1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_debugfs.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68 
69 #define DP_DPRX_ESI_LEN 14
70 
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE			2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
75 
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
78 
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
81 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84 
85 struct dp_link_dpll {
86 	int clock;
87 	struct dpll dpll;
88 };
89 
90 static const struct dp_link_dpll g4x_dpll[] = {
91 	{ 162000,
92 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93 	{ 270000,
94 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96 
97 static const struct dp_link_dpll pch_dpll[] = {
98 	{ 162000,
99 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100 	{ 270000,
101 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103 
104 static const struct dp_link_dpll vlv_dpll[] = {
105 	{ 162000,
106 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107 	{ 270000,
108 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110 
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116 	/*
117 	 * CHV requires to program fractional division for m2.
118 	 * m2 is stored in fixed point format using formula below
119 	 * (m2_int << 22) | m2_fraction
120 	 */
121 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
122 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
124 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126 
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129 
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134 
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145 
146 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148 
149 static void intel_dp_link_down(struct intel_encoder *encoder,
150 			       const struct intel_crtc_state *old_crtc_state);
151 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
152 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
153 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
154 					   const struct intel_crtc_state *crtc_state);
155 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
156 				      enum pipe pipe);
157 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
158 
159 /* update sink rates from dpcd */
160 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
161 {
162 	static const int dp_rates[] = {
163 		162000, 270000, 540000, 810000
164 	};
165 	int i, max_rate;
166 
167 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
168 
169 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
170 		if (dp_rates[i] > max_rate)
171 			break;
172 		intel_dp->sink_rates[i] = dp_rates[i];
173 	}
174 
175 	intel_dp->num_sink_rates = i;
176 }
177 
178 /* Get length of rates array potentially limited by max_rate. */
179 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
180 {
181 	int i;
182 
183 	/* Limit results by potentially reduced max rate */
184 	for (i = 0; i < len; i++) {
185 		if (rates[len - i - 1] <= max_rate)
186 			return len - i;
187 	}
188 
189 	return 0;
190 }
191 
192 /* Get length of common rates array potentially limited by max_rate. */
193 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
194 					  int max_rate)
195 {
196 	return intel_dp_rate_limit_len(intel_dp->common_rates,
197 				       intel_dp->num_common_rates, max_rate);
198 }
199 
200 /* Theoretical max between source and sink */
201 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
202 {
203 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
204 }
205 
206 /* Theoretical max between source and sink */
207 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
208 {
209 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
210 	int source_max = intel_dig_port->max_lanes;
211 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
212 	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
213 
214 	return min3(source_max, sink_max, fia_max);
215 }
216 
217 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
218 {
219 	return intel_dp->max_link_lane_count;
220 }
221 
222 int
223 intel_dp_link_required(int pixel_clock, int bpp)
224 {
225 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
226 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
227 }
228 
229 int
230 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
231 {
232 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
233 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
234 	 * is transmitted every LS_Clk per lane, there is no need to account for
235 	 * the channel encoding that is done in the PHY layer here.
236 	 */
237 
238 	return max_link_clock * max_lanes;
239 }
240 
241 static int
242 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
243 {
244 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
245 	struct intel_encoder *encoder = &intel_dig_port->base;
246 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
247 	int max_dotclk = dev_priv->max_dotclk_freq;
248 	int ds_max_dotclk;
249 
250 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
251 
252 	if (type != DP_DS_PORT_TYPE_VGA)
253 		return max_dotclk;
254 
255 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
256 						    intel_dp->downstream_ports);
257 
258 	if (ds_max_dotclk != 0)
259 		max_dotclk = min(max_dotclk, ds_max_dotclk);
260 
261 	return max_dotclk;
262 }
263 
264 static int cnl_max_source_rate(struct intel_dp *intel_dp)
265 {
266 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
267 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
268 	enum port port = dig_port->base.port;
269 
270 	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
271 
272 	/* Low voltage SKUs are limited to max of 5.4G */
273 	if (voltage == VOLTAGE_INFO_0_85V)
274 		return 540000;
275 
276 	/* For this SKU 8.1G is supported in all ports */
277 	if (IS_CNL_WITH_PORT_F(dev_priv))
278 		return 810000;
279 
280 	/* For other SKUs, max rate on ports A and D is 5.4G */
281 	if (port == PORT_A || port == PORT_D)
282 		return 540000;
283 
284 	return 810000;
285 }
286 
287 static int icl_max_source_rate(struct intel_dp *intel_dp)
288 {
289 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
290 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
291 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
292 
293 	if (intel_phy_is_combo(dev_priv, phy) &&
294 	    !IS_ELKHARTLAKE(dev_priv) &&
295 	    !intel_dp_is_edp(intel_dp))
296 		return 540000;
297 
298 	return 810000;
299 }
300 
301 static void
302 intel_dp_set_source_rates(struct intel_dp *intel_dp)
303 {
304 	/* The values must be in increasing order */
305 	static const int cnl_rates[] = {
306 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
307 	};
308 	static const int bxt_rates[] = {
309 		162000, 216000, 243000, 270000, 324000, 432000, 540000
310 	};
311 	static const int skl_rates[] = {
312 		162000, 216000, 270000, 324000, 432000, 540000
313 	};
314 	static const int hsw_rates[] = {
315 		162000, 270000, 540000
316 	};
317 	static const int g4x_rates[] = {
318 		162000, 270000
319 	};
320 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
321 	struct intel_encoder *encoder = &dig_port->base;
322 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
323 	const int *source_rates;
324 	int size, max_rate = 0, vbt_max_rate;
325 
326 	/* This should only be done once */
327 	drm_WARN_ON(&dev_priv->drm,
328 		    intel_dp->source_rates || intel_dp->num_source_rates);
329 
330 	if (INTEL_GEN(dev_priv) >= 10) {
331 		source_rates = cnl_rates;
332 		size = ARRAY_SIZE(cnl_rates);
333 		if (IS_GEN(dev_priv, 10))
334 			max_rate = cnl_max_source_rate(intel_dp);
335 		else
336 			max_rate = icl_max_source_rate(intel_dp);
337 	} else if (IS_GEN9_LP(dev_priv)) {
338 		source_rates = bxt_rates;
339 		size = ARRAY_SIZE(bxt_rates);
340 	} else if (IS_GEN9_BC(dev_priv)) {
341 		source_rates = skl_rates;
342 		size = ARRAY_SIZE(skl_rates);
343 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
344 		   IS_BROADWELL(dev_priv)) {
345 		source_rates = hsw_rates;
346 		size = ARRAY_SIZE(hsw_rates);
347 	} else {
348 		source_rates = g4x_rates;
349 		size = ARRAY_SIZE(g4x_rates);
350 	}
351 
352 	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
353 	if (max_rate && vbt_max_rate)
354 		max_rate = min(max_rate, vbt_max_rate);
355 	else if (vbt_max_rate)
356 		max_rate = vbt_max_rate;
357 
358 	if (max_rate)
359 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
360 
361 	intel_dp->source_rates = source_rates;
362 	intel_dp->num_source_rates = size;
363 }
364 
365 static int intersect_rates(const int *source_rates, int source_len,
366 			   const int *sink_rates, int sink_len,
367 			   int *common_rates)
368 {
369 	int i = 0, j = 0, k = 0;
370 
371 	while (i < source_len && j < sink_len) {
372 		if (source_rates[i] == sink_rates[j]) {
373 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
374 				return k;
375 			common_rates[k] = source_rates[i];
376 			++k;
377 			++i;
378 			++j;
379 		} else if (source_rates[i] < sink_rates[j]) {
380 			++i;
381 		} else {
382 			++j;
383 		}
384 	}
385 	return k;
386 }
387 
388 /* return index of rate in rates array, or -1 if not found */
389 static int intel_dp_rate_index(const int *rates, int len, int rate)
390 {
391 	int i;
392 
393 	for (i = 0; i < len; i++)
394 		if (rate == rates[i])
395 			return i;
396 
397 	return -1;
398 }
399 
400 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
401 {
402 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
403 
404 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
405 						     intel_dp->num_source_rates,
406 						     intel_dp->sink_rates,
407 						     intel_dp->num_sink_rates,
408 						     intel_dp->common_rates);
409 
410 	/* Paranoia, there should always be something in common. */
411 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
412 		intel_dp->common_rates[0] = 162000;
413 		intel_dp->num_common_rates = 1;
414 	}
415 }
416 
417 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
418 				       u8 lane_count)
419 {
420 	/*
421 	 * FIXME: we need to synchronize the current link parameters with
422 	 * hardware readout. Currently fast link training doesn't work on
423 	 * boot-up.
424 	 */
425 	if (link_rate == 0 ||
426 	    link_rate > intel_dp->max_link_rate)
427 		return false;
428 
429 	if (lane_count == 0 ||
430 	    lane_count > intel_dp_max_lane_count(intel_dp))
431 		return false;
432 
433 	return true;
434 }
435 
436 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
437 						     int link_rate,
438 						     u8 lane_count)
439 {
440 	const struct drm_display_mode *fixed_mode =
441 		intel_dp->attached_connector->panel.fixed_mode;
442 	int mode_rate, max_rate;
443 
444 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
445 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
446 	if (mode_rate > max_rate)
447 		return false;
448 
449 	return true;
450 }
451 
452 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
453 					    int link_rate, u8 lane_count)
454 {
455 	int index;
456 
457 	index = intel_dp_rate_index(intel_dp->common_rates,
458 				    intel_dp->num_common_rates,
459 				    link_rate);
460 	if (index > 0) {
461 		if (intel_dp_is_edp(intel_dp) &&
462 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
463 							      intel_dp->common_rates[index - 1],
464 							      lane_count)) {
465 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
466 			return 0;
467 		}
468 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
469 		intel_dp->max_link_lane_count = lane_count;
470 	} else if (lane_count > 1) {
471 		if (intel_dp_is_edp(intel_dp) &&
472 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
473 							      intel_dp_max_common_rate(intel_dp),
474 							      lane_count >> 1)) {
475 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
476 			return 0;
477 		}
478 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
479 		intel_dp->max_link_lane_count = lane_count >> 1;
480 	} else {
481 		DRM_ERROR("Link Training Unsuccessful\n");
482 		return -1;
483 	}
484 
485 	return 0;
486 }
487 
488 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
489 {
490 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
491 		       DP_DSC_FEC_OVERHEAD_FACTOR);
492 }
493 
494 static int
495 small_joiner_ram_size_bits(struct drm_i915_private *i915)
496 {
497 	if (INTEL_GEN(i915) >= 11)
498 		return 7680 * 8;
499 	else
500 		return 6144 * 8;
501 }
502 
503 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
504 				       u32 link_clock, u32 lane_count,
505 				       u32 mode_clock, u32 mode_hdisplay)
506 {
507 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
508 	int i;
509 
510 	/*
511 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
512 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
513 	 * for SST -> TimeSlotsPerMTP is 1,
514 	 * for MST -> TimeSlotsPerMTP has to be calculated
515 	 */
516 	bits_per_pixel = (link_clock * lane_count * 8) /
517 			 intel_dp_mode_to_fec_clock(mode_clock);
518 	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
519 
520 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
521 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
522 		mode_hdisplay;
523 	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
524 		    max_bpp_small_joiner_ram);
525 
526 	/*
527 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
528 	 * check, output bpp from small joiner RAM check)
529 	 */
530 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
531 
532 	/* Error out if the max bpp is less than smallest allowed valid bpp */
533 	if (bits_per_pixel < valid_dsc_bpp[0]) {
534 		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
535 			    bits_per_pixel, valid_dsc_bpp[0]);
536 		return 0;
537 	}
538 
539 	/* Find the nearest match in the array of known BPPs from VESA */
540 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
541 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
542 			break;
543 	}
544 	bits_per_pixel = valid_dsc_bpp[i];
545 
546 	/*
547 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
548 	 * fractional part is 0
549 	 */
550 	return bits_per_pixel << 4;
551 }
552 
553 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
554 				       int mode_clock, int mode_hdisplay)
555 {
556 	u8 min_slice_count, i;
557 	int max_slice_width;
558 
559 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
560 		min_slice_count = DIV_ROUND_UP(mode_clock,
561 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
562 	else
563 		min_slice_count = DIV_ROUND_UP(mode_clock,
564 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
565 
566 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
567 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
568 		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
569 			      max_slice_width);
570 		return 0;
571 	}
572 	/* Also take into account max slice width */
573 	min_slice_count = min_t(u8, min_slice_count,
574 				DIV_ROUND_UP(mode_hdisplay,
575 					     max_slice_width));
576 
577 	/* Find the closest match to the valid slice count values */
578 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
579 		if (valid_dsc_slicecount[i] >
580 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
581 						    false))
582 			break;
583 		if (min_slice_count  <= valid_dsc_slicecount[i])
584 			return valid_dsc_slicecount[i];
585 	}
586 
587 	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
588 	return 0;
589 }
590 
591 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
592 				  int hdisplay)
593 {
594 	/*
595 	 * Older platforms don't like hdisplay==4096 with DP.
596 	 *
597 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
598 	 * and frame counter increment), but we don't get vblank interrupts,
599 	 * and the pipe underruns immediately. The link also doesn't seem
600 	 * to get trained properly.
601 	 *
602 	 * On CHV the vblank interrupts don't seem to disappear but
603 	 * otherwise the symptoms are similar.
604 	 *
605 	 * TODO: confirm the behaviour on HSW+
606 	 */
607 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
608 }
609 
610 static enum drm_mode_status
611 intel_dp_mode_valid(struct drm_connector *connector,
612 		    struct drm_display_mode *mode)
613 {
614 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
615 	struct intel_connector *intel_connector = to_intel_connector(connector);
616 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
617 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
618 	int target_clock = mode->clock;
619 	int max_rate, mode_rate, max_lanes, max_link_clock;
620 	int max_dotclk;
621 	u16 dsc_max_output_bpp = 0;
622 	u8 dsc_slice_count = 0;
623 
624 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
625 		return MODE_NO_DBLESCAN;
626 
627 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
628 
629 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
630 		if (mode->hdisplay > fixed_mode->hdisplay)
631 			return MODE_PANEL;
632 
633 		if (mode->vdisplay > fixed_mode->vdisplay)
634 			return MODE_PANEL;
635 
636 		target_clock = fixed_mode->clock;
637 	}
638 
639 	max_link_clock = intel_dp_max_link_rate(intel_dp);
640 	max_lanes = intel_dp_max_lane_count(intel_dp);
641 
642 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
643 	mode_rate = intel_dp_link_required(target_clock, 18);
644 
645 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
646 		return MODE_H_ILLEGAL;
647 
648 	/*
649 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
650 	 * integer value since we support only integer values of bpp.
651 	 */
652 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
653 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
654 		if (intel_dp_is_edp(intel_dp)) {
655 			dsc_max_output_bpp =
656 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
657 			dsc_slice_count =
658 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
659 								true);
660 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
661 			dsc_max_output_bpp =
662 				intel_dp_dsc_get_output_bpp(dev_priv,
663 							    max_link_clock,
664 							    max_lanes,
665 							    target_clock,
666 							    mode->hdisplay) >> 4;
667 			dsc_slice_count =
668 				intel_dp_dsc_get_slice_count(intel_dp,
669 							     target_clock,
670 							     mode->hdisplay);
671 		}
672 	}
673 
674 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
675 	    target_clock > max_dotclk)
676 		return MODE_CLOCK_HIGH;
677 
678 	if (mode->clock < 10000)
679 		return MODE_CLOCK_LOW;
680 
681 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
682 		return MODE_H_ILLEGAL;
683 
684 	return intel_mode_valid_max_plane_size(dev_priv, mode);
685 }
686 
687 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
688 {
689 	int i;
690 	u32 v = 0;
691 
692 	if (src_bytes > 4)
693 		src_bytes = 4;
694 	for (i = 0; i < src_bytes; i++)
695 		v |= ((u32)src[i]) << ((3 - i) * 8);
696 	return v;
697 }
698 
699 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
700 {
701 	int i;
702 	if (dst_bytes > 4)
703 		dst_bytes = 4;
704 	for (i = 0; i < dst_bytes; i++)
705 		dst[i] = src >> ((3-i) * 8);
706 }
707 
708 static void
709 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
710 static void
711 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
712 					      bool force_disable_vdd);
713 static void
714 intel_dp_pps_init(struct intel_dp *intel_dp);
715 
716 static intel_wakeref_t
717 pps_lock(struct intel_dp *intel_dp)
718 {
719 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
720 	intel_wakeref_t wakeref;
721 
722 	/*
723 	 * See intel_power_sequencer_reset() why we need
724 	 * a power domain reference here.
725 	 */
726 	wakeref = intel_display_power_get(dev_priv,
727 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
728 
729 	mutex_lock(&dev_priv->pps_mutex);
730 
731 	return wakeref;
732 }
733 
734 static intel_wakeref_t
735 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
736 {
737 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
738 
739 	mutex_unlock(&dev_priv->pps_mutex);
740 	intel_display_power_put(dev_priv,
741 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
742 				wakeref);
743 	return 0;
744 }
745 
746 #define with_pps_lock(dp, wf) \
747 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
748 
749 static void
750 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
751 {
752 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
753 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
754 	enum pipe pipe = intel_dp->pps_pipe;
755 	bool pll_enabled, release_cl_override = false;
756 	enum dpio_phy phy = DPIO_PHY(pipe);
757 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
758 	u32 DP;
759 
760 	if (drm_WARN(&dev_priv->drm,
761 		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
762 		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
763 		     pipe_name(pipe), intel_dig_port->base.base.base.id,
764 		     intel_dig_port->base.base.name))
765 		return;
766 
767 	drm_dbg_kms(&dev_priv->drm,
768 		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
769 		    pipe_name(pipe), intel_dig_port->base.base.base.id,
770 		    intel_dig_port->base.base.name);
771 
772 	/* Preserve the BIOS-computed detected bit. This is
773 	 * supposed to be read-only.
774 	 */
775 	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
776 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
777 	DP |= DP_PORT_WIDTH(1);
778 	DP |= DP_LINK_TRAIN_PAT_1;
779 
780 	if (IS_CHERRYVIEW(dev_priv))
781 		DP |= DP_PIPE_SEL_CHV(pipe);
782 	else
783 		DP |= DP_PIPE_SEL(pipe);
784 
785 	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
786 
787 	/*
788 	 * The DPLL for the pipe must be enabled for this to work.
789 	 * So enable temporarily it if it's not already enabled.
790 	 */
791 	if (!pll_enabled) {
792 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
793 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
794 
795 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
796 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
797 			drm_err(&dev_priv->drm,
798 				"Failed to force on pll for pipe %c!\n",
799 				pipe_name(pipe));
800 			return;
801 		}
802 	}
803 
804 	/*
805 	 * Similar magic as in intel_dp_enable_port().
806 	 * We _must_ do this port enable + disable trick
807 	 * to make this power sequencer lock onto the port.
808 	 * Otherwise even VDD force bit won't work.
809 	 */
810 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
811 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
812 
813 	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
814 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
815 
816 	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
817 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
818 
819 	if (!pll_enabled) {
820 		vlv_force_pll_off(dev_priv, pipe);
821 
822 		if (release_cl_override)
823 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
824 	}
825 }
826 
827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
828 {
829 	struct intel_encoder *encoder;
830 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
831 
832 	/*
833 	 * We don't have power sequencer currently.
834 	 * Pick one that's not used by other ports.
835 	 */
836 	for_each_intel_dp(&dev_priv->drm, encoder) {
837 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
838 
839 		if (encoder->type == INTEL_OUTPUT_EDP) {
840 			drm_WARN_ON(&dev_priv->drm,
841 				    intel_dp->active_pipe != INVALID_PIPE &&
842 				    intel_dp->active_pipe !=
843 				    intel_dp->pps_pipe);
844 
845 			if (intel_dp->pps_pipe != INVALID_PIPE)
846 				pipes &= ~(1 << intel_dp->pps_pipe);
847 		} else {
848 			drm_WARN_ON(&dev_priv->drm,
849 				    intel_dp->pps_pipe != INVALID_PIPE);
850 
851 			if (intel_dp->active_pipe != INVALID_PIPE)
852 				pipes &= ~(1 << intel_dp->active_pipe);
853 		}
854 	}
855 
856 	if (pipes == 0)
857 		return INVALID_PIPE;
858 
859 	return ffs(pipes) - 1;
860 }
861 
862 static enum pipe
863 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
864 {
865 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
866 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
867 	enum pipe pipe;
868 
869 	lockdep_assert_held(&dev_priv->pps_mutex);
870 
871 	/* We should never land here with regular DP ports */
872 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
873 
874 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
875 		    intel_dp->active_pipe != intel_dp->pps_pipe);
876 
877 	if (intel_dp->pps_pipe != INVALID_PIPE)
878 		return intel_dp->pps_pipe;
879 
880 	pipe = vlv_find_free_pps(dev_priv);
881 
882 	/*
883 	 * Didn't find one. This should not happen since there
884 	 * are two power sequencers and up to two eDP ports.
885 	 */
886 	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
887 		pipe = PIPE_A;
888 
889 	vlv_steal_power_sequencer(dev_priv, pipe);
890 	intel_dp->pps_pipe = pipe;
891 
892 	drm_dbg_kms(&dev_priv->drm,
893 		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
894 		    pipe_name(intel_dp->pps_pipe),
895 		    intel_dig_port->base.base.base.id,
896 		    intel_dig_port->base.base.name);
897 
898 	/* init power sequencer on this pipe and port */
899 	intel_dp_init_panel_power_sequencer(intel_dp);
900 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
901 
902 	/*
903 	 * Even vdd force doesn't work until we've made
904 	 * the power sequencer lock in on the port.
905 	 */
906 	vlv_power_sequencer_kick(intel_dp);
907 
908 	return intel_dp->pps_pipe;
909 }
910 
911 static int
912 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
913 {
914 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
915 	int backlight_controller = dev_priv->vbt.backlight.controller;
916 
917 	lockdep_assert_held(&dev_priv->pps_mutex);
918 
919 	/* We should never land here with regular DP ports */
920 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
921 
922 	if (!intel_dp->pps_reset)
923 		return backlight_controller;
924 
925 	intel_dp->pps_reset = false;
926 
927 	/*
928 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
929 	 * has been setup during connector init.
930 	 */
931 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
932 
933 	return backlight_controller;
934 }
935 
936 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
937 			       enum pipe pipe);
938 
939 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
940 			       enum pipe pipe)
941 {
942 	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
943 }
944 
945 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
946 				enum pipe pipe)
947 {
948 	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
949 }
950 
951 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
952 			 enum pipe pipe)
953 {
954 	return true;
955 }
956 
957 static enum pipe
958 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
959 		     enum port port,
960 		     vlv_pipe_check pipe_check)
961 {
962 	enum pipe pipe;
963 
964 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
965 		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
966 			PANEL_PORT_SELECT_MASK;
967 
968 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
969 			continue;
970 
971 		if (!pipe_check(dev_priv, pipe))
972 			continue;
973 
974 		return pipe;
975 	}
976 
977 	return INVALID_PIPE;
978 }
979 
980 static void
981 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
982 {
983 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
984 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
985 	enum port port = intel_dig_port->base.port;
986 
987 	lockdep_assert_held(&dev_priv->pps_mutex);
988 
989 	/* try to find a pipe with this port selected */
990 	/* first pick one where the panel is on */
991 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
992 						  vlv_pipe_has_pp_on);
993 	/* didn't find one? pick one where vdd is on */
994 	if (intel_dp->pps_pipe == INVALID_PIPE)
995 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
996 							  vlv_pipe_has_vdd_on);
997 	/* didn't find one? pick one with just the correct port */
998 	if (intel_dp->pps_pipe == INVALID_PIPE)
999 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1000 							  vlv_pipe_any);
1001 
1002 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1003 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1004 		drm_dbg_kms(&dev_priv->drm,
1005 			    "no initial power sequencer for [ENCODER:%d:%s]\n",
1006 			    intel_dig_port->base.base.base.id,
1007 			    intel_dig_port->base.base.name);
1008 		return;
1009 	}
1010 
1011 	drm_dbg_kms(&dev_priv->drm,
1012 		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1013 		    intel_dig_port->base.base.base.id,
1014 		    intel_dig_port->base.base.name,
1015 		    pipe_name(intel_dp->pps_pipe));
1016 
1017 	intel_dp_init_panel_power_sequencer(intel_dp);
1018 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1019 }
1020 
1021 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1022 {
1023 	struct intel_encoder *encoder;
1024 
1025 	if (drm_WARN_ON(&dev_priv->drm,
1026 			!(IS_VALLEYVIEW(dev_priv) ||
1027 			  IS_CHERRYVIEW(dev_priv) ||
1028 			  IS_GEN9_LP(dev_priv))))
1029 		return;
1030 
1031 	/*
1032 	 * We can't grab pps_mutex here due to deadlock with power_domain
1033 	 * mutex when power_domain functions are called while holding pps_mutex.
1034 	 * That also means that in order to use pps_pipe the code needs to
1035 	 * hold both a power domain reference and pps_mutex, and the power domain
1036 	 * reference get/put must be done while _not_ holding pps_mutex.
1037 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1038 	 * should use them always.
1039 	 */
1040 
1041 	for_each_intel_dp(&dev_priv->drm, encoder) {
1042 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1043 
1044 		drm_WARN_ON(&dev_priv->drm,
1045 			    intel_dp->active_pipe != INVALID_PIPE);
1046 
1047 		if (encoder->type != INTEL_OUTPUT_EDP)
1048 			continue;
1049 
1050 		if (IS_GEN9_LP(dev_priv))
1051 			intel_dp->pps_reset = true;
1052 		else
1053 			intel_dp->pps_pipe = INVALID_PIPE;
1054 	}
1055 }
1056 
1057 struct pps_registers {
1058 	i915_reg_t pp_ctrl;
1059 	i915_reg_t pp_stat;
1060 	i915_reg_t pp_on;
1061 	i915_reg_t pp_off;
1062 	i915_reg_t pp_div;
1063 };
1064 
1065 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1066 				    struct pps_registers *regs)
1067 {
1068 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1069 	int pps_idx = 0;
1070 
1071 	memset(regs, 0, sizeof(*regs));
1072 
1073 	if (IS_GEN9_LP(dev_priv))
1074 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1075 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1076 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1077 
1078 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1079 	regs->pp_stat = PP_STATUS(pps_idx);
1080 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1081 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1082 
1083 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1084 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1085 		regs->pp_div = INVALID_MMIO_REG;
1086 	else
1087 		regs->pp_div = PP_DIVISOR(pps_idx);
1088 }
1089 
1090 static i915_reg_t
1091 _pp_ctrl_reg(struct intel_dp *intel_dp)
1092 {
1093 	struct pps_registers regs;
1094 
1095 	intel_pps_get_registers(intel_dp, &regs);
1096 
1097 	return regs.pp_ctrl;
1098 }
1099 
1100 static i915_reg_t
1101 _pp_stat_reg(struct intel_dp *intel_dp)
1102 {
1103 	struct pps_registers regs;
1104 
1105 	intel_pps_get_registers(intel_dp, &regs);
1106 
1107 	return regs.pp_stat;
1108 }
1109 
1110 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1111    This function only applicable when panel PM state is not to be tracked */
1112 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1113 			      void *unused)
1114 {
1115 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1116 						 edp_notifier);
1117 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1118 	intel_wakeref_t wakeref;
1119 
1120 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1121 		return 0;
1122 
1123 	with_pps_lock(intel_dp, wakeref) {
1124 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1125 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1126 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1127 			u32 pp_div;
1128 
1129 			pp_ctrl_reg = PP_CONTROL(pipe);
1130 			pp_div_reg  = PP_DIVISOR(pipe);
1131 			pp_div = intel_de_read(dev_priv, pp_div_reg);
1132 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1133 
1134 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1135 			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1136 			intel_de_write(dev_priv, pp_ctrl_reg,
1137 				       PANEL_UNLOCK_REGS);
1138 			msleep(intel_dp->panel_power_cycle_delay);
1139 		}
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1146 {
1147 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1148 
1149 	lockdep_assert_held(&dev_priv->pps_mutex);
1150 
1151 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1152 	    intel_dp->pps_pipe == INVALID_PIPE)
1153 		return false;
1154 
1155 	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1156 }
1157 
1158 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1159 {
1160 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1161 
1162 	lockdep_assert_held(&dev_priv->pps_mutex);
1163 
1164 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1165 	    intel_dp->pps_pipe == INVALID_PIPE)
1166 		return false;
1167 
1168 	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1169 }
1170 
1171 static void
1172 intel_dp_check_edp(struct intel_dp *intel_dp)
1173 {
1174 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1175 
1176 	if (!intel_dp_is_edp(intel_dp))
1177 		return;
1178 
1179 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1180 		drm_WARN(&dev_priv->drm, 1,
1181 			 "eDP powered off while attempting aux channel communication.\n");
1182 		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1183 			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1184 			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1185 	}
1186 }
1187 
1188 static u32
1189 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1190 {
1191 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1192 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1193 	const unsigned int timeout_ms = 10;
1194 	u32 status;
1195 	bool done;
1196 
1197 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1198 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1199 				  msecs_to_jiffies_timeout(timeout_ms));
1200 
1201 	/* just trace the final value */
1202 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1203 
1204 	if (!done)
1205 		drm_err(&i915->drm,
1206 			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1207 			intel_dp->aux.name, timeout_ms, status);
1208 #undef C
1209 
1210 	return status;
1211 }
1212 
1213 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1214 {
1215 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1216 
1217 	if (index)
1218 		return 0;
1219 
1220 	/*
1221 	 * The clock divider is based off the hrawclk, and would like to run at
1222 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1223 	 */
1224 	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1225 }
1226 
1227 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1228 {
1229 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1230 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1231 	u32 freq;
1232 
1233 	if (index)
1234 		return 0;
1235 
1236 	/*
1237 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1238 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1239 	 * divide by 2000 and use that
1240 	 */
1241 	if (dig_port->aux_ch == AUX_CH_A)
1242 		freq = dev_priv->cdclk.hw.cdclk;
1243 	else
1244 		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1245 	return DIV_ROUND_CLOSEST(freq, 2000);
1246 }
1247 
1248 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1249 {
1250 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1251 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1252 
1253 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1254 		/* Workaround for non-ULT HSW */
1255 		switch (index) {
1256 		case 0: return 63;
1257 		case 1: return 72;
1258 		default: return 0;
1259 		}
1260 	}
1261 
1262 	return ilk_get_aux_clock_divider(intel_dp, index);
1263 }
1264 
1265 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1266 {
1267 	/*
1268 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1269 	 * derive the clock from CDCLK automatically). We still implement the
1270 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1271 	 */
1272 	return index ? 0 : 1;
1273 }
1274 
1275 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1276 				int send_bytes,
1277 				u32 aux_clock_divider)
1278 {
1279 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1280 	struct drm_i915_private *dev_priv =
1281 			to_i915(intel_dig_port->base.base.dev);
1282 	u32 precharge, timeout;
1283 
1284 	if (IS_GEN(dev_priv, 6))
1285 		precharge = 3;
1286 	else
1287 		precharge = 5;
1288 
1289 	if (IS_BROADWELL(dev_priv))
1290 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1291 	else
1292 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1293 
1294 	return DP_AUX_CH_CTL_SEND_BUSY |
1295 	       DP_AUX_CH_CTL_DONE |
1296 	       DP_AUX_CH_CTL_INTERRUPT |
1297 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1298 	       timeout |
1299 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1300 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1301 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1302 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1303 }
1304 
1305 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1306 				int send_bytes,
1307 				u32 unused)
1308 {
1309 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1310 	struct drm_i915_private *i915 =
1311 			to_i915(intel_dig_port->base.base.dev);
1312 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1313 	u32 ret;
1314 
1315 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1316 	      DP_AUX_CH_CTL_DONE |
1317 	      DP_AUX_CH_CTL_INTERRUPT |
1318 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1319 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1320 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1321 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1322 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1323 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1324 
1325 	if (intel_phy_is_tc(i915, phy) &&
1326 	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1327 		ret |= DP_AUX_CH_CTL_TBT_IO;
1328 
1329 	return ret;
1330 }
1331 
1332 static int
1333 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1334 		  const u8 *send, int send_bytes,
1335 		  u8 *recv, int recv_size,
1336 		  u32 aux_send_ctl_flags)
1337 {
1338 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1339 	struct drm_i915_private *i915 =
1340 			to_i915(intel_dig_port->base.base.dev);
1341 	struct intel_uncore *uncore = &i915->uncore;
1342 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1343 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1344 	i915_reg_t ch_ctl, ch_data[5];
1345 	u32 aux_clock_divider;
1346 	enum intel_display_power_domain aux_domain =
1347 		intel_aux_power_domain(intel_dig_port);
1348 	intel_wakeref_t aux_wakeref;
1349 	intel_wakeref_t pps_wakeref;
1350 	int i, ret, recv_bytes;
1351 	int try, clock = 0;
1352 	u32 status;
1353 	bool vdd;
1354 
1355 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1356 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1357 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1358 
1359 	if (is_tc_port)
1360 		intel_tc_port_lock(intel_dig_port);
1361 
1362 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1363 	pps_wakeref = pps_lock(intel_dp);
1364 
1365 	/*
1366 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1367 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1368 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1369 	 * ourselves.
1370 	 */
1371 	vdd = edp_panel_vdd_on(intel_dp);
1372 
1373 	/* dp aux is extremely sensitive to irq latency, hence request the
1374 	 * lowest possible wakeup latency and so prevent the cpu from going into
1375 	 * deep sleep states.
1376 	 */
1377 	cpu_latency_qos_update_request(&i915->pm_qos, 0);
1378 
1379 	intel_dp_check_edp(intel_dp);
1380 
1381 	/* Try to wait for any previous AUX channel activity */
1382 	for (try = 0; try < 3; try++) {
1383 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1384 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1385 			break;
1386 		msleep(1);
1387 	}
1388 	/* just trace the final value */
1389 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1390 
1391 	if (try == 3) {
1392 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1393 
1394 		if (status != intel_dp->aux_busy_last_status) {
1395 			drm_WARN(&i915->drm, 1,
1396 				 "%s: not started (status 0x%08x)\n",
1397 				 intel_dp->aux.name, status);
1398 			intel_dp->aux_busy_last_status = status;
1399 		}
1400 
1401 		ret = -EBUSY;
1402 		goto out;
1403 	}
1404 
1405 	/* Only 5 data registers! */
1406 	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1407 		ret = -E2BIG;
1408 		goto out;
1409 	}
1410 
1411 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1412 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1413 							  send_bytes,
1414 							  aux_clock_divider);
1415 
1416 		send_ctl |= aux_send_ctl_flags;
1417 
1418 		/* Must try at least 3 times according to DP spec */
1419 		for (try = 0; try < 5; try++) {
1420 			/* Load the send data into the aux channel data registers */
1421 			for (i = 0; i < send_bytes; i += 4)
1422 				intel_uncore_write(uncore,
1423 						   ch_data[i >> 2],
1424 						   intel_dp_pack_aux(send + i,
1425 								     send_bytes - i));
1426 
1427 			/* Send the command and wait for it to complete */
1428 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1429 
1430 			status = intel_dp_aux_wait_done(intel_dp);
1431 
1432 			/* Clear done status and any errors */
1433 			intel_uncore_write(uncore,
1434 					   ch_ctl,
1435 					   status |
1436 					   DP_AUX_CH_CTL_DONE |
1437 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1438 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1439 
1440 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1441 			 *   400us delay required for errors and timeouts
1442 			 *   Timeout errors from the HW already meet this
1443 			 *   requirement so skip to next iteration
1444 			 */
1445 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1446 				continue;
1447 
1448 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1449 				usleep_range(400, 500);
1450 				continue;
1451 			}
1452 			if (status & DP_AUX_CH_CTL_DONE)
1453 				goto done;
1454 		}
1455 	}
1456 
1457 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1458 		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1459 			intel_dp->aux.name, status);
1460 		ret = -EBUSY;
1461 		goto out;
1462 	}
1463 
1464 done:
1465 	/* Check for timeout or receive error.
1466 	 * Timeouts occur when the sink is not connected
1467 	 */
1468 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1469 		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1470 			intel_dp->aux.name, status);
1471 		ret = -EIO;
1472 		goto out;
1473 	}
1474 
1475 	/* Timeouts occur when the device isn't connected, so they're
1476 	 * "normal" -- don't fill the kernel log with these */
1477 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1478 		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1479 			    intel_dp->aux.name, status);
1480 		ret = -ETIMEDOUT;
1481 		goto out;
1482 	}
1483 
1484 	/* Unload any bytes sent back from the other side */
1485 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1486 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1487 
1488 	/*
1489 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1490 	 * We have no idea of what happened so we return -EBUSY so
1491 	 * drm layer takes care for the necessary retries.
1492 	 */
1493 	if (recv_bytes == 0 || recv_bytes > 20) {
1494 		drm_dbg_kms(&i915->drm,
1495 			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
1496 			    intel_dp->aux.name, recv_bytes);
1497 		ret = -EBUSY;
1498 		goto out;
1499 	}
1500 
1501 	if (recv_bytes > recv_size)
1502 		recv_bytes = recv_size;
1503 
1504 	for (i = 0; i < recv_bytes; i += 4)
1505 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1506 				    recv + i, recv_bytes - i);
1507 
1508 	ret = recv_bytes;
1509 out:
1510 	cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1511 
1512 	if (vdd)
1513 		edp_panel_vdd_off(intel_dp, false);
1514 
1515 	pps_unlock(intel_dp, pps_wakeref);
1516 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1517 
1518 	if (is_tc_port)
1519 		intel_tc_port_unlock(intel_dig_port);
1520 
1521 	return ret;
1522 }
1523 
1524 #define BARE_ADDRESS_SIZE	3
1525 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1526 
1527 static void
1528 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1529 		    const struct drm_dp_aux_msg *msg)
1530 {
1531 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1532 	txbuf[1] = (msg->address >> 8) & 0xff;
1533 	txbuf[2] = msg->address & 0xff;
1534 	txbuf[3] = msg->size - 1;
1535 }
1536 
1537 static ssize_t
1538 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1539 {
1540 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1541 	u8 txbuf[20], rxbuf[20];
1542 	size_t txsize, rxsize;
1543 	int ret;
1544 
1545 	intel_dp_aux_header(txbuf, msg);
1546 
1547 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1548 	case DP_AUX_NATIVE_WRITE:
1549 	case DP_AUX_I2C_WRITE:
1550 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1551 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1552 		rxsize = 2; /* 0 or 1 data bytes */
1553 
1554 		if (WARN_ON(txsize > 20))
1555 			return -E2BIG;
1556 
1557 		WARN_ON(!msg->buffer != !msg->size);
1558 
1559 		if (msg->buffer)
1560 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1561 
1562 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1563 					rxbuf, rxsize, 0);
1564 		if (ret > 0) {
1565 			msg->reply = rxbuf[0] >> 4;
1566 
1567 			if (ret > 1) {
1568 				/* Number of bytes written in a short write. */
1569 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1570 			} else {
1571 				/* Return payload size. */
1572 				ret = msg->size;
1573 			}
1574 		}
1575 		break;
1576 
1577 	case DP_AUX_NATIVE_READ:
1578 	case DP_AUX_I2C_READ:
1579 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1580 		rxsize = msg->size + 1;
1581 
1582 		if (WARN_ON(rxsize > 20))
1583 			return -E2BIG;
1584 
1585 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1586 					rxbuf, rxsize, 0);
1587 		if (ret > 0) {
1588 			msg->reply = rxbuf[0] >> 4;
1589 			/*
1590 			 * Assume happy day, and copy the data. The caller is
1591 			 * expected to check msg->reply before touching it.
1592 			 *
1593 			 * Return payload size.
1594 			 */
1595 			ret--;
1596 			memcpy(msg->buffer, rxbuf + 1, ret);
1597 		}
1598 		break;
1599 
1600 	default:
1601 		ret = -EINVAL;
1602 		break;
1603 	}
1604 
1605 	return ret;
1606 }
1607 
1608 
1609 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1610 {
1611 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1612 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1613 	enum aux_ch aux_ch = dig_port->aux_ch;
1614 
1615 	switch (aux_ch) {
1616 	case AUX_CH_B:
1617 	case AUX_CH_C:
1618 	case AUX_CH_D:
1619 		return DP_AUX_CH_CTL(aux_ch);
1620 	default:
1621 		MISSING_CASE(aux_ch);
1622 		return DP_AUX_CH_CTL(AUX_CH_B);
1623 	}
1624 }
1625 
1626 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1627 {
1628 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1629 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1630 	enum aux_ch aux_ch = dig_port->aux_ch;
1631 
1632 	switch (aux_ch) {
1633 	case AUX_CH_B:
1634 	case AUX_CH_C:
1635 	case AUX_CH_D:
1636 		return DP_AUX_CH_DATA(aux_ch, index);
1637 	default:
1638 		MISSING_CASE(aux_ch);
1639 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1640 	}
1641 }
1642 
1643 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1644 {
1645 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647 	enum aux_ch aux_ch = dig_port->aux_ch;
1648 
1649 	switch (aux_ch) {
1650 	case AUX_CH_A:
1651 		return DP_AUX_CH_CTL(aux_ch);
1652 	case AUX_CH_B:
1653 	case AUX_CH_C:
1654 	case AUX_CH_D:
1655 		return PCH_DP_AUX_CH_CTL(aux_ch);
1656 	default:
1657 		MISSING_CASE(aux_ch);
1658 		return DP_AUX_CH_CTL(AUX_CH_A);
1659 	}
1660 }
1661 
1662 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1663 {
1664 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666 	enum aux_ch aux_ch = dig_port->aux_ch;
1667 
1668 	switch (aux_ch) {
1669 	case AUX_CH_A:
1670 		return DP_AUX_CH_DATA(aux_ch, index);
1671 	case AUX_CH_B:
1672 	case AUX_CH_C:
1673 	case AUX_CH_D:
1674 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1675 	default:
1676 		MISSING_CASE(aux_ch);
1677 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1678 	}
1679 }
1680 
1681 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1682 {
1683 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1684 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1685 	enum aux_ch aux_ch = dig_port->aux_ch;
1686 
1687 	switch (aux_ch) {
1688 	case AUX_CH_A:
1689 	case AUX_CH_B:
1690 	case AUX_CH_C:
1691 	case AUX_CH_D:
1692 	case AUX_CH_E:
1693 	case AUX_CH_F:
1694 	case AUX_CH_G:
1695 		return DP_AUX_CH_CTL(aux_ch);
1696 	default:
1697 		MISSING_CASE(aux_ch);
1698 		return DP_AUX_CH_CTL(AUX_CH_A);
1699 	}
1700 }
1701 
1702 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1703 {
1704 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1705 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1706 	enum aux_ch aux_ch = dig_port->aux_ch;
1707 
1708 	switch (aux_ch) {
1709 	case AUX_CH_A:
1710 	case AUX_CH_B:
1711 	case AUX_CH_C:
1712 	case AUX_CH_D:
1713 	case AUX_CH_E:
1714 	case AUX_CH_F:
1715 	case AUX_CH_G:
1716 		return DP_AUX_CH_DATA(aux_ch, index);
1717 	default:
1718 		MISSING_CASE(aux_ch);
1719 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1720 	}
1721 }
1722 
1723 static void
1724 intel_dp_aux_fini(struct intel_dp *intel_dp)
1725 {
1726 	kfree(intel_dp->aux.name);
1727 }
1728 
1729 static void
1730 intel_dp_aux_init(struct intel_dp *intel_dp)
1731 {
1732 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1733 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1734 	struct intel_encoder *encoder = &dig_port->base;
1735 
1736 	if (INTEL_GEN(dev_priv) >= 9) {
1737 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1738 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1739 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1740 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1741 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1742 	} else {
1743 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1744 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1745 	}
1746 
1747 	if (INTEL_GEN(dev_priv) >= 9)
1748 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1749 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1750 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1751 	else if (HAS_PCH_SPLIT(dev_priv))
1752 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1753 	else
1754 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1755 
1756 	if (INTEL_GEN(dev_priv) >= 9)
1757 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1758 	else
1759 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1760 
1761 	drm_dp_aux_init(&intel_dp->aux);
1762 
1763 	/* Failure to allocate our preferred name is not critical */
1764 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1765 				       aux_ch_name(dig_port->aux_ch),
1766 				       port_name(encoder->port));
1767 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1768 }
1769 
1770 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1771 {
1772 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1773 
1774 	return max_rate >= 540000;
1775 }
1776 
1777 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1778 {
1779 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1780 
1781 	return max_rate >= 810000;
1782 }
1783 
1784 static void
1785 intel_dp_set_clock(struct intel_encoder *encoder,
1786 		   struct intel_crtc_state *pipe_config)
1787 {
1788 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1789 	const struct dp_link_dpll *divisor = NULL;
1790 	int i, count = 0;
1791 
1792 	if (IS_G4X(dev_priv)) {
1793 		divisor = g4x_dpll;
1794 		count = ARRAY_SIZE(g4x_dpll);
1795 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1796 		divisor = pch_dpll;
1797 		count = ARRAY_SIZE(pch_dpll);
1798 	} else if (IS_CHERRYVIEW(dev_priv)) {
1799 		divisor = chv_dpll;
1800 		count = ARRAY_SIZE(chv_dpll);
1801 	} else if (IS_VALLEYVIEW(dev_priv)) {
1802 		divisor = vlv_dpll;
1803 		count = ARRAY_SIZE(vlv_dpll);
1804 	}
1805 
1806 	if (divisor && count) {
1807 		for (i = 0; i < count; i++) {
1808 			if (pipe_config->port_clock == divisor[i].clock) {
1809 				pipe_config->dpll = divisor[i].dpll;
1810 				pipe_config->clock_set = true;
1811 				break;
1812 			}
1813 		}
1814 	}
1815 }
1816 
1817 static void snprintf_int_array(char *str, size_t len,
1818 			       const int *array, int nelem)
1819 {
1820 	int i;
1821 
1822 	str[0] = '\0';
1823 
1824 	for (i = 0; i < nelem; i++) {
1825 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1826 		if (r >= len)
1827 			return;
1828 		str += r;
1829 		len -= r;
1830 	}
1831 }
1832 
1833 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1834 {
1835 	char str[128]; /* FIXME: too big for stack? */
1836 
1837 	if (!drm_debug_enabled(DRM_UT_KMS))
1838 		return;
1839 
1840 	snprintf_int_array(str, sizeof(str),
1841 			   intel_dp->source_rates, intel_dp->num_source_rates);
1842 	DRM_DEBUG_KMS("source rates: %s\n", str);
1843 
1844 	snprintf_int_array(str, sizeof(str),
1845 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1846 	DRM_DEBUG_KMS("sink rates: %s\n", str);
1847 
1848 	snprintf_int_array(str, sizeof(str),
1849 			   intel_dp->common_rates, intel_dp->num_common_rates);
1850 	DRM_DEBUG_KMS("common rates: %s\n", str);
1851 }
1852 
1853 int
1854 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1855 {
1856 	int len;
1857 
1858 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1859 	if (WARN_ON(len <= 0))
1860 		return 162000;
1861 
1862 	return intel_dp->common_rates[len - 1];
1863 }
1864 
1865 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1866 {
1867 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1868 				    intel_dp->num_sink_rates, rate);
1869 
1870 	if (WARN_ON(i < 0))
1871 		i = 0;
1872 
1873 	return i;
1874 }
1875 
1876 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1877 			   u8 *link_bw, u8 *rate_select)
1878 {
1879 	/* eDP 1.4 rate select method. */
1880 	if (intel_dp->use_rate_select) {
1881 		*link_bw = 0;
1882 		*rate_select =
1883 			intel_dp_rate_select(intel_dp, port_clock);
1884 	} else {
1885 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1886 		*rate_select = 0;
1887 	}
1888 }
1889 
1890 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1891 					 const struct intel_crtc_state *pipe_config)
1892 {
1893 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1894 
1895 	/* On TGL, FEC is supported on all Pipes */
1896 	if (INTEL_GEN(dev_priv) >= 12)
1897 		return true;
1898 
1899 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1900 		return true;
1901 
1902 	return false;
1903 }
1904 
1905 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1906 				  const struct intel_crtc_state *pipe_config)
1907 {
1908 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1909 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1910 }
1911 
1912 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1913 				  const struct intel_crtc_state *crtc_state)
1914 {
1915 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1916 
1917 	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1918 		return false;
1919 
1920 	return intel_dsc_source_support(encoder, crtc_state) &&
1921 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1922 }
1923 
1924 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1925 				struct intel_crtc_state *pipe_config)
1926 {
1927 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1928 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1929 	int bpp, bpc;
1930 
1931 	bpp = pipe_config->pipe_bpp;
1932 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1933 
1934 	if (bpc > 0)
1935 		bpp = min(bpp, 3*bpc);
1936 
1937 	if (intel_dp_is_edp(intel_dp)) {
1938 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1939 		if (intel_connector->base.display_info.bpc == 0 &&
1940 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1941 			drm_dbg_kms(&dev_priv->drm,
1942 				    "clamping bpp for eDP panel to BIOS-provided %i\n",
1943 				    dev_priv->vbt.edp.bpp);
1944 			bpp = dev_priv->vbt.edp.bpp;
1945 		}
1946 	}
1947 
1948 	return bpp;
1949 }
1950 
1951 /* Adjust link config limits based on compliance test requests. */
1952 void
1953 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1954 				  struct intel_crtc_state *pipe_config,
1955 				  struct link_config_limits *limits)
1956 {
1957 	/* For DP Compliance we override the computed bpp for the pipe */
1958 	if (intel_dp->compliance.test_data.bpc != 0) {
1959 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1960 
1961 		limits->min_bpp = limits->max_bpp = bpp;
1962 		pipe_config->dither_force_disable = bpp == 6 * 3;
1963 
1964 		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1965 	}
1966 
1967 	/* Use values requested by Compliance Test Request */
1968 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1969 		int index;
1970 
1971 		/* Validate the compliance test data since max values
1972 		 * might have changed due to link train fallback.
1973 		 */
1974 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1975 					       intel_dp->compliance.test_lane_count)) {
1976 			index = intel_dp_rate_index(intel_dp->common_rates,
1977 						    intel_dp->num_common_rates,
1978 						    intel_dp->compliance.test_link_rate);
1979 			if (index >= 0)
1980 				limits->min_clock = limits->max_clock = index;
1981 			limits->min_lane_count = limits->max_lane_count =
1982 				intel_dp->compliance.test_lane_count;
1983 		}
1984 	}
1985 }
1986 
1987 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1988 {
1989 	/*
1990 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1991 	 * format of the number of bytes per pixel will be half the number
1992 	 * of bytes of RGB pixel.
1993 	 */
1994 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1995 		bpp /= 2;
1996 
1997 	return bpp;
1998 }
1999 
2000 /* Optimize link config in order: max bpp, min clock, min lanes */
2001 static int
2002 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2003 				  struct intel_crtc_state *pipe_config,
2004 				  const struct link_config_limits *limits)
2005 {
2006 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2007 	int bpp, clock, lane_count;
2008 	int mode_rate, link_clock, link_avail;
2009 
2010 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2011 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2012 
2013 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2014 						   output_bpp);
2015 
2016 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2017 			for (lane_count = limits->min_lane_count;
2018 			     lane_count <= limits->max_lane_count;
2019 			     lane_count <<= 1) {
2020 				link_clock = intel_dp->common_rates[clock];
2021 				link_avail = intel_dp_max_data_rate(link_clock,
2022 								    lane_count);
2023 
2024 				if (mode_rate <= link_avail) {
2025 					pipe_config->lane_count = lane_count;
2026 					pipe_config->pipe_bpp = bpp;
2027 					pipe_config->port_clock = link_clock;
2028 
2029 					return 0;
2030 				}
2031 			}
2032 		}
2033 	}
2034 
2035 	return -EINVAL;
2036 }
2037 
2038 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2039 {
2040 	int i, num_bpc;
2041 	u8 dsc_bpc[3] = {0};
2042 
2043 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2044 						       dsc_bpc);
2045 	for (i = 0; i < num_bpc; i++) {
2046 		if (dsc_max_bpc >= dsc_bpc[i])
2047 			return dsc_bpc[i] * 3;
2048 	}
2049 
2050 	return 0;
2051 }
2052 
2053 #define DSC_SUPPORTED_VERSION_MIN		1
2054 
2055 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2056 				       struct intel_crtc_state *crtc_state)
2057 {
2058 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2059 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2060 	u8 line_buf_depth;
2061 	int ret;
2062 
2063 	ret = intel_dsc_compute_params(encoder, crtc_state);
2064 	if (ret)
2065 		return ret;
2066 
2067 	/*
2068 	 * Slice Height of 8 works for all currently available panels. So start
2069 	 * with that if pic_height is an integral multiple of 8. Eventually add
2070 	 * logic to try multiple slice heights.
2071 	 */
2072 	if (vdsc_cfg->pic_height % 8 == 0)
2073 		vdsc_cfg->slice_height = 8;
2074 	else if (vdsc_cfg->pic_height % 4 == 0)
2075 		vdsc_cfg->slice_height = 4;
2076 	else
2077 		vdsc_cfg->slice_height = 2;
2078 
2079 	vdsc_cfg->dsc_version_major =
2080 		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2081 		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2082 	vdsc_cfg->dsc_version_minor =
2083 		min(DSC_SUPPORTED_VERSION_MIN,
2084 		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2085 		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2086 
2087 	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2088 		DP_DSC_RGB;
2089 
2090 	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2091 	if (!line_buf_depth) {
2092 		DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
2093 		return -EINVAL;
2094 	}
2095 
2096 	if (vdsc_cfg->dsc_version_minor == 2)
2097 		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2098 			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2099 	else
2100 		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2101 			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2102 
2103 	vdsc_cfg->block_pred_enable =
2104 		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2105 		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2106 
2107 	return drm_dsc_compute_rc_parameters(vdsc_cfg);
2108 }
2109 
2110 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2111 				       struct intel_crtc_state *pipe_config,
2112 				       struct drm_connector_state *conn_state,
2113 				       struct link_config_limits *limits)
2114 {
2115 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2116 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2117 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2118 	u8 dsc_max_bpc;
2119 	int pipe_bpp;
2120 	int ret;
2121 
2122 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2123 		intel_dp_supports_fec(intel_dp, pipe_config);
2124 
2125 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2126 		return -EINVAL;
2127 
2128 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2129 	if (INTEL_GEN(dev_priv) >= 12)
2130 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2131 	else
2132 		dsc_max_bpc = min_t(u8, 10,
2133 				    conn_state->max_requested_bpc);
2134 
2135 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2136 
2137 	/* Min Input BPC for ICL+ is 8 */
2138 	if (pipe_bpp < 8 * 3) {
2139 		drm_dbg_kms(&dev_priv->drm,
2140 			    "No DSC support for less than 8bpc\n");
2141 		return -EINVAL;
2142 	}
2143 
2144 	/*
2145 	 * For now enable DSC for max bpp, max link rate, max lane count.
2146 	 * Optimize this later for the minimum possible link rate/lane count
2147 	 * with DSC enabled for the requested mode.
2148 	 */
2149 	pipe_config->pipe_bpp = pipe_bpp;
2150 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2151 	pipe_config->lane_count = limits->max_lane_count;
2152 
2153 	if (intel_dp_is_edp(intel_dp)) {
2154 		pipe_config->dsc.compressed_bpp =
2155 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2156 			      pipe_config->pipe_bpp);
2157 		pipe_config->dsc.slice_count =
2158 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2159 							true);
2160 	} else {
2161 		u16 dsc_max_output_bpp;
2162 		u8 dsc_dp_slice_count;
2163 
2164 		dsc_max_output_bpp =
2165 			intel_dp_dsc_get_output_bpp(dev_priv,
2166 						    pipe_config->port_clock,
2167 						    pipe_config->lane_count,
2168 						    adjusted_mode->crtc_clock,
2169 						    adjusted_mode->crtc_hdisplay);
2170 		dsc_dp_slice_count =
2171 			intel_dp_dsc_get_slice_count(intel_dp,
2172 						     adjusted_mode->crtc_clock,
2173 						     adjusted_mode->crtc_hdisplay);
2174 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2175 			drm_dbg_kms(&dev_priv->drm,
2176 				    "Compressed BPP/Slice Count not supported\n");
2177 			return -EINVAL;
2178 		}
2179 		pipe_config->dsc.compressed_bpp = min_t(u16,
2180 							       dsc_max_output_bpp >> 4,
2181 							       pipe_config->pipe_bpp);
2182 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2183 	}
2184 	/*
2185 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2186 	 * is greater than the maximum Cdclock and if slice count is even
2187 	 * then we need to use 2 VDSC instances.
2188 	 */
2189 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2190 		if (pipe_config->dsc.slice_count > 1) {
2191 			pipe_config->dsc.dsc_split = true;
2192 		} else {
2193 			drm_dbg_kms(&dev_priv->drm,
2194 				    "Cannot split stream to use 2 VDSC instances\n");
2195 			return -EINVAL;
2196 		}
2197 	}
2198 
2199 	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2200 	if (ret < 0) {
2201 		drm_dbg_kms(&dev_priv->drm,
2202 			    "Cannot compute valid DSC parameters for Input Bpp = %d "
2203 			    "Compressed BPP = %d\n",
2204 			    pipe_config->pipe_bpp,
2205 			    pipe_config->dsc.compressed_bpp);
2206 		return ret;
2207 	}
2208 
2209 	pipe_config->dsc.compression_enable = true;
2210 	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2211 		    "Compressed Bpp = %d Slice Count = %d\n",
2212 		    pipe_config->pipe_bpp,
2213 		    pipe_config->dsc.compressed_bpp,
2214 		    pipe_config->dsc.slice_count);
2215 
2216 	return 0;
2217 }
2218 
2219 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2220 {
2221 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2222 		return 6 * 3;
2223 	else
2224 		return 8 * 3;
2225 }
2226 
2227 static int
2228 intel_dp_compute_link_config(struct intel_encoder *encoder,
2229 			     struct intel_crtc_state *pipe_config,
2230 			     struct drm_connector_state *conn_state)
2231 {
2232 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2233 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2234 	struct link_config_limits limits;
2235 	int common_len;
2236 	int ret;
2237 
2238 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2239 						    intel_dp->max_link_rate);
2240 
2241 	/* No common link rates between source and sink */
2242 	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2243 
2244 	limits.min_clock = 0;
2245 	limits.max_clock = common_len - 1;
2246 
2247 	limits.min_lane_count = 1;
2248 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2249 
2250 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2251 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2252 
2253 	if (intel_dp_is_edp(intel_dp)) {
2254 		/*
2255 		 * Use the maximum clock and number of lanes the eDP panel
2256 		 * advertizes being capable of. The panels are generally
2257 		 * designed to support only a single clock and lane
2258 		 * configuration, and typically these values correspond to the
2259 		 * native resolution of the panel.
2260 		 */
2261 		limits.min_lane_count = limits.max_lane_count;
2262 		limits.min_clock = limits.max_clock;
2263 	}
2264 
2265 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2266 
2267 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
2268 		      "max rate %d max bpp %d pixel clock %iKHz\n",
2269 		      limits.max_lane_count,
2270 		      intel_dp->common_rates[limits.max_clock],
2271 		      limits.max_bpp, adjusted_mode->crtc_clock);
2272 
2273 	/*
2274 	 * Optimize for slow and wide. This is the place to add alternative
2275 	 * optimization policy.
2276 	 */
2277 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2278 
2279 	/* enable compression if the mode doesn't fit available BW */
2280 	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2281 	if (ret || intel_dp->force_dsc_en) {
2282 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2283 						  conn_state, &limits);
2284 		if (ret < 0)
2285 			return ret;
2286 	}
2287 
2288 	if (pipe_config->dsc.compression_enable) {
2289 		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2290 			      pipe_config->lane_count, pipe_config->port_clock,
2291 			      pipe_config->pipe_bpp,
2292 			      pipe_config->dsc.compressed_bpp);
2293 
2294 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2295 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2296 						     pipe_config->dsc.compressed_bpp),
2297 			      intel_dp_max_data_rate(pipe_config->port_clock,
2298 						     pipe_config->lane_count));
2299 	} else {
2300 		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2301 			      pipe_config->lane_count, pipe_config->port_clock,
2302 			      pipe_config->pipe_bpp);
2303 
2304 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2305 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2306 						     pipe_config->pipe_bpp),
2307 			      intel_dp_max_data_rate(pipe_config->port_clock,
2308 						     pipe_config->lane_count));
2309 	}
2310 	return 0;
2311 }
2312 
2313 static int
2314 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2315 			 struct drm_connector *connector,
2316 			 struct intel_crtc_state *crtc_state)
2317 {
2318 	const struct drm_display_info *info = &connector->display_info;
2319 	const struct drm_display_mode *adjusted_mode =
2320 		&crtc_state->hw.adjusted_mode;
2321 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2322 	int ret;
2323 
2324 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2325 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2326 	    !connector->ycbcr_420_allowed)
2327 		return 0;
2328 
2329 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2330 
2331 	/* YCBCR 420 output conversion needs a scaler */
2332 	ret = skl_update_scaler_crtc(crtc_state);
2333 	if (ret) {
2334 		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2335 		return ret;
2336 	}
2337 
2338 	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2339 
2340 	return 0;
2341 }
2342 
2343 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2344 				  const struct drm_connector_state *conn_state)
2345 {
2346 	const struct intel_digital_connector_state *intel_conn_state =
2347 		to_intel_digital_connector_state(conn_state);
2348 	const struct drm_display_mode *adjusted_mode =
2349 		&crtc_state->hw.adjusted_mode;
2350 
2351 	/*
2352 	 * Our YCbCr output is always limited range.
2353 	 * crtc_state->limited_color_range only applies to RGB,
2354 	 * and it must never be set for YCbCr or we risk setting
2355 	 * some conflicting bits in PIPECONF which will mess up
2356 	 * the colors on the monitor.
2357 	 */
2358 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2359 		return false;
2360 
2361 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2362 		/*
2363 		 * See:
2364 		 * CEA-861-E - 5.1 Default Encoding Parameters
2365 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2366 		 */
2367 		return crtc_state->pipe_bpp != 18 &&
2368 			drm_default_rgb_quant_range(adjusted_mode) ==
2369 			HDMI_QUANTIZATION_RANGE_LIMITED;
2370 	} else {
2371 		return intel_conn_state->broadcast_rgb ==
2372 			INTEL_BROADCAST_RGB_LIMITED;
2373 	}
2374 }
2375 
2376 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2377 				    enum port port)
2378 {
2379 	if (IS_G4X(dev_priv))
2380 		return false;
2381 	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2382 		return false;
2383 
2384 	return true;
2385 }
2386 
2387 int
2388 intel_dp_compute_config(struct intel_encoder *encoder,
2389 			struct intel_crtc_state *pipe_config,
2390 			struct drm_connector_state *conn_state)
2391 {
2392 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2393 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2394 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2395 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2396 	enum port port = encoder->port;
2397 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2398 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2399 	struct intel_digital_connector_state *intel_conn_state =
2400 		to_intel_digital_connector_state(conn_state);
2401 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2402 					   DP_DPCD_QUIRK_CONSTANT_N);
2403 	int ret = 0, output_bpp;
2404 
2405 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2406 		pipe_config->has_pch_encoder = true;
2407 
2408 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2409 
2410 	if (lspcon->active)
2411 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2412 	else
2413 		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2414 					       pipe_config);
2415 
2416 	if (ret)
2417 		return ret;
2418 
2419 	pipe_config->has_drrs = false;
2420 	if (!intel_dp_port_has_audio(dev_priv, port))
2421 		pipe_config->has_audio = false;
2422 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2423 		pipe_config->has_audio = intel_dp->has_audio;
2424 	else
2425 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2426 
2427 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2428 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2429 				       adjusted_mode);
2430 
2431 		if (INTEL_GEN(dev_priv) >= 9) {
2432 			ret = skl_update_scaler_crtc(pipe_config);
2433 			if (ret)
2434 				return ret;
2435 		}
2436 
2437 		if (HAS_GMCH(dev_priv))
2438 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
2439 						 conn_state->scaling_mode);
2440 		else
2441 			intel_pch_panel_fitting(intel_crtc, pipe_config,
2442 						conn_state->scaling_mode);
2443 	}
2444 
2445 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2446 		return -EINVAL;
2447 
2448 	if (HAS_GMCH(dev_priv) &&
2449 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2450 		return -EINVAL;
2451 
2452 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2453 		return -EINVAL;
2454 
2455 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2456 		return -EINVAL;
2457 
2458 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2459 	if (ret < 0)
2460 		return ret;
2461 
2462 	pipe_config->limited_color_range =
2463 		intel_dp_limited_color_range(pipe_config, conn_state);
2464 
2465 	if (pipe_config->dsc.compression_enable)
2466 		output_bpp = pipe_config->dsc.compressed_bpp;
2467 	else
2468 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2469 
2470 	intel_link_compute_m_n(output_bpp,
2471 			       pipe_config->lane_count,
2472 			       adjusted_mode->crtc_clock,
2473 			       pipe_config->port_clock,
2474 			       &pipe_config->dp_m_n,
2475 			       constant_n, pipe_config->fec_enable);
2476 
2477 	if (intel_connector->panel.downclock_mode != NULL &&
2478 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2479 			pipe_config->has_drrs = true;
2480 			intel_link_compute_m_n(output_bpp,
2481 					       pipe_config->lane_count,
2482 					       intel_connector->panel.downclock_mode->clock,
2483 					       pipe_config->port_clock,
2484 					       &pipe_config->dp_m2_n2,
2485 					       constant_n, pipe_config->fec_enable);
2486 	}
2487 
2488 	if (!HAS_DDI(dev_priv))
2489 		intel_dp_set_clock(encoder, pipe_config);
2490 
2491 	intel_psr_compute_config(intel_dp, pipe_config);
2492 
2493 	return 0;
2494 }
2495 
2496 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2497 			      int link_rate, u8 lane_count,
2498 			      bool link_mst)
2499 {
2500 	intel_dp->link_trained = false;
2501 	intel_dp->link_rate = link_rate;
2502 	intel_dp->lane_count = lane_count;
2503 	intel_dp->link_mst = link_mst;
2504 }
2505 
2506 static void intel_dp_prepare(struct intel_encoder *encoder,
2507 			     const struct intel_crtc_state *pipe_config)
2508 {
2509 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2510 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2511 	enum port port = encoder->port;
2512 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2513 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2514 
2515 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2516 				 pipe_config->lane_count,
2517 				 intel_crtc_has_type(pipe_config,
2518 						     INTEL_OUTPUT_DP_MST));
2519 
2520 	/*
2521 	 * There are four kinds of DP registers:
2522 	 *
2523 	 * 	IBX PCH
2524 	 * 	SNB CPU
2525 	 *	IVB CPU
2526 	 * 	CPT PCH
2527 	 *
2528 	 * IBX PCH and CPU are the same for almost everything,
2529 	 * except that the CPU DP PLL is configured in this
2530 	 * register
2531 	 *
2532 	 * CPT PCH is quite different, having many bits moved
2533 	 * to the TRANS_DP_CTL register instead. That
2534 	 * configuration happens (oddly) in ilk_pch_enable
2535 	 */
2536 
2537 	/* Preserve the BIOS-computed detected bit. This is
2538 	 * supposed to be read-only.
2539 	 */
2540 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2541 
2542 	/* Handle DP bits in common between all three register formats */
2543 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2544 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2545 
2546 	/* Split out the IBX/CPU vs CPT settings */
2547 
2548 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2549 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2550 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2551 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2552 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2553 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2554 
2555 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2556 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2557 
2558 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2559 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2560 		u32 trans_dp;
2561 
2562 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2563 
2564 		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2565 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2566 			trans_dp |= TRANS_DP_ENH_FRAMING;
2567 		else
2568 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2569 		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2570 	} else {
2571 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2572 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2573 
2574 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2575 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2576 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2577 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2578 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2579 
2580 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2581 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2582 
2583 		if (IS_CHERRYVIEW(dev_priv))
2584 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2585 		else
2586 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2587 	}
2588 }
2589 
2590 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2591 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2592 
2593 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2594 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2595 
2596 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2597 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2598 
2599 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2600 
2601 static void wait_panel_status(struct intel_dp *intel_dp,
2602 				       u32 mask,
2603 				       u32 value)
2604 {
2605 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2606 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2607 
2608 	lockdep_assert_held(&dev_priv->pps_mutex);
2609 
2610 	intel_pps_verify_state(intel_dp);
2611 
2612 	pp_stat_reg = _pp_stat_reg(intel_dp);
2613 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2614 
2615 	drm_dbg_kms(&dev_priv->drm,
2616 		    "mask %08x value %08x status %08x control %08x\n",
2617 		    mask, value,
2618 		    intel_de_read(dev_priv, pp_stat_reg),
2619 		    intel_de_read(dev_priv, pp_ctrl_reg));
2620 
2621 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2622 				       mask, value, 5000))
2623 		drm_err(&dev_priv->drm,
2624 			"Panel status timeout: status %08x control %08x\n",
2625 			intel_de_read(dev_priv, pp_stat_reg),
2626 			intel_de_read(dev_priv, pp_ctrl_reg));
2627 
2628 	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2629 }
2630 
2631 static void wait_panel_on(struct intel_dp *intel_dp)
2632 {
2633 	DRM_DEBUG_KMS("Wait for panel power on\n");
2634 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2635 }
2636 
2637 static void wait_panel_off(struct intel_dp *intel_dp)
2638 {
2639 	DRM_DEBUG_KMS("Wait for panel power off time\n");
2640 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2641 }
2642 
2643 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2644 {
2645 	ktime_t panel_power_on_time;
2646 	s64 panel_power_off_duration;
2647 
2648 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2649 
2650 	/* take the difference of currrent time and panel power off time
2651 	 * and then make panel wait for t11_t12 if needed. */
2652 	panel_power_on_time = ktime_get_boottime();
2653 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2654 
2655 	/* When we disable the VDD override bit last we have to do the manual
2656 	 * wait. */
2657 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2658 		wait_remaining_ms_from_jiffies(jiffies,
2659 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2660 
2661 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2662 }
2663 
2664 static void wait_backlight_on(struct intel_dp *intel_dp)
2665 {
2666 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2667 				       intel_dp->backlight_on_delay);
2668 }
2669 
2670 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2671 {
2672 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2673 				       intel_dp->backlight_off_delay);
2674 }
2675 
2676 /* Read the current pp_control value, unlocking the register if it
2677  * is locked
2678  */
2679 
2680 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2681 {
2682 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2683 	u32 control;
2684 
2685 	lockdep_assert_held(&dev_priv->pps_mutex);
2686 
2687 	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2688 	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2689 			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2690 		control &= ~PANEL_UNLOCK_MASK;
2691 		control |= PANEL_UNLOCK_REGS;
2692 	}
2693 	return control;
2694 }
2695 
2696 /*
2697  * Must be paired with edp_panel_vdd_off().
2698  * Must hold pps_mutex around the whole on/off sequence.
2699  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2700  */
2701 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2702 {
2703 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2704 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2705 	u32 pp;
2706 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2707 	bool need_to_disable = !intel_dp->want_panel_vdd;
2708 
2709 	lockdep_assert_held(&dev_priv->pps_mutex);
2710 
2711 	if (!intel_dp_is_edp(intel_dp))
2712 		return false;
2713 
2714 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2715 	intel_dp->want_panel_vdd = true;
2716 
2717 	if (edp_have_panel_vdd(intel_dp))
2718 		return need_to_disable;
2719 
2720 	intel_display_power_get(dev_priv,
2721 				intel_aux_power_domain(intel_dig_port));
2722 
2723 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2724 		    intel_dig_port->base.base.base.id,
2725 		    intel_dig_port->base.base.name);
2726 
2727 	if (!edp_have_panel_power(intel_dp))
2728 		wait_panel_power_cycle(intel_dp);
2729 
2730 	pp = ilk_get_pp_control(intel_dp);
2731 	pp |= EDP_FORCE_VDD;
2732 
2733 	pp_stat_reg = _pp_stat_reg(intel_dp);
2734 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2735 
2736 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2737 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2738 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2739 		    intel_de_read(dev_priv, pp_stat_reg),
2740 		    intel_de_read(dev_priv, pp_ctrl_reg));
2741 	/*
2742 	 * If the panel wasn't on, delay before accessing aux channel
2743 	 */
2744 	if (!edp_have_panel_power(intel_dp)) {
2745 		drm_dbg_kms(&dev_priv->drm,
2746 			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
2747 			    intel_dig_port->base.base.base.id,
2748 			    intel_dig_port->base.base.name);
2749 		msleep(intel_dp->panel_power_up_delay);
2750 	}
2751 
2752 	return need_to_disable;
2753 }
2754 
2755 /*
2756  * Must be paired with intel_edp_panel_vdd_off() or
2757  * intel_edp_panel_off().
2758  * Nested calls to these functions are not allowed since
2759  * we drop the lock. Caller must use some higher level
2760  * locking to prevent nested calls from other threads.
2761  */
2762 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2763 {
2764 	intel_wakeref_t wakeref;
2765 	bool vdd;
2766 
2767 	if (!intel_dp_is_edp(intel_dp))
2768 		return;
2769 
2770 	vdd = false;
2771 	with_pps_lock(intel_dp, wakeref)
2772 		vdd = edp_panel_vdd_on(intel_dp);
2773 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2774 			dp_to_dig_port(intel_dp)->base.base.base.id,
2775 			dp_to_dig_port(intel_dp)->base.base.name);
2776 }
2777 
2778 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2779 {
2780 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2781 	struct intel_digital_port *intel_dig_port =
2782 		dp_to_dig_port(intel_dp);
2783 	u32 pp;
2784 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2785 
2786 	lockdep_assert_held(&dev_priv->pps_mutex);
2787 
2788 	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2789 
2790 	if (!edp_have_panel_vdd(intel_dp))
2791 		return;
2792 
2793 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2794 		    intel_dig_port->base.base.base.id,
2795 		    intel_dig_port->base.base.name);
2796 
2797 	pp = ilk_get_pp_control(intel_dp);
2798 	pp &= ~EDP_FORCE_VDD;
2799 
2800 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2801 	pp_stat_reg = _pp_stat_reg(intel_dp);
2802 
2803 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2804 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2805 
2806 	/* Make sure sequencer is idle before allowing subsequent activity */
2807 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2808 		    intel_de_read(dev_priv, pp_stat_reg),
2809 		    intel_de_read(dev_priv, pp_ctrl_reg));
2810 
2811 	if ((pp & PANEL_POWER_ON) == 0)
2812 		intel_dp->panel_power_off_time = ktime_get_boottime();
2813 
2814 	intel_display_power_put_unchecked(dev_priv,
2815 					  intel_aux_power_domain(intel_dig_port));
2816 }
2817 
2818 static void edp_panel_vdd_work(struct work_struct *__work)
2819 {
2820 	struct intel_dp *intel_dp =
2821 		container_of(to_delayed_work(__work),
2822 			     struct intel_dp, panel_vdd_work);
2823 	intel_wakeref_t wakeref;
2824 
2825 	with_pps_lock(intel_dp, wakeref) {
2826 		if (!intel_dp->want_panel_vdd)
2827 			edp_panel_vdd_off_sync(intel_dp);
2828 	}
2829 }
2830 
2831 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2832 {
2833 	unsigned long delay;
2834 
2835 	/*
2836 	 * Queue the timer to fire a long time from now (relative to the power
2837 	 * down delay) to keep the panel power up across a sequence of
2838 	 * operations.
2839 	 */
2840 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2841 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2842 }
2843 
2844 /*
2845  * Must be paired with edp_panel_vdd_on().
2846  * Must hold pps_mutex around the whole on/off sequence.
2847  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2848  */
2849 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2850 {
2851 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2852 
2853 	lockdep_assert_held(&dev_priv->pps_mutex);
2854 
2855 	if (!intel_dp_is_edp(intel_dp))
2856 		return;
2857 
2858 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2859 			dp_to_dig_port(intel_dp)->base.base.base.id,
2860 			dp_to_dig_port(intel_dp)->base.base.name);
2861 
2862 	intel_dp->want_panel_vdd = false;
2863 
2864 	if (sync)
2865 		edp_panel_vdd_off_sync(intel_dp);
2866 	else
2867 		edp_panel_vdd_schedule_off(intel_dp);
2868 }
2869 
2870 static void edp_panel_on(struct intel_dp *intel_dp)
2871 {
2872 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2873 	u32 pp;
2874 	i915_reg_t pp_ctrl_reg;
2875 
2876 	lockdep_assert_held(&dev_priv->pps_mutex);
2877 
2878 	if (!intel_dp_is_edp(intel_dp))
2879 		return;
2880 
2881 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
2882 		    dp_to_dig_port(intel_dp)->base.base.base.id,
2883 		    dp_to_dig_port(intel_dp)->base.base.name);
2884 
2885 	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
2886 		     "[ENCODER:%d:%s] panel power already on\n",
2887 		     dp_to_dig_port(intel_dp)->base.base.base.id,
2888 		     dp_to_dig_port(intel_dp)->base.base.name))
2889 		return;
2890 
2891 	wait_panel_power_cycle(intel_dp);
2892 
2893 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2894 	pp = ilk_get_pp_control(intel_dp);
2895 	if (IS_GEN(dev_priv, 5)) {
2896 		/* ILK workaround: disable reset around power sequence */
2897 		pp &= ~PANEL_POWER_RESET;
2898 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
2899 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
2900 	}
2901 
2902 	pp |= PANEL_POWER_ON;
2903 	if (!IS_GEN(dev_priv, 5))
2904 		pp |= PANEL_POWER_RESET;
2905 
2906 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2907 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2908 
2909 	wait_panel_on(intel_dp);
2910 	intel_dp->last_power_on = jiffies;
2911 
2912 	if (IS_GEN(dev_priv, 5)) {
2913 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2914 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
2915 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
2916 	}
2917 }
2918 
2919 void intel_edp_panel_on(struct intel_dp *intel_dp)
2920 {
2921 	intel_wakeref_t wakeref;
2922 
2923 	if (!intel_dp_is_edp(intel_dp))
2924 		return;
2925 
2926 	with_pps_lock(intel_dp, wakeref)
2927 		edp_panel_on(intel_dp);
2928 }
2929 
2930 
2931 static void edp_panel_off(struct intel_dp *intel_dp)
2932 {
2933 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2934 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2935 	u32 pp;
2936 	i915_reg_t pp_ctrl_reg;
2937 
2938 	lockdep_assert_held(&dev_priv->pps_mutex);
2939 
2940 	if (!intel_dp_is_edp(intel_dp))
2941 		return;
2942 
2943 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
2944 		    dig_port->base.base.base.id, dig_port->base.base.name);
2945 
2946 	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
2947 		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2948 		 dig_port->base.base.base.id, dig_port->base.base.name);
2949 
2950 	pp = ilk_get_pp_control(intel_dp);
2951 	/* We need to switch off panel power _and_ force vdd, for otherwise some
2952 	 * panels get very unhappy and cease to work. */
2953 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2954 		EDP_BLC_ENABLE);
2955 
2956 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2957 
2958 	intel_dp->want_panel_vdd = false;
2959 
2960 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2961 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2962 
2963 	wait_panel_off(intel_dp);
2964 	intel_dp->panel_power_off_time = ktime_get_boottime();
2965 
2966 	/* We got a reference when we enabled the VDD. */
2967 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2968 }
2969 
2970 void intel_edp_panel_off(struct intel_dp *intel_dp)
2971 {
2972 	intel_wakeref_t wakeref;
2973 
2974 	if (!intel_dp_is_edp(intel_dp))
2975 		return;
2976 
2977 	with_pps_lock(intel_dp, wakeref)
2978 		edp_panel_off(intel_dp);
2979 }
2980 
2981 /* Enable backlight in the panel power control. */
2982 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2983 {
2984 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2985 	intel_wakeref_t wakeref;
2986 
2987 	/*
2988 	 * If we enable the backlight right away following a panel power
2989 	 * on, we may see slight flicker as the panel syncs with the eDP
2990 	 * link.  So delay a bit to make sure the image is solid before
2991 	 * allowing it to appear.
2992 	 */
2993 	wait_backlight_on(intel_dp);
2994 
2995 	with_pps_lock(intel_dp, wakeref) {
2996 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2997 		u32 pp;
2998 
2999 		pp = ilk_get_pp_control(intel_dp);
3000 		pp |= EDP_BLC_ENABLE;
3001 
3002 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3003 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3004 	}
3005 }
3006 
3007 /* Enable backlight PWM and backlight PP control. */
3008 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3009 			    const struct drm_connector_state *conn_state)
3010 {
3011 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3012 
3013 	if (!intel_dp_is_edp(intel_dp))
3014 		return;
3015 
3016 	DRM_DEBUG_KMS("\n");
3017 
3018 	intel_panel_enable_backlight(crtc_state, conn_state);
3019 	_intel_edp_backlight_on(intel_dp);
3020 }
3021 
3022 /* Disable backlight in the panel power control. */
3023 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3024 {
3025 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3026 	intel_wakeref_t wakeref;
3027 
3028 	if (!intel_dp_is_edp(intel_dp))
3029 		return;
3030 
3031 	with_pps_lock(intel_dp, wakeref) {
3032 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3033 		u32 pp;
3034 
3035 		pp = ilk_get_pp_control(intel_dp);
3036 		pp &= ~EDP_BLC_ENABLE;
3037 
3038 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3039 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3040 	}
3041 
3042 	intel_dp->last_backlight_off = jiffies;
3043 	edp_wait_backlight_off(intel_dp);
3044 }
3045 
3046 /* Disable backlight PP control and backlight PWM. */
3047 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3048 {
3049 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3050 
3051 	if (!intel_dp_is_edp(intel_dp))
3052 		return;
3053 
3054 	DRM_DEBUG_KMS("\n");
3055 
3056 	_intel_edp_backlight_off(intel_dp);
3057 	intel_panel_disable_backlight(old_conn_state);
3058 }
3059 
3060 /*
3061  * Hook for controlling the panel power control backlight through the bl_power
3062  * sysfs attribute. Take care to handle multiple calls.
3063  */
3064 static void intel_edp_backlight_power(struct intel_connector *connector,
3065 				      bool enable)
3066 {
3067 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3068 	intel_wakeref_t wakeref;
3069 	bool is_enabled;
3070 
3071 	is_enabled = false;
3072 	with_pps_lock(intel_dp, wakeref)
3073 		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3074 	if (is_enabled == enable)
3075 		return;
3076 
3077 	DRM_DEBUG_KMS("panel power control backlight %s\n",
3078 		      enable ? "enable" : "disable");
3079 
3080 	if (enable)
3081 		_intel_edp_backlight_on(intel_dp);
3082 	else
3083 		_intel_edp_backlight_off(intel_dp);
3084 }
3085 
3086 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3087 {
3088 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3089 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3090 	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3091 
3092 	I915_STATE_WARN(cur_state != state,
3093 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3094 			dig_port->base.base.base.id, dig_port->base.base.name,
3095 			onoff(state), onoff(cur_state));
3096 }
3097 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3098 
3099 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3100 {
3101 	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3102 
3103 	I915_STATE_WARN(cur_state != state,
3104 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3105 			onoff(state), onoff(cur_state));
3106 }
3107 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3108 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3109 
3110 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3111 			   const struct intel_crtc_state *pipe_config)
3112 {
3113 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3114 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3115 
3116 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3117 	assert_dp_port_disabled(intel_dp);
3118 	assert_edp_pll_disabled(dev_priv);
3119 
3120 	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3121 		    pipe_config->port_clock);
3122 
3123 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3124 
3125 	if (pipe_config->port_clock == 162000)
3126 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3127 	else
3128 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3129 
3130 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3131 	intel_de_posting_read(dev_priv, DP_A);
3132 	udelay(500);
3133 
3134 	/*
3135 	 * [DevILK] Work around required when enabling DP PLL
3136 	 * while a pipe is enabled going to FDI:
3137 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3138 	 * 2. Program DP PLL enable
3139 	 */
3140 	if (IS_GEN(dev_priv, 5))
3141 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3142 
3143 	intel_dp->DP |= DP_PLL_ENABLE;
3144 
3145 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3146 	intel_de_posting_read(dev_priv, DP_A);
3147 	udelay(200);
3148 }
3149 
3150 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3151 			    const struct intel_crtc_state *old_crtc_state)
3152 {
3153 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3154 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3155 
3156 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3157 	assert_dp_port_disabled(intel_dp);
3158 	assert_edp_pll_enabled(dev_priv);
3159 
3160 	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3161 
3162 	intel_dp->DP &= ~DP_PLL_ENABLE;
3163 
3164 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3165 	intel_de_posting_read(dev_priv, DP_A);
3166 	udelay(200);
3167 }
3168 
3169 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3170 {
3171 	/*
3172 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3173 	 * be capable of signalling downstream hpd with a long pulse.
3174 	 * Whether or not that means D3 is safe to use is not clear,
3175 	 * but let's assume so until proven otherwise.
3176 	 *
3177 	 * FIXME should really check all downstream ports...
3178 	 */
3179 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3180 		drm_dp_is_branch(intel_dp->dpcd) &&
3181 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3182 }
3183 
3184 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3185 					   const struct intel_crtc_state *crtc_state,
3186 					   bool enable)
3187 {
3188 	int ret;
3189 
3190 	if (!crtc_state->dsc.compression_enable)
3191 		return;
3192 
3193 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3194 				 enable ? DP_DECOMPRESSION_EN : 0);
3195 	if (ret < 0)
3196 		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3197 			      enable ? "enable" : "disable");
3198 }
3199 
3200 /* If the sink supports it, try to set the power state appropriately */
3201 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3202 {
3203 	int ret, i;
3204 
3205 	/* Should have a valid DPCD by this point */
3206 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3207 		return;
3208 
3209 	if (mode != DRM_MODE_DPMS_ON) {
3210 		if (downstream_hpd_needs_d0(intel_dp))
3211 			return;
3212 
3213 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3214 					 DP_SET_POWER_D3);
3215 	} else {
3216 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3217 
3218 		/*
3219 		 * When turning on, we need to retry for 1ms to give the sink
3220 		 * time to wake up.
3221 		 */
3222 		for (i = 0; i < 3; i++) {
3223 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3224 						 DP_SET_POWER_D0);
3225 			if (ret == 1)
3226 				break;
3227 			msleep(1);
3228 		}
3229 
3230 		if (ret == 1 && lspcon->active)
3231 			lspcon_wait_pcon_mode(lspcon);
3232 	}
3233 
3234 	if (ret != 1)
3235 		DRM_DEBUG_KMS("failed to %s sink power state\n",
3236 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3237 }
3238 
3239 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3240 				 enum port port, enum pipe *pipe)
3241 {
3242 	enum pipe p;
3243 
3244 	for_each_pipe(dev_priv, p) {
3245 		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3246 
3247 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3248 			*pipe = p;
3249 			return true;
3250 		}
3251 	}
3252 
3253 	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3254 		    port_name(port));
3255 
3256 	/* must initialize pipe to something for the asserts */
3257 	*pipe = PIPE_A;
3258 
3259 	return false;
3260 }
3261 
3262 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3263 			   i915_reg_t dp_reg, enum port port,
3264 			   enum pipe *pipe)
3265 {
3266 	bool ret;
3267 	u32 val;
3268 
3269 	val = intel_de_read(dev_priv, dp_reg);
3270 
3271 	ret = val & DP_PORT_EN;
3272 
3273 	/* asserts want to know the pipe even if the port is disabled */
3274 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3275 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3276 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3277 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3278 	else if (IS_CHERRYVIEW(dev_priv))
3279 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3280 	else
3281 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3282 
3283 	return ret;
3284 }
3285 
3286 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3287 				  enum pipe *pipe)
3288 {
3289 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3290 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3291 	intel_wakeref_t wakeref;
3292 	bool ret;
3293 
3294 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3295 						     encoder->power_domain);
3296 	if (!wakeref)
3297 		return false;
3298 
3299 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3300 				    encoder->port, pipe);
3301 
3302 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3303 
3304 	return ret;
3305 }
3306 
3307 static void intel_dp_get_config(struct intel_encoder *encoder,
3308 				struct intel_crtc_state *pipe_config)
3309 {
3310 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3311 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3312 	u32 tmp, flags = 0;
3313 	enum port port = encoder->port;
3314 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3315 
3316 	if (encoder->type == INTEL_OUTPUT_EDP)
3317 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3318 	else
3319 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3320 
3321 	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3322 
3323 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3324 
3325 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3326 		u32 trans_dp = intel_de_read(dev_priv,
3327 					     TRANS_DP_CTL(crtc->pipe));
3328 
3329 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3330 			flags |= DRM_MODE_FLAG_PHSYNC;
3331 		else
3332 			flags |= DRM_MODE_FLAG_NHSYNC;
3333 
3334 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3335 			flags |= DRM_MODE_FLAG_PVSYNC;
3336 		else
3337 			flags |= DRM_MODE_FLAG_NVSYNC;
3338 	} else {
3339 		if (tmp & DP_SYNC_HS_HIGH)
3340 			flags |= DRM_MODE_FLAG_PHSYNC;
3341 		else
3342 			flags |= DRM_MODE_FLAG_NHSYNC;
3343 
3344 		if (tmp & DP_SYNC_VS_HIGH)
3345 			flags |= DRM_MODE_FLAG_PVSYNC;
3346 		else
3347 			flags |= DRM_MODE_FLAG_NVSYNC;
3348 	}
3349 
3350 	pipe_config->hw.adjusted_mode.flags |= flags;
3351 
3352 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3353 		pipe_config->limited_color_range = true;
3354 
3355 	pipe_config->lane_count =
3356 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3357 
3358 	intel_dp_get_m_n(crtc, pipe_config);
3359 
3360 	if (port == PORT_A) {
3361 		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3362 			pipe_config->port_clock = 162000;
3363 		else
3364 			pipe_config->port_clock = 270000;
3365 	}
3366 
3367 	pipe_config->hw.adjusted_mode.crtc_clock =
3368 		intel_dotclock_calculate(pipe_config->port_clock,
3369 					 &pipe_config->dp_m_n);
3370 
3371 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3372 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3373 		/*
3374 		 * This is a big fat ugly hack.
3375 		 *
3376 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3377 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3378 		 * unknown we fail to light up. Yet the same BIOS boots up with
3379 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3380 		 * max, not what it tells us to use.
3381 		 *
3382 		 * Note: This will still be broken if the eDP panel is not lit
3383 		 * up by the BIOS, and thus we can't get the mode at module
3384 		 * load.
3385 		 */
3386 		drm_dbg_kms(&dev_priv->drm,
3387 			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3388 			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3389 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3390 	}
3391 }
3392 
3393 static void intel_disable_dp(struct intel_encoder *encoder,
3394 			     const struct intel_crtc_state *old_crtc_state,
3395 			     const struct drm_connector_state *old_conn_state)
3396 {
3397 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3398 
3399 	intel_dp->link_trained = false;
3400 
3401 	if (old_crtc_state->has_audio)
3402 		intel_audio_codec_disable(encoder,
3403 					  old_crtc_state, old_conn_state);
3404 
3405 	/* Make sure the panel is off before trying to change the mode. But also
3406 	 * ensure that we have vdd while we switch off the panel. */
3407 	intel_edp_panel_vdd_on(intel_dp);
3408 	intel_edp_backlight_off(old_conn_state);
3409 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3410 	intel_edp_panel_off(intel_dp);
3411 }
3412 
3413 static void g4x_disable_dp(struct intel_encoder *encoder,
3414 			   const struct intel_crtc_state *old_crtc_state,
3415 			   const struct drm_connector_state *old_conn_state)
3416 {
3417 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3418 }
3419 
3420 static void vlv_disable_dp(struct intel_encoder *encoder,
3421 			   const struct intel_crtc_state *old_crtc_state,
3422 			   const struct drm_connector_state *old_conn_state)
3423 {
3424 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3425 }
3426 
3427 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3428 				const struct intel_crtc_state *old_crtc_state,
3429 				const struct drm_connector_state *old_conn_state)
3430 {
3431 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3432 	enum port port = encoder->port;
3433 
3434 	/*
3435 	 * Bspec does not list a specific disable sequence for g4x DP.
3436 	 * Follow the ilk+ sequence (disable pipe before the port) for
3437 	 * g4x DP as it does not suffer from underruns like the normal
3438 	 * g4x modeset sequence (disable pipe after the port).
3439 	 */
3440 	intel_dp_link_down(encoder, old_crtc_state);
3441 
3442 	/* Only ilk+ has port A */
3443 	if (port == PORT_A)
3444 		ilk_edp_pll_off(intel_dp, old_crtc_state);
3445 }
3446 
3447 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3448 				const struct intel_crtc_state *old_crtc_state,
3449 				const struct drm_connector_state *old_conn_state)
3450 {
3451 	intel_dp_link_down(encoder, old_crtc_state);
3452 }
3453 
3454 static void chv_post_disable_dp(struct intel_encoder *encoder,
3455 				const struct intel_crtc_state *old_crtc_state,
3456 				const struct drm_connector_state *old_conn_state)
3457 {
3458 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3459 
3460 	intel_dp_link_down(encoder, old_crtc_state);
3461 
3462 	vlv_dpio_get(dev_priv);
3463 
3464 	/* Assert data lane reset */
3465 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3466 
3467 	vlv_dpio_put(dev_priv);
3468 }
3469 
3470 static void
3471 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3472 			 u32 *DP,
3473 			 u8 dp_train_pat)
3474 {
3475 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3476 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3477 	enum port port = intel_dig_port->base.port;
3478 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3479 
3480 	if (dp_train_pat & train_pat_mask)
3481 		drm_dbg_kms(&dev_priv->drm,
3482 			    "Using DP training pattern TPS%d\n",
3483 			    dp_train_pat & train_pat_mask);
3484 
3485 	if (HAS_DDI(dev_priv)) {
3486 		u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
3487 
3488 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3489 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3490 		else
3491 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3492 
3493 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3494 		switch (dp_train_pat & train_pat_mask) {
3495 		case DP_TRAINING_PATTERN_DISABLE:
3496 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3497 
3498 			break;
3499 		case DP_TRAINING_PATTERN_1:
3500 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3501 			break;
3502 		case DP_TRAINING_PATTERN_2:
3503 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3504 			break;
3505 		case DP_TRAINING_PATTERN_3:
3506 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3507 			break;
3508 		case DP_TRAINING_PATTERN_4:
3509 			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3510 			break;
3511 		}
3512 		intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp);
3513 
3514 	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3515 		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3516 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3517 
3518 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3519 		case DP_TRAINING_PATTERN_DISABLE:
3520 			*DP |= DP_LINK_TRAIN_OFF_CPT;
3521 			break;
3522 		case DP_TRAINING_PATTERN_1:
3523 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3524 			break;
3525 		case DP_TRAINING_PATTERN_2:
3526 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3527 			break;
3528 		case DP_TRAINING_PATTERN_3:
3529 			drm_dbg_kms(&dev_priv->drm,
3530 				    "TPS3 not supported, using TPS2 instead\n");
3531 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3532 			break;
3533 		}
3534 
3535 	} else {
3536 		*DP &= ~DP_LINK_TRAIN_MASK;
3537 
3538 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3539 		case DP_TRAINING_PATTERN_DISABLE:
3540 			*DP |= DP_LINK_TRAIN_OFF;
3541 			break;
3542 		case DP_TRAINING_PATTERN_1:
3543 			*DP |= DP_LINK_TRAIN_PAT_1;
3544 			break;
3545 		case DP_TRAINING_PATTERN_2:
3546 			*DP |= DP_LINK_TRAIN_PAT_2;
3547 			break;
3548 		case DP_TRAINING_PATTERN_3:
3549 			drm_dbg_kms(&dev_priv->drm,
3550 				    "TPS3 not supported, using TPS2 instead\n");
3551 			*DP |= DP_LINK_TRAIN_PAT_2;
3552 			break;
3553 		}
3554 	}
3555 }
3556 
3557 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3558 				 const struct intel_crtc_state *old_crtc_state)
3559 {
3560 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3561 
3562 	/* enable with pattern 1 (as per spec) */
3563 
3564 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3565 
3566 	/*
3567 	 * Magic for VLV/CHV. We _must_ first set up the register
3568 	 * without actually enabling the port, and then do another
3569 	 * write to enable the port. Otherwise link training will
3570 	 * fail when the power sequencer is freshly used for this port.
3571 	 */
3572 	intel_dp->DP |= DP_PORT_EN;
3573 	if (old_crtc_state->has_audio)
3574 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3575 
3576 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3577 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3578 }
3579 
3580 static void intel_enable_dp(struct intel_encoder *encoder,
3581 			    const struct intel_crtc_state *pipe_config,
3582 			    const struct drm_connector_state *conn_state)
3583 {
3584 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3585 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3586 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3587 	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3588 	enum pipe pipe = crtc->pipe;
3589 	intel_wakeref_t wakeref;
3590 
3591 	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3592 		return;
3593 
3594 	with_pps_lock(intel_dp, wakeref) {
3595 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3596 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3597 
3598 		intel_dp_enable_port(intel_dp, pipe_config);
3599 
3600 		edp_panel_vdd_on(intel_dp);
3601 		edp_panel_on(intel_dp);
3602 		edp_panel_vdd_off(intel_dp, true);
3603 	}
3604 
3605 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3606 		unsigned int lane_mask = 0x0;
3607 
3608 		if (IS_CHERRYVIEW(dev_priv))
3609 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3610 
3611 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3612 				    lane_mask);
3613 	}
3614 
3615 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3616 	intel_dp_start_link_train(intel_dp);
3617 	intel_dp_stop_link_train(intel_dp);
3618 
3619 	if (pipe_config->has_audio) {
3620 		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3621 			pipe_name(pipe));
3622 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3623 	}
3624 }
3625 
3626 static void g4x_enable_dp(struct intel_encoder *encoder,
3627 			  const struct intel_crtc_state *pipe_config,
3628 			  const struct drm_connector_state *conn_state)
3629 {
3630 	intel_enable_dp(encoder, pipe_config, conn_state);
3631 	intel_edp_backlight_on(pipe_config, conn_state);
3632 }
3633 
3634 static void vlv_enable_dp(struct intel_encoder *encoder,
3635 			  const struct intel_crtc_state *pipe_config,
3636 			  const struct drm_connector_state *conn_state)
3637 {
3638 	intel_edp_backlight_on(pipe_config, conn_state);
3639 }
3640 
3641 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3642 			      const struct intel_crtc_state *pipe_config,
3643 			      const struct drm_connector_state *conn_state)
3644 {
3645 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3646 	enum port port = encoder->port;
3647 
3648 	intel_dp_prepare(encoder, pipe_config);
3649 
3650 	/* Only ilk+ has port A */
3651 	if (port == PORT_A)
3652 		ilk_edp_pll_on(intel_dp, pipe_config);
3653 }
3654 
3655 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3656 {
3657 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3658 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3659 	enum pipe pipe = intel_dp->pps_pipe;
3660 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3661 
3662 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3663 
3664 	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3665 		return;
3666 
3667 	edp_panel_vdd_off_sync(intel_dp);
3668 
3669 	/*
3670 	 * VLV seems to get confused when multiple power sequencers
3671 	 * have the same port selected (even if only one has power/vdd
3672 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3673 	 * CHV on the other hand doesn't seem to mind having the same port
3674 	 * selected in multiple power sequencers, but let's clear the
3675 	 * port select always when logically disconnecting a power sequencer
3676 	 * from a port.
3677 	 */
3678 	drm_dbg_kms(&dev_priv->drm,
3679 		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3680 		    pipe_name(pipe), intel_dig_port->base.base.base.id,
3681 		    intel_dig_port->base.base.name);
3682 	intel_de_write(dev_priv, pp_on_reg, 0);
3683 	intel_de_posting_read(dev_priv, pp_on_reg);
3684 
3685 	intel_dp->pps_pipe = INVALID_PIPE;
3686 }
3687 
3688 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3689 				      enum pipe pipe)
3690 {
3691 	struct intel_encoder *encoder;
3692 
3693 	lockdep_assert_held(&dev_priv->pps_mutex);
3694 
3695 	for_each_intel_dp(&dev_priv->drm, encoder) {
3696 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3697 
3698 		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3699 			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3700 			 pipe_name(pipe), encoder->base.base.id,
3701 			 encoder->base.name);
3702 
3703 		if (intel_dp->pps_pipe != pipe)
3704 			continue;
3705 
3706 		drm_dbg_kms(&dev_priv->drm,
3707 			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3708 			    pipe_name(pipe), encoder->base.base.id,
3709 			    encoder->base.name);
3710 
3711 		/* make sure vdd is off before we steal it */
3712 		vlv_detach_power_sequencer(intel_dp);
3713 	}
3714 }
3715 
3716 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3717 					   const struct intel_crtc_state *crtc_state)
3718 {
3719 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3720 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3721 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3722 
3723 	lockdep_assert_held(&dev_priv->pps_mutex);
3724 
3725 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3726 
3727 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3728 	    intel_dp->pps_pipe != crtc->pipe) {
3729 		/*
3730 		 * If another power sequencer was being used on this
3731 		 * port previously make sure to turn off vdd there while
3732 		 * we still have control of it.
3733 		 */
3734 		vlv_detach_power_sequencer(intel_dp);
3735 	}
3736 
3737 	/*
3738 	 * We may be stealing the power
3739 	 * sequencer from another port.
3740 	 */
3741 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3742 
3743 	intel_dp->active_pipe = crtc->pipe;
3744 
3745 	if (!intel_dp_is_edp(intel_dp))
3746 		return;
3747 
3748 	/* now it's all ours */
3749 	intel_dp->pps_pipe = crtc->pipe;
3750 
3751 	drm_dbg_kms(&dev_priv->drm,
3752 		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3753 		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3754 		    encoder->base.name);
3755 
3756 	/* init power sequencer on this pipe and port */
3757 	intel_dp_init_panel_power_sequencer(intel_dp);
3758 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3759 }
3760 
3761 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3762 			      const struct intel_crtc_state *pipe_config,
3763 			      const struct drm_connector_state *conn_state)
3764 {
3765 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3766 
3767 	intel_enable_dp(encoder, pipe_config, conn_state);
3768 }
3769 
3770 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3771 				  const struct intel_crtc_state *pipe_config,
3772 				  const struct drm_connector_state *conn_state)
3773 {
3774 	intel_dp_prepare(encoder, pipe_config);
3775 
3776 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3777 }
3778 
3779 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3780 			      const struct intel_crtc_state *pipe_config,
3781 			      const struct drm_connector_state *conn_state)
3782 {
3783 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3784 
3785 	intel_enable_dp(encoder, pipe_config, conn_state);
3786 
3787 	/* Second common lane will stay alive on its own now */
3788 	chv_phy_release_cl2_override(encoder);
3789 }
3790 
3791 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3792 				  const struct intel_crtc_state *pipe_config,
3793 				  const struct drm_connector_state *conn_state)
3794 {
3795 	intel_dp_prepare(encoder, pipe_config);
3796 
3797 	chv_phy_pre_pll_enable(encoder, pipe_config);
3798 }
3799 
3800 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3801 				    const struct intel_crtc_state *old_crtc_state,
3802 				    const struct drm_connector_state *old_conn_state)
3803 {
3804 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3805 }
3806 
3807 /*
3808  * Fetch AUX CH registers 0x202 - 0x207 which contain
3809  * link status information
3810  */
3811 bool
3812 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3813 {
3814 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3815 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3816 }
3817 
3818 /* These are source-specific values. */
3819 u8
3820 intel_dp_voltage_max(struct intel_dp *intel_dp)
3821 {
3822 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3823 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3824 	enum port port = encoder->port;
3825 
3826 	if (HAS_DDI(dev_priv))
3827 		return intel_ddi_dp_voltage_max(encoder);
3828 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3829 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3830 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3831 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3832 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3833 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3834 	else
3835 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3836 }
3837 
3838 u8
3839 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3840 {
3841 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3842 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3843 	enum port port = encoder->port;
3844 
3845 	if (HAS_DDI(dev_priv)) {
3846 		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3847 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3848 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3849 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3850 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3851 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3852 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3853 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3854 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3855 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3856 		default:
3857 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3858 		}
3859 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3860 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3861 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3862 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3863 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3864 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3865 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3866 		default:
3867 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3868 		}
3869 	} else {
3870 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3871 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3872 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3873 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3874 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3875 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3876 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3877 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3878 		default:
3879 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3880 		}
3881 	}
3882 }
3883 
3884 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3885 {
3886 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3887 	unsigned long demph_reg_value, preemph_reg_value,
3888 		uniqtranscale_reg_value;
3889 	u8 train_set = intel_dp->train_set[0];
3890 
3891 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3892 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3893 		preemph_reg_value = 0x0004000;
3894 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3895 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3896 			demph_reg_value = 0x2B405555;
3897 			uniqtranscale_reg_value = 0x552AB83A;
3898 			break;
3899 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3900 			demph_reg_value = 0x2B404040;
3901 			uniqtranscale_reg_value = 0x5548B83A;
3902 			break;
3903 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3904 			demph_reg_value = 0x2B245555;
3905 			uniqtranscale_reg_value = 0x5560B83A;
3906 			break;
3907 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3908 			demph_reg_value = 0x2B405555;
3909 			uniqtranscale_reg_value = 0x5598DA3A;
3910 			break;
3911 		default:
3912 			return 0;
3913 		}
3914 		break;
3915 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3916 		preemph_reg_value = 0x0002000;
3917 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3918 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3919 			demph_reg_value = 0x2B404040;
3920 			uniqtranscale_reg_value = 0x5552B83A;
3921 			break;
3922 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3923 			demph_reg_value = 0x2B404848;
3924 			uniqtranscale_reg_value = 0x5580B83A;
3925 			break;
3926 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3927 			demph_reg_value = 0x2B404040;
3928 			uniqtranscale_reg_value = 0x55ADDA3A;
3929 			break;
3930 		default:
3931 			return 0;
3932 		}
3933 		break;
3934 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3935 		preemph_reg_value = 0x0000000;
3936 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3937 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3938 			demph_reg_value = 0x2B305555;
3939 			uniqtranscale_reg_value = 0x5570B83A;
3940 			break;
3941 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3942 			demph_reg_value = 0x2B2B4040;
3943 			uniqtranscale_reg_value = 0x55ADDA3A;
3944 			break;
3945 		default:
3946 			return 0;
3947 		}
3948 		break;
3949 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3950 		preemph_reg_value = 0x0006000;
3951 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3952 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3953 			demph_reg_value = 0x1B405555;
3954 			uniqtranscale_reg_value = 0x55ADDA3A;
3955 			break;
3956 		default:
3957 			return 0;
3958 		}
3959 		break;
3960 	default:
3961 		return 0;
3962 	}
3963 
3964 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3965 				 uniqtranscale_reg_value, 0);
3966 
3967 	return 0;
3968 }
3969 
3970 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3971 {
3972 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3973 	u32 deemph_reg_value, margin_reg_value;
3974 	bool uniq_trans_scale = false;
3975 	u8 train_set = intel_dp->train_set[0];
3976 
3977 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3978 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3979 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3980 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3981 			deemph_reg_value = 128;
3982 			margin_reg_value = 52;
3983 			break;
3984 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3985 			deemph_reg_value = 128;
3986 			margin_reg_value = 77;
3987 			break;
3988 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3989 			deemph_reg_value = 128;
3990 			margin_reg_value = 102;
3991 			break;
3992 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3993 			deemph_reg_value = 128;
3994 			margin_reg_value = 154;
3995 			uniq_trans_scale = true;
3996 			break;
3997 		default:
3998 			return 0;
3999 		}
4000 		break;
4001 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4002 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4003 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4004 			deemph_reg_value = 85;
4005 			margin_reg_value = 78;
4006 			break;
4007 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4008 			deemph_reg_value = 85;
4009 			margin_reg_value = 116;
4010 			break;
4011 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4012 			deemph_reg_value = 85;
4013 			margin_reg_value = 154;
4014 			break;
4015 		default:
4016 			return 0;
4017 		}
4018 		break;
4019 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4020 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4021 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4022 			deemph_reg_value = 64;
4023 			margin_reg_value = 104;
4024 			break;
4025 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4026 			deemph_reg_value = 64;
4027 			margin_reg_value = 154;
4028 			break;
4029 		default:
4030 			return 0;
4031 		}
4032 		break;
4033 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4034 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4035 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4036 			deemph_reg_value = 43;
4037 			margin_reg_value = 154;
4038 			break;
4039 		default:
4040 			return 0;
4041 		}
4042 		break;
4043 	default:
4044 		return 0;
4045 	}
4046 
4047 	chv_set_phy_signal_level(encoder, deemph_reg_value,
4048 				 margin_reg_value, uniq_trans_scale);
4049 
4050 	return 0;
4051 }
4052 
4053 static u32
4054 g4x_signal_levels(u8 train_set)
4055 {
4056 	u32 signal_levels = 0;
4057 
4058 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4059 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4060 	default:
4061 		signal_levels |= DP_VOLTAGE_0_4;
4062 		break;
4063 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4064 		signal_levels |= DP_VOLTAGE_0_6;
4065 		break;
4066 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4067 		signal_levels |= DP_VOLTAGE_0_8;
4068 		break;
4069 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4070 		signal_levels |= DP_VOLTAGE_1_2;
4071 		break;
4072 	}
4073 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4074 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4075 	default:
4076 		signal_levels |= DP_PRE_EMPHASIS_0;
4077 		break;
4078 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4079 		signal_levels |= DP_PRE_EMPHASIS_3_5;
4080 		break;
4081 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4082 		signal_levels |= DP_PRE_EMPHASIS_6;
4083 		break;
4084 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4085 		signal_levels |= DP_PRE_EMPHASIS_9_5;
4086 		break;
4087 	}
4088 	return signal_levels;
4089 }
4090 
4091 /* SNB CPU eDP voltage swing and pre-emphasis control */
4092 static u32
4093 snb_cpu_edp_signal_levels(u8 train_set)
4094 {
4095 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4096 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4097 	switch (signal_levels) {
4098 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4099 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4100 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4101 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4102 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4103 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4104 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4105 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4106 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4107 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4108 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4109 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4110 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4111 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4112 	default:
4113 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4114 			      "0x%x\n", signal_levels);
4115 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4116 	}
4117 }
4118 
4119 /* IVB CPU eDP voltage swing and pre-emphasis control */
4120 static u32
4121 ivb_cpu_edp_signal_levels(u8 train_set)
4122 {
4123 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4124 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4125 	switch (signal_levels) {
4126 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4127 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4128 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4129 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4130 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4131 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4132 
4133 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4134 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4135 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4136 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4137 
4138 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4139 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4140 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4141 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4142 
4143 	default:
4144 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4145 			      "0x%x\n", signal_levels);
4146 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4147 	}
4148 }
4149 
4150 void
4151 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4152 {
4153 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4154 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4155 	enum port port = intel_dig_port->base.port;
4156 	u32 signal_levels, mask = 0;
4157 	u8 train_set = intel_dp->train_set[0];
4158 
4159 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4160 		signal_levels = bxt_signal_levels(intel_dp);
4161 	} else if (HAS_DDI(dev_priv)) {
4162 		signal_levels = ddi_signal_levels(intel_dp);
4163 		mask = DDI_BUF_EMP_MASK;
4164 	} else if (IS_CHERRYVIEW(dev_priv)) {
4165 		signal_levels = chv_signal_levels(intel_dp);
4166 	} else if (IS_VALLEYVIEW(dev_priv)) {
4167 		signal_levels = vlv_signal_levels(intel_dp);
4168 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4169 		signal_levels = ivb_cpu_edp_signal_levels(train_set);
4170 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4171 	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4172 		signal_levels = snb_cpu_edp_signal_levels(train_set);
4173 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4174 	} else {
4175 		signal_levels = g4x_signal_levels(train_set);
4176 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4177 	}
4178 
4179 	if (mask)
4180 		drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4181 			    signal_levels);
4182 
4183 	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4184 		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4185 		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4186 	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4187 		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4188 		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
4189 		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4190 		    " (max)" : "");
4191 
4192 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4193 
4194 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4195 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4196 }
4197 
4198 void
4199 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4200 				       u8 dp_train_pat)
4201 {
4202 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4203 	struct drm_i915_private *dev_priv =
4204 		to_i915(intel_dig_port->base.base.dev);
4205 
4206 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4207 
4208 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4209 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4210 }
4211 
4212 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4213 {
4214 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4215 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4216 	enum port port = intel_dig_port->base.port;
4217 	u32 val;
4218 
4219 	if (!HAS_DDI(dev_priv))
4220 		return;
4221 
4222 	val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
4223 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4224 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4225 	intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val);
4226 
4227 	/*
4228 	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4229 	 * reason we need to set idle transmission mode is to work around a HW
4230 	 * issue where we enable the pipe while not in idle link-training mode.
4231 	 * In this case there is requirement to wait for a minimum number of
4232 	 * idle patterns to be sent.
4233 	 */
4234 	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4235 		return;
4236 
4237 	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4238 				  DP_TP_STATUS_IDLE_DONE, 1))
4239 		drm_err(&dev_priv->drm,
4240 			"Timed out waiting for DP idle patterns\n");
4241 }
4242 
4243 static void
4244 intel_dp_link_down(struct intel_encoder *encoder,
4245 		   const struct intel_crtc_state *old_crtc_state)
4246 {
4247 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4248 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4249 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4250 	enum port port = encoder->port;
4251 	u32 DP = intel_dp->DP;
4252 
4253 	if (drm_WARN_ON(&dev_priv->drm,
4254 			(intel_de_read(dev_priv, intel_dp->output_reg) &
4255 			 DP_PORT_EN) == 0))
4256 		return;
4257 
4258 	drm_dbg_kms(&dev_priv->drm, "\n");
4259 
4260 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4261 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4262 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4263 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4264 	} else {
4265 		DP &= ~DP_LINK_TRAIN_MASK;
4266 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4267 	}
4268 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4269 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4270 
4271 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4272 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4273 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4274 
4275 	/*
4276 	 * HW workaround for IBX, we need to move the port
4277 	 * to transcoder A after disabling it to allow the
4278 	 * matching HDMI port to be enabled on transcoder A.
4279 	 */
4280 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4281 		/*
4282 		 * We get CPU/PCH FIFO underruns on the other pipe when
4283 		 * doing the workaround. Sweep them under the rug.
4284 		 */
4285 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4286 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4287 
4288 		/* always enable with pattern 1 (as per spec) */
4289 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4290 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4291 			DP_LINK_TRAIN_PAT_1;
4292 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4293 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4294 
4295 		DP &= ~DP_PORT_EN;
4296 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4297 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4298 
4299 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4300 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4301 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4302 	}
4303 
4304 	msleep(intel_dp->panel_power_down_delay);
4305 
4306 	intel_dp->DP = DP;
4307 
4308 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4309 		intel_wakeref_t wakeref;
4310 
4311 		with_pps_lock(intel_dp, wakeref)
4312 			intel_dp->active_pipe = INVALID_PIPE;
4313 	}
4314 }
4315 
4316 static void
4317 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4318 {
4319 	u8 dpcd_ext[6];
4320 
4321 	/*
4322 	 * Prior to DP1.3 the bit represented by
4323 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4324 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4325 	 * the true capability of the panel. The only way to check is to
4326 	 * then compare 0000h and 2200h.
4327 	 */
4328 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4329 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4330 		return;
4331 
4332 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4333 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4334 		DRM_ERROR("DPCD failed read at extended capabilities\n");
4335 		return;
4336 	}
4337 
4338 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4339 		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4340 		return;
4341 	}
4342 
4343 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4344 		return;
4345 
4346 	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4347 		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4348 
4349 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4350 }
4351 
4352 bool
4353 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4354 {
4355 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4356 			     sizeof(intel_dp->dpcd)) < 0)
4357 		return false; /* aux transfer failed */
4358 
4359 	intel_dp_extended_receiver_capabilities(intel_dp);
4360 
4361 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4362 
4363 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4364 }
4365 
4366 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4367 {
4368 	u8 dprx = 0;
4369 
4370 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4371 			      &dprx) != 1)
4372 		return false;
4373 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4374 }
4375 
4376 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4377 {
4378 	/*
4379 	 * Clear the cached register set to avoid using stale values
4380 	 * for the sinks that do not support DSC.
4381 	 */
4382 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4383 
4384 	/* Clear fec_capable to avoid using stale values */
4385 	intel_dp->fec_capable = 0;
4386 
4387 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4388 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4389 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4390 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4391 				     intel_dp->dsc_dpcd,
4392 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4393 			DRM_ERROR("Failed to read DPCD register 0x%x\n",
4394 				  DP_DSC_SUPPORT);
4395 
4396 		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4397 			      (int)sizeof(intel_dp->dsc_dpcd),
4398 			      intel_dp->dsc_dpcd);
4399 
4400 		/* FEC is supported only on DP 1.4 */
4401 		if (!intel_dp_is_edp(intel_dp) &&
4402 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4403 				      &intel_dp->fec_capable) < 0)
4404 			DRM_ERROR("Failed to read FEC DPCD register\n");
4405 
4406 		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4407 	}
4408 }
4409 
4410 static bool
4411 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4412 {
4413 	struct drm_i915_private *dev_priv =
4414 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4415 
4416 	/* this function is meant to be called only once */
4417 	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4418 
4419 	if (!intel_dp_read_dpcd(intel_dp))
4420 		return false;
4421 
4422 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4423 			 drm_dp_is_branch(intel_dp->dpcd));
4424 
4425 	/*
4426 	 * Read the eDP display control registers.
4427 	 *
4428 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4429 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4430 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4431 	 * method). The display control registers should read zero if they're
4432 	 * not supported anyway.
4433 	 */
4434 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4435 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4436 			     sizeof(intel_dp->edp_dpcd))
4437 		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4438 			    (int)sizeof(intel_dp->edp_dpcd),
4439 			    intel_dp->edp_dpcd);
4440 
4441 	/*
4442 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4443 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4444 	 */
4445 	intel_psr_init_dpcd(intel_dp);
4446 
4447 	/* Read the eDP 1.4+ supported link rates. */
4448 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4449 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4450 		int i;
4451 
4452 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4453 				sink_rates, sizeof(sink_rates));
4454 
4455 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4456 			int val = le16_to_cpu(sink_rates[i]);
4457 
4458 			if (val == 0)
4459 				break;
4460 
4461 			/* Value read multiplied by 200kHz gives the per-lane
4462 			 * link rate in kHz. The source rates are, however,
4463 			 * stored in terms of LS_Clk kHz. The full conversion
4464 			 * back to symbols is
4465 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4466 			 */
4467 			intel_dp->sink_rates[i] = (val * 200) / 10;
4468 		}
4469 		intel_dp->num_sink_rates = i;
4470 	}
4471 
4472 	/*
4473 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4474 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4475 	 */
4476 	if (intel_dp->num_sink_rates)
4477 		intel_dp->use_rate_select = true;
4478 	else
4479 		intel_dp_set_sink_rates(intel_dp);
4480 
4481 	intel_dp_set_common_rates(intel_dp);
4482 
4483 	/* Read the eDP DSC DPCD registers */
4484 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4485 		intel_dp_get_dsc_sink_cap(intel_dp);
4486 
4487 	return true;
4488 }
4489 
4490 
4491 static bool
4492 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4493 {
4494 	if (!intel_dp_read_dpcd(intel_dp))
4495 		return false;
4496 
4497 	/*
4498 	 * Don't clobber cached eDP rates. Also skip re-reading
4499 	 * the OUI/ID since we know it won't change.
4500 	 */
4501 	if (!intel_dp_is_edp(intel_dp)) {
4502 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4503 				 drm_dp_is_branch(intel_dp->dpcd));
4504 
4505 		intel_dp_set_sink_rates(intel_dp);
4506 		intel_dp_set_common_rates(intel_dp);
4507 	}
4508 
4509 	/*
4510 	 * Some eDP panels do not set a valid value for sink count, that is why
4511 	 * it don't care about read it here and in intel_edp_init_dpcd().
4512 	 */
4513 	if (!intel_dp_is_edp(intel_dp) &&
4514 	    !drm_dp_has_quirk(&intel_dp->desc, 0,
4515 			      DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4516 		u8 count;
4517 		ssize_t r;
4518 
4519 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4520 		if (r < 1)
4521 			return false;
4522 
4523 		/*
4524 		 * Sink count can change between short pulse hpd hence
4525 		 * a member variable in intel_dp will track any changes
4526 		 * between short pulse interrupts.
4527 		 */
4528 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4529 
4530 		/*
4531 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4532 		 * a dongle is present but no display. Unless we require to know
4533 		 * if a dongle is present or not, we don't need to update
4534 		 * downstream port information. So, an early return here saves
4535 		 * time from performing other operations which are not required.
4536 		 */
4537 		if (!intel_dp->sink_count)
4538 			return false;
4539 	}
4540 
4541 	if (!drm_dp_is_branch(intel_dp->dpcd))
4542 		return true; /* native DP sink */
4543 
4544 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4545 		return true; /* no per-port downstream info */
4546 
4547 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4548 			     intel_dp->downstream_ports,
4549 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4550 		return false; /* downstream port status fetch failed */
4551 
4552 	return true;
4553 }
4554 
4555 static bool
4556 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4557 {
4558 	u8 mstm_cap;
4559 
4560 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4561 		return false;
4562 
4563 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4564 		return false;
4565 
4566 	return mstm_cap & DP_MST_CAP;
4567 }
4568 
4569 static bool
4570 intel_dp_can_mst(struct intel_dp *intel_dp)
4571 {
4572 	return i915_modparams.enable_dp_mst &&
4573 		intel_dp->can_mst &&
4574 		intel_dp_sink_can_mst(intel_dp);
4575 }
4576 
4577 static void
4578 intel_dp_configure_mst(struct intel_dp *intel_dp)
4579 {
4580 	struct intel_encoder *encoder =
4581 		&dp_to_dig_port(intel_dp)->base;
4582 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4583 
4584 	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4585 		      encoder->base.base.id, encoder->base.name,
4586 		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
4587 		      yesno(i915_modparams.enable_dp_mst));
4588 
4589 	if (!intel_dp->can_mst)
4590 		return;
4591 
4592 	intel_dp->is_mst = sink_can_mst &&
4593 		i915_modparams.enable_dp_mst;
4594 
4595 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4596 					intel_dp->is_mst);
4597 }
4598 
4599 static bool
4600 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4601 {
4602 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4603 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4604 		DP_DPRX_ESI_LEN;
4605 }
4606 
4607 bool
4608 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4609 		       const struct drm_connector_state *conn_state)
4610 {
4611 	/*
4612 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4613 	 * of Color Encoding Format and Content Color Gamut], in order to
4614 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4615 	 */
4616 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4617 		return true;
4618 
4619 	switch (conn_state->colorspace) {
4620 	case DRM_MODE_COLORIMETRY_SYCC_601:
4621 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4622 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4623 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4624 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4625 		return true;
4626 	default:
4627 		break;
4628 	}
4629 
4630 	return false;
4631 }
4632 
4633 static void
4634 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4635 		       const struct intel_crtc_state *crtc_state,
4636 		       const struct drm_connector_state *conn_state)
4637 {
4638 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4639 	struct dp_sdp vsc_sdp = {};
4640 
4641 	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4642 	vsc_sdp.sdp_header.HB0 = 0;
4643 	vsc_sdp.sdp_header.HB1 = 0x7;
4644 
4645 	/*
4646 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4647 	 * Colorimetry Format indication.
4648 	 */
4649 	vsc_sdp.sdp_header.HB2 = 0x5;
4650 
4651 	/*
4652 	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4653 	 * Colorimetry Format indication (HB2 = 05h).
4654 	 */
4655 	vsc_sdp.sdp_header.HB3 = 0x13;
4656 
4657 	/* DP 1.4a spec, Table 2-120 */
4658 	switch (crtc_state->output_format) {
4659 	case INTEL_OUTPUT_FORMAT_YCBCR444:
4660 		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4661 		break;
4662 	case INTEL_OUTPUT_FORMAT_YCBCR420:
4663 		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4664 		break;
4665 	case INTEL_OUTPUT_FORMAT_RGB:
4666 	default:
4667 		/* RGB: DB16[7:4] = 0h */
4668 		break;
4669 	}
4670 
4671 	switch (conn_state->colorspace) {
4672 	case DRM_MODE_COLORIMETRY_BT709_YCC:
4673 		vsc_sdp.db[16] |= 0x1;
4674 		break;
4675 	case DRM_MODE_COLORIMETRY_XVYCC_601:
4676 		vsc_sdp.db[16] |= 0x2;
4677 		break;
4678 	case DRM_MODE_COLORIMETRY_XVYCC_709:
4679 		vsc_sdp.db[16] |= 0x3;
4680 		break;
4681 	case DRM_MODE_COLORIMETRY_SYCC_601:
4682 		vsc_sdp.db[16] |= 0x4;
4683 		break;
4684 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4685 		vsc_sdp.db[16] |= 0x5;
4686 		break;
4687 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4688 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4689 		vsc_sdp.db[16] |= 0x6;
4690 		break;
4691 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4692 		vsc_sdp.db[16] |= 0x7;
4693 		break;
4694 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4695 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4696 		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4697 		break;
4698 	default:
4699 		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4700 
4701 		/* RGB->YCBCR color conversion uses the BT.709 color space. */
4702 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4703 			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4704 		break;
4705 	}
4706 
4707 	/*
4708 	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4709 	 * the following Component Bit Depth values are defined:
4710 	 * 001b = 8bpc.
4711 	 * 010b = 10bpc.
4712 	 * 011b = 12bpc.
4713 	 * 100b = 16bpc.
4714 	 */
4715 	switch (crtc_state->pipe_bpp) {
4716 	case 24: /* 8bpc */
4717 		vsc_sdp.db[17] = 0x1;
4718 		break;
4719 	case 30: /* 10bpc */
4720 		vsc_sdp.db[17] = 0x2;
4721 		break;
4722 	case 36: /* 12bpc */
4723 		vsc_sdp.db[17] = 0x3;
4724 		break;
4725 	case 48: /* 16bpc */
4726 		vsc_sdp.db[17] = 0x4;
4727 		break;
4728 	default:
4729 		MISSING_CASE(crtc_state->pipe_bpp);
4730 		break;
4731 	}
4732 
4733 	/*
4734 	 * Dynamic Range (Bit 7)
4735 	 * 0 = VESA range, 1 = CTA range.
4736 	 * all YCbCr are always limited range
4737 	 */
4738 	vsc_sdp.db[17] |= 0x80;
4739 
4740 	/*
4741 	 * Content Type (Bits 2:0)
4742 	 * 000b = Not defined.
4743 	 * 001b = Graphics.
4744 	 * 010b = Photo.
4745 	 * 011b = Video.
4746 	 * 100b = Game
4747 	 * All other values are RESERVED.
4748 	 * Note: See CTA-861-G for the definition and expected
4749 	 * processing by a stream sink for the above contect types.
4750 	 */
4751 	vsc_sdp.db[18] = 0;
4752 
4753 	intel_dig_port->write_infoframe(&intel_dig_port->base,
4754 			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4755 }
4756 
4757 static void
4758 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4759 					  const struct intel_crtc_state *crtc_state,
4760 					  const struct drm_connector_state *conn_state)
4761 {
4762 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4763 	struct dp_sdp infoframe_sdp = {};
4764 	struct hdmi_drm_infoframe drm_infoframe = {};
4765 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4766 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4767 	ssize_t len;
4768 	int ret;
4769 
4770 	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4771 	if (ret) {
4772 		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4773 		return;
4774 	}
4775 
4776 	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4777 	if (len < 0) {
4778 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4779 		return;
4780 	}
4781 
4782 	if (len != infoframe_size) {
4783 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4784 		return;
4785 	}
4786 
4787 	/*
4788 	 * Set up the infoframe sdp packet for HDR static metadata.
4789 	 * Prepare VSC Header for SU as per DP 1.4a spec,
4790 	 * Table 2-100 and Table 2-101
4791 	 */
4792 
4793 	/* Packet ID, 00h for non-Audio INFOFRAME */
4794 	infoframe_sdp.sdp_header.HB0 = 0;
4795 	/*
4796 	 * Packet Type 80h + Non-audio INFOFRAME Type value
4797 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4798 	 */
4799 	infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4800 	/*
4801 	 * Least Significant Eight Bits of (Data Byte Count – 1)
4802 	 * infoframe_size - 1,
4803 	 */
4804 	infoframe_sdp.sdp_header.HB2 = 0x1D;
4805 	/* INFOFRAME SDP Version Number */
4806 	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4807 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
4808 	infoframe_sdp.db[0] = drm_infoframe.version;
4809 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4810 	infoframe_sdp.db[1] = drm_infoframe.length;
4811 	/*
4812 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4813 	 * HDMI_INFOFRAME_HEADER_SIZE
4814 	 */
4815 	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4816 	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4817 	       HDMI_DRM_INFOFRAME_SIZE);
4818 
4819 	/*
4820 	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
4821 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4822 	 * - Two Data Blocks: 2 bytes
4823 	 *    CTA Header Byte2 (INFOFRAME Version Number)
4824 	 *    CTA Header Byte3 (Length of INFOFRAME)
4825 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4826 	 *
4827 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4828 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4829 	 * will pad rest of the size.
4830 	 */
4831 	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4832 					HDMI_PACKET_TYPE_GAMUT_METADATA,
4833 					&infoframe_sdp,
4834 					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4835 }
4836 
4837 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4838 			 const struct intel_crtc_state *crtc_state,
4839 			 const struct drm_connector_state *conn_state)
4840 {
4841 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4842 		return;
4843 
4844 	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4845 }
4846 
4847 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4848 				  const struct intel_crtc_state *crtc_state,
4849 				  const struct drm_connector_state *conn_state)
4850 {
4851 	if (!conn_state->hdr_output_metadata)
4852 		return;
4853 
4854 	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4855 						  crtc_state,
4856 						  conn_state);
4857 }
4858 
4859 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4860 {
4861 	int status = 0;
4862 	int test_link_rate;
4863 	u8 test_lane_count, test_link_bw;
4864 	/* (DP CTS 1.2)
4865 	 * 4.3.1.11
4866 	 */
4867 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4868 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4869 				   &test_lane_count);
4870 
4871 	if (status <= 0) {
4872 		DRM_DEBUG_KMS("Lane count read failed\n");
4873 		return DP_TEST_NAK;
4874 	}
4875 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4876 
4877 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4878 				   &test_link_bw);
4879 	if (status <= 0) {
4880 		DRM_DEBUG_KMS("Link Rate read failed\n");
4881 		return DP_TEST_NAK;
4882 	}
4883 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4884 
4885 	/* Validate the requested link rate and lane count */
4886 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4887 					test_lane_count))
4888 		return DP_TEST_NAK;
4889 
4890 	intel_dp->compliance.test_lane_count = test_lane_count;
4891 	intel_dp->compliance.test_link_rate = test_link_rate;
4892 
4893 	return DP_TEST_ACK;
4894 }
4895 
4896 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4897 {
4898 	u8 test_pattern;
4899 	u8 test_misc;
4900 	__be16 h_width, v_height;
4901 	int status = 0;
4902 
4903 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4904 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4905 				   &test_pattern);
4906 	if (status <= 0) {
4907 		DRM_DEBUG_KMS("Test pattern read failed\n");
4908 		return DP_TEST_NAK;
4909 	}
4910 	if (test_pattern != DP_COLOR_RAMP)
4911 		return DP_TEST_NAK;
4912 
4913 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4914 				  &h_width, 2);
4915 	if (status <= 0) {
4916 		DRM_DEBUG_KMS("H Width read failed\n");
4917 		return DP_TEST_NAK;
4918 	}
4919 
4920 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4921 				  &v_height, 2);
4922 	if (status <= 0) {
4923 		DRM_DEBUG_KMS("V Height read failed\n");
4924 		return DP_TEST_NAK;
4925 	}
4926 
4927 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4928 				   &test_misc);
4929 	if (status <= 0) {
4930 		DRM_DEBUG_KMS("TEST MISC read failed\n");
4931 		return DP_TEST_NAK;
4932 	}
4933 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4934 		return DP_TEST_NAK;
4935 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4936 		return DP_TEST_NAK;
4937 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4938 	case DP_TEST_BIT_DEPTH_6:
4939 		intel_dp->compliance.test_data.bpc = 6;
4940 		break;
4941 	case DP_TEST_BIT_DEPTH_8:
4942 		intel_dp->compliance.test_data.bpc = 8;
4943 		break;
4944 	default:
4945 		return DP_TEST_NAK;
4946 	}
4947 
4948 	intel_dp->compliance.test_data.video_pattern = test_pattern;
4949 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4950 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4951 	/* Set test active flag here so userspace doesn't interrupt things */
4952 	intel_dp->compliance.test_active = true;
4953 
4954 	return DP_TEST_ACK;
4955 }
4956 
4957 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4958 {
4959 	u8 test_result = DP_TEST_ACK;
4960 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4961 	struct drm_connector *connector = &intel_connector->base;
4962 
4963 	if (intel_connector->detect_edid == NULL ||
4964 	    connector->edid_corrupt ||
4965 	    intel_dp->aux.i2c_defer_count > 6) {
4966 		/* Check EDID read for NACKs, DEFERs and corruption
4967 		 * (DP CTS 1.2 Core r1.1)
4968 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
4969 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
4970 		 *    4.2.2.6 : EDID corruption detected
4971 		 * Use failsafe mode for all cases
4972 		 */
4973 		if (intel_dp->aux.i2c_nack_count > 0 ||
4974 			intel_dp->aux.i2c_defer_count > 0)
4975 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4976 				      intel_dp->aux.i2c_nack_count,
4977 				      intel_dp->aux.i2c_defer_count);
4978 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4979 	} else {
4980 		struct edid *block = intel_connector->detect_edid;
4981 
4982 		/* We have to write the checksum
4983 		 * of the last block read
4984 		 */
4985 		block += intel_connector->detect_edid->extensions;
4986 
4987 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4988 				       block->checksum) <= 0)
4989 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4990 
4991 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4992 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4993 	}
4994 
4995 	/* Set test active flag here so userspace doesn't interrupt things */
4996 	intel_dp->compliance.test_active = true;
4997 
4998 	return test_result;
4999 }
5000 
5001 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5002 {
5003 	u8 test_result = DP_TEST_NAK;
5004 	return test_result;
5005 }
5006 
5007 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5008 {
5009 	u8 response = DP_TEST_NAK;
5010 	u8 request = 0;
5011 	int status;
5012 
5013 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5014 	if (status <= 0) {
5015 		DRM_DEBUG_KMS("Could not read test request from sink\n");
5016 		goto update_status;
5017 	}
5018 
5019 	switch (request) {
5020 	case DP_TEST_LINK_TRAINING:
5021 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
5022 		response = intel_dp_autotest_link_training(intel_dp);
5023 		break;
5024 	case DP_TEST_LINK_VIDEO_PATTERN:
5025 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
5026 		response = intel_dp_autotest_video_pattern(intel_dp);
5027 		break;
5028 	case DP_TEST_LINK_EDID_READ:
5029 		DRM_DEBUG_KMS("EDID test requested\n");
5030 		response = intel_dp_autotest_edid(intel_dp);
5031 		break;
5032 	case DP_TEST_LINK_PHY_TEST_PATTERN:
5033 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
5034 		response = intel_dp_autotest_phy_pattern(intel_dp);
5035 		break;
5036 	default:
5037 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
5038 		break;
5039 	}
5040 
5041 	if (response & DP_TEST_ACK)
5042 		intel_dp->compliance.test_type = request;
5043 
5044 update_status:
5045 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5046 	if (status <= 0)
5047 		DRM_DEBUG_KMS("Could not write test response to sink\n");
5048 }
5049 
5050 static int
5051 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5052 {
5053 	bool bret;
5054 
5055 	if (intel_dp->is_mst) {
5056 		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5057 		int ret = 0;
5058 		int retry;
5059 		bool handled;
5060 
5061 		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5062 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5063 go_again:
5064 		if (bret == true) {
5065 
5066 			/* check link status - esi[10] = 0x200c */
5067 			if (intel_dp->active_mst_links > 0 &&
5068 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5069 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
5070 				intel_dp_start_link_train(intel_dp);
5071 				intel_dp_stop_link_train(intel_dp);
5072 			}
5073 
5074 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
5075 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5076 
5077 			if (handled) {
5078 				for (retry = 0; retry < 3; retry++) {
5079 					int wret;
5080 					wret = drm_dp_dpcd_write(&intel_dp->aux,
5081 								 DP_SINK_COUNT_ESI+1,
5082 								 &esi[1], 3);
5083 					if (wret == 3) {
5084 						break;
5085 					}
5086 				}
5087 
5088 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5089 				if (bret == true) {
5090 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5091 					goto go_again;
5092 				}
5093 			} else
5094 				ret = 0;
5095 
5096 			return ret;
5097 		} else {
5098 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5099 			intel_dp->is_mst = false;
5100 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5101 							intel_dp->is_mst);
5102 		}
5103 	}
5104 	return -EINVAL;
5105 }
5106 
5107 static bool
5108 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5109 {
5110 	u8 link_status[DP_LINK_STATUS_SIZE];
5111 
5112 	if (!intel_dp->link_trained)
5113 		return false;
5114 
5115 	/*
5116 	 * While PSR source HW is enabled, it will control main-link sending
5117 	 * frames, enabling and disabling it so trying to do a retrain will fail
5118 	 * as the link would or not be on or it could mix training patterns
5119 	 * and frame data at the same time causing retrain to fail.
5120 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5121 	 * any link status error.
5122 	 */
5123 	if (intel_psr_enabled(intel_dp))
5124 		return false;
5125 
5126 	if (!intel_dp_get_link_status(intel_dp, link_status))
5127 		return false;
5128 
5129 	/*
5130 	 * Validate the cached values of intel_dp->link_rate and
5131 	 * intel_dp->lane_count before attempting to retrain.
5132 	 */
5133 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5134 					intel_dp->lane_count))
5135 		return false;
5136 
5137 	/* Retrain if Channel EQ or CR not ok */
5138 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5139 }
5140 
5141 int intel_dp_retrain_link(struct intel_encoder *encoder,
5142 			  struct drm_modeset_acquire_ctx *ctx)
5143 {
5144 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5145 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5146 	struct intel_connector *connector = intel_dp->attached_connector;
5147 	struct drm_connector_state *conn_state;
5148 	struct intel_crtc_state *crtc_state;
5149 	struct intel_crtc *crtc;
5150 	int ret;
5151 
5152 	/* FIXME handle the MST connectors as well */
5153 
5154 	if (!connector || connector->base.status != connector_status_connected)
5155 		return 0;
5156 
5157 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5158 			       ctx);
5159 	if (ret)
5160 		return ret;
5161 
5162 	conn_state = connector->base.state;
5163 
5164 	crtc = to_intel_crtc(conn_state->crtc);
5165 	if (!crtc)
5166 		return 0;
5167 
5168 	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5169 	if (ret)
5170 		return ret;
5171 
5172 	crtc_state = to_intel_crtc_state(crtc->base.state);
5173 
5174 	drm_WARN_ON(&dev_priv->drm, !intel_crtc_has_dp_encoder(crtc_state));
5175 
5176 	if (!crtc_state->hw.active)
5177 		return 0;
5178 
5179 	if (conn_state->commit &&
5180 	    !try_wait_for_completion(&conn_state->commit->hw_done))
5181 		return 0;
5182 
5183 	if (!intel_dp_needs_link_retrain(intel_dp))
5184 		return 0;
5185 
5186 	/* Suppress underruns caused by re-training */
5187 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5188 	if (crtc_state->has_pch_encoder)
5189 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5190 						      intel_crtc_pch_transcoder(crtc), false);
5191 
5192 	intel_dp_start_link_train(intel_dp);
5193 	intel_dp_stop_link_train(intel_dp);
5194 
5195 	/* Keep underrun reporting disabled until things are stable */
5196 	intel_wait_for_vblank(dev_priv, crtc->pipe);
5197 
5198 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5199 	if (crtc_state->has_pch_encoder)
5200 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5201 						      intel_crtc_pch_transcoder(crtc), true);
5202 
5203 	return 0;
5204 }
5205 
5206 /*
5207  * If display is now connected check links status,
5208  * there has been known issues of link loss triggering
5209  * long pulse.
5210  *
5211  * Some sinks (eg. ASUS PB287Q) seem to perform some
5212  * weird HPD ping pong during modesets. So we can apparently
5213  * end up with HPD going low during a modeset, and then
5214  * going back up soon after. And once that happens we must
5215  * retrain the link to get a picture. That's in case no
5216  * userspace component reacted to intermittent HPD dip.
5217  */
5218 static enum intel_hotplug_state
5219 intel_dp_hotplug(struct intel_encoder *encoder,
5220 		 struct intel_connector *connector,
5221 		 bool irq_received)
5222 {
5223 	struct drm_modeset_acquire_ctx ctx;
5224 	enum intel_hotplug_state state;
5225 	int ret;
5226 
5227 	state = intel_encoder_hotplug(encoder, connector, irq_received);
5228 
5229 	drm_modeset_acquire_init(&ctx, 0);
5230 
5231 	for (;;) {
5232 		ret = intel_dp_retrain_link(encoder, &ctx);
5233 
5234 		if (ret == -EDEADLK) {
5235 			drm_modeset_backoff(&ctx);
5236 			continue;
5237 		}
5238 
5239 		break;
5240 	}
5241 
5242 	drm_modeset_drop_locks(&ctx);
5243 	drm_modeset_acquire_fini(&ctx);
5244 	drm_WARN(encoder->base.dev, ret,
5245 		 "Acquiring modeset locks failed with %i\n", ret);
5246 
5247 	/*
5248 	 * Keeping it consistent with intel_ddi_hotplug() and
5249 	 * intel_hdmi_hotplug().
5250 	 */
5251 	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5252 		state = INTEL_HOTPLUG_RETRY;
5253 
5254 	return state;
5255 }
5256 
5257 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5258 {
5259 	u8 val;
5260 
5261 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5262 		return;
5263 
5264 	if (drm_dp_dpcd_readb(&intel_dp->aux,
5265 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5266 		return;
5267 
5268 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5269 
5270 	if (val & DP_AUTOMATED_TEST_REQUEST)
5271 		intel_dp_handle_test_request(intel_dp);
5272 
5273 	if (val & DP_CP_IRQ)
5274 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5275 
5276 	if (val & DP_SINK_SPECIFIC_IRQ)
5277 		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5278 }
5279 
5280 /*
5281  * According to DP spec
5282  * 5.1.2:
5283  *  1. Read DPCD
5284  *  2. Configure link according to Receiver Capabilities
5285  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5286  *  4. Check link status on receipt of hot-plug interrupt
5287  *
5288  * intel_dp_short_pulse -  handles short pulse interrupts
5289  * when full detection is not required.
5290  * Returns %true if short pulse is handled and full detection
5291  * is NOT required and %false otherwise.
5292  */
5293 static bool
5294 intel_dp_short_pulse(struct intel_dp *intel_dp)
5295 {
5296 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5297 	u8 old_sink_count = intel_dp->sink_count;
5298 	bool ret;
5299 
5300 	/*
5301 	 * Clearing compliance test variables to allow capturing
5302 	 * of values for next automated test request.
5303 	 */
5304 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5305 
5306 	/*
5307 	 * Now read the DPCD to see if it's actually running
5308 	 * If the current value of sink count doesn't match with
5309 	 * the value that was stored earlier or dpcd read failed
5310 	 * we need to do full detection
5311 	 */
5312 	ret = intel_dp_get_dpcd(intel_dp);
5313 
5314 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
5315 		/* No need to proceed if we are going to do full detect */
5316 		return false;
5317 	}
5318 
5319 	intel_dp_check_service_irq(intel_dp);
5320 
5321 	/* Handle CEC interrupts, if any */
5322 	drm_dp_cec_irq(&intel_dp->aux);
5323 
5324 	/* defer to the hotplug work for link retraining if needed */
5325 	if (intel_dp_needs_link_retrain(intel_dp))
5326 		return false;
5327 
5328 	intel_psr_short_pulse(intel_dp);
5329 
5330 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5331 		drm_dbg_kms(&dev_priv->drm,
5332 			    "Link Training Compliance Test requested\n");
5333 		/* Send a Hotplug Uevent to userspace to start modeset */
5334 		drm_kms_helper_hotplug_event(&dev_priv->drm);
5335 	}
5336 
5337 	return true;
5338 }
5339 
5340 /* XXX this is probably wrong for multiple downstream ports */
5341 static enum drm_connector_status
5342 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5343 {
5344 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5345 	u8 *dpcd = intel_dp->dpcd;
5346 	u8 type;
5347 
5348 	if (WARN_ON(intel_dp_is_edp(intel_dp)))
5349 		return connector_status_connected;
5350 
5351 	if (lspcon->active)
5352 		lspcon_resume(lspcon);
5353 
5354 	if (!intel_dp_get_dpcd(intel_dp))
5355 		return connector_status_disconnected;
5356 
5357 	/* if there's no downstream port, we're done */
5358 	if (!drm_dp_is_branch(dpcd))
5359 		return connector_status_connected;
5360 
5361 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5362 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5363 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5364 
5365 		return intel_dp->sink_count ?
5366 		connector_status_connected : connector_status_disconnected;
5367 	}
5368 
5369 	if (intel_dp_can_mst(intel_dp))
5370 		return connector_status_connected;
5371 
5372 	/* If no HPD, poke DDC gently */
5373 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5374 		return connector_status_connected;
5375 
5376 	/* Well we tried, say unknown for unreliable port types */
5377 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5378 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5379 		if (type == DP_DS_PORT_TYPE_VGA ||
5380 		    type == DP_DS_PORT_TYPE_NON_EDID)
5381 			return connector_status_unknown;
5382 	} else {
5383 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5384 			DP_DWN_STRM_PORT_TYPE_MASK;
5385 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5386 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5387 			return connector_status_unknown;
5388 	}
5389 
5390 	/* Anything else is out of spec, warn and ignore */
5391 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5392 	return connector_status_disconnected;
5393 }
5394 
5395 static enum drm_connector_status
5396 edp_detect(struct intel_dp *intel_dp)
5397 {
5398 	return connector_status_connected;
5399 }
5400 
5401 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5402 {
5403 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5404 	u32 bit;
5405 
5406 	switch (encoder->hpd_pin) {
5407 	case HPD_PORT_B:
5408 		bit = SDE_PORTB_HOTPLUG;
5409 		break;
5410 	case HPD_PORT_C:
5411 		bit = SDE_PORTC_HOTPLUG;
5412 		break;
5413 	case HPD_PORT_D:
5414 		bit = SDE_PORTD_HOTPLUG;
5415 		break;
5416 	default:
5417 		MISSING_CASE(encoder->hpd_pin);
5418 		return false;
5419 	}
5420 
5421 	return intel_de_read(dev_priv, SDEISR) & bit;
5422 }
5423 
5424 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5425 {
5426 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5427 	u32 bit;
5428 
5429 	switch (encoder->hpd_pin) {
5430 	case HPD_PORT_B:
5431 		bit = SDE_PORTB_HOTPLUG_CPT;
5432 		break;
5433 	case HPD_PORT_C:
5434 		bit = SDE_PORTC_HOTPLUG_CPT;
5435 		break;
5436 	case HPD_PORT_D:
5437 		bit = SDE_PORTD_HOTPLUG_CPT;
5438 		break;
5439 	default:
5440 		MISSING_CASE(encoder->hpd_pin);
5441 		return false;
5442 	}
5443 
5444 	return intel_de_read(dev_priv, SDEISR) & bit;
5445 }
5446 
5447 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5448 {
5449 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5450 	u32 bit;
5451 
5452 	switch (encoder->hpd_pin) {
5453 	case HPD_PORT_A:
5454 		bit = SDE_PORTA_HOTPLUG_SPT;
5455 		break;
5456 	case HPD_PORT_E:
5457 		bit = SDE_PORTE_HOTPLUG_SPT;
5458 		break;
5459 	default:
5460 		return cpt_digital_port_connected(encoder);
5461 	}
5462 
5463 	return intel_de_read(dev_priv, SDEISR) & bit;
5464 }
5465 
5466 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5467 {
5468 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5469 	u32 bit;
5470 
5471 	switch (encoder->hpd_pin) {
5472 	case HPD_PORT_B:
5473 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5474 		break;
5475 	case HPD_PORT_C:
5476 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5477 		break;
5478 	case HPD_PORT_D:
5479 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5480 		break;
5481 	default:
5482 		MISSING_CASE(encoder->hpd_pin);
5483 		return false;
5484 	}
5485 
5486 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5487 }
5488 
5489 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5490 {
5491 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5492 	u32 bit;
5493 
5494 	switch (encoder->hpd_pin) {
5495 	case HPD_PORT_B:
5496 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5497 		break;
5498 	case HPD_PORT_C:
5499 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5500 		break;
5501 	case HPD_PORT_D:
5502 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5503 		break;
5504 	default:
5505 		MISSING_CASE(encoder->hpd_pin);
5506 		return false;
5507 	}
5508 
5509 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5510 }
5511 
5512 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5513 {
5514 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5515 
5516 	if (encoder->hpd_pin == HPD_PORT_A)
5517 		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5518 	else
5519 		return ibx_digital_port_connected(encoder);
5520 }
5521 
5522 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5523 {
5524 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5525 
5526 	if (encoder->hpd_pin == HPD_PORT_A)
5527 		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5528 	else
5529 		return cpt_digital_port_connected(encoder);
5530 }
5531 
5532 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5533 {
5534 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5535 
5536 	if (encoder->hpd_pin == HPD_PORT_A)
5537 		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB;
5538 	else
5539 		return cpt_digital_port_connected(encoder);
5540 }
5541 
5542 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5543 {
5544 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5545 
5546 	if (encoder->hpd_pin == HPD_PORT_A)
5547 		return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5548 	else
5549 		return cpt_digital_port_connected(encoder);
5550 }
5551 
5552 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5553 {
5554 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5555 	u32 bit;
5556 
5557 	switch (encoder->hpd_pin) {
5558 	case HPD_PORT_A:
5559 		bit = BXT_DE_PORT_HP_DDIA;
5560 		break;
5561 	case HPD_PORT_B:
5562 		bit = BXT_DE_PORT_HP_DDIB;
5563 		break;
5564 	case HPD_PORT_C:
5565 		bit = BXT_DE_PORT_HP_DDIC;
5566 		break;
5567 	default:
5568 		MISSING_CASE(encoder->hpd_pin);
5569 		return false;
5570 	}
5571 
5572 	return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit;
5573 }
5574 
5575 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5576 				      enum phy phy)
5577 {
5578 	if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5579 		return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5580 
5581 	return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5582 }
5583 
5584 static bool icp_digital_port_connected(struct intel_encoder *encoder)
5585 {
5586 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5587 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5588 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5589 
5590 	if (intel_phy_is_combo(dev_priv, phy))
5591 		return intel_combo_phy_connected(dev_priv, phy);
5592 	else if (intel_phy_is_tc(dev_priv, phy))
5593 		return intel_tc_port_connected(dig_port);
5594 	else
5595 		MISSING_CASE(encoder->hpd_pin);
5596 
5597 	return false;
5598 }
5599 
5600 /*
5601  * intel_digital_port_connected - is the specified port connected?
5602  * @encoder: intel_encoder
5603  *
5604  * In cases where there's a connector physically connected but it can't be used
5605  * by our hardware we also return false, since the rest of the driver should
5606  * pretty much treat the port as disconnected. This is relevant for type-C
5607  * (starting on ICL) where there's ownership involved.
5608  *
5609  * Return %true if port is connected, %false otherwise.
5610  */
5611 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5612 {
5613 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5614 
5615 	if (HAS_GMCH(dev_priv)) {
5616 		if (IS_GM45(dev_priv))
5617 			return gm45_digital_port_connected(encoder);
5618 		else
5619 			return g4x_digital_port_connected(encoder);
5620 	}
5621 
5622 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
5623 		return icp_digital_port_connected(encoder);
5624 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5625 		return spt_digital_port_connected(encoder);
5626 	else if (IS_GEN9_LP(dev_priv))
5627 		return bxt_digital_port_connected(encoder);
5628 	else if (IS_GEN(dev_priv, 8))
5629 		return bdw_digital_port_connected(encoder);
5630 	else if (IS_GEN(dev_priv, 7))
5631 		return ivb_digital_port_connected(encoder);
5632 	else if (IS_GEN(dev_priv, 6))
5633 		return snb_digital_port_connected(encoder);
5634 	else if (IS_GEN(dev_priv, 5))
5635 		return ilk_digital_port_connected(encoder);
5636 
5637 	MISSING_CASE(INTEL_GEN(dev_priv));
5638 	return false;
5639 }
5640 
5641 bool intel_digital_port_connected(struct intel_encoder *encoder)
5642 {
5643 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5644 	bool is_connected = false;
5645 	intel_wakeref_t wakeref;
5646 
5647 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5648 		is_connected = __intel_digital_port_connected(encoder);
5649 
5650 	return is_connected;
5651 }
5652 
5653 static struct edid *
5654 intel_dp_get_edid(struct intel_dp *intel_dp)
5655 {
5656 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5657 
5658 	/* use cached edid if we have one */
5659 	if (intel_connector->edid) {
5660 		/* invalid edid */
5661 		if (IS_ERR(intel_connector->edid))
5662 			return NULL;
5663 
5664 		return drm_edid_duplicate(intel_connector->edid);
5665 	} else
5666 		return drm_get_edid(&intel_connector->base,
5667 				    &intel_dp->aux.ddc);
5668 }
5669 
5670 static void
5671 intel_dp_set_edid(struct intel_dp *intel_dp)
5672 {
5673 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5674 	struct edid *edid;
5675 
5676 	intel_dp_unset_edid(intel_dp);
5677 	edid = intel_dp_get_edid(intel_dp);
5678 	intel_connector->detect_edid = edid;
5679 
5680 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5681 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5682 	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
5683 }
5684 
5685 static void
5686 intel_dp_unset_edid(struct intel_dp *intel_dp)
5687 {
5688 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5689 
5690 	drm_dp_cec_unset_edid(&intel_dp->aux);
5691 	kfree(intel_connector->detect_edid);
5692 	intel_connector->detect_edid = NULL;
5693 
5694 	intel_dp->has_audio = false;
5695 	intel_dp->edid_quirks = 0;
5696 }
5697 
5698 static int
5699 intel_dp_detect(struct drm_connector *connector,
5700 		struct drm_modeset_acquire_ctx *ctx,
5701 		bool force)
5702 {
5703 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5704 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5705 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5706 	struct intel_encoder *encoder = &dig_port->base;
5707 	enum drm_connector_status status;
5708 
5709 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
5710 		    connector->base.id, connector->name);
5711 	drm_WARN_ON(&dev_priv->drm,
5712 		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5713 
5714 	/* Can't disconnect eDP */
5715 	if (intel_dp_is_edp(intel_dp))
5716 		status = edp_detect(intel_dp);
5717 	else if (intel_digital_port_connected(encoder))
5718 		status = intel_dp_detect_dpcd(intel_dp);
5719 	else
5720 		status = connector_status_disconnected;
5721 
5722 	if (status == connector_status_disconnected) {
5723 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5724 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5725 
5726 		if (intel_dp->is_mst) {
5727 			drm_dbg_kms(&dev_priv->drm,
5728 				    "MST device may have disappeared %d vs %d\n",
5729 				    intel_dp->is_mst,
5730 				    intel_dp->mst_mgr.mst_state);
5731 			intel_dp->is_mst = false;
5732 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5733 							intel_dp->is_mst);
5734 		}
5735 
5736 		goto out;
5737 	}
5738 
5739 	if (intel_dp->reset_link_params) {
5740 		/* Initial max link lane count */
5741 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5742 
5743 		/* Initial max link rate */
5744 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5745 
5746 		intel_dp->reset_link_params = false;
5747 	}
5748 
5749 	intel_dp_print_rates(intel_dp);
5750 
5751 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5752 	if (INTEL_GEN(dev_priv) >= 11)
5753 		intel_dp_get_dsc_sink_cap(intel_dp);
5754 
5755 	intel_dp_configure_mst(intel_dp);
5756 
5757 	if (intel_dp->is_mst) {
5758 		/*
5759 		 * If we are in MST mode then this connector
5760 		 * won't appear connected or have anything
5761 		 * with EDID on it
5762 		 */
5763 		status = connector_status_disconnected;
5764 		goto out;
5765 	}
5766 
5767 	/*
5768 	 * Some external monitors do not signal loss of link synchronization
5769 	 * with an IRQ_HPD, so force a link status check.
5770 	 */
5771 	if (!intel_dp_is_edp(intel_dp)) {
5772 		int ret;
5773 
5774 		ret = intel_dp_retrain_link(encoder, ctx);
5775 		if (ret)
5776 			return ret;
5777 	}
5778 
5779 	/*
5780 	 * Clearing NACK and defer counts to get their exact values
5781 	 * while reading EDID which are required by Compliance tests
5782 	 * 4.2.2.4 and 4.2.2.5
5783 	 */
5784 	intel_dp->aux.i2c_nack_count = 0;
5785 	intel_dp->aux.i2c_defer_count = 0;
5786 
5787 	intel_dp_set_edid(intel_dp);
5788 	if (intel_dp_is_edp(intel_dp) ||
5789 	    to_intel_connector(connector)->detect_edid)
5790 		status = connector_status_connected;
5791 
5792 	intel_dp_check_service_irq(intel_dp);
5793 
5794 out:
5795 	if (status != connector_status_connected && !intel_dp->is_mst)
5796 		intel_dp_unset_edid(intel_dp);
5797 
5798 	/*
5799 	 * Make sure the refs for power wells enabled during detect are
5800 	 * dropped to avoid a new detect cycle triggered by HPD polling.
5801 	 */
5802 	intel_display_power_flush_work(dev_priv);
5803 
5804 	return status;
5805 }
5806 
5807 static void
5808 intel_dp_force(struct drm_connector *connector)
5809 {
5810 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5811 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5812 	struct intel_encoder *intel_encoder = &dig_port->base;
5813 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5814 	enum intel_display_power_domain aux_domain =
5815 		intel_aux_power_domain(dig_port);
5816 	intel_wakeref_t wakeref;
5817 
5818 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
5819 		    connector->base.id, connector->name);
5820 	intel_dp_unset_edid(intel_dp);
5821 
5822 	if (connector->status != connector_status_connected)
5823 		return;
5824 
5825 	wakeref = intel_display_power_get(dev_priv, aux_domain);
5826 
5827 	intel_dp_set_edid(intel_dp);
5828 
5829 	intel_display_power_put(dev_priv, aux_domain, wakeref);
5830 }
5831 
5832 static int intel_dp_get_modes(struct drm_connector *connector)
5833 {
5834 	struct intel_connector *intel_connector = to_intel_connector(connector);
5835 	struct edid *edid;
5836 
5837 	edid = intel_connector->detect_edid;
5838 	if (edid) {
5839 		int ret = intel_connector_update_modes(connector, edid);
5840 		if (ret)
5841 			return ret;
5842 	}
5843 
5844 	/* if eDP has no EDID, fall back to fixed mode */
5845 	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
5846 	    intel_connector->panel.fixed_mode) {
5847 		struct drm_display_mode *mode;
5848 
5849 		mode = drm_mode_duplicate(connector->dev,
5850 					  intel_connector->panel.fixed_mode);
5851 		if (mode) {
5852 			drm_mode_probed_add(connector, mode);
5853 			return 1;
5854 		}
5855 	}
5856 
5857 	return 0;
5858 }
5859 
5860 static int
5861 intel_dp_connector_register(struct drm_connector *connector)
5862 {
5863 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5864 	int ret;
5865 
5866 	ret = intel_connector_register(connector);
5867 	if (ret)
5868 		return ret;
5869 
5870 	intel_connector_debugfs_add(connector);
5871 
5872 	DRM_DEBUG_KMS("registering %s bus for %s\n",
5873 		      intel_dp->aux.name, connector->kdev->kobj.name);
5874 
5875 	intel_dp->aux.dev = connector->kdev;
5876 	ret = drm_dp_aux_register(&intel_dp->aux);
5877 	if (!ret)
5878 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
5879 	return ret;
5880 }
5881 
5882 static void
5883 intel_dp_connector_unregister(struct drm_connector *connector)
5884 {
5885 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5886 
5887 	drm_dp_cec_unregister_connector(&intel_dp->aux);
5888 	drm_dp_aux_unregister(&intel_dp->aux);
5889 	intel_connector_unregister(connector);
5890 }
5891 
5892 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5893 {
5894 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
5895 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5896 
5897 	intel_dp_mst_encoder_cleanup(intel_dig_port);
5898 	if (intel_dp_is_edp(intel_dp)) {
5899 		intel_wakeref_t wakeref;
5900 
5901 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5902 		/*
5903 		 * vdd might still be enabled do to the delayed vdd off.
5904 		 * Make sure vdd is actually turned off here.
5905 		 */
5906 		with_pps_lock(intel_dp, wakeref)
5907 			edp_panel_vdd_off_sync(intel_dp);
5908 
5909 		if (intel_dp->edp_notifier.notifier_call) {
5910 			unregister_reboot_notifier(&intel_dp->edp_notifier);
5911 			intel_dp->edp_notifier.notifier_call = NULL;
5912 		}
5913 	}
5914 
5915 	intel_dp_aux_fini(intel_dp);
5916 }
5917 
5918 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5919 {
5920 	intel_dp_encoder_flush_work(encoder);
5921 
5922 	drm_encoder_cleanup(encoder);
5923 	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
5924 }
5925 
5926 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5927 {
5928 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
5929 	intel_wakeref_t wakeref;
5930 
5931 	if (!intel_dp_is_edp(intel_dp))
5932 		return;
5933 
5934 	/*
5935 	 * vdd might still be enabled do to the delayed vdd off.
5936 	 * Make sure vdd is actually turned off here.
5937 	 */
5938 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5939 	with_pps_lock(intel_dp, wakeref)
5940 		edp_panel_vdd_off_sync(intel_dp);
5941 }
5942 
5943 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5944 {
5945 	long ret;
5946 
5947 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5948 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5949 					       msecs_to_jiffies(timeout));
5950 
5951 	if (!ret)
5952 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5953 }
5954 
5955 static
5956 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5957 				u8 *an)
5958 {
5959 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
5960 	static const struct drm_dp_aux_msg msg = {
5961 		.request = DP_AUX_NATIVE_WRITE,
5962 		.address = DP_AUX_HDCP_AKSV,
5963 		.size = DRM_HDCP_KSV_LEN,
5964 	};
5965 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5966 	ssize_t dpcd_ret;
5967 	int ret;
5968 
5969 	/* Output An first, that's easy */
5970 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5971 				     an, DRM_HDCP_AN_LEN);
5972 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5973 		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5974 			      dpcd_ret);
5975 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5976 	}
5977 
5978 	/*
5979 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5980 	 * order to get it on the wire, we need to create the AUX header as if
5981 	 * we were writing the data, and then tickle the hardware to output the
5982 	 * data once the header is sent out.
5983 	 */
5984 	intel_dp_aux_header(txbuf, &msg);
5985 
5986 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5987 				rxbuf, sizeof(rxbuf),
5988 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5989 	if (ret < 0) {
5990 		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5991 		return ret;
5992 	} else if (ret == 0) {
5993 		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5994 		return -EIO;
5995 	}
5996 
5997 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5998 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5999 		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6000 			      reply);
6001 		return -EIO;
6002 	}
6003 	return 0;
6004 }
6005 
6006 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6007 				   u8 *bksv)
6008 {
6009 	ssize_t ret;
6010 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6011 			       DRM_HDCP_KSV_LEN);
6012 	if (ret != DRM_HDCP_KSV_LEN) {
6013 		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
6014 		return ret >= 0 ? -EIO : ret;
6015 	}
6016 	return 0;
6017 }
6018 
6019 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6020 				      u8 *bstatus)
6021 {
6022 	ssize_t ret;
6023 	/*
6024 	 * For some reason the HDMI and DP HDCP specs call this register
6025 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
6026 	 * but in DP it's called BINFO.
6027 	 */
6028 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6029 			       bstatus, DRM_HDCP_BSTATUS_LEN);
6030 	if (ret != DRM_HDCP_BSTATUS_LEN) {
6031 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6032 		return ret >= 0 ? -EIO : ret;
6033 	}
6034 	return 0;
6035 }
6036 
6037 static
6038 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6039 			     u8 *bcaps)
6040 {
6041 	ssize_t ret;
6042 
6043 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6044 			       bcaps, 1);
6045 	if (ret != 1) {
6046 		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
6047 		return ret >= 0 ? -EIO : ret;
6048 	}
6049 
6050 	return 0;
6051 }
6052 
6053 static
6054 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6055 				   bool *repeater_present)
6056 {
6057 	ssize_t ret;
6058 	u8 bcaps;
6059 
6060 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6061 	if (ret)
6062 		return ret;
6063 
6064 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6065 	return 0;
6066 }
6067 
6068 static
6069 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6070 				u8 *ri_prime)
6071 {
6072 	ssize_t ret;
6073 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6074 			       ri_prime, DRM_HDCP_RI_LEN);
6075 	if (ret != DRM_HDCP_RI_LEN) {
6076 		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
6077 		return ret >= 0 ? -EIO : ret;
6078 	}
6079 	return 0;
6080 }
6081 
6082 static
6083 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6084 				 bool *ksv_ready)
6085 {
6086 	ssize_t ret;
6087 	u8 bstatus;
6088 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6089 			       &bstatus, 1);
6090 	if (ret != 1) {
6091 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6092 		return ret >= 0 ? -EIO : ret;
6093 	}
6094 	*ksv_ready = bstatus & DP_BSTATUS_READY;
6095 	return 0;
6096 }
6097 
6098 static
6099 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6100 				int num_downstream, u8 *ksv_fifo)
6101 {
6102 	ssize_t ret;
6103 	int i;
6104 
6105 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6106 	for (i = 0; i < num_downstream; i += 3) {
6107 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6108 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6109 				       DP_AUX_HDCP_KSV_FIFO,
6110 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
6111 				       len);
6112 		if (ret != len) {
6113 			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6114 				      i, ret);
6115 			return ret >= 0 ? -EIO : ret;
6116 		}
6117 	}
6118 	return 0;
6119 }
6120 
6121 static
6122 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6123 				    int i, u32 *part)
6124 {
6125 	ssize_t ret;
6126 
6127 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6128 		return -EINVAL;
6129 
6130 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6131 			       DP_AUX_HDCP_V_PRIME(i), part,
6132 			       DRM_HDCP_V_PRIME_PART_LEN);
6133 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6134 		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6135 		return ret >= 0 ? -EIO : ret;
6136 	}
6137 	return 0;
6138 }
6139 
6140 static
6141 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6142 				    bool enable)
6143 {
6144 	/* Not used for single stream DisplayPort setups */
6145 	return 0;
6146 }
6147 
6148 static
6149 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6150 {
6151 	ssize_t ret;
6152 	u8 bstatus;
6153 
6154 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6155 			       &bstatus, 1);
6156 	if (ret != 1) {
6157 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6158 		return false;
6159 	}
6160 
6161 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6162 }
6163 
6164 static
6165 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6166 			  bool *hdcp_capable)
6167 {
6168 	ssize_t ret;
6169 	u8 bcaps;
6170 
6171 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6172 	if (ret)
6173 		return ret;
6174 
6175 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6176 	return 0;
6177 }
6178 
6179 struct hdcp2_dp_errata_stream_type {
6180 	u8	msg_id;
6181 	u8	stream_type;
6182 } __packed;
6183 
6184 struct hdcp2_dp_msg_data {
6185 	u8 msg_id;
6186 	u32 offset;
6187 	bool msg_detectable;
6188 	u32 timeout;
6189 	u32 timeout2; /* Added for non_paired situation */
6190 };
6191 
6192 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6193 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6194 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6195 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6196 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6197 	  false, 0, 0 },
6198 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6199 	  false, 0, 0 },
6200 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6201 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6202 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6203 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
6204 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6205 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6206 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6207 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6208 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6209 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6210 	  0, 0 },
6211 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
6212 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6213 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6214 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6215 	  0, 0 },
6216 	{ HDCP_2_2_REP_STREAM_MANAGE,
6217 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6218 	  0, 0 },
6219 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6220 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6221 /* local define to shovel this through the write_2_2 interface */
6222 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6223 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6224 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6225 	  0, 0 },
6226 };
6227 
6228 static inline
6229 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6230 				  u8 *rx_status)
6231 {
6232 	ssize_t ret;
6233 
6234 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6235 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6236 			       HDCP_2_2_DP_RXSTATUS_LEN);
6237 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6238 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6239 		return ret >= 0 ? -EIO : ret;
6240 	}
6241 
6242 	return 0;
6243 }
6244 
6245 static
6246 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6247 				  u8 msg_id, bool *msg_ready)
6248 {
6249 	u8 rx_status;
6250 	int ret;
6251 
6252 	*msg_ready = false;
6253 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6254 	if (ret < 0)
6255 		return ret;
6256 
6257 	switch (msg_id) {
6258 	case HDCP_2_2_AKE_SEND_HPRIME:
6259 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6260 			*msg_ready = true;
6261 		break;
6262 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6263 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6264 			*msg_ready = true;
6265 		break;
6266 	case HDCP_2_2_REP_SEND_RECVID_LIST:
6267 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6268 			*msg_ready = true;
6269 		break;
6270 	default:
6271 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6272 		return -EINVAL;
6273 	}
6274 
6275 	return 0;
6276 }
6277 
6278 static ssize_t
6279 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6280 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6281 {
6282 	struct intel_dp *dp = &intel_dig_port->dp;
6283 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6284 	u8 msg_id = hdcp2_msg_data->msg_id;
6285 	int ret, timeout;
6286 	bool msg_ready = false;
6287 
6288 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6289 		timeout = hdcp2_msg_data->timeout2;
6290 	else
6291 		timeout = hdcp2_msg_data->timeout;
6292 
6293 	/*
6294 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
6295 	 * availability. So Wait for timeout and read the msg.
6296 	 */
6297 	if (!hdcp2_msg_data->msg_detectable) {
6298 		mdelay(timeout);
6299 		ret = 0;
6300 	} else {
6301 		/*
6302 		 * As we want to check the msg availability at timeout, Ignoring
6303 		 * the timeout at wait for CP_IRQ.
6304 		 */
6305 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6306 		ret = hdcp2_detect_msg_availability(intel_dig_port,
6307 						    msg_id, &msg_ready);
6308 		if (!msg_ready)
6309 			ret = -ETIMEDOUT;
6310 	}
6311 
6312 	if (ret)
6313 		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6314 			      hdcp2_msg_data->msg_id, ret, timeout);
6315 
6316 	return ret;
6317 }
6318 
6319 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6320 {
6321 	int i;
6322 
6323 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6324 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6325 			return &hdcp2_dp_msg_data[i];
6326 
6327 	return NULL;
6328 }
6329 
6330 static
6331 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6332 			     void *buf, size_t size)
6333 {
6334 	struct intel_dp *dp = &intel_dig_port->dp;
6335 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6336 	unsigned int offset;
6337 	u8 *byte = buf;
6338 	ssize_t ret, bytes_to_write, len;
6339 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6340 
6341 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6342 	if (!hdcp2_msg_data)
6343 		return -EINVAL;
6344 
6345 	offset = hdcp2_msg_data->offset;
6346 
6347 	/* No msg_id in DP HDCP2.2 msgs */
6348 	bytes_to_write = size - 1;
6349 	byte++;
6350 
6351 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6352 
6353 	while (bytes_to_write) {
6354 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6355 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6356 
6357 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6358 					offset, (void *)byte, len);
6359 		if (ret < 0)
6360 			return ret;
6361 
6362 		bytes_to_write -= ret;
6363 		byte += ret;
6364 		offset += ret;
6365 	}
6366 
6367 	return size;
6368 }
6369 
6370 static
6371 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6372 {
6373 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6374 	u32 dev_cnt;
6375 	ssize_t ret;
6376 
6377 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6378 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6379 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6380 	if (ret != HDCP_2_2_RXINFO_LEN)
6381 		return ret >= 0 ? -EIO : ret;
6382 
6383 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6384 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6385 
6386 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6387 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6388 
6389 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6390 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6391 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6392 
6393 	return ret;
6394 }
6395 
6396 static
6397 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6398 			    u8 msg_id, void *buf, size_t size)
6399 {
6400 	unsigned int offset;
6401 	u8 *byte = buf;
6402 	ssize_t ret, bytes_to_recv, len;
6403 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6404 
6405 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6406 	if (!hdcp2_msg_data)
6407 		return -EINVAL;
6408 	offset = hdcp2_msg_data->offset;
6409 
6410 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6411 	if (ret < 0)
6412 		return ret;
6413 
6414 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6415 		ret = get_receiver_id_list_size(intel_dig_port);
6416 		if (ret < 0)
6417 			return ret;
6418 
6419 		size = ret;
6420 	}
6421 	bytes_to_recv = size - 1;
6422 
6423 	/* DP adaptation msgs has no msg_id */
6424 	byte++;
6425 
6426 	while (bytes_to_recv) {
6427 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6428 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6429 
6430 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6431 				       (void *)byte, len);
6432 		if (ret < 0) {
6433 			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6434 			return ret;
6435 		}
6436 
6437 		bytes_to_recv -= ret;
6438 		byte += ret;
6439 		offset += ret;
6440 	}
6441 	byte = buf;
6442 	*byte = msg_id;
6443 
6444 	return size;
6445 }
6446 
6447 static
6448 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6449 				      bool is_repeater, u8 content_type)
6450 {
6451 	int ret;
6452 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6453 
6454 	if (is_repeater)
6455 		return 0;
6456 
6457 	/*
6458 	 * Errata for DP: As Stream type is used for encryption, Receiver
6459 	 * should be communicated with stream type for the decryption of the
6460 	 * content.
6461 	 * Repeater will be communicated with stream type as a part of it's
6462 	 * auth later in time.
6463 	 */
6464 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6465 	stream_type_msg.stream_type = content_type;
6466 
6467 	ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6468 					sizeof(stream_type_msg));
6469 
6470 	return ret < 0 ? ret : 0;
6471 
6472 }
6473 
6474 static
6475 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6476 {
6477 	u8 rx_status;
6478 	int ret;
6479 
6480 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6481 	if (ret)
6482 		return ret;
6483 
6484 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6485 		ret = HDCP_REAUTH_REQUEST;
6486 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6487 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6488 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6489 		ret = HDCP_TOPOLOGY_CHANGE;
6490 
6491 	return ret;
6492 }
6493 
6494 static
6495 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6496 			   bool *capable)
6497 {
6498 	u8 rx_caps[3];
6499 	int ret;
6500 
6501 	*capable = false;
6502 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6503 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6504 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6505 	if (ret != HDCP_2_2_RXCAPS_LEN)
6506 		return ret >= 0 ? -EIO : ret;
6507 
6508 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6509 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6510 		*capable = true;
6511 
6512 	return 0;
6513 }
6514 
6515 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6516 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
6517 	.read_bksv = intel_dp_hdcp_read_bksv,
6518 	.read_bstatus = intel_dp_hdcp_read_bstatus,
6519 	.repeater_present = intel_dp_hdcp_repeater_present,
6520 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
6521 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6522 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6523 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6524 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
6525 	.check_link = intel_dp_hdcp_check_link,
6526 	.hdcp_capable = intel_dp_hdcp_capable,
6527 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
6528 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
6529 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
6530 	.check_2_2_link = intel_dp_hdcp2_check_link,
6531 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
6532 	.protocol = HDCP_PROTOCOL_DP,
6533 };
6534 
6535 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6536 {
6537 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6538 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6539 
6540 	lockdep_assert_held(&dev_priv->pps_mutex);
6541 
6542 	if (!edp_have_panel_vdd(intel_dp))
6543 		return;
6544 
6545 	/*
6546 	 * The VDD bit needs a power domain reference, so if the bit is
6547 	 * already enabled when we boot or resume, grab this reference and
6548 	 * schedule a vdd off, so we don't hold on to the reference
6549 	 * indefinitely.
6550 	 */
6551 	drm_dbg_kms(&dev_priv->drm,
6552 		    "VDD left on by BIOS, adjusting state tracking\n");
6553 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6554 
6555 	edp_panel_vdd_schedule_off(intel_dp);
6556 }
6557 
6558 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6559 {
6560 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6561 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6562 	enum pipe pipe;
6563 
6564 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6565 				  encoder->port, &pipe))
6566 		return pipe;
6567 
6568 	return INVALID_PIPE;
6569 }
6570 
6571 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6572 {
6573 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6574 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6575 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6576 	intel_wakeref_t wakeref;
6577 
6578 	if (!HAS_DDI(dev_priv))
6579 		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6580 
6581 	if (lspcon->active)
6582 		lspcon_resume(lspcon);
6583 
6584 	intel_dp->reset_link_params = true;
6585 
6586 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6587 	    !intel_dp_is_edp(intel_dp))
6588 		return;
6589 
6590 	with_pps_lock(intel_dp, wakeref) {
6591 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6592 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6593 
6594 		if (intel_dp_is_edp(intel_dp)) {
6595 			/*
6596 			 * Reinit the power sequencer, in case BIOS did
6597 			 * something nasty with it.
6598 			 */
6599 			intel_dp_pps_init(intel_dp);
6600 			intel_edp_panel_vdd_sanitize(intel_dp);
6601 		}
6602 	}
6603 }
6604 
6605 static int intel_modeset_tile_group(struct intel_atomic_state *state,
6606 				    int tile_group_id)
6607 {
6608 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6609 	struct drm_connector_list_iter conn_iter;
6610 	struct drm_connector *connector;
6611 	int ret = 0;
6612 
6613 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
6614 	drm_for_each_connector_iter(connector, &conn_iter) {
6615 		struct drm_connector_state *conn_state;
6616 		struct intel_crtc_state *crtc_state;
6617 		struct intel_crtc *crtc;
6618 
6619 		if (!connector->has_tile ||
6620 		    connector->tile_group->id != tile_group_id)
6621 			continue;
6622 
6623 		conn_state = drm_atomic_get_connector_state(&state->base,
6624 							    connector);
6625 		if (IS_ERR(conn_state)) {
6626 			ret = PTR_ERR(conn_state);
6627 			break;
6628 		}
6629 
6630 		crtc = to_intel_crtc(conn_state->crtc);
6631 
6632 		if (!crtc)
6633 			continue;
6634 
6635 		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
6636 		crtc_state->uapi.mode_changed = true;
6637 
6638 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6639 		if (ret)
6640 			break;
6641 	}
6642 	drm_connector_list_iter_end(&conn_iter);
6643 
6644 	return ret;
6645 }
6646 
6647 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
6648 {
6649 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6650 	struct intel_crtc *crtc;
6651 
6652 	if (transcoders == 0)
6653 		return 0;
6654 
6655 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6656 		struct intel_crtc_state *crtc_state;
6657 		int ret;
6658 
6659 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
6660 		if (IS_ERR(crtc_state))
6661 			return PTR_ERR(crtc_state);
6662 
6663 		if (!crtc_state->hw.enable)
6664 			continue;
6665 
6666 		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
6667 			continue;
6668 
6669 		crtc_state->uapi.mode_changed = true;
6670 
6671 		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
6672 		if (ret)
6673 			return ret;
6674 
6675 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6676 		if (ret)
6677 			return ret;
6678 
6679 		transcoders &= ~BIT(crtc_state->cpu_transcoder);
6680 	}
6681 
6682 	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
6683 
6684 	return 0;
6685 }
6686 
6687 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
6688 				      struct drm_connector *connector)
6689 {
6690 	const struct drm_connector_state *old_conn_state =
6691 		drm_atomic_get_old_connector_state(&state->base, connector);
6692 	const struct intel_crtc_state *old_crtc_state;
6693 	struct intel_crtc *crtc;
6694 	u8 transcoders;
6695 
6696 	crtc = to_intel_crtc(old_conn_state->crtc);
6697 	if (!crtc)
6698 		return 0;
6699 
6700 	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
6701 
6702 	if (!old_crtc_state->hw.active)
6703 		return 0;
6704 
6705 	transcoders = old_crtc_state->sync_mode_slaves_mask;
6706 	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
6707 		transcoders |= BIT(old_crtc_state->master_transcoder);
6708 
6709 	return intel_modeset_affected_transcoders(state,
6710 						  transcoders);
6711 }
6712 
6713 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
6714 					   struct drm_atomic_state *_state)
6715 {
6716 	struct drm_i915_private *dev_priv = to_i915(conn->dev);
6717 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
6718 	int ret;
6719 
6720 	ret = intel_digital_connector_atomic_check(conn, &state->base);
6721 	if (ret)
6722 		return ret;
6723 
6724 	if (INTEL_GEN(dev_priv) < 11)
6725 		return 0;
6726 
6727 	if (!intel_connector_needs_modeset(state, conn))
6728 		return 0;
6729 
6730 	if (conn->has_tile) {
6731 		ret = intel_modeset_tile_group(state, conn->tile_group->id);
6732 		if (ret)
6733 			return ret;
6734 	}
6735 
6736 	return intel_modeset_synced_crtcs(state, conn);
6737 }
6738 
6739 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6740 	.force = intel_dp_force,
6741 	.fill_modes = drm_helper_probe_single_connector_modes,
6742 	.atomic_get_property = intel_digital_connector_atomic_get_property,
6743 	.atomic_set_property = intel_digital_connector_atomic_set_property,
6744 	.late_register = intel_dp_connector_register,
6745 	.early_unregister = intel_dp_connector_unregister,
6746 	.destroy = intel_connector_destroy,
6747 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6748 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6749 };
6750 
6751 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6752 	.detect_ctx = intel_dp_detect,
6753 	.get_modes = intel_dp_get_modes,
6754 	.mode_valid = intel_dp_mode_valid,
6755 	.atomic_check = intel_dp_connector_atomic_check,
6756 };
6757 
6758 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6759 	.reset = intel_dp_encoder_reset,
6760 	.destroy = intel_dp_encoder_destroy,
6761 };
6762 
6763 enum irqreturn
6764 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6765 {
6766 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6767 
6768 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6769 		/*
6770 		 * vdd off can generate a long pulse on eDP which
6771 		 * would require vdd on to handle it, and thus we
6772 		 * would end up in an endless cycle of
6773 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6774 		 */
6775 		DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6776 			      intel_dig_port->base.base.base.id,
6777 			      intel_dig_port->base.base.name);
6778 		return IRQ_HANDLED;
6779 	}
6780 
6781 	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6782 		      intel_dig_port->base.base.base.id,
6783 		      intel_dig_port->base.base.name,
6784 		      long_hpd ? "long" : "short");
6785 
6786 	if (long_hpd) {
6787 		intel_dp->reset_link_params = true;
6788 		return IRQ_NONE;
6789 	}
6790 
6791 	if (intel_dp->is_mst) {
6792 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6793 			/*
6794 			 * If we were in MST mode, and device is not
6795 			 * there, get out of MST mode
6796 			 */
6797 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6798 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6799 			intel_dp->is_mst = false;
6800 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6801 							intel_dp->is_mst);
6802 
6803 			return IRQ_NONE;
6804 		}
6805 	}
6806 
6807 	if (!intel_dp->is_mst) {
6808 		bool handled;
6809 
6810 		handled = intel_dp_short_pulse(intel_dp);
6811 
6812 		if (!handled)
6813 			return IRQ_NONE;
6814 	}
6815 
6816 	return IRQ_HANDLED;
6817 }
6818 
6819 /* check the VBT to see whether the eDP is on another port */
6820 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6821 {
6822 	/*
6823 	 * eDP not supported on g4x. so bail out early just
6824 	 * for a bit extra safety in case the VBT is bonkers.
6825 	 */
6826 	if (INTEL_GEN(dev_priv) < 5)
6827 		return false;
6828 
6829 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6830 		return true;
6831 
6832 	return intel_bios_is_port_edp(dev_priv, port);
6833 }
6834 
6835 static void
6836 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6837 {
6838 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6839 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6840 
6841 	if (!IS_G4X(dev_priv) && port != PORT_A)
6842 		intel_attach_force_audio_property(connector);
6843 
6844 	intel_attach_broadcast_rgb_property(connector);
6845 	if (HAS_GMCH(dev_priv))
6846 		drm_connector_attach_max_bpc_property(connector, 6, 10);
6847 	else if (INTEL_GEN(dev_priv) >= 5)
6848 		drm_connector_attach_max_bpc_property(connector, 6, 12);
6849 
6850 	intel_attach_colorspace_property(connector);
6851 
6852 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6853 		drm_object_attach_property(&connector->base,
6854 					   connector->dev->mode_config.hdr_output_metadata_property,
6855 					   0);
6856 
6857 	if (intel_dp_is_edp(intel_dp)) {
6858 		u32 allowed_scalers;
6859 
6860 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6861 		if (!HAS_GMCH(dev_priv))
6862 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6863 
6864 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6865 
6866 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6867 
6868 	}
6869 }
6870 
6871 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6872 {
6873 	intel_dp->panel_power_off_time = ktime_get_boottime();
6874 	intel_dp->last_power_on = jiffies;
6875 	intel_dp->last_backlight_off = jiffies;
6876 }
6877 
6878 static void
6879 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6880 {
6881 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6882 	u32 pp_on, pp_off, pp_ctl;
6883 	struct pps_registers regs;
6884 
6885 	intel_pps_get_registers(intel_dp, &regs);
6886 
6887 	pp_ctl = ilk_get_pp_control(intel_dp);
6888 
6889 	/* Ensure PPS is unlocked */
6890 	if (!HAS_DDI(dev_priv))
6891 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
6892 
6893 	pp_on = intel_de_read(dev_priv, regs.pp_on);
6894 	pp_off = intel_de_read(dev_priv, regs.pp_off);
6895 
6896 	/* Pull timing values out of registers */
6897 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6898 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6899 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6900 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6901 
6902 	if (i915_mmio_reg_valid(regs.pp_div)) {
6903 		u32 pp_div;
6904 
6905 		pp_div = intel_de_read(dev_priv, regs.pp_div);
6906 
6907 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6908 	} else {
6909 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6910 	}
6911 }
6912 
6913 static void
6914 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6915 {
6916 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6917 		      state_name,
6918 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6919 }
6920 
6921 static void
6922 intel_pps_verify_state(struct intel_dp *intel_dp)
6923 {
6924 	struct edp_power_seq hw;
6925 	struct edp_power_seq *sw = &intel_dp->pps_delays;
6926 
6927 	intel_pps_readout_hw_state(intel_dp, &hw);
6928 
6929 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6930 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6931 		DRM_ERROR("PPS state mismatch\n");
6932 		intel_pps_dump_state("sw", sw);
6933 		intel_pps_dump_state("hw", &hw);
6934 	}
6935 }
6936 
6937 static void
6938 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6939 {
6940 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6941 	struct edp_power_seq cur, vbt, spec,
6942 		*final = &intel_dp->pps_delays;
6943 
6944 	lockdep_assert_held(&dev_priv->pps_mutex);
6945 
6946 	/* already initialized? */
6947 	if (final->t11_t12 != 0)
6948 		return;
6949 
6950 	intel_pps_readout_hw_state(intel_dp, &cur);
6951 
6952 	intel_pps_dump_state("cur", &cur);
6953 
6954 	vbt = dev_priv->vbt.edp.pps;
6955 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6956 	 * of 500ms appears to be too short. Ocassionally the panel
6957 	 * just fails to power back on. Increasing the delay to 800ms
6958 	 * seems sufficient to avoid this problem.
6959 	 */
6960 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6961 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6962 		drm_dbg_kms(&dev_priv->drm,
6963 			    "Increasing T12 panel delay as per the quirk to %d\n",
6964 			    vbt.t11_t12);
6965 	}
6966 	/* T11_T12 delay is special and actually in units of 100ms, but zero
6967 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6968 	 * table multiplies it with 1000 to make it in units of 100usec,
6969 	 * too. */
6970 	vbt.t11_t12 += 100 * 10;
6971 
6972 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6973 	 * our hw here, which are all in 100usec. */
6974 	spec.t1_t3 = 210 * 10;
6975 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6976 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6977 	spec.t10 = 500 * 10;
6978 	/* This one is special and actually in units of 100ms, but zero
6979 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6980 	 * table multiplies it with 1000 to make it in units of 100usec,
6981 	 * too. */
6982 	spec.t11_t12 = (510 + 100) * 10;
6983 
6984 	intel_pps_dump_state("vbt", &vbt);
6985 
6986 	/* Use the max of the register settings and vbt. If both are
6987 	 * unset, fall back to the spec limits. */
6988 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6989 				       spec.field : \
6990 				       max(cur.field, vbt.field))
6991 	assign_final(t1_t3);
6992 	assign_final(t8);
6993 	assign_final(t9);
6994 	assign_final(t10);
6995 	assign_final(t11_t12);
6996 #undef assign_final
6997 
6998 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6999 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
7000 	intel_dp->backlight_on_delay = get_delay(t8);
7001 	intel_dp->backlight_off_delay = get_delay(t9);
7002 	intel_dp->panel_power_down_delay = get_delay(t10);
7003 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7004 #undef get_delay
7005 
7006 	drm_dbg_kms(&dev_priv->drm,
7007 		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7008 		    intel_dp->panel_power_up_delay,
7009 		    intel_dp->panel_power_down_delay,
7010 		    intel_dp->panel_power_cycle_delay);
7011 
7012 	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7013 		    intel_dp->backlight_on_delay,
7014 		    intel_dp->backlight_off_delay);
7015 
7016 	/*
7017 	 * We override the HW backlight delays to 1 because we do manual waits
7018 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
7019 	 * don't do this, we'll end up waiting for the backlight off delay
7020 	 * twice: once when we do the manual sleep, and once when we disable
7021 	 * the panel and wait for the PP_STATUS bit to become zero.
7022 	 */
7023 	final->t8 = 1;
7024 	final->t9 = 1;
7025 
7026 	/*
7027 	 * HW has only a 100msec granularity for t11_t12 so round it up
7028 	 * accordingly.
7029 	 */
7030 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7031 }
7032 
7033 static void
7034 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7035 					      bool force_disable_vdd)
7036 {
7037 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7038 	u32 pp_on, pp_off, port_sel = 0;
7039 	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7040 	struct pps_registers regs;
7041 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7042 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7043 
7044 	lockdep_assert_held(&dev_priv->pps_mutex);
7045 
7046 	intel_pps_get_registers(intel_dp, &regs);
7047 
7048 	/*
7049 	 * On some VLV machines the BIOS can leave the VDD
7050 	 * enabled even on power sequencers which aren't
7051 	 * hooked up to any port. This would mess up the
7052 	 * power domain tracking the first time we pick
7053 	 * one of these power sequencers for use since
7054 	 * edp_panel_vdd_on() would notice that the VDD was
7055 	 * already on and therefore wouldn't grab the power
7056 	 * domain reference. Disable VDD first to avoid this.
7057 	 * This also avoids spuriously turning the VDD on as
7058 	 * soon as the new power sequencer gets initialized.
7059 	 */
7060 	if (force_disable_vdd) {
7061 		u32 pp = ilk_get_pp_control(intel_dp);
7062 
7063 		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7064 			 "Panel power already on\n");
7065 
7066 		if (pp & EDP_FORCE_VDD)
7067 			drm_dbg_kms(&dev_priv->drm,
7068 				    "VDD already on, disabling first\n");
7069 
7070 		pp &= ~EDP_FORCE_VDD;
7071 
7072 		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7073 	}
7074 
7075 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7076 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7077 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7078 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7079 
7080 	/* Haswell doesn't have any port selection bits for the panel
7081 	 * power sequencer any more. */
7082 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7083 		port_sel = PANEL_PORT_SELECT_VLV(port);
7084 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7085 		switch (port) {
7086 		case PORT_A:
7087 			port_sel = PANEL_PORT_SELECT_DPA;
7088 			break;
7089 		case PORT_C:
7090 			port_sel = PANEL_PORT_SELECT_DPC;
7091 			break;
7092 		case PORT_D:
7093 			port_sel = PANEL_PORT_SELECT_DPD;
7094 			break;
7095 		default:
7096 			MISSING_CASE(port);
7097 			break;
7098 		}
7099 	}
7100 
7101 	pp_on |= port_sel;
7102 
7103 	intel_de_write(dev_priv, regs.pp_on, pp_on);
7104 	intel_de_write(dev_priv, regs.pp_off, pp_off);
7105 
7106 	/*
7107 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
7108 	 */
7109 	if (i915_mmio_reg_valid(regs.pp_div)) {
7110 		intel_de_write(dev_priv, regs.pp_div,
7111 			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7112 	} else {
7113 		u32 pp_ctl;
7114 
7115 		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7116 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7117 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7118 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7119 	}
7120 
7121 	drm_dbg_kms(&dev_priv->drm,
7122 		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7123 		    intel_de_read(dev_priv, regs.pp_on),
7124 		    intel_de_read(dev_priv, regs.pp_off),
7125 		    i915_mmio_reg_valid(regs.pp_div) ?
7126 		    intel_de_read(dev_priv, regs.pp_div) :
7127 		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7128 }
7129 
7130 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7131 {
7132 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7133 
7134 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7135 		vlv_initial_power_sequencer_setup(intel_dp);
7136 	} else {
7137 		intel_dp_init_panel_power_sequencer(intel_dp);
7138 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7139 	}
7140 }
7141 
7142 /**
7143  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7144  * @dev_priv: i915 device
7145  * @crtc_state: a pointer to the active intel_crtc_state
7146  * @refresh_rate: RR to be programmed
7147  *
7148  * This function gets called when refresh rate (RR) has to be changed from
7149  * one frequency to another. Switches can be between high and low RR
7150  * supported by the panel or to any other RR based on media playback (in
7151  * this case, RR value needs to be passed from user space).
7152  *
7153  * The caller of this function needs to take a lock on dev_priv->drrs.
7154  */
7155 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7156 				    const struct intel_crtc_state *crtc_state,
7157 				    int refresh_rate)
7158 {
7159 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7160 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7161 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7162 
7163 	if (refresh_rate <= 0) {
7164 		drm_dbg_kms(&dev_priv->drm,
7165 			    "Refresh rate should be positive non-zero.\n");
7166 		return;
7167 	}
7168 
7169 	if (intel_dp == NULL) {
7170 		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7171 		return;
7172 	}
7173 
7174 	if (!intel_crtc) {
7175 		drm_dbg_kms(&dev_priv->drm,
7176 			    "DRRS: intel_crtc not initialized\n");
7177 		return;
7178 	}
7179 
7180 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7181 		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7182 		return;
7183 	}
7184 
7185 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
7186 			refresh_rate)
7187 		index = DRRS_LOW_RR;
7188 
7189 	if (index == dev_priv->drrs.refresh_rate_type) {
7190 		drm_dbg_kms(&dev_priv->drm,
7191 			    "DRRS requested for previously set RR...ignoring\n");
7192 		return;
7193 	}
7194 
7195 	if (!crtc_state->hw.active) {
7196 		drm_dbg_kms(&dev_priv->drm,
7197 			    "eDP encoder disabled. CRTC not Active\n");
7198 		return;
7199 	}
7200 
7201 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7202 		switch (index) {
7203 		case DRRS_HIGH_RR:
7204 			intel_dp_set_m_n(crtc_state, M1_N1);
7205 			break;
7206 		case DRRS_LOW_RR:
7207 			intel_dp_set_m_n(crtc_state, M2_N2);
7208 			break;
7209 		case DRRS_MAX_RR:
7210 		default:
7211 			drm_err(&dev_priv->drm,
7212 				"Unsupported refreshrate type\n");
7213 		}
7214 	} else if (INTEL_GEN(dev_priv) > 6) {
7215 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7216 		u32 val;
7217 
7218 		val = intel_de_read(dev_priv, reg);
7219 		if (index > DRRS_HIGH_RR) {
7220 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7221 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7222 			else
7223 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7224 		} else {
7225 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7226 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7227 			else
7228 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7229 		}
7230 		intel_de_write(dev_priv, reg, val);
7231 	}
7232 
7233 	dev_priv->drrs.refresh_rate_type = index;
7234 
7235 	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7236 		    refresh_rate);
7237 }
7238 
7239 /**
7240  * intel_edp_drrs_enable - init drrs struct if supported
7241  * @intel_dp: DP struct
7242  * @crtc_state: A pointer to the active crtc state.
7243  *
7244  * Initializes frontbuffer_bits and drrs.dp
7245  */
7246 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7247 			   const struct intel_crtc_state *crtc_state)
7248 {
7249 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7250 
7251 	if (!crtc_state->has_drrs) {
7252 		drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7253 		return;
7254 	}
7255 
7256 	if (dev_priv->psr.enabled) {
7257 		drm_dbg_kms(&dev_priv->drm,
7258 			    "PSR enabled. Not enabling DRRS.\n");
7259 		return;
7260 	}
7261 
7262 	mutex_lock(&dev_priv->drrs.mutex);
7263 	if (dev_priv->drrs.dp) {
7264 		drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7265 		goto unlock;
7266 	}
7267 
7268 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7269 
7270 	dev_priv->drrs.dp = intel_dp;
7271 
7272 unlock:
7273 	mutex_unlock(&dev_priv->drrs.mutex);
7274 }
7275 
7276 /**
7277  * intel_edp_drrs_disable - Disable DRRS
7278  * @intel_dp: DP struct
7279  * @old_crtc_state: Pointer to old crtc_state.
7280  *
7281  */
7282 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7283 			    const struct intel_crtc_state *old_crtc_state)
7284 {
7285 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7286 
7287 	if (!old_crtc_state->has_drrs)
7288 		return;
7289 
7290 	mutex_lock(&dev_priv->drrs.mutex);
7291 	if (!dev_priv->drrs.dp) {
7292 		mutex_unlock(&dev_priv->drrs.mutex);
7293 		return;
7294 	}
7295 
7296 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7297 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7298 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7299 
7300 	dev_priv->drrs.dp = NULL;
7301 	mutex_unlock(&dev_priv->drrs.mutex);
7302 
7303 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7304 }
7305 
7306 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7307 {
7308 	struct drm_i915_private *dev_priv =
7309 		container_of(work, typeof(*dev_priv), drrs.work.work);
7310 	struct intel_dp *intel_dp;
7311 
7312 	mutex_lock(&dev_priv->drrs.mutex);
7313 
7314 	intel_dp = dev_priv->drrs.dp;
7315 
7316 	if (!intel_dp)
7317 		goto unlock;
7318 
7319 	/*
7320 	 * The delayed work can race with an invalidate hence we need to
7321 	 * recheck.
7322 	 */
7323 
7324 	if (dev_priv->drrs.busy_frontbuffer_bits)
7325 		goto unlock;
7326 
7327 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7328 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7329 
7330 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7331 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7332 	}
7333 
7334 unlock:
7335 	mutex_unlock(&dev_priv->drrs.mutex);
7336 }
7337 
7338 /**
7339  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7340  * @dev_priv: i915 device
7341  * @frontbuffer_bits: frontbuffer plane tracking bits
7342  *
7343  * This function gets called everytime rendering on the given planes start.
7344  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7345  *
7346  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7347  */
7348 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7349 			       unsigned int frontbuffer_bits)
7350 {
7351 	struct drm_crtc *crtc;
7352 	enum pipe pipe;
7353 
7354 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7355 		return;
7356 
7357 	cancel_delayed_work(&dev_priv->drrs.work);
7358 
7359 	mutex_lock(&dev_priv->drrs.mutex);
7360 	if (!dev_priv->drrs.dp) {
7361 		mutex_unlock(&dev_priv->drrs.mutex);
7362 		return;
7363 	}
7364 
7365 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7366 	pipe = to_intel_crtc(crtc)->pipe;
7367 
7368 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7369 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7370 
7371 	/* invalidate means busy screen hence upclock */
7372 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7373 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7374 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7375 
7376 	mutex_unlock(&dev_priv->drrs.mutex);
7377 }
7378 
7379 /**
7380  * intel_edp_drrs_flush - Restart Idleness DRRS
7381  * @dev_priv: i915 device
7382  * @frontbuffer_bits: frontbuffer plane tracking bits
7383  *
7384  * This function gets called every time rendering on the given planes has
7385  * completed or flip on a crtc is completed. So DRRS should be upclocked
7386  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7387  * if no other planes are dirty.
7388  *
7389  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7390  */
7391 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7392 			  unsigned int frontbuffer_bits)
7393 {
7394 	struct drm_crtc *crtc;
7395 	enum pipe pipe;
7396 
7397 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7398 		return;
7399 
7400 	cancel_delayed_work(&dev_priv->drrs.work);
7401 
7402 	mutex_lock(&dev_priv->drrs.mutex);
7403 	if (!dev_priv->drrs.dp) {
7404 		mutex_unlock(&dev_priv->drrs.mutex);
7405 		return;
7406 	}
7407 
7408 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7409 	pipe = to_intel_crtc(crtc)->pipe;
7410 
7411 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7412 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7413 
7414 	/* flush means busy screen hence upclock */
7415 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7416 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7417 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7418 
7419 	/*
7420 	 * flush also means no more activity hence schedule downclock, if all
7421 	 * other fbs are quiescent too
7422 	 */
7423 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7424 		schedule_delayed_work(&dev_priv->drrs.work,
7425 				msecs_to_jiffies(1000));
7426 	mutex_unlock(&dev_priv->drrs.mutex);
7427 }
7428 
7429 /**
7430  * DOC: Display Refresh Rate Switching (DRRS)
7431  *
7432  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7433  * which enables swtching between low and high refresh rates,
7434  * dynamically, based on the usage scenario. This feature is applicable
7435  * for internal panels.
7436  *
7437  * Indication that the panel supports DRRS is given by the panel EDID, which
7438  * would list multiple refresh rates for one resolution.
7439  *
7440  * DRRS is of 2 types - static and seamless.
7441  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7442  * (may appear as a blink on screen) and is used in dock-undock scenario.
7443  * Seamless DRRS involves changing RR without any visual effect to the user
7444  * and can be used during normal system usage. This is done by programming
7445  * certain registers.
7446  *
7447  * Support for static/seamless DRRS may be indicated in the VBT based on
7448  * inputs from the panel spec.
7449  *
7450  * DRRS saves power by switching to low RR based on usage scenarios.
7451  *
7452  * The implementation is based on frontbuffer tracking implementation.  When
7453  * there is a disturbance on the screen triggered by user activity or a periodic
7454  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7455  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7456  * made.
7457  *
7458  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7459  * and intel_edp_drrs_flush() are called.
7460  *
7461  * DRRS can be further extended to support other internal panels and also
7462  * the scenario of video playback wherein RR is set based on the rate
7463  * requested by userspace.
7464  */
7465 
7466 /**
7467  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7468  * @connector: eDP connector
7469  * @fixed_mode: preferred mode of panel
7470  *
7471  * This function is  called only once at driver load to initialize basic
7472  * DRRS stuff.
7473  *
7474  * Returns:
7475  * Downclock mode if panel supports it, else return NULL.
7476  * DRRS support is determined by the presence of downclock mode (apart
7477  * from VBT setting).
7478  */
7479 static struct drm_display_mode *
7480 intel_dp_drrs_init(struct intel_connector *connector,
7481 		   struct drm_display_mode *fixed_mode)
7482 {
7483 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7484 	struct drm_display_mode *downclock_mode = NULL;
7485 
7486 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7487 	mutex_init(&dev_priv->drrs.mutex);
7488 
7489 	if (INTEL_GEN(dev_priv) <= 6) {
7490 		drm_dbg_kms(&dev_priv->drm,
7491 			    "DRRS supported for Gen7 and above\n");
7492 		return NULL;
7493 	}
7494 
7495 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7496 		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7497 		return NULL;
7498 	}
7499 
7500 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7501 	if (!downclock_mode) {
7502 		drm_dbg_kms(&dev_priv->drm,
7503 			    "Downclock mode is not found. DRRS not supported\n");
7504 		return NULL;
7505 	}
7506 
7507 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7508 
7509 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7510 	drm_dbg_kms(&dev_priv->drm,
7511 		    "seamless DRRS supported for eDP panel.\n");
7512 	return downclock_mode;
7513 }
7514 
7515 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7516 				     struct intel_connector *intel_connector)
7517 {
7518 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7519 	struct drm_device *dev = &dev_priv->drm;
7520 	struct drm_connector *connector = &intel_connector->base;
7521 	struct drm_display_mode *fixed_mode = NULL;
7522 	struct drm_display_mode *downclock_mode = NULL;
7523 	bool has_dpcd;
7524 	enum pipe pipe = INVALID_PIPE;
7525 	intel_wakeref_t wakeref;
7526 	struct edid *edid;
7527 
7528 	if (!intel_dp_is_edp(intel_dp))
7529 		return true;
7530 
7531 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7532 
7533 	/*
7534 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7535 	 * driver uses the only internal power sequencer available for both
7536 	 * eDP and LVDS bail out early in this case to prevent interfering
7537 	 * with an already powered-on LVDS power sequencer.
7538 	 */
7539 	if (intel_get_lvds_encoder(dev_priv)) {
7540 		drm_WARN_ON(dev,
7541 			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7542 		drm_info(&dev_priv->drm,
7543 			 "LVDS was detected, not registering eDP\n");
7544 
7545 		return false;
7546 	}
7547 
7548 	with_pps_lock(intel_dp, wakeref) {
7549 		intel_dp_init_panel_power_timestamps(intel_dp);
7550 		intel_dp_pps_init(intel_dp);
7551 		intel_edp_panel_vdd_sanitize(intel_dp);
7552 	}
7553 
7554 	/* Cache DPCD and EDID for edp. */
7555 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7556 
7557 	if (!has_dpcd) {
7558 		/* if this fails, presume the device is a ghost */
7559 		drm_info(&dev_priv->drm,
7560 			 "failed to retrieve link info, disabling eDP\n");
7561 		goto out_vdd_off;
7562 	}
7563 
7564 	mutex_lock(&dev->mode_config.mutex);
7565 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7566 	if (edid) {
7567 		if (drm_add_edid_modes(connector, edid)) {
7568 			drm_connector_update_edid_property(connector, edid);
7569 			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
7570 		} else {
7571 			kfree(edid);
7572 			edid = ERR_PTR(-EINVAL);
7573 		}
7574 	} else {
7575 		edid = ERR_PTR(-ENOENT);
7576 	}
7577 	intel_connector->edid = edid;
7578 
7579 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7580 	if (fixed_mode)
7581 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7582 
7583 	/* fallback to VBT if available for eDP */
7584 	if (!fixed_mode)
7585 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7586 	mutex_unlock(&dev->mode_config.mutex);
7587 
7588 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7589 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7590 		register_reboot_notifier(&intel_dp->edp_notifier);
7591 
7592 		/*
7593 		 * Figure out the current pipe for the initial backlight setup.
7594 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7595 		 * fails just assume pipe A.
7596 		 */
7597 		pipe = vlv_active_pipe(intel_dp);
7598 
7599 		if (pipe != PIPE_A && pipe != PIPE_B)
7600 			pipe = intel_dp->pps_pipe;
7601 
7602 		if (pipe != PIPE_A && pipe != PIPE_B)
7603 			pipe = PIPE_A;
7604 
7605 		drm_dbg_kms(&dev_priv->drm,
7606 			    "using pipe %c for initial backlight setup\n",
7607 			    pipe_name(pipe));
7608 	}
7609 
7610 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7611 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7612 	intel_panel_setup_backlight(connector, pipe);
7613 
7614 	if (fixed_mode) {
7615 		drm_connector_set_panel_orientation_with_quirk(connector,
7616 				dev_priv->vbt.orientation,
7617 				fixed_mode->hdisplay, fixed_mode->vdisplay);
7618 	}
7619 
7620 	return true;
7621 
7622 out_vdd_off:
7623 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7624 	/*
7625 	 * vdd might still be enabled do to the delayed vdd off.
7626 	 * Make sure vdd is actually turned off here.
7627 	 */
7628 	with_pps_lock(intel_dp, wakeref)
7629 		edp_panel_vdd_off_sync(intel_dp);
7630 
7631 	return false;
7632 }
7633 
7634 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7635 {
7636 	struct intel_connector *intel_connector;
7637 	struct drm_connector *connector;
7638 
7639 	intel_connector = container_of(work, typeof(*intel_connector),
7640 				       modeset_retry_work);
7641 	connector = &intel_connector->base;
7642 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7643 		      connector->name);
7644 
7645 	/* Grab the locks before changing connector property*/
7646 	mutex_lock(&connector->dev->mode_config.mutex);
7647 	/* Set connector link status to BAD and send a Uevent to notify
7648 	 * userspace to do a modeset.
7649 	 */
7650 	drm_connector_set_link_status_property(connector,
7651 					       DRM_MODE_LINK_STATUS_BAD);
7652 	mutex_unlock(&connector->dev->mode_config.mutex);
7653 	/* Send Hotplug uevent so userspace can reprobe */
7654 	drm_kms_helper_hotplug_event(connector->dev);
7655 }
7656 
7657 bool
7658 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7659 			struct intel_connector *intel_connector)
7660 {
7661 	struct drm_connector *connector = &intel_connector->base;
7662 	struct intel_dp *intel_dp = &intel_dig_port->dp;
7663 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
7664 	struct drm_device *dev = intel_encoder->base.dev;
7665 	struct drm_i915_private *dev_priv = to_i915(dev);
7666 	enum port port = intel_encoder->port;
7667 	enum phy phy = intel_port_to_phy(dev_priv, port);
7668 	int type;
7669 
7670 	/* Initialize the work for modeset in case of link train failure */
7671 	INIT_WORK(&intel_connector->modeset_retry_work,
7672 		  intel_dp_modeset_retry_work_fn);
7673 
7674 	if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
7675 		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7676 		     intel_dig_port->max_lanes, intel_encoder->base.base.id,
7677 		     intel_encoder->base.name))
7678 		return false;
7679 
7680 	intel_dp_set_source_rates(intel_dp);
7681 
7682 	intel_dp->reset_link_params = true;
7683 	intel_dp->pps_pipe = INVALID_PIPE;
7684 	intel_dp->active_pipe = INVALID_PIPE;
7685 
7686 	/* Preserve the current hw state. */
7687 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7688 	intel_dp->attached_connector = intel_connector;
7689 
7690 	if (intel_dp_is_port_edp(dev_priv, port)) {
7691 		/*
7692 		 * Currently we don't support eDP on TypeC ports, although in
7693 		 * theory it could work on TypeC legacy ports.
7694 		 */
7695 		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
7696 		type = DRM_MODE_CONNECTOR_eDP;
7697 	} else {
7698 		type = DRM_MODE_CONNECTOR_DisplayPort;
7699 	}
7700 
7701 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7702 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7703 
7704 	/*
7705 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7706 	 * for DP the encoder type can be set by the caller to
7707 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7708 	 */
7709 	if (type == DRM_MODE_CONNECTOR_eDP)
7710 		intel_encoder->type = INTEL_OUTPUT_EDP;
7711 
7712 	/* eDP only on port B and/or C on vlv/chv */
7713 	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
7714 			      IS_CHERRYVIEW(dev_priv)) &&
7715 			intel_dp_is_edp(intel_dp) &&
7716 			port != PORT_B && port != PORT_C))
7717 		return false;
7718 
7719 	drm_dbg_kms(&dev_priv->drm,
7720 		    "Adding %s connector on [ENCODER:%d:%s]\n",
7721 		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7722 		    intel_encoder->base.base.id, intel_encoder->base.name);
7723 
7724 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7725 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7726 
7727 	if (!HAS_GMCH(dev_priv))
7728 		connector->interlace_allowed = true;
7729 	connector->doublescan_allowed = 0;
7730 
7731 	if (INTEL_GEN(dev_priv) >= 11)
7732 		connector->ycbcr_420_allowed = true;
7733 
7734 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7735 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
7736 
7737 	intel_dp_aux_init(intel_dp);
7738 
7739 	intel_connector_attach_encoder(intel_connector, intel_encoder);
7740 
7741 	if (HAS_DDI(dev_priv))
7742 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7743 	else
7744 		intel_connector->get_hw_state = intel_connector_get_hw_state;
7745 
7746 	/* init MST on ports that can support it */
7747 	intel_dp_mst_encoder_init(intel_dig_port,
7748 				  intel_connector->base.base.id);
7749 
7750 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7751 		intel_dp_aux_fini(intel_dp);
7752 		intel_dp_mst_encoder_cleanup(intel_dig_port);
7753 		goto fail;
7754 	}
7755 
7756 	intel_dp_add_properties(intel_dp, connector);
7757 
7758 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7759 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7760 		if (ret)
7761 			drm_dbg_kms(&dev_priv->drm,
7762 				    "HDCP init failed, skipping.\n");
7763 	}
7764 
7765 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7766 	 * 0xd.  Failure to do so will result in spurious interrupts being
7767 	 * generated on the port when a cable is not attached.
7768 	 */
7769 	if (IS_G45(dev_priv)) {
7770 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
7771 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
7772 			       (temp & ~0xf) | 0xd);
7773 	}
7774 
7775 	return true;
7776 
7777 fail:
7778 	drm_connector_cleanup(connector);
7779 
7780 	return false;
7781 }
7782 
7783 bool intel_dp_init(struct drm_i915_private *dev_priv,
7784 		   i915_reg_t output_reg,
7785 		   enum port port)
7786 {
7787 	struct intel_digital_port *intel_dig_port;
7788 	struct intel_encoder *intel_encoder;
7789 	struct drm_encoder *encoder;
7790 	struct intel_connector *intel_connector;
7791 
7792 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7793 	if (!intel_dig_port)
7794 		return false;
7795 
7796 	intel_connector = intel_connector_alloc();
7797 	if (!intel_connector)
7798 		goto err_connector_alloc;
7799 
7800 	intel_encoder = &intel_dig_port->base;
7801 	encoder = &intel_encoder->base;
7802 
7803 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7804 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7805 			     "DP %c", port_name(port)))
7806 		goto err_encoder_init;
7807 
7808 	intel_encoder->hotplug = intel_dp_hotplug;
7809 	intel_encoder->compute_config = intel_dp_compute_config;
7810 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7811 	intel_encoder->get_config = intel_dp_get_config;
7812 	intel_encoder->update_pipe = intel_panel_update_backlight;
7813 	intel_encoder->suspend = intel_dp_encoder_suspend;
7814 	if (IS_CHERRYVIEW(dev_priv)) {
7815 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7816 		intel_encoder->pre_enable = chv_pre_enable_dp;
7817 		intel_encoder->enable = vlv_enable_dp;
7818 		intel_encoder->disable = vlv_disable_dp;
7819 		intel_encoder->post_disable = chv_post_disable_dp;
7820 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7821 	} else if (IS_VALLEYVIEW(dev_priv)) {
7822 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7823 		intel_encoder->pre_enable = vlv_pre_enable_dp;
7824 		intel_encoder->enable = vlv_enable_dp;
7825 		intel_encoder->disable = vlv_disable_dp;
7826 		intel_encoder->post_disable = vlv_post_disable_dp;
7827 	} else {
7828 		intel_encoder->pre_enable = g4x_pre_enable_dp;
7829 		intel_encoder->enable = g4x_enable_dp;
7830 		intel_encoder->disable = g4x_disable_dp;
7831 		intel_encoder->post_disable = g4x_post_disable_dp;
7832 	}
7833 
7834 	intel_dig_port->dp.output_reg = output_reg;
7835 	intel_dig_port->max_lanes = 4;
7836 	intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
7837 	intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
7838 
7839 	intel_encoder->type = INTEL_OUTPUT_DP;
7840 	intel_encoder->power_domain = intel_port_to_power_domain(port);
7841 	if (IS_CHERRYVIEW(dev_priv)) {
7842 		if (port == PORT_D)
7843 			intel_encoder->pipe_mask = BIT(PIPE_C);
7844 		else
7845 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7846 	} else {
7847 		intel_encoder->pipe_mask = ~0;
7848 	}
7849 	intel_encoder->cloneable = 0;
7850 	intel_encoder->port = port;
7851 
7852 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7853 
7854 	if (port != PORT_A)
7855 		intel_infoframe_init(intel_dig_port);
7856 
7857 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7858 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7859 		goto err_init_connector;
7860 
7861 	return true;
7862 
7863 err_init_connector:
7864 	drm_encoder_cleanup(encoder);
7865 err_encoder_init:
7866 	kfree(intel_connector);
7867 err_connector_alloc:
7868 	kfree(intel_dig_port);
7869 	return false;
7870 }
7871 
7872 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7873 {
7874 	struct intel_encoder *encoder;
7875 
7876 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7877 		struct intel_dp *intel_dp;
7878 
7879 		if (encoder->type != INTEL_OUTPUT_DDI)
7880 			continue;
7881 
7882 		intel_dp = enc_to_intel_dp(encoder);
7883 
7884 		if (!intel_dp->can_mst)
7885 			continue;
7886 
7887 		if (intel_dp->is_mst)
7888 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7889 	}
7890 }
7891 
7892 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7893 {
7894 	struct intel_encoder *encoder;
7895 
7896 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7897 		struct intel_dp *intel_dp;
7898 		int ret;
7899 
7900 		if (encoder->type != INTEL_OUTPUT_DDI)
7901 			continue;
7902 
7903 		intel_dp = enc_to_intel_dp(encoder);
7904 
7905 		if (!intel_dp->can_mst)
7906 			continue;
7907 
7908 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7909 						     true);
7910 		if (ret) {
7911 			intel_dp->is_mst = false;
7912 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7913 							false);
7914 		}
7915 	}
7916 }
7917