504 	}
4505 
4506 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4507 		drm_dbg_kms(&i915->drm,
4508 			    "DPCD extended DPCD rev less than base DPCD rev\n");
4509 		return;
4510 	}
4511 
4512 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4513 		return;
4514 
4515 	drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n",
4516 		    (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4517 
4518 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4519 }
4520 
4521 bool
4522 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4523 {
4524 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4525 
4526 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4527 			     sizeof(intel_dp->dpcd)) < 0)
4528 		return false; /* aux transfer failed */
4529 
4530 	intel_dp_extended_receiver_capabilities(intel_dp);
4531 
4532 	drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd),
4533 		    intel_dp->dpcd);
4534 
4535 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4536 }
4537 
4538 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4539 {
4540 	u8 dprx = 0;
4541 
4542 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4543 			      &dprx) != 1)
4544 		return false;
4545 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4546 }
4547 
4548 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4549 {
4550 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4551 
4552 	/*
4553 	 * Clear the cached register set to avoid using stale values
4554 	 * for the sinks that do not support DSC.
4555 	 */
4556 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4557 
4558 	/* Clear fec_capable to avoid using stale values */
4559 	intel_dp->fec_capable = 0;
4560 
4561 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4562 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4563 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4564 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4565 				     intel_dp->dsc_dpcd,
4566 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4567 			drm_err(&i915->drm,
4568 				"Failed to read DPCD register 0x%x\n",
4569 				DP_DSC_SUPPORT);
4570 
4571 		drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4572 			    (int)sizeof(intel_dp->dsc_dpcd),
4573 			    intel_dp->dsc_dpcd);
4574 
4575 		/* FEC is supported only on DP 1.4 */
4576 		if (!intel_dp_is_edp(intel_dp) &&
4577 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4578 				      &intel_dp->fec_capable) < 0)
4579 			drm_err(&i915->drm,
4580 				"Failed to read FEC DPCD register\n");
4581 
4582 		drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4583 			    intel_dp->fec_capable);
4584 	}
4585 }
4586 
4587 static bool
4588 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4589 {
4590 	struct drm_i915_private *dev_priv =
4591 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4592 
4593 	/* this function is meant to be called only once */
4594 	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4595 
4596 	if (!intel_dp_read_dpcd(intel_dp))
4597 		return false;
4598 
4599 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4600 			 drm_dp_is_branch(intel_dp->dpcd));
4601 
4602 	/*
4603 	 * Read the eDP display control registers.
4604 	 *
4605 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4606 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4607 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4608 	 * method). The display control registers should read zero if they're
4609 	 * not supported anyway.
4610 	 */
4611 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4612 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4613 			     sizeof(intel_dp->edp_dpcd))
4614 		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4615 			    (int)sizeof(intel_dp->edp_dpcd),
4616 			    intel_dp->edp_dpcd);
4617 
4618 	/*
4619 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4620 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4621 	 */
4622 	intel_psr_init_dpcd(intel_dp);
4623 
4624 	/* Read the eDP 1.4+ supported link rates. */
4625 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4626 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4627 		int i;
4628 
4629 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4630 				sink_rates, sizeof(sink_rates));
4631 
4632 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4633 			int val = le16_to_cpu(sink_rates[i]);
4634 
4635 			if (val == 0)
4636 				break;
4637 
4638 			/* Value read multiplied by 200kHz gives the per-lane
4639 			 * link rate in kHz. The source rates are, however,
4640 			 * stored in terms of LS_Clk kHz. The full conversion
4641 			 * back to symbols is
4642 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4643 			 */
4644 			intel_dp->sink_rates[i] = (val * 200) / 10;
4645 		}
4646 		intel_dp->num_sink_rates = i;
4647 	}
4648 
4649 	/*
4650 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4651 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4652 	 */
4653 	if (intel_dp->num_sink_rates)
4654 		intel_dp->use_rate_select = true;
4655 	else
4656 		intel_dp_set_sink_rates(intel_dp);
4657 
4658 	intel_dp_set_common_rates(intel_dp);
4659 
4660 	/* Read the eDP DSC DPCD registers */
4661 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4662 		intel_dp_get_dsc_sink_cap(intel_dp);
4663 
4664 	return true;
4665 }
4666 
4667 
4668 static bool
4669 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4670 {
4671 	if (!intel_dp_read_dpcd(intel_dp))
4672 		return false;
4673 
4674 	/*
4675 	 * Don't clobber cached eDP rates. Also skip re-reading
4676 	 * the OUI/ID since we know it won't change.
4677 	 */
4678 	if (!intel_dp_is_edp(intel_dp)) {
4679 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4680 				 drm_dp_is_branch(intel_dp->dpcd));
4681 
4682 		intel_dp_set_sink_rates(intel_dp);
4683 		intel_dp_set_common_rates(intel_dp);
4684 	}
4685 
4686 	/*
4687 	 * Some eDP panels do not set a valid value for sink count, that is why
4688 	 * it don't care about read it here and in intel_edp_init_dpcd().
4689 	 */
4690 	if (!intel_dp_is_edp(intel_dp) &&
4691 	    !drm_dp_has_quirk(&intel_dp->desc, 0,
4692 			      DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4693 		u8 count;
4694 		ssize_t r;
4695 
4696 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4697 		if (r < 1)
4698 			return false;
4699 
4700 		/*
4701 		 * Sink count can change between short pulse hpd hence
4702 		 * a member variable in intel_dp will track any changes
4703 		 * between short pulse interrupts.
4704 		 */
4705 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4706 
4707 		/*
4708 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4709 		 * a dongle is present but no display. Unless we require to know
4710 		 * if a dongle is present or not, we don't need to update
4711 		 * downstream port information. So, an early return here saves
4712 		 * time from performing other operations which are not required.
4713 		 */
4714 		if (!intel_dp->sink_count)
4715 			return false;
4716 	}
4717 
4718 	if (!drm_dp_is_branch(intel_dp->dpcd))
4719 		return true; /* native DP sink */
4720 
4721 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4722 		return true; /* no per-port downstream info */
4723 
4724 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4725 			     intel_dp->downstream_ports,
4726 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4727 		return false; /* downstream port status fetch failed */
4728 
4729 	return true;
4730 }
4731 
4732 static bool
4733 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4734 {
4735 	u8 mstm_cap;
4736 
4737 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4738 		return false;
4739 
4740 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4741 		return false;
4742 
4743 	return mstm_cap & DP_MST_CAP;
4744 }
4745 
4746 static bool
4747 intel_dp_can_mst(struct intel_dp *intel_dp)
4748 {
4749 	return i915_modparams.enable_dp_mst &&
4750 		intel_dp->can_mst &&
4751 		intel_dp_sink_can_mst(intel_dp);
4752 }
4753 
4754 static void
4755 intel_dp_configure_mst(struct intel_dp *intel_dp)
4756 {
4757 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4758 	struct intel_encoder *encoder =
4759 		&dp_to_dig_port(intel_dp)->base;
4760 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4761 
4762 	drm_dbg_kms(&i915->drm,
4763 		    "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4764 		    encoder->base.base.id, encoder->base.name,
4765 		    yesno(intel_dp->can_mst), yesno(sink_can_mst),
4766 		    yesno(i915_modparams.enable_dp_mst));
4767 
4768 	if (!intel_dp->can_mst)
4769 		return;
4770 
4771 	intel_dp->is_mst = sink_can_mst &&
4772 		i915_modparams.enable_dp_mst;
4773 
4774 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4775 					intel_dp->is_mst);
4776 }
4777 
4778 static bool
4779 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4780 {
4781 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4782 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4783 		DP_DPRX_ESI_LEN;
4784 }
4785 
4786 bool
4787 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4788 		       const struct drm_connector_state *conn_state)
4789 {
4790 	/*
4791 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4792 	 * of Color Encoding Format and Content Color Gamut], in order to
4793 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4794 	 */
4795 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4796 		return true;
4797 
4798 	switch (conn_state->colorspace) {
4799 	case DRM_MODE_COLORIMETRY_SYCC_601:
4800 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4801 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4802 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4803 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4804 		return true;
4805 	default:
4806 		break;
4807 	}
4808 
4809 	return false;
4810 }
4811 
4812 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4813 				     struct dp_sdp *sdp, size_t size)
4814 {
4815 	size_t length = sizeof(struct dp_sdp);
4816 
4817 	if (size < length)
4818 		return -ENOSPC;
4819 
4820 	memset(sdp, 0, size);
4821 
4822 	/*
4823 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4824 	 * VSC SDP Header Bytes
4825 	 */
4826 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4827 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4828 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4829 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4830 
4831 	/*
4832 	 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
4833 	 * per DP 1.4a spec.
4834 	 */
4835 	if (vsc->revision != 0x5)
4836 		goto out;
4837 
4838 	/* VSC SDP Payload for DB16 through DB18 */
4839 	/* Pixel Encoding and Colorimetry Formats  */
4840 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4841 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4842 
4843 	switch (vsc->bpc) {
4844 	case 6:
4845 		/* 6bpc: 0x0 */
4846 		break;
4847 	case 8:
4848 		sdp->db[17] = 0x1; /* DB17[3:0] */
4849 		break;
4850 	case 10:
4851 		sdp->db[17] = 0x2;
4852 		break;
4853 	case 12:
4854 		sdp->db[17] = 0x3;
4855 		break;
4856 	case 16:
4857 		sdp->db[17] = 0x4;
4858 		break;
4859 	default:
4860 		MISSING_CASE(vsc->bpc);
4861 		break;
4862 	}
4863 	/* Dynamic Range and Component Bit Depth */
4864 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4865 		sdp->db[17] |= 0x80;  /* DB17[7] */
4866 
4867 	/* Content Type */
4868 	sdp->db[18] = vsc->content_type & 0x7;
4869 
4870 out:
4871 	return length;
4872 }
4873 
4874 static ssize_t
4875 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4876 					 struct dp_sdp *sdp,
4877 					 size_t size)
4878 {
4879 	size_t length = sizeof(struct dp_sdp);
4880 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4881 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4882 	ssize_t len;
4883 
4884 	if (size < length)
4885 		return -ENOSPC;
4886 
4887 	memset(sdp, 0, size);
4888 
4889 	len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4890 	if (len < 0) {
4891 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4892 		return -ENOSPC;
4893 	}
4894 
4895 	if (len != infoframe_size) {
4896 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4897 		return -ENOSPC;
4898 	}
4899 
4900 	/*
4901 	 * Set up the infoframe sdp packet for HDR static metadata.
4902 	 * Prepare VSC Header for SU as per DP 1.4a spec,
4903 	 * Table 2-100 and Table 2-101
4904 	 */
4905 
4906 	/* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4907 	sdp->sdp_header.HB0 = 0;
4908 	/*
4909 	 * Packet Type 80h + Non-audio INFOFRAME Type value
4910 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87
4911 	 * - 80h + Non-audio INFOFRAME Type value
4912 	 * - InfoFrame Type: 0x07
4913 	 *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4914 	 */
4915 	sdp->sdp_header.HB1 = drm_infoframe->type;
4916 	/*
4917 	 * Least Significant Eight Bits of (Data Byte Count – 1)
4918 	 * infoframe_size - 1
4919 	 */
4920 	sdp->sdp_header.HB2 = 0x1D;
4921 	/* INFOFRAME SDP Version Number */
4922 	sdp->sdp_header.HB3 = (0x13 << 2);
4923 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
4924 	sdp->db[0] = drm_infoframe->version;
4925 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4926 	sdp->db[1] = drm_infoframe->length;
4927 	/*
4928 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4929 	 * HDMI_INFOFRAME_HEADER_SIZE
4930 	 */
4931 	BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4932 	memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4933 	       HDMI_DRM_INFOFRAME_SIZE);
4934 
4935 	/*
4936 	 * Size of DP infoframe sdp packet for HDR static metadata consists of
4937 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4938 	 * - Two Data Blocks: 2 bytes
4939 	 *    CTA Header Byte2 (INFOFRAME Version Number)
4940 	 *    CTA Header Byte3 (Length of INFOFRAME)
4941 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4942 	 *
4943 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4944 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4945 	 * will pad rest of the size.
4946 	 */
4947 	return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4948 }
4949 
4950 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4951 			       const struct intel_crtc_state *crtc_state,
4952 			       unsigned int type)
4953 {
4954 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4955 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4956 	struct dp_sdp sdp = {};
4957 	ssize_t len;
4958 
4959 	if ((crtc_state->infoframes.enable &
4960 	     intel_hdmi_infoframe_enable(type)) == 0)
4961 		return;
4962 
4963 	switch (type) {
4964 	case DP_SDP_VSC:
4965 		len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
4966 					    sizeof(sdp));
4967 		break;
4968 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
4969 		len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
4970 							       &sdp, sizeof(sdp));
4971 		break;
4972 	default:
4973 		MISSING_CASE(type);
4974 		return;
4975 	}
4976 
4977 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
4978 		return;
4979 
4980 	intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
4981 }
4982 
4983 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
4984 			    const struct intel_crtc_state *crtc_state,
4985 			    struct drm_dp_vsc_sdp *vsc)
4986 {
4987 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4988 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4989 	struct dp_sdp sdp = {};
4990 	ssize_t len;
4991 
4992 	len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
4993 
4994 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
4995 		return;
4996 
4997 	intel_dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
4998 					&sdp, len);
4999 }
5000 
5001 void intel_dp_set_infoframes(struct intel_encoder *encoder,
5002 			     bool enable,
5003 			     const struct intel_crtc_state *crtc_state,
5004 			     const struct drm_connector_state *conn_state)
5005 {
5006 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5007 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5008 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
5009 	u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
5010 			 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
5011 			 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
5012 	u32 val = intel_de_read(dev_priv, reg);
5013 
5014 	/* TODO: Add DSC case (DIP_ENABLE_PPS) */
5015 	/* When PSR is enabled, this routine doesn't disable VSC DIP */
5016 	if (intel_psr_enabled(intel_dp))
5017 		val &= ~dip_enable;
5018 	else
5019 		val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
5020 
5021 	if (!enable) {
5022 		intel_de_write(dev_priv, reg, val);
5023 		intel_de_posting_read(dev_priv, reg);
5024 		return;
5025 	}
5026 
5027 	intel_de_write(dev_priv, reg, val);
5028 	intel_de_posting_read(dev_priv, reg);
5029 
5030 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5031 	if (!intel_psr_enabled(intel_dp))
5032 		intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5033 
5034 	intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5035 }
5036 
5037 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5038 				   const void *buffer, size_t size)
5039 {
5040 	const struct dp_sdp *sdp = buffer;
5041 
5042 	if (size < sizeof(struct dp_sdp))
5043 		return -EINVAL;
5044 
5045 	memset(vsc, 0, size);
5046 
5047 	if (sdp->sdp_header.HB0 != 0)
5048 		return -EINVAL;
5049 
5050 	if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5051 		return -EINVAL;
5052 
5053 	vsc->sdp_type = sdp->sdp_header.HB1;
5054 	vsc->revision = sdp->sdp_header.HB2;
5055 	vsc->length = sdp->sdp_header.HB3;
5056 
5057 	if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5058 	    (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5059 		/*
5060 		 * - HB2 = 0x2, HB3 = 0x8
5061 		 *   VSC SDP supporting 3D stereo + PSR
5062 		 * - HB2 = 0x4, HB3 = 0xe
5063 		 *   VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5064 		 *   first scan line of the SU region (applies to eDP v1.4b
5065 		 *   and higher).
5066 		 */
5067 		return 0;
5068 	} else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5069 		/*
5070 		 * - HB2 = 0x5, HB3 = 0x13
5071 		 *   VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5072 		 *   Format.
5073 		 */
5074 		vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5075 		vsc->colorimetry = sdp->db[16] & 0xf;
5076 		vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5077 
5078 		switch (sdp->db[17] & 0x7) {
5079 		case 0x0:
5080 			vsc->bpc = 6;
5081 			break;
5082 		case 0x1:
5083 			vsc->bpc = 8;
5084 			break;
5085 		case 0x2:
5086 			vsc->bpc = 10;
5087 			break;
5088 		case 0x3:
5089 			vsc->bpc = 12;
5090 			break;
5091 		case 0x4:
5092 			vsc->bpc = 16;
5093 			break;
5094 		default:
5095 			MISSING_CASE(sdp->db[17] & 0x7);
5096 			return -EINVAL;
5097 		}
5098 
5099 		vsc->content_type = sdp->db[18] & 0x7;
5100 	} else {
5101 		return -EINVAL;
5102 	}
5103 
5104 	return 0;
5105 }
5106 
5107 static int
5108 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5109 					   const void *buffer, size_t size)
5110 {
5111 	int ret;
5112 
5113 	const struct dp_sdp *sdp = buffer;
5114 
5115 	if (size < sizeof(struct dp_sdp))
5116 		return -EINVAL;
5117 
5118 	if (sdp->sdp_header.HB0 != 0)
5119 		return -EINVAL;
5120 
5121 	if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5122 		return -EINVAL;
5123 
5124 	/*
5125 	 * Least Significant Eight Bits of (Data Byte Count – 1)
5126 	 * 1Dh (i.e., Data Byte Count = 30 bytes).
5127 	 */
5128 	if (sdp->sdp_header.HB2 != 0x1D)
5129 		return -EINVAL;
5130 
5131 	/* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5132 	if ((sdp->sdp_header.HB3 & 0x3) != 0)
5133 		return -EINVAL;
5134 
5135 	/* INFOFRAME SDP Version Number */
5136 	if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5137 		return -EINVAL;
5138 
5139 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
5140 	if (sdp->db[0] != 1)
5141 		return -EINVAL;
5142 
5143 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5144 	if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5145 		return -EINVAL;
5146 
5147 	ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5148 					     HDMI_DRM_INFOFRAME_SIZE);
5149 
5150 	return ret;
5151 }
5152 
5153 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5154 				  struct intel_crtc_state *crtc_state,
5155 				  struct drm_dp_vsc_sdp *vsc)
5156 {
5157 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5158 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5159 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5160 	unsigned int type = DP_SDP_VSC;
5161 	struct dp_sdp sdp = {};
5162 	int ret;
5163 
5164 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5165 	if (intel_psr_enabled(intel_dp))
5166 		return;
5167 
5168 	if ((crtc_state->infoframes.enable &
5169 	     intel_hdmi_infoframe_enable(type)) == 0)
5170 		return;
5171 
5172 	intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5173 
5174 	ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5175 
5176 	if (ret)
5177 		drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5178 }
5179 
5180 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5181 						     struct intel_crtc_state *crtc_state,
5182 						     struct hdmi_drm_infoframe *drm_infoframe)
5183 {
5184 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5185 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5186 	unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5187 	struct dp_sdp sdp = {};
5188 	int ret;
5189 
5190 	if ((crtc_state->infoframes.enable &
5191 	    intel_hdmi_infoframe_enable(type)) == 0)
5192 		return;
5193 
5194 	intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5195 				       sizeof(sdp));
5196 
5197 	ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5198 							 sizeof(sdp));
5199 
5200 	if (ret)
5201 		drm_dbg_kms(&dev_priv->drm,
5202 			    "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5203 }
5204 
5205 void intel_read_dp_sdp(struct intel_encoder *encoder,
5206 		       struct intel_crtc_state *crtc_state,
5207 		       unsigned int type)
5208 {
5209 	if (encoder->type != INTEL_OUTPUT_DDI)
5210 		return;
5211 
5212 	switch (type) {
5213 	case DP_SDP_VSC:
5214 		intel_read_dp_vsc_sdp(encoder, crtc_state,
5215 				      &crtc_state->infoframes.vsc);
5216 		break;
5217 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
5218 		intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5219 							 &crtc_state->infoframes.drm.drm);
5220 		break;
5221 	default:
5222 		MISSING_CASE(type);
5223 		break;
5224 	}
5225 }
5226 
5227 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5228 {
5229 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5230 	int status = 0;
5231 	int test_link_rate;
5232 	u8 test_lane_count, test_link_bw;
5233 	/* (DP CTS 1.2)
5234 	 * 4.3.1.11
5235 	 */
5236 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5237 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5238 				   &test_lane_count);
5239 
5240 	if (status <= 0) {
5241 		drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5242 		return DP_TEST_NAK;
5243 	}
5244 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5245 
5246 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5247 				   &test_link_bw);
5248 	if (status <= 0) {
5249 		drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5250 		return DP_TEST_NAK;
5251 	}
5252 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5253 
5254 	/* Validate the requested link rate and lane count */
5255 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5256 					test_lane_count))
5257 		return DP_TEST_NAK;
5258 
5259 	intel_dp->compliance.test_lane_count = test_lane_count;
5260 	intel_dp->compliance.test_link_rate = test_link_rate;
5261 
5262 	return DP_TEST_ACK;
5263 }
5264 
5265 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5266 {
5267 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5268 	u8 test_pattern;
5269 	u8 test_misc;
5270 	__be16 h_width, v_height;
5271 	int status = 0;
5272 
5273 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
5274 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5275 				   &test_pattern);
5276 	if (status <= 0) {
5277 		drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5278 		return DP_TEST_NAK;
5279 	}
5280 	if (test_pattern != DP_COLOR_RAMP)
5281 		return DP_TEST_NAK;
5282 
5283 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5284 				  &h_width, 2);
5285 	if (status <= 0) {
5286 		drm_dbg_kms(&i915->drm, "H Width read failed\n");
5287 		return DP_TEST_NAK;
5288 	}
5289 
5290 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5291 				  &v_height, 2);
5292 	if (status <= 0) {
5293 		drm_dbg_kms(&i915->drm, "V Height read failed\n");
5294 		return DP_TEST_NAK;
5295 	}
5296 
5297 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5298 				   &test_misc);
5299 	if (status <= 0) {
5300 		drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5301 		return DP_TEST_NAK;
5302 	}
5303 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5304 		return DP_TEST_NAK;
5305 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5306 		return DP_TEST_NAK;
5307 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5308 	case DP_TEST_BIT_DEPTH_6:
5309 		intel_dp->compliance.test_data.bpc = 6;
5310 		break;
5311 	case DP_TEST_BIT_DEPTH_8:
5312 		intel_dp->compliance.test_data.bpc = 8;
5313 		break;
5314 	default:
5315 		return DP_TEST_NAK;
5316 	}
5317 
5318 	intel_dp->compliance.test_data.video_pattern = test_pattern;
5319 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5320 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5321 	/* Set test active flag here so userspace doesn't interrupt things */
5322 	intel_dp->compliance.test_active = true;
5323 
5324 	return DP_TEST_ACK;
5325 }
5326 
5327 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5328 {
5329 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5330 	u8 test_result = DP_TEST_ACK;
5331 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5332 	struct drm_connector *connector = &intel_connector->base;
5333 
5334 	if (intel_connector->detect_edid == NULL ||
5335 	    connector->edid_corrupt ||
5336 	    intel_dp->aux.i2c_defer_count > 6) {
5337 		/* Check EDID read for NACKs, DEFERs and corruption
5338 		 * (DP CTS 1.2 Core r1.1)
5339 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
5340 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
5341 		 *    4.2.2.6 : EDID corruption detected
5342 		 * Use failsafe mode for all cases
5343 		 */
5344 		if (intel_dp->aux.i2c_nack_count > 0 ||
5345 			intel_dp->aux.i2c_defer_count > 0)
5346 			drm_dbg_kms(&i915->drm,
5347 				    "EDID read had %d NACKs, %d DEFERs\n",
5348 				    intel_dp->aux.i2c_nack_count,
5349 				    intel_dp->aux.i2c_defer_count);
5350 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5351 	} else {
5352 		struct edid *block = intel_connector->detect_edid;
5353 
5354 		/* We have to write the checksum
5355 		 * of the last block read
5356 		 */
5357 		block += intel_connector->detect_edid->extensions;
5358 
5359 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5360 				       block->checksum) <= 0)
5361 			drm_dbg_kms(&i915->drm,
5362 				    "Failed to write EDID checksum\n");
5363 
5364 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5365 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5366 	}
5367 
5368 	/* Set test active flag here so userspace doesn't interrupt things */
5369 	intel_dp->compliance.test_active = true;
5370 
5371 	return test_result;
5372 }
5373 
5374 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5375 {
5376 	struct drm_dp_phy_test_params *data =
5377 		&intel_dp->compliance.test_data.phytest;
5378 
5379 	if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5380 		DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5381 		return DP_TEST_NAK;
5382 	}
5383 
5384 	/*
5385 	 * link_mst is set to false to avoid executing mst related code
5386 	 * during compliance testing.
5387 	 */
5388 	intel_dp->link_mst = false;
5389 
5390 	return DP_TEST_ACK;
5391 }
5392 
5393 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5394 {
5395 	struct drm_i915_private *dev_priv =
5396 			to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5397 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5398 	struct drm_dp_phy_test_params *data =
5399 			&intel_dp->compliance.test_data.phytest;
5400 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5401 	enum pipe pipe = crtc->pipe;
5402 	u32 pattern_val;
5403 
5404 	switch (data->phy_pattern) {
5405 	case DP_PHY_TEST_PATTERN_NONE:
5406 		DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5407 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5408 		break;
5409 	case DP_PHY_TEST_PATTERN_D10_2:
5410 		DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5411 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5412 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5413 		break;
5414 	case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5415 		DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5416 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5417 			       DDI_DP_COMP_CTL_ENABLE |
5418 			       DDI_DP_COMP_CTL_SCRAMBLED_0);
5419 		break;
5420 	case DP_PHY_TEST_PATTERN_PRBS7:
5421 		DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5422 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5423 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5424 		break;
5425 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5426 		/*
5427 		 * FIXME: Ideally pattern should come from DPCD 0x250. As
5428 		 * current firmware of DPR-100 could not set it, so hardcoding
5429 		 * now for complaince test.
5430 		 */
5431 		DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5432 		pattern_val = 0x3e0f83e0;
5433 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5434 		pattern_val = 0x0f83e0f8;
5435 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5436 		pattern_val = 0x0000f83e;
5437 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5438 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5439 			       DDI_DP_COMP_CTL_ENABLE |
5440 			       DDI_DP_COMP_CTL_CUSTOM80);
5441 		break;
5442 	case DP_PHY_TEST_PATTERN_CP2520:
5443 		/*
5444 		 * FIXME: Ideally pattern should come from DPCD 0x24A. As
5445 		 * current firmware of DPR-100 could not set it, so hardcoding
5446 		 * now for complaince test.
5447 		 */
5448 		DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5449 		pattern_val = 0xFB;
5450 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5451 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5452 			       pattern_val);
5453 		break;
5454 	default:
5455 		WARN(1, "Invalid Phy Test Pattern\n");
5456 	}
5457 }
5458 
5459 static void
5460 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5461 {
5462 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5463 	struct drm_device *dev = intel_dig_port->base.base.dev;
5464 	struct drm_i915_private *dev_priv = to_i915(dev);
5465 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5466 	enum pipe pipe = crtc->pipe;
5467 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5468 
5469 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5470 						 TRANS_DDI_FUNC_CTL(pipe));
5471 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5472 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5473 
5474 	trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5475 				      TGL_TRANS_DDI_PORT_MASK);
5476 	trans_conf_value &= ~PIPECONF_ENABLE;
5477 	dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5478 
5479 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5480 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5481 		       trans_ddi_func_ctl_value);
5482 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5483 }
5484 
5485 static void
5486 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5487 {
5488 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5489 	struct drm_device *dev = intel_dig_port->base.base.dev;
5490 	struct drm_i915_private *dev_priv = to_i915(dev);
5491 	enum port port = intel_dig_port->base.port;
5492 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5493 	enum pipe pipe = crtc->pipe;
5494 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5495 
5496 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5497 						 TRANS_DDI_FUNC_CTL(pipe));
5498 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5499 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5500 
5501 	trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5502 				    TGL_TRANS_DDI_SELECT_PORT(port);
5503 	trans_conf_value |= PIPECONF_ENABLE;
5504 	dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5505 
5506 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5507 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5508 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5509 		       trans_ddi_func_ctl_value);
5510 }
5511 
5512 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5513 {
5514 	struct drm_dp_phy_test_params *data =
5515 		&intel_dp->compliance.test_data.phytest;
5516 	u8 link_status[DP_LINK_STATUS_SIZE];
5517 
5518 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
5519 		DRM_DEBUG_KMS("failed to get link status\n");
5520 		return;
5521 	}
5522 
5523 	/* retrieve vswing & pre-emphasis setting */
5524 	intel_dp_get_adjust_train(intel_dp, link_status);
5525 
5526 	intel_dp_autotest_phy_ddi_disable(intel_dp);
5527 
5528 	intel_dp_set_signal_levels(intel_dp);
5529 
5530 	intel_dp_phy_pattern_update(intel_dp);
5531 
5532 	intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5533 
5534 	drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5535 				    link_status[DP_DPCD_REV]);
5536 }
5537 
5538 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5539 {
5540 	u8 test_result;
5541 
5542 	test_result = intel_dp_prepare_phytest(intel_dp);
5543 	if (test_result != DP_TEST_ACK)
5544 		DRM_ERROR("Phy test preparation failed\n");
5545 
5546 	intel_dp_process_phy_request(intel_dp);
5547 
5548 	return test_result;
5549 }
5550 
5551 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5552 {
5553 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5554 	u8 response = DP_TEST_NAK;
5555 	u8 request = 0;
5556 	int status;
5557 
5558 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5559 	if (status <= 0) {
5560 		drm_dbg_kms(&i915->drm,
5561 			    "Could not read test request from sink\n");
5562 		goto update_status;
5563 	}
5564 
5565 	switch (request) {
5566 	case DP_TEST_LINK_TRAINING:
5567 		drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5568 		response = intel_dp_autotest_link_training(intel_dp);
5569 		break;
5570 	case DP_TEST_LINK_VIDEO_PATTERN:
5571 		drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5572 		response = intel_dp_autotest_video_pattern(intel_dp);
5573 		break;
5574 	case DP_TEST_LINK_EDID_READ:
5575 		drm_dbg_kms(&i915->drm, "EDID test requested\n");
5576 		response = intel_dp_autotest_edid(intel_dp);
5577 		break;
5578 	case DP_TEST_LINK_PHY_TEST_PATTERN:
5579 		drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5580 		response = intel_dp_autotest_phy_pattern(intel_dp);
5581 		break;
5582 	default:
5583 		drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5584 			    request);
5585 		break;
5586 	}
5587 
5588 	if (response & DP_TEST_ACK)
5589 		intel_dp->compliance.test_type = request;
5590 
5591 update_status:
5592 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5593 	if (status <= 0)
5594 		drm_dbg_kms(&i915->drm,
5595 			    "Could not write test response to sink\n");
5596 }
5597 
5598 static int
5599 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5600 {
5601 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5602 	bool need_retrain = false;
5603 
5604 	if (!intel_dp->is_mst)
5605 		return -EINVAL;
5606 
5607 	WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5608 
5609 	for (;;) {
5610 		u8 esi[DP_DPRX_ESI_LEN] = {};
5611 		bool bret, handled;
5612 		int retry;
5613 
5614 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5615 		if (!bret) {
5616 			drm_dbg_kms(&i915->drm,
5617 				    "failed to get ESI - device may have failed\n");
5618 			return -EINVAL;
5619 		}
5620 
5621 		/* check link status - esi[10] = 0x200c */
5622 		if (intel_dp->active_mst_links > 0 && !need_retrain &&
5623 		    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5624 			drm_dbg_kms(&i915->drm,
5625 				    "channel EQ not ok, retraining\n");
5626 			need_retrain = true;
5627 		}
5628 
5629 		drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5630 
5631 		drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5632 		if (!handled)
5633 			break;
5634 
5635 		for (retry = 0; retry < 3; retry++) {
5636 			int wret;
5637 
5638 			wret = drm_dp_dpcd_write(&intel_dp->aux,
5639 						 DP_SINK_COUNT_ESI+1,
5640 						 &esi[1], 3);
5641 			if (wret == 3)
5642 				break;
5643 		}
5644 	}
5645 
5646 	return need_retrain;
5647 }
5648 
5649 static bool
5650 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5651 {
5652 	u8 link_status[DP_LINK_STATUS_SIZE];
5653 
5654 	if (!intel_dp->link_trained)
5655 		return false;
5656 
5657 	/*
5658 	 * While PSR source HW is enabled, it will control main-link sending
5659 	 * frames, enabling and disabling it so trying to do a retrain will fail
5660 	 * as the link would or not be on or it could mix training patterns
5661 	 * and frame data at the same time causing retrain to fail.
5662 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5663 	 * any link status error.
5664 	 */
5665 	if (intel_psr_enabled(intel_dp))
5666 		return false;
5667 
5668 	if (!intel_dp_get_link_status(intel_dp, link_status))
5669 		return false;
5670 
5671 	/*
5672 	 * Validate the cached values of intel_dp->link_rate and
5673 	 * intel_dp->lane_count before attempting to retrain.
5674 	 */
5675 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5676 					intel_dp->lane_count))
5677 		return false;
5678 
5679 	/* Retrain if Channel EQ or CR not ok */
5680 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5681 }
5682 
5683 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5684 				   const struct drm_connector_state *conn_state)
5685 {
5686 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5687 	struct intel_encoder *encoder;
5688 	enum pipe pipe;
5689 
5690 	if (!conn_state->best_encoder)
5691 		return false;
5692 
5693 	/* SST */
5694 	encoder = &dp_to_dig_port(intel_dp)->base;
5695 	if (conn_state->best_encoder == &encoder->base)
5696 		return true;
5697 
5698 	/* MST */
5699 	for_each_pipe(i915, pipe) {
5700 		encoder = &intel_dp->mst_encoders[pipe]->base;
5701 		if (conn_state->best_encoder == &encoder->base)
5702 			return true;
5703 	}
5704 
5705 	return false;
5706 }
5707 
5708 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5709 				      struct drm_modeset_acquire_ctx *ctx,
5710 				      u32 *crtc_mask)
5711 {
5712 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5713 	struct drm_connector_list_iter conn_iter;
5714 	struct intel_connector *connector;
5715 	int ret = 0;
5716 
5717 	*crtc_mask = 0;
5718 
5719 	if (!intel_dp_needs_link_retrain(intel_dp))
5720 		return 0;
5721 
5722 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5723 	for_each_intel_connector_iter(connector, &conn_iter) {
5724 		struct drm_connector_state *conn_state =
5725 			connector->base.state;
5726 		struct intel_crtc_state *crtc_state;
5727 		struct intel_crtc *crtc;
5728 
5729 		if (!intel_dp_has_connector(intel_dp, conn_state))
5730 			continue;
5731 
5732 		crtc = to_intel_crtc(conn_state->crtc);
5733 		if (!crtc)
5734 			continue;
5735 
5736 		ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5737 		if (ret)
5738 			break;
5739 
5740 		crtc_state = to_intel_crtc_state(crtc->base.state);
5741 
5742 		drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5743 
5744 		if (!crtc_state->hw.active)
5745 			continue;
5746 
5747 		if (conn_state->commit &&
5748 		    !try_wait_for_completion(&conn_state->commit->hw_done))
5749 			continue;
5750 
5751 		*crtc_mask |= drm_crtc_mask(&crtc->base);
5752 	}
5753 	drm_connector_list_iter_end(&conn_iter);
5754 
5755 	if (!intel_dp_needs_link_retrain(intel_dp))
5756 		*crtc_mask = 0;
5757 
5758 	return ret;
5759 }
5760 
5761 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5762 {
5763 	struct intel_connector *connector = intel_dp->attached_connector;
5764 
5765 	return connector->base.status == connector_status_connected ||
5766 		intel_dp->is_mst;
5767 }
5768 
5769 int intel_dp_retrain_link(struct intel_encoder *encoder,
5770 			  struct drm_modeset_acquire_ctx *ctx)
5771 {
5772 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5773 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5774 	struct intel_crtc *crtc;
5775 	u32 crtc_mask;
5776 	int ret;
5777 
5778 	if (!intel_dp_is_connected(intel_dp))
5779 		return 0;
5780 
5781 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5782 			       ctx);
5783 	if (ret)
5784 		return ret;
5785 
5786 	ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5787 	if (ret)
5788 		return ret;
5789 
5790 	if (crtc_mask == 0)
5791 		return 0;
5792 
5793 	drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5794 		    encoder->base.base.id, encoder->base.name);
5795 
5796 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5797 		const struct intel_crtc_state *crtc_state =
5798 			to_intel_crtc_state(crtc->base.state);
5799 
5800 		/* Suppress underruns caused by re-training */
5801 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5802 		if (crtc_state->has_pch_encoder)
5803 			intel_set_pch_fifo_underrun_reporting(dev_priv,
5804 							      intel_crtc_pch_transcoder(crtc), false);
5805 	}
5806 
5807 	intel_dp_start_link_train(intel_dp);
5808 	intel_dp_stop_link_train(intel_dp);
5809 
5810 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5811 		const struct intel_crtc_state *crtc_state =
5812 			to_intel_crtc_state(crtc->base.state);
5813 
5814 		/* Keep underrun reporting disabled until things are stable */
5815 		intel_wait_for_vblank(dev_priv, crtc->pipe);
5816 
5817 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5818 		if (crtc_state->has_pch_encoder)
5819 			intel_set_pch_fifo_underrun_reporting(dev_priv,
5820 							      intel_crtc_pch_transcoder(crtc), true);
5821 	}
5822 
5823 	return 0;
5824 }
5825 
5826 /*
5827  * If display is now connected check links status,
5828  * there has been known issues of link loss triggering
5829  * long pulse.
5830  *
5831  * Some sinks (eg. ASUS PB287Q) seem to perform some
5832  * weird HPD ping pong during modesets. So we can apparently
5833  * end up with HPD going low during a modeset, and then
5834  * going back up soon after. And once that happens we must
5835  * retrain the link to get a picture. That's in case no
5836  * userspace component reacted to intermittent HPD dip.
5837  */
5838 static enum intel_hotplug_state
5839 intel_dp_hotplug(struct intel_encoder *encoder,
5840 		 struct intel_connector *connector)
5841 {
5842 	struct drm_modeset_acquire_ctx ctx;
5843 	enum intel_hotplug_state state;
5844 	int ret;
5845 
5846 	state = intel_encoder_hotplug(encoder, connector);
5847 
5848 	drm_modeset_acquire_init(&ctx, 0);
5849 
5850 	for (;;) {
5851 		ret = intel_dp_retrain_link(encoder, &ctx);
5852 
5853 		if (ret == -EDEADLK) {
5854 			drm_modeset_backoff(&ctx);
5855 			continue;
5856 		}
5857 
5858 		break;
5859 	}
5860 
5861 	drm_modeset_drop_locks(&ctx);
5862 	drm_modeset_acquire_fini(&ctx);
5863 	drm_WARN(encoder->base.dev, ret,
5864 		 "Acquiring modeset locks failed with %i\n", ret);
5865 
5866 	/*
5867 	 * Keeping it consistent with intel_ddi_hotplug() and
5868 	 * intel_hdmi_hotplug().
5869 	 */
5870 	if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5871 		state = INTEL_HOTPLUG_RETRY;
5872 
5873 	return state;
5874 }
5875 
5876 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5877 {
5878 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5879 	u8 val;
5880 
5881 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5882 		return;
5883 
5884 	if (drm_dp_dpcd_readb(&intel_dp->aux,
5885 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5886 		return;
5887 
5888 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5889 
5890 	if (val & DP_AUTOMATED_TEST_REQUEST)
5891 		intel_dp_handle_test_request(intel_dp);
5892 
5893 	if (val & DP_CP_IRQ)
5894 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5895 
5896 	if (val & DP_SINK_SPECIFIC_IRQ)
5897 		drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5898 }
5899 
5900 /*
5901  * According to DP spec
5902  * 5.1.2:
5903  *  1. Read DPCD
5904  *  2. Configure link according to Receiver Capabilities
5905  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5906  *  4. Check link status on receipt of hot-plug interrupt
5907  *
5908  * intel_dp_short_pulse -  handles short pulse interrupts
5909  * when full detection is not required.
5910  * Returns %true if short pulse is handled and full detection
5911  * is NOT required and %false otherwise.
5912  */
5913 static bool
5914 intel_dp_short_pulse(struct intel_dp *intel_dp)
5915 {
5916 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5917 	u8 old_sink_count = intel_dp->sink_count;
5918 	bool ret;
5919 
5920 	/*
5921 	 * Clearing compliance test variables to allow capturing
5922 	 * of values for next automated test request.
5923 	 */
5924 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5925 
5926 	/*
5927 	 * Now read the DPCD to see if it's actually running
5928 	 * If the current value of sink count doesn't match with
5929 	 * the value that was stored earlier or dpcd read failed
5930 	 * we need to do full detection
5931 	 */
5932 	ret = intel_dp_get_dpcd(intel_dp);
5933 
5934 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
5935 		/* No need to proceed if we are going to do full detect */
5936 		return false;
5937 	}
5938 
5939 	intel_dp_check_service_irq(intel_dp);
5940 
5941 	/* Handle CEC interrupts, if any */
5942 	drm_dp_cec_irq(&intel_dp->aux);
5943 
5944 	/* defer to the hotplug work for link retraining if needed */
5945 	if (intel_dp_needs_link_retrain(intel_dp))
5946 		return false;
5947 
5948 	intel_psr_short_pulse(intel_dp);
5949 
5950 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5951 		drm_dbg_kms(&dev_priv->drm,
5952 			    "Link Training Compliance Test requested\n");
5953 		/* Send a Hotplug Uevent to userspace to start modeset */
5954 		drm_kms_helper_hotplug_event(&dev_priv->drm);
5955 	}
5956 
5957 	return true;
5958 }
5959 
5960 /* XXX this is probably wrong for multiple downstream ports */
5961 static enum drm_connector_status
5962 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5963 {
5964 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5965 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5966 	u8 *dpcd = intel_dp->dpcd;
5967 	u8 type;
5968 
5969 	if (WARN_ON(intel_dp_is_edp(intel_dp)))
5970 		return connector_status_connected;
5971 
5972 	if (lspcon->active)
5973 		lspcon_resume(lspcon);
5974 
5975 	if (!intel_dp_get_dpcd(intel_dp))
5976 		return connector_status_disconnected;
5977 
5978 	/* if there's no downstream port, we're done */
5979 	if (!drm_dp_is_branch(dpcd))
5980 		return connector_status_connected;
5981 
5982 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5983 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5984 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5985 
5986 		return intel_dp->sink_count ?
5987 		connector_status_connected : connector_status_disconnected;
5988 	}
5989 
5990 	if (intel_dp_can_mst(intel_dp))
5991 		return connector_status_connected;
5992 
5993 	/* If no HPD, poke DDC gently */
5994 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5995 		return connector_status_connected;
5996 
5997 	/* Well we tried, say unknown for unreliable port types */
5998 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5999 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
6000 		if (type == DP_DS_PORT_TYPE_VGA ||
6001 		    type == DP_DS_PORT_TYPE_NON_EDID)
6002 			return connector_status_unknown;
6003 	} else {
6004 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6005 			DP_DWN_STRM_PORT_TYPE_MASK;
6006 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6007 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
6008 			return connector_status_unknown;
6009 	}
6010 
6011 	/* Anything else is out of spec, warn and ignore */
6012 	drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6013 	return connector_status_disconnected;
6014 }
6015 
6016 static enum drm_connector_status
6017 edp_detect(struct intel_dp *intel_dp)
6018 {
6019 	return connector_status_connected;
6020 }
6021 
6022 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6023 {
6024 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6025 	u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6026 
6027 	return intel_de_read(dev_priv, SDEISR) & bit;
6028 }
6029 
6030 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6031 {
6032 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6033 	u32 bit;
6034 
6035 	switch (encoder->hpd_pin) {
6036 	case HPD_PORT_B:
6037 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6038 		break;
6039 	case HPD_PORT_C:
6040 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6041 		break;
6042 	case HPD_PORT_D:
6043 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6044 		break;
6045 	default:
6046 		MISSING_CASE(encoder->hpd_pin);
6047 		return false;
6048 	}
6049 
6050 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6051 }
6052 
6053 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6054 {
6055 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6056 	u32 bit;
6057 
6058 	switch (encoder->hpd_pin) {
6059 	case HPD_PORT_B:
6060 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6061 		break;
6062 	case HPD_PORT_C:
6063 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6064 		break;
6065 	case HPD_PORT_D:
6066 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6067 		break;
6068 	default:
6069 		MISSING_CASE(encoder->hpd_pin);
6070 		return false;
6071 	}
6072 
6073 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6074 }
6075 
6076 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6077 {
6078 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6079 	u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6080 
6081 	return intel_de_read(dev_priv, DEISR) & bit;
6082 }
6083 
6084 /*
6085  * intel_digital_port_connected - is the specified port connected?
6086  * @encoder: intel_encoder
6087  *
6088  * In cases where there's a connector physically connected but it can't be used
6089  * by our hardware we also return false, since the rest of the driver should
6090  * pretty much treat the port as disconnected. This is relevant for type-C
6091  * (starting on ICL) where there's ownership involved.
6092  *
6093  * Return %true if port is connected, %false otherwise.
6094  */
6095 bool intel_digital_port_connected(struct intel_encoder *encoder)
6096 {
6097 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6098 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6099 	bool is_connected = false;
6100 	intel_wakeref_t wakeref;
6101 
6102 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6103 		is_connected = dig_port->connected(encoder);
6104 
6105 	return is_connected;
6106 }
6107 
6108 static struct edid *
6109 intel_dp_get_edid(struct intel_dp *intel_dp)
6110 {
6111 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6112 
6113 	/* use cached edid if we have one */
6114 	if (intel_connector->edid) {
6115 		/* invalid edid */
6116 		if (IS_ERR(intel_connector->edid))
6117 			return NULL;
6118 
6119 		return drm_edid_duplicate(intel_connector->edid);
6120 	} else
6121 		return drm_get_edid(&intel_connector->base,
6122 				    &intel_dp->aux.ddc);
6123 }
6124 
6125 static void
6126 intel_dp_set_edid(struct intel_dp *intel_dp)
6127 {
6128 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6129 	struct edid *edid;
6130 
6131 	intel_dp_unset_edid(intel_dp);
6132 	edid = intel_dp_get_edid(intel_dp);
6133 	intel_connector->detect_edid = edid;
6134 
6135 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
6136 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
6137 	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6138 }
6139 
6140 static void
6141 intel_dp_unset_edid(struct intel_dp *intel_dp)
6142 {
6143 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6144 
6145 	drm_dp_cec_unset_edid(&intel_dp->aux);
6146 	kfree(intel_connector->detect_edid);
6147 	intel_connector->detect_edid = NULL;
6148 
6149 	intel_dp->has_audio = false;
6150 	intel_dp->edid_quirks = 0;
6151 }
6152 
6153 static int
6154 intel_dp_detect(struct drm_connector *connector,
6155 		struct drm_modeset_acquire_ctx *ctx,
6156 		bool force)
6157 {
6158 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6159 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6160 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6161 	struct intel_encoder *encoder = &dig_port->base;
6162 	enum drm_connector_status status;
6163 
6164 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6165 		    connector->base.id, connector->name);
6166 	drm_WARN_ON(&dev_priv->drm,
6167 		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6168 
6169 	/* Can't disconnect eDP */
6170 	if (intel_dp_is_edp(intel_dp))
6171 		status = edp_detect(intel_dp);
6172 	else if (intel_digital_port_connected(encoder))
6173 		status = intel_dp_detect_dpcd(intel_dp);
6174 	else
6175 		status = connector_status_disconnected;
6176 
6177 	if (status == connector_status_disconnected) {
6178 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6179 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6180 
6181 		if (intel_dp->is_mst) {
6182 			drm_dbg_kms(&dev_priv->drm,
6183 				    "MST device may have disappeared %d vs %d\n",
6184 				    intel_dp->is_mst,
6185 				    intel_dp->mst_mgr.mst_state);
6186 			intel_dp->is_mst = false;
6187 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6188 							intel_dp->is_mst);
6189 		}
6190 
6191 		goto out;
6192 	}
6193 
6194 	if (intel_dp->reset_link_params) {
6195 		/* Initial max link lane count */
6196 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6197 
6198 		/* Initial max link rate */
6199 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6200 
6201 		intel_dp->reset_link_params = false;
6202 	}
6203 
6204 	intel_dp_print_rates(intel_dp);
6205 
6206 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6207 	if (INTEL_GEN(dev_priv) >= 11)
6208 		intel_dp_get_dsc_sink_cap(intel_dp);
6209 
6210 	intel_dp_configure_mst(intel_dp);
6211 
6212 	if (intel_dp->is_mst) {
6213 		/*
6214 		 * If we are in MST mode then this connector
6215 		 * won't appear connected or have anything
6216 		 * with EDID on it
6217 		 */
6218 		status = connector_status_disconnected;
6219 		goto out;
6220 	}
6221 
6222 	/*
6223 	 * Some external monitors do not signal loss of link synchronization
6224 	 * with an IRQ_HPD, so force a link status check.
6225 	 */
6226 	if (!intel_dp_is_edp(intel_dp)) {
6227 		int ret;
6228 
6229 		ret = intel_dp_retrain_link(encoder, ctx);
6230 		if (ret)
6231 			return ret;
6232 	}
6233 
6234 	/*
6235 	 * Clearing NACK and defer counts to get their exact values
6236 	 * while reading EDID which are required by Compliance tests
6237 	 * 4.2.2.4 and 4.2.2.5
6238 	 */
6239 	intel_dp->aux.i2c_nack_count = 0;
6240 	intel_dp->aux.i2c_defer_count = 0;
6241 
6242 	intel_dp_set_edid(intel_dp);
6243 	if (intel_dp_is_edp(intel_dp) ||
6244 	    to_intel_connector(connector)->detect_edid)
6245 		status = connector_status_connected;
6246 
6247 	intel_dp_check_service_irq(intel_dp);
6248 
6249 out:
6250 	if (status != connector_status_connected && !intel_dp->is_mst)
6251 		intel_dp_unset_edid(intel_dp);
6252 
6253 	/*
6254 	 * Make sure the refs for power wells enabled during detect are
6255 	 * dropped to avoid a new detect cycle triggered by HPD polling.
6256 	 */
6257 	intel_display_power_flush_work(dev_priv);
6258 
6259 	return status;
6260 }
6261 
6262 static void
6263 intel_dp_force(struct drm_connector *connector)
6264 {
6265 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6266 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6267 	struct intel_encoder *intel_encoder = &dig_port->base;
6268 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6269 	enum intel_display_power_domain aux_domain =
6270 		intel_aux_power_domain(dig_port);
6271 	intel_wakeref_t wakeref;
6272 
6273 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6274 		    connector->base.id, connector->name);
6275 	intel_dp_unset_edid(intel_dp);
6276 
6277 	if (connector->status != connector_status_connected)
6278 		return;
6279 
6280 	wakeref = intel_display_power_get(dev_priv, aux_domain);
6281 
6282 	intel_dp_set_edid(intel_dp);
6283 
6284 	intel_display_power_put(dev_priv, aux_domain, wakeref);
6285 }
6286 
6287 static int intel_dp_get_modes(struct drm_connector *connector)
6288 {
6289 	struct intel_connector *intel_connector = to_intel_connector(connector);
6290 	struct edid *edid;
6291 
6292 	edid = intel_connector->detect_edid;
6293 	if (edid) {
6294 		int ret = intel_connector_update_modes(connector, edid);
6295 		if (ret)
6296 			return ret;
6297 	}
6298 
6299 	/* if eDP has no EDID, fall back to fixed mode */
6300 	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6301 	    intel_connector->panel.fixed_mode) {
6302 		struct drm_display_mode *mode;
6303 
6304 		mode = drm_mode_duplicate(connector->dev,
6305 					  intel_connector->panel.fixed_mode);
6306 		if (mode) {
6307 			drm_mode_probed_add(connector, mode);
6308 			return 1;
6309 		}
6310 	}
6311 
6312 	return 0;
6313 }
6314 
6315 static int
6316 intel_dp_connector_register(struct drm_connector *connector)
6317 {
6318 	struct drm_i915_private *i915 = to_i915(connector->dev);
6319 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6320 	int ret;
6321 
6322 	ret = intel_connector_register(connector);
6323 	if (ret)
6324 		return ret;
6325 
6326 	drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6327 		    intel_dp->aux.name, connector->kdev->kobj.name);
6328 
6329 	intel_dp->aux.dev = connector->kdev;
6330 	ret = drm_dp_aux_register(&intel_dp->aux);
6331 	if (!ret)
6332 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
6333 	return ret;
6334 }
6335 
6336 static void
6337 intel_dp_connector_unregister(struct drm_connector *connector)
6338 {
6339 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6340 
6341 	drm_dp_cec_unregister_connector(&intel_dp->aux);
6342 	drm_dp_aux_unregister(&intel_dp->aux);
6343 	intel_connector_unregister(connector);
6344 }
6345 
6346 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6347 {
6348 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6349 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6350 
6351 	intel_dp_mst_encoder_cleanup(intel_dig_port);
6352 	if (intel_dp_is_edp(intel_dp)) {
6353 		intel_wakeref_t wakeref;
6354 
6355 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6356 		/*
6357 		 * vdd might still be enabled do to the delayed vdd off.
6358 		 * Make sure vdd is actually turned off here.
6359 		 */
6360 		with_pps_lock(intel_dp, wakeref)
6361 			edp_panel_vdd_off_sync(intel_dp);
6362 
6363 		if (intel_dp->edp_notifier.notifier_call) {
6364 			unregister_reboot_notifier(&intel_dp->edp_notifier);
6365 			intel_dp->edp_notifier.notifier_call = NULL;
6366 		}
6367 	}
6368 
6369 	intel_dp_aux_fini(intel_dp);
6370 }
6371 
6372 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6373 {
6374 	intel_dp_encoder_flush_work(encoder);
6375 
6376 	drm_encoder_cleanup(encoder);
6377 	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6378 }
6379 
6380 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6381 {
6382 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6383 	intel_wakeref_t wakeref;
6384 
6385 	if (!intel_dp_is_edp(intel_dp))
6386 		return;
6387 
6388 	/*
6389 	 * vdd might still be enabled do to the delayed vdd off.
6390 	 * Make sure vdd is actually turned off here.
6391 	 */
6392 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6393 	with_pps_lock(intel_dp, wakeref)
6394 		edp_panel_vdd_off_sync(intel_dp);
6395 }
6396 
6397 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
6398 {
6399 	long ret;
6400 
6401 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
6402 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
6403 					       msecs_to_jiffies(timeout));
6404 
6405 	if (!ret)
6406 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
6407 }
6408 
6409 static
6410 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
6411 				u8 *an)
6412 {
6413 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6414 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6415 	static const struct drm_dp_aux_msg msg = {
6416 		.request = DP_AUX_NATIVE_WRITE,
6417 		.address = DP_AUX_HDCP_AKSV,
6418 		.size = DRM_HDCP_KSV_LEN,
6419 	};
6420 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6421 	ssize_t dpcd_ret;
6422 	int ret;
6423 
6424 	/* Output An first, that's easy */
6425 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
6426 				     an, DRM_HDCP_AN_LEN);
6427 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
6428 		drm_dbg_kms(&i915->drm,
6429 			    "Failed to write An over DP/AUX (%zd)\n",
6430 			    dpcd_ret);
6431 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
6432 	}
6433 
6434 	/*
6435 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
6436 	 * order to get it on the wire, we need to create the AUX header as if
6437 	 * we were writing the data, and then tickle the hardware to output the
6438 	 * data once the header is sent out.
6439 	 */
6440 	intel_dp_aux_header(txbuf, &msg);
6441 
6442 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6443 				rxbuf, sizeof(rxbuf),
6444 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6445 	if (ret < 0) {
6446 		drm_dbg_kms(&i915->drm,
6447 			    "Write Aksv over DP/AUX failed (%d)\n", ret);
6448 		return ret;
6449 	} else if (ret == 0) {
6450 		drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n");
6451 		return -EIO;
6452 	}
6453 
6454 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6455 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6456 		drm_dbg_kms(&i915->drm,
6457 			    "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6458 			    reply);
6459 		return -EIO;
6460 	}
6461 	return 0;
6462 }
6463 
6464 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6465 				   u8 *bksv)
6466 {
6467 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6468 	ssize_t ret;
6469 
6470 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6471 			       DRM_HDCP_KSV_LEN);
6472 	if (ret != DRM_HDCP_KSV_LEN) {
6473 		drm_dbg_kms(&i915->drm,
6474 			    "Read Bksv from DP/AUX failed (%zd)\n", ret);
6475 		return ret >= 0 ? -EIO : ret;
6476 	}
6477 	return 0;
6478 }
6479 
6480 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6481 				      u8 *bstatus)
6482 {
6483 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6484 	ssize_t ret;
6485 
6486 	/*
6487 	 * For some reason the HDMI and DP HDCP specs call this register
6488 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
6489 	 * but in DP it's called BINFO.
6490 	 */
6491 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6492 			       bstatus, DRM_HDCP_BSTATUS_LEN);
6493 	if (ret != DRM_HDCP_BSTATUS_LEN) {
6494 		drm_dbg_kms(&i915->drm,
6495 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6496 		return ret >= 0 ? -EIO : ret;
6497 	}
6498 	return 0;
6499 }
6500 
6501 static
6502 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6503 			     u8 *bcaps)
6504 {
6505 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6506 	ssize_t ret;
6507 
6508 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6509 			       bcaps, 1);
6510 	if (ret != 1) {
6511 		drm_dbg_kms(&i915->drm,
6512 			    "Read bcaps from DP/AUX failed (%zd)\n", ret);
6513 		return ret >= 0 ? -EIO : ret;
6514 	}
6515 
6516 	return 0;
6517 }
6518 
6519 static
6520 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6521 				   bool *repeater_present)
6522 {
6523 	ssize_t ret;
6524 	u8 bcaps;
6525 
6526 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6527 	if (ret)
6528 		return ret;
6529 
6530 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6531 	return 0;
6532 }
6533 
6534 static
6535 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6536 				u8 *ri_prime)
6537 {
6538 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6539 	ssize_t ret;
6540 
6541 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6542 			       ri_prime, DRM_HDCP_RI_LEN);
6543 	if (ret != DRM_HDCP_RI_LEN) {
6544 		drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
6545 			    ret);
6546 		return ret >= 0 ? -EIO : ret;
6547 	}
6548 	return 0;
6549 }
6550 
6551 static
6552 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6553 				 bool *ksv_ready)
6554 {
6555 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6556 	ssize_t ret;
6557 	u8 bstatus;
6558 
6559 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6560 			       &bstatus, 1);
6561 	if (ret != 1) {
6562 		drm_dbg_kms(&i915->drm,
6563 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6564 		return ret >= 0 ? -EIO : ret;
6565 	}
6566 	*ksv_ready = bstatus & DP_BSTATUS_READY;
6567 	return 0;
6568 }
6569 
6570 static
6571 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6572 				int num_downstream, u8 *ksv_fifo)
6573 {
6574 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6575 	ssize_t ret;
6576 	int i;
6577 
6578 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6579 	for (i = 0; i < num_downstream; i += 3) {
6580 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6581 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6582 				       DP_AUX_HDCP_KSV_FIFO,
6583 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
6584 				       len);
6585 		if (ret != len) {
6586 			drm_dbg_kms(&i915->drm,
6587 				    "Read ksv[%d] from DP/AUX failed (%zd)\n",
6588 				    i, ret);
6589 			return ret >= 0 ? -EIO : ret;
6590 		}
6591 	}
6592 	return 0;
6593 }
6594 
6595 static
6596 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6597 				    int i, u32 *part)
6598 {
6599 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6600 	ssize_t ret;
6601 
6602 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6603 		return -EINVAL;
6604 
6605 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6606 			       DP_AUX_HDCP_V_PRIME(i), part,
6607 			       DRM_HDCP_V_PRIME_PART_LEN);
6608 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6609 		drm_dbg_kms(&i915->drm,
6610 			    "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6611 		return ret >= 0 ? -EIO : ret;
6612 	}
6613 	return 0;
6614 }
6615 
6616 static
6617 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6618 				    bool enable)
6619 {
6620 	/* Not used for single stream DisplayPort setups */
6621 	return 0;
6622 }
6623 
6624 static
6625 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6626 {
6627 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6628 	ssize_t ret;
6629 	u8 bstatus;
6630 
6631 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6632 			       &bstatus, 1);
6633 	if (ret != 1) {
6634 		drm_dbg_kms(&i915->drm,
6635 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6636 		return false;
6637 	}
6638 
6639 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6640 }
6641 
6642 static
6643 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6644 			  bool *hdcp_capable)
6645 {
6646 	ssize_t ret;
6647 	u8 bcaps;
6648 
6649 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6650 	if (ret)
6651 		return ret;
6652 
6653 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6654 	return 0;
6655 }
6656 
6657 struct hdcp2_dp_errata_stream_type {
6658 	u8	msg_id;
6659 	u8	stream_type;
6660 } __packed;
6661 
6662 struct hdcp2_dp_msg_data {
6663 	u8 msg_id;
6664 	u32 offset;
6665 	bool msg_detectable;
6666 	u32 timeout;
6667 	u32 timeout2; /* Added for non_paired situation */
6668 };
6669 
6670 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6671 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6672 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6673 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6674 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6675 	  false, 0, 0 },
6676 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6677 	  false, 0, 0 },
6678 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6679 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6680 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6681 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
6682 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6683 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6684 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6685 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6686 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6687 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6688 	  0, 0 },
6689 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
6690 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6691 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6692 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6693 	  0, 0 },
6694 	{ HDCP_2_2_REP_STREAM_MANAGE,
6695 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6696 	  0, 0 },
6697 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6698 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6699 /* local define to shovel this through the write_2_2 interface */
6700 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6701 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6702 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6703 	  0, 0 },
6704 };
6705 
6706 static int
6707 intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6708 			      u8 *rx_status)
6709 {
6710 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6711 	ssize_t ret;
6712 
6713 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6714 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6715 			       HDCP_2_2_DP_RXSTATUS_LEN);
6716 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6717 		drm_dbg_kms(&i915->drm,
6718 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6719 		return ret >= 0 ? -EIO : ret;
6720 	}
6721 
6722 	return 0;
6723 }
6724 
6725 static
6726 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6727 				  u8 msg_id, bool *msg_ready)
6728 {
6729 	u8 rx_status;
6730 	int ret;
6731 
6732 	*msg_ready = false;
6733 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6734 	if (ret < 0)
6735 		return ret;
6736 
6737 	switch (msg_id) {
6738 	case HDCP_2_2_AKE_SEND_HPRIME:
6739 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6740 			*msg_ready = true;
6741 		break;
6742 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6743 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6744 			*msg_ready = true;
6745 		break;
6746 	case HDCP_2_2_REP_SEND_RECVID_LIST:
6747 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6748 			*msg_ready = true;
6749 		break;
6750 	default:
6751 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6752 		return -EINVAL;
6753 	}
6754 
6755 	return 0;
6756 }
6757 
6758 static ssize_t
6759 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6760 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6761 {
6762 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6763 	struct intel_dp *dp = &intel_dig_port->dp;
6764 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6765 	u8 msg_id = hdcp2_msg_data->msg_id;
6766 	int ret, timeout;
6767 	bool msg_ready = false;
6768 
6769 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6770 		timeout = hdcp2_msg_data->timeout2;
6771 	else
6772 		timeout = hdcp2_msg_data->timeout;
6773 
6774 	/*
6775 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
6776 	 * availability. So Wait for timeout and read the msg.
6777 	 */
6778 	if (!hdcp2_msg_data->msg_detectable) {
6779 		mdelay(timeout);
6780 		ret = 0;
6781 	} else {
6782 		/*
6783 		 * As we want to check the msg availability at timeout, Ignoring
6784 		 * the timeout at wait for CP_IRQ.
6785 		 */
6786 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6787 		ret = hdcp2_detect_msg_availability(intel_dig_port,
6788 						    msg_id, &msg_ready);
6789 		if (!msg_ready)
6790 			ret = -ETIMEDOUT;
6791 	}
6792 
6793 	if (ret)
6794 		drm_dbg_kms(&i915->drm,
6795 			    "msg_id %d, ret %d, timeout(mSec): %d\n",
6796 			    hdcp2_msg_data->msg_id, ret, timeout);
6797 
6798 	return ret;
6799 }
6800 
6801 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6802 {
6803 	int i;
6804 
6805 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6806 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6807 			return &hdcp2_dp_msg_data[i];
6808 
6809 	return NULL;
6810 }
6811 
6812 static
6813 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6814 			     void *buf, size_t size)
6815 {
6816 	struct intel_dp *dp = &intel_dig_port->dp;
6817 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6818 	unsigned int offset;
6819 	u8 *byte = buf;
6820 	ssize_t ret, bytes_to_write, len;
6821 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6822 
6823 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6824 	if (!hdcp2_msg_data)
6825 		return -EINVAL;
6826 
6827 	offset = hdcp2_msg_data->offset;
6828 
6829 	/* No msg_id in DP HDCP2.2 msgs */
6830 	bytes_to_write = size - 1;
6831 	byte++;
6832 
6833 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6834 
6835 	while (bytes_to_write) {
6836 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6837 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6838 
6839 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6840 					offset, (void *)byte, len);
6841 		if (ret < 0)
6842 			return ret;
6843 
6844 		bytes_to_write -= ret;
6845 		byte += ret;
6846 		offset += ret;
6847 	}
6848 
6849 	return size;
6850 }
6851 
6852 static
6853 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6854 {
6855 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6856 	u32 dev_cnt;
6857 	ssize_t ret;
6858 
6859 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6860 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6861 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6862 	if (ret != HDCP_2_2_RXINFO_LEN)
6863 		return ret >= 0 ? -EIO : ret;
6864 
6865 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6866 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6867 
6868 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6869 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6870 
6871 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6872 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6873 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6874 
6875 	return ret;
6876 }
6877 
6878 static
6879 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6880 			    u8 msg_id, void *buf, size_t size)
6881 {
6882 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6883 	unsigned int offset;
6884 	u8 *byte = buf;
6885 	ssize_t ret, bytes_to_recv, len;
6886 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6887 
6888 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6889 	if (!hdcp2_msg_data)
6890 		return -EINVAL;
6891 	offset = hdcp2_msg_data->offset;
6892 
6893 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6894 	if (ret < 0)
6895 		return ret;
6896 
6897 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6898 		ret = get_receiver_id_list_size(intel_dig_port);
6899 		if (ret < 0)
6900 			return ret;
6901 
6902 		size = ret;
6903 	}
6904 	bytes_to_recv = size - 1;
6905 
6906 	/* DP adaptation msgs has no msg_id */
6907 	byte++;
6908 
6909 	while (bytes_to_recv) {
6910 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6911 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6912 
6913 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6914 				       (void *)byte, len);
6915 		if (ret < 0) {
6916 			drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
6917 				    msg_id, ret);
6918 			return ret;
6919 		}
6920 
6921 		bytes_to_recv -= ret;
6922 		byte += ret;
6923 		offset += ret;
6924 	}
6925 	byte = buf;
6926 	*byte = msg_id;
6927 
6928 	return size;
6929 }
6930 
6931 static
6932 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6933 				      bool is_repeater, u8 content_type)
6934 {
6935 	int ret;
6936 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6937 
6938 	if (is_repeater)
6939 		return 0;
6940 
6941 	/*
6942 	 * Errata for DP: As Stream type is used for encryption, Receiver
6943 	 * should be communicated with stream type for the decryption of the
6944 	 * content.
6945 	 * Repeater will be communicated with stream type as a part of it's
6946 	 * auth later in time.
6947 	 */
6948 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6949 	stream_type_msg.stream_type = content_type;
6950 
6951 	ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6952 					sizeof(stream_type_msg));
6953 
6954 	return ret < 0 ? ret : 0;
6955 
6956 }
6957 
6958 static
6959 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6960 {
6961 	u8 rx_status;
6962 	int ret;
6963 
6964 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6965 	if (ret)
6966 		return ret;
6967 
6968 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6969 		ret = HDCP_REAUTH_REQUEST;
6970 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6971 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6972 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6973 		ret = HDCP_TOPOLOGY_CHANGE;
6974 
6975 	return ret;
6976 }
6977 
6978 static
6979 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6980 			   bool *capable)
6981 {
6982 	u8 rx_caps[3];
6983 	int ret;
6984 
6985 	*capable = false;
6986 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6987 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6988 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6989 	if (ret != HDCP_2_2_RXCAPS_LEN)
6990 		return ret >= 0 ? -EIO : ret;
6991 
6992 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6993 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6994 		*capable = true;
6995 
6996 	return 0;
6997 }
6998 
6999 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
7000 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
7001 	.read_bksv = intel_dp_hdcp_read_bksv,
7002 	.read_bstatus = intel_dp_hdcp_read_bstatus,
7003 	.repeater_present = intel_dp_hdcp_repeater_present,
7004 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
7005 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
7006 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
7007 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
7008 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
7009 	.check_link = intel_dp_hdcp_check_link,
7010 	.hdcp_capable = intel_dp_hdcp_capable,
7011 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
7012 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
7013 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
7014 	.check_2_2_link = intel_dp_hdcp2_check_link,
7015 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
7016 	.protocol = HDCP_PROTOCOL_DP,
7017 };
7018 
7019 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
7020 {
7021 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7022 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
7023 
7024 	lockdep_assert_held(&dev_priv->pps_mutex);
7025 
7026 	if (!edp_have_panel_vdd(intel_dp))
7027 		return;
7028 
7029 	/*
7030 	 * The VDD bit needs a power domain reference, so if the bit is
7031 	 * already enabled when we boot or resume, grab this reference and
7032 	 * schedule a vdd off, so we don't hold on to the reference
7033 	 * indefinitely.
7034 	 */
7035 	drm_dbg_kms(&dev_priv->drm,
7036 		    "VDD left on by BIOS, adjusting state tracking\n");
7037 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
7038 
7039 	edp_panel_vdd_schedule_off(intel_dp);
7040 }
7041 
7042 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
7043 {
7044 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7045 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
7046 	enum pipe pipe;
7047 
7048 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
7049 				  encoder->port, &pipe))
7050 		return pipe;
7051 
7052 	return INVALID_PIPE;
7053 }
7054 
7055 void intel_dp_encoder_reset(struct drm_encoder *encoder)
7056 {
7057 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
7058 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
7059 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
7060 	intel_wakeref_t wakeref;
7061 
7062 	if (!HAS_DDI(dev_priv))
7063 		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7064 
7065 	if (lspcon->active)
7066 		lspcon_resume(lspcon);
7067 
7068 	intel_dp->reset_link_params = true;
7069 
7070 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
7071 	    !intel_dp_is_edp(intel_dp))
7072 		return;
7073 
7074 	with_pps_lock(intel_dp, wakeref) {
7075 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7076 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7077 
7078 		if (intel_dp_is_edp(intel_dp)) {
7079 			/*
7080 			 * Reinit the power sequencer, in case BIOS did
7081 			 * something nasty with it.
7082 			 */
7083 			intel_dp_pps_init(intel_dp);
7084 			intel_edp_panel_vdd_sanitize(intel_dp);
7085 		}
7086 	}
7087 }
7088 
7089 static int intel_modeset_tile_group(struct intel_atomic_state *state,
7090 				    int tile_group_id)
7091 {
7092 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7093 	struct drm_connector_list_iter conn_iter;
7094 	struct drm_connector *connector;
7095 	int ret = 0;
7096 
7097 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
7098 	drm_for_each_connector_iter(connector, &conn_iter) {
7099 		struct drm_connector_state *conn_state;
7100 		struct intel_crtc_state *crtc_state;
7101 		struct intel_crtc *crtc;
7102 
7103 		if (!connector->has_tile ||
7104 		    connector->tile_group->id != tile_group_id)
7105 			continue;
7106 
7107 		conn_state = drm_atomic_get_connector_state(&state->base,
7108 							    connector);
7109 		if (IS_ERR(conn_state)) {
7110 			ret = PTR_ERR(conn_state);
7111 			break;
7112 		}
7113 
7114 		crtc = to_intel_crtc(conn_state->crtc);
7115 
7116 		if (!crtc)
7117 			continue;
7118 
7119 		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
7120 		crtc_state->uapi.mode_changed = true;
7121 
7122 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7123 		if (ret)
7124 			break;
7125 	}
7126 	drm_connector_list_iter_end(&conn_iter);
7127 
7128 	return ret;
7129 }
7130 
7131 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
7132 {
7133 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7134 	struct intel_crtc *crtc;
7135 
7136 	if (transcoders == 0)
7137 		return 0;
7138 
7139 	for_each_intel_crtc(&dev_priv->drm, crtc) {
7140 		struct intel_crtc_state *crtc_state;
7141 		int ret;
7142 
7143 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
7144 		if (IS_ERR(crtc_state))
7145 			return PTR_ERR(crtc_state);
7146 
7147 		if (!crtc_state->hw.enable)
7148 			continue;
7149 
7150 		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
7151 			continue;
7152 
7153 		crtc_state->uapi.mode_changed = true;
7154 
7155 		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
7156 		if (ret)
7157 			return ret;
7158 
7159 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7160 		if (ret)
7161 			return ret;
7162 
7163 		transcoders &= ~BIT(crtc_state->cpu_transcoder);
7164 	}
7165 
7166 	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7167 
7168 	return 0;
7169 }
7170 
7171 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
7172 				      struct drm_connector *connector)
7173 {
7174 	const struct drm_connector_state *old_conn_state =
7175 		drm_atomic_get_old_connector_state(&state->base, connector);
7176 	const struct intel_crtc_state *old_crtc_state;
7177 	struct intel_crtc *crtc;
7178 	u8 transcoders;
7179 
7180 	crtc = to_intel_crtc(old_conn_state->crtc);
7181 	if (!crtc)
7182 		return 0;
7183 
7184 	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
7185 
7186 	if (!old_crtc_state->hw.active)
7187 		return 0;
7188 
7189 	transcoders = old_crtc_state->sync_mode_slaves_mask;
7190 	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
7191 		transcoders |= BIT(old_crtc_state->master_transcoder);
7192 
7193 	return intel_modeset_affected_transcoders(state,
7194 						  transcoders);
7195 }
7196 
7197 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
7198 					   struct drm_atomic_state *_state)
7199 {
7200 	struct drm_i915_private *dev_priv = to_i915(conn->dev);
7201 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
7202 	int ret;
7203 
7204 	ret = intel_digital_connector_atomic_check(conn, &state->base);
7205 	if (ret)
7206 		return ret;
7207 
7208 	/*
7209 	 * We don't enable port sync on BDW due to missing w/as and
7210 	 * due to not having adjusted the modeset sequence appropriately.
7211 	 */
7212 	if (INTEL_GEN(dev_priv) < 9)
7213 		return 0;
7214 
7215 	if (!intel_connector_needs_modeset(state, conn))
7216 		return 0;
7217 
7218 	if (conn->has_tile) {
7219 		ret = intel_modeset_tile_group(state, conn->tile_group->id);
7220 		if (ret)
7221 			return ret;
7222 	}
7223 
7224 	return intel_modeset_synced_crtcs(state, conn);
7225 }
7226 
7227 static const struct drm_connector_funcs intel_dp_connector_funcs = {
7228 	.force = intel_dp_force,
7229 	.fill_modes = drm_helper_probe_single_connector_modes,
7230 	.atomic_get_property = intel_digital_connector_atomic_get_property,
7231 	.atomic_set_property = intel_digital_connector_atomic_set_property,
7232 	.late_register = intel_dp_connector_register,
7233 	.early_unregister = intel_dp_connector_unregister,
7234 	.destroy = intel_connector_destroy,
7235 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7236 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
7237 };
7238 
7239 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7240 	.detect_ctx = intel_dp_detect,
7241 	.get_modes = intel_dp_get_modes,
7242 	.mode_valid = intel_dp_mode_valid,
7243 	.atomic_check = intel_dp_connector_atomic_check,
7244 };
7245 
7246 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7247 	.reset = intel_dp_encoder_reset,
7248 	.destroy = intel_dp_encoder_destroy,
7249 };
7250 
7251 static bool intel_edp_have_power(struct intel_dp *intel_dp)
7252 {
7253 	intel_wakeref_t wakeref;
7254 	bool have_power = false;
7255 
7256 	with_pps_lock(intel_dp, wakeref) {
7257 		have_power = edp_have_panel_power(intel_dp) &&
7258 						  edp_have_panel_vdd(intel_dp);
7259 	}
7260 
7261 	return have_power;
7262 }
7263 
7264 enum irqreturn
7265 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
7266 {
7267 	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7268 	struct intel_dp *intel_dp = &intel_dig_port->dp;
7269 
7270 	if (intel_dig_port->base.type == INTEL_OUTPUT_EDP &&
7271 	    (long_hpd || !intel_edp_have_power(intel_dp))) {
7272 		/*
7273 		 * vdd off can generate a long/short pulse on eDP which
7274 		 * would require vdd on to handle it, and thus we
7275 		 * would end up in an endless cycle of
7276 		 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7277 		 */
7278 		drm_dbg_kms(&i915->drm,
7279 			    "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
7280 			    long_hpd ? "long" : "short",
7281 			    intel_dig_port->base.base.base.id,
7282 			    intel_dig_port->base.base.name);
7283 		return IRQ_HANDLED;
7284 	}
7285 
7286 	drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
7287 		    intel_dig_port->base.base.base.id,
7288 		    intel_dig_port->base.base.name,
7289 		    long_hpd ? "long" : "short");
7290 
7291 	if (long_hpd) {
7292 		intel_dp->reset_link_params = true;
7293 		return IRQ_NONE;
7294 	}
7295 
7296 	if (intel_dp->is_mst) {
7297 		switch (intel_dp_check_mst_status(intel_dp)) {
7298 		case -EINVAL:
7299 			/*
7300 			 * If we were in MST mode, and device is not
7301 			 * there, get out of MST mode
7302 			 */
7303 			drm_dbg_kms(&i915->drm,
7304 				    "MST device may have disappeared %d vs %d\n",
7305 				    intel_dp->is_mst,
7306 				    intel_dp->mst_mgr.mst_state);
7307 			intel_dp->is_mst = false;
7308 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7309 							intel_dp->is_mst);
7310 
7311 			return IRQ_NONE;
7312 		case 1:
7313 			return IRQ_NONE;
7314 		default:
7315 			break;
7316 		}
7317 	}
7318 
7319 	if (!intel_dp->is_mst) {
7320 		bool handled;
7321 
7322 		handled = intel_dp_short_pulse(intel_dp);
7323 
7324 		if (!handled)
7325 			return IRQ_NONE;
7326 	}
7327 
7328 	return IRQ_HANDLED;
7329 }
7330 
7331 /* check the VBT to see whether the eDP is on another port */
7332 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7333 {
7334 	/*
7335 	 * eDP not supported on g4x. so bail out early just
7336 	 * for a bit extra safety in case the VBT is bonkers.
7337 	 */
7338 	if (INTEL_GEN(dev_priv) < 5)
7339 		return false;
7340 
7341 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7342 		return true;
7343 
7344 	return intel_bios_is_port_edp(dev_priv, port);
7345 }
7346 
7347 static void
7348 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
7349 {
7350 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
7351 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7352 
7353 	if (!IS_G4X(dev_priv) && port != PORT_A)
7354 		intel_attach_force_audio_property(connector);
7355 
7356 	intel_attach_broadcast_rgb_property(connector);
7357 	if (HAS_GMCH(dev_priv))
7358 		drm_connector_attach_max_bpc_property(connector, 6, 10);
7359 	else if (INTEL_GEN(dev_priv) >= 5)
7360 		drm_connector_attach_max_bpc_property(connector, 6, 12);
7361 
7362 	intel_attach_colorspace_property(connector);
7363 
7364 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
7365 		drm_object_attach_property(&connector->base,
7366 					   connector->dev->mode_config.hdr_output_metadata_property,
7367 					   0);
7368 
7369 	if (intel_dp_is_edp(intel_dp)) {
7370 		u32 allowed_scalers;
7371 
7372 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
7373 		if (!HAS_GMCH(dev_priv))
7374 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
7375 
7376 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
7377 
7378 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7379 
7380 	}
7381 }
7382 
7383 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
7384 {
7385 	intel_dp->panel_power_off_time = ktime_get_boottime();
7386 	intel_dp->last_power_on = jiffies;
7387 	intel_dp->last_backlight_off = jiffies;
7388 }
7389 
7390 static void
7391 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7392 {
7393 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7394 	u32 pp_on, pp_off, pp_ctl;
7395 	struct pps_registers regs;
7396 
7397 	intel_pps_get_registers(intel_dp, &regs);
7398 
7399 	pp_ctl = ilk_get_pp_control(intel_dp);
7400 
7401 	/* Ensure PPS is unlocked */
7402 	if (!HAS_DDI(dev_priv))
7403 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7404 
7405 	pp_on = intel_de_read(dev_priv, regs.pp_on);
7406 	pp_off = intel_de_read(dev_priv, regs.pp_off);
7407 
7408 	/* Pull timing values out of registers */
7409 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
7410 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
7411 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
7412 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7413 
7414 	if (i915_mmio_reg_valid(regs.pp_div)) {
7415 		u32 pp_div;
7416 
7417 		pp_div = intel_de_read(dev_priv, regs.pp_div);
7418 
7419 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7420 	} else {
7421 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7422 	}
7423 }
7424 
7425 static void
7426 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
7427 {
7428 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
7429 		      state_name,
7430 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
7431 }
7432 
7433 static void
7434 intel_pps_verify_state(struct intel_dp *intel_dp)
7435 {
7436 	struct edp_power_seq hw;
7437 	struct edp_power_seq *sw = &intel_dp->pps_delays;
7438 
7439 	intel_pps_readout_hw_state(intel_dp, &hw);
7440 
7441 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
7442 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
7443 		DRM_ERROR("PPS state mismatch\n");
7444 		intel_pps_dump_state("sw", sw);
7445 		intel_pps_dump_state("hw", &hw);
7446 	}
7447 }
7448 
7449 static void
7450 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7451 {
7452 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7453 	struct edp_power_seq cur, vbt, spec,
7454 		*final = &intel_dp->pps_delays;
7455 
7456 	lockdep_assert_held(&dev_priv->pps_mutex);
7457 
7458 	/* already initialized? */
7459 	if (final->t11_t12 != 0)
7460 		return;
7461 
7462 	intel_pps_readout_hw_state(intel_dp, &cur);
7463 
7464 	intel_pps_dump_state("cur", &cur);
7465 
7466 	vbt = dev_priv->vbt.edp.pps;
7467 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7468 	 * of 500ms appears to be too short. Ocassionally the panel
7469 	 * just fails to power back on. Increasing the delay to 800ms
7470 	 * seems sufficient to avoid this problem.
7471 	 */
7472 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7473 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7474 		drm_dbg_kms(&dev_priv->drm,
7475 			    "Increasing T12 panel delay as per the quirk to %d\n",
7476 			    vbt.t11_t12);
7477 	}
7478 	/* T11_T12 delay is special and actually in units of 100ms, but zero
7479 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7480 	 * table multiplies it with 1000 to make it in units of 100usec,
7481 	 * too. */
7482 	vbt.t11_t12 += 100 * 10;
7483 
7484 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7485 	 * our hw here, which are all in 100usec. */
7486 	spec.t1_t3 = 210 * 10;
7487 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7488 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7489 	spec.t10 = 500 * 10;
7490 	/* This one is special and actually in units of 100ms, but zero
7491 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7492 	 * table multiplies it with 1000 to make it in units of 100usec,
7493 	 * too. */
7494 	spec.t11_t12 = (510 + 100) * 10;
7495 
7496 	intel_pps_dump_state("vbt", &vbt);
7497 
7498 	/* Use the max of the register settings and vbt. If both are
7499 	 * unset, fall back to the spec limits. */
7500 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
7501 				       spec.field : \
7502 				       max(cur.field, vbt.field))
7503 	assign_final(t1_t3);
7504 	assign_final(t8);
7505 	assign_final(t9);
7506 	assign_final(t10);
7507 	assign_final(t11_t12);
7508 #undef assign_final
7509 
7510 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
7511 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
7512 	intel_dp->backlight_on_delay = get_delay(t8);
7513 	intel_dp->backlight_off_delay = get_delay(t9);
7514 	intel_dp->panel_power_down_delay = get_delay(t10);
7515 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7516 #undef get_delay
7517 
7518 	drm_dbg_kms(&dev_priv->drm,
7519 		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7520 		    intel_dp->panel_power_up_delay,
7521 		    intel_dp->panel_power_down_delay,
7522 		    intel_dp->panel_power_cycle_delay);
7523 
7524 	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7525 		    intel_dp->backlight_on_delay,
7526 		    intel_dp->backlight_off_delay);
7527 
7528 	/*
7529 	 * We override the HW backlight delays to 1 because we do manual waits
7530 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
7531 	 * don't do this, we'll end up waiting for the backlight off delay
7532 	 * twice: once when we do the manual sleep, and once when we disable
7533 	 * the panel and wait for the PP_STATUS bit to become zero.
7534 	 */
7535 	final->t8 = 1;
7536 	final->t9 = 1;
7537 
7538 	/*
7539 	 * HW has only a 100msec granularity for t11_t12 so round it up
7540 	 * accordingly.
7541 	 */
7542 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7543 }
7544 
7545 static void
7546 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7547 					      bool force_disable_vdd)
7548 {
7549 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7550 	u32 pp_on, pp_off, port_sel = 0;
7551 	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7552 	struct pps_registers regs;
7553 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7554 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7555 
7556 	lockdep_assert_held(&dev_priv->pps_mutex);
7557 
7558 	intel_pps_get_registers(intel_dp, &regs);
7559 
7560 	/*
7561 	 * On some VLV machines the BIOS can leave the VDD
7562 	 * enabled even on power sequencers which aren't
7563 	 * hooked up to any port. This would mess up the
7564 	 * power domain tracking the first time we pick
7565 	 * one of these power sequencers for use since
7566 	 * edp_panel_vdd_on() would notice that the VDD was
7567 	 * already on and therefore wouldn't grab the power
7568 	 * domain reference. Disable VDD first to avoid this.
7569 	 * This also avoids spuriously turning the VDD on as
7570 	 * soon as the new power sequencer gets initialized.
7571 	 */
7572 	if (force_disable_vdd) {
7573 		u32 pp = ilk_get_pp_control(intel_dp);
7574 
7575 		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7576 			 "Panel power already on\n");
7577 
7578 		if (pp & EDP_FORCE_VDD)
7579 			drm_dbg_kms(&dev_priv->drm,
7580 				    "VDD already on, disabling first\n");
7581 
7582 		pp &= ~EDP_FORCE_VDD;
7583 
7584 		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7585 	}
7586 
7587 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7588 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7589 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7590 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7591 
7592 	/* Haswell doesn't have any port selection bits for the panel
7593 	 * power sequencer any more. */
7594 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7595 		port_sel = PANEL_PORT_SELECT_VLV(port);
7596 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7597 		switch (port) {
7598 		case PORT_A:
7599 			port_sel = PANEL_PORT_SELECT_DPA;
7600 			break;
7601 		case PORT_C:
7602 			port_sel = PANEL_PORT_SELECT_DPC;
7603 			break;
7604 		case PORT_D:
7605 			port_sel = PANEL_PORT_SELECT_DPD;
7606 			break;
7607 		default:
7608 			MISSING_CASE(port);
7609 			break;
7610 		}
7611 	}
7612 
7613 	pp_on |= port_sel;
7614 
7615 	intel_de_write(dev_priv, regs.pp_on, pp_on);
7616 	intel_de_write(dev_priv, regs.pp_off, pp_off);
7617 
7618 	/*
7619 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
7620 	 */
7621 	if (i915_mmio_reg_valid(regs.pp_div)) {
7622 		intel_de_write(dev_priv, regs.pp_div,
7623 			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7624 	} else {
7625 		u32 pp_ctl;
7626 
7627 		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7628 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7629 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7630 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7631 	}
7632 
7633 	drm_dbg_kms(&dev_priv->drm,
7634 		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7635 		    intel_de_read(dev_priv, regs.pp_on),
7636 		    intel_de_read(dev_priv, regs.pp_off),
7637 		    i915_mmio_reg_valid(regs.pp_div) ?
7638 		    intel_de_read(dev_priv, regs.pp_div) :
7639 		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7640 }
7641 
7642 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7643 {
7644 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7645 
7646 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7647 		vlv_initial_power_sequencer_setup(intel_dp);
7648 	} else {
7649 		intel_dp_init_panel_power_sequencer(intel_dp);
7650 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7651 	}
7652 }
7653 
7654 /**
7655  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7656  * @dev_priv: i915 device
7657  * @crtc_state: a pointer to the active intel_crtc_state
7658  * @refresh_rate: RR to be programmed
7659  *
7660  * This function gets called when refresh rate (RR) has to be changed from
7661  * one frequency to another. Switches can be between high and low RR
7662  * supported by the panel or to any other RR based on media playback (in
7663  * this case, RR value needs to be passed from user space).
7664  *
7665  * The caller of this function needs to take a lock on dev_priv->drrs.
7666  */
7667 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7668 				    const struct intel_crtc_state *crtc_state,
7669 				    int refresh_rate)
7670 {
7671 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7672 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7673 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7674 
7675 	if (refresh_rate <= 0) {
7676 		drm_dbg_kms(&dev_priv->drm,
7677 			    "Refresh rate should be positive non-zero.\n");
7678 		return;
7679 	}
7680 
7681 	if (intel_dp == NULL) {
7682 		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7683 		return;
7684 	}
7685 
7686 	if (!intel_crtc) {
7687 		drm_dbg_kms(&dev_priv->drm,
7688 			    "DRRS: intel_crtc not initialized\n");
7689 		return;
7690 	}
7691 
7692 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7693 		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7694 		return;
7695 	}
7696 
7697 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
7698 			refresh_rate)
7699 		index = DRRS_LOW_RR;
7700 
7701 	if (index == dev_priv->drrs.refresh_rate_type) {
7702 		drm_dbg_kms(&dev_priv->drm,
7703 			    "DRRS requested for previously set RR...ignoring\n");
7704 		return;
7705 	}
7706 
7707 	if (!crtc_state->hw.active) {
7708 		drm_dbg_kms(&dev_priv->drm,
7709 			    "eDP encoder disabled. CRTC not Active\n");
7710 		return;
7711 	}
7712 
7713 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7714 		switch (index) {
7715 		case DRRS_HIGH_RR:
7716 			intel_dp_set_m_n(crtc_state, M1_N1);
7717 			break;
7718 		case DRRS_LOW_RR:
7719 			intel_dp_set_m_n(crtc_state, M2_N2);
7720 			break;
7721 		case DRRS_MAX_RR:
7722 		default:
7723 			drm_err(&dev_priv->drm,
7724 				"Unsupported refreshrate type\n");
7725 		}
7726 	} else if (INTEL_GEN(dev_priv) > 6) {
7727 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7728 		u32 val;
7729 
7730 		val = intel_de_read(dev_priv, reg);
7731 		if (index > DRRS_HIGH_RR) {
7732 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7733 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7734 			else
7735 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7736 		} else {
7737 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7738 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7739 			else
7740 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7741 		}
7742 		intel_de_write(dev_priv, reg, val);
7743 	}
7744 
7745 	dev_priv->drrs.refresh_rate_type = index;
7746 
7747 	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7748 		    refresh_rate);
7749 }
7750 
7751 /**
7752  * intel_edp_drrs_enable - init drrs struct if supported
7753  * @intel_dp: DP struct
7754  * @crtc_state: A pointer to the active crtc state.
7755  *
7756  * Initializes frontbuffer_bits and drrs.dp
7757  */
7758 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7759 			   const struct intel_crtc_state *crtc_state)
7760 {
7761 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7762 
7763 	if (!crtc_state->has_drrs) {
7764 		drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7765 		return;
7766 	}
7767 
7768 	if (dev_priv->psr.enabled) {
7769 		drm_dbg_kms(&dev_priv->drm,
7770 			    "PSR enabled. Not enabling DRRS.\n");
7771 		return;
7772 	}
7773 
7774 	mutex_lock(&dev_priv->drrs.mutex);
7775 	if (dev_priv->drrs.dp) {
7776 		drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7777 		goto unlock;
7778 	}
7779 
7780 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7781 
7782 	dev_priv->drrs.dp = intel_dp;
7783 
7784 unlock:
7785 	mutex_unlock(&dev_priv->drrs.mutex);
7786 }
7787 
7788 /**
7789  * intel_edp_drrs_disable - Disable DRRS
7790  * @intel_dp: DP struct
7791  * @old_crtc_state: Pointer to old crtc_state.
7792  *
7793  */
7794 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7795 			    const struct intel_crtc_state *old_crtc_state)
7796 {
7797 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7798 
7799 	if (!old_crtc_state->has_drrs)
7800 		return;
7801 
7802 	mutex_lock(&dev_priv->drrs.mutex);
7803 	if (!dev_priv->drrs.dp) {
7804 		mutex_unlock(&dev_priv->drrs.mutex);
7805 		return;
7806 	}
7807 
7808 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7809 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7810 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7811 
7812 	dev_priv->drrs.dp = NULL;
7813 	mutex_unlock(&dev_priv->drrs.mutex);
7814 
7815 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7816 }
7817 
7818 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7819 {
7820 	struct drm_i915_private *dev_priv =
7821 		container_of(work, typeof(*dev_priv), drrs.work.work);
7822 	struct intel_dp *intel_dp;
7823 
7824 	mutex_lock(&dev_priv->drrs.mutex);
7825 
7826 	intel_dp = dev_priv->drrs.dp;
7827 
7828 	if (!intel_dp)
7829 		goto unlock;
7830 
7831 	/*
7832 	 * The delayed work can race with an invalidate hence we need to
7833 	 * recheck.
7834 	 */
7835 
7836 	if (dev_priv->drrs.busy_frontbuffer_bits)
7837 		goto unlock;
7838 
7839 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7840 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7841 
7842 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7843 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7844 	}
7845 
7846 unlock:
7847 	mutex_unlock(&dev_priv->drrs.mutex);
7848 }
7849 
7850 /**
7851  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7852  * @dev_priv: i915 device
7853  * @frontbuffer_bits: frontbuffer plane tracking bits
7854  *
7855  * This function gets called everytime rendering on the given planes start.
7856  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7857  *
7858  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7859  */
7860 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7861 			       unsigned int frontbuffer_bits)
7862 {
7863 	struct drm_crtc *crtc;
7864 	enum pipe pipe;
7865 
7866 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7867 		return;
7868 
7869 	cancel_delayed_work(&dev_priv->drrs.work);
7870 
7871 	mutex_lock(&dev_priv->drrs.mutex);
7872 	if (!dev_priv->drrs.dp) {
7873 		mutex_unlock(&dev_priv->drrs.mutex);
7874 		return;
7875 	}
7876 
7877 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7878 	pipe = to_intel_crtc(crtc)->pipe;
7879 
7880 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7881 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7882 
7883 	/* invalidate means busy screen hence upclock */
7884 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7885 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7886 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7887 
7888 	mutex_unlock(&dev_priv->drrs.mutex);
7889 }
7890 
7891 /**
7892  * intel_edp_drrs_flush - Restart Idleness DRRS
7893  * @dev_priv: i915 device
7894  * @frontbuffer_bits: frontbuffer plane tracking bits
7895  *
7896  * This function gets called every time rendering on the given planes has
7897  * completed or flip on a crtc is completed. So DRRS should be upclocked
7898  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7899  * if no other planes are dirty.
7900  *
7901  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7902  */
7903 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7904 			  unsigned int frontbuffer_bits)
7905 {
7906 	struct drm_crtc *crtc;
7907 	enum pipe pipe;
7908 
7909 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7910 		return;
7911 
7912 	cancel_delayed_work(&dev_priv->drrs.work);
7913 
7914 	mutex_lock(&dev_priv->drrs.mutex);
7915 	if (!dev_priv->drrs.dp) {
7916 		mutex_unlock(&dev_priv->drrs.mutex);
7917 		return;
7918 	}
7919 
7920 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7921 	pipe = to_intel_crtc(crtc)->pipe;
7922 
7923 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7924 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7925 
7926 	/* flush means busy screen hence upclock */
7927 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7928 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7929 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7930 
7931 	/*
7932 	 * flush also means no more activity hence schedule downclock, if all
7933 	 * other fbs are quiescent too
7934 	 */
7935 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7936 		schedule_delayed_work(&dev_priv->drrs.work,
7937 				msecs_to_jiffies(1000));
7938 	mutex_unlock(&dev_priv->drrs.mutex);
7939 }
7940 
7941 /**
7942  * DOC: Display Refresh Rate Switching (DRRS)
7943  *
7944  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7945  * which enables swtching between low and high refresh rates,
7946  * dynamically, based on the usage scenario. This feature is applicable
7947  * for internal panels.
7948  *
7949  * Indication that the panel supports DRRS is given by the panel EDID, which
7950  * would list multiple refresh rates for one resolution.
7951  *
7952  * DRRS is of 2 types - static and seamless.
7953  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7954  * (may appear as a blink on screen) and is used in dock-undock scenario.
7955  * Seamless DRRS involves changing RR without any visual effect to the user
7956  * and can be used during normal system usage. This is done by programming
7957  * certain registers.
7958  *
7959  * Support for static/seamless DRRS may be indicated in the VBT based on
7960  * inputs from the panel spec.
7961  *
7962  * DRRS saves power by switching to low RR based on usage scenarios.
7963  *
7964  * The implementation is based on frontbuffer tracking implementation.  When
7965  * there is a disturbance on the screen triggered by user activity or a periodic
7966  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7967  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7968  * made.
7969  *
7970  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7971  * and intel_edp_drrs_flush() are called.
7972  *
7973  * DRRS can be further extended to support other internal panels and also
7974  * the scenario of video playback wherein RR is set based on the rate
7975  * requested by userspace.
7976  */
7977 
7978 /**
7979  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7980  * @connector: eDP connector
7981  * @fixed_mode: preferred mode of panel
7982  *
7983  * This function is  called only once at driver load to initialize basic
7984  * DRRS stuff.
7985  *
7986  * Returns:
7987  * Downclock mode if panel supports it, else return NULL.
7988  * DRRS support is determined by the presence of downclock mode (apart
7989  * from VBT setting).
7990  */
7991 static struct drm_display_mode *
7992 intel_dp_drrs_init(struct intel_connector *connector,
7993 		   struct drm_display_mode *fixed_mode)
7994 {
7995 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7996 	struct drm_display_mode *downclock_mode = NULL;
7997 
7998 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7999 	mutex_init(&dev_priv->drrs.mutex);
8000 
8001 	if (INTEL_GEN(dev_priv) <= 6) {
8002 		drm_dbg_kms(&dev_priv->drm,
8003 			    "DRRS supported for Gen7 and above\n");
8004 		return NULL;
8005 	}
8006 
8007 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
8008 		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
8009 		return NULL;
8010 	}
8011 
8012 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
8013 	if (!downclock_mode) {
8014 		drm_dbg_kms(&dev_priv->drm,
8015 			    "Downclock mode is not found. DRRS not supported\n");
8016 		return NULL;
8017 	}
8018 
8019 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
8020 
8021 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
8022 	drm_dbg_kms(&dev_priv->drm,
8023 		    "seamless DRRS supported for eDP panel.\n");
8024 	return downclock_mode;
8025 }
8026 
8027 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
8028 				     struct intel_connector *intel_connector)
8029 {
8030 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
8031 	struct drm_device *dev = &dev_priv->drm;
8032 	struct drm_connector *connector = &intel_connector->base;
8033 	struct drm_display_mode *fixed_mode = NULL;
8034 	struct drm_display_mode *downclock_mode = NULL;
8035 	bool has_dpcd;
8036 	enum pipe pipe = INVALID_PIPE;
8037 	intel_wakeref_t wakeref;
8038 	struct edid *edid;
8039 
8040 	if (!intel_dp_is_edp(intel_dp))
8041 		return true;
8042 
8043 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
8044 
8045 	/*
8046 	 * On IBX/CPT we may get here with LVDS already registered. Since the
8047 	 * driver uses the only internal power sequencer available for both
8048 	 * eDP and LVDS bail out early in this case to prevent interfering
8049 	 * with an already powered-on LVDS power sequencer.
8050 	 */
8051 	if (intel_get_lvds_encoder(dev_priv)) {
8052 		drm_WARN_ON(dev,
8053 			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
8054 		drm_info(&dev_priv->drm,
8055 			 "LVDS was detected, not registering eDP\n");
8056 
8057 		return false;
8058 	}
8059 
8060 	with_pps_lock(intel_dp, wakeref) {
8061 		intel_dp_init_panel_power_timestamps(intel_dp);
8062 		intel_dp_pps_init(intel_dp);
8063 		intel_edp_panel_vdd_sanitize(intel_dp);
8064 	}
8065 
8066 	/* Cache DPCD and EDID for edp. */
8067 	has_dpcd = intel_edp_init_dpcd(intel_dp);
8068 
8069 	if (!has_dpcd) {
8070 		/* if this fails, presume the device is a ghost */
8071 		drm_info(&dev_priv->drm,
8072 			 "failed to retrieve link info, disabling eDP\n");
8073 		goto out_vdd_off;
8074 	}
8075 
8076 	mutex_lock(&dev->mode_config.mutex);
8077 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
8078 	if (edid) {
8079 		if (drm_add_edid_modes(connector, edid)) {
8080 			drm_connector_update_edid_property(connector, edid);
8081 			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
8082 		} else {
8083 			kfree(edid);
8084 			edid = ERR_PTR(-EINVAL);
8085 		}
8086 	} else {
8087 		edid = ERR_PTR(-ENOENT);
8088 	}
8089 	intel_connector->edid = edid;
8090 
8091 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
8092 	if (fixed_mode)
8093 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
8094 
8095 	/* fallback to VBT if available for eDP */
8096 	if (!fixed_mode)
8097 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
8098 	mutex_unlock(&dev->mode_config.mutex);
8099 
8100 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8101 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
8102 		register_reboot_notifier(&intel_dp->edp_notifier);
8103 
8104 		/*
8105 		 * Figure out the current pipe for the initial backlight setup.
8106 		 * If the current pipe isn't valid, try the PPS pipe, and if that
8107 		 * fails just assume pipe A.
8108 		 */
8109 		pipe = vlv_active_pipe(intel_dp);
8110 
8111 		if (pipe != PIPE_A && pipe != PIPE_B)
8112 			pipe = intel_dp->pps_pipe;
8113 
8114 		if (pipe != PIPE_A && pipe != PIPE_B)
8115 			pipe = PIPE_A;
8116 
8117 		drm_dbg_kms(&dev_priv->drm,
8118 			    "using pipe %c for initial backlight setup\n",
8119 			    pipe_name(pipe));
8120 	}
8121 
8122 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
8123 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
8124 	intel_panel_setup_backlight(connector, pipe);
8125 
8126 	if (fixed_mode) {
8127 		drm_connector_set_panel_orientation_with_quirk(connector,
8128 				dev_priv->vbt.orientation,
8129 				fixed_mode->hdisplay, fixed_mode->vdisplay);
8130 	}
8131 
8132 	return true;
8133 
8134 out_vdd_off:
8135 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
8136 	/*
8137 	 * vdd might still be enabled do to the delayed vdd off.
8138 	 * Make sure vdd is actually turned off here.
8139 	 */
8140 	with_pps_lock(intel_dp, wakeref)
8141 		edp_panel_vdd_off_sync(intel_dp);
8142 
8143 	return false;
8144 }
8145 
8146 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
8147 {
8148 	struct intel_connector *intel_connector;
8149 	struct drm_connector *connector;
8150 
8151 	intel_connector = container_of(work, typeof(*intel_connector),
8152 				       modeset_retry_work);
8153 	connector = &intel_connector->base;
8154 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
8155 		      connector->name);
8156 
8157 	/* Grab the locks before changing connector property*/
8158 	mutex_lock(&connector->dev->mode_config.mutex);
8159 	/* Set connector link status to BAD and send a Uevent to notify
8160 	 * userspace to do a modeset.
8161 	 */
8162 	drm_connector_set_link_status_property(connector,
8163 					       DRM_MODE_LINK_STATUS_BAD);
8164 	mutex_unlock(&connector->dev->mode_config.mutex);
8165 	/* Send Hotplug uevent so userspace can reprobe */
8166 	drm_kms_helper_hotplug_event(connector->dev);
8167 }
8168 
8169 bool
8170 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
8171 			struct intel_connector *intel_connector)
8172 {
8173 	struct drm_connector *connector = &intel_connector->base;
8174 	struct intel_dp *intel_dp = &intel_dig_port->dp;
8175 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
8176 	struct drm_device *dev = intel_encoder->base.dev;
8177 	struct drm_i915_private *dev_priv = to_i915(dev);
8178 	enum port port = intel_encoder->port;
8179 	enum phy phy = intel_port_to_phy(dev_priv, port);
8180 	int type;
8181 
8182 	/* Initialize the work for modeset in case of link train failure */
8183 	INIT_WORK(&intel_connector->modeset_retry_work,
8184 		  intel_dp_modeset_retry_work_fn);
8185 
8186 	if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
8187 		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
8188 		     intel_dig_port->max_lanes, intel_encoder->base.base.id,
8189 		     intel_encoder->base.name))
8190 		return false;
8191 
8192 	intel_dp_set_source_rates(intel_dp);
8193 
8194 	intel_dp->reset_link_params = true;
8195 	intel_dp->pps_pipe = INVALID_PIPE;
8196 	intel_dp->active_pipe = INVALID_PIPE;
8197 
8198 	/* Preserve the current hw state. */
8199 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8200 	intel_dp->attached_connector = intel_connector;
8201 
8202 	if (intel_dp_is_port_edp(dev_priv, port)) {
8203 		/*
8204 		 * Currently we don't support eDP on TypeC ports, although in
8205 		 * theory it could work on TypeC legacy ports.
8206 		 */
8207 		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8208 		type = DRM_MODE_CONNECTOR_eDP;
8209 	} else {
8210 		type = DRM_MODE_CONNECTOR_DisplayPort;
8211 	}
8212 
8213 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
8214 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
8215 
8216 	/*
8217 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
8218 	 * for DP the encoder type can be set by the caller to
8219 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
8220 	 */
8221 	if (type == DRM_MODE_CONNECTOR_eDP)
8222 		intel_encoder->type = INTEL_OUTPUT_EDP;
8223 
8224 	/* eDP only on port B and/or C on vlv/chv */
8225 	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
8226 			      IS_CHERRYVIEW(dev_priv)) &&
8227 			intel_dp_is_edp(intel_dp) &&
8228 			port != PORT_B && port != PORT_C))
8229 		return false;
8230 
8231 	drm_dbg_kms(&dev_priv->drm,
8232 		    "Adding %s connector on [ENCODER:%d:%s]\n",
8233 		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
8234 		    intel_encoder->base.base.id, intel_encoder->base.name);
8235 
8236 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8237 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
8238 
8239 	if (!HAS_GMCH(dev_priv))
8240 		connector->interlace_allowed = true;
8241 	connector->doublescan_allowed = 0;
8242 
8243 	if (INTEL_GEN(dev_priv) >= 11)
8244 		connector->ycbcr_420_allowed = true;
8245 
8246 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8247 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8248 
8249 	intel_dp_aux_init(intel_dp);
8250 
8251 	intel_connector_attach_encoder(intel_connector, intel_encoder);
8252 
8253 	if (HAS_DDI(dev_priv))
8254 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
8255 	else
8256 		intel_connector->get_hw_state = intel_connector_get_hw_state;
8257 
8258 	/* init MST on ports that can support it */
8259 	intel_dp_mst_encoder_init(intel_dig_port,
8260 				  intel_connector->base.base.id);
8261 
8262 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8263 		intel_dp_aux_fini(intel_dp);
8264 		intel_dp_mst_encoder_cleanup(intel_dig_port);
8265 		goto fail;
8266 	}
8267 
8268 	intel_dp_add_properties(intel_dp, connector);
8269 
8270 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8271 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
8272 		if (ret)
8273 			drm_dbg_kms(&dev_priv->drm,
8274 				    "HDCP init failed, skipping.\n");
8275 	}
8276 
8277 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
8278 	 * 0xd.  Failure to do so will result in spurious interrupts being
8279 	 * generated on the port when a cable is not attached.
8280 	 */
8281 	if (IS_G45(dev_priv)) {
8282 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
8283 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
8284 			       (temp & ~0xf) | 0xd);
8285 	}
8286 
8287 	return true;
8288 
8289 fail:
8290 	drm_connector_cleanup(connector);
8291 
8292 	return false;
8293 }
8294 
8295 bool intel_dp_init(struct drm_i915_private *dev_priv,
8296 		   i915_reg_t output_reg,
8297 		   enum port port)
8298 {
8299 	struct intel_digital_port *intel_dig_port;
8300 	struct intel_encoder *intel_encoder;
8301 	struct drm_encoder *encoder;
8302 	struct intel_connector *intel_connector;
8303 
8304 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
8305 	if (!intel_dig_port)
8306 		return false;
8307 
8308 	intel_connector = intel_connector_alloc();
8309 	if (!intel_connector)
8310 		goto err_connector_alloc;
8311 
8312 	intel_encoder = &intel_dig_port->base;
8313 	encoder = &intel_encoder->base;
8314 
8315 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
8316 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
8317 			     "DP %c", port_name(port)))
8318 		goto err_encoder_init;
8319 
8320 	intel_encoder->hotplug = intel_dp_hotplug;
8321 	intel_encoder->compute_config = intel_dp_compute_config;
8322 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
8323 	intel_encoder->get_config = intel_dp_get_config;
8324 	intel_encoder->update_pipe = intel_panel_update_backlight;
8325 	intel_encoder->suspend = intel_dp_encoder_suspend;
8326 	if (IS_CHERRYVIEW(dev_priv)) {
8327 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8328 		intel_encoder->pre_enable = chv_pre_enable_dp;
8329 		intel_encoder->enable = vlv_enable_dp;
8330 		intel_encoder->disable = vlv_disable_dp;
8331 		intel_encoder->post_disable = chv_post_disable_dp;
8332 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8333 	} else if (IS_VALLEYVIEW(dev_priv)) {
8334 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8335 		intel_encoder->pre_enable = vlv_pre_enable_dp;
8336 		intel_encoder->enable = vlv_enable_dp;
8337 		intel_encoder->disable = vlv_disable_dp;
8338 		intel_encoder->post_disable = vlv_post_disable_dp;
8339 	} else {
8340 		intel_encoder->pre_enable = g4x_pre_enable_dp;
8341 		intel_encoder->enable = g4x_enable_dp;
8342 		intel_encoder->disable = g4x_disable_dp;
8343 		intel_encoder->post_disable = g4x_post_disable_dp;
8344 	}
8345 
8346 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
8347 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A))
8348 		intel_dig_port->dp.set_link_train = cpt_set_link_train;
8349 	else
8350 		intel_dig_port->dp.set_link_train = g4x_set_link_train;
8351 
8352 	if (IS_CHERRYVIEW(dev_priv))
8353 		intel_dig_port->dp.set_signal_levels = chv_set_signal_levels;
8354 	else if (IS_VALLEYVIEW(dev_priv))
8355 		intel_dig_port->dp.set_signal_levels = vlv_set_signal_levels;
8356 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
8357 		intel_dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
8358 	else if (IS_GEN(dev_priv, 6) && port == PORT_A)
8359 		intel_dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
8360 	else
8361 		intel_dig_port->dp.set_signal_levels = g4x_set_signal_levels;
8362 
8363 	intel_dig_port->dp.output_reg = output_reg;
8364 	intel_dig_port->max_lanes = 4;
8365 	intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
8366 	intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
8367 
8368 	intel_encoder->type = INTEL_OUTPUT_DP;
8369 	intel_encoder->power_domain = intel_port_to_power_domain(port);
8370 	if (IS_CHERRYVIEW(dev_priv)) {
8371 		if (port == PORT_D)
8372 			intel_encoder->pipe_mask = BIT(PIPE_C);
8373 		else
8374 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8375 	} else {
8376 		intel_encoder->pipe_mask = ~0;
8377 	}
8378 	intel_encoder->cloneable = 0;
8379 	intel_encoder->port = port;
8380 
8381 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
8382 
8383 	if (HAS_GMCH(dev_priv)) {
8384 		if (IS_GM45(dev_priv))
8385 			intel_dig_port->connected = gm45_digital_port_connected;
8386 		else
8387 			intel_dig_port->connected = g4x_digital_port_connected;
8388 	} else {
8389 		if (port == PORT_A)
8390 			intel_dig_port->connected = ilk_digital_port_connected;
8391 		else
8392 			intel_dig_port->connected = ibx_digital_port_connected;
8393 	}
8394 
8395 	if (port != PORT_A)
8396 		intel_infoframe_init(intel_dig_port);
8397 
8398 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8399 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
8400 		goto err_init_connector;
8401 
8402 	return true;
8403 
8404 err_init_connector:
8405 	drm_encoder_cleanup(encoder);
8406 err_encoder_init:
8407 	kfree(intel_connector);
8408 err_connector_alloc:
8409 	kfree(intel_dig_port);
8410 	return false;
8411 }
8412 
8413 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8414 {
8415 	struct intel_encoder *encoder;
8416 
8417 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8418 		struct intel_dp *intel_dp;
8419 
8420 		if (encoder->type != INTEL_OUTPUT_DDI)
8421 			continue;
8422 
8423 		intel_dp = enc_to_intel_dp(encoder);
8424 
8425 		if (!intel_dp->can_mst)
8426 			continue;
8427 
8428 		if (intel_dp->is_mst)
8429 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8430 	}
8431 }
8432 
8433 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8434 {
8435 	struct intel_encoder *encoder;
8436 
8437 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8438 		struct intel_dp *intel_dp;
8439 		int ret;
8440 
8441 		if (encoder->type != INTEL_OUTPUT_DDI)
8442 			continue;
8443 
8444 		intel_dp = enc_to_intel_dp(encoder);
8445 
8446 		if (!intel_dp->can_mst)
8447 			continue;
8448 
8449 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8450 						     true);
8451 		if (ret) {
8452 			intel_dp->is_mst = false;
8453 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8454 							false);
8455 		}
8456 	}
8457 }
8458