xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_dp.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_types.h"
52 #include "intel_dp.h"
53 #include "intel_dp_link_training.h"
54 #include "intel_dp_mst.h"
55 #include "intel_dpio_phy.h"
56 #include "intel_fifo_underrun.h"
57 #include "intel_hdcp.h"
58 #include "intel_hdmi.h"
59 #include "intel_hotplug.h"
60 #include "intel_lspcon.h"
61 #include "intel_lvds.h"
62 #include "intel_panel.h"
63 #include "intel_psr.h"
64 #include "intel_sideband.h"
65 #include "intel_tc.h"
66 #include "intel_vdsc.h"
67 
68 #define DP_DPRX_ESI_LEN 14
69 
70 /* DP DSC throughput values used for slice count calculations KPixels/s */
71 #define DP_DSC_PEAK_PIXEL_RATE			2720000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
74 
75 /* DP DSC FEC Overhead factor = 1/(0.972261) */
76 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
77 
78 /* Compliance test status bits  */
79 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
80 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 
84 struct dp_link_dpll {
85 	int clock;
86 	struct dpll dpll;
87 };
88 
89 static const struct dp_link_dpll g4x_dpll[] = {
90 	{ 162000,
91 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
92 	{ 270000,
93 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
94 };
95 
96 static const struct dp_link_dpll pch_dpll[] = {
97 	{ 162000,
98 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
99 	{ 270000,
100 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
101 };
102 
103 static const struct dp_link_dpll vlv_dpll[] = {
104 	{ 162000,
105 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
106 	{ 270000,
107 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
108 };
109 
110 /*
111  * CHV supports eDP 1.4 that have  more link rates.
112  * Below only provides the fixed rate but exclude variable rate.
113  */
114 static const struct dp_link_dpll chv_dpll[] = {
115 	/*
116 	 * CHV requires to program fractional division for m2.
117 	 * m2 is stored in fixed point format using formula below
118 	 * (m2_int << 22) | m2_fraction
119 	 */
120 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
121 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
122 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
123 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
124 };
125 
126 /* Constants for DP DSC configurations */
127 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
128 
129 /* With Single pipe configuration, HW is capable of supporting maximum
130  * of 4 slices per line.
131  */
132 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
133 
134 /**
135  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
136  * @intel_dp: DP struct
137  *
138  * If a CPU or PCH DP output is attached to an eDP panel, this function
139  * will return true, and false otherwise.
140  */
141 bool intel_dp_is_edp(struct intel_dp *intel_dp)
142 {
143 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
144 
145 	return dig_port->base.type == INTEL_OUTPUT_EDP;
146 }
147 
148 static void intel_dp_link_down(struct intel_encoder *encoder,
149 			       const struct intel_crtc_state *old_crtc_state);
150 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
151 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
152 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
153 					   const struct intel_crtc_state *crtc_state);
154 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
155 				      enum pipe pipe);
156 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
157 
158 /* update sink rates from dpcd */
159 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
160 {
161 	static const int dp_rates[] = {
162 		162000, 270000, 540000, 810000
163 	};
164 	int i, max_rate;
165 
166 	if (drm_dp_has_quirk(&intel_dp->desc, 0,
167 			     DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
168 		/* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
169 		static const int quirk_rates[] = { 162000, 270000, 324000 };
170 
171 		memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
172 		intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
173 
174 		return;
175 	}
176 
177 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178 
179 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
180 		if (dp_rates[i] > max_rate)
181 			break;
182 		intel_dp->sink_rates[i] = dp_rates[i];
183 	}
184 
185 	intel_dp->num_sink_rates = i;
186 }
187 
188 /* Get length of rates array potentially limited by max_rate. */
189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
190 {
191 	int i;
192 
193 	/* Limit results by potentially reduced max rate */
194 	for (i = 0; i < len; i++) {
195 		if (rates[len - i - 1] <= max_rate)
196 			return len - i;
197 	}
198 
199 	return 0;
200 }
201 
202 /* Get length of common rates array potentially limited by max_rate. */
203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
204 					  int max_rate)
205 {
206 	return intel_dp_rate_limit_len(intel_dp->common_rates,
207 				       intel_dp->num_common_rates, max_rate);
208 }
209 
210 /* Theoretical max between source and sink */
211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212 {
213 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 }
215 
216 /* Theoretical max between source and sink */
217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 {
219 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
220 	int source_max = dig_port->max_lanes;
221 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222 	int fia_max = intel_tc_port_fia_max_lane_count(dig_port);
223 
224 	return min3(source_max, sink_max, fia_max);
225 }
226 
227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 {
229 	return intel_dp->max_link_lane_count;
230 }
231 
232 int
233 intel_dp_link_required(int pixel_clock, int bpp)
234 {
235 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
236 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 }
238 
239 int
240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
241 {
242 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
243 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
244 	 * is transmitted every LS_Clk per lane, there is no need to account for
245 	 * the channel encoding that is done in the PHY layer here.
246 	 */
247 
248 	return max_link_clock * max_lanes;
249 }
250 
251 static int
252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
253 {
254 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
255 	struct intel_encoder *encoder = &dig_port->base;
256 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
257 	int max_dotclk = dev_priv->max_dotclk_freq;
258 	int ds_max_dotclk;
259 
260 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
261 
262 	if (type != DP_DS_PORT_TYPE_VGA)
263 		return max_dotclk;
264 
265 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
266 						    intel_dp->downstream_ports);
267 
268 	if (ds_max_dotclk != 0)
269 		max_dotclk = min(max_dotclk, ds_max_dotclk);
270 
271 	return max_dotclk;
272 }
273 
274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 {
276 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
277 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
278 	enum port port = dig_port->base.port;
279 
280 	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281 
282 	/* Low voltage SKUs are limited to max of 5.4G */
283 	if (voltage == VOLTAGE_INFO_0_85V)
284 		return 540000;
285 
286 	/* For this SKU 8.1G is supported in all ports */
287 	if (IS_CNL_WITH_PORT_F(dev_priv))
288 		return 810000;
289 
290 	/* For other SKUs, max rate on ports A and D is 5.4G */
291 	if (port == PORT_A || port == PORT_D)
292 		return 540000;
293 
294 	return 810000;
295 }
296 
297 static int icl_max_source_rate(struct intel_dp *intel_dp)
298 {
299 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302 
303 	if (intel_phy_is_combo(dev_priv, phy) &&
304 	    !IS_ELKHARTLAKE(dev_priv) &&
305 	    !intel_dp_is_edp(intel_dp))
306 		return 540000;
307 
308 	return 810000;
309 }
310 
311 static void
312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
313 {
314 	/* The values must be in increasing order */
315 	static const int cnl_rates[] = {
316 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
317 	};
318 	static const int bxt_rates[] = {
319 		162000, 216000, 243000, 270000, 324000, 432000, 540000
320 	};
321 	static const int skl_rates[] = {
322 		162000, 216000, 270000, 324000, 432000, 540000
323 	};
324 	static const int hsw_rates[] = {
325 		162000, 270000, 540000
326 	};
327 	static const int g4x_rates[] = {
328 		162000, 270000
329 	};
330 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331 	struct intel_encoder *encoder = &dig_port->base;
332 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
333 	const int *source_rates;
334 	int size, max_rate = 0, vbt_max_rate;
335 
336 	/* This should only be done once */
337 	drm_WARN_ON(&dev_priv->drm,
338 		    intel_dp->source_rates || intel_dp->num_source_rates);
339 
340 	if (INTEL_GEN(dev_priv) >= 10) {
341 		source_rates = cnl_rates;
342 		size = ARRAY_SIZE(cnl_rates);
343 		if (IS_GEN(dev_priv, 10))
344 			max_rate = cnl_max_source_rate(intel_dp);
345 		else
346 			max_rate = icl_max_source_rate(intel_dp);
347 	} else if (IS_GEN9_LP(dev_priv)) {
348 		source_rates = bxt_rates;
349 		size = ARRAY_SIZE(bxt_rates);
350 	} else if (IS_GEN9_BC(dev_priv)) {
351 		source_rates = skl_rates;
352 		size = ARRAY_SIZE(skl_rates);
353 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
354 		   IS_BROADWELL(dev_priv)) {
355 		source_rates = hsw_rates;
356 		size = ARRAY_SIZE(hsw_rates);
357 	} else {
358 		source_rates = g4x_rates;
359 		size = ARRAY_SIZE(g4x_rates);
360 	}
361 
362 	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
363 	if (max_rate && vbt_max_rate)
364 		max_rate = min(max_rate, vbt_max_rate);
365 	else if (vbt_max_rate)
366 		max_rate = vbt_max_rate;
367 
368 	if (max_rate)
369 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
370 
371 	intel_dp->source_rates = source_rates;
372 	intel_dp->num_source_rates = size;
373 }
374 
375 static int intersect_rates(const int *source_rates, int source_len,
376 			   const int *sink_rates, int sink_len,
377 			   int *common_rates)
378 {
379 	int i = 0, j = 0, k = 0;
380 
381 	while (i < source_len && j < sink_len) {
382 		if (source_rates[i] == sink_rates[j]) {
383 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
384 				return k;
385 			common_rates[k] = source_rates[i];
386 			++k;
387 			++i;
388 			++j;
389 		} else if (source_rates[i] < sink_rates[j]) {
390 			++i;
391 		} else {
392 			++j;
393 		}
394 	}
395 	return k;
396 }
397 
398 /* return index of rate in rates array, or -1 if not found */
399 static int intel_dp_rate_index(const int *rates, int len, int rate)
400 {
401 	int i;
402 
403 	for (i = 0; i < len; i++)
404 		if (rate == rates[i])
405 			return i;
406 
407 	return -1;
408 }
409 
410 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
411 {
412 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
413 
414 	drm_WARN_ON(&i915->drm,
415 		    !intel_dp->num_source_rates || !intel_dp->num_sink_rates);
416 
417 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
418 						     intel_dp->num_source_rates,
419 						     intel_dp->sink_rates,
420 						     intel_dp->num_sink_rates,
421 						     intel_dp->common_rates);
422 
423 	/* Paranoia, there should always be something in common. */
424 	if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) {
425 		intel_dp->common_rates[0] = 162000;
426 		intel_dp->num_common_rates = 1;
427 	}
428 }
429 
430 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
431 				       u8 lane_count)
432 {
433 	/*
434 	 * FIXME: we need to synchronize the current link parameters with
435 	 * hardware readout. Currently fast link training doesn't work on
436 	 * boot-up.
437 	 */
438 	if (link_rate == 0 ||
439 	    link_rate > intel_dp->max_link_rate)
440 		return false;
441 
442 	if (lane_count == 0 ||
443 	    lane_count > intel_dp_max_lane_count(intel_dp))
444 		return false;
445 
446 	return true;
447 }
448 
449 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
450 						     int link_rate,
451 						     u8 lane_count)
452 {
453 	const struct drm_display_mode *fixed_mode =
454 		intel_dp->attached_connector->panel.fixed_mode;
455 	int mode_rate, max_rate;
456 
457 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
458 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
459 	if (mode_rate > max_rate)
460 		return false;
461 
462 	return true;
463 }
464 
465 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
466 					    int link_rate, u8 lane_count)
467 {
468 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
469 	int index;
470 
471 	/*
472 	 * TODO: Enable fallback on MST links once MST link compute can handle
473 	 * the fallback params.
474 	 */
475 	if (intel_dp->is_mst) {
476 		drm_err(&i915->drm, "Link Training Unsuccessful\n");
477 		return -1;
478 	}
479 
480 	index = intel_dp_rate_index(intel_dp->common_rates,
481 				    intel_dp->num_common_rates,
482 				    link_rate);
483 	if (index > 0) {
484 		if (intel_dp_is_edp(intel_dp) &&
485 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
486 							      intel_dp->common_rates[index - 1],
487 							      lane_count)) {
488 			drm_dbg_kms(&i915->drm,
489 				    "Retrying Link training for eDP with same parameters\n");
490 			return 0;
491 		}
492 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
493 		intel_dp->max_link_lane_count = lane_count;
494 	} else if (lane_count > 1) {
495 		if (intel_dp_is_edp(intel_dp) &&
496 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
497 							      intel_dp_max_common_rate(intel_dp),
498 							      lane_count >> 1)) {
499 			drm_dbg_kms(&i915->drm,
500 				    "Retrying Link training for eDP with same parameters\n");
501 			return 0;
502 		}
503 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
504 		intel_dp->max_link_lane_count = lane_count >> 1;
505 	} else {
506 		drm_err(&i915->drm, "Link Training Unsuccessful\n");
507 		return -1;
508 	}
509 
510 	return 0;
511 }
512 
513 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
514 {
515 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
516 		       DP_DSC_FEC_OVERHEAD_FACTOR);
517 }
518 
519 static int
520 small_joiner_ram_size_bits(struct drm_i915_private *i915)
521 {
522 	if (INTEL_GEN(i915) >= 11)
523 		return 7680 * 8;
524 	else
525 		return 6144 * 8;
526 }
527 
528 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
529 				       u32 link_clock, u32 lane_count,
530 				       u32 mode_clock, u32 mode_hdisplay)
531 {
532 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
533 	int i;
534 
535 	/*
536 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
537 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
538 	 * for SST -> TimeSlotsPerMTP is 1,
539 	 * for MST -> TimeSlotsPerMTP has to be calculated
540 	 */
541 	bits_per_pixel = (link_clock * lane_count * 8) /
542 			 intel_dp_mode_to_fec_clock(mode_clock);
543 	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
544 
545 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
546 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
547 		mode_hdisplay;
548 	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
549 		    max_bpp_small_joiner_ram);
550 
551 	/*
552 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
553 	 * check, output bpp from small joiner RAM check)
554 	 */
555 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
556 
557 	/* Error out if the max bpp is less than smallest allowed valid bpp */
558 	if (bits_per_pixel < valid_dsc_bpp[0]) {
559 		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
560 			    bits_per_pixel, valid_dsc_bpp[0]);
561 		return 0;
562 	}
563 
564 	/* Find the nearest match in the array of known BPPs from VESA */
565 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
566 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
567 			break;
568 	}
569 	bits_per_pixel = valid_dsc_bpp[i];
570 
571 	/*
572 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
573 	 * fractional part is 0
574 	 */
575 	return bits_per_pixel << 4;
576 }
577 
578 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
579 				       int mode_clock, int mode_hdisplay)
580 {
581 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
582 	u8 min_slice_count, i;
583 	int max_slice_width;
584 
585 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
586 		min_slice_count = DIV_ROUND_UP(mode_clock,
587 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
588 	else
589 		min_slice_count = DIV_ROUND_UP(mode_clock,
590 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
591 
592 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
593 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
594 		drm_dbg_kms(&i915->drm,
595 			    "Unsupported slice width %d by DP DSC Sink device\n",
596 			    max_slice_width);
597 		return 0;
598 	}
599 	/* Also take into account max slice width */
600 	min_slice_count = min_t(u8, min_slice_count,
601 				DIV_ROUND_UP(mode_hdisplay,
602 					     max_slice_width));
603 
604 	/* Find the closest match to the valid slice count values */
605 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
606 		if (valid_dsc_slicecount[i] >
607 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
608 						    false))
609 			break;
610 		if (min_slice_count  <= valid_dsc_slicecount[i])
611 			return valid_dsc_slicecount[i];
612 	}
613 
614 	drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
615 		    min_slice_count);
616 	return 0;
617 }
618 
619 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
620 				  int hdisplay)
621 {
622 	/*
623 	 * Older platforms don't like hdisplay==4096 with DP.
624 	 *
625 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
626 	 * and frame counter increment), but we don't get vblank interrupts,
627 	 * and the pipe underruns immediately. The link also doesn't seem
628 	 * to get trained properly.
629 	 *
630 	 * On CHV the vblank interrupts don't seem to disappear but
631 	 * otherwise the symptoms are similar.
632 	 *
633 	 * TODO: confirm the behaviour on HSW+
634 	 */
635 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
636 }
637 
638 static enum drm_mode_status
639 intel_dp_mode_valid(struct drm_connector *connector,
640 		    struct drm_display_mode *mode)
641 {
642 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
643 	struct intel_connector *intel_connector = to_intel_connector(connector);
644 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
645 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
646 	int target_clock = mode->clock;
647 	int max_rate, mode_rate, max_lanes, max_link_clock;
648 	int max_dotclk;
649 	u16 dsc_max_output_bpp = 0;
650 	u8 dsc_slice_count = 0;
651 
652 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
653 		return MODE_NO_DBLESCAN;
654 
655 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
656 
657 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
658 		if (mode->hdisplay > fixed_mode->hdisplay)
659 			return MODE_PANEL;
660 
661 		if (mode->vdisplay > fixed_mode->vdisplay)
662 			return MODE_PANEL;
663 
664 		target_clock = fixed_mode->clock;
665 	}
666 
667 	max_link_clock = intel_dp_max_link_rate(intel_dp);
668 	max_lanes = intel_dp_max_lane_count(intel_dp);
669 
670 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
671 	mode_rate = intel_dp_link_required(target_clock, 18);
672 
673 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
674 		return MODE_H_ILLEGAL;
675 
676 	/*
677 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
678 	 * integer value since we support only integer values of bpp.
679 	 */
680 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
681 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
682 		if (intel_dp_is_edp(intel_dp)) {
683 			dsc_max_output_bpp =
684 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
685 			dsc_slice_count =
686 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
687 								true);
688 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
689 			dsc_max_output_bpp =
690 				intel_dp_dsc_get_output_bpp(dev_priv,
691 							    max_link_clock,
692 							    max_lanes,
693 							    target_clock,
694 							    mode->hdisplay) >> 4;
695 			dsc_slice_count =
696 				intel_dp_dsc_get_slice_count(intel_dp,
697 							     target_clock,
698 							     mode->hdisplay);
699 		}
700 	}
701 
702 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
703 	    target_clock > max_dotclk)
704 		return MODE_CLOCK_HIGH;
705 
706 	if (mode->clock < 10000)
707 		return MODE_CLOCK_LOW;
708 
709 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
710 		return MODE_H_ILLEGAL;
711 
712 	return intel_mode_valid_max_plane_size(dev_priv, mode);
713 }
714 
715 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
716 {
717 	int i;
718 	u32 v = 0;
719 
720 	if (src_bytes > 4)
721 		src_bytes = 4;
722 	for (i = 0; i < src_bytes; i++)
723 		v |= ((u32)src[i]) << ((3 - i) * 8);
724 	return v;
725 }
726 
727 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
728 {
729 	int i;
730 	if (dst_bytes > 4)
731 		dst_bytes = 4;
732 	for (i = 0; i < dst_bytes; i++)
733 		dst[i] = src >> ((3-i) * 8);
734 }
735 
736 static void
737 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
738 static void
739 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
740 					      bool force_disable_vdd);
741 static void
742 intel_dp_pps_init(struct intel_dp *intel_dp);
743 
744 static intel_wakeref_t
745 pps_lock(struct intel_dp *intel_dp)
746 {
747 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
748 	intel_wakeref_t wakeref;
749 
750 	/*
751 	 * See intel_power_sequencer_reset() why we need
752 	 * a power domain reference here.
753 	 */
754 	wakeref = intel_display_power_get(dev_priv,
755 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
756 
757 	mutex_lock(&dev_priv->pps_mutex);
758 
759 	return wakeref;
760 }
761 
762 static intel_wakeref_t
763 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
764 {
765 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
766 
767 	mutex_unlock(&dev_priv->pps_mutex);
768 	intel_display_power_put(dev_priv,
769 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
770 				wakeref);
771 	return 0;
772 }
773 
774 #define with_pps_lock(dp, wf) \
775 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
776 
777 static void
778 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
779 {
780 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
781 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
782 	enum pipe pipe = intel_dp->pps_pipe;
783 	bool pll_enabled, release_cl_override = false;
784 	enum dpio_phy phy = DPIO_PHY(pipe);
785 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
786 	u32 DP;
787 
788 	if (drm_WARN(&dev_priv->drm,
789 		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
790 		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
791 		     pipe_name(pipe), dig_port->base.base.base.id,
792 		     dig_port->base.base.name))
793 		return;
794 
795 	drm_dbg_kms(&dev_priv->drm,
796 		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
797 		    pipe_name(pipe), dig_port->base.base.base.id,
798 		    dig_port->base.base.name);
799 
800 	/* Preserve the BIOS-computed detected bit. This is
801 	 * supposed to be read-only.
802 	 */
803 	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
804 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
805 	DP |= DP_PORT_WIDTH(1);
806 	DP |= DP_LINK_TRAIN_PAT_1;
807 
808 	if (IS_CHERRYVIEW(dev_priv))
809 		DP |= DP_PIPE_SEL_CHV(pipe);
810 	else
811 		DP |= DP_PIPE_SEL(pipe);
812 
813 	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
814 
815 	/*
816 	 * The DPLL for the pipe must be enabled for this to work.
817 	 * So enable temporarily it if it's not already enabled.
818 	 */
819 	if (!pll_enabled) {
820 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
821 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
822 
823 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
824 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
825 			drm_err(&dev_priv->drm,
826 				"Failed to force on pll for pipe %c!\n",
827 				pipe_name(pipe));
828 			return;
829 		}
830 	}
831 
832 	/*
833 	 * Similar magic as in intel_dp_enable_port().
834 	 * We _must_ do this port enable + disable trick
835 	 * to make this power sequencer lock onto the port.
836 	 * Otherwise even VDD force bit won't work.
837 	 */
838 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
839 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
840 
841 	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
842 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
843 
844 	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
845 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
846 
847 	if (!pll_enabled) {
848 		vlv_force_pll_off(dev_priv, pipe);
849 
850 		if (release_cl_override)
851 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
852 	}
853 }
854 
855 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
856 {
857 	struct intel_encoder *encoder;
858 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
859 
860 	/*
861 	 * We don't have power sequencer currently.
862 	 * Pick one that's not used by other ports.
863 	 */
864 	for_each_intel_dp(&dev_priv->drm, encoder) {
865 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
866 
867 		if (encoder->type == INTEL_OUTPUT_EDP) {
868 			drm_WARN_ON(&dev_priv->drm,
869 				    intel_dp->active_pipe != INVALID_PIPE &&
870 				    intel_dp->active_pipe !=
871 				    intel_dp->pps_pipe);
872 
873 			if (intel_dp->pps_pipe != INVALID_PIPE)
874 				pipes &= ~(1 << intel_dp->pps_pipe);
875 		} else {
876 			drm_WARN_ON(&dev_priv->drm,
877 				    intel_dp->pps_pipe != INVALID_PIPE);
878 
879 			if (intel_dp->active_pipe != INVALID_PIPE)
880 				pipes &= ~(1 << intel_dp->active_pipe);
881 		}
882 	}
883 
884 	if (pipes == 0)
885 		return INVALID_PIPE;
886 
887 	return ffs(pipes) - 1;
888 }
889 
890 static enum pipe
891 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
892 {
893 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
894 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
895 	enum pipe pipe;
896 
897 	lockdep_assert_held(&dev_priv->pps_mutex);
898 
899 	/* We should never land here with regular DP ports */
900 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
901 
902 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
903 		    intel_dp->active_pipe != intel_dp->pps_pipe);
904 
905 	if (intel_dp->pps_pipe != INVALID_PIPE)
906 		return intel_dp->pps_pipe;
907 
908 	pipe = vlv_find_free_pps(dev_priv);
909 
910 	/*
911 	 * Didn't find one. This should not happen since there
912 	 * are two power sequencers and up to two eDP ports.
913 	 */
914 	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
915 		pipe = PIPE_A;
916 
917 	vlv_steal_power_sequencer(dev_priv, pipe);
918 	intel_dp->pps_pipe = pipe;
919 
920 	drm_dbg_kms(&dev_priv->drm,
921 		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
922 		    pipe_name(intel_dp->pps_pipe),
923 		    dig_port->base.base.base.id,
924 		    dig_port->base.base.name);
925 
926 	/* init power sequencer on this pipe and port */
927 	intel_dp_init_panel_power_sequencer(intel_dp);
928 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
929 
930 	/*
931 	 * Even vdd force doesn't work until we've made
932 	 * the power sequencer lock in on the port.
933 	 */
934 	vlv_power_sequencer_kick(intel_dp);
935 
936 	return intel_dp->pps_pipe;
937 }
938 
939 static int
940 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
941 {
942 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
943 	int backlight_controller = dev_priv->vbt.backlight.controller;
944 
945 	lockdep_assert_held(&dev_priv->pps_mutex);
946 
947 	/* We should never land here with regular DP ports */
948 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
949 
950 	if (!intel_dp->pps_reset)
951 		return backlight_controller;
952 
953 	intel_dp->pps_reset = false;
954 
955 	/*
956 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
957 	 * has been setup during connector init.
958 	 */
959 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
960 
961 	return backlight_controller;
962 }
963 
964 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
965 			       enum pipe pipe);
966 
967 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
968 			       enum pipe pipe)
969 {
970 	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
971 }
972 
973 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
974 				enum pipe pipe)
975 {
976 	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
977 }
978 
979 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
980 			 enum pipe pipe)
981 {
982 	return true;
983 }
984 
985 static enum pipe
986 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
987 		     enum port port,
988 		     vlv_pipe_check pipe_check)
989 {
990 	enum pipe pipe;
991 
992 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
993 		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
994 			PANEL_PORT_SELECT_MASK;
995 
996 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
997 			continue;
998 
999 		if (!pipe_check(dev_priv, pipe))
1000 			continue;
1001 
1002 		return pipe;
1003 	}
1004 
1005 	return INVALID_PIPE;
1006 }
1007 
1008 static void
1009 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
1010 {
1011 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1012 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1013 	enum port port = dig_port->base.port;
1014 
1015 	lockdep_assert_held(&dev_priv->pps_mutex);
1016 
1017 	/* try to find a pipe with this port selected */
1018 	/* first pick one where the panel is on */
1019 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1020 						  vlv_pipe_has_pp_on);
1021 	/* didn't find one? pick one where vdd is on */
1022 	if (intel_dp->pps_pipe == INVALID_PIPE)
1023 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1024 							  vlv_pipe_has_vdd_on);
1025 	/* didn't find one? pick one with just the correct port */
1026 	if (intel_dp->pps_pipe == INVALID_PIPE)
1027 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1028 							  vlv_pipe_any);
1029 
1030 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1031 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1032 		drm_dbg_kms(&dev_priv->drm,
1033 			    "no initial power sequencer for [ENCODER:%d:%s]\n",
1034 			    dig_port->base.base.base.id,
1035 			    dig_port->base.base.name);
1036 		return;
1037 	}
1038 
1039 	drm_dbg_kms(&dev_priv->drm,
1040 		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1041 		    dig_port->base.base.base.id,
1042 		    dig_port->base.base.name,
1043 		    pipe_name(intel_dp->pps_pipe));
1044 
1045 	intel_dp_init_panel_power_sequencer(intel_dp);
1046 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1047 }
1048 
1049 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1050 {
1051 	struct intel_encoder *encoder;
1052 
1053 	if (drm_WARN_ON(&dev_priv->drm,
1054 			!(IS_VALLEYVIEW(dev_priv) ||
1055 			  IS_CHERRYVIEW(dev_priv) ||
1056 			  IS_GEN9_LP(dev_priv))))
1057 		return;
1058 
1059 	/*
1060 	 * We can't grab pps_mutex here due to deadlock with power_domain
1061 	 * mutex when power_domain functions are called while holding pps_mutex.
1062 	 * That also means that in order to use pps_pipe the code needs to
1063 	 * hold both a power domain reference and pps_mutex, and the power domain
1064 	 * reference get/put must be done while _not_ holding pps_mutex.
1065 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1066 	 * should use them always.
1067 	 */
1068 
1069 	for_each_intel_dp(&dev_priv->drm, encoder) {
1070 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1071 
1072 		drm_WARN_ON(&dev_priv->drm,
1073 			    intel_dp->active_pipe != INVALID_PIPE);
1074 
1075 		if (encoder->type != INTEL_OUTPUT_EDP)
1076 			continue;
1077 
1078 		if (IS_GEN9_LP(dev_priv))
1079 			intel_dp->pps_reset = true;
1080 		else
1081 			intel_dp->pps_pipe = INVALID_PIPE;
1082 	}
1083 }
1084 
1085 struct pps_registers {
1086 	i915_reg_t pp_ctrl;
1087 	i915_reg_t pp_stat;
1088 	i915_reg_t pp_on;
1089 	i915_reg_t pp_off;
1090 	i915_reg_t pp_div;
1091 };
1092 
1093 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1094 				    struct pps_registers *regs)
1095 {
1096 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1097 	int pps_idx = 0;
1098 
1099 	memset(regs, 0, sizeof(*regs));
1100 
1101 	if (IS_GEN9_LP(dev_priv))
1102 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1103 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1104 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1105 
1106 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1107 	regs->pp_stat = PP_STATUS(pps_idx);
1108 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1109 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1110 
1111 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1112 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1113 		regs->pp_div = INVALID_MMIO_REG;
1114 	else
1115 		regs->pp_div = PP_DIVISOR(pps_idx);
1116 }
1117 
1118 static i915_reg_t
1119 _pp_ctrl_reg(struct intel_dp *intel_dp)
1120 {
1121 	struct pps_registers regs;
1122 
1123 	intel_pps_get_registers(intel_dp, &regs);
1124 
1125 	return regs.pp_ctrl;
1126 }
1127 
1128 static i915_reg_t
1129 _pp_stat_reg(struct intel_dp *intel_dp)
1130 {
1131 	struct pps_registers regs;
1132 
1133 	intel_pps_get_registers(intel_dp, &regs);
1134 
1135 	return regs.pp_stat;
1136 }
1137 
1138 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1139    This function only applicable when panel PM state is not to be tracked */
1140 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1141 			      void *unused)
1142 {
1143 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1144 						 edp_notifier);
1145 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1146 	intel_wakeref_t wakeref;
1147 
1148 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1149 		return 0;
1150 
1151 	with_pps_lock(intel_dp, wakeref) {
1152 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1153 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1154 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1155 			u32 pp_div;
1156 
1157 			pp_ctrl_reg = PP_CONTROL(pipe);
1158 			pp_div_reg  = PP_DIVISOR(pipe);
1159 			pp_div = intel_de_read(dev_priv, pp_div_reg);
1160 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1161 
1162 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1163 			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1164 			intel_de_write(dev_priv, pp_ctrl_reg,
1165 				       PANEL_UNLOCK_REGS);
1166 			msleep(intel_dp->panel_power_cycle_delay);
1167 		}
1168 	}
1169 
1170 	return 0;
1171 }
1172 
1173 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1174 {
1175 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1176 
1177 	lockdep_assert_held(&dev_priv->pps_mutex);
1178 
1179 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1180 	    intel_dp->pps_pipe == INVALID_PIPE)
1181 		return false;
1182 
1183 	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1184 }
1185 
1186 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1187 {
1188 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1189 
1190 	lockdep_assert_held(&dev_priv->pps_mutex);
1191 
1192 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1193 	    intel_dp->pps_pipe == INVALID_PIPE)
1194 		return false;
1195 
1196 	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1197 }
1198 
1199 static void
1200 intel_dp_check_edp(struct intel_dp *intel_dp)
1201 {
1202 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1203 
1204 	if (!intel_dp_is_edp(intel_dp))
1205 		return;
1206 
1207 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1208 		drm_WARN(&dev_priv->drm, 1,
1209 			 "eDP powered off while attempting aux channel communication.\n");
1210 		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1211 			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1212 			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1213 	}
1214 }
1215 
1216 static u32
1217 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1218 {
1219 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1220 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1221 	const unsigned int timeout_ms = 10;
1222 	u32 status;
1223 	bool done;
1224 
1225 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1226 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1227 				  msecs_to_jiffies_timeout(timeout_ms));
1228 
1229 	/* just trace the final value */
1230 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1231 
1232 	if (!done)
1233 		drm_err(&i915->drm,
1234 			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1235 			intel_dp->aux.name, timeout_ms, status);
1236 #undef C
1237 
1238 	return status;
1239 }
1240 
1241 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1242 {
1243 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1244 
1245 	if (index)
1246 		return 0;
1247 
1248 	/*
1249 	 * The clock divider is based off the hrawclk, and would like to run at
1250 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1251 	 */
1252 	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1253 }
1254 
1255 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1256 {
1257 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1258 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1259 	u32 freq;
1260 
1261 	if (index)
1262 		return 0;
1263 
1264 	/*
1265 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1266 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1267 	 * divide by 2000 and use that
1268 	 */
1269 	if (dig_port->aux_ch == AUX_CH_A)
1270 		freq = dev_priv->cdclk.hw.cdclk;
1271 	else
1272 		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1273 	return DIV_ROUND_CLOSEST(freq, 2000);
1274 }
1275 
1276 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1277 {
1278 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1279 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1280 
1281 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1282 		/* Workaround for non-ULT HSW */
1283 		switch (index) {
1284 		case 0: return 63;
1285 		case 1: return 72;
1286 		default: return 0;
1287 		}
1288 	}
1289 
1290 	return ilk_get_aux_clock_divider(intel_dp, index);
1291 }
1292 
1293 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1294 {
1295 	/*
1296 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1297 	 * derive the clock from CDCLK automatically). We still implement the
1298 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1299 	 */
1300 	return index ? 0 : 1;
1301 }
1302 
1303 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1304 				int send_bytes,
1305 				u32 aux_clock_divider)
1306 {
1307 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1308 	struct drm_i915_private *dev_priv =
1309 			to_i915(dig_port->base.base.dev);
1310 	u32 precharge, timeout;
1311 
1312 	if (IS_GEN(dev_priv, 6))
1313 		precharge = 3;
1314 	else
1315 		precharge = 5;
1316 
1317 	if (IS_BROADWELL(dev_priv))
1318 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1319 	else
1320 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1321 
1322 	return DP_AUX_CH_CTL_SEND_BUSY |
1323 	       DP_AUX_CH_CTL_DONE |
1324 	       DP_AUX_CH_CTL_INTERRUPT |
1325 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1326 	       timeout |
1327 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1328 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1329 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1330 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1331 }
1332 
1333 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1334 				int send_bytes,
1335 				u32 unused)
1336 {
1337 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1338 	struct drm_i915_private *i915 =
1339 			to_i915(dig_port->base.base.dev);
1340 	enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1341 	u32 ret;
1342 
1343 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1344 	      DP_AUX_CH_CTL_DONE |
1345 	      DP_AUX_CH_CTL_INTERRUPT |
1346 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1347 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1348 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1349 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1350 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1351 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1352 
1353 	if (intel_phy_is_tc(i915, phy) &&
1354 	    dig_port->tc_mode == TC_PORT_TBT_ALT)
1355 		ret |= DP_AUX_CH_CTL_TBT_IO;
1356 
1357 	return ret;
1358 }
1359 
1360 static int
1361 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1362 		  const u8 *send, int send_bytes,
1363 		  u8 *recv, int recv_size,
1364 		  u32 aux_send_ctl_flags)
1365 {
1366 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1367 	struct drm_i915_private *i915 =
1368 			to_i915(dig_port->base.base.dev);
1369 	struct intel_uncore *uncore = &i915->uncore;
1370 	enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1371 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1372 	i915_reg_t ch_ctl, ch_data[5];
1373 	u32 aux_clock_divider;
1374 	enum intel_display_power_domain aux_domain;
1375 	intel_wakeref_t aux_wakeref;
1376 	intel_wakeref_t pps_wakeref;
1377 	int i, ret, recv_bytes;
1378 	int try, clock = 0;
1379 	u32 status;
1380 	bool vdd;
1381 
1382 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1383 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1384 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1385 
1386 	if (is_tc_port)
1387 		intel_tc_port_lock(dig_port);
1388 
1389 	aux_domain = intel_aux_power_domain(dig_port);
1390 
1391 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1392 	pps_wakeref = pps_lock(intel_dp);
1393 
1394 	/*
1395 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1396 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1397 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1398 	 * ourselves.
1399 	 */
1400 	vdd = edp_panel_vdd_on(intel_dp);
1401 
1402 	/* dp aux is extremely sensitive to irq latency, hence request the
1403 	 * lowest possible wakeup latency and so prevent the cpu from going into
1404 	 * deep sleep states.
1405 	 */
1406 	cpu_latency_qos_update_request(&i915->pm_qos, 0);
1407 
1408 	intel_dp_check_edp(intel_dp);
1409 
1410 	/* Try to wait for any previous AUX channel activity */
1411 	for (try = 0; try < 3; try++) {
1412 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1413 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1414 			break;
1415 		msleep(1);
1416 	}
1417 	/* just trace the final value */
1418 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1419 
1420 	if (try == 3) {
1421 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1422 
1423 		if (status != intel_dp->aux_busy_last_status) {
1424 			drm_WARN(&i915->drm, 1,
1425 				 "%s: not started (status 0x%08x)\n",
1426 				 intel_dp->aux.name, status);
1427 			intel_dp->aux_busy_last_status = status;
1428 		}
1429 
1430 		ret = -EBUSY;
1431 		goto out;
1432 	}
1433 
1434 	/* Only 5 data registers! */
1435 	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1436 		ret = -E2BIG;
1437 		goto out;
1438 	}
1439 
1440 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1441 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1442 							  send_bytes,
1443 							  aux_clock_divider);
1444 
1445 		send_ctl |= aux_send_ctl_flags;
1446 
1447 		/* Must try at least 3 times according to DP spec */
1448 		for (try = 0; try < 5; try++) {
1449 			/* Load the send data into the aux channel data registers */
1450 			for (i = 0; i < send_bytes; i += 4)
1451 				intel_uncore_write(uncore,
1452 						   ch_data[i >> 2],
1453 						   intel_dp_pack_aux(send + i,
1454 								     send_bytes - i));
1455 
1456 			/* Send the command and wait for it to complete */
1457 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1458 
1459 			status = intel_dp_aux_wait_done(intel_dp);
1460 
1461 			/* Clear done status and any errors */
1462 			intel_uncore_write(uncore,
1463 					   ch_ctl,
1464 					   status |
1465 					   DP_AUX_CH_CTL_DONE |
1466 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1467 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1468 
1469 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1470 			 *   400us delay required for errors and timeouts
1471 			 *   Timeout errors from the HW already meet this
1472 			 *   requirement so skip to next iteration
1473 			 */
1474 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1475 				continue;
1476 
1477 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1478 				usleep_range(400, 500);
1479 				continue;
1480 			}
1481 			if (status & DP_AUX_CH_CTL_DONE)
1482 				goto done;
1483 		}
1484 	}
1485 
1486 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1487 		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1488 			intel_dp->aux.name, status);
1489 		ret = -EBUSY;
1490 		goto out;
1491 	}
1492 
1493 done:
1494 	/* Check for timeout or receive error.
1495 	 * Timeouts occur when the sink is not connected
1496 	 */
1497 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1498 		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1499 			intel_dp->aux.name, status);
1500 		ret = -EIO;
1501 		goto out;
1502 	}
1503 
1504 	/* Timeouts occur when the device isn't connected, so they're
1505 	 * "normal" -- don't fill the kernel log with these */
1506 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1507 		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1508 			    intel_dp->aux.name, status);
1509 		ret = -ETIMEDOUT;
1510 		goto out;
1511 	}
1512 
1513 	/* Unload any bytes sent back from the other side */
1514 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1515 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1516 
1517 	/*
1518 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1519 	 * We have no idea of what happened so we return -EBUSY so
1520 	 * drm layer takes care for the necessary retries.
1521 	 */
1522 	if (recv_bytes == 0 || recv_bytes > 20) {
1523 		drm_dbg_kms(&i915->drm,
1524 			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
1525 			    intel_dp->aux.name, recv_bytes);
1526 		ret = -EBUSY;
1527 		goto out;
1528 	}
1529 
1530 	if (recv_bytes > recv_size)
1531 		recv_bytes = recv_size;
1532 
1533 	for (i = 0; i < recv_bytes; i += 4)
1534 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1535 				    recv + i, recv_bytes - i);
1536 
1537 	ret = recv_bytes;
1538 out:
1539 	cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1540 
1541 	if (vdd)
1542 		edp_panel_vdd_off(intel_dp, false);
1543 
1544 	pps_unlock(intel_dp, pps_wakeref);
1545 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1546 
1547 	if (is_tc_port)
1548 		intel_tc_port_unlock(dig_port);
1549 
1550 	return ret;
1551 }
1552 
1553 #define BARE_ADDRESS_SIZE	3
1554 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1555 
1556 static void
1557 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1558 		    const struct drm_dp_aux_msg *msg)
1559 {
1560 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1561 	txbuf[1] = (msg->address >> 8) & 0xff;
1562 	txbuf[2] = msg->address & 0xff;
1563 	txbuf[3] = msg->size - 1;
1564 }
1565 
1566 static ssize_t
1567 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1568 {
1569 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1570 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1571 	u8 txbuf[20], rxbuf[20];
1572 	size_t txsize, rxsize;
1573 	int ret;
1574 
1575 	intel_dp_aux_header(txbuf, msg);
1576 
1577 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1578 	case DP_AUX_NATIVE_WRITE:
1579 	case DP_AUX_I2C_WRITE:
1580 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1581 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1582 		rxsize = 2; /* 0 or 1 data bytes */
1583 
1584 		if (drm_WARN_ON(&i915->drm, txsize > 20))
1585 			return -E2BIG;
1586 
1587 		drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size);
1588 
1589 		if (msg->buffer)
1590 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1591 
1592 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1593 					rxbuf, rxsize, 0);
1594 		if (ret > 0) {
1595 			msg->reply = rxbuf[0] >> 4;
1596 
1597 			if (ret > 1) {
1598 				/* Number of bytes written in a short write. */
1599 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1600 			} else {
1601 				/* Return payload size. */
1602 				ret = msg->size;
1603 			}
1604 		}
1605 		break;
1606 
1607 	case DP_AUX_NATIVE_READ:
1608 	case DP_AUX_I2C_READ:
1609 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1610 		rxsize = msg->size + 1;
1611 
1612 		if (drm_WARN_ON(&i915->drm, rxsize > 20))
1613 			return -E2BIG;
1614 
1615 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1616 					rxbuf, rxsize, 0);
1617 		if (ret > 0) {
1618 			msg->reply = rxbuf[0] >> 4;
1619 			/*
1620 			 * Assume happy day, and copy the data. The caller is
1621 			 * expected to check msg->reply before touching it.
1622 			 *
1623 			 * Return payload size.
1624 			 */
1625 			ret--;
1626 			memcpy(msg->buffer, rxbuf + 1, ret);
1627 		}
1628 		break;
1629 
1630 	default:
1631 		ret = -EINVAL;
1632 		break;
1633 	}
1634 
1635 	return ret;
1636 }
1637 
1638 
1639 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1640 {
1641 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1642 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1643 	enum aux_ch aux_ch = dig_port->aux_ch;
1644 
1645 	switch (aux_ch) {
1646 	case AUX_CH_B:
1647 	case AUX_CH_C:
1648 	case AUX_CH_D:
1649 		return DP_AUX_CH_CTL(aux_ch);
1650 	default:
1651 		MISSING_CASE(aux_ch);
1652 		return DP_AUX_CH_CTL(AUX_CH_B);
1653 	}
1654 }
1655 
1656 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1657 {
1658 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1659 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1660 	enum aux_ch aux_ch = dig_port->aux_ch;
1661 
1662 	switch (aux_ch) {
1663 	case AUX_CH_B:
1664 	case AUX_CH_C:
1665 	case AUX_CH_D:
1666 		return DP_AUX_CH_DATA(aux_ch, index);
1667 	default:
1668 		MISSING_CASE(aux_ch);
1669 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1670 	}
1671 }
1672 
1673 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1674 {
1675 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1676 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1677 	enum aux_ch aux_ch = dig_port->aux_ch;
1678 
1679 	switch (aux_ch) {
1680 	case AUX_CH_A:
1681 		return DP_AUX_CH_CTL(aux_ch);
1682 	case AUX_CH_B:
1683 	case AUX_CH_C:
1684 	case AUX_CH_D:
1685 		return PCH_DP_AUX_CH_CTL(aux_ch);
1686 	default:
1687 		MISSING_CASE(aux_ch);
1688 		return DP_AUX_CH_CTL(AUX_CH_A);
1689 	}
1690 }
1691 
1692 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1693 {
1694 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1695 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1696 	enum aux_ch aux_ch = dig_port->aux_ch;
1697 
1698 	switch (aux_ch) {
1699 	case AUX_CH_A:
1700 		return DP_AUX_CH_DATA(aux_ch, index);
1701 	case AUX_CH_B:
1702 	case AUX_CH_C:
1703 	case AUX_CH_D:
1704 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1705 	default:
1706 		MISSING_CASE(aux_ch);
1707 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1708 	}
1709 }
1710 
1711 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1712 {
1713 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1714 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1715 	enum aux_ch aux_ch = dig_port->aux_ch;
1716 
1717 	switch (aux_ch) {
1718 	case AUX_CH_A:
1719 	case AUX_CH_B:
1720 	case AUX_CH_C:
1721 	case AUX_CH_D:
1722 	case AUX_CH_E:
1723 	case AUX_CH_F:
1724 	case AUX_CH_G:
1725 		return DP_AUX_CH_CTL(aux_ch);
1726 	default:
1727 		MISSING_CASE(aux_ch);
1728 		return DP_AUX_CH_CTL(AUX_CH_A);
1729 	}
1730 }
1731 
1732 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1733 {
1734 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1735 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1736 	enum aux_ch aux_ch = dig_port->aux_ch;
1737 
1738 	switch (aux_ch) {
1739 	case AUX_CH_A:
1740 	case AUX_CH_B:
1741 	case AUX_CH_C:
1742 	case AUX_CH_D:
1743 	case AUX_CH_E:
1744 	case AUX_CH_F:
1745 	case AUX_CH_G:
1746 		return DP_AUX_CH_DATA(aux_ch, index);
1747 	default:
1748 		MISSING_CASE(aux_ch);
1749 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1750 	}
1751 }
1752 
1753 static void
1754 intel_dp_aux_fini(struct intel_dp *intel_dp)
1755 {
1756 	kfree(intel_dp->aux.name);
1757 }
1758 
1759 static void
1760 intel_dp_aux_init(struct intel_dp *intel_dp)
1761 {
1762 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1763 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1764 	struct intel_encoder *encoder = &dig_port->base;
1765 
1766 	if (INTEL_GEN(dev_priv) >= 9) {
1767 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1768 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1769 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1770 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1771 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1772 	} else {
1773 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1774 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1775 	}
1776 
1777 	if (INTEL_GEN(dev_priv) >= 9)
1778 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1779 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1780 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1781 	else if (HAS_PCH_SPLIT(dev_priv))
1782 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1783 	else
1784 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1785 
1786 	if (INTEL_GEN(dev_priv) >= 9)
1787 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1788 	else
1789 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1790 
1791 	drm_dp_aux_init(&intel_dp->aux);
1792 
1793 	/* Failure to allocate our preferred name is not critical */
1794 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1795 				       aux_ch_name(dig_port->aux_ch),
1796 				       port_name(encoder->port));
1797 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1798 }
1799 
1800 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1801 {
1802 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1803 
1804 	return max_rate >= 540000;
1805 }
1806 
1807 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1808 {
1809 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1810 
1811 	return max_rate >= 810000;
1812 }
1813 
1814 static void
1815 intel_dp_set_clock(struct intel_encoder *encoder,
1816 		   struct intel_crtc_state *pipe_config)
1817 {
1818 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1819 	const struct dp_link_dpll *divisor = NULL;
1820 	int i, count = 0;
1821 
1822 	if (IS_G4X(dev_priv)) {
1823 		divisor = g4x_dpll;
1824 		count = ARRAY_SIZE(g4x_dpll);
1825 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1826 		divisor = pch_dpll;
1827 		count = ARRAY_SIZE(pch_dpll);
1828 	} else if (IS_CHERRYVIEW(dev_priv)) {
1829 		divisor = chv_dpll;
1830 		count = ARRAY_SIZE(chv_dpll);
1831 	} else if (IS_VALLEYVIEW(dev_priv)) {
1832 		divisor = vlv_dpll;
1833 		count = ARRAY_SIZE(vlv_dpll);
1834 	}
1835 
1836 	if (divisor && count) {
1837 		for (i = 0; i < count; i++) {
1838 			if (pipe_config->port_clock == divisor[i].clock) {
1839 				pipe_config->dpll = divisor[i].dpll;
1840 				pipe_config->clock_set = true;
1841 				break;
1842 			}
1843 		}
1844 	}
1845 }
1846 
1847 static void snprintf_int_array(char *str, size_t len,
1848 			       const int *array, int nelem)
1849 {
1850 	int i;
1851 
1852 	str[0] = '\0';
1853 
1854 	for (i = 0; i < nelem; i++) {
1855 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1856 		if (r >= len)
1857 			return;
1858 		str += r;
1859 		len -= r;
1860 	}
1861 }
1862 
1863 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1864 {
1865 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1866 	char str[128]; /* FIXME: too big for stack? */
1867 
1868 	if (!drm_debug_enabled(DRM_UT_KMS))
1869 		return;
1870 
1871 	snprintf_int_array(str, sizeof(str),
1872 			   intel_dp->source_rates, intel_dp->num_source_rates);
1873 	drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1874 
1875 	snprintf_int_array(str, sizeof(str),
1876 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1877 	drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1878 
1879 	snprintf_int_array(str, sizeof(str),
1880 			   intel_dp->common_rates, intel_dp->num_common_rates);
1881 	drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1882 }
1883 
1884 int
1885 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1886 {
1887 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1888 	int len;
1889 
1890 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1891 	if (drm_WARN_ON(&i915->drm, len <= 0))
1892 		return 162000;
1893 
1894 	return intel_dp->common_rates[len - 1];
1895 }
1896 
1897 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1898 {
1899 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1900 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1901 				    intel_dp->num_sink_rates, rate);
1902 
1903 	if (drm_WARN_ON(&i915->drm, i < 0))
1904 		i = 0;
1905 
1906 	return i;
1907 }
1908 
1909 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1910 			   u8 *link_bw, u8 *rate_select)
1911 {
1912 	/* eDP 1.4 rate select method. */
1913 	if (intel_dp->use_rate_select) {
1914 		*link_bw = 0;
1915 		*rate_select =
1916 			intel_dp_rate_select(intel_dp, port_clock);
1917 	} else {
1918 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1919 		*rate_select = 0;
1920 	}
1921 }
1922 
1923 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1924 					 const struct intel_crtc_state *pipe_config)
1925 {
1926 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1927 
1928 	/* On TGL, FEC is supported on all Pipes */
1929 	if (INTEL_GEN(dev_priv) >= 12)
1930 		return true;
1931 
1932 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1933 		return true;
1934 
1935 	return false;
1936 }
1937 
1938 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1939 				  const struct intel_crtc_state *pipe_config)
1940 {
1941 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1942 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1943 }
1944 
1945 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1946 				  const struct intel_crtc_state *crtc_state)
1947 {
1948 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1949 
1950 	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1951 		return false;
1952 
1953 	return intel_dsc_source_support(encoder, crtc_state) &&
1954 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1955 }
1956 
1957 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1958 				struct intel_crtc_state *pipe_config)
1959 {
1960 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1961 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1962 	int bpp, bpc;
1963 
1964 	bpp = pipe_config->pipe_bpp;
1965 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1966 
1967 	if (bpc > 0)
1968 		bpp = min(bpp, 3*bpc);
1969 
1970 	if (intel_dp_is_edp(intel_dp)) {
1971 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1972 		if (intel_connector->base.display_info.bpc == 0 &&
1973 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1974 			drm_dbg_kms(&dev_priv->drm,
1975 				    "clamping bpp for eDP panel to BIOS-provided %i\n",
1976 				    dev_priv->vbt.edp.bpp);
1977 			bpp = dev_priv->vbt.edp.bpp;
1978 		}
1979 	}
1980 
1981 	return bpp;
1982 }
1983 
1984 /* Adjust link config limits based on compliance test requests. */
1985 void
1986 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1987 				  struct intel_crtc_state *pipe_config,
1988 				  struct link_config_limits *limits)
1989 {
1990 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1991 
1992 	/* For DP Compliance we override the computed bpp for the pipe */
1993 	if (intel_dp->compliance.test_data.bpc != 0) {
1994 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1995 
1996 		limits->min_bpp = limits->max_bpp = bpp;
1997 		pipe_config->dither_force_disable = bpp == 6 * 3;
1998 
1999 		drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
2000 	}
2001 
2002 	/* Use values requested by Compliance Test Request */
2003 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
2004 		int index;
2005 
2006 		/* Validate the compliance test data since max values
2007 		 * might have changed due to link train fallback.
2008 		 */
2009 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
2010 					       intel_dp->compliance.test_lane_count)) {
2011 			index = intel_dp_rate_index(intel_dp->common_rates,
2012 						    intel_dp->num_common_rates,
2013 						    intel_dp->compliance.test_link_rate);
2014 			if (index >= 0)
2015 				limits->min_clock = limits->max_clock = index;
2016 			limits->min_lane_count = limits->max_lane_count =
2017 				intel_dp->compliance.test_lane_count;
2018 		}
2019 	}
2020 }
2021 
2022 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2023 {
2024 	/*
2025 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2026 	 * format of the number of bytes per pixel will be half the number
2027 	 * of bytes of RGB pixel.
2028 	 */
2029 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2030 		bpp /= 2;
2031 
2032 	return bpp;
2033 }
2034 
2035 /* Optimize link config in order: max bpp, min clock, min lanes */
2036 static int
2037 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2038 				  struct intel_crtc_state *pipe_config,
2039 				  const struct link_config_limits *limits)
2040 {
2041 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2042 	int bpp, clock, lane_count;
2043 	int mode_rate, link_clock, link_avail;
2044 
2045 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2046 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2047 
2048 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2049 						   output_bpp);
2050 
2051 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2052 			for (lane_count = limits->min_lane_count;
2053 			     lane_count <= limits->max_lane_count;
2054 			     lane_count <<= 1) {
2055 				link_clock = intel_dp->common_rates[clock];
2056 				link_avail = intel_dp_max_data_rate(link_clock,
2057 								    lane_count);
2058 
2059 				if (mode_rate <= link_avail) {
2060 					pipe_config->lane_count = lane_count;
2061 					pipe_config->pipe_bpp = bpp;
2062 					pipe_config->port_clock = link_clock;
2063 
2064 					return 0;
2065 				}
2066 			}
2067 		}
2068 	}
2069 
2070 	return -EINVAL;
2071 }
2072 
2073 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2074 {
2075 	int i, num_bpc;
2076 	u8 dsc_bpc[3] = {0};
2077 
2078 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2079 						       dsc_bpc);
2080 	for (i = 0; i < num_bpc; i++) {
2081 		if (dsc_max_bpc >= dsc_bpc[i])
2082 			return dsc_bpc[i] * 3;
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 #define DSC_SUPPORTED_VERSION_MIN		1
2089 
2090 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2091 				       struct intel_crtc_state *crtc_state)
2092 {
2093 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2094 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2095 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2096 	u8 line_buf_depth;
2097 	int ret;
2098 
2099 	ret = intel_dsc_compute_params(encoder, crtc_state);
2100 	if (ret)
2101 		return ret;
2102 
2103 	/*
2104 	 * Slice Height of 8 works for all currently available panels. So start
2105 	 * with that if pic_height is an integral multiple of 8. Eventually add
2106 	 * logic to try multiple slice heights.
2107 	 */
2108 	if (vdsc_cfg->pic_height % 8 == 0)
2109 		vdsc_cfg->slice_height = 8;
2110 	else if (vdsc_cfg->pic_height % 4 == 0)
2111 		vdsc_cfg->slice_height = 4;
2112 	else
2113 		vdsc_cfg->slice_height = 2;
2114 
2115 	vdsc_cfg->dsc_version_major =
2116 		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2117 		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2118 	vdsc_cfg->dsc_version_minor =
2119 		min(DSC_SUPPORTED_VERSION_MIN,
2120 		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2121 		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2122 
2123 	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2124 		DP_DSC_RGB;
2125 
2126 	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2127 	if (!line_buf_depth) {
2128 		drm_dbg_kms(&i915->drm,
2129 			    "DSC Sink Line Buffer Depth invalid\n");
2130 		return -EINVAL;
2131 	}
2132 
2133 	if (vdsc_cfg->dsc_version_minor == 2)
2134 		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2135 			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2136 	else
2137 		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2138 			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2139 
2140 	vdsc_cfg->block_pred_enable =
2141 		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2142 		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2143 
2144 	return drm_dsc_compute_rc_parameters(vdsc_cfg);
2145 }
2146 
2147 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2148 				       struct intel_crtc_state *pipe_config,
2149 				       struct drm_connector_state *conn_state,
2150 				       struct link_config_limits *limits)
2151 {
2152 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2153 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2154 	const struct drm_display_mode *adjusted_mode =
2155 		&pipe_config->hw.adjusted_mode;
2156 	u8 dsc_max_bpc;
2157 	int pipe_bpp;
2158 	int ret;
2159 
2160 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2161 		intel_dp_supports_fec(intel_dp, pipe_config);
2162 
2163 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2164 		return -EINVAL;
2165 
2166 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2167 	if (INTEL_GEN(dev_priv) >= 12)
2168 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2169 	else
2170 		dsc_max_bpc = min_t(u8, 10,
2171 				    conn_state->max_requested_bpc);
2172 
2173 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2174 
2175 	/* Min Input BPC for ICL+ is 8 */
2176 	if (pipe_bpp < 8 * 3) {
2177 		drm_dbg_kms(&dev_priv->drm,
2178 			    "No DSC support for less than 8bpc\n");
2179 		return -EINVAL;
2180 	}
2181 
2182 	/*
2183 	 * For now enable DSC for max bpp, max link rate, max lane count.
2184 	 * Optimize this later for the minimum possible link rate/lane count
2185 	 * with DSC enabled for the requested mode.
2186 	 */
2187 	pipe_config->pipe_bpp = pipe_bpp;
2188 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2189 	pipe_config->lane_count = limits->max_lane_count;
2190 
2191 	if (intel_dp_is_edp(intel_dp)) {
2192 		pipe_config->dsc.compressed_bpp =
2193 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2194 			      pipe_config->pipe_bpp);
2195 		pipe_config->dsc.slice_count =
2196 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2197 							true);
2198 	} else {
2199 		u16 dsc_max_output_bpp;
2200 		u8 dsc_dp_slice_count;
2201 
2202 		dsc_max_output_bpp =
2203 			intel_dp_dsc_get_output_bpp(dev_priv,
2204 						    pipe_config->port_clock,
2205 						    pipe_config->lane_count,
2206 						    adjusted_mode->crtc_clock,
2207 						    adjusted_mode->crtc_hdisplay);
2208 		dsc_dp_slice_count =
2209 			intel_dp_dsc_get_slice_count(intel_dp,
2210 						     adjusted_mode->crtc_clock,
2211 						     adjusted_mode->crtc_hdisplay);
2212 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2213 			drm_dbg_kms(&dev_priv->drm,
2214 				    "Compressed BPP/Slice Count not supported\n");
2215 			return -EINVAL;
2216 		}
2217 		pipe_config->dsc.compressed_bpp = min_t(u16,
2218 							       dsc_max_output_bpp >> 4,
2219 							       pipe_config->pipe_bpp);
2220 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2221 	}
2222 	/*
2223 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2224 	 * is greater than the maximum Cdclock and if slice count is even
2225 	 * then we need to use 2 VDSC instances.
2226 	 */
2227 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2228 		if (pipe_config->dsc.slice_count > 1) {
2229 			pipe_config->dsc.dsc_split = true;
2230 		} else {
2231 			drm_dbg_kms(&dev_priv->drm,
2232 				    "Cannot split stream to use 2 VDSC instances\n");
2233 			return -EINVAL;
2234 		}
2235 	}
2236 
2237 	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2238 	if (ret < 0) {
2239 		drm_dbg_kms(&dev_priv->drm,
2240 			    "Cannot compute valid DSC parameters for Input Bpp = %d "
2241 			    "Compressed BPP = %d\n",
2242 			    pipe_config->pipe_bpp,
2243 			    pipe_config->dsc.compressed_bpp);
2244 		return ret;
2245 	}
2246 
2247 	pipe_config->dsc.compression_enable = true;
2248 	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2249 		    "Compressed Bpp = %d Slice Count = %d\n",
2250 		    pipe_config->pipe_bpp,
2251 		    pipe_config->dsc.compressed_bpp,
2252 		    pipe_config->dsc.slice_count);
2253 
2254 	return 0;
2255 }
2256 
2257 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2258 {
2259 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2260 		return 6 * 3;
2261 	else
2262 		return 8 * 3;
2263 }
2264 
2265 static int
2266 intel_dp_compute_link_config(struct intel_encoder *encoder,
2267 			     struct intel_crtc_state *pipe_config,
2268 			     struct drm_connector_state *conn_state)
2269 {
2270 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2271 	const struct drm_display_mode *adjusted_mode =
2272 		&pipe_config->hw.adjusted_mode;
2273 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2274 	struct link_config_limits limits;
2275 	int common_len;
2276 	int ret;
2277 
2278 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2279 						    intel_dp->max_link_rate);
2280 
2281 	/* No common link rates between source and sink */
2282 	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2283 
2284 	limits.min_clock = 0;
2285 	limits.max_clock = common_len - 1;
2286 
2287 	limits.min_lane_count = 1;
2288 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2289 
2290 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2291 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2292 
2293 	if (intel_dp_is_edp(intel_dp)) {
2294 		/*
2295 		 * Use the maximum clock and number of lanes the eDP panel
2296 		 * advertizes being capable of. The panels are generally
2297 		 * designed to support only a single clock and lane
2298 		 * configuration, and typically these values correspond to the
2299 		 * native resolution of the panel.
2300 		 */
2301 		limits.min_lane_count = limits.max_lane_count;
2302 		limits.min_clock = limits.max_clock;
2303 	}
2304 
2305 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2306 
2307 	drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2308 		    "max rate %d max bpp %d pixel clock %iKHz\n",
2309 		    limits.max_lane_count,
2310 		    intel_dp->common_rates[limits.max_clock],
2311 		    limits.max_bpp, adjusted_mode->crtc_clock);
2312 
2313 	/*
2314 	 * Optimize for slow and wide. This is the place to add alternative
2315 	 * optimization policy.
2316 	 */
2317 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2318 
2319 	/* enable compression if the mode doesn't fit available BW */
2320 	drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2321 	if (ret || intel_dp->force_dsc_en) {
2322 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2323 						  conn_state, &limits);
2324 		if (ret < 0)
2325 			return ret;
2326 	}
2327 
2328 	if (pipe_config->dsc.compression_enable) {
2329 		drm_dbg_kms(&i915->drm,
2330 			    "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2331 			    pipe_config->lane_count, pipe_config->port_clock,
2332 			    pipe_config->pipe_bpp,
2333 			    pipe_config->dsc.compressed_bpp);
2334 
2335 		drm_dbg_kms(&i915->drm,
2336 			    "DP link rate required %i available %i\n",
2337 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2338 						   pipe_config->dsc.compressed_bpp),
2339 			    intel_dp_max_data_rate(pipe_config->port_clock,
2340 						   pipe_config->lane_count));
2341 	} else {
2342 		drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2343 			    pipe_config->lane_count, pipe_config->port_clock,
2344 			    pipe_config->pipe_bpp);
2345 
2346 		drm_dbg_kms(&i915->drm,
2347 			    "DP link rate required %i available %i\n",
2348 			    intel_dp_link_required(adjusted_mode->crtc_clock,
2349 						   pipe_config->pipe_bpp),
2350 			    intel_dp_max_data_rate(pipe_config->port_clock,
2351 						   pipe_config->lane_count));
2352 	}
2353 	return 0;
2354 }
2355 
2356 static int
2357 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2358 			 struct intel_crtc_state *crtc_state,
2359 			 const struct drm_connector_state *conn_state)
2360 {
2361 	struct drm_connector *connector = conn_state->connector;
2362 	const struct drm_display_info *info = &connector->display_info;
2363 	const struct drm_display_mode *adjusted_mode =
2364 		&crtc_state->hw.adjusted_mode;
2365 
2366 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2367 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2368 	    !connector->ycbcr_420_allowed)
2369 		return 0;
2370 
2371 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2372 
2373 	return intel_pch_panel_fitting(crtc_state, conn_state);
2374 }
2375 
2376 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2377 				  const struct drm_connector_state *conn_state)
2378 {
2379 	const struct intel_digital_connector_state *intel_conn_state =
2380 		to_intel_digital_connector_state(conn_state);
2381 	const struct drm_display_mode *adjusted_mode =
2382 		&crtc_state->hw.adjusted_mode;
2383 
2384 	/*
2385 	 * Our YCbCr output is always limited range.
2386 	 * crtc_state->limited_color_range only applies to RGB,
2387 	 * and it must never be set for YCbCr or we risk setting
2388 	 * some conflicting bits in PIPECONF which will mess up
2389 	 * the colors on the monitor.
2390 	 */
2391 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2392 		return false;
2393 
2394 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2395 		/*
2396 		 * See:
2397 		 * CEA-861-E - 5.1 Default Encoding Parameters
2398 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2399 		 */
2400 		return crtc_state->pipe_bpp != 18 &&
2401 			drm_default_rgb_quant_range(adjusted_mode) ==
2402 			HDMI_QUANTIZATION_RANGE_LIMITED;
2403 	} else {
2404 		return intel_conn_state->broadcast_rgb ==
2405 			INTEL_BROADCAST_RGB_LIMITED;
2406 	}
2407 }
2408 
2409 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2410 				    enum port port)
2411 {
2412 	if (IS_G4X(dev_priv))
2413 		return false;
2414 	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2415 		return false;
2416 
2417 	return true;
2418 }
2419 
2420 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2421 					     const struct drm_connector_state *conn_state,
2422 					     struct drm_dp_vsc_sdp *vsc)
2423 {
2424 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2425 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2426 
2427 	/*
2428 	 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2429 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2430 	 * Colorimetry Format indication.
2431 	 */
2432 	vsc->revision = 0x5;
2433 	vsc->length = 0x13;
2434 
2435 	/* DP 1.4a spec, Table 2-120 */
2436 	switch (crtc_state->output_format) {
2437 	case INTEL_OUTPUT_FORMAT_YCBCR444:
2438 		vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2439 		break;
2440 	case INTEL_OUTPUT_FORMAT_YCBCR420:
2441 		vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2442 		break;
2443 	case INTEL_OUTPUT_FORMAT_RGB:
2444 	default:
2445 		vsc->pixelformat = DP_PIXELFORMAT_RGB;
2446 	}
2447 
2448 	switch (conn_state->colorspace) {
2449 	case DRM_MODE_COLORIMETRY_BT709_YCC:
2450 		vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2451 		break;
2452 	case DRM_MODE_COLORIMETRY_XVYCC_601:
2453 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2454 		break;
2455 	case DRM_MODE_COLORIMETRY_XVYCC_709:
2456 		vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2457 		break;
2458 	case DRM_MODE_COLORIMETRY_SYCC_601:
2459 		vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2460 		break;
2461 	case DRM_MODE_COLORIMETRY_OPYCC_601:
2462 		vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2463 		break;
2464 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2465 		vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2466 		break;
2467 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
2468 		vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2469 		break;
2470 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
2471 		vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2472 		break;
2473 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2474 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2475 		vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2476 		break;
2477 	default:
2478 		/*
2479 		 * RGB->YCBCR color conversion uses the BT.709
2480 		 * color space.
2481 		 */
2482 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2483 			vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2484 		else
2485 			vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2486 		break;
2487 	}
2488 
2489 	vsc->bpc = crtc_state->pipe_bpp / 3;
2490 
2491 	/* only RGB pixelformat supports 6 bpc */
2492 	drm_WARN_ON(&dev_priv->drm,
2493 		    vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2494 
2495 	/* all YCbCr are always limited range */
2496 	vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2497 	vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2498 }
2499 
2500 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2501 				     struct intel_crtc_state *crtc_state,
2502 				     const struct drm_connector_state *conn_state)
2503 {
2504 	struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2505 
2506 	/* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2507 	if (crtc_state->has_psr)
2508 		return;
2509 
2510 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2511 		return;
2512 
2513 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2514 	vsc->sdp_type = DP_SDP_VSC;
2515 	intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2516 					 &crtc_state->infoframes.vsc);
2517 }
2518 
2519 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2520 				  const struct intel_crtc_state *crtc_state,
2521 				  const struct drm_connector_state *conn_state,
2522 				  struct drm_dp_vsc_sdp *vsc)
2523 {
2524 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2525 
2526 	vsc->sdp_type = DP_SDP_VSC;
2527 
2528 	if (dev_priv->psr.psr2_enabled) {
2529 		if (dev_priv->psr.colorimetry_support &&
2530 		    intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2531 			/* [PSR2, +Colorimetry] */
2532 			intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2533 							 vsc);
2534 		} else {
2535 			/*
2536 			 * [PSR2, -Colorimetry]
2537 			 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2538 			 * 3D stereo + PSR/PSR2 + Y-coordinate.
2539 			 */
2540 			vsc->revision = 0x4;
2541 			vsc->length = 0xe;
2542 		}
2543 	} else {
2544 		/*
2545 		 * [PSR1]
2546 		 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2547 		 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2548 		 * higher).
2549 		 */
2550 		vsc->revision = 0x2;
2551 		vsc->length = 0x8;
2552 	}
2553 }
2554 
2555 static void
2556 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2557 					    struct intel_crtc_state *crtc_state,
2558 					    const struct drm_connector_state *conn_state)
2559 {
2560 	int ret;
2561 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2562 	struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2563 
2564 	if (!conn_state->hdr_output_metadata)
2565 		return;
2566 
2567 	ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2568 
2569 	if (ret) {
2570 		drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2571 		return;
2572 	}
2573 
2574 	crtc_state->infoframes.enable |=
2575 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2576 }
2577 
2578 int
2579 intel_dp_compute_config(struct intel_encoder *encoder,
2580 			struct intel_crtc_state *pipe_config,
2581 			struct drm_connector_state *conn_state)
2582 {
2583 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2584 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2585 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2586 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2587 	enum port port = encoder->port;
2588 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2589 	struct intel_digital_connector_state *intel_conn_state =
2590 		to_intel_digital_connector_state(conn_state);
2591 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2592 					   DP_DPCD_QUIRK_CONSTANT_N);
2593 	int ret = 0, output_bpp;
2594 
2595 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2596 		pipe_config->has_pch_encoder = true;
2597 
2598 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2599 
2600 	if (lspcon->active)
2601 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2602 	else
2603 		ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2604 					       conn_state);
2605 	if (ret)
2606 		return ret;
2607 
2608 	pipe_config->has_drrs = false;
2609 	if (!intel_dp_port_has_audio(dev_priv, port))
2610 		pipe_config->has_audio = false;
2611 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2612 		pipe_config->has_audio = intel_dp->has_audio;
2613 	else
2614 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2615 
2616 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2617 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2618 				       adjusted_mode);
2619 
2620 		if (HAS_GMCH(dev_priv))
2621 			ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2622 		else
2623 			ret = intel_pch_panel_fitting(pipe_config, conn_state);
2624 		if (ret)
2625 			return ret;
2626 	}
2627 
2628 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2629 		return -EINVAL;
2630 
2631 	if (HAS_GMCH(dev_priv) &&
2632 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2633 		return -EINVAL;
2634 
2635 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2636 		return -EINVAL;
2637 
2638 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2639 		return -EINVAL;
2640 
2641 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2642 	if (ret < 0)
2643 		return ret;
2644 
2645 	pipe_config->limited_color_range =
2646 		intel_dp_limited_color_range(pipe_config, conn_state);
2647 
2648 	if (pipe_config->dsc.compression_enable)
2649 		output_bpp = pipe_config->dsc.compressed_bpp;
2650 	else
2651 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2652 
2653 	intel_link_compute_m_n(output_bpp,
2654 			       pipe_config->lane_count,
2655 			       adjusted_mode->crtc_clock,
2656 			       pipe_config->port_clock,
2657 			       &pipe_config->dp_m_n,
2658 			       constant_n, pipe_config->fec_enable);
2659 
2660 	if (intel_connector->panel.downclock_mode != NULL &&
2661 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2662 			pipe_config->has_drrs = true;
2663 			intel_link_compute_m_n(output_bpp,
2664 					       pipe_config->lane_count,
2665 					       intel_connector->panel.downclock_mode->clock,
2666 					       pipe_config->port_clock,
2667 					       &pipe_config->dp_m2_n2,
2668 					       constant_n, pipe_config->fec_enable);
2669 	}
2670 
2671 	if (!HAS_DDI(dev_priv))
2672 		intel_dp_set_clock(encoder, pipe_config);
2673 
2674 	intel_psr_compute_config(intel_dp, pipe_config);
2675 	intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2676 	intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2677 
2678 	return 0;
2679 }
2680 
2681 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2682 			      int link_rate, u8 lane_count,
2683 			      bool link_mst)
2684 {
2685 	intel_dp->link_trained = false;
2686 	intel_dp->link_rate = link_rate;
2687 	intel_dp->lane_count = lane_count;
2688 	intel_dp->link_mst = link_mst;
2689 }
2690 
2691 static void intel_dp_prepare(struct intel_encoder *encoder,
2692 			     const struct intel_crtc_state *pipe_config)
2693 {
2694 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2695 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2696 	enum port port = encoder->port;
2697 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2698 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2699 
2700 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2701 				 pipe_config->lane_count,
2702 				 intel_crtc_has_type(pipe_config,
2703 						     INTEL_OUTPUT_DP_MST));
2704 
2705 	/*
2706 	 * There are four kinds of DP registers:
2707 	 *
2708 	 * 	IBX PCH
2709 	 * 	SNB CPU
2710 	 *	IVB CPU
2711 	 * 	CPT PCH
2712 	 *
2713 	 * IBX PCH and CPU are the same for almost everything,
2714 	 * except that the CPU DP PLL is configured in this
2715 	 * register
2716 	 *
2717 	 * CPT PCH is quite different, having many bits moved
2718 	 * to the TRANS_DP_CTL register instead. That
2719 	 * configuration happens (oddly) in ilk_pch_enable
2720 	 */
2721 
2722 	/* Preserve the BIOS-computed detected bit. This is
2723 	 * supposed to be read-only.
2724 	 */
2725 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2726 
2727 	/* Handle DP bits in common between all three register formats */
2728 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2729 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2730 
2731 	/* Split out the IBX/CPU vs CPT settings */
2732 
2733 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2734 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2735 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2736 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2737 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2738 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2739 
2740 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2741 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2742 
2743 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2744 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2745 		u32 trans_dp;
2746 
2747 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2748 
2749 		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2750 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2751 			trans_dp |= TRANS_DP_ENH_FRAMING;
2752 		else
2753 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2754 		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2755 	} else {
2756 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2757 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2758 
2759 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2760 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2761 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2762 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2763 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2764 
2765 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2766 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2767 
2768 		if (IS_CHERRYVIEW(dev_priv))
2769 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2770 		else
2771 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2772 	}
2773 }
2774 
2775 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2776 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2777 
2778 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2779 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2780 
2781 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2782 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2783 
2784 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2785 
2786 static void wait_panel_status(struct intel_dp *intel_dp,
2787 				       u32 mask,
2788 				       u32 value)
2789 {
2790 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2791 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2792 
2793 	lockdep_assert_held(&dev_priv->pps_mutex);
2794 
2795 	intel_pps_verify_state(intel_dp);
2796 
2797 	pp_stat_reg = _pp_stat_reg(intel_dp);
2798 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2799 
2800 	drm_dbg_kms(&dev_priv->drm,
2801 		    "mask %08x value %08x status %08x control %08x\n",
2802 		    mask, value,
2803 		    intel_de_read(dev_priv, pp_stat_reg),
2804 		    intel_de_read(dev_priv, pp_ctrl_reg));
2805 
2806 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2807 				       mask, value, 5000))
2808 		drm_err(&dev_priv->drm,
2809 			"Panel status timeout: status %08x control %08x\n",
2810 			intel_de_read(dev_priv, pp_stat_reg),
2811 			intel_de_read(dev_priv, pp_ctrl_reg));
2812 
2813 	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2814 }
2815 
2816 static void wait_panel_on(struct intel_dp *intel_dp)
2817 {
2818 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2819 
2820 	drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2821 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2822 }
2823 
2824 static void wait_panel_off(struct intel_dp *intel_dp)
2825 {
2826 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2827 
2828 	drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2829 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2830 }
2831 
2832 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2833 {
2834 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2835 	ktime_t panel_power_on_time;
2836 	s64 panel_power_off_duration;
2837 
2838 	drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2839 
2840 	/* take the difference of currrent time and panel power off time
2841 	 * and then make panel wait for t11_t12 if needed. */
2842 	panel_power_on_time = ktime_get_boottime();
2843 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2844 
2845 	/* When we disable the VDD override bit last we have to do the manual
2846 	 * wait. */
2847 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2848 		wait_remaining_ms_from_jiffies(jiffies,
2849 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2850 
2851 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2852 }
2853 
2854 static void wait_backlight_on(struct intel_dp *intel_dp)
2855 {
2856 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2857 				       intel_dp->backlight_on_delay);
2858 }
2859 
2860 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2861 {
2862 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2863 				       intel_dp->backlight_off_delay);
2864 }
2865 
2866 /* Read the current pp_control value, unlocking the register if it
2867  * is locked
2868  */
2869 
2870 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2871 {
2872 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2873 	u32 control;
2874 
2875 	lockdep_assert_held(&dev_priv->pps_mutex);
2876 
2877 	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2878 	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2879 			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2880 		control &= ~PANEL_UNLOCK_MASK;
2881 		control |= PANEL_UNLOCK_REGS;
2882 	}
2883 	return control;
2884 }
2885 
2886 /*
2887  * Must be paired with edp_panel_vdd_off().
2888  * Must hold pps_mutex around the whole on/off sequence.
2889  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2890  */
2891 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2892 {
2893 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2894 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2895 	u32 pp;
2896 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2897 	bool need_to_disable = !intel_dp->want_panel_vdd;
2898 
2899 	lockdep_assert_held(&dev_priv->pps_mutex);
2900 
2901 	if (!intel_dp_is_edp(intel_dp))
2902 		return false;
2903 
2904 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2905 	intel_dp->want_panel_vdd = true;
2906 
2907 	if (edp_have_panel_vdd(intel_dp))
2908 		return need_to_disable;
2909 
2910 	intel_display_power_get(dev_priv,
2911 				intel_aux_power_domain(dig_port));
2912 
2913 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2914 		    dig_port->base.base.base.id,
2915 		    dig_port->base.base.name);
2916 
2917 	if (!edp_have_panel_power(intel_dp))
2918 		wait_panel_power_cycle(intel_dp);
2919 
2920 	pp = ilk_get_pp_control(intel_dp);
2921 	pp |= EDP_FORCE_VDD;
2922 
2923 	pp_stat_reg = _pp_stat_reg(intel_dp);
2924 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2925 
2926 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2927 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2928 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2929 		    intel_de_read(dev_priv, pp_stat_reg),
2930 		    intel_de_read(dev_priv, pp_ctrl_reg));
2931 	/*
2932 	 * If the panel wasn't on, delay before accessing aux channel
2933 	 */
2934 	if (!edp_have_panel_power(intel_dp)) {
2935 		drm_dbg_kms(&dev_priv->drm,
2936 			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
2937 			    dig_port->base.base.base.id,
2938 			    dig_port->base.base.name);
2939 		msleep(intel_dp->panel_power_up_delay);
2940 	}
2941 
2942 	return need_to_disable;
2943 }
2944 
2945 /*
2946  * Must be paired with intel_edp_panel_vdd_off() or
2947  * intel_edp_panel_off().
2948  * Nested calls to these functions are not allowed since
2949  * we drop the lock. Caller must use some higher level
2950  * locking to prevent nested calls from other threads.
2951  */
2952 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2953 {
2954 	intel_wakeref_t wakeref;
2955 	bool vdd;
2956 
2957 	if (!intel_dp_is_edp(intel_dp))
2958 		return;
2959 
2960 	vdd = false;
2961 	with_pps_lock(intel_dp, wakeref)
2962 		vdd = edp_panel_vdd_on(intel_dp);
2963 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2964 			dp_to_dig_port(intel_dp)->base.base.base.id,
2965 			dp_to_dig_port(intel_dp)->base.base.name);
2966 }
2967 
2968 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2969 {
2970 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2971 	struct intel_digital_port *dig_port =
2972 		dp_to_dig_port(intel_dp);
2973 	u32 pp;
2974 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2975 
2976 	lockdep_assert_held(&dev_priv->pps_mutex);
2977 
2978 	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2979 
2980 	if (!edp_have_panel_vdd(intel_dp))
2981 		return;
2982 
2983 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2984 		    dig_port->base.base.base.id,
2985 		    dig_port->base.base.name);
2986 
2987 	pp = ilk_get_pp_control(intel_dp);
2988 	pp &= ~EDP_FORCE_VDD;
2989 
2990 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2991 	pp_stat_reg = _pp_stat_reg(intel_dp);
2992 
2993 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2994 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2995 
2996 	/* Make sure sequencer is idle before allowing subsequent activity */
2997 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2998 		    intel_de_read(dev_priv, pp_stat_reg),
2999 		    intel_de_read(dev_priv, pp_ctrl_reg));
3000 
3001 	if ((pp & PANEL_POWER_ON) == 0)
3002 		intel_dp->panel_power_off_time = ktime_get_boottime();
3003 
3004 	intel_display_power_put_unchecked(dev_priv,
3005 					  intel_aux_power_domain(dig_port));
3006 }
3007 
3008 static void edp_panel_vdd_work(struct work_struct *__work)
3009 {
3010 	struct intel_dp *intel_dp =
3011 		container_of(to_delayed_work(__work),
3012 			     struct intel_dp, panel_vdd_work);
3013 	intel_wakeref_t wakeref;
3014 
3015 	with_pps_lock(intel_dp, wakeref) {
3016 		if (!intel_dp->want_panel_vdd)
3017 			edp_panel_vdd_off_sync(intel_dp);
3018 	}
3019 }
3020 
3021 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3022 {
3023 	unsigned long delay;
3024 
3025 	/*
3026 	 * Queue the timer to fire a long time from now (relative to the power
3027 	 * down delay) to keep the panel power up across a sequence of
3028 	 * operations.
3029 	 */
3030 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3031 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3032 }
3033 
3034 /*
3035  * Must be paired with edp_panel_vdd_on().
3036  * Must hold pps_mutex around the whole on/off sequence.
3037  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3038  */
3039 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3040 {
3041 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3042 
3043 	lockdep_assert_held(&dev_priv->pps_mutex);
3044 
3045 	if (!intel_dp_is_edp(intel_dp))
3046 		return;
3047 
3048 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3049 			dp_to_dig_port(intel_dp)->base.base.base.id,
3050 			dp_to_dig_port(intel_dp)->base.base.name);
3051 
3052 	intel_dp->want_panel_vdd = false;
3053 
3054 	if (sync)
3055 		edp_panel_vdd_off_sync(intel_dp);
3056 	else
3057 		edp_panel_vdd_schedule_off(intel_dp);
3058 }
3059 
3060 static void edp_panel_on(struct intel_dp *intel_dp)
3061 {
3062 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3063 	u32 pp;
3064 	i915_reg_t pp_ctrl_reg;
3065 
3066 	lockdep_assert_held(&dev_priv->pps_mutex);
3067 
3068 	if (!intel_dp_is_edp(intel_dp))
3069 		return;
3070 
3071 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3072 		    dp_to_dig_port(intel_dp)->base.base.base.id,
3073 		    dp_to_dig_port(intel_dp)->base.base.name);
3074 
3075 	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3076 		     "[ENCODER:%d:%s] panel power already on\n",
3077 		     dp_to_dig_port(intel_dp)->base.base.base.id,
3078 		     dp_to_dig_port(intel_dp)->base.base.name))
3079 		return;
3080 
3081 	wait_panel_power_cycle(intel_dp);
3082 
3083 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3084 	pp = ilk_get_pp_control(intel_dp);
3085 	if (IS_GEN(dev_priv, 5)) {
3086 		/* ILK workaround: disable reset around power sequence */
3087 		pp &= ~PANEL_POWER_RESET;
3088 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3089 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3090 	}
3091 
3092 	pp |= PANEL_POWER_ON;
3093 	if (!IS_GEN(dev_priv, 5))
3094 		pp |= PANEL_POWER_RESET;
3095 
3096 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3097 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3098 
3099 	wait_panel_on(intel_dp);
3100 	intel_dp->last_power_on = jiffies;
3101 
3102 	if (IS_GEN(dev_priv, 5)) {
3103 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3104 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3105 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3106 	}
3107 }
3108 
3109 void intel_edp_panel_on(struct intel_dp *intel_dp)
3110 {
3111 	intel_wakeref_t wakeref;
3112 
3113 	if (!intel_dp_is_edp(intel_dp))
3114 		return;
3115 
3116 	with_pps_lock(intel_dp, wakeref)
3117 		edp_panel_on(intel_dp);
3118 }
3119 
3120 
3121 static void edp_panel_off(struct intel_dp *intel_dp)
3122 {
3123 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3124 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3125 	u32 pp;
3126 	i915_reg_t pp_ctrl_reg;
3127 
3128 	lockdep_assert_held(&dev_priv->pps_mutex);
3129 
3130 	if (!intel_dp_is_edp(intel_dp))
3131 		return;
3132 
3133 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3134 		    dig_port->base.base.base.id, dig_port->base.base.name);
3135 
3136 	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3137 		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3138 		 dig_port->base.base.base.id, dig_port->base.base.name);
3139 
3140 	pp = ilk_get_pp_control(intel_dp);
3141 	/* We need to switch off panel power _and_ force vdd, for otherwise some
3142 	 * panels get very unhappy and cease to work. */
3143 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3144 		EDP_BLC_ENABLE);
3145 
3146 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3147 
3148 	intel_dp->want_panel_vdd = false;
3149 
3150 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
3151 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3152 
3153 	wait_panel_off(intel_dp);
3154 	intel_dp->panel_power_off_time = ktime_get_boottime();
3155 
3156 	/* We got a reference when we enabled the VDD. */
3157 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3158 }
3159 
3160 void intel_edp_panel_off(struct intel_dp *intel_dp)
3161 {
3162 	intel_wakeref_t wakeref;
3163 
3164 	if (!intel_dp_is_edp(intel_dp))
3165 		return;
3166 
3167 	with_pps_lock(intel_dp, wakeref)
3168 		edp_panel_off(intel_dp);
3169 }
3170 
3171 /* Enable backlight in the panel power control. */
3172 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3173 {
3174 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3175 	intel_wakeref_t wakeref;
3176 
3177 	/*
3178 	 * If we enable the backlight right away following a panel power
3179 	 * on, we may see slight flicker as the panel syncs with the eDP
3180 	 * link.  So delay a bit to make sure the image is solid before
3181 	 * allowing it to appear.
3182 	 */
3183 	wait_backlight_on(intel_dp);
3184 
3185 	with_pps_lock(intel_dp, wakeref) {
3186 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3187 		u32 pp;
3188 
3189 		pp = ilk_get_pp_control(intel_dp);
3190 		pp |= EDP_BLC_ENABLE;
3191 
3192 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3193 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3194 	}
3195 }
3196 
3197 /* Enable backlight PWM and backlight PP control. */
3198 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3199 			    const struct drm_connector_state *conn_state)
3200 {
3201 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3202 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3203 
3204 	if (!intel_dp_is_edp(intel_dp))
3205 		return;
3206 
3207 	drm_dbg_kms(&i915->drm, "\n");
3208 
3209 	intel_panel_enable_backlight(crtc_state, conn_state);
3210 	_intel_edp_backlight_on(intel_dp);
3211 }
3212 
3213 /* Disable backlight in the panel power control. */
3214 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3215 {
3216 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3217 	intel_wakeref_t wakeref;
3218 
3219 	if (!intel_dp_is_edp(intel_dp))
3220 		return;
3221 
3222 	with_pps_lock(intel_dp, wakeref) {
3223 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3224 		u32 pp;
3225 
3226 		pp = ilk_get_pp_control(intel_dp);
3227 		pp &= ~EDP_BLC_ENABLE;
3228 
3229 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3230 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3231 	}
3232 
3233 	intel_dp->last_backlight_off = jiffies;
3234 	edp_wait_backlight_off(intel_dp);
3235 }
3236 
3237 /* Disable backlight PP control and backlight PWM. */
3238 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3239 {
3240 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3241 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3242 
3243 	if (!intel_dp_is_edp(intel_dp))
3244 		return;
3245 
3246 	drm_dbg_kms(&i915->drm, "\n");
3247 
3248 	_intel_edp_backlight_off(intel_dp);
3249 	intel_panel_disable_backlight(old_conn_state);
3250 }
3251 
3252 /*
3253  * Hook for controlling the panel power control backlight through the bl_power
3254  * sysfs attribute. Take care to handle multiple calls.
3255  */
3256 static void intel_edp_backlight_power(struct intel_connector *connector,
3257 				      bool enable)
3258 {
3259 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
3260 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3261 	intel_wakeref_t wakeref;
3262 	bool is_enabled;
3263 
3264 	is_enabled = false;
3265 	with_pps_lock(intel_dp, wakeref)
3266 		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3267 	if (is_enabled == enable)
3268 		return;
3269 
3270 	drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3271 		    enable ? "enable" : "disable");
3272 
3273 	if (enable)
3274 		_intel_edp_backlight_on(intel_dp);
3275 	else
3276 		_intel_edp_backlight_off(intel_dp);
3277 }
3278 
3279 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3280 {
3281 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3282 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3283 	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3284 
3285 	I915_STATE_WARN(cur_state != state,
3286 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3287 			dig_port->base.base.base.id, dig_port->base.base.name,
3288 			onoff(state), onoff(cur_state));
3289 }
3290 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3291 
3292 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3293 {
3294 	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3295 
3296 	I915_STATE_WARN(cur_state != state,
3297 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3298 			onoff(state), onoff(cur_state));
3299 }
3300 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3301 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3302 
3303 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3304 			   const struct intel_crtc_state *pipe_config)
3305 {
3306 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3307 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3308 
3309 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3310 	assert_dp_port_disabled(intel_dp);
3311 	assert_edp_pll_disabled(dev_priv);
3312 
3313 	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3314 		    pipe_config->port_clock);
3315 
3316 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3317 
3318 	if (pipe_config->port_clock == 162000)
3319 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3320 	else
3321 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3322 
3323 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3324 	intel_de_posting_read(dev_priv, DP_A);
3325 	udelay(500);
3326 
3327 	/*
3328 	 * [DevILK] Work around required when enabling DP PLL
3329 	 * while a pipe is enabled going to FDI:
3330 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3331 	 * 2. Program DP PLL enable
3332 	 */
3333 	if (IS_GEN(dev_priv, 5))
3334 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3335 
3336 	intel_dp->DP |= DP_PLL_ENABLE;
3337 
3338 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3339 	intel_de_posting_read(dev_priv, DP_A);
3340 	udelay(200);
3341 }
3342 
3343 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3344 			    const struct intel_crtc_state *old_crtc_state)
3345 {
3346 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3347 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3348 
3349 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3350 	assert_dp_port_disabled(intel_dp);
3351 	assert_edp_pll_enabled(dev_priv);
3352 
3353 	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3354 
3355 	intel_dp->DP &= ~DP_PLL_ENABLE;
3356 
3357 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3358 	intel_de_posting_read(dev_priv, DP_A);
3359 	udelay(200);
3360 }
3361 
3362 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3363 {
3364 	/*
3365 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3366 	 * be capable of signalling downstream hpd with a long pulse.
3367 	 * Whether or not that means D3 is safe to use is not clear,
3368 	 * but let's assume so until proven otherwise.
3369 	 *
3370 	 * FIXME should really check all downstream ports...
3371 	 */
3372 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3373 		drm_dp_is_branch(intel_dp->dpcd) &&
3374 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3375 }
3376 
3377 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3378 					   const struct intel_crtc_state *crtc_state,
3379 					   bool enable)
3380 {
3381 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3382 	int ret;
3383 
3384 	if (!crtc_state->dsc.compression_enable)
3385 		return;
3386 
3387 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3388 				 enable ? DP_DECOMPRESSION_EN : 0);
3389 	if (ret < 0)
3390 		drm_dbg_kms(&i915->drm,
3391 			    "Failed to %s sink decompression state\n",
3392 			    enable ? "enable" : "disable");
3393 }
3394 
3395 /* If the sink supports it, try to set the power state appropriately */
3396 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3397 {
3398 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3399 	int ret, i;
3400 
3401 	/* Should have a valid DPCD by this point */
3402 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3403 		return;
3404 
3405 	if (mode != DRM_MODE_DPMS_ON) {
3406 		if (downstream_hpd_needs_d0(intel_dp))
3407 			return;
3408 
3409 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3410 					 DP_SET_POWER_D3);
3411 	} else {
3412 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3413 
3414 		/*
3415 		 * When turning on, we need to retry for 1ms to give the sink
3416 		 * time to wake up.
3417 		 */
3418 		for (i = 0; i < 3; i++) {
3419 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3420 						 DP_SET_POWER_D0);
3421 			if (ret == 1)
3422 				break;
3423 			msleep(1);
3424 		}
3425 
3426 		if (ret == 1 && lspcon->active)
3427 			lspcon_wait_pcon_mode(lspcon);
3428 	}
3429 
3430 	if (ret != 1)
3431 		drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
3432 			    mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3433 }
3434 
3435 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3436 				 enum port port, enum pipe *pipe)
3437 {
3438 	enum pipe p;
3439 
3440 	for_each_pipe(dev_priv, p) {
3441 		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3442 
3443 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3444 			*pipe = p;
3445 			return true;
3446 		}
3447 	}
3448 
3449 	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3450 		    port_name(port));
3451 
3452 	/* must initialize pipe to something for the asserts */
3453 	*pipe = PIPE_A;
3454 
3455 	return false;
3456 }
3457 
3458 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3459 			   i915_reg_t dp_reg, enum port port,
3460 			   enum pipe *pipe)
3461 {
3462 	bool ret;
3463 	u32 val;
3464 
3465 	val = intel_de_read(dev_priv, dp_reg);
3466 
3467 	ret = val & DP_PORT_EN;
3468 
3469 	/* asserts want to know the pipe even if the port is disabled */
3470 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3471 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3472 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3473 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3474 	else if (IS_CHERRYVIEW(dev_priv))
3475 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3476 	else
3477 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3478 
3479 	return ret;
3480 }
3481 
3482 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3483 				  enum pipe *pipe)
3484 {
3485 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3486 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3487 	intel_wakeref_t wakeref;
3488 	bool ret;
3489 
3490 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3491 						     encoder->power_domain);
3492 	if (!wakeref)
3493 		return false;
3494 
3495 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3496 				    encoder->port, pipe);
3497 
3498 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3499 
3500 	return ret;
3501 }
3502 
3503 static void intel_dp_get_config(struct intel_encoder *encoder,
3504 				struct intel_crtc_state *pipe_config)
3505 {
3506 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3507 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3508 	u32 tmp, flags = 0;
3509 	enum port port = encoder->port;
3510 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3511 
3512 	if (encoder->type == INTEL_OUTPUT_EDP)
3513 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3514 	else
3515 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3516 
3517 	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3518 
3519 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3520 
3521 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3522 		u32 trans_dp = intel_de_read(dev_priv,
3523 					     TRANS_DP_CTL(crtc->pipe));
3524 
3525 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3526 			flags |= DRM_MODE_FLAG_PHSYNC;
3527 		else
3528 			flags |= DRM_MODE_FLAG_NHSYNC;
3529 
3530 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3531 			flags |= DRM_MODE_FLAG_PVSYNC;
3532 		else
3533 			flags |= DRM_MODE_FLAG_NVSYNC;
3534 	} else {
3535 		if (tmp & DP_SYNC_HS_HIGH)
3536 			flags |= DRM_MODE_FLAG_PHSYNC;
3537 		else
3538 			flags |= DRM_MODE_FLAG_NHSYNC;
3539 
3540 		if (tmp & DP_SYNC_VS_HIGH)
3541 			flags |= DRM_MODE_FLAG_PVSYNC;
3542 		else
3543 			flags |= DRM_MODE_FLAG_NVSYNC;
3544 	}
3545 
3546 	pipe_config->hw.adjusted_mode.flags |= flags;
3547 
3548 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3549 		pipe_config->limited_color_range = true;
3550 
3551 	pipe_config->lane_count =
3552 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3553 
3554 	intel_dp_get_m_n(crtc, pipe_config);
3555 
3556 	if (port == PORT_A) {
3557 		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3558 			pipe_config->port_clock = 162000;
3559 		else
3560 			pipe_config->port_clock = 270000;
3561 	}
3562 
3563 	pipe_config->hw.adjusted_mode.crtc_clock =
3564 		intel_dotclock_calculate(pipe_config->port_clock,
3565 					 &pipe_config->dp_m_n);
3566 
3567 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3568 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3569 		/*
3570 		 * This is a big fat ugly hack.
3571 		 *
3572 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3573 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3574 		 * unknown we fail to light up. Yet the same BIOS boots up with
3575 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3576 		 * max, not what it tells us to use.
3577 		 *
3578 		 * Note: This will still be broken if the eDP panel is not lit
3579 		 * up by the BIOS, and thus we can't get the mode at module
3580 		 * load.
3581 		 */
3582 		drm_dbg_kms(&dev_priv->drm,
3583 			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3584 			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3585 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3586 	}
3587 }
3588 
3589 static void intel_disable_dp(struct intel_atomic_state *state,
3590 			     struct intel_encoder *encoder,
3591 			     const struct intel_crtc_state *old_crtc_state,
3592 			     const struct drm_connector_state *old_conn_state)
3593 {
3594 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3595 
3596 	intel_dp->link_trained = false;
3597 
3598 	if (old_crtc_state->has_audio)
3599 		intel_audio_codec_disable(encoder,
3600 					  old_crtc_state, old_conn_state);
3601 
3602 	/* Make sure the panel is off before trying to change the mode. But also
3603 	 * ensure that we have vdd while we switch off the panel. */
3604 	intel_edp_panel_vdd_on(intel_dp);
3605 	intel_edp_backlight_off(old_conn_state);
3606 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3607 	intel_edp_panel_off(intel_dp);
3608 }
3609 
3610 static void g4x_disable_dp(struct intel_atomic_state *state,
3611 			   struct intel_encoder *encoder,
3612 			   const struct intel_crtc_state *old_crtc_state,
3613 			   const struct drm_connector_state *old_conn_state)
3614 {
3615 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3616 }
3617 
3618 static void vlv_disable_dp(struct intel_atomic_state *state,
3619 			   struct intel_encoder *encoder,
3620 			   const struct intel_crtc_state *old_crtc_state,
3621 			   const struct drm_connector_state *old_conn_state)
3622 {
3623 	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3624 }
3625 
3626 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3627 				struct intel_encoder *encoder,
3628 				const struct intel_crtc_state *old_crtc_state,
3629 				const struct drm_connector_state *old_conn_state)
3630 {
3631 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3632 	enum port port = encoder->port;
3633 
3634 	/*
3635 	 * Bspec does not list a specific disable sequence for g4x DP.
3636 	 * Follow the ilk+ sequence (disable pipe before the port) for
3637 	 * g4x DP as it does not suffer from underruns like the normal
3638 	 * g4x modeset sequence (disable pipe after the port).
3639 	 */
3640 	intel_dp_link_down(encoder, old_crtc_state);
3641 
3642 	/* Only ilk+ has port A */
3643 	if (port == PORT_A)
3644 		ilk_edp_pll_off(intel_dp, old_crtc_state);
3645 }
3646 
3647 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3648 				struct intel_encoder *encoder,
3649 				const struct intel_crtc_state *old_crtc_state,
3650 				const struct drm_connector_state *old_conn_state)
3651 {
3652 	intel_dp_link_down(encoder, old_crtc_state);
3653 }
3654 
3655 static void chv_post_disable_dp(struct intel_atomic_state *state,
3656 				struct intel_encoder *encoder,
3657 				const struct intel_crtc_state *old_crtc_state,
3658 				const struct drm_connector_state *old_conn_state)
3659 {
3660 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3661 
3662 	intel_dp_link_down(encoder, old_crtc_state);
3663 
3664 	vlv_dpio_get(dev_priv);
3665 
3666 	/* Assert data lane reset */
3667 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3668 
3669 	vlv_dpio_put(dev_priv);
3670 }
3671 
3672 static void
3673 cpt_set_link_train(struct intel_dp *intel_dp,
3674 		   u8 dp_train_pat)
3675 {
3676 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3677 	u32 *DP = &intel_dp->DP;
3678 
3679 	*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3680 
3681 	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3682 	case DP_TRAINING_PATTERN_DISABLE:
3683 		*DP |= DP_LINK_TRAIN_OFF_CPT;
3684 		break;
3685 	case DP_TRAINING_PATTERN_1:
3686 		*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3687 		break;
3688 	case DP_TRAINING_PATTERN_2:
3689 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3690 		break;
3691 	case DP_TRAINING_PATTERN_3:
3692 		drm_dbg_kms(&dev_priv->drm,
3693 			    "TPS3 not supported, using TPS2 instead\n");
3694 		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3695 		break;
3696 	}
3697 
3698 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3699 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3700 }
3701 
3702 static void
3703 g4x_set_link_train(struct intel_dp *intel_dp,
3704 		   u8 dp_train_pat)
3705 {
3706 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3707 	u32 *DP = &intel_dp->DP;
3708 
3709 	*DP &= ~DP_LINK_TRAIN_MASK;
3710 
3711 	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3712 	case DP_TRAINING_PATTERN_DISABLE:
3713 		*DP |= DP_LINK_TRAIN_OFF;
3714 		break;
3715 	case DP_TRAINING_PATTERN_1:
3716 		*DP |= DP_LINK_TRAIN_PAT_1;
3717 		break;
3718 	case DP_TRAINING_PATTERN_2:
3719 		*DP |= DP_LINK_TRAIN_PAT_2;
3720 		break;
3721 	case DP_TRAINING_PATTERN_3:
3722 		drm_dbg_kms(&dev_priv->drm,
3723 			    "TPS3 not supported, using TPS2 instead\n");
3724 		*DP |= DP_LINK_TRAIN_PAT_2;
3725 		break;
3726 	}
3727 
3728 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3729 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3730 }
3731 
3732 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3733 				 const struct intel_crtc_state *old_crtc_state)
3734 {
3735 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3736 
3737 	/* enable with pattern 1 (as per spec) */
3738 
3739 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3740 
3741 	/*
3742 	 * Magic for VLV/CHV. We _must_ first set up the register
3743 	 * without actually enabling the port, and then do another
3744 	 * write to enable the port. Otherwise link training will
3745 	 * fail when the power sequencer is freshly used for this port.
3746 	 */
3747 	intel_dp->DP |= DP_PORT_EN;
3748 	if (old_crtc_state->has_audio)
3749 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3750 
3751 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3752 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3753 }
3754 
3755 static void intel_enable_dp(struct intel_atomic_state *state,
3756 			    struct intel_encoder *encoder,
3757 			    const struct intel_crtc_state *pipe_config,
3758 			    const struct drm_connector_state *conn_state)
3759 {
3760 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3761 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3762 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3763 	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3764 	enum pipe pipe = crtc->pipe;
3765 	intel_wakeref_t wakeref;
3766 
3767 	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3768 		return;
3769 
3770 	with_pps_lock(intel_dp, wakeref) {
3771 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3772 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3773 
3774 		intel_dp_enable_port(intel_dp, pipe_config);
3775 
3776 		edp_panel_vdd_on(intel_dp);
3777 		edp_panel_on(intel_dp);
3778 		edp_panel_vdd_off(intel_dp, true);
3779 	}
3780 
3781 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3782 		unsigned int lane_mask = 0x0;
3783 
3784 		if (IS_CHERRYVIEW(dev_priv))
3785 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3786 
3787 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3788 				    lane_mask);
3789 	}
3790 
3791 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3792 	intel_dp_start_link_train(intel_dp);
3793 	intel_dp_stop_link_train(intel_dp);
3794 
3795 	if (pipe_config->has_audio) {
3796 		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3797 			pipe_name(pipe));
3798 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3799 	}
3800 }
3801 
3802 static void g4x_enable_dp(struct intel_atomic_state *state,
3803 			  struct intel_encoder *encoder,
3804 			  const struct intel_crtc_state *pipe_config,
3805 			  const struct drm_connector_state *conn_state)
3806 {
3807 	intel_enable_dp(state, encoder, pipe_config, conn_state);
3808 	intel_edp_backlight_on(pipe_config, conn_state);
3809 }
3810 
3811 static void vlv_enable_dp(struct intel_atomic_state *state,
3812 			  struct intel_encoder *encoder,
3813 			  const struct intel_crtc_state *pipe_config,
3814 			  const struct drm_connector_state *conn_state)
3815 {
3816 	intel_edp_backlight_on(pipe_config, conn_state);
3817 }
3818 
3819 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3820 			      struct intel_encoder *encoder,
3821 			      const struct intel_crtc_state *pipe_config,
3822 			      const struct drm_connector_state *conn_state)
3823 {
3824 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3825 	enum port port = encoder->port;
3826 
3827 	intel_dp_prepare(encoder, pipe_config);
3828 
3829 	/* Only ilk+ has port A */
3830 	if (port == PORT_A)
3831 		ilk_edp_pll_on(intel_dp, pipe_config);
3832 }
3833 
3834 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3835 {
3836 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3837 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3838 	enum pipe pipe = intel_dp->pps_pipe;
3839 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3840 
3841 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3842 
3843 	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3844 		return;
3845 
3846 	edp_panel_vdd_off_sync(intel_dp);
3847 
3848 	/*
3849 	 * VLV seems to get confused when multiple power sequencers
3850 	 * have the same port selected (even if only one has power/vdd
3851 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3852 	 * CHV on the other hand doesn't seem to mind having the same port
3853 	 * selected in multiple power sequencers, but let's clear the
3854 	 * port select always when logically disconnecting a power sequencer
3855 	 * from a port.
3856 	 */
3857 	drm_dbg_kms(&dev_priv->drm,
3858 		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3859 		    pipe_name(pipe), dig_port->base.base.base.id,
3860 		    dig_port->base.base.name);
3861 	intel_de_write(dev_priv, pp_on_reg, 0);
3862 	intel_de_posting_read(dev_priv, pp_on_reg);
3863 
3864 	intel_dp->pps_pipe = INVALID_PIPE;
3865 }
3866 
3867 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3868 				      enum pipe pipe)
3869 {
3870 	struct intel_encoder *encoder;
3871 
3872 	lockdep_assert_held(&dev_priv->pps_mutex);
3873 
3874 	for_each_intel_dp(&dev_priv->drm, encoder) {
3875 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3876 
3877 		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3878 			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3879 			 pipe_name(pipe), encoder->base.base.id,
3880 			 encoder->base.name);
3881 
3882 		if (intel_dp->pps_pipe != pipe)
3883 			continue;
3884 
3885 		drm_dbg_kms(&dev_priv->drm,
3886 			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3887 			    pipe_name(pipe), encoder->base.base.id,
3888 			    encoder->base.name);
3889 
3890 		/* make sure vdd is off before we steal it */
3891 		vlv_detach_power_sequencer(intel_dp);
3892 	}
3893 }
3894 
3895 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3896 					   const struct intel_crtc_state *crtc_state)
3897 {
3898 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3899 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3900 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3901 
3902 	lockdep_assert_held(&dev_priv->pps_mutex);
3903 
3904 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3905 
3906 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3907 	    intel_dp->pps_pipe != crtc->pipe) {
3908 		/*
3909 		 * If another power sequencer was being used on this
3910 		 * port previously make sure to turn off vdd there while
3911 		 * we still have control of it.
3912 		 */
3913 		vlv_detach_power_sequencer(intel_dp);
3914 	}
3915 
3916 	/*
3917 	 * We may be stealing the power
3918 	 * sequencer from another port.
3919 	 */
3920 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3921 
3922 	intel_dp->active_pipe = crtc->pipe;
3923 
3924 	if (!intel_dp_is_edp(intel_dp))
3925 		return;
3926 
3927 	/* now it's all ours */
3928 	intel_dp->pps_pipe = crtc->pipe;
3929 
3930 	drm_dbg_kms(&dev_priv->drm,
3931 		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3932 		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3933 		    encoder->base.name);
3934 
3935 	/* init power sequencer on this pipe and port */
3936 	intel_dp_init_panel_power_sequencer(intel_dp);
3937 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3938 }
3939 
3940 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
3941 			      struct intel_encoder *encoder,
3942 			      const struct intel_crtc_state *pipe_config,
3943 			      const struct drm_connector_state *conn_state)
3944 {
3945 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3946 
3947 	intel_enable_dp(state, encoder, pipe_config, conn_state);
3948 }
3949 
3950 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
3951 				  struct intel_encoder *encoder,
3952 				  const struct intel_crtc_state *pipe_config,
3953 				  const struct drm_connector_state *conn_state)
3954 {
3955 	intel_dp_prepare(encoder, pipe_config);
3956 
3957 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3958 }
3959 
3960 static void chv_pre_enable_dp(struct intel_atomic_state *state,
3961 			      struct intel_encoder *encoder,
3962 			      const struct intel_crtc_state *pipe_config,
3963 			      const struct drm_connector_state *conn_state)
3964 {
3965 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3966 
3967 	intel_enable_dp(state, encoder, pipe_config, conn_state);
3968 
3969 	/* Second common lane will stay alive on its own now */
3970 	chv_phy_release_cl2_override(encoder);
3971 }
3972 
3973 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
3974 				  struct intel_encoder *encoder,
3975 				  const struct intel_crtc_state *pipe_config,
3976 				  const struct drm_connector_state *conn_state)
3977 {
3978 	intel_dp_prepare(encoder, pipe_config);
3979 
3980 	chv_phy_pre_pll_enable(encoder, pipe_config);
3981 }
3982 
3983 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
3984 				    struct intel_encoder *encoder,
3985 				    const struct intel_crtc_state *old_crtc_state,
3986 				    const struct drm_connector_state *old_conn_state)
3987 {
3988 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3989 }
3990 
3991 /*
3992  * Fetch AUX CH registers 0x202 - 0x207 which contain
3993  * link status information
3994  */
3995 bool
3996 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3997 {
3998 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3999 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
4000 }
4001 
4002 static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp)
4003 {
4004 	return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4005 }
4006 
4007 static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp)
4008 {
4009 	return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4010 }
4011 
4012 static u8 intel_dp_pre_empemph_max_2(struct intel_dp *intel_dp)
4013 {
4014 	return DP_TRAIN_PRE_EMPH_LEVEL_2;
4015 }
4016 
4017 static u8 intel_dp_pre_empemph_max_3(struct intel_dp *intel_dp)
4018 {
4019 	return DP_TRAIN_PRE_EMPH_LEVEL_3;
4020 }
4021 
4022 static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4023 {
4024 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4025 	unsigned long demph_reg_value, preemph_reg_value,
4026 		uniqtranscale_reg_value;
4027 	u8 train_set = intel_dp->train_set[0];
4028 
4029 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4030 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4031 		preemph_reg_value = 0x0004000;
4032 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4033 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4034 			demph_reg_value = 0x2B405555;
4035 			uniqtranscale_reg_value = 0x552AB83A;
4036 			break;
4037 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4038 			demph_reg_value = 0x2B404040;
4039 			uniqtranscale_reg_value = 0x5548B83A;
4040 			break;
4041 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4042 			demph_reg_value = 0x2B245555;
4043 			uniqtranscale_reg_value = 0x5560B83A;
4044 			break;
4045 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4046 			demph_reg_value = 0x2B405555;
4047 			uniqtranscale_reg_value = 0x5598DA3A;
4048 			break;
4049 		default:
4050 			return;
4051 		}
4052 		break;
4053 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4054 		preemph_reg_value = 0x0002000;
4055 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4056 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4057 			demph_reg_value = 0x2B404040;
4058 			uniqtranscale_reg_value = 0x5552B83A;
4059 			break;
4060 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4061 			demph_reg_value = 0x2B404848;
4062 			uniqtranscale_reg_value = 0x5580B83A;
4063 			break;
4064 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4065 			demph_reg_value = 0x2B404040;
4066 			uniqtranscale_reg_value = 0x55ADDA3A;
4067 			break;
4068 		default:
4069 			return;
4070 		}
4071 		break;
4072 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4073 		preemph_reg_value = 0x0000000;
4074 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4075 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4076 			demph_reg_value = 0x2B305555;
4077 			uniqtranscale_reg_value = 0x5570B83A;
4078 			break;
4079 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4080 			demph_reg_value = 0x2B2B4040;
4081 			uniqtranscale_reg_value = 0x55ADDA3A;
4082 			break;
4083 		default:
4084 			return;
4085 		}
4086 		break;
4087 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4088 		preemph_reg_value = 0x0006000;
4089 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4090 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4091 			demph_reg_value = 0x1B405555;
4092 			uniqtranscale_reg_value = 0x55ADDA3A;
4093 			break;
4094 		default:
4095 			return;
4096 		}
4097 		break;
4098 	default:
4099 		return;
4100 	}
4101 
4102 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4103 				 uniqtranscale_reg_value, 0);
4104 }
4105 
4106 static void chv_set_signal_levels(struct intel_dp *intel_dp)
4107 {
4108 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4109 	u32 deemph_reg_value, margin_reg_value;
4110 	bool uniq_trans_scale = false;
4111 	u8 train_set = intel_dp->train_set[0];
4112 
4113 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4114 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4115 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4116 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4117 			deemph_reg_value = 128;
4118 			margin_reg_value = 52;
4119 			break;
4120 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4121 			deemph_reg_value = 128;
4122 			margin_reg_value = 77;
4123 			break;
4124 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4125 			deemph_reg_value = 128;
4126 			margin_reg_value = 102;
4127 			break;
4128 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4129 			deemph_reg_value = 128;
4130 			margin_reg_value = 154;
4131 			uniq_trans_scale = true;
4132 			break;
4133 		default:
4134 			return;
4135 		}
4136 		break;
4137 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4138 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4139 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4140 			deemph_reg_value = 85;
4141 			margin_reg_value = 78;
4142 			break;
4143 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4144 			deemph_reg_value = 85;
4145 			margin_reg_value = 116;
4146 			break;
4147 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4148 			deemph_reg_value = 85;
4149 			margin_reg_value = 154;
4150 			break;
4151 		default:
4152 			return;
4153 		}
4154 		break;
4155 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4156 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4157 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4158 			deemph_reg_value = 64;
4159 			margin_reg_value = 104;
4160 			break;
4161 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4162 			deemph_reg_value = 64;
4163 			margin_reg_value = 154;
4164 			break;
4165 		default:
4166 			return;
4167 		}
4168 		break;
4169 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4170 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4171 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4172 			deemph_reg_value = 43;
4173 			margin_reg_value = 154;
4174 			break;
4175 		default:
4176 			return;
4177 		}
4178 		break;
4179 	default:
4180 		return;
4181 	}
4182 
4183 	chv_set_phy_signal_level(encoder, deemph_reg_value,
4184 				 margin_reg_value, uniq_trans_scale);
4185 }
4186 
4187 static u32 g4x_signal_levels(u8 train_set)
4188 {
4189 	u32 signal_levels = 0;
4190 
4191 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4192 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4193 	default:
4194 		signal_levels |= DP_VOLTAGE_0_4;
4195 		break;
4196 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4197 		signal_levels |= DP_VOLTAGE_0_6;
4198 		break;
4199 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4200 		signal_levels |= DP_VOLTAGE_0_8;
4201 		break;
4202 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4203 		signal_levels |= DP_VOLTAGE_1_2;
4204 		break;
4205 	}
4206 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4207 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4208 	default:
4209 		signal_levels |= DP_PRE_EMPHASIS_0;
4210 		break;
4211 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4212 		signal_levels |= DP_PRE_EMPHASIS_3_5;
4213 		break;
4214 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4215 		signal_levels |= DP_PRE_EMPHASIS_6;
4216 		break;
4217 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4218 		signal_levels |= DP_PRE_EMPHASIS_9_5;
4219 		break;
4220 	}
4221 	return signal_levels;
4222 }
4223 
4224 static void
4225 g4x_set_signal_levels(struct intel_dp *intel_dp)
4226 {
4227 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4228 	u8 train_set = intel_dp->train_set[0];
4229 	u32 signal_levels;
4230 
4231 	signal_levels = g4x_signal_levels(train_set);
4232 
4233 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4234 		    signal_levels);
4235 
4236 	intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4237 	intel_dp->DP |= signal_levels;
4238 
4239 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4240 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4241 }
4242 
4243 /* SNB CPU eDP voltage swing and pre-emphasis control */
4244 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4245 {
4246 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4247 					DP_TRAIN_PRE_EMPHASIS_MASK);
4248 
4249 	switch (signal_levels) {
4250 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4251 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4252 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4253 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4254 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4255 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4256 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4257 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4258 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4259 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4260 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4261 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4262 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4263 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4264 	default:
4265 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4266 			      "0x%x\n", signal_levels);
4267 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4268 	}
4269 }
4270 
4271 static void
4272 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4273 {
4274 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4275 	u8 train_set = intel_dp->train_set[0];
4276 	u32 signal_levels;
4277 
4278 	signal_levels = snb_cpu_edp_signal_levels(train_set);
4279 
4280 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4281 		    signal_levels);
4282 
4283 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4284 	intel_dp->DP |= signal_levels;
4285 
4286 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4287 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4288 }
4289 
4290 /* IVB CPU eDP voltage swing and pre-emphasis control */
4291 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4292 {
4293 	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4294 					DP_TRAIN_PRE_EMPHASIS_MASK);
4295 
4296 	switch (signal_levels) {
4297 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4298 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4299 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4300 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4301 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4302 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4303 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4304 
4305 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4306 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4307 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4308 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4309 
4310 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4311 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4312 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4313 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4314 
4315 	default:
4316 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4317 			      "0x%x\n", signal_levels);
4318 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4319 	}
4320 }
4321 
4322 static void
4323 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4324 {
4325 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4326 	u8 train_set = intel_dp->train_set[0];
4327 	u32 signal_levels;
4328 
4329 	signal_levels = ivb_cpu_edp_signal_levels(train_set);
4330 
4331 	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4332 		    signal_levels);
4333 
4334 	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4335 	intel_dp->DP |= signal_levels;
4336 
4337 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4338 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4339 }
4340 
4341 void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4342 {
4343 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4344 	u8 train_set = intel_dp->train_set[0];
4345 
4346 	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4347 		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4348 		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4349 	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4350 		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4351 		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
4352 		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4353 		    " (max)" : "");
4354 
4355 	intel_dp->set_signal_levels(intel_dp);
4356 }
4357 
4358 void
4359 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4360 				       u8 dp_train_pat)
4361 {
4362 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4363 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4364 
4365 	if (dp_train_pat & train_pat_mask)
4366 		drm_dbg_kms(&dev_priv->drm,
4367 			    "Using DP training pattern TPS%d\n",
4368 			    dp_train_pat & train_pat_mask);
4369 
4370 	intel_dp->set_link_train(intel_dp, dp_train_pat);
4371 }
4372 
4373 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4374 {
4375 	if (intel_dp->set_idle_link_train)
4376 		intel_dp->set_idle_link_train(intel_dp);
4377 }
4378 
4379 static void
4380 intel_dp_link_down(struct intel_encoder *encoder,
4381 		   const struct intel_crtc_state *old_crtc_state)
4382 {
4383 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4384 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4385 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4386 	enum port port = encoder->port;
4387 	u32 DP = intel_dp->DP;
4388 
4389 	if (drm_WARN_ON(&dev_priv->drm,
4390 			(intel_de_read(dev_priv, intel_dp->output_reg) &
4391 			 DP_PORT_EN) == 0))
4392 		return;
4393 
4394 	drm_dbg_kms(&dev_priv->drm, "\n");
4395 
4396 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4397 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4398 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4399 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4400 	} else {
4401 		DP &= ~DP_LINK_TRAIN_MASK;
4402 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4403 	}
4404 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4405 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4406 
4407 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4408 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4409 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4410 
4411 	/*
4412 	 * HW workaround for IBX, we need to move the port
4413 	 * to transcoder A after disabling it to allow the
4414 	 * matching HDMI port to be enabled on transcoder A.
4415 	 */
4416 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4417 		/*
4418 		 * We get CPU/PCH FIFO underruns on the other pipe when
4419 		 * doing the workaround. Sweep them under the rug.
4420 		 */
4421 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4422 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4423 
4424 		/* always enable with pattern 1 (as per spec) */
4425 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4426 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4427 			DP_LINK_TRAIN_PAT_1;
4428 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4429 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4430 
4431 		DP &= ~DP_PORT_EN;
4432 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4433 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4434 
4435 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4436 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4437 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4438 	}
4439 
4440 	msleep(intel_dp->panel_power_down_delay);
4441 
4442 	intel_dp->DP = DP;
4443 
4444 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4445 		intel_wakeref_t wakeref;
4446 
4447 		with_pps_lock(intel_dp, wakeref)
4448 			intel_dp->active_pipe = INVALID_PIPE;
4449 	}
4450 }
4451 
4452 static void
4453 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4454 {
4455 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4456 	u8 dpcd_ext[6];
4457 
4458 	/*
4459 	 * Prior to DP1.3 the bit represented by
4460 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4461 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4462 	 * the true capability of the panel. The only way to check is to
4463 	 * then compare 0000h and 2200h.
4464 	 */
4465 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4466 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4467 		return;
4468 
4469 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4470 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4471 		drm_err(&i915->drm,
4472 			"DPCD failed read at extended capabilities\n");
4473 		return;
4474 	}
4475 
4476 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4477 		drm_dbg_kms(&i915->drm,
4478 			    "DPCD extended DPCD rev less than base DPCD rev\n");
4479 		return;
4480 	}
4481 
4482 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4483 		return;
4484 
4485 	drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n",
4486 		    (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4487 
4488 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4489 }
4490 
4491 bool
4492 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4493 {
4494 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4495 
4496 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4497 			     sizeof(intel_dp->dpcd)) < 0)
4498 		return false; /* aux transfer failed */
4499 
4500 	intel_dp_extended_receiver_capabilities(intel_dp);
4501 
4502 	drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd),
4503 		    intel_dp->dpcd);
4504 
4505 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4506 }
4507 
4508 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4509 {
4510 	u8 dprx = 0;
4511 
4512 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4513 			      &dprx) != 1)
4514 		return false;
4515 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4516 }
4517 
4518 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4519 {
4520 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4521 
4522 	/*
4523 	 * Clear the cached register set to avoid using stale values
4524 	 * for the sinks that do not support DSC.
4525 	 */
4526 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4527 
4528 	/* Clear fec_capable to avoid using stale values */
4529 	intel_dp->fec_capable = 0;
4530 
4531 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4532 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4533 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4534 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4535 				     intel_dp->dsc_dpcd,
4536 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4537 			drm_err(&i915->drm,
4538 				"Failed to read DPCD register 0x%x\n",
4539 				DP_DSC_SUPPORT);
4540 
4541 		drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4542 			    (int)sizeof(intel_dp->dsc_dpcd),
4543 			    intel_dp->dsc_dpcd);
4544 
4545 		/* FEC is supported only on DP 1.4 */
4546 		if (!intel_dp_is_edp(intel_dp) &&
4547 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4548 				      &intel_dp->fec_capable) < 0)
4549 			drm_err(&i915->drm,
4550 				"Failed to read FEC DPCD register\n");
4551 
4552 		drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4553 			    intel_dp->fec_capable);
4554 	}
4555 }
4556 
4557 static bool
4558 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4559 {
4560 	struct drm_i915_private *dev_priv =
4561 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4562 
4563 	/* this function is meant to be called only once */
4564 	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4565 
4566 	if (!intel_dp_read_dpcd(intel_dp))
4567 		return false;
4568 
4569 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4570 			 drm_dp_is_branch(intel_dp->dpcd));
4571 
4572 	/*
4573 	 * Read the eDP display control registers.
4574 	 *
4575 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4576 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4577 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4578 	 * method). The display control registers should read zero if they're
4579 	 * not supported anyway.
4580 	 */
4581 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4582 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4583 			     sizeof(intel_dp->edp_dpcd))
4584 		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4585 			    (int)sizeof(intel_dp->edp_dpcd),
4586 			    intel_dp->edp_dpcd);
4587 
4588 	/*
4589 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4590 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4591 	 */
4592 	intel_psr_init_dpcd(intel_dp);
4593 
4594 	/* Read the eDP 1.4+ supported link rates. */
4595 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4596 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4597 		int i;
4598 
4599 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4600 				sink_rates, sizeof(sink_rates));
4601 
4602 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4603 			int val = le16_to_cpu(sink_rates[i]);
4604 
4605 			if (val == 0)
4606 				break;
4607 
4608 			/* Value read multiplied by 200kHz gives the per-lane
4609 			 * link rate in kHz. The source rates are, however,
4610 			 * stored in terms of LS_Clk kHz. The full conversion
4611 			 * back to symbols is
4612 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4613 			 */
4614 			intel_dp->sink_rates[i] = (val * 200) / 10;
4615 		}
4616 		intel_dp->num_sink_rates = i;
4617 	}
4618 
4619 	/*
4620 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4621 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4622 	 */
4623 	if (intel_dp->num_sink_rates)
4624 		intel_dp->use_rate_select = true;
4625 	else
4626 		intel_dp_set_sink_rates(intel_dp);
4627 
4628 	intel_dp_set_common_rates(intel_dp);
4629 
4630 	/* Read the eDP DSC DPCD registers */
4631 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4632 		intel_dp_get_dsc_sink_cap(intel_dp);
4633 
4634 	return true;
4635 }
4636 
4637 
4638 static bool
4639 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4640 {
4641 	if (!intel_dp_read_dpcd(intel_dp))
4642 		return false;
4643 
4644 	/*
4645 	 * Don't clobber cached eDP rates. Also skip re-reading
4646 	 * the OUI/ID since we know it won't change.
4647 	 */
4648 	if (!intel_dp_is_edp(intel_dp)) {
4649 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4650 				 drm_dp_is_branch(intel_dp->dpcd));
4651 
4652 		intel_dp_set_sink_rates(intel_dp);
4653 		intel_dp_set_common_rates(intel_dp);
4654 	}
4655 
4656 	/*
4657 	 * Some eDP panels do not set a valid value for sink count, that is why
4658 	 * it don't care about read it here and in intel_edp_init_dpcd().
4659 	 */
4660 	if (!intel_dp_is_edp(intel_dp) &&
4661 	    !drm_dp_has_quirk(&intel_dp->desc, 0,
4662 			      DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4663 		u8 count;
4664 		ssize_t r;
4665 
4666 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4667 		if (r < 1)
4668 			return false;
4669 
4670 		/*
4671 		 * Sink count can change between short pulse hpd hence
4672 		 * a member variable in intel_dp will track any changes
4673 		 * between short pulse interrupts.
4674 		 */
4675 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4676 
4677 		/*
4678 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4679 		 * a dongle is present but no display. Unless we require to know
4680 		 * if a dongle is present or not, we don't need to update
4681 		 * downstream port information. So, an early return here saves
4682 		 * time from performing other operations which are not required.
4683 		 */
4684 		if (!intel_dp->sink_count)
4685 			return false;
4686 	}
4687 
4688 	if (!drm_dp_is_branch(intel_dp->dpcd))
4689 		return true; /* native DP sink */
4690 
4691 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4692 		return true; /* no per-port downstream info */
4693 
4694 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4695 			     intel_dp->downstream_ports,
4696 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4697 		return false; /* downstream port status fetch failed */
4698 
4699 	return true;
4700 }
4701 
4702 static bool
4703 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4704 {
4705 	u8 mstm_cap;
4706 
4707 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4708 		return false;
4709 
4710 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4711 		return false;
4712 
4713 	return mstm_cap & DP_MST_CAP;
4714 }
4715 
4716 static bool
4717 intel_dp_can_mst(struct intel_dp *intel_dp)
4718 {
4719 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4720 
4721 	return i915->params.enable_dp_mst &&
4722 		intel_dp->can_mst &&
4723 		intel_dp_sink_can_mst(intel_dp);
4724 }
4725 
4726 static void
4727 intel_dp_configure_mst(struct intel_dp *intel_dp)
4728 {
4729 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4730 	struct intel_encoder *encoder =
4731 		&dp_to_dig_port(intel_dp)->base;
4732 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4733 
4734 	drm_dbg_kms(&i915->drm,
4735 		    "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4736 		    encoder->base.base.id, encoder->base.name,
4737 		    yesno(intel_dp->can_mst), yesno(sink_can_mst),
4738 		    yesno(i915->params.enable_dp_mst));
4739 
4740 	if (!intel_dp->can_mst)
4741 		return;
4742 
4743 	intel_dp->is_mst = sink_can_mst &&
4744 		i915->params.enable_dp_mst;
4745 
4746 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4747 					intel_dp->is_mst);
4748 }
4749 
4750 static bool
4751 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4752 {
4753 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4754 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4755 		DP_DPRX_ESI_LEN;
4756 }
4757 
4758 bool
4759 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4760 		       const struct drm_connector_state *conn_state)
4761 {
4762 	/*
4763 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4764 	 * of Color Encoding Format and Content Color Gamut], in order to
4765 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4766 	 */
4767 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4768 		return true;
4769 
4770 	switch (conn_state->colorspace) {
4771 	case DRM_MODE_COLORIMETRY_SYCC_601:
4772 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4773 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4774 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4775 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4776 		return true;
4777 	default:
4778 		break;
4779 	}
4780 
4781 	return false;
4782 }
4783 
4784 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4785 				     struct dp_sdp *sdp, size_t size)
4786 {
4787 	size_t length = sizeof(struct dp_sdp);
4788 
4789 	if (size < length)
4790 		return -ENOSPC;
4791 
4792 	memset(sdp, 0, size);
4793 
4794 	/*
4795 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4796 	 * VSC SDP Header Bytes
4797 	 */
4798 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4799 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4800 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4801 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4802 
4803 	/*
4804 	 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
4805 	 * per DP 1.4a spec.
4806 	 */
4807 	if (vsc->revision != 0x5)
4808 		goto out;
4809 
4810 	/* VSC SDP Payload for DB16 through DB18 */
4811 	/* Pixel Encoding and Colorimetry Formats  */
4812 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4813 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4814 
4815 	switch (vsc->bpc) {
4816 	case 6:
4817 		/* 6bpc: 0x0 */
4818 		break;
4819 	case 8:
4820 		sdp->db[17] = 0x1; /* DB17[3:0] */
4821 		break;
4822 	case 10:
4823 		sdp->db[17] = 0x2;
4824 		break;
4825 	case 12:
4826 		sdp->db[17] = 0x3;
4827 		break;
4828 	case 16:
4829 		sdp->db[17] = 0x4;
4830 		break;
4831 	default:
4832 		MISSING_CASE(vsc->bpc);
4833 		break;
4834 	}
4835 	/* Dynamic Range and Component Bit Depth */
4836 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4837 		sdp->db[17] |= 0x80;  /* DB17[7] */
4838 
4839 	/* Content Type */
4840 	sdp->db[18] = vsc->content_type & 0x7;
4841 
4842 out:
4843 	return length;
4844 }
4845 
4846 static ssize_t
4847 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4848 					 struct dp_sdp *sdp,
4849 					 size_t size)
4850 {
4851 	size_t length = sizeof(struct dp_sdp);
4852 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4853 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4854 	ssize_t len;
4855 
4856 	if (size < length)
4857 		return -ENOSPC;
4858 
4859 	memset(sdp, 0, size);
4860 
4861 	len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4862 	if (len < 0) {
4863 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4864 		return -ENOSPC;
4865 	}
4866 
4867 	if (len != infoframe_size) {
4868 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4869 		return -ENOSPC;
4870 	}
4871 
4872 	/*
4873 	 * Set up the infoframe sdp packet for HDR static metadata.
4874 	 * Prepare VSC Header for SU as per DP 1.4a spec,
4875 	 * Table 2-100 and Table 2-101
4876 	 */
4877 
4878 	/* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4879 	sdp->sdp_header.HB0 = 0;
4880 	/*
4881 	 * Packet Type 80h + Non-audio INFOFRAME Type value
4882 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87
4883 	 * - 80h + Non-audio INFOFRAME Type value
4884 	 * - InfoFrame Type: 0x07
4885 	 *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4886 	 */
4887 	sdp->sdp_header.HB1 = drm_infoframe->type;
4888 	/*
4889 	 * Least Significant Eight Bits of (Data Byte Count – 1)
4890 	 * infoframe_size - 1
4891 	 */
4892 	sdp->sdp_header.HB2 = 0x1D;
4893 	/* INFOFRAME SDP Version Number */
4894 	sdp->sdp_header.HB3 = (0x13 << 2);
4895 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
4896 	sdp->db[0] = drm_infoframe->version;
4897 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4898 	sdp->db[1] = drm_infoframe->length;
4899 	/*
4900 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4901 	 * HDMI_INFOFRAME_HEADER_SIZE
4902 	 */
4903 	BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4904 	memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4905 	       HDMI_DRM_INFOFRAME_SIZE);
4906 
4907 	/*
4908 	 * Size of DP infoframe sdp packet for HDR static metadata consists of
4909 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4910 	 * - Two Data Blocks: 2 bytes
4911 	 *    CTA Header Byte2 (INFOFRAME Version Number)
4912 	 *    CTA Header Byte3 (Length of INFOFRAME)
4913 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4914 	 *
4915 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4916 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4917 	 * will pad rest of the size.
4918 	 */
4919 	return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4920 }
4921 
4922 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4923 			       const struct intel_crtc_state *crtc_state,
4924 			       unsigned int type)
4925 {
4926 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
4927 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4928 	struct dp_sdp sdp = {};
4929 	ssize_t len;
4930 
4931 	if ((crtc_state->infoframes.enable &
4932 	     intel_hdmi_infoframe_enable(type)) == 0)
4933 		return;
4934 
4935 	switch (type) {
4936 	case DP_SDP_VSC:
4937 		len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
4938 					    sizeof(sdp));
4939 		break;
4940 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
4941 		len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
4942 							       &sdp, sizeof(sdp));
4943 		break;
4944 	default:
4945 		MISSING_CASE(type);
4946 		return;
4947 	}
4948 
4949 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
4950 		return;
4951 
4952 	dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
4953 }
4954 
4955 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
4956 			    const struct intel_crtc_state *crtc_state,
4957 			    struct drm_dp_vsc_sdp *vsc)
4958 {
4959 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
4960 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4961 	struct dp_sdp sdp = {};
4962 	ssize_t len;
4963 
4964 	len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
4965 
4966 	if (drm_WARN_ON(&dev_priv->drm, len < 0))
4967 		return;
4968 
4969 	dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
4970 					&sdp, len);
4971 }
4972 
4973 void intel_dp_set_infoframes(struct intel_encoder *encoder,
4974 			     bool enable,
4975 			     const struct intel_crtc_state *crtc_state,
4976 			     const struct drm_connector_state *conn_state)
4977 {
4978 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4979 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4980 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
4981 	u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
4982 			 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
4983 			 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
4984 	u32 val = intel_de_read(dev_priv, reg);
4985 
4986 	/* TODO: Add DSC case (DIP_ENABLE_PPS) */
4987 	/* When PSR is enabled, this routine doesn't disable VSC DIP */
4988 	if (intel_psr_enabled(intel_dp))
4989 		val &= ~dip_enable;
4990 	else
4991 		val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
4992 
4993 	if (!enable) {
4994 		intel_de_write(dev_priv, reg, val);
4995 		intel_de_posting_read(dev_priv, reg);
4996 		return;
4997 	}
4998 
4999 	intel_de_write(dev_priv, reg, val);
5000 	intel_de_posting_read(dev_priv, reg);
5001 
5002 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5003 	if (!intel_psr_enabled(intel_dp))
5004 		intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5005 
5006 	intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5007 }
5008 
5009 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5010 				   const void *buffer, size_t size)
5011 {
5012 	const struct dp_sdp *sdp = buffer;
5013 
5014 	if (size < sizeof(struct dp_sdp))
5015 		return -EINVAL;
5016 
5017 	memset(vsc, 0, size);
5018 
5019 	if (sdp->sdp_header.HB0 != 0)
5020 		return -EINVAL;
5021 
5022 	if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5023 		return -EINVAL;
5024 
5025 	vsc->sdp_type = sdp->sdp_header.HB1;
5026 	vsc->revision = sdp->sdp_header.HB2;
5027 	vsc->length = sdp->sdp_header.HB3;
5028 
5029 	if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5030 	    (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5031 		/*
5032 		 * - HB2 = 0x2, HB3 = 0x8
5033 		 *   VSC SDP supporting 3D stereo + PSR
5034 		 * - HB2 = 0x4, HB3 = 0xe
5035 		 *   VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5036 		 *   first scan line of the SU region (applies to eDP v1.4b
5037 		 *   and higher).
5038 		 */
5039 		return 0;
5040 	} else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5041 		/*
5042 		 * - HB2 = 0x5, HB3 = 0x13
5043 		 *   VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5044 		 *   Format.
5045 		 */
5046 		vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5047 		vsc->colorimetry = sdp->db[16] & 0xf;
5048 		vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5049 
5050 		switch (sdp->db[17] & 0x7) {
5051 		case 0x0:
5052 			vsc->bpc = 6;
5053 			break;
5054 		case 0x1:
5055 			vsc->bpc = 8;
5056 			break;
5057 		case 0x2:
5058 			vsc->bpc = 10;
5059 			break;
5060 		case 0x3:
5061 			vsc->bpc = 12;
5062 			break;
5063 		case 0x4:
5064 			vsc->bpc = 16;
5065 			break;
5066 		default:
5067 			MISSING_CASE(sdp->db[17] & 0x7);
5068 			return -EINVAL;
5069 		}
5070 
5071 		vsc->content_type = sdp->db[18] & 0x7;
5072 	} else {
5073 		return -EINVAL;
5074 	}
5075 
5076 	return 0;
5077 }
5078 
5079 static int
5080 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5081 					   const void *buffer, size_t size)
5082 {
5083 	int ret;
5084 
5085 	const struct dp_sdp *sdp = buffer;
5086 
5087 	if (size < sizeof(struct dp_sdp))
5088 		return -EINVAL;
5089 
5090 	if (sdp->sdp_header.HB0 != 0)
5091 		return -EINVAL;
5092 
5093 	if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5094 		return -EINVAL;
5095 
5096 	/*
5097 	 * Least Significant Eight Bits of (Data Byte Count – 1)
5098 	 * 1Dh (i.e., Data Byte Count = 30 bytes).
5099 	 */
5100 	if (sdp->sdp_header.HB2 != 0x1D)
5101 		return -EINVAL;
5102 
5103 	/* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5104 	if ((sdp->sdp_header.HB3 & 0x3) != 0)
5105 		return -EINVAL;
5106 
5107 	/* INFOFRAME SDP Version Number */
5108 	if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5109 		return -EINVAL;
5110 
5111 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
5112 	if (sdp->db[0] != 1)
5113 		return -EINVAL;
5114 
5115 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5116 	if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5117 		return -EINVAL;
5118 
5119 	ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5120 					     HDMI_DRM_INFOFRAME_SIZE);
5121 
5122 	return ret;
5123 }
5124 
5125 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5126 				  struct intel_crtc_state *crtc_state,
5127 				  struct drm_dp_vsc_sdp *vsc)
5128 {
5129 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5130 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5131 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5132 	unsigned int type = DP_SDP_VSC;
5133 	struct dp_sdp sdp = {};
5134 	int ret;
5135 
5136 	/* When PSR is enabled, VSC SDP is handled by PSR routine */
5137 	if (intel_psr_enabled(intel_dp))
5138 		return;
5139 
5140 	if ((crtc_state->infoframes.enable &
5141 	     intel_hdmi_infoframe_enable(type)) == 0)
5142 		return;
5143 
5144 	dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5145 
5146 	ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5147 
5148 	if (ret)
5149 		drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5150 }
5151 
5152 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5153 						     struct intel_crtc_state *crtc_state,
5154 						     struct hdmi_drm_infoframe *drm_infoframe)
5155 {
5156 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5157 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5158 	unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5159 	struct dp_sdp sdp = {};
5160 	int ret;
5161 
5162 	if ((crtc_state->infoframes.enable &
5163 	    intel_hdmi_infoframe_enable(type)) == 0)
5164 		return;
5165 
5166 	dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5167 				 sizeof(sdp));
5168 
5169 	ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5170 							 sizeof(sdp));
5171 
5172 	if (ret)
5173 		drm_dbg_kms(&dev_priv->drm,
5174 			    "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5175 }
5176 
5177 void intel_read_dp_sdp(struct intel_encoder *encoder,
5178 		       struct intel_crtc_state *crtc_state,
5179 		       unsigned int type)
5180 {
5181 	if (encoder->type != INTEL_OUTPUT_DDI)
5182 		return;
5183 
5184 	switch (type) {
5185 	case DP_SDP_VSC:
5186 		intel_read_dp_vsc_sdp(encoder, crtc_state,
5187 				      &crtc_state->infoframes.vsc);
5188 		break;
5189 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
5190 		intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5191 							 &crtc_state->infoframes.drm.drm);
5192 		break;
5193 	default:
5194 		MISSING_CASE(type);
5195 		break;
5196 	}
5197 }
5198 
5199 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5200 {
5201 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5202 	int status = 0;
5203 	int test_link_rate;
5204 	u8 test_lane_count, test_link_bw;
5205 	/* (DP CTS 1.2)
5206 	 * 4.3.1.11
5207 	 */
5208 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5209 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5210 				   &test_lane_count);
5211 
5212 	if (status <= 0) {
5213 		drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5214 		return DP_TEST_NAK;
5215 	}
5216 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5217 
5218 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5219 				   &test_link_bw);
5220 	if (status <= 0) {
5221 		drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5222 		return DP_TEST_NAK;
5223 	}
5224 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5225 
5226 	/* Validate the requested link rate and lane count */
5227 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5228 					test_lane_count))
5229 		return DP_TEST_NAK;
5230 
5231 	intel_dp->compliance.test_lane_count = test_lane_count;
5232 	intel_dp->compliance.test_link_rate = test_link_rate;
5233 
5234 	return DP_TEST_ACK;
5235 }
5236 
5237 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5238 {
5239 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5240 	u8 test_pattern;
5241 	u8 test_misc;
5242 	__be16 h_width, v_height;
5243 	int status = 0;
5244 
5245 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
5246 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5247 				   &test_pattern);
5248 	if (status <= 0) {
5249 		drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5250 		return DP_TEST_NAK;
5251 	}
5252 	if (test_pattern != DP_COLOR_RAMP)
5253 		return DP_TEST_NAK;
5254 
5255 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5256 				  &h_width, 2);
5257 	if (status <= 0) {
5258 		drm_dbg_kms(&i915->drm, "H Width read failed\n");
5259 		return DP_TEST_NAK;
5260 	}
5261 
5262 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5263 				  &v_height, 2);
5264 	if (status <= 0) {
5265 		drm_dbg_kms(&i915->drm, "V Height read failed\n");
5266 		return DP_TEST_NAK;
5267 	}
5268 
5269 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5270 				   &test_misc);
5271 	if (status <= 0) {
5272 		drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5273 		return DP_TEST_NAK;
5274 	}
5275 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5276 		return DP_TEST_NAK;
5277 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5278 		return DP_TEST_NAK;
5279 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5280 	case DP_TEST_BIT_DEPTH_6:
5281 		intel_dp->compliance.test_data.bpc = 6;
5282 		break;
5283 	case DP_TEST_BIT_DEPTH_8:
5284 		intel_dp->compliance.test_data.bpc = 8;
5285 		break;
5286 	default:
5287 		return DP_TEST_NAK;
5288 	}
5289 
5290 	intel_dp->compliance.test_data.video_pattern = test_pattern;
5291 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5292 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5293 	/* Set test active flag here so userspace doesn't interrupt things */
5294 	intel_dp->compliance.test_active = true;
5295 
5296 	return DP_TEST_ACK;
5297 }
5298 
5299 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5300 {
5301 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5302 	u8 test_result = DP_TEST_ACK;
5303 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5304 	struct drm_connector *connector = &intel_connector->base;
5305 
5306 	if (intel_connector->detect_edid == NULL ||
5307 	    connector->edid_corrupt ||
5308 	    intel_dp->aux.i2c_defer_count > 6) {
5309 		/* Check EDID read for NACKs, DEFERs and corruption
5310 		 * (DP CTS 1.2 Core r1.1)
5311 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
5312 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
5313 		 *    4.2.2.6 : EDID corruption detected
5314 		 * Use failsafe mode for all cases
5315 		 */
5316 		if (intel_dp->aux.i2c_nack_count > 0 ||
5317 			intel_dp->aux.i2c_defer_count > 0)
5318 			drm_dbg_kms(&i915->drm,
5319 				    "EDID read had %d NACKs, %d DEFERs\n",
5320 				    intel_dp->aux.i2c_nack_count,
5321 				    intel_dp->aux.i2c_defer_count);
5322 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5323 	} else {
5324 		struct edid *block = intel_connector->detect_edid;
5325 
5326 		/* We have to write the checksum
5327 		 * of the last block read
5328 		 */
5329 		block += intel_connector->detect_edid->extensions;
5330 
5331 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5332 				       block->checksum) <= 0)
5333 			drm_dbg_kms(&i915->drm,
5334 				    "Failed to write EDID checksum\n");
5335 
5336 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5337 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5338 	}
5339 
5340 	/* Set test active flag here so userspace doesn't interrupt things */
5341 	intel_dp->compliance.test_active = true;
5342 
5343 	return test_result;
5344 }
5345 
5346 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5347 {
5348 	struct drm_dp_phy_test_params *data =
5349 		&intel_dp->compliance.test_data.phytest;
5350 
5351 	if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5352 		DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5353 		return DP_TEST_NAK;
5354 	}
5355 
5356 	/*
5357 	 * link_mst is set to false to avoid executing mst related code
5358 	 * during compliance testing.
5359 	 */
5360 	intel_dp->link_mst = false;
5361 
5362 	return DP_TEST_ACK;
5363 }
5364 
5365 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5366 {
5367 	struct drm_i915_private *dev_priv =
5368 			to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5369 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5370 	struct drm_dp_phy_test_params *data =
5371 			&intel_dp->compliance.test_data.phytest;
5372 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5373 	enum pipe pipe = crtc->pipe;
5374 	u32 pattern_val;
5375 
5376 	switch (data->phy_pattern) {
5377 	case DP_PHY_TEST_PATTERN_NONE:
5378 		DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5379 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5380 		break;
5381 	case DP_PHY_TEST_PATTERN_D10_2:
5382 		DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5383 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5384 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5385 		break;
5386 	case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5387 		DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5388 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5389 			       DDI_DP_COMP_CTL_ENABLE |
5390 			       DDI_DP_COMP_CTL_SCRAMBLED_0);
5391 		break;
5392 	case DP_PHY_TEST_PATTERN_PRBS7:
5393 		DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5394 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5395 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5396 		break;
5397 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5398 		/*
5399 		 * FIXME: Ideally pattern should come from DPCD 0x250. As
5400 		 * current firmware of DPR-100 could not set it, so hardcoding
5401 		 * now for complaince test.
5402 		 */
5403 		DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5404 		pattern_val = 0x3e0f83e0;
5405 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5406 		pattern_val = 0x0f83e0f8;
5407 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5408 		pattern_val = 0x0000f83e;
5409 		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5410 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5411 			       DDI_DP_COMP_CTL_ENABLE |
5412 			       DDI_DP_COMP_CTL_CUSTOM80);
5413 		break;
5414 	case DP_PHY_TEST_PATTERN_CP2520:
5415 		/*
5416 		 * FIXME: Ideally pattern should come from DPCD 0x24A. As
5417 		 * current firmware of DPR-100 could not set it, so hardcoding
5418 		 * now for complaince test.
5419 		 */
5420 		DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5421 		pattern_val = 0xFB;
5422 		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5423 			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5424 			       pattern_val);
5425 		break;
5426 	default:
5427 		WARN(1, "Invalid Phy Test Pattern\n");
5428 	}
5429 }
5430 
5431 static void
5432 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5433 {
5434 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5435 	struct drm_device *dev = dig_port->base.base.dev;
5436 	struct drm_i915_private *dev_priv = to_i915(dev);
5437 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5438 	enum pipe pipe = crtc->pipe;
5439 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5440 
5441 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5442 						 TRANS_DDI_FUNC_CTL(pipe));
5443 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5444 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5445 
5446 	trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5447 				      TGL_TRANS_DDI_PORT_MASK);
5448 	trans_conf_value &= ~PIPECONF_ENABLE;
5449 	dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5450 
5451 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5452 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5453 		       trans_ddi_func_ctl_value);
5454 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5455 }
5456 
5457 static void
5458 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5459 {
5460 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5461 	struct drm_device *dev = dig_port->base.base.dev;
5462 	struct drm_i915_private *dev_priv = to_i915(dev);
5463 	enum port port = dig_port->base.port;
5464 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5465 	enum pipe pipe = crtc->pipe;
5466 	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5467 
5468 	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5469 						 TRANS_DDI_FUNC_CTL(pipe));
5470 	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5471 	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5472 
5473 	trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5474 				    TGL_TRANS_DDI_SELECT_PORT(port);
5475 	trans_conf_value |= PIPECONF_ENABLE;
5476 	dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5477 
5478 	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5479 	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5480 	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5481 		       trans_ddi_func_ctl_value);
5482 }
5483 
5484 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5485 {
5486 	struct drm_dp_phy_test_params *data =
5487 		&intel_dp->compliance.test_data.phytest;
5488 	u8 link_status[DP_LINK_STATUS_SIZE];
5489 
5490 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
5491 		DRM_DEBUG_KMS("failed to get link status\n");
5492 		return;
5493 	}
5494 
5495 	/* retrieve vswing & pre-emphasis setting */
5496 	intel_dp_get_adjust_train(intel_dp, link_status);
5497 
5498 	intel_dp_autotest_phy_ddi_disable(intel_dp);
5499 
5500 	intel_dp_set_signal_levels(intel_dp);
5501 
5502 	intel_dp_phy_pattern_update(intel_dp);
5503 
5504 	intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5505 
5506 	drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5507 				    link_status[DP_DPCD_REV]);
5508 }
5509 
5510 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5511 {
5512 	u8 test_result;
5513 
5514 	test_result = intel_dp_prepare_phytest(intel_dp);
5515 	if (test_result != DP_TEST_ACK)
5516 		DRM_ERROR("Phy test preparation failed\n");
5517 
5518 	intel_dp_process_phy_request(intel_dp);
5519 
5520 	return test_result;
5521 }
5522 
5523 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5524 {
5525 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5526 	u8 response = DP_TEST_NAK;
5527 	u8 request = 0;
5528 	int status;
5529 
5530 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5531 	if (status <= 0) {
5532 		drm_dbg_kms(&i915->drm,
5533 			    "Could not read test request from sink\n");
5534 		goto update_status;
5535 	}
5536 
5537 	switch (request) {
5538 	case DP_TEST_LINK_TRAINING:
5539 		drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5540 		response = intel_dp_autotest_link_training(intel_dp);
5541 		break;
5542 	case DP_TEST_LINK_VIDEO_PATTERN:
5543 		drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5544 		response = intel_dp_autotest_video_pattern(intel_dp);
5545 		break;
5546 	case DP_TEST_LINK_EDID_READ:
5547 		drm_dbg_kms(&i915->drm, "EDID test requested\n");
5548 		response = intel_dp_autotest_edid(intel_dp);
5549 		break;
5550 	case DP_TEST_LINK_PHY_TEST_PATTERN:
5551 		drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5552 		response = intel_dp_autotest_phy_pattern(intel_dp);
5553 		break;
5554 	default:
5555 		drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5556 			    request);
5557 		break;
5558 	}
5559 
5560 	if (response & DP_TEST_ACK)
5561 		intel_dp->compliance.test_type = request;
5562 
5563 update_status:
5564 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5565 	if (status <= 0)
5566 		drm_dbg_kms(&i915->drm,
5567 			    "Could not write test response to sink\n");
5568 }
5569 
5570 /**
5571  * intel_dp_check_mst_status - service any pending MST interrupts, check link status
5572  * @intel_dp: Intel DP struct
5573  *
5574  * Read any pending MST interrupts, call MST core to handle these and ack the
5575  * interrupts. Check if the main and AUX link state is ok.
5576  *
5577  * Returns:
5578  * - %true if pending interrupts were serviced (or no interrupts were
5579  *   pending) w/o detecting an error condition.
5580  * - %false if an error condition - like AUX failure or a loss of link - is
5581  *   detected, which needs servicing from the hotplug work.
5582  */
5583 static bool
5584 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5585 {
5586 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5587 	bool link_ok = true;
5588 
5589 	drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0);
5590 
5591 	for (;;) {
5592 		u8 esi[DP_DPRX_ESI_LEN] = {};
5593 		bool handled;
5594 		int retry;
5595 
5596 		if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) {
5597 			drm_dbg_kms(&i915->drm,
5598 				    "failed to get ESI - device may have failed\n");
5599 			link_ok = false;
5600 
5601 			break;
5602 		}
5603 
5604 		/* check link status - esi[10] = 0x200c */
5605 		if (intel_dp->active_mst_links > 0 && link_ok &&
5606 		    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5607 			drm_dbg_kms(&i915->drm,
5608 				    "channel EQ not ok, retraining\n");
5609 			link_ok = false;
5610 		}
5611 
5612 		drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5613 
5614 		drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5615 		if (!handled)
5616 			break;
5617 
5618 		for (retry = 0; retry < 3; retry++) {
5619 			int wret;
5620 
5621 			wret = drm_dp_dpcd_write(&intel_dp->aux,
5622 						 DP_SINK_COUNT_ESI+1,
5623 						 &esi[1], 3);
5624 			if (wret == 3)
5625 				break;
5626 		}
5627 	}
5628 
5629 	return link_ok;
5630 }
5631 
5632 static bool
5633 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5634 {
5635 	u8 link_status[DP_LINK_STATUS_SIZE];
5636 
5637 	if (!intel_dp->link_trained)
5638 		return false;
5639 
5640 	/*
5641 	 * While PSR source HW is enabled, it will control main-link sending
5642 	 * frames, enabling and disabling it so trying to do a retrain will fail
5643 	 * as the link would or not be on or it could mix training patterns
5644 	 * and frame data at the same time causing retrain to fail.
5645 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5646 	 * any link status error.
5647 	 */
5648 	if (intel_psr_enabled(intel_dp))
5649 		return false;
5650 
5651 	if (!intel_dp_get_link_status(intel_dp, link_status))
5652 		return false;
5653 
5654 	/*
5655 	 * Validate the cached values of intel_dp->link_rate and
5656 	 * intel_dp->lane_count before attempting to retrain.
5657 	 */
5658 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5659 					intel_dp->lane_count))
5660 		return false;
5661 
5662 	/* Retrain if Channel EQ or CR not ok */
5663 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5664 }
5665 
5666 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5667 				   const struct drm_connector_state *conn_state)
5668 {
5669 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5670 	struct intel_encoder *encoder;
5671 	enum pipe pipe;
5672 
5673 	if (!conn_state->best_encoder)
5674 		return false;
5675 
5676 	/* SST */
5677 	encoder = &dp_to_dig_port(intel_dp)->base;
5678 	if (conn_state->best_encoder == &encoder->base)
5679 		return true;
5680 
5681 	/* MST */
5682 	for_each_pipe(i915, pipe) {
5683 		encoder = &intel_dp->mst_encoders[pipe]->base;
5684 		if (conn_state->best_encoder == &encoder->base)
5685 			return true;
5686 	}
5687 
5688 	return false;
5689 }
5690 
5691 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5692 				      struct drm_modeset_acquire_ctx *ctx,
5693 				      u32 *crtc_mask)
5694 {
5695 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5696 	struct drm_connector_list_iter conn_iter;
5697 	struct intel_connector *connector;
5698 	int ret = 0;
5699 
5700 	*crtc_mask = 0;
5701 
5702 	if (!intel_dp_needs_link_retrain(intel_dp))
5703 		return 0;
5704 
5705 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5706 	for_each_intel_connector_iter(connector, &conn_iter) {
5707 		struct drm_connector_state *conn_state =
5708 			connector->base.state;
5709 		struct intel_crtc_state *crtc_state;
5710 		struct intel_crtc *crtc;
5711 
5712 		if (!intel_dp_has_connector(intel_dp, conn_state))
5713 			continue;
5714 
5715 		crtc = to_intel_crtc(conn_state->crtc);
5716 		if (!crtc)
5717 			continue;
5718 
5719 		ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5720 		if (ret)
5721 			break;
5722 
5723 		crtc_state = to_intel_crtc_state(crtc->base.state);
5724 
5725 		drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5726 
5727 		if (!crtc_state->hw.active)
5728 			continue;
5729 
5730 		if (conn_state->commit &&
5731 		    !try_wait_for_completion(&conn_state->commit->hw_done))
5732 			continue;
5733 
5734 		*crtc_mask |= drm_crtc_mask(&crtc->base);
5735 	}
5736 	drm_connector_list_iter_end(&conn_iter);
5737 
5738 	if (!intel_dp_needs_link_retrain(intel_dp))
5739 		*crtc_mask = 0;
5740 
5741 	return ret;
5742 }
5743 
5744 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5745 {
5746 	struct intel_connector *connector = intel_dp->attached_connector;
5747 
5748 	return connector->base.status == connector_status_connected ||
5749 		intel_dp->is_mst;
5750 }
5751 
5752 int intel_dp_retrain_link(struct intel_encoder *encoder,
5753 			  struct drm_modeset_acquire_ctx *ctx)
5754 {
5755 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5756 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5757 	struct intel_crtc *crtc;
5758 	u32 crtc_mask;
5759 	int ret;
5760 
5761 	if (!intel_dp_is_connected(intel_dp))
5762 		return 0;
5763 
5764 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5765 			       ctx);
5766 	if (ret)
5767 		return ret;
5768 
5769 	ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5770 	if (ret)
5771 		return ret;
5772 
5773 	if (crtc_mask == 0)
5774 		return 0;
5775 
5776 	drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5777 		    encoder->base.base.id, encoder->base.name);
5778 
5779 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5780 		const struct intel_crtc_state *crtc_state =
5781 			to_intel_crtc_state(crtc->base.state);
5782 
5783 		/* Suppress underruns caused by re-training */
5784 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5785 		if (crtc_state->has_pch_encoder)
5786 			intel_set_pch_fifo_underrun_reporting(dev_priv,
5787 							      intel_crtc_pch_transcoder(crtc), false);
5788 	}
5789 
5790 	intel_dp_start_link_train(intel_dp);
5791 	intel_dp_stop_link_train(intel_dp);
5792 
5793 	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5794 		const struct intel_crtc_state *crtc_state =
5795 			to_intel_crtc_state(crtc->base.state);
5796 
5797 		/* Keep underrun reporting disabled until things are stable */
5798 		intel_wait_for_vblank(dev_priv, crtc->pipe);
5799 
5800 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5801 		if (crtc_state->has_pch_encoder)
5802 			intel_set_pch_fifo_underrun_reporting(dev_priv,
5803 							      intel_crtc_pch_transcoder(crtc), true);
5804 	}
5805 
5806 	return 0;
5807 }
5808 
5809 /*
5810  * If display is now connected check links status,
5811  * there has been known issues of link loss triggering
5812  * long pulse.
5813  *
5814  * Some sinks (eg. ASUS PB287Q) seem to perform some
5815  * weird HPD ping pong during modesets. So we can apparently
5816  * end up with HPD going low during a modeset, and then
5817  * going back up soon after. And once that happens we must
5818  * retrain the link to get a picture. That's in case no
5819  * userspace component reacted to intermittent HPD dip.
5820  */
5821 static enum intel_hotplug_state
5822 intel_dp_hotplug(struct intel_encoder *encoder,
5823 		 struct intel_connector *connector)
5824 {
5825 	struct drm_modeset_acquire_ctx ctx;
5826 	enum intel_hotplug_state state;
5827 	int ret;
5828 
5829 	state = intel_encoder_hotplug(encoder, connector);
5830 
5831 	drm_modeset_acquire_init(&ctx, 0);
5832 
5833 	for (;;) {
5834 		ret = intel_dp_retrain_link(encoder, &ctx);
5835 
5836 		if (ret == -EDEADLK) {
5837 			drm_modeset_backoff(&ctx);
5838 			continue;
5839 		}
5840 
5841 		break;
5842 	}
5843 
5844 	drm_modeset_drop_locks(&ctx);
5845 	drm_modeset_acquire_fini(&ctx);
5846 	drm_WARN(encoder->base.dev, ret,
5847 		 "Acquiring modeset locks failed with %i\n", ret);
5848 
5849 	/*
5850 	 * Keeping it consistent with intel_ddi_hotplug() and
5851 	 * intel_hdmi_hotplug().
5852 	 */
5853 	if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5854 		state = INTEL_HOTPLUG_RETRY;
5855 
5856 	return state;
5857 }
5858 
5859 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5860 {
5861 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5862 	u8 val;
5863 
5864 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5865 		return;
5866 
5867 	if (drm_dp_dpcd_readb(&intel_dp->aux,
5868 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5869 		return;
5870 
5871 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5872 
5873 	if (val & DP_AUTOMATED_TEST_REQUEST)
5874 		intel_dp_handle_test_request(intel_dp);
5875 
5876 	if (val & DP_CP_IRQ)
5877 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5878 
5879 	if (val & DP_SINK_SPECIFIC_IRQ)
5880 		drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5881 }
5882 
5883 /*
5884  * According to DP spec
5885  * 5.1.2:
5886  *  1. Read DPCD
5887  *  2. Configure link according to Receiver Capabilities
5888  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5889  *  4. Check link status on receipt of hot-plug interrupt
5890  *
5891  * intel_dp_short_pulse -  handles short pulse interrupts
5892  * when full detection is not required.
5893  * Returns %true if short pulse is handled and full detection
5894  * is NOT required and %false otherwise.
5895  */
5896 static bool
5897 intel_dp_short_pulse(struct intel_dp *intel_dp)
5898 {
5899 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5900 	u8 old_sink_count = intel_dp->sink_count;
5901 	bool ret;
5902 
5903 	/*
5904 	 * Clearing compliance test variables to allow capturing
5905 	 * of values for next automated test request.
5906 	 */
5907 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5908 
5909 	/*
5910 	 * Now read the DPCD to see if it's actually running
5911 	 * If the current value of sink count doesn't match with
5912 	 * the value that was stored earlier or dpcd read failed
5913 	 * we need to do full detection
5914 	 */
5915 	ret = intel_dp_get_dpcd(intel_dp);
5916 
5917 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
5918 		/* No need to proceed if we are going to do full detect */
5919 		return false;
5920 	}
5921 
5922 	intel_dp_check_service_irq(intel_dp);
5923 
5924 	/* Handle CEC interrupts, if any */
5925 	drm_dp_cec_irq(&intel_dp->aux);
5926 
5927 	/* defer to the hotplug work for link retraining if needed */
5928 	if (intel_dp_needs_link_retrain(intel_dp))
5929 		return false;
5930 
5931 	intel_psr_short_pulse(intel_dp);
5932 
5933 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5934 		drm_dbg_kms(&dev_priv->drm,
5935 			    "Link Training Compliance Test requested\n");
5936 		/* Send a Hotplug Uevent to userspace to start modeset */
5937 		drm_kms_helper_hotplug_event(&dev_priv->drm);
5938 	}
5939 
5940 	return true;
5941 }
5942 
5943 /* XXX this is probably wrong for multiple downstream ports */
5944 static enum drm_connector_status
5945 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5946 {
5947 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5948 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5949 	u8 *dpcd = intel_dp->dpcd;
5950 	u8 type;
5951 
5952 	if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp)))
5953 		return connector_status_connected;
5954 
5955 	if (lspcon->active)
5956 		lspcon_resume(lspcon);
5957 
5958 	if (!intel_dp_get_dpcd(intel_dp))
5959 		return connector_status_disconnected;
5960 
5961 	/* if there's no downstream port, we're done */
5962 	if (!drm_dp_is_branch(dpcd))
5963 		return connector_status_connected;
5964 
5965 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5966 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5967 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5968 
5969 		return intel_dp->sink_count ?
5970 		connector_status_connected : connector_status_disconnected;
5971 	}
5972 
5973 	if (intel_dp_can_mst(intel_dp))
5974 		return connector_status_connected;
5975 
5976 	/* If no HPD, poke DDC gently */
5977 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5978 		return connector_status_connected;
5979 
5980 	/* Well we tried, say unknown for unreliable port types */
5981 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5982 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5983 		if (type == DP_DS_PORT_TYPE_VGA ||
5984 		    type == DP_DS_PORT_TYPE_NON_EDID)
5985 			return connector_status_unknown;
5986 	} else {
5987 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5988 			DP_DWN_STRM_PORT_TYPE_MASK;
5989 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5990 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5991 			return connector_status_unknown;
5992 	}
5993 
5994 	/* Anything else is out of spec, warn and ignore */
5995 	drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
5996 	return connector_status_disconnected;
5997 }
5998 
5999 static enum drm_connector_status
6000 edp_detect(struct intel_dp *intel_dp)
6001 {
6002 	return connector_status_connected;
6003 }
6004 
6005 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6006 {
6007 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6008 	u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6009 
6010 	return intel_de_read(dev_priv, SDEISR) & bit;
6011 }
6012 
6013 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6014 {
6015 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6016 	u32 bit;
6017 
6018 	switch (encoder->hpd_pin) {
6019 	case HPD_PORT_B:
6020 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6021 		break;
6022 	case HPD_PORT_C:
6023 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6024 		break;
6025 	case HPD_PORT_D:
6026 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6027 		break;
6028 	default:
6029 		MISSING_CASE(encoder->hpd_pin);
6030 		return false;
6031 	}
6032 
6033 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6034 }
6035 
6036 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6037 {
6038 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6039 	u32 bit;
6040 
6041 	switch (encoder->hpd_pin) {
6042 	case HPD_PORT_B:
6043 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6044 		break;
6045 	case HPD_PORT_C:
6046 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6047 		break;
6048 	case HPD_PORT_D:
6049 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6050 		break;
6051 	default:
6052 		MISSING_CASE(encoder->hpd_pin);
6053 		return false;
6054 	}
6055 
6056 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6057 }
6058 
6059 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6060 {
6061 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6062 	u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6063 
6064 	return intel_de_read(dev_priv, DEISR) & bit;
6065 }
6066 
6067 /*
6068  * intel_digital_port_connected - is the specified port connected?
6069  * @encoder: intel_encoder
6070  *
6071  * In cases where there's a connector physically connected but it can't be used
6072  * by our hardware we also return false, since the rest of the driver should
6073  * pretty much treat the port as disconnected. This is relevant for type-C
6074  * (starting on ICL) where there's ownership involved.
6075  *
6076  * Return %true if port is connected, %false otherwise.
6077  */
6078 bool intel_digital_port_connected(struct intel_encoder *encoder)
6079 {
6080 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6081 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6082 	bool is_connected = false;
6083 	intel_wakeref_t wakeref;
6084 
6085 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6086 		is_connected = dig_port->connected(encoder);
6087 
6088 	return is_connected;
6089 }
6090 
6091 static struct edid *
6092 intel_dp_get_edid(struct intel_dp *intel_dp)
6093 {
6094 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6095 
6096 	/* use cached edid if we have one */
6097 	if (intel_connector->edid) {
6098 		/* invalid edid */
6099 		if (IS_ERR(intel_connector->edid))
6100 			return NULL;
6101 
6102 		return drm_edid_duplicate(intel_connector->edid);
6103 	} else
6104 		return drm_get_edid(&intel_connector->base,
6105 				    &intel_dp->aux.ddc);
6106 }
6107 
6108 static void
6109 intel_dp_set_edid(struct intel_dp *intel_dp)
6110 {
6111 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6112 	struct edid *edid;
6113 
6114 	intel_dp_unset_edid(intel_dp);
6115 	edid = intel_dp_get_edid(intel_dp);
6116 	intel_connector->detect_edid = edid;
6117 
6118 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
6119 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
6120 	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6121 }
6122 
6123 static void
6124 intel_dp_unset_edid(struct intel_dp *intel_dp)
6125 {
6126 	struct intel_connector *intel_connector = intel_dp->attached_connector;
6127 
6128 	drm_dp_cec_unset_edid(&intel_dp->aux);
6129 	kfree(intel_connector->detect_edid);
6130 	intel_connector->detect_edid = NULL;
6131 
6132 	intel_dp->has_audio = false;
6133 	intel_dp->edid_quirks = 0;
6134 }
6135 
6136 static int
6137 intel_dp_detect(struct drm_connector *connector,
6138 		struct drm_modeset_acquire_ctx *ctx,
6139 		bool force)
6140 {
6141 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6142 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6143 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6144 	struct intel_encoder *encoder = &dig_port->base;
6145 	enum drm_connector_status status;
6146 
6147 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6148 		    connector->base.id, connector->name);
6149 	drm_WARN_ON(&dev_priv->drm,
6150 		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6151 
6152 	/* Can't disconnect eDP */
6153 	if (intel_dp_is_edp(intel_dp))
6154 		status = edp_detect(intel_dp);
6155 	else if (intel_digital_port_connected(encoder))
6156 		status = intel_dp_detect_dpcd(intel_dp);
6157 	else
6158 		status = connector_status_disconnected;
6159 
6160 	if (status == connector_status_disconnected) {
6161 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6162 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6163 
6164 		if (intel_dp->is_mst) {
6165 			drm_dbg_kms(&dev_priv->drm,
6166 				    "MST device may have disappeared %d vs %d\n",
6167 				    intel_dp->is_mst,
6168 				    intel_dp->mst_mgr.mst_state);
6169 			intel_dp->is_mst = false;
6170 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6171 							intel_dp->is_mst);
6172 		}
6173 
6174 		goto out;
6175 	}
6176 
6177 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6178 	if (INTEL_GEN(dev_priv) >= 11)
6179 		intel_dp_get_dsc_sink_cap(intel_dp);
6180 
6181 	intel_dp_configure_mst(intel_dp);
6182 
6183 	/*
6184 	 * TODO: Reset link params when switching to MST mode, until MST
6185 	 * supports link training fallback params.
6186 	 */
6187 	if (intel_dp->reset_link_params || intel_dp->is_mst) {
6188 		/* Initial max link lane count */
6189 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6190 
6191 		/* Initial max link rate */
6192 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6193 
6194 		intel_dp->reset_link_params = false;
6195 	}
6196 
6197 	intel_dp_print_rates(intel_dp);
6198 
6199 	if (intel_dp->is_mst) {
6200 		/*
6201 		 * If we are in MST mode then this connector
6202 		 * won't appear connected or have anything
6203 		 * with EDID on it
6204 		 */
6205 		status = connector_status_disconnected;
6206 		goto out;
6207 	}
6208 
6209 	/*
6210 	 * Some external monitors do not signal loss of link synchronization
6211 	 * with an IRQ_HPD, so force a link status check.
6212 	 */
6213 	if (!intel_dp_is_edp(intel_dp)) {
6214 		int ret;
6215 
6216 		ret = intel_dp_retrain_link(encoder, ctx);
6217 		if (ret)
6218 			return ret;
6219 	}
6220 
6221 	/*
6222 	 * Clearing NACK and defer counts to get their exact values
6223 	 * while reading EDID which are required by Compliance tests
6224 	 * 4.2.2.4 and 4.2.2.5
6225 	 */
6226 	intel_dp->aux.i2c_nack_count = 0;
6227 	intel_dp->aux.i2c_defer_count = 0;
6228 
6229 	intel_dp_set_edid(intel_dp);
6230 	if (intel_dp_is_edp(intel_dp) ||
6231 	    to_intel_connector(connector)->detect_edid)
6232 		status = connector_status_connected;
6233 
6234 	intel_dp_check_service_irq(intel_dp);
6235 
6236 out:
6237 	if (status != connector_status_connected && !intel_dp->is_mst)
6238 		intel_dp_unset_edid(intel_dp);
6239 
6240 	/*
6241 	 * Make sure the refs for power wells enabled during detect are
6242 	 * dropped to avoid a new detect cycle triggered by HPD polling.
6243 	 */
6244 	intel_display_power_flush_work(dev_priv);
6245 
6246 	return status;
6247 }
6248 
6249 static void
6250 intel_dp_force(struct drm_connector *connector)
6251 {
6252 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6253 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6254 	struct intel_encoder *intel_encoder = &dig_port->base;
6255 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6256 	enum intel_display_power_domain aux_domain =
6257 		intel_aux_power_domain(dig_port);
6258 	intel_wakeref_t wakeref;
6259 
6260 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6261 		    connector->base.id, connector->name);
6262 	intel_dp_unset_edid(intel_dp);
6263 
6264 	if (connector->status != connector_status_connected)
6265 		return;
6266 
6267 	wakeref = intel_display_power_get(dev_priv, aux_domain);
6268 
6269 	intel_dp_set_edid(intel_dp);
6270 
6271 	intel_display_power_put(dev_priv, aux_domain, wakeref);
6272 }
6273 
6274 static int intel_dp_get_modes(struct drm_connector *connector)
6275 {
6276 	struct intel_connector *intel_connector = to_intel_connector(connector);
6277 	struct edid *edid;
6278 
6279 	edid = intel_connector->detect_edid;
6280 	if (edid) {
6281 		int ret = intel_connector_update_modes(connector, edid);
6282 		if (ret)
6283 			return ret;
6284 	}
6285 
6286 	/* if eDP has no EDID, fall back to fixed mode */
6287 	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6288 	    intel_connector->panel.fixed_mode) {
6289 		struct drm_display_mode *mode;
6290 
6291 		mode = drm_mode_duplicate(connector->dev,
6292 					  intel_connector->panel.fixed_mode);
6293 		if (mode) {
6294 			drm_mode_probed_add(connector, mode);
6295 			return 1;
6296 		}
6297 	}
6298 
6299 	return 0;
6300 }
6301 
6302 static int
6303 intel_dp_connector_register(struct drm_connector *connector)
6304 {
6305 	struct drm_i915_private *i915 = to_i915(connector->dev);
6306 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6307 	int ret;
6308 
6309 	ret = intel_connector_register(connector);
6310 	if (ret)
6311 		return ret;
6312 
6313 	drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6314 		    intel_dp->aux.name, connector->kdev->kobj.name);
6315 
6316 	intel_dp->aux.dev = connector->kdev;
6317 	ret = drm_dp_aux_register(&intel_dp->aux);
6318 	if (!ret)
6319 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
6320 	return ret;
6321 }
6322 
6323 static void
6324 intel_dp_connector_unregister(struct drm_connector *connector)
6325 {
6326 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6327 
6328 	drm_dp_cec_unregister_connector(&intel_dp->aux);
6329 	drm_dp_aux_unregister(&intel_dp->aux);
6330 	intel_connector_unregister(connector);
6331 }
6332 
6333 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6334 {
6335 	struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6336 	struct intel_dp *intel_dp = &dig_port->dp;
6337 
6338 	intel_dp_mst_encoder_cleanup(dig_port);
6339 	if (intel_dp_is_edp(intel_dp)) {
6340 		intel_wakeref_t wakeref;
6341 
6342 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6343 		/*
6344 		 * vdd might still be enabled do to the delayed vdd off.
6345 		 * Make sure vdd is actually turned off here.
6346 		 */
6347 		with_pps_lock(intel_dp, wakeref)
6348 			edp_panel_vdd_off_sync(intel_dp);
6349 
6350 		if (intel_dp->edp_notifier.notifier_call) {
6351 			unregister_reboot_notifier(&intel_dp->edp_notifier);
6352 			intel_dp->edp_notifier.notifier_call = NULL;
6353 		}
6354 	}
6355 
6356 	intel_dp_aux_fini(intel_dp);
6357 }
6358 
6359 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6360 {
6361 	intel_dp_encoder_flush_work(encoder);
6362 
6363 	drm_encoder_cleanup(encoder);
6364 	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6365 }
6366 
6367 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6368 {
6369 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6370 	intel_wakeref_t wakeref;
6371 
6372 	if (!intel_dp_is_edp(intel_dp))
6373 		return;
6374 
6375 	/*
6376 	 * vdd might still be enabled do to the delayed vdd off.
6377 	 * Make sure vdd is actually turned off here.
6378 	 */
6379 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6380 	with_pps_lock(intel_dp, wakeref)
6381 		edp_panel_vdd_off_sync(intel_dp);
6382 }
6383 
6384 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
6385 {
6386 	long ret;
6387 
6388 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
6389 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
6390 					       msecs_to_jiffies(timeout));
6391 
6392 	if (!ret)
6393 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
6394 }
6395 
6396 static
6397 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
6398 				u8 *an)
6399 {
6400 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6401 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&dig_port->base.base));
6402 	static const struct drm_dp_aux_msg msg = {
6403 		.request = DP_AUX_NATIVE_WRITE,
6404 		.address = DP_AUX_HDCP_AKSV,
6405 		.size = DRM_HDCP_KSV_LEN,
6406 	};
6407 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6408 	ssize_t dpcd_ret;
6409 	int ret;
6410 
6411 	/* Output An first, that's easy */
6412 	dpcd_ret = drm_dp_dpcd_write(&dig_port->dp.aux, DP_AUX_HDCP_AN,
6413 				     an, DRM_HDCP_AN_LEN);
6414 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
6415 		drm_dbg_kms(&i915->drm,
6416 			    "Failed to write An over DP/AUX (%zd)\n",
6417 			    dpcd_ret);
6418 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
6419 	}
6420 
6421 	/*
6422 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
6423 	 * order to get it on the wire, we need to create the AUX header as if
6424 	 * we were writing the data, and then tickle the hardware to output the
6425 	 * data once the header is sent out.
6426 	 */
6427 	intel_dp_aux_header(txbuf, &msg);
6428 
6429 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6430 				rxbuf, sizeof(rxbuf),
6431 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6432 	if (ret < 0) {
6433 		drm_dbg_kms(&i915->drm,
6434 			    "Write Aksv over DP/AUX failed (%d)\n", ret);
6435 		return ret;
6436 	} else if (ret == 0) {
6437 		drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n");
6438 		return -EIO;
6439 	}
6440 
6441 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6442 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6443 		drm_dbg_kms(&i915->drm,
6444 			    "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6445 			    reply);
6446 		return -EIO;
6447 	}
6448 	return 0;
6449 }
6450 
6451 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *dig_port,
6452 				   u8 *bksv)
6453 {
6454 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6455 	ssize_t ret;
6456 
6457 	ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6458 			       DRM_HDCP_KSV_LEN);
6459 	if (ret != DRM_HDCP_KSV_LEN) {
6460 		drm_dbg_kms(&i915->drm,
6461 			    "Read Bksv from DP/AUX failed (%zd)\n", ret);
6462 		return ret >= 0 ? -EIO : ret;
6463 	}
6464 	return 0;
6465 }
6466 
6467 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *dig_port,
6468 				      u8 *bstatus)
6469 {
6470 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6471 	ssize_t ret;
6472 
6473 	/*
6474 	 * For some reason the HDMI and DP HDCP specs call this register
6475 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
6476 	 * but in DP it's called BINFO.
6477 	 */
6478 	ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6479 			       bstatus, DRM_HDCP_BSTATUS_LEN);
6480 	if (ret != DRM_HDCP_BSTATUS_LEN) {
6481 		drm_dbg_kms(&i915->drm,
6482 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6483 		return ret >= 0 ? -EIO : ret;
6484 	}
6485 	return 0;
6486 }
6487 
6488 static
6489 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *dig_port,
6490 			     u8 *bcaps)
6491 {
6492 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6493 	ssize_t ret;
6494 
6495 	ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6496 			       bcaps, 1);
6497 	if (ret != 1) {
6498 		drm_dbg_kms(&i915->drm,
6499 			    "Read bcaps from DP/AUX failed (%zd)\n", ret);
6500 		return ret >= 0 ? -EIO : ret;
6501 	}
6502 
6503 	return 0;
6504 }
6505 
6506 static
6507 int intel_dp_hdcp_repeater_present(struct intel_digital_port *dig_port,
6508 				   bool *repeater_present)
6509 {
6510 	ssize_t ret;
6511 	u8 bcaps;
6512 
6513 	ret = intel_dp_hdcp_read_bcaps(dig_port, &bcaps);
6514 	if (ret)
6515 		return ret;
6516 
6517 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6518 	return 0;
6519 }
6520 
6521 static
6522 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
6523 				u8 *ri_prime)
6524 {
6525 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6526 	ssize_t ret;
6527 
6528 	ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6529 			       ri_prime, DRM_HDCP_RI_LEN);
6530 	if (ret != DRM_HDCP_RI_LEN) {
6531 		drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
6532 			    ret);
6533 		return ret >= 0 ? -EIO : ret;
6534 	}
6535 	return 0;
6536 }
6537 
6538 static
6539 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
6540 				 bool *ksv_ready)
6541 {
6542 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6543 	ssize_t ret;
6544 	u8 bstatus;
6545 
6546 	ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6547 			       &bstatus, 1);
6548 	if (ret != 1) {
6549 		drm_dbg_kms(&i915->drm,
6550 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6551 		return ret >= 0 ? -EIO : ret;
6552 	}
6553 	*ksv_ready = bstatus & DP_BSTATUS_READY;
6554 	return 0;
6555 }
6556 
6557 static
6558 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
6559 				int num_downstream, u8 *ksv_fifo)
6560 {
6561 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6562 	ssize_t ret;
6563 	int i;
6564 
6565 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6566 	for (i = 0; i < num_downstream; i += 3) {
6567 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6568 		ret = drm_dp_dpcd_read(&dig_port->dp.aux,
6569 				       DP_AUX_HDCP_KSV_FIFO,
6570 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
6571 				       len);
6572 		if (ret != len) {
6573 			drm_dbg_kms(&i915->drm,
6574 				    "Read ksv[%d] from DP/AUX failed (%zd)\n",
6575 				    i, ret);
6576 			return ret >= 0 ? -EIO : ret;
6577 		}
6578 	}
6579 	return 0;
6580 }
6581 
6582 static
6583 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
6584 				    int i, u32 *part)
6585 {
6586 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6587 	ssize_t ret;
6588 
6589 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6590 		return -EINVAL;
6591 
6592 	ret = drm_dp_dpcd_read(&dig_port->dp.aux,
6593 			       DP_AUX_HDCP_V_PRIME(i), part,
6594 			       DRM_HDCP_V_PRIME_PART_LEN);
6595 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6596 		drm_dbg_kms(&i915->drm,
6597 			    "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6598 		return ret >= 0 ? -EIO : ret;
6599 	}
6600 	return 0;
6601 }
6602 
6603 static
6604 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
6605 				    bool enable)
6606 {
6607 	/* Not used for single stream DisplayPort setups */
6608 	return 0;
6609 }
6610 
6611 static
6612 bool intel_dp_hdcp_check_link(struct intel_digital_port *dig_port)
6613 {
6614 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6615 	ssize_t ret;
6616 	u8 bstatus;
6617 
6618 	ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6619 			       &bstatus, 1);
6620 	if (ret != 1) {
6621 		drm_dbg_kms(&i915->drm,
6622 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6623 		return false;
6624 	}
6625 
6626 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6627 }
6628 
6629 static
6630 int intel_dp_hdcp_capable(struct intel_digital_port *dig_port,
6631 			  bool *hdcp_capable)
6632 {
6633 	ssize_t ret;
6634 	u8 bcaps;
6635 
6636 	ret = intel_dp_hdcp_read_bcaps(dig_port, &bcaps);
6637 	if (ret)
6638 		return ret;
6639 
6640 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6641 	return 0;
6642 }
6643 
6644 struct hdcp2_dp_errata_stream_type {
6645 	u8	msg_id;
6646 	u8	stream_type;
6647 } __packed;
6648 
6649 struct hdcp2_dp_msg_data {
6650 	u8 msg_id;
6651 	u32 offset;
6652 	bool msg_detectable;
6653 	u32 timeout;
6654 	u32 timeout2; /* Added for non_paired situation */
6655 };
6656 
6657 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6658 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6659 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6660 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6661 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6662 	  false, 0, 0 },
6663 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6664 	  false, 0, 0 },
6665 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6666 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6667 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6668 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
6669 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6670 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6671 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6672 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6673 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6674 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6675 	  0, 0 },
6676 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
6677 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6678 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6679 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6680 	  0, 0 },
6681 	{ HDCP_2_2_REP_STREAM_MANAGE,
6682 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6683 	  0, 0 },
6684 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6685 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6686 /* local define to shovel this through the write_2_2 interface */
6687 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6688 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6689 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6690 	  0, 0 },
6691 };
6692 
6693 static int
6694 intel_dp_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
6695 			      u8 *rx_status)
6696 {
6697 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6698 	ssize_t ret;
6699 
6700 	ret = drm_dp_dpcd_read(&dig_port->dp.aux,
6701 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6702 			       HDCP_2_2_DP_RXSTATUS_LEN);
6703 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6704 		drm_dbg_kms(&i915->drm,
6705 			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6706 		return ret >= 0 ? -EIO : ret;
6707 	}
6708 
6709 	return 0;
6710 }
6711 
6712 static
6713 int hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
6714 				  u8 msg_id, bool *msg_ready)
6715 {
6716 	u8 rx_status;
6717 	int ret;
6718 
6719 	*msg_ready = false;
6720 	ret = intel_dp_hdcp2_read_rx_status(dig_port, &rx_status);
6721 	if (ret < 0)
6722 		return ret;
6723 
6724 	switch (msg_id) {
6725 	case HDCP_2_2_AKE_SEND_HPRIME:
6726 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6727 			*msg_ready = true;
6728 		break;
6729 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6730 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6731 			*msg_ready = true;
6732 		break;
6733 	case HDCP_2_2_REP_SEND_RECVID_LIST:
6734 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6735 			*msg_ready = true;
6736 		break;
6737 	default:
6738 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6739 		return -EINVAL;
6740 	}
6741 
6742 	return 0;
6743 }
6744 
6745 static ssize_t
6746 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
6747 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6748 {
6749 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6750 	struct intel_dp *dp = &dig_port->dp;
6751 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6752 	u8 msg_id = hdcp2_msg_data->msg_id;
6753 	int ret, timeout;
6754 	bool msg_ready = false;
6755 
6756 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6757 		timeout = hdcp2_msg_data->timeout2;
6758 	else
6759 		timeout = hdcp2_msg_data->timeout;
6760 
6761 	/*
6762 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
6763 	 * availability. So Wait for timeout and read the msg.
6764 	 */
6765 	if (!hdcp2_msg_data->msg_detectable) {
6766 		mdelay(timeout);
6767 		ret = 0;
6768 	} else {
6769 		/*
6770 		 * As we want to check the msg availability at timeout, Ignoring
6771 		 * the timeout at wait for CP_IRQ.
6772 		 */
6773 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6774 		ret = hdcp2_detect_msg_availability(dig_port,
6775 						    msg_id, &msg_ready);
6776 		if (!msg_ready)
6777 			ret = -ETIMEDOUT;
6778 	}
6779 
6780 	if (ret)
6781 		drm_dbg_kms(&i915->drm,
6782 			    "msg_id %d, ret %d, timeout(mSec): %d\n",
6783 			    hdcp2_msg_data->msg_id, ret, timeout);
6784 
6785 	return ret;
6786 }
6787 
6788 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6789 {
6790 	int i;
6791 
6792 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6793 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6794 			return &hdcp2_dp_msg_data[i];
6795 
6796 	return NULL;
6797 }
6798 
6799 static
6800 int intel_dp_hdcp2_write_msg(struct intel_digital_port *dig_port,
6801 			     void *buf, size_t size)
6802 {
6803 	struct intel_dp *dp = &dig_port->dp;
6804 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6805 	unsigned int offset;
6806 	u8 *byte = buf;
6807 	ssize_t ret, bytes_to_write, len;
6808 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6809 
6810 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6811 	if (!hdcp2_msg_data)
6812 		return -EINVAL;
6813 
6814 	offset = hdcp2_msg_data->offset;
6815 
6816 	/* No msg_id in DP HDCP2.2 msgs */
6817 	bytes_to_write = size - 1;
6818 	byte++;
6819 
6820 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6821 
6822 	while (bytes_to_write) {
6823 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6824 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6825 
6826 		ret = drm_dp_dpcd_write(&dig_port->dp.aux,
6827 					offset, (void *)byte, len);
6828 		if (ret < 0)
6829 			return ret;
6830 
6831 		bytes_to_write -= ret;
6832 		byte += ret;
6833 		offset += ret;
6834 	}
6835 
6836 	return size;
6837 }
6838 
6839 static
6840 ssize_t get_receiver_id_list_size(struct intel_digital_port *dig_port)
6841 {
6842 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6843 	u32 dev_cnt;
6844 	ssize_t ret;
6845 
6846 	ret = drm_dp_dpcd_read(&dig_port->dp.aux,
6847 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6848 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6849 	if (ret != HDCP_2_2_RXINFO_LEN)
6850 		return ret >= 0 ? -EIO : ret;
6851 
6852 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6853 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6854 
6855 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6856 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6857 
6858 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6859 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6860 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6861 
6862 	return ret;
6863 }
6864 
6865 static
6866 int intel_dp_hdcp2_read_msg(struct intel_digital_port *dig_port,
6867 			    u8 msg_id, void *buf, size_t size)
6868 {
6869 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6870 	unsigned int offset;
6871 	u8 *byte = buf;
6872 	ssize_t ret, bytes_to_recv, len;
6873 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6874 
6875 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6876 	if (!hdcp2_msg_data)
6877 		return -EINVAL;
6878 	offset = hdcp2_msg_data->offset;
6879 
6880 	ret = intel_dp_hdcp2_wait_for_msg(dig_port, hdcp2_msg_data);
6881 	if (ret < 0)
6882 		return ret;
6883 
6884 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6885 		ret = get_receiver_id_list_size(dig_port);
6886 		if (ret < 0)
6887 			return ret;
6888 
6889 		size = ret;
6890 	}
6891 	bytes_to_recv = size - 1;
6892 
6893 	/* DP adaptation msgs has no msg_id */
6894 	byte++;
6895 
6896 	while (bytes_to_recv) {
6897 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6898 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6899 
6900 		ret = drm_dp_dpcd_read(&dig_port->dp.aux, offset,
6901 				       (void *)byte, len);
6902 		if (ret < 0) {
6903 			drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
6904 				    msg_id, ret);
6905 			return ret;
6906 		}
6907 
6908 		bytes_to_recv -= ret;
6909 		byte += ret;
6910 		offset += ret;
6911 	}
6912 	byte = buf;
6913 	*byte = msg_id;
6914 
6915 	return size;
6916 }
6917 
6918 static
6919 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *dig_port,
6920 				      bool is_repeater, u8 content_type)
6921 {
6922 	int ret;
6923 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6924 
6925 	if (is_repeater)
6926 		return 0;
6927 
6928 	/*
6929 	 * Errata for DP: As Stream type is used for encryption, Receiver
6930 	 * should be communicated with stream type for the decryption of the
6931 	 * content.
6932 	 * Repeater will be communicated with stream type as a part of it's
6933 	 * auth later in time.
6934 	 */
6935 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6936 	stream_type_msg.stream_type = content_type;
6937 
6938 	ret =  intel_dp_hdcp2_write_msg(dig_port, &stream_type_msg,
6939 					sizeof(stream_type_msg));
6940 
6941 	return ret < 0 ? ret : 0;
6942 
6943 }
6944 
6945 static
6946 int intel_dp_hdcp2_check_link(struct intel_digital_port *dig_port)
6947 {
6948 	u8 rx_status;
6949 	int ret;
6950 
6951 	ret = intel_dp_hdcp2_read_rx_status(dig_port, &rx_status);
6952 	if (ret)
6953 		return ret;
6954 
6955 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6956 		ret = HDCP_REAUTH_REQUEST;
6957 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6958 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6959 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6960 		ret = HDCP_TOPOLOGY_CHANGE;
6961 
6962 	return ret;
6963 }
6964 
6965 static
6966 int intel_dp_hdcp2_capable(struct intel_digital_port *dig_port,
6967 			   bool *capable)
6968 {
6969 	u8 rx_caps[3];
6970 	int ret;
6971 
6972 	*capable = false;
6973 	ret = drm_dp_dpcd_read(&dig_port->dp.aux,
6974 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6975 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6976 	if (ret != HDCP_2_2_RXCAPS_LEN)
6977 		return ret >= 0 ? -EIO : ret;
6978 
6979 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6980 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6981 		*capable = true;
6982 
6983 	return 0;
6984 }
6985 
6986 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6987 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
6988 	.read_bksv = intel_dp_hdcp_read_bksv,
6989 	.read_bstatus = intel_dp_hdcp_read_bstatus,
6990 	.repeater_present = intel_dp_hdcp_repeater_present,
6991 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
6992 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6993 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6994 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6995 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
6996 	.check_link = intel_dp_hdcp_check_link,
6997 	.hdcp_capable = intel_dp_hdcp_capable,
6998 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
6999 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
7000 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
7001 	.check_2_2_link = intel_dp_hdcp2_check_link,
7002 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
7003 	.protocol = HDCP_PROTOCOL_DP,
7004 };
7005 
7006 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
7007 {
7008 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7009 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
7010 
7011 	lockdep_assert_held(&dev_priv->pps_mutex);
7012 
7013 	if (!edp_have_panel_vdd(intel_dp))
7014 		return;
7015 
7016 	/*
7017 	 * The VDD bit needs a power domain reference, so if the bit is
7018 	 * already enabled when we boot or resume, grab this reference and
7019 	 * schedule a vdd off, so we don't hold on to the reference
7020 	 * indefinitely.
7021 	 */
7022 	drm_dbg_kms(&dev_priv->drm,
7023 		    "VDD left on by BIOS, adjusting state tracking\n");
7024 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
7025 
7026 	edp_panel_vdd_schedule_off(intel_dp);
7027 }
7028 
7029 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
7030 {
7031 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7032 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
7033 	enum pipe pipe;
7034 
7035 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
7036 				  encoder->port, &pipe))
7037 		return pipe;
7038 
7039 	return INVALID_PIPE;
7040 }
7041 
7042 void intel_dp_encoder_reset(struct drm_encoder *encoder)
7043 {
7044 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
7045 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
7046 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
7047 	intel_wakeref_t wakeref;
7048 
7049 	if (!HAS_DDI(dev_priv))
7050 		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7051 
7052 	if (lspcon->active)
7053 		lspcon_resume(lspcon);
7054 
7055 	intel_dp->reset_link_params = true;
7056 
7057 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
7058 	    !intel_dp_is_edp(intel_dp))
7059 		return;
7060 
7061 	with_pps_lock(intel_dp, wakeref) {
7062 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7063 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7064 
7065 		if (intel_dp_is_edp(intel_dp)) {
7066 			/*
7067 			 * Reinit the power sequencer, in case BIOS did
7068 			 * something nasty with it.
7069 			 */
7070 			intel_dp_pps_init(intel_dp);
7071 			intel_edp_panel_vdd_sanitize(intel_dp);
7072 		}
7073 	}
7074 }
7075 
7076 static int intel_modeset_tile_group(struct intel_atomic_state *state,
7077 				    int tile_group_id)
7078 {
7079 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7080 	struct drm_connector_list_iter conn_iter;
7081 	struct drm_connector *connector;
7082 	int ret = 0;
7083 
7084 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
7085 	drm_for_each_connector_iter(connector, &conn_iter) {
7086 		struct drm_connector_state *conn_state;
7087 		struct intel_crtc_state *crtc_state;
7088 		struct intel_crtc *crtc;
7089 
7090 		if (!connector->has_tile ||
7091 		    connector->tile_group->id != tile_group_id)
7092 			continue;
7093 
7094 		conn_state = drm_atomic_get_connector_state(&state->base,
7095 							    connector);
7096 		if (IS_ERR(conn_state)) {
7097 			ret = PTR_ERR(conn_state);
7098 			break;
7099 		}
7100 
7101 		crtc = to_intel_crtc(conn_state->crtc);
7102 
7103 		if (!crtc)
7104 			continue;
7105 
7106 		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
7107 		crtc_state->uapi.mode_changed = true;
7108 
7109 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7110 		if (ret)
7111 			break;
7112 	}
7113 	drm_connector_list_iter_end(&conn_iter);
7114 
7115 	return ret;
7116 }
7117 
7118 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
7119 {
7120 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7121 	struct intel_crtc *crtc;
7122 
7123 	if (transcoders == 0)
7124 		return 0;
7125 
7126 	for_each_intel_crtc(&dev_priv->drm, crtc) {
7127 		struct intel_crtc_state *crtc_state;
7128 		int ret;
7129 
7130 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
7131 		if (IS_ERR(crtc_state))
7132 			return PTR_ERR(crtc_state);
7133 
7134 		if (!crtc_state->hw.enable)
7135 			continue;
7136 
7137 		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
7138 			continue;
7139 
7140 		crtc_state->uapi.mode_changed = true;
7141 
7142 		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
7143 		if (ret)
7144 			return ret;
7145 
7146 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7147 		if (ret)
7148 			return ret;
7149 
7150 		transcoders &= ~BIT(crtc_state->cpu_transcoder);
7151 	}
7152 
7153 	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7154 
7155 	return 0;
7156 }
7157 
7158 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
7159 				      struct drm_connector *connector)
7160 {
7161 	const struct drm_connector_state *old_conn_state =
7162 		drm_atomic_get_old_connector_state(&state->base, connector);
7163 	const struct intel_crtc_state *old_crtc_state;
7164 	struct intel_crtc *crtc;
7165 	u8 transcoders;
7166 
7167 	crtc = to_intel_crtc(old_conn_state->crtc);
7168 	if (!crtc)
7169 		return 0;
7170 
7171 	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
7172 
7173 	if (!old_crtc_state->hw.active)
7174 		return 0;
7175 
7176 	transcoders = old_crtc_state->sync_mode_slaves_mask;
7177 	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
7178 		transcoders |= BIT(old_crtc_state->master_transcoder);
7179 
7180 	return intel_modeset_affected_transcoders(state,
7181 						  transcoders);
7182 }
7183 
7184 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
7185 					   struct drm_atomic_state *_state)
7186 {
7187 	struct drm_i915_private *dev_priv = to_i915(conn->dev);
7188 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
7189 	int ret;
7190 
7191 	ret = intel_digital_connector_atomic_check(conn, &state->base);
7192 	if (ret)
7193 		return ret;
7194 
7195 	/*
7196 	 * We don't enable port sync on BDW due to missing w/as and
7197 	 * due to not having adjusted the modeset sequence appropriately.
7198 	 */
7199 	if (INTEL_GEN(dev_priv) < 9)
7200 		return 0;
7201 
7202 	if (!intel_connector_needs_modeset(state, conn))
7203 		return 0;
7204 
7205 	if (conn->has_tile) {
7206 		ret = intel_modeset_tile_group(state, conn->tile_group->id);
7207 		if (ret)
7208 			return ret;
7209 	}
7210 
7211 	return intel_modeset_synced_crtcs(state, conn);
7212 }
7213 
7214 static const struct drm_connector_funcs intel_dp_connector_funcs = {
7215 	.force = intel_dp_force,
7216 	.fill_modes = drm_helper_probe_single_connector_modes,
7217 	.atomic_get_property = intel_digital_connector_atomic_get_property,
7218 	.atomic_set_property = intel_digital_connector_atomic_set_property,
7219 	.late_register = intel_dp_connector_register,
7220 	.early_unregister = intel_dp_connector_unregister,
7221 	.destroy = intel_connector_destroy,
7222 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7223 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
7224 };
7225 
7226 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7227 	.detect_ctx = intel_dp_detect,
7228 	.get_modes = intel_dp_get_modes,
7229 	.mode_valid = intel_dp_mode_valid,
7230 	.atomic_check = intel_dp_connector_atomic_check,
7231 };
7232 
7233 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7234 	.reset = intel_dp_encoder_reset,
7235 	.destroy = intel_dp_encoder_destroy,
7236 };
7237 
7238 static bool intel_edp_have_power(struct intel_dp *intel_dp)
7239 {
7240 	intel_wakeref_t wakeref;
7241 	bool have_power = false;
7242 
7243 	with_pps_lock(intel_dp, wakeref) {
7244 		have_power = edp_have_panel_power(intel_dp) &&
7245 						  edp_have_panel_vdd(intel_dp);
7246 	}
7247 
7248 	return have_power;
7249 }
7250 
7251 enum irqreturn
7252 intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd)
7253 {
7254 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
7255 	struct intel_dp *intel_dp = &dig_port->dp;
7256 
7257 	if (dig_port->base.type == INTEL_OUTPUT_EDP &&
7258 	    (long_hpd || !intel_edp_have_power(intel_dp))) {
7259 		/*
7260 		 * vdd off can generate a long/short pulse on eDP which
7261 		 * would require vdd on to handle it, and thus we
7262 		 * would end up in an endless cycle of
7263 		 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7264 		 */
7265 		drm_dbg_kms(&i915->drm,
7266 			    "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
7267 			    long_hpd ? "long" : "short",
7268 			    dig_port->base.base.base.id,
7269 			    dig_port->base.base.name);
7270 		return IRQ_HANDLED;
7271 	}
7272 
7273 	drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
7274 		    dig_port->base.base.base.id,
7275 		    dig_port->base.base.name,
7276 		    long_hpd ? "long" : "short");
7277 
7278 	if (long_hpd) {
7279 		intel_dp->reset_link_params = true;
7280 		return IRQ_NONE;
7281 	}
7282 
7283 	if (intel_dp->is_mst) {
7284 		if (!intel_dp_check_mst_status(intel_dp))
7285 			return IRQ_NONE;
7286 	} else if (!intel_dp_short_pulse(intel_dp)) {
7287 		return IRQ_NONE;
7288 	}
7289 
7290 	return IRQ_HANDLED;
7291 }
7292 
7293 /* check the VBT to see whether the eDP is on another port */
7294 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7295 {
7296 	/*
7297 	 * eDP not supported on g4x. so bail out early just
7298 	 * for a bit extra safety in case the VBT is bonkers.
7299 	 */
7300 	if (INTEL_GEN(dev_priv) < 5)
7301 		return false;
7302 
7303 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7304 		return true;
7305 
7306 	return intel_bios_is_port_edp(dev_priv, port);
7307 }
7308 
7309 static void
7310 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
7311 {
7312 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
7313 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7314 
7315 	if (!IS_G4X(dev_priv) && port != PORT_A)
7316 		intel_attach_force_audio_property(connector);
7317 
7318 	intel_attach_broadcast_rgb_property(connector);
7319 	if (HAS_GMCH(dev_priv))
7320 		drm_connector_attach_max_bpc_property(connector, 6, 10);
7321 	else if (INTEL_GEN(dev_priv) >= 5)
7322 		drm_connector_attach_max_bpc_property(connector, 6, 12);
7323 
7324 	intel_attach_colorspace_property(connector);
7325 
7326 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
7327 		drm_object_attach_property(&connector->base,
7328 					   connector->dev->mode_config.hdr_output_metadata_property,
7329 					   0);
7330 
7331 	if (intel_dp_is_edp(intel_dp)) {
7332 		u32 allowed_scalers;
7333 
7334 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
7335 		if (!HAS_GMCH(dev_priv))
7336 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
7337 
7338 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
7339 
7340 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7341 
7342 	}
7343 }
7344 
7345 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
7346 {
7347 	intel_dp->panel_power_off_time = ktime_get_boottime();
7348 	intel_dp->last_power_on = jiffies;
7349 	intel_dp->last_backlight_off = jiffies;
7350 }
7351 
7352 static void
7353 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7354 {
7355 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7356 	u32 pp_on, pp_off, pp_ctl;
7357 	struct pps_registers regs;
7358 
7359 	intel_pps_get_registers(intel_dp, &regs);
7360 
7361 	pp_ctl = ilk_get_pp_control(intel_dp);
7362 
7363 	/* Ensure PPS is unlocked */
7364 	if (!HAS_DDI(dev_priv))
7365 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7366 
7367 	pp_on = intel_de_read(dev_priv, regs.pp_on);
7368 	pp_off = intel_de_read(dev_priv, regs.pp_off);
7369 
7370 	/* Pull timing values out of registers */
7371 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
7372 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
7373 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
7374 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7375 
7376 	if (i915_mmio_reg_valid(regs.pp_div)) {
7377 		u32 pp_div;
7378 
7379 		pp_div = intel_de_read(dev_priv, regs.pp_div);
7380 
7381 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7382 	} else {
7383 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7384 	}
7385 }
7386 
7387 static void
7388 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
7389 {
7390 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
7391 		      state_name,
7392 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
7393 }
7394 
7395 static void
7396 intel_pps_verify_state(struct intel_dp *intel_dp)
7397 {
7398 	struct edp_power_seq hw;
7399 	struct edp_power_seq *sw = &intel_dp->pps_delays;
7400 
7401 	intel_pps_readout_hw_state(intel_dp, &hw);
7402 
7403 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
7404 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
7405 		DRM_ERROR("PPS state mismatch\n");
7406 		intel_pps_dump_state("sw", sw);
7407 		intel_pps_dump_state("hw", &hw);
7408 	}
7409 }
7410 
7411 static void
7412 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7413 {
7414 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7415 	struct edp_power_seq cur, vbt, spec,
7416 		*final = &intel_dp->pps_delays;
7417 
7418 	lockdep_assert_held(&dev_priv->pps_mutex);
7419 
7420 	/* already initialized? */
7421 	if (final->t11_t12 != 0)
7422 		return;
7423 
7424 	intel_pps_readout_hw_state(intel_dp, &cur);
7425 
7426 	intel_pps_dump_state("cur", &cur);
7427 
7428 	vbt = dev_priv->vbt.edp.pps;
7429 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7430 	 * of 500ms appears to be too short. Ocassionally the panel
7431 	 * just fails to power back on. Increasing the delay to 800ms
7432 	 * seems sufficient to avoid this problem.
7433 	 */
7434 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7435 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7436 		drm_dbg_kms(&dev_priv->drm,
7437 			    "Increasing T12 panel delay as per the quirk to %d\n",
7438 			    vbt.t11_t12);
7439 	}
7440 	/* T11_T12 delay is special and actually in units of 100ms, but zero
7441 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7442 	 * table multiplies it with 1000 to make it in units of 100usec,
7443 	 * too. */
7444 	vbt.t11_t12 += 100 * 10;
7445 
7446 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7447 	 * our hw here, which are all in 100usec. */
7448 	spec.t1_t3 = 210 * 10;
7449 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7450 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7451 	spec.t10 = 500 * 10;
7452 	/* This one is special and actually in units of 100ms, but zero
7453 	 * based in the hw (so we need to add 100 ms). But the sw vbt
7454 	 * table multiplies it with 1000 to make it in units of 100usec,
7455 	 * too. */
7456 	spec.t11_t12 = (510 + 100) * 10;
7457 
7458 	intel_pps_dump_state("vbt", &vbt);
7459 
7460 	/* Use the max of the register settings and vbt. If both are
7461 	 * unset, fall back to the spec limits. */
7462 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
7463 				       spec.field : \
7464 				       max(cur.field, vbt.field))
7465 	assign_final(t1_t3);
7466 	assign_final(t8);
7467 	assign_final(t9);
7468 	assign_final(t10);
7469 	assign_final(t11_t12);
7470 #undef assign_final
7471 
7472 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
7473 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
7474 	intel_dp->backlight_on_delay = get_delay(t8);
7475 	intel_dp->backlight_off_delay = get_delay(t9);
7476 	intel_dp->panel_power_down_delay = get_delay(t10);
7477 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7478 #undef get_delay
7479 
7480 	drm_dbg_kms(&dev_priv->drm,
7481 		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7482 		    intel_dp->panel_power_up_delay,
7483 		    intel_dp->panel_power_down_delay,
7484 		    intel_dp->panel_power_cycle_delay);
7485 
7486 	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7487 		    intel_dp->backlight_on_delay,
7488 		    intel_dp->backlight_off_delay);
7489 
7490 	/*
7491 	 * We override the HW backlight delays to 1 because we do manual waits
7492 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
7493 	 * don't do this, we'll end up waiting for the backlight off delay
7494 	 * twice: once when we do the manual sleep, and once when we disable
7495 	 * the panel and wait for the PP_STATUS bit to become zero.
7496 	 */
7497 	final->t8 = 1;
7498 	final->t9 = 1;
7499 
7500 	/*
7501 	 * HW has only a 100msec granularity for t11_t12 so round it up
7502 	 * accordingly.
7503 	 */
7504 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7505 }
7506 
7507 static void
7508 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7509 					      bool force_disable_vdd)
7510 {
7511 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7512 	u32 pp_on, pp_off, port_sel = 0;
7513 	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7514 	struct pps_registers regs;
7515 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7516 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7517 
7518 	lockdep_assert_held(&dev_priv->pps_mutex);
7519 
7520 	intel_pps_get_registers(intel_dp, &regs);
7521 
7522 	/*
7523 	 * On some VLV machines the BIOS can leave the VDD
7524 	 * enabled even on power sequencers which aren't
7525 	 * hooked up to any port. This would mess up the
7526 	 * power domain tracking the first time we pick
7527 	 * one of these power sequencers for use since
7528 	 * edp_panel_vdd_on() would notice that the VDD was
7529 	 * already on and therefore wouldn't grab the power
7530 	 * domain reference. Disable VDD first to avoid this.
7531 	 * This also avoids spuriously turning the VDD on as
7532 	 * soon as the new power sequencer gets initialized.
7533 	 */
7534 	if (force_disable_vdd) {
7535 		u32 pp = ilk_get_pp_control(intel_dp);
7536 
7537 		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7538 			 "Panel power already on\n");
7539 
7540 		if (pp & EDP_FORCE_VDD)
7541 			drm_dbg_kms(&dev_priv->drm,
7542 				    "VDD already on, disabling first\n");
7543 
7544 		pp &= ~EDP_FORCE_VDD;
7545 
7546 		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7547 	}
7548 
7549 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7550 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7551 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7552 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7553 
7554 	/* Haswell doesn't have any port selection bits for the panel
7555 	 * power sequencer any more. */
7556 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7557 		port_sel = PANEL_PORT_SELECT_VLV(port);
7558 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7559 		switch (port) {
7560 		case PORT_A:
7561 			port_sel = PANEL_PORT_SELECT_DPA;
7562 			break;
7563 		case PORT_C:
7564 			port_sel = PANEL_PORT_SELECT_DPC;
7565 			break;
7566 		case PORT_D:
7567 			port_sel = PANEL_PORT_SELECT_DPD;
7568 			break;
7569 		default:
7570 			MISSING_CASE(port);
7571 			break;
7572 		}
7573 	}
7574 
7575 	pp_on |= port_sel;
7576 
7577 	intel_de_write(dev_priv, regs.pp_on, pp_on);
7578 	intel_de_write(dev_priv, regs.pp_off, pp_off);
7579 
7580 	/*
7581 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
7582 	 */
7583 	if (i915_mmio_reg_valid(regs.pp_div)) {
7584 		intel_de_write(dev_priv, regs.pp_div,
7585 			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7586 	} else {
7587 		u32 pp_ctl;
7588 
7589 		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7590 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7591 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7592 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7593 	}
7594 
7595 	drm_dbg_kms(&dev_priv->drm,
7596 		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7597 		    intel_de_read(dev_priv, regs.pp_on),
7598 		    intel_de_read(dev_priv, regs.pp_off),
7599 		    i915_mmio_reg_valid(regs.pp_div) ?
7600 		    intel_de_read(dev_priv, regs.pp_div) :
7601 		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7602 }
7603 
7604 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7605 {
7606 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7607 
7608 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7609 		vlv_initial_power_sequencer_setup(intel_dp);
7610 	} else {
7611 		intel_dp_init_panel_power_sequencer(intel_dp);
7612 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7613 	}
7614 }
7615 
7616 /**
7617  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7618  * @dev_priv: i915 device
7619  * @crtc_state: a pointer to the active intel_crtc_state
7620  * @refresh_rate: RR to be programmed
7621  *
7622  * This function gets called when refresh rate (RR) has to be changed from
7623  * one frequency to another. Switches can be between high and low RR
7624  * supported by the panel or to any other RR based on media playback (in
7625  * this case, RR value needs to be passed from user space).
7626  *
7627  * The caller of this function needs to take a lock on dev_priv->drrs.
7628  */
7629 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7630 				    const struct intel_crtc_state *crtc_state,
7631 				    int refresh_rate)
7632 {
7633 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7634 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7635 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7636 
7637 	if (refresh_rate <= 0) {
7638 		drm_dbg_kms(&dev_priv->drm,
7639 			    "Refresh rate should be positive non-zero.\n");
7640 		return;
7641 	}
7642 
7643 	if (intel_dp == NULL) {
7644 		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7645 		return;
7646 	}
7647 
7648 	if (!intel_crtc) {
7649 		drm_dbg_kms(&dev_priv->drm,
7650 			    "DRRS: intel_crtc not initialized\n");
7651 		return;
7652 	}
7653 
7654 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7655 		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7656 		return;
7657 	}
7658 
7659 	if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) ==
7660 			refresh_rate)
7661 		index = DRRS_LOW_RR;
7662 
7663 	if (index == dev_priv->drrs.refresh_rate_type) {
7664 		drm_dbg_kms(&dev_priv->drm,
7665 			    "DRRS requested for previously set RR...ignoring\n");
7666 		return;
7667 	}
7668 
7669 	if (!crtc_state->hw.active) {
7670 		drm_dbg_kms(&dev_priv->drm,
7671 			    "eDP encoder disabled. CRTC not Active\n");
7672 		return;
7673 	}
7674 
7675 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7676 		switch (index) {
7677 		case DRRS_HIGH_RR:
7678 			intel_dp_set_m_n(crtc_state, M1_N1);
7679 			break;
7680 		case DRRS_LOW_RR:
7681 			intel_dp_set_m_n(crtc_state, M2_N2);
7682 			break;
7683 		case DRRS_MAX_RR:
7684 		default:
7685 			drm_err(&dev_priv->drm,
7686 				"Unsupported refreshrate type\n");
7687 		}
7688 	} else if (INTEL_GEN(dev_priv) > 6) {
7689 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7690 		u32 val;
7691 
7692 		val = intel_de_read(dev_priv, reg);
7693 		if (index > DRRS_HIGH_RR) {
7694 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7695 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7696 			else
7697 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7698 		} else {
7699 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7700 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7701 			else
7702 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7703 		}
7704 		intel_de_write(dev_priv, reg, val);
7705 	}
7706 
7707 	dev_priv->drrs.refresh_rate_type = index;
7708 
7709 	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7710 		    refresh_rate);
7711 }
7712 
7713 /**
7714  * intel_edp_drrs_enable - init drrs struct if supported
7715  * @intel_dp: DP struct
7716  * @crtc_state: A pointer to the active crtc state.
7717  *
7718  * Initializes frontbuffer_bits and drrs.dp
7719  */
7720 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7721 			   const struct intel_crtc_state *crtc_state)
7722 {
7723 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7724 
7725 	if (!crtc_state->has_drrs) {
7726 		drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7727 		return;
7728 	}
7729 
7730 	if (dev_priv->psr.enabled) {
7731 		drm_dbg_kms(&dev_priv->drm,
7732 			    "PSR enabled. Not enabling DRRS.\n");
7733 		return;
7734 	}
7735 
7736 	mutex_lock(&dev_priv->drrs.mutex);
7737 	if (dev_priv->drrs.dp) {
7738 		drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7739 		goto unlock;
7740 	}
7741 
7742 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7743 
7744 	dev_priv->drrs.dp = intel_dp;
7745 
7746 unlock:
7747 	mutex_unlock(&dev_priv->drrs.mutex);
7748 }
7749 
7750 /**
7751  * intel_edp_drrs_disable - Disable DRRS
7752  * @intel_dp: DP struct
7753  * @old_crtc_state: Pointer to old crtc_state.
7754  *
7755  */
7756 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7757 			    const struct intel_crtc_state *old_crtc_state)
7758 {
7759 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7760 
7761 	if (!old_crtc_state->has_drrs)
7762 		return;
7763 
7764 	mutex_lock(&dev_priv->drrs.mutex);
7765 	if (!dev_priv->drrs.dp) {
7766 		mutex_unlock(&dev_priv->drrs.mutex);
7767 		return;
7768 	}
7769 
7770 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7771 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7772 			drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7773 
7774 	dev_priv->drrs.dp = NULL;
7775 	mutex_unlock(&dev_priv->drrs.mutex);
7776 
7777 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7778 }
7779 
7780 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7781 {
7782 	struct drm_i915_private *dev_priv =
7783 		container_of(work, typeof(*dev_priv), drrs.work.work);
7784 	struct intel_dp *intel_dp;
7785 
7786 	mutex_lock(&dev_priv->drrs.mutex);
7787 
7788 	intel_dp = dev_priv->drrs.dp;
7789 
7790 	if (!intel_dp)
7791 		goto unlock;
7792 
7793 	/*
7794 	 * The delayed work can race with an invalidate hence we need to
7795 	 * recheck.
7796 	 */
7797 
7798 	if (dev_priv->drrs.busy_frontbuffer_bits)
7799 		goto unlock;
7800 
7801 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7802 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7803 
7804 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7805 			drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode));
7806 	}
7807 
7808 unlock:
7809 	mutex_unlock(&dev_priv->drrs.mutex);
7810 }
7811 
7812 /**
7813  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7814  * @dev_priv: i915 device
7815  * @frontbuffer_bits: frontbuffer plane tracking bits
7816  *
7817  * This function gets called everytime rendering on the given planes start.
7818  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7819  *
7820  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7821  */
7822 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7823 			       unsigned int frontbuffer_bits)
7824 {
7825 	struct intel_dp *intel_dp;
7826 	struct drm_crtc *crtc;
7827 	enum pipe pipe;
7828 
7829 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7830 		return;
7831 
7832 	cancel_delayed_work(&dev_priv->drrs.work);
7833 
7834 	mutex_lock(&dev_priv->drrs.mutex);
7835 
7836 	intel_dp = dev_priv->drrs.dp;
7837 	if (!intel_dp) {
7838 		mutex_unlock(&dev_priv->drrs.mutex);
7839 		return;
7840 	}
7841 
7842 	crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7843 	pipe = to_intel_crtc(crtc)->pipe;
7844 
7845 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7846 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7847 
7848 	/* invalidate means busy screen hence upclock */
7849 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7850 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7851 					drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7852 
7853 	mutex_unlock(&dev_priv->drrs.mutex);
7854 }
7855 
7856 /**
7857  * intel_edp_drrs_flush - Restart Idleness DRRS
7858  * @dev_priv: i915 device
7859  * @frontbuffer_bits: frontbuffer plane tracking bits
7860  *
7861  * This function gets called every time rendering on the given planes has
7862  * completed or flip on a crtc is completed. So DRRS should be upclocked
7863  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7864  * if no other planes are dirty.
7865  *
7866  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7867  */
7868 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7869 			  unsigned int frontbuffer_bits)
7870 {
7871 	struct intel_dp *intel_dp;
7872 	struct drm_crtc *crtc;
7873 	enum pipe pipe;
7874 
7875 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7876 		return;
7877 
7878 	cancel_delayed_work(&dev_priv->drrs.work);
7879 
7880 	mutex_lock(&dev_priv->drrs.mutex);
7881 
7882 	intel_dp = dev_priv->drrs.dp;
7883 	if (!intel_dp) {
7884 		mutex_unlock(&dev_priv->drrs.mutex);
7885 		return;
7886 	}
7887 
7888 	crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7889 	pipe = to_intel_crtc(crtc)->pipe;
7890 
7891 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7892 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7893 
7894 	/* flush means busy screen hence upclock */
7895 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7896 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7897 					drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7898 
7899 	/*
7900 	 * flush also means no more activity hence schedule downclock, if all
7901 	 * other fbs are quiescent too
7902 	 */
7903 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7904 		schedule_delayed_work(&dev_priv->drrs.work,
7905 				msecs_to_jiffies(1000));
7906 	mutex_unlock(&dev_priv->drrs.mutex);
7907 }
7908 
7909 /**
7910  * DOC: Display Refresh Rate Switching (DRRS)
7911  *
7912  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7913  * which enables swtching between low and high refresh rates,
7914  * dynamically, based on the usage scenario. This feature is applicable
7915  * for internal panels.
7916  *
7917  * Indication that the panel supports DRRS is given by the panel EDID, which
7918  * would list multiple refresh rates for one resolution.
7919  *
7920  * DRRS is of 2 types - static and seamless.
7921  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7922  * (may appear as a blink on screen) and is used in dock-undock scenario.
7923  * Seamless DRRS involves changing RR without any visual effect to the user
7924  * and can be used during normal system usage. This is done by programming
7925  * certain registers.
7926  *
7927  * Support for static/seamless DRRS may be indicated in the VBT based on
7928  * inputs from the panel spec.
7929  *
7930  * DRRS saves power by switching to low RR based on usage scenarios.
7931  *
7932  * The implementation is based on frontbuffer tracking implementation.  When
7933  * there is a disturbance on the screen triggered by user activity or a periodic
7934  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7935  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7936  * made.
7937  *
7938  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7939  * and intel_edp_drrs_flush() are called.
7940  *
7941  * DRRS can be further extended to support other internal panels and also
7942  * the scenario of video playback wherein RR is set based on the rate
7943  * requested by userspace.
7944  */
7945 
7946 /**
7947  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7948  * @connector: eDP connector
7949  * @fixed_mode: preferred mode of panel
7950  *
7951  * This function is  called only once at driver load to initialize basic
7952  * DRRS stuff.
7953  *
7954  * Returns:
7955  * Downclock mode if panel supports it, else return NULL.
7956  * DRRS support is determined by the presence of downclock mode (apart
7957  * from VBT setting).
7958  */
7959 static struct drm_display_mode *
7960 intel_dp_drrs_init(struct intel_connector *connector,
7961 		   struct drm_display_mode *fixed_mode)
7962 {
7963 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7964 	struct drm_display_mode *downclock_mode = NULL;
7965 
7966 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7967 	mutex_init(&dev_priv->drrs.mutex);
7968 
7969 	if (INTEL_GEN(dev_priv) <= 6) {
7970 		drm_dbg_kms(&dev_priv->drm,
7971 			    "DRRS supported for Gen7 and above\n");
7972 		return NULL;
7973 	}
7974 
7975 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7976 		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7977 		return NULL;
7978 	}
7979 
7980 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7981 	if (!downclock_mode) {
7982 		drm_dbg_kms(&dev_priv->drm,
7983 			    "Downclock mode is not found. DRRS not supported\n");
7984 		return NULL;
7985 	}
7986 
7987 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7988 
7989 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7990 	drm_dbg_kms(&dev_priv->drm,
7991 		    "seamless DRRS supported for eDP panel.\n");
7992 	return downclock_mode;
7993 }
7994 
7995 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7996 				     struct intel_connector *intel_connector)
7997 {
7998 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7999 	struct drm_device *dev = &dev_priv->drm;
8000 	struct drm_connector *connector = &intel_connector->base;
8001 	struct drm_display_mode *fixed_mode = NULL;
8002 	struct drm_display_mode *downclock_mode = NULL;
8003 	bool has_dpcd;
8004 	enum pipe pipe = INVALID_PIPE;
8005 	intel_wakeref_t wakeref;
8006 	struct edid *edid;
8007 
8008 	if (!intel_dp_is_edp(intel_dp))
8009 		return true;
8010 
8011 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
8012 
8013 	/*
8014 	 * On IBX/CPT we may get here with LVDS already registered. Since the
8015 	 * driver uses the only internal power sequencer available for both
8016 	 * eDP and LVDS bail out early in this case to prevent interfering
8017 	 * with an already powered-on LVDS power sequencer.
8018 	 */
8019 	if (intel_get_lvds_encoder(dev_priv)) {
8020 		drm_WARN_ON(dev,
8021 			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
8022 		drm_info(&dev_priv->drm,
8023 			 "LVDS was detected, not registering eDP\n");
8024 
8025 		return false;
8026 	}
8027 
8028 	with_pps_lock(intel_dp, wakeref) {
8029 		intel_dp_init_panel_power_timestamps(intel_dp);
8030 		intel_dp_pps_init(intel_dp);
8031 		intel_edp_panel_vdd_sanitize(intel_dp);
8032 	}
8033 
8034 	/* Cache DPCD and EDID for edp. */
8035 	has_dpcd = intel_edp_init_dpcd(intel_dp);
8036 
8037 	if (!has_dpcd) {
8038 		/* if this fails, presume the device is a ghost */
8039 		drm_info(&dev_priv->drm,
8040 			 "failed to retrieve link info, disabling eDP\n");
8041 		goto out_vdd_off;
8042 	}
8043 
8044 	mutex_lock(&dev->mode_config.mutex);
8045 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
8046 	if (edid) {
8047 		if (drm_add_edid_modes(connector, edid)) {
8048 			drm_connector_update_edid_property(connector, edid);
8049 			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
8050 		} else {
8051 			kfree(edid);
8052 			edid = ERR_PTR(-EINVAL);
8053 		}
8054 	} else {
8055 		edid = ERR_PTR(-ENOENT);
8056 	}
8057 	intel_connector->edid = edid;
8058 
8059 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
8060 	if (fixed_mode)
8061 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
8062 
8063 	/* fallback to VBT if available for eDP */
8064 	if (!fixed_mode)
8065 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
8066 	mutex_unlock(&dev->mode_config.mutex);
8067 
8068 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8069 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
8070 		register_reboot_notifier(&intel_dp->edp_notifier);
8071 
8072 		/*
8073 		 * Figure out the current pipe for the initial backlight setup.
8074 		 * If the current pipe isn't valid, try the PPS pipe, and if that
8075 		 * fails just assume pipe A.
8076 		 */
8077 		pipe = vlv_active_pipe(intel_dp);
8078 
8079 		if (pipe != PIPE_A && pipe != PIPE_B)
8080 			pipe = intel_dp->pps_pipe;
8081 
8082 		if (pipe != PIPE_A && pipe != PIPE_B)
8083 			pipe = PIPE_A;
8084 
8085 		drm_dbg_kms(&dev_priv->drm,
8086 			    "using pipe %c for initial backlight setup\n",
8087 			    pipe_name(pipe));
8088 	}
8089 
8090 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
8091 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
8092 	intel_panel_setup_backlight(connector, pipe);
8093 
8094 	if (fixed_mode) {
8095 		drm_connector_set_panel_orientation_with_quirk(connector,
8096 				dev_priv->vbt.orientation,
8097 				fixed_mode->hdisplay, fixed_mode->vdisplay);
8098 	}
8099 
8100 	return true;
8101 
8102 out_vdd_off:
8103 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
8104 	/*
8105 	 * vdd might still be enabled do to the delayed vdd off.
8106 	 * Make sure vdd is actually turned off here.
8107 	 */
8108 	with_pps_lock(intel_dp, wakeref)
8109 		edp_panel_vdd_off_sync(intel_dp);
8110 
8111 	return false;
8112 }
8113 
8114 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
8115 {
8116 	struct intel_connector *intel_connector;
8117 	struct drm_connector *connector;
8118 
8119 	intel_connector = container_of(work, typeof(*intel_connector),
8120 				       modeset_retry_work);
8121 	connector = &intel_connector->base;
8122 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
8123 		      connector->name);
8124 
8125 	/* Grab the locks before changing connector property*/
8126 	mutex_lock(&connector->dev->mode_config.mutex);
8127 	/* Set connector link status to BAD and send a Uevent to notify
8128 	 * userspace to do a modeset.
8129 	 */
8130 	drm_connector_set_link_status_property(connector,
8131 					       DRM_MODE_LINK_STATUS_BAD);
8132 	mutex_unlock(&connector->dev->mode_config.mutex);
8133 	/* Send Hotplug uevent so userspace can reprobe */
8134 	drm_kms_helper_hotplug_event(connector->dev);
8135 }
8136 
8137 bool
8138 intel_dp_init_connector(struct intel_digital_port *dig_port,
8139 			struct intel_connector *intel_connector)
8140 {
8141 	struct drm_connector *connector = &intel_connector->base;
8142 	struct intel_dp *intel_dp = &dig_port->dp;
8143 	struct intel_encoder *intel_encoder = &dig_port->base;
8144 	struct drm_device *dev = intel_encoder->base.dev;
8145 	struct drm_i915_private *dev_priv = to_i915(dev);
8146 	enum port port = intel_encoder->port;
8147 	enum phy phy = intel_port_to_phy(dev_priv, port);
8148 	int type;
8149 
8150 	/* Initialize the work for modeset in case of link train failure */
8151 	INIT_WORK(&intel_connector->modeset_retry_work,
8152 		  intel_dp_modeset_retry_work_fn);
8153 
8154 	if (drm_WARN(dev, dig_port->max_lanes < 1,
8155 		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
8156 		     dig_port->max_lanes, intel_encoder->base.base.id,
8157 		     intel_encoder->base.name))
8158 		return false;
8159 
8160 	intel_dp_set_source_rates(intel_dp);
8161 
8162 	intel_dp->reset_link_params = true;
8163 	intel_dp->pps_pipe = INVALID_PIPE;
8164 	intel_dp->active_pipe = INVALID_PIPE;
8165 
8166 	/* Preserve the current hw state. */
8167 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8168 	intel_dp->attached_connector = intel_connector;
8169 
8170 	if (intel_dp_is_port_edp(dev_priv, port)) {
8171 		/*
8172 		 * Currently we don't support eDP on TypeC ports, although in
8173 		 * theory it could work on TypeC legacy ports.
8174 		 */
8175 		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8176 		type = DRM_MODE_CONNECTOR_eDP;
8177 	} else {
8178 		type = DRM_MODE_CONNECTOR_DisplayPort;
8179 	}
8180 
8181 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
8182 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
8183 
8184 	/*
8185 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
8186 	 * for DP the encoder type can be set by the caller to
8187 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
8188 	 */
8189 	if (type == DRM_MODE_CONNECTOR_eDP)
8190 		intel_encoder->type = INTEL_OUTPUT_EDP;
8191 
8192 	/* eDP only on port B and/or C on vlv/chv */
8193 	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
8194 			      IS_CHERRYVIEW(dev_priv)) &&
8195 			intel_dp_is_edp(intel_dp) &&
8196 			port != PORT_B && port != PORT_C))
8197 		return false;
8198 
8199 	drm_dbg_kms(&dev_priv->drm,
8200 		    "Adding %s connector on [ENCODER:%d:%s]\n",
8201 		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
8202 		    intel_encoder->base.base.id, intel_encoder->base.name);
8203 
8204 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8205 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
8206 
8207 	if (!HAS_GMCH(dev_priv))
8208 		connector->interlace_allowed = true;
8209 	connector->doublescan_allowed = 0;
8210 
8211 	if (INTEL_GEN(dev_priv) >= 11)
8212 		connector->ycbcr_420_allowed = true;
8213 
8214 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8215 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8216 
8217 	intel_dp_aux_init(intel_dp);
8218 
8219 	intel_connector_attach_encoder(intel_connector, intel_encoder);
8220 
8221 	if (HAS_DDI(dev_priv))
8222 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
8223 	else
8224 		intel_connector->get_hw_state = intel_connector_get_hw_state;
8225 
8226 	/* init MST on ports that can support it */
8227 	intel_dp_mst_encoder_init(dig_port,
8228 				  intel_connector->base.base.id);
8229 
8230 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8231 		intel_dp_aux_fini(intel_dp);
8232 		intel_dp_mst_encoder_cleanup(dig_port);
8233 		goto fail;
8234 	}
8235 
8236 	intel_dp_add_properties(intel_dp, connector);
8237 
8238 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8239 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
8240 		if (ret)
8241 			drm_dbg_kms(&dev_priv->drm,
8242 				    "HDCP init failed, skipping.\n");
8243 	}
8244 
8245 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
8246 	 * 0xd.  Failure to do so will result in spurious interrupts being
8247 	 * generated on the port when a cable is not attached.
8248 	 */
8249 	if (IS_G45(dev_priv)) {
8250 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
8251 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
8252 			       (temp & ~0xf) | 0xd);
8253 	}
8254 
8255 	return true;
8256 
8257 fail:
8258 	drm_connector_cleanup(connector);
8259 
8260 	return false;
8261 }
8262 
8263 bool intel_dp_init(struct drm_i915_private *dev_priv,
8264 		   i915_reg_t output_reg,
8265 		   enum port port)
8266 {
8267 	struct intel_digital_port *dig_port;
8268 	struct intel_encoder *intel_encoder;
8269 	struct drm_encoder *encoder;
8270 	struct intel_connector *intel_connector;
8271 
8272 	dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL);
8273 	if (!dig_port)
8274 		return false;
8275 
8276 	intel_connector = intel_connector_alloc();
8277 	if (!intel_connector)
8278 		goto err_connector_alloc;
8279 
8280 	intel_encoder = &dig_port->base;
8281 	encoder = &intel_encoder->base;
8282 
8283 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
8284 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
8285 			     "DP %c", port_name(port)))
8286 		goto err_encoder_init;
8287 
8288 	intel_encoder->hotplug = intel_dp_hotplug;
8289 	intel_encoder->compute_config = intel_dp_compute_config;
8290 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
8291 	intel_encoder->get_config = intel_dp_get_config;
8292 	intel_encoder->update_pipe = intel_panel_update_backlight;
8293 	intel_encoder->suspend = intel_dp_encoder_suspend;
8294 	if (IS_CHERRYVIEW(dev_priv)) {
8295 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8296 		intel_encoder->pre_enable = chv_pre_enable_dp;
8297 		intel_encoder->enable = vlv_enable_dp;
8298 		intel_encoder->disable = vlv_disable_dp;
8299 		intel_encoder->post_disable = chv_post_disable_dp;
8300 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8301 	} else if (IS_VALLEYVIEW(dev_priv)) {
8302 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8303 		intel_encoder->pre_enable = vlv_pre_enable_dp;
8304 		intel_encoder->enable = vlv_enable_dp;
8305 		intel_encoder->disable = vlv_disable_dp;
8306 		intel_encoder->post_disable = vlv_post_disable_dp;
8307 	} else {
8308 		intel_encoder->pre_enable = g4x_pre_enable_dp;
8309 		intel_encoder->enable = g4x_enable_dp;
8310 		intel_encoder->disable = g4x_disable_dp;
8311 		intel_encoder->post_disable = g4x_post_disable_dp;
8312 	}
8313 
8314 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
8315 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A))
8316 		dig_port->dp.set_link_train = cpt_set_link_train;
8317 	else
8318 		dig_port->dp.set_link_train = g4x_set_link_train;
8319 
8320 	if (IS_CHERRYVIEW(dev_priv))
8321 		dig_port->dp.set_signal_levels = chv_set_signal_levels;
8322 	else if (IS_VALLEYVIEW(dev_priv))
8323 		dig_port->dp.set_signal_levels = vlv_set_signal_levels;
8324 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
8325 		dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
8326 	else if (IS_GEN(dev_priv, 6) && port == PORT_A)
8327 		dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
8328 	else
8329 		dig_port->dp.set_signal_levels = g4x_set_signal_levels;
8330 
8331 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) ||
8332 	    (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) {
8333 		dig_port->dp.preemph_max = intel_dp_pre_empemph_max_3;
8334 		dig_port->dp.voltage_max = intel_dp_voltage_max_3;
8335 	} else {
8336 		dig_port->dp.preemph_max = intel_dp_pre_empemph_max_2;
8337 		dig_port->dp.voltage_max = intel_dp_voltage_max_2;
8338 	}
8339 
8340 	dig_port->dp.output_reg = output_reg;
8341 	dig_port->max_lanes = 4;
8342 	dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
8343 	dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
8344 
8345 	intel_encoder->type = INTEL_OUTPUT_DP;
8346 	intel_encoder->power_domain = intel_port_to_power_domain(port);
8347 	if (IS_CHERRYVIEW(dev_priv)) {
8348 		if (port == PORT_D)
8349 			intel_encoder->pipe_mask = BIT(PIPE_C);
8350 		else
8351 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8352 	} else {
8353 		intel_encoder->pipe_mask = ~0;
8354 	}
8355 	intel_encoder->cloneable = 0;
8356 	intel_encoder->port = port;
8357 
8358 	dig_port->hpd_pulse = intel_dp_hpd_pulse;
8359 
8360 	if (HAS_GMCH(dev_priv)) {
8361 		if (IS_GM45(dev_priv))
8362 			dig_port->connected = gm45_digital_port_connected;
8363 		else
8364 			dig_port->connected = g4x_digital_port_connected;
8365 	} else {
8366 		if (port == PORT_A)
8367 			dig_port->connected = ilk_digital_port_connected;
8368 		else
8369 			dig_port->connected = ibx_digital_port_connected;
8370 	}
8371 
8372 	if (port != PORT_A)
8373 		intel_infoframe_init(dig_port);
8374 
8375 	dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8376 	if (!intel_dp_init_connector(dig_port, intel_connector))
8377 		goto err_init_connector;
8378 
8379 	return true;
8380 
8381 err_init_connector:
8382 	drm_encoder_cleanup(encoder);
8383 err_encoder_init:
8384 	kfree(intel_connector);
8385 err_connector_alloc:
8386 	kfree(dig_port);
8387 	return false;
8388 }
8389 
8390 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8391 {
8392 	struct intel_encoder *encoder;
8393 
8394 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8395 		struct intel_dp *intel_dp;
8396 
8397 		if (encoder->type != INTEL_OUTPUT_DDI)
8398 			continue;
8399 
8400 		intel_dp = enc_to_intel_dp(encoder);
8401 
8402 		if (!intel_dp->can_mst)
8403 			continue;
8404 
8405 		if (intel_dp->is_mst)
8406 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8407 	}
8408 }
8409 
8410 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8411 {
8412 	struct intel_encoder *encoder;
8413 
8414 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8415 		struct intel_dp *intel_dp;
8416 		int ret;
8417 
8418 		if (encoder->type != INTEL_OUTPUT_DDI)
8419 			continue;
8420 
8421 		intel_dp = enc_to_intel_dp(encoder);
8422 
8423 		if (!intel_dp->can_mst)
8424 			continue;
8425 
8426 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8427 						     true);
8428 		if (ret) {
8429 			intel_dp->is_mst = false;
8430 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8431 							false);
8432 		}
8433 	}
8434 }
8435