1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 
34 #include <asm/byteorder.h>
35 
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc.h>
38 #include <drm/drm_dp_helper.h>
39 #include <drm/drm_edid.h>
40 #include <drm/drm_probe_helper.h>
41 
42 #include "i915_debugfs.h"
43 #include "i915_drv.h"
44 #include "i915_trace.h"
45 #include "intel_atomic.h"
46 #include "intel_audio.h"
47 #include "intel_connector.h"
48 #include "intel_ddi.h"
49 #include "intel_display_types.h"
50 #include "intel_dp.h"
51 #include "intel_dp_link_training.h"
52 #include "intel_dp_mst.h"
53 #include "intel_dpio_phy.h"
54 #include "intel_fifo_underrun.h"
55 #include "intel_hdcp.h"
56 #include "intel_hdmi.h"
57 #include "intel_hotplug.h"
58 #include "intel_lspcon.h"
59 #include "intel_lvds.h"
60 #include "intel_panel.h"
61 #include "intel_psr.h"
62 #include "intel_sideband.h"
63 #include "intel_tc.h"
64 #include "intel_vdsc.h"
65 
66 #define DP_DPRX_ESI_LEN 14
67 
68 /* DP DSC throughput values used for slice count calculations KPixels/s */
69 #define DP_DSC_PEAK_PIXEL_RATE			2720000
70 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
71 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
72 
73 /* DP DSC FEC Overhead factor = 1/(0.972261) */
74 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
75 
76 /* Compliance test status bits  */
77 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
78 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
79 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
80 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 
82 struct dp_link_dpll {
83 	int clock;
84 	struct dpll dpll;
85 };
86 
87 static const struct dp_link_dpll g4x_dpll[] = {
88 	{ 162000,
89 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
90 	{ 270000,
91 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
92 };
93 
94 static const struct dp_link_dpll pch_dpll[] = {
95 	{ 162000,
96 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
97 	{ 270000,
98 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
99 };
100 
101 static const struct dp_link_dpll vlv_dpll[] = {
102 	{ 162000,
103 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
104 	{ 270000,
105 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
106 };
107 
108 /*
109  * CHV supports eDP 1.4 that have  more link rates.
110  * Below only provides the fixed rate but exclude variable rate.
111  */
112 static const struct dp_link_dpll chv_dpll[] = {
113 	/*
114 	 * CHV requires to program fractional division for m2.
115 	 * m2 is stored in fixed point format using formula below
116 	 * (m2_int << 22) | m2_fraction
117 	 */
118 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
119 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
120 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
121 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
122 };
123 
124 /* Constants for DP DSC configurations */
125 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
126 
127 /* With Single pipe configuration, HW is capable of supporting maximum
128  * of 4 slices per line.
129  */
130 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
131 
132 /**
133  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
134  * @intel_dp: DP struct
135  *
136  * If a CPU or PCH DP output is attached to an eDP panel, this function
137  * will return true, and false otherwise.
138  */
139 bool intel_dp_is_edp(struct intel_dp *intel_dp)
140 {
141 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
142 
143 	return dig_port->base.type == INTEL_OUTPUT_EDP;
144 }
145 
146 static void intel_dp_link_down(struct intel_encoder *encoder,
147 			       const struct intel_crtc_state *old_crtc_state);
148 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
149 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
150 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
151 					   const struct intel_crtc_state *crtc_state);
152 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
153 				      enum pipe pipe);
154 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
155 
156 /* update sink rates from dpcd */
157 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
158 {
159 	static const int dp_rates[] = {
160 		162000, 270000, 540000, 810000
161 	};
162 	int i, max_rate;
163 	int max_lttpr_rate;
164 
165 	if (drm_dp_has_quirk(&intel_dp->desc, 0,
166 			     DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
167 		/* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
168 		static const int quirk_rates[] = { 162000, 270000, 324000 };
169 
170 		memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
171 		intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
172 
173 		return;
174 	}
175 
176 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
177 	max_lttpr_rate = drm_dp_lttpr_max_link_rate(intel_dp->lttpr_common_caps);
178 	if (max_lttpr_rate)
179 		max_rate = min(max_rate, max_lttpr_rate);
180 
181 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
182 		if (dp_rates[i] > max_rate)
183 			break;
184 		intel_dp->sink_rates[i] = dp_rates[i];
185 	}
186 
187 	intel_dp->num_sink_rates = i;
188 }
189 
190 /* Get length of rates array potentially limited by max_rate. */
191 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
192 {
193 	int i;
194 
195 	/* Limit results by potentially reduced max rate */
196 	for (i = 0; i < len; i++) {
197 		if (rates[len - i - 1] <= max_rate)
198 			return len - i;
199 	}
200 
201 	return 0;
202 }
203 
204 /* Get length of common rates array potentially limited by max_rate. */
205 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
206 					  int max_rate)
207 {
208 	return intel_dp_rate_limit_len(intel_dp->common_rates,
209 				       intel_dp->num_common_rates, max_rate);
210 }
211 
212 /* Theoretical max between source and sink */
213 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
214 {
215 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
216 }
217 
218 /* Theoretical max between source and sink */
219 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
220 {
221 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
222 	int source_max = dig_port->max_lanes;
223 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
224 	int fia_max = intel_tc_port_fia_max_lane_count(dig_port);
225 	int lttpr_max = drm_dp_lttpr_max_lane_count(intel_dp->lttpr_common_caps);
226 
227 	if (lttpr_max)
228 		sink_max = min(sink_max, lttpr_max);
229 
230 	return min3(source_max, sink_max, fia_max);
231 }
232 
233 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
234 {
235 	return intel_dp->max_link_lane_count;
236 }
237 
238 int
239 intel_dp_link_required(int pixel_clock, int bpp)
240 {
241 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
242 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
243 }
244 
245 int
246 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
247 {
248 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
249 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
250 	 * is transmitted every LS_Clk per lane, there is no need to account for
251 	 * the channel encoding that is done in the PHY layer here.
252 	 */
253 
254 	return max_link_clock * max_lanes;
255 }
256 
257 bool intel_dp_can_bigjoiner(struct intel_dp *intel_dp)
258 {
259 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
260 	struct intel_encoder *encoder = &intel_dig_port->base;
261 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
262 
263 	return INTEL_GEN(dev_priv) >= 12 ||
264 		(INTEL_GEN(dev_priv) == 11 &&
265 		 encoder->port != PORT_A);
266 }
267 
268 static int cnl_max_source_rate(struct intel_dp *intel_dp)
269 {
270 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
271 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
272 	enum port port = dig_port->base.port;
273 
274 	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
275 
276 	/* Low voltage SKUs are limited to max of 5.4G */
277 	if (voltage == VOLTAGE_INFO_0_85V)
278 		return 540000;
279 
280 	/* For this SKU 8.1G is supported in all ports */
281 	if (IS_CNL_WITH_PORT_F(dev_priv))
282 		return 810000;
283 
284 	/* For other SKUs, max rate on ports A and D is 5.4G */
285 	if (port == PORT_A || port == PORT_D)
286 		return 540000;
287 
288 	return 810000;
289 }
290 
291 static int icl_max_source_rate(struct intel_dp *intel_dp)
292 {
293 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
294 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
295 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
296 
297 	if (intel_phy_is_combo(dev_priv, phy) &&
298 	    !intel_dp_is_edp(intel_dp))
299 		return 540000;
300 
301 	return 810000;
302 }
303 
304 static int ehl_max_source_rate(struct intel_dp *intel_dp)
305 {
306 	if (intel_dp_is_edp(intel_dp))
307 		return 540000;
308 
309 	return 810000;
310 }
311 
312 static void
313 intel_dp_set_source_rates(struct intel_dp *intel_dp)
314 {
315 	/* The values must be in increasing order */
316 	static const int cnl_rates[] = {
317 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
318 	};
319 	static const int bxt_rates[] = {
320 		162000, 216000, 243000, 270000, 324000, 432000, 540000
321 	};
322 	static const int skl_rates[] = {
323 		162000, 216000, 270000, 324000, 432000, 540000
324 	};
325 	static const int hsw_rates[] = {
326 		162000, 270000, 540000
327 	};
328 	static const int g4x_rates[] = {
329 		162000, 270000
330 	};
331 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
332 	struct intel_encoder *encoder = &dig_port->base;
333 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
334 	const int *source_rates;
335 	int size, max_rate = 0, vbt_max_rate;
336 
337 	/* This should only be done once */
338 	drm_WARN_ON(&dev_priv->drm,
339 		    intel_dp->source_rates || intel_dp->num_source_rates);
340 
341 	if (INTEL_GEN(dev_priv) >= 10) {
342 		source_rates = cnl_rates;
343 		size = ARRAY_SIZE(cnl_rates);
344 		if (IS_GEN(dev_priv, 10))
345 			max_rate = cnl_max_source_rate(intel_dp);
346 		else if (IS_JSL_EHL(dev_priv))
347 			max_rate = ehl_max_source_rate(intel_dp);
348 		else
349 			max_rate = icl_max_source_rate(intel_dp);
350 	} else if (IS_GEN9_LP(dev_priv)) {
351 		source_rates = bxt_rates;
352 		size = ARRAY_SIZE(bxt_rates);
353 	} else if (IS_GEN9_BC(dev_priv)) {
354 		source_rates = skl_rates;
355 		size = ARRAY_SIZE(skl_rates);
356 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
357 		   IS_BROADWELL(dev_priv)) {
358 		source_rates = hsw_rates;
359 		size = ARRAY_SIZE(hsw_rates);
360 	} else {
361 		source_rates = g4x_rates;
362 		size = ARRAY_SIZE(g4x_rates);
363 	}
364 
365 	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
366 	if (max_rate && vbt_max_rate)
367 		max_rate = min(max_rate, vbt_max_rate);
368 	else if (vbt_max_rate)
369 		max_rate = vbt_max_rate;
370 
371 	if (max_rate)
372 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
373 
374 	intel_dp->source_rates = source_rates;
375 	intel_dp->num_source_rates = size;
376 }
377 
378 static int intersect_rates(const int *source_rates, int source_len,
379 			   const int *sink_rates, int sink_len,
380 			   int *common_rates)
381 {
382 	int i = 0, j = 0, k = 0;
383 
384 	while (i < source_len && j < sink_len) {
385 		if (source_rates[i] == sink_rates[j]) {
386 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
387 				return k;
388 			common_rates[k] = source_rates[i];
389 			++k;
390 			++i;
391 			++j;
392 		} else if (source_rates[i] < sink_rates[j]) {
393 			++i;
394 		} else {
395 			++j;
396 		}
397 	}
398 	return k;
399 }
400 
401 /* return index of rate in rates array, or -1 if not found */
402 static int intel_dp_rate_index(const int *rates, int len, int rate)
403 {
404 	int i;
405 
406 	for (i = 0; i < len; i++)
407 		if (rate == rates[i])
408 			return i;
409 
410 	return -1;
411 }
412 
413 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
414 {
415 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
416 
417 	drm_WARN_ON(&i915->drm,
418 		    !intel_dp->num_source_rates || !intel_dp->num_sink_rates);
419 
420 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
421 						     intel_dp->num_source_rates,
422 						     intel_dp->sink_rates,
423 						     intel_dp->num_sink_rates,
424 						     intel_dp->common_rates);
425 
426 	/* Paranoia, there should always be something in common. */
427 	if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) {
428 		intel_dp->common_rates[0] = 162000;
429 		intel_dp->num_common_rates = 1;
430 	}
431 }
432 
433 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
434 				       u8 lane_count)
435 {
436 	/*
437 	 * FIXME: we need to synchronize the current link parameters with
438 	 * hardware readout. Currently fast link training doesn't work on
439 	 * boot-up.
440 	 */
441 	if (link_rate == 0 ||
442 	    link_rate > intel_dp->max_link_rate)
443 		return false;
444 
445 	if (lane_count == 0 ||
446 	    lane_count > intel_dp_max_lane_count(intel_dp))
447 		return false;
448 
449 	return true;
450 }
451 
452 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
453 						     int link_rate,
454 						     u8 lane_count)
455 {
456 	const struct drm_display_mode *fixed_mode =
457 		intel_dp->attached_connector->panel.fixed_mode;
458 	int mode_rate, max_rate;
459 
460 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
461 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
462 	if (mode_rate > max_rate)
463 		return false;
464 
465 	return true;
466 }
467 
468 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
469 					    int link_rate, u8 lane_count)
470 {
471 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
472 	int index;
473 
474 	/*
475 	 * TODO: Enable fallback on MST links once MST link compute can handle
476 	 * the fallback params.
477 	 */
478 	if (intel_dp->is_mst) {
479 		drm_err(&i915->drm, "Link Training Unsuccessful\n");
480 		return -1;
481 	}
482 
483 	index = intel_dp_rate_index(intel_dp->common_rates,
484 				    intel_dp->num_common_rates,
485 				    link_rate);
486 	if (index > 0) {
487 		if (intel_dp_is_edp(intel_dp) &&
488 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
489 							      intel_dp->common_rates[index - 1],
490 							      lane_count)) {
491 			drm_dbg_kms(&i915->drm,
492 				    "Retrying Link training for eDP with same parameters\n");
493 			return 0;
494 		}
495 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
496 		intel_dp->max_link_lane_count = lane_count;
497 	} else if (lane_count > 1) {
498 		if (intel_dp_is_edp(intel_dp) &&
499 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
500 							      intel_dp_max_common_rate(intel_dp),
501 							      lane_count >> 1)) {
502 			drm_dbg_kms(&i915->drm,
503 				    "Retrying Link training for eDP with same parameters\n");
504 			return 0;
505 		}
506 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
507 		intel_dp->max_link_lane_count = lane_count >> 1;
508 	} else {
509 		drm_err(&i915->drm, "Link Training Unsuccessful\n");
510 		return -1;
511 	}
512 
513 	return 0;
514 }
515 
516 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
517 {
518 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
519 		       DP_DSC_FEC_OVERHEAD_FACTOR);
520 }
521 
522 static int
523 small_joiner_ram_size_bits(struct drm_i915_private *i915)
524 {
525 	if (INTEL_GEN(i915) >= 11)
526 		return 7680 * 8;
527 	else
528 		return 6144 * 8;
529 }
530 
531 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
532 				       u32 link_clock, u32 lane_count,
533 				       u32 mode_clock, u32 mode_hdisplay,
534 				       bool bigjoiner)
535 {
536 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
537 	int i;
538 
539 	/*
540 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
541 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
542 	 * for SST -> TimeSlotsPerMTP is 1,
543 	 * for MST -> TimeSlotsPerMTP has to be calculated
544 	 */
545 	bits_per_pixel = (link_clock * lane_count * 8) /
546 			 intel_dp_mode_to_fec_clock(mode_clock);
547 	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
548 
549 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
550 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
551 		mode_hdisplay;
552 
553 	if (bigjoiner)
554 		max_bpp_small_joiner_ram *= 2;
555 
556 	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
557 		    max_bpp_small_joiner_ram);
558 
559 	/*
560 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
561 	 * check, output bpp from small joiner RAM check)
562 	 */
563 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
564 
565 	if (bigjoiner) {
566 		u32 max_bpp_bigjoiner =
567 			i915->max_cdclk_freq * 48 /
568 			intel_dp_mode_to_fec_clock(mode_clock);
569 
570 		DRM_DEBUG_KMS("Max big joiner bpp: %u\n", max_bpp_bigjoiner);
571 		bits_per_pixel = min(bits_per_pixel, max_bpp_bigjoiner);
572 	}
573 
574 	/* Error out if the max bpp is less than smallest allowed valid bpp */
575 	if (bits_per_pixel < valid_dsc_bpp[0]) {
576 		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
577 			    bits_per_pixel, valid_dsc_bpp[0]);
578 		return 0;
579 	}
580 
581 	/* Find the nearest match in the array of known BPPs from VESA */
582 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
583 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
584 			break;
585 	}
586 	bits_per_pixel = valid_dsc_bpp[i];
587 
588 	/*
589 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
590 	 * fractional part is 0
591 	 */
592 	return bits_per_pixel << 4;
593 }
594 
595 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
596 				       int mode_clock, int mode_hdisplay,
597 				       bool bigjoiner)
598 {
599 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
600 	u8 min_slice_count, i;
601 	int max_slice_width;
602 
603 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
604 		min_slice_count = DIV_ROUND_UP(mode_clock,
605 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
606 	else
607 		min_slice_count = DIV_ROUND_UP(mode_clock,
608 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
609 
610 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
611 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
612 		drm_dbg_kms(&i915->drm,
613 			    "Unsupported slice width %d by DP DSC Sink device\n",
614 			    max_slice_width);
615 		return 0;
616 	}
617 	/* Also take into account max slice width */
618 	min_slice_count = max_t(u8, min_slice_count,
619 				DIV_ROUND_UP(mode_hdisplay,
620 					     max_slice_width));
621 
622 	/* Find the closest match to the valid slice count values */
623 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
624 		u8 test_slice_count = valid_dsc_slicecount[i] << bigjoiner;
625 
626 		if (test_slice_count >
627 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, false))
628 			break;
629 
630 		/* big joiner needs small joiner to be enabled */
631 		if (bigjoiner && test_slice_count < 4)
632 			continue;
633 
634 		if (min_slice_count <= test_slice_count)
635 			return test_slice_count;
636 	}
637 
638 	drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
639 		    min_slice_count);
640 	return 0;
641 }
642 
643 static enum intel_output_format
644 intel_dp_output_format(struct drm_connector *connector,
645 		       const struct drm_display_mode *mode)
646 {
647 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
648 	const struct drm_display_info *info = &connector->display_info;
649 
650 	if (!connector->ycbcr_420_allowed ||
651 	    !drm_mode_is_420_only(info, mode))
652 		return INTEL_OUTPUT_FORMAT_RGB;
653 
654 	if (intel_dp->dfp.ycbcr_444_to_420)
655 		return INTEL_OUTPUT_FORMAT_YCBCR444;
656 	else
657 		return INTEL_OUTPUT_FORMAT_YCBCR420;
658 }
659 
660 int intel_dp_min_bpp(enum intel_output_format output_format)
661 {
662 	if (output_format == INTEL_OUTPUT_FORMAT_RGB)
663 		return 6 * 3;
664 	else
665 		return 8 * 3;
666 }
667 
668 static int intel_dp_output_bpp(enum intel_output_format output_format, int bpp)
669 {
670 	/*
671 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
672 	 * format of the number of bytes per pixel will be half the number
673 	 * of bytes of RGB pixel.
674 	 */
675 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
676 		bpp /= 2;
677 
678 	return bpp;
679 }
680 
681 static int
682 intel_dp_mode_min_output_bpp(struct drm_connector *connector,
683 			     const struct drm_display_mode *mode)
684 {
685 	enum intel_output_format output_format =
686 		intel_dp_output_format(connector, mode);
687 
688 	return intel_dp_output_bpp(output_format, intel_dp_min_bpp(output_format));
689 }
690 
691 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
692 				  int hdisplay)
693 {
694 	/*
695 	 * Older platforms don't like hdisplay==4096 with DP.
696 	 *
697 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
698 	 * and frame counter increment), but we don't get vblank interrupts,
699 	 * and the pipe underruns immediately. The link also doesn't seem
700 	 * to get trained properly.
701 	 *
702 	 * On CHV the vblank interrupts don't seem to disappear but
703 	 * otherwise the symptoms are similar.
704 	 *
705 	 * TODO: confirm the behaviour on HSW+
706 	 */
707 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
708 }
709 
710 static enum drm_mode_status
711 intel_dp_mode_valid_downstream(struct intel_connector *connector,
712 			       const struct drm_display_mode *mode,
713 			       int target_clock)
714 {
715 	struct intel_dp *intel_dp = intel_attached_dp(connector);
716 	const struct drm_display_info *info = &connector->base.display_info;
717 	int tmds_clock;
718 
719 	if (intel_dp->dfp.max_dotclock &&
720 	    target_clock > intel_dp->dfp.max_dotclock)
721 		return MODE_CLOCK_HIGH;
722 
723 	/* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */
724 	tmds_clock = target_clock;
725 	if (drm_mode_is_420_only(info, mode))
726 		tmds_clock /= 2;
727 
728 	if (intel_dp->dfp.min_tmds_clock &&
729 	    tmds_clock < intel_dp->dfp.min_tmds_clock)
730 		return MODE_CLOCK_LOW;
731 	if (intel_dp->dfp.max_tmds_clock &&
732 	    tmds_clock > intel_dp->dfp.max_tmds_clock)
733 		return MODE_CLOCK_HIGH;
734 
735 	return MODE_OK;
736 }
737 
738 static enum drm_mode_status
739 intel_dp_mode_valid(struct drm_connector *connector,
740 		    struct drm_display_mode *mode)
741 {
742 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
743 	struct intel_connector *intel_connector = to_intel_connector(connector);
744 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
745 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
746 	int target_clock = mode->clock;
747 	int max_rate, mode_rate, max_lanes, max_link_clock;
748 	int max_dotclk = dev_priv->max_dotclk_freq;
749 	u16 dsc_max_output_bpp = 0;
750 	u8 dsc_slice_count = 0;
751 	enum drm_mode_status status;
752 	bool dsc = false, bigjoiner = false;
753 
754 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
755 		return MODE_NO_DBLESCAN;
756 
757 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
758 		return MODE_H_ILLEGAL;
759 
760 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
761 		if (mode->hdisplay > fixed_mode->hdisplay)
762 			return MODE_PANEL;
763 
764 		if (mode->vdisplay > fixed_mode->vdisplay)
765 			return MODE_PANEL;
766 
767 		target_clock = fixed_mode->clock;
768 	}
769 
770 	if (mode->clock < 10000)
771 		return MODE_CLOCK_LOW;
772 
773 	if ((target_clock > max_dotclk || mode->hdisplay > 5120) &&
774 	    intel_dp_can_bigjoiner(intel_dp)) {
775 		bigjoiner = true;
776 		max_dotclk *= 2;
777 	}
778 	if (target_clock > max_dotclk)
779 		return MODE_CLOCK_HIGH;
780 
781 	max_link_clock = intel_dp_max_link_rate(intel_dp);
782 	max_lanes = intel_dp_max_lane_count(intel_dp);
783 
784 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
785 	mode_rate = intel_dp_link_required(target_clock,
786 					   intel_dp_mode_min_output_bpp(connector, mode));
787 
788 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
789 		return MODE_H_ILLEGAL;
790 
791 	/*
792 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
793 	 * integer value since we support only integer values of bpp.
794 	 */
795 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
796 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
797 		if (intel_dp_is_edp(intel_dp)) {
798 			dsc_max_output_bpp =
799 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
800 			dsc_slice_count =
801 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
802 								true);
803 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
804 			dsc_max_output_bpp =
805 				intel_dp_dsc_get_output_bpp(dev_priv,
806 							    max_link_clock,
807 							    max_lanes,
808 							    target_clock,
809 							    mode->hdisplay,
810 							    bigjoiner) >> 4;
811 			dsc_slice_count =
812 				intel_dp_dsc_get_slice_count(intel_dp,
813 							     target_clock,
814 							     mode->hdisplay,
815 							     bigjoiner);
816 		}
817 
818 		dsc = dsc_max_output_bpp && dsc_slice_count;
819 	}
820 
821 	/* big joiner configuration needs DSC */
822 	if (bigjoiner && !dsc)
823 		return MODE_CLOCK_HIGH;
824 
825 	if (mode_rate > max_rate && !dsc)
826 		return MODE_CLOCK_HIGH;
827 
828 	status = intel_dp_mode_valid_downstream(intel_connector,
829 						mode, target_clock);
830 	if (status != MODE_OK)
831 		return status;
832 
833 	return intel_mode_valid_max_plane_size(dev_priv, mode, bigjoiner);
834 }
835 
836 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
837 {
838 	int i;
839 	u32 v = 0;
840 
841 	if (src_bytes > 4)
842 		src_bytes = 4;
843 	for (i = 0; i < src_bytes; i++)
844 		v |= ((u32)src[i]) << ((3 - i) * 8);
845 	return v;
846 }
847 
848 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
849 {
850 	int i;
851 	if (dst_bytes > 4)
852 		dst_bytes = 4;
853 	for (i = 0; i < dst_bytes; i++)
854 		dst[i] = src >> ((3-i) * 8);
855 }
856 
857 static void
858 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
859 static void
860 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
861 					      bool force_disable_vdd);
862 static void
863 intel_dp_pps_init(struct intel_dp *intel_dp);
864 
865 static intel_wakeref_t
866 pps_lock(struct intel_dp *intel_dp)
867 {
868 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
869 	intel_wakeref_t wakeref;
870 
871 	/*
872 	 * See intel_power_sequencer_reset() why we need
873 	 * a power domain reference here.
874 	 */
875 	wakeref = intel_display_power_get(dev_priv,
876 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
877 
878 	mutex_lock(&dev_priv->pps_mutex);
879 
880 	return wakeref;
881 }
882 
883 static intel_wakeref_t
884 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
885 {
886 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
887 
888 	mutex_unlock(&dev_priv->pps_mutex);
889 	intel_display_power_put(dev_priv,
890 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
891 				wakeref);
892 	return 0;
893 }
894 
895 #define with_pps_lock(dp, wf) \
896 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
897 
898 static void
899 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
900 {
901 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
902 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
903 	enum pipe pipe = intel_dp->pps_pipe;
904 	bool pll_enabled, release_cl_override = false;
905 	enum dpio_phy phy = DPIO_PHY(pipe);
906 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
907 	u32 DP;
908 
909 	if (drm_WARN(&dev_priv->drm,
910 		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
911 		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
912 		     pipe_name(pipe), dig_port->base.base.base.id,
913 		     dig_port->base.base.name))
914 		return;
915 
916 	drm_dbg_kms(&dev_priv->drm,
917 		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
918 		    pipe_name(pipe), dig_port->base.base.base.id,
919 		    dig_port->base.base.name);
920 
921 	/* Preserve the BIOS-computed detected bit. This is
922 	 * supposed to be read-only.
923 	 */
924 	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
925 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
926 	DP |= DP_PORT_WIDTH(1);
927 	DP |= DP_LINK_TRAIN_PAT_1;
928 
929 	if (IS_CHERRYVIEW(dev_priv))
930 		DP |= DP_PIPE_SEL_CHV(pipe);
931 	else
932 		DP |= DP_PIPE_SEL(pipe);
933 
934 	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
935 
936 	/*
937 	 * The DPLL for the pipe must be enabled for this to work.
938 	 * So enable temporarily it if it's not already enabled.
939 	 */
940 	if (!pll_enabled) {
941 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
942 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
943 
944 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
945 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
946 			drm_err(&dev_priv->drm,
947 				"Failed to force on pll for pipe %c!\n",
948 				pipe_name(pipe));
949 			return;
950 		}
951 	}
952 
953 	/*
954 	 * Similar magic as in intel_dp_enable_port().
955 	 * We _must_ do this port enable + disable trick
956 	 * to make this power sequencer lock onto the port.
957 	 * Otherwise even VDD force bit won't work.
958 	 */
959 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
960 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
961 
962 	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
963 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
964 
965 	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
966 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
967 
968 	if (!pll_enabled) {
969 		vlv_force_pll_off(dev_priv, pipe);
970 
971 		if (release_cl_override)
972 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
973 	}
974 }
975 
976 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
977 {
978 	struct intel_encoder *encoder;
979 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
980 
981 	/*
982 	 * We don't have power sequencer currently.
983 	 * Pick one that's not used by other ports.
984 	 */
985 	for_each_intel_dp(&dev_priv->drm, encoder) {
986 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
987 
988 		if (encoder->type == INTEL_OUTPUT_EDP) {
989 			drm_WARN_ON(&dev_priv->drm,
990 				    intel_dp->active_pipe != INVALID_PIPE &&
991 				    intel_dp->active_pipe !=
992 				    intel_dp->pps_pipe);
993 
994 			if (intel_dp->pps_pipe != INVALID_PIPE)
995 				pipes &= ~(1 << intel_dp->pps_pipe);
996 		} else {
997 			drm_WARN_ON(&dev_priv->drm,
998 				    intel_dp->pps_pipe != INVALID_PIPE);
999 
1000 			if (intel_dp->active_pipe != INVALID_PIPE)
1001 				pipes &= ~(1 << intel_dp->active_pipe);
1002 		}
1003 	}
1004 
1005 	if (pipes == 0)
1006 		return INVALID_PIPE;
1007 
1008 	return ffs(pipes) - 1;
1009 }
1010 
1011 static enum pipe
1012 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
1013 {
1014 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1015 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1016 	enum pipe pipe;
1017 
1018 	lockdep_assert_held(&dev_priv->pps_mutex);
1019 
1020 	/* We should never land here with regular DP ports */
1021 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
1022 
1023 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
1024 		    intel_dp->active_pipe != intel_dp->pps_pipe);
1025 
1026 	if (intel_dp->pps_pipe != INVALID_PIPE)
1027 		return intel_dp->pps_pipe;
1028 
1029 	pipe = vlv_find_free_pps(dev_priv);
1030 
1031 	/*
1032 	 * Didn't find one. This should not happen since there
1033 	 * are two power sequencers and up to two eDP ports.
1034 	 */
1035 	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
1036 		pipe = PIPE_A;
1037 
1038 	vlv_steal_power_sequencer(dev_priv, pipe);
1039 	intel_dp->pps_pipe = pipe;
1040 
1041 	drm_dbg_kms(&dev_priv->drm,
1042 		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
1043 		    pipe_name(intel_dp->pps_pipe),
1044 		    dig_port->base.base.base.id,
1045 		    dig_port->base.base.name);
1046 
1047 	/* init power sequencer on this pipe and port */
1048 	intel_dp_init_panel_power_sequencer(intel_dp);
1049 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
1050 
1051 	/*
1052 	 * Even vdd force doesn't work until we've made
1053 	 * the power sequencer lock in on the port.
1054 	 */
1055 	vlv_power_sequencer_kick(intel_dp);
1056 
1057 	return intel_dp->pps_pipe;
1058 }
1059 
1060 static int
1061 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
1062 {
1063 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1064 	int backlight_controller = dev_priv->vbt.backlight.controller;
1065 
1066 	lockdep_assert_held(&dev_priv->pps_mutex);
1067 
1068 	/* We should never land here with regular DP ports */
1069 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
1070 
1071 	if (!intel_dp->pps_reset)
1072 		return backlight_controller;
1073 
1074 	intel_dp->pps_reset = false;
1075 
1076 	/*
1077 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
1078 	 * has been setup during connector init.
1079 	 */
1080 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1081 
1082 	return backlight_controller;
1083 }
1084 
1085 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
1086 			       enum pipe pipe);
1087 
1088 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
1089 			       enum pipe pipe)
1090 {
1091 	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
1092 }
1093 
1094 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
1095 				enum pipe pipe)
1096 {
1097 	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
1098 }
1099 
1100 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
1101 			 enum pipe pipe)
1102 {
1103 	return true;
1104 }
1105 
1106 static enum pipe
1107 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
1108 		     enum port port,
1109 		     vlv_pipe_check pipe_check)
1110 {
1111 	enum pipe pipe;
1112 
1113 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
1114 		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
1115 			PANEL_PORT_SELECT_MASK;
1116 
1117 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
1118 			continue;
1119 
1120 		if (!pipe_check(dev_priv, pipe))
1121 			continue;
1122 
1123 		return pipe;
1124 	}
1125 
1126 	return INVALID_PIPE;
1127 }
1128 
1129 static void
1130 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
1131 {
1132 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1133 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1134 	enum port port = dig_port->base.port;
1135 
1136 	lockdep_assert_held(&dev_priv->pps_mutex);
1137 
1138 	/* try to find a pipe with this port selected */
1139 	/* first pick one where the panel is on */
1140 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1141 						  vlv_pipe_has_pp_on);
1142 	/* didn't find one? pick one where vdd is on */
1143 	if (intel_dp->pps_pipe == INVALID_PIPE)
1144 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1145 							  vlv_pipe_has_vdd_on);
1146 	/* didn't find one? pick one with just the correct port */
1147 	if (intel_dp->pps_pipe == INVALID_PIPE)
1148 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1149 							  vlv_pipe_any);
1150 
1151 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1152 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1153 		drm_dbg_kms(&dev_priv->drm,
1154 			    "no initial power sequencer for [ENCODER:%d:%s]\n",
1155 			    dig_port->base.base.base.id,
1156 			    dig_port->base.base.name);
1157 		return;
1158 	}
1159 
1160 	drm_dbg_kms(&dev_priv->drm,
1161 		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1162 		    dig_port->base.base.base.id,
1163 		    dig_port->base.base.name,
1164 		    pipe_name(intel_dp->pps_pipe));
1165 
1166 	intel_dp_init_panel_power_sequencer(intel_dp);
1167 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1168 }
1169 
1170 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1171 {
1172 	struct intel_encoder *encoder;
1173 
1174 	if (drm_WARN_ON(&dev_priv->drm,
1175 			!(IS_VALLEYVIEW(dev_priv) ||
1176 			  IS_CHERRYVIEW(dev_priv) ||
1177 			  IS_GEN9_LP(dev_priv))))
1178 		return;
1179 
1180 	/*
1181 	 * We can't grab pps_mutex here due to deadlock with power_domain
1182 	 * mutex when power_domain functions are called while holding pps_mutex.
1183 	 * That also means that in order to use pps_pipe the code needs to
1184 	 * hold both a power domain reference and pps_mutex, and the power domain
1185 	 * reference get/put must be done while _not_ holding pps_mutex.
1186 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1187 	 * should use them always.
1188 	 */
1189 
1190 	for_each_intel_dp(&dev_priv->drm, encoder) {
1191 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1192 
1193 		drm_WARN_ON(&dev_priv->drm,
1194 			    intel_dp->active_pipe != INVALID_PIPE);
1195 
1196 		if (encoder->type != INTEL_OUTPUT_EDP)
1197 			continue;
1198 
1199 		if (IS_GEN9_LP(dev_priv))
1200 			intel_dp->pps_reset = true;
1201 		else
1202 			intel_dp->pps_pipe = INVALID_PIPE;
1203 	}
1204 }
1205 
1206 struct pps_registers {
1207 	i915_reg_t pp_ctrl;
1208 	i915_reg_t pp_stat;
1209 	i915_reg_t pp_on;
1210 	i915_reg_t pp_off;
1211 	i915_reg_t pp_div;
1212 };
1213 
1214 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1215 				    struct pps_registers *regs)
1216 {
1217 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1218 	int pps_idx = 0;
1219 
1220 	memset(regs, 0, sizeof(*regs));
1221 
1222 	if (IS_GEN9_LP(dev_priv))
1223 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1224 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1225 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1226 
1227 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1228 	regs->pp_stat = PP_STATUS(pps_idx);
1229 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1230 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1231 
1232 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1233 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1234 		regs->pp_div = INVALID_MMIO_REG;
1235 	else
1236 		regs->pp_div = PP_DIVISOR(pps_idx);
1237 }
1238 
1239 static i915_reg_t
1240 _pp_ctrl_reg(struct intel_dp *intel_dp)
1241 {
1242 	struct pps_registers regs;
1243 
1244 	intel_pps_get_registers(intel_dp, &regs);
1245 
1246 	return regs.pp_ctrl;
1247 }
1248 
1249 static i915_reg_t
1250 _pp_stat_reg(struct intel_dp *intel_dp)
1251 {
1252 	struct pps_registers regs;
1253 
1254 	intel_pps_get_registers(intel_dp, &regs);
1255 
1256 	return regs.pp_stat;
1257 }
1258 
1259 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1260 {
1261 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1262 
1263 	lockdep_assert_held(&dev_priv->pps_mutex);
1264 
1265 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1266 	    intel_dp->pps_pipe == INVALID_PIPE)
1267 		return false;
1268 
1269 	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1270 }
1271 
1272 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1273 {
1274 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1275 
1276 	lockdep_assert_held(&dev_priv->pps_mutex);
1277 
1278 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1279 	    intel_dp->pps_pipe == INVALID_PIPE)
1280 		return false;
1281 
1282 	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1283 }
1284 
1285 static void
1286 intel_dp_check_edp(struct intel_dp *intel_dp)
1287 {
1288 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1289 
1290 	if (!intel_dp_is_edp(intel_dp))
1291 		return;
1292 
1293 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1294 		drm_WARN(&dev_priv->drm, 1,
1295 			 "eDP powered off while attempting aux channel communication.\n");
1296 		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1297 			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1298 			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1299 	}
1300 }
1301 
1302 static u32
1303 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1304 {
1305 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1306 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1307 	const unsigned int timeout_ms = 10;
1308 	u32 status;
1309 	bool done;
1310 
1311 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1312 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1313 				  msecs_to_jiffies_timeout(timeout_ms));
1314 
1315 	/* just trace the final value */
1316 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1317 
1318 	if (!done)
1319 		drm_err(&i915->drm,
1320 			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1321 			intel_dp->aux.name, timeout_ms, status);
1322 #undef C
1323 
1324 	return status;
1325 }
1326 
1327 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1328 {
1329 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1330 
1331 	if (index)
1332 		return 0;
1333 
1334 	/*
1335 	 * The clock divider is based off the hrawclk, and would like to run at
1336 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1337 	 */
1338 	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1339 }
1340 
1341 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1342 {
1343 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1344 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1345 	u32 freq;
1346 
1347 	if (index)
1348 		return 0;
1349 
1350 	/*
1351 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1352 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1353 	 * divide by 2000 and use that
1354 	 */
1355 	if (dig_port->aux_ch == AUX_CH_A)
1356 		freq = dev_priv->cdclk.hw.cdclk;
1357 	else
1358 		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1359 	return DIV_ROUND_CLOSEST(freq, 2000);
1360 }
1361 
1362 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1363 {
1364 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1365 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1366 
1367 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1368 		/* Workaround for non-ULT HSW */
1369 		switch (index) {
1370 		case 0: return 63;
1371 		case 1: return 72;
1372 		default: return 0;
1373 		}
1374 	}
1375 
1376 	return ilk_get_aux_clock_divider(intel_dp, index);
1377 }
1378 
1379 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1380 {
1381 	/*
1382 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1383 	 * derive the clock from CDCLK automatically). We still implement the
1384 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1385 	 */
1386 	return index ? 0 : 1;
1387 }
1388 
1389 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1390 				int send_bytes,
1391 				u32 aux_clock_divider)
1392 {
1393 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1394 	struct drm_i915_private *dev_priv =
1395 			to_i915(dig_port->base.base.dev);
1396 	u32 precharge, timeout;
1397 
1398 	if (IS_GEN(dev_priv, 6))
1399 		precharge = 3;
1400 	else
1401 		precharge = 5;
1402 
1403 	if (IS_BROADWELL(dev_priv))
1404 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1405 	else
1406 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1407 
1408 	return DP_AUX_CH_CTL_SEND_BUSY |
1409 	       DP_AUX_CH_CTL_DONE |
1410 	       DP_AUX_CH_CTL_INTERRUPT |
1411 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1412 	       timeout |
1413 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1414 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1415 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1416 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1417 }
1418 
1419 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1420 				int send_bytes,
1421 				u32 unused)
1422 {
1423 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1424 	struct drm_i915_private *i915 =
1425 			to_i915(dig_port->base.base.dev);
1426 	enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1427 	u32 ret;
1428 
1429 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1430 	      DP_AUX_CH_CTL_DONE |
1431 	      DP_AUX_CH_CTL_INTERRUPT |
1432 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1433 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1434 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1435 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1436 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1437 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1438 
1439 	if (intel_phy_is_tc(i915, phy) &&
1440 	    dig_port->tc_mode == TC_PORT_TBT_ALT)
1441 		ret |= DP_AUX_CH_CTL_TBT_IO;
1442 
1443 	return ret;
1444 }
1445 
1446 static int
1447 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1448 		  const u8 *send, int send_bytes,
1449 		  u8 *recv, int recv_size,
1450 		  u32 aux_send_ctl_flags)
1451 {
1452 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1453 	struct drm_i915_private *i915 =
1454 			to_i915(dig_port->base.base.dev);
1455 	struct intel_uncore *uncore = &i915->uncore;
1456 	enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1457 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1458 	i915_reg_t ch_ctl, ch_data[5];
1459 	u32 aux_clock_divider;
1460 	enum intel_display_power_domain aux_domain;
1461 	intel_wakeref_t aux_wakeref;
1462 	intel_wakeref_t pps_wakeref;
1463 	int i, ret, recv_bytes;
1464 	int try, clock = 0;
1465 	u32 status;
1466 	bool vdd;
1467 
1468 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1469 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1470 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1471 
1472 	if (is_tc_port)
1473 		intel_tc_port_lock(dig_port);
1474 
1475 	aux_domain = intel_aux_power_domain(dig_port);
1476 
1477 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1478 	pps_wakeref = pps_lock(intel_dp);
1479 
1480 	/*
1481 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1482 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1483 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1484 	 * ourselves.
1485 	 */
1486 	vdd = edp_panel_vdd_on(intel_dp);
1487 
1488 	/* dp aux is extremely sensitive to irq latency, hence request the
1489 	 * lowest possible wakeup latency and so prevent the cpu from going into
1490 	 * deep sleep states.
1491 	 */
1492 	cpu_latency_qos_update_request(&i915->pm_qos, 0);
1493 
1494 	intel_dp_check_edp(intel_dp);
1495 
1496 	/* Try to wait for any previous AUX channel activity */
1497 	for (try = 0; try < 3; try++) {
1498 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1499 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1500 			break;
1501 		msleep(1);
1502 	}
1503 	/* just trace the final value */
1504 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1505 
1506 	if (try == 3) {
1507 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1508 
1509 		if (status != intel_dp->aux_busy_last_status) {
1510 			drm_WARN(&i915->drm, 1,
1511 				 "%s: not started (status 0x%08x)\n",
1512 				 intel_dp->aux.name, status);
1513 			intel_dp->aux_busy_last_status = status;
1514 		}
1515 
1516 		ret = -EBUSY;
1517 		goto out;
1518 	}
1519 
1520 	/* Only 5 data registers! */
1521 	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1522 		ret = -E2BIG;
1523 		goto out;
1524 	}
1525 
1526 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1527 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1528 							  send_bytes,
1529 							  aux_clock_divider);
1530 
1531 		send_ctl |= aux_send_ctl_flags;
1532 
1533 		/* Must try at least 3 times according to DP spec */
1534 		for (try = 0; try < 5; try++) {
1535 			/* Load the send data into the aux channel data registers */
1536 			for (i = 0; i < send_bytes; i += 4)
1537 				intel_uncore_write(uncore,
1538 						   ch_data[i >> 2],
1539 						   intel_dp_pack_aux(send + i,
1540 								     send_bytes - i));
1541 
1542 			/* Send the command and wait for it to complete */
1543 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1544 
1545 			status = intel_dp_aux_wait_done(intel_dp);
1546 
1547 			/* Clear done status and any errors */
1548 			intel_uncore_write(uncore,
1549 					   ch_ctl,
1550 					   status |
1551 					   DP_AUX_CH_CTL_DONE |
1552 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1553 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1554 
1555 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1556 			 *   400us delay required for errors and timeouts
1557 			 *   Timeout errors from the HW already meet this
1558 			 *   requirement so skip to next iteration
1559 			 */
1560 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1561 				continue;
1562 
1563 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1564 				usleep_range(400, 500);
1565 				continue;
1566 			}
1567 			if (status & DP_AUX_CH_CTL_DONE)
1568 				goto done;
1569 		}
1570 	}
1571 
1572 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1573 		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1574 			intel_dp->aux.name, status);
1575 		ret = -EBUSY;
1576 		goto out;
1577 	}
1578 
1579 done:
1580 	/* Check for timeout or receive error.
1581 	 * Timeouts occur when the sink is not connected
1582 	 */
1583 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1584 		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1585 			intel_dp->aux.name, status);
1586 		ret = -EIO;
1587 		goto out;
1588 	}
1589 
1590 	/* Timeouts occur when the device isn't connected, so they're
1591 	 * "normal" -- don't fill the kernel log with these */
1592 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1593 		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1594 			    intel_dp->aux.name, status);
1595 		ret = -ETIMEDOUT;
1596 		goto out;
1597 	}
1598 
1599 	/* Unload any bytes sent back from the other side */
1600 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1601 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1602 
1603 	/*
1604 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1605 	 * We have no idea of what happened so we return -EBUSY so
1606 	 * drm layer takes care for the necessary retries.
1607 	 */
1608 	if (recv_bytes == 0 || recv_bytes > 20) {
1609 		drm_dbg_kms(&i915->drm,
1610 			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
1611 			    intel_dp->aux.name, recv_bytes);
1612 		ret = -EBUSY;
1613 		goto out;
1614 	}
1615 
1616 	if (recv_bytes > recv_size)
1617 		recv_bytes = recv_size;
1618 
1619 	for (i = 0; i < recv_bytes; i += 4)
1620 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1621 				    recv + i, recv_bytes - i);
1622 
1623 	ret = recv_bytes;
1624 out:
1625 	cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1626 
1627 	if (vdd)
1628 		edp_panel_vdd_off(intel_dp, false);
1629 
1630 	pps_unlock(intel_dp, pps_wakeref);
1631 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1632 
1633 	if (is_tc_port)
1634 		intel_tc_port_unlock(dig_port);
1635 
1636 	return ret;
1637 }
1638 
1639 #define BARE_ADDRESS_SIZE	3
1640 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1641 
1642 static void
1643 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1644 		    const struct drm_dp_aux_msg *msg)
1645 {
1646 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1647 	txbuf[1] = (msg->address >> 8) & 0xff;
1648 	txbuf[2] = msg->address & 0xff;
1649 	txbuf[3] = msg->size - 1;
1650 }
1651 
1652 static u32 intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg *msg)
1653 {
1654 	/*
1655 	 * If we're trying to send the HDCP Aksv, we need to set a the Aksv
1656 	 * select bit to inform the hardware to send the Aksv after our header
1657 	 * since we can't access that data from software.
1658 	 */
1659 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE &&
1660 	    msg->address == DP_AUX_HDCP_AKSV)
1661 		return DP_AUX_CH_CTL_AUX_AKSV_SELECT;
1662 
1663 	return 0;
1664 }
1665 
1666 static ssize_t
1667 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1668 {
1669 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1670 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1671 	u8 txbuf[20], rxbuf[20];
1672 	size_t txsize, rxsize;
1673 	u32 flags = intel_dp_aux_xfer_flags(msg);
1674 	int ret;
1675 
1676 	intel_dp_aux_header(txbuf, msg);
1677 
1678 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1679 	case DP_AUX_NATIVE_WRITE:
1680 	case DP_AUX_I2C_WRITE:
1681 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1682 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1683 		rxsize = 2; /* 0 or 1 data bytes */
1684 
1685 		if (drm_WARN_ON(&i915->drm, txsize > 20))
1686 			return -E2BIG;
1687 
1688 		drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size);
1689 
1690 		if (msg->buffer)
1691 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1692 
1693 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1694 					rxbuf, rxsize, flags);
1695 		if (ret > 0) {
1696 			msg->reply = rxbuf[0] >> 4;
1697 
1698 			if (ret > 1) {
1699 				/* Number of bytes written in a short write. */
1700 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1701 			} else {
1702 				/* Return payload size. */
1703 				ret = msg->size;
1704 			}
1705 		}
1706 		break;
1707 
1708 	case DP_AUX_NATIVE_READ:
1709 	case DP_AUX_I2C_READ:
1710 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1711 		rxsize = msg->size + 1;
1712 
1713 		if (drm_WARN_ON(&i915->drm, rxsize > 20))
1714 			return -E2BIG;
1715 
1716 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1717 					rxbuf, rxsize, flags);
1718 		if (ret > 0) {
1719 			msg->reply = rxbuf[0] >> 4;
1720 			/*
1721 			 * Assume happy day, and copy the data. The caller is
1722 			 * expected to check msg->reply before touching it.
1723 			 *
1724 			 * Return payload size.
1725 			 */
1726 			ret--;
1727 			memcpy(msg->buffer, rxbuf + 1, ret);
1728 		}
1729 		break;
1730 
1731 	default:
1732 		ret = -EINVAL;
1733 		break;
1734 	}
1735 
1736 	return ret;
1737 }
1738 
1739 
1740 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1741 {
1742 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1743 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1744 	enum aux_ch aux_ch = dig_port->aux_ch;
1745 
1746 	switch (aux_ch) {
1747 	case AUX_CH_B:
1748 	case AUX_CH_C:
1749 	case AUX_CH_D:
1750 		return DP_AUX_CH_CTL(aux_ch);
1751 	default:
1752 		MISSING_CASE(aux_ch);
1753 		return DP_AUX_CH_CTL(AUX_CH_B);
1754 	}
1755 }
1756 
1757 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1758 {
1759 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1760 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1761 	enum aux_ch aux_ch = dig_port->aux_ch;
1762 
1763 	switch (aux_ch) {
1764 	case AUX_CH_B:
1765 	case AUX_CH_C:
1766 	case AUX_CH_D:
1767 		return DP_AUX_CH_DATA(aux_ch, index);
1768 	default:
1769 		MISSING_CASE(aux_ch);
1770 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1771 	}
1772 }
1773 
1774 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1775 {
1776 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1777 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1778 	enum aux_ch aux_ch = dig_port->aux_ch;
1779 
1780 	switch (aux_ch) {
1781 	case AUX_CH_A:
1782 		return DP_AUX_CH_CTL(aux_ch);
1783 	case AUX_CH_B:
1784 	case AUX_CH_C:
1785 	case AUX_CH_D:
1786 		return PCH_DP_AUX_CH_CTL(aux_ch);
1787 	default:
1788 		MISSING_CASE(aux_ch);
1789 		return DP_AUX_CH_CTL(AUX_CH_A);
1790 	}
1791 }
1792 
1793 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1794 {
1795 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1796 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1797 	enum aux_ch aux_ch = dig_port->aux_ch;
1798 
1799 	switch (aux_ch) {
1800 	case AUX_CH_A:
1801 		return DP_AUX_CH_DATA(aux_ch, index);
1802 	case AUX_CH_B:
1803 	case AUX_CH_C:
1804 	case AUX_CH_D:
1805 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1806 	default:
1807 		MISSING_CASE(aux_ch);
1808 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1809 	}
1810 }
1811 
1812 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1813 {
1814 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1815 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1816 	enum aux_ch aux_ch = dig_port->aux_ch;
1817 
1818 	switch (aux_ch) {
1819 	case AUX_CH_A:
1820 	case AUX_CH_B:
1821 	case AUX_CH_C:
1822 	case AUX_CH_D:
1823 	case AUX_CH_E:
1824 	case AUX_CH_F:
1825 		return DP_AUX_CH_CTL(aux_ch);
1826 	default:
1827 		MISSING_CASE(aux_ch);
1828 		return DP_AUX_CH_CTL(AUX_CH_A);
1829 	}
1830 }
1831 
1832 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1833 {
1834 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1835 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1836 	enum aux_ch aux_ch = dig_port->aux_ch;
1837 
1838 	switch (aux_ch) {
1839 	case AUX_CH_A:
1840 	case AUX_CH_B:
1841 	case AUX_CH_C:
1842 	case AUX_CH_D:
1843 	case AUX_CH_E:
1844 	case AUX_CH_F:
1845 		return DP_AUX_CH_DATA(aux_ch, index);
1846 	default:
1847 		MISSING_CASE(aux_ch);
1848 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1849 	}
1850 }
1851 
1852 static i915_reg_t tgl_aux_ctl_reg(struct intel_dp *intel_dp)
1853 {
1854 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1855 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1856 	enum aux_ch aux_ch = dig_port->aux_ch;
1857 
1858 	switch (aux_ch) {
1859 	case AUX_CH_A:
1860 	case AUX_CH_B:
1861 	case AUX_CH_C:
1862 	case AUX_CH_USBC1:
1863 	case AUX_CH_USBC2:
1864 	case AUX_CH_USBC3:
1865 	case AUX_CH_USBC4:
1866 	case AUX_CH_USBC5:
1867 	case AUX_CH_USBC6:
1868 		return DP_AUX_CH_CTL(aux_ch);
1869 	default:
1870 		MISSING_CASE(aux_ch);
1871 		return DP_AUX_CH_CTL(AUX_CH_A);
1872 	}
1873 }
1874 
1875 static i915_reg_t tgl_aux_data_reg(struct intel_dp *intel_dp, int index)
1876 {
1877 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1878 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1879 	enum aux_ch aux_ch = dig_port->aux_ch;
1880 
1881 	switch (aux_ch) {
1882 	case AUX_CH_A:
1883 	case AUX_CH_B:
1884 	case AUX_CH_C:
1885 	case AUX_CH_USBC1:
1886 	case AUX_CH_USBC2:
1887 	case AUX_CH_USBC3:
1888 	case AUX_CH_USBC4:
1889 	case AUX_CH_USBC5:
1890 	case AUX_CH_USBC6:
1891 		return DP_AUX_CH_DATA(aux_ch, index);
1892 	default:
1893 		MISSING_CASE(aux_ch);
1894 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1895 	}
1896 }
1897 
1898 static void
1899 intel_dp_aux_fini(struct intel_dp *intel_dp)
1900 {
1901 	kfree(intel_dp->aux.name);
1902 }
1903 
1904 static void
1905 intel_dp_aux_init(struct intel_dp *intel_dp)
1906 {
1907 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1908 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1909 	struct intel_encoder *encoder = &dig_port->base;
1910 	enum aux_ch aux_ch = dig_port->aux_ch;
1911 
1912 	if (INTEL_GEN(dev_priv) >= 12) {
1913 		intel_dp->aux_ch_ctl_reg = tgl_aux_ctl_reg;
1914 		intel_dp->aux_ch_data_reg = tgl_aux_data_reg;
1915 	} else if (INTEL_GEN(dev_priv) >= 9) {
1916 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1917 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1918 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1919 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1920 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1921 	} else {
1922 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1923 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1924 	}
1925 
1926 	if (INTEL_GEN(dev_priv) >= 9)
1927 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1928 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1929 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1930 	else if (HAS_PCH_SPLIT(dev_priv))
1931 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1932 	else
1933 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1934 
1935 	if (INTEL_GEN(dev_priv) >= 9)
1936 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1937 	else
1938 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1939 
1940 	drm_dp_aux_init(&intel_dp->aux);
1941 
1942 	/* Failure to allocate our preferred name is not critical */
1943 	if (INTEL_GEN(dev_priv) >= 12 && aux_ch >= AUX_CH_USBC1)
1944 		intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX USBC%c/%s",
1945 					       aux_ch - AUX_CH_USBC1 + '1',
1946 					       encoder->base.name);
1947 	else
1948 		intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/%s",
1949 					       aux_ch_name(aux_ch),
1950 					       encoder->base.name);
1951 
1952 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1953 }
1954 
1955 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1956 {
1957 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1958 
1959 	return max_rate >= 540000;
1960 }
1961 
1962 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1963 {
1964 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1965 
1966 	return max_rate >= 810000;
1967 }
1968 
1969 static void
1970 intel_dp_set_clock(struct intel_encoder *encoder,
1971 		   struct intel_crtc_state *pipe_config)
1972 {
1973 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1974 	const struct dp_link_dpll *divisor = NULL;
1975 	int i, count = 0;
1976 
1977 	if (IS_G4X(dev_priv)) {
1978 		divisor = g4x_dpll;
1979 		count = ARRAY_SIZE(g4x_dpll);
1980 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1981 		divisor = pch_dpll;
1982 		count = ARRAY_SIZE(pch_dpll);
1983 	} else if (IS_CHERRYVIEW(dev_priv)) {
1984 		divisor = chv_dpll;
1985 		count = ARRAY_SIZE(chv_dpll);
1986 	} else if (IS_VALLEYVIEW(dev_priv)) {
1987 		divisor = vlv_dpll;
1988 		count = ARRAY_SIZE(vlv_dpll);
1989 	}
1990 
1991 	if (divisor && count) {
1992 		for (i = 0; i < count; i++) {
1993 			if (pipe_config->port_clock == divisor[i].clock) {
1994 				pipe_config->dpll = divisor[i].dpll;
1995 				pipe_config->clock_set = true;
1996 				break;
1997 			}
1998 		}
1999 	}
2000 }
2001 
2002 static void snprintf_int_array(char *str, size_t len,
2003 			       const int *array, int nelem)
2004 {
2005 	int i;
2006 
2007 	str[0] = '\0';
2008 
2009 	for (i = 0; i < nelem; i++) {
2010 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
2011 		if (r >= len)
2012 			return;
2013 		str += r;
2014 		len -= r;
2015 	}
2016 }
2017 
2018 static void intel_dp_print_rates(struct intel_dp *intel_dp)
2019 {
2020 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2021 	char str[128]; /* FIXME: too big for stack? */
2022 
2023 	if (!drm_debug_enabled(DRM_UT_KMS))
2024 		return;
2025 
2026 	snprintf_int_array(str, sizeof(str),
2027 			   intel_dp->source_rates, intel_dp->num_source_rates);
2028 	drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
2029 
2030 	snprintf_int_array(str, sizeof(str),
2031 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
2032 	drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
2033 
2034 	snprintf_int_array(str, sizeof(str),
2035 			   intel_dp->common_rates, intel_dp->num_common_rates);
2036 	drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
2037 }
2038 
2039 int
2040 intel_dp_max_link_rate(struct intel_dp *intel_dp)
2041 {
2042 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2043 	int len;
2044 
2045 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
2046 	if (drm_WARN_ON(&i915->drm, len <= 0))
2047 		return 162000;
2048 
2049 	return intel_dp->common_rates[len - 1];
2050 }
2051 
2052 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
2053 {
2054 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2055 	int i = intel_dp_rate_index(intel_dp->sink_rates,
2056 				    intel_dp->num_sink_rates, rate);
2057 
2058 	if (drm_WARN_ON(&i915->drm, i < 0))
2059 		i = 0;
2060 
2061 	return i;
2062 }
2063 
2064 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
2065 			   u8 *link_bw, u8 *rate_select)
2066 {
2067 	/* eDP 1.4 rate select method. */
2068 	if (intel_dp->use_rate_select) {
2069 		*link_bw = 0;
2070 		*rate_select =
2071 			intel_dp_rate_select(intel_dp, port_clock);
2072 	} else {
2073 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
2074 		*rate_select = 0;
2075 	}
2076 }
2077 
2078 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
2079 					 const struct intel_crtc_state *pipe_config)
2080 {
2081 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2082 
2083 	/* On TGL, FEC is supported on all Pipes */
2084 	if (INTEL_GEN(dev_priv) >= 12)
2085 		return true;
2086 
2087 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
2088 		return true;
2089 
2090 	return false;
2091 }
2092 
2093 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
2094 				  const struct intel_crtc_state *pipe_config)
2095 {
2096 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
2097 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
2098 }
2099 
2100 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
2101 				  const struct intel_crtc_state *crtc_state)
2102 {
2103 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP) && !crtc_state->fec_enable)
2104 		return false;
2105 
2106 	return intel_dsc_source_support(crtc_state) &&
2107 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
2108 }
2109 
2110 static bool intel_dp_hdmi_ycbcr420(struct intel_dp *intel_dp,
2111 				   const struct intel_crtc_state *crtc_state)
2112 {
2113 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2114 		(crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 &&
2115 		 intel_dp->dfp.ycbcr_444_to_420);
2116 }
2117 
2118 static int intel_dp_hdmi_tmds_clock(struct intel_dp *intel_dp,
2119 				    const struct intel_crtc_state *crtc_state, int bpc)
2120 {
2121 	int clock = crtc_state->hw.adjusted_mode.crtc_clock * bpc / 8;
2122 
2123 	if (intel_dp_hdmi_ycbcr420(intel_dp, crtc_state))
2124 		clock /= 2;
2125 
2126 	return clock;
2127 }
2128 
2129 static bool intel_dp_hdmi_tmds_clock_valid(struct intel_dp *intel_dp,
2130 					   const struct intel_crtc_state *crtc_state, int bpc)
2131 {
2132 	int tmds_clock = intel_dp_hdmi_tmds_clock(intel_dp, crtc_state, bpc);
2133 
2134 	if (intel_dp->dfp.min_tmds_clock &&
2135 	    tmds_clock < intel_dp->dfp.min_tmds_clock)
2136 		return false;
2137 
2138 	if (intel_dp->dfp.max_tmds_clock &&
2139 	    tmds_clock > intel_dp->dfp.max_tmds_clock)
2140 		return false;
2141 
2142 	return true;
2143 }
2144 
2145 static bool intel_dp_hdmi_deep_color_possible(struct intel_dp *intel_dp,
2146 					      const struct intel_crtc_state *crtc_state,
2147 					      int bpc)
2148 {
2149 
2150 	return intel_hdmi_deep_color_possible(crtc_state, bpc,
2151 					      intel_dp->has_hdmi_sink,
2152 					      intel_dp_hdmi_ycbcr420(intel_dp, crtc_state)) &&
2153 		intel_dp_hdmi_tmds_clock_valid(intel_dp, crtc_state, bpc);
2154 }
2155 
2156 static int intel_dp_max_bpp(struct intel_dp *intel_dp,
2157 			    const struct intel_crtc_state *crtc_state)
2158 {
2159 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2160 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2161 	int bpp, bpc;
2162 
2163 	bpc = crtc_state->pipe_bpp / 3;
2164 
2165 	if (intel_dp->dfp.max_bpc)
2166 		bpc = min_t(int, bpc, intel_dp->dfp.max_bpc);
2167 
2168 	if (intel_dp->dfp.min_tmds_clock) {
2169 		for (; bpc >= 10; bpc -= 2) {
2170 			if (intel_dp_hdmi_deep_color_possible(intel_dp, crtc_state, bpc))
2171 				break;
2172 		}
2173 	}
2174 
2175 	bpp = bpc * 3;
2176 	if (intel_dp_is_edp(intel_dp)) {
2177 		/* Get bpp from vbt only for panels that dont have bpp in edid */
2178 		if (intel_connector->base.display_info.bpc == 0 &&
2179 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
2180 			drm_dbg_kms(&dev_priv->drm,
2181 				    "clamping bpp for eDP panel to BIOS-provided %i\n",
2182 				    dev_priv->vbt.edp.bpp);
2183 			bpp = dev_priv->vbt.edp.bpp;
2184 		}
2185 	}
2186 
2187 	return bpp;
2188 }
2189 
2190 /* Adjust link config limits based on compliance test requests. */
2191 void
2192 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
2193 				  struct intel_crtc_state *pipe_config,
2194 				  struct link_config_limits *limits)
2195 {
2196 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2197 
2198 	/* For DP Compliance we override the computed bpp for the pipe */
2199 	if (intel_dp->compliance.test_data.bpc != 0) {
2200 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
2201 
2202 		limits->min_bpp = limits->max_bpp = bpp;
2203 		pipe_config->dither_force_disable = bpp == 6 * 3;
2204 
2205 		drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
2206 	}
2207 
2208 	/* Use values requested by Compliance Test Request */
2209 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
2210 		int index;
2211 
2212 		/* Validate the compliance test data since max values
2213 		 * might have changed due to link train fallback.
2214 		 */
2215 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
2216 					       intel_dp->compliance.test_lane_count)) {
2217 			index = intel_dp_rate_index(intel_dp->common_rates,
2218 						    intel_dp->num_common_rates,
2219 						    intel_dp->compliance.test_link_rate);
2220 			if (index >= 0)
2221 				limits->min_clock = limits->max_clock = index;
2222 			limits->min_lane_count = limits->max_lane_count =
2223 				intel_dp->compliance.test_lane_count;
2224 		}
2225 	}
2226 }
2227 
2228 /* Optimize link config in order: max bpp, min clock, min lanes */
2229 static int
2230 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2231 				  struct intel_crtc_state *pipe_config,
2232 				  const struct link_config_limits *limits)
2233 {
2234 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2235 	int bpp, clock, lane_count;
2236 	int mode_rate, link_clock, link_avail;
2237 
2238 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2239 		int output_bpp = intel_dp_output_bpp(pipe_config->output_format, bpp);
2240 
2241 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2242 						   output_bpp);
2243 
2244 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2245 			for (lane_count = limits->min_lane_count;
2246 			     lane_count <= limits->max_lane_count;
2247 			     lane_count <<= 1) {
2248 				link_clock = intel_dp->common_rates[clock];
2249 				link_avail = intel_dp_max_data_rate(link_clock,
2250 								    lane_count);
2251 
2252 				if (mode_rate <= link_avail) {
2253 					pipe_config->lane_count = lane_count;
2254 					pipe_config->pipe_bpp = bpp;
2255 					pipe_config->port_clock = link_clock;
2256 
2257 					return 0;
2258 				}
2259 			}
2260 		}
2261 	}
2262 
2263 	return -EINVAL;
2264 }
2265 
2266 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2267 {
2268 	int i, num_bpc;
2269 	u8 dsc_bpc[3] = {0};
2270 
2271 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2272 						       dsc_bpc);
2273 	for (i = 0; i < num_bpc; i++) {
2274 		if (dsc_max_bpc >= dsc_bpc[i])
2275 			return dsc_bpc[i] * 3;
2276 	}
2277 
2278 	return 0;
2279 }
2280 
2281 #define DSC_SUPPORTED_VERSION_MIN		1
2282 
2283 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2284 				       struct intel_crtc_state *crtc_state)
2285 {
2286 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2287 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2288 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2289 	u8 line_buf_depth;
2290 	int ret;
2291 
2292 	ret = intel_dsc_compute_params(encoder, crtc_state);
2293 	if (ret)
2294 		return ret;
2295 
2296 	/*
2297 	 * Slice Height of 8 works for all currently available panels. So start
2298 	 * with that if pic_height is an integral multiple of 8. Eventually add
2299 	 * logic to try multiple slice heights.
2300 	 */
2301 	if (vdsc_cfg->pic_height % 8 == 0)
2302 		vdsc_cfg->slice_height = 8;
2303 	else if (vdsc_cfg->pic_height % 4 == 0)
2304 		vdsc_cfg->slice_height = 4;
2305 	else
2306 		vdsc_cfg->slice_height = 2;
2307 
2308 	vdsc_cfg->dsc_version_major =
2309 		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2310 		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2311 	vdsc_cfg->dsc_version_minor =
2312 		min(DSC_SUPPORTED_VERSION_MIN,
2313 		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2314 		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2315 
2316 	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2317 		DP_DSC_RGB;
2318 
2319 	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2320 	if (!line_buf_depth) {
2321 		drm_dbg_kms(&i915->drm,
2322 			    "DSC Sink Line Buffer Depth invalid\n");
2323 		return -EINVAL;
2324 	}
2325 
2326 	if (vdsc_cfg->dsc_version_minor == 2)
2327 		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2328 			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2329 	else
2330 		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2331 			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2332 
2333 	vdsc_cfg->block_pred_enable =
2334 		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2335 		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2336 
2337 	return drm_dsc_compute_rc_parameters(vdsc_cfg);
2338 }
2339 
2340 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2341 				       struct intel_crtc_state *pipe_config,
2342 				       struct drm_connector_state *conn_state,
2343 				       struct link_config_limits *limits)
2344 {
2345 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2346 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2347 	const struct drm_display_mode *adjusted_mode =
2348 		&pipe_config->hw.adjusted_mode;
2349 	u8 dsc_max_bpc;
2350 	int pipe_bpp;
2351 	int ret;
2352 
2353 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2354 		intel_dp_supports_fec(intel_dp, pipe_config);
2355 
2356 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2357 		return -EINVAL;
2358 
2359 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2360 	if (INTEL_GEN(dev_priv) >= 12)
2361 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2362 	else
2363 		dsc_max_bpc = min_t(u8, 10,
2364 				    conn_state->max_requested_bpc);
2365 
2366 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2367 
2368 	/* Min Input BPC for ICL+ is 8 */
2369 	if (pipe_bpp < 8 * 3) {
2370 		drm_dbg_kms(&dev_priv->drm,
2371 			    "No DSC support for less than 8bpc\n");
2372 		return -EINVAL;
2373 	}
2374 
2375 	/*
2376 	 * For now enable DSC for max bpp, max link rate, max lane count.
2377 	 * Optimize this later for the minimum possible link rate/lane count
2378 	 * with DSC enabled for the requested mode.
2379 	 */
2380 	pipe_config->pipe_bpp = pipe_bpp;
2381 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2382 	pipe_config->lane_count = limits->max_lane_count;
2383 
2384 	if (intel_dp_is_edp(intel_dp)) {
2385 		pipe_config->dsc.compressed_bpp =
2386 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2387 			      pipe_config->pipe_bpp);
2388 		pipe_config->dsc.slice_count =
2389 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2390 							true);
2391 	} else {
2392 		u16 dsc_max_output_bpp;
2393 		u8 dsc_dp_slice_count;
2394 
2395 		dsc_max_output_bpp =
2396 			intel_dp_dsc_get_output_bpp(dev_priv,
2397 						    pipe_config->port_clock,
2398 						    pipe_config->lane_count,
2399 						    adjusted_mode->crtc_clock,
2400 						    adjusted_mode->crtc_hdisplay,
2401 						    pipe_config->bigjoiner);
2402 		dsc_dp_slice_count =
2403 			intel_dp_dsc_get_slice_count(intel_dp,
2404 						     adjusted_mode->crtc_clock,
2405 						     adjusted_mode->crtc_hdisplay,
2406 						     pipe_config->bigjoiner);
2407 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2408 			drm_dbg_kms(&dev_priv->drm,
2409 				    "Compressed BPP/Slice Count not supported\n");
2410 			return -EINVAL;
2411 		}
2412 		pipe_config->dsc.compressed_bpp = min_t(u16,
2413 							       dsc_max_output_bpp >> 4,
2414 							       pipe_config->pipe_bpp);
2415 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2416 	}
2417 	/*
2418 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2419 	 * is greater than the maximum Cdclock and if slice count is even
2420 	 * then we need to use 2 VDSC instances.
2421 	 */
2422 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq ||
2423 	    pipe_config->bigjoiner) {
2424 		if (pipe_config->dsc.slice_count < 2) {
2425 			drm_dbg_kms(&dev_priv->drm,
2426 				    "Cannot split stream to use 2 VDSC instances\n");
2427 			return -EINVAL;
2428 		}
2429 
2430 		pipe_config->dsc.dsc_split = true;
2431 	}
2432 
2433 	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2434 	if (ret < 0) {
2435 		drm_dbg_kms(&dev_priv->drm,
2436 			    "Cannot compute valid DSC parameters for Input Bpp = %d "
2437 			    "Compressed BPP = %d\n",
2438 			    pipe_config->pipe_bpp,
2439 			    pipe_config->dsc.compressed_bpp);
2440 		return ret;
2441 	}
2442 
2443 	pipe_config->dsc.compression_enable = true;
2444 	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2445 		    "Compressed Bpp = %d Slice Count = %d\n",
2446 		    pipe_config->pipe_bpp,
2447 		    pipe_config->dsc.compressed_bpp,
2448 		    pipe_config->dsc.slice_count);
2449 
2450 	return 0;
2451 }
2452 
2453 static int
2454 intel_dp_compute_link_config(struct intel_encoder *encoder,
2455 			     struct intel_crtc_state *pipe_config,
2456 			     struct drm_connector_state *conn_state)
2457 {
2458 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2459 	const struct drm_display_mode *adjusted_mode =
2460 		&pipe_config->hw.adjusted_mode;
2461 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2462 	struct link_config_limits limits;
2463 	int common_len;
2464 	int ret;
2465 
2466 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2467 						    intel_dp->max_link_rate);
2468 
2469 	/* No common link rates between source and sink */
2470 	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2471 
2472 	limits.min_clock = 0;
2473 	limits.max_clock = common_len - 1;
2474 
2475 	limits.min_lane_count = 1;
2476 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2477 
2478 	limits.min_bpp = intel_dp_min_bpp(pipe_config->output_format);
2479 	limits.max_bpp = intel_dp_max_bpp(intel_dp, pipe_config);
2480 
2481 	if (intel_dp_is_edp(intel_dp)) {
2482 		/*
2483 		 * Use the maximum clock and number of lanes the eDP panel
2484 		 * advertizes being capable of. The panels are generally
2485 		 * designed to support only a single clock and lane
2486 		 * configuration, and typically these values correspond to the
2487 		 * native resolution of the panel.
2488 		 */
2489 		limits.min_lane_count = limits.max_lane_count;
2490 		limits.min_clock = limits.max_clock;
2491 	}
2492 
2493 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2494 
2495 	drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2496 		    "max rate %d max bpp %d pixel clock %iKHz\n",
2497 		    limits.max_lane_count,
2498 		    intel_dp->common_rates[limits.max_clock],
2499 		    limits.max_bpp, adjusted_mode->crtc_clock);
2500 
2501 	if ((adjusted_mode->crtc_clock > i915->max_dotclk_freq ||
2502 	     adjusted_mode->crtc_hdisplay > 5120) &&
2503 	    intel_dp_can_bigjoiner(intel_dp))
2504 		pipe_config->bigjoiner = true;
2505 
2506 	/*
2507 	 * Optimize for slow and wide. This is the place to add alternative
2508 	 * optimization policy.
2509 	 */
2510 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2511 
2512 	/* enable compression if the mode doesn't fit available BW */
2513 	drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2514 	if (ret || intel_dp->force_dsc_en || pipe_config->bigjoiner) {
2515 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2516 						  conn_state, &limits);
2517 		if (ret < 0)
2518 			return ret;
2519 	}
2520 
2521 	if (pipe_config->dsc.compression_enable) {
2522 		drm_dbg_kms(&i915->drm,
2523 			    "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2524 			    pipe_config->lane_count, pipe_config->port_clock,
2525 			    pipe_config->pipe_bpp,
2526 			    pipe_config->dsc.compressed_bpp);
2527 
2528 		drm_dbg_kms(&i915->drm,
2529 			    "DP link rate required %i available %i\n",
2530 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2531 						   pipe_config->dsc.compressed_bpp),
2532 			    intel_dp_max_data_rate(pipe_config->port_clock,
2533 						   pipe_config->lane_count));
2534 	} else {
2535 		drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2536 			    pipe_config->lane_count, pipe_config->port_clock,
2537 			    pipe_config->pipe_bpp);
2538 
2539 		drm_dbg_kms(&i915->drm,
2540 			    "DP link rate required %i available %i\n",
2541 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2542 						   pipe_config->pipe_bpp),
2543 			    intel_dp_max_data_rate(pipe_config->port_clock,
2544 						   pipe_config->lane_count));
2545 	}
2546 	return 0;
2547 }
2548 
2549 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2550 				  const struct drm_connector_state *conn_state)
2551 {
2552 	const struct intel_digital_connector_state *intel_conn_state =
2553 		to_intel_digital_connector_state(conn_state);
2554 	const struct drm_display_mode *adjusted_mode =
2555 		&crtc_state->hw.adjusted_mode;
2556 
2557 	/*
2558 	 * Our YCbCr output is always limited range.
2559 	 * crtc_state->limited_color_range only applies to RGB,
2560 	 * and it must never be set for YCbCr or we risk setting
2561 	 * some conflicting bits in PIPECONF which will mess up
2562 	 * the colors on the monitor.
2563 	 */
2564 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2565 		return false;
2566 
2567 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2568 		/*
2569 		 * See:
2570 		 * CEA-861-E - 5.1 Default Encoding Parameters
2571 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2572 		 */
2573 		return crtc_state->pipe_bpp != 18 &&
2574 			drm_default_rgb_quant_range(adjusted_mode) ==
2575 			HDMI_QUANTIZATION_RANGE_LIMITED;
2576 	} else {
2577 		return intel_conn_state->broadcast_rgb ==
2578 			INTEL_BROADCAST_RGB_LIMITED;
2579 	}
2580 }
2581 
2582 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2583 				    enum port port)
2584 {
2585 	if (IS_G4X(dev_priv))
2586 		return false;
2587 	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2588 		return false;
2589 
2590 	return true;
2591 }
2592 
2593 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2594 					     const struct drm_connector_state *conn_state,
2595 					     struct drm_dp_vsc_sdp *vsc)
2596 {
2597 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2598 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2599 
2600 	/*
2601 	 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2602 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2603 	 * Colorimetry Format indication.
2604 	 */
2605 	vsc->revision = 0x5;
2606 	vsc->length = 0x13;
2607 
2608 	/* DP 1.4a spec, Table 2-120 */
2609 	switch (crtc_state->output_format) {
2610 	case INTEL_OUTPUT_FORMAT_YCBCR444:
2611 		vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2612 		break;
2613 	case INTEL_OUTPUT_FORMAT_YCBCR420:
2614 		vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2615 		break;
2616 	case INTEL_OUTPUT_FORMAT_RGB:
2617 	default:
2618 		vsc->pixelformat = DP_PIXELFORMAT_RGB;
2619 	}
2620 
2621 	switch (conn_state->colorspace) {
2622 	case DRM_MODE_COLORIMETRY_BT709_YCC:
2623 		vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2624 		break;
2625 	case DRM_MODE_COLORIMETRY_XVYCC_601:
2626 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2627 		break;
2628 	case DRM_MODE_COLORIMETRY_XVYCC_709:
2629 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2630 		break;
2631 	case DRM_MODE_COLORIMETRY_SYCC_601:
2632 		vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2633 		break;
2634 	case DRM_MODE_COLORIMETRY_OPYCC_601:
2635 		vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2636 		break;
2637 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2638 		vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2639 		break;
2640 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
2641 		vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2642 		break;
2643 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
2644 		vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2645 		break;
2646 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2647 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2648 		vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2649 		break;
2650 	default:
2651 		/*
2652 		 * RGB->YCBCR color conversion uses the BT.709
2653 		 * color space.
2654 		 */
2655 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2656 			vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2657 		else
2658 			vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2659 		break;
2660 	}
2661 
2662 	vsc->bpc = crtc_state->pipe_bpp / 3;
2663 
2664 	/* only RGB pixelformat supports 6 bpc */
2665 	drm_WARN_ON(&dev_priv->drm,
2666 		    vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2667 
2668 	/* all YCbCr are always limited range */
2669 	vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2670 	vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2671 }
2672 
2673 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2674 				     struct intel_crtc_state *crtc_state,
2675 				     const struct drm_connector_state *conn_state)
2676 {
2677 	struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2678 
2679 	/* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2680 	if (crtc_state->has_psr)
2681 		return;
2682 
2683 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2684 		return;
2685 
2686 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2687 	vsc->sdp_type = DP_SDP_VSC;
2688 	intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2689 					 &crtc_state->infoframes.vsc);
2690 }
2691 
2692 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2693 				  const struct intel_crtc_state *crtc_state,
2694 				  const struct drm_connector_state *conn_state,
2695 				  struct drm_dp_vsc_sdp *vsc)
2696 {
2697 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2698 
2699 	vsc->sdp_type = DP_SDP_VSC;
2700 
2701 	if (dev_priv->psr.psr2_enabled) {
2702 		if (dev_priv->psr.colorimetry_support &&
2703 		    intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2704 			/* [PSR2, +Colorimetry] */
2705 			intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2706 							 vsc);
2707 		} else {
2708 			/*
2709 			 * [PSR2, -Colorimetry]
2710 			 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2711 			 * 3D stereo + PSR/PSR2 + Y-coordinate.
2712 			 */
2713 			vsc->revision = 0x4;
2714 			vsc->length = 0xe;
2715 		}
2716 	} else {
2717 		/*
2718 		 * [PSR1]
2719 		 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2720 		 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2721 		 * higher).
2722 		 */
2723 		vsc->revision = 0x2;
2724 		vsc->length = 0x8;
2725 	}
2726 }
2727 
2728 static void
2729 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2730 					    struct intel_crtc_state *crtc_state,
2731 					    const struct drm_connector_state *conn_state)
2732 {
2733 	int ret;
2734 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2735 	struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2736 
2737 	if (!conn_state->hdr_output_metadata)
2738 		return;
2739 
2740 	ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2741 
2742 	if (ret) {
2743 		drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2744 		return;
2745 	}
2746 
2747 	crtc_state->infoframes.enable |=
2748 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2749 }
2750 
2751 static void
2752 intel_dp_drrs_compute_config(struct intel_dp *intel_dp,
2753 			     struct intel_crtc_state *pipe_config,
2754 			     int output_bpp, bool constant_n)
2755 {
2756 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2757 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2758 
2759 	/*
2760 	 * DRRS and PSR can't be enable together, so giving preference to PSR
2761 	 * as it allows more power-savings by complete shutting down display,
2762 	 * so to guarantee this, intel_dp_drrs_compute_config() must be called
2763 	 * after intel_psr_compute_config().
2764 	 */
2765 	if (pipe_config->has_psr)
2766 		return;
2767 
2768 	if (!intel_connector->panel.downclock_mode ||
2769 	    dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
2770 		return;
2771 
2772 	pipe_config->has_drrs = true;
2773 	intel_link_compute_m_n(output_bpp, pipe_config->lane_count,
2774 			       intel_connector->panel.downclock_mode->clock,
2775 			       pipe_config->port_clock, &pipe_config->dp_m2_n2,
2776 			       constant_n, pipe_config->fec_enable);
2777 }
2778 
2779 int
2780 intel_dp_compute_config(struct intel_encoder *encoder,
2781 			struct intel_crtc_state *pipe_config,
2782 			struct drm_connector_state *conn_state)
2783 {
2784 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2785 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2786 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2787 	enum port port = encoder->port;
2788 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2789 	struct intel_digital_connector_state *intel_conn_state =
2790 		to_intel_digital_connector_state(conn_state);
2791 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2792 					   DP_DPCD_QUIRK_CONSTANT_N);
2793 	int ret = 0, output_bpp;
2794 
2795 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2796 		pipe_config->has_pch_encoder = true;
2797 
2798 	pipe_config->output_format = intel_dp_output_format(&intel_connector->base,
2799 							    adjusted_mode);
2800 
2801 	if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2802 		ret = intel_pch_panel_fitting(pipe_config, conn_state);
2803 		if (ret)
2804 			return ret;
2805 	}
2806 
2807 	if (!intel_dp_port_has_audio(dev_priv, port))
2808 		pipe_config->has_audio = false;
2809 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2810 		pipe_config->has_audio = intel_dp->has_audio;
2811 	else
2812 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2813 
2814 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2815 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2816 				       adjusted_mode);
2817 
2818 		if (HAS_GMCH(dev_priv))
2819 			ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2820 		else
2821 			ret = intel_pch_panel_fitting(pipe_config, conn_state);
2822 		if (ret)
2823 			return ret;
2824 	}
2825 
2826 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2827 		return -EINVAL;
2828 
2829 	if (HAS_GMCH(dev_priv) &&
2830 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2831 		return -EINVAL;
2832 
2833 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2834 		return -EINVAL;
2835 
2836 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2837 		return -EINVAL;
2838 
2839 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2840 	if (ret < 0)
2841 		return ret;
2842 
2843 	pipe_config->limited_color_range =
2844 		intel_dp_limited_color_range(pipe_config, conn_state);
2845 
2846 	if (pipe_config->dsc.compression_enable)
2847 		output_bpp = pipe_config->dsc.compressed_bpp;
2848 	else
2849 		output_bpp = intel_dp_output_bpp(pipe_config->output_format,
2850 						 pipe_config->pipe_bpp);
2851 
2852 	intel_link_compute_m_n(output_bpp,
2853 			       pipe_config->lane_count,
2854 			       adjusted_mode->crtc_clock,
2855 			       pipe_config->port_clock,
2856 			       &pipe_config->dp_m_n,
2857 			       constant_n, pipe_config->fec_enable);
2858 
2859 	if (!HAS_DDI(dev_priv))
2860 		intel_dp_set_clock(encoder, pipe_config);
2861 
2862 	intel_psr_compute_config(intel_dp, pipe_config);
2863 	intel_dp_drrs_compute_config(intel_dp, pipe_config, output_bpp,
2864 				     constant_n);
2865 	intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2866 	intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2867 
2868 	return 0;
2869 }
2870 
2871 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2872 			      int link_rate, int lane_count)
2873 {
2874 	intel_dp->link_trained = false;
2875 	intel_dp->link_rate = link_rate;
2876 	intel_dp->lane_count = lane_count;
2877 }
2878 
2879 static void intel_dp_prepare(struct intel_encoder *encoder,
2880 			     const struct intel_crtc_state *pipe_config)
2881 {
2882 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2883 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2884 	enum port port = encoder->port;
2885 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2886 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2887 
2888 	intel_dp_set_link_params(intel_dp,
2889 				 pipe_config->port_clock,
2890 				 pipe_config->lane_count);
2891 
2892 	/*
2893 	 * There are four kinds of DP registers:
2894 	 *
2895 	 * 	IBX PCH
2896 	 * 	SNB CPU
2897 	 *	IVB CPU
2898 	 * 	CPT PCH
2899 	 *
2900 	 * IBX PCH and CPU are the same for almost everything,
2901 	 * except that the CPU DP PLL is configured in this
2902 	 * register
2903 	 *
2904 	 * CPT PCH is quite different, having many bits moved
2905 	 * to the TRANS_DP_CTL register instead. That
2906 	 * configuration happens (oddly) in ilk_pch_enable
2907 	 */
2908 
2909 	/* Preserve the BIOS-computed detected bit. This is
2910 	 * supposed to be read-only.
2911 	 */
2912 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2913 
2914 	/* Handle DP bits in common between all three register formats */
2915 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2916 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2917 
2918 	/* Split out the IBX/CPU vs CPT settings */
2919 
2920 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2921 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2922 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2923 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2924 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2925 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2926 
2927 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2928 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2929 
2930 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2931 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2932 		u32 trans_dp;
2933 
2934 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2935 
2936 		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2937 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2938 			trans_dp |= TRANS_DP_ENH_FRAMING;
2939 		else
2940 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2941 		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2942 	} else {
2943 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2944 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2945 
2946 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2947 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2948 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2949 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2950 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2951 
2952 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2953 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2954 
2955 		if (IS_CHERRYVIEW(dev_priv))
2956 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2957 		else
2958 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2959 	}
2960 }
2961 
2962 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2963 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2964 
2965 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2966 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2967 
2968 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2969 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2970 
2971 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2972 
2973 static void wait_panel_status(struct intel_dp *intel_dp,
2974 				       u32 mask,
2975 				       u32 value)
2976 {
2977 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2978 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2979 
2980 	lockdep_assert_held(&dev_priv->pps_mutex);
2981 
2982 	intel_pps_verify_state(intel_dp);
2983 
2984 	pp_stat_reg = _pp_stat_reg(intel_dp);
2985 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2986 
2987 	drm_dbg_kms(&dev_priv->drm,
2988 		    "mask %08x value %08x status %08x control %08x\n",
2989 		    mask, value,
2990 		    intel_de_read(dev_priv, pp_stat_reg),
2991 		    intel_de_read(dev_priv, pp_ctrl_reg));
2992 
2993 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2994 				       mask, value, 5000))
2995 		drm_err(&dev_priv->drm,
2996 			"Panel status timeout: status %08x control %08x\n",
2997 			intel_de_read(dev_priv, pp_stat_reg),
2998 			intel_de_read(dev_priv, pp_ctrl_reg));
2999 
3000 	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
3001 }
3002 
3003 static void wait_panel_on(struct intel_dp *intel_dp)
3004 {
3005 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3006 
3007 	drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
3008 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
3009 }
3010 
3011 static void wait_panel_off(struct intel_dp *intel_dp)
3012 {
3013 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3014 
3015 	drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
3016 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
3017 }
3018 
3019 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
3020 {
3021 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3022 	ktime_t panel_power_on_time;
3023 	s64 panel_power_off_duration;
3024 
3025 	drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
3026 
3027 	/* take the difference of currrent time and panel power off time
3028 	 * and then make panel wait for t11_t12 if needed. */
3029 	panel_power_on_time = ktime_get_boottime();
3030 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
3031 
3032 	/* When we disable the VDD override bit last we have to do the manual
3033 	 * wait. */
3034 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
3035 		wait_remaining_ms_from_jiffies(jiffies,
3036 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
3037 
3038 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
3039 }
3040 
3041 static void wait_backlight_on(struct intel_dp *intel_dp)
3042 {
3043 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
3044 				       intel_dp->backlight_on_delay);
3045 }
3046 
3047 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
3048 {
3049 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
3050 				       intel_dp->backlight_off_delay);
3051 }
3052 
3053 /* Read the current pp_control value, unlocking the register if it
3054  * is locked
3055  */
3056 
3057 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
3058 {
3059 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3060 	u32 control;
3061 
3062 	lockdep_assert_held(&dev_priv->pps_mutex);
3063 
3064 	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
3065 	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
3066 			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
3067 		control &= ~PANEL_UNLOCK_MASK;
3068 		control |= PANEL_UNLOCK_REGS;
3069 	}
3070 	return control;
3071 }
3072 
3073 /*
3074  * Must be paired with edp_panel_vdd_off().
3075  * Must hold pps_mutex around the whole on/off sequence.
3076  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3077  */
3078 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
3079 {
3080 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3081 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3082 	u32 pp;
3083 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
3084 	bool need_to_disable = !intel_dp->want_panel_vdd;
3085 
3086 	lockdep_assert_held(&dev_priv->pps_mutex);
3087 
3088 	if (!intel_dp_is_edp(intel_dp))
3089 		return false;
3090 
3091 	cancel_delayed_work(&intel_dp->panel_vdd_work);
3092 	intel_dp->want_panel_vdd = true;
3093 
3094 	if (edp_have_panel_vdd(intel_dp))
3095 		return need_to_disable;
3096 
3097 	intel_display_power_get(dev_priv,
3098 				intel_aux_power_domain(dig_port));
3099 
3100 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
3101 		    dig_port->base.base.base.id,
3102 		    dig_port->base.base.name);
3103 
3104 	if (!edp_have_panel_power(intel_dp))
3105 		wait_panel_power_cycle(intel_dp);
3106 
3107 	pp = ilk_get_pp_control(intel_dp);
3108 	pp |= EDP_FORCE_VDD;
3109 
3110 	pp_stat_reg = _pp_stat_reg(intel_dp);
3111 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3112 
3113 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3114 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3115 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3116 		    intel_de_read(dev_priv, pp_stat_reg),
3117 		    intel_de_read(dev_priv, pp_ctrl_reg));
3118 	/*
3119 	 * If the panel wasn't on, delay before accessing aux channel
3120 	 */
3121 	if (!edp_have_panel_power(intel_dp)) {
3122 		drm_dbg_kms(&dev_priv->drm,
3123 			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
3124 			    dig_port->base.base.base.id,
3125 			    dig_port->base.base.name);
3126 		msleep(intel_dp->panel_power_up_delay);
3127 	}
3128 
3129 	return need_to_disable;
3130 }
3131 
3132 /*
3133  * Must be paired with intel_edp_panel_vdd_off() or
3134  * intel_edp_panel_off().
3135  * Nested calls to these functions are not allowed since
3136  * we drop the lock. Caller must use some higher level
3137  * locking to prevent nested calls from other threads.
3138  */
3139 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
3140 {
3141 	intel_wakeref_t wakeref;
3142 	bool vdd;
3143 
3144 	if (!intel_dp_is_edp(intel_dp))
3145 		return;
3146 
3147 	vdd = false;
3148 	with_pps_lock(intel_dp, wakeref)
3149 		vdd = edp_panel_vdd_on(intel_dp);
3150 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
3151 			dp_to_dig_port(intel_dp)->base.base.base.id,
3152 			dp_to_dig_port(intel_dp)->base.base.name);
3153 }
3154 
3155 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
3156 {
3157 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3158 	struct intel_digital_port *dig_port =
3159 		dp_to_dig_port(intel_dp);
3160 	u32 pp;
3161 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
3162 
3163 	lockdep_assert_held(&dev_priv->pps_mutex);
3164 
3165 	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
3166 
3167 	if (!edp_have_panel_vdd(intel_dp))
3168 		return;
3169 
3170 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
3171 		    dig_port->base.base.base.id,
3172 		    dig_port->base.base.name);
3173 
3174 	pp = ilk_get_pp_control(intel_dp);
3175 	pp &= ~EDP_FORCE_VDD;
3176 
3177 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3178 	pp_stat_reg = _pp_stat_reg(intel_dp);
3179 
3180 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3181 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3182 
3183 	/* Make sure sequencer is idle before allowing subsequent activity */
3184 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3185 		    intel_de_read(dev_priv, pp_stat_reg),
3186 		    intel_de_read(dev_priv, pp_ctrl_reg));
3187 
3188 	if ((pp & PANEL_POWER_ON) == 0)
3189 		intel_dp->panel_power_off_time = ktime_get_boottime();
3190 
3191 	intel_display_power_put_unchecked(dev_priv,
3192 					  intel_aux_power_domain(dig_port));
3193 }
3194 
3195 static void edp_panel_vdd_work(struct work_struct *__work)
3196 {
3197 	struct intel_dp *intel_dp =
3198 		container_of(to_delayed_work(__work),
3199 			     struct intel_dp, panel_vdd_work);
3200 	intel_wakeref_t wakeref;
3201 
3202 	with_pps_lock(intel_dp, wakeref) {
3203 		if (!intel_dp->want_panel_vdd)
3204 			edp_panel_vdd_off_sync(intel_dp);
3205 	}
3206 }
3207 
3208 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3209 {
3210 	unsigned long delay;
3211 
3212 	/*
3213 	 * Queue the timer to fire a long time from now (relative to the power
3214 	 * down delay) to keep the panel power up across a sequence of
3215 	 * operations.
3216 	 */
3217 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3218 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3219 }
3220 
3221 /*
3222  * Must be paired with edp_panel_vdd_on().
3223  * Must hold pps_mutex around the whole on/off sequence.
3224  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3225  */
3226 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3227 {
3228 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3229 
3230 	lockdep_assert_held(&dev_priv->pps_mutex);
3231 
3232 	if (!intel_dp_is_edp(intel_dp))
3233 		return;
3234 
3235 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3236 			dp_to_dig_port(intel_dp)->base.base.base.id,
3237 			dp_to_dig_port(intel_dp)->base.base.name);
3238 
3239 	intel_dp->want_panel_vdd = false;
3240 
3241 	if (sync)
3242 		edp_panel_vdd_off_sync(intel_dp);
3243 	else
3244 		edp_panel_vdd_schedule_off(intel_dp);
3245 }
3246 
3247 static void edp_panel_on(struct intel_dp *intel_dp)
3248 {
3249 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3250 	u32 pp;
3251 	i915_reg_t pp_ctrl_reg;
3252 
3253 	lockdep_assert_held(&dev_priv->pps_mutex);
3254 
3255 	if (!intel_dp_is_edp(intel_dp))
3256 		return;
3257 
3258 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3259 		    dp_to_dig_port(intel_dp)->base.base.base.id,
3260 		    dp_to_dig_port(intel_dp)->base.base.name);
3261 
3262 	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3263 		     "[ENCODER:%d:%s] panel power already on\n",
3264 		     dp_to_dig_port(intel_dp)->base.base.base.id,
3265 		     dp_to_dig_port(intel_dp)->base.base.name))
3266 		return;
3267 
3268 	wait_panel_power_cycle(intel_dp);
3269 
3270 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3271 	pp = ilk_get_pp_control(intel_dp);
3272 	if (IS_GEN(dev_priv, 5)) {
3273 		/* ILK workaround: disable reset around power sequence */
3274 		pp &= ~PANEL_POWER_RESET;
3275 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3276 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3277 	}
3278 
3279 	pp |= PANEL_POWER_ON;
3280 	if (!IS_GEN(dev_priv, 5))
3281 		pp |= PANEL_POWER_RESET;
3282 
3283 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3284 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3285 
3286 	wait_panel_on(intel_dp);
3287 	intel_dp->last_power_on = jiffies;
3288 
3289 	if (IS_GEN(dev_priv, 5)) {
3290 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3291 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3292 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3293 	}
3294 }
3295 
3296 void intel_edp_panel_on(struct intel_dp *intel_dp)
3297 {
3298 	intel_wakeref_t wakeref;
3299 
3300 	if (!intel_dp_is_edp(intel_dp))
3301 		return;
3302 
3303 	with_pps_lock(intel_dp, wakeref)
3304 		edp_panel_on(intel_dp);
3305 }
3306 
3307 
3308 static void edp_panel_off(struct intel_dp *intel_dp)
3309 {
3310 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3311 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3312 	u32 pp;
3313 	i915_reg_t pp_ctrl_reg;
3314 
3315 	lockdep_assert_held(&dev_priv->pps_mutex);
3316 
3317 	if (!intel_dp_is_edp(intel_dp))
3318 		return;
3319 
3320 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3321 		    dig_port->base.base.base.id, dig_port->base.base.name);
3322 
3323 	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3324 		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3325 		 dig_port->base.base.base.id, dig_port->base.base.name);
3326 
3327 	pp = ilk_get_pp_control(intel_dp);
3328 	/* We need to switch off panel power _and_ force vdd, for otherwise some
3329 	 * panels get very unhappy and cease to work. */
3330 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3331 		EDP_BLC_ENABLE);
3332 
3333 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3334 
3335 	intel_dp->want_panel_vdd = false;
3336 
3337 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3338 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3339 
3340 	wait_panel_off(intel_dp);
3341 	intel_dp->panel_power_off_time = ktime_get_boottime();
3342 
3343 	/* We got a reference when we enabled the VDD. */
3344 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3345 }
3346 
3347 void intel_edp_panel_off(struct intel_dp *intel_dp)
3348 {
3349 	intel_wakeref_t wakeref;
3350 
3351 	if (!intel_dp_is_edp(intel_dp))
3352 		return;
3353 
3354 	with_pps_lock(intel_dp, wakeref)
3355 		edp_panel_off(intel_dp);
3356 }
3357 
3358 /* Enable backlight in the panel power control. */
3359 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3360 {
3361 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3362 	intel_wakeref_t wakeref;
3363 
3364 	/*
3365 	 * If we enable the backlight right away following a panel power
3366 	 * on, we may see slight flicker as the panel syncs with the eDP
3367 	 * link.  So delay a bit to make sure the image is solid before
3368 	 * allowing it to appear.
3369 	 */
3370 	wait_backlight_on(intel_dp);
3371 
3372 	with_pps_lock(intel_dp, wakeref) {
3373 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3374 		u32 pp;
3375 
3376 		pp = ilk_get_pp_control(intel_dp);
3377 		pp |= EDP_BLC_ENABLE;
3378 
3379 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3380 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3381 	}
3382 }
3383 
3384 /* Enable backlight PWM and backlight PP control. */
3385 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3386 			    const struct drm_connector_state *conn_state)
3387 {
3388 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3389 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3390 
3391 	if (!intel_dp_is_edp(intel_dp))
3392 		return;
3393 
3394 	drm_dbg_kms(&i915->drm, "\n");
3395 
3396 	intel_panel_enable_backlight(crtc_state, conn_state);
3397 	_intel_edp_backlight_on(intel_dp);
3398 }
3399 
3400 /* Disable backlight in the panel power control. */
3401 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3402 {
3403 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3404 	intel_wakeref_t wakeref;
3405 
3406 	if (!intel_dp_is_edp(intel_dp))
3407 		return;
3408 
3409 	with_pps_lock(intel_dp, wakeref) {
3410 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3411 		u32 pp;
3412 
3413 		pp = ilk_get_pp_control(intel_dp);
3414 		pp &= ~EDP_BLC_ENABLE;
3415 
3416 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3417 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3418 	}
3419 
3420 	intel_dp->last_backlight_off = jiffies;
3421 	edp_wait_backlight_off(intel_dp);
3422 }
3423 
3424 /* Disable backlight PP control and backlight PWM. */
3425 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3426 {
3427 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3428 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3429 
3430 	if (!intel_dp_is_edp(intel_dp))
3431 		return;
3432 
3433 	drm_dbg_kms(&i915->drm, "\n");
3434 
3435 	_intel_edp_backlight_off(intel_dp);
3436 	intel_panel_disable_backlight(old_conn_state);
3437 }
3438 
3439 /*
3440  * Hook for controlling the panel power control backlight through the bl_power
3441  * sysfs attribute. Take care to handle multiple calls.
3442  */
3443 static void intel_edp_backlight_power(struct intel_connector *connector,
3444 				      bool enable)
3445 {
3446 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
3447 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3448 	intel_wakeref_t wakeref;
3449 	bool is_enabled;
3450 
3451 	is_enabled = false;
3452 	with_pps_lock(intel_dp, wakeref)
3453 		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3454 	if (is_enabled == enable)
3455 		return;
3456 
3457 	drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3458 		    enable ? "enable" : "disable");
3459 
3460 	if (enable)
3461 		_intel_edp_backlight_on(intel_dp);
3462 	else
3463 		_intel_edp_backlight_off(intel_dp);
3464 }
3465 
3466 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3467 {
3468 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3469 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3470 	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3471 
3472 	I915_STATE_WARN(cur_state != state,
3473 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3474 			dig_port->base.base.base.id, dig_port->base.base.name,
3475 			onoff(state), onoff(cur_state));
3476 }
3477 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3478 
3479 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3480 {
3481 	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3482 
3483 	I915_STATE_WARN(cur_state != state,
3484 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3485 			onoff(state), onoff(cur_state));
3486 }
3487 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3488 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3489 
3490 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3491 			   const struct intel_crtc_state *pipe_config)
3492 {
3493 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3494 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3495 
3496 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3497 	assert_dp_port_disabled(intel_dp);
3498 	assert_edp_pll_disabled(dev_priv);
3499 
3500 	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3501 		    pipe_config->port_clock);
3502 
3503 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3504 
3505 	if (pipe_config->port_clock == 162000)
3506 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3507 	else
3508 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3509 
3510 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3511 	intel_de_posting_read(dev_priv, DP_A);
3512 	udelay(500);
3513 
3514 	/*
3515 	 * [DevILK] Work around required when enabling DP PLL
3516 	 * while a pipe is enabled going to FDI:
3517 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3518 	 * 2. Program DP PLL enable
3519 	 */
3520 	if (IS_GEN(dev_priv, 5))
3521 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3522 
3523 	intel_dp->DP |= DP_PLL_ENABLE;
3524 
3525 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3526 	intel_de_posting_read(dev_priv, DP_A);
3527 	udelay(200);
3528 }
3529 
3530 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3531 			    const struct intel_crtc_state *old_crtc_state)
3532 {
3533 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3534 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3535 
3536 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3537 	assert_dp_port_disabled(intel_dp);
3538 	assert_edp_pll_enabled(dev_priv);
3539 
3540 	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3541 
3542 	intel_dp->DP &= ~DP_PLL_ENABLE;
3543 
3544 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3545 	intel_de_posting_read(dev_priv, DP_A);
3546 	udelay(200);
3547 }
3548 
3549 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3550 {
3551 	/*
3552 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3553 	 * be capable of signalling downstream hpd with a long pulse.
3554 	 * Whether or not that means D3 is safe to use is not clear,
3555 	 * but let's assume so until proven otherwise.
3556 	 *
3557 	 * FIXME should really check all downstream ports...
3558 	 */
3559 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3560 		drm_dp_is_branch(intel_dp->dpcd) &&
3561 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3562 }
3563 
3564 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3565 					   const struct intel_crtc_state *crtc_state,
3566 					   bool enable)
3567 {
3568 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3569 	int ret;
3570 
3571 	if (!crtc_state->dsc.compression_enable)
3572 		return;
3573 
3574 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3575 				 enable ? DP_DECOMPRESSION_EN : 0);
3576 	if (ret < 0)
3577 		drm_dbg_kms(&i915->drm,
3578 			    "Failed to %s sink decompression state\n",
3579 			    enable ? "enable" : "disable");
3580 }
3581 
3582 /* If the device supports it, try to set the power state appropriately */
3583 void intel_dp_set_power(struct intel_dp *intel_dp, u8 mode)
3584 {
3585 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3586 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3587 	int ret, i;
3588 
3589 	/* Should have a valid DPCD by this point */
3590 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3591 		return;
3592 
3593 	if (mode != DP_SET_POWER_D0) {
3594 		if (downstream_hpd_needs_d0(intel_dp))
3595 			return;
3596 
3597 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode);
3598 	} else {
3599 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3600 
3601 		lspcon_resume(dp_to_dig_port(intel_dp));
3602 
3603 		/*
3604 		 * When turning on, we need to retry for 1ms to give the sink
3605 		 * time to wake up.
3606 		 */
3607 		for (i = 0; i < 3; i++) {
3608 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode);
3609 			if (ret == 1)
3610 				break;
3611 			msleep(1);
3612 		}
3613 
3614 		if (ret == 1 && lspcon->active)
3615 			lspcon_wait_pcon_mode(lspcon);
3616 	}
3617 
3618 	if (ret != 1)
3619 		drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Set power to %s failed\n",
3620 			    encoder->base.base.id, encoder->base.name,
3621 			    mode == DP_SET_POWER_D0 ? "D0" : "D3");
3622 }
3623 
3624 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3625 				 enum port port, enum pipe *pipe)
3626 {
3627 	enum pipe p;
3628 
3629 	for_each_pipe(dev_priv, p) {
3630 		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3631 
3632 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3633 			*pipe = p;
3634 			return true;
3635 		}
3636 	}
3637 
3638 	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3639 		    port_name(port));
3640 
3641 	/* must initialize pipe to something for the asserts */
3642 	*pipe = PIPE_A;
3643 
3644 	return false;
3645 }
3646 
3647 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3648 			   i915_reg_t dp_reg, enum port port,
3649 			   enum pipe *pipe)
3650 {
3651 	bool ret;
3652 	u32 val;
3653 
3654 	val = intel_de_read(dev_priv, dp_reg);
3655 
3656 	ret = val & DP_PORT_EN;
3657 
3658 	/* asserts want to know the pipe even if the port is disabled */
3659 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3660 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3661 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3662 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3663 	else if (IS_CHERRYVIEW(dev_priv))
3664 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3665 	else
3666 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3667 
3668 	return ret;
3669 }
3670 
3671 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3672 				  enum pipe *pipe)
3673 {
3674 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3675 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3676 	intel_wakeref_t wakeref;
3677 	bool ret;
3678 
3679 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3680 						     encoder->power_domain);
3681 	if (!wakeref)
3682 		return false;
3683 
3684 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3685 				    encoder->port, pipe);
3686 
3687 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3688 
3689 	return ret;
3690 }
3691 
3692 static void intel_dp_get_config(struct intel_encoder *encoder,
3693 				struct intel_crtc_state *pipe_config)
3694 {
3695 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3696 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3697 	u32 tmp, flags = 0;
3698 	enum port port = encoder->port;
3699 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3700 
3701 	if (encoder->type == INTEL_OUTPUT_EDP)
3702 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3703 	else
3704 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3705 
3706 	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3707 
3708 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3709 
3710 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3711 		u32 trans_dp = intel_de_read(dev_priv,
3712 					     TRANS_DP_CTL(crtc->pipe));
3713 
3714 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3715 			flags |= DRM_MODE_FLAG_PHSYNC;
3716 		else
3717 			flags |= DRM_MODE_FLAG_NHSYNC;
3718 
3719 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3720 			flags |= DRM_MODE_FLAG_PVSYNC;
3721 		else
3722 			flags |= DRM_MODE_FLAG_NVSYNC;
3723 	} else {
3724 		if (tmp & DP_SYNC_HS_HIGH)
3725 			flags |= DRM_MODE_FLAG_PHSYNC;
3726 		else
3727 			flags |= DRM_MODE_FLAG_NHSYNC;
3728 
3729 		if (tmp & DP_SYNC_VS_HIGH)
3730 			flags |= DRM_MODE_FLAG_PVSYNC;
3731 		else
3732 			flags |= DRM_MODE_FLAG_NVSYNC;
3733 	}
3734 
3735 	pipe_config->hw.adjusted_mode.flags |= flags;
3736 
3737 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3738 		pipe_config->limited_color_range = true;
3739 
3740 	pipe_config->lane_count =
3741 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3742 
3743 	intel_dp_get_m_n(crtc, pipe_config);
3744 
3745 	if (port == PORT_A) {
3746 		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3747 			pipe_config->port_clock = 162000;
3748 		else
3749 			pipe_config->port_clock = 270000;
3750 	}
3751 
3752 	pipe_config->hw.adjusted_mode.crtc_clock =
3753 		intel_dotclock_calculate(pipe_config->port_clock,
3754 					 &pipe_config->dp_m_n);
3755 
3756 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3757 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3758 		/*
3759 		 * This is a big fat ugly hack.
3760 		 *
3761 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3762 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3763 		 * unknown we fail to light up. Yet the same BIOS boots up with
3764 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3765 		 * max, not what it tells us to use.
3766 		 *
3767 		 * Note: This will still be broken if the eDP panel is not lit
3768 		 * up by the BIOS, and thus we can't get the mode at module
3769 		 * load.
3770 		 */
3771 		drm_dbg_kms(&dev_priv->drm,
3772 			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3773 			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3774 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3775 	}
3776 }
3777 
3778 static bool
3779 intel_dp_get_dpcd(struct intel_dp *intel_dp);
3780 
3781 /**
3782  * intel_dp_sync_state - sync the encoder state during init/resume
3783  * @encoder: intel encoder to sync
3784  * @crtc_state: state for the CRTC connected to the encoder
3785  *
3786  * Sync any state stored in the encoder wrt. HW state during driver init
3787  * and system resume.
3788  */
3789 void intel_dp_sync_state(struct intel_encoder *encoder,
3790 			 const struct intel_crtc_state *crtc_state)
3791 {
3792 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3793 
3794 	/*
3795 	 * Don't clobber DPCD if it's been already read out during output
3796 	 * setup (eDP) or detect.
3797 	 */
3798 	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3799 		intel_dp_get_dpcd(intel_dp);
3800 
3801 	intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
3802 	intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
3803 }
3804 
3805 bool intel_dp_initial_fastset_check(struct intel_encoder *encoder,
3806 				    struct intel_crtc_state *crtc_state)
3807 {
3808 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3809 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3810 
3811 	/*
3812 	 * If BIOS has set an unsupported or non-standard link rate for some
3813 	 * reason force an encoder recompute and full modeset.
3814 	 */
3815 	if (intel_dp_rate_index(intel_dp->source_rates, intel_dp->num_source_rates,
3816 				crtc_state->port_clock) < 0) {
3817 		drm_dbg_kms(&i915->drm, "Forcing full modeset due to unsupported link rate\n");
3818 		crtc_state->uapi.connectors_changed = true;
3819 		return false;
3820 	}
3821 
3822 	/*
3823 	 * FIXME hack to force full modeset when DSC is being used.
3824 	 *
3825 	 * As long as we do not have full state readout and config comparison
3826 	 * of crtc_state->dsc, we have no way to ensure reliable fastset.
3827 	 * Remove once we have readout for DSC.
3828 	 */
3829 	if (crtc_state->dsc.compression_enable) {
3830 		drm_dbg_kms(&i915->drm, "Forcing full modeset due to DSC being enabled\n");
3831 		crtc_state->uapi.mode_changed = true;
3832 		return false;
3833 	}
3834 
3835 	if (CAN_PSR(i915) && intel_dp_is_edp(intel_dp)) {
3836 		drm_dbg_kms(&i915->drm, "Forcing full modeset to compute PSR state\n");
3837 		crtc_state->uapi.mode_changed = true;
3838 		return false;
3839 	}
3840 
3841 	return true;
3842 }
3843 
3844 static void intel_disable_dp(struct intel_atomic_state *state,
3845 			     struct intel_encoder *encoder,
3846 			     const struct intel_crtc_state *old_crtc_state,
3847 			     const struct drm_connector_state *old_conn_state)
3848 {
3849 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3850 
3851 	intel_dp->link_trained = false;
3852 
3853 	if (old_crtc_state->has_audio)
3854 		intel_audio_codec_disable(encoder,
3855 					  old_crtc_state, old_conn_state);
3856 
3857 	/* Make sure the panel is off before trying to change the mode. But also
3858 	 * ensure that we have vdd while we switch off the panel. */
3859 	intel_edp_panel_vdd_on(intel_dp);
3860 	intel_edp_backlight_off(old_conn_state);
3861 	intel_dp_set_power(intel_dp, DP_SET_POWER_D3);
3862 	intel_edp_panel_off(intel_dp);
3863 }
3864 
3865 static void g4x_disable_dp(struct intel_atomic_state *state,
3866 			   struct intel_encoder *encoder,
3867 			   const struct intel_crtc_state *old_crtc_state,
3868 			   const struct drm_connector_state *old_conn_state)
3869 {
3870 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3871 }
3872 
3873 static void vlv_disable_dp(struct intel_atomic_state *state,
3874 			   struct intel_encoder *encoder,
3875 			   const struct intel_crtc_state *old_crtc_state,
3876 			   const struct drm_connector_state *old_conn_state)
3877 {
3878 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3879 }
3880 
3881 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3882 				struct intel_encoder *encoder,
3883 				const struct intel_crtc_state *old_crtc_state,
3884 				const struct drm_connector_state *old_conn_state)
3885 {
3886 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3887 	enum port port = encoder->port;
3888 
3889 	/*
3890 	 * Bspec does not list a specific disable sequence for g4x DP.
3891 	 * Follow the ilk+ sequence (disable pipe before the port) for
3892 	 * g4x DP as it does not suffer from underruns like the normal
3893 	 * g4x modeset sequence (disable pipe after the port).
3894 	 */
3895 	intel_dp_link_down(encoder, old_crtc_state);
3896 
3897 	/* Only ilk+ has port A */
3898 	if (port == PORT_A)
3899 		ilk_edp_pll_off(intel_dp, old_crtc_state);
3900 }
3901 
3902 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3903 				struct intel_encoder *encoder,
3904 				const struct intel_crtc_state *old_crtc_state,
3905 				const struct drm_connector_state *old_conn_state)
3906 {
3907 	intel_dp_link_down(encoder, old_crtc_state);
3908 }
3909 
3910 static void chv_post_disable_dp(struct intel_atomic_state *state,
3911 				struct intel_encoder *encoder,
3912 				const struct intel_crtc_state *old_crtc_state,
3913 				const struct drm_connector_state *old_conn_state)
3914 {
3915 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3916 
3917 	intel_dp_link_down(encoder, old_crtc_state);
3918 
3919 	vlv_dpio_get(dev_priv);
3920 
3921 	/* Assert data lane reset */
3922 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3923 
3924 	vlv_dpio_put(dev_priv);
3925 }
3926 
3927 static void
3928 cpt_set_link_train(struct intel_dp *intel_dp,
3929 		   const struct intel_crtc_state *crtc_state,
3930 		   u8 dp_train_pat)
3931 {
3932 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3933 	u32 *DP = &intel_dp->DP;
3934 
3935 	*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3936 
3937 	switch (intel_dp_training_pattern_symbol(dp_train_pat)) {
3938 	case DP_TRAINING_PATTERN_DISABLE:
3939 		*DP |= DP_LINK_TRAIN_OFF_CPT;
3940 		break;
3941 	case DP_TRAINING_PATTERN_1:
3942 		*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3943 		break;
3944 	case DP_TRAINING_PATTERN_2:
3945 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3946 		break;
3947 	case DP_TRAINING_PATTERN_3:
3948 		drm_dbg_kms(&dev_priv->drm,
3949 			    "TPS3 not supported, using TPS2 instead\n");
3950 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3951 		break;
3952 	}
3953 
3954 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3955 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3956 }
3957 
3958 static void
3959 g4x_set_link_train(struct intel_dp *intel_dp,
3960 		   const struct intel_crtc_state *crtc_state,
3961 		   u8 dp_train_pat)
3962 {
3963 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3964 	u32 *DP = &intel_dp->DP;
3965 
3966 	*DP &= ~DP_LINK_TRAIN_MASK;
3967 
3968 	switch (intel_dp_training_pattern_symbol(dp_train_pat)) {
3969 	case DP_TRAINING_PATTERN_DISABLE:
3970 		*DP |= DP_LINK_TRAIN_OFF;
3971 		break;
3972 	case DP_TRAINING_PATTERN_1:
3973 		*DP |= DP_LINK_TRAIN_PAT_1;
3974 		break;
3975 	case DP_TRAINING_PATTERN_2:
3976 		*DP |= DP_LINK_TRAIN_PAT_2;
3977 		break;
3978 	case DP_TRAINING_PATTERN_3:
3979 		drm_dbg_kms(&dev_priv->drm,
3980 			    "TPS3 not supported, using TPS2 instead\n");
3981 		*DP |= DP_LINK_TRAIN_PAT_2;
3982 		break;
3983 	}
3984 
3985 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3986 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3987 }
3988 
3989 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3990 				 const struct intel_crtc_state *crtc_state)
3991 {
3992 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3993 
3994 	/* enable with pattern 1 (as per spec) */
3995 
3996 	intel_dp_program_link_training_pattern(intel_dp, crtc_state,
3997 					       DP_TRAINING_PATTERN_1);
3998 
3999 	/*
4000 	 * Magic for VLV/CHV. We _must_ first set up the register
4001 	 * without actually enabling the port, and then do another
4002 	 * write to enable the port. Otherwise link training will
4003 	 * fail when the power sequencer is freshly used for this port.
4004 	 */
4005 	intel_dp->DP |= DP_PORT_EN;
4006 	if (crtc_state->has_audio)
4007 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
4008 
4009 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4010 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4011 }
4012 
4013 void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp)
4014 {
4015 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4016 	u8 tmp;
4017 
4018 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x13)
4019 		return;
4020 
4021 	if (!drm_dp_is_branch(intel_dp->dpcd))
4022 		return;
4023 
4024 	tmp = intel_dp->has_hdmi_sink ?
4025 		DP_HDMI_DVI_OUTPUT_CONFIG : 0;
4026 
4027 	if (drm_dp_dpcd_writeb(&intel_dp->aux,
4028 			       DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1)
4029 		drm_dbg_kms(&i915->drm, "Failed to set protocol converter HDMI mode to %s\n",
4030 			    enableddisabled(intel_dp->has_hdmi_sink));
4031 
4032 	tmp = intel_dp->dfp.ycbcr_444_to_420 ?
4033 		DP_CONVERSION_TO_YCBCR420_ENABLE : 0;
4034 
4035 	if (drm_dp_dpcd_writeb(&intel_dp->aux,
4036 			       DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1)
4037 		drm_dbg_kms(&i915->drm,
4038 			    "Failed to set protocol converter YCbCr 4:2:0 conversion mode to %s\n",
4039 			    enableddisabled(intel_dp->dfp.ycbcr_444_to_420));
4040 
4041 	tmp = 0;
4042 
4043 	if (drm_dp_dpcd_writeb(&intel_dp->aux,
4044 			       DP_PROTOCOL_CONVERTER_CONTROL_2, tmp) <= 0)
4045 		drm_dbg_kms(&i915->drm,
4046 			    "Failed to set protocol converter YCbCr 4:2:2 conversion mode to %s\n",
4047 			    enableddisabled(false));
4048 }
4049 
4050 static void intel_enable_dp(struct intel_atomic_state *state,
4051 			    struct intel_encoder *encoder,
4052 			    const struct intel_crtc_state *pipe_config,
4053 			    const struct drm_connector_state *conn_state)
4054 {
4055 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4056 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4057 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
4058 	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
4059 	enum pipe pipe = crtc->pipe;
4060 	intel_wakeref_t wakeref;
4061 
4062 	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
4063 		return;
4064 
4065 	with_pps_lock(intel_dp, wakeref) {
4066 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4067 			vlv_init_panel_power_sequencer(encoder, pipe_config);
4068 
4069 		intel_dp_enable_port(intel_dp, pipe_config);
4070 
4071 		edp_panel_vdd_on(intel_dp);
4072 		edp_panel_on(intel_dp);
4073 		edp_panel_vdd_off(intel_dp, true);
4074 	}
4075 
4076 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4077 		unsigned int lane_mask = 0x0;
4078 
4079 		if (IS_CHERRYVIEW(dev_priv))
4080 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
4081 
4082 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
4083 				    lane_mask);
4084 	}
4085 
4086 	intel_dp_set_power(intel_dp, DP_SET_POWER_D0);
4087 	intel_dp_configure_protocol_converter(intel_dp);
4088 	intel_dp_start_link_train(intel_dp, pipe_config);
4089 	intel_dp_stop_link_train(intel_dp, pipe_config);
4090 
4091 	if (pipe_config->has_audio) {
4092 		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
4093 			pipe_name(pipe));
4094 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
4095 	}
4096 }
4097 
4098 static void g4x_enable_dp(struct intel_atomic_state *state,
4099 			  struct intel_encoder *encoder,
4100 			  const struct intel_crtc_state *pipe_config,
4101 			  const struct drm_connector_state *conn_state)
4102 {
4103 	intel_enable_dp(state, encoder, pipe_config, conn_state);
4104 	intel_edp_backlight_on(pipe_config, conn_state);
4105 }
4106 
4107 static void vlv_enable_dp(struct intel_atomic_state *state,
4108 			  struct intel_encoder *encoder,
4109 			  const struct intel_crtc_state *pipe_config,
4110 			  const struct drm_connector_state *conn_state)
4111 {
4112 	intel_edp_backlight_on(pipe_config, conn_state);
4113 }
4114 
4115 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
4116 			      struct intel_encoder *encoder,
4117 			      const struct intel_crtc_state *pipe_config,
4118 			      const struct drm_connector_state *conn_state)
4119 {
4120 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4121 	enum port port = encoder->port;
4122 
4123 	intel_dp_prepare(encoder, pipe_config);
4124 
4125 	/* Only ilk+ has port A */
4126 	if (port == PORT_A)
4127 		ilk_edp_pll_on(intel_dp, pipe_config);
4128 }
4129 
4130 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
4131 {
4132 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4133 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
4134 	enum pipe pipe = intel_dp->pps_pipe;
4135 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
4136 
4137 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
4138 
4139 	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
4140 		return;
4141 
4142 	edp_panel_vdd_off_sync(intel_dp);
4143 
4144 	/*
4145 	 * VLV seems to get confused when multiple power sequencers
4146 	 * have the same port selected (even if only one has power/vdd
4147 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
4148 	 * CHV on the other hand doesn't seem to mind having the same port
4149 	 * selected in multiple power sequencers, but let's clear the
4150 	 * port select always when logically disconnecting a power sequencer
4151 	 * from a port.
4152 	 */
4153 	drm_dbg_kms(&dev_priv->drm,
4154 		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
4155 		    pipe_name(pipe), dig_port->base.base.base.id,
4156 		    dig_port->base.base.name);
4157 	intel_de_write(dev_priv, pp_on_reg, 0);
4158 	intel_de_posting_read(dev_priv, pp_on_reg);
4159 
4160 	intel_dp->pps_pipe = INVALID_PIPE;
4161 }
4162 
4163 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
4164 				      enum pipe pipe)
4165 {
4166 	struct intel_encoder *encoder;
4167 
4168 	lockdep_assert_held(&dev_priv->pps_mutex);
4169 
4170 	for_each_intel_dp(&dev_priv->drm, encoder) {
4171 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4172 
4173 		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
4174 			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
4175 			 pipe_name(pipe), encoder->base.base.id,
4176 			 encoder->base.name);
4177 
4178 		if (intel_dp->pps_pipe != pipe)
4179 			continue;
4180 
4181 		drm_dbg_kms(&dev_priv->drm,
4182 			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
4183 			    pipe_name(pipe), encoder->base.base.id,
4184 			    encoder->base.name);
4185 
4186 		/* make sure vdd is off before we steal it */
4187 		vlv_detach_power_sequencer(intel_dp);
4188 	}
4189 }
4190 
4191 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
4192 					   const struct intel_crtc_state *crtc_state)
4193 {
4194 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4195 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4196 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4197 
4198 	lockdep_assert_held(&dev_priv->pps_mutex);
4199 
4200 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
4201 
4202 	if (intel_dp->pps_pipe != INVALID_PIPE &&
4203 	    intel_dp->pps_pipe != crtc->pipe) {
4204 		/*
4205 		 * If another power sequencer was being used on this
4206 		 * port previously make sure to turn off vdd there while
4207 		 * we still have control of it.
4208 		 */
4209 		vlv_detach_power_sequencer(intel_dp);
4210 	}
4211 
4212 	/*
4213 	 * We may be stealing the power
4214 	 * sequencer from another port.
4215 	 */
4216 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
4217 
4218 	intel_dp->active_pipe = crtc->pipe;
4219 
4220 	if (!intel_dp_is_edp(intel_dp))
4221 		return;
4222 
4223 	/* now it's all ours */
4224 	intel_dp->pps_pipe = crtc->pipe;
4225 
4226 	drm_dbg_kms(&dev_priv->drm,
4227 		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
4228 		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
4229 		    encoder->base.name);
4230 
4231 	/* init power sequencer on this pipe and port */
4232 	intel_dp_init_panel_power_sequencer(intel_dp);
4233 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
4234 }
4235 
4236 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
4237 			      struct intel_encoder *encoder,
4238 			      const struct intel_crtc_state *pipe_config,
4239 			      const struct drm_connector_state *conn_state)
4240 {
4241 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
4242 
4243 	intel_enable_dp(state, encoder, pipe_config, conn_state);
4244 }
4245 
4246 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
4247 				  struct intel_encoder *encoder,
4248 				  const struct intel_crtc_state *pipe_config,
4249 				  const struct drm_connector_state *conn_state)
4250 {
4251 	intel_dp_prepare(encoder, pipe_config);
4252 
4253 	vlv_phy_pre_pll_enable(encoder, pipe_config);
4254 }
4255 
4256 static void chv_pre_enable_dp(struct intel_atomic_state *state,
4257 			      struct intel_encoder *encoder,
4258 			      const struct intel_crtc_state *pipe_config,
4259 			      const struct drm_connector_state *conn_state)
4260 {
4261 	chv_phy_pre_encoder_enable(encoder, pipe_config);
4262 
4263 	intel_enable_dp(state, encoder, pipe_config, conn_state);
4264 
4265 	/* Second common lane will stay alive on its own now */
4266 	chv_phy_release_cl2_override(encoder);
4267 }
4268 
4269 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
4270 				  struct intel_encoder *encoder,
4271 				  const struct intel_crtc_state *pipe_config,
4272 				  const struct drm_connector_state *conn_state)
4273 {
4274 	intel_dp_prepare(encoder, pipe_config);
4275 
4276 	chv_phy_pre_pll_enable(encoder, pipe_config);
4277 }
4278 
4279 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
4280 				    struct intel_encoder *encoder,
4281 				    const struct intel_crtc_state *old_crtc_state,
4282 				    const struct drm_connector_state *old_conn_state)
4283 {
4284 	chv_phy_post_pll_disable(encoder, old_crtc_state);
4285 }
4286 
4287 static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp,
4288 				 const struct intel_crtc_state *crtc_state)
4289 {
4290 	return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4291 }
4292 
4293 static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp,
4294 				 const struct intel_crtc_state *crtc_state)
4295 {
4296 	return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4297 }
4298 
4299 static u8 intel_dp_preemph_max_2(struct intel_dp *intel_dp)
4300 {
4301 	return DP_TRAIN_PRE_EMPH_LEVEL_2;
4302 }
4303 
4304 static u8 intel_dp_preemph_max_3(struct intel_dp *intel_dp)
4305 {
4306 	return DP_TRAIN_PRE_EMPH_LEVEL_3;
4307 }
4308 
4309 static void vlv_set_signal_levels(struct intel_dp *intel_dp,
4310 				  const struct intel_crtc_state *crtc_state)
4311 {
4312 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4313 	unsigned long demph_reg_value, preemph_reg_value,
4314 		uniqtranscale_reg_value;
4315 	u8 train_set = intel_dp->train_set[0];
4316 
4317 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4318 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4319 		preemph_reg_value = 0x0004000;
4320 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4321 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4322 			demph_reg_value = 0x2B405555;
4323 			uniqtranscale_reg_value = 0x552AB83A;
4324 			break;
4325 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4326 			demph_reg_value = 0x2B404040;
4327 			uniqtranscale_reg_value = 0x5548B83A;
4328 			break;
4329 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4330 			demph_reg_value = 0x2B245555;
4331 			uniqtranscale_reg_value = 0x5560B83A;
4332 			break;
4333 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4334 			demph_reg_value = 0x2B405555;
4335 			uniqtranscale_reg_value = 0x5598DA3A;
4336 			break;
4337 		default:
4338 			return;
4339 		}
4340 		break;
4341 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4342 		preemph_reg_value = 0x0002000;
4343 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4344 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4345 			demph_reg_value = 0x2B404040;
4346 			uniqtranscale_reg_value = 0x5552B83A;
4347 			break;
4348 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4349 			demph_reg_value = 0x2B404848;
4350 			uniqtranscale_reg_value = 0x5580B83A;
4351 			break;
4352 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4353 			demph_reg_value = 0x2B404040;
4354 			uniqtranscale_reg_value = 0x55ADDA3A;
4355 			break;
4356 		default:
4357 			return;
4358 		}
4359 		break;
4360 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4361 		preemph_reg_value = 0x0000000;
4362 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4363 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4364 			demph_reg_value = 0x2B305555;
4365 			uniqtranscale_reg_value = 0x5570B83A;
4366 			break;
4367 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4368 			demph_reg_value = 0x2B2B4040;
4369 			uniqtranscale_reg_value = 0x55ADDA3A;
4370 			break;
4371 		default:
4372 			return;
4373 		}
4374 		break;
4375 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4376 		preemph_reg_value = 0x0006000;
4377 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4378 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4379 			demph_reg_value = 0x1B405555;
4380 			uniqtranscale_reg_value = 0x55ADDA3A;
4381 			break;
4382 		default:
4383 			return;
4384 		}
4385 		break;
4386 	default:
4387 		return;
4388 	}
4389 
4390 	vlv_set_phy_signal_level(encoder, crtc_state,
4391 				 demph_reg_value, preemph_reg_value,
4392 				 uniqtranscale_reg_value, 0);
4393 }
4394 
4395 static void chv_set_signal_levels(struct intel_dp *intel_dp,
4396 				  const struct intel_crtc_state *crtc_state)
4397 {
4398 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4399 	u32 deemph_reg_value, margin_reg_value;
4400 	bool uniq_trans_scale = false;
4401 	u8 train_set = intel_dp->train_set[0];
4402 
4403 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4404 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4405 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4406 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4407 			deemph_reg_value = 128;
4408 			margin_reg_value = 52;
4409 			break;
4410 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4411 			deemph_reg_value = 128;
4412 			margin_reg_value = 77;
4413 			break;
4414 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4415 			deemph_reg_value = 128;
4416 			margin_reg_value = 102;
4417 			break;
4418 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4419 			deemph_reg_value = 128;
4420 			margin_reg_value = 154;
4421 			uniq_trans_scale = true;
4422 			break;
4423 		default:
4424 			return;
4425 		}
4426 		break;
4427 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4428 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4429 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4430 			deemph_reg_value = 85;
4431 			margin_reg_value = 78;
4432 			break;
4433 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4434 			deemph_reg_value = 85;
4435 			margin_reg_value = 116;
4436 			break;
4437 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4438 			deemph_reg_value = 85;
4439 			margin_reg_value = 154;
4440 			break;
4441 		default:
4442 			return;
4443 		}
4444 		break;
4445 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4446 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4447 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4448 			deemph_reg_value = 64;
4449 			margin_reg_value = 104;
4450 			break;
4451 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4452 			deemph_reg_value = 64;
4453 			margin_reg_value = 154;
4454 			break;
4455 		default:
4456 			return;
4457 		}
4458 		break;
4459 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4460 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4461 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4462 			deemph_reg_value = 43;
4463 			margin_reg_value = 154;
4464 			break;
4465 		default:
4466 			return;
4467 		}
4468 		break;
4469 	default:
4470 		return;
4471 	}
4472 
4473 	chv_set_phy_signal_level(encoder, crtc_state,
4474 				 deemph_reg_value, margin_reg_value,
4475 				 uniq_trans_scale);
4476 }
4477 
4478 static u32 g4x_signal_levels(u8 train_set)
4479 {
4480 	u32 signal_levels = 0;
4481 
4482 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4483 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4484 	default:
4485 		signal_levels |= DP_VOLTAGE_0_4;
4486 		break;
4487 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4488 		signal_levels |= DP_VOLTAGE_0_6;
4489 		break;
4490 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4491 		signal_levels |= DP_VOLTAGE_0_8;
4492 		break;
4493 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4494 		signal_levels |= DP_VOLTAGE_1_2;
4495 		break;
4496 	}
4497 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4498 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4499 	default:
4500 		signal_levels |= DP_PRE_EMPHASIS_0;
4501 		break;
4502 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4503 		signal_levels |= DP_PRE_EMPHASIS_3_5;
4504 		break;
4505 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4506 		signal_levels |= DP_PRE_EMPHASIS_6;
4507 		break;
4508 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4509 		signal_levels |= DP_PRE_EMPHASIS_9_5;
4510 		break;
4511 	}
4512 	return signal_levels;
4513 }
4514 
4515 static void
4516 g4x_set_signal_levels(struct intel_dp *intel_dp,
4517 		      const struct intel_crtc_state *crtc_state)
4518 {
4519 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4520 	u8 train_set = intel_dp->train_set[0];
4521 	u32 signal_levels;
4522 
4523 	signal_levels = g4x_signal_levels(train_set);
4524 
4525 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4526 		    signal_levels);
4527 
4528 	intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4529 	intel_dp->DP |= signal_levels;
4530 
4531 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4532 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4533 }
4534 
4535 /* SNB CPU eDP voltage swing and pre-emphasis control */
4536 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4537 {
4538 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4539 					DP_TRAIN_PRE_EMPHASIS_MASK);
4540 
4541 	switch (signal_levels) {
4542 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4543 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4544 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4545 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4546 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4547 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4548 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4549 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4550 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4551 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4552 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4553 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4554 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4555 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4556 	default:
4557 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4558 			      "0x%x\n", signal_levels);
4559 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4560 	}
4561 }
4562 
4563 static void
4564 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp,
4565 			      const struct intel_crtc_state *crtc_state)
4566 {
4567 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4568 	u8 train_set = intel_dp->train_set[0];
4569 	u32 signal_levels;
4570 
4571 	signal_levels = snb_cpu_edp_signal_levels(train_set);
4572 
4573 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4574 		    signal_levels);
4575 
4576 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4577 	intel_dp->DP |= signal_levels;
4578 
4579 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4580 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4581 }
4582 
4583 /* IVB CPU eDP voltage swing and pre-emphasis control */
4584 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4585 {
4586 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4587 					DP_TRAIN_PRE_EMPHASIS_MASK);
4588 
4589 	switch (signal_levels) {
4590 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4591 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4592 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4593 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4594 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4595 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4596 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4597 
4598 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4599 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4600 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4601 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4602 
4603 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4604 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4605 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4606 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4607 
4608 	default:
4609 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4610 			      "0x%x\n", signal_levels);
4611 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4612 	}
4613 }
4614 
4615 static void
4616 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp,
4617 			      const struct intel_crtc_state *crtc_state)
4618 {
4619 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4620 	u8 train_set = intel_dp->train_set[0];
4621 	u32 signal_levels;
4622 
4623 	signal_levels = ivb_cpu_edp_signal_levels(train_set);
4624 
4625 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4626 		    signal_levels);
4627 
4628 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4629 	intel_dp->DP |= signal_levels;
4630 
4631 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4632 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4633 }
4634 
4635 void intel_dp_set_signal_levels(struct intel_dp *intel_dp,
4636 				const struct intel_crtc_state *crtc_state)
4637 {
4638 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4639 	u8 train_set = intel_dp->train_set[0];
4640 
4641 	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4642 		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4643 		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4644 	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4645 		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4646 		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
4647 		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4648 		    " (max)" : "");
4649 
4650 	intel_dp->set_signal_levels(intel_dp, crtc_state);
4651 }
4652 
4653 void
4654 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4655 				       const struct intel_crtc_state *crtc_state,
4656 				       u8 dp_train_pat)
4657 {
4658 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4659 
4660 	if ((intel_dp_training_pattern_symbol(dp_train_pat)) !=
4661 	    DP_TRAINING_PATTERN_DISABLE)
4662 		drm_dbg_kms(&dev_priv->drm,
4663 			    "Using DP training pattern TPS%d\n",
4664 			    intel_dp_training_pattern_symbol(dp_train_pat));
4665 
4666 	intel_dp->set_link_train(intel_dp, crtc_state, dp_train_pat);
4667 }
4668 
4669 static void
4670 intel_dp_link_down(struct intel_encoder *encoder,
4671 		   const struct intel_crtc_state *old_crtc_state)
4672 {
4673 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4674 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4675 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4676 	enum port port = encoder->port;
4677 	u32 DP = intel_dp->DP;
4678 
4679 	if (drm_WARN_ON(&dev_priv->drm,
4680 			(intel_de_read(dev_priv, intel_dp->output_reg) &
4681 			 DP_PORT_EN) == 0))
4682 		return;
4683 
4684 	drm_dbg_kms(&dev_priv->drm, "\n");
4685 
4686 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4687 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4688 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4689 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4690 	} else {
4691 		DP &= ~DP_LINK_TRAIN_MASK;
4692 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4693 	}
4694 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4695 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4696 
4697 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4698 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4699 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4700 
4701 	/*
4702 	 * HW workaround for IBX, we need to move the port
4703 	 * to transcoder A after disabling it to allow the
4704 	 * matching HDMI port to be enabled on transcoder A.
4705 	 */
4706 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4707 		/*
4708 		 * We get CPU/PCH FIFO underruns on the other pipe when
4709 		 * doing the workaround. Sweep them under the rug.
4710 		 */
4711 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4712 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4713 
4714 		/* always enable with pattern 1 (as per spec) */
4715 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4716 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4717 			DP_LINK_TRAIN_PAT_1;
4718 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4719 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4720 
4721 		DP &= ~DP_PORT_EN;
4722 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4723 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4724 
4725 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4726 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4727 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4728 	}
4729 
4730 	msleep(intel_dp->panel_power_down_delay);
4731 
4732 	intel_dp->DP = DP;
4733 
4734 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4735 		intel_wakeref_t wakeref;
4736 
4737 		with_pps_lock(intel_dp, wakeref)
4738 			intel_dp->active_pipe = INVALID_PIPE;
4739 	}
4740 }
4741 
4742 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4743 {
4744 	u8 dprx = 0;
4745 
4746 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4747 			      &dprx) != 1)
4748 		return false;
4749 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4750 }
4751 
4752 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4753 {
4754 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4755 
4756 	/*
4757 	 * Clear the cached register set to avoid using stale values
4758 	 * for the sinks that do not support DSC.
4759 	 */
4760 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4761 
4762 	/* Clear fec_capable to avoid using stale values */
4763 	intel_dp->fec_capable = 0;
4764 
4765 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4766 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4767 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4768 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4769 				     intel_dp->dsc_dpcd,
4770 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4771 			drm_err(&i915->drm,
4772 				"Failed to read DPCD register 0x%x\n",
4773 				DP_DSC_SUPPORT);
4774 
4775 		drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4776 			    (int)sizeof(intel_dp->dsc_dpcd),
4777 			    intel_dp->dsc_dpcd);
4778 
4779 		/* FEC is supported only on DP 1.4 */
4780 		if (!intel_dp_is_edp(intel_dp) &&
4781 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4782 				      &intel_dp->fec_capable) < 0)
4783 			drm_err(&i915->drm,
4784 				"Failed to read FEC DPCD register\n");
4785 
4786 		drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4787 			    intel_dp->fec_capable);
4788 	}
4789 }
4790 
4791 static bool
4792 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4793 {
4794 	struct drm_i915_private *dev_priv =
4795 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4796 
4797 	/* this function is meant to be called only once */
4798 	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4799 
4800 	if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0)
4801 		return false;
4802 
4803 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4804 			 drm_dp_is_branch(intel_dp->dpcd));
4805 
4806 	/*
4807 	 * Read the eDP display control registers.
4808 	 *
4809 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4810 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4811 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4812 	 * method). The display control registers should read zero if they're
4813 	 * not supported anyway.
4814 	 */
4815 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4816 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4817 			     sizeof(intel_dp->edp_dpcd))
4818 		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4819 			    (int)sizeof(intel_dp->edp_dpcd),
4820 			    intel_dp->edp_dpcd);
4821 
4822 	/*
4823 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4824 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4825 	 */
4826 	intel_psr_init_dpcd(intel_dp);
4827 
4828 	/* Read the eDP 1.4+ supported link rates. */
4829 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4830 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4831 		int i;
4832 
4833 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4834 				sink_rates, sizeof(sink_rates));
4835 
4836 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4837 			int val = le16_to_cpu(sink_rates[i]);
4838 
4839 			if (val == 0)
4840 				break;
4841 
4842 			/* Value read multiplied by 200kHz gives the per-lane
4843 			 * link rate in kHz. The source rates are, however,
4844 			 * stored in terms of LS_Clk kHz. The full conversion
4845 			 * back to symbols is
4846 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4847 			 */
4848 			intel_dp->sink_rates[i] = (val * 200) / 10;
4849 		}
4850 		intel_dp->num_sink_rates = i;
4851 	}
4852 
4853 	/*
4854 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4855 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4856 	 */
4857 	if (intel_dp->num_sink_rates)
4858 		intel_dp->use_rate_select = true;
4859 	else
4860 		intel_dp_set_sink_rates(intel_dp);
4861 
4862 	intel_dp_set_common_rates(intel_dp);
4863 
4864 	/* Read the eDP DSC DPCD registers */
4865 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4866 		intel_dp_get_dsc_sink_cap(intel_dp);
4867 
4868 	return true;
4869 }
4870 
4871 static bool
4872 intel_dp_has_sink_count(struct intel_dp *intel_dp)
4873 {
4874 	if (!intel_dp->attached_connector)
4875 		return false;
4876 
4877 	return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base,
4878 					  intel_dp->dpcd,
4879 					  &intel_dp->desc);
4880 }
4881 
4882 static bool
4883 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4884 {
4885 	int ret;
4886 
4887 	intel_dp_lttpr_init(intel_dp);
4888 
4889 	if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd))
4890 		return false;
4891 
4892 	/*
4893 	 * Don't clobber cached eDP rates. Also skip re-reading
4894 	 * the OUI/ID since we know it won't change.
4895 	 */
4896 	if (!intel_dp_is_edp(intel_dp)) {
4897 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4898 				 drm_dp_is_branch(intel_dp->dpcd));
4899 
4900 		intel_dp_set_sink_rates(intel_dp);
4901 		intel_dp_set_common_rates(intel_dp);
4902 	}
4903 
4904 	if (intel_dp_has_sink_count(intel_dp)) {
4905 		ret = drm_dp_read_sink_count(&intel_dp->aux);
4906 		if (ret < 0)
4907 			return false;
4908 
4909 		/*
4910 		 * Sink count can change between short pulse hpd hence
4911 		 * a member variable in intel_dp will track any changes
4912 		 * between short pulse interrupts.
4913 		 */
4914 		intel_dp->sink_count = ret;
4915 
4916 		/*
4917 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4918 		 * a dongle is present but no display. Unless we require to know
4919 		 * if a dongle is present or not, we don't need to update
4920 		 * downstream port information. So, an early return here saves
4921 		 * time from performing other operations which are not required.
4922 		 */
4923 		if (!intel_dp->sink_count)
4924 			return false;
4925 	}
4926 
4927 	return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd,
4928 					   intel_dp->downstream_ports) == 0;
4929 }
4930 
4931 static bool
4932 intel_dp_can_mst(struct intel_dp *intel_dp)
4933 {
4934 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4935 
4936 	return i915->params.enable_dp_mst &&
4937 		intel_dp->can_mst &&
4938 		drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4939 }
4940 
4941 static void
4942 intel_dp_configure_mst(struct intel_dp *intel_dp)
4943 {
4944 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4945 	struct intel_encoder *encoder =
4946 		&dp_to_dig_port(intel_dp)->base;
4947 	bool sink_can_mst = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4948 
4949 	drm_dbg_kms(&i915->drm,
4950 		    "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4951 		    encoder->base.base.id, encoder->base.name,
4952 		    yesno(intel_dp->can_mst), yesno(sink_can_mst),
4953 		    yesno(i915->params.enable_dp_mst));
4954 
4955 	if (!intel_dp->can_mst)
4956 		return;
4957 
4958 	intel_dp->is_mst = sink_can_mst &&
4959 		i915->params.enable_dp_mst;
4960 
4961 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4962 					intel_dp->is_mst);
4963 }
4964 
4965 static bool
4966 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4967 {
4968 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4969 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4970 		DP_DPRX_ESI_LEN;
4971 }
4972 
4973 bool
4974 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4975 		       const struct drm_connector_state *conn_state)
4976 {
4977 	/*
4978 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4979 	 * of Color Encoding Format and Content Color Gamut], in order to
4980 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4981 	 */
4982 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4983 		return true;
4984 
4985 	switch (conn_state->colorspace) {
4986 	case DRM_MODE_COLORIMETRY_SYCC_601:
4987 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4988 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4989 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4990 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4991 		return true;
4992 	default:
4993 		break;
4994 	}
4995 
4996 	return false;
4997 }
4998 
4999 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
5000 				     struct dp_sdp *sdp, size_t size)
5001 {
5002 	size_t length = sizeof(struct dp_sdp);
5003 
5004 	if (size < length)
5005 		return -ENOSPC;
5006 
5007 	memset(sdp, 0, size);
5008 
5009 	/*
5010 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
5011 	 * VSC SDP Header Bytes
5012 	 */
5013 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
5014 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
5015 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
5016 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
5017 
5018 	/*
5019 	 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
5020 	 * per DP 1.4a spec.
5021 	 */
5022 	if (vsc->revision != 0x5)
5023 		goto out;
5024 
5025 	/* VSC SDP Payload for DB16 through DB18 */
5026 	/* Pixel Encoding and Colorimetry Formats  */
5027 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
5028 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
5029 
5030 	switch (vsc->bpc) {
5031 	case 6:
5032 		/* 6bpc: 0x0 */
5033 		break;
5034 	case 8:
5035 		sdp->db[17] = 0x1; /* DB17[3:0] */
5036 		break;
5037 	case 10:
5038 		sdp->db[17] = 0x2;
5039 		break;
5040 	case 12:
5041 		sdp->db[17] = 0x3;
5042 		break;
5043 	case 16:
5044 		sdp->db[17] = 0x4;
5045 		break;
5046 	default:
5047 		MISSING_CASE(vsc->bpc);
5048 		break;
5049 	}
5050 	/* Dynamic Range and Component Bit Depth */
5051 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
5052 		sdp->db[17] |= 0x80;  /* DB17[7] */
5053 
5054 	/* Content Type */
5055 	sdp->db[18] = vsc->content_type & 0x7;
5056 
5057 out:
5058 	return length;
5059 }
5060 
5061 static ssize_t
5062 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
5063 					 struct dp_sdp *sdp,
5064 					 size_t size)
5065 {
5066 	size_t length = sizeof(struct dp_sdp);
5067 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
5068 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
5069 	ssize_t len;
5070 
5071 	if (size < length)
5072 		return -ENOSPC;
5073 
5074 	memset(sdp, 0, size);
5075 
5076 	len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
5077 	if (len < 0) {
5078 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
5079 		return -ENOSPC;
5080 	}
5081 
5082 	if (len != infoframe_size) {
5083 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
5084 		return -ENOSPC;
5085 	}
5086 
5087 	/*
5088 	 * Set up the infoframe sdp packet for HDR static metadata.
5089 	 * Prepare VSC Header for SU as per DP 1.4a spec,
5090 	 * Table 2-100 and Table 2-101
5091 	 */
5092 
5093 	/* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
5094 	sdp->sdp_header.HB0 = 0;
5095 	/*
5096 	 * Packet Type 80h + Non-audio INFOFRAME Type value
5097 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87
5098 	 * - 80h + Non-audio INFOFRAME Type value
5099 	 * - InfoFrame Type: 0x07
5100 	 *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
5101 	 */
5102 	sdp->sdp_header.HB1 = drm_infoframe->type;
5103 	/*
5104 	 * Least Significant Eight Bits of (Data Byte Count – 1)
5105 	 * infoframe_size - 1
5106 	 */
5107 	sdp->sdp_header.HB2 = 0x1D;
5108 	/* INFOFRAME SDP Version Number */
5109 	sdp->sdp_header.HB3 = (0x13 << 2);
5110 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
5111 	sdp->db[0] = drm_infoframe->version;
5112 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5113 	sdp->db[1] = drm_infoframe->length;
5114 	/*
5115 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
5116 	 * HDMI_INFOFRAME_HEADER_SIZE
5117 	 */
5118 	BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
5119 	memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
5120 	       HDMI_DRM_INFOFRAME_SIZE);
5121 
5122 	/*
5123 	 * Size of DP infoframe sdp packet for HDR static metadata consists of
5124 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
5125 	 * - Two Data Blocks: 2 bytes
5126 	 *    CTA Header Byte2 (INFOFRAME Version Number)
5127 	 *    CTA Header Byte3 (Length of INFOFRAME)
5128 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
5129 	 *
5130 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
5131 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
5132 	 * will pad rest of the size.
5133 	 */
5134 	return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
5135 }
5136 
5137 static void intel_write_dp_sdp(struct intel_encoder *encoder,
5138 			       const struct intel_crtc_state *crtc_state,
5139 			       unsigned int type)
5140 {
5141 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5142 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5143 	struct dp_sdp sdp = {};
5144 	ssize_t len;
5145 
5146 	if ((crtc_state->infoframes.enable &
5147 	     intel_hdmi_infoframe_enable(type)) == 0)
5148 		return;
5149 
5150 	switch (type) {
5151 	case DP_SDP_VSC:
5152 		len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
5153 					    sizeof(sdp));
5154 		break;
5155 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
5156 		len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
5157 							       &sdp, sizeof(sdp));
5158 		break;
5159 	default:
5160 		MISSING_CASE(type);
5161 		return;
5162 	}
5163 
5164 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
5165 		return;
5166 
5167 	dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
5168 }
5169 
5170 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
5171 			    const struct intel_crtc_state *crtc_state,
5172 			    struct drm_dp_vsc_sdp *vsc)
5173 {
5174 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5175 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5176 	struct dp_sdp sdp = {};
5177 	ssize_t len;
5178 
5179 	len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
5180 
5181 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
5182 		return;
5183 
5184 	dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
5185 					&sdp, len);
5186 }
5187 
5188 void intel_dp_set_infoframes(struct intel_encoder *encoder,
5189 			     bool enable,
5190 			     const struct intel_crtc_state *crtc_state,
5191 			     const struct drm_connector_state *conn_state)
5192 {
5193 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5194 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5195 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
5196 	u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
5197 			 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
5198 			 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
5199 	u32 val = intel_de_read(dev_priv, reg);
5200 
5201 	/* TODO: Add DSC case (DIP_ENABLE_PPS) */
5202 	/* When PSR is enabled, this routine doesn't disable VSC DIP */
5203 	if (intel_psr_enabled(intel_dp))
5204 		val &= ~dip_enable;
5205 	else
5206 		val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
5207 
5208 	if (!enable) {
5209 		intel_de_write(dev_priv, reg, val);
5210 		intel_de_posting_read(dev_priv, reg);
5211 		return;
5212 	}
5213 
5214 	intel_de_write(dev_priv, reg, val);
5215 	intel_de_posting_read(dev_priv, reg);
5216 
5217 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5218 	if (!intel_psr_enabled(intel_dp))
5219 		intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5220 
5221 	intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5222 }
5223 
5224 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5225 				   const void *buffer, size_t size)
5226 {
5227 	const struct dp_sdp *sdp = buffer;
5228 
5229 	if (size < sizeof(struct dp_sdp))
5230 		return -EINVAL;
5231 
5232 	memset(vsc, 0, size);
5233 
5234 	if (sdp->sdp_header.HB0 != 0)
5235 		return -EINVAL;
5236 
5237 	if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5238 		return -EINVAL;
5239 
5240 	vsc->sdp_type = sdp->sdp_header.HB1;
5241 	vsc->revision = sdp->sdp_header.HB2;
5242 	vsc->length = sdp->sdp_header.HB3;
5243 
5244 	if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5245 	    (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5246 		/*
5247 		 * - HB2 = 0x2, HB3 = 0x8
5248 		 *   VSC SDP supporting 3D stereo + PSR
5249 		 * - HB2 = 0x4, HB3 = 0xe
5250 		 *   VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5251 		 *   first scan line of the SU region (applies to eDP v1.4b
5252 		 *   and higher).
5253 		 */
5254 		return 0;
5255 	} else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5256 		/*
5257 		 * - HB2 = 0x5, HB3 = 0x13
5258 		 *   VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5259 		 *   Format.
5260 		 */
5261 		vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5262 		vsc->colorimetry = sdp->db[16] & 0xf;
5263 		vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5264 
5265 		switch (sdp->db[17] & 0x7) {
5266 		case 0x0:
5267 			vsc->bpc = 6;
5268 			break;
5269 		case 0x1:
5270 			vsc->bpc = 8;
5271 			break;
5272 		case 0x2:
5273 			vsc->bpc = 10;
5274 			break;
5275 		case 0x3:
5276 			vsc->bpc = 12;
5277 			break;
5278 		case 0x4:
5279 			vsc->bpc = 16;
5280 			break;
5281 		default:
5282 			MISSING_CASE(sdp->db[17] & 0x7);
5283 			return -EINVAL;
5284 		}
5285 
5286 		vsc->content_type = sdp->db[18] & 0x7;
5287 	} else {
5288 		return -EINVAL;
5289 	}
5290 
5291 	return 0;
5292 }
5293 
5294 static int
5295 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5296 					   const void *buffer, size_t size)
5297 {
5298 	int ret;
5299 
5300 	const struct dp_sdp *sdp = buffer;
5301 
5302 	if (size < sizeof(struct dp_sdp))
5303 		return -EINVAL;
5304 
5305 	if (sdp->sdp_header.HB0 != 0)
5306 		return -EINVAL;
5307 
5308 	if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5309 		return -EINVAL;
5310 
5311 	/*
5312 	 * Least Significant Eight Bits of (Data Byte Count – 1)
5313 	 * 1Dh (i.e., Data Byte Count = 30 bytes).
5314 	 */
5315 	if (sdp->sdp_header.HB2 != 0x1D)
5316 		return -EINVAL;
5317 
5318 	/* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5319 	if ((sdp->sdp_header.HB3 & 0x3) != 0)
5320 		return -EINVAL;
5321 
5322 	/* INFOFRAME SDP Version Number */
5323 	if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5324 		return -EINVAL;
5325 
5326 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
5327 	if (sdp->db[0] != 1)
5328 		return -EINVAL;
5329 
5330 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5331 	if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5332 		return -EINVAL;
5333 
5334 	ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5335 					     HDMI_DRM_INFOFRAME_SIZE);
5336 
5337 	return ret;
5338 }
5339 
5340 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5341 				  struct intel_crtc_state *crtc_state,
5342 				  struct drm_dp_vsc_sdp *vsc)
5343 {
5344 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5345 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5346 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5347 	unsigned int type = DP_SDP_VSC;
5348 	struct dp_sdp sdp = {};
5349 	int ret;
5350 
5351 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5352 	if (intel_psr_enabled(intel_dp))
5353 		return;
5354 
5355 	if ((crtc_state->infoframes.enable &
5356 	     intel_hdmi_infoframe_enable(type)) == 0)
5357 		return;
5358 
5359 	dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5360 
5361 	ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5362 
5363 	if (ret)
5364 		drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5365 }
5366 
5367 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5368 						     struct intel_crtc_state *crtc_state,
5369 						     struct hdmi_drm_infoframe *drm_infoframe)
5370 {
5371 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5372 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5373 	unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5374 	struct dp_sdp sdp = {};
5375 	int ret;
5376 
5377 	if ((crtc_state->infoframes.enable &
5378 	    intel_hdmi_infoframe_enable(type)) == 0)
5379 		return;
5380 
5381 	dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5382 				 sizeof(sdp));
5383 
5384 	ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5385 							 sizeof(sdp));
5386 
5387 	if (ret)
5388 		drm_dbg_kms(&dev_priv->drm,
5389 			    "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5390 }
5391 
5392 void intel_read_dp_sdp(struct intel_encoder *encoder,
5393 		       struct intel_crtc_state *crtc_state,
5394 		       unsigned int type)
5395 {
5396 	if (encoder->type != INTEL_OUTPUT_DDI)
5397 		return;
5398 
5399 	switch (type) {
5400 	case DP_SDP_VSC:
5401 		intel_read_dp_vsc_sdp(encoder, crtc_state,
5402 				      &crtc_state->infoframes.vsc);
5403 		break;
5404 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
5405 		intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5406 							 &crtc_state->infoframes.drm.drm);
5407 		break;
5408 	default:
5409 		MISSING_CASE(type);
5410 		break;
5411 	}
5412 }
5413 
5414 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5415 {
5416 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5417 	int status = 0;
5418 	int test_link_rate;
5419 	u8 test_lane_count, test_link_bw;
5420 	/* (DP CTS 1.2)
5421 	 * 4.3.1.11
5422 	 */
5423 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5424 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5425 				   &test_lane_count);
5426 
5427 	if (status <= 0) {
5428 		drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5429 		return DP_TEST_NAK;
5430 	}
5431 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5432 
5433 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5434 				   &test_link_bw);
5435 	if (status <= 0) {
5436 		drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5437 		return DP_TEST_NAK;
5438 	}
5439 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5440 
5441 	/* Validate the requested link rate and lane count */
5442 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5443 					test_lane_count))
5444 		return DP_TEST_NAK;
5445 
5446 	intel_dp->compliance.test_lane_count = test_lane_count;
5447 	intel_dp->compliance.test_link_rate = test_link_rate;
5448 
5449 	return DP_TEST_ACK;
5450 }
5451 
5452 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5453 {
5454 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5455 	u8 test_pattern;
5456 	u8 test_misc;
5457 	__be16 h_width, v_height;
5458 	int status = 0;
5459 
5460 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
5461 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5462 				   &test_pattern);
5463 	if (status <= 0) {
5464 		drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5465 		return DP_TEST_NAK;
5466 	}
5467 	if (test_pattern != DP_COLOR_RAMP)
5468 		return DP_TEST_NAK;
5469 
5470 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5471 				  &h_width, 2);
5472 	if (status <= 0) {
5473 		drm_dbg_kms(&i915->drm, "H Width read failed\n");
5474 		return DP_TEST_NAK;
5475 	}
5476 
5477 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5478 				  &v_height, 2);
5479 	if (status <= 0) {
5480 		drm_dbg_kms(&i915->drm, "V Height read failed\n");
5481 		return DP_TEST_NAK;
5482 	}
5483 
5484 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5485 				   &test_misc);
5486 	if (status <= 0) {
5487 		drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5488 		return DP_TEST_NAK;
5489 	}
5490 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5491 		return DP_TEST_NAK;
5492 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5493 		return DP_TEST_NAK;
5494 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5495 	case DP_TEST_BIT_DEPTH_6:
5496 		intel_dp->compliance.test_data.bpc = 6;
5497 		break;
5498 	case DP_TEST_BIT_DEPTH_8:
5499 		intel_dp->compliance.test_data.bpc = 8;
5500 		break;
5501 	default:
5502 		return DP_TEST_NAK;
5503 	}
5504 
5505 	intel_dp->compliance.test_data.video_pattern = test_pattern;
5506 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5507 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5508 	/* Set test active flag here so userspace doesn't interrupt things */
5509 	intel_dp->compliance.test_active = true;
5510 
5511 	return DP_TEST_ACK;
5512 }
5513 
5514 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5515 {
5516 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5517 	u8 test_result = DP_TEST_ACK;
5518 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5519 	struct drm_connector *connector = &intel_connector->base;
5520 
5521 	if (intel_connector->detect_edid == NULL ||
5522 	    connector->edid_corrupt ||
5523 	    intel_dp->aux.i2c_defer_count > 6) {
5524 		/* Check EDID read for NACKs, DEFERs and corruption
5525 		 * (DP CTS 1.2 Core r1.1)
5526 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
5527 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
5528 		 *    4.2.2.6 : EDID corruption detected
5529 		 * Use failsafe mode for all cases
5530 		 */
5531 		if (intel_dp->aux.i2c_nack_count > 0 ||
5532 			intel_dp->aux.i2c_defer_count > 0)
5533 			drm_dbg_kms(&i915->drm,
5534 				    "EDID read had %d NACKs, %d DEFERs\n",
5535 				    intel_dp->aux.i2c_nack_count,
5536 				    intel_dp->aux.i2c_defer_count);
5537 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5538 	} else {
5539 		struct edid *block = intel_connector->detect_edid;
5540 
5541 		/* We have to write the checksum
5542 		 * of the last block read
5543 		 */
5544 		block += intel_connector->detect_edid->extensions;
5545 
5546 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5547 				       block->checksum) <= 0)
5548 			drm_dbg_kms(&i915->drm,
5549 				    "Failed to write EDID checksum\n");
5550 
5551 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5552 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5553 	}
5554 
5555 	/* Set test active flag here so userspace doesn't interrupt things */
5556 	intel_dp->compliance.test_active = true;
5557 
5558 	return test_result;
5559 }
5560 
5561 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp,
5562 					const struct intel_crtc_state *crtc_state)
5563 {
5564 	struct drm_i915_private *dev_priv =
5565 			to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5566 	struct drm_dp_phy_test_params *data =
5567 			&intel_dp->compliance.test_data.phytest;
5568 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5569 	enum pipe pipe = crtc->pipe;
5570 	u32 pattern_val;
5571 
5572 	switch (data->phy_pattern) {
5573 	case DP_PHY_TEST_PATTERN_NONE:
5574 		DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5575 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5576 		break;
5577 	case DP_PHY_TEST_PATTERN_D10_2:
5578 		DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5579 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5580 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5581 		break;
5582 	case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5583 		DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5584 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5585 			       DDI_DP_COMP_CTL_ENABLE |
5586 			       DDI_DP_COMP_CTL_SCRAMBLED_0);
5587 		break;
5588 	case DP_PHY_TEST_PATTERN_PRBS7:
5589 		DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5590 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5591 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5592 		break;
5593 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5594 		/*
5595 		 * FIXME: Ideally pattern should come from DPCD 0x250. As
5596 		 * current firmware of DPR-100 could not set it, so hardcoding
5597 		 * now for complaince test.
5598 		 */
5599 		DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5600 		pattern_val = 0x3e0f83e0;
5601 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5602 		pattern_val = 0x0f83e0f8;
5603 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5604 		pattern_val = 0x0000f83e;
5605 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5606 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5607 			       DDI_DP_COMP_CTL_ENABLE |
5608 			       DDI_DP_COMP_CTL_CUSTOM80);
5609 		break;
5610 	case DP_PHY_TEST_PATTERN_CP2520:
5611 		/*
5612 		 * FIXME: Ideally pattern should come from DPCD 0x24A. As
5613 		 * current firmware of DPR-100 could not set it, so hardcoding
5614 		 * now for complaince test.
5615 		 */
5616 		DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5617 		pattern_val = 0xFB;
5618 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5619 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5620 			       pattern_val);
5621 		break;
5622 	default:
5623 		WARN(1, "Invalid Phy Test Pattern\n");
5624 	}
5625 }
5626 
5627 static void
5628 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp,
5629 				  const struct intel_crtc_state *crtc_state)
5630 {
5631 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5632 	struct drm_device *dev = dig_port->base.base.dev;
5633 	struct drm_i915_private *dev_priv = to_i915(dev);
5634 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5635 	enum pipe pipe = crtc->pipe;
5636 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5637 
5638 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5639 						 TRANS_DDI_FUNC_CTL(pipe));
5640 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5641 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5642 
5643 	trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5644 				      TGL_TRANS_DDI_PORT_MASK);
5645 	trans_conf_value &= ~PIPECONF_ENABLE;
5646 	dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5647 
5648 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5649 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5650 		       trans_ddi_func_ctl_value);
5651 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5652 }
5653 
5654 static void
5655 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp,
5656 				 const struct intel_crtc_state *crtc_state)
5657 {
5658 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5659 	struct drm_device *dev = dig_port->base.base.dev;
5660 	struct drm_i915_private *dev_priv = to_i915(dev);
5661 	enum port port = dig_port->base.port;
5662 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5663 	enum pipe pipe = crtc->pipe;
5664 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5665 
5666 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5667 						 TRANS_DDI_FUNC_CTL(pipe));
5668 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5669 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5670 
5671 	trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5672 				    TGL_TRANS_DDI_SELECT_PORT(port);
5673 	trans_conf_value |= PIPECONF_ENABLE;
5674 	dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5675 
5676 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5677 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5678 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5679 		       trans_ddi_func_ctl_value);
5680 }
5681 
5682 static void intel_dp_process_phy_request(struct intel_dp *intel_dp,
5683 					 const struct intel_crtc_state *crtc_state)
5684 {
5685 	struct drm_dp_phy_test_params *data =
5686 		&intel_dp->compliance.test_data.phytest;
5687 	u8 link_status[DP_LINK_STATUS_SIZE];
5688 
5689 	if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX,
5690 					     link_status) < 0) {
5691 		DRM_DEBUG_KMS("failed to get link status\n");
5692 		return;
5693 	}
5694 
5695 	/* retrieve vswing & pre-emphasis setting */
5696 	intel_dp_get_adjust_train(intel_dp, crtc_state, DP_PHY_DPRX,
5697 				  link_status);
5698 
5699 	intel_dp_autotest_phy_ddi_disable(intel_dp, crtc_state);
5700 
5701 	intel_dp_set_signal_levels(intel_dp, crtc_state);
5702 
5703 	intel_dp_phy_pattern_update(intel_dp, crtc_state);
5704 
5705 	intel_dp_autotest_phy_ddi_enable(intel_dp, crtc_state);
5706 
5707 	drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5708 				    link_status[DP_DPCD_REV]);
5709 }
5710 
5711 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5712 {
5713 	struct drm_dp_phy_test_params *data =
5714 		&intel_dp->compliance.test_data.phytest;
5715 
5716 	if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5717 		DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5718 		return DP_TEST_NAK;
5719 	}
5720 
5721 	/* Set test active flag here so userspace doesn't interrupt things */
5722 	intel_dp->compliance.test_active = true;
5723 
5724 	return DP_TEST_ACK;
5725 }
5726 
5727 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5728 {
5729 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5730 	u8 response = DP_TEST_NAK;
5731 	u8 request = 0;
5732 	int status;
5733 
5734 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5735 	if (status <= 0) {
5736 		drm_dbg_kms(&i915->drm,
5737 			    "Could not read test request from sink\n");
5738 		goto update_status;
5739 	}
5740 
5741 	switch (request) {
5742 	case DP_TEST_LINK_TRAINING:
5743 		drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5744 		response = intel_dp_autotest_link_training(intel_dp);
5745 		break;
5746 	case DP_TEST_LINK_VIDEO_PATTERN:
5747 		drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5748 		response = intel_dp_autotest_video_pattern(intel_dp);
5749 		break;
5750 	case DP_TEST_LINK_EDID_READ:
5751 		drm_dbg_kms(&i915->drm, "EDID test requested\n");
5752 		response = intel_dp_autotest_edid(intel_dp);
5753 		break;
5754 	case DP_TEST_LINK_PHY_TEST_PATTERN:
5755 		drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5756 		response = intel_dp_autotest_phy_pattern(intel_dp);
5757 		break;
5758 	default:
5759 		drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5760 			    request);
5761 		break;
5762 	}
5763 
5764 	if (response & DP_TEST_ACK)
5765 		intel_dp->compliance.test_type = request;
5766 
5767 update_status:
5768 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5769 	if (status <= 0)
5770 		drm_dbg_kms(&i915->drm,
5771 			    "Could not write test response to sink\n");
5772 }
5773 
5774 /**
5775  * intel_dp_check_mst_status - service any pending MST interrupts, check link status
5776  * @intel_dp: Intel DP struct
5777  *
5778  * Read any pending MST interrupts, call MST core to handle these and ack the
5779  * interrupts. Check if the main and AUX link state is ok.
5780  *
5781  * Returns:
5782  * - %true if pending interrupts were serviced (or no interrupts were
5783  *   pending) w/o detecting an error condition.
5784  * - %false if an error condition - like AUX failure or a loss of link - is
5785  *   detected, which needs servicing from the hotplug work.
5786  */
5787 static bool
5788 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5789 {
5790 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5791 	bool link_ok = true;
5792 
5793 	drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0);
5794 
5795 	for (;;) {
5796 		u8 esi[DP_DPRX_ESI_LEN] = {};
5797 		bool handled;
5798 		int retry;
5799 
5800 		if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) {
5801 			drm_dbg_kms(&i915->drm,
5802 				    "failed to get ESI - device may have failed\n");
5803 			link_ok = false;
5804 
5805 			break;
5806 		}
5807 
5808 		/* check link status - esi[10] = 0x200c */
5809 		if (intel_dp->active_mst_links > 0 && link_ok &&
5810 		    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5811 			drm_dbg_kms(&i915->drm,
5812 				    "channel EQ not ok, retraining\n");
5813 			link_ok = false;
5814 		}
5815 
5816 		drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5817 
5818 		drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5819 		if (!handled)
5820 			break;
5821 
5822 		for (retry = 0; retry < 3; retry++) {
5823 			int wret;
5824 
5825 			wret = drm_dp_dpcd_write(&intel_dp->aux,
5826 						 DP_SINK_COUNT_ESI+1,
5827 						 &esi[1], 3);
5828 			if (wret == 3)
5829 				break;
5830 		}
5831 	}
5832 
5833 	return link_ok;
5834 }
5835 
5836 static bool
5837 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5838 {
5839 	u8 link_status[DP_LINK_STATUS_SIZE];
5840 
5841 	if (!intel_dp->link_trained)
5842 		return false;
5843 
5844 	/*
5845 	 * While PSR source HW is enabled, it will control main-link sending
5846 	 * frames, enabling and disabling it so trying to do a retrain will fail
5847 	 * as the link would or not be on or it could mix training patterns
5848 	 * and frame data at the same time causing retrain to fail.
5849 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5850 	 * any link status error.
5851 	 */
5852 	if (intel_psr_enabled(intel_dp))
5853 		return false;
5854 
5855 	if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX,
5856 					     link_status) < 0)
5857 		return false;
5858 
5859 	/*
5860 	 * Validate the cached values of intel_dp->link_rate and
5861 	 * intel_dp->lane_count before attempting to retrain.
5862 	 *
5863 	 * FIXME would be nice to user the crtc state here, but since
5864 	 * we need to call this from the short HPD handler that seems
5865 	 * a bit hard.
5866 	 */
5867 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5868 					intel_dp->lane_count))
5869 		return false;
5870 
5871 	/* Retrain if Channel EQ or CR not ok */
5872 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5873 }
5874 
5875 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5876 				   const struct drm_connector_state *conn_state)
5877 {
5878 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5879 	struct intel_encoder *encoder;
5880 	enum pipe pipe;
5881 
5882 	if (!conn_state->best_encoder)
5883 		return false;
5884 
5885 	/* SST */
5886 	encoder = &dp_to_dig_port(intel_dp)->base;
5887 	if (conn_state->best_encoder == &encoder->base)
5888 		return true;
5889 
5890 	/* MST */
5891 	for_each_pipe(i915, pipe) {
5892 		encoder = &intel_dp->mst_encoders[pipe]->base;
5893 		if (conn_state->best_encoder == &encoder->base)
5894 			return true;
5895 	}
5896 
5897 	return false;
5898 }
5899 
5900 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5901 				      struct drm_modeset_acquire_ctx *ctx,
5902 				      u32 *crtc_mask)
5903 {
5904 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5905 	struct drm_connector_list_iter conn_iter;
5906 	struct intel_connector *connector;
5907 	int ret = 0;
5908 
5909 	*crtc_mask = 0;
5910 
5911 	if (!intel_dp_needs_link_retrain(intel_dp))
5912 		return 0;
5913 
5914 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5915 	for_each_intel_connector_iter(connector, &conn_iter) {
5916 		struct drm_connector_state *conn_state =
5917 			connector->base.state;
5918 		struct intel_crtc_state *crtc_state;
5919 		struct intel_crtc *crtc;
5920 
5921 		if (!intel_dp_has_connector(intel_dp, conn_state))
5922 			continue;
5923 
5924 		crtc = to_intel_crtc(conn_state->crtc);
5925 		if (!crtc)
5926 			continue;
5927 
5928 		ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5929 		if (ret)
5930 			break;
5931 
5932 		crtc_state = to_intel_crtc_state(crtc->base.state);
5933 
5934 		drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5935 
5936 		if (!crtc_state->hw.active)
5937 			continue;
5938 
5939 		if (conn_state->commit &&
5940 		    !try_wait_for_completion(&conn_state->commit->hw_done))
5941 			continue;
5942 
5943 		*crtc_mask |= drm_crtc_mask(&crtc->base);
5944 	}
5945 	drm_connector_list_iter_end(&conn_iter);
5946 
5947 	if (!intel_dp_needs_link_retrain(intel_dp))
5948 		*crtc_mask = 0;
5949 
5950 	return ret;
5951 }
5952 
5953 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5954 {
5955 	struct intel_connector *connector = intel_dp->attached_connector;
5956 
5957 	return connector->base.status == connector_status_connected ||
5958 		intel_dp->is_mst;
5959 }
5960 
5961 int intel_dp_retrain_link(struct intel_encoder *encoder,
5962 			  struct drm_modeset_acquire_ctx *ctx)
5963 {
5964 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5965 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5966 	struct intel_crtc *crtc;
5967 	u32 crtc_mask;
5968 	int ret;
5969 
5970 	if (!intel_dp_is_connected(intel_dp))
5971 		return 0;
5972 
5973 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5974 			       ctx);
5975 	if (ret)
5976 		return ret;
5977 
5978 	ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5979 	if (ret)
5980 		return ret;
5981 
5982 	if (crtc_mask == 0)
5983 		return 0;
5984 
5985 	drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5986 		    encoder->base.base.id, encoder->base.name);
5987 
5988 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5989 		const struct intel_crtc_state *crtc_state =
5990 			to_intel_crtc_state(crtc->base.state);
5991 
5992 		/* Suppress underruns caused by re-training */
5993 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5994 		if (crtc_state->has_pch_encoder)
5995 			intel_set_pch_fifo_underrun_reporting(dev_priv,
5996 							      intel_crtc_pch_transcoder(crtc), false);
5997 	}
5998 
5999 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
6000 		const struct intel_crtc_state *crtc_state =
6001 			to_intel_crtc_state(crtc->base.state);
6002 
6003 		/* retrain on the MST master transcoder */
6004 		if (INTEL_GEN(dev_priv) >= 12 &&
6005 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST) &&
6006 		    !intel_dp_mst_is_master_trans(crtc_state))
6007 			continue;
6008 
6009 		intel_dp_start_link_train(intel_dp, crtc_state);
6010 		intel_dp_stop_link_train(intel_dp, crtc_state);
6011 		break;
6012 	}
6013 
6014 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
6015 		const struct intel_crtc_state *crtc_state =
6016 			to_intel_crtc_state(crtc->base.state);
6017 
6018 		/* Keep underrun reporting disabled until things are stable */
6019 		intel_wait_for_vblank(dev_priv, crtc->pipe);
6020 
6021 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
6022 		if (crtc_state->has_pch_encoder)
6023 			intel_set_pch_fifo_underrun_reporting(dev_priv,
6024 							      intel_crtc_pch_transcoder(crtc), true);
6025 	}
6026 
6027 	return 0;
6028 }
6029 
6030 static int intel_dp_prep_phy_test(struct intel_dp *intel_dp,
6031 				  struct drm_modeset_acquire_ctx *ctx,
6032 				  u32 *crtc_mask)
6033 {
6034 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6035 	struct drm_connector_list_iter conn_iter;
6036 	struct intel_connector *connector;
6037 	int ret = 0;
6038 
6039 	*crtc_mask = 0;
6040 
6041 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
6042 	for_each_intel_connector_iter(connector, &conn_iter) {
6043 		struct drm_connector_state *conn_state =
6044 			connector->base.state;
6045 		struct intel_crtc_state *crtc_state;
6046 		struct intel_crtc *crtc;
6047 
6048 		if (!intel_dp_has_connector(intel_dp, conn_state))
6049 			continue;
6050 
6051 		crtc = to_intel_crtc(conn_state->crtc);
6052 		if (!crtc)
6053 			continue;
6054 
6055 		ret = drm_modeset_lock(&crtc->base.mutex, ctx);
6056 		if (ret)
6057 			break;
6058 
6059 		crtc_state = to_intel_crtc_state(crtc->base.state);
6060 
6061 		drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
6062 
6063 		if (!crtc_state->hw.active)
6064 			continue;
6065 
6066 		if (conn_state->commit &&
6067 		    !try_wait_for_completion(&conn_state->commit->hw_done))
6068 			continue;
6069 
6070 		*crtc_mask |= drm_crtc_mask(&crtc->base);
6071 	}
6072 	drm_connector_list_iter_end(&conn_iter);
6073 
6074 	return ret;
6075 }
6076 
6077 static int intel_dp_do_phy_test(struct intel_encoder *encoder,
6078 				struct drm_modeset_acquire_ctx *ctx)
6079 {
6080 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6081 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6082 	struct intel_crtc *crtc;
6083 	u32 crtc_mask;
6084 	int ret;
6085 
6086 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
6087 			       ctx);
6088 	if (ret)
6089 		return ret;
6090 
6091 	ret = intel_dp_prep_phy_test(intel_dp, ctx, &crtc_mask);
6092 	if (ret)
6093 		return ret;
6094 
6095 	if (crtc_mask == 0)
6096 		return 0;
6097 
6098 	drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] PHY test\n",
6099 		    encoder->base.base.id, encoder->base.name);
6100 
6101 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
6102 		const struct intel_crtc_state *crtc_state =
6103 			to_intel_crtc_state(crtc->base.state);
6104 
6105 		/* test on the MST master transcoder */
6106 		if (INTEL_GEN(dev_priv) >= 12 &&
6107 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST) &&
6108 		    !intel_dp_mst_is_master_trans(crtc_state))
6109 			continue;
6110 
6111 		intel_dp_process_phy_request(intel_dp, crtc_state);
6112 		break;
6113 	}
6114 
6115 	return 0;
6116 }
6117 
6118 static void intel_dp_phy_test(struct intel_encoder *encoder)
6119 {
6120 	struct drm_modeset_acquire_ctx ctx;
6121 	int ret;
6122 
6123 	drm_modeset_acquire_init(&ctx, 0);
6124 
6125 	for (;;) {
6126 		ret = intel_dp_do_phy_test(encoder, &ctx);
6127 
6128 		if (ret == -EDEADLK) {
6129 			drm_modeset_backoff(&ctx);
6130 			continue;
6131 		}
6132 
6133 		break;
6134 	}
6135 
6136 	drm_modeset_drop_locks(&ctx);
6137 	drm_modeset_acquire_fini(&ctx);
6138 	drm_WARN(encoder->base.dev, ret,
6139 		 "Acquiring modeset locks failed with %i\n", ret);
6140 }
6141 
6142 /*
6143  * If display is now connected check links status,
6144  * there has been known issues of link loss triggering
6145  * long pulse.
6146  *
6147  * Some sinks (eg. ASUS PB287Q) seem to perform some
6148  * weird HPD ping pong during modesets. So we can apparently
6149  * end up with HPD going low during a modeset, and then
6150  * going back up soon after. And once that happens we must
6151  * retrain the link to get a picture. That's in case no
6152  * userspace component reacted to intermittent HPD dip.
6153  */
6154 static enum intel_hotplug_state
6155 intel_dp_hotplug(struct intel_encoder *encoder,
6156 		 struct intel_connector *connector)
6157 {
6158 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6159 	struct drm_modeset_acquire_ctx ctx;
6160 	enum intel_hotplug_state state;
6161 	int ret;
6162 
6163 	if (intel_dp->compliance.test_active &&
6164 	    intel_dp->compliance.test_type == DP_TEST_LINK_PHY_TEST_PATTERN) {
6165 		intel_dp_phy_test(encoder);
6166 		/* just do the PHY test and nothing else */
6167 		return INTEL_HOTPLUG_UNCHANGED;
6168 	}
6169 
6170 	state = intel_encoder_hotplug(encoder, connector);
6171 
6172 	drm_modeset_acquire_init(&ctx, 0);
6173 
6174 	for (;;) {
6175 		ret = intel_dp_retrain_link(encoder, &ctx);
6176 
6177 		if (ret == -EDEADLK) {
6178 			drm_modeset_backoff(&ctx);
6179 			continue;
6180 		}
6181 
6182 		break;
6183 	}
6184 
6185 	drm_modeset_drop_locks(&ctx);
6186 	drm_modeset_acquire_fini(&ctx);
6187 	drm_WARN(encoder->base.dev, ret,
6188 		 "Acquiring modeset locks failed with %i\n", ret);
6189 
6190 	/*
6191 	 * Keeping it consistent with intel_ddi_hotplug() and
6192 	 * intel_hdmi_hotplug().
6193 	 */
6194 	if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
6195 		state = INTEL_HOTPLUG_RETRY;
6196 
6197 	return state;
6198 }
6199 
6200 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
6201 {
6202 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6203 	u8 val;
6204 
6205 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
6206 		return;
6207 
6208 	if (drm_dp_dpcd_readb(&intel_dp->aux,
6209 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
6210 		return;
6211 
6212 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
6213 
6214 	if (val & DP_AUTOMATED_TEST_REQUEST)
6215 		intel_dp_handle_test_request(intel_dp);
6216 
6217 	if (val & DP_CP_IRQ)
6218 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
6219 
6220 	if (val & DP_SINK_SPECIFIC_IRQ)
6221 		drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
6222 }
6223 
6224 /*
6225  * According to DP spec
6226  * 5.1.2:
6227  *  1. Read DPCD
6228  *  2. Configure link according to Receiver Capabilities
6229  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
6230  *  4. Check link status on receipt of hot-plug interrupt
6231  *
6232  * intel_dp_short_pulse -  handles short pulse interrupts
6233  * when full detection is not required.
6234  * Returns %true if short pulse is handled and full detection
6235  * is NOT required and %false otherwise.
6236  */
6237 static bool
6238 intel_dp_short_pulse(struct intel_dp *intel_dp)
6239 {
6240 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6241 	u8 old_sink_count = intel_dp->sink_count;
6242 	bool ret;
6243 
6244 	/*
6245 	 * Clearing compliance test variables to allow capturing
6246 	 * of values for next automated test request.
6247 	 */
6248 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6249 
6250 	/*
6251 	 * Now read the DPCD to see if it's actually running
6252 	 * If the current value of sink count doesn't match with
6253 	 * the value that was stored earlier or dpcd read failed
6254 	 * we need to do full detection
6255 	 */
6256 	ret = intel_dp_get_dpcd(intel_dp);
6257 
6258 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
6259 		/* No need to proceed if we are going to do full detect */
6260 		return false;
6261 	}
6262 
6263 	intel_dp_check_service_irq(intel_dp);
6264 
6265 	/* Handle CEC interrupts, if any */
6266 	drm_dp_cec_irq(&intel_dp->aux);
6267 
6268 	/* defer to the hotplug work for link retraining if needed */
6269 	if (intel_dp_needs_link_retrain(intel_dp))
6270 		return false;
6271 
6272 	intel_psr_short_pulse(intel_dp);
6273 
6274 	switch (intel_dp->compliance.test_type) {
6275 	case DP_TEST_LINK_TRAINING:
6276 		drm_dbg_kms(&dev_priv->drm,
6277 			    "Link Training Compliance Test requested\n");
6278 		/* Send a Hotplug Uevent to userspace to start modeset */
6279 		drm_kms_helper_hotplug_event(&dev_priv->drm);
6280 		break;
6281 	case DP_TEST_LINK_PHY_TEST_PATTERN:
6282 		drm_dbg_kms(&dev_priv->drm,
6283 			    "PHY test pattern Compliance Test requested\n");
6284 		/*
6285 		 * Schedule long hpd to do the test
6286 		 *
6287 		 * FIXME get rid of the ad-hoc phy test modeset code
6288 		 * and properly incorporate it into the normal modeset.
6289 		 */
6290 		return false;
6291 	}
6292 
6293 	return true;
6294 }
6295 
6296 /* XXX this is probably wrong for multiple downstream ports */
6297 static enum drm_connector_status
6298 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
6299 {
6300 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6301 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6302 	u8 *dpcd = intel_dp->dpcd;
6303 	u8 type;
6304 
6305 	if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp)))
6306 		return connector_status_connected;
6307 
6308 	lspcon_resume(dig_port);
6309 
6310 	if (!intel_dp_get_dpcd(intel_dp))
6311 		return connector_status_disconnected;
6312 
6313 	/* if there's no downstream port, we're done */
6314 	if (!drm_dp_is_branch(dpcd))
6315 		return connector_status_connected;
6316 
6317 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
6318 	if (intel_dp_has_sink_count(intel_dp) &&
6319 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
6320 		return intel_dp->sink_count ?
6321 		connector_status_connected : connector_status_disconnected;
6322 	}
6323 
6324 	if (intel_dp_can_mst(intel_dp))
6325 		return connector_status_connected;
6326 
6327 	/* If no HPD, poke DDC gently */
6328 	if (drm_probe_ddc(&intel_dp->aux.ddc))
6329 		return connector_status_connected;
6330 
6331 	/* Well we tried, say unknown for unreliable port types */
6332 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
6333 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
6334 		if (type == DP_DS_PORT_TYPE_VGA ||
6335 		    type == DP_DS_PORT_TYPE_NON_EDID)
6336 			return connector_status_unknown;
6337 	} else {
6338 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6339 			DP_DWN_STRM_PORT_TYPE_MASK;
6340 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6341 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
6342 			return connector_status_unknown;
6343 	}
6344 
6345 	/* Anything else is out of spec, warn and ignore */
6346 	drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6347 	return connector_status_disconnected;
6348 }
6349 
6350 static enum drm_connector_status
6351 edp_detect(struct intel_dp *intel_dp)
6352 {
6353 	return connector_status_connected;
6354 }
6355 
6356 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6357 {
6358 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6359 	u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6360 
6361 	return intel_de_read(dev_priv, SDEISR) & bit;
6362 }
6363 
6364 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6365 {
6366 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6367 	u32 bit;
6368 
6369 	switch (encoder->hpd_pin) {
6370 	case HPD_PORT_B:
6371 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6372 		break;
6373 	case HPD_PORT_C:
6374 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6375 		break;
6376 	case HPD_PORT_D:
6377 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6378 		break;
6379 	default:
6380 		MISSING_CASE(encoder->hpd_pin);
6381 		return false;
6382 	}
6383 
6384 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6385 }
6386 
6387 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6388 {
6389 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6390 	u32 bit;
6391 
6392 	switch (encoder->hpd_pin) {
6393 	case HPD_PORT_B:
6394 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6395 		break;
6396 	case HPD_PORT_C:
6397 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6398 		break;
6399 	case HPD_PORT_D:
6400 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6401 		break;
6402 	default:
6403 		MISSING_CASE(encoder->hpd_pin);
6404 		return false;
6405 	}
6406 
6407 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6408 }
6409 
6410 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6411 {
6412 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6413 	u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6414 
6415 	return intel_de_read(dev_priv, DEISR) & bit;
6416 }
6417 
6418 /*
6419  * intel_digital_port_connected - is the specified port connected?
6420  * @encoder: intel_encoder
6421  *
6422  * In cases where there's a connector physically connected but it can't be used
6423  * by our hardware we also return false, since the rest of the driver should
6424  * pretty much treat the port as disconnected. This is relevant for type-C
6425  * (starting on ICL) where there's ownership involved.
6426  *
6427  * Return %true if port is connected, %false otherwise.
6428  */
6429 bool intel_digital_port_connected(struct intel_encoder *encoder)
6430 {
6431 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6432 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6433 	bool is_connected = false;
6434 	intel_wakeref_t wakeref;
6435 
6436 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6437 		is_connected = dig_port->connected(encoder);
6438 
6439 	return is_connected;
6440 }
6441 
6442 static struct edid *
6443 intel_dp_get_edid(struct intel_dp *intel_dp)
6444 {
6445 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6446 
6447 	/* use cached edid if we have one */
6448 	if (intel_connector->edid) {
6449 		/* invalid edid */
6450 		if (IS_ERR(intel_connector->edid))
6451 			return NULL;
6452 
6453 		return drm_edid_duplicate(intel_connector->edid);
6454 	} else
6455 		return drm_get_edid(&intel_connector->base,
6456 				    &intel_dp->aux.ddc);
6457 }
6458 
6459 static void
6460 intel_dp_update_dfp(struct intel_dp *intel_dp,
6461 		    const struct edid *edid)
6462 {
6463 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6464 	struct intel_connector *connector = intel_dp->attached_connector;
6465 
6466 	intel_dp->dfp.max_bpc =
6467 		drm_dp_downstream_max_bpc(intel_dp->dpcd,
6468 					  intel_dp->downstream_ports, edid);
6469 
6470 	intel_dp->dfp.max_dotclock =
6471 		drm_dp_downstream_max_dotclock(intel_dp->dpcd,
6472 					       intel_dp->downstream_ports);
6473 
6474 	intel_dp->dfp.min_tmds_clock =
6475 		drm_dp_downstream_min_tmds_clock(intel_dp->dpcd,
6476 						 intel_dp->downstream_ports,
6477 						 edid);
6478 	intel_dp->dfp.max_tmds_clock =
6479 		drm_dp_downstream_max_tmds_clock(intel_dp->dpcd,
6480 						 intel_dp->downstream_ports,
6481 						 edid);
6482 
6483 	drm_dbg_kms(&i915->drm,
6484 		    "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d\n",
6485 		    connector->base.base.id, connector->base.name,
6486 		    intel_dp->dfp.max_bpc,
6487 		    intel_dp->dfp.max_dotclock,
6488 		    intel_dp->dfp.min_tmds_clock,
6489 		    intel_dp->dfp.max_tmds_clock);
6490 }
6491 
6492 static void
6493 intel_dp_update_420(struct intel_dp *intel_dp)
6494 {
6495 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6496 	struct intel_connector *connector = intel_dp->attached_connector;
6497 	bool is_branch, ycbcr_420_passthrough, ycbcr_444_to_420;
6498 
6499 	/* No YCbCr output support on gmch platforms */
6500 	if (HAS_GMCH(i915))
6501 		return;
6502 
6503 	/*
6504 	 * ILK doesn't seem capable of DP YCbCr output. The
6505 	 * displayed image is severly corrupted. SNB+ is fine.
6506 	 */
6507 	if (IS_GEN(i915, 5))
6508 		return;
6509 
6510 	is_branch = drm_dp_is_branch(intel_dp->dpcd);
6511 	ycbcr_420_passthrough =
6512 		drm_dp_downstream_420_passthrough(intel_dp->dpcd,
6513 						  intel_dp->downstream_ports);
6514 	/* on-board LSPCON always assumed to support 4:4:4->4:2:0 conversion */
6515 	ycbcr_444_to_420 =
6516 		dp_to_dig_port(intel_dp)->lspcon.active ||
6517 		drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd,
6518 							intel_dp->downstream_ports);
6519 
6520 	if (INTEL_GEN(i915) >= 11) {
6521 		/* Prefer 4:2:0 passthrough over 4:4:4->4:2:0 conversion */
6522 		intel_dp->dfp.ycbcr_444_to_420 =
6523 			ycbcr_444_to_420 && !ycbcr_420_passthrough;
6524 
6525 		connector->base.ycbcr_420_allowed =
6526 			!is_branch || ycbcr_444_to_420 || ycbcr_420_passthrough;
6527 	} else {
6528 		/* 4:4:4->4:2:0 conversion is the only way */
6529 		intel_dp->dfp.ycbcr_444_to_420 = ycbcr_444_to_420;
6530 
6531 		connector->base.ycbcr_420_allowed = ycbcr_444_to_420;
6532 	}
6533 
6534 	drm_dbg_kms(&i915->drm,
6535 		    "[CONNECTOR:%d:%s] YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n",
6536 		    connector->base.base.id, connector->base.name,
6537 		    yesno(connector->base.ycbcr_420_allowed),
6538 		    yesno(intel_dp->dfp.ycbcr_444_to_420));
6539 }
6540 
6541 static void
6542 intel_dp_set_edid(struct intel_dp *intel_dp)
6543 {
6544 	struct intel_connector *connector = intel_dp->attached_connector;
6545 	struct edid *edid;
6546 
6547 	intel_dp_unset_edid(intel_dp);
6548 	edid = intel_dp_get_edid(intel_dp);
6549 	connector->detect_edid = edid;
6550 
6551 	intel_dp_update_dfp(intel_dp, edid);
6552 	intel_dp_update_420(intel_dp);
6553 
6554 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
6555 		intel_dp->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
6556 		intel_dp->has_audio = drm_detect_monitor_audio(edid);
6557 	}
6558 
6559 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
6560 	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6561 }
6562 
6563 static void
6564 intel_dp_unset_edid(struct intel_dp *intel_dp)
6565 {
6566 	struct intel_connector *connector = intel_dp->attached_connector;
6567 
6568 	drm_dp_cec_unset_edid(&intel_dp->aux);
6569 	kfree(connector->detect_edid);
6570 	connector->detect_edid = NULL;
6571 
6572 	intel_dp->has_hdmi_sink = false;
6573 	intel_dp->has_audio = false;
6574 	intel_dp->edid_quirks = 0;
6575 
6576 	intel_dp->dfp.max_bpc = 0;
6577 	intel_dp->dfp.max_dotclock = 0;
6578 	intel_dp->dfp.min_tmds_clock = 0;
6579 	intel_dp->dfp.max_tmds_clock = 0;
6580 
6581 	intel_dp->dfp.ycbcr_444_to_420 = false;
6582 	connector->base.ycbcr_420_allowed = false;
6583 }
6584 
6585 static int
6586 intel_dp_detect(struct drm_connector *connector,
6587 		struct drm_modeset_acquire_ctx *ctx,
6588 		bool force)
6589 {
6590 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6591 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6592 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6593 	struct intel_encoder *encoder = &dig_port->base;
6594 	enum drm_connector_status status;
6595 
6596 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6597 		    connector->base.id, connector->name);
6598 	drm_WARN_ON(&dev_priv->drm,
6599 		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6600 
6601 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
6602 		return connector_status_disconnected;
6603 
6604 	/* Can't disconnect eDP */
6605 	if (intel_dp_is_edp(intel_dp))
6606 		status = edp_detect(intel_dp);
6607 	else if (intel_digital_port_connected(encoder))
6608 		status = intel_dp_detect_dpcd(intel_dp);
6609 	else
6610 		status = connector_status_disconnected;
6611 
6612 	if (status == connector_status_disconnected) {
6613 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6614 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6615 
6616 		if (intel_dp->is_mst) {
6617 			drm_dbg_kms(&dev_priv->drm,
6618 				    "MST device may have disappeared %d vs %d\n",
6619 				    intel_dp->is_mst,
6620 				    intel_dp->mst_mgr.mst_state);
6621 			intel_dp->is_mst = false;
6622 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6623 							intel_dp->is_mst);
6624 		}
6625 
6626 		goto out;
6627 	}
6628 
6629 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6630 	if (INTEL_GEN(dev_priv) >= 11)
6631 		intel_dp_get_dsc_sink_cap(intel_dp);
6632 
6633 	intel_dp_configure_mst(intel_dp);
6634 
6635 	/*
6636 	 * TODO: Reset link params when switching to MST mode, until MST
6637 	 * supports link training fallback params.
6638 	 */
6639 	if (intel_dp->reset_link_params || intel_dp->is_mst) {
6640 		/* Initial max link lane count */
6641 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6642 
6643 		/* Initial max link rate */
6644 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6645 
6646 		intel_dp->reset_link_params = false;
6647 	}
6648 
6649 	intel_dp_print_rates(intel_dp);
6650 
6651 	if (intel_dp->is_mst) {
6652 		/*
6653 		 * If we are in MST mode then this connector
6654 		 * won't appear connected or have anything
6655 		 * with EDID on it
6656 		 */
6657 		status = connector_status_disconnected;
6658 		goto out;
6659 	}
6660 
6661 	/*
6662 	 * Some external monitors do not signal loss of link synchronization
6663 	 * with an IRQ_HPD, so force a link status check.
6664 	 */
6665 	if (!intel_dp_is_edp(intel_dp)) {
6666 		int ret;
6667 
6668 		ret = intel_dp_retrain_link(encoder, ctx);
6669 		if (ret)
6670 			return ret;
6671 	}
6672 
6673 	/*
6674 	 * Clearing NACK and defer counts to get their exact values
6675 	 * while reading EDID which are required by Compliance tests
6676 	 * 4.2.2.4 and 4.2.2.5
6677 	 */
6678 	intel_dp->aux.i2c_nack_count = 0;
6679 	intel_dp->aux.i2c_defer_count = 0;
6680 
6681 	intel_dp_set_edid(intel_dp);
6682 	if (intel_dp_is_edp(intel_dp) ||
6683 	    to_intel_connector(connector)->detect_edid)
6684 		status = connector_status_connected;
6685 
6686 	intel_dp_check_service_irq(intel_dp);
6687 
6688 out:
6689 	if (status != connector_status_connected && !intel_dp->is_mst)
6690 		intel_dp_unset_edid(intel_dp);
6691 
6692 	/*
6693 	 * Make sure the refs for power wells enabled during detect are
6694 	 * dropped to avoid a new detect cycle triggered by HPD polling.
6695 	 */
6696 	intel_display_power_flush_work(dev_priv);
6697 
6698 	if (!intel_dp_is_edp(intel_dp))
6699 		drm_dp_set_subconnector_property(connector,
6700 						 status,
6701 						 intel_dp->dpcd,
6702 						 intel_dp->downstream_ports);
6703 	return status;
6704 }
6705 
6706 static void
6707 intel_dp_force(struct drm_connector *connector)
6708 {
6709 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6710 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6711 	struct intel_encoder *intel_encoder = &dig_port->base;
6712 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6713 	enum intel_display_power_domain aux_domain =
6714 		intel_aux_power_domain(dig_port);
6715 	intel_wakeref_t wakeref;
6716 
6717 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6718 		    connector->base.id, connector->name);
6719 	intel_dp_unset_edid(intel_dp);
6720 
6721 	if (connector->status != connector_status_connected)
6722 		return;
6723 
6724 	wakeref = intel_display_power_get(dev_priv, aux_domain);
6725 
6726 	intel_dp_set_edid(intel_dp);
6727 
6728 	intel_display_power_put(dev_priv, aux_domain, wakeref);
6729 }
6730 
6731 static int intel_dp_get_modes(struct drm_connector *connector)
6732 {
6733 	struct intel_connector *intel_connector = to_intel_connector(connector);
6734 	struct edid *edid;
6735 
6736 	edid = intel_connector->detect_edid;
6737 	if (edid) {
6738 		int ret = intel_connector_update_modes(connector, edid);
6739 		if (ret)
6740 			return ret;
6741 	}
6742 
6743 	/* if eDP has no EDID, fall back to fixed mode */
6744 	if (intel_dp_is_edp(intel_attached_dp(intel_connector)) &&
6745 	    intel_connector->panel.fixed_mode) {
6746 		struct drm_display_mode *mode;
6747 
6748 		mode = drm_mode_duplicate(connector->dev,
6749 					  intel_connector->panel.fixed_mode);
6750 		if (mode) {
6751 			drm_mode_probed_add(connector, mode);
6752 			return 1;
6753 		}
6754 	}
6755 
6756 	if (!edid) {
6757 		struct intel_dp *intel_dp = intel_attached_dp(intel_connector);
6758 		struct drm_display_mode *mode;
6759 
6760 		mode = drm_dp_downstream_mode(connector->dev,
6761 					      intel_dp->dpcd,
6762 					      intel_dp->downstream_ports);
6763 		if (mode) {
6764 			drm_mode_probed_add(connector, mode);
6765 			return 1;
6766 		}
6767 	}
6768 
6769 	return 0;
6770 }
6771 
6772 static int
6773 intel_dp_connector_register(struct drm_connector *connector)
6774 {
6775 	struct drm_i915_private *i915 = to_i915(connector->dev);
6776 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6777 	int ret;
6778 
6779 	ret = intel_connector_register(connector);
6780 	if (ret)
6781 		return ret;
6782 
6783 	drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6784 		    intel_dp->aux.name, connector->kdev->kobj.name);
6785 
6786 	intel_dp->aux.dev = connector->kdev;
6787 	ret = drm_dp_aux_register(&intel_dp->aux);
6788 	if (!ret)
6789 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
6790 	return ret;
6791 }
6792 
6793 static void
6794 intel_dp_connector_unregister(struct drm_connector *connector)
6795 {
6796 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6797 
6798 	drm_dp_cec_unregister_connector(&intel_dp->aux);
6799 	drm_dp_aux_unregister(&intel_dp->aux);
6800 	intel_connector_unregister(connector);
6801 }
6802 
6803 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6804 {
6805 	struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6806 	struct intel_dp *intel_dp = &dig_port->dp;
6807 
6808 	intel_dp_mst_encoder_cleanup(dig_port);
6809 	if (intel_dp_is_edp(intel_dp)) {
6810 		intel_wakeref_t wakeref;
6811 
6812 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6813 		/*
6814 		 * vdd might still be enabled do to the delayed vdd off.
6815 		 * Make sure vdd is actually turned off here.
6816 		 */
6817 		with_pps_lock(intel_dp, wakeref)
6818 			edp_panel_vdd_off_sync(intel_dp);
6819 	}
6820 
6821 	intel_dp_aux_fini(intel_dp);
6822 }
6823 
6824 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6825 {
6826 	intel_dp_encoder_flush_work(encoder);
6827 
6828 	drm_encoder_cleanup(encoder);
6829 	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6830 }
6831 
6832 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6833 {
6834 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6835 	intel_wakeref_t wakeref;
6836 
6837 	if (!intel_dp_is_edp(intel_dp))
6838 		return;
6839 
6840 	/*
6841 	 * vdd might still be enabled do to the delayed vdd off.
6842 	 * Make sure vdd is actually turned off here.
6843 	 */
6844 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6845 	with_pps_lock(intel_dp, wakeref)
6846 		edp_panel_vdd_off_sync(intel_dp);
6847 }
6848 
6849 void intel_dp_encoder_shutdown(struct intel_encoder *intel_encoder)
6850 {
6851 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6852 	intel_wakeref_t wakeref;
6853 
6854 	if (!intel_dp_is_edp(intel_dp))
6855 		return;
6856 
6857 	with_pps_lock(intel_dp, wakeref)
6858 		wait_panel_power_cycle(intel_dp);
6859 }
6860 
6861 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6862 {
6863 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6864 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6865 
6866 	lockdep_assert_held(&dev_priv->pps_mutex);
6867 
6868 	if (!edp_have_panel_vdd(intel_dp))
6869 		return;
6870 
6871 	/*
6872 	 * The VDD bit needs a power domain reference, so if the bit is
6873 	 * already enabled when we boot or resume, grab this reference and
6874 	 * schedule a vdd off, so we don't hold on to the reference
6875 	 * indefinitely.
6876 	 */
6877 	drm_dbg_kms(&dev_priv->drm,
6878 		    "VDD left on by BIOS, adjusting state tracking\n");
6879 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6880 
6881 	edp_panel_vdd_schedule_off(intel_dp);
6882 }
6883 
6884 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6885 {
6886 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6887 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6888 	enum pipe pipe;
6889 
6890 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6891 				  encoder->port, &pipe))
6892 		return pipe;
6893 
6894 	return INVALID_PIPE;
6895 }
6896 
6897 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6898 {
6899 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6900 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6901 	intel_wakeref_t wakeref;
6902 
6903 	if (!HAS_DDI(dev_priv))
6904 		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6905 
6906 	intel_dp->reset_link_params = true;
6907 
6908 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6909 	    !intel_dp_is_edp(intel_dp))
6910 		return;
6911 
6912 	with_pps_lock(intel_dp, wakeref) {
6913 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6914 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6915 
6916 		if (intel_dp_is_edp(intel_dp)) {
6917 			/*
6918 			 * Reinit the power sequencer, in case BIOS did
6919 			 * something nasty with it.
6920 			 */
6921 			intel_dp_pps_init(intel_dp);
6922 			intel_edp_panel_vdd_sanitize(intel_dp);
6923 		}
6924 	}
6925 }
6926 
6927 static int intel_modeset_tile_group(struct intel_atomic_state *state,
6928 				    int tile_group_id)
6929 {
6930 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6931 	struct drm_connector_list_iter conn_iter;
6932 	struct drm_connector *connector;
6933 	int ret = 0;
6934 
6935 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
6936 	drm_for_each_connector_iter(connector, &conn_iter) {
6937 		struct drm_connector_state *conn_state;
6938 		struct intel_crtc_state *crtc_state;
6939 		struct intel_crtc *crtc;
6940 
6941 		if (!connector->has_tile ||
6942 		    connector->tile_group->id != tile_group_id)
6943 			continue;
6944 
6945 		conn_state = drm_atomic_get_connector_state(&state->base,
6946 							    connector);
6947 		if (IS_ERR(conn_state)) {
6948 			ret = PTR_ERR(conn_state);
6949 			break;
6950 		}
6951 
6952 		crtc = to_intel_crtc(conn_state->crtc);
6953 
6954 		if (!crtc)
6955 			continue;
6956 
6957 		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
6958 		crtc_state->uapi.mode_changed = true;
6959 
6960 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6961 		if (ret)
6962 			break;
6963 	}
6964 	drm_connector_list_iter_end(&conn_iter);
6965 
6966 	return ret;
6967 }
6968 
6969 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
6970 {
6971 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6972 	struct intel_crtc *crtc;
6973 
6974 	if (transcoders == 0)
6975 		return 0;
6976 
6977 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6978 		struct intel_crtc_state *crtc_state;
6979 		int ret;
6980 
6981 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
6982 		if (IS_ERR(crtc_state))
6983 			return PTR_ERR(crtc_state);
6984 
6985 		if (!crtc_state->hw.enable)
6986 			continue;
6987 
6988 		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
6989 			continue;
6990 
6991 		crtc_state->uapi.mode_changed = true;
6992 
6993 		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
6994 		if (ret)
6995 			return ret;
6996 
6997 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6998 		if (ret)
6999 			return ret;
7000 
7001 		transcoders &= ~BIT(crtc_state->cpu_transcoder);
7002 	}
7003 
7004 	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7005 
7006 	return 0;
7007 }
7008 
7009 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
7010 				      struct drm_connector *connector)
7011 {
7012 	const struct drm_connector_state *old_conn_state =
7013 		drm_atomic_get_old_connector_state(&state->base, connector);
7014 	const struct intel_crtc_state *old_crtc_state;
7015 	struct intel_crtc *crtc;
7016 	u8 transcoders;
7017 
7018 	crtc = to_intel_crtc(old_conn_state->crtc);
7019 	if (!crtc)
7020 		return 0;
7021 
7022 	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
7023 
7024 	if (!old_crtc_state->hw.active)
7025 		return 0;
7026 
7027 	transcoders = old_crtc_state->sync_mode_slaves_mask;
7028 	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
7029 		transcoders |= BIT(old_crtc_state->master_transcoder);
7030 
7031 	return intel_modeset_affected_transcoders(state,
7032 						  transcoders);
7033 }
7034 
7035 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
7036 					   struct drm_atomic_state *_state)
7037 {
7038 	struct drm_i915_private *dev_priv = to_i915(conn->dev);
7039 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
7040 	int ret;
7041 
7042 	ret = intel_digital_connector_atomic_check(conn, &state->base);
7043 	if (ret)
7044 		return ret;
7045 
7046 	/*
7047 	 * We don't enable port sync on BDW due to missing w/as and
7048 	 * due to not having adjusted the modeset sequence appropriately.
7049 	 */
7050 	if (INTEL_GEN(dev_priv) < 9)
7051 		return 0;
7052 
7053 	if (!intel_connector_needs_modeset(state, conn))
7054 		return 0;
7055 
7056 	if (conn->has_tile) {
7057 		ret = intel_modeset_tile_group(state, conn->tile_group->id);
7058 		if (ret)
7059 			return ret;
7060 	}
7061 
7062 	return intel_modeset_synced_crtcs(state, conn);
7063 }
7064 
7065 static const struct drm_connector_funcs intel_dp_connector_funcs = {
7066 	.force = intel_dp_force,
7067 	.fill_modes = drm_helper_probe_single_connector_modes,
7068 	.atomic_get_property = intel_digital_connector_atomic_get_property,
7069 	.atomic_set_property = intel_digital_connector_atomic_set_property,
7070 	.late_register = intel_dp_connector_register,
7071 	.early_unregister = intel_dp_connector_unregister,
7072 	.destroy = intel_connector_destroy,
7073 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7074 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
7075 };
7076 
7077 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7078 	.detect_ctx = intel_dp_detect,
7079 	.get_modes = intel_dp_get_modes,
7080 	.mode_valid = intel_dp_mode_valid,
7081 	.atomic_check = intel_dp_connector_atomic_check,
7082 };
7083 
7084 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7085 	.reset = intel_dp_encoder_reset,
7086 	.destroy = intel_dp_encoder_destroy,
7087 };
7088 
7089 static bool intel_edp_have_power(struct intel_dp *intel_dp)
7090 {
7091 	intel_wakeref_t wakeref;
7092 	bool have_power = false;
7093 
7094 	with_pps_lock(intel_dp, wakeref) {
7095 		have_power = edp_have_panel_power(intel_dp) &&
7096 						  edp_have_panel_vdd(intel_dp);
7097 	}
7098 
7099 	return have_power;
7100 }
7101 
7102 enum irqreturn
7103 intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd)
7104 {
7105 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
7106 	struct intel_dp *intel_dp = &dig_port->dp;
7107 
7108 	if (dig_port->base.type == INTEL_OUTPUT_EDP &&
7109 	    (long_hpd || !intel_edp_have_power(intel_dp))) {
7110 		/*
7111 		 * vdd off can generate a long/short pulse on eDP which
7112 		 * would require vdd on to handle it, and thus we
7113 		 * would end up in an endless cycle of
7114 		 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7115 		 */
7116 		drm_dbg_kms(&i915->drm,
7117 			    "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
7118 			    long_hpd ? "long" : "short",
7119 			    dig_port->base.base.base.id,
7120 			    dig_port->base.base.name);
7121 		return IRQ_HANDLED;
7122 	}
7123 
7124 	drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
7125 		    dig_port->base.base.base.id,
7126 		    dig_port->base.base.name,
7127 		    long_hpd ? "long" : "short");
7128 
7129 	if (long_hpd) {
7130 		intel_dp->reset_link_params = true;
7131 		return IRQ_NONE;
7132 	}
7133 
7134 	if (intel_dp->is_mst) {
7135 		if (!intel_dp_check_mst_status(intel_dp))
7136 			return IRQ_NONE;
7137 	} else if (!intel_dp_short_pulse(intel_dp)) {
7138 		return IRQ_NONE;
7139 	}
7140 
7141 	return IRQ_HANDLED;
7142 }
7143 
7144 /* check the VBT to see whether the eDP is on another port */
7145 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7146 {
7147 	/*
7148 	 * eDP not supported on g4x. so bail out early just
7149 	 * for a bit extra safety in case the VBT is bonkers.
7150 	 */
7151 	if (INTEL_GEN(dev_priv) < 5)
7152 		return false;
7153 
7154 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7155 		return true;
7156 
7157 	return intel_bios_is_port_edp(dev_priv, port);
7158 }
7159 
7160 static void
7161 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
7162 {
7163 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
7164 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7165 
7166 	if (!intel_dp_is_edp(intel_dp))
7167 		drm_connector_attach_dp_subconnector_property(connector);
7168 
7169 	if (!IS_G4X(dev_priv) && port != PORT_A)
7170 		intel_attach_force_audio_property(connector);
7171 
7172 	intel_attach_broadcast_rgb_property(connector);
7173 	if (HAS_GMCH(dev_priv))
7174 		drm_connector_attach_max_bpc_property(connector, 6, 10);
7175 	else if (INTEL_GEN(dev_priv) >= 5)
7176 		drm_connector_attach_max_bpc_property(connector, 6, 12);
7177 
7178 	intel_attach_colorspace_property(connector);
7179 
7180 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
7181 		drm_object_attach_property(&connector->base,
7182 					   connector->dev->mode_config.hdr_output_metadata_property,
7183 					   0);
7184 
7185 	if (intel_dp_is_edp(intel_dp)) {
7186 		u32 allowed_scalers;
7187 
7188 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
7189 		if (!HAS_GMCH(dev_priv))
7190 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
7191 
7192 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
7193 
7194 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7195 
7196 	}
7197 }
7198 
7199 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
7200 {
7201 	intel_dp->panel_power_off_time = ktime_get_boottime();
7202 	intel_dp->last_power_on = jiffies;
7203 	intel_dp->last_backlight_off = jiffies;
7204 }
7205 
7206 static void
7207 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7208 {
7209 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7210 	u32 pp_on, pp_off, pp_ctl;
7211 	struct pps_registers regs;
7212 
7213 	intel_pps_get_registers(intel_dp, &regs);
7214 
7215 	pp_ctl = ilk_get_pp_control(intel_dp);
7216 
7217 	/* Ensure PPS is unlocked */
7218 	if (!HAS_DDI(dev_priv))
7219 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7220 
7221 	pp_on = intel_de_read(dev_priv, regs.pp_on);
7222 	pp_off = intel_de_read(dev_priv, regs.pp_off);
7223 
7224 	/* Pull timing values out of registers */
7225 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
7226 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
7227 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
7228 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7229 
7230 	if (i915_mmio_reg_valid(regs.pp_div)) {
7231 		u32 pp_div;
7232 
7233 		pp_div = intel_de_read(dev_priv, regs.pp_div);
7234 
7235 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7236 	} else {
7237 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7238 	}
7239 }
7240 
7241 static void
7242 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
7243 {
7244 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
7245 		      state_name,
7246 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
7247 }
7248 
7249 static void
7250 intel_pps_verify_state(struct intel_dp *intel_dp)
7251 {
7252 	struct edp_power_seq hw;
7253 	struct edp_power_seq *sw = &intel_dp->pps_delays;
7254 
7255 	intel_pps_readout_hw_state(intel_dp, &hw);
7256 
7257 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
7258 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
7259 		DRM_ERROR("PPS state mismatch\n");
7260 		intel_pps_dump_state("sw", sw);
7261 		intel_pps_dump_state("hw", &hw);
7262 	}
7263 }
7264 
7265 static void
7266 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7267 {
7268 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7269 	struct edp_power_seq cur, vbt, spec,
7270 		*final = &intel_dp->pps_delays;
7271 
7272 	lockdep_assert_held(&dev_priv->pps_mutex);
7273 
7274 	/* already initialized? */
7275 	if (final->t11_t12 != 0)
7276 		return;
7277 
7278 	intel_pps_readout_hw_state(intel_dp, &cur);
7279 
7280 	intel_pps_dump_state("cur", &cur);
7281 
7282 	vbt = dev_priv->vbt.edp.pps;
7283 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7284 	 * of 500ms appears to be too short. Ocassionally the panel
7285 	 * just fails to power back on. Increasing the delay to 800ms
7286 	 * seems sufficient to avoid this problem.
7287 	 */
7288 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7289 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7290 		drm_dbg_kms(&dev_priv->drm,
7291 			    "Increasing T12 panel delay as per the quirk to %d\n",
7292 			    vbt.t11_t12);
7293 	}
7294 	/* T11_T12 delay is special and actually in units of 100ms, but zero
7295 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7296 	 * table multiplies it with 1000 to make it in units of 100usec,
7297 	 * too. */
7298 	vbt.t11_t12 += 100 * 10;
7299 
7300 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7301 	 * our hw here, which are all in 100usec. */
7302 	spec.t1_t3 = 210 * 10;
7303 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7304 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7305 	spec.t10 = 500 * 10;
7306 	/* This one is special and actually in units of 100ms, but zero
7307 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7308 	 * table multiplies it with 1000 to make it in units of 100usec,
7309 	 * too. */
7310 	spec.t11_t12 = (510 + 100) * 10;
7311 
7312 	intel_pps_dump_state("vbt", &vbt);
7313 
7314 	/* Use the max of the register settings and vbt. If both are
7315 	 * unset, fall back to the spec limits. */
7316 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
7317 				       spec.field : \
7318 				       max(cur.field, vbt.field))
7319 	assign_final(t1_t3);
7320 	assign_final(t8);
7321 	assign_final(t9);
7322 	assign_final(t10);
7323 	assign_final(t11_t12);
7324 #undef assign_final
7325 
7326 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
7327 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
7328 	intel_dp->backlight_on_delay = get_delay(t8);
7329 	intel_dp->backlight_off_delay = get_delay(t9);
7330 	intel_dp->panel_power_down_delay = get_delay(t10);
7331 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7332 #undef get_delay
7333 
7334 	drm_dbg_kms(&dev_priv->drm,
7335 		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7336 		    intel_dp->panel_power_up_delay,
7337 		    intel_dp->panel_power_down_delay,
7338 		    intel_dp->panel_power_cycle_delay);
7339 
7340 	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7341 		    intel_dp->backlight_on_delay,
7342 		    intel_dp->backlight_off_delay);
7343 
7344 	/*
7345 	 * We override the HW backlight delays to 1 because we do manual waits
7346 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
7347 	 * don't do this, we'll end up waiting for the backlight off delay
7348 	 * twice: once when we do the manual sleep, and once when we disable
7349 	 * the panel and wait for the PP_STATUS bit to become zero.
7350 	 */
7351 	final->t8 = 1;
7352 	final->t9 = 1;
7353 
7354 	/*
7355 	 * HW has only a 100msec granularity for t11_t12 so round it up
7356 	 * accordingly.
7357 	 */
7358 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7359 }
7360 
7361 static void
7362 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7363 					      bool force_disable_vdd)
7364 {
7365 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7366 	u32 pp_on, pp_off, port_sel = 0;
7367 	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7368 	struct pps_registers regs;
7369 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7370 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7371 
7372 	lockdep_assert_held(&dev_priv->pps_mutex);
7373 
7374 	intel_pps_get_registers(intel_dp, &regs);
7375 
7376 	/*
7377 	 * On some VLV machines the BIOS can leave the VDD
7378 	 * enabled even on power sequencers which aren't
7379 	 * hooked up to any port. This would mess up the
7380 	 * power domain tracking the first time we pick
7381 	 * one of these power sequencers for use since
7382 	 * edp_panel_vdd_on() would notice that the VDD was
7383 	 * already on and therefore wouldn't grab the power
7384 	 * domain reference. Disable VDD first to avoid this.
7385 	 * This also avoids spuriously turning the VDD on as
7386 	 * soon as the new power sequencer gets initialized.
7387 	 */
7388 	if (force_disable_vdd) {
7389 		u32 pp = ilk_get_pp_control(intel_dp);
7390 
7391 		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7392 			 "Panel power already on\n");
7393 
7394 		if (pp & EDP_FORCE_VDD)
7395 			drm_dbg_kms(&dev_priv->drm,
7396 				    "VDD already on, disabling first\n");
7397 
7398 		pp &= ~EDP_FORCE_VDD;
7399 
7400 		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7401 	}
7402 
7403 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7404 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7405 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7406 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7407 
7408 	/* Haswell doesn't have any port selection bits for the panel
7409 	 * power sequencer any more. */
7410 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7411 		port_sel = PANEL_PORT_SELECT_VLV(port);
7412 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7413 		switch (port) {
7414 		case PORT_A:
7415 			port_sel = PANEL_PORT_SELECT_DPA;
7416 			break;
7417 		case PORT_C:
7418 			port_sel = PANEL_PORT_SELECT_DPC;
7419 			break;
7420 		case PORT_D:
7421 			port_sel = PANEL_PORT_SELECT_DPD;
7422 			break;
7423 		default:
7424 			MISSING_CASE(port);
7425 			break;
7426 		}
7427 	}
7428 
7429 	pp_on |= port_sel;
7430 
7431 	intel_de_write(dev_priv, regs.pp_on, pp_on);
7432 	intel_de_write(dev_priv, regs.pp_off, pp_off);
7433 
7434 	/*
7435 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
7436 	 */
7437 	if (i915_mmio_reg_valid(regs.pp_div)) {
7438 		intel_de_write(dev_priv, regs.pp_div,
7439 			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7440 	} else {
7441 		u32 pp_ctl;
7442 
7443 		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7444 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7445 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7446 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7447 	}
7448 
7449 	drm_dbg_kms(&dev_priv->drm,
7450 		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7451 		    intel_de_read(dev_priv, regs.pp_on),
7452 		    intel_de_read(dev_priv, regs.pp_off),
7453 		    i915_mmio_reg_valid(regs.pp_div) ?
7454 		    intel_de_read(dev_priv, regs.pp_div) :
7455 		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7456 }
7457 
7458 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7459 {
7460 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7461 
7462 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7463 		vlv_initial_power_sequencer_setup(intel_dp);
7464 	} else {
7465 		intel_dp_init_panel_power_sequencer(intel_dp);
7466 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7467 	}
7468 }
7469 
7470 /**
7471  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7472  * @dev_priv: i915 device
7473  * @crtc_state: a pointer to the active intel_crtc_state
7474  * @refresh_rate: RR to be programmed
7475  *
7476  * This function gets called when refresh rate (RR) has to be changed from
7477  * one frequency to another. Switches can be between high and low RR
7478  * supported by the panel or to any other RR based on media playback (in
7479  * this case, RR value needs to be passed from user space).
7480  *
7481  * The caller of this function needs to take a lock on dev_priv->drrs.
7482  */
7483 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7484 				    const struct intel_crtc_state *crtc_state,
7485 				    int refresh_rate)
7486 {
7487 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7488 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7489 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7490 
7491 	if (refresh_rate <= 0) {
7492 		drm_dbg_kms(&dev_priv->drm,
7493 			    "Refresh rate should be positive non-zero.\n");
7494 		return;
7495 	}
7496 
7497 	if (intel_dp == NULL) {
7498 		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7499 		return;
7500 	}
7501 
7502 	if (!intel_crtc) {
7503 		drm_dbg_kms(&dev_priv->drm,
7504 			    "DRRS: intel_crtc not initialized\n");
7505 		return;
7506 	}
7507 
7508 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7509 		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7510 		return;
7511 	}
7512 
7513 	if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) ==
7514 			refresh_rate)
7515 		index = DRRS_LOW_RR;
7516 
7517 	if (index == dev_priv->drrs.refresh_rate_type) {
7518 		drm_dbg_kms(&dev_priv->drm,
7519 			    "DRRS requested for previously set RR...ignoring\n");
7520 		return;
7521 	}
7522 
7523 	if (!crtc_state->hw.active) {
7524 		drm_dbg_kms(&dev_priv->drm,
7525 			    "eDP encoder disabled. CRTC not Active\n");
7526 		return;
7527 	}
7528 
7529 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7530 		switch (index) {
7531 		case DRRS_HIGH_RR:
7532 			intel_dp_set_m_n(crtc_state, M1_N1);
7533 			break;
7534 		case DRRS_LOW_RR:
7535 			intel_dp_set_m_n(crtc_state, M2_N2);
7536 			break;
7537 		case DRRS_MAX_RR:
7538 		default:
7539 			drm_err(&dev_priv->drm,
7540 				"Unsupported refreshrate type\n");
7541 		}
7542 	} else if (INTEL_GEN(dev_priv) > 6) {
7543 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7544 		u32 val;
7545 
7546 		val = intel_de_read(dev_priv, reg);
7547 		if (index > DRRS_HIGH_RR) {
7548 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7549 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7550 			else
7551 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7552 		} else {
7553 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7554 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7555 			else
7556 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7557 		}
7558 		intel_de_write(dev_priv, reg, val);
7559 	}
7560 
7561 	dev_priv->drrs.refresh_rate_type = index;
7562 
7563 	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7564 		    refresh_rate);
7565 }
7566 
7567 static void
7568 intel_edp_drrs_enable_locked(struct intel_dp *intel_dp)
7569 {
7570 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7571 
7572 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7573 	dev_priv->drrs.dp = intel_dp;
7574 }
7575 
7576 /**
7577  * intel_edp_drrs_enable - init drrs struct if supported
7578  * @intel_dp: DP struct
7579  * @crtc_state: A pointer to the active crtc state.
7580  *
7581  * Initializes frontbuffer_bits and drrs.dp
7582  */
7583 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7584 			   const struct intel_crtc_state *crtc_state)
7585 {
7586 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7587 
7588 	if (!crtc_state->has_drrs)
7589 		return;
7590 
7591 	drm_dbg_kms(&dev_priv->drm, "Enabling DRRS\n");
7592 
7593 	mutex_lock(&dev_priv->drrs.mutex);
7594 
7595 	if (dev_priv->drrs.dp) {
7596 		drm_warn(&dev_priv->drm, "DRRS already enabled\n");
7597 		goto unlock;
7598 	}
7599 
7600 	intel_edp_drrs_enable_locked(intel_dp);
7601 
7602 unlock:
7603 	mutex_unlock(&dev_priv->drrs.mutex);
7604 }
7605 
7606 static void
7607 intel_edp_drrs_disable_locked(struct intel_dp *intel_dp,
7608 			      const struct intel_crtc_state *crtc_state)
7609 {
7610 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7611 
7612 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
7613 		int refresh;
7614 
7615 		refresh = drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode);
7616 		intel_dp_set_drrs_state(dev_priv, crtc_state, refresh);
7617 	}
7618 
7619 	dev_priv->drrs.dp = NULL;
7620 }
7621 
7622 /**
7623  * intel_edp_drrs_disable - Disable DRRS
7624  * @intel_dp: DP struct
7625  * @old_crtc_state: Pointer to old crtc_state.
7626  *
7627  */
7628 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7629 			    const struct intel_crtc_state *old_crtc_state)
7630 {
7631 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7632 
7633 	if (!old_crtc_state->has_drrs)
7634 		return;
7635 
7636 	mutex_lock(&dev_priv->drrs.mutex);
7637 	if (!dev_priv->drrs.dp) {
7638 		mutex_unlock(&dev_priv->drrs.mutex);
7639 		return;
7640 	}
7641 
7642 	intel_edp_drrs_disable_locked(intel_dp, old_crtc_state);
7643 	mutex_unlock(&dev_priv->drrs.mutex);
7644 
7645 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7646 }
7647 
7648 /**
7649  * intel_edp_drrs_update - Update DRRS state
7650  * @intel_dp: Intel DP
7651  * @crtc_state: new CRTC state
7652  *
7653  * This function will update DRRS states, disabling or enabling DRRS when
7654  * executing fastsets. For full modeset, intel_edp_drrs_disable() and
7655  * intel_edp_drrs_enable() should be called instead.
7656  */
7657 void
7658 intel_edp_drrs_update(struct intel_dp *intel_dp,
7659 		      const struct intel_crtc_state *crtc_state)
7660 {
7661 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7662 
7663 	if (dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
7664 		return;
7665 
7666 	mutex_lock(&dev_priv->drrs.mutex);
7667 
7668 	/* New state matches current one? */
7669 	if (crtc_state->has_drrs == !!dev_priv->drrs.dp)
7670 		goto unlock;
7671 
7672 	if (crtc_state->has_drrs)
7673 		intel_edp_drrs_enable_locked(intel_dp);
7674 	else
7675 		intel_edp_drrs_disable_locked(intel_dp, crtc_state);
7676 
7677 unlock:
7678 	mutex_unlock(&dev_priv->drrs.mutex);
7679 }
7680 
7681 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7682 {
7683 	struct drm_i915_private *dev_priv =
7684 		container_of(work, typeof(*dev_priv), drrs.work.work);
7685 	struct intel_dp *intel_dp;
7686 
7687 	mutex_lock(&dev_priv->drrs.mutex);
7688 
7689 	intel_dp = dev_priv->drrs.dp;
7690 
7691 	if (!intel_dp)
7692 		goto unlock;
7693 
7694 	/*
7695 	 * The delayed work can race with an invalidate hence we need to
7696 	 * recheck.
7697 	 */
7698 
7699 	if (dev_priv->drrs.busy_frontbuffer_bits)
7700 		goto unlock;
7701 
7702 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7703 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7704 
7705 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7706 			drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode));
7707 	}
7708 
7709 unlock:
7710 	mutex_unlock(&dev_priv->drrs.mutex);
7711 }
7712 
7713 /**
7714  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7715  * @dev_priv: i915 device
7716  * @frontbuffer_bits: frontbuffer plane tracking bits
7717  *
7718  * This function gets called everytime rendering on the given planes start.
7719  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7720  *
7721  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7722  */
7723 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7724 			       unsigned int frontbuffer_bits)
7725 {
7726 	struct intel_dp *intel_dp;
7727 	struct drm_crtc *crtc;
7728 	enum pipe pipe;
7729 
7730 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7731 		return;
7732 
7733 	cancel_delayed_work(&dev_priv->drrs.work);
7734 
7735 	mutex_lock(&dev_priv->drrs.mutex);
7736 
7737 	intel_dp = dev_priv->drrs.dp;
7738 	if (!intel_dp) {
7739 		mutex_unlock(&dev_priv->drrs.mutex);
7740 		return;
7741 	}
7742 
7743 	crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7744 	pipe = to_intel_crtc(crtc)->pipe;
7745 
7746 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7747 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7748 
7749 	/* invalidate means busy screen hence upclock */
7750 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7751 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7752 					drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7753 
7754 	mutex_unlock(&dev_priv->drrs.mutex);
7755 }
7756 
7757 /**
7758  * intel_edp_drrs_flush - Restart Idleness DRRS
7759  * @dev_priv: i915 device
7760  * @frontbuffer_bits: frontbuffer plane tracking bits
7761  *
7762  * This function gets called every time rendering on the given planes has
7763  * completed or flip on a crtc is completed. So DRRS should be upclocked
7764  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7765  * if no other planes are dirty.
7766  *
7767  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7768  */
7769 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7770 			  unsigned int frontbuffer_bits)
7771 {
7772 	struct intel_dp *intel_dp;
7773 	struct drm_crtc *crtc;
7774 	enum pipe pipe;
7775 
7776 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7777 		return;
7778 
7779 	cancel_delayed_work(&dev_priv->drrs.work);
7780 
7781 	mutex_lock(&dev_priv->drrs.mutex);
7782 
7783 	intel_dp = dev_priv->drrs.dp;
7784 	if (!intel_dp) {
7785 		mutex_unlock(&dev_priv->drrs.mutex);
7786 		return;
7787 	}
7788 
7789 	crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7790 	pipe = to_intel_crtc(crtc)->pipe;
7791 
7792 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7793 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7794 
7795 	/* flush means busy screen hence upclock */
7796 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7797 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7798 					drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7799 
7800 	/*
7801 	 * flush also means no more activity hence schedule downclock, if all
7802 	 * other fbs are quiescent too
7803 	 */
7804 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7805 		schedule_delayed_work(&dev_priv->drrs.work,
7806 				msecs_to_jiffies(1000));
7807 	mutex_unlock(&dev_priv->drrs.mutex);
7808 }
7809 
7810 /**
7811  * DOC: Display Refresh Rate Switching (DRRS)
7812  *
7813  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7814  * which enables swtching between low and high refresh rates,
7815  * dynamically, based on the usage scenario. This feature is applicable
7816  * for internal panels.
7817  *
7818  * Indication that the panel supports DRRS is given by the panel EDID, which
7819  * would list multiple refresh rates for one resolution.
7820  *
7821  * DRRS is of 2 types - static and seamless.
7822  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7823  * (may appear as a blink on screen) and is used in dock-undock scenario.
7824  * Seamless DRRS involves changing RR without any visual effect to the user
7825  * and can be used during normal system usage. This is done by programming
7826  * certain registers.
7827  *
7828  * Support for static/seamless DRRS may be indicated in the VBT based on
7829  * inputs from the panel spec.
7830  *
7831  * DRRS saves power by switching to low RR based on usage scenarios.
7832  *
7833  * The implementation is based on frontbuffer tracking implementation.  When
7834  * there is a disturbance on the screen triggered by user activity or a periodic
7835  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7836  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7837  * made.
7838  *
7839  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7840  * and intel_edp_drrs_flush() are called.
7841  *
7842  * DRRS can be further extended to support other internal panels and also
7843  * the scenario of video playback wherein RR is set based on the rate
7844  * requested by userspace.
7845  */
7846 
7847 /**
7848  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7849  * @connector: eDP connector
7850  * @fixed_mode: preferred mode of panel
7851  *
7852  * This function is  called only once at driver load to initialize basic
7853  * DRRS stuff.
7854  *
7855  * Returns:
7856  * Downclock mode if panel supports it, else return NULL.
7857  * DRRS support is determined by the presence of downclock mode (apart
7858  * from VBT setting).
7859  */
7860 static struct drm_display_mode *
7861 intel_dp_drrs_init(struct intel_connector *connector,
7862 		   struct drm_display_mode *fixed_mode)
7863 {
7864 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7865 	struct drm_display_mode *downclock_mode = NULL;
7866 
7867 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7868 	mutex_init(&dev_priv->drrs.mutex);
7869 
7870 	if (INTEL_GEN(dev_priv) <= 6) {
7871 		drm_dbg_kms(&dev_priv->drm,
7872 			    "DRRS supported for Gen7 and above\n");
7873 		return NULL;
7874 	}
7875 
7876 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7877 		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7878 		return NULL;
7879 	}
7880 
7881 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7882 	if (!downclock_mode) {
7883 		drm_dbg_kms(&dev_priv->drm,
7884 			    "Downclock mode is not found. DRRS not supported\n");
7885 		return NULL;
7886 	}
7887 
7888 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7889 
7890 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7891 	drm_dbg_kms(&dev_priv->drm,
7892 		    "seamless DRRS supported for eDP panel.\n");
7893 	return downclock_mode;
7894 }
7895 
7896 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7897 				     struct intel_connector *intel_connector)
7898 {
7899 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7900 	struct drm_device *dev = &dev_priv->drm;
7901 	struct drm_connector *connector = &intel_connector->base;
7902 	struct drm_display_mode *fixed_mode = NULL;
7903 	struct drm_display_mode *downclock_mode = NULL;
7904 	bool has_dpcd;
7905 	enum pipe pipe = INVALID_PIPE;
7906 	intel_wakeref_t wakeref;
7907 	struct edid *edid;
7908 
7909 	if (!intel_dp_is_edp(intel_dp))
7910 		return true;
7911 
7912 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7913 
7914 	/*
7915 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7916 	 * driver uses the only internal power sequencer available for both
7917 	 * eDP and LVDS bail out early in this case to prevent interfering
7918 	 * with an already powered-on LVDS power sequencer.
7919 	 */
7920 	if (intel_get_lvds_encoder(dev_priv)) {
7921 		drm_WARN_ON(dev,
7922 			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7923 		drm_info(&dev_priv->drm,
7924 			 "LVDS was detected, not registering eDP\n");
7925 
7926 		return false;
7927 	}
7928 
7929 	with_pps_lock(intel_dp, wakeref) {
7930 		intel_dp_init_panel_power_timestamps(intel_dp);
7931 		intel_dp_pps_init(intel_dp);
7932 		intel_edp_panel_vdd_sanitize(intel_dp);
7933 	}
7934 
7935 	/* Cache DPCD and EDID for edp. */
7936 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7937 
7938 	if (!has_dpcd) {
7939 		/* if this fails, presume the device is a ghost */
7940 		drm_info(&dev_priv->drm,
7941 			 "failed to retrieve link info, disabling eDP\n");
7942 		goto out_vdd_off;
7943 	}
7944 
7945 	mutex_lock(&dev->mode_config.mutex);
7946 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7947 	if (edid) {
7948 		if (drm_add_edid_modes(connector, edid)) {
7949 			drm_connector_update_edid_property(connector, edid);
7950 			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
7951 		} else {
7952 			kfree(edid);
7953 			edid = ERR_PTR(-EINVAL);
7954 		}
7955 	} else {
7956 		edid = ERR_PTR(-ENOENT);
7957 	}
7958 	intel_connector->edid = edid;
7959 
7960 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7961 	if (fixed_mode)
7962 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7963 
7964 	/* fallback to VBT if available for eDP */
7965 	if (!fixed_mode)
7966 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7967 	mutex_unlock(&dev->mode_config.mutex);
7968 
7969 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7970 		/*
7971 		 * Figure out the current pipe for the initial backlight setup.
7972 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7973 		 * fails just assume pipe A.
7974 		 */
7975 		pipe = vlv_active_pipe(intel_dp);
7976 
7977 		if (pipe != PIPE_A && pipe != PIPE_B)
7978 			pipe = intel_dp->pps_pipe;
7979 
7980 		if (pipe != PIPE_A && pipe != PIPE_B)
7981 			pipe = PIPE_A;
7982 
7983 		drm_dbg_kms(&dev_priv->drm,
7984 			    "using pipe %c for initial backlight setup\n",
7985 			    pipe_name(pipe));
7986 	}
7987 
7988 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7989 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7990 	intel_panel_setup_backlight(connector, pipe);
7991 
7992 	if (fixed_mode) {
7993 		drm_connector_set_panel_orientation_with_quirk(connector,
7994 				dev_priv->vbt.orientation,
7995 				fixed_mode->hdisplay, fixed_mode->vdisplay);
7996 	}
7997 
7998 	return true;
7999 
8000 out_vdd_off:
8001 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
8002 	/*
8003 	 * vdd might still be enabled do to the delayed vdd off.
8004 	 * Make sure vdd is actually turned off here.
8005 	 */
8006 	with_pps_lock(intel_dp, wakeref)
8007 		edp_panel_vdd_off_sync(intel_dp);
8008 
8009 	return false;
8010 }
8011 
8012 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
8013 {
8014 	struct intel_connector *intel_connector;
8015 	struct drm_connector *connector;
8016 
8017 	intel_connector = container_of(work, typeof(*intel_connector),
8018 				       modeset_retry_work);
8019 	connector = &intel_connector->base;
8020 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
8021 		      connector->name);
8022 
8023 	/* Grab the locks before changing connector property*/
8024 	mutex_lock(&connector->dev->mode_config.mutex);
8025 	/* Set connector link status to BAD and send a Uevent to notify
8026 	 * userspace to do a modeset.
8027 	 */
8028 	drm_connector_set_link_status_property(connector,
8029 					       DRM_MODE_LINK_STATUS_BAD);
8030 	mutex_unlock(&connector->dev->mode_config.mutex);
8031 	/* Send Hotplug uevent so userspace can reprobe */
8032 	drm_kms_helper_hotplug_event(connector->dev);
8033 }
8034 
8035 bool
8036 intel_dp_init_connector(struct intel_digital_port *dig_port,
8037 			struct intel_connector *intel_connector)
8038 {
8039 	struct drm_connector *connector = &intel_connector->base;
8040 	struct intel_dp *intel_dp = &dig_port->dp;
8041 	struct intel_encoder *intel_encoder = &dig_port->base;
8042 	struct drm_device *dev = intel_encoder->base.dev;
8043 	struct drm_i915_private *dev_priv = to_i915(dev);
8044 	enum port port = intel_encoder->port;
8045 	enum phy phy = intel_port_to_phy(dev_priv, port);
8046 	int type;
8047 
8048 	/* Initialize the work for modeset in case of link train failure */
8049 	INIT_WORK(&intel_connector->modeset_retry_work,
8050 		  intel_dp_modeset_retry_work_fn);
8051 
8052 	if (drm_WARN(dev, dig_port->max_lanes < 1,
8053 		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
8054 		     dig_port->max_lanes, intel_encoder->base.base.id,
8055 		     intel_encoder->base.name))
8056 		return false;
8057 
8058 	intel_dp_set_source_rates(intel_dp);
8059 
8060 	intel_dp->reset_link_params = true;
8061 	intel_dp->pps_pipe = INVALID_PIPE;
8062 	intel_dp->active_pipe = INVALID_PIPE;
8063 
8064 	/* Preserve the current hw state. */
8065 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8066 	intel_dp->attached_connector = intel_connector;
8067 
8068 	if (intel_dp_is_port_edp(dev_priv, port)) {
8069 		/*
8070 		 * Currently we don't support eDP on TypeC ports, although in
8071 		 * theory it could work on TypeC legacy ports.
8072 		 */
8073 		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8074 		type = DRM_MODE_CONNECTOR_eDP;
8075 	} else {
8076 		type = DRM_MODE_CONNECTOR_DisplayPort;
8077 	}
8078 
8079 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
8080 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
8081 
8082 	/*
8083 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
8084 	 * for DP the encoder type can be set by the caller to
8085 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
8086 	 */
8087 	if (type == DRM_MODE_CONNECTOR_eDP)
8088 		intel_encoder->type = INTEL_OUTPUT_EDP;
8089 
8090 	/* eDP only on port B and/or C on vlv/chv */
8091 	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
8092 			      IS_CHERRYVIEW(dev_priv)) &&
8093 			intel_dp_is_edp(intel_dp) &&
8094 			port != PORT_B && port != PORT_C))
8095 		return false;
8096 
8097 	drm_dbg_kms(&dev_priv->drm,
8098 		    "Adding %s connector on [ENCODER:%d:%s]\n",
8099 		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
8100 		    intel_encoder->base.base.id, intel_encoder->base.name);
8101 
8102 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8103 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
8104 
8105 	if (!HAS_GMCH(dev_priv))
8106 		connector->interlace_allowed = true;
8107 	connector->doublescan_allowed = 0;
8108 
8109 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8110 
8111 	intel_dp_aux_init(intel_dp);
8112 
8113 	intel_connector_attach_encoder(intel_connector, intel_encoder);
8114 
8115 	if (HAS_DDI(dev_priv))
8116 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
8117 	else
8118 		intel_connector->get_hw_state = intel_connector_get_hw_state;
8119 
8120 	/* init MST on ports that can support it */
8121 	intel_dp_mst_encoder_init(dig_port,
8122 				  intel_connector->base.base.id);
8123 
8124 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8125 		intel_dp_aux_fini(intel_dp);
8126 		intel_dp_mst_encoder_cleanup(dig_port);
8127 		goto fail;
8128 	}
8129 
8130 	intel_dp_add_properties(intel_dp, connector);
8131 
8132 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8133 		int ret = intel_dp_init_hdcp(dig_port, intel_connector);
8134 		if (ret)
8135 			drm_dbg_kms(&dev_priv->drm,
8136 				    "HDCP init failed, skipping.\n");
8137 	}
8138 
8139 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
8140 	 * 0xd.  Failure to do so will result in spurious interrupts being
8141 	 * generated on the port when a cable is not attached.
8142 	 */
8143 	if (IS_G45(dev_priv)) {
8144 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
8145 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
8146 			       (temp & ~0xf) | 0xd);
8147 	}
8148 
8149 	return true;
8150 
8151 fail:
8152 	drm_connector_cleanup(connector);
8153 
8154 	return false;
8155 }
8156 
8157 bool intel_dp_init(struct drm_i915_private *dev_priv,
8158 		   i915_reg_t output_reg,
8159 		   enum port port)
8160 {
8161 	struct intel_digital_port *dig_port;
8162 	struct intel_encoder *intel_encoder;
8163 	struct drm_encoder *encoder;
8164 	struct intel_connector *intel_connector;
8165 
8166 	dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL);
8167 	if (!dig_port)
8168 		return false;
8169 
8170 	intel_connector = intel_connector_alloc();
8171 	if (!intel_connector)
8172 		goto err_connector_alloc;
8173 
8174 	intel_encoder = &dig_port->base;
8175 	encoder = &intel_encoder->base;
8176 
8177 	mutex_init(&dig_port->hdcp_mutex);
8178 
8179 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
8180 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
8181 			     "DP %c", port_name(port)))
8182 		goto err_encoder_init;
8183 
8184 	intel_encoder->hotplug = intel_dp_hotplug;
8185 	intel_encoder->compute_config = intel_dp_compute_config;
8186 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
8187 	intel_encoder->get_config = intel_dp_get_config;
8188 	intel_encoder->sync_state = intel_dp_sync_state;
8189 	intel_encoder->initial_fastset_check = intel_dp_initial_fastset_check;
8190 	intel_encoder->update_pipe = intel_panel_update_backlight;
8191 	intel_encoder->suspend = intel_dp_encoder_suspend;
8192 	intel_encoder->shutdown = intel_dp_encoder_shutdown;
8193 	if (IS_CHERRYVIEW(dev_priv)) {
8194 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8195 		intel_encoder->pre_enable = chv_pre_enable_dp;
8196 		intel_encoder->enable = vlv_enable_dp;
8197 		intel_encoder->disable = vlv_disable_dp;
8198 		intel_encoder->post_disable = chv_post_disable_dp;
8199 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8200 	} else if (IS_VALLEYVIEW(dev_priv)) {
8201 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8202 		intel_encoder->pre_enable = vlv_pre_enable_dp;
8203 		intel_encoder->enable = vlv_enable_dp;
8204 		intel_encoder->disable = vlv_disable_dp;
8205 		intel_encoder->post_disable = vlv_post_disable_dp;
8206 	} else {
8207 		intel_encoder->pre_enable = g4x_pre_enable_dp;
8208 		intel_encoder->enable = g4x_enable_dp;
8209 		intel_encoder->disable = g4x_disable_dp;
8210 		intel_encoder->post_disable = g4x_post_disable_dp;
8211 	}
8212 
8213 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
8214 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A))
8215 		dig_port->dp.set_link_train = cpt_set_link_train;
8216 	else
8217 		dig_port->dp.set_link_train = g4x_set_link_train;
8218 
8219 	if (IS_CHERRYVIEW(dev_priv))
8220 		dig_port->dp.set_signal_levels = chv_set_signal_levels;
8221 	else if (IS_VALLEYVIEW(dev_priv))
8222 		dig_port->dp.set_signal_levels = vlv_set_signal_levels;
8223 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
8224 		dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
8225 	else if (IS_GEN(dev_priv, 6) && port == PORT_A)
8226 		dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
8227 	else
8228 		dig_port->dp.set_signal_levels = g4x_set_signal_levels;
8229 
8230 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) ||
8231 	    (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) {
8232 		dig_port->dp.preemph_max = intel_dp_preemph_max_3;
8233 		dig_port->dp.voltage_max = intel_dp_voltage_max_3;
8234 	} else {
8235 		dig_port->dp.preemph_max = intel_dp_preemph_max_2;
8236 		dig_port->dp.voltage_max = intel_dp_voltage_max_2;
8237 	}
8238 
8239 	dig_port->dp.output_reg = output_reg;
8240 	dig_port->max_lanes = 4;
8241 
8242 	intel_encoder->type = INTEL_OUTPUT_DP;
8243 	intel_encoder->power_domain = intel_port_to_power_domain(port);
8244 	if (IS_CHERRYVIEW(dev_priv)) {
8245 		if (port == PORT_D)
8246 			intel_encoder->pipe_mask = BIT(PIPE_C);
8247 		else
8248 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8249 	} else {
8250 		intel_encoder->pipe_mask = ~0;
8251 	}
8252 	intel_encoder->cloneable = 0;
8253 	intel_encoder->port = port;
8254 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8255 
8256 	dig_port->hpd_pulse = intel_dp_hpd_pulse;
8257 
8258 	if (HAS_GMCH(dev_priv)) {
8259 		if (IS_GM45(dev_priv))
8260 			dig_port->connected = gm45_digital_port_connected;
8261 		else
8262 			dig_port->connected = g4x_digital_port_connected;
8263 	} else {
8264 		if (port == PORT_A)
8265 			dig_port->connected = ilk_digital_port_connected;
8266 		else
8267 			dig_port->connected = ibx_digital_port_connected;
8268 	}
8269 
8270 	if (port != PORT_A)
8271 		intel_infoframe_init(dig_port);
8272 
8273 	dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8274 	if (!intel_dp_init_connector(dig_port, intel_connector))
8275 		goto err_init_connector;
8276 
8277 	return true;
8278 
8279 err_init_connector:
8280 	drm_encoder_cleanup(encoder);
8281 err_encoder_init:
8282 	kfree(intel_connector);
8283 err_connector_alloc:
8284 	kfree(dig_port);
8285 	return false;
8286 }
8287 
8288 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8289 {
8290 	struct intel_encoder *encoder;
8291 
8292 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8293 		struct intel_dp *intel_dp;
8294 
8295 		if (encoder->type != INTEL_OUTPUT_DDI)
8296 			continue;
8297 
8298 		intel_dp = enc_to_intel_dp(encoder);
8299 
8300 		if (!intel_dp->can_mst)
8301 			continue;
8302 
8303 		if (intel_dp->is_mst)
8304 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8305 	}
8306 }
8307 
8308 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8309 {
8310 	struct intel_encoder *encoder;
8311 
8312 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8313 		struct intel_dp *intel_dp;
8314 		int ret;
8315 
8316 		if (encoder->type != INTEL_OUTPUT_DDI)
8317 			continue;
8318 
8319 		intel_dp = enc_to_intel_dp(encoder);
8320 
8321 		if (!intel_dp->can_mst)
8322 			continue;
8323 
8324 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8325 						     true);
8326 		if (ret) {
8327 			intel_dp->is_mst = false;
8328 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8329 							false);
8330 		}
8331 	}
8332 }
8333