xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_dp.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_probe_helper.h>
42 
43 #include "i915_debugfs.h"
44 #include "i915_drv.h"
45 #include "i915_trace.h"
46 #include "intel_atomic.h"
47 #include "intel_audio.h"
48 #include "intel_connector.h"
49 #include "intel_ddi.h"
50 #include "intel_display_types.h"
51 #include "intel_dp.h"
52 #include "intel_dp_link_training.h"
53 #include "intel_dp_mst.h"
54 #include "intel_dpio_phy.h"
55 #include "intel_fifo_underrun.h"
56 #include "intel_hdcp.h"
57 #include "intel_hdmi.h"
58 #include "intel_hotplug.h"
59 #include "intel_lspcon.h"
60 #include "intel_lvds.h"
61 #include "intel_panel.h"
62 #include "intel_psr.h"
63 #include "intel_sideband.h"
64 #include "intel_tc.h"
65 #include "intel_vdsc.h"
66 
67 #define DP_DPRX_ESI_LEN 14
68 
69 /* DP DSC throughput values used for slice count calculations KPixels/s */
70 #define DP_DSC_PEAK_PIXEL_RATE			2720000
71 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
73 
74 /* DP DSC FEC Overhead factor = 1/(0.972261) */
75 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
76 
77 /* Compliance test status bits  */
78 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
79 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
80 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 
83 struct dp_link_dpll {
84 	int clock;
85 	struct dpll dpll;
86 };
87 
88 static const struct dp_link_dpll g4x_dpll[] = {
89 	{ 162000,
90 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
91 	{ 270000,
92 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
93 };
94 
95 static const struct dp_link_dpll pch_dpll[] = {
96 	{ 162000,
97 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
98 	{ 270000,
99 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
100 };
101 
102 static const struct dp_link_dpll vlv_dpll[] = {
103 	{ 162000,
104 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
105 	{ 270000,
106 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
107 };
108 
109 /*
110  * CHV supports eDP 1.4 that have  more link rates.
111  * Below only provides the fixed rate but exclude variable rate.
112  */
113 static const struct dp_link_dpll chv_dpll[] = {
114 	/*
115 	 * CHV requires to program fractional division for m2.
116 	 * m2 is stored in fixed point format using formula below
117 	 * (m2_int << 22) | m2_fraction
118 	 */
119 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
120 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
121 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
122 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
123 };
124 
125 /* Constants for DP DSC configurations */
126 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
127 
128 /* With Single pipe configuration, HW is capable of supporting maximum
129  * of 4 slices per line.
130  */
131 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
132 
133 /**
134  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
135  * @intel_dp: DP struct
136  *
137  * If a CPU or PCH DP output is attached to an eDP panel, this function
138  * will return true, and false otherwise.
139  */
140 bool intel_dp_is_edp(struct intel_dp *intel_dp)
141 {
142 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
143 
144 	return dig_port->base.type == INTEL_OUTPUT_EDP;
145 }
146 
147 static void intel_dp_link_down(struct intel_encoder *encoder,
148 			       const struct intel_crtc_state *old_crtc_state);
149 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
150 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
151 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
152 					   const struct intel_crtc_state *crtc_state);
153 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
154 				      enum pipe pipe);
155 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
156 
157 /* update sink rates from dpcd */
158 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
159 {
160 	static const int dp_rates[] = {
161 		162000, 270000, 540000, 810000
162 	};
163 	int i, max_rate;
164 
165 	if (drm_dp_has_quirk(&intel_dp->desc, 0,
166 			     DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
167 		/* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
168 		static const int quirk_rates[] = { 162000, 270000, 324000 };
169 
170 		memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
171 		intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
172 
173 		return;
174 	}
175 
176 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
177 
178 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
179 		if (dp_rates[i] > max_rate)
180 			break;
181 		intel_dp->sink_rates[i] = dp_rates[i];
182 	}
183 
184 	intel_dp->num_sink_rates = i;
185 }
186 
187 /* Get length of rates array potentially limited by max_rate. */
188 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
189 {
190 	int i;
191 
192 	/* Limit results by potentially reduced max rate */
193 	for (i = 0; i < len; i++) {
194 		if (rates[len - i - 1] <= max_rate)
195 			return len - i;
196 	}
197 
198 	return 0;
199 }
200 
201 /* Get length of common rates array potentially limited by max_rate. */
202 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
203 					  int max_rate)
204 {
205 	return intel_dp_rate_limit_len(intel_dp->common_rates,
206 				       intel_dp->num_common_rates, max_rate);
207 }
208 
209 /* Theoretical max between source and sink */
210 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
211 {
212 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
213 }
214 
215 /* Theoretical max between source and sink */
216 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
217 {
218 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
219 	int source_max = dig_port->max_lanes;
220 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
221 	int fia_max = intel_tc_port_fia_max_lane_count(dig_port);
222 
223 	return min3(source_max, sink_max, fia_max);
224 }
225 
226 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
227 {
228 	return intel_dp->max_link_lane_count;
229 }
230 
231 int
232 intel_dp_link_required(int pixel_clock, int bpp)
233 {
234 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
235 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
236 }
237 
238 int
239 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
240 {
241 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
242 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
243 	 * is transmitted every LS_Clk per lane, there is no need to account for
244 	 * the channel encoding that is done in the PHY layer here.
245 	 */
246 
247 	return max_link_clock * max_lanes;
248 }
249 
250 static int cnl_max_source_rate(struct intel_dp *intel_dp)
251 {
252 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
253 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
254 	enum port port = dig_port->base.port;
255 
256 	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
257 
258 	/* Low voltage SKUs are limited to max of 5.4G */
259 	if (voltage == VOLTAGE_INFO_0_85V)
260 		return 540000;
261 
262 	/* For this SKU 8.1G is supported in all ports */
263 	if (IS_CNL_WITH_PORT_F(dev_priv))
264 		return 810000;
265 
266 	/* For other SKUs, max rate on ports A and D is 5.4G */
267 	if (port == PORT_A || port == PORT_D)
268 		return 540000;
269 
270 	return 810000;
271 }
272 
273 static int icl_max_source_rate(struct intel_dp *intel_dp)
274 {
275 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
276 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
277 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
278 
279 	if (intel_phy_is_combo(dev_priv, phy) &&
280 	    !IS_ELKHARTLAKE(dev_priv) &&
281 	    !intel_dp_is_edp(intel_dp))
282 		return 540000;
283 
284 	return 810000;
285 }
286 
287 static void
288 intel_dp_set_source_rates(struct intel_dp *intel_dp)
289 {
290 	/* The values must be in increasing order */
291 	static const int cnl_rates[] = {
292 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
293 	};
294 	static const int bxt_rates[] = {
295 		162000, 216000, 243000, 270000, 324000, 432000, 540000
296 	};
297 	static const int skl_rates[] = {
298 		162000, 216000, 270000, 324000, 432000, 540000
299 	};
300 	static const int hsw_rates[] = {
301 		162000, 270000, 540000
302 	};
303 	static const int g4x_rates[] = {
304 		162000, 270000
305 	};
306 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
307 	struct intel_encoder *encoder = &dig_port->base;
308 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
309 	const int *source_rates;
310 	int size, max_rate = 0, vbt_max_rate;
311 
312 	/* This should only be done once */
313 	drm_WARN_ON(&dev_priv->drm,
314 		    intel_dp->source_rates || intel_dp->num_source_rates);
315 
316 	if (INTEL_GEN(dev_priv) >= 10) {
317 		source_rates = cnl_rates;
318 		size = ARRAY_SIZE(cnl_rates);
319 		if (IS_GEN(dev_priv, 10))
320 			max_rate = cnl_max_source_rate(intel_dp);
321 		else
322 			max_rate = icl_max_source_rate(intel_dp);
323 	} else if (IS_GEN9_LP(dev_priv)) {
324 		source_rates = bxt_rates;
325 		size = ARRAY_SIZE(bxt_rates);
326 	} else if (IS_GEN9_BC(dev_priv)) {
327 		source_rates = skl_rates;
328 		size = ARRAY_SIZE(skl_rates);
329 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
330 		   IS_BROADWELL(dev_priv)) {
331 		source_rates = hsw_rates;
332 		size = ARRAY_SIZE(hsw_rates);
333 	} else {
334 		source_rates = g4x_rates;
335 		size = ARRAY_SIZE(g4x_rates);
336 	}
337 
338 	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
339 	if (max_rate && vbt_max_rate)
340 		max_rate = min(max_rate, vbt_max_rate);
341 	else if (vbt_max_rate)
342 		max_rate = vbt_max_rate;
343 
344 	if (max_rate)
345 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
346 
347 	intel_dp->source_rates = source_rates;
348 	intel_dp->num_source_rates = size;
349 }
350 
351 static int intersect_rates(const int *source_rates, int source_len,
352 			   const int *sink_rates, int sink_len,
353 			   int *common_rates)
354 {
355 	int i = 0, j = 0, k = 0;
356 
357 	while (i < source_len && j < sink_len) {
358 		if (source_rates[i] == sink_rates[j]) {
359 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
360 				return k;
361 			common_rates[k] = source_rates[i];
362 			++k;
363 			++i;
364 			++j;
365 		} else if (source_rates[i] < sink_rates[j]) {
366 			++i;
367 		} else {
368 			++j;
369 		}
370 	}
371 	return k;
372 }
373 
374 /* return index of rate in rates array, or -1 if not found */
375 static int intel_dp_rate_index(const int *rates, int len, int rate)
376 {
377 	int i;
378 
379 	for (i = 0; i < len; i++)
380 		if (rate == rates[i])
381 			return i;
382 
383 	return -1;
384 }
385 
386 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
387 {
388 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
389 
390 	drm_WARN_ON(&i915->drm,
391 		    !intel_dp->num_source_rates || !intel_dp->num_sink_rates);
392 
393 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
394 						     intel_dp->num_source_rates,
395 						     intel_dp->sink_rates,
396 						     intel_dp->num_sink_rates,
397 						     intel_dp->common_rates);
398 
399 	/* Paranoia, there should always be something in common. */
400 	if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) {
401 		intel_dp->common_rates[0] = 162000;
402 		intel_dp->num_common_rates = 1;
403 	}
404 }
405 
406 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
407 				       u8 lane_count)
408 {
409 	/*
410 	 * FIXME: we need to synchronize the current link parameters with
411 	 * hardware readout. Currently fast link training doesn't work on
412 	 * boot-up.
413 	 */
414 	if (link_rate == 0 ||
415 	    link_rate > intel_dp->max_link_rate)
416 		return false;
417 
418 	if (lane_count == 0 ||
419 	    lane_count > intel_dp_max_lane_count(intel_dp))
420 		return false;
421 
422 	return true;
423 }
424 
425 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
426 						     int link_rate,
427 						     u8 lane_count)
428 {
429 	const struct drm_display_mode *fixed_mode =
430 		intel_dp->attached_connector->panel.fixed_mode;
431 	int mode_rate, max_rate;
432 
433 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
434 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
435 	if (mode_rate > max_rate)
436 		return false;
437 
438 	return true;
439 }
440 
441 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
442 					    int link_rate, u8 lane_count)
443 {
444 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
445 	int index;
446 
447 	/*
448 	 * TODO: Enable fallback on MST links once MST link compute can handle
449 	 * the fallback params.
450 	 */
451 	if (intel_dp->is_mst) {
452 		drm_err(&i915->drm, "Link Training Unsuccessful\n");
453 		return -1;
454 	}
455 
456 	index = intel_dp_rate_index(intel_dp->common_rates,
457 				    intel_dp->num_common_rates,
458 				    link_rate);
459 	if (index > 0) {
460 		if (intel_dp_is_edp(intel_dp) &&
461 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
462 							      intel_dp->common_rates[index - 1],
463 							      lane_count)) {
464 			drm_dbg_kms(&i915->drm,
465 				    "Retrying Link training for eDP with same parameters\n");
466 			return 0;
467 		}
468 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
469 		intel_dp->max_link_lane_count = lane_count;
470 	} else if (lane_count > 1) {
471 		if (intel_dp_is_edp(intel_dp) &&
472 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
473 							      intel_dp_max_common_rate(intel_dp),
474 							      lane_count >> 1)) {
475 			drm_dbg_kms(&i915->drm,
476 				    "Retrying Link training for eDP with same parameters\n");
477 			return 0;
478 		}
479 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
480 		intel_dp->max_link_lane_count = lane_count >> 1;
481 	} else {
482 		drm_err(&i915->drm, "Link Training Unsuccessful\n");
483 		return -1;
484 	}
485 
486 	return 0;
487 }
488 
489 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
490 {
491 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
492 		       DP_DSC_FEC_OVERHEAD_FACTOR);
493 }
494 
495 static int
496 small_joiner_ram_size_bits(struct drm_i915_private *i915)
497 {
498 	if (INTEL_GEN(i915) >= 11)
499 		return 7680 * 8;
500 	else
501 		return 6144 * 8;
502 }
503 
504 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
505 				       u32 link_clock, u32 lane_count,
506 				       u32 mode_clock, u32 mode_hdisplay)
507 {
508 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
509 	int i;
510 
511 	/*
512 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
513 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
514 	 * for SST -> TimeSlotsPerMTP is 1,
515 	 * for MST -> TimeSlotsPerMTP has to be calculated
516 	 */
517 	bits_per_pixel = (link_clock * lane_count * 8) /
518 			 intel_dp_mode_to_fec_clock(mode_clock);
519 	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
520 
521 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
522 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
523 		mode_hdisplay;
524 	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
525 		    max_bpp_small_joiner_ram);
526 
527 	/*
528 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
529 	 * check, output bpp from small joiner RAM check)
530 	 */
531 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
532 
533 	/* Error out if the max bpp is less than smallest allowed valid bpp */
534 	if (bits_per_pixel < valid_dsc_bpp[0]) {
535 		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
536 			    bits_per_pixel, valid_dsc_bpp[0]);
537 		return 0;
538 	}
539 
540 	/* Find the nearest match in the array of known BPPs from VESA */
541 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
542 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
543 			break;
544 	}
545 	bits_per_pixel = valid_dsc_bpp[i];
546 
547 	/*
548 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
549 	 * fractional part is 0
550 	 */
551 	return bits_per_pixel << 4;
552 }
553 
554 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
555 				       int mode_clock, int mode_hdisplay)
556 {
557 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
558 	u8 min_slice_count, i;
559 	int max_slice_width;
560 
561 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
562 		min_slice_count = DIV_ROUND_UP(mode_clock,
563 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
564 	else
565 		min_slice_count = DIV_ROUND_UP(mode_clock,
566 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
567 
568 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
569 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
570 		drm_dbg_kms(&i915->drm,
571 			    "Unsupported slice width %d by DP DSC Sink device\n",
572 			    max_slice_width);
573 		return 0;
574 	}
575 	/* Also take into account max slice width */
576 	min_slice_count = min_t(u8, min_slice_count,
577 				DIV_ROUND_UP(mode_hdisplay,
578 					     max_slice_width));
579 
580 	/* Find the closest match to the valid slice count values */
581 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
582 		if (valid_dsc_slicecount[i] >
583 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
584 						    false))
585 			break;
586 		if (min_slice_count  <= valid_dsc_slicecount[i])
587 			return valid_dsc_slicecount[i];
588 	}
589 
590 	drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
591 		    min_slice_count);
592 	return 0;
593 }
594 
595 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
596 				  int hdisplay)
597 {
598 	/*
599 	 * Older platforms don't like hdisplay==4096 with DP.
600 	 *
601 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
602 	 * and frame counter increment), but we don't get vblank interrupts,
603 	 * and the pipe underruns immediately. The link also doesn't seem
604 	 * to get trained properly.
605 	 *
606 	 * On CHV the vblank interrupts don't seem to disappear but
607 	 * otherwise the symptoms are similar.
608 	 *
609 	 * TODO: confirm the behaviour on HSW+
610 	 */
611 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
612 }
613 
614 static enum drm_mode_status
615 intel_dp_mode_valid_downstream(struct intel_connector *connector,
616 			       const struct drm_display_mode *mode,
617 			       int target_clock)
618 {
619 	struct intel_dp *intel_dp = intel_attached_dp(connector);
620 	const struct drm_display_info *info = &connector->base.display_info;
621 	int tmds_clock;
622 
623 	if (intel_dp->dfp.max_dotclock &&
624 	    target_clock > intel_dp->dfp.max_dotclock)
625 		return MODE_CLOCK_HIGH;
626 
627 	/* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */
628 	tmds_clock = target_clock;
629 	if (drm_mode_is_420_only(info, mode))
630 		tmds_clock /= 2;
631 
632 	if (intel_dp->dfp.min_tmds_clock &&
633 	    tmds_clock < intel_dp->dfp.min_tmds_clock)
634 		return MODE_CLOCK_LOW;
635 	if (intel_dp->dfp.max_tmds_clock &&
636 	    tmds_clock > intel_dp->dfp.max_tmds_clock)
637 		return MODE_CLOCK_HIGH;
638 
639 	return MODE_OK;
640 }
641 
642 static enum drm_mode_status
643 intel_dp_mode_valid(struct drm_connector *connector,
644 		    struct drm_display_mode *mode)
645 {
646 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
647 	struct intel_connector *intel_connector = to_intel_connector(connector);
648 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
649 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
650 	int target_clock = mode->clock;
651 	int max_rate, mode_rate, max_lanes, max_link_clock;
652 	int max_dotclk = dev_priv->max_dotclk_freq;
653 	u16 dsc_max_output_bpp = 0;
654 	u8 dsc_slice_count = 0;
655 	enum drm_mode_status status;
656 
657 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
658 		return MODE_NO_DBLESCAN;
659 
660 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
661 		if (mode->hdisplay > fixed_mode->hdisplay)
662 			return MODE_PANEL;
663 
664 		if (mode->vdisplay > fixed_mode->vdisplay)
665 			return MODE_PANEL;
666 
667 		target_clock = fixed_mode->clock;
668 	}
669 
670 	max_link_clock = intel_dp_max_link_rate(intel_dp);
671 	max_lanes = intel_dp_max_lane_count(intel_dp);
672 
673 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
674 	mode_rate = intel_dp_link_required(target_clock, 18);
675 
676 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
677 		return MODE_H_ILLEGAL;
678 
679 	/*
680 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
681 	 * integer value since we support only integer values of bpp.
682 	 */
683 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
684 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
685 		if (intel_dp_is_edp(intel_dp)) {
686 			dsc_max_output_bpp =
687 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
688 			dsc_slice_count =
689 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
690 								true);
691 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
692 			dsc_max_output_bpp =
693 				intel_dp_dsc_get_output_bpp(dev_priv,
694 							    max_link_clock,
695 							    max_lanes,
696 							    target_clock,
697 							    mode->hdisplay) >> 4;
698 			dsc_slice_count =
699 				intel_dp_dsc_get_slice_count(intel_dp,
700 							     target_clock,
701 							     mode->hdisplay);
702 		}
703 	}
704 
705 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
706 	    target_clock > max_dotclk)
707 		return MODE_CLOCK_HIGH;
708 
709 	if (mode->clock < 10000)
710 		return MODE_CLOCK_LOW;
711 
712 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
713 		return MODE_H_ILLEGAL;
714 
715 	status = intel_dp_mode_valid_downstream(intel_connector,
716 						mode, target_clock);
717 	if (status != MODE_OK)
718 		return status;
719 
720 	return intel_mode_valid_max_plane_size(dev_priv, mode);
721 }
722 
723 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
724 {
725 	int i;
726 	u32 v = 0;
727 
728 	if (src_bytes > 4)
729 		src_bytes = 4;
730 	for (i = 0; i < src_bytes; i++)
731 		v |= ((u32)src[i]) << ((3 - i) * 8);
732 	return v;
733 }
734 
735 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
736 {
737 	int i;
738 	if (dst_bytes > 4)
739 		dst_bytes = 4;
740 	for (i = 0; i < dst_bytes; i++)
741 		dst[i] = src >> ((3-i) * 8);
742 }
743 
744 static void
745 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
746 static void
747 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
748 					      bool force_disable_vdd);
749 static void
750 intel_dp_pps_init(struct intel_dp *intel_dp);
751 
752 static intel_wakeref_t
753 pps_lock(struct intel_dp *intel_dp)
754 {
755 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
756 	intel_wakeref_t wakeref;
757 
758 	/*
759 	 * See intel_power_sequencer_reset() why we need
760 	 * a power domain reference here.
761 	 */
762 	wakeref = intel_display_power_get(dev_priv,
763 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
764 
765 	mutex_lock(&dev_priv->pps_mutex);
766 
767 	return wakeref;
768 }
769 
770 static intel_wakeref_t
771 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
772 {
773 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
774 
775 	mutex_unlock(&dev_priv->pps_mutex);
776 	intel_display_power_put(dev_priv,
777 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
778 				wakeref);
779 	return 0;
780 }
781 
782 #define with_pps_lock(dp, wf) \
783 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
784 
785 static void
786 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
787 {
788 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
789 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
790 	enum pipe pipe = intel_dp->pps_pipe;
791 	bool pll_enabled, release_cl_override = false;
792 	enum dpio_phy phy = DPIO_PHY(pipe);
793 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
794 	u32 DP;
795 
796 	if (drm_WARN(&dev_priv->drm,
797 		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
798 		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
799 		     pipe_name(pipe), dig_port->base.base.base.id,
800 		     dig_port->base.base.name))
801 		return;
802 
803 	drm_dbg_kms(&dev_priv->drm,
804 		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
805 		    pipe_name(pipe), dig_port->base.base.base.id,
806 		    dig_port->base.base.name);
807 
808 	/* Preserve the BIOS-computed detected bit. This is
809 	 * supposed to be read-only.
810 	 */
811 	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
812 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
813 	DP |= DP_PORT_WIDTH(1);
814 	DP |= DP_LINK_TRAIN_PAT_1;
815 
816 	if (IS_CHERRYVIEW(dev_priv))
817 		DP |= DP_PIPE_SEL_CHV(pipe);
818 	else
819 		DP |= DP_PIPE_SEL(pipe);
820 
821 	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
822 
823 	/*
824 	 * The DPLL for the pipe must be enabled for this to work.
825 	 * So enable temporarily it if it's not already enabled.
826 	 */
827 	if (!pll_enabled) {
828 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
829 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
830 
831 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
832 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
833 			drm_err(&dev_priv->drm,
834 				"Failed to force on pll for pipe %c!\n",
835 				pipe_name(pipe));
836 			return;
837 		}
838 	}
839 
840 	/*
841 	 * Similar magic as in intel_dp_enable_port().
842 	 * We _must_ do this port enable + disable trick
843 	 * to make this power sequencer lock onto the port.
844 	 * Otherwise even VDD force bit won't work.
845 	 */
846 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
847 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
848 
849 	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
850 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
851 
852 	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
853 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
854 
855 	if (!pll_enabled) {
856 		vlv_force_pll_off(dev_priv, pipe);
857 
858 		if (release_cl_override)
859 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
860 	}
861 }
862 
863 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
864 {
865 	struct intel_encoder *encoder;
866 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
867 
868 	/*
869 	 * We don't have power sequencer currently.
870 	 * Pick one that's not used by other ports.
871 	 */
872 	for_each_intel_dp(&dev_priv->drm, encoder) {
873 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
874 
875 		if (encoder->type == INTEL_OUTPUT_EDP) {
876 			drm_WARN_ON(&dev_priv->drm,
877 				    intel_dp->active_pipe != INVALID_PIPE &&
878 				    intel_dp->active_pipe !=
879 				    intel_dp->pps_pipe);
880 
881 			if (intel_dp->pps_pipe != INVALID_PIPE)
882 				pipes &= ~(1 << intel_dp->pps_pipe);
883 		} else {
884 			drm_WARN_ON(&dev_priv->drm,
885 				    intel_dp->pps_pipe != INVALID_PIPE);
886 
887 			if (intel_dp->active_pipe != INVALID_PIPE)
888 				pipes &= ~(1 << intel_dp->active_pipe);
889 		}
890 	}
891 
892 	if (pipes == 0)
893 		return INVALID_PIPE;
894 
895 	return ffs(pipes) - 1;
896 }
897 
898 static enum pipe
899 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
900 {
901 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
902 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
903 	enum pipe pipe;
904 
905 	lockdep_assert_held(&dev_priv->pps_mutex);
906 
907 	/* We should never land here with regular DP ports */
908 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
909 
910 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
911 		    intel_dp->active_pipe != intel_dp->pps_pipe);
912 
913 	if (intel_dp->pps_pipe != INVALID_PIPE)
914 		return intel_dp->pps_pipe;
915 
916 	pipe = vlv_find_free_pps(dev_priv);
917 
918 	/*
919 	 * Didn't find one. This should not happen since there
920 	 * are two power sequencers and up to two eDP ports.
921 	 */
922 	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
923 		pipe = PIPE_A;
924 
925 	vlv_steal_power_sequencer(dev_priv, pipe);
926 	intel_dp->pps_pipe = pipe;
927 
928 	drm_dbg_kms(&dev_priv->drm,
929 		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
930 		    pipe_name(intel_dp->pps_pipe),
931 		    dig_port->base.base.base.id,
932 		    dig_port->base.base.name);
933 
934 	/* init power sequencer on this pipe and port */
935 	intel_dp_init_panel_power_sequencer(intel_dp);
936 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
937 
938 	/*
939 	 * Even vdd force doesn't work until we've made
940 	 * the power sequencer lock in on the port.
941 	 */
942 	vlv_power_sequencer_kick(intel_dp);
943 
944 	return intel_dp->pps_pipe;
945 }
946 
947 static int
948 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
949 {
950 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
951 	int backlight_controller = dev_priv->vbt.backlight.controller;
952 
953 	lockdep_assert_held(&dev_priv->pps_mutex);
954 
955 	/* We should never land here with regular DP ports */
956 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
957 
958 	if (!intel_dp->pps_reset)
959 		return backlight_controller;
960 
961 	intel_dp->pps_reset = false;
962 
963 	/*
964 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
965 	 * has been setup during connector init.
966 	 */
967 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
968 
969 	return backlight_controller;
970 }
971 
972 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
973 			       enum pipe pipe);
974 
975 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
976 			       enum pipe pipe)
977 {
978 	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
979 }
980 
981 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
982 				enum pipe pipe)
983 {
984 	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
985 }
986 
987 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
988 			 enum pipe pipe)
989 {
990 	return true;
991 }
992 
993 static enum pipe
994 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
995 		     enum port port,
996 		     vlv_pipe_check pipe_check)
997 {
998 	enum pipe pipe;
999 
1000 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
1001 		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
1002 			PANEL_PORT_SELECT_MASK;
1003 
1004 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
1005 			continue;
1006 
1007 		if (!pipe_check(dev_priv, pipe))
1008 			continue;
1009 
1010 		return pipe;
1011 	}
1012 
1013 	return INVALID_PIPE;
1014 }
1015 
1016 static void
1017 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
1018 {
1019 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1020 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1021 	enum port port = dig_port->base.port;
1022 
1023 	lockdep_assert_held(&dev_priv->pps_mutex);
1024 
1025 	/* try to find a pipe with this port selected */
1026 	/* first pick one where the panel is on */
1027 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1028 						  vlv_pipe_has_pp_on);
1029 	/* didn't find one? pick one where vdd is on */
1030 	if (intel_dp->pps_pipe == INVALID_PIPE)
1031 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1032 							  vlv_pipe_has_vdd_on);
1033 	/* didn't find one? pick one with just the correct port */
1034 	if (intel_dp->pps_pipe == INVALID_PIPE)
1035 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1036 							  vlv_pipe_any);
1037 
1038 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1039 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1040 		drm_dbg_kms(&dev_priv->drm,
1041 			    "no initial power sequencer for [ENCODER:%d:%s]\n",
1042 			    dig_port->base.base.base.id,
1043 			    dig_port->base.base.name);
1044 		return;
1045 	}
1046 
1047 	drm_dbg_kms(&dev_priv->drm,
1048 		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1049 		    dig_port->base.base.base.id,
1050 		    dig_port->base.base.name,
1051 		    pipe_name(intel_dp->pps_pipe));
1052 
1053 	intel_dp_init_panel_power_sequencer(intel_dp);
1054 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1055 }
1056 
1057 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1058 {
1059 	struct intel_encoder *encoder;
1060 
1061 	if (drm_WARN_ON(&dev_priv->drm,
1062 			!(IS_VALLEYVIEW(dev_priv) ||
1063 			  IS_CHERRYVIEW(dev_priv) ||
1064 			  IS_GEN9_LP(dev_priv))))
1065 		return;
1066 
1067 	/*
1068 	 * We can't grab pps_mutex here due to deadlock with power_domain
1069 	 * mutex when power_domain functions are called while holding pps_mutex.
1070 	 * That also means that in order to use pps_pipe the code needs to
1071 	 * hold both a power domain reference and pps_mutex, and the power domain
1072 	 * reference get/put must be done while _not_ holding pps_mutex.
1073 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1074 	 * should use them always.
1075 	 */
1076 
1077 	for_each_intel_dp(&dev_priv->drm, encoder) {
1078 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1079 
1080 		drm_WARN_ON(&dev_priv->drm,
1081 			    intel_dp->active_pipe != INVALID_PIPE);
1082 
1083 		if (encoder->type != INTEL_OUTPUT_EDP)
1084 			continue;
1085 
1086 		if (IS_GEN9_LP(dev_priv))
1087 			intel_dp->pps_reset = true;
1088 		else
1089 			intel_dp->pps_pipe = INVALID_PIPE;
1090 	}
1091 }
1092 
1093 struct pps_registers {
1094 	i915_reg_t pp_ctrl;
1095 	i915_reg_t pp_stat;
1096 	i915_reg_t pp_on;
1097 	i915_reg_t pp_off;
1098 	i915_reg_t pp_div;
1099 };
1100 
1101 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1102 				    struct pps_registers *regs)
1103 {
1104 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1105 	int pps_idx = 0;
1106 
1107 	memset(regs, 0, sizeof(*regs));
1108 
1109 	if (IS_GEN9_LP(dev_priv))
1110 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1111 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1112 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1113 
1114 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1115 	regs->pp_stat = PP_STATUS(pps_idx);
1116 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1117 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1118 
1119 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1120 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1121 		regs->pp_div = INVALID_MMIO_REG;
1122 	else
1123 		regs->pp_div = PP_DIVISOR(pps_idx);
1124 }
1125 
1126 static i915_reg_t
1127 _pp_ctrl_reg(struct intel_dp *intel_dp)
1128 {
1129 	struct pps_registers regs;
1130 
1131 	intel_pps_get_registers(intel_dp, &regs);
1132 
1133 	return regs.pp_ctrl;
1134 }
1135 
1136 static i915_reg_t
1137 _pp_stat_reg(struct intel_dp *intel_dp)
1138 {
1139 	struct pps_registers regs;
1140 
1141 	intel_pps_get_registers(intel_dp, &regs);
1142 
1143 	return regs.pp_stat;
1144 }
1145 
1146 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1147    This function only applicable when panel PM state is not to be tracked */
1148 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1149 			      void *unused)
1150 {
1151 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1152 						 edp_notifier);
1153 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1154 	intel_wakeref_t wakeref;
1155 
1156 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1157 		return 0;
1158 
1159 	with_pps_lock(intel_dp, wakeref) {
1160 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1161 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1162 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1163 			u32 pp_div;
1164 
1165 			pp_ctrl_reg = PP_CONTROL(pipe);
1166 			pp_div_reg  = PP_DIVISOR(pipe);
1167 			pp_div = intel_de_read(dev_priv, pp_div_reg);
1168 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1169 
1170 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1171 			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1172 			intel_de_write(dev_priv, pp_ctrl_reg,
1173 				       PANEL_UNLOCK_REGS);
1174 			msleep(intel_dp->panel_power_cycle_delay);
1175 		}
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1182 {
1183 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1184 
1185 	lockdep_assert_held(&dev_priv->pps_mutex);
1186 
1187 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1188 	    intel_dp->pps_pipe == INVALID_PIPE)
1189 		return false;
1190 
1191 	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1192 }
1193 
1194 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1195 {
1196 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1197 
1198 	lockdep_assert_held(&dev_priv->pps_mutex);
1199 
1200 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1201 	    intel_dp->pps_pipe == INVALID_PIPE)
1202 		return false;
1203 
1204 	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1205 }
1206 
1207 static void
1208 intel_dp_check_edp(struct intel_dp *intel_dp)
1209 {
1210 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1211 
1212 	if (!intel_dp_is_edp(intel_dp))
1213 		return;
1214 
1215 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1216 		drm_WARN(&dev_priv->drm, 1,
1217 			 "eDP powered off while attempting aux channel communication.\n");
1218 		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1219 			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1220 			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1221 	}
1222 }
1223 
1224 static u32
1225 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1226 {
1227 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1228 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1229 	const unsigned int timeout_ms = 10;
1230 	u32 status;
1231 	bool done;
1232 
1233 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1234 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1235 				  msecs_to_jiffies_timeout(timeout_ms));
1236 
1237 	/* just trace the final value */
1238 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1239 
1240 	if (!done)
1241 		drm_err(&i915->drm,
1242 			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1243 			intel_dp->aux.name, timeout_ms, status);
1244 #undef C
1245 
1246 	return status;
1247 }
1248 
1249 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1250 {
1251 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1252 
1253 	if (index)
1254 		return 0;
1255 
1256 	/*
1257 	 * The clock divider is based off the hrawclk, and would like to run at
1258 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1259 	 */
1260 	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1261 }
1262 
1263 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1264 {
1265 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1266 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1267 	u32 freq;
1268 
1269 	if (index)
1270 		return 0;
1271 
1272 	/*
1273 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1274 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1275 	 * divide by 2000 and use that
1276 	 */
1277 	if (dig_port->aux_ch == AUX_CH_A)
1278 		freq = dev_priv->cdclk.hw.cdclk;
1279 	else
1280 		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1281 	return DIV_ROUND_CLOSEST(freq, 2000);
1282 }
1283 
1284 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1285 {
1286 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1287 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1288 
1289 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1290 		/* Workaround for non-ULT HSW */
1291 		switch (index) {
1292 		case 0: return 63;
1293 		case 1: return 72;
1294 		default: return 0;
1295 		}
1296 	}
1297 
1298 	return ilk_get_aux_clock_divider(intel_dp, index);
1299 }
1300 
1301 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1302 {
1303 	/*
1304 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1305 	 * derive the clock from CDCLK automatically). We still implement the
1306 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1307 	 */
1308 	return index ? 0 : 1;
1309 }
1310 
1311 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1312 				int send_bytes,
1313 				u32 aux_clock_divider)
1314 {
1315 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1316 	struct drm_i915_private *dev_priv =
1317 			to_i915(dig_port->base.base.dev);
1318 	u32 precharge, timeout;
1319 
1320 	if (IS_GEN(dev_priv, 6))
1321 		precharge = 3;
1322 	else
1323 		precharge = 5;
1324 
1325 	if (IS_BROADWELL(dev_priv))
1326 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1327 	else
1328 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1329 
1330 	return DP_AUX_CH_CTL_SEND_BUSY |
1331 	       DP_AUX_CH_CTL_DONE |
1332 	       DP_AUX_CH_CTL_INTERRUPT |
1333 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1334 	       timeout |
1335 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1336 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1337 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1338 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1339 }
1340 
1341 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1342 				int send_bytes,
1343 				u32 unused)
1344 {
1345 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1346 	struct drm_i915_private *i915 =
1347 			to_i915(dig_port->base.base.dev);
1348 	enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1349 	u32 ret;
1350 
1351 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1352 	      DP_AUX_CH_CTL_DONE |
1353 	      DP_AUX_CH_CTL_INTERRUPT |
1354 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1355 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1356 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1357 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1358 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1359 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1360 
1361 	if (intel_phy_is_tc(i915, phy) &&
1362 	    dig_port->tc_mode == TC_PORT_TBT_ALT)
1363 		ret |= DP_AUX_CH_CTL_TBT_IO;
1364 
1365 	return ret;
1366 }
1367 
1368 static int
1369 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1370 		  const u8 *send, int send_bytes,
1371 		  u8 *recv, int recv_size,
1372 		  u32 aux_send_ctl_flags)
1373 {
1374 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1375 	struct drm_i915_private *i915 =
1376 			to_i915(dig_port->base.base.dev);
1377 	struct intel_uncore *uncore = &i915->uncore;
1378 	enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1379 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1380 	i915_reg_t ch_ctl, ch_data[5];
1381 	u32 aux_clock_divider;
1382 	enum intel_display_power_domain aux_domain;
1383 	intel_wakeref_t aux_wakeref;
1384 	intel_wakeref_t pps_wakeref;
1385 	int i, ret, recv_bytes;
1386 	int try, clock = 0;
1387 	u32 status;
1388 	bool vdd;
1389 
1390 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1391 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1392 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1393 
1394 	if (is_tc_port)
1395 		intel_tc_port_lock(dig_port);
1396 
1397 	aux_domain = intel_aux_power_domain(dig_port);
1398 
1399 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1400 	pps_wakeref = pps_lock(intel_dp);
1401 
1402 	/*
1403 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1404 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1405 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1406 	 * ourselves.
1407 	 */
1408 	vdd = edp_panel_vdd_on(intel_dp);
1409 
1410 	/* dp aux is extremely sensitive to irq latency, hence request the
1411 	 * lowest possible wakeup latency and so prevent the cpu from going into
1412 	 * deep sleep states.
1413 	 */
1414 	cpu_latency_qos_update_request(&i915->pm_qos, 0);
1415 
1416 	intel_dp_check_edp(intel_dp);
1417 
1418 	/* Try to wait for any previous AUX channel activity */
1419 	for (try = 0; try < 3; try++) {
1420 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1421 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1422 			break;
1423 		msleep(1);
1424 	}
1425 	/* just trace the final value */
1426 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1427 
1428 	if (try == 3) {
1429 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1430 
1431 		if (status != intel_dp->aux_busy_last_status) {
1432 			drm_WARN(&i915->drm, 1,
1433 				 "%s: not started (status 0x%08x)\n",
1434 				 intel_dp->aux.name, status);
1435 			intel_dp->aux_busy_last_status = status;
1436 		}
1437 
1438 		ret = -EBUSY;
1439 		goto out;
1440 	}
1441 
1442 	/* Only 5 data registers! */
1443 	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1444 		ret = -E2BIG;
1445 		goto out;
1446 	}
1447 
1448 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1449 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1450 							  send_bytes,
1451 							  aux_clock_divider);
1452 
1453 		send_ctl |= aux_send_ctl_flags;
1454 
1455 		/* Must try at least 3 times according to DP spec */
1456 		for (try = 0; try < 5; try++) {
1457 			/* Load the send data into the aux channel data registers */
1458 			for (i = 0; i < send_bytes; i += 4)
1459 				intel_uncore_write(uncore,
1460 						   ch_data[i >> 2],
1461 						   intel_dp_pack_aux(send + i,
1462 								     send_bytes - i));
1463 
1464 			/* Send the command and wait for it to complete */
1465 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1466 
1467 			status = intel_dp_aux_wait_done(intel_dp);
1468 
1469 			/* Clear done status and any errors */
1470 			intel_uncore_write(uncore,
1471 					   ch_ctl,
1472 					   status |
1473 					   DP_AUX_CH_CTL_DONE |
1474 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1475 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1476 
1477 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1478 			 *   400us delay required for errors and timeouts
1479 			 *   Timeout errors from the HW already meet this
1480 			 *   requirement so skip to next iteration
1481 			 */
1482 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1483 				continue;
1484 
1485 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1486 				usleep_range(400, 500);
1487 				continue;
1488 			}
1489 			if (status & DP_AUX_CH_CTL_DONE)
1490 				goto done;
1491 		}
1492 	}
1493 
1494 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1495 		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1496 			intel_dp->aux.name, status);
1497 		ret = -EBUSY;
1498 		goto out;
1499 	}
1500 
1501 done:
1502 	/* Check for timeout or receive error.
1503 	 * Timeouts occur when the sink is not connected
1504 	 */
1505 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1506 		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1507 			intel_dp->aux.name, status);
1508 		ret = -EIO;
1509 		goto out;
1510 	}
1511 
1512 	/* Timeouts occur when the device isn't connected, so they're
1513 	 * "normal" -- don't fill the kernel log with these */
1514 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1515 		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1516 			    intel_dp->aux.name, status);
1517 		ret = -ETIMEDOUT;
1518 		goto out;
1519 	}
1520 
1521 	/* Unload any bytes sent back from the other side */
1522 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1523 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1524 
1525 	/*
1526 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1527 	 * We have no idea of what happened so we return -EBUSY so
1528 	 * drm layer takes care for the necessary retries.
1529 	 */
1530 	if (recv_bytes == 0 || recv_bytes > 20) {
1531 		drm_dbg_kms(&i915->drm,
1532 			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
1533 			    intel_dp->aux.name, recv_bytes);
1534 		ret = -EBUSY;
1535 		goto out;
1536 	}
1537 
1538 	if (recv_bytes > recv_size)
1539 		recv_bytes = recv_size;
1540 
1541 	for (i = 0; i < recv_bytes; i += 4)
1542 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1543 				    recv + i, recv_bytes - i);
1544 
1545 	ret = recv_bytes;
1546 out:
1547 	cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1548 
1549 	if (vdd)
1550 		edp_panel_vdd_off(intel_dp, false);
1551 
1552 	pps_unlock(intel_dp, pps_wakeref);
1553 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1554 
1555 	if (is_tc_port)
1556 		intel_tc_port_unlock(dig_port);
1557 
1558 	return ret;
1559 }
1560 
1561 #define BARE_ADDRESS_SIZE	3
1562 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1563 
1564 static void
1565 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1566 		    const struct drm_dp_aux_msg *msg)
1567 {
1568 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1569 	txbuf[1] = (msg->address >> 8) & 0xff;
1570 	txbuf[2] = msg->address & 0xff;
1571 	txbuf[3] = msg->size - 1;
1572 }
1573 
1574 static u32 intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg *msg)
1575 {
1576 	/*
1577 	 * If we're trying to send the HDCP Aksv, we need to set a the Aksv
1578 	 * select bit to inform the hardware to send the Aksv after our header
1579 	 * since we can't access that data from software.
1580 	 */
1581 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE &&
1582 	    msg->address == DP_AUX_HDCP_AKSV)
1583 		return DP_AUX_CH_CTL_AUX_AKSV_SELECT;
1584 
1585 	return 0;
1586 }
1587 
1588 static ssize_t
1589 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1590 {
1591 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1592 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1593 	u8 txbuf[20], rxbuf[20];
1594 	size_t txsize, rxsize;
1595 	u32 flags = intel_dp_aux_xfer_flags(msg);
1596 	int ret;
1597 
1598 	intel_dp_aux_header(txbuf, msg);
1599 
1600 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1601 	case DP_AUX_NATIVE_WRITE:
1602 	case DP_AUX_I2C_WRITE:
1603 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1604 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1605 		rxsize = 2; /* 0 or 1 data bytes */
1606 
1607 		if (drm_WARN_ON(&i915->drm, txsize > 20))
1608 			return -E2BIG;
1609 
1610 		drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size);
1611 
1612 		if (msg->buffer)
1613 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1614 
1615 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1616 					rxbuf, rxsize, flags);
1617 		if (ret > 0) {
1618 			msg->reply = rxbuf[0] >> 4;
1619 
1620 			if (ret > 1) {
1621 				/* Number of bytes written in a short write. */
1622 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1623 			} else {
1624 				/* Return payload size. */
1625 				ret = msg->size;
1626 			}
1627 		}
1628 		break;
1629 
1630 	case DP_AUX_NATIVE_READ:
1631 	case DP_AUX_I2C_READ:
1632 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1633 		rxsize = msg->size + 1;
1634 
1635 		if (drm_WARN_ON(&i915->drm, rxsize > 20))
1636 			return -E2BIG;
1637 
1638 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1639 					rxbuf, rxsize, flags);
1640 		if (ret > 0) {
1641 			msg->reply = rxbuf[0] >> 4;
1642 			/*
1643 			 * Assume happy day, and copy the data. The caller is
1644 			 * expected to check msg->reply before touching it.
1645 			 *
1646 			 * Return payload size.
1647 			 */
1648 			ret--;
1649 			memcpy(msg->buffer, rxbuf + 1, ret);
1650 		}
1651 		break;
1652 
1653 	default:
1654 		ret = -EINVAL;
1655 		break;
1656 	}
1657 
1658 	return ret;
1659 }
1660 
1661 
1662 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1663 {
1664 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666 	enum aux_ch aux_ch = dig_port->aux_ch;
1667 
1668 	switch (aux_ch) {
1669 	case AUX_CH_B:
1670 	case AUX_CH_C:
1671 	case AUX_CH_D:
1672 		return DP_AUX_CH_CTL(aux_ch);
1673 	default:
1674 		MISSING_CASE(aux_ch);
1675 		return DP_AUX_CH_CTL(AUX_CH_B);
1676 	}
1677 }
1678 
1679 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1680 {
1681 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1682 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1683 	enum aux_ch aux_ch = dig_port->aux_ch;
1684 
1685 	switch (aux_ch) {
1686 	case AUX_CH_B:
1687 	case AUX_CH_C:
1688 	case AUX_CH_D:
1689 		return DP_AUX_CH_DATA(aux_ch, index);
1690 	default:
1691 		MISSING_CASE(aux_ch);
1692 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1693 	}
1694 }
1695 
1696 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1697 {
1698 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1699 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1700 	enum aux_ch aux_ch = dig_port->aux_ch;
1701 
1702 	switch (aux_ch) {
1703 	case AUX_CH_A:
1704 		return DP_AUX_CH_CTL(aux_ch);
1705 	case AUX_CH_B:
1706 	case AUX_CH_C:
1707 	case AUX_CH_D:
1708 		return PCH_DP_AUX_CH_CTL(aux_ch);
1709 	default:
1710 		MISSING_CASE(aux_ch);
1711 		return DP_AUX_CH_CTL(AUX_CH_A);
1712 	}
1713 }
1714 
1715 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1716 {
1717 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1718 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1719 	enum aux_ch aux_ch = dig_port->aux_ch;
1720 
1721 	switch (aux_ch) {
1722 	case AUX_CH_A:
1723 		return DP_AUX_CH_DATA(aux_ch, index);
1724 	case AUX_CH_B:
1725 	case AUX_CH_C:
1726 	case AUX_CH_D:
1727 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1728 	default:
1729 		MISSING_CASE(aux_ch);
1730 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1731 	}
1732 }
1733 
1734 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1735 {
1736 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1737 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1738 	enum aux_ch aux_ch = dig_port->aux_ch;
1739 
1740 	switch (aux_ch) {
1741 	case AUX_CH_A:
1742 	case AUX_CH_B:
1743 	case AUX_CH_C:
1744 	case AUX_CH_D:
1745 	case AUX_CH_E:
1746 	case AUX_CH_F:
1747 	case AUX_CH_G:
1748 		return DP_AUX_CH_CTL(aux_ch);
1749 	default:
1750 		MISSING_CASE(aux_ch);
1751 		return DP_AUX_CH_CTL(AUX_CH_A);
1752 	}
1753 }
1754 
1755 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1756 {
1757 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1758 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1759 	enum aux_ch aux_ch = dig_port->aux_ch;
1760 
1761 	switch (aux_ch) {
1762 	case AUX_CH_A:
1763 	case AUX_CH_B:
1764 	case AUX_CH_C:
1765 	case AUX_CH_D:
1766 	case AUX_CH_E:
1767 	case AUX_CH_F:
1768 	case AUX_CH_G:
1769 		return DP_AUX_CH_DATA(aux_ch, index);
1770 	default:
1771 		MISSING_CASE(aux_ch);
1772 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1773 	}
1774 }
1775 
1776 static void
1777 intel_dp_aux_fini(struct intel_dp *intel_dp)
1778 {
1779 	kfree(intel_dp->aux.name);
1780 }
1781 
1782 static void
1783 intel_dp_aux_init(struct intel_dp *intel_dp)
1784 {
1785 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1786 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1787 	struct intel_encoder *encoder = &dig_port->base;
1788 
1789 	if (INTEL_GEN(dev_priv) >= 9) {
1790 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1791 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1792 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1793 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1794 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1795 	} else {
1796 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1797 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1798 	}
1799 
1800 	if (INTEL_GEN(dev_priv) >= 9)
1801 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1802 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1803 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1804 	else if (HAS_PCH_SPLIT(dev_priv))
1805 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1806 	else
1807 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1808 
1809 	if (INTEL_GEN(dev_priv) >= 9)
1810 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1811 	else
1812 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1813 
1814 	drm_dp_aux_init(&intel_dp->aux);
1815 
1816 	/* Failure to allocate our preferred name is not critical */
1817 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1818 				       aux_ch_name(dig_port->aux_ch),
1819 				       port_name(encoder->port));
1820 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1821 }
1822 
1823 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1824 {
1825 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1826 
1827 	return max_rate >= 540000;
1828 }
1829 
1830 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1831 {
1832 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1833 
1834 	return max_rate >= 810000;
1835 }
1836 
1837 static void
1838 intel_dp_set_clock(struct intel_encoder *encoder,
1839 		   struct intel_crtc_state *pipe_config)
1840 {
1841 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1842 	const struct dp_link_dpll *divisor = NULL;
1843 	int i, count = 0;
1844 
1845 	if (IS_G4X(dev_priv)) {
1846 		divisor = g4x_dpll;
1847 		count = ARRAY_SIZE(g4x_dpll);
1848 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1849 		divisor = pch_dpll;
1850 		count = ARRAY_SIZE(pch_dpll);
1851 	} else if (IS_CHERRYVIEW(dev_priv)) {
1852 		divisor = chv_dpll;
1853 		count = ARRAY_SIZE(chv_dpll);
1854 	} else if (IS_VALLEYVIEW(dev_priv)) {
1855 		divisor = vlv_dpll;
1856 		count = ARRAY_SIZE(vlv_dpll);
1857 	}
1858 
1859 	if (divisor && count) {
1860 		for (i = 0; i < count; i++) {
1861 			if (pipe_config->port_clock == divisor[i].clock) {
1862 				pipe_config->dpll = divisor[i].dpll;
1863 				pipe_config->clock_set = true;
1864 				break;
1865 			}
1866 		}
1867 	}
1868 }
1869 
1870 static void snprintf_int_array(char *str, size_t len,
1871 			       const int *array, int nelem)
1872 {
1873 	int i;
1874 
1875 	str[0] = '\0';
1876 
1877 	for (i = 0; i < nelem; i++) {
1878 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1879 		if (r >= len)
1880 			return;
1881 		str += r;
1882 		len -= r;
1883 	}
1884 }
1885 
1886 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1887 {
1888 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1889 	char str[128]; /* FIXME: too big for stack? */
1890 
1891 	if (!drm_debug_enabled(DRM_UT_KMS))
1892 		return;
1893 
1894 	snprintf_int_array(str, sizeof(str),
1895 			   intel_dp->source_rates, intel_dp->num_source_rates);
1896 	drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1897 
1898 	snprintf_int_array(str, sizeof(str),
1899 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1900 	drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1901 
1902 	snprintf_int_array(str, sizeof(str),
1903 			   intel_dp->common_rates, intel_dp->num_common_rates);
1904 	drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1905 }
1906 
1907 int
1908 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1909 {
1910 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1911 	int len;
1912 
1913 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1914 	if (drm_WARN_ON(&i915->drm, len <= 0))
1915 		return 162000;
1916 
1917 	return intel_dp->common_rates[len - 1];
1918 }
1919 
1920 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1921 {
1922 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1923 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1924 				    intel_dp->num_sink_rates, rate);
1925 
1926 	if (drm_WARN_ON(&i915->drm, i < 0))
1927 		i = 0;
1928 
1929 	return i;
1930 }
1931 
1932 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1933 			   u8 *link_bw, u8 *rate_select)
1934 {
1935 	/* eDP 1.4 rate select method. */
1936 	if (intel_dp->use_rate_select) {
1937 		*link_bw = 0;
1938 		*rate_select =
1939 			intel_dp_rate_select(intel_dp, port_clock);
1940 	} else {
1941 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1942 		*rate_select = 0;
1943 	}
1944 }
1945 
1946 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1947 					 const struct intel_crtc_state *pipe_config)
1948 {
1949 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1950 
1951 	/* On TGL, FEC is supported on all Pipes */
1952 	if (INTEL_GEN(dev_priv) >= 12)
1953 		return true;
1954 
1955 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1956 		return true;
1957 
1958 	return false;
1959 }
1960 
1961 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1962 				  const struct intel_crtc_state *pipe_config)
1963 {
1964 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1965 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1966 }
1967 
1968 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1969 				  const struct intel_crtc_state *crtc_state)
1970 {
1971 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1972 
1973 	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1974 		return false;
1975 
1976 	return intel_dsc_source_support(encoder, crtc_state) &&
1977 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1978 }
1979 
1980 static bool intel_dp_hdmi_ycbcr420(struct intel_dp *intel_dp,
1981 				   const struct intel_crtc_state *crtc_state)
1982 {
1983 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
1984 		(crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 &&
1985 		 intel_dp->dfp.ycbcr_444_to_420);
1986 }
1987 
1988 static int intel_dp_hdmi_tmds_clock(struct intel_dp *intel_dp,
1989 				    const struct intel_crtc_state *crtc_state, int bpc)
1990 {
1991 	int clock = crtc_state->hw.adjusted_mode.crtc_clock * bpc / 8;
1992 
1993 	if (intel_dp_hdmi_ycbcr420(intel_dp, crtc_state))
1994 		clock /= 2;
1995 
1996 	return clock;
1997 }
1998 
1999 static bool intel_dp_hdmi_tmds_clock_valid(struct intel_dp *intel_dp,
2000 					   const struct intel_crtc_state *crtc_state, int bpc)
2001 {
2002 	int tmds_clock = intel_dp_hdmi_tmds_clock(intel_dp, crtc_state, bpc);
2003 
2004 	if (intel_dp->dfp.min_tmds_clock &&
2005 	    tmds_clock < intel_dp->dfp.min_tmds_clock)
2006 		return false;
2007 
2008 	if (intel_dp->dfp.max_tmds_clock &&
2009 	    tmds_clock > intel_dp->dfp.max_tmds_clock)
2010 		return false;
2011 
2012 	return true;
2013 }
2014 
2015 static bool intel_dp_hdmi_deep_color_possible(struct intel_dp *intel_dp,
2016 					      const struct intel_crtc_state *crtc_state,
2017 					      int bpc)
2018 {
2019 
2020 	return intel_hdmi_deep_color_possible(crtc_state, bpc,
2021 					      intel_dp->has_hdmi_sink,
2022 					      intel_dp_hdmi_ycbcr420(intel_dp, crtc_state)) &&
2023 		intel_dp_hdmi_tmds_clock_valid(intel_dp, crtc_state, bpc);
2024 }
2025 
2026 static int intel_dp_max_bpp(struct intel_dp *intel_dp,
2027 			    const struct intel_crtc_state *crtc_state)
2028 {
2029 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2030 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2031 	int bpp, bpc;
2032 
2033 	bpc = crtc_state->pipe_bpp / 3;
2034 
2035 	if (intel_dp->dfp.max_bpc)
2036 		bpc = min_t(int, bpc, intel_dp->dfp.max_bpc);
2037 
2038 	if (intel_dp->dfp.min_tmds_clock) {
2039 		for (; bpc >= 10; bpc -= 2) {
2040 			if (intel_dp_hdmi_deep_color_possible(intel_dp, crtc_state, bpc))
2041 				break;
2042 		}
2043 	}
2044 
2045 	bpp = bpc * 3;
2046 	if (intel_dp_is_edp(intel_dp)) {
2047 		/* Get bpp from vbt only for panels that dont have bpp in edid */
2048 		if (intel_connector->base.display_info.bpc == 0 &&
2049 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
2050 			drm_dbg_kms(&dev_priv->drm,
2051 				    "clamping bpp for eDP panel to BIOS-provided %i\n",
2052 				    dev_priv->vbt.edp.bpp);
2053 			bpp = dev_priv->vbt.edp.bpp;
2054 		}
2055 	}
2056 
2057 	return bpp;
2058 }
2059 
2060 /* Adjust link config limits based on compliance test requests. */
2061 void
2062 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
2063 				  struct intel_crtc_state *pipe_config,
2064 				  struct link_config_limits *limits)
2065 {
2066 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2067 
2068 	/* For DP Compliance we override the computed bpp for the pipe */
2069 	if (intel_dp->compliance.test_data.bpc != 0) {
2070 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
2071 
2072 		limits->min_bpp = limits->max_bpp = bpp;
2073 		pipe_config->dither_force_disable = bpp == 6 * 3;
2074 
2075 		drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
2076 	}
2077 
2078 	/* Use values requested by Compliance Test Request */
2079 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
2080 		int index;
2081 
2082 		/* Validate the compliance test data since max values
2083 		 * might have changed due to link train fallback.
2084 		 */
2085 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
2086 					       intel_dp->compliance.test_lane_count)) {
2087 			index = intel_dp_rate_index(intel_dp->common_rates,
2088 						    intel_dp->num_common_rates,
2089 						    intel_dp->compliance.test_link_rate);
2090 			if (index >= 0)
2091 				limits->min_clock = limits->max_clock = index;
2092 			limits->min_lane_count = limits->max_lane_count =
2093 				intel_dp->compliance.test_lane_count;
2094 		}
2095 	}
2096 }
2097 
2098 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2099 {
2100 	/*
2101 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2102 	 * format of the number of bytes per pixel will be half the number
2103 	 * of bytes of RGB pixel.
2104 	 */
2105 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2106 		bpp /= 2;
2107 
2108 	return bpp;
2109 }
2110 
2111 /* Optimize link config in order: max bpp, min clock, min lanes */
2112 static int
2113 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2114 				  struct intel_crtc_state *pipe_config,
2115 				  const struct link_config_limits *limits)
2116 {
2117 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2118 	int bpp, clock, lane_count;
2119 	int mode_rate, link_clock, link_avail;
2120 
2121 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2122 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2123 
2124 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2125 						   output_bpp);
2126 
2127 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2128 			for (lane_count = limits->min_lane_count;
2129 			     lane_count <= limits->max_lane_count;
2130 			     lane_count <<= 1) {
2131 				link_clock = intel_dp->common_rates[clock];
2132 				link_avail = intel_dp_max_data_rate(link_clock,
2133 								    lane_count);
2134 
2135 				if (mode_rate <= link_avail) {
2136 					pipe_config->lane_count = lane_count;
2137 					pipe_config->pipe_bpp = bpp;
2138 					pipe_config->port_clock = link_clock;
2139 
2140 					return 0;
2141 				}
2142 			}
2143 		}
2144 	}
2145 
2146 	return -EINVAL;
2147 }
2148 
2149 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2150 {
2151 	int i, num_bpc;
2152 	u8 dsc_bpc[3] = {0};
2153 
2154 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2155 						       dsc_bpc);
2156 	for (i = 0; i < num_bpc; i++) {
2157 		if (dsc_max_bpc >= dsc_bpc[i])
2158 			return dsc_bpc[i] * 3;
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 #define DSC_SUPPORTED_VERSION_MIN		1
2165 
2166 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2167 				       struct intel_crtc_state *crtc_state)
2168 {
2169 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2170 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2171 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2172 	u8 line_buf_depth;
2173 	int ret;
2174 
2175 	ret = intel_dsc_compute_params(encoder, crtc_state);
2176 	if (ret)
2177 		return ret;
2178 
2179 	/*
2180 	 * Slice Height of 8 works for all currently available panels. So start
2181 	 * with that if pic_height is an integral multiple of 8. Eventually add
2182 	 * logic to try multiple slice heights.
2183 	 */
2184 	if (vdsc_cfg->pic_height % 8 == 0)
2185 		vdsc_cfg->slice_height = 8;
2186 	else if (vdsc_cfg->pic_height % 4 == 0)
2187 		vdsc_cfg->slice_height = 4;
2188 	else
2189 		vdsc_cfg->slice_height = 2;
2190 
2191 	vdsc_cfg->dsc_version_major =
2192 		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2193 		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2194 	vdsc_cfg->dsc_version_minor =
2195 		min(DSC_SUPPORTED_VERSION_MIN,
2196 		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2197 		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2198 
2199 	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2200 		DP_DSC_RGB;
2201 
2202 	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2203 	if (!line_buf_depth) {
2204 		drm_dbg_kms(&i915->drm,
2205 			    "DSC Sink Line Buffer Depth invalid\n");
2206 		return -EINVAL;
2207 	}
2208 
2209 	if (vdsc_cfg->dsc_version_minor == 2)
2210 		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2211 			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2212 	else
2213 		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2214 			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2215 
2216 	vdsc_cfg->block_pred_enable =
2217 		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2218 		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2219 
2220 	return drm_dsc_compute_rc_parameters(vdsc_cfg);
2221 }
2222 
2223 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2224 				       struct intel_crtc_state *pipe_config,
2225 				       struct drm_connector_state *conn_state,
2226 				       struct link_config_limits *limits)
2227 {
2228 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2229 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2230 	const struct drm_display_mode *adjusted_mode =
2231 		&pipe_config->hw.adjusted_mode;
2232 	u8 dsc_max_bpc;
2233 	int pipe_bpp;
2234 	int ret;
2235 
2236 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2237 		intel_dp_supports_fec(intel_dp, pipe_config);
2238 
2239 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2240 		return -EINVAL;
2241 
2242 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2243 	if (INTEL_GEN(dev_priv) >= 12)
2244 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2245 	else
2246 		dsc_max_bpc = min_t(u8, 10,
2247 				    conn_state->max_requested_bpc);
2248 
2249 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2250 
2251 	/* Min Input BPC for ICL+ is 8 */
2252 	if (pipe_bpp < 8 * 3) {
2253 		drm_dbg_kms(&dev_priv->drm,
2254 			    "No DSC support for less than 8bpc\n");
2255 		return -EINVAL;
2256 	}
2257 
2258 	/*
2259 	 * For now enable DSC for max bpp, max link rate, max lane count.
2260 	 * Optimize this later for the minimum possible link rate/lane count
2261 	 * with DSC enabled for the requested mode.
2262 	 */
2263 	pipe_config->pipe_bpp = pipe_bpp;
2264 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2265 	pipe_config->lane_count = limits->max_lane_count;
2266 
2267 	if (intel_dp_is_edp(intel_dp)) {
2268 		pipe_config->dsc.compressed_bpp =
2269 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2270 			      pipe_config->pipe_bpp);
2271 		pipe_config->dsc.slice_count =
2272 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2273 							true);
2274 	} else {
2275 		u16 dsc_max_output_bpp;
2276 		u8 dsc_dp_slice_count;
2277 
2278 		dsc_max_output_bpp =
2279 			intel_dp_dsc_get_output_bpp(dev_priv,
2280 						    pipe_config->port_clock,
2281 						    pipe_config->lane_count,
2282 						    adjusted_mode->crtc_clock,
2283 						    adjusted_mode->crtc_hdisplay);
2284 		dsc_dp_slice_count =
2285 			intel_dp_dsc_get_slice_count(intel_dp,
2286 						     adjusted_mode->crtc_clock,
2287 						     adjusted_mode->crtc_hdisplay);
2288 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2289 			drm_dbg_kms(&dev_priv->drm,
2290 				    "Compressed BPP/Slice Count not supported\n");
2291 			return -EINVAL;
2292 		}
2293 		pipe_config->dsc.compressed_bpp = min_t(u16,
2294 							       dsc_max_output_bpp >> 4,
2295 							       pipe_config->pipe_bpp);
2296 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2297 	}
2298 	/*
2299 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2300 	 * is greater than the maximum Cdclock and if slice count is even
2301 	 * then we need to use 2 VDSC instances.
2302 	 */
2303 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2304 		if (pipe_config->dsc.slice_count > 1) {
2305 			pipe_config->dsc.dsc_split = true;
2306 		} else {
2307 			drm_dbg_kms(&dev_priv->drm,
2308 				    "Cannot split stream to use 2 VDSC instances\n");
2309 			return -EINVAL;
2310 		}
2311 	}
2312 
2313 	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2314 	if (ret < 0) {
2315 		drm_dbg_kms(&dev_priv->drm,
2316 			    "Cannot compute valid DSC parameters for Input Bpp = %d "
2317 			    "Compressed BPP = %d\n",
2318 			    pipe_config->pipe_bpp,
2319 			    pipe_config->dsc.compressed_bpp);
2320 		return ret;
2321 	}
2322 
2323 	pipe_config->dsc.compression_enable = true;
2324 	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2325 		    "Compressed Bpp = %d Slice Count = %d\n",
2326 		    pipe_config->pipe_bpp,
2327 		    pipe_config->dsc.compressed_bpp,
2328 		    pipe_config->dsc.slice_count);
2329 
2330 	return 0;
2331 }
2332 
2333 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2334 {
2335 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2336 		return 6 * 3;
2337 	else
2338 		return 8 * 3;
2339 }
2340 
2341 static int
2342 intel_dp_compute_link_config(struct intel_encoder *encoder,
2343 			     struct intel_crtc_state *pipe_config,
2344 			     struct drm_connector_state *conn_state)
2345 {
2346 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2347 	const struct drm_display_mode *adjusted_mode =
2348 		&pipe_config->hw.adjusted_mode;
2349 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2350 	struct link_config_limits limits;
2351 	int common_len;
2352 	int ret;
2353 
2354 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2355 						    intel_dp->max_link_rate);
2356 
2357 	/* No common link rates between source and sink */
2358 	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2359 
2360 	limits.min_clock = 0;
2361 	limits.max_clock = common_len - 1;
2362 
2363 	limits.min_lane_count = 1;
2364 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2365 
2366 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2367 	limits.max_bpp = intel_dp_max_bpp(intel_dp, pipe_config);
2368 
2369 	if (intel_dp_is_edp(intel_dp)) {
2370 		/*
2371 		 * Use the maximum clock and number of lanes the eDP panel
2372 		 * advertizes being capable of. The panels are generally
2373 		 * designed to support only a single clock and lane
2374 		 * configuration, and typically these values correspond to the
2375 		 * native resolution of the panel.
2376 		 */
2377 		limits.min_lane_count = limits.max_lane_count;
2378 		limits.min_clock = limits.max_clock;
2379 	}
2380 
2381 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2382 
2383 	drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2384 		    "max rate %d max bpp %d pixel clock %iKHz\n",
2385 		    limits.max_lane_count,
2386 		    intel_dp->common_rates[limits.max_clock],
2387 		    limits.max_bpp, adjusted_mode->crtc_clock);
2388 
2389 	/*
2390 	 * Optimize for slow and wide. This is the place to add alternative
2391 	 * optimization policy.
2392 	 */
2393 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2394 
2395 	/* enable compression if the mode doesn't fit available BW */
2396 	drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2397 	if (ret || intel_dp->force_dsc_en) {
2398 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2399 						  conn_state, &limits);
2400 		if (ret < 0)
2401 			return ret;
2402 	}
2403 
2404 	if (pipe_config->dsc.compression_enable) {
2405 		drm_dbg_kms(&i915->drm,
2406 			    "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2407 			    pipe_config->lane_count, pipe_config->port_clock,
2408 			    pipe_config->pipe_bpp,
2409 			    pipe_config->dsc.compressed_bpp);
2410 
2411 		drm_dbg_kms(&i915->drm,
2412 			    "DP link rate required %i available %i\n",
2413 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2414 						   pipe_config->dsc.compressed_bpp),
2415 			    intel_dp_max_data_rate(pipe_config->port_clock,
2416 						   pipe_config->lane_count));
2417 	} else {
2418 		drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2419 			    pipe_config->lane_count, pipe_config->port_clock,
2420 			    pipe_config->pipe_bpp);
2421 
2422 		drm_dbg_kms(&i915->drm,
2423 			    "DP link rate required %i available %i\n",
2424 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2425 						   pipe_config->pipe_bpp),
2426 			    intel_dp_max_data_rate(pipe_config->port_clock,
2427 						   pipe_config->lane_count));
2428 	}
2429 	return 0;
2430 }
2431 
2432 static int
2433 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2434 			 struct intel_crtc_state *crtc_state,
2435 			 const struct drm_connector_state *conn_state)
2436 {
2437 	struct drm_connector *connector = conn_state->connector;
2438 	const struct drm_display_info *info = &connector->display_info;
2439 	const struct drm_display_mode *adjusted_mode =
2440 		&crtc_state->hw.adjusted_mode;
2441 
2442 	if (!connector->ycbcr_420_allowed)
2443 		return 0;
2444 
2445 	if (!drm_mode_is_420_only(info, adjusted_mode))
2446 		return 0;
2447 
2448 	if (intel_dp->dfp.ycbcr_444_to_420) {
2449 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
2450 		return 0;
2451 	}
2452 
2453 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2454 
2455 	return intel_pch_panel_fitting(crtc_state, conn_state);
2456 }
2457 
2458 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2459 				  const struct drm_connector_state *conn_state)
2460 {
2461 	const struct intel_digital_connector_state *intel_conn_state =
2462 		to_intel_digital_connector_state(conn_state);
2463 	const struct drm_display_mode *adjusted_mode =
2464 		&crtc_state->hw.adjusted_mode;
2465 
2466 	/*
2467 	 * Our YCbCr output is always limited range.
2468 	 * crtc_state->limited_color_range only applies to RGB,
2469 	 * and it must never be set for YCbCr or we risk setting
2470 	 * some conflicting bits in PIPECONF which will mess up
2471 	 * the colors on the monitor.
2472 	 */
2473 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2474 		return false;
2475 
2476 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2477 		/*
2478 		 * See:
2479 		 * CEA-861-E - 5.1 Default Encoding Parameters
2480 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2481 		 */
2482 		return crtc_state->pipe_bpp != 18 &&
2483 			drm_default_rgb_quant_range(adjusted_mode) ==
2484 			HDMI_QUANTIZATION_RANGE_LIMITED;
2485 	} else {
2486 		return intel_conn_state->broadcast_rgb ==
2487 			INTEL_BROADCAST_RGB_LIMITED;
2488 	}
2489 }
2490 
2491 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2492 				    enum port port)
2493 {
2494 	if (IS_G4X(dev_priv))
2495 		return false;
2496 	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2497 		return false;
2498 
2499 	return true;
2500 }
2501 
2502 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2503 					     const struct drm_connector_state *conn_state,
2504 					     struct drm_dp_vsc_sdp *vsc)
2505 {
2506 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2507 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2508 
2509 	/*
2510 	 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2511 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2512 	 * Colorimetry Format indication.
2513 	 */
2514 	vsc->revision = 0x5;
2515 	vsc->length = 0x13;
2516 
2517 	/* DP 1.4a spec, Table 2-120 */
2518 	switch (crtc_state->output_format) {
2519 	case INTEL_OUTPUT_FORMAT_YCBCR444:
2520 		vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2521 		break;
2522 	case INTEL_OUTPUT_FORMAT_YCBCR420:
2523 		vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2524 		break;
2525 	case INTEL_OUTPUT_FORMAT_RGB:
2526 	default:
2527 		vsc->pixelformat = DP_PIXELFORMAT_RGB;
2528 	}
2529 
2530 	switch (conn_state->colorspace) {
2531 	case DRM_MODE_COLORIMETRY_BT709_YCC:
2532 		vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2533 		break;
2534 	case DRM_MODE_COLORIMETRY_XVYCC_601:
2535 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2536 		break;
2537 	case DRM_MODE_COLORIMETRY_XVYCC_709:
2538 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2539 		break;
2540 	case DRM_MODE_COLORIMETRY_SYCC_601:
2541 		vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2542 		break;
2543 	case DRM_MODE_COLORIMETRY_OPYCC_601:
2544 		vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2545 		break;
2546 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2547 		vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2548 		break;
2549 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
2550 		vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2551 		break;
2552 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
2553 		vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2554 		break;
2555 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2556 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2557 		vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2558 		break;
2559 	default:
2560 		/*
2561 		 * RGB->YCBCR color conversion uses the BT.709
2562 		 * color space.
2563 		 */
2564 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2565 			vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2566 		else
2567 			vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2568 		break;
2569 	}
2570 
2571 	vsc->bpc = crtc_state->pipe_bpp / 3;
2572 
2573 	/* only RGB pixelformat supports 6 bpc */
2574 	drm_WARN_ON(&dev_priv->drm,
2575 		    vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2576 
2577 	/* all YCbCr are always limited range */
2578 	vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2579 	vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2580 }
2581 
2582 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2583 				     struct intel_crtc_state *crtc_state,
2584 				     const struct drm_connector_state *conn_state)
2585 {
2586 	struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2587 
2588 	/* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2589 	if (crtc_state->has_psr)
2590 		return;
2591 
2592 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2593 		return;
2594 
2595 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2596 	vsc->sdp_type = DP_SDP_VSC;
2597 	intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2598 					 &crtc_state->infoframes.vsc);
2599 }
2600 
2601 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2602 				  const struct intel_crtc_state *crtc_state,
2603 				  const struct drm_connector_state *conn_state,
2604 				  struct drm_dp_vsc_sdp *vsc)
2605 {
2606 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2607 
2608 	vsc->sdp_type = DP_SDP_VSC;
2609 
2610 	if (dev_priv->psr.psr2_enabled) {
2611 		if (dev_priv->psr.colorimetry_support &&
2612 		    intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2613 			/* [PSR2, +Colorimetry] */
2614 			intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2615 							 vsc);
2616 		} else {
2617 			/*
2618 			 * [PSR2, -Colorimetry]
2619 			 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2620 			 * 3D stereo + PSR/PSR2 + Y-coordinate.
2621 			 */
2622 			vsc->revision = 0x4;
2623 			vsc->length = 0xe;
2624 		}
2625 	} else {
2626 		/*
2627 		 * [PSR1]
2628 		 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2629 		 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2630 		 * higher).
2631 		 */
2632 		vsc->revision = 0x2;
2633 		vsc->length = 0x8;
2634 	}
2635 }
2636 
2637 static void
2638 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2639 					    struct intel_crtc_state *crtc_state,
2640 					    const struct drm_connector_state *conn_state)
2641 {
2642 	int ret;
2643 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2644 	struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2645 
2646 	if (!conn_state->hdr_output_metadata)
2647 		return;
2648 
2649 	ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2650 
2651 	if (ret) {
2652 		drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2653 		return;
2654 	}
2655 
2656 	crtc_state->infoframes.enable |=
2657 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2658 }
2659 
2660 static void
2661 intel_dp_drrs_compute_config(struct intel_dp *intel_dp,
2662 			     struct intel_crtc_state *pipe_config,
2663 			     int output_bpp, bool constant_n)
2664 {
2665 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2666 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2667 
2668 	/*
2669 	 * DRRS and PSR can't be enable together, so giving preference to PSR
2670 	 * as it allows more power-savings by complete shutting down display,
2671 	 * so to guarantee this, intel_dp_drrs_compute_config() must be called
2672 	 * after intel_psr_compute_config().
2673 	 */
2674 	if (pipe_config->has_psr)
2675 		return;
2676 
2677 	if (!intel_connector->panel.downclock_mode ||
2678 	    dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
2679 		return;
2680 
2681 	pipe_config->has_drrs = true;
2682 	intel_link_compute_m_n(output_bpp, pipe_config->lane_count,
2683 			       intel_connector->panel.downclock_mode->clock,
2684 			       pipe_config->port_clock, &pipe_config->dp_m2_n2,
2685 			       constant_n, pipe_config->fec_enable);
2686 }
2687 
2688 int
2689 intel_dp_compute_config(struct intel_encoder *encoder,
2690 			struct intel_crtc_state *pipe_config,
2691 			struct drm_connector_state *conn_state)
2692 {
2693 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2694 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2695 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2696 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2697 	enum port port = encoder->port;
2698 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2699 	struct intel_digital_connector_state *intel_conn_state =
2700 		to_intel_digital_connector_state(conn_state);
2701 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2702 					   DP_DPCD_QUIRK_CONSTANT_N);
2703 	int ret = 0, output_bpp;
2704 
2705 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2706 		pipe_config->has_pch_encoder = true;
2707 
2708 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2709 
2710 	if (lspcon->active)
2711 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2712 	else
2713 		ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2714 					       conn_state);
2715 	if (ret)
2716 		return ret;
2717 
2718 	if (!intel_dp_port_has_audio(dev_priv, port))
2719 		pipe_config->has_audio = false;
2720 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2721 		pipe_config->has_audio = intel_dp->has_audio;
2722 	else
2723 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2724 
2725 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2726 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2727 				       adjusted_mode);
2728 
2729 		if (HAS_GMCH(dev_priv))
2730 			ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2731 		else
2732 			ret = intel_pch_panel_fitting(pipe_config, conn_state);
2733 		if (ret)
2734 			return ret;
2735 	}
2736 
2737 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2738 		return -EINVAL;
2739 
2740 	if (HAS_GMCH(dev_priv) &&
2741 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2742 		return -EINVAL;
2743 
2744 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2745 		return -EINVAL;
2746 
2747 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2748 		return -EINVAL;
2749 
2750 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2751 	if (ret < 0)
2752 		return ret;
2753 
2754 	pipe_config->limited_color_range =
2755 		intel_dp_limited_color_range(pipe_config, conn_state);
2756 
2757 	if (pipe_config->dsc.compression_enable)
2758 		output_bpp = pipe_config->dsc.compressed_bpp;
2759 	else
2760 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2761 
2762 	intel_link_compute_m_n(output_bpp,
2763 			       pipe_config->lane_count,
2764 			       adjusted_mode->crtc_clock,
2765 			       pipe_config->port_clock,
2766 			       &pipe_config->dp_m_n,
2767 			       constant_n, pipe_config->fec_enable);
2768 
2769 	if (!HAS_DDI(dev_priv))
2770 		intel_dp_set_clock(encoder, pipe_config);
2771 
2772 	intel_psr_compute_config(intel_dp, pipe_config);
2773 	intel_dp_drrs_compute_config(intel_dp, pipe_config, output_bpp,
2774 				     constant_n);
2775 	intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2776 	intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2777 
2778 	return 0;
2779 }
2780 
2781 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2782 			      int link_rate, u8 lane_count,
2783 			      bool link_mst)
2784 {
2785 	intel_dp->link_trained = false;
2786 	intel_dp->link_rate = link_rate;
2787 	intel_dp->lane_count = lane_count;
2788 	intel_dp->link_mst = link_mst;
2789 }
2790 
2791 static void intel_dp_prepare(struct intel_encoder *encoder,
2792 			     const struct intel_crtc_state *pipe_config)
2793 {
2794 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2795 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2796 	enum port port = encoder->port;
2797 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2798 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2799 
2800 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2801 				 pipe_config->lane_count,
2802 				 intel_crtc_has_type(pipe_config,
2803 						     INTEL_OUTPUT_DP_MST));
2804 
2805 	/*
2806 	 * There are four kinds of DP registers:
2807 	 *
2808 	 * 	IBX PCH
2809 	 * 	SNB CPU
2810 	 *	IVB CPU
2811 	 * 	CPT PCH
2812 	 *
2813 	 * IBX PCH and CPU are the same for almost everything,
2814 	 * except that the CPU DP PLL is configured in this
2815 	 * register
2816 	 *
2817 	 * CPT PCH is quite different, having many bits moved
2818 	 * to the TRANS_DP_CTL register instead. That
2819 	 * configuration happens (oddly) in ilk_pch_enable
2820 	 */
2821 
2822 	/* Preserve the BIOS-computed detected bit. This is
2823 	 * supposed to be read-only.
2824 	 */
2825 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2826 
2827 	/* Handle DP bits in common between all three register formats */
2828 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2829 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2830 
2831 	/* Split out the IBX/CPU vs CPT settings */
2832 
2833 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2834 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2835 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2836 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2837 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2838 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2839 
2840 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2841 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2842 
2843 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2844 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2845 		u32 trans_dp;
2846 
2847 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2848 
2849 		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2850 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2851 			trans_dp |= TRANS_DP_ENH_FRAMING;
2852 		else
2853 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2854 		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2855 	} else {
2856 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2857 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2858 
2859 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2860 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2861 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2862 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2863 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2864 
2865 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2866 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2867 
2868 		if (IS_CHERRYVIEW(dev_priv))
2869 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2870 		else
2871 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2872 	}
2873 }
2874 
2875 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2876 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2877 
2878 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2879 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2880 
2881 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2882 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2883 
2884 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2885 
2886 static void wait_panel_status(struct intel_dp *intel_dp,
2887 				       u32 mask,
2888 				       u32 value)
2889 {
2890 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2891 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2892 
2893 	lockdep_assert_held(&dev_priv->pps_mutex);
2894 
2895 	intel_pps_verify_state(intel_dp);
2896 
2897 	pp_stat_reg = _pp_stat_reg(intel_dp);
2898 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2899 
2900 	drm_dbg_kms(&dev_priv->drm,
2901 		    "mask %08x value %08x status %08x control %08x\n",
2902 		    mask, value,
2903 		    intel_de_read(dev_priv, pp_stat_reg),
2904 		    intel_de_read(dev_priv, pp_ctrl_reg));
2905 
2906 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2907 				       mask, value, 5000))
2908 		drm_err(&dev_priv->drm,
2909 			"Panel status timeout: status %08x control %08x\n",
2910 			intel_de_read(dev_priv, pp_stat_reg),
2911 			intel_de_read(dev_priv, pp_ctrl_reg));
2912 
2913 	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2914 }
2915 
2916 static void wait_panel_on(struct intel_dp *intel_dp)
2917 {
2918 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2919 
2920 	drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2921 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2922 }
2923 
2924 static void wait_panel_off(struct intel_dp *intel_dp)
2925 {
2926 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2927 
2928 	drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2929 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2930 }
2931 
2932 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2933 {
2934 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2935 	ktime_t panel_power_on_time;
2936 	s64 panel_power_off_duration;
2937 
2938 	drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2939 
2940 	/* take the difference of currrent time and panel power off time
2941 	 * and then make panel wait for t11_t12 if needed. */
2942 	panel_power_on_time = ktime_get_boottime();
2943 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2944 
2945 	/* When we disable the VDD override bit last we have to do the manual
2946 	 * wait. */
2947 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2948 		wait_remaining_ms_from_jiffies(jiffies,
2949 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2950 
2951 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2952 }
2953 
2954 static void wait_backlight_on(struct intel_dp *intel_dp)
2955 {
2956 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2957 				       intel_dp->backlight_on_delay);
2958 }
2959 
2960 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2961 {
2962 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2963 				       intel_dp->backlight_off_delay);
2964 }
2965 
2966 /* Read the current pp_control value, unlocking the register if it
2967  * is locked
2968  */
2969 
2970 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2971 {
2972 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2973 	u32 control;
2974 
2975 	lockdep_assert_held(&dev_priv->pps_mutex);
2976 
2977 	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2978 	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2979 			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2980 		control &= ~PANEL_UNLOCK_MASK;
2981 		control |= PANEL_UNLOCK_REGS;
2982 	}
2983 	return control;
2984 }
2985 
2986 /*
2987  * Must be paired with edp_panel_vdd_off().
2988  * Must hold pps_mutex around the whole on/off sequence.
2989  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2990  */
2991 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2992 {
2993 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2994 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2995 	u32 pp;
2996 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2997 	bool need_to_disable = !intel_dp->want_panel_vdd;
2998 
2999 	lockdep_assert_held(&dev_priv->pps_mutex);
3000 
3001 	if (!intel_dp_is_edp(intel_dp))
3002 		return false;
3003 
3004 	cancel_delayed_work(&intel_dp->panel_vdd_work);
3005 	intel_dp->want_panel_vdd = true;
3006 
3007 	if (edp_have_panel_vdd(intel_dp))
3008 		return need_to_disable;
3009 
3010 	intel_display_power_get(dev_priv,
3011 				intel_aux_power_domain(dig_port));
3012 
3013 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
3014 		    dig_port->base.base.base.id,
3015 		    dig_port->base.base.name);
3016 
3017 	if (!edp_have_panel_power(intel_dp))
3018 		wait_panel_power_cycle(intel_dp);
3019 
3020 	pp = ilk_get_pp_control(intel_dp);
3021 	pp |= EDP_FORCE_VDD;
3022 
3023 	pp_stat_reg = _pp_stat_reg(intel_dp);
3024 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3025 
3026 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3027 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3028 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3029 		    intel_de_read(dev_priv, pp_stat_reg),
3030 		    intel_de_read(dev_priv, pp_ctrl_reg));
3031 	/*
3032 	 * If the panel wasn't on, delay before accessing aux channel
3033 	 */
3034 	if (!edp_have_panel_power(intel_dp)) {
3035 		drm_dbg_kms(&dev_priv->drm,
3036 			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
3037 			    dig_port->base.base.base.id,
3038 			    dig_port->base.base.name);
3039 		msleep(intel_dp->panel_power_up_delay);
3040 	}
3041 
3042 	return need_to_disable;
3043 }
3044 
3045 /*
3046  * Must be paired with intel_edp_panel_vdd_off() or
3047  * intel_edp_panel_off().
3048  * Nested calls to these functions are not allowed since
3049  * we drop the lock. Caller must use some higher level
3050  * locking to prevent nested calls from other threads.
3051  */
3052 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
3053 {
3054 	intel_wakeref_t wakeref;
3055 	bool vdd;
3056 
3057 	if (!intel_dp_is_edp(intel_dp))
3058 		return;
3059 
3060 	vdd = false;
3061 	with_pps_lock(intel_dp, wakeref)
3062 		vdd = edp_panel_vdd_on(intel_dp);
3063 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
3064 			dp_to_dig_port(intel_dp)->base.base.base.id,
3065 			dp_to_dig_port(intel_dp)->base.base.name);
3066 }
3067 
3068 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
3069 {
3070 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3071 	struct intel_digital_port *dig_port =
3072 		dp_to_dig_port(intel_dp);
3073 	u32 pp;
3074 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
3075 
3076 	lockdep_assert_held(&dev_priv->pps_mutex);
3077 
3078 	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
3079 
3080 	if (!edp_have_panel_vdd(intel_dp))
3081 		return;
3082 
3083 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
3084 		    dig_port->base.base.base.id,
3085 		    dig_port->base.base.name);
3086 
3087 	pp = ilk_get_pp_control(intel_dp);
3088 	pp &= ~EDP_FORCE_VDD;
3089 
3090 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3091 	pp_stat_reg = _pp_stat_reg(intel_dp);
3092 
3093 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3094 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3095 
3096 	/* Make sure sequencer is idle before allowing subsequent activity */
3097 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3098 		    intel_de_read(dev_priv, pp_stat_reg),
3099 		    intel_de_read(dev_priv, pp_ctrl_reg));
3100 
3101 	if ((pp & PANEL_POWER_ON) == 0)
3102 		intel_dp->panel_power_off_time = ktime_get_boottime();
3103 
3104 	intel_display_power_put_unchecked(dev_priv,
3105 					  intel_aux_power_domain(dig_port));
3106 }
3107 
3108 static void edp_panel_vdd_work(struct work_struct *__work)
3109 {
3110 	struct intel_dp *intel_dp =
3111 		container_of(to_delayed_work(__work),
3112 			     struct intel_dp, panel_vdd_work);
3113 	intel_wakeref_t wakeref;
3114 
3115 	with_pps_lock(intel_dp, wakeref) {
3116 		if (!intel_dp->want_panel_vdd)
3117 			edp_panel_vdd_off_sync(intel_dp);
3118 	}
3119 }
3120 
3121 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3122 {
3123 	unsigned long delay;
3124 
3125 	/*
3126 	 * Queue the timer to fire a long time from now (relative to the power
3127 	 * down delay) to keep the panel power up across a sequence of
3128 	 * operations.
3129 	 */
3130 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3131 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3132 }
3133 
3134 /*
3135  * Must be paired with edp_panel_vdd_on().
3136  * Must hold pps_mutex around the whole on/off sequence.
3137  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3138  */
3139 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3140 {
3141 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3142 
3143 	lockdep_assert_held(&dev_priv->pps_mutex);
3144 
3145 	if (!intel_dp_is_edp(intel_dp))
3146 		return;
3147 
3148 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3149 			dp_to_dig_port(intel_dp)->base.base.base.id,
3150 			dp_to_dig_port(intel_dp)->base.base.name);
3151 
3152 	intel_dp->want_panel_vdd = false;
3153 
3154 	if (sync)
3155 		edp_panel_vdd_off_sync(intel_dp);
3156 	else
3157 		edp_panel_vdd_schedule_off(intel_dp);
3158 }
3159 
3160 static void edp_panel_on(struct intel_dp *intel_dp)
3161 {
3162 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3163 	u32 pp;
3164 	i915_reg_t pp_ctrl_reg;
3165 
3166 	lockdep_assert_held(&dev_priv->pps_mutex);
3167 
3168 	if (!intel_dp_is_edp(intel_dp))
3169 		return;
3170 
3171 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3172 		    dp_to_dig_port(intel_dp)->base.base.base.id,
3173 		    dp_to_dig_port(intel_dp)->base.base.name);
3174 
3175 	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3176 		     "[ENCODER:%d:%s] panel power already on\n",
3177 		     dp_to_dig_port(intel_dp)->base.base.base.id,
3178 		     dp_to_dig_port(intel_dp)->base.base.name))
3179 		return;
3180 
3181 	wait_panel_power_cycle(intel_dp);
3182 
3183 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3184 	pp = ilk_get_pp_control(intel_dp);
3185 	if (IS_GEN(dev_priv, 5)) {
3186 		/* ILK workaround: disable reset around power sequence */
3187 		pp &= ~PANEL_POWER_RESET;
3188 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3189 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3190 	}
3191 
3192 	pp |= PANEL_POWER_ON;
3193 	if (!IS_GEN(dev_priv, 5))
3194 		pp |= PANEL_POWER_RESET;
3195 
3196 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3197 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3198 
3199 	wait_panel_on(intel_dp);
3200 	intel_dp->last_power_on = jiffies;
3201 
3202 	if (IS_GEN(dev_priv, 5)) {
3203 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3204 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3205 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3206 	}
3207 }
3208 
3209 void intel_edp_panel_on(struct intel_dp *intel_dp)
3210 {
3211 	intel_wakeref_t wakeref;
3212 
3213 	if (!intel_dp_is_edp(intel_dp))
3214 		return;
3215 
3216 	with_pps_lock(intel_dp, wakeref)
3217 		edp_panel_on(intel_dp);
3218 }
3219 
3220 
3221 static void edp_panel_off(struct intel_dp *intel_dp)
3222 {
3223 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3224 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3225 	u32 pp;
3226 	i915_reg_t pp_ctrl_reg;
3227 
3228 	lockdep_assert_held(&dev_priv->pps_mutex);
3229 
3230 	if (!intel_dp_is_edp(intel_dp))
3231 		return;
3232 
3233 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3234 		    dig_port->base.base.base.id, dig_port->base.base.name);
3235 
3236 	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3237 		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3238 		 dig_port->base.base.base.id, dig_port->base.base.name);
3239 
3240 	pp = ilk_get_pp_control(intel_dp);
3241 	/* We need to switch off panel power _and_ force vdd, for otherwise some
3242 	 * panels get very unhappy and cease to work. */
3243 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3244 		EDP_BLC_ENABLE);
3245 
3246 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3247 
3248 	intel_dp->want_panel_vdd = false;
3249 
3250 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3251 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3252 
3253 	wait_panel_off(intel_dp);
3254 	intel_dp->panel_power_off_time = ktime_get_boottime();
3255 
3256 	/* We got a reference when we enabled the VDD. */
3257 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3258 }
3259 
3260 void intel_edp_panel_off(struct intel_dp *intel_dp)
3261 {
3262 	intel_wakeref_t wakeref;
3263 
3264 	if (!intel_dp_is_edp(intel_dp))
3265 		return;
3266 
3267 	with_pps_lock(intel_dp, wakeref)
3268 		edp_panel_off(intel_dp);
3269 }
3270 
3271 /* Enable backlight in the panel power control. */
3272 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3273 {
3274 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3275 	intel_wakeref_t wakeref;
3276 
3277 	/*
3278 	 * If we enable the backlight right away following a panel power
3279 	 * on, we may see slight flicker as the panel syncs with the eDP
3280 	 * link.  So delay a bit to make sure the image is solid before
3281 	 * allowing it to appear.
3282 	 */
3283 	wait_backlight_on(intel_dp);
3284 
3285 	with_pps_lock(intel_dp, wakeref) {
3286 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3287 		u32 pp;
3288 
3289 		pp = ilk_get_pp_control(intel_dp);
3290 		pp |= EDP_BLC_ENABLE;
3291 
3292 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3293 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3294 	}
3295 }
3296 
3297 /* Enable backlight PWM and backlight PP control. */
3298 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3299 			    const struct drm_connector_state *conn_state)
3300 {
3301 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3302 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3303 
3304 	if (!intel_dp_is_edp(intel_dp))
3305 		return;
3306 
3307 	drm_dbg_kms(&i915->drm, "\n");
3308 
3309 	intel_panel_enable_backlight(crtc_state, conn_state);
3310 	_intel_edp_backlight_on(intel_dp);
3311 }
3312 
3313 /* Disable backlight in the panel power control. */
3314 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3315 {
3316 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3317 	intel_wakeref_t wakeref;
3318 
3319 	if (!intel_dp_is_edp(intel_dp))
3320 		return;
3321 
3322 	with_pps_lock(intel_dp, wakeref) {
3323 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3324 		u32 pp;
3325 
3326 		pp = ilk_get_pp_control(intel_dp);
3327 		pp &= ~EDP_BLC_ENABLE;
3328 
3329 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3330 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3331 	}
3332 
3333 	intel_dp->last_backlight_off = jiffies;
3334 	edp_wait_backlight_off(intel_dp);
3335 }
3336 
3337 /* Disable backlight PP control and backlight PWM. */
3338 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3339 {
3340 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3341 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3342 
3343 	if (!intel_dp_is_edp(intel_dp))
3344 		return;
3345 
3346 	drm_dbg_kms(&i915->drm, "\n");
3347 
3348 	_intel_edp_backlight_off(intel_dp);
3349 	intel_panel_disable_backlight(old_conn_state);
3350 }
3351 
3352 /*
3353  * Hook for controlling the panel power control backlight through the bl_power
3354  * sysfs attribute. Take care to handle multiple calls.
3355  */
3356 static void intel_edp_backlight_power(struct intel_connector *connector,
3357 				      bool enable)
3358 {
3359 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
3360 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3361 	intel_wakeref_t wakeref;
3362 	bool is_enabled;
3363 
3364 	is_enabled = false;
3365 	with_pps_lock(intel_dp, wakeref)
3366 		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3367 	if (is_enabled == enable)
3368 		return;
3369 
3370 	drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3371 		    enable ? "enable" : "disable");
3372 
3373 	if (enable)
3374 		_intel_edp_backlight_on(intel_dp);
3375 	else
3376 		_intel_edp_backlight_off(intel_dp);
3377 }
3378 
3379 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3380 {
3381 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3382 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3383 	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3384 
3385 	I915_STATE_WARN(cur_state != state,
3386 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3387 			dig_port->base.base.base.id, dig_port->base.base.name,
3388 			onoff(state), onoff(cur_state));
3389 }
3390 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3391 
3392 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3393 {
3394 	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3395 
3396 	I915_STATE_WARN(cur_state != state,
3397 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3398 			onoff(state), onoff(cur_state));
3399 }
3400 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3401 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3402 
3403 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3404 			   const struct intel_crtc_state *pipe_config)
3405 {
3406 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3407 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3408 
3409 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3410 	assert_dp_port_disabled(intel_dp);
3411 	assert_edp_pll_disabled(dev_priv);
3412 
3413 	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3414 		    pipe_config->port_clock);
3415 
3416 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3417 
3418 	if (pipe_config->port_clock == 162000)
3419 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3420 	else
3421 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3422 
3423 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3424 	intel_de_posting_read(dev_priv, DP_A);
3425 	udelay(500);
3426 
3427 	/*
3428 	 * [DevILK] Work around required when enabling DP PLL
3429 	 * while a pipe is enabled going to FDI:
3430 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3431 	 * 2. Program DP PLL enable
3432 	 */
3433 	if (IS_GEN(dev_priv, 5))
3434 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3435 
3436 	intel_dp->DP |= DP_PLL_ENABLE;
3437 
3438 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3439 	intel_de_posting_read(dev_priv, DP_A);
3440 	udelay(200);
3441 }
3442 
3443 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3444 			    const struct intel_crtc_state *old_crtc_state)
3445 {
3446 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3447 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3448 
3449 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3450 	assert_dp_port_disabled(intel_dp);
3451 	assert_edp_pll_enabled(dev_priv);
3452 
3453 	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3454 
3455 	intel_dp->DP &= ~DP_PLL_ENABLE;
3456 
3457 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3458 	intel_de_posting_read(dev_priv, DP_A);
3459 	udelay(200);
3460 }
3461 
3462 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3463 {
3464 	/*
3465 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3466 	 * be capable of signalling downstream hpd with a long pulse.
3467 	 * Whether or not that means D3 is safe to use is not clear,
3468 	 * but let's assume so until proven otherwise.
3469 	 *
3470 	 * FIXME should really check all downstream ports...
3471 	 */
3472 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3473 		drm_dp_is_branch(intel_dp->dpcd) &&
3474 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3475 }
3476 
3477 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3478 					   const struct intel_crtc_state *crtc_state,
3479 					   bool enable)
3480 {
3481 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3482 	int ret;
3483 
3484 	if (!crtc_state->dsc.compression_enable)
3485 		return;
3486 
3487 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3488 				 enable ? DP_DECOMPRESSION_EN : 0);
3489 	if (ret < 0)
3490 		drm_dbg_kms(&i915->drm,
3491 			    "Failed to %s sink decompression state\n",
3492 			    enable ? "enable" : "disable");
3493 }
3494 
3495 /* If the sink supports it, try to set the power state appropriately */
3496 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3497 {
3498 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3499 	int ret, i;
3500 
3501 	/* Should have a valid DPCD by this point */
3502 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3503 		return;
3504 
3505 	if (mode != DRM_MODE_DPMS_ON) {
3506 		if (downstream_hpd_needs_d0(intel_dp))
3507 			return;
3508 
3509 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3510 					 DP_SET_POWER_D3);
3511 	} else {
3512 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3513 
3514 		/*
3515 		 * When turning on, we need to retry for 1ms to give the sink
3516 		 * time to wake up.
3517 		 */
3518 		for (i = 0; i < 3; i++) {
3519 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3520 						 DP_SET_POWER_D0);
3521 			if (ret == 1)
3522 				break;
3523 			msleep(1);
3524 		}
3525 
3526 		if (ret == 1 && lspcon->active)
3527 			lspcon_wait_pcon_mode(lspcon);
3528 	}
3529 
3530 	if (ret != 1)
3531 		drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
3532 			    mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3533 }
3534 
3535 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3536 				 enum port port, enum pipe *pipe)
3537 {
3538 	enum pipe p;
3539 
3540 	for_each_pipe(dev_priv, p) {
3541 		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3542 
3543 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3544 			*pipe = p;
3545 			return true;
3546 		}
3547 	}
3548 
3549 	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3550 		    port_name(port));
3551 
3552 	/* must initialize pipe to something for the asserts */
3553 	*pipe = PIPE_A;
3554 
3555 	return false;
3556 }
3557 
3558 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3559 			   i915_reg_t dp_reg, enum port port,
3560 			   enum pipe *pipe)
3561 {
3562 	bool ret;
3563 	u32 val;
3564 
3565 	val = intel_de_read(dev_priv, dp_reg);
3566 
3567 	ret = val & DP_PORT_EN;
3568 
3569 	/* asserts want to know the pipe even if the port is disabled */
3570 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3571 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3572 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3573 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3574 	else if (IS_CHERRYVIEW(dev_priv))
3575 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3576 	else
3577 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3578 
3579 	return ret;
3580 }
3581 
3582 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3583 				  enum pipe *pipe)
3584 {
3585 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3586 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3587 	intel_wakeref_t wakeref;
3588 	bool ret;
3589 
3590 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3591 						     encoder->power_domain);
3592 	if (!wakeref)
3593 		return false;
3594 
3595 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3596 				    encoder->port, pipe);
3597 
3598 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3599 
3600 	return ret;
3601 }
3602 
3603 static void intel_dp_get_config(struct intel_encoder *encoder,
3604 				struct intel_crtc_state *pipe_config)
3605 {
3606 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3607 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3608 	u32 tmp, flags = 0;
3609 	enum port port = encoder->port;
3610 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3611 
3612 	if (encoder->type == INTEL_OUTPUT_EDP)
3613 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3614 	else
3615 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3616 
3617 	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3618 
3619 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3620 
3621 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3622 		u32 trans_dp = intel_de_read(dev_priv,
3623 					     TRANS_DP_CTL(crtc->pipe));
3624 
3625 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3626 			flags |= DRM_MODE_FLAG_PHSYNC;
3627 		else
3628 			flags |= DRM_MODE_FLAG_NHSYNC;
3629 
3630 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3631 			flags |= DRM_MODE_FLAG_PVSYNC;
3632 		else
3633 			flags |= DRM_MODE_FLAG_NVSYNC;
3634 	} else {
3635 		if (tmp & DP_SYNC_HS_HIGH)
3636 			flags |= DRM_MODE_FLAG_PHSYNC;
3637 		else
3638 			flags |= DRM_MODE_FLAG_NHSYNC;
3639 
3640 		if (tmp & DP_SYNC_VS_HIGH)
3641 			flags |= DRM_MODE_FLAG_PVSYNC;
3642 		else
3643 			flags |= DRM_MODE_FLAG_NVSYNC;
3644 	}
3645 
3646 	pipe_config->hw.adjusted_mode.flags |= flags;
3647 
3648 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3649 		pipe_config->limited_color_range = true;
3650 
3651 	pipe_config->lane_count =
3652 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3653 
3654 	intel_dp_get_m_n(crtc, pipe_config);
3655 
3656 	if (port == PORT_A) {
3657 		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3658 			pipe_config->port_clock = 162000;
3659 		else
3660 			pipe_config->port_clock = 270000;
3661 	}
3662 
3663 	pipe_config->hw.adjusted_mode.crtc_clock =
3664 		intel_dotclock_calculate(pipe_config->port_clock,
3665 					 &pipe_config->dp_m_n);
3666 
3667 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3668 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3669 		/*
3670 		 * This is a big fat ugly hack.
3671 		 *
3672 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3673 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3674 		 * unknown we fail to light up. Yet the same BIOS boots up with
3675 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3676 		 * max, not what it tells us to use.
3677 		 *
3678 		 * Note: This will still be broken if the eDP panel is not lit
3679 		 * up by the BIOS, and thus we can't get the mode at module
3680 		 * load.
3681 		 */
3682 		drm_dbg_kms(&dev_priv->drm,
3683 			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3684 			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3685 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3686 	}
3687 }
3688 
3689 static void intel_disable_dp(struct intel_atomic_state *state,
3690 			     struct intel_encoder *encoder,
3691 			     const struct intel_crtc_state *old_crtc_state,
3692 			     const struct drm_connector_state *old_conn_state)
3693 {
3694 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3695 
3696 	intel_dp->link_trained = false;
3697 
3698 	if (old_crtc_state->has_audio)
3699 		intel_audio_codec_disable(encoder,
3700 					  old_crtc_state, old_conn_state);
3701 
3702 	/* Make sure the panel is off before trying to change the mode. But also
3703 	 * ensure that we have vdd while we switch off the panel. */
3704 	intel_edp_panel_vdd_on(intel_dp);
3705 	intel_edp_backlight_off(old_conn_state);
3706 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3707 	intel_edp_panel_off(intel_dp);
3708 }
3709 
3710 static void g4x_disable_dp(struct intel_atomic_state *state,
3711 			   struct intel_encoder *encoder,
3712 			   const struct intel_crtc_state *old_crtc_state,
3713 			   const struct drm_connector_state *old_conn_state)
3714 {
3715 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3716 }
3717 
3718 static void vlv_disable_dp(struct intel_atomic_state *state,
3719 			   struct intel_encoder *encoder,
3720 			   const struct intel_crtc_state *old_crtc_state,
3721 			   const struct drm_connector_state *old_conn_state)
3722 {
3723 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3724 }
3725 
3726 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3727 				struct intel_encoder *encoder,
3728 				const struct intel_crtc_state *old_crtc_state,
3729 				const struct drm_connector_state *old_conn_state)
3730 {
3731 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3732 	enum port port = encoder->port;
3733 
3734 	/*
3735 	 * Bspec does not list a specific disable sequence for g4x DP.
3736 	 * Follow the ilk+ sequence (disable pipe before the port) for
3737 	 * g4x DP as it does not suffer from underruns like the normal
3738 	 * g4x modeset sequence (disable pipe after the port).
3739 	 */
3740 	intel_dp_link_down(encoder, old_crtc_state);
3741 
3742 	/* Only ilk+ has port A */
3743 	if (port == PORT_A)
3744 		ilk_edp_pll_off(intel_dp, old_crtc_state);
3745 }
3746 
3747 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3748 				struct intel_encoder *encoder,
3749 				const struct intel_crtc_state *old_crtc_state,
3750 				const struct drm_connector_state *old_conn_state)
3751 {
3752 	intel_dp_link_down(encoder, old_crtc_state);
3753 }
3754 
3755 static void chv_post_disable_dp(struct intel_atomic_state *state,
3756 				struct intel_encoder *encoder,
3757 				const struct intel_crtc_state *old_crtc_state,
3758 				const struct drm_connector_state *old_conn_state)
3759 {
3760 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3761 
3762 	intel_dp_link_down(encoder, old_crtc_state);
3763 
3764 	vlv_dpio_get(dev_priv);
3765 
3766 	/* Assert data lane reset */
3767 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3768 
3769 	vlv_dpio_put(dev_priv);
3770 }
3771 
3772 static void
3773 cpt_set_link_train(struct intel_dp *intel_dp,
3774 		   u8 dp_train_pat)
3775 {
3776 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3777 	u32 *DP = &intel_dp->DP;
3778 
3779 	*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3780 
3781 	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3782 	case DP_TRAINING_PATTERN_DISABLE:
3783 		*DP |= DP_LINK_TRAIN_OFF_CPT;
3784 		break;
3785 	case DP_TRAINING_PATTERN_1:
3786 		*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3787 		break;
3788 	case DP_TRAINING_PATTERN_2:
3789 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3790 		break;
3791 	case DP_TRAINING_PATTERN_3:
3792 		drm_dbg_kms(&dev_priv->drm,
3793 			    "TPS3 not supported, using TPS2 instead\n");
3794 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3795 		break;
3796 	}
3797 
3798 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3799 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3800 }
3801 
3802 static void
3803 g4x_set_link_train(struct intel_dp *intel_dp,
3804 		   u8 dp_train_pat)
3805 {
3806 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3807 	u32 *DP = &intel_dp->DP;
3808 
3809 	*DP &= ~DP_LINK_TRAIN_MASK;
3810 
3811 	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3812 	case DP_TRAINING_PATTERN_DISABLE:
3813 		*DP |= DP_LINK_TRAIN_OFF;
3814 		break;
3815 	case DP_TRAINING_PATTERN_1:
3816 		*DP |= DP_LINK_TRAIN_PAT_1;
3817 		break;
3818 	case DP_TRAINING_PATTERN_2:
3819 		*DP |= DP_LINK_TRAIN_PAT_2;
3820 		break;
3821 	case DP_TRAINING_PATTERN_3:
3822 		drm_dbg_kms(&dev_priv->drm,
3823 			    "TPS3 not supported, using TPS2 instead\n");
3824 		*DP |= DP_LINK_TRAIN_PAT_2;
3825 		break;
3826 	}
3827 
3828 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3829 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3830 }
3831 
3832 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3833 				 const struct intel_crtc_state *old_crtc_state)
3834 {
3835 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3836 
3837 	/* enable with pattern 1 (as per spec) */
3838 
3839 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3840 
3841 	/*
3842 	 * Magic for VLV/CHV. We _must_ first set up the register
3843 	 * without actually enabling the port, and then do another
3844 	 * write to enable the port. Otherwise link training will
3845 	 * fail when the power sequencer is freshly used for this port.
3846 	 */
3847 	intel_dp->DP |= DP_PORT_EN;
3848 	if (old_crtc_state->has_audio)
3849 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3850 
3851 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3852 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3853 }
3854 
3855 void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp)
3856 {
3857 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3858 	u8 tmp;
3859 
3860 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x13)
3861 		return;
3862 
3863 	if (!drm_dp_is_branch(intel_dp->dpcd))
3864 		return;
3865 
3866 	tmp = intel_dp->has_hdmi_sink ?
3867 		DP_HDMI_DVI_OUTPUT_CONFIG : 0;
3868 
3869 	if (drm_dp_dpcd_writeb(&intel_dp->aux,
3870 			       DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1)
3871 		drm_dbg_kms(&i915->drm, "Failed to set protocol converter HDMI mode to %s\n",
3872 			    enableddisabled(intel_dp->has_hdmi_sink));
3873 
3874 	tmp = intel_dp->dfp.ycbcr_444_to_420 ?
3875 		DP_CONVERSION_TO_YCBCR420_ENABLE : 0;
3876 
3877 	if (drm_dp_dpcd_writeb(&intel_dp->aux,
3878 			       DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1)
3879 		drm_dbg_kms(&i915->drm,
3880 			    "Failed to set protocol converter YCbCr 4:2:0 conversion mode to %s\n",
3881 			    enableddisabled(intel_dp->dfp.ycbcr_444_to_420));
3882 
3883 	tmp = 0;
3884 
3885 	if (drm_dp_dpcd_writeb(&intel_dp->aux,
3886 			       DP_PROTOCOL_CONVERTER_CONTROL_2, tmp) <= 0)
3887 		drm_dbg_kms(&i915->drm,
3888 			    "Failed to set protocol converter YCbCr 4:2:2 conversion mode to %s\n",
3889 			    enableddisabled(false));
3890 }
3891 
3892 static void intel_enable_dp(struct intel_atomic_state *state,
3893 			    struct intel_encoder *encoder,
3894 			    const struct intel_crtc_state *pipe_config,
3895 			    const struct drm_connector_state *conn_state)
3896 {
3897 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3898 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3899 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3900 	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3901 	enum pipe pipe = crtc->pipe;
3902 	intel_wakeref_t wakeref;
3903 
3904 	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3905 		return;
3906 
3907 	with_pps_lock(intel_dp, wakeref) {
3908 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3909 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3910 
3911 		intel_dp_enable_port(intel_dp, pipe_config);
3912 
3913 		edp_panel_vdd_on(intel_dp);
3914 		edp_panel_on(intel_dp);
3915 		edp_panel_vdd_off(intel_dp, true);
3916 	}
3917 
3918 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3919 		unsigned int lane_mask = 0x0;
3920 
3921 		if (IS_CHERRYVIEW(dev_priv))
3922 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3923 
3924 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3925 				    lane_mask);
3926 	}
3927 
3928 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3929 	intel_dp_configure_protocol_converter(intel_dp);
3930 	intel_dp_start_link_train(intel_dp);
3931 	intel_dp_stop_link_train(intel_dp);
3932 
3933 	if (pipe_config->has_audio) {
3934 		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3935 			pipe_name(pipe));
3936 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3937 	}
3938 }
3939 
3940 static void g4x_enable_dp(struct intel_atomic_state *state,
3941 			  struct intel_encoder *encoder,
3942 			  const struct intel_crtc_state *pipe_config,
3943 			  const struct drm_connector_state *conn_state)
3944 {
3945 	intel_enable_dp(state, encoder, pipe_config, conn_state);
3946 	intel_edp_backlight_on(pipe_config, conn_state);
3947 }
3948 
3949 static void vlv_enable_dp(struct intel_atomic_state *state,
3950 			  struct intel_encoder *encoder,
3951 			  const struct intel_crtc_state *pipe_config,
3952 			  const struct drm_connector_state *conn_state)
3953 {
3954 	intel_edp_backlight_on(pipe_config, conn_state);
3955 }
3956 
3957 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3958 			      struct intel_encoder *encoder,
3959 			      const struct intel_crtc_state *pipe_config,
3960 			      const struct drm_connector_state *conn_state)
3961 {
3962 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3963 	enum port port = encoder->port;
3964 
3965 	intel_dp_prepare(encoder, pipe_config);
3966 
3967 	/* Only ilk+ has port A */
3968 	if (port == PORT_A)
3969 		ilk_edp_pll_on(intel_dp, pipe_config);
3970 }
3971 
3972 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3973 {
3974 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3975 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3976 	enum pipe pipe = intel_dp->pps_pipe;
3977 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3978 
3979 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3980 
3981 	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3982 		return;
3983 
3984 	edp_panel_vdd_off_sync(intel_dp);
3985 
3986 	/*
3987 	 * VLV seems to get confused when multiple power sequencers
3988 	 * have the same port selected (even if only one has power/vdd
3989 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3990 	 * CHV on the other hand doesn't seem to mind having the same port
3991 	 * selected in multiple power sequencers, but let's clear the
3992 	 * port select always when logically disconnecting a power sequencer
3993 	 * from a port.
3994 	 */
3995 	drm_dbg_kms(&dev_priv->drm,
3996 		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3997 		    pipe_name(pipe), dig_port->base.base.base.id,
3998 		    dig_port->base.base.name);
3999 	intel_de_write(dev_priv, pp_on_reg, 0);
4000 	intel_de_posting_read(dev_priv, pp_on_reg);
4001 
4002 	intel_dp->pps_pipe = INVALID_PIPE;
4003 }
4004 
4005 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
4006 				      enum pipe pipe)
4007 {
4008 	struct intel_encoder *encoder;
4009 
4010 	lockdep_assert_held(&dev_priv->pps_mutex);
4011 
4012 	for_each_intel_dp(&dev_priv->drm, encoder) {
4013 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4014 
4015 		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
4016 			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
4017 			 pipe_name(pipe), encoder->base.base.id,
4018 			 encoder->base.name);
4019 
4020 		if (intel_dp->pps_pipe != pipe)
4021 			continue;
4022 
4023 		drm_dbg_kms(&dev_priv->drm,
4024 			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
4025 			    pipe_name(pipe), encoder->base.base.id,
4026 			    encoder->base.name);
4027 
4028 		/* make sure vdd is off before we steal it */
4029 		vlv_detach_power_sequencer(intel_dp);
4030 	}
4031 }
4032 
4033 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
4034 					   const struct intel_crtc_state *crtc_state)
4035 {
4036 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4037 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4038 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4039 
4040 	lockdep_assert_held(&dev_priv->pps_mutex);
4041 
4042 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
4043 
4044 	if (intel_dp->pps_pipe != INVALID_PIPE &&
4045 	    intel_dp->pps_pipe != crtc->pipe) {
4046 		/*
4047 		 * If another power sequencer was being used on this
4048 		 * port previously make sure to turn off vdd there while
4049 		 * we still have control of it.
4050 		 */
4051 		vlv_detach_power_sequencer(intel_dp);
4052 	}
4053 
4054 	/*
4055 	 * We may be stealing the power
4056 	 * sequencer from another port.
4057 	 */
4058 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
4059 
4060 	intel_dp->active_pipe = crtc->pipe;
4061 
4062 	if (!intel_dp_is_edp(intel_dp))
4063 		return;
4064 
4065 	/* now it's all ours */
4066 	intel_dp->pps_pipe = crtc->pipe;
4067 
4068 	drm_dbg_kms(&dev_priv->drm,
4069 		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
4070 		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
4071 		    encoder->base.name);
4072 
4073 	/* init power sequencer on this pipe and port */
4074 	intel_dp_init_panel_power_sequencer(intel_dp);
4075 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
4076 }
4077 
4078 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
4079 			      struct intel_encoder *encoder,
4080 			      const struct intel_crtc_state *pipe_config,
4081 			      const struct drm_connector_state *conn_state)
4082 {
4083 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
4084 
4085 	intel_enable_dp(state, encoder, pipe_config, conn_state);
4086 }
4087 
4088 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
4089 				  struct intel_encoder *encoder,
4090 				  const struct intel_crtc_state *pipe_config,
4091 				  const struct drm_connector_state *conn_state)
4092 {
4093 	intel_dp_prepare(encoder, pipe_config);
4094 
4095 	vlv_phy_pre_pll_enable(encoder, pipe_config);
4096 }
4097 
4098 static void chv_pre_enable_dp(struct intel_atomic_state *state,
4099 			      struct intel_encoder *encoder,
4100 			      const struct intel_crtc_state *pipe_config,
4101 			      const struct drm_connector_state *conn_state)
4102 {
4103 	chv_phy_pre_encoder_enable(encoder, pipe_config);
4104 
4105 	intel_enable_dp(state, encoder, pipe_config, conn_state);
4106 
4107 	/* Second common lane will stay alive on its own now */
4108 	chv_phy_release_cl2_override(encoder);
4109 }
4110 
4111 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
4112 				  struct intel_encoder *encoder,
4113 				  const struct intel_crtc_state *pipe_config,
4114 				  const struct drm_connector_state *conn_state)
4115 {
4116 	intel_dp_prepare(encoder, pipe_config);
4117 
4118 	chv_phy_pre_pll_enable(encoder, pipe_config);
4119 }
4120 
4121 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
4122 				    struct intel_encoder *encoder,
4123 				    const struct intel_crtc_state *old_crtc_state,
4124 				    const struct drm_connector_state *old_conn_state)
4125 {
4126 	chv_phy_post_pll_disable(encoder, old_crtc_state);
4127 }
4128 
4129 /*
4130  * Fetch AUX CH registers 0x202 - 0x207 which contain
4131  * link status information
4132  */
4133 bool
4134 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
4135 {
4136 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
4137 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
4138 }
4139 
4140 static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp)
4141 {
4142 	return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4143 }
4144 
4145 static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp)
4146 {
4147 	return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4148 }
4149 
4150 static u8 intel_dp_pre_empemph_max_2(struct intel_dp *intel_dp)
4151 {
4152 	return DP_TRAIN_PRE_EMPH_LEVEL_2;
4153 }
4154 
4155 static u8 intel_dp_pre_empemph_max_3(struct intel_dp *intel_dp)
4156 {
4157 	return DP_TRAIN_PRE_EMPH_LEVEL_3;
4158 }
4159 
4160 static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4161 {
4162 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4163 	unsigned long demph_reg_value, preemph_reg_value,
4164 		uniqtranscale_reg_value;
4165 	u8 train_set = intel_dp->train_set[0];
4166 
4167 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4168 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4169 		preemph_reg_value = 0x0004000;
4170 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4171 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4172 			demph_reg_value = 0x2B405555;
4173 			uniqtranscale_reg_value = 0x552AB83A;
4174 			break;
4175 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4176 			demph_reg_value = 0x2B404040;
4177 			uniqtranscale_reg_value = 0x5548B83A;
4178 			break;
4179 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4180 			demph_reg_value = 0x2B245555;
4181 			uniqtranscale_reg_value = 0x5560B83A;
4182 			break;
4183 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4184 			demph_reg_value = 0x2B405555;
4185 			uniqtranscale_reg_value = 0x5598DA3A;
4186 			break;
4187 		default:
4188 			return;
4189 		}
4190 		break;
4191 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4192 		preemph_reg_value = 0x0002000;
4193 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4194 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4195 			demph_reg_value = 0x2B404040;
4196 			uniqtranscale_reg_value = 0x5552B83A;
4197 			break;
4198 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4199 			demph_reg_value = 0x2B404848;
4200 			uniqtranscale_reg_value = 0x5580B83A;
4201 			break;
4202 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4203 			demph_reg_value = 0x2B404040;
4204 			uniqtranscale_reg_value = 0x55ADDA3A;
4205 			break;
4206 		default:
4207 			return;
4208 		}
4209 		break;
4210 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4211 		preemph_reg_value = 0x0000000;
4212 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4213 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4214 			demph_reg_value = 0x2B305555;
4215 			uniqtranscale_reg_value = 0x5570B83A;
4216 			break;
4217 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4218 			demph_reg_value = 0x2B2B4040;
4219 			uniqtranscale_reg_value = 0x55ADDA3A;
4220 			break;
4221 		default:
4222 			return;
4223 		}
4224 		break;
4225 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4226 		preemph_reg_value = 0x0006000;
4227 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4228 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4229 			demph_reg_value = 0x1B405555;
4230 			uniqtranscale_reg_value = 0x55ADDA3A;
4231 			break;
4232 		default:
4233 			return;
4234 		}
4235 		break;
4236 	default:
4237 		return;
4238 	}
4239 
4240 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4241 				 uniqtranscale_reg_value, 0);
4242 }
4243 
4244 static void chv_set_signal_levels(struct intel_dp *intel_dp)
4245 {
4246 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4247 	u32 deemph_reg_value, margin_reg_value;
4248 	bool uniq_trans_scale = false;
4249 	u8 train_set = intel_dp->train_set[0];
4250 
4251 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4252 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4253 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4254 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4255 			deemph_reg_value = 128;
4256 			margin_reg_value = 52;
4257 			break;
4258 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4259 			deemph_reg_value = 128;
4260 			margin_reg_value = 77;
4261 			break;
4262 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4263 			deemph_reg_value = 128;
4264 			margin_reg_value = 102;
4265 			break;
4266 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4267 			deemph_reg_value = 128;
4268 			margin_reg_value = 154;
4269 			uniq_trans_scale = true;
4270 			break;
4271 		default:
4272 			return;
4273 		}
4274 		break;
4275 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4276 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4277 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4278 			deemph_reg_value = 85;
4279 			margin_reg_value = 78;
4280 			break;
4281 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4282 			deemph_reg_value = 85;
4283 			margin_reg_value = 116;
4284 			break;
4285 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4286 			deemph_reg_value = 85;
4287 			margin_reg_value = 154;
4288 			break;
4289 		default:
4290 			return;
4291 		}
4292 		break;
4293 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4294 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4295 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4296 			deemph_reg_value = 64;
4297 			margin_reg_value = 104;
4298 			break;
4299 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4300 			deemph_reg_value = 64;
4301 			margin_reg_value = 154;
4302 			break;
4303 		default:
4304 			return;
4305 		}
4306 		break;
4307 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4308 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4309 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4310 			deemph_reg_value = 43;
4311 			margin_reg_value = 154;
4312 			break;
4313 		default:
4314 			return;
4315 		}
4316 		break;
4317 	default:
4318 		return;
4319 	}
4320 
4321 	chv_set_phy_signal_level(encoder, deemph_reg_value,
4322 				 margin_reg_value, uniq_trans_scale);
4323 }
4324 
4325 static u32 g4x_signal_levels(u8 train_set)
4326 {
4327 	u32 signal_levels = 0;
4328 
4329 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4330 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4331 	default:
4332 		signal_levels |= DP_VOLTAGE_0_4;
4333 		break;
4334 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4335 		signal_levels |= DP_VOLTAGE_0_6;
4336 		break;
4337 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4338 		signal_levels |= DP_VOLTAGE_0_8;
4339 		break;
4340 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4341 		signal_levels |= DP_VOLTAGE_1_2;
4342 		break;
4343 	}
4344 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4345 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4346 	default:
4347 		signal_levels |= DP_PRE_EMPHASIS_0;
4348 		break;
4349 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4350 		signal_levels |= DP_PRE_EMPHASIS_3_5;
4351 		break;
4352 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4353 		signal_levels |= DP_PRE_EMPHASIS_6;
4354 		break;
4355 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4356 		signal_levels |= DP_PRE_EMPHASIS_9_5;
4357 		break;
4358 	}
4359 	return signal_levels;
4360 }
4361 
4362 static void
4363 g4x_set_signal_levels(struct intel_dp *intel_dp)
4364 {
4365 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4366 	u8 train_set = intel_dp->train_set[0];
4367 	u32 signal_levels;
4368 
4369 	signal_levels = g4x_signal_levels(train_set);
4370 
4371 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4372 		    signal_levels);
4373 
4374 	intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4375 	intel_dp->DP |= signal_levels;
4376 
4377 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4378 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4379 }
4380 
4381 /* SNB CPU eDP voltage swing and pre-emphasis control */
4382 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4383 {
4384 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4385 					DP_TRAIN_PRE_EMPHASIS_MASK);
4386 
4387 	switch (signal_levels) {
4388 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4389 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4390 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4391 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4392 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4393 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4394 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4395 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4396 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4397 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4398 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4399 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4400 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4401 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4402 	default:
4403 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4404 			      "0x%x\n", signal_levels);
4405 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4406 	}
4407 }
4408 
4409 static void
4410 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4411 {
4412 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4413 	u8 train_set = intel_dp->train_set[0];
4414 	u32 signal_levels;
4415 
4416 	signal_levels = snb_cpu_edp_signal_levels(train_set);
4417 
4418 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4419 		    signal_levels);
4420 
4421 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4422 	intel_dp->DP |= signal_levels;
4423 
4424 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4425 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4426 }
4427 
4428 /* IVB CPU eDP voltage swing and pre-emphasis control */
4429 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4430 {
4431 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4432 					DP_TRAIN_PRE_EMPHASIS_MASK);
4433 
4434 	switch (signal_levels) {
4435 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4436 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4437 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4438 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4439 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4440 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4441 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4442 
4443 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4444 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4445 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4446 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4447 
4448 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4449 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4450 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4451 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4452 
4453 	default:
4454 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4455 			      "0x%x\n", signal_levels);
4456 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4457 	}
4458 }
4459 
4460 static void
4461 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4462 {
4463 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4464 	u8 train_set = intel_dp->train_set[0];
4465 	u32 signal_levels;
4466 
4467 	signal_levels = ivb_cpu_edp_signal_levels(train_set);
4468 
4469 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4470 		    signal_levels);
4471 
4472 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4473 	intel_dp->DP |= signal_levels;
4474 
4475 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4476 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4477 }
4478 
4479 void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4480 {
4481 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4482 	u8 train_set = intel_dp->train_set[0];
4483 
4484 	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4485 		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4486 		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4487 	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4488 		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4489 		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
4490 		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4491 		    " (max)" : "");
4492 
4493 	intel_dp->set_signal_levels(intel_dp);
4494 }
4495 
4496 void
4497 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4498 				       u8 dp_train_pat)
4499 {
4500 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4501 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4502 
4503 	if (dp_train_pat & train_pat_mask)
4504 		drm_dbg_kms(&dev_priv->drm,
4505 			    "Using DP training pattern TPS%d\n",
4506 			    dp_train_pat & train_pat_mask);
4507 
4508 	intel_dp->set_link_train(intel_dp, dp_train_pat);
4509 }
4510 
4511 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4512 {
4513 	if (intel_dp->set_idle_link_train)
4514 		intel_dp->set_idle_link_train(intel_dp);
4515 }
4516 
4517 static void
4518 intel_dp_link_down(struct intel_encoder *encoder,
4519 		   const struct intel_crtc_state *old_crtc_state)
4520 {
4521 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4522 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4523 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4524 	enum port port = encoder->port;
4525 	u32 DP = intel_dp->DP;
4526 
4527 	if (drm_WARN_ON(&dev_priv->drm,
4528 			(intel_de_read(dev_priv, intel_dp->output_reg) &
4529 			 DP_PORT_EN) == 0))
4530 		return;
4531 
4532 	drm_dbg_kms(&dev_priv->drm, "\n");
4533 
4534 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4535 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4536 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4537 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4538 	} else {
4539 		DP &= ~DP_LINK_TRAIN_MASK;
4540 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4541 	}
4542 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4543 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4544 
4545 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4546 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4547 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4548 
4549 	/*
4550 	 * HW workaround for IBX, we need to move the port
4551 	 * to transcoder A after disabling it to allow the
4552 	 * matching HDMI port to be enabled on transcoder A.
4553 	 */
4554 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4555 		/*
4556 		 * We get CPU/PCH FIFO underruns on the other pipe when
4557 		 * doing the workaround. Sweep them under the rug.
4558 		 */
4559 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4560 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4561 
4562 		/* always enable with pattern 1 (as per spec) */
4563 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4564 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4565 			DP_LINK_TRAIN_PAT_1;
4566 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4567 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4568 
4569 		DP &= ~DP_PORT_EN;
4570 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4571 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4572 
4573 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4574 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4575 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4576 	}
4577 
4578 	msleep(intel_dp->panel_power_down_delay);
4579 
4580 	intel_dp->DP = DP;
4581 
4582 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4583 		intel_wakeref_t wakeref;
4584 
4585 		with_pps_lock(intel_dp, wakeref)
4586 			intel_dp->active_pipe = INVALID_PIPE;
4587 	}
4588 }
4589 
4590 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4591 {
4592 	u8 dprx = 0;
4593 
4594 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4595 			      &dprx) != 1)
4596 		return false;
4597 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4598 }
4599 
4600 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4601 {
4602 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4603 
4604 	/*
4605 	 * Clear the cached register set to avoid using stale values
4606 	 * for the sinks that do not support DSC.
4607 	 */
4608 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4609 
4610 	/* Clear fec_capable to avoid using stale values */
4611 	intel_dp->fec_capable = 0;
4612 
4613 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4614 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4615 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4616 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4617 				     intel_dp->dsc_dpcd,
4618 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4619 			drm_err(&i915->drm,
4620 				"Failed to read DPCD register 0x%x\n",
4621 				DP_DSC_SUPPORT);
4622 
4623 		drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4624 			    (int)sizeof(intel_dp->dsc_dpcd),
4625 			    intel_dp->dsc_dpcd);
4626 
4627 		/* FEC is supported only on DP 1.4 */
4628 		if (!intel_dp_is_edp(intel_dp) &&
4629 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4630 				      &intel_dp->fec_capable) < 0)
4631 			drm_err(&i915->drm,
4632 				"Failed to read FEC DPCD register\n");
4633 
4634 		drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4635 			    intel_dp->fec_capable);
4636 	}
4637 }
4638 
4639 static bool
4640 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4641 {
4642 	struct drm_i915_private *dev_priv =
4643 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4644 
4645 	/* this function is meant to be called only once */
4646 	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4647 
4648 	if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0)
4649 		return false;
4650 
4651 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4652 			 drm_dp_is_branch(intel_dp->dpcd));
4653 
4654 	/*
4655 	 * Read the eDP display control registers.
4656 	 *
4657 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4658 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4659 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4660 	 * method). The display control registers should read zero if they're
4661 	 * not supported anyway.
4662 	 */
4663 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4664 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4665 			     sizeof(intel_dp->edp_dpcd))
4666 		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4667 			    (int)sizeof(intel_dp->edp_dpcd),
4668 			    intel_dp->edp_dpcd);
4669 
4670 	/*
4671 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4672 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4673 	 */
4674 	intel_psr_init_dpcd(intel_dp);
4675 
4676 	/* Read the eDP 1.4+ supported link rates. */
4677 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4678 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4679 		int i;
4680 
4681 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4682 				sink_rates, sizeof(sink_rates));
4683 
4684 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4685 			int val = le16_to_cpu(sink_rates[i]);
4686 
4687 			if (val == 0)
4688 				break;
4689 
4690 			/* Value read multiplied by 200kHz gives the per-lane
4691 			 * link rate in kHz. The source rates are, however,
4692 			 * stored in terms of LS_Clk kHz. The full conversion
4693 			 * back to symbols is
4694 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4695 			 */
4696 			intel_dp->sink_rates[i] = (val * 200) / 10;
4697 		}
4698 		intel_dp->num_sink_rates = i;
4699 	}
4700 
4701 	/*
4702 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4703 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4704 	 */
4705 	if (intel_dp->num_sink_rates)
4706 		intel_dp->use_rate_select = true;
4707 	else
4708 		intel_dp_set_sink_rates(intel_dp);
4709 
4710 	intel_dp_set_common_rates(intel_dp);
4711 
4712 	/* Read the eDP DSC DPCD registers */
4713 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4714 		intel_dp_get_dsc_sink_cap(intel_dp);
4715 
4716 	return true;
4717 }
4718 
4719 static bool
4720 intel_dp_has_sink_count(struct intel_dp *intel_dp)
4721 {
4722 	if (!intel_dp->attached_connector)
4723 		return false;
4724 
4725 	return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base,
4726 					  intel_dp->dpcd,
4727 					  &intel_dp->desc);
4728 }
4729 
4730 static bool
4731 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4732 {
4733 	int ret;
4734 
4735 	if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd))
4736 		return false;
4737 
4738 	/*
4739 	 * Don't clobber cached eDP rates. Also skip re-reading
4740 	 * the OUI/ID since we know it won't change.
4741 	 */
4742 	if (!intel_dp_is_edp(intel_dp)) {
4743 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4744 				 drm_dp_is_branch(intel_dp->dpcd));
4745 
4746 		intel_dp_set_sink_rates(intel_dp);
4747 		intel_dp_set_common_rates(intel_dp);
4748 	}
4749 
4750 	if (intel_dp_has_sink_count(intel_dp)) {
4751 		ret = drm_dp_read_sink_count(&intel_dp->aux);
4752 		if (ret < 0)
4753 			return false;
4754 
4755 		/*
4756 		 * Sink count can change between short pulse hpd hence
4757 		 * a member variable in intel_dp will track any changes
4758 		 * between short pulse interrupts.
4759 		 */
4760 		intel_dp->sink_count = ret;
4761 
4762 		/*
4763 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4764 		 * a dongle is present but no display. Unless we require to know
4765 		 * if a dongle is present or not, we don't need to update
4766 		 * downstream port information. So, an early return here saves
4767 		 * time from performing other operations which are not required.
4768 		 */
4769 		if (!intel_dp->sink_count)
4770 			return false;
4771 	}
4772 
4773 	return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd,
4774 					   intel_dp->downstream_ports) == 0;
4775 }
4776 
4777 static bool
4778 intel_dp_can_mst(struct intel_dp *intel_dp)
4779 {
4780 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4781 
4782 	return i915->params.enable_dp_mst &&
4783 		intel_dp->can_mst &&
4784 		drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4785 }
4786 
4787 static void
4788 intel_dp_configure_mst(struct intel_dp *intel_dp)
4789 {
4790 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4791 	struct intel_encoder *encoder =
4792 		&dp_to_dig_port(intel_dp)->base;
4793 	bool sink_can_mst = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4794 
4795 	drm_dbg_kms(&i915->drm,
4796 		    "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4797 		    encoder->base.base.id, encoder->base.name,
4798 		    yesno(intel_dp->can_mst), yesno(sink_can_mst),
4799 		    yesno(i915->params.enable_dp_mst));
4800 
4801 	if (!intel_dp->can_mst)
4802 		return;
4803 
4804 	intel_dp->is_mst = sink_can_mst &&
4805 		i915->params.enable_dp_mst;
4806 
4807 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4808 					intel_dp->is_mst);
4809 }
4810 
4811 static bool
4812 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4813 {
4814 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4815 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4816 		DP_DPRX_ESI_LEN;
4817 }
4818 
4819 bool
4820 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4821 		       const struct drm_connector_state *conn_state)
4822 {
4823 	/*
4824 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4825 	 * of Color Encoding Format and Content Color Gamut], in order to
4826 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4827 	 */
4828 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4829 		return true;
4830 
4831 	switch (conn_state->colorspace) {
4832 	case DRM_MODE_COLORIMETRY_SYCC_601:
4833 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4834 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4835 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4836 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4837 		return true;
4838 	default:
4839 		break;
4840 	}
4841 
4842 	return false;
4843 }
4844 
4845 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4846 				     struct dp_sdp *sdp, size_t size)
4847 {
4848 	size_t length = sizeof(struct dp_sdp);
4849 
4850 	if (size < length)
4851 		return -ENOSPC;
4852 
4853 	memset(sdp, 0, size);
4854 
4855 	/*
4856 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4857 	 * VSC SDP Header Bytes
4858 	 */
4859 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4860 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4861 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4862 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4863 
4864 	/*
4865 	 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
4866 	 * per DP 1.4a spec.
4867 	 */
4868 	if (vsc->revision != 0x5)
4869 		goto out;
4870 
4871 	/* VSC SDP Payload for DB16 through DB18 */
4872 	/* Pixel Encoding and Colorimetry Formats  */
4873 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4874 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4875 
4876 	switch (vsc->bpc) {
4877 	case 6:
4878 		/* 6bpc: 0x0 */
4879 		break;
4880 	case 8:
4881 		sdp->db[17] = 0x1; /* DB17[3:0] */
4882 		break;
4883 	case 10:
4884 		sdp->db[17] = 0x2;
4885 		break;
4886 	case 12:
4887 		sdp->db[17] = 0x3;
4888 		break;
4889 	case 16:
4890 		sdp->db[17] = 0x4;
4891 		break;
4892 	default:
4893 		MISSING_CASE(vsc->bpc);
4894 		break;
4895 	}
4896 	/* Dynamic Range and Component Bit Depth */
4897 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4898 		sdp->db[17] |= 0x80;  /* DB17[7] */
4899 
4900 	/* Content Type */
4901 	sdp->db[18] = vsc->content_type & 0x7;
4902 
4903 out:
4904 	return length;
4905 }
4906 
4907 static ssize_t
4908 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4909 					 struct dp_sdp *sdp,
4910 					 size_t size)
4911 {
4912 	size_t length = sizeof(struct dp_sdp);
4913 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4914 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4915 	ssize_t len;
4916 
4917 	if (size < length)
4918 		return -ENOSPC;
4919 
4920 	memset(sdp, 0, size);
4921 
4922 	len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4923 	if (len < 0) {
4924 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4925 		return -ENOSPC;
4926 	}
4927 
4928 	if (len != infoframe_size) {
4929 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4930 		return -ENOSPC;
4931 	}
4932 
4933 	/*
4934 	 * Set up the infoframe sdp packet for HDR static metadata.
4935 	 * Prepare VSC Header for SU as per DP 1.4a spec,
4936 	 * Table 2-100 and Table 2-101
4937 	 */
4938 
4939 	/* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4940 	sdp->sdp_header.HB0 = 0;
4941 	/*
4942 	 * Packet Type 80h + Non-audio INFOFRAME Type value
4943 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87
4944 	 * - 80h + Non-audio INFOFRAME Type value
4945 	 * - InfoFrame Type: 0x07
4946 	 *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4947 	 */
4948 	sdp->sdp_header.HB1 = drm_infoframe->type;
4949 	/*
4950 	 * Least Significant Eight Bits of (Data Byte Count – 1)
4951 	 * infoframe_size - 1
4952 	 */
4953 	sdp->sdp_header.HB2 = 0x1D;
4954 	/* INFOFRAME SDP Version Number */
4955 	sdp->sdp_header.HB3 = (0x13 << 2);
4956 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
4957 	sdp->db[0] = drm_infoframe->version;
4958 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4959 	sdp->db[1] = drm_infoframe->length;
4960 	/*
4961 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4962 	 * HDMI_INFOFRAME_HEADER_SIZE
4963 	 */
4964 	BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4965 	memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4966 	       HDMI_DRM_INFOFRAME_SIZE);
4967 
4968 	/*
4969 	 * Size of DP infoframe sdp packet for HDR static metadata consists of
4970 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4971 	 * - Two Data Blocks: 2 bytes
4972 	 *    CTA Header Byte2 (INFOFRAME Version Number)
4973 	 *    CTA Header Byte3 (Length of INFOFRAME)
4974 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4975 	 *
4976 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4977 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4978 	 * will pad rest of the size.
4979 	 */
4980 	return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4981 }
4982 
4983 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4984 			       const struct intel_crtc_state *crtc_state,
4985 			       unsigned int type)
4986 {
4987 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
4988 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4989 	struct dp_sdp sdp = {};
4990 	ssize_t len;
4991 
4992 	if ((crtc_state->infoframes.enable &
4993 	     intel_hdmi_infoframe_enable(type)) == 0)
4994 		return;
4995 
4996 	switch (type) {
4997 	case DP_SDP_VSC:
4998 		len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
4999 					    sizeof(sdp));
5000 		break;
5001 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
5002 		len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
5003 							       &sdp, sizeof(sdp));
5004 		break;
5005 	default:
5006 		MISSING_CASE(type);
5007 		return;
5008 	}
5009 
5010 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
5011 		return;
5012 
5013 	dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
5014 }
5015 
5016 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
5017 			    const struct intel_crtc_state *crtc_state,
5018 			    struct drm_dp_vsc_sdp *vsc)
5019 {
5020 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5021 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5022 	struct dp_sdp sdp = {};
5023 	ssize_t len;
5024 
5025 	len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
5026 
5027 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
5028 		return;
5029 
5030 	dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
5031 					&sdp, len);
5032 }
5033 
5034 void intel_dp_set_infoframes(struct intel_encoder *encoder,
5035 			     bool enable,
5036 			     const struct intel_crtc_state *crtc_state,
5037 			     const struct drm_connector_state *conn_state)
5038 {
5039 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5040 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5041 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
5042 	u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
5043 			 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
5044 			 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
5045 	u32 val = intel_de_read(dev_priv, reg);
5046 
5047 	/* TODO: Add DSC case (DIP_ENABLE_PPS) */
5048 	/* When PSR is enabled, this routine doesn't disable VSC DIP */
5049 	if (intel_psr_enabled(intel_dp))
5050 		val &= ~dip_enable;
5051 	else
5052 		val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
5053 
5054 	if (!enable) {
5055 		intel_de_write(dev_priv, reg, val);
5056 		intel_de_posting_read(dev_priv, reg);
5057 		return;
5058 	}
5059 
5060 	intel_de_write(dev_priv, reg, val);
5061 	intel_de_posting_read(dev_priv, reg);
5062 
5063 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5064 	if (!intel_psr_enabled(intel_dp))
5065 		intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5066 
5067 	intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5068 }
5069 
5070 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5071 				   const void *buffer, size_t size)
5072 {
5073 	const struct dp_sdp *sdp = buffer;
5074 
5075 	if (size < sizeof(struct dp_sdp))
5076 		return -EINVAL;
5077 
5078 	memset(vsc, 0, size);
5079 
5080 	if (sdp->sdp_header.HB0 != 0)
5081 		return -EINVAL;
5082 
5083 	if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5084 		return -EINVAL;
5085 
5086 	vsc->sdp_type = sdp->sdp_header.HB1;
5087 	vsc->revision = sdp->sdp_header.HB2;
5088 	vsc->length = sdp->sdp_header.HB3;
5089 
5090 	if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5091 	    (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5092 		/*
5093 		 * - HB2 = 0x2, HB3 = 0x8
5094 		 *   VSC SDP supporting 3D stereo + PSR
5095 		 * - HB2 = 0x4, HB3 = 0xe
5096 		 *   VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5097 		 *   first scan line of the SU region (applies to eDP v1.4b
5098 		 *   and higher).
5099 		 */
5100 		return 0;
5101 	} else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5102 		/*
5103 		 * - HB2 = 0x5, HB3 = 0x13
5104 		 *   VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5105 		 *   Format.
5106 		 */
5107 		vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5108 		vsc->colorimetry = sdp->db[16] & 0xf;
5109 		vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5110 
5111 		switch (sdp->db[17] & 0x7) {
5112 		case 0x0:
5113 			vsc->bpc = 6;
5114 			break;
5115 		case 0x1:
5116 			vsc->bpc = 8;
5117 			break;
5118 		case 0x2:
5119 			vsc->bpc = 10;
5120 			break;
5121 		case 0x3:
5122 			vsc->bpc = 12;
5123 			break;
5124 		case 0x4:
5125 			vsc->bpc = 16;
5126 			break;
5127 		default:
5128 			MISSING_CASE(sdp->db[17] & 0x7);
5129 			return -EINVAL;
5130 		}
5131 
5132 		vsc->content_type = sdp->db[18] & 0x7;
5133 	} else {
5134 		return -EINVAL;
5135 	}
5136 
5137 	return 0;
5138 }
5139 
5140 static int
5141 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5142 					   const void *buffer, size_t size)
5143 {
5144 	int ret;
5145 
5146 	const struct dp_sdp *sdp = buffer;
5147 
5148 	if (size < sizeof(struct dp_sdp))
5149 		return -EINVAL;
5150 
5151 	if (sdp->sdp_header.HB0 != 0)
5152 		return -EINVAL;
5153 
5154 	if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5155 		return -EINVAL;
5156 
5157 	/*
5158 	 * Least Significant Eight Bits of (Data Byte Count – 1)
5159 	 * 1Dh (i.e., Data Byte Count = 30 bytes).
5160 	 */
5161 	if (sdp->sdp_header.HB2 != 0x1D)
5162 		return -EINVAL;
5163 
5164 	/* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5165 	if ((sdp->sdp_header.HB3 & 0x3) != 0)
5166 		return -EINVAL;
5167 
5168 	/* INFOFRAME SDP Version Number */
5169 	if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5170 		return -EINVAL;
5171 
5172 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
5173 	if (sdp->db[0] != 1)
5174 		return -EINVAL;
5175 
5176 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5177 	if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5178 		return -EINVAL;
5179 
5180 	ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5181 					     HDMI_DRM_INFOFRAME_SIZE);
5182 
5183 	return ret;
5184 }
5185 
5186 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5187 				  struct intel_crtc_state *crtc_state,
5188 				  struct drm_dp_vsc_sdp *vsc)
5189 {
5190 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5191 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5192 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5193 	unsigned int type = DP_SDP_VSC;
5194 	struct dp_sdp sdp = {};
5195 	int ret;
5196 
5197 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5198 	if (intel_psr_enabled(intel_dp))
5199 		return;
5200 
5201 	if ((crtc_state->infoframes.enable &
5202 	     intel_hdmi_infoframe_enable(type)) == 0)
5203 		return;
5204 
5205 	dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5206 
5207 	ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5208 
5209 	if (ret)
5210 		drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5211 }
5212 
5213 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5214 						     struct intel_crtc_state *crtc_state,
5215 						     struct hdmi_drm_infoframe *drm_infoframe)
5216 {
5217 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5218 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5219 	unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5220 	struct dp_sdp sdp = {};
5221 	int ret;
5222 
5223 	if ((crtc_state->infoframes.enable &
5224 	    intel_hdmi_infoframe_enable(type)) == 0)
5225 		return;
5226 
5227 	dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5228 				 sizeof(sdp));
5229 
5230 	ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5231 							 sizeof(sdp));
5232 
5233 	if (ret)
5234 		drm_dbg_kms(&dev_priv->drm,
5235 			    "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5236 }
5237 
5238 void intel_read_dp_sdp(struct intel_encoder *encoder,
5239 		       struct intel_crtc_state *crtc_state,
5240 		       unsigned int type)
5241 {
5242 	if (encoder->type != INTEL_OUTPUT_DDI)
5243 		return;
5244 
5245 	switch (type) {
5246 	case DP_SDP_VSC:
5247 		intel_read_dp_vsc_sdp(encoder, crtc_state,
5248 				      &crtc_state->infoframes.vsc);
5249 		break;
5250 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
5251 		intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5252 							 &crtc_state->infoframes.drm.drm);
5253 		break;
5254 	default:
5255 		MISSING_CASE(type);
5256 		break;
5257 	}
5258 }
5259 
5260 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5261 {
5262 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5263 	int status = 0;
5264 	int test_link_rate;
5265 	u8 test_lane_count, test_link_bw;
5266 	/* (DP CTS 1.2)
5267 	 * 4.3.1.11
5268 	 */
5269 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5270 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5271 				   &test_lane_count);
5272 
5273 	if (status <= 0) {
5274 		drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5275 		return DP_TEST_NAK;
5276 	}
5277 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5278 
5279 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5280 				   &test_link_bw);
5281 	if (status <= 0) {
5282 		drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5283 		return DP_TEST_NAK;
5284 	}
5285 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5286 
5287 	/* Validate the requested link rate and lane count */
5288 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5289 					test_lane_count))
5290 		return DP_TEST_NAK;
5291 
5292 	intel_dp->compliance.test_lane_count = test_lane_count;
5293 	intel_dp->compliance.test_link_rate = test_link_rate;
5294 
5295 	return DP_TEST_ACK;
5296 }
5297 
5298 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5299 {
5300 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5301 	u8 test_pattern;
5302 	u8 test_misc;
5303 	__be16 h_width, v_height;
5304 	int status = 0;
5305 
5306 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
5307 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5308 				   &test_pattern);
5309 	if (status <= 0) {
5310 		drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5311 		return DP_TEST_NAK;
5312 	}
5313 	if (test_pattern != DP_COLOR_RAMP)
5314 		return DP_TEST_NAK;
5315 
5316 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5317 				  &h_width, 2);
5318 	if (status <= 0) {
5319 		drm_dbg_kms(&i915->drm, "H Width read failed\n");
5320 		return DP_TEST_NAK;
5321 	}
5322 
5323 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5324 				  &v_height, 2);
5325 	if (status <= 0) {
5326 		drm_dbg_kms(&i915->drm, "V Height read failed\n");
5327 		return DP_TEST_NAK;
5328 	}
5329 
5330 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5331 				   &test_misc);
5332 	if (status <= 0) {
5333 		drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5334 		return DP_TEST_NAK;
5335 	}
5336 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5337 		return DP_TEST_NAK;
5338 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5339 		return DP_TEST_NAK;
5340 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5341 	case DP_TEST_BIT_DEPTH_6:
5342 		intel_dp->compliance.test_data.bpc = 6;
5343 		break;
5344 	case DP_TEST_BIT_DEPTH_8:
5345 		intel_dp->compliance.test_data.bpc = 8;
5346 		break;
5347 	default:
5348 		return DP_TEST_NAK;
5349 	}
5350 
5351 	intel_dp->compliance.test_data.video_pattern = test_pattern;
5352 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5353 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5354 	/* Set test active flag here so userspace doesn't interrupt things */
5355 	intel_dp->compliance.test_active = true;
5356 
5357 	return DP_TEST_ACK;
5358 }
5359 
5360 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5361 {
5362 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5363 	u8 test_result = DP_TEST_ACK;
5364 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5365 	struct drm_connector *connector = &intel_connector->base;
5366 
5367 	if (intel_connector->detect_edid == NULL ||
5368 	    connector->edid_corrupt ||
5369 	    intel_dp->aux.i2c_defer_count > 6) {
5370 		/* Check EDID read for NACKs, DEFERs and corruption
5371 		 * (DP CTS 1.2 Core r1.1)
5372 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
5373 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
5374 		 *    4.2.2.6 : EDID corruption detected
5375 		 * Use failsafe mode for all cases
5376 		 */
5377 		if (intel_dp->aux.i2c_nack_count > 0 ||
5378 			intel_dp->aux.i2c_defer_count > 0)
5379 			drm_dbg_kms(&i915->drm,
5380 				    "EDID read had %d NACKs, %d DEFERs\n",
5381 				    intel_dp->aux.i2c_nack_count,
5382 				    intel_dp->aux.i2c_defer_count);
5383 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5384 	} else {
5385 		struct edid *block = intel_connector->detect_edid;
5386 
5387 		/* We have to write the checksum
5388 		 * of the last block read
5389 		 */
5390 		block += intel_connector->detect_edid->extensions;
5391 
5392 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5393 				       block->checksum) <= 0)
5394 			drm_dbg_kms(&i915->drm,
5395 				    "Failed to write EDID checksum\n");
5396 
5397 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5398 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5399 	}
5400 
5401 	/* Set test active flag here so userspace doesn't interrupt things */
5402 	intel_dp->compliance.test_active = true;
5403 
5404 	return test_result;
5405 }
5406 
5407 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5408 {
5409 	struct drm_dp_phy_test_params *data =
5410 		&intel_dp->compliance.test_data.phytest;
5411 
5412 	if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5413 		DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5414 		return DP_TEST_NAK;
5415 	}
5416 
5417 	/*
5418 	 * link_mst is set to false to avoid executing mst related code
5419 	 * during compliance testing.
5420 	 */
5421 	intel_dp->link_mst = false;
5422 
5423 	return DP_TEST_ACK;
5424 }
5425 
5426 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5427 {
5428 	struct drm_i915_private *dev_priv =
5429 			to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5430 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5431 	struct drm_dp_phy_test_params *data =
5432 			&intel_dp->compliance.test_data.phytest;
5433 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5434 	enum pipe pipe = crtc->pipe;
5435 	u32 pattern_val;
5436 
5437 	switch (data->phy_pattern) {
5438 	case DP_PHY_TEST_PATTERN_NONE:
5439 		DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5440 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5441 		break;
5442 	case DP_PHY_TEST_PATTERN_D10_2:
5443 		DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5444 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5445 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5446 		break;
5447 	case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5448 		DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5449 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5450 			       DDI_DP_COMP_CTL_ENABLE |
5451 			       DDI_DP_COMP_CTL_SCRAMBLED_0);
5452 		break;
5453 	case DP_PHY_TEST_PATTERN_PRBS7:
5454 		DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5455 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5456 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5457 		break;
5458 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5459 		/*
5460 		 * FIXME: Ideally pattern should come from DPCD 0x250. As
5461 		 * current firmware of DPR-100 could not set it, so hardcoding
5462 		 * now for complaince test.
5463 		 */
5464 		DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5465 		pattern_val = 0x3e0f83e0;
5466 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5467 		pattern_val = 0x0f83e0f8;
5468 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5469 		pattern_val = 0x0000f83e;
5470 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5471 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5472 			       DDI_DP_COMP_CTL_ENABLE |
5473 			       DDI_DP_COMP_CTL_CUSTOM80);
5474 		break;
5475 	case DP_PHY_TEST_PATTERN_CP2520:
5476 		/*
5477 		 * FIXME: Ideally pattern should come from DPCD 0x24A. As
5478 		 * current firmware of DPR-100 could not set it, so hardcoding
5479 		 * now for complaince test.
5480 		 */
5481 		DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5482 		pattern_val = 0xFB;
5483 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5484 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5485 			       pattern_val);
5486 		break;
5487 	default:
5488 		WARN(1, "Invalid Phy Test Pattern\n");
5489 	}
5490 }
5491 
5492 static void
5493 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5494 {
5495 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5496 	struct drm_device *dev = dig_port->base.base.dev;
5497 	struct drm_i915_private *dev_priv = to_i915(dev);
5498 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5499 	enum pipe pipe = crtc->pipe;
5500 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5501 
5502 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5503 						 TRANS_DDI_FUNC_CTL(pipe));
5504 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5505 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5506 
5507 	trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5508 				      TGL_TRANS_DDI_PORT_MASK);
5509 	trans_conf_value &= ~PIPECONF_ENABLE;
5510 	dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5511 
5512 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5513 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5514 		       trans_ddi_func_ctl_value);
5515 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5516 }
5517 
5518 static void
5519 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5520 {
5521 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5522 	struct drm_device *dev = dig_port->base.base.dev;
5523 	struct drm_i915_private *dev_priv = to_i915(dev);
5524 	enum port port = dig_port->base.port;
5525 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5526 	enum pipe pipe = crtc->pipe;
5527 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5528 
5529 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5530 						 TRANS_DDI_FUNC_CTL(pipe));
5531 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5532 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5533 
5534 	trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5535 				    TGL_TRANS_DDI_SELECT_PORT(port);
5536 	trans_conf_value |= PIPECONF_ENABLE;
5537 	dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5538 
5539 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5540 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5541 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5542 		       trans_ddi_func_ctl_value);
5543 }
5544 
5545 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5546 {
5547 	struct drm_dp_phy_test_params *data =
5548 		&intel_dp->compliance.test_data.phytest;
5549 	u8 link_status[DP_LINK_STATUS_SIZE];
5550 
5551 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
5552 		DRM_DEBUG_KMS("failed to get link status\n");
5553 		return;
5554 	}
5555 
5556 	/* retrieve vswing & pre-emphasis setting */
5557 	intel_dp_get_adjust_train(intel_dp, link_status);
5558 
5559 	intel_dp_autotest_phy_ddi_disable(intel_dp);
5560 
5561 	intel_dp_set_signal_levels(intel_dp);
5562 
5563 	intel_dp_phy_pattern_update(intel_dp);
5564 
5565 	intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5566 
5567 	drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5568 				    link_status[DP_DPCD_REV]);
5569 }
5570 
5571 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5572 {
5573 	u8 test_result;
5574 
5575 	test_result = intel_dp_prepare_phytest(intel_dp);
5576 	if (test_result != DP_TEST_ACK)
5577 		DRM_ERROR("Phy test preparation failed\n");
5578 
5579 	intel_dp_process_phy_request(intel_dp);
5580 
5581 	return test_result;
5582 }
5583 
5584 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5585 {
5586 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5587 	u8 response = DP_TEST_NAK;
5588 	u8 request = 0;
5589 	int status;
5590 
5591 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5592 	if (status <= 0) {
5593 		drm_dbg_kms(&i915->drm,
5594 			    "Could not read test request from sink\n");
5595 		goto update_status;
5596 	}
5597 
5598 	switch (request) {
5599 	case DP_TEST_LINK_TRAINING:
5600 		drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5601 		response = intel_dp_autotest_link_training(intel_dp);
5602 		break;
5603 	case DP_TEST_LINK_VIDEO_PATTERN:
5604 		drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5605 		response = intel_dp_autotest_video_pattern(intel_dp);
5606 		break;
5607 	case DP_TEST_LINK_EDID_READ:
5608 		drm_dbg_kms(&i915->drm, "EDID test requested\n");
5609 		response = intel_dp_autotest_edid(intel_dp);
5610 		break;
5611 	case DP_TEST_LINK_PHY_TEST_PATTERN:
5612 		drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5613 		response = intel_dp_autotest_phy_pattern(intel_dp);
5614 		break;
5615 	default:
5616 		drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5617 			    request);
5618 		break;
5619 	}
5620 
5621 	if (response & DP_TEST_ACK)
5622 		intel_dp->compliance.test_type = request;
5623 
5624 update_status:
5625 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5626 	if (status <= 0)
5627 		drm_dbg_kms(&i915->drm,
5628 			    "Could not write test response to sink\n");
5629 }
5630 
5631 /**
5632  * intel_dp_check_mst_status - service any pending MST interrupts, check link status
5633  * @intel_dp: Intel DP struct
5634  *
5635  * Read any pending MST interrupts, call MST core to handle these and ack the
5636  * interrupts. Check if the main and AUX link state is ok.
5637  *
5638  * Returns:
5639  * - %true if pending interrupts were serviced (or no interrupts were
5640  *   pending) w/o detecting an error condition.
5641  * - %false if an error condition - like AUX failure or a loss of link - is
5642  *   detected, which needs servicing from the hotplug work.
5643  */
5644 static bool
5645 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5646 {
5647 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5648 	bool link_ok = true;
5649 
5650 	drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0);
5651 
5652 	for (;;) {
5653 		u8 esi[DP_DPRX_ESI_LEN] = {};
5654 		bool handled;
5655 		int retry;
5656 
5657 		if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) {
5658 			drm_dbg_kms(&i915->drm,
5659 				    "failed to get ESI - device may have failed\n");
5660 			link_ok = false;
5661 
5662 			break;
5663 		}
5664 
5665 		/* check link status - esi[10] = 0x200c */
5666 		if (intel_dp->active_mst_links > 0 && link_ok &&
5667 		    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5668 			drm_dbg_kms(&i915->drm,
5669 				    "channel EQ not ok, retraining\n");
5670 			link_ok = false;
5671 		}
5672 
5673 		drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5674 
5675 		drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5676 		if (!handled)
5677 			break;
5678 
5679 		for (retry = 0; retry < 3; retry++) {
5680 			int wret;
5681 
5682 			wret = drm_dp_dpcd_write(&intel_dp->aux,
5683 						 DP_SINK_COUNT_ESI+1,
5684 						 &esi[1], 3);
5685 			if (wret == 3)
5686 				break;
5687 		}
5688 	}
5689 
5690 	return link_ok;
5691 }
5692 
5693 static bool
5694 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5695 {
5696 	u8 link_status[DP_LINK_STATUS_SIZE];
5697 
5698 	if (!intel_dp->link_trained)
5699 		return false;
5700 
5701 	/*
5702 	 * While PSR source HW is enabled, it will control main-link sending
5703 	 * frames, enabling and disabling it so trying to do a retrain will fail
5704 	 * as the link would or not be on or it could mix training patterns
5705 	 * and frame data at the same time causing retrain to fail.
5706 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5707 	 * any link status error.
5708 	 */
5709 	if (intel_psr_enabled(intel_dp))
5710 		return false;
5711 
5712 	if (!intel_dp_get_link_status(intel_dp, link_status))
5713 		return false;
5714 
5715 	/*
5716 	 * Validate the cached values of intel_dp->link_rate and
5717 	 * intel_dp->lane_count before attempting to retrain.
5718 	 */
5719 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5720 					intel_dp->lane_count))
5721 		return false;
5722 
5723 	/* Retrain if Channel EQ or CR not ok */
5724 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5725 }
5726 
5727 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5728 				   const struct drm_connector_state *conn_state)
5729 {
5730 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5731 	struct intel_encoder *encoder;
5732 	enum pipe pipe;
5733 
5734 	if (!conn_state->best_encoder)
5735 		return false;
5736 
5737 	/* SST */
5738 	encoder = &dp_to_dig_port(intel_dp)->base;
5739 	if (conn_state->best_encoder == &encoder->base)
5740 		return true;
5741 
5742 	/* MST */
5743 	for_each_pipe(i915, pipe) {
5744 		encoder = &intel_dp->mst_encoders[pipe]->base;
5745 		if (conn_state->best_encoder == &encoder->base)
5746 			return true;
5747 	}
5748 
5749 	return false;
5750 }
5751 
5752 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5753 				      struct drm_modeset_acquire_ctx *ctx,
5754 				      u32 *crtc_mask)
5755 {
5756 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5757 	struct drm_connector_list_iter conn_iter;
5758 	struct intel_connector *connector;
5759 	int ret = 0;
5760 
5761 	*crtc_mask = 0;
5762 
5763 	if (!intel_dp_needs_link_retrain(intel_dp))
5764 		return 0;
5765 
5766 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5767 	for_each_intel_connector_iter(connector, &conn_iter) {
5768 		struct drm_connector_state *conn_state =
5769 			connector->base.state;
5770 		struct intel_crtc_state *crtc_state;
5771 		struct intel_crtc *crtc;
5772 
5773 		if (!intel_dp_has_connector(intel_dp, conn_state))
5774 			continue;
5775 
5776 		crtc = to_intel_crtc(conn_state->crtc);
5777 		if (!crtc)
5778 			continue;
5779 
5780 		ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5781 		if (ret)
5782 			break;
5783 
5784 		crtc_state = to_intel_crtc_state(crtc->base.state);
5785 
5786 		drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5787 
5788 		if (!crtc_state->hw.active)
5789 			continue;
5790 
5791 		if (conn_state->commit &&
5792 		    !try_wait_for_completion(&conn_state->commit->hw_done))
5793 			continue;
5794 
5795 		*crtc_mask |= drm_crtc_mask(&crtc->base);
5796 	}
5797 	drm_connector_list_iter_end(&conn_iter);
5798 
5799 	if (!intel_dp_needs_link_retrain(intel_dp))
5800 		*crtc_mask = 0;
5801 
5802 	return ret;
5803 }
5804 
5805 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5806 {
5807 	struct intel_connector *connector = intel_dp->attached_connector;
5808 
5809 	return connector->base.status == connector_status_connected ||
5810 		intel_dp->is_mst;
5811 }
5812 
5813 int intel_dp_retrain_link(struct intel_encoder *encoder,
5814 			  struct drm_modeset_acquire_ctx *ctx)
5815 {
5816 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5817 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5818 	struct intel_crtc *crtc;
5819 	u32 crtc_mask;
5820 	int ret;
5821 
5822 	if (!intel_dp_is_connected(intel_dp))
5823 		return 0;
5824 
5825 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5826 			       ctx);
5827 	if (ret)
5828 		return ret;
5829 
5830 	ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5831 	if (ret)
5832 		return ret;
5833 
5834 	if (crtc_mask == 0)
5835 		return 0;
5836 
5837 	drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5838 		    encoder->base.base.id, encoder->base.name);
5839 
5840 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5841 		const struct intel_crtc_state *crtc_state =
5842 			to_intel_crtc_state(crtc->base.state);
5843 
5844 		/* Suppress underruns caused by re-training */
5845 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5846 		if (crtc_state->has_pch_encoder)
5847 			intel_set_pch_fifo_underrun_reporting(dev_priv,
5848 							      intel_crtc_pch_transcoder(crtc), false);
5849 	}
5850 
5851 	intel_dp_start_link_train(intel_dp);
5852 	intel_dp_stop_link_train(intel_dp);
5853 
5854 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5855 		const struct intel_crtc_state *crtc_state =
5856 			to_intel_crtc_state(crtc->base.state);
5857 
5858 		/* Keep underrun reporting disabled until things are stable */
5859 		intel_wait_for_vblank(dev_priv, crtc->pipe);
5860 
5861 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5862 		if (crtc_state->has_pch_encoder)
5863 			intel_set_pch_fifo_underrun_reporting(dev_priv,
5864 							      intel_crtc_pch_transcoder(crtc), true);
5865 	}
5866 
5867 	return 0;
5868 }
5869 
5870 /*
5871  * If display is now connected check links status,
5872  * there has been known issues of link loss triggering
5873  * long pulse.
5874  *
5875  * Some sinks (eg. ASUS PB287Q) seem to perform some
5876  * weird HPD ping pong during modesets. So we can apparently
5877  * end up with HPD going low during a modeset, and then
5878  * going back up soon after. And once that happens we must
5879  * retrain the link to get a picture. That's in case no
5880  * userspace component reacted to intermittent HPD dip.
5881  */
5882 static enum intel_hotplug_state
5883 intel_dp_hotplug(struct intel_encoder *encoder,
5884 		 struct intel_connector *connector)
5885 {
5886 	struct drm_modeset_acquire_ctx ctx;
5887 	enum intel_hotplug_state state;
5888 	int ret;
5889 
5890 	state = intel_encoder_hotplug(encoder, connector);
5891 
5892 	drm_modeset_acquire_init(&ctx, 0);
5893 
5894 	for (;;) {
5895 		ret = intel_dp_retrain_link(encoder, &ctx);
5896 
5897 		if (ret == -EDEADLK) {
5898 			drm_modeset_backoff(&ctx);
5899 			continue;
5900 		}
5901 
5902 		break;
5903 	}
5904 
5905 	drm_modeset_drop_locks(&ctx);
5906 	drm_modeset_acquire_fini(&ctx);
5907 	drm_WARN(encoder->base.dev, ret,
5908 		 "Acquiring modeset locks failed with %i\n", ret);
5909 
5910 	/*
5911 	 * Keeping it consistent with intel_ddi_hotplug() and
5912 	 * intel_hdmi_hotplug().
5913 	 */
5914 	if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5915 		state = INTEL_HOTPLUG_RETRY;
5916 
5917 	return state;
5918 }
5919 
5920 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5921 {
5922 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5923 	u8 val;
5924 
5925 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5926 		return;
5927 
5928 	if (drm_dp_dpcd_readb(&intel_dp->aux,
5929 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5930 		return;
5931 
5932 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5933 
5934 	if (val & DP_AUTOMATED_TEST_REQUEST)
5935 		intel_dp_handle_test_request(intel_dp);
5936 
5937 	if (val & DP_CP_IRQ)
5938 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5939 
5940 	if (val & DP_SINK_SPECIFIC_IRQ)
5941 		drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5942 }
5943 
5944 /*
5945  * According to DP spec
5946  * 5.1.2:
5947  *  1. Read DPCD
5948  *  2. Configure link according to Receiver Capabilities
5949  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5950  *  4. Check link status on receipt of hot-plug interrupt
5951  *
5952  * intel_dp_short_pulse -  handles short pulse interrupts
5953  * when full detection is not required.
5954  * Returns %true if short pulse is handled and full detection
5955  * is NOT required and %false otherwise.
5956  */
5957 static bool
5958 intel_dp_short_pulse(struct intel_dp *intel_dp)
5959 {
5960 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5961 	u8 old_sink_count = intel_dp->sink_count;
5962 	bool ret;
5963 
5964 	/*
5965 	 * Clearing compliance test variables to allow capturing
5966 	 * of values for next automated test request.
5967 	 */
5968 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5969 
5970 	/*
5971 	 * Now read the DPCD to see if it's actually running
5972 	 * If the current value of sink count doesn't match with
5973 	 * the value that was stored earlier or dpcd read failed
5974 	 * we need to do full detection
5975 	 */
5976 	ret = intel_dp_get_dpcd(intel_dp);
5977 
5978 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
5979 		/* No need to proceed if we are going to do full detect */
5980 		return false;
5981 	}
5982 
5983 	intel_dp_check_service_irq(intel_dp);
5984 
5985 	/* Handle CEC interrupts, if any */
5986 	drm_dp_cec_irq(&intel_dp->aux);
5987 
5988 	/* defer to the hotplug work for link retraining if needed */
5989 	if (intel_dp_needs_link_retrain(intel_dp))
5990 		return false;
5991 
5992 	intel_psr_short_pulse(intel_dp);
5993 
5994 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5995 		drm_dbg_kms(&dev_priv->drm,
5996 			    "Link Training Compliance Test requested\n");
5997 		/* Send a Hotplug Uevent to userspace to start modeset */
5998 		drm_kms_helper_hotplug_event(&dev_priv->drm);
5999 	}
6000 
6001 	return true;
6002 }
6003 
6004 /* XXX this is probably wrong for multiple downstream ports */
6005 static enum drm_connector_status
6006 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
6007 {
6008 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6009 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6010 	u8 *dpcd = intel_dp->dpcd;
6011 	u8 type;
6012 
6013 	if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp)))
6014 		return connector_status_connected;
6015 
6016 	if (lspcon->active)
6017 		lspcon_resume(lspcon);
6018 
6019 	if (!intel_dp_get_dpcd(intel_dp))
6020 		return connector_status_disconnected;
6021 
6022 	/* if there's no downstream port, we're done */
6023 	if (!drm_dp_is_branch(dpcd))
6024 		return connector_status_connected;
6025 
6026 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
6027 	if (intel_dp_has_sink_count(intel_dp) &&
6028 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
6029 		return intel_dp->sink_count ?
6030 		connector_status_connected : connector_status_disconnected;
6031 	}
6032 
6033 	if (intel_dp_can_mst(intel_dp))
6034 		return connector_status_connected;
6035 
6036 	/* If no HPD, poke DDC gently */
6037 	if (drm_probe_ddc(&intel_dp->aux.ddc))
6038 		return connector_status_connected;
6039 
6040 	/* Well we tried, say unknown for unreliable port types */
6041 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
6042 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
6043 		if (type == DP_DS_PORT_TYPE_VGA ||
6044 		    type == DP_DS_PORT_TYPE_NON_EDID)
6045 			return connector_status_unknown;
6046 	} else {
6047 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6048 			DP_DWN_STRM_PORT_TYPE_MASK;
6049 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6050 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
6051 			return connector_status_unknown;
6052 	}
6053 
6054 	/* Anything else is out of spec, warn and ignore */
6055 	drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6056 	return connector_status_disconnected;
6057 }
6058 
6059 static enum drm_connector_status
6060 edp_detect(struct intel_dp *intel_dp)
6061 {
6062 	return connector_status_connected;
6063 }
6064 
6065 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6066 {
6067 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6068 	u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6069 
6070 	return intel_de_read(dev_priv, SDEISR) & bit;
6071 }
6072 
6073 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6074 {
6075 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6076 	u32 bit;
6077 
6078 	switch (encoder->hpd_pin) {
6079 	case HPD_PORT_B:
6080 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6081 		break;
6082 	case HPD_PORT_C:
6083 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6084 		break;
6085 	case HPD_PORT_D:
6086 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6087 		break;
6088 	default:
6089 		MISSING_CASE(encoder->hpd_pin);
6090 		return false;
6091 	}
6092 
6093 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6094 }
6095 
6096 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6097 {
6098 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6099 	u32 bit;
6100 
6101 	switch (encoder->hpd_pin) {
6102 	case HPD_PORT_B:
6103 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6104 		break;
6105 	case HPD_PORT_C:
6106 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6107 		break;
6108 	case HPD_PORT_D:
6109 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6110 		break;
6111 	default:
6112 		MISSING_CASE(encoder->hpd_pin);
6113 		return false;
6114 	}
6115 
6116 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6117 }
6118 
6119 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6120 {
6121 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6122 	u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6123 
6124 	return intel_de_read(dev_priv, DEISR) & bit;
6125 }
6126 
6127 /*
6128  * intel_digital_port_connected - is the specified port connected?
6129  * @encoder: intel_encoder
6130  *
6131  * In cases where there's a connector physically connected but it can't be used
6132  * by our hardware we also return false, since the rest of the driver should
6133  * pretty much treat the port as disconnected. This is relevant for type-C
6134  * (starting on ICL) where there's ownership involved.
6135  *
6136  * Return %true if port is connected, %false otherwise.
6137  */
6138 bool intel_digital_port_connected(struct intel_encoder *encoder)
6139 {
6140 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6141 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6142 	bool is_connected = false;
6143 	intel_wakeref_t wakeref;
6144 
6145 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6146 		is_connected = dig_port->connected(encoder);
6147 
6148 	return is_connected;
6149 }
6150 
6151 static struct edid *
6152 intel_dp_get_edid(struct intel_dp *intel_dp)
6153 {
6154 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6155 
6156 	/* use cached edid if we have one */
6157 	if (intel_connector->edid) {
6158 		/* invalid edid */
6159 		if (IS_ERR(intel_connector->edid))
6160 			return NULL;
6161 
6162 		return drm_edid_duplicate(intel_connector->edid);
6163 	} else
6164 		return drm_get_edid(&intel_connector->base,
6165 				    &intel_dp->aux.ddc);
6166 }
6167 
6168 static void
6169 intel_dp_update_dfp(struct intel_dp *intel_dp,
6170 		    const struct edid *edid)
6171 {
6172 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6173 	struct intel_connector *connector = intel_dp->attached_connector;
6174 
6175 	intel_dp->dfp.max_bpc =
6176 		drm_dp_downstream_max_bpc(intel_dp->dpcd,
6177 					  intel_dp->downstream_ports, edid);
6178 
6179 	intel_dp->dfp.max_dotclock =
6180 		drm_dp_downstream_max_dotclock(intel_dp->dpcd,
6181 					       intel_dp->downstream_ports);
6182 
6183 	intel_dp->dfp.min_tmds_clock =
6184 		drm_dp_downstream_min_tmds_clock(intel_dp->dpcd,
6185 						 intel_dp->downstream_ports,
6186 						 edid);
6187 	intel_dp->dfp.max_tmds_clock =
6188 		drm_dp_downstream_max_tmds_clock(intel_dp->dpcd,
6189 						 intel_dp->downstream_ports,
6190 						 edid);
6191 
6192 	drm_dbg_kms(&i915->drm,
6193 		    "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d\n",
6194 		    connector->base.base.id, connector->base.name,
6195 		    intel_dp->dfp.max_bpc,
6196 		    intel_dp->dfp.max_dotclock,
6197 		    intel_dp->dfp.min_tmds_clock,
6198 		    intel_dp->dfp.max_tmds_clock);
6199 }
6200 
6201 static void
6202 intel_dp_update_420(struct intel_dp *intel_dp)
6203 {
6204 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6205 	struct intel_connector *connector = intel_dp->attached_connector;
6206 	bool is_branch, ycbcr_420_passthrough, ycbcr_444_to_420;
6207 
6208 	/* No YCbCr output support on gmch platforms */
6209 	if (HAS_GMCH(i915))
6210 		return;
6211 
6212 	/*
6213 	 * ILK doesn't seem capable of DP YCbCr output. The
6214 	 * displayed image is severly corrupted. SNB+ is fine.
6215 	 */
6216 	if (IS_GEN(i915, 5))
6217 		return;
6218 
6219 	is_branch = drm_dp_is_branch(intel_dp->dpcd);
6220 	ycbcr_420_passthrough =
6221 		drm_dp_downstream_420_passthrough(intel_dp->dpcd,
6222 						  intel_dp->downstream_ports);
6223 	ycbcr_444_to_420 =
6224 		drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd,
6225 							intel_dp->downstream_ports);
6226 
6227 	if (INTEL_GEN(i915) >= 11) {
6228 		/* Prefer 4:2:0 passthrough over 4:4:4->4:2:0 conversion */
6229 		intel_dp->dfp.ycbcr_444_to_420 =
6230 			ycbcr_444_to_420 && !ycbcr_420_passthrough;
6231 
6232 		connector->base.ycbcr_420_allowed =
6233 			!is_branch || ycbcr_444_to_420 || ycbcr_420_passthrough;
6234 	} else {
6235 		/* 4:4:4->4:2:0 conversion is the only way */
6236 		intel_dp->dfp.ycbcr_444_to_420 = ycbcr_444_to_420;
6237 
6238 		connector->base.ycbcr_420_allowed = ycbcr_444_to_420;
6239 	}
6240 
6241 	drm_dbg_kms(&i915->drm,
6242 		    "[CONNECTOR:%d:%s] YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n",
6243 		    connector->base.base.id, connector->base.name,
6244 		    yesno(connector->base.ycbcr_420_allowed),
6245 		    yesno(intel_dp->dfp.ycbcr_444_to_420));
6246 }
6247 
6248 static void
6249 intel_dp_set_edid(struct intel_dp *intel_dp)
6250 {
6251 	struct intel_connector *connector = intel_dp->attached_connector;
6252 	struct edid *edid;
6253 
6254 	intel_dp_unset_edid(intel_dp);
6255 	edid = intel_dp_get_edid(intel_dp);
6256 	connector->detect_edid = edid;
6257 
6258 	intel_dp_update_dfp(intel_dp, edid);
6259 	intel_dp_update_420(intel_dp);
6260 
6261 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
6262 		intel_dp->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
6263 		intel_dp->has_audio = drm_detect_monitor_audio(edid);
6264 	}
6265 
6266 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
6267 	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6268 }
6269 
6270 static void
6271 intel_dp_unset_edid(struct intel_dp *intel_dp)
6272 {
6273 	struct intel_connector *connector = intel_dp->attached_connector;
6274 
6275 	drm_dp_cec_unset_edid(&intel_dp->aux);
6276 	kfree(connector->detect_edid);
6277 	connector->detect_edid = NULL;
6278 
6279 	intel_dp->has_hdmi_sink = false;
6280 	intel_dp->has_audio = false;
6281 	intel_dp->edid_quirks = 0;
6282 
6283 	intel_dp->dfp.max_bpc = 0;
6284 	intel_dp->dfp.max_dotclock = 0;
6285 	intel_dp->dfp.min_tmds_clock = 0;
6286 	intel_dp->dfp.max_tmds_clock = 0;
6287 
6288 	intel_dp->dfp.ycbcr_444_to_420 = false;
6289 	connector->base.ycbcr_420_allowed = false;
6290 }
6291 
6292 static int
6293 intel_dp_detect(struct drm_connector *connector,
6294 		struct drm_modeset_acquire_ctx *ctx,
6295 		bool force)
6296 {
6297 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6298 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6299 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6300 	struct intel_encoder *encoder = &dig_port->base;
6301 	enum drm_connector_status status;
6302 
6303 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6304 		    connector->base.id, connector->name);
6305 	drm_WARN_ON(&dev_priv->drm,
6306 		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6307 
6308 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
6309 		return connector_status_disconnected;
6310 
6311 	/* Can't disconnect eDP */
6312 	if (intel_dp_is_edp(intel_dp))
6313 		status = edp_detect(intel_dp);
6314 	else if (intel_digital_port_connected(encoder))
6315 		status = intel_dp_detect_dpcd(intel_dp);
6316 	else
6317 		status = connector_status_disconnected;
6318 
6319 	if (status == connector_status_disconnected) {
6320 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6321 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6322 
6323 		if (intel_dp->is_mst) {
6324 			drm_dbg_kms(&dev_priv->drm,
6325 				    "MST device may have disappeared %d vs %d\n",
6326 				    intel_dp->is_mst,
6327 				    intel_dp->mst_mgr.mst_state);
6328 			intel_dp->is_mst = false;
6329 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6330 							intel_dp->is_mst);
6331 		}
6332 
6333 		goto out;
6334 	}
6335 
6336 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6337 	if (INTEL_GEN(dev_priv) >= 11)
6338 		intel_dp_get_dsc_sink_cap(intel_dp);
6339 
6340 	intel_dp_configure_mst(intel_dp);
6341 
6342 	/*
6343 	 * TODO: Reset link params when switching to MST mode, until MST
6344 	 * supports link training fallback params.
6345 	 */
6346 	if (intel_dp->reset_link_params || intel_dp->is_mst) {
6347 		/* Initial max link lane count */
6348 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6349 
6350 		/* Initial max link rate */
6351 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6352 
6353 		intel_dp->reset_link_params = false;
6354 	}
6355 
6356 	intel_dp_print_rates(intel_dp);
6357 
6358 	if (intel_dp->is_mst) {
6359 		/*
6360 		 * If we are in MST mode then this connector
6361 		 * won't appear connected or have anything
6362 		 * with EDID on it
6363 		 */
6364 		status = connector_status_disconnected;
6365 		goto out;
6366 	}
6367 
6368 	/*
6369 	 * Some external monitors do not signal loss of link synchronization
6370 	 * with an IRQ_HPD, so force a link status check.
6371 	 */
6372 	if (!intel_dp_is_edp(intel_dp)) {
6373 		int ret;
6374 
6375 		ret = intel_dp_retrain_link(encoder, ctx);
6376 		if (ret)
6377 			return ret;
6378 	}
6379 
6380 	/*
6381 	 * Clearing NACK and defer counts to get their exact values
6382 	 * while reading EDID which are required by Compliance tests
6383 	 * 4.2.2.4 and 4.2.2.5
6384 	 */
6385 	intel_dp->aux.i2c_nack_count = 0;
6386 	intel_dp->aux.i2c_defer_count = 0;
6387 
6388 	intel_dp_set_edid(intel_dp);
6389 	if (intel_dp_is_edp(intel_dp) ||
6390 	    to_intel_connector(connector)->detect_edid)
6391 		status = connector_status_connected;
6392 
6393 	intel_dp_check_service_irq(intel_dp);
6394 
6395 out:
6396 	if (status != connector_status_connected && !intel_dp->is_mst)
6397 		intel_dp_unset_edid(intel_dp);
6398 
6399 	/*
6400 	 * Make sure the refs for power wells enabled during detect are
6401 	 * dropped to avoid a new detect cycle triggered by HPD polling.
6402 	 */
6403 	intel_display_power_flush_work(dev_priv);
6404 
6405 	if (!intel_dp_is_edp(intel_dp))
6406 		drm_dp_set_subconnector_property(connector,
6407 						 status,
6408 						 intel_dp->dpcd,
6409 						 intel_dp->downstream_ports);
6410 	return status;
6411 }
6412 
6413 static void
6414 intel_dp_force(struct drm_connector *connector)
6415 {
6416 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6417 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6418 	struct intel_encoder *intel_encoder = &dig_port->base;
6419 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6420 	enum intel_display_power_domain aux_domain =
6421 		intel_aux_power_domain(dig_port);
6422 	intel_wakeref_t wakeref;
6423 
6424 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6425 		    connector->base.id, connector->name);
6426 	intel_dp_unset_edid(intel_dp);
6427 
6428 	if (connector->status != connector_status_connected)
6429 		return;
6430 
6431 	wakeref = intel_display_power_get(dev_priv, aux_domain);
6432 
6433 	intel_dp_set_edid(intel_dp);
6434 
6435 	intel_display_power_put(dev_priv, aux_domain, wakeref);
6436 }
6437 
6438 static int intel_dp_get_modes(struct drm_connector *connector)
6439 {
6440 	struct intel_connector *intel_connector = to_intel_connector(connector);
6441 	struct edid *edid;
6442 
6443 	edid = intel_connector->detect_edid;
6444 	if (edid) {
6445 		int ret = intel_connector_update_modes(connector, edid);
6446 		if (ret)
6447 			return ret;
6448 	}
6449 
6450 	/* if eDP has no EDID, fall back to fixed mode */
6451 	if (intel_dp_is_edp(intel_attached_dp(intel_connector)) &&
6452 	    intel_connector->panel.fixed_mode) {
6453 		struct drm_display_mode *mode;
6454 
6455 		mode = drm_mode_duplicate(connector->dev,
6456 					  intel_connector->panel.fixed_mode);
6457 		if (mode) {
6458 			drm_mode_probed_add(connector, mode);
6459 			return 1;
6460 		}
6461 	}
6462 
6463 	if (!edid) {
6464 		struct intel_dp *intel_dp = intel_attached_dp(intel_connector);
6465 		struct drm_display_mode *mode;
6466 
6467 		mode = drm_dp_downstream_mode(connector->dev,
6468 					      intel_dp->dpcd,
6469 					      intel_dp->downstream_ports);
6470 		if (mode) {
6471 			drm_mode_probed_add(connector, mode);
6472 			return 1;
6473 		}
6474 	}
6475 
6476 	return 0;
6477 }
6478 
6479 static int
6480 intel_dp_connector_register(struct drm_connector *connector)
6481 {
6482 	struct drm_i915_private *i915 = to_i915(connector->dev);
6483 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6484 	int ret;
6485 
6486 	ret = intel_connector_register(connector);
6487 	if (ret)
6488 		return ret;
6489 
6490 	drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6491 		    intel_dp->aux.name, connector->kdev->kobj.name);
6492 
6493 	intel_dp->aux.dev = connector->kdev;
6494 	ret = drm_dp_aux_register(&intel_dp->aux);
6495 	if (!ret)
6496 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
6497 	return ret;
6498 }
6499 
6500 static void
6501 intel_dp_connector_unregister(struct drm_connector *connector)
6502 {
6503 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6504 
6505 	drm_dp_cec_unregister_connector(&intel_dp->aux);
6506 	drm_dp_aux_unregister(&intel_dp->aux);
6507 	intel_connector_unregister(connector);
6508 }
6509 
6510 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6511 {
6512 	struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6513 	struct intel_dp *intel_dp = &dig_port->dp;
6514 
6515 	intel_dp_mst_encoder_cleanup(dig_port);
6516 	if (intel_dp_is_edp(intel_dp)) {
6517 		intel_wakeref_t wakeref;
6518 
6519 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6520 		/*
6521 		 * vdd might still be enabled do to the delayed vdd off.
6522 		 * Make sure vdd is actually turned off here.
6523 		 */
6524 		with_pps_lock(intel_dp, wakeref)
6525 			edp_panel_vdd_off_sync(intel_dp);
6526 
6527 		if (intel_dp->edp_notifier.notifier_call) {
6528 			unregister_reboot_notifier(&intel_dp->edp_notifier);
6529 			intel_dp->edp_notifier.notifier_call = NULL;
6530 		}
6531 	}
6532 
6533 	intel_dp_aux_fini(intel_dp);
6534 }
6535 
6536 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6537 {
6538 	intel_dp_encoder_flush_work(encoder);
6539 
6540 	drm_encoder_cleanup(encoder);
6541 	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6542 }
6543 
6544 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6545 {
6546 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6547 	intel_wakeref_t wakeref;
6548 
6549 	if (!intel_dp_is_edp(intel_dp))
6550 		return;
6551 
6552 	/*
6553 	 * vdd might still be enabled do to the delayed vdd off.
6554 	 * Make sure vdd is actually turned off here.
6555 	 */
6556 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6557 	with_pps_lock(intel_dp, wakeref)
6558 		edp_panel_vdd_off_sync(intel_dp);
6559 }
6560 
6561 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6562 {
6563 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6564 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6565 
6566 	lockdep_assert_held(&dev_priv->pps_mutex);
6567 
6568 	if (!edp_have_panel_vdd(intel_dp))
6569 		return;
6570 
6571 	/*
6572 	 * The VDD bit needs a power domain reference, so if the bit is
6573 	 * already enabled when we boot or resume, grab this reference and
6574 	 * schedule a vdd off, so we don't hold on to the reference
6575 	 * indefinitely.
6576 	 */
6577 	drm_dbg_kms(&dev_priv->drm,
6578 		    "VDD left on by BIOS, adjusting state tracking\n");
6579 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6580 
6581 	edp_panel_vdd_schedule_off(intel_dp);
6582 }
6583 
6584 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6585 {
6586 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6587 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6588 	enum pipe pipe;
6589 
6590 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6591 				  encoder->port, &pipe))
6592 		return pipe;
6593 
6594 	return INVALID_PIPE;
6595 }
6596 
6597 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6598 {
6599 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6600 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6601 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6602 	intel_wakeref_t wakeref;
6603 
6604 	if (!HAS_DDI(dev_priv))
6605 		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6606 
6607 	if (lspcon->active)
6608 		lspcon_resume(lspcon);
6609 
6610 	intel_dp->reset_link_params = true;
6611 
6612 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6613 	    !intel_dp_is_edp(intel_dp))
6614 		return;
6615 
6616 	with_pps_lock(intel_dp, wakeref) {
6617 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6618 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6619 
6620 		if (intel_dp_is_edp(intel_dp)) {
6621 			/*
6622 			 * Reinit the power sequencer, in case BIOS did
6623 			 * something nasty with it.
6624 			 */
6625 			intel_dp_pps_init(intel_dp);
6626 			intel_edp_panel_vdd_sanitize(intel_dp);
6627 		}
6628 	}
6629 }
6630 
6631 static int intel_modeset_tile_group(struct intel_atomic_state *state,
6632 				    int tile_group_id)
6633 {
6634 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6635 	struct drm_connector_list_iter conn_iter;
6636 	struct drm_connector *connector;
6637 	int ret = 0;
6638 
6639 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
6640 	drm_for_each_connector_iter(connector, &conn_iter) {
6641 		struct drm_connector_state *conn_state;
6642 		struct intel_crtc_state *crtc_state;
6643 		struct intel_crtc *crtc;
6644 
6645 		if (!connector->has_tile ||
6646 		    connector->tile_group->id != tile_group_id)
6647 			continue;
6648 
6649 		conn_state = drm_atomic_get_connector_state(&state->base,
6650 							    connector);
6651 		if (IS_ERR(conn_state)) {
6652 			ret = PTR_ERR(conn_state);
6653 			break;
6654 		}
6655 
6656 		crtc = to_intel_crtc(conn_state->crtc);
6657 
6658 		if (!crtc)
6659 			continue;
6660 
6661 		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
6662 		crtc_state->uapi.mode_changed = true;
6663 
6664 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6665 		if (ret)
6666 			break;
6667 	}
6668 	drm_connector_list_iter_end(&conn_iter);
6669 
6670 	return ret;
6671 }
6672 
6673 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
6674 {
6675 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6676 	struct intel_crtc *crtc;
6677 
6678 	if (transcoders == 0)
6679 		return 0;
6680 
6681 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6682 		struct intel_crtc_state *crtc_state;
6683 		int ret;
6684 
6685 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
6686 		if (IS_ERR(crtc_state))
6687 			return PTR_ERR(crtc_state);
6688 
6689 		if (!crtc_state->hw.enable)
6690 			continue;
6691 
6692 		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
6693 			continue;
6694 
6695 		crtc_state->uapi.mode_changed = true;
6696 
6697 		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
6698 		if (ret)
6699 			return ret;
6700 
6701 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6702 		if (ret)
6703 			return ret;
6704 
6705 		transcoders &= ~BIT(crtc_state->cpu_transcoder);
6706 	}
6707 
6708 	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
6709 
6710 	return 0;
6711 }
6712 
6713 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
6714 				      struct drm_connector *connector)
6715 {
6716 	const struct drm_connector_state *old_conn_state =
6717 		drm_atomic_get_old_connector_state(&state->base, connector);
6718 	const struct intel_crtc_state *old_crtc_state;
6719 	struct intel_crtc *crtc;
6720 	u8 transcoders;
6721 
6722 	crtc = to_intel_crtc(old_conn_state->crtc);
6723 	if (!crtc)
6724 		return 0;
6725 
6726 	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
6727 
6728 	if (!old_crtc_state->hw.active)
6729 		return 0;
6730 
6731 	transcoders = old_crtc_state->sync_mode_slaves_mask;
6732 	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
6733 		transcoders |= BIT(old_crtc_state->master_transcoder);
6734 
6735 	return intel_modeset_affected_transcoders(state,
6736 						  transcoders);
6737 }
6738 
6739 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
6740 					   struct drm_atomic_state *_state)
6741 {
6742 	struct drm_i915_private *dev_priv = to_i915(conn->dev);
6743 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
6744 	int ret;
6745 
6746 	ret = intel_digital_connector_atomic_check(conn, &state->base);
6747 	if (ret)
6748 		return ret;
6749 
6750 	/*
6751 	 * We don't enable port sync on BDW due to missing w/as and
6752 	 * due to not having adjusted the modeset sequence appropriately.
6753 	 */
6754 	if (INTEL_GEN(dev_priv) < 9)
6755 		return 0;
6756 
6757 	if (!intel_connector_needs_modeset(state, conn))
6758 		return 0;
6759 
6760 	if (conn->has_tile) {
6761 		ret = intel_modeset_tile_group(state, conn->tile_group->id);
6762 		if (ret)
6763 			return ret;
6764 	}
6765 
6766 	return intel_modeset_synced_crtcs(state, conn);
6767 }
6768 
6769 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6770 	.force = intel_dp_force,
6771 	.fill_modes = drm_helper_probe_single_connector_modes,
6772 	.atomic_get_property = intel_digital_connector_atomic_get_property,
6773 	.atomic_set_property = intel_digital_connector_atomic_set_property,
6774 	.late_register = intel_dp_connector_register,
6775 	.early_unregister = intel_dp_connector_unregister,
6776 	.destroy = intel_connector_destroy,
6777 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6778 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6779 };
6780 
6781 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6782 	.detect_ctx = intel_dp_detect,
6783 	.get_modes = intel_dp_get_modes,
6784 	.mode_valid = intel_dp_mode_valid,
6785 	.atomic_check = intel_dp_connector_atomic_check,
6786 };
6787 
6788 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6789 	.reset = intel_dp_encoder_reset,
6790 	.destroy = intel_dp_encoder_destroy,
6791 };
6792 
6793 static bool intel_edp_have_power(struct intel_dp *intel_dp)
6794 {
6795 	intel_wakeref_t wakeref;
6796 	bool have_power = false;
6797 
6798 	with_pps_lock(intel_dp, wakeref) {
6799 		have_power = edp_have_panel_power(intel_dp) &&
6800 						  edp_have_panel_vdd(intel_dp);
6801 	}
6802 
6803 	return have_power;
6804 }
6805 
6806 enum irqreturn
6807 intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd)
6808 {
6809 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6810 	struct intel_dp *intel_dp = &dig_port->dp;
6811 
6812 	if (dig_port->base.type == INTEL_OUTPUT_EDP &&
6813 	    (long_hpd || !intel_edp_have_power(intel_dp))) {
6814 		/*
6815 		 * vdd off can generate a long/short pulse on eDP which
6816 		 * would require vdd on to handle it, and thus we
6817 		 * would end up in an endless cycle of
6818 		 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
6819 		 */
6820 		drm_dbg_kms(&i915->drm,
6821 			    "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
6822 			    long_hpd ? "long" : "short",
6823 			    dig_port->base.base.base.id,
6824 			    dig_port->base.base.name);
6825 		return IRQ_HANDLED;
6826 	}
6827 
6828 	drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
6829 		    dig_port->base.base.base.id,
6830 		    dig_port->base.base.name,
6831 		    long_hpd ? "long" : "short");
6832 
6833 	if (long_hpd) {
6834 		intel_dp->reset_link_params = true;
6835 		return IRQ_NONE;
6836 	}
6837 
6838 	if (intel_dp->is_mst) {
6839 		if (!intel_dp_check_mst_status(intel_dp))
6840 			return IRQ_NONE;
6841 	} else if (!intel_dp_short_pulse(intel_dp)) {
6842 		return IRQ_NONE;
6843 	}
6844 
6845 	return IRQ_HANDLED;
6846 }
6847 
6848 /* check the VBT to see whether the eDP is on another port */
6849 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6850 {
6851 	/*
6852 	 * eDP not supported on g4x. so bail out early just
6853 	 * for a bit extra safety in case the VBT is bonkers.
6854 	 */
6855 	if (INTEL_GEN(dev_priv) < 5)
6856 		return false;
6857 
6858 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6859 		return true;
6860 
6861 	return intel_bios_is_port_edp(dev_priv, port);
6862 }
6863 
6864 static void
6865 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6866 {
6867 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6868 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6869 
6870 	if (!intel_dp_is_edp(intel_dp))
6871 		drm_connector_attach_dp_subconnector_property(connector);
6872 
6873 	if (!IS_G4X(dev_priv) && port != PORT_A)
6874 		intel_attach_force_audio_property(connector);
6875 
6876 	intel_attach_broadcast_rgb_property(connector);
6877 	if (HAS_GMCH(dev_priv))
6878 		drm_connector_attach_max_bpc_property(connector, 6, 10);
6879 	else if (INTEL_GEN(dev_priv) >= 5)
6880 		drm_connector_attach_max_bpc_property(connector, 6, 12);
6881 
6882 	intel_attach_colorspace_property(connector);
6883 
6884 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6885 		drm_object_attach_property(&connector->base,
6886 					   connector->dev->mode_config.hdr_output_metadata_property,
6887 					   0);
6888 
6889 	if (intel_dp_is_edp(intel_dp)) {
6890 		u32 allowed_scalers;
6891 
6892 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6893 		if (!HAS_GMCH(dev_priv))
6894 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6895 
6896 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6897 
6898 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6899 
6900 	}
6901 }
6902 
6903 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6904 {
6905 	intel_dp->panel_power_off_time = ktime_get_boottime();
6906 	intel_dp->last_power_on = jiffies;
6907 	intel_dp->last_backlight_off = jiffies;
6908 }
6909 
6910 static void
6911 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6912 {
6913 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6914 	u32 pp_on, pp_off, pp_ctl;
6915 	struct pps_registers regs;
6916 
6917 	intel_pps_get_registers(intel_dp, &regs);
6918 
6919 	pp_ctl = ilk_get_pp_control(intel_dp);
6920 
6921 	/* Ensure PPS is unlocked */
6922 	if (!HAS_DDI(dev_priv))
6923 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
6924 
6925 	pp_on = intel_de_read(dev_priv, regs.pp_on);
6926 	pp_off = intel_de_read(dev_priv, regs.pp_off);
6927 
6928 	/* Pull timing values out of registers */
6929 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6930 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6931 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6932 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6933 
6934 	if (i915_mmio_reg_valid(regs.pp_div)) {
6935 		u32 pp_div;
6936 
6937 		pp_div = intel_de_read(dev_priv, regs.pp_div);
6938 
6939 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6940 	} else {
6941 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6942 	}
6943 }
6944 
6945 static void
6946 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6947 {
6948 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6949 		      state_name,
6950 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6951 }
6952 
6953 static void
6954 intel_pps_verify_state(struct intel_dp *intel_dp)
6955 {
6956 	struct edp_power_seq hw;
6957 	struct edp_power_seq *sw = &intel_dp->pps_delays;
6958 
6959 	intel_pps_readout_hw_state(intel_dp, &hw);
6960 
6961 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6962 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6963 		DRM_ERROR("PPS state mismatch\n");
6964 		intel_pps_dump_state("sw", sw);
6965 		intel_pps_dump_state("hw", &hw);
6966 	}
6967 }
6968 
6969 static void
6970 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6971 {
6972 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6973 	struct edp_power_seq cur, vbt, spec,
6974 		*final = &intel_dp->pps_delays;
6975 
6976 	lockdep_assert_held(&dev_priv->pps_mutex);
6977 
6978 	/* already initialized? */
6979 	if (final->t11_t12 != 0)
6980 		return;
6981 
6982 	intel_pps_readout_hw_state(intel_dp, &cur);
6983 
6984 	intel_pps_dump_state("cur", &cur);
6985 
6986 	vbt = dev_priv->vbt.edp.pps;
6987 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6988 	 * of 500ms appears to be too short. Ocassionally the panel
6989 	 * just fails to power back on. Increasing the delay to 800ms
6990 	 * seems sufficient to avoid this problem.
6991 	 */
6992 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6993 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6994 		drm_dbg_kms(&dev_priv->drm,
6995 			    "Increasing T12 panel delay as per the quirk to %d\n",
6996 			    vbt.t11_t12);
6997 	}
6998 	/* T11_T12 delay is special and actually in units of 100ms, but zero
6999 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7000 	 * table multiplies it with 1000 to make it in units of 100usec,
7001 	 * too. */
7002 	vbt.t11_t12 += 100 * 10;
7003 
7004 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7005 	 * our hw here, which are all in 100usec. */
7006 	spec.t1_t3 = 210 * 10;
7007 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7008 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7009 	spec.t10 = 500 * 10;
7010 	/* This one is special and actually in units of 100ms, but zero
7011 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7012 	 * table multiplies it with 1000 to make it in units of 100usec,
7013 	 * too. */
7014 	spec.t11_t12 = (510 + 100) * 10;
7015 
7016 	intel_pps_dump_state("vbt", &vbt);
7017 
7018 	/* Use the max of the register settings and vbt. If both are
7019 	 * unset, fall back to the spec limits. */
7020 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
7021 				       spec.field : \
7022 				       max(cur.field, vbt.field))
7023 	assign_final(t1_t3);
7024 	assign_final(t8);
7025 	assign_final(t9);
7026 	assign_final(t10);
7027 	assign_final(t11_t12);
7028 #undef assign_final
7029 
7030 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
7031 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
7032 	intel_dp->backlight_on_delay = get_delay(t8);
7033 	intel_dp->backlight_off_delay = get_delay(t9);
7034 	intel_dp->panel_power_down_delay = get_delay(t10);
7035 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7036 #undef get_delay
7037 
7038 	drm_dbg_kms(&dev_priv->drm,
7039 		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7040 		    intel_dp->panel_power_up_delay,
7041 		    intel_dp->panel_power_down_delay,
7042 		    intel_dp->panel_power_cycle_delay);
7043 
7044 	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7045 		    intel_dp->backlight_on_delay,
7046 		    intel_dp->backlight_off_delay);
7047 
7048 	/*
7049 	 * We override the HW backlight delays to 1 because we do manual waits
7050 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
7051 	 * don't do this, we'll end up waiting for the backlight off delay
7052 	 * twice: once when we do the manual sleep, and once when we disable
7053 	 * the panel and wait for the PP_STATUS bit to become zero.
7054 	 */
7055 	final->t8 = 1;
7056 	final->t9 = 1;
7057 
7058 	/*
7059 	 * HW has only a 100msec granularity for t11_t12 so round it up
7060 	 * accordingly.
7061 	 */
7062 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7063 }
7064 
7065 static void
7066 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7067 					      bool force_disable_vdd)
7068 {
7069 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7070 	u32 pp_on, pp_off, port_sel = 0;
7071 	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7072 	struct pps_registers regs;
7073 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7074 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7075 
7076 	lockdep_assert_held(&dev_priv->pps_mutex);
7077 
7078 	intel_pps_get_registers(intel_dp, &regs);
7079 
7080 	/*
7081 	 * On some VLV machines the BIOS can leave the VDD
7082 	 * enabled even on power sequencers which aren't
7083 	 * hooked up to any port. This would mess up the
7084 	 * power domain tracking the first time we pick
7085 	 * one of these power sequencers for use since
7086 	 * edp_panel_vdd_on() would notice that the VDD was
7087 	 * already on and therefore wouldn't grab the power
7088 	 * domain reference. Disable VDD first to avoid this.
7089 	 * This also avoids spuriously turning the VDD on as
7090 	 * soon as the new power sequencer gets initialized.
7091 	 */
7092 	if (force_disable_vdd) {
7093 		u32 pp = ilk_get_pp_control(intel_dp);
7094 
7095 		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7096 			 "Panel power already on\n");
7097 
7098 		if (pp & EDP_FORCE_VDD)
7099 			drm_dbg_kms(&dev_priv->drm,
7100 				    "VDD already on, disabling first\n");
7101 
7102 		pp &= ~EDP_FORCE_VDD;
7103 
7104 		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7105 	}
7106 
7107 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7108 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7109 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7110 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7111 
7112 	/* Haswell doesn't have any port selection bits for the panel
7113 	 * power sequencer any more. */
7114 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7115 		port_sel = PANEL_PORT_SELECT_VLV(port);
7116 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7117 		switch (port) {
7118 		case PORT_A:
7119 			port_sel = PANEL_PORT_SELECT_DPA;
7120 			break;
7121 		case PORT_C:
7122 			port_sel = PANEL_PORT_SELECT_DPC;
7123 			break;
7124 		case PORT_D:
7125 			port_sel = PANEL_PORT_SELECT_DPD;
7126 			break;
7127 		default:
7128 			MISSING_CASE(port);
7129 			break;
7130 		}
7131 	}
7132 
7133 	pp_on |= port_sel;
7134 
7135 	intel_de_write(dev_priv, regs.pp_on, pp_on);
7136 	intel_de_write(dev_priv, regs.pp_off, pp_off);
7137 
7138 	/*
7139 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
7140 	 */
7141 	if (i915_mmio_reg_valid(regs.pp_div)) {
7142 		intel_de_write(dev_priv, regs.pp_div,
7143 			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7144 	} else {
7145 		u32 pp_ctl;
7146 
7147 		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7148 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7149 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7150 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7151 	}
7152 
7153 	drm_dbg_kms(&dev_priv->drm,
7154 		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7155 		    intel_de_read(dev_priv, regs.pp_on),
7156 		    intel_de_read(dev_priv, regs.pp_off),
7157 		    i915_mmio_reg_valid(regs.pp_div) ?
7158 		    intel_de_read(dev_priv, regs.pp_div) :
7159 		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7160 }
7161 
7162 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7163 {
7164 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7165 
7166 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7167 		vlv_initial_power_sequencer_setup(intel_dp);
7168 	} else {
7169 		intel_dp_init_panel_power_sequencer(intel_dp);
7170 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7171 	}
7172 }
7173 
7174 /**
7175  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7176  * @dev_priv: i915 device
7177  * @crtc_state: a pointer to the active intel_crtc_state
7178  * @refresh_rate: RR to be programmed
7179  *
7180  * This function gets called when refresh rate (RR) has to be changed from
7181  * one frequency to another. Switches can be between high and low RR
7182  * supported by the panel or to any other RR based on media playback (in
7183  * this case, RR value needs to be passed from user space).
7184  *
7185  * The caller of this function needs to take a lock on dev_priv->drrs.
7186  */
7187 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7188 				    const struct intel_crtc_state *crtc_state,
7189 				    int refresh_rate)
7190 {
7191 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7192 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7193 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7194 
7195 	if (refresh_rate <= 0) {
7196 		drm_dbg_kms(&dev_priv->drm,
7197 			    "Refresh rate should be positive non-zero.\n");
7198 		return;
7199 	}
7200 
7201 	if (intel_dp == NULL) {
7202 		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7203 		return;
7204 	}
7205 
7206 	if (!intel_crtc) {
7207 		drm_dbg_kms(&dev_priv->drm,
7208 			    "DRRS: intel_crtc not initialized\n");
7209 		return;
7210 	}
7211 
7212 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7213 		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7214 		return;
7215 	}
7216 
7217 	if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) ==
7218 			refresh_rate)
7219 		index = DRRS_LOW_RR;
7220 
7221 	if (index == dev_priv->drrs.refresh_rate_type) {
7222 		drm_dbg_kms(&dev_priv->drm,
7223 			    "DRRS requested for previously set RR...ignoring\n");
7224 		return;
7225 	}
7226 
7227 	if (!crtc_state->hw.active) {
7228 		drm_dbg_kms(&dev_priv->drm,
7229 			    "eDP encoder disabled. CRTC not Active\n");
7230 		return;
7231 	}
7232 
7233 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7234 		switch (index) {
7235 		case DRRS_HIGH_RR:
7236 			intel_dp_set_m_n(crtc_state, M1_N1);
7237 			break;
7238 		case DRRS_LOW_RR:
7239 			intel_dp_set_m_n(crtc_state, M2_N2);
7240 			break;
7241 		case DRRS_MAX_RR:
7242 		default:
7243 			drm_err(&dev_priv->drm,
7244 				"Unsupported refreshrate type\n");
7245 		}
7246 	} else if (INTEL_GEN(dev_priv) > 6) {
7247 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7248 		u32 val;
7249 
7250 		val = intel_de_read(dev_priv, reg);
7251 		if (index > DRRS_HIGH_RR) {
7252 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7253 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7254 			else
7255 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7256 		} else {
7257 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7258 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7259 			else
7260 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7261 		}
7262 		intel_de_write(dev_priv, reg, val);
7263 	}
7264 
7265 	dev_priv->drrs.refresh_rate_type = index;
7266 
7267 	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7268 		    refresh_rate);
7269 }
7270 
7271 static void
7272 intel_edp_drrs_enable_locked(struct intel_dp *intel_dp)
7273 {
7274 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7275 
7276 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7277 	dev_priv->drrs.dp = intel_dp;
7278 }
7279 
7280 /**
7281  * intel_edp_drrs_enable - init drrs struct if supported
7282  * @intel_dp: DP struct
7283  * @crtc_state: A pointer to the active crtc state.
7284  *
7285  * Initializes frontbuffer_bits and drrs.dp
7286  */
7287 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7288 			   const struct intel_crtc_state *crtc_state)
7289 {
7290 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7291 
7292 	if (!crtc_state->has_drrs)
7293 		return;
7294 
7295 	drm_dbg_kms(&dev_priv->drm, "Enabling DRRS\n");
7296 
7297 	mutex_lock(&dev_priv->drrs.mutex);
7298 
7299 	if (dev_priv->drrs.dp) {
7300 		drm_warn(&dev_priv->drm, "DRRS already enabled\n");
7301 		goto unlock;
7302 	}
7303 
7304 	intel_edp_drrs_enable_locked(intel_dp);
7305 
7306 unlock:
7307 	mutex_unlock(&dev_priv->drrs.mutex);
7308 }
7309 
7310 static void
7311 intel_edp_drrs_disable_locked(struct intel_dp *intel_dp,
7312 			      const struct intel_crtc_state *crtc_state)
7313 {
7314 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7315 
7316 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
7317 		int refresh;
7318 
7319 		refresh = drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode);
7320 		intel_dp_set_drrs_state(dev_priv, crtc_state, refresh);
7321 	}
7322 
7323 	dev_priv->drrs.dp = NULL;
7324 }
7325 
7326 /**
7327  * intel_edp_drrs_disable - Disable DRRS
7328  * @intel_dp: DP struct
7329  * @old_crtc_state: Pointer to old crtc_state.
7330  *
7331  */
7332 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7333 			    const struct intel_crtc_state *old_crtc_state)
7334 {
7335 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7336 
7337 	if (!old_crtc_state->has_drrs)
7338 		return;
7339 
7340 	mutex_lock(&dev_priv->drrs.mutex);
7341 	if (!dev_priv->drrs.dp) {
7342 		mutex_unlock(&dev_priv->drrs.mutex);
7343 		return;
7344 	}
7345 
7346 	intel_edp_drrs_disable_locked(intel_dp, old_crtc_state);
7347 	mutex_unlock(&dev_priv->drrs.mutex);
7348 
7349 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7350 }
7351 
7352 /**
7353  * intel_edp_drrs_update - Update DRRS state
7354  * @intel_dp: Intel DP
7355  * @crtc_state: new CRTC state
7356  *
7357  * This function will update DRRS states, disabling or enabling DRRS when
7358  * executing fastsets. For full modeset, intel_edp_drrs_disable() and
7359  * intel_edp_drrs_enable() should be called instead.
7360  */
7361 void
7362 intel_edp_drrs_update(struct intel_dp *intel_dp,
7363 		      const struct intel_crtc_state *crtc_state)
7364 {
7365 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7366 
7367 	if (dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
7368 		return;
7369 
7370 	mutex_lock(&dev_priv->drrs.mutex);
7371 
7372 	/* New state matches current one? */
7373 	if (crtc_state->has_drrs == !!dev_priv->drrs.dp)
7374 		goto unlock;
7375 
7376 	if (crtc_state->has_drrs)
7377 		intel_edp_drrs_enable_locked(intel_dp);
7378 	else
7379 		intel_edp_drrs_disable_locked(intel_dp, crtc_state);
7380 
7381 unlock:
7382 	mutex_unlock(&dev_priv->drrs.mutex);
7383 }
7384 
7385 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7386 {
7387 	struct drm_i915_private *dev_priv =
7388 		container_of(work, typeof(*dev_priv), drrs.work.work);
7389 	struct intel_dp *intel_dp;
7390 
7391 	mutex_lock(&dev_priv->drrs.mutex);
7392 
7393 	intel_dp = dev_priv->drrs.dp;
7394 
7395 	if (!intel_dp)
7396 		goto unlock;
7397 
7398 	/*
7399 	 * The delayed work can race with an invalidate hence we need to
7400 	 * recheck.
7401 	 */
7402 
7403 	if (dev_priv->drrs.busy_frontbuffer_bits)
7404 		goto unlock;
7405 
7406 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7407 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7408 
7409 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7410 			drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode));
7411 	}
7412 
7413 unlock:
7414 	mutex_unlock(&dev_priv->drrs.mutex);
7415 }
7416 
7417 /**
7418  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7419  * @dev_priv: i915 device
7420  * @frontbuffer_bits: frontbuffer plane tracking bits
7421  *
7422  * This function gets called everytime rendering on the given planes start.
7423  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7424  *
7425  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7426  */
7427 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7428 			       unsigned int frontbuffer_bits)
7429 {
7430 	struct intel_dp *intel_dp;
7431 	struct drm_crtc *crtc;
7432 	enum pipe pipe;
7433 
7434 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7435 		return;
7436 
7437 	cancel_delayed_work(&dev_priv->drrs.work);
7438 
7439 	mutex_lock(&dev_priv->drrs.mutex);
7440 
7441 	intel_dp = dev_priv->drrs.dp;
7442 	if (!intel_dp) {
7443 		mutex_unlock(&dev_priv->drrs.mutex);
7444 		return;
7445 	}
7446 
7447 	crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7448 	pipe = to_intel_crtc(crtc)->pipe;
7449 
7450 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7451 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7452 
7453 	/* invalidate means busy screen hence upclock */
7454 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7455 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7456 					drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7457 
7458 	mutex_unlock(&dev_priv->drrs.mutex);
7459 }
7460 
7461 /**
7462  * intel_edp_drrs_flush - Restart Idleness DRRS
7463  * @dev_priv: i915 device
7464  * @frontbuffer_bits: frontbuffer plane tracking bits
7465  *
7466  * This function gets called every time rendering on the given planes has
7467  * completed or flip on a crtc is completed. So DRRS should be upclocked
7468  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7469  * if no other planes are dirty.
7470  *
7471  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7472  */
7473 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7474 			  unsigned int frontbuffer_bits)
7475 {
7476 	struct intel_dp *intel_dp;
7477 	struct drm_crtc *crtc;
7478 	enum pipe pipe;
7479 
7480 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7481 		return;
7482 
7483 	cancel_delayed_work(&dev_priv->drrs.work);
7484 
7485 	mutex_lock(&dev_priv->drrs.mutex);
7486 
7487 	intel_dp = dev_priv->drrs.dp;
7488 	if (!intel_dp) {
7489 		mutex_unlock(&dev_priv->drrs.mutex);
7490 		return;
7491 	}
7492 
7493 	crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7494 	pipe = to_intel_crtc(crtc)->pipe;
7495 
7496 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7497 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7498 
7499 	/* flush means busy screen hence upclock */
7500 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7501 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7502 					drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7503 
7504 	/*
7505 	 * flush also means no more activity hence schedule downclock, if all
7506 	 * other fbs are quiescent too
7507 	 */
7508 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7509 		schedule_delayed_work(&dev_priv->drrs.work,
7510 				msecs_to_jiffies(1000));
7511 	mutex_unlock(&dev_priv->drrs.mutex);
7512 }
7513 
7514 /**
7515  * DOC: Display Refresh Rate Switching (DRRS)
7516  *
7517  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7518  * which enables swtching between low and high refresh rates,
7519  * dynamically, based on the usage scenario. This feature is applicable
7520  * for internal panels.
7521  *
7522  * Indication that the panel supports DRRS is given by the panel EDID, which
7523  * would list multiple refresh rates for one resolution.
7524  *
7525  * DRRS is of 2 types - static and seamless.
7526  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7527  * (may appear as a blink on screen) and is used in dock-undock scenario.
7528  * Seamless DRRS involves changing RR without any visual effect to the user
7529  * and can be used during normal system usage. This is done by programming
7530  * certain registers.
7531  *
7532  * Support for static/seamless DRRS may be indicated in the VBT based on
7533  * inputs from the panel spec.
7534  *
7535  * DRRS saves power by switching to low RR based on usage scenarios.
7536  *
7537  * The implementation is based on frontbuffer tracking implementation.  When
7538  * there is a disturbance on the screen triggered by user activity or a periodic
7539  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7540  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7541  * made.
7542  *
7543  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7544  * and intel_edp_drrs_flush() are called.
7545  *
7546  * DRRS can be further extended to support other internal panels and also
7547  * the scenario of video playback wherein RR is set based on the rate
7548  * requested by userspace.
7549  */
7550 
7551 /**
7552  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7553  * @connector: eDP connector
7554  * @fixed_mode: preferred mode of panel
7555  *
7556  * This function is  called only once at driver load to initialize basic
7557  * DRRS stuff.
7558  *
7559  * Returns:
7560  * Downclock mode if panel supports it, else return NULL.
7561  * DRRS support is determined by the presence of downclock mode (apart
7562  * from VBT setting).
7563  */
7564 static struct drm_display_mode *
7565 intel_dp_drrs_init(struct intel_connector *connector,
7566 		   struct drm_display_mode *fixed_mode)
7567 {
7568 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7569 	struct drm_display_mode *downclock_mode = NULL;
7570 
7571 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7572 	mutex_init(&dev_priv->drrs.mutex);
7573 
7574 	if (INTEL_GEN(dev_priv) <= 6) {
7575 		drm_dbg_kms(&dev_priv->drm,
7576 			    "DRRS supported for Gen7 and above\n");
7577 		return NULL;
7578 	}
7579 
7580 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7581 		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7582 		return NULL;
7583 	}
7584 
7585 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7586 	if (!downclock_mode) {
7587 		drm_dbg_kms(&dev_priv->drm,
7588 			    "Downclock mode is not found. DRRS not supported\n");
7589 		return NULL;
7590 	}
7591 
7592 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7593 
7594 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7595 	drm_dbg_kms(&dev_priv->drm,
7596 		    "seamless DRRS supported for eDP panel.\n");
7597 	return downclock_mode;
7598 }
7599 
7600 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7601 				     struct intel_connector *intel_connector)
7602 {
7603 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7604 	struct drm_device *dev = &dev_priv->drm;
7605 	struct drm_connector *connector = &intel_connector->base;
7606 	struct drm_display_mode *fixed_mode = NULL;
7607 	struct drm_display_mode *downclock_mode = NULL;
7608 	bool has_dpcd;
7609 	enum pipe pipe = INVALID_PIPE;
7610 	intel_wakeref_t wakeref;
7611 	struct edid *edid;
7612 
7613 	if (!intel_dp_is_edp(intel_dp))
7614 		return true;
7615 
7616 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7617 
7618 	/*
7619 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7620 	 * driver uses the only internal power sequencer available for both
7621 	 * eDP and LVDS bail out early in this case to prevent interfering
7622 	 * with an already powered-on LVDS power sequencer.
7623 	 */
7624 	if (intel_get_lvds_encoder(dev_priv)) {
7625 		drm_WARN_ON(dev,
7626 			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7627 		drm_info(&dev_priv->drm,
7628 			 "LVDS was detected, not registering eDP\n");
7629 
7630 		return false;
7631 	}
7632 
7633 	with_pps_lock(intel_dp, wakeref) {
7634 		intel_dp_init_panel_power_timestamps(intel_dp);
7635 		intel_dp_pps_init(intel_dp);
7636 		intel_edp_panel_vdd_sanitize(intel_dp);
7637 	}
7638 
7639 	/* Cache DPCD and EDID for edp. */
7640 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7641 
7642 	if (!has_dpcd) {
7643 		/* if this fails, presume the device is a ghost */
7644 		drm_info(&dev_priv->drm,
7645 			 "failed to retrieve link info, disabling eDP\n");
7646 		goto out_vdd_off;
7647 	}
7648 
7649 	mutex_lock(&dev->mode_config.mutex);
7650 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7651 	if (edid) {
7652 		if (drm_add_edid_modes(connector, edid)) {
7653 			drm_connector_update_edid_property(connector, edid);
7654 			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
7655 		} else {
7656 			kfree(edid);
7657 			edid = ERR_PTR(-EINVAL);
7658 		}
7659 	} else {
7660 		edid = ERR_PTR(-ENOENT);
7661 	}
7662 	intel_connector->edid = edid;
7663 
7664 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7665 	if (fixed_mode)
7666 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7667 
7668 	/* fallback to VBT if available for eDP */
7669 	if (!fixed_mode)
7670 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7671 	mutex_unlock(&dev->mode_config.mutex);
7672 
7673 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7674 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7675 		register_reboot_notifier(&intel_dp->edp_notifier);
7676 
7677 		/*
7678 		 * Figure out the current pipe for the initial backlight setup.
7679 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7680 		 * fails just assume pipe A.
7681 		 */
7682 		pipe = vlv_active_pipe(intel_dp);
7683 
7684 		if (pipe != PIPE_A && pipe != PIPE_B)
7685 			pipe = intel_dp->pps_pipe;
7686 
7687 		if (pipe != PIPE_A && pipe != PIPE_B)
7688 			pipe = PIPE_A;
7689 
7690 		drm_dbg_kms(&dev_priv->drm,
7691 			    "using pipe %c for initial backlight setup\n",
7692 			    pipe_name(pipe));
7693 	}
7694 
7695 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7696 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7697 	intel_panel_setup_backlight(connector, pipe);
7698 
7699 	if (fixed_mode) {
7700 		drm_connector_set_panel_orientation_with_quirk(connector,
7701 				dev_priv->vbt.orientation,
7702 				fixed_mode->hdisplay, fixed_mode->vdisplay);
7703 	}
7704 
7705 	return true;
7706 
7707 out_vdd_off:
7708 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7709 	/*
7710 	 * vdd might still be enabled do to the delayed vdd off.
7711 	 * Make sure vdd is actually turned off here.
7712 	 */
7713 	with_pps_lock(intel_dp, wakeref)
7714 		edp_panel_vdd_off_sync(intel_dp);
7715 
7716 	return false;
7717 }
7718 
7719 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7720 {
7721 	struct intel_connector *intel_connector;
7722 	struct drm_connector *connector;
7723 
7724 	intel_connector = container_of(work, typeof(*intel_connector),
7725 				       modeset_retry_work);
7726 	connector = &intel_connector->base;
7727 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7728 		      connector->name);
7729 
7730 	/* Grab the locks before changing connector property*/
7731 	mutex_lock(&connector->dev->mode_config.mutex);
7732 	/* Set connector link status to BAD and send a Uevent to notify
7733 	 * userspace to do a modeset.
7734 	 */
7735 	drm_connector_set_link_status_property(connector,
7736 					       DRM_MODE_LINK_STATUS_BAD);
7737 	mutex_unlock(&connector->dev->mode_config.mutex);
7738 	/* Send Hotplug uevent so userspace can reprobe */
7739 	drm_kms_helper_hotplug_event(connector->dev);
7740 }
7741 
7742 bool
7743 intel_dp_init_connector(struct intel_digital_port *dig_port,
7744 			struct intel_connector *intel_connector)
7745 {
7746 	struct drm_connector *connector = &intel_connector->base;
7747 	struct intel_dp *intel_dp = &dig_port->dp;
7748 	struct intel_encoder *intel_encoder = &dig_port->base;
7749 	struct drm_device *dev = intel_encoder->base.dev;
7750 	struct drm_i915_private *dev_priv = to_i915(dev);
7751 	enum port port = intel_encoder->port;
7752 	enum phy phy = intel_port_to_phy(dev_priv, port);
7753 	int type;
7754 
7755 	/* Initialize the work for modeset in case of link train failure */
7756 	INIT_WORK(&intel_connector->modeset_retry_work,
7757 		  intel_dp_modeset_retry_work_fn);
7758 
7759 	if (drm_WARN(dev, dig_port->max_lanes < 1,
7760 		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7761 		     dig_port->max_lanes, intel_encoder->base.base.id,
7762 		     intel_encoder->base.name))
7763 		return false;
7764 
7765 	intel_dp_set_source_rates(intel_dp);
7766 
7767 	intel_dp->reset_link_params = true;
7768 	intel_dp->pps_pipe = INVALID_PIPE;
7769 	intel_dp->active_pipe = INVALID_PIPE;
7770 
7771 	/* Preserve the current hw state. */
7772 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7773 	intel_dp->attached_connector = intel_connector;
7774 
7775 	if (intel_dp_is_port_edp(dev_priv, port)) {
7776 		/*
7777 		 * Currently we don't support eDP on TypeC ports, although in
7778 		 * theory it could work on TypeC legacy ports.
7779 		 */
7780 		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
7781 		type = DRM_MODE_CONNECTOR_eDP;
7782 	} else {
7783 		type = DRM_MODE_CONNECTOR_DisplayPort;
7784 	}
7785 
7786 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7787 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7788 
7789 	/*
7790 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7791 	 * for DP the encoder type can be set by the caller to
7792 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7793 	 */
7794 	if (type == DRM_MODE_CONNECTOR_eDP)
7795 		intel_encoder->type = INTEL_OUTPUT_EDP;
7796 
7797 	/* eDP only on port B and/or C on vlv/chv */
7798 	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
7799 			      IS_CHERRYVIEW(dev_priv)) &&
7800 			intel_dp_is_edp(intel_dp) &&
7801 			port != PORT_B && port != PORT_C))
7802 		return false;
7803 
7804 	drm_dbg_kms(&dev_priv->drm,
7805 		    "Adding %s connector on [ENCODER:%d:%s]\n",
7806 		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7807 		    intel_encoder->base.base.id, intel_encoder->base.name);
7808 
7809 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7810 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7811 
7812 	if (!HAS_GMCH(dev_priv))
7813 		connector->interlace_allowed = true;
7814 	connector->doublescan_allowed = 0;
7815 
7816 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
7817 
7818 	intel_dp_aux_init(intel_dp);
7819 
7820 	intel_connector_attach_encoder(intel_connector, intel_encoder);
7821 
7822 	if (HAS_DDI(dev_priv))
7823 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7824 	else
7825 		intel_connector->get_hw_state = intel_connector_get_hw_state;
7826 
7827 	/* init MST on ports that can support it */
7828 	intel_dp_mst_encoder_init(dig_port,
7829 				  intel_connector->base.base.id);
7830 
7831 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7832 		intel_dp_aux_fini(intel_dp);
7833 		intel_dp_mst_encoder_cleanup(dig_port);
7834 		goto fail;
7835 	}
7836 
7837 	intel_dp_add_properties(intel_dp, connector);
7838 
7839 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7840 		int ret = intel_dp_init_hdcp(dig_port, intel_connector);
7841 		if (ret)
7842 			drm_dbg_kms(&dev_priv->drm,
7843 				    "HDCP init failed, skipping.\n");
7844 	}
7845 
7846 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7847 	 * 0xd.  Failure to do so will result in spurious interrupts being
7848 	 * generated on the port when a cable is not attached.
7849 	 */
7850 	if (IS_G45(dev_priv)) {
7851 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
7852 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
7853 			       (temp & ~0xf) | 0xd);
7854 	}
7855 
7856 	return true;
7857 
7858 fail:
7859 	drm_connector_cleanup(connector);
7860 
7861 	return false;
7862 }
7863 
7864 bool intel_dp_init(struct drm_i915_private *dev_priv,
7865 		   i915_reg_t output_reg,
7866 		   enum port port)
7867 {
7868 	struct intel_digital_port *dig_port;
7869 	struct intel_encoder *intel_encoder;
7870 	struct drm_encoder *encoder;
7871 	struct intel_connector *intel_connector;
7872 
7873 	dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL);
7874 	if (!dig_port)
7875 		return false;
7876 
7877 	intel_connector = intel_connector_alloc();
7878 	if (!intel_connector)
7879 		goto err_connector_alloc;
7880 
7881 	intel_encoder = &dig_port->base;
7882 	encoder = &intel_encoder->base;
7883 
7884 	mutex_init(&dig_port->hdcp_mutex);
7885 
7886 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7887 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7888 			     "DP %c", port_name(port)))
7889 		goto err_encoder_init;
7890 
7891 	intel_encoder->hotplug = intel_dp_hotplug;
7892 	intel_encoder->compute_config = intel_dp_compute_config;
7893 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7894 	intel_encoder->get_config = intel_dp_get_config;
7895 	intel_encoder->update_pipe = intel_panel_update_backlight;
7896 	intel_encoder->suspend = intel_dp_encoder_suspend;
7897 	if (IS_CHERRYVIEW(dev_priv)) {
7898 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7899 		intel_encoder->pre_enable = chv_pre_enable_dp;
7900 		intel_encoder->enable = vlv_enable_dp;
7901 		intel_encoder->disable = vlv_disable_dp;
7902 		intel_encoder->post_disable = chv_post_disable_dp;
7903 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7904 	} else if (IS_VALLEYVIEW(dev_priv)) {
7905 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7906 		intel_encoder->pre_enable = vlv_pre_enable_dp;
7907 		intel_encoder->enable = vlv_enable_dp;
7908 		intel_encoder->disable = vlv_disable_dp;
7909 		intel_encoder->post_disable = vlv_post_disable_dp;
7910 	} else {
7911 		intel_encoder->pre_enable = g4x_pre_enable_dp;
7912 		intel_encoder->enable = g4x_enable_dp;
7913 		intel_encoder->disable = g4x_disable_dp;
7914 		intel_encoder->post_disable = g4x_post_disable_dp;
7915 	}
7916 
7917 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
7918 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A))
7919 		dig_port->dp.set_link_train = cpt_set_link_train;
7920 	else
7921 		dig_port->dp.set_link_train = g4x_set_link_train;
7922 
7923 	if (IS_CHERRYVIEW(dev_priv))
7924 		dig_port->dp.set_signal_levels = chv_set_signal_levels;
7925 	else if (IS_VALLEYVIEW(dev_priv))
7926 		dig_port->dp.set_signal_levels = vlv_set_signal_levels;
7927 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
7928 		dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
7929 	else if (IS_GEN(dev_priv, 6) && port == PORT_A)
7930 		dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
7931 	else
7932 		dig_port->dp.set_signal_levels = g4x_set_signal_levels;
7933 
7934 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) ||
7935 	    (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) {
7936 		dig_port->dp.preemph_max = intel_dp_pre_empemph_max_3;
7937 		dig_port->dp.voltage_max = intel_dp_voltage_max_3;
7938 	} else {
7939 		dig_port->dp.preemph_max = intel_dp_pre_empemph_max_2;
7940 		dig_port->dp.voltage_max = intel_dp_voltage_max_2;
7941 	}
7942 
7943 	dig_port->dp.output_reg = output_reg;
7944 	dig_port->max_lanes = 4;
7945 	dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
7946 	dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
7947 
7948 	intel_encoder->type = INTEL_OUTPUT_DP;
7949 	intel_encoder->power_domain = intel_port_to_power_domain(port);
7950 	if (IS_CHERRYVIEW(dev_priv)) {
7951 		if (port == PORT_D)
7952 			intel_encoder->pipe_mask = BIT(PIPE_C);
7953 		else
7954 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7955 	} else {
7956 		intel_encoder->pipe_mask = ~0;
7957 	}
7958 	intel_encoder->cloneable = 0;
7959 	intel_encoder->port = port;
7960 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7961 
7962 	dig_port->hpd_pulse = intel_dp_hpd_pulse;
7963 
7964 	if (HAS_GMCH(dev_priv)) {
7965 		if (IS_GM45(dev_priv))
7966 			dig_port->connected = gm45_digital_port_connected;
7967 		else
7968 			dig_port->connected = g4x_digital_port_connected;
7969 	} else {
7970 		if (port == PORT_A)
7971 			dig_port->connected = ilk_digital_port_connected;
7972 		else
7973 			dig_port->connected = ibx_digital_port_connected;
7974 	}
7975 
7976 	if (port != PORT_A)
7977 		intel_infoframe_init(dig_port);
7978 
7979 	dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7980 	if (!intel_dp_init_connector(dig_port, intel_connector))
7981 		goto err_init_connector;
7982 
7983 	return true;
7984 
7985 err_init_connector:
7986 	drm_encoder_cleanup(encoder);
7987 err_encoder_init:
7988 	kfree(intel_connector);
7989 err_connector_alloc:
7990 	kfree(dig_port);
7991 	return false;
7992 }
7993 
7994 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7995 {
7996 	struct intel_encoder *encoder;
7997 
7998 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7999 		struct intel_dp *intel_dp;
8000 
8001 		if (encoder->type != INTEL_OUTPUT_DDI)
8002 			continue;
8003 
8004 		intel_dp = enc_to_intel_dp(encoder);
8005 
8006 		if (!intel_dp->can_mst)
8007 			continue;
8008 
8009 		if (intel_dp->is_mst)
8010 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8011 	}
8012 }
8013 
8014 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8015 {
8016 	struct intel_encoder *encoder;
8017 
8018 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8019 		struct intel_dp *intel_dp;
8020 		int ret;
8021 
8022 		if (encoder->type != INTEL_OUTPUT_DDI)
8023 			continue;
8024 
8025 		intel_dp = enc_to_intel_dp(encoder);
8026 
8027 		if (!intel_dp->can_mst)
8028 			continue;
8029 
8030 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8031 						     true);
8032 		if (ret) {
8033 			intel_dp->is_mst = false;
8034 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8035 							false);
8036 		}
8037 	}
8038 }
8039