1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_hdcp.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/i915_drm.h> 44 45 #include "i915_debugfs.h" 46 #include "i915_drv.h" 47 #include "intel_atomic.h" 48 #include "intel_audio.h" 49 #include "intel_connector.h" 50 #include "intel_ddi.h" 51 #include "intel_dp.h" 52 #include "intel_dp_link_training.h" 53 #include "intel_dp_mst.h" 54 #include "intel_dpio_phy.h" 55 #include "intel_drv.h" 56 #include "intel_fifo_underrun.h" 57 #include "intel_hdcp.h" 58 #include "intel_hdmi.h" 59 #include "intel_hotplug.h" 60 #include "intel_lspcon.h" 61 #include "intel_lvds.h" 62 #include "intel_panel.h" 63 #include "intel_psr.h" 64 #include "intel_sideband.h" 65 #include "intel_vdsc.h" 66 67 #define DP_DPRX_ESI_LEN 14 68 69 /* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */ 70 #define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER 61440 71 #define DP_DSC_MIN_SUPPORTED_BPC 8 72 #define DP_DSC_MAX_SUPPORTED_BPC 10 73 74 /* DP DSC throughput values used for slice count calculations KPixels/s */ 75 #define DP_DSC_PEAK_PIXEL_RATE 2720000 76 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 77 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 78 79 /* DP DSC FEC Overhead factor = (100 - 2.4)/100 */ 80 #define DP_DSC_FEC_OVERHEAD_FACTOR 976 81 82 /* Compliance test status bits */ 83 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 84 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 85 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 86 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 87 88 struct dp_link_dpll { 89 int clock; 90 struct dpll dpll; 91 }; 92 93 static const struct dp_link_dpll g4x_dpll[] = { 94 { 162000, 95 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 96 { 270000, 97 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 98 }; 99 100 static const struct dp_link_dpll pch_dpll[] = { 101 { 162000, 102 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 103 { 270000, 104 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 105 }; 106 107 static const struct dp_link_dpll vlv_dpll[] = { 108 { 162000, 109 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 110 { 270000, 111 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 112 }; 113 114 /* 115 * CHV supports eDP 1.4 that have more link rates. 116 * Below only provides the fixed rate but exclude variable rate. 117 */ 118 static const struct dp_link_dpll chv_dpll[] = { 119 /* 120 * CHV requires to program fractional division for m2. 121 * m2 is stored in fixed point format using formula below 122 * (m2_int << 22) | m2_fraction 123 */ 124 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 125 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 126 { 270000, /* m2_int = 27, m2_fraction = 0 */ 127 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 128 }; 129 130 /* Constants for DP DSC configurations */ 131 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 132 133 /* With Single pipe configuration, HW is capable of supporting maximum 134 * of 4 slices per line. 135 */ 136 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 137 138 /** 139 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 140 * @intel_dp: DP struct 141 * 142 * If a CPU or PCH DP output is attached to an eDP panel, this function 143 * will return true, and false otherwise. 144 */ 145 bool intel_dp_is_edp(struct intel_dp *intel_dp) 146 { 147 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 148 149 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 150 } 151 152 static struct intel_dp *intel_attached_dp(struct drm_connector *connector) 153 { 154 return enc_to_intel_dp(&intel_attached_encoder(connector)->base); 155 } 156 157 static void intel_dp_link_down(struct intel_encoder *encoder, 158 const struct intel_crtc_state *old_crtc_state); 159 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 160 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 161 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 162 const struct intel_crtc_state *crtc_state); 163 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 164 enum pipe pipe); 165 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 166 167 /* update sink rates from dpcd */ 168 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 169 { 170 static const int dp_rates[] = { 171 162000, 270000, 540000, 810000 172 }; 173 int i, max_rate; 174 175 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 176 177 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 178 if (dp_rates[i] > max_rate) 179 break; 180 intel_dp->sink_rates[i] = dp_rates[i]; 181 } 182 183 intel_dp->num_sink_rates = i; 184 } 185 186 /* Get length of rates array potentially limited by max_rate. */ 187 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 188 { 189 int i; 190 191 /* Limit results by potentially reduced max rate */ 192 for (i = 0; i < len; i++) { 193 if (rates[len - i - 1] <= max_rate) 194 return len - i; 195 } 196 197 return 0; 198 } 199 200 /* Get length of common rates array potentially limited by max_rate. */ 201 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 202 int max_rate) 203 { 204 return intel_dp_rate_limit_len(intel_dp->common_rates, 205 intel_dp->num_common_rates, max_rate); 206 } 207 208 /* Theoretical max between source and sink */ 209 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 210 { 211 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 212 } 213 214 static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp) 215 { 216 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 217 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 218 enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port); 219 intel_wakeref_t wakeref; 220 u32 lane_info; 221 222 if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC) 223 return 4; 224 225 lane_info = 0; 226 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 227 lane_info = (I915_READ(PORT_TX_DFLEXDPSP) & 228 DP_LANE_ASSIGNMENT_MASK(tc_port)) >> 229 DP_LANE_ASSIGNMENT_SHIFT(tc_port); 230 231 switch (lane_info) { 232 default: 233 MISSING_CASE(lane_info); 234 /* fall through */ 235 case 1: 236 case 2: 237 case 4: 238 case 8: 239 return 1; 240 case 3: 241 case 12: 242 return 2; 243 case 15: 244 return 4; 245 } 246 } 247 248 /* Theoretical max between source and sink */ 249 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 250 { 251 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 252 int source_max = intel_dig_port->max_lanes; 253 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 254 int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp); 255 256 return min3(source_max, sink_max, fia_max); 257 } 258 259 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 260 { 261 return intel_dp->max_link_lane_count; 262 } 263 264 int 265 intel_dp_link_required(int pixel_clock, int bpp) 266 { 267 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 268 return DIV_ROUND_UP(pixel_clock * bpp, 8); 269 } 270 271 int 272 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 273 { 274 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 275 * link rate that is generally expressed in Gbps. Since, 8 bits of data 276 * is transmitted every LS_Clk per lane, there is no need to account for 277 * the channel encoding that is done in the PHY layer here. 278 */ 279 280 return max_link_clock * max_lanes; 281 } 282 283 static int 284 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 285 { 286 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 287 struct intel_encoder *encoder = &intel_dig_port->base; 288 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 289 int max_dotclk = dev_priv->max_dotclk_freq; 290 int ds_max_dotclk; 291 292 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 293 294 if (type != DP_DS_PORT_TYPE_VGA) 295 return max_dotclk; 296 297 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 298 intel_dp->downstream_ports); 299 300 if (ds_max_dotclk != 0) 301 max_dotclk = min(max_dotclk, ds_max_dotclk); 302 303 return max_dotclk; 304 } 305 306 static int cnl_max_source_rate(struct intel_dp *intel_dp) 307 { 308 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 309 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 310 enum port port = dig_port->base.port; 311 312 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 313 314 /* Low voltage SKUs are limited to max of 5.4G */ 315 if (voltage == VOLTAGE_INFO_0_85V) 316 return 540000; 317 318 /* For this SKU 8.1G is supported in all ports */ 319 if (IS_CNL_WITH_PORT_F(dev_priv)) 320 return 810000; 321 322 /* For other SKUs, max rate on ports A and D is 5.4G */ 323 if (port == PORT_A || port == PORT_D) 324 return 540000; 325 326 return 810000; 327 } 328 329 static int icl_max_source_rate(struct intel_dp *intel_dp) 330 { 331 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 332 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 333 enum port port = dig_port->base.port; 334 335 if (intel_port_is_combophy(dev_priv, port) && 336 !IS_ELKHARTLAKE(dev_priv) && 337 !intel_dp_is_edp(intel_dp)) 338 return 540000; 339 340 return 810000; 341 } 342 343 static void 344 intel_dp_set_source_rates(struct intel_dp *intel_dp) 345 { 346 /* The values must be in increasing order */ 347 static const int cnl_rates[] = { 348 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 349 }; 350 static const int bxt_rates[] = { 351 162000, 216000, 243000, 270000, 324000, 432000, 540000 352 }; 353 static const int skl_rates[] = { 354 162000, 216000, 270000, 324000, 432000, 540000 355 }; 356 static const int hsw_rates[] = { 357 162000, 270000, 540000 358 }; 359 static const int g4x_rates[] = { 360 162000, 270000 361 }; 362 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 363 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 364 const struct ddi_vbt_port_info *info = 365 &dev_priv->vbt.ddi_port_info[dig_port->base.port]; 366 const int *source_rates; 367 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate; 368 369 /* This should only be done once */ 370 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates); 371 372 if (INTEL_GEN(dev_priv) >= 10) { 373 source_rates = cnl_rates; 374 size = ARRAY_SIZE(cnl_rates); 375 if (IS_GEN(dev_priv, 10)) 376 max_rate = cnl_max_source_rate(intel_dp); 377 else 378 max_rate = icl_max_source_rate(intel_dp); 379 } else if (IS_GEN9_LP(dev_priv)) { 380 source_rates = bxt_rates; 381 size = ARRAY_SIZE(bxt_rates); 382 } else if (IS_GEN9_BC(dev_priv)) { 383 source_rates = skl_rates; 384 size = ARRAY_SIZE(skl_rates); 385 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 386 IS_BROADWELL(dev_priv)) { 387 source_rates = hsw_rates; 388 size = ARRAY_SIZE(hsw_rates); 389 } else { 390 source_rates = g4x_rates; 391 size = ARRAY_SIZE(g4x_rates); 392 } 393 394 if (max_rate && vbt_max_rate) 395 max_rate = min(max_rate, vbt_max_rate); 396 else if (vbt_max_rate) 397 max_rate = vbt_max_rate; 398 399 if (max_rate) 400 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 401 402 intel_dp->source_rates = source_rates; 403 intel_dp->num_source_rates = size; 404 } 405 406 static int intersect_rates(const int *source_rates, int source_len, 407 const int *sink_rates, int sink_len, 408 int *common_rates) 409 { 410 int i = 0, j = 0, k = 0; 411 412 while (i < source_len && j < sink_len) { 413 if (source_rates[i] == sink_rates[j]) { 414 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 415 return k; 416 common_rates[k] = source_rates[i]; 417 ++k; 418 ++i; 419 ++j; 420 } else if (source_rates[i] < sink_rates[j]) { 421 ++i; 422 } else { 423 ++j; 424 } 425 } 426 return k; 427 } 428 429 /* return index of rate in rates array, or -1 if not found */ 430 static int intel_dp_rate_index(const int *rates, int len, int rate) 431 { 432 int i; 433 434 for (i = 0; i < len; i++) 435 if (rate == rates[i]) 436 return i; 437 438 return -1; 439 } 440 441 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 442 { 443 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); 444 445 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 446 intel_dp->num_source_rates, 447 intel_dp->sink_rates, 448 intel_dp->num_sink_rates, 449 intel_dp->common_rates); 450 451 /* Paranoia, there should always be something in common. */ 452 if (WARN_ON(intel_dp->num_common_rates == 0)) { 453 intel_dp->common_rates[0] = 162000; 454 intel_dp->num_common_rates = 1; 455 } 456 } 457 458 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 459 u8 lane_count) 460 { 461 /* 462 * FIXME: we need to synchronize the current link parameters with 463 * hardware readout. Currently fast link training doesn't work on 464 * boot-up. 465 */ 466 if (link_rate == 0 || 467 link_rate > intel_dp->max_link_rate) 468 return false; 469 470 if (lane_count == 0 || 471 lane_count > intel_dp_max_lane_count(intel_dp)) 472 return false; 473 474 return true; 475 } 476 477 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 478 int link_rate, 479 u8 lane_count) 480 { 481 const struct drm_display_mode *fixed_mode = 482 intel_dp->attached_connector->panel.fixed_mode; 483 int mode_rate, max_rate; 484 485 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 486 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 487 if (mode_rate > max_rate) 488 return false; 489 490 return true; 491 } 492 493 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 494 int link_rate, u8 lane_count) 495 { 496 int index; 497 498 index = intel_dp_rate_index(intel_dp->common_rates, 499 intel_dp->num_common_rates, 500 link_rate); 501 if (index > 0) { 502 if (intel_dp_is_edp(intel_dp) && 503 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 504 intel_dp->common_rates[index - 1], 505 lane_count)) { 506 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 507 return 0; 508 } 509 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 510 intel_dp->max_link_lane_count = lane_count; 511 } else if (lane_count > 1) { 512 if (intel_dp_is_edp(intel_dp) && 513 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 514 intel_dp_max_common_rate(intel_dp), 515 lane_count >> 1)) { 516 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 517 return 0; 518 } 519 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 520 intel_dp->max_link_lane_count = lane_count >> 1; 521 } else { 522 DRM_ERROR("Link Training Unsuccessful\n"); 523 return -1; 524 } 525 526 return 0; 527 } 528 529 static enum drm_mode_status 530 intel_dp_mode_valid(struct drm_connector *connector, 531 struct drm_display_mode *mode) 532 { 533 struct intel_dp *intel_dp = intel_attached_dp(connector); 534 struct intel_connector *intel_connector = to_intel_connector(connector); 535 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 536 struct drm_i915_private *dev_priv = to_i915(connector->dev); 537 int target_clock = mode->clock; 538 int max_rate, mode_rate, max_lanes, max_link_clock; 539 int max_dotclk; 540 u16 dsc_max_output_bpp = 0; 541 u8 dsc_slice_count = 0; 542 543 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 544 return MODE_NO_DBLESCAN; 545 546 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 547 548 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 549 if (mode->hdisplay > fixed_mode->hdisplay) 550 return MODE_PANEL; 551 552 if (mode->vdisplay > fixed_mode->vdisplay) 553 return MODE_PANEL; 554 555 target_clock = fixed_mode->clock; 556 } 557 558 max_link_clock = intel_dp_max_link_rate(intel_dp); 559 max_lanes = intel_dp_max_lane_count(intel_dp); 560 561 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 562 mode_rate = intel_dp_link_required(target_clock, 18); 563 564 /* 565 * Output bpp is stored in 6.4 format so right shift by 4 to get the 566 * integer value since we support only integer values of bpp. 567 */ 568 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 569 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 570 if (intel_dp_is_edp(intel_dp)) { 571 dsc_max_output_bpp = 572 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 573 dsc_slice_count = 574 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 575 true); 576 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 577 dsc_max_output_bpp = 578 intel_dp_dsc_get_output_bpp(max_link_clock, 579 max_lanes, 580 target_clock, 581 mode->hdisplay) >> 4; 582 dsc_slice_count = 583 intel_dp_dsc_get_slice_count(intel_dp, 584 target_clock, 585 mode->hdisplay); 586 } 587 } 588 589 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 590 target_clock > max_dotclk) 591 return MODE_CLOCK_HIGH; 592 593 if (mode->clock < 10000) 594 return MODE_CLOCK_LOW; 595 596 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 597 return MODE_H_ILLEGAL; 598 599 return MODE_OK; 600 } 601 602 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 603 { 604 int i; 605 u32 v = 0; 606 607 if (src_bytes > 4) 608 src_bytes = 4; 609 for (i = 0; i < src_bytes; i++) 610 v |= ((u32)src[i]) << ((3 - i) * 8); 611 return v; 612 } 613 614 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 615 { 616 int i; 617 if (dst_bytes > 4) 618 dst_bytes = 4; 619 for (i = 0; i < dst_bytes; i++) 620 dst[i] = src >> ((3-i) * 8); 621 } 622 623 static void 624 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 625 static void 626 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 627 bool force_disable_vdd); 628 static void 629 intel_dp_pps_init(struct intel_dp *intel_dp); 630 631 static intel_wakeref_t 632 pps_lock(struct intel_dp *intel_dp) 633 { 634 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 635 intel_wakeref_t wakeref; 636 637 /* 638 * See intel_power_sequencer_reset() why we need 639 * a power domain reference here. 640 */ 641 wakeref = intel_display_power_get(dev_priv, 642 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 643 644 mutex_lock(&dev_priv->pps_mutex); 645 646 return wakeref; 647 } 648 649 static intel_wakeref_t 650 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 651 { 652 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 653 654 mutex_unlock(&dev_priv->pps_mutex); 655 intel_display_power_put(dev_priv, 656 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 657 wakeref); 658 return 0; 659 } 660 661 #define with_pps_lock(dp, wf) \ 662 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 663 664 static void 665 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 666 { 667 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 668 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 669 enum pipe pipe = intel_dp->pps_pipe; 670 bool pll_enabled, release_cl_override = false; 671 enum dpio_phy phy = DPIO_PHY(pipe); 672 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 673 u32 DP; 674 675 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, 676 "skipping pipe %c power sequencer kick due to port %c being active\n", 677 pipe_name(pipe), port_name(intel_dig_port->base.port))) 678 return; 679 680 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n", 681 pipe_name(pipe), port_name(intel_dig_port->base.port)); 682 683 /* Preserve the BIOS-computed detected bit. This is 684 * supposed to be read-only. 685 */ 686 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 687 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 688 DP |= DP_PORT_WIDTH(1); 689 DP |= DP_LINK_TRAIN_PAT_1; 690 691 if (IS_CHERRYVIEW(dev_priv)) 692 DP |= DP_PIPE_SEL_CHV(pipe); 693 else 694 DP |= DP_PIPE_SEL(pipe); 695 696 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; 697 698 /* 699 * The DPLL for the pipe must be enabled for this to work. 700 * So enable temporarily it if it's not already enabled. 701 */ 702 if (!pll_enabled) { 703 release_cl_override = IS_CHERRYVIEW(dev_priv) && 704 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 705 706 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 707 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 708 DRM_ERROR("Failed to force on pll for pipe %c!\n", 709 pipe_name(pipe)); 710 return; 711 } 712 } 713 714 /* 715 * Similar magic as in intel_dp_enable_port(). 716 * We _must_ do this port enable + disable trick 717 * to make this power sequencer lock onto the port. 718 * Otherwise even VDD force bit won't work. 719 */ 720 I915_WRITE(intel_dp->output_reg, DP); 721 POSTING_READ(intel_dp->output_reg); 722 723 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); 724 POSTING_READ(intel_dp->output_reg); 725 726 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); 727 POSTING_READ(intel_dp->output_reg); 728 729 if (!pll_enabled) { 730 vlv_force_pll_off(dev_priv, pipe); 731 732 if (release_cl_override) 733 chv_phy_powergate_ch(dev_priv, phy, ch, false); 734 } 735 } 736 737 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 738 { 739 struct intel_encoder *encoder; 740 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 741 742 /* 743 * We don't have power sequencer currently. 744 * Pick one that's not used by other ports. 745 */ 746 for_each_intel_dp(&dev_priv->drm, encoder) { 747 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 748 749 if (encoder->type == INTEL_OUTPUT_EDP) { 750 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 751 intel_dp->active_pipe != intel_dp->pps_pipe); 752 753 if (intel_dp->pps_pipe != INVALID_PIPE) 754 pipes &= ~(1 << intel_dp->pps_pipe); 755 } else { 756 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE); 757 758 if (intel_dp->active_pipe != INVALID_PIPE) 759 pipes &= ~(1 << intel_dp->active_pipe); 760 } 761 } 762 763 if (pipes == 0) 764 return INVALID_PIPE; 765 766 return ffs(pipes) - 1; 767 } 768 769 static enum pipe 770 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 771 { 772 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 773 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 774 enum pipe pipe; 775 776 lockdep_assert_held(&dev_priv->pps_mutex); 777 778 /* We should never land here with regular DP ports */ 779 WARN_ON(!intel_dp_is_edp(intel_dp)); 780 781 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 782 intel_dp->active_pipe != intel_dp->pps_pipe); 783 784 if (intel_dp->pps_pipe != INVALID_PIPE) 785 return intel_dp->pps_pipe; 786 787 pipe = vlv_find_free_pps(dev_priv); 788 789 /* 790 * Didn't find one. This should not happen since there 791 * are two power sequencers and up to two eDP ports. 792 */ 793 if (WARN_ON(pipe == INVALID_PIPE)) 794 pipe = PIPE_A; 795 796 vlv_steal_power_sequencer(dev_priv, pipe); 797 intel_dp->pps_pipe = pipe; 798 799 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n", 800 pipe_name(intel_dp->pps_pipe), 801 port_name(intel_dig_port->base.port)); 802 803 /* init power sequencer on this pipe and port */ 804 intel_dp_init_panel_power_sequencer(intel_dp); 805 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 806 807 /* 808 * Even vdd force doesn't work until we've made 809 * the power sequencer lock in on the port. 810 */ 811 vlv_power_sequencer_kick(intel_dp); 812 813 return intel_dp->pps_pipe; 814 } 815 816 static int 817 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 818 { 819 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 820 int backlight_controller = dev_priv->vbt.backlight.controller; 821 822 lockdep_assert_held(&dev_priv->pps_mutex); 823 824 /* We should never land here with regular DP ports */ 825 WARN_ON(!intel_dp_is_edp(intel_dp)); 826 827 if (!intel_dp->pps_reset) 828 return backlight_controller; 829 830 intel_dp->pps_reset = false; 831 832 /* 833 * Only the HW needs to be reprogrammed, the SW state is fixed and 834 * has been setup during connector init. 835 */ 836 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 837 838 return backlight_controller; 839 } 840 841 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 842 enum pipe pipe); 843 844 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 845 enum pipe pipe) 846 { 847 return I915_READ(PP_STATUS(pipe)) & PP_ON; 848 } 849 850 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 851 enum pipe pipe) 852 { 853 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD; 854 } 855 856 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 857 enum pipe pipe) 858 { 859 return true; 860 } 861 862 static enum pipe 863 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 864 enum port port, 865 vlv_pipe_check pipe_check) 866 { 867 enum pipe pipe; 868 869 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 870 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) & 871 PANEL_PORT_SELECT_MASK; 872 873 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 874 continue; 875 876 if (!pipe_check(dev_priv, pipe)) 877 continue; 878 879 return pipe; 880 } 881 882 return INVALID_PIPE; 883 } 884 885 static void 886 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 887 { 888 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 889 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 890 enum port port = intel_dig_port->base.port; 891 892 lockdep_assert_held(&dev_priv->pps_mutex); 893 894 /* try to find a pipe with this port selected */ 895 /* first pick one where the panel is on */ 896 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 897 vlv_pipe_has_pp_on); 898 /* didn't find one? pick one where vdd is on */ 899 if (intel_dp->pps_pipe == INVALID_PIPE) 900 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 901 vlv_pipe_has_vdd_on); 902 /* didn't find one? pick one with just the correct port */ 903 if (intel_dp->pps_pipe == INVALID_PIPE) 904 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 905 vlv_pipe_any); 906 907 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 908 if (intel_dp->pps_pipe == INVALID_PIPE) { 909 DRM_DEBUG_KMS("no initial power sequencer for port %c\n", 910 port_name(port)); 911 return; 912 } 913 914 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n", 915 port_name(port), pipe_name(intel_dp->pps_pipe)); 916 917 intel_dp_init_panel_power_sequencer(intel_dp); 918 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 919 } 920 921 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 922 { 923 struct intel_encoder *encoder; 924 925 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 926 !IS_GEN9_LP(dev_priv))) 927 return; 928 929 /* 930 * We can't grab pps_mutex here due to deadlock with power_domain 931 * mutex when power_domain functions are called while holding pps_mutex. 932 * That also means that in order to use pps_pipe the code needs to 933 * hold both a power domain reference and pps_mutex, and the power domain 934 * reference get/put must be done while _not_ holding pps_mutex. 935 * pps_{lock,unlock}() do these steps in the correct order, so one 936 * should use them always. 937 */ 938 939 for_each_intel_dp(&dev_priv->drm, encoder) { 940 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 941 942 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 943 944 if (encoder->type != INTEL_OUTPUT_EDP) 945 continue; 946 947 if (IS_GEN9_LP(dev_priv)) 948 intel_dp->pps_reset = true; 949 else 950 intel_dp->pps_pipe = INVALID_PIPE; 951 } 952 } 953 954 struct pps_registers { 955 i915_reg_t pp_ctrl; 956 i915_reg_t pp_stat; 957 i915_reg_t pp_on; 958 i915_reg_t pp_off; 959 i915_reg_t pp_div; 960 }; 961 962 static void intel_pps_get_registers(struct intel_dp *intel_dp, 963 struct pps_registers *regs) 964 { 965 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 966 int pps_idx = 0; 967 968 memset(regs, 0, sizeof(*regs)); 969 970 if (IS_GEN9_LP(dev_priv)) 971 pps_idx = bxt_power_sequencer_idx(intel_dp); 972 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 973 pps_idx = vlv_power_sequencer_pipe(intel_dp); 974 975 regs->pp_ctrl = PP_CONTROL(pps_idx); 976 regs->pp_stat = PP_STATUS(pps_idx); 977 regs->pp_on = PP_ON_DELAYS(pps_idx); 978 regs->pp_off = PP_OFF_DELAYS(pps_idx); 979 980 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 981 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 982 regs->pp_div = INVALID_MMIO_REG; 983 else 984 regs->pp_div = PP_DIVISOR(pps_idx); 985 } 986 987 static i915_reg_t 988 _pp_ctrl_reg(struct intel_dp *intel_dp) 989 { 990 struct pps_registers regs; 991 992 intel_pps_get_registers(intel_dp, ®s); 993 994 return regs.pp_ctrl; 995 } 996 997 static i915_reg_t 998 _pp_stat_reg(struct intel_dp *intel_dp) 999 { 1000 struct pps_registers regs; 1001 1002 intel_pps_get_registers(intel_dp, ®s); 1003 1004 return regs.pp_stat; 1005 } 1006 1007 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1008 This function only applicable when panel PM state is not to be tracked */ 1009 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1010 void *unused) 1011 { 1012 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1013 edp_notifier); 1014 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1015 intel_wakeref_t wakeref; 1016 1017 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1018 return 0; 1019 1020 with_pps_lock(intel_dp, wakeref) { 1021 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1022 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1023 i915_reg_t pp_ctrl_reg, pp_div_reg; 1024 u32 pp_div; 1025 1026 pp_ctrl_reg = PP_CONTROL(pipe); 1027 pp_div_reg = PP_DIVISOR(pipe); 1028 pp_div = I915_READ(pp_div_reg); 1029 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1030 1031 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1032 I915_WRITE(pp_div_reg, pp_div | 0x1F); 1033 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS); 1034 msleep(intel_dp->panel_power_cycle_delay); 1035 } 1036 } 1037 1038 return 0; 1039 } 1040 1041 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1042 { 1043 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1044 1045 lockdep_assert_held(&dev_priv->pps_mutex); 1046 1047 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1048 intel_dp->pps_pipe == INVALID_PIPE) 1049 return false; 1050 1051 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; 1052 } 1053 1054 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1055 { 1056 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1057 1058 lockdep_assert_held(&dev_priv->pps_mutex); 1059 1060 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1061 intel_dp->pps_pipe == INVALID_PIPE) 1062 return false; 1063 1064 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1065 } 1066 1067 static void 1068 intel_dp_check_edp(struct intel_dp *intel_dp) 1069 { 1070 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1071 1072 if (!intel_dp_is_edp(intel_dp)) 1073 return; 1074 1075 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1076 WARN(1, "eDP powered off while attempting aux channel communication.\n"); 1077 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", 1078 I915_READ(_pp_stat_reg(intel_dp)), 1079 I915_READ(_pp_ctrl_reg(intel_dp))); 1080 } 1081 } 1082 1083 static u32 1084 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1085 { 1086 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1087 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1088 u32 status; 1089 bool done; 1090 1091 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1092 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1093 msecs_to_jiffies_timeout(10)); 1094 1095 /* just trace the final value */ 1096 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1097 1098 if (!done) 1099 DRM_ERROR("dp aux hw did not signal timeout!\n"); 1100 #undef C 1101 1102 return status; 1103 } 1104 1105 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1106 { 1107 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1108 1109 if (index) 1110 return 0; 1111 1112 /* 1113 * The clock divider is based off the hrawclk, and would like to run at 1114 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1115 */ 1116 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1117 } 1118 1119 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1120 { 1121 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1122 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1123 1124 if (index) 1125 return 0; 1126 1127 /* 1128 * The clock divider is based off the cdclk or PCH rawclk, and would 1129 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1130 * divide by 2000 and use that 1131 */ 1132 if (dig_port->aux_ch == AUX_CH_A) 1133 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000); 1134 else 1135 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1136 } 1137 1138 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1139 { 1140 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1141 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1142 1143 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1144 /* Workaround for non-ULT HSW */ 1145 switch (index) { 1146 case 0: return 63; 1147 case 1: return 72; 1148 default: return 0; 1149 } 1150 } 1151 1152 return ilk_get_aux_clock_divider(intel_dp, index); 1153 } 1154 1155 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1156 { 1157 /* 1158 * SKL doesn't need us to program the AUX clock divider (Hardware will 1159 * derive the clock from CDCLK automatically). We still implement the 1160 * get_aux_clock_divider vfunc to plug-in into the existing code. 1161 */ 1162 return index ? 0 : 1; 1163 } 1164 1165 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1166 int send_bytes, 1167 u32 aux_clock_divider) 1168 { 1169 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1170 struct drm_i915_private *dev_priv = 1171 to_i915(intel_dig_port->base.base.dev); 1172 u32 precharge, timeout; 1173 1174 if (IS_GEN(dev_priv, 6)) 1175 precharge = 3; 1176 else 1177 precharge = 5; 1178 1179 if (IS_BROADWELL(dev_priv)) 1180 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1181 else 1182 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1183 1184 return DP_AUX_CH_CTL_SEND_BUSY | 1185 DP_AUX_CH_CTL_DONE | 1186 DP_AUX_CH_CTL_INTERRUPT | 1187 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1188 timeout | 1189 DP_AUX_CH_CTL_RECEIVE_ERROR | 1190 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1191 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1192 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1193 } 1194 1195 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1196 int send_bytes, 1197 u32 unused) 1198 { 1199 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1200 u32 ret; 1201 1202 ret = DP_AUX_CH_CTL_SEND_BUSY | 1203 DP_AUX_CH_CTL_DONE | 1204 DP_AUX_CH_CTL_INTERRUPT | 1205 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1206 DP_AUX_CH_CTL_TIME_OUT_MAX | 1207 DP_AUX_CH_CTL_RECEIVE_ERROR | 1208 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1209 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1210 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1211 1212 if (intel_dig_port->tc_type == TC_PORT_TBT) 1213 ret |= DP_AUX_CH_CTL_TBT_IO; 1214 1215 return ret; 1216 } 1217 1218 static int 1219 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1220 const u8 *send, int send_bytes, 1221 u8 *recv, int recv_size, 1222 u32 aux_send_ctl_flags) 1223 { 1224 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1225 struct drm_i915_private *i915 = 1226 to_i915(intel_dig_port->base.base.dev); 1227 struct intel_uncore *uncore = &i915->uncore; 1228 i915_reg_t ch_ctl, ch_data[5]; 1229 u32 aux_clock_divider; 1230 enum intel_display_power_domain aux_domain = 1231 intel_aux_power_domain(intel_dig_port); 1232 intel_wakeref_t aux_wakeref; 1233 intel_wakeref_t pps_wakeref; 1234 int i, ret, recv_bytes; 1235 int try, clock = 0; 1236 u32 status; 1237 bool vdd; 1238 1239 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1240 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1241 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1242 1243 aux_wakeref = intel_display_power_get(i915, aux_domain); 1244 pps_wakeref = pps_lock(intel_dp); 1245 1246 /* 1247 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1248 * In such cases we want to leave VDD enabled and it's up to upper layers 1249 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1250 * ourselves. 1251 */ 1252 vdd = edp_panel_vdd_on(intel_dp); 1253 1254 /* dp aux is extremely sensitive to irq latency, hence request the 1255 * lowest possible wakeup latency and so prevent the cpu from going into 1256 * deep sleep states. 1257 */ 1258 pm_qos_update_request(&i915->pm_qos, 0); 1259 1260 intel_dp_check_edp(intel_dp); 1261 1262 /* Try to wait for any previous AUX channel activity */ 1263 for (try = 0; try < 3; try++) { 1264 status = intel_uncore_read_notrace(uncore, ch_ctl); 1265 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1266 break; 1267 msleep(1); 1268 } 1269 /* just trace the final value */ 1270 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1271 1272 if (try == 3) { 1273 static u32 last_status = -1; 1274 const u32 status = intel_uncore_read(uncore, ch_ctl); 1275 1276 if (status != last_status) { 1277 WARN(1, "dp_aux_ch not started status 0x%08x\n", 1278 status); 1279 last_status = status; 1280 } 1281 1282 ret = -EBUSY; 1283 goto out; 1284 } 1285 1286 /* Only 5 data registers! */ 1287 if (WARN_ON(send_bytes > 20 || recv_size > 20)) { 1288 ret = -E2BIG; 1289 goto out; 1290 } 1291 1292 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1293 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1294 send_bytes, 1295 aux_clock_divider); 1296 1297 send_ctl |= aux_send_ctl_flags; 1298 1299 /* Must try at least 3 times according to DP spec */ 1300 for (try = 0; try < 5; try++) { 1301 /* Load the send data into the aux channel data registers */ 1302 for (i = 0; i < send_bytes; i += 4) 1303 intel_uncore_write(uncore, 1304 ch_data[i >> 2], 1305 intel_dp_pack_aux(send + i, 1306 send_bytes - i)); 1307 1308 /* Send the command and wait for it to complete */ 1309 intel_uncore_write(uncore, ch_ctl, send_ctl); 1310 1311 status = intel_dp_aux_wait_done(intel_dp); 1312 1313 /* Clear done status and any errors */ 1314 intel_uncore_write(uncore, 1315 ch_ctl, 1316 status | 1317 DP_AUX_CH_CTL_DONE | 1318 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1319 DP_AUX_CH_CTL_RECEIVE_ERROR); 1320 1321 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1322 * 400us delay required for errors and timeouts 1323 * Timeout errors from the HW already meet this 1324 * requirement so skip to next iteration 1325 */ 1326 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1327 continue; 1328 1329 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1330 usleep_range(400, 500); 1331 continue; 1332 } 1333 if (status & DP_AUX_CH_CTL_DONE) 1334 goto done; 1335 } 1336 } 1337 1338 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1339 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); 1340 ret = -EBUSY; 1341 goto out; 1342 } 1343 1344 done: 1345 /* Check for timeout or receive error. 1346 * Timeouts occur when the sink is not connected 1347 */ 1348 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1349 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); 1350 ret = -EIO; 1351 goto out; 1352 } 1353 1354 /* Timeouts occur when the device isn't connected, so they're 1355 * "normal" -- don't fill the kernel log with these */ 1356 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1357 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); 1358 ret = -ETIMEDOUT; 1359 goto out; 1360 } 1361 1362 /* Unload any bytes sent back from the other side */ 1363 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1364 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1365 1366 /* 1367 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1368 * We have no idea of what happened so we return -EBUSY so 1369 * drm layer takes care for the necessary retries. 1370 */ 1371 if (recv_bytes == 0 || recv_bytes > 20) { 1372 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n", 1373 recv_bytes); 1374 ret = -EBUSY; 1375 goto out; 1376 } 1377 1378 if (recv_bytes > recv_size) 1379 recv_bytes = recv_size; 1380 1381 for (i = 0; i < recv_bytes; i += 4) 1382 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1383 recv + i, recv_bytes - i); 1384 1385 ret = recv_bytes; 1386 out: 1387 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1388 1389 if (vdd) 1390 edp_panel_vdd_off(intel_dp, false); 1391 1392 pps_unlock(intel_dp, pps_wakeref); 1393 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1394 1395 return ret; 1396 } 1397 1398 #define BARE_ADDRESS_SIZE 3 1399 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1400 1401 static void 1402 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1403 const struct drm_dp_aux_msg *msg) 1404 { 1405 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1406 txbuf[1] = (msg->address >> 8) & 0xff; 1407 txbuf[2] = msg->address & 0xff; 1408 txbuf[3] = msg->size - 1; 1409 } 1410 1411 static ssize_t 1412 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1413 { 1414 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1415 u8 txbuf[20], rxbuf[20]; 1416 size_t txsize, rxsize; 1417 int ret; 1418 1419 intel_dp_aux_header(txbuf, msg); 1420 1421 switch (msg->request & ~DP_AUX_I2C_MOT) { 1422 case DP_AUX_NATIVE_WRITE: 1423 case DP_AUX_I2C_WRITE: 1424 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1425 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1426 rxsize = 2; /* 0 or 1 data bytes */ 1427 1428 if (WARN_ON(txsize > 20)) 1429 return -E2BIG; 1430 1431 WARN_ON(!msg->buffer != !msg->size); 1432 1433 if (msg->buffer) 1434 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1435 1436 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1437 rxbuf, rxsize, 0); 1438 if (ret > 0) { 1439 msg->reply = rxbuf[0] >> 4; 1440 1441 if (ret > 1) { 1442 /* Number of bytes written in a short write. */ 1443 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1444 } else { 1445 /* Return payload size. */ 1446 ret = msg->size; 1447 } 1448 } 1449 break; 1450 1451 case DP_AUX_NATIVE_READ: 1452 case DP_AUX_I2C_READ: 1453 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1454 rxsize = msg->size + 1; 1455 1456 if (WARN_ON(rxsize > 20)) 1457 return -E2BIG; 1458 1459 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1460 rxbuf, rxsize, 0); 1461 if (ret > 0) { 1462 msg->reply = rxbuf[0] >> 4; 1463 /* 1464 * Assume happy day, and copy the data. The caller is 1465 * expected to check msg->reply before touching it. 1466 * 1467 * Return payload size. 1468 */ 1469 ret--; 1470 memcpy(msg->buffer, rxbuf + 1, ret); 1471 } 1472 break; 1473 1474 default: 1475 ret = -EINVAL; 1476 break; 1477 } 1478 1479 return ret; 1480 } 1481 1482 1483 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1484 { 1485 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1486 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1487 enum aux_ch aux_ch = dig_port->aux_ch; 1488 1489 switch (aux_ch) { 1490 case AUX_CH_B: 1491 case AUX_CH_C: 1492 case AUX_CH_D: 1493 return DP_AUX_CH_CTL(aux_ch); 1494 default: 1495 MISSING_CASE(aux_ch); 1496 return DP_AUX_CH_CTL(AUX_CH_B); 1497 } 1498 } 1499 1500 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1501 { 1502 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1503 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1504 enum aux_ch aux_ch = dig_port->aux_ch; 1505 1506 switch (aux_ch) { 1507 case AUX_CH_B: 1508 case AUX_CH_C: 1509 case AUX_CH_D: 1510 return DP_AUX_CH_DATA(aux_ch, index); 1511 default: 1512 MISSING_CASE(aux_ch); 1513 return DP_AUX_CH_DATA(AUX_CH_B, index); 1514 } 1515 } 1516 1517 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1518 { 1519 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1520 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1521 enum aux_ch aux_ch = dig_port->aux_ch; 1522 1523 switch (aux_ch) { 1524 case AUX_CH_A: 1525 return DP_AUX_CH_CTL(aux_ch); 1526 case AUX_CH_B: 1527 case AUX_CH_C: 1528 case AUX_CH_D: 1529 return PCH_DP_AUX_CH_CTL(aux_ch); 1530 default: 1531 MISSING_CASE(aux_ch); 1532 return DP_AUX_CH_CTL(AUX_CH_A); 1533 } 1534 } 1535 1536 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1537 { 1538 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1539 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1540 enum aux_ch aux_ch = dig_port->aux_ch; 1541 1542 switch (aux_ch) { 1543 case AUX_CH_A: 1544 return DP_AUX_CH_DATA(aux_ch, index); 1545 case AUX_CH_B: 1546 case AUX_CH_C: 1547 case AUX_CH_D: 1548 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1549 default: 1550 MISSING_CASE(aux_ch); 1551 return DP_AUX_CH_DATA(AUX_CH_A, index); 1552 } 1553 } 1554 1555 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1556 { 1557 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1558 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1559 enum aux_ch aux_ch = dig_port->aux_ch; 1560 1561 switch (aux_ch) { 1562 case AUX_CH_A: 1563 case AUX_CH_B: 1564 case AUX_CH_C: 1565 case AUX_CH_D: 1566 case AUX_CH_E: 1567 case AUX_CH_F: 1568 return DP_AUX_CH_CTL(aux_ch); 1569 default: 1570 MISSING_CASE(aux_ch); 1571 return DP_AUX_CH_CTL(AUX_CH_A); 1572 } 1573 } 1574 1575 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1576 { 1577 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1578 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1579 enum aux_ch aux_ch = dig_port->aux_ch; 1580 1581 switch (aux_ch) { 1582 case AUX_CH_A: 1583 case AUX_CH_B: 1584 case AUX_CH_C: 1585 case AUX_CH_D: 1586 case AUX_CH_E: 1587 case AUX_CH_F: 1588 return DP_AUX_CH_DATA(aux_ch, index); 1589 default: 1590 MISSING_CASE(aux_ch); 1591 return DP_AUX_CH_DATA(AUX_CH_A, index); 1592 } 1593 } 1594 1595 static void 1596 intel_dp_aux_fini(struct intel_dp *intel_dp) 1597 { 1598 kfree(intel_dp->aux.name); 1599 } 1600 1601 static void 1602 intel_dp_aux_init(struct intel_dp *intel_dp) 1603 { 1604 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1605 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1606 struct intel_encoder *encoder = &dig_port->base; 1607 1608 if (INTEL_GEN(dev_priv) >= 9) { 1609 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1610 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1611 } else if (HAS_PCH_SPLIT(dev_priv)) { 1612 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1613 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1614 } else { 1615 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1616 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1617 } 1618 1619 if (INTEL_GEN(dev_priv) >= 9) 1620 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1621 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1622 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1623 else if (HAS_PCH_SPLIT(dev_priv)) 1624 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1625 else 1626 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1627 1628 if (INTEL_GEN(dev_priv) >= 9) 1629 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1630 else 1631 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1632 1633 drm_dp_aux_init(&intel_dp->aux); 1634 1635 /* Failure to allocate our preferred name is not critical */ 1636 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", 1637 port_name(encoder->port)); 1638 intel_dp->aux.transfer = intel_dp_aux_transfer; 1639 } 1640 1641 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1642 { 1643 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1644 1645 return max_rate >= 540000; 1646 } 1647 1648 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1649 { 1650 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1651 1652 return max_rate >= 810000; 1653 } 1654 1655 static void 1656 intel_dp_set_clock(struct intel_encoder *encoder, 1657 struct intel_crtc_state *pipe_config) 1658 { 1659 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1660 const struct dp_link_dpll *divisor = NULL; 1661 int i, count = 0; 1662 1663 if (IS_G4X(dev_priv)) { 1664 divisor = g4x_dpll; 1665 count = ARRAY_SIZE(g4x_dpll); 1666 } else if (HAS_PCH_SPLIT(dev_priv)) { 1667 divisor = pch_dpll; 1668 count = ARRAY_SIZE(pch_dpll); 1669 } else if (IS_CHERRYVIEW(dev_priv)) { 1670 divisor = chv_dpll; 1671 count = ARRAY_SIZE(chv_dpll); 1672 } else if (IS_VALLEYVIEW(dev_priv)) { 1673 divisor = vlv_dpll; 1674 count = ARRAY_SIZE(vlv_dpll); 1675 } 1676 1677 if (divisor && count) { 1678 for (i = 0; i < count; i++) { 1679 if (pipe_config->port_clock == divisor[i].clock) { 1680 pipe_config->dpll = divisor[i].dpll; 1681 pipe_config->clock_set = true; 1682 break; 1683 } 1684 } 1685 } 1686 } 1687 1688 static void snprintf_int_array(char *str, size_t len, 1689 const int *array, int nelem) 1690 { 1691 int i; 1692 1693 str[0] = '\0'; 1694 1695 for (i = 0; i < nelem; i++) { 1696 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1697 if (r >= len) 1698 return; 1699 str += r; 1700 len -= r; 1701 } 1702 } 1703 1704 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1705 { 1706 char str[128]; /* FIXME: too big for stack? */ 1707 1708 if ((drm_debug & DRM_UT_KMS) == 0) 1709 return; 1710 1711 snprintf_int_array(str, sizeof(str), 1712 intel_dp->source_rates, intel_dp->num_source_rates); 1713 DRM_DEBUG_KMS("source rates: %s\n", str); 1714 1715 snprintf_int_array(str, sizeof(str), 1716 intel_dp->sink_rates, intel_dp->num_sink_rates); 1717 DRM_DEBUG_KMS("sink rates: %s\n", str); 1718 1719 snprintf_int_array(str, sizeof(str), 1720 intel_dp->common_rates, intel_dp->num_common_rates); 1721 DRM_DEBUG_KMS("common rates: %s\n", str); 1722 } 1723 1724 int 1725 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1726 { 1727 int len; 1728 1729 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1730 if (WARN_ON(len <= 0)) 1731 return 162000; 1732 1733 return intel_dp->common_rates[len - 1]; 1734 } 1735 1736 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1737 { 1738 int i = intel_dp_rate_index(intel_dp->sink_rates, 1739 intel_dp->num_sink_rates, rate); 1740 1741 if (WARN_ON(i < 0)) 1742 i = 0; 1743 1744 return i; 1745 } 1746 1747 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1748 u8 *link_bw, u8 *rate_select) 1749 { 1750 /* eDP 1.4 rate select method. */ 1751 if (intel_dp->use_rate_select) { 1752 *link_bw = 0; 1753 *rate_select = 1754 intel_dp_rate_select(intel_dp, port_clock); 1755 } else { 1756 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1757 *rate_select = 0; 1758 } 1759 } 1760 1761 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1762 const struct intel_crtc_state *pipe_config) 1763 { 1764 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1765 1766 return INTEL_GEN(dev_priv) >= 11 && 1767 pipe_config->cpu_transcoder != TRANSCODER_A; 1768 } 1769 1770 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1771 const struct intel_crtc_state *pipe_config) 1772 { 1773 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1774 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1775 } 1776 1777 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp, 1778 const struct intel_crtc_state *pipe_config) 1779 { 1780 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1781 1782 return INTEL_GEN(dev_priv) >= 10 && 1783 pipe_config->cpu_transcoder != TRANSCODER_A; 1784 } 1785 1786 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1787 const struct intel_crtc_state *pipe_config) 1788 { 1789 if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable) 1790 return false; 1791 1792 return intel_dp_source_supports_dsc(intel_dp, pipe_config) && 1793 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1794 } 1795 1796 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1797 struct intel_crtc_state *pipe_config) 1798 { 1799 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1800 struct intel_connector *intel_connector = intel_dp->attached_connector; 1801 int bpp, bpc; 1802 1803 bpp = pipe_config->pipe_bpp; 1804 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1805 1806 if (bpc > 0) 1807 bpp = min(bpp, 3*bpc); 1808 1809 if (intel_dp_is_edp(intel_dp)) { 1810 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1811 if (intel_connector->base.display_info.bpc == 0 && 1812 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1813 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", 1814 dev_priv->vbt.edp.bpp); 1815 bpp = dev_priv->vbt.edp.bpp; 1816 } 1817 } 1818 1819 return bpp; 1820 } 1821 1822 /* Adjust link config limits based on compliance test requests. */ 1823 void 1824 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1825 struct intel_crtc_state *pipe_config, 1826 struct link_config_limits *limits) 1827 { 1828 /* For DP Compliance we override the computed bpp for the pipe */ 1829 if (intel_dp->compliance.test_data.bpc != 0) { 1830 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1831 1832 limits->min_bpp = limits->max_bpp = bpp; 1833 pipe_config->dither_force_disable = bpp == 6 * 3; 1834 1835 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); 1836 } 1837 1838 /* Use values requested by Compliance Test Request */ 1839 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 1840 int index; 1841 1842 /* Validate the compliance test data since max values 1843 * might have changed due to link train fallback. 1844 */ 1845 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 1846 intel_dp->compliance.test_lane_count)) { 1847 index = intel_dp_rate_index(intel_dp->common_rates, 1848 intel_dp->num_common_rates, 1849 intel_dp->compliance.test_link_rate); 1850 if (index >= 0) 1851 limits->min_clock = limits->max_clock = index; 1852 limits->min_lane_count = limits->max_lane_count = 1853 intel_dp->compliance.test_lane_count; 1854 } 1855 } 1856 } 1857 1858 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 1859 { 1860 /* 1861 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1862 * format of the number of bytes per pixel will be half the number 1863 * of bytes of RGB pixel. 1864 */ 1865 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1866 bpp /= 2; 1867 1868 return bpp; 1869 } 1870 1871 /* Optimize link config in order: max bpp, min clock, min lanes */ 1872 static int 1873 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 1874 struct intel_crtc_state *pipe_config, 1875 const struct link_config_limits *limits) 1876 { 1877 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 1878 int bpp, clock, lane_count; 1879 int mode_rate, link_clock, link_avail; 1880 1881 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 1882 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 1883 bpp); 1884 1885 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 1886 for (lane_count = limits->min_lane_count; 1887 lane_count <= limits->max_lane_count; 1888 lane_count <<= 1) { 1889 link_clock = intel_dp->common_rates[clock]; 1890 link_avail = intel_dp_max_data_rate(link_clock, 1891 lane_count); 1892 1893 if (mode_rate <= link_avail) { 1894 pipe_config->lane_count = lane_count; 1895 pipe_config->pipe_bpp = bpp; 1896 pipe_config->port_clock = link_clock; 1897 1898 return 0; 1899 } 1900 } 1901 } 1902 } 1903 1904 return -EINVAL; 1905 } 1906 1907 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 1908 { 1909 int i, num_bpc; 1910 u8 dsc_bpc[3] = {0}; 1911 1912 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 1913 dsc_bpc); 1914 for (i = 0; i < num_bpc; i++) { 1915 if (dsc_max_bpc >= dsc_bpc[i]) 1916 return dsc_bpc[i] * 3; 1917 } 1918 1919 return 0; 1920 } 1921 1922 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 1923 struct intel_crtc_state *pipe_config, 1924 struct drm_connector_state *conn_state, 1925 struct link_config_limits *limits) 1926 { 1927 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1928 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 1929 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 1930 u8 dsc_max_bpc; 1931 int pipe_bpp; 1932 int ret; 1933 1934 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 1935 intel_dp_supports_fec(intel_dp, pipe_config); 1936 1937 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 1938 return -EINVAL; 1939 1940 dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC, 1941 conn_state->max_requested_bpc); 1942 1943 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 1944 if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) { 1945 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n"); 1946 return -EINVAL; 1947 } 1948 1949 /* 1950 * For now enable DSC for max bpp, max link rate, max lane count. 1951 * Optimize this later for the minimum possible link rate/lane count 1952 * with DSC enabled for the requested mode. 1953 */ 1954 pipe_config->pipe_bpp = pipe_bpp; 1955 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 1956 pipe_config->lane_count = limits->max_lane_count; 1957 1958 if (intel_dp_is_edp(intel_dp)) { 1959 pipe_config->dsc_params.compressed_bpp = 1960 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 1961 pipe_config->pipe_bpp); 1962 pipe_config->dsc_params.slice_count = 1963 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 1964 true); 1965 } else { 1966 u16 dsc_max_output_bpp; 1967 u8 dsc_dp_slice_count; 1968 1969 dsc_max_output_bpp = 1970 intel_dp_dsc_get_output_bpp(pipe_config->port_clock, 1971 pipe_config->lane_count, 1972 adjusted_mode->crtc_clock, 1973 adjusted_mode->crtc_hdisplay); 1974 dsc_dp_slice_count = 1975 intel_dp_dsc_get_slice_count(intel_dp, 1976 adjusted_mode->crtc_clock, 1977 adjusted_mode->crtc_hdisplay); 1978 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 1979 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n"); 1980 return -EINVAL; 1981 } 1982 pipe_config->dsc_params.compressed_bpp = min_t(u16, 1983 dsc_max_output_bpp >> 4, 1984 pipe_config->pipe_bpp); 1985 pipe_config->dsc_params.slice_count = dsc_dp_slice_count; 1986 } 1987 /* 1988 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 1989 * is greater than the maximum Cdclock and if slice count is even 1990 * then we need to use 2 VDSC instances. 1991 */ 1992 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 1993 if (pipe_config->dsc_params.slice_count > 1) { 1994 pipe_config->dsc_params.dsc_split = true; 1995 } else { 1996 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n"); 1997 return -EINVAL; 1998 } 1999 } 2000 2001 ret = intel_dp_compute_dsc_params(intel_dp, pipe_config); 2002 if (ret < 0) { 2003 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d " 2004 "Compressed BPP = %d\n", 2005 pipe_config->pipe_bpp, 2006 pipe_config->dsc_params.compressed_bpp); 2007 return ret; 2008 } 2009 2010 pipe_config->dsc_params.compression_enable = true; 2011 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d " 2012 "Compressed Bpp = %d Slice Count = %d\n", 2013 pipe_config->pipe_bpp, 2014 pipe_config->dsc_params.compressed_bpp, 2015 pipe_config->dsc_params.slice_count); 2016 2017 return 0; 2018 } 2019 2020 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2021 { 2022 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2023 return 6 * 3; 2024 else 2025 return 8 * 3; 2026 } 2027 2028 static int 2029 intel_dp_compute_link_config(struct intel_encoder *encoder, 2030 struct intel_crtc_state *pipe_config, 2031 struct drm_connector_state *conn_state) 2032 { 2033 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2034 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2035 struct link_config_limits limits; 2036 int common_len; 2037 int ret; 2038 2039 common_len = intel_dp_common_len_rate_limit(intel_dp, 2040 intel_dp->max_link_rate); 2041 2042 /* No common link rates between source and sink */ 2043 WARN_ON(common_len <= 0); 2044 2045 limits.min_clock = 0; 2046 limits.max_clock = common_len - 1; 2047 2048 limits.min_lane_count = 1; 2049 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2050 2051 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2052 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2053 2054 if (intel_dp_is_edp(intel_dp)) { 2055 /* 2056 * Use the maximum clock and number of lanes the eDP panel 2057 * advertizes being capable of. The panels are generally 2058 * designed to support only a single clock and lane 2059 * configuration, and typically these values correspond to the 2060 * native resolution of the panel. 2061 */ 2062 limits.min_lane_count = limits.max_lane_count; 2063 limits.min_clock = limits.max_clock; 2064 } 2065 2066 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2067 2068 DRM_DEBUG_KMS("DP link computation with max lane count %i " 2069 "max rate %d max bpp %d pixel clock %iKHz\n", 2070 limits.max_lane_count, 2071 intel_dp->common_rates[limits.max_clock], 2072 limits.max_bpp, adjusted_mode->crtc_clock); 2073 2074 /* 2075 * Optimize for slow and wide. This is the place to add alternative 2076 * optimization policy. 2077 */ 2078 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2079 2080 /* enable compression if the mode doesn't fit available BW */ 2081 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en); 2082 if (ret || intel_dp->force_dsc_en) { 2083 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2084 conn_state, &limits); 2085 if (ret < 0) 2086 return ret; 2087 } 2088 2089 if (pipe_config->dsc_params.compression_enable) { 2090 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2091 pipe_config->lane_count, pipe_config->port_clock, 2092 pipe_config->pipe_bpp, 2093 pipe_config->dsc_params.compressed_bpp); 2094 2095 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2096 intel_dp_link_required(adjusted_mode->crtc_clock, 2097 pipe_config->dsc_params.compressed_bpp), 2098 intel_dp_max_data_rate(pipe_config->port_clock, 2099 pipe_config->lane_count)); 2100 } else { 2101 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", 2102 pipe_config->lane_count, pipe_config->port_clock, 2103 pipe_config->pipe_bpp); 2104 2105 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2106 intel_dp_link_required(adjusted_mode->crtc_clock, 2107 pipe_config->pipe_bpp), 2108 intel_dp_max_data_rate(pipe_config->port_clock, 2109 pipe_config->lane_count)); 2110 } 2111 return 0; 2112 } 2113 2114 static int 2115 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2116 struct drm_connector *connector, 2117 struct intel_crtc_state *crtc_state) 2118 { 2119 const struct drm_display_info *info = &connector->display_info; 2120 const struct drm_display_mode *adjusted_mode = 2121 &crtc_state->base.adjusted_mode; 2122 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 2123 int ret; 2124 2125 if (!drm_mode_is_420_only(info, adjusted_mode) || 2126 !intel_dp_get_colorimetry_status(intel_dp) || 2127 !connector->ycbcr_420_allowed) 2128 return 0; 2129 2130 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2131 2132 /* YCBCR 420 output conversion needs a scaler */ 2133 ret = skl_update_scaler_crtc(crtc_state); 2134 if (ret) { 2135 DRM_DEBUG_KMS("Scaler allocation for output failed\n"); 2136 return ret; 2137 } 2138 2139 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN); 2140 2141 return 0; 2142 } 2143 2144 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2145 const struct drm_connector_state *conn_state) 2146 { 2147 const struct intel_digital_connector_state *intel_conn_state = 2148 to_intel_digital_connector_state(conn_state); 2149 const struct drm_display_mode *adjusted_mode = 2150 &crtc_state->base.adjusted_mode; 2151 2152 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2153 /* 2154 * See: 2155 * CEA-861-E - 5.1 Default Encoding Parameters 2156 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2157 */ 2158 return crtc_state->pipe_bpp != 18 && 2159 drm_default_rgb_quant_range(adjusted_mode) == 2160 HDMI_QUANTIZATION_RANGE_LIMITED; 2161 } else { 2162 return intel_conn_state->broadcast_rgb == 2163 INTEL_BROADCAST_RGB_LIMITED; 2164 } 2165 } 2166 2167 int 2168 intel_dp_compute_config(struct intel_encoder *encoder, 2169 struct intel_crtc_state *pipe_config, 2170 struct drm_connector_state *conn_state) 2171 { 2172 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2173 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2174 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2175 struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base); 2176 enum port port = encoder->port; 2177 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); 2178 struct intel_connector *intel_connector = intel_dp->attached_connector; 2179 struct intel_digital_connector_state *intel_conn_state = 2180 to_intel_digital_connector_state(conn_state); 2181 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 2182 DP_DPCD_QUIRK_CONSTANT_N); 2183 int ret = 0, output_bpp; 2184 2185 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2186 pipe_config->has_pch_encoder = true; 2187 2188 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2189 if (lspcon->active) 2190 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2191 else 2192 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base, 2193 pipe_config); 2194 2195 if (ret) 2196 return ret; 2197 2198 pipe_config->has_drrs = false; 2199 if (IS_G4X(dev_priv) || port == PORT_A) 2200 pipe_config->has_audio = false; 2201 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2202 pipe_config->has_audio = intel_dp->has_audio; 2203 else 2204 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2205 2206 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2207 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2208 adjusted_mode); 2209 2210 if (INTEL_GEN(dev_priv) >= 9) { 2211 ret = skl_update_scaler_crtc(pipe_config); 2212 if (ret) 2213 return ret; 2214 } 2215 2216 if (HAS_GMCH(dev_priv)) 2217 intel_gmch_panel_fitting(intel_crtc, pipe_config, 2218 conn_state->scaling_mode); 2219 else 2220 intel_pch_panel_fitting(intel_crtc, pipe_config, 2221 conn_state->scaling_mode); 2222 } 2223 2224 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2225 return -EINVAL; 2226 2227 if (HAS_GMCH(dev_priv) && 2228 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2229 return -EINVAL; 2230 2231 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2232 return -EINVAL; 2233 2234 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2235 if (ret < 0) 2236 return ret; 2237 2238 pipe_config->limited_color_range = 2239 intel_dp_limited_color_range(pipe_config, conn_state); 2240 2241 if (pipe_config->dsc_params.compression_enable) 2242 output_bpp = pipe_config->dsc_params.compressed_bpp; 2243 else 2244 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2245 2246 intel_link_compute_m_n(output_bpp, 2247 pipe_config->lane_count, 2248 adjusted_mode->crtc_clock, 2249 pipe_config->port_clock, 2250 &pipe_config->dp_m_n, 2251 constant_n); 2252 2253 if (intel_connector->panel.downclock_mode != NULL && 2254 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2255 pipe_config->has_drrs = true; 2256 intel_link_compute_m_n(output_bpp, 2257 pipe_config->lane_count, 2258 intel_connector->panel.downclock_mode->clock, 2259 pipe_config->port_clock, 2260 &pipe_config->dp_m2_n2, 2261 constant_n); 2262 } 2263 2264 if (!HAS_DDI(dev_priv)) 2265 intel_dp_set_clock(encoder, pipe_config); 2266 2267 intel_psr_compute_config(intel_dp, pipe_config); 2268 2269 return 0; 2270 } 2271 2272 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2273 int link_rate, u8 lane_count, 2274 bool link_mst) 2275 { 2276 intel_dp->link_trained = false; 2277 intel_dp->link_rate = link_rate; 2278 intel_dp->lane_count = lane_count; 2279 intel_dp->link_mst = link_mst; 2280 } 2281 2282 static void intel_dp_prepare(struct intel_encoder *encoder, 2283 const struct intel_crtc_state *pipe_config) 2284 { 2285 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2286 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2287 enum port port = encoder->port; 2288 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 2289 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2290 2291 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2292 pipe_config->lane_count, 2293 intel_crtc_has_type(pipe_config, 2294 INTEL_OUTPUT_DP_MST)); 2295 2296 /* 2297 * There are four kinds of DP registers: 2298 * 2299 * IBX PCH 2300 * SNB CPU 2301 * IVB CPU 2302 * CPT PCH 2303 * 2304 * IBX PCH and CPU are the same for almost everything, 2305 * except that the CPU DP PLL is configured in this 2306 * register 2307 * 2308 * CPT PCH is quite different, having many bits moved 2309 * to the TRANS_DP_CTL register instead. That 2310 * configuration happens (oddly) in ironlake_pch_enable 2311 */ 2312 2313 /* Preserve the BIOS-computed detected bit. This is 2314 * supposed to be read-only. 2315 */ 2316 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 2317 2318 /* Handle DP bits in common between all three register formats */ 2319 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2320 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2321 2322 /* Split out the IBX/CPU vs CPT settings */ 2323 2324 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2325 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2326 intel_dp->DP |= DP_SYNC_HS_HIGH; 2327 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2328 intel_dp->DP |= DP_SYNC_VS_HIGH; 2329 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2330 2331 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2332 intel_dp->DP |= DP_ENHANCED_FRAMING; 2333 2334 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2335 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2336 u32 trans_dp; 2337 2338 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2339 2340 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 2341 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2342 trans_dp |= TRANS_DP_ENH_FRAMING; 2343 else 2344 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2345 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); 2346 } else { 2347 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2348 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2349 2350 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2351 intel_dp->DP |= DP_SYNC_HS_HIGH; 2352 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2353 intel_dp->DP |= DP_SYNC_VS_HIGH; 2354 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2355 2356 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2357 intel_dp->DP |= DP_ENHANCED_FRAMING; 2358 2359 if (IS_CHERRYVIEW(dev_priv)) 2360 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2361 else 2362 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2363 } 2364 } 2365 2366 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2367 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2368 2369 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2370 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2371 2372 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2373 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2374 2375 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2376 2377 static void wait_panel_status(struct intel_dp *intel_dp, 2378 u32 mask, 2379 u32 value) 2380 { 2381 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2382 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2383 2384 lockdep_assert_held(&dev_priv->pps_mutex); 2385 2386 intel_pps_verify_state(intel_dp); 2387 2388 pp_stat_reg = _pp_stat_reg(intel_dp); 2389 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2390 2391 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", 2392 mask, value, 2393 I915_READ(pp_stat_reg), 2394 I915_READ(pp_ctrl_reg)); 2395 2396 if (intel_wait_for_register(&dev_priv->uncore, 2397 pp_stat_reg, mask, value, 2398 5000)) 2399 DRM_ERROR("Panel status timeout: status %08x control %08x\n", 2400 I915_READ(pp_stat_reg), 2401 I915_READ(pp_ctrl_reg)); 2402 2403 DRM_DEBUG_KMS("Wait complete\n"); 2404 } 2405 2406 static void wait_panel_on(struct intel_dp *intel_dp) 2407 { 2408 DRM_DEBUG_KMS("Wait for panel power on\n"); 2409 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2410 } 2411 2412 static void wait_panel_off(struct intel_dp *intel_dp) 2413 { 2414 DRM_DEBUG_KMS("Wait for panel power off time\n"); 2415 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2416 } 2417 2418 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2419 { 2420 ktime_t panel_power_on_time; 2421 s64 panel_power_off_duration; 2422 2423 DRM_DEBUG_KMS("Wait for panel power cycle\n"); 2424 2425 /* take the difference of currrent time and panel power off time 2426 * and then make panel wait for t11_t12 if needed. */ 2427 panel_power_on_time = ktime_get_boottime(); 2428 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2429 2430 /* When we disable the VDD override bit last we have to do the manual 2431 * wait. */ 2432 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2433 wait_remaining_ms_from_jiffies(jiffies, 2434 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2435 2436 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2437 } 2438 2439 static void wait_backlight_on(struct intel_dp *intel_dp) 2440 { 2441 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2442 intel_dp->backlight_on_delay); 2443 } 2444 2445 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2446 { 2447 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2448 intel_dp->backlight_off_delay); 2449 } 2450 2451 /* Read the current pp_control value, unlocking the register if it 2452 * is locked 2453 */ 2454 2455 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) 2456 { 2457 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2458 u32 control; 2459 2460 lockdep_assert_held(&dev_priv->pps_mutex); 2461 2462 control = I915_READ(_pp_ctrl_reg(intel_dp)); 2463 if (WARN_ON(!HAS_DDI(dev_priv) && 2464 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2465 control &= ~PANEL_UNLOCK_MASK; 2466 control |= PANEL_UNLOCK_REGS; 2467 } 2468 return control; 2469 } 2470 2471 /* 2472 * Must be paired with edp_panel_vdd_off(). 2473 * Must hold pps_mutex around the whole on/off sequence. 2474 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2475 */ 2476 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2477 { 2478 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2479 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2480 u32 pp; 2481 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2482 bool need_to_disable = !intel_dp->want_panel_vdd; 2483 2484 lockdep_assert_held(&dev_priv->pps_mutex); 2485 2486 if (!intel_dp_is_edp(intel_dp)) 2487 return false; 2488 2489 cancel_delayed_work(&intel_dp->panel_vdd_work); 2490 intel_dp->want_panel_vdd = true; 2491 2492 if (edp_have_panel_vdd(intel_dp)) 2493 return need_to_disable; 2494 2495 intel_display_power_get(dev_priv, 2496 intel_aux_power_domain(intel_dig_port)); 2497 2498 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n", 2499 port_name(intel_dig_port->base.port)); 2500 2501 if (!edp_have_panel_power(intel_dp)) 2502 wait_panel_power_cycle(intel_dp); 2503 2504 pp = ironlake_get_pp_control(intel_dp); 2505 pp |= EDP_FORCE_VDD; 2506 2507 pp_stat_reg = _pp_stat_reg(intel_dp); 2508 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2509 2510 I915_WRITE(pp_ctrl_reg, pp); 2511 POSTING_READ(pp_ctrl_reg); 2512 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2513 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2514 /* 2515 * If the panel wasn't on, delay before accessing aux channel 2516 */ 2517 if (!edp_have_panel_power(intel_dp)) { 2518 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n", 2519 port_name(intel_dig_port->base.port)); 2520 msleep(intel_dp->panel_power_up_delay); 2521 } 2522 2523 return need_to_disable; 2524 } 2525 2526 /* 2527 * Must be paired with intel_edp_panel_vdd_off() or 2528 * intel_edp_panel_off(). 2529 * Nested calls to these functions are not allowed since 2530 * we drop the lock. Caller must use some higher level 2531 * locking to prevent nested calls from other threads. 2532 */ 2533 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2534 { 2535 intel_wakeref_t wakeref; 2536 bool vdd; 2537 2538 if (!intel_dp_is_edp(intel_dp)) 2539 return; 2540 2541 vdd = false; 2542 with_pps_lock(intel_dp, wakeref) 2543 vdd = edp_panel_vdd_on(intel_dp); 2544 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n", 2545 port_name(dp_to_dig_port(intel_dp)->base.port)); 2546 } 2547 2548 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2549 { 2550 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2551 struct intel_digital_port *intel_dig_port = 2552 dp_to_dig_port(intel_dp); 2553 u32 pp; 2554 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2555 2556 lockdep_assert_held(&dev_priv->pps_mutex); 2557 2558 WARN_ON(intel_dp->want_panel_vdd); 2559 2560 if (!edp_have_panel_vdd(intel_dp)) 2561 return; 2562 2563 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n", 2564 port_name(intel_dig_port->base.port)); 2565 2566 pp = ironlake_get_pp_control(intel_dp); 2567 pp &= ~EDP_FORCE_VDD; 2568 2569 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2570 pp_stat_reg = _pp_stat_reg(intel_dp); 2571 2572 I915_WRITE(pp_ctrl_reg, pp); 2573 POSTING_READ(pp_ctrl_reg); 2574 2575 /* Make sure sequencer is idle before allowing subsequent activity */ 2576 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2577 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2578 2579 if ((pp & PANEL_POWER_ON) == 0) 2580 intel_dp->panel_power_off_time = ktime_get_boottime(); 2581 2582 intel_display_power_put_unchecked(dev_priv, 2583 intel_aux_power_domain(intel_dig_port)); 2584 } 2585 2586 static void edp_panel_vdd_work(struct work_struct *__work) 2587 { 2588 struct intel_dp *intel_dp = 2589 container_of(to_delayed_work(__work), 2590 struct intel_dp, panel_vdd_work); 2591 intel_wakeref_t wakeref; 2592 2593 with_pps_lock(intel_dp, wakeref) { 2594 if (!intel_dp->want_panel_vdd) 2595 edp_panel_vdd_off_sync(intel_dp); 2596 } 2597 } 2598 2599 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 2600 { 2601 unsigned long delay; 2602 2603 /* 2604 * Queue the timer to fire a long time from now (relative to the power 2605 * down delay) to keep the panel power up across a sequence of 2606 * operations. 2607 */ 2608 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 2609 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 2610 } 2611 2612 /* 2613 * Must be paired with edp_panel_vdd_on(). 2614 * Must hold pps_mutex around the whole on/off sequence. 2615 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2616 */ 2617 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 2618 { 2619 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2620 2621 lockdep_assert_held(&dev_priv->pps_mutex); 2622 2623 if (!intel_dp_is_edp(intel_dp)) 2624 return; 2625 2626 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on", 2627 port_name(dp_to_dig_port(intel_dp)->base.port)); 2628 2629 intel_dp->want_panel_vdd = false; 2630 2631 if (sync) 2632 edp_panel_vdd_off_sync(intel_dp); 2633 else 2634 edp_panel_vdd_schedule_off(intel_dp); 2635 } 2636 2637 static void edp_panel_on(struct intel_dp *intel_dp) 2638 { 2639 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2640 u32 pp; 2641 i915_reg_t pp_ctrl_reg; 2642 2643 lockdep_assert_held(&dev_priv->pps_mutex); 2644 2645 if (!intel_dp_is_edp(intel_dp)) 2646 return; 2647 2648 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n", 2649 port_name(dp_to_dig_port(intel_dp)->base.port)); 2650 2651 if (WARN(edp_have_panel_power(intel_dp), 2652 "eDP port %c panel power already on\n", 2653 port_name(dp_to_dig_port(intel_dp)->base.port))) 2654 return; 2655 2656 wait_panel_power_cycle(intel_dp); 2657 2658 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2659 pp = ironlake_get_pp_control(intel_dp); 2660 if (IS_GEN(dev_priv, 5)) { 2661 /* ILK workaround: disable reset around power sequence */ 2662 pp &= ~PANEL_POWER_RESET; 2663 I915_WRITE(pp_ctrl_reg, pp); 2664 POSTING_READ(pp_ctrl_reg); 2665 } 2666 2667 pp |= PANEL_POWER_ON; 2668 if (!IS_GEN(dev_priv, 5)) 2669 pp |= PANEL_POWER_RESET; 2670 2671 I915_WRITE(pp_ctrl_reg, pp); 2672 POSTING_READ(pp_ctrl_reg); 2673 2674 wait_panel_on(intel_dp); 2675 intel_dp->last_power_on = jiffies; 2676 2677 if (IS_GEN(dev_priv, 5)) { 2678 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 2679 I915_WRITE(pp_ctrl_reg, pp); 2680 POSTING_READ(pp_ctrl_reg); 2681 } 2682 } 2683 2684 void intel_edp_panel_on(struct intel_dp *intel_dp) 2685 { 2686 intel_wakeref_t wakeref; 2687 2688 if (!intel_dp_is_edp(intel_dp)) 2689 return; 2690 2691 with_pps_lock(intel_dp, wakeref) 2692 edp_panel_on(intel_dp); 2693 } 2694 2695 2696 static void edp_panel_off(struct intel_dp *intel_dp) 2697 { 2698 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2699 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2700 u32 pp; 2701 i915_reg_t pp_ctrl_reg; 2702 2703 lockdep_assert_held(&dev_priv->pps_mutex); 2704 2705 if (!intel_dp_is_edp(intel_dp)) 2706 return; 2707 2708 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n", 2709 port_name(dig_port->base.port)); 2710 2711 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n", 2712 port_name(dig_port->base.port)); 2713 2714 pp = ironlake_get_pp_control(intel_dp); 2715 /* We need to switch off panel power _and_ force vdd, for otherwise some 2716 * panels get very unhappy and cease to work. */ 2717 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 2718 EDP_BLC_ENABLE); 2719 2720 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2721 2722 intel_dp->want_panel_vdd = false; 2723 2724 I915_WRITE(pp_ctrl_reg, pp); 2725 POSTING_READ(pp_ctrl_reg); 2726 2727 wait_panel_off(intel_dp); 2728 intel_dp->panel_power_off_time = ktime_get_boottime(); 2729 2730 /* We got a reference when we enabled the VDD. */ 2731 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 2732 } 2733 2734 void intel_edp_panel_off(struct intel_dp *intel_dp) 2735 { 2736 intel_wakeref_t wakeref; 2737 2738 if (!intel_dp_is_edp(intel_dp)) 2739 return; 2740 2741 with_pps_lock(intel_dp, wakeref) 2742 edp_panel_off(intel_dp); 2743 } 2744 2745 /* Enable backlight in the panel power control. */ 2746 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 2747 { 2748 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2749 intel_wakeref_t wakeref; 2750 2751 /* 2752 * If we enable the backlight right away following a panel power 2753 * on, we may see slight flicker as the panel syncs with the eDP 2754 * link. So delay a bit to make sure the image is solid before 2755 * allowing it to appear. 2756 */ 2757 wait_backlight_on(intel_dp); 2758 2759 with_pps_lock(intel_dp, wakeref) { 2760 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2761 u32 pp; 2762 2763 pp = ironlake_get_pp_control(intel_dp); 2764 pp |= EDP_BLC_ENABLE; 2765 2766 I915_WRITE(pp_ctrl_reg, pp); 2767 POSTING_READ(pp_ctrl_reg); 2768 } 2769 } 2770 2771 /* Enable backlight PWM and backlight PP control. */ 2772 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 2773 const struct drm_connector_state *conn_state) 2774 { 2775 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder); 2776 2777 if (!intel_dp_is_edp(intel_dp)) 2778 return; 2779 2780 DRM_DEBUG_KMS("\n"); 2781 2782 intel_panel_enable_backlight(crtc_state, conn_state); 2783 _intel_edp_backlight_on(intel_dp); 2784 } 2785 2786 /* Disable backlight in the panel power control. */ 2787 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 2788 { 2789 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2790 intel_wakeref_t wakeref; 2791 2792 if (!intel_dp_is_edp(intel_dp)) 2793 return; 2794 2795 with_pps_lock(intel_dp, wakeref) { 2796 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2797 u32 pp; 2798 2799 pp = ironlake_get_pp_control(intel_dp); 2800 pp &= ~EDP_BLC_ENABLE; 2801 2802 I915_WRITE(pp_ctrl_reg, pp); 2803 POSTING_READ(pp_ctrl_reg); 2804 } 2805 2806 intel_dp->last_backlight_off = jiffies; 2807 edp_wait_backlight_off(intel_dp); 2808 } 2809 2810 /* Disable backlight PP control and backlight PWM. */ 2811 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 2812 { 2813 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder); 2814 2815 if (!intel_dp_is_edp(intel_dp)) 2816 return; 2817 2818 DRM_DEBUG_KMS("\n"); 2819 2820 _intel_edp_backlight_off(intel_dp); 2821 intel_panel_disable_backlight(old_conn_state); 2822 } 2823 2824 /* 2825 * Hook for controlling the panel power control backlight through the bl_power 2826 * sysfs attribute. Take care to handle multiple calls. 2827 */ 2828 static void intel_edp_backlight_power(struct intel_connector *connector, 2829 bool enable) 2830 { 2831 struct intel_dp *intel_dp = intel_attached_dp(&connector->base); 2832 intel_wakeref_t wakeref; 2833 bool is_enabled; 2834 2835 is_enabled = false; 2836 with_pps_lock(intel_dp, wakeref) 2837 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 2838 if (is_enabled == enable) 2839 return; 2840 2841 DRM_DEBUG_KMS("panel power control backlight %s\n", 2842 enable ? "enable" : "disable"); 2843 2844 if (enable) 2845 _intel_edp_backlight_on(intel_dp); 2846 else 2847 _intel_edp_backlight_off(intel_dp); 2848 } 2849 2850 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 2851 { 2852 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2853 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2854 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN; 2855 2856 I915_STATE_WARN(cur_state != state, 2857 "DP port %c state assertion failure (expected %s, current %s)\n", 2858 port_name(dig_port->base.port), 2859 onoff(state), onoff(cur_state)); 2860 } 2861 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 2862 2863 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 2864 { 2865 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE; 2866 2867 I915_STATE_WARN(cur_state != state, 2868 "eDP PLL state assertion failure (expected %s, current %s)\n", 2869 onoff(state), onoff(cur_state)); 2870 } 2871 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 2872 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 2873 2874 static void ironlake_edp_pll_on(struct intel_dp *intel_dp, 2875 const struct intel_crtc_state *pipe_config) 2876 { 2877 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 2878 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2879 2880 assert_pipe_disabled(dev_priv, crtc->pipe); 2881 assert_dp_port_disabled(intel_dp); 2882 assert_edp_pll_disabled(dev_priv); 2883 2884 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n", 2885 pipe_config->port_clock); 2886 2887 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 2888 2889 if (pipe_config->port_clock == 162000) 2890 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 2891 else 2892 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 2893 2894 I915_WRITE(DP_A, intel_dp->DP); 2895 POSTING_READ(DP_A); 2896 udelay(500); 2897 2898 /* 2899 * [DevILK] Work around required when enabling DP PLL 2900 * while a pipe is enabled going to FDI: 2901 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 2902 * 2. Program DP PLL enable 2903 */ 2904 if (IS_GEN(dev_priv, 5)) 2905 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 2906 2907 intel_dp->DP |= DP_PLL_ENABLE; 2908 2909 I915_WRITE(DP_A, intel_dp->DP); 2910 POSTING_READ(DP_A); 2911 udelay(200); 2912 } 2913 2914 static void ironlake_edp_pll_off(struct intel_dp *intel_dp, 2915 const struct intel_crtc_state *old_crtc_state) 2916 { 2917 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 2918 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2919 2920 assert_pipe_disabled(dev_priv, crtc->pipe); 2921 assert_dp_port_disabled(intel_dp); 2922 assert_edp_pll_enabled(dev_priv); 2923 2924 DRM_DEBUG_KMS("disabling eDP PLL\n"); 2925 2926 intel_dp->DP &= ~DP_PLL_ENABLE; 2927 2928 I915_WRITE(DP_A, intel_dp->DP); 2929 POSTING_READ(DP_A); 2930 udelay(200); 2931 } 2932 2933 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 2934 { 2935 /* 2936 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 2937 * be capable of signalling downstream hpd with a long pulse. 2938 * Whether or not that means D3 is safe to use is not clear, 2939 * but let's assume so until proven otherwise. 2940 * 2941 * FIXME should really check all downstream ports... 2942 */ 2943 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 2944 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 2945 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 2946 } 2947 2948 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 2949 const struct intel_crtc_state *crtc_state, 2950 bool enable) 2951 { 2952 int ret; 2953 2954 if (!crtc_state->dsc_params.compression_enable) 2955 return; 2956 2957 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 2958 enable ? DP_DECOMPRESSION_EN : 0); 2959 if (ret < 0) 2960 DRM_DEBUG_KMS("Failed to %s sink decompression state\n", 2961 enable ? "enable" : "disable"); 2962 } 2963 2964 /* If the sink supports it, try to set the power state appropriately */ 2965 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 2966 { 2967 int ret, i; 2968 2969 /* Should have a valid DPCD by this point */ 2970 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 2971 return; 2972 2973 if (mode != DRM_MODE_DPMS_ON) { 2974 if (downstream_hpd_needs_d0(intel_dp)) 2975 return; 2976 2977 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 2978 DP_SET_POWER_D3); 2979 } else { 2980 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 2981 2982 /* 2983 * When turning on, we need to retry for 1ms to give the sink 2984 * time to wake up. 2985 */ 2986 for (i = 0; i < 3; i++) { 2987 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 2988 DP_SET_POWER_D0); 2989 if (ret == 1) 2990 break; 2991 msleep(1); 2992 } 2993 2994 if (ret == 1 && lspcon->active) 2995 lspcon_wait_pcon_mode(lspcon); 2996 } 2997 2998 if (ret != 1) 2999 DRM_DEBUG_KMS("failed to %s sink power state\n", 3000 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 3001 } 3002 3003 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3004 enum port port, enum pipe *pipe) 3005 { 3006 enum pipe p; 3007 3008 for_each_pipe(dev_priv, p) { 3009 u32 val = I915_READ(TRANS_DP_CTL(p)); 3010 3011 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3012 *pipe = p; 3013 return true; 3014 } 3015 } 3016 3017 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port)); 3018 3019 /* must initialize pipe to something for the asserts */ 3020 *pipe = PIPE_A; 3021 3022 return false; 3023 } 3024 3025 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3026 i915_reg_t dp_reg, enum port port, 3027 enum pipe *pipe) 3028 { 3029 bool ret; 3030 u32 val; 3031 3032 val = I915_READ(dp_reg); 3033 3034 ret = val & DP_PORT_EN; 3035 3036 /* asserts want to know the pipe even if the port is disabled */ 3037 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3038 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3039 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3040 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3041 else if (IS_CHERRYVIEW(dev_priv)) 3042 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3043 else 3044 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3045 3046 return ret; 3047 } 3048 3049 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3050 enum pipe *pipe) 3051 { 3052 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3053 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3054 intel_wakeref_t wakeref; 3055 bool ret; 3056 3057 wakeref = intel_display_power_get_if_enabled(dev_priv, 3058 encoder->power_domain); 3059 if (!wakeref) 3060 return false; 3061 3062 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3063 encoder->port, pipe); 3064 3065 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3066 3067 return ret; 3068 } 3069 3070 static void intel_dp_get_config(struct intel_encoder *encoder, 3071 struct intel_crtc_state *pipe_config) 3072 { 3073 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3074 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3075 u32 tmp, flags = 0; 3076 enum port port = encoder->port; 3077 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3078 3079 if (encoder->type == INTEL_OUTPUT_EDP) 3080 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3081 else 3082 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3083 3084 tmp = I915_READ(intel_dp->output_reg); 3085 3086 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3087 3088 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3089 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 3090 3091 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3092 flags |= DRM_MODE_FLAG_PHSYNC; 3093 else 3094 flags |= DRM_MODE_FLAG_NHSYNC; 3095 3096 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3097 flags |= DRM_MODE_FLAG_PVSYNC; 3098 else 3099 flags |= DRM_MODE_FLAG_NVSYNC; 3100 } else { 3101 if (tmp & DP_SYNC_HS_HIGH) 3102 flags |= DRM_MODE_FLAG_PHSYNC; 3103 else 3104 flags |= DRM_MODE_FLAG_NHSYNC; 3105 3106 if (tmp & DP_SYNC_VS_HIGH) 3107 flags |= DRM_MODE_FLAG_PVSYNC; 3108 else 3109 flags |= DRM_MODE_FLAG_NVSYNC; 3110 } 3111 3112 pipe_config->base.adjusted_mode.flags |= flags; 3113 3114 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3115 pipe_config->limited_color_range = true; 3116 3117 pipe_config->lane_count = 3118 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3119 3120 intel_dp_get_m_n(crtc, pipe_config); 3121 3122 if (port == PORT_A) { 3123 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3124 pipe_config->port_clock = 162000; 3125 else 3126 pipe_config->port_clock = 270000; 3127 } 3128 3129 pipe_config->base.adjusted_mode.crtc_clock = 3130 intel_dotclock_calculate(pipe_config->port_clock, 3131 &pipe_config->dp_m_n); 3132 3133 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3134 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3135 /* 3136 * This is a big fat ugly hack. 3137 * 3138 * Some machines in UEFI boot mode provide us a VBT that has 18 3139 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3140 * unknown we fail to light up. Yet the same BIOS boots up with 3141 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3142 * max, not what it tells us to use. 3143 * 3144 * Note: This will still be broken if the eDP panel is not lit 3145 * up by the BIOS, and thus we can't get the mode at module 3146 * load. 3147 */ 3148 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3149 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3150 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3151 } 3152 } 3153 3154 static void intel_disable_dp(struct intel_encoder *encoder, 3155 const struct intel_crtc_state *old_crtc_state, 3156 const struct drm_connector_state *old_conn_state) 3157 { 3158 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3159 3160 intel_dp->link_trained = false; 3161 3162 if (old_crtc_state->has_audio) 3163 intel_audio_codec_disable(encoder, 3164 old_crtc_state, old_conn_state); 3165 3166 /* Make sure the panel is off before trying to change the mode. But also 3167 * ensure that we have vdd while we switch off the panel. */ 3168 intel_edp_panel_vdd_on(intel_dp); 3169 intel_edp_backlight_off(old_conn_state); 3170 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3171 intel_edp_panel_off(intel_dp); 3172 } 3173 3174 static void g4x_disable_dp(struct intel_encoder *encoder, 3175 const struct intel_crtc_state *old_crtc_state, 3176 const struct drm_connector_state *old_conn_state) 3177 { 3178 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3179 } 3180 3181 static void vlv_disable_dp(struct intel_encoder *encoder, 3182 const struct intel_crtc_state *old_crtc_state, 3183 const struct drm_connector_state *old_conn_state) 3184 { 3185 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3186 } 3187 3188 static void g4x_post_disable_dp(struct intel_encoder *encoder, 3189 const struct intel_crtc_state *old_crtc_state, 3190 const struct drm_connector_state *old_conn_state) 3191 { 3192 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3193 enum port port = encoder->port; 3194 3195 /* 3196 * Bspec does not list a specific disable sequence for g4x DP. 3197 * Follow the ilk+ sequence (disable pipe before the port) for 3198 * g4x DP as it does not suffer from underruns like the normal 3199 * g4x modeset sequence (disable pipe after the port). 3200 */ 3201 intel_dp_link_down(encoder, old_crtc_state); 3202 3203 /* Only ilk+ has port A */ 3204 if (port == PORT_A) 3205 ironlake_edp_pll_off(intel_dp, old_crtc_state); 3206 } 3207 3208 static void vlv_post_disable_dp(struct intel_encoder *encoder, 3209 const struct intel_crtc_state *old_crtc_state, 3210 const struct drm_connector_state *old_conn_state) 3211 { 3212 intel_dp_link_down(encoder, old_crtc_state); 3213 } 3214 3215 static void chv_post_disable_dp(struct intel_encoder *encoder, 3216 const struct intel_crtc_state *old_crtc_state, 3217 const struct drm_connector_state *old_conn_state) 3218 { 3219 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3220 3221 intel_dp_link_down(encoder, old_crtc_state); 3222 3223 vlv_dpio_get(dev_priv); 3224 3225 /* Assert data lane reset */ 3226 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3227 3228 vlv_dpio_put(dev_priv); 3229 } 3230 3231 static void 3232 _intel_dp_set_link_train(struct intel_dp *intel_dp, 3233 u32 *DP, 3234 u8 dp_train_pat) 3235 { 3236 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3237 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3238 enum port port = intel_dig_port->base.port; 3239 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 3240 3241 if (dp_train_pat & train_pat_mask) 3242 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n", 3243 dp_train_pat & train_pat_mask); 3244 3245 if (HAS_DDI(dev_priv)) { 3246 u32 temp = I915_READ(DP_TP_CTL(port)); 3247 3248 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) 3249 temp |= DP_TP_CTL_SCRAMBLE_DISABLE; 3250 else 3251 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; 3252 3253 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3254 switch (dp_train_pat & train_pat_mask) { 3255 case DP_TRAINING_PATTERN_DISABLE: 3256 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; 3257 3258 break; 3259 case DP_TRAINING_PATTERN_1: 3260 temp |= DP_TP_CTL_LINK_TRAIN_PAT1; 3261 break; 3262 case DP_TRAINING_PATTERN_2: 3263 temp |= DP_TP_CTL_LINK_TRAIN_PAT2; 3264 break; 3265 case DP_TRAINING_PATTERN_3: 3266 temp |= DP_TP_CTL_LINK_TRAIN_PAT3; 3267 break; 3268 case DP_TRAINING_PATTERN_4: 3269 temp |= DP_TP_CTL_LINK_TRAIN_PAT4; 3270 break; 3271 } 3272 I915_WRITE(DP_TP_CTL(port), temp); 3273 3274 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3275 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3276 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3277 3278 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3279 case DP_TRAINING_PATTERN_DISABLE: 3280 *DP |= DP_LINK_TRAIN_OFF_CPT; 3281 break; 3282 case DP_TRAINING_PATTERN_1: 3283 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3284 break; 3285 case DP_TRAINING_PATTERN_2: 3286 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3287 break; 3288 case DP_TRAINING_PATTERN_3: 3289 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3290 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3291 break; 3292 } 3293 3294 } else { 3295 *DP &= ~DP_LINK_TRAIN_MASK; 3296 3297 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3298 case DP_TRAINING_PATTERN_DISABLE: 3299 *DP |= DP_LINK_TRAIN_OFF; 3300 break; 3301 case DP_TRAINING_PATTERN_1: 3302 *DP |= DP_LINK_TRAIN_PAT_1; 3303 break; 3304 case DP_TRAINING_PATTERN_2: 3305 *DP |= DP_LINK_TRAIN_PAT_2; 3306 break; 3307 case DP_TRAINING_PATTERN_3: 3308 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3309 *DP |= DP_LINK_TRAIN_PAT_2; 3310 break; 3311 } 3312 } 3313 } 3314 3315 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3316 const struct intel_crtc_state *old_crtc_state) 3317 { 3318 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3319 3320 /* enable with pattern 1 (as per spec) */ 3321 3322 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3323 3324 /* 3325 * Magic for VLV/CHV. We _must_ first set up the register 3326 * without actually enabling the port, and then do another 3327 * write to enable the port. Otherwise link training will 3328 * fail when the power sequencer is freshly used for this port. 3329 */ 3330 intel_dp->DP |= DP_PORT_EN; 3331 if (old_crtc_state->has_audio) 3332 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3333 3334 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3335 POSTING_READ(intel_dp->output_reg); 3336 } 3337 3338 static void intel_enable_dp(struct intel_encoder *encoder, 3339 const struct intel_crtc_state *pipe_config, 3340 const struct drm_connector_state *conn_state) 3341 { 3342 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3343 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3344 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3345 u32 dp_reg = I915_READ(intel_dp->output_reg); 3346 enum pipe pipe = crtc->pipe; 3347 intel_wakeref_t wakeref; 3348 3349 if (WARN_ON(dp_reg & DP_PORT_EN)) 3350 return; 3351 3352 with_pps_lock(intel_dp, wakeref) { 3353 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3354 vlv_init_panel_power_sequencer(encoder, pipe_config); 3355 3356 intel_dp_enable_port(intel_dp, pipe_config); 3357 3358 edp_panel_vdd_on(intel_dp); 3359 edp_panel_on(intel_dp); 3360 edp_panel_vdd_off(intel_dp, true); 3361 } 3362 3363 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3364 unsigned int lane_mask = 0x0; 3365 3366 if (IS_CHERRYVIEW(dev_priv)) 3367 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3368 3369 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3370 lane_mask); 3371 } 3372 3373 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3374 intel_dp_start_link_train(intel_dp); 3375 intel_dp_stop_link_train(intel_dp); 3376 3377 if (pipe_config->has_audio) { 3378 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", 3379 pipe_name(pipe)); 3380 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3381 } 3382 } 3383 3384 static void g4x_enable_dp(struct intel_encoder *encoder, 3385 const struct intel_crtc_state *pipe_config, 3386 const struct drm_connector_state *conn_state) 3387 { 3388 intel_enable_dp(encoder, pipe_config, conn_state); 3389 intel_edp_backlight_on(pipe_config, conn_state); 3390 } 3391 3392 static void vlv_enable_dp(struct intel_encoder *encoder, 3393 const struct intel_crtc_state *pipe_config, 3394 const struct drm_connector_state *conn_state) 3395 { 3396 intel_edp_backlight_on(pipe_config, conn_state); 3397 } 3398 3399 static void g4x_pre_enable_dp(struct intel_encoder *encoder, 3400 const struct intel_crtc_state *pipe_config, 3401 const struct drm_connector_state *conn_state) 3402 { 3403 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3404 enum port port = encoder->port; 3405 3406 intel_dp_prepare(encoder, pipe_config); 3407 3408 /* Only ilk+ has port A */ 3409 if (port == PORT_A) 3410 ironlake_edp_pll_on(intel_dp, pipe_config); 3411 } 3412 3413 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3414 { 3415 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3416 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3417 enum pipe pipe = intel_dp->pps_pipe; 3418 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3419 3420 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3421 3422 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) 3423 return; 3424 3425 edp_panel_vdd_off_sync(intel_dp); 3426 3427 /* 3428 * VLV seems to get confused when multiple power sequencers 3429 * have the same port selected (even if only one has power/vdd 3430 * enabled). The failure manifests as vlv_wait_port_ready() failing 3431 * CHV on the other hand doesn't seem to mind having the same port 3432 * selected in multiple power sequencers, but let's clear the 3433 * port select always when logically disconnecting a power sequencer 3434 * from a port. 3435 */ 3436 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n", 3437 pipe_name(pipe), port_name(intel_dig_port->base.port)); 3438 I915_WRITE(pp_on_reg, 0); 3439 POSTING_READ(pp_on_reg); 3440 3441 intel_dp->pps_pipe = INVALID_PIPE; 3442 } 3443 3444 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3445 enum pipe pipe) 3446 { 3447 struct intel_encoder *encoder; 3448 3449 lockdep_assert_held(&dev_priv->pps_mutex); 3450 3451 for_each_intel_dp(&dev_priv->drm, encoder) { 3452 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3453 enum port port = encoder->port; 3454 3455 WARN(intel_dp->active_pipe == pipe, 3456 "stealing pipe %c power sequencer from active (e)DP port %c\n", 3457 pipe_name(pipe), port_name(port)); 3458 3459 if (intel_dp->pps_pipe != pipe) 3460 continue; 3461 3462 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n", 3463 pipe_name(pipe), port_name(port)); 3464 3465 /* make sure vdd is off before we steal it */ 3466 vlv_detach_power_sequencer(intel_dp); 3467 } 3468 } 3469 3470 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3471 const struct intel_crtc_state *crtc_state) 3472 { 3473 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3474 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3475 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 3476 3477 lockdep_assert_held(&dev_priv->pps_mutex); 3478 3479 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3480 3481 if (intel_dp->pps_pipe != INVALID_PIPE && 3482 intel_dp->pps_pipe != crtc->pipe) { 3483 /* 3484 * If another power sequencer was being used on this 3485 * port previously make sure to turn off vdd there while 3486 * we still have control of it. 3487 */ 3488 vlv_detach_power_sequencer(intel_dp); 3489 } 3490 3491 /* 3492 * We may be stealing the power 3493 * sequencer from another port. 3494 */ 3495 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3496 3497 intel_dp->active_pipe = crtc->pipe; 3498 3499 if (!intel_dp_is_edp(intel_dp)) 3500 return; 3501 3502 /* now it's all ours */ 3503 intel_dp->pps_pipe = crtc->pipe; 3504 3505 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n", 3506 pipe_name(intel_dp->pps_pipe), port_name(encoder->port)); 3507 3508 /* init power sequencer on this pipe and port */ 3509 intel_dp_init_panel_power_sequencer(intel_dp); 3510 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3511 } 3512 3513 static void vlv_pre_enable_dp(struct intel_encoder *encoder, 3514 const struct intel_crtc_state *pipe_config, 3515 const struct drm_connector_state *conn_state) 3516 { 3517 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3518 3519 intel_enable_dp(encoder, pipe_config, conn_state); 3520 } 3521 3522 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, 3523 const struct intel_crtc_state *pipe_config, 3524 const struct drm_connector_state *conn_state) 3525 { 3526 intel_dp_prepare(encoder, pipe_config); 3527 3528 vlv_phy_pre_pll_enable(encoder, pipe_config); 3529 } 3530 3531 static void chv_pre_enable_dp(struct intel_encoder *encoder, 3532 const struct intel_crtc_state *pipe_config, 3533 const struct drm_connector_state *conn_state) 3534 { 3535 chv_phy_pre_encoder_enable(encoder, pipe_config); 3536 3537 intel_enable_dp(encoder, pipe_config, conn_state); 3538 3539 /* Second common lane will stay alive on its own now */ 3540 chv_phy_release_cl2_override(encoder); 3541 } 3542 3543 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, 3544 const struct intel_crtc_state *pipe_config, 3545 const struct drm_connector_state *conn_state) 3546 { 3547 intel_dp_prepare(encoder, pipe_config); 3548 3549 chv_phy_pre_pll_enable(encoder, pipe_config); 3550 } 3551 3552 static void chv_dp_post_pll_disable(struct intel_encoder *encoder, 3553 const struct intel_crtc_state *old_crtc_state, 3554 const struct drm_connector_state *old_conn_state) 3555 { 3556 chv_phy_post_pll_disable(encoder, old_crtc_state); 3557 } 3558 3559 /* 3560 * Fetch AUX CH registers 0x202 - 0x207 which contain 3561 * link status information 3562 */ 3563 bool 3564 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3565 { 3566 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 3567 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 3568 } 3569 3570 /* These are source-specific values. */ 3571 u8 3572 intel_dp_voltage_max(struct intel_dp *intel_dp) 3573 { 3574 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3575 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3576 enum port port = encoder->port; 3577 3578 if (HAS_DDI(dev_priv)) 3579 return intel_ddi_dp_voltage_max(encoder); 3580 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3581 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3582 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3583 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3584 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3585 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3586 else 3587 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3588 } 3589 3590 u8 3591 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) 3592 { 3593 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3594 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3595 enum port port = encoder->port; 3596 3597 if (HAS_DDI(dev_priv)) { 3598 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); 3599 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3600 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3601 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3602 return DP_TRAIN_PRE_EMPH_LEVEL_3; 3603 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3604 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3605 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3606 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3607 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3608 default: 3609 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3610 } 3611 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3612 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3613 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3614 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3615 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3616 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3617 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3618 default: 3619 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3620 } 3621 } else { 3622 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3623 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3624 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3625 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3626 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3627 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3628 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3629 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3630 default: 3631 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3632 } 3633 } 3634 } 3635 3636 static u32 vlv_signal_levels(struct intel_dp *intel_dp) 3637 { 3638 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3639 unsigned long demph_reg_value, preemph_reg_value, 3640 uniqtranscale_reg_value; 3641 u8 train_set = intel_dp->train_set[0]; 3642 3643 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3644 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3645 preemph_reg_value = 0x0004000; 3646 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3647 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3648 demph_reg_value = 0x2B405555; 3649 uniqtranscale_reg_value = 0x552AB83A; 3650 break; 3651 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3652 demph_reg_value = 0x2B404040; 3653 uniqtranscale_reg_value = 0x5548B83A; 3654 break; 3655 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3656 demph_reg_value = 0x2B245555; 3657 uniqtranscale_reg_value = 0x5560B83A; 3658 break; 3659 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3660 demph_reg_value = 0x2B405555; 3661 uniqtranscale_reg_value = 0x5598DA3A; 3662 break; 3663 default: 3664 return 0; 3665 } 3666 break; 3667 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3668 preemph_reg_value = 0x0002000; 3669 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3670 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3671 demph_reg_value = 0x2B404040; 3672 uniqtranscale_reg_value = 0x5552B83A; 3673 break; 3674 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3675 demph_reg_value = 0x2B404848; 3676 uniqtranscale_reg_value = 0x5580B83A; 3677 break; 3678 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3679 demph_reg_value = 0x2B404040; 3680 uniqtranscale_reg_value = 0x55ADDA3A; 3681 break; 3682 default: 3683 return 0; 3684 } 3685 break; 3686 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3687 preemph_reg_value = 0x0000000; 3688 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3689 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3690 demph_reg_value = 0x2B305555; 3691 uniqtranscale_reg_value = 0x5570B83A; 3692 break; 3693 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3694 demph_reg_value = 0x2B2B4040; 3695 uniqtranscale_reg_value = 0x55ADDA3A; 3696 break; 3697 default: 3698 return 0; 3699 } 3700 break; 3701 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3702 preemph_reg_value = 0x0006000; 3703 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3704 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3705 demph_reg_value = 0x1B405555; 3706 uniqtranscale_reg_value = 0x55ADDA3A; 3707 break; 3708 default: 3709 return 0; 3710 } 3711 break; 3712 default: 3713 return 0; 3714 } 3715 3716 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 3717 uniqtranscale_reg_value, 0); 3718 3719 return 0; 3720 } 3721 3722 static u32 chv_signal_levels(struct intel_dp *intel_dp) 3723 { 3724 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3725 u32 deemph_reg_value, margin_reg_value; 3726 bool uniq_trans_scale = false; 3727 u8 train_set = intel_dp->train_set[0]; 3728 3729 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3730 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3731 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3732 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3733 deemph_reg_value = 128; 3734 margin_reg_value = 52; 3735 break; 3736 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3737 deemph_reg_value = 128; 3738 margin_reg_value = 77; 3739 break; 3740 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3741 deemph_reg_value = 128; 3742 margin_reg_value = 102; 3743 break; 3744 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3745 deemph_reg_value = 128; 3746 margin_reg_value = 154; 3747 uniq_trans_scale = true; 3748 break; 3749 default: 3750 return 0; 3751 } 3752 break; 3753 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3754 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3755 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3756 deemph_reg_value = 85; 3757 margin_reg_value = 78; 3758 break; 3759 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3760 deemph_reg_value = 85; 3761 margin_reg_value = 116; 3762 break; 3763 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3764 deemph_reg_value = 85; 3765 margin_reg_value = 154; 3766 break; 3767 default: 3768 return 0; 3769 } 3770 break; 3771 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3772 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3773 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3774 deemph_reg_value = 64; 3775 margin_reg_value = 104; 3776 break; 3777 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3778 deemph_reg_value = 64; 3779 margin_reg_value = 154; 3780 break; 3781 default: 3782 return 0; 3783 } 3784 break; 3785 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3786 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3787 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3788 deemph_reg_value = 43; 3789 margin_reg_value = 154; 3790 break; 3791 default: 3792 return 0; 3793 } 3794 break; 3795 default: 3796 return 0; 3797 } 3798 3799 chv_set_phy_signal_level(encoder, deemph_reg_value, 3800 margin_reg_value, uniq_trans_scale); 3801 3802 return 0; 3803 } 3804 3805 static u32 3806 g4x_signal_levels(u8 train_set) 3807 { 3808 u32 signal_levels = 0; 3809 3810 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3811 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3812 default: 3813 signal_levels |= DP_VOLTAGE_0_4; 3814 break; 3815 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3816 signal_levels |= DP_VOLTAGE_0_6; 3817 break; 3818 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3819 signal_levels |= DP_VOLTAGE_0_8; 3820 break; 3821 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3822 signal_levels |= DP_VOLTAGE_1_2; 3823 break; 3824 } 3825 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3826 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3827 default: 3828 signal_levels |= DP_PRE_EMPHASIS_0; 3829 break; 3830 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3831 signal_levels |= DP_PRE_EMPHASIS_3_5; 3832 break; 3833 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3834 signal_levels |= DP_PRE_EMPHASIS_6; 3835 break; 3836 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3837 signal_levels |= DP_PRE_EMPHASIS_9_5; 3838 break; 3839 } 3840 return signal_levels; 3841 } 3842 3843 /* SNB CPU eDP voltage swing and pre-emphasis control */ 3844 static u32 3845 snb_cpu_edp_signal_levels(u8 train_set) 3846 { 3847 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 3848 DP_TRAIN_PRE_EMPHASIS_MASK); 3849 switch (signal_levels) { 3850 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3851 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3852 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 3853 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3854 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 3855 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3856 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3857 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 3858 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3859 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3860 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 3861 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3862 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3863 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 3864 default: 3865 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 3866 "0x%x\n", signal_levels); 3867 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 3868 } 3869 } 3870 3871 /* IVB CPU eDP voltage swing and pre-emphasis control */ 3872 static u32 3873 ivb_cpu_edp_signal_levels(u8 train_set) 3874 { 3875 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 3876 DP_TRAIN_PRE_EMPHASIS_MASK); 3877 switch (signal_levels) { 3878 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3879 return EDP_LINK_TRAIN_400MV_0DB_IVB; 3880 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3881 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 3882 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3883 return EDP_LINK_TRAIN_400MV_6DB_IVB; 3884 3885 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3886 return EDP_LINK_TRAIN_600MV_0DB_IVB; 3887 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3888 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 3889 3890 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3891 return EDP_LINK_TRAIN_800MV_0DB_IVB; 3892 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3893 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 3894 3895 default: 3896 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 3897 "0x%x\n", signal_levels); 3898 return EDP_LINK_TRAIN_500MV_0DB_IVB; 3899 } 3900 } 3901 3902 void 3903 intel_dp_set_signal_levels(struct intel_dp *intel_dp) 3904 { 3905 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3906 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3907 enum port port = intel_dig_port->base.port; 3908 u32 signal_levels, mask = 0; 3909 u8 train_set = intel_dp->train_set[0]; 3910 3911 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) { 3912 signal_levels = bxt_signal_levels(intel_dp); 3913 } else if (HAS_DDI(dev_priv)) { 3914 signal_levels = ddi_signal_levels(intel_dp); 3915 mask = DDI_BUF_EMP_MASK; 3916 } else if (IS_CHERRYVIEW(dev_priv)) { 3917 signal_levels = chv_signal_levels(intel_dp); 3918 } else if (IS_VALLEYVIEW(dev_priv)) { 3919 signal_levels = vlv_signal_levels(intel_dp); 3920 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3921 signal_levels = ivb_cpu_edp_signal_levels(train_set); 3922 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 3923 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) { 3924 signal_levels = snb_cpu_edp_signal_levels(train_set); 3925 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 3926 } else { 3927 signal_levels = g4x_signal_levels(train_set); 3928 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; 3929 } 3930 3931 if (mask) 3932 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); 3933 3934 DRM_DEBUG_KMS("Using vswing level %d\n", 3935 train_set & DP_TRAIN_VOLTAGE_SWING_MASK); 3936 DRM_DEBUG_KMS("Using pre-emphasis level %d\n", 3937 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 3938 DP_TRAIN_PRE_EMPHASIS_SHIFT); 3939 3940 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; 3941 3942 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3943 POSTING_READ(intel_dp->output_reg); 3944 } 3945 3946 void 3947 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 3948 u8 dp_train_pat) 3949 { 3950 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3951 struct drm_i915_private *dev_priv = 3952 to_i915(intel_dig_port->base.base.dev); 3953 3954 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); 3955 3956 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3957 POSTING_READ(intel_dp->output_reg); 3958 } 3959 3960 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 3961 { 3962 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3963 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3964 enum port port = intel_dig_port->base.port; 3965 u32 val; 3966 3967 if (!HAS_DDI(dev_priv)) 3968 return; 3969 3970 val = I915_READ(DP_TP_CTL(port)); 3971 val &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3972 val |= DP_TP_CTL_LINK_TRAIN_IDLE; 3973 I915_WRITE(DP_TP_CTL(port), val); 3974 3975 /* 3976 * On PORT_A we can have only eDP in SST mode. There the only reason 3977 * we need to set idle transmission mode is to work around a HW issue 3978 * where we enable the pipe while not in idle link-training mode. 3979 * In this case there is requirement to wait for a minimum number of 3980 * idle patterns to be sent. 3981 */ 3982 if (port == PORT_A) 3983 return; 3984 3985 if (intel_wait_for_register(&dev_priv->uncore, DP_TP_STATUS(port), 3986 DP_TP_STATUS_IDLE_DONE, 3987 DP_TP_STATUS_IDLE_DONE, 3988 1)) 3989 DRM_ERROR("Timed out waiting for DP idle patterns\n"); 3990 } 3991 3992 static void 3993 intel_dp_link_down(struct intel_encoder *encoder, 3994 const struct intel_crtc_state *old_crtc_state) 3995 { 3996 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3997 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3998 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 3999 enum port port = encoder->port; 4000 u32 DP = intel_dp->DP; 4001 4002 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) 4003 return; 4004 4005 DRM_DEBUG_KMS("\n"); 4006 4007 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4008 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4009 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4010 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4011 } else { 4012 DP &= ~DP_LINK_TRAIN_MASK; 4013 DP |= DP_LINK_TRAIN_PAT_IDLE; 4014 } 4015 I915_WRITE(intel_dp->output_reg, DP); 4016 POSTING_READ(intel_dp->output_reg); 4017 4018 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4019 I915_WRITE(intel_dp->output_reg, DP); 4020 POSTING_READ(intel_dp->output_reg); 4021 4022 /* 4023 * HW workaround for IBX, we need to move the port 4024 * to transcoder A after disabling it to allow the 4025 * matching HDMI port to be enabled on transcoder A. 4026 */ 4027 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4028 /* 4029 * We get CPU/PCH FIFO underruns on the other pipe when 4030 * doing the workaround. Sweep them under the rug. 4031 */ 4032 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4033 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4034 4035 /* always enable with pattern 1 (as per spec) */ 4036 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4037 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4038 DP_LINK_TRAIN_PAT_1; 4039 I915_WRITE(intel_dp->output_reg, DP); 4040 POSTING_READ(intel_dp->output_reg); 4041 4042 DP &= ~DP_PORT_EN; 4043 I915_WRITE(intel_dp->output_reg, DP); 4044 POSTING_READ(intel_dp->output_reg); 4045 4046 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4047 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4048 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4049 } 4050 4051 msleep(intel_dp->panel_power_down_delay); 4052 4053 intel_dp->DP = DP; 4054 4055 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4056 intel_wakeref_t wakeref; 4057 4058 with_pps_lock(intel_dp, wakeref) 4059 intel_dp->active_pipe = INVALID_PIPE; 4060 } 4061 } 4062 4063 static void 4064 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4065 { 4066 u8 dpcd_ext[6]; 4067 4068 /* 4069 * Prior to DP1.3 the bit represented by 4070 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4071 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4072 * the true capability of the panel. The only way to check is to 4073 * then compare 0000h and 2200h. 4074 */ 4075 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4076 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4077 return; 4078 4079 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4080 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4081 DRM_ERROR("DPCD failed read at extended capabilities\n"); 4082 return; 4083 } 4084 4085 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4086 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n"); 4087 return; 4088 } 4089 4090 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4091 return; 4092 4093 DRM_DEBUG_KMS("Base DPCD: %*ph\n", 4094 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4095 4096 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4097 } 4098 4099 bool 4100 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4101 { 4102 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4103 sizeof(intel_dp->dpcd)) < 0) 4104 return false; /* aux transfer failed */ 4105 4106 intel_dp_extended_receiver_capabilities(intel_dp); 4107 4108 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); 4109 4110 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4111 } 4112 4113 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4114 { 4115 u8 dprx = 0; 4116 4117 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4118 &dprx) != 1) 4119 return false; 4120 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4121 } 4122 4123 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4124 { 4125 /* 4126 * Clear the cached register set to avoid using stale values 4127 * for the sinks that do not support DSC. 4128 */ 4129 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4130 4131 /* Clear fec_capable to avoid using stale values */ 4132 intel_dp->fec_capable = 0; 4133 4134 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4135 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4136 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4137 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4138 intel_dp->dsc_dpcd, 4139 sizeof(intel_dp->dsc_dpcd)) < 0) 4140 DRM_ERROR("Failed to read DPCD register 0x%x\n", 4141 DP_DSC_SUPPORT); 4142 4143 DRM_DEBUG_KMS("DSC DPCD: %*ph\n", 4144 (int)sizeof(intel_dp->dsc_dpcd), 4145 intel_dp->dsc_dpcd); 4146 4147 /* FEC is supported only on DP 1.4 */ 4148 if (!intel_dp_is_edp(intel_dp) && 4149 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4150 &intel_dp->fec_capable) < 0) 4151 DRM_ERROR("Failed to read FEC DPCD register\n"); 4152 4153 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable); 4154 } 4155 } 4156 4157 static bool 4158 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4159 { 4160 struct drm_i915_private *dev_priv = 4161 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4162 4163 /* this function is meant to be called only once */ 4164 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0); 4165 4166 if (!intel_dp_read_dpcd(intel_dp)) 4167 return false; 4168 4169 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4170 drm_dp_is_branch(intel_dp->dpcd)); 4171 4172 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) 4173 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] & 4174 DP_NO_AUX_HANDSHAKE_LINK_TRAINING; 4175 4176 /* 4177 * Read the eDP display control registers. 4178 * 4179 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4180 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4181 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4182 * method). The display control registers should read zero if they're 4183 * not supported anyway. 4184 */ 4185 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4186 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4187 sizeof(intel_dp->edp_dpcd)) 4188 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd), 4189 intel_dp->edp_dpcd); 4190 4191 /* 4192 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4193 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4194 */ 4195 intel_psr_init_dpcd(intel_dp); 4196 4197 /* Read the eDP 1.4+ supported link rates. */ 4198 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4199 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4200 int i; 4201 4202 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4203 sink_rates, sizeof(sink_rates)); 4204 4205 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4206 int val = le16_to_cpu(sink_rates[i]); 4207 4208 if (val == 0) 4209 break; 4210 4211 /* Value read multiplied by 200kHz gives the per-lane 4212 * link rate in kHz. The source rates are, however, 4213 * stored in terms of LS_Clk kHz. The full conversion 4214 * back to symbols is 4215 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4216 */ 4217 intel_dp->sink_rates[i] = (val * 200) / 10; 4218 } 4219 intel_dp->num_sink_rates = i; 4220 } 4221 4222 /* 4223 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4224 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4225 */ 4226 if (intel_dp->num_sink_rates) 4227 intel_dp->use_rate_select = true; 4228 else 4229 intel_dp_set_sink_rates(intel_dp); 4230 4231 intel_dp_set_common_rates(intel_dp); 4232 4233 /* Read the eDP DSC DPCD registers */ 4234 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4235 intel_dp_get_dsc_sink_cap(intel_dp); 4236 4237 return true; 4238 } 4239 4240 4241 static bool 4242 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4243 { 4244 if (!intel_dp_read_dpcd(intel_dp)) 4245 return false; 4246 4247 /* Don't clobber cached eDP rates. */ 4248 if (!intel_dp_is_edp(intel_dp)) { 4249 intel_dp_set_sink_rates(intel_dp); 4250 intel_dp_set_common_rates(intel_dp); 4251 } 4252 4253 /* 4254 * Some eDP panels do not set a valid value for sink count, that is why 4255 * it don't care about read it here and in intel_edp_init_dpcd(). 4256 */ 4257 if (!intel_dp_is_edp(intel_dp)) { 4258 u8 count; 4259 ssize_t r; 4260 4261 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4262 if (r < 1) 4263 return false; 4264 4265 /* 4266 * Sink count can change between short pulse hpd hence 4267 * a member variable in intel_dp will track any changes 4268 * between short pulse interrupts. 4269 */ 4270 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4271 4272 /* 4273 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4274 * a dongle is present but no display. Unless we require to know 4275 * if a dongle is present or not, we don't need to update 4276 * downstream port information. So, an early return here saves 4277 * time from performing other operations which are not required. 4278 */ 4279 if (!intel_dp->sink_count) 4280 return false; 4281 } 4282 4283 if (!drm_dp_is_branch(intel_dp->dpcd)) 4284 return true; /* native DP sink */ 4285 4286 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4287 return true; /* no per-port downstream info */ 4288 4289 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4290 intel_dp->downstream_ports, 4291 DP_MAX_DOWNSTREAM_PORTS) < 0) 4292 return false; /* downstream port status fetch failed */ 4293 4294 return true; 4295 } 4296 4297 static bool 4298 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4299 { 4300 u8 mstm_cap; 4301 4302 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4303 return false; 4304 4305 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4306 return false; 4307 4308 return mstm_cap & DP_MST_CAP; 4309 } 4310 4311 static bool 4312 intel_dp_can_mst(struct intel_dp *intel_dp) 4313 { 4314 return i915_modparams.enable_dp_mst && 4315 intel_dp->can_mst && 4316 intel_dp_sink_can_mst(intel_dp); 4317 } 4318 4319 static void 4320 intel_dp_configure_mst(struct intel_dp *intel_dp) 4321 { 4322 struct intel_encoder *encoder = 4323 &dp_to_dig_port(intel_dp)->base; 4324 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4325 4326 DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n", 4327 port_name(encoder->port), yesno(intel_dp->can_mst), 4328 yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst)); 4329 4330 if (!intel_dp->can_mst) 4331 return; 4332 4333 intel_dp->is_mst = sink_can_mst && 4334 i915_modparams.enable_dp_mst; 4335 4336 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4337 intel_dp->is_mst); 4338 } 4339 4340 static bool 4341 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4342 { 4343 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4344 sink_irq_vector, DP_DPRX_ESI_LEN) == 4345 DP_DPRX_ESI_LEN; 4346 } 4347 4348 u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count, 4349 int mode_clock, int mode_hdisplay) 4350 { 4351 u16 bits_per_pixel, max_bpp_small_joiner_ram; 4352 int i; 4353 4354 /* 4355 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 4356 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP) 4357 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1, 4358 * for MST -> TimeSlotsPerMTP has to be calculated 4359 */ 4360 bits_per_pixel = (link_clock * lane_count * 8 * 4361 DP_DSC_FEC_OVERHEAD_FACTOR) / 4362 mode_clock; 4363 4364 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 4365 max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER / 4366 mode_hdisplay; 4367 4368 /* 4369 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW 4370 * check, output bpp from small joiner RAM check) 4371 */ 4372 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 4373 4374 /* Error out if the max bpp is less than smallest allowed valid bpp */ 4375 if (bits_per_pixel < valid_dsc_bpp[0]) { 4376 DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel); 4377 return 0; 4378 } 4379 4380 /* Find the nearest match in the array of known BPPs from VESA */ 4381 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 4382 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 4383 break; 4384 } 4385 bits_per_pixel = valid_dsc_bpp[i]; 4386 4387 /* 4388 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 4389 * fractional part is 0 4390 */ 4391 return bits_per_pixel << 4; 4392 } 4393 4394 u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 4395 int mode_clock, 4396 int mode_hdisplay) 4397 { 4398 u8 min_slice_count, i; 4399 int max_slice_width; 4400 4401 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 4402 min_slice_count = DIV_ROUND_UP(mode_clock, 4403 DP_DSC_MAX_ENC_THROUGHPUT_0); 4404 else 4405 min_slice_count = DIV_ROUND_UP(mode_clock, 4406 DP_DSC_MAX_ENC_THROUGHPUT_1); 4407 4408 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 4409 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 4410 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n", 4411 max_slice_width); 4412 return 0; 4413 } 4414 /* Also take into account max slice width */ 4415 min_slice_count = min_t(u8, min_slice_count, 4416 DIV_ROUND_UP(mode_hdisplay, 4417 max_slice_width)); 4418 4419 /* Find the closest match to the valid slice count values */ 4420 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 4421 if (valid_dsc_slicecount[i] > 4422 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 4423 false)) 4424 break; 4425 if (min_slice_count <= valid_dsc_slicecount[i]) 4426 return valid_dsc_slicecount[i]; 4427 } 4428 4429 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count); 4430 return 0; 4431 } 4432 4433 static void 4434 intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp, 4435 const struct intel_crtc_state *crtc_state) 4436 { 4437 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4438 struct dp_sdp vsc_sdp = {}; 4439 4440 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */ 4441 vsc_sdp.sdp_header.HB0 = 0; 4442 vsc_sdp.sdp_header.HB1 = 0x7; 4443 4444 /* 4445 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 4446 * Colorimetry Format indication. 4447 */ 4448 vsc_sdp.sdp_header.HB2 = 0x5; 4449 4450 /* 4451 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/ 4452 * Colorimetry Format indication (HB2 = 05h). 4453 */ 4454 vsc_sdp.sdp_header.HB3 = 0x13; 4455 4456 /* 4457 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h 4458 * DB16[3:0] DP 1.4a spec, Table 2-120 4459 */ 4460 vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/ 4461 /* RGB->YCBCR color conversion uses the BT.709 color space. */ 4462 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */ 4463 4464 /* 4465 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only, 4466 * the following Component Bit Depth values are defined: 4467 * 001b = 8bpc. 4468 * 010b = 10bpc. 4469 * 011b = 12bpc. 4470 * 100b = 16bpc. 4471 */ 4472 switch (crtc_state->pipe_bpp) { 4473 case 24: /* 8bpc */ 4474 vsc_sdp.db[17] = 0x1; 4475 break; 4476 case 30: /* 10bpc */ 4477 vsc_sdp.db[17] = 0x2; 4478 break; 4479 case 36: /* 12bpc */ 4480 vsc_sdp.db[17] = 0x3; 4481 break; 4482 case 48: /* 16bpc */ 4483 vsc_sdp.db[17] = 0x4; 4484 break; 4485 default: 4486 MISSING_CASE(crtc_state->pipe_bpp); 4487 break; 4488 } 4489 4490 /* 4491 * Dynamic Range (Bit 7) 4492 * 0 = VESA range, 1 = CTA range. 4493 * all YCbCr are always limited range 4494 */ 4495 vsc_sdp.db[17] |= 0x80; 4496 4497 /* 4498 * Content Type (Bits 2:0) 4499 * 000b = Not defined. 4500 * 001b = Graphics. 4501 * 010b = Photo. 4502 * 011b = Video. 4503 * 100b = Game 4504 * All other values are RESERVED. 4505 * Note: See CTA-861-G for the definition and expected 4506 * processing by a stream sink for the above contect types. 4507 */ 4508 vsc_sdp.db[18] = 0; 4509 4510 intel_dig_port->write_infoframe(&intel_dig_port->base, 4511 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp)); 4512 } 4513 4514 void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp, 4515 const struct intel_crtc_state *crtc_state) 4516 { 4517 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420) 4518 return; 4519 4520 intel_pixel_encoding_setup_vsc(intel_dp, crtc_state); 4521 } 4522 4523 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 4524 { 4525 int status = 0; 4526 int test_link_rate; 4527 u8 test_lane_count, test_link_bw; 4528 /* (DP CTS 1.2) 4529 * 4.3.1.11 4530 */ 4531 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 4532 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 4533 &test_lane_count); 4534 4535 if (status <= 0) { 4536 DRM_DEBUG_KMS("Lane count read failed\n"); 4537 return DP_TEST_NAK; 4538 } 4539 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 4540 4541 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 4542 &test_link_bw); 4543 if (status <= 0) { 4544 DRM_DEBUG_KMS("Link Rate read failed\n"); 4545 return DP_TEST_NAK; 4546 } 4547 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 4548 4549 /* Validate the requested link rate and lane count */ 4550 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 4551 test_lane_count)) 4552 return DP_TEST_NAK; 4553 4554 intel_dp->compliance.test_lane_count = test_lane_count; 4555 intel_dp->compliance.test_link_rate = test_link_rate; 4556 4557 return DP_TEST_ACK; 4558 } 4559 4560 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 4561 { 4562 u8 test_pattern; 4563 u8 test_misc; 4564 __be16 h_width, v_height; 4565 int status = 0; 4566 4567 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 4568 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 4569 &test_pattern); 4570 if (status <= 0) { 4571 DRM_DEBUG_KMS("Test pattern read failed\n"); 4572 return DP_TEST_NAK; 4573 } 4574 if (test_pattern != DP_COLOR_RAMP) 4575 return DP_TEST_NAK; 4576 4577 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 4578 &h_width, 2); 4579 if (status <= 0) { 4580 DRM_DEBUG_KMS("H Width read failed\n"); 4581 return DP_TEST_NAK; 4582 } 4583 4584 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 4585 &v_height, 2); 4586 if (status <= 0) { 4587 DRM_DEBUG_KMS("V Height read failed\n"); 4588 return DP_TEST_NAK; 4589 } 4590 4591 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 4592 &test_misc); 4593 if (status <= 0) { 4594 DRM_DEBUG_KMS("TEST MISC read failed\n"); 4595 return DP_TEST_NAK; 4596 } 4597 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 4598 return DP_TEST_NAK; 4599 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 4600 return DP_TEST_NAK; 4601 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 4602 case DP_TEST_BIT_DEPTH_6: 4603 intel_dp->compliance.test_data.bpc = 6; 4604 break; 4605 case DP_TEST_BIT_DEPTH_8: 4606 intel_dp->compliance.test_data.bpc = 8; 4607 break; 4608 default: 4609 return DP_TEST_NAK; 4610 } 4611 4612 intel_dp->compliance.test_data.video_pattern = test_pattern; 4613 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 4614 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 4615 /* Set test active flag here so userspace doesn't interrupt things */ 4616 intel_dp->compliance.test_active = 1; 4617 4618 return DP_TEST_ACK; 4619 } 4620 4621 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 4622 { 4623 u8 test_result = DP_TEST_ACK; 4624 struct intel_connector *intel_connector = intel_dp->attached_connector; 4625 struct drm_connector *connector = &intel_connector->base; 4626 4627 if (intel_connector->detect_edid == NULL || 4628 connector->edid_corrupt || 4629 intel_dp->aux.i2c_defer_count > 6) { 4630 /* Check EDID read for NACKs, DEFERs and corruption 4631 * (DP CTS 1.2 Core r1.1) 4632 * 4.2.2.4 : Failed EDID read, I2C_NAK 4633 * 4.2.2.5 : Failed EDID read, I2C_DEFER 4634 * 4.2.2.6 : EDID corruption detected 4635 * Use failsafe mode for all cases 4636 */ 4637 if (intel_dp->aux.i2c_nack_count > 0 || 4638 intel_dp->aux.i2c_defer_count > 0) 4639 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", 4640 intel_dp->aux.i2c_nack_count, 4641 intel_dp->aux.i2c_defer_count); 4642 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 4643 } else { 4644 struct edid *block = intel_connector->detect_edid; 4645 4646 /* We have to write the checksum 4647 * of the last block read 4648 */ 4649 block += intel_connector->detect_edid->extensions; 4650 4651 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 4652 block->checksum) <= 0) 4653 DRM_DEBUG_KMS("Failed to write EDID checksum\n"); 4654 4655 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 4656 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 4657 } 4658 4659 /* Set test active flag here so userspace doesn't interrupt things */ 4660 intel_dp->compliance.test_active = 1; 4661 4662 return test_result; 4663 } 4664 4665 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 4666 { 4667 u8 test_result = DP_TEST_NAK; 4668 return test_result; 4669 } 4670 4671 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 4672 { 4673 u8 response = DP_TEST_NAK; 4674 u8 request = 0; 4675 int status; 4676 4677 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 4678 if (status <= 0) { 4679 DRM_DEBUG_KMS("Could not read test request from sink\n"); 4680 goto update_status; 4681 } 4682 4683 switch (request) { 4684 case DP_TEST_LINK_TRAINING: 4685 DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); 4686 response = intel_dp_autotest_link_training(intel_dp); 4687 break; 4688 case DP_TEST_LINK_VIDEO_PATTERN: 4689 DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); 4690 response = intel_dp_autotest_video_pattern(intel_dp); 4691 break; 4692 case DP_TEST_LINK_EDID_READ: 4693 DRM_DEBUG_KMS("EDID test requested\n"); 4694 response = intel_dp_autotest_edid(intel_dp); 4695 break; 4696 case DP_TEST_LINK_PHY_TEST_PATTERN: 4697 DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); 4698 response = intel_dp_autotest_phy_pattern(intel_dp); 4699 break; 4700 default: 4701 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); 4702 break; 4703 } 4704 4705 if (response & DP_TEST_ACK) 4706 intel_dp->compliance.test_type = request; 4707 4708 update_status: 4709 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 4710 if (status <= 0) 4711 DRM_DEBUG_KMS("Could not write test response to sink\n"); 4712 } 4713 4714 static int 4715 intel_dp_check_mst_status(struct intel_dp *intel_dp) 4716 { 4717 bool bret; 4718 4719 if (intel_dp->is_mst) { 4720 u8 esi[DP_DPRX_ESI_LEN] = { 0 }; 4721 int ret = 0; 4722 int retry; 4723 bool handled; 4724 4725 WARN_ON_ONCE(intel_dp->active_mst_links < 0); 4726 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4727 go_again: 4728 if (bret == true) { 4729 4730 /* check link status - esi[10] = 0x200c */ 4731 if (intel_dp->active_mst_links > 0 && 4732 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 4733 DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); 4734 intel_dp_start_link_train(intel_dp); 4735 intel_dp_stop_link_train(intel_dp); 4736 } 4737 4738 DRM_DEBUG_KMS("got esi %3ph\n", esi); 4739 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 4740 4741 if (handled) { 4742 for (retry = 0; retry < 3; retry++) { 4743 int wret; 4744 wret = drm_dp_dpcd_write(&intel_dp->aux, 4745 DP_SINK_COUNT_ESI+1, 4746 &esi[1], 3); 4747 if (wret == 3) { 4748 break; 4749 } 4750 } 4751 4752 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4753 if (bret == true) { 4754 DRM_DEBUG_KMS("got esi2 %3ph\n", esi); 4755 goto go_again; 4756 } 4757 } else 4758 ret = 0; 4759 4760 return ret; 4761 } else { 4762 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); 4763 intel_dp->is_mst = false; 4764 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4765 intel_dp->is_mst); 4766 } 4767 } 4768 return -EINVAL; 4769 } 4770 4771 static bool 4772 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 4773 { 4774 u8 link_status[DP_LINK_STATUS_SIZE]; 4775 4776 if (!intel_dp->link_trained) 4777 return false; 4778 4779 /* 4780 * While PSR source HW is enabled, it will control main-link sending 4781 * frames, enabling and disabling it so trying to do a retrain will fail 4782 * as the link would or not be on or it could mix training patterns 4783 * and frame data at the same time causing retrain to fail. 4784 * Also when exiting PSR, HW will retrain the link anyways fixing 4785 * any link status error. 4786 */ 4787 if (intel_psr_enabled(intel_dp)) 4788 return false; 4789 4790 if (!intel_dp_get_link_status(intel_dp, link_status)) 4791 return false; 4792 4793 /* 4794 * Validate the cached values of intel_dp->link_rate and 4795 * intel_dp->lane_count before attempting to retrain. 4796 */ 4797 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 4798 intel_dp->lane_count)) 4799 return false; 4800 4801 /* Retrain if Channel EQ or CR not ok */ 4802 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 4803 } 4804 4805 int intel_dp_retrain_link(struct intel_encoder *encoder, 4806 struct drm_modeset_acquire_ctx *ctx) 4807 { 4808 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4809 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 4810 struct intel_connector *connector = intel_dp->attached_connector; 4811 struct drm_connector_state *conn_state; 4812 struct intel_crtc_state *crtc_state; 4813 struct intel_crtc *crtc; 4814 int ret; 4815 4816 /* FIXME handle the MST connectors as well */ 4817 4818 if (!connector || connector->base.status != connector_status_connected) 4819 return 0; 4820 4821 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 4822 ctx); 4823 if (ret) 4824 return ret; 4825 4826 conn_state = connector->base.state; 4827 4828 crtc = to_intel_crtc(conn_state->crtc); 4829 if (!crtc) 4830 return 0; 4831 4832 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 4833 if (ret) 4834 return ret; 4835 4836 crtc_state = to_intel_crtc_state(crtc->base.state); 4837 4838 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state)); 4839 4840 if (!crtc_state->base.active) 4841 return 0; 4842 4843 if (conn_state->commit && 4844 !try_wait_for_completion(&conn_state->commit->hw_done)) 4845 return 0; 4846 4847 if (!intel_dp_needs_link_retrain(intel_dp)) 4848 return 0; 4849 4850 /* Suppress underruns caused by re-training */ 4851 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 4852 if (crtc_state->has_pch_encoder) 4853 intel_set_pch_fifo_underrun_reporting(dev_priv, 4854 intel_crtc_pch_transcoder(crtc), false); 4855 4856 intel_dp_start_link_train(intel_dp); 4857 intel_dp_stop_link_train(intel_dp); 4858 4859 /* Keep underrun reporting disabled until things are stable */ 4860 intel_wait_for_vblank(dev_priv, crtc->pipe); 4861 4862 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 4863 if (crtc_state->has_pch_encoder) 4864 intel_set_pch_fifo_underrun_reporting(dev_priv, 4865 intel_crtc_pch_transcoder(crtc), true); 4866 4867 return 0; 4868 } 4869 4870 /* 4871 * If display is now connected check links status, 4872 * there has been known issues of link loss triggering 4873 * long pulse. 4874 * 4875 * Some sinks (eg. ASUS PB287Q) seem to perform some 4876 * weird HPD ping pong during modesets. So we can apparently 4877 * end up with HPD going low during a modeset, and then 4878 * going back up soon after. And once that happens we must 4879 * retrain the link to get a picture. That's in case no 4880 * userspace component reacted to intermittent HPD dip. 4881 */ 4882 static bool intel_dp_hotplug(struct intel_encoder *encoder, 4883 struct intel_connector *connector) 4884 { 4885 struct drm_modeset_acquire_ctx ctx; 4886 bool changed; 4887 int ret; 4888 4889 changed = intel_encoder_hotplug(encoder, connector); 4890 4891 drm_modeset_acquire_init(&ctx, 0); 4892 4893 for (;;) { 4894 ret = intel_dp_retrain_link(encoder, &ctx); 4895 4896 if (ret == -EDEADLK) { 4897 drm_modeset_backoff(&ctx); 4898 continue; 4899 } 4900 4901 break; 4902 } 4903 4904 drm_modeset_drop_locks(&ctx); 4905 drm_modeset_acquire_fini(&ctx); 4906 WARN(ret, "Acquiring modeset locks failed with %i\n", ret); 4907 4908 return changed; 4909 } 4910 4911 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 4912 { 4913 u8 val; 4914 4915 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 4916 return; 4917 4918 if (drm_dp_dpcd_readb(&intel_dp->aux, 4919 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 4920 return; 4921 4922 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 4923 4924 if (val & DP_AUTOMATED_TEST_REQUEST) 4925 intel_dp_handle_test_request(intel_dp); 4926 4927 if (val & DP_CP_IRQ) 4928 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 4929 4930 if (val & DP_SINK_SPECIFIC_IRQ) 4931 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n"); 4932 } 4933 4934 /* 4935 * According to DP spec 4936 * 5.1.2: 4937 * 1. Read DPCD 4938 * 2. Configure link according to Receiver Capabilities 4939 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 4940 * 4. Check link status on receipt of hot-plug interrupt 4941 * 4942 * intel_dp_short_pulse - handles short pulse interrupts 4943 * when full detection is not required. 4944 * Returns %true if short pulse is handled and full detection 4945 * is NOT required and %false otherwise. 4946 */ 4947 static bool 4948 intel_dp_short_pulse(struct intel_dp *intel_dp) 4949 { 4950 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4951 u8 old_sink_count = intel_dp->sink_count; 4952 bool ret; 4953 4954 /* 4955 * Clearing compliance test variables to allow capturing 4956 * of values for next automated test request. 4957 */ 4958 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 4959 4960 /* 4961 * Now read the DPCD to see if it's actually running 4962 * If the current value of sink count doesn't match with 4963 * the value that was stored earlier or dpcd read failed 4964 * we need to do full detection 4965 */ 4966 ret = intel_dp_get_dpcd(intel_dp); 4967 4968 if ((old_sink_count != intel_dp->sink_count) || !ret) { 4969 /* No need to proceed if we are going to do full detect */ 4970 return false; 4971 } 4972 4973 intel_dp_check_service_irq(intel_dp); 4974 4975 /* Handle CEC interrupts, if any */ 4976 drm_dp_cec_irq(&intel_dp->aux); 4977 4978 /* defer to the hotplug work for link retraining if needed */ 4979 if (intel_dp_needs_link_retrain(intel_dp)) 4980 return false; 4981 4982 intel_psr_short_pulse(intel_dp); 4983 4984 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 4985 DRM_DEBUG_KMS("Link Training Compliance Test requested\n"); 4986 /* Send a Hotplug Uevent to userspace to start modeset */ 4987 drm_kms_helper_hotplug_event(&dev_priv->drm); 4988 } 4989 4990 return true; 4991 } 4992 4993 /* XXX this is probably wrong for multiple downstream ports */ 4994 static enum drm_connector_status 4995 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 4996 { 4997 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 4998 u8 *dpcd = intel_dp->dpcd; 4999 u8 type; 5000 5001 if (WARN_ON(intel_dp_is_edp(intel_dp))) 5002 return connector_status_connected; 5003 5004 if (lspcon->active) 5005 lspcon_resume(lspcon); 5006 5007 if (!intel_dp_get_dpcd(intel_dp)) 5008 return connector_status_disconnected; 5009 5010 /* if there's no downstream port, we're done */ 5011 if (!drm_dp_is_branch(dpcd)) 5012 return connector_status_connected; 5013 5014 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5015 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5016 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5017 5018 return intel_dp->sink_count ? 5019 connector_status_connected : connector_status_disconnected; 5020 } 5021 5022 if (intel_dp_can_mst(intel_dp)) 5023 return connector_status_connected; 5024 5025 /* If no HPD, poke DDC gently */ 5026 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5027 return connector_status_connected; 5028 5029 /* Well we tried, say unknown for unreliable port types */ 5030 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5031 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5032 if (type == DP_DS_PORT_TYPE_VGA || 5033 type == DP_DS_PORT_TYPE_NON_EDID) 5034 return connector_status_unknown; 5035 } else { 5036 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5037 DP_DWN_STRM_PORT_TYPE_MASK; 5038 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5039 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5040 return connector_status_unknown; 5041 } 5042 5043 /* Anything else is out of spec, warn and ignore */ 5044 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); 5045 return connector_status_disconnected; 5046 } 5047 5048 static enum drm_connector_status 5049 edp_detect(struct intel_dp *intel_dp) 5050 { 5051 return connector_status_connected; 5052 } 5053 5054 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 5055 { 5056 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5057 u32 bit; 5058 5059 switch (encoder->hpd_pin) { 5060 case HPD_PORT_B: 5061 bit = SDE_PORTB_HOTPLUG; 5062 break; 5063 case HPD_PORT_C: 5064 bit = SDE_PORTC_HOTPLUG; 5065 break; 5066 case HPD_PORT_D: 5067 bit = SDE_PORTD_HOTPLUG; 5068 break; 5069 default: 5070 MISSING_CASE(encoder->hpd_pin); 5071 return false; 5072 } 5073 5074 return I915_READ(SDEISR) & bit; 5075 } 5076 5077 static bool cpt_digital_port_connected(struct intel_encoder *encoder) 5078 { 5079 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5080 u32 bit; 5081 5082 switch (encoder->hpd_pin) { 5083 case HPD_PORT_B: 5084 bit = SDE_PORTB_HOTPLUG_CPT; 5085 break; 5086 case HPD_PORT_C: 5087 bit = SDE_PORTC_HOTPLUG_CPT; 5088 break; 5089 case HPD_PORT_D: 5090 bit = SDE_PORTD_HOTPLUG_CPT; 5091 break; 5092 default: 5093 MISSING_CASE(encoder->hpd_pin); 5094 return false; 5095 } 5096 5097 return I915_READ(SDEISR) & bit; 5098 } 5099 5100 static bool spt_digital_port_connected(struct intel_encoder *encoder) 5101 { 5102 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5103 u32 bit; 5104 5105 switch (encoder->hpd_pin) { 5106 case HPD_PORT_A: 5107 bit = SDE_PORTA_HOTPLUG_SPT; 5108 break; 5109 case HPD_PORT_E: 5110 bit = SDE_PORTE_HOTPLUG_SPT; 5111 break; 5112 default: 5113 return cpt_digital_port_connected(encoder); 5114 } 5115 5116 return I915_READ(SDEISR) & bit; 5117 } 5118 5119 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 5120 { 5121 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5122 u32 bit; 5123 5124 switch (encoder->hpd_pin) { 5125 case HPD_PORT_B: 5126 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 5127 break; 5128 case HPD_PORT_C: 5129 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 5130 break; 5131 case HPD_PORT_D: 5132 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 5133 break; 5134 default: 5135 MISSING_CASE(encoder->hpd_pin); 5136 return false; 5137 } 5138 5139 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5140 } 5141 5142 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 5143 { 5144 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5145 u32 bit; 5146 5147 switch (encoder->hpd_pin) { 5148 case HPD_PORT_B: 5149 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 5150 break; 5151 case HPD_PORT_C: 5152 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 5153 break; 5154 case HPD_PORT_D: 5155 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 5156 break; 5157 default: 5158 MISSING_CASE(encoder->hpd_pin); 5159 return false; 5160 } 5161 5162 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5163 } 5164 5165 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 5166 { 5167 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5168 5169 if (encoder->hpd_pin == HPD_PORT_A) 5170 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5171 else 5172 return ibx_digital_port_connected(encoder); 5173 } 5174 5175 static bool snb_digital_port_connected(struct intel_encoder *encoder) 5176 { 5177 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5178 5179 if (encoder->hpd_pin == HPD_PORT_A) 5180 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5181 else 5182 return cpt_digital_port_connected(encoder); 5183 } 5184 5185 static bool ivb_digital_port_connected(struct intel_encoder *encoder) 5186 { 5187 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5188 5189 if (encoder->hpd_pin == HPD_PORT_A) 5190 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB; 5191 else 5192 return cpt_digital_port_connected(encoder); 5193 } 5194 5195 static bool bdw_digital_port_connected(struct intel_encoder *encoder) 5196 { 5197 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5198 5199 if (encoder->hpd_pin == HPD_PORT_A) 5200 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; 5201 else 5202 return cpt_digital_port_connected(encoder); 5203 } 5204 5205 static bool bxt_digital_port_connected(struct intel_encoder *encoder) 5206 { 5207 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5208 u32 bit; 5209 5210 switch (encoder->hpd_pin) { 5211 case HPD_PORT_A: 5212 bit = BXT_DE_PORT_HP_DDIA; 5213 break; 5214 case HPD_PORT_B: 5215 bit = BXT_DE_PORT_HP_DDIB; 5216 break; 5217 case HPD_PORT_C: 5218 bit = BXT_DE_PORT_HP_DDIC; 5219 break; 5220 default: 5221 MISSING_CASE(encoder->hpd_pin); 5222 return false; 5223 } 5224 5225 return I915_READ(GEN8_DE_PORT_ISR) & bit; 5226 } 5227 5228 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv, 5229 struct intel_digital_port *intel_dig_port) 5230 { 5231 enum port port = intel_dig_port->base.port; 5232 5233 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port); 5234 } 5235 5236 static const char *tc_type_name(enum tc_port_type type) 5237 { 5238 static const char * const names[] = { 5239 [TC_PORT_UNKNOWN] = "unknown", 5240 [TC_PORT_LEGACY] = "legacy", 5241 [TC_PORT_TYPEC] = "typec", 5242 [TC_PORT_TBT] = "tbt", 5243 }; 5244 5245 if (WARN_ON(type >= ARRAY_SIZE(names))) 5246 type = TC_PORT_UNKNOWN; 5247 5248 return names[type]; 5249 } 5250 5251 static void icl_update_tc_port_type(struct drm_i915_private *dev_priv, 5252 struct intel_digital_port *intel_dig_port, 5253 bool is_legacy, bool is_typec, bool is_tbt) 5254 { 5255 enum port port = intel_dig_port->base.port; 5256 enum tc_port_type old_type = intel_dig_port->tc_type; 5257 5258 WARN_ON(is_legacy + is_typec + is_tbt != 1); 5259 5260 if (is_legacy) 5261 intel_dig_port->tc_type = TC_PORT_LEGACY; 5262 else if (is_typec) 5263 intel_dig_port->tc_type = TC_PORT_TYPEC; 5264 else if (is_tbt) 5265 intel_dig_port->tc_type = TC_PORT_TBT; 5266 else 5267 return; 5268 5269 /* Types are not supposed to be changed at runtime. */ 5270 WARN_ON(old_type != TC_PORT_UNKNOWN && 5271 old_type != intel_dig_port->tc_type); 5272 5273 if (old_type != intel_dig_port->tc_type) 5274 DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port), 5275 tc_type_name(intel_dig_port->tc_type)); 5276 } 5277 5278 /* 5279 * This function implements the first part of the Connect Flow described by our 5280 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading 5281 * lanes, EDID, etc) is done as needed in the typical places. 5282 * 5283 * Unlike the other ports, type-C ports are not available to use as soon as we 5284 * get a hotplug. The type-C PHYs can be shared between multiple controllers: 5285 * display, USB, etc. As a result, handshaking through FIA is required around 5286 * connect and disconnect to cleanly transfer ownership with the controller and 5287 * set the type-C power state. 5288 * 5289 * We could opt to only do the connect flow when we actually try to use the AUX 5290 * channels or do a modeset, then immediately run the disconnect flow after 5291 * usage, but there are some implications on this for a dynamic environment: 5292 * things may go away or change behind our backs. So for now our driver is 5293 * always trying to acquire ownership of the controller as soon as it gets an 5294 * interrupt (or polls state and sees a port is connected) and only gives it 5295 * back when it sees a disconnect. Implementation of a more fine-grained model 5296 * will require a lot of coordination with user space and thorough testing for 5297 * the extra possible cases. 5298 */ 5299 static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv, 5300 struct intel_digital_port *dig_port) 5301 { 5302 enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port); 5303 u32 val; 5304 5305 if (dig_port->tc_type != TC_PORT_LEGACY && 5306 dig_port->tc_type != TC_PORT_TYPEC) 5307 return true; 5308 5309 val = I915_READ(PORT_TX_DFLEXDPPMS); 5310 if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) { 5311 DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port); 5312 WARN_ON(dig_port->tc_legacy_port); 5313 return false; 5314 } 5315 5316 /* 5317 * This function may be called many times in a row without an HPD event 5318 * in between, so try to avoid the write when we can. 5319 */ 5320 val = I915_READ(PORT_TX_DFLEXDPCSSS); 5321 if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) { 5322 val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port); 5323 I915_WRITE(PORT_TX_DFLEXDPCSSS, val); 5324 } 5325 5326 /* 5327 * Now we have to re-check the live state, in case the port recently 5328 * became disconnected. Not necessary for legacy mode. 5329 */ 5330 if (dig_port->tc_type == TC_PORT_TYPEC && 5331 !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) { 5332 DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port); 5333 icl_tc_phy_disconnect(dev_priv, dig_port); 5334 return false; 5335 } 5336 5337 return true; 5338 } 5339 5340 /* 5341 * See the comment at the connect function. This implements the Disconnect 5342 * Flow. 5343 */ 5344 void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv, 5345 struct intel_digital_port *dig_port) 5346 { 5347 enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port); 5348 5349 if (dig_port->tc_type == TC_PORT_UNKNOWN) 5350 return; 5351 5352 /* 5353 * TBT disconnection flow is read the live status, what was done in 5354 * caller. 5355 */ 5356 if (dig_port->tc_type == TC_PORT_TYPEC || 5357 dig_port->tc_type == TC_PORT_LEGACY) { 5358 u32 val; 5359 5360 val = I915_READ(PORT_TX_DFLEXDPCSSS); 5361 val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port); 5362 I915_WRITE(PORT_TX_DFLEXDPCSSS, val); 5363 } 5364 5365 DRM_DEBUG_KMS("Port %c TC type %s disconnected\n", 5366 port_name(dig_port->base.port), 5367 tc_type_name(dig_port->tc_type)); 5368 5369 dig_port->tc_type = TC_PORT_UNKNOWN; 5370 } 5371 5372 /* 5373 * The type-C ports are different because even when they are connected, they may 5374 * not be available/usable by the graphics driver: see the comment on 5375 * icl_tc_phy_connect(). So in our driver instead of adding the additional 5376 * concept of "usable" and make everything check for "connected and usable" we 5377 * define a port as "connected" when it is not only connected, but also when it 5378 * is usable by the rest of the driver. That maintains the old assumption that 5379 * connected ports are usable, and avoids exposing to the users objects they 5380 * can't really use. 5381 */ 5382 static bool icl_tc_port_connected(struct drm_i915_private *dev_priv, 5383 struct intel_digital_port *intel_dig_port) 5384 { 5385 enum port port = intel_dig_port->base.port; 5386 enum tc_port tc_port = intel_port_to_tc(dev_priv, port); 5387 bool is_legacy, is_typec, is_tbt; 5388 u32 dpsp; 5389 5390 /* 5391 * Complain if we got a legacy port HPD, but VBT didn't mark the port as 5392 * legacy. Treat the port as legacy from now on. 5393 */ 5394 if (!intel_dig_port->tc_legacy_port && 5395 I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)) { 5396 DRM_ERROR("VBT incorrectly claims port %c is not TypeC legacy\n", 5397 port_name(port)); 5398 intel_dig_port->tc_legacy_port = true; 5399 } 5400 is_legacy = intel_dig_port->tc_legacy_port; 5401 5402 /* 5403 * The spec says we shouldn't be using the ISR bits for detecting 5404 * between TC and TBT. We should use DFLEXDPSP. 5405 */ 5406 dpsp = I915_READ(PORT_TX_DFLEXDPSP); 5407 is_typec = dpsp & TC_LIVE_STATE_TC(tc_port); 5408 is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port); 5409 5410 if (!is_legacy && !is_typec && !is_tbt) { 5411 icl_tc_phy_disconnect(dev_priv, intel_dig_port); 5412 5413 return false; 5414 } 5415 5416 icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec, 5417 is_tbt); 5418 5419 if (!icl_tc_phy_connect(dev_priv, intel_dig_port)) 5420 return false; 5421 5422 return true; 5423 } 5424 5425 static bool icl_digital_port_connected(struct intel_encoder *encoder) 5426 { 5427 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5428 struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); 5429 5430 if (intel_port_is_combophy(dev_priv, encoder->port)) 5431 return icl_combo_port_connected(dev_priv, dig_port); 5432 else if (intel_port_is_tc(dev_priv, encoder->port)) 5433 return icl_tc_port_connected(dev_priv, dig_port); 5434 else 5435 MISSING_CASE(encoder->hpd_pin); 5436 5437 return false; 5438 } 5439 5440 /* 5441 * intel_digital_port_connected - is the specified port connected? 5442 * @encoder: intel_encoder 5443 * 5444 * In cases where there's a connector physically connected but it can't be used 5445 * by our hardware we also return false, since the rest of the driver should 5446 * pretty much treat the port as disconnected. This is relevant for type-C 5447 * (starting on ICL) where there's ownership involved. 5448 * 5449 * Return %true if port is connected, %false otherwise. 5450 */ 5451 static bool __intel_digital_port_connected(struct intel_encoder *encoder) 5452 { 5453 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5454 5455 if (HAS_GMCH(dev_priv)) { 5456 if (IS_GM45(dev_priv)) 5457 return gm45_digital_port_connected(encoder); 5458 else 5459 return g4x_digital_port_connected(encoder); 5460 } 5461 5462 if (INTEL_GEN(dev_priv) >= 11) 5463 return icl_digital_port_connected(encoder); 5464 else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv)) 5465 return spt_digital_port_connected(encoder); 5466 else if (IS_GEN9_LP(dev_priv)) 5467 return bxt_digital_port_connected(encoder); 5468 else if (IS_GEN(dev_priv, 8)) 5469 return bdw_digital_port_connected(encoder); 5470 else if (IS_GEN(dev_priv, 7)) 5471 return ivb_digital_port_connected(encoder); 5472 else if (IS_GEN(dev_priv, 6)) 5473 return snb_digital_port_connected(encoder); 5474 else if (IS_GEN(dev_priv, 5)) 5475 return ilk_digital_port_connected(encoder); 5476 5477 MISSING_CASE(INTEL_GEN(dev_priv)); 5478 return false; 5479 } 5480 5481 bool intel_digital_port_connected(struct intel_encoder *encoder) 5482 { 5483 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5484 bool is_connected = false; 5485 intel_wakeref_t wakeref; 5486 5487 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 5488 is_connected = __intel_digital_port_connected(encoder); 5489 5490 return is_connected; 5491 } 5492 5493 static struct edid * 5494 intel_dp_get_edid(struct intel_dp *intel_dp) 5495 { 5496 struct intel_connector *intel_connector = intel_dp->attached_connector; 5497 5498 /* use cached edid if we have one */ 5499 if (intel_connector->edid) { 5500 /* invalid edid */ 5501 if (IS_ERR(intel_connector->edid)) 5502 return NULL; 5503 5504 return drm_edid_duplicate(intel_connector->edid); 5505 } else 5506 return drm_get_edid(&intel_connector->base, 5507 &intel_dp->aux.ddc); 5508 } 5509 5510 static void 5511 intel_dp_set_edid(struct intel_dp *intel_dp) 5512 { 5513 struct intel_connector *intel_connector = intel_dp->attached_connector; 5514 struct edid *edid; 5515 5516 intel_dp_unset_edid(intel_dp); 5517 edid = intel_dp_get_edid(intel_dp); 5518 intel_connector->detect_edid = edid; 5519 5520 intel_dp->has_audio = drm_detect_monitor_audio(edid); 5521 drm_dp_cec_set_edid(&intel_dp->aux, edid); 5522 } 5523 5524 static void 5525 intel_dp_unset_edid(struct intel_dp *intel_dp) 5526 { 5527 struct intel_connector *intel_connector = intel_dp->attached_connector; 5528 5529 drm_dp_cec_unset_edid(&intel_dp->aux); 5530 kfree(intel_connector->detect_edid); 5531 intel_connector->detect_edid = NULL; 5532 5533 intel_dp->has_audio = false; 5534 } 5535 5536 static int 5537 intel_dp_detect(struct drm_connector *connector, 5538 struct drm_modeset_acquire_ctx *ctx, 5539 bool force) 5540 { 5541 struct drm_i915_private *dev_priv = to_i915(connector->dev); 5542 struct intel_dp *intel_dp = intel_attached_dp(connector); 5543 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5544 struct intel_encoder *encoder = &dig_port->base; 5545 enum drm_connector_status status; 5546 5547 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5548 connector->base.id, connector->name); 5549 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 5550 5551 /* Can't disconnect eDP */ 5552 if (intel_dp_is_edp(intel_dp)) 5553 status = edp_detect(intel_dp); 5554 else if (intel_digital_port_connected(encoder)) 5555 status = intel_dp_detect_dpcd(intel_dp); 5556 else 5557 status = connector_status_disconnected; 5558 5559 if (status == connector_status_disconnected) { 5560 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5561 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 5562 5563 if (intel_dp->is_mst) { 5564 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 5565 intel_dp->is_mst, 5566 intel_dp->mst_mgr.mst_state); 5567 intel_dp->is_mst = false; 5568 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5569 intel_dp->is_mst); 5570 } 5571 5572 goto out; 5573 } 5574 5575 if (intel_dp->reset_link_params) { 5576 /* Initial max link lane count */ 5577 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 5578 5579 /* Initial max link rate */ 5580 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 5581 5582 intel_dp->reset_link_params = false; 5583 } 5584 5585 intel_dp_print_rates(intel_dp); 5586 5587 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 5588 if (INTEL_GEN(dev_priv) >= 11) 5589 intel_dp_get_dsc_sink_cap(intel_dp); 5590 5591 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 5592 drm_dp_is_branch(intel_dp->dpcd)); 5593 5594 intel_dp_configure_mst(intel_dp); 5595 5596 if (intel_dp->is_mst) { 5597 /* 5598 * If we are in MST mode then this connector 5599 * won't appear connected or have anything 5600 * with EDID on it 5601 */ 5602 status = connector_status_disconnected; 5603 goto out; 5604 } 5605 5606 /* 5607 * Some external monitors do not signal loss of link synchronization 5608 * with an IRQ_HPD, so force a link status check. 5609 */ 5610 if (!intel_dp_is_edp(intel_dp)) { 5611 int ret; 5612 5613 ret = intel_dp_retrain_link(encoder, ctx); 5614 if (ret) 5615 return ret; 5616 } 5617 5618 /* 5619 * Clearing NACK and defer counts to get their exact values 5620 * while reading EDID which are required by Compliance tests 5621 * 4.2.2.4 and 4.2.2.5 5622 */ 5623 intel_dp->aux.i2c_nack_count = 0; 5624 intel_dp->aux.i2c_defer_count = 0; 5625 5626 intel_dp_set_edid(intel_dp); 5627 if (intel_dp_is_edp(intel_dp) || 5628 to_intel_connector(connector)->detect_edid) 5629 status = connector_status_connected; 5630 5631 intel_dp_check_service_irq(intel_dp); 5632 5633 out: 5634 if (status != connector_status_connected && !intel_dp->is_mst) 5635 intel_dp_unset_edid(intel_dp); 5636 5637 return status; 5638 } 5639 5640 static void 5641 intel_dp_force(struct drm_connector *connector) 5642 { 5643 struct intel_dp *intel_dp = intel_attached_dp(connector); 5644 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5645 struct intel_encoder *intel_encoder = &dig_port->base; 5646 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 5647 enum intel_display_power_domain aux_domain = 5648 intel_aux_power_domain(dig_port); 5649 intel_wakeref_t wakeref; 5650 5651 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5652 connector->base.id, connector->name); 5653 intel_dp_unset_edid(intel_dp); 5654 5655 if (connector->status != connector_status_connected) 5656 return; 5657 5658 wakeref = intel_display_power_get(dev_priv, aux_domain); 5659 5660 intel_dp_set_edid(intel_dp); 5661 5662 intel_display_power_put(dev_priv, aux_domain, wakeref); 5663 } 5664 5665 static int intel_dp_get_modes(struct drm_connector *connector) 5666 { 5667 struct intel_connector *intel_connector = to_intel_connector(connector); 5668 struct edid *edid; 5669 5670 edid = intel_connector->detect_edid; 5671 if (edid) { 5672 int ret = intel_connector_update_modes(connector, edid); 5673 if (ret) 5674 return ret; 5675 } 5676 5677 /* if eDP has no EDID, fall back to fixed mode */ 5678 if (intel_dp_is_edp(intel_attached_dp(connector)) && 5679 intel_connector->panel.fixed_mode) { 5680 struct drm_display_mode *mode; 5681 5682 mode = drm_mode_duplicate(connector->dev, 5683 intel_connector->panel.fixed_mode); 5684 if (mode) { 5685 drm_mode_probed_add(connector, mode); 5686 return 1; 5687 } 5688 } 5689 5690 return 0; 5691 } 5692 5693 static int 5694 intel_dp_connector_register(struct drm_connector *connector) 5695 { 5696 struct intel_dp *intel_dp = intel_attached_dp(connector); 5697 struct drm_device *dev = connector->dev; 5698 int ret; 5699 5700 ret = intel_connector_register(connector); 5701 if (ret) 5702 return ret; 5703 5704 i915_debugfs_connector_add(connector); 5705 5706 DRM_DEBUG_KMS("registering %s bus for %s\n", 5707 intel_dp->aux.name, connector->kdev->kobj.name); 5708 5709 intel_dp->aux.dev = connector->kdev; 5710 ret = drm_dp_aux_register(&intel_dp->aux); 5711 if (!ret) 5712 drm_dp_cec_register_connector(&intel_dp->aux, 5713 connector->name, dev->dev); 5714 return ret; 5715 } 5716 5717 static void 5718 intel_dp_connector_unregister(struct drm_connector *connector) 5719 { 5720 struct intel_dp *intel_dp = intel_attached_dp(connector); 5721 5722 drm_dp_cec_unregister_connector(&intel_dp->aux); 5723 drm_dp_aux_unregister(&intel_dp->aux); 5724 intel_connector_unregister(connector); 5725 } 5726 5727 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 5728 { 5729 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 5730 struct intel_dp *intel_dp = &intel_dig_port->dp; 5731 5732 intel_dp_mst_encoder_cleanup(intel_dig_port); 5733 if (intel_dp_is_edp(intel_dp)) { 5734 intel_wakeref_t wakeref; 5735 5736 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5737 /* 5738 * vdd might still be enabled do to the delayed vdd off. 5739 * Make sure vdd is actually turned off here. 5740 */ 5741 with_pps_lock(intel_dp, wakeref) 5742 edp_panel_vdd_off_sync(intel_dp); 5743 5744 if (intel_dp->edp_notifier.notifier_call) { 5745 unregister_reboot_notifier(&intel_dp->edp_notifier); 5746 intel_dp->edp_notifier.notifier_call = NULL; 5747 } 5748 } 5749 5750 intel_dp_aux_fini(intel_dp); 5751 } 5752 5753 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 5754 { 5755 intel_dp_encoder_flush_work(encoder); 5756 5757 drm_encoder_cleanup(encoder); 5758 kfree(enc_to_dig_port(encoder)); 5759 } 5760 5761 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 5762 { 5763 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); 5764 intel_wakeref_t wakeref; 5765 5766 if (!intel_dp_is_edp(intel_dp)) 5767 return; 5768 5769 /* 5770 * vdd might still be enabled do to the delayed vdd off. 5771 * Make sure vdd is actually turned off here. 5772 */ 5773 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5774 with_pps_lock(intel_dp, wakeref) 5775 edp_panel_vdd_off_sync(intel_dp); 5776 } 5777 5778 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 5779 { 5780 long ret; 5781 5782 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 5783 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, 5784 msecs_to_jiffies(timeout)); 5785 5786 if (!ret) 5787 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 5788 } 5789 5790 static 5791 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 5792 u8 *an) 5793 { 5794 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base); 5795 static const struct drm_dp_aux_msg msg = { 5796 .request = DP_AUX_NATIVE_WRITE, 5797 .address = DP_AUX_HDCP_AKSV, 5798 .size = DRM_HDCP_KSV_LEN, 5799 }; 5800 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 5801 ssize_t dpcd_ret; 5802 int ret; 5803 5804 /* Output An first, that's easy */ 5805 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 5806 an, DRM_HDCP_AN_LEN); 5807 if (dpcd_ret != DRM_HDCP_AN_LEN) { 5808 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n", 5809 dpcd_ret); 5810 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 5811 } 5812 5813 /* 5814 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 5815 * order to get it on the wire, we need to create the AUX header as if 5816 * we were writing the data, and then tickle the hardware to output the 5817 * data once the header is sent out. 5818 */ 5819 intel_dp_aux_header(txbuf, &msg); 5820 5821 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 5822 rxbuf, sizeof(rxbuf), 5823 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 5824 if (ret < 0) { 5825 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret); 5826 return ret; 5827 } else if (ret == 0) { 5828 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n"); 5829 return -EIO; 5830 } 5831 5832 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 5833 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 5834 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 5835 reply); 5836 return -EIO; 5837 } 5838 return 0; 5839 } 5840 5841 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 5842 u8 *bksv) 5843 { 5844 ssize_t ret; 5845 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 5846 DRM_HDCP_KSV_LEN); 5847 if (ret != DRM_HDCP_KSV_LEN) { 5848 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret); 5849 return ret >= 0 ? -EIO : ret; 5850 } 5851 return 0; 5852 } 5853 5854 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 5855 u8 *bstatus) 5856 { 5857 ssize_t ret; 5858 /* 5859 * For some reason the HDMI and DP HDCP specs call this register 5860 * definition by different names. In the HDMI spec, it's called BSTATUS, 5861 * but in DP it's called BINFO. 5862 */ 5863 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 5864 bstatus, DRM_HDCP_BSTATUS_LEN); 5865 if (ret != DRM_HDCP_BSTATUS_LEN) { 5866 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5867 return ret >= 0 ? -EIO : ret; 5868 } 5869 return 0; 5870 } 5871 5872 static 5873 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 5874 u8 *bcaps) 5875 { 5876 ssize_t ret; 5877 5878 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 5879 bcaps, 1); 5880 if (ret != 1) { 5881 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret); 5882 return ret >= 0 ? -EIO : ret; 5883 } 5884 5885 return 0; 5886 } 5887 5888 static 5889 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 5890 bool *repeater_present) 5891 { 5892 ssize_t ret; 5893 u8 bcaps; 5894 5895 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 5896 if (ret) 5897 return ret; 5898 5899 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 5900 return 0; 5901 } 5902 5903 static 5904 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 5905 u8 *ri_prime) 5906 { 5907 ssize_t ret; 5908 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 5909 ri_prime, DRM_HDCP_RI_LEN); 5910 if (ret != DRM_HDCP_RI_LEN) { 5911 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret); 5912 return ret >= 0 ? -EIO : ret; 5913 } 5914 return 0; 5915 } 5916 5917 static 5918 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 5919 bool *ksv_ready) 5920 { 5921 ssize_t ret; 5922 u8 bstatus; 5923 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5924 &bstatus, 1); 5925 if (ret != 1) { 5926 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5927 return ret >= 0 ? -EIO : ret; 5928 } 5929 *ksv_ready = bstatus & DP_BSTATUS_READY; 5930 return 0; 5931 } 5932 5933 static 5934 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 5935 int num_downstream, u8 *ksv_fifo) 5936 { 5937 ssize_t ret; 5938 int i; 5939 5940 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 5941 for (i = 0; i < num_downstream; i += 3) { 5942 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 5943 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5944 DP_AUX_HDCP_KSV_FIFO, 5945 ksv_fifo + i * DRM_HDCP_KSV_LEN, 5946 len); 5947 if (ret != len) { 5948 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n", 5949 i, ret); 5950 return ret >= 0 ? -EIO : ret; 5951 } 5952 } 5953 return 0; 5954 } 5955 5956 static 5957 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 5958 int i, u32 *part) 5959 { 5960 ssize_t ret; 5961 5962 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 5963 return -EINVAL; 5964 5965 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5966 DP_AUX_HDCP_V_PRIME(i), part, 5967 DRM_HDCP_V_PRIME_PART_LEN); 5968 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 5969 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 5970 return ret >= 0 ? -EIO : ret; 5971 } 5972 return 0; 5973 } 5974 5975 static 5976 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 5977 bool enable) 5978 { 5979 /* Not used for single stream DisplayPort setups */ 5980 return 0; 5981 } 5982 5983 static 5984 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 5985 { 5986 ssize_t ret; 5987 u8 bstatus; 5988 5989 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5990 &bstatus, 1); 5991 if (ret != 1) { 5992 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5993 return false; 5994 } 5995 5996 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 5997 } 5998 5999 static 6000 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 6001 bool *hdcp_capable) 6002 { 6003 ssize_t ret; 6004 u8 bcaps; 6005 6006 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6007 if (ret) 6008 return ret; 6009 6010 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 6011 return 0; 6012 } 6013 6014 struct hdcp2_dp_errata_stream_type { 6015 u8 msg_id; 6016 u8 stream_type; 6017 } __packed; 6018 6019 static struct hdcp2_dp_msg_data { 6020 u8 msg_id; 6021 u32 offset; 6022 bool msg_detectable; 6023 u32 timeout; 6024 u32 timeout2; /* Added for non_paired situation */ 6025 } hdcp2_msg_data[] = { 6026 {HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0}, 6027 {HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 6028 false, HDCP_2_2_CERT_TIMEOUT_MS, 0}, 6029 {HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 6030 false, 0, 0}, 6031 {HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 6032 false, 0, 0}, 6033 {HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 6034 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 6035 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS}, 6036 {HDCP_2_2_AKE_SEND_PAIRING_INFO, 6037 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 6038 HDCP_2_2_PAIRING_TIMEOUT_MS, 0}, 6039 {HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0}, 6040 {HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 6041 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0}, 6042 {HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 6043 0, 0}, 6044 {HDCP_2_2_REP_SEND_RECVID_LIST, 6045 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 6046 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0}, 6047 {HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 6048 0, 0}, 6049 {HDCP_2_2_REP_STREAM_MANAGE, 6050 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 6051 0, 0}, 6052 {HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 6053 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0}, 6054 /* local define to shovel this through the write_2_2 interface */ 6055 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 6056 {HDCP_2_2_ERRATA_DP_STREAM_TYPE, 6057 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 6058 0, 0}, 6059 }; 6060 6061 static inline 6062 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 6063 u8 *rx_status) 6064 { 6065 ssize_t ret; 6066 6067 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6068 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 6069 HDCP_2_2_DP_RXSTATUS_LEN); 6070 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 6071 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6072 return ret >= 0 ? -EIO : ret; 6073 } 6074 6075 return 0; 6076 } 6077 6078 static 6079 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 6080 u8 msg_id, bool *msg_ready) 6081 { 6082 u8 rx_status; 6083 int ret; 6084 6085 *msg_ready = false; 6086 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6087 if (ret < 0) 6088 return ret; 6089 6090 switch (msg_id) { 6091 case HDCP_2_2_AKE_SEND_HPRIME: 6092 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 6093 *msg_ready = true; 6094 break; 6095 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 6096 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 6097 *msg_ready = true; 6098 break; 6099 case HDCP_2_2_REP_SEND_RECVID_LIST: 6100 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6101 *msg_ready = true; 6102 break; 6103 default: 6104 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 6105 return -EINVAL; 6106 } 6107 6108 return 0; 6109 } 6110 6111 static ssize_t 6112 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 6113 struct hdcp2_dp_msg_data *hdcp2_msg_data) 6114 { 6115 struct intel_dp *dp = &intel_dig_port->dp; 6116 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6117 u8 msg_id = hdcp2_msg_data->msg_id; 6118 int ret, timeout; 6119 bool msg_ready = false; 6120 6121 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 6122 timeout = hdcp2_msg_data->timeout2; 6123 else 6124 timeout = hdcp2_msg_data->timeout; 6125 6126 /* 6127 * There is no way to detect the CERT, LPRIME and STREAM_READY 6128 * availability. So Wait for timeout and read the msg. 6129 */ 6130 if (!hdcp2_msg_data->msg_detectable) { 6131 mdelay(timeout); 6132 ret = 0; 6133 } else { 6134 /* 6135 * As we want to check the msg availability at timeout, Ignoring 6136 * the timeout at wait for CP_IRQ. 6137 */ 6138 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 6139 ret = hdcp2_detect_msg_availability(intel_dig_port, 6140 msg_id, &msg_ready); 6141 if (!msg_ready) 6142 ret = -ETIMEDOUT; 6143 } 6144 6145 if (ret) 6146 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n", 6147 hdcp2_msg_data->msg_id, ret, timeout); 6148 6149 return ret; 6150 } 6151 6152 static struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 6153 { 6154 int i; 6155 6156 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++) 6157 if (hdcp2_msg_data[i].msg_id == msg_id) 6158 return &hdcp2_msg_data[i]; 6159 6160 return NULL; 6161 } 6162 6163 static 6164 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 6165 void *buf, size_t size) 6166 { 6167 struct intel_dp *dp = &intel_dig_port->dp; 6168 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6169 unsigned int offset; 6170 u8 *byte = buf; 6171 ssize_t ret, bytes_to_write, len; 6172 struct hdcp2_dp_msg_data *hdcp2_msg_data; 6173 6174 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 6175 if (!hdcp2_msg_data) 6176 return -EINVAL; 6177 6178 offset = hdcp2_msg_data->offset; 6179 6180 /* No msg_id in DP HDCP2.2 msgs */ 6181 bytes_to_write = size - 1; 6182 byte++; 6183 6184 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 6185 6186 while (bytes_to_write) { 6187 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 6188 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 6189 6190 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 6191 offset, (void *)byte, len); 6192 if (ret < 0) 6193 return ret; 6194 6195 bytes_to_write -= ret; 6196 byte += ret; 6197 offset += ret; 6198 } 6199 6200 return size; 6201 } 6202 6203 static 6204 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6205 { 6206 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6207 u32 dev_cnt; 6208 ssize_t ret; 6209 6210 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6211 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6212 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6213 if (ret != HDCP_2_2_RXINFO_LEN) 6214 return ret >= 0 ? -EIO : ret; 6215 6216 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6217 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6218 6219 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6220 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6221 6222 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6223 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6224 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6225 6226 return ret; 6227 } 6228 6229 static 6230 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6231 u8 msg_id, void *buf, size_t size) 6232 { 6233 unsigned int offset; 6234 u8 *byte = buf; 6235 ssize_t ret, bytes_to_recv, len; 6236 struct hdcp2_dp_msg_data *hdcp2_msg_data; 6237 6238 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6239 if (!hdcp2_msg_data) 6240 return -EINVAL; 6241 offset = hdcp2_msg_data->offset; 6242 6243 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6244 if (ret < 0) 6245 return ret; 6246 6247 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6248 ret = get_receiver_id_list_size(intel_dig_port); 6249 if (ret < 0) 6250 return ret; 6251 6252 size = ret; 6253 } 6254 bytes_to_recv = size - 1; 6255 6256 /* DP adaptation msgs has no msg_id */ 6257 byte++; 6258 6259 while (bytes_to_recv) { 6260 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6261 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6262 6263 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6264 (void *)byte, len); 6265 if (ret < 0) { 6266 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret); 6267 return ret; 6268 } 6269 6270 bytes_to_recv -= ret; 6271 byte += ret; 6272 offset += ret; 6273 } 6274 byte = buf; 6275 *byte = msg_id; 6276 6277 return size; 6278 } 6279 6280 static 6281 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6282 bool is_repeater, u8 content_type) 6283 { 6284 struct hdcp2_dp_errata_stream_type stream_type_msg; 6285 6286 if (is_repeater) 6287 return 0; 6288 6289 /* 6290 * Errata for DP: As Stream type is used for encryption, Receiver 6291 * should be communicated with stream type for the decryption of the 6292 * content. 6293 * Repeater will be communicated with stream type as a part of it's 6294 * auth later in time. 6295 */ 6296 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6297 stream_type_msg.stream_type = content_type; 6298 6299 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6300 sizeof(stream_type_msg)); 6301 } 6302 6303 static 6304 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6305 { 6306 u8 rx_status; 6307 int ret; 6308 6309 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6310 if (ret) 6311 return ret; 6312 6313 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6314 ret = HDCP_REAUTH_REQUEST; 6315 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6316 ret = HDCP_LINK_INTEGRITY_FAILURE; 6317 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6318 ret = HDCP_TOPOLOGY_CHANGE; 6319 6320 return ret; 6321 } 6322 6323 static 6324 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6325 bool *capable) 6326 { 6327 u8 rx_caps[3]; 6328 int ret; 6329 6330 *capable = false; 6331 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6332 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6333 rx_caps, HDCP_2_2_RXCAPS_LEN); 6334 if (ret != HDCP_2_2_RXCAPS_LEN) 6335 return ret >= 0 ? -EIO : ret; 6336 6337 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6338 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6339 *capable = true; 6340 6341 return 0; 6342 } 6343 6344 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6345 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6346 .read_bksv = intel_dp_hdcp_read_bksv, 6347 .read_bstatus = intel_dp_hdcp_read_bstatus, 6348 .repeater_present = intel_dp_hdcp_repeater_present, 6349 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6350 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6351 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6352 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6353 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6354 .check_link = intel_dp_hdcp_check_link, 6355 .hdcp_capable = intel_dp_hdcp_capable, 6356 .write_2_2_msg = intel_dp_hdcp2_write_msg, 6357 .read_2_2_msg = intel_dp_hdcp2_read_msg, 6358 .config_stream_type = intel_dp_hdcp2_config_stream_type, 6359 .check_2_2_link = intel_dp_hdcp2_check_link, 6360 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 6361 .protocol = HDCP_PROTOCOL_DP, 6362 }; 6363 6364 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6365 { 6366 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6367 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6368 6369 lockdep_assert_held(&dev_priv->pps_mutex); 6370 6371 if (!edp_have_panel_vdd(intel_dp)) 6372 return; 6373 6374 /* 6375 * The VDD bit needs a power domain reference, so if the bit is 6376 * already enabled when we boot or resume, grab this reference and 6377 * schedule a vdd off, so we don't hold on to the reference 6378 * indefinitely. 6379 */ 6380 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); 6381 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6382 6383 edp_panel_vdd_schedule_off(intel_dp); 6384 } 6385 6386 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6387 { 6388 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6389 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6390 enum pipe pipe; 6391 6392 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6393 encoder->port, &pipe)) 6394 return pipe; 6395 6396 return INVALID_PIPE; 6397 } 6398 6399 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6400 { 6401 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6402 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 6403 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6404 intel_wakeref_t wakeref; 6405 6406 if (!HAS_DDI(dev_priv)) 6407 intel_dp->DP = I915_READ(intel_dp->output_reg); 6408 6409 if (lspcon->active) 6410 lspcon_resume(lspcon); 6411 6412 intel_dp->reset_link_params = true; 6413 6414 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6415 !intel_dp_is_edp(intel_dp)) 6416 return; 6417 6418 with_pps_lock(intel_dp, wakeref) { 6419 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6420 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6421 6422 if (intel_dp_is_edp(intel_dp)) { 6423 /* 6424 * Reinit the power sequencer, in case BIOS did 6425 * something nasty with it. 6426 */ 6427 intel_dp_pps_init(intel_dp); 6428 intel_edp_panel_vdd_sanitize(intel_dp); 6429 } 6430 } 6431 } 6432 6433 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6434 .force = intel_dp_force, 6435 .fill_modes = drm_helper_probe_single_connector_modes, 6436 .atomic_get_property = intel_digital_connector_atomic_get_property, 6437 .atomic_set_property = intel_digital_connector_atomic_set_property, 6438 .late_register = intel_dp_connector_register, 6439 .early_unregister = intel_dp_connector_unregister, 6440 .destroy = intel_connector_destroy, 6441 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6442 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6443 }; 6444 6445 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6446 .detect_ctx = intel_dp_detect, 6447 .get_modes = intel_dp_get_modes, 6448 .mode_valid = intel_dp_mode_valid, 6449 .atomic_check = intel_digital_connector_atomic_check, 6450 }; 6451 6452 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6453 .reset = intel_dp_encoder_reset, 6454 .destroy = intel_dp_encoder_destroy, 6455 }; 6456 6457 enum irqreturn 6458 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 6459 { 6460 struct intel_dp *intel_dp = &intel_dig_port->dp; 6461 6462 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { 6463 /* 6464 * vdd off can generate a long pulse on eDP which 6465 * would require vdd on to handle it, and thus we 6466 * would end up in an endless cycle of 6467 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." 6468 */ 6469 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n", 6470 port_name(intel_dig_port->base.port)); 6471 return IRQ_HANDLED; 6472 } 6473 6474 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n", 6475 port_name(intel_dig_port->base.port), 6476 long_hpd ? "long" : "short"); 6477 6478 if (long_hpd) { 6479 intel_dp->reset_link_params = true; 6480 return IRQ_NONE; 6481 } 6482 6483 if (intel_dp->is_mst) { 6484 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { 6485 /* 6486 * If we were in MST mode, and device is not 6487 * there, get out of MST mode 6488 */ 6489 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 6490 intel_dp->is_mst, intel_dp->mst_mgr.mst_state); 6491 intel_dp->is_mst = false; 6492 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6493 intel_dp->is_mst); 6494 6495 return IRQ_NONE; 6496 } 6497 } 6498 6499 if (!intel_dp->is_mst) { 6500 bool handled; 6501 6502 handled = intel_dp_short_pulse(intel_dp); 6503 6504 if (!handled) 6505 return IRQ_NONE; 6506 } 6507 6508 return IRQ_HANDLED; 6509 } 6510 6511 /* check the VBT to see whether the eDP is on another port */ 6512 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6513 { 6514 /* 6515 * eDP not supported on g4x. so bail out early just 6516 * for a bit extra safety in case the VBT is bonkers. 6517 */ 6518 if (INTEL_GEN(dev_priv) < 5) 6519 return false; 6520 6521 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 6522 return true; 6523 6524 return intel_bios_is_port_edp(dev_priv, port); 6525 } 6526 6527 static void 6528 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6529 { 6530 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6531 enum port port = dp_to_dig_port(intel_dp)->base.port; 6532 6533 if (!IS_G4X(dev_priv) && port != PORT_A) 6534 intel_attach_force_audio_property(connector); 6535 6536 intel_attach_broadcast_rgb_property(connector); 6537 if (HAS_GMCH(dev_priv)) 6538 drm_connector_attach_max_bpc_property(connector, 6, 10); 6539 else if (INTEL_GEN(dev_priv) >= 5) 6540 drm_connector_attach_max_bpc_property(connector, 6, 12); 6541 6542 if (intel_dp_is_edp(intel_dp)) { 6543 u32 allowed_scalers; 6544 6545 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 6546 if (!HAS_GMCH(dev_priv)) 6547 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 6548 6549 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 6550 6551 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 6552 6553 } 6554 } 6555 6556 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 6557 { 6558 intel_dp->panel_power_off_time = ktime_get_boottime(); 6559 intel_dp->last_power_on = jiffies; 6560 intel_dp->last_backlight_off = jiffies; 6561 } 6562 6563 static void 6564 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 6565 { 6566 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6567 u32 pp_on, pp_off, pp_ctl; 6568 struct pps_registers regs; 6569 6570 intel_pps_get_registers(intel_dp, ®s); 6571 6572 pp_ctl = ironlake_get_pp_control(intel_dp); 6573 6574 /* Ensure PPS is unlocked */ 6575 if (!HAS_DDI(dev_priv)) 6576 I915_WRITE(regs.pp_ctrl, pp_ctl); 6577 6578 pp_on = I915_READ(regs.pp_on); 6579 pp_off = I915_READ(regs.pp_off); 6580 6581 /* Pull timing values out of registers */ 6582 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 6583 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 6584 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 6585 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 6586 6587 if (i915_mmio_reg_valid(regs.pp_div)) { 6588 u32 pp_div; 6589 6590 pp_div = I915_READ(regs.pp_div); 6591 6592 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 6593 } else { 6594 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 6595 } 6596 } 6597 6598 static void 6599 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 6600 { 6601 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 6602 state_name, 6603 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 6604 } 6605 6606 static void 6607 intel_pps_verify_state(struct intel_dp *intel_dp) 6608 { 6609 struct edp_power_seq hw; 6610 struct edp_power_seq *sw = &intel_dp->pps_delays; 6611 6612 intel_pps_readout_hw_state(intel_dp, &hw); 6613 6614 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 6615 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 6616 DRM_ERROR("PPS state mismatch\n"); 6617 intel_pps_dump_state("sw", sw); 6618 intel_pps_dump_state("hw", &hw); 6619 } 6620 } 6621 6622 static void 6623 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 6624 { 6625 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6626 struct edp_power_seq cur, vbt, spec, 6627 *final = &intel_dp->pps_delays; 6628 6629 lockdep_assert_held(&dev_priv->pps_mutex); 6630 6631 /* already initialized? */ 6632 if (final->t11_t12 != 0) 6633 return; 6634 6635 intel_pps_readout_hw_state(intel_dp, &cur); 6636 6637 intel_pps_dump_state("cur", &cur); 6638 6639 vbt = dev_priv->vbt.edp.pps; 6640 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 6641 * of 500ms appears to be too short. Ocassionally the panel 6642 * just fails to power back on. Increasing the delay to 800ms 6643 * seems sufficient to avoid this problem. 6644 */ 6645 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 6646 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 6647 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n", 6648 vbt.t11_t12); 6649 } 6650 /* T11_T12 delay is special and actually in units of 100ms, but zero 6651 * based in the hw (so we need to add 100 ms). But the sw vbt 6652 * table multiplies it with 1000 to make it in units of 100usec, 6653 * too. */ 6654 vbt.t11_t12 += 100 * 10; 6655 6656 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 6657 * our hw here, which are all in 100usec. */ 6658 spec.t1_t3 = 210 * 10; 6659 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 6660 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 6661 spec.t10 = 500 * 10; 6662 /* This one is special and actually in units of 100ms, but zero 6663 * based in the hw (so we need to add 100 ms). But the sw vbt 6664 * table multiplies it with 1000 to make it in units of 100usec, 6665 * too. */ 6666 spec.t11_t12 = (510 + 100) * 10; 6667 6668 intel_pps_dump_state("vbt", &vbt); 6669 6670 /* Use the max of the register settings and vbt. If both are 6671 * unset, fall back to the spec limits. */ 6672 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 6673 spec.field : \ 6674 max(cur.field, vbt.field)) 6675 assign_final(t1_t3); 6676 assign_final(t8); 6677 assign_final(t9); 6678 assign_final(t10); 6679 assign_final(t11_t12); 6680 #undef assign_final 6681 6682 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 6683 intel_dp->panel_power_up_delay = get_delay(t1_t3); 6684 intel_dp->backlight_on_delay = get_delay(t8); 6685 intel_dp->backlight_off_delay = get_delay(t9); 6686 intel_dp->panel_power_down_delay = get_delay(t10); 6687 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 6688 #undef get_delay 6689 6690 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", 6691 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, 6692 intel_dp->panel_power_cycle_delay); 6693 6694 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", 6695 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); 6696 6697 /* 6698 * We override the HW backlight delays to 1 because we do manual waits 6699 * on them. For T8, even BSpec recommends doing it. For T9, if we 6700 * don't do this, we'll end up waiting for the backlight off delay 6701 * twice: once when we do the manual sleep, and once when we disable 6702 * the panel and wait for the PP_STATUS bit to become zero. 6703 */ 6704 final->t8 = 1; 6705 final->t9 = 1; 6706 6707 /* 6708 * HW has only a 100msec granularity for t11_t12 so round it up 6709 * accordingly. 6710 */ 6711 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 6712 } 6713 6714 static void 6715 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 6716 bool force_disable_vdd) 6717 { 6718 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6719 u32 pp_on, pp_off, port_sel = 0; 6720 int div = dev_priv->rawclk_freq / 1000; 6721 struct pps_registers regs; 6722 enum port port = dp_to_dig_port(intel_dp)->base.port; 6723 const struct edp_power_seq *seq = &intel_dp->pps_delays; 6724 6725 lockdep_assert_held(&dev_priv->pps_mutex); 6726 6727 intel_pps_get_registers(intel_dp, ®s); 6728 6729 /* 6730 * On some VLV machines the BIOS can leave the VDD 6731 * enabled even on power sequencers which aren't 6732 * hooked up to any port. This would mess up the 6733 * power domain tracking the first time we pick 6734 * one of these power sequencers for use since 6735 * edp_panel_vdd_on() would notice that the VDD was 6736 * already on and therefore wouldn't grab the power 6737 * domain reference. Disable VDD first to avoid this. 6738 * This also avoids spuriously turning the VDD on as 6739 * soon as the new power sequencer gets initialized. 6740 */ 6741 if (force_disable_vdd) { 6742 u32 pp = ironlake_get_pp_control(intel_dp); 6743 6744 WARN(pp & PANEL_POWER_ON, "Panel power already on\n"); 6745 6746 if (pp & EDP_FORCE_VDD) 6747 DRM_DEBUG_KMS("VDD already on, disabling first\n"); 6748 6749 pp &= ~EDP_FORCE_VDD; 6750 6751 I915_WRITE(regs.pp_ctrl, pp); 6752 } 6753 6754 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 6755 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 6756 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 6757 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 6758 6759 /* Haswell doesn't have any port selection bits for the panel 6760 * power sequencer any more. */ 6761 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6762 port_sel = PANEL_PORT_SELECT_VLV(port); 6763 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 6764 switch (port) { 6765 case PORT_A: 6766 port_sel = PANEL_PORT_SELECT_DPA; 6767 break; 6768 case PORT_C: 6769 port_sel = PANEL_PORT_SELECT_DPC; 6770 break; 6771 case PORT_D: 6772 port_sel = PANEL_PORT_SELECT_DPD; 6773 break; 6774 default: 6775 MISSING_CASE(port); 6776 break; 6777 } 6778 } 6779 6780 pp_on |= port_sel; 6781 6782 I915_WRITE(regs.pp_on, pp_on); 6783 I915_WRITE(regs.pp_off, pp_off); 6784 6785 /* 6786 * Compute the divisor for the pp clock, simply match the Bspec formula. 6787 */ 6788 if (i915_mmio_reg_valid(regs.pp_div)) { 6789 I915_WRITE(regs.pp_div, 6790 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | 6791 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 6792 } else { 6793 u32 pp_ctl; 6794 6795 pp_ctl = I915_READ(regs.pp_ctrl); 6796 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 6797 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 6798 I915_WRITE(regs.pp_ctrl, pp_ctl); 6799 } 6800 6801 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 6802 I915_READ(regs.pp_on), 6803 I915_READ(regs.pp_off), 6804 i915_mmio_reg_valid(regs.pp_div) ? 6805 I915_READ(regs.pp_div) : 6806 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 6807 } 6808 6809 static void intel_dp_pps_init(struct intel_dp *intel_dp) 6810 { 6811 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6812 6813 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6814 vlv_initial_power_sequencer_setup(intel_dp); 6815 } else { 6816 intel_dp_init_panel_power_sequencer(intel_dp); 6817 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 6818 } 6819 } 6820 6821 /** 6822 * intel_dp_set_drrs_state - program registers for RR switch to take effect 6823 * @dev_priv: i915 device 6824 * @crtc_state: a pointer to the active intel_crtc_state 6825 * @refresh_rate: RR to be programmed 6826 * 6827 * This function gets called when refresh rate (RR) has to be changed from 6828 * one frequency to another. Switches can be between high and low RR 6829 * supported by the panel or to any other RR based on media playback (in 6830 * this case, RR value needs to be passed from user space). 6831 * 6832 * The caller of this function needs to take a lock on dev_priv->drrs. 6833 */ 6834 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 6835 const struct intel_crtc_state *crtc_state, 6836 int refresh_rate) 6837 { 6838 struct intel_encoder *encoder; 6839 struct intel_digital_port *dig_port = NULL; 6840 struct intel_dp *intel_dp = dev_priv->drrs.dp; 6841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 6842 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 6843 6844 if (refresh_rate <= 0) { 6845 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); 6846 return; 6847 } 6848 6849 if (intel_dp == NULL) { 6850 DRM_DEBUG_KMS("DRRS not supported.\n"); 6851 return; 6852 } 6853 6854 dig_port = dp_to_dig_port(intel_dp); 6855 encoder = &dig_port->base; 6856 6857 if (!intel_crtc) { 6858 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); 6859 return; 6860 } 6861 6862 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 6863 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); 6864 return; 6865 } 6866 6867 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == 6868 refresh_rate) 6869 index = DRRS_LOW_RR; 6870 6871 if (index == dev_priv->drrs.refresh_rate_type) { 6872 DRM_DEBUG_KMS( 6873 "DRRS requested for previously set RR...ignoring\n"); 6874 return; 6875 } 6876 6877 if (!crtc_state->base.active) { 6878 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); 6879 return; 6880 } 6881 6882 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 6883 switch (index) { 6884 case DRRS_HIGH_RR: 6885 intel_dp_set_m_n(crtc_state, M1_N1); 6886 break; 6887 case DRRS_LOW_RR: 6888 intel_dp_set_m_n(crtc_state, M2_N2); 6889 break; 6890 case DRRS_MAX_RR: 6891 default: 6892 DRM_ERROR("Unsupported refreshrate type\n"); 6893 } 6894 } else if (INTEL_GEN(dev_priv) > 6) { 6895 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 6896 u32 val; 6897 6898 val = I915_READ(reg); 6899 if (index > DRRS_HIGH_RR) { 6900 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6901 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6902 else 6903 val |= PIPECONF_EDP_RR_MODE_SWITCH; 6904 } else { 6905 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6906 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6907 else 6908 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 6909 } 6910 I915_WRITE(reg, val); 6911 } 6912 6913 dev_priv->drrs.refresh_rate_type = index; 6914 6915 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); 6916 } 6917 6918 /** 6919 * intel_edp_drrs_enable - init drrs struct if supported 6920 * @intel_dp: DP struct 6921 * @crtc_state: A pointer to the active crtc state. 6922 * 6923 * Initializes frontbuffer_bits and drrs.dp 6924 */ 6925 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 6926 const struct intel_crtc_state *crtc_state) 6927 { 6928 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6929 6930 if (!crtc_state->has_drrs) { 6931 DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); 6932 return; 6933 } 6934 6935 if (dev_priv->psr.enabled) { 6936 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n"); 6937 return; 6938 } 6939 6940 mutex_lock(&dev_priv->drrs.mutex); 6941 if (dev_priv->drrs.dp) { 6942 DRM_DEBUG_KMS("DRRS already enabled\n"); 6943 goto unlock; 6944 } 6945 6946 dev_priv->drrs.busy_frontbuffer_bits = 0; 6947 6948 dev_priv->drrs.dp = intel_dp; 6949 6950 unlock: 6951 mutex_unlock(&dev_priv->drrs.mutex); 6952 } 6953 6954 /** 6955 * intel_edp_drrs_disable - Disable DRRS 6956 * @intel_dp: DP struct 6957 * @old_crtc_state: Pointer to old crtc_state. 6958 * 6959 */ 6960 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 6961 const struct intel_crtc_state *old_crtc_state) 6962 { 6963 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6964 6965 if (!old_crtc_state->has_drrs) 6966 return; 6967 6968 mutex_lock(&dev_priv->drrs.mutex); 6969 if (!dev_priv->drrs.dp) { 6970 mutex_unlock(&dev_priv->drrs.mutex); 6971 return; 6972 } 6973 6974 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6975 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 6976 intel_dp->attached_connector->panel.fixed_mode->vrefresh); 6977 6978 dev_priv->drrs.dp = NULL; 6979 mutex_unlock(&dev_priv->drrs.mutex); 6980 6981 cancel_delayed_work_sync(&dev_priv->drrs.work); 6982 } 6983 6984 static void intel_edp_drrs_downclock_work(struct work_struct *work) 6985 { 6986 struct drm_i915_private *dev_priv = 6987 container_of(work, typeof(*dev_priv), drrs.work.work); 6988 struct intel_dp *intel_dp; 6989 6990 mutex_lock(&dev_priv->drrs.mutex); 6991 6992 intel_dp = dev_priv->drrs.dp; 6993 6994 if (!intel_dp) 6995 goto unlock; 6996 6997 /* 6998 * The delayed work can race with an invalidate hence we need to 6999 * recheck. 7000 */ 7001 7002 if (dev_priv->drrs.busy_frontbuffer_bits) 7003 goto unlock; 7004 7005 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 7006 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7007 7008 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7009 intel_dp->attached_connector->panel.downclock_mode->vrefresh); 7010 } 7011 7012 unlock: 7013 mutex_unlock(&dev_priv->drrs.mutex); 7014 } 7015 7016 /** 7017 * intel_edp_drrs_invalidate - Disable Idleness DRRS 7018 * @dev_priv: i915 device 7019 * @frontbuffer_bits: frontbuffer plane tracking bits 7020 * 7021 * This function gets called everytime rendering on the given planes start. 7022 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 7023 * 7024 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7025 */ 7026 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 7027 unsigned int frontbuffer_bits) 7028 { 7029 struct drm_crtc *crtc; 7030 enum pipe pipe; 7031 7032 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7033 return; 7034 7035 cancel_delayed_work(&dev_priv->drrs.work); 7036 7037 mutex_lock(&dev_priv->drrs.mutex); 7038 if (!dev_priv->drrs.dp) { 7039 mutex_unlock(&dev_priv->drrs.mutex); 7040 return; 7041 } 7042 7043 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7044 pipe = to_intel_crtc(crtc)->pipe; 7045 7046 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7047 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 7048 7049 /* invalidate means busy screen hence upclock */ 7050 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7051 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7052 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7053 7054 mutex_unlock(&dev_priv->drrs.mutex); 7055 } 7056 7057 /** 7058 * intel_edp_drrs_flush - Restart Idleness DRRS 7059 * @dev_priv: i915 device 7060 * @frontbuffer_bits: frontbuffer plane tracking bits 7061 * 7062 * This function gets called every time rendering on the given planes has 7063 * completed or flip on a crtc is completed. So DRRS should be upclocked 7064 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 7065 * if no other planes are dirty. 7066 * 7067 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7068 */ 7069 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 7070 unsigned int frontbuffer_bits) 7071 { 7072 struct drm_crtc *crtc; 7073 enum pipe pipe; 7074 7075 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7076 return; 7077 7078 cancel_delayed_work(&dev_priv->drrs.work); 7079 7080 mutex_lock(&dev_priv->drrs.mutex); 7081 if (!dev_priv->drrs.dp) { 7082 mutex_unlock(&dev_priv->drrs.mutex); 7083 return; 7084 } 7085 7086 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7087 pipe = to_intel_crtc(crtc)->pipe; 7088 7089 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7090 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 7091 7092 /* flush means busy screen hence upclock */ 7093 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7094 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7095 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7096 7097 /* 7098 * flush also means no more activity hence schedule downclock, if all 7099 * other fbs are quiescent too 7100 */ 7101 if (!dev_priv->drrs.busy_frontbuffer_bits) 7102 schedule_delayed_work(&dev_priv->drrs.work, 7103 msecs_to_jiffies(1000)); 7104 mutex_unlock(&dev_priv->drrs.mutex); 7105 } 7106 7107 /** 7108 * DOC: Display Refresh Rate Switching (DRRS) 7109 * 7110 * Display Refresh Rate Switching (DRRS) is a power conservation feature 7111 * which enables swtching between low and high refresh rates, 7112 * dynamically, based on the usage scenario. This feature is applicable 7113 * for internal panels. 7114 * 7115 * Indication that the panel supports DRRS is given by the panel EDID, which 7116 * would list multiple refresh rates for one resolution. 7117 * 7118 * DRRS is of 2 types - static and seamless. 7119 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 7120 * (may appear as a blink on screen) and is used in dock-undock scenario. 7121 * Seamless DRRS involves changing RR without any visual effect to the user 7122 * and can be used during normal system usage. This is done by programming 7123 * certain registers. 7124 * 7125 * Support for static/seamless DRRS may be indicated in the VBT based on 7126 * inputs from the panel spec. 7127 * 7128 * DRRS saves power by switching to low RR based on usage scenarios. 7129 * 7130 * The implementation is based on frontbuffer tracking implementation. When 7131 * there is a disturbance on the screen triggered by user activity or a periodic 7132 * system activity, DRRS is disabled (RR is changed to high RR). When there is 7133 * no movement on screen, after a timeout of 1 second, a switch to low RR is 7134 * made. 7135 * 7136 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 7137 * and intel_edp_drrs_flush() are called. 7138 * 7139 * DRRS can be further extended to support other internal panels and also 7140 * the scenario of video playback wherein RR is set based on the rate 7141 * requested by userspace. 7142 */ 7143 7144 /** 7145 * intel_dp_drrs_init - Init basic DRRS work and mutex. 7146 * @connector: eDP connector 7147 * @fixed_mode: preferred mode of panel 7148 * 7149 * This function is called only once at driver load to initialize basic 7150 * DRRS stuff. 7151 * 7152 * Returns: 7153 * Downclock mode if panel supports it, else return NULL. 7154 * DRRS support is determined by the presence of downclock mode (apart 7155 * from VBT setting). 7156 */ 7157 static struct drm_display_mode * 7158 intel_dp_drrs_init(struct intel_connector *connector, 7159 struct drm_display_mode *fixed_mode) 7160 { 7161 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 7162 struct drm_display_mode *downclock_mode = NULL; 7163 7164 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 7165 mutex_init(&dev_priv->drrs.mutex); 7166 7167 if (INTEL_GEN(dev_priv) <= 6) { 7168 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); 7169 return NULL; 7170 } 7171 7172 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 7173 DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); 7174 return NULL; 7175 } 7176 7177 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 7178 if (!downclock_mode) { 7179 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); 7180 return NULL; 7181 } 7182 7183 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 7184 7185 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 7186 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); 7187 return downclock_mode; 7188 } 7189 7190 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7191 struct intel_connector *intel_connector) 7192 { 7193 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7194 struct drm_device *dev = &dev_priv->drm; 7195 struct drm_connector *connector = &intel_connector->base; 7196 struct drm_display_mode *fixed_mode = NULL; 7197 struct drm_display_mode *downclock_mode = NULL; 7198 bool has_dpcd; 7199 enum pipe pipe = INVALID_PIPE; 7200 intel_wakeref_t wakeref; 7201 struct edid *edid; 7202 7203 if (!intel_dp_is_edp(intel_dp)) 7204 return true; 7205 7206 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7207 7208 /* 7209 * On IBX/CPT we may get here with LVDS already registered. Since the 7210 * driver uses the only internal power sequencer available for both 7211 * eDP and LVDS bail out early in this case to prevent interfering 7212 * with an already powered-on LVDS power sequencer. 7213 */ 7214 if (intel_get_lvds_encoder(dev_priv)) { 7215 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7216 DRM_INFO("LVDS was detected, not registering eDP\n"); 7217 7218 return false; 7219 } 7220 7221 with_pps_lock(intel_dp, wakeref) { 7222 intel_dp_init_panel_power_timestamps(intel_dp); 7223 intel_dp_pps_init(intel_dp); 7224 intel_edp_panel_vdd_sanitize(intel_dp); 7225 } 7226 7227 /* Cache DPCD and EDID for edp. */ 7228 has_dpcd = intel_edp_init_dpcd(intel_dp); 7229 7230 if (!has_dpcd) { 7231 /* if this fails, presume the device is a ghost */ 7232 DRM_INFO("failed to retrieve link info, disabling eDP\n"); 7233 goto out_vdd_off; 7234 } 7235 7236 mutex_lock(&dev->mode_config.mutex); 7237 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7238 if (edid) { 7239 if (drm_add_edid_modes(connector, edid)) { 7240 drm_connector_update_edid_property(connector, 7241 edid); 7242 } else { 7243 kfree(edid); 7244 edid = ERR_PTR(-EINVAL); 7245 } 7246 } else { 7247 edid = ERR_PTR(-ENOENT); 7248 } 7249 intel_connector->edid = edid; 7250 7251 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7252 if (fixed_mode) 7253 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7254 7255 /* fallback to VBT if available for eDP */ 7256 if (!fixed_mode) 7257 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7258 mutex_unlock(&dev->mode_config.mutex); 7259 7260 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7261 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7262 register_reboot_notifier(&intel_dp->edp_notifier); 7263 7264 /* 7265 * Figure out the current pipe for the initial backlight setup. 7266 * If the current pipe isn't valid, try the PPS pipe, and if that 7267 * fails just assume pipe A. 7268 */ 7269 pipe = vlv_active_pipe(intel_dp); 7270 7271 if (pipe != PIPE_A && pipe != PIPE_B) 7272 pipe = intel_dp->pps_pipe; 7273 7274 if (pipe != PIPE_A && pipe != PIPE_B) 7275 pipe = PIPE_A; 7276 7277 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", 7278 pipe_name(pipe)); 7279 } 7280 7281 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7282 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7283 intel_panel_setup_backlight(connector, pipe); 7284 7285 if (fixed_mode) 7286 drm_connector_init_panel_orientation_property( 7287 connector, fixed_mode->hdisplay, fixed_mode->vdisplay); 7288 7289 return true; 7290 7291 out_vdd_off: 7292 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7293 /* 7294 * vdd might still be enabled do to the delayed vdd off. 7295 * Make sure vdd is actually turned off here. 7296 */ 7297 with_pps_lock(intel_dp, wakeref) 7298 edp_panel_vdd_off_sync(intel_dp); 7299 7300 return false; 7301 } 7302 7303 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7304 { 7305 struct intel_connector *intel_connector; 7306 struct drm_connector *connector; 7307 7308 intel_connector = container_of(work, typeof(*intel_connector), 7309 modeset_retry_work); 7310 connector = &intel_connector->base; 7311 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7312 connector->name); 7313 7314 /* Grab the locks before changing connector property*/ 7315 mutex_lock(&connector->dev->mode_config.mutex); 7316 /* Set connector link status to BAD and send a Uevent to notify 7317 * userspace to do a modeset. 7318 */ 7319 drm_connector_set_link_status_property(connector, 7320 DRM_MODE_LINK_STATUS_BAD); 7321 mutex_unlock(&connector->dev->mode_config.mutex); 7322 /* Send Hotplug uevent so userspace can reprobe */ 7323 drm_kms_helper_hotplug_event(connector->dev); 7324 } 7325 7326 bool 7327 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 7328 struct intel_connector *intel_connector) 7329 { 7330 struct drm_connector *connector = &intel_connector->base; 7331 struct intel_dp *intel_dp = &intel_dig_port->dp; 7332 struct intel_encoder *intel_encoder = &intel_dig_port->base; 7333 struct drm_device *dev = intel_encoder->base.dev; 7334 struct drm_i915_private *dev_priv = to_i915(dev); 7335 enum port port = intel_encoder->port; 7336 int type; 7337 7338 /* Initialize the work for modeset in case of link train failure */ 7339 INIT_WORK(&intel_connector->modeset_retry_work, 7340 intel_dp_modeset_retry_work_fn); 7341 7342 if (WARN(intel_dig_port->max_lanes < 1, 7343 "Not enough lanes (%d) for DP on port %c\n", 7344 intel_dig_port->max_lanes, port_name(port))) 7345 return false; 7346 7347 intel_dp_set_source_rates(intel_dp); 7348 7349 intel_dp->reset_link_params = true; 7350 intel_dp->pps_pipe = INVALID_PIPE; 7351 intel_dp->active_pipe = INVALID_PIPE; 7352 7353 /* Preserve the current hw state. */ 7354 intel_dp->DP = I915_READ(intel_dp->output_reg); 7355 intel_dp->attached_connector = intel_connector; 7356 7357 if (intel_dp_is_port_edp(dev_priv, port)) { 7358 /* 7359 * Currently we don't support eDP on TypeC ports, although in 7360 * theory it could work on TypeC legacy ports. 7361 */ 7362 WARN_ON(intel_port_is_tc(dev_priv, port)); 7363 type = DRM_MODE_CONNECTOR_eDP; 7364 } else { 7365 type = DRM_MODE_CONNECTOR_DisplayPort; 7366 } 7367 7368 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7369 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7370 7371 /* 7372 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7373 * for DP the encoder type can be set by the caller to 7374 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7375 */ 7376 if (type == DRM_MODE_CONNECTOR_eDP) 7377 intel_encoder->type = INTEL_OUTPUT_EDP; 7378 7379 /* eDP only on port B and/or C on vlv/chv */ 7380 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 7381 intel_dp_is_edp(intel_dp) && 7382 port != PORT_B && port != PORT_C)) 7383 return false; 7384 7385 DRM_DEBUG_KMS("Adding %s connector on port %c\n", 7386 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7387 port_name(port)); 7388 7389 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7390 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7391 7392 if (!HAS_GMCH(dev_priv)) 7393 connector->interlace_allowed = true; 7394 connector->doublescan_allowed = 0; 7395 7396 if (INTEL_GEN(dev_priv) >= 11) 7397 connector->ycbcr_420_allowed = true; 7398 7399 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7400 7401 intel_dp_aux_init(intel_dp); 7402 7403 intel_connector_attach_encoder(intel_connector, intel_encoder); 7404 7405 if (HAS_DDI(dev_priv)) 7406 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7407 else 7408 intel_connector->get_hw_state = intel_connector_get_hw_state; 7409 7410 /* init MST on ports that can support it */ 7411 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) && 7412 (port == PORT_B || port == PORT_C || 7413 port == PORT_D || port == PORT_F)) 7414 intel_dp_mst_encoder_init(intel_dig_port, 7415 intel_connector->base.base.id); 7416 7417 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7418 intel_dp_aux_fini(intel_dp); 7419 intel_dp_mst_encoder_cleanup(intel_dig_port); 7420 goto fail; 7421 } 7422 7423 intel_dp_add_properties(intel_dp, connector); 7424 7425 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7426 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 7427 if (ret) 7428 DRM_DEBUG_KMS("HDCP init failed, skipping.\n"); 7429 } 7430 7431 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7432 * 0xd. Failure to do so will result in spurious interrupts being 7433 * generated on the port when a cable is not attached. 7434 */ 7435 if (IS_G45(dev_priv)) { 7436 u32 temp = I915_READ(PEG_BAND_GAP_DATA); 7437 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); 7438 } 7439 7440 return true; 7441 7442 fail: 7443 drm_connector_cleanup(connector); 7444 7445 return false; 7446 } 7447 7448 bool intel_dp_init(struct drm_i915_private *dev_priv, 7449 i915_reg_t output_reg, 7450 enum port port) 7451 { 7452 struct intel_digital_port *intel_dig_port; 7453 struct intel_encoder *intel_encoder; 7454 struct drm_encoder *encoder; 7455 struct intel_connector *intel_connector; 7456 7457 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 7458 if (!intel_dig_port) 7459 return false; 7460 7461 intel_connector = intel_connector_alloc(); 7462 if (!intel_connector) 7463 goto err_connector_alloc; 7464 7465 intel_encoder = &intel_dig_port->base; 7466 encoder = &intel_encoder->base; 7467 7468 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7469 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7470 "DP %c", port_name(port))) 7471 goto err_encoder_init; 7472 7473 intel_encoder->hotplug = intel_dp_hotplug; 7474 intel_encoder->compute_config = intel_dp_compute_config; 7475 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7476 intel_encoder->get_config = intel_dp_get_config; 7477 intel_encoder->update_pipe = intel_panel_update_backlight; 7478 intel_encoder->suspend = intel_dp_encoder_suspend; 7479 if (IS_CHERRYVIEW(dev_priv)) { 7480 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7481 intel_encoder->pre_enable = chv_pre_enable_dp; 7482 intel_encoder->enable = vlv_enable_dp; 7483 intel_encoder->disable = vlv_disable_dp; 7484 intel_encoder->post_disable = chv_post_disable_dp; 7485 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 7486 } else if (IS_VALLEYVIEW(dev_priv)) { 7487 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 7488 intel_encoder->pre_enable = vlv_pre_enable_dp; 7489 intel_encoder->enable = vlv_enable_dp; 7490 intel_encoder->disable = vlv_disable_dp; 7491 intel_encoder->post_disable = vlv_post_disable_dp; 7492 } else { 7493 intel_encoder->pre_enable = g4x_pre_enable_dp; 7494 intel_encoder->enable = g4x_enable_dp; 7495 intel_encoder->disable = g4x_disable_dp; 7496 intel_encoder->post_disable = g4x_post_disable_dp; 7497 } 7498 7499 intel_dig_port->dp.output_reg = output_reg; 7500 intel_dig_port->max_lanes = 4; 7501 7502 intel_encoder->type = INTEL_OUTPUT_DP; 7503 intel_encoder->power_domain = intel_port_to_power_domain(port); 7504 if (IS_CHERRYVIEW(dev_priv)) { 7505 if (port == PORT_D) 7506 intel_encoder->crtc_mask = 1 << 2; 7507 else 7508 intel_encoder->crtc_mask = (1 << 0) | (1 << 1); 7509 } else { 7510 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); 7511 } 7512 intel_encoder->cloneable = 0; 7513 intel_encoder->port = port; 7514 7515 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 7516 7517 if (port != PORT_A) 7518 intel_infoframe_init(intel_dig_port); 7519 7520 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 7521 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 7522 goto err_init_connector; 7523 7524 return true; 7525 7526 err_init_connector: 7527 drm_encoder_cleanup(encoder); 7528 err_encoder_init: 7529 kfree(intel_connector); 7530 err_connector_alloc: 7531 kfree(intel_dig_port); 7532 return false; 7533 } 7534 7535 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 7536 { 7537 struct intel_encoder *encoder; 7538 7539 for_each_intel_encoder(&dev_priv->drm, encoder) { 7540 struct intel_dp *intel_dp; 7541 7542 if (encoder->type != INTEL_OUTPUT_DDI) 7543 continue; 7544 7545 intel_dp = enc_to_intel_dp(&encoder->base); 7546 7547 if (!intel_dp->can_mst) 7548 continue; 7549 7550 if (intel_dp->is_mst) 7551 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 7552 } 7553 } 7554 7555 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 7556 { 7557 struct intel_encoder *encoder; 7558 7559 for_each_intel_encoder(&dev_priv->drm, encoder) { 7560 struct intel_dp *intel_dp; 7561 int ret; 7562 7563 if (encoder->type != INTEL_OUTPUT_DDI) 7564 continue; 7565 7566 intel_dp = enc_to_intel_dp(&encoder->base); 7567 7568 if (!intel_dp->can_mst) 7569 continue; 7570 7571 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr); 7572 if (ret) { 7573 intel_dp->is_mst = false; 7574 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 7575 false); 7576 } 7577 } 7578 } 7579