1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_hdcp.h> 42 #include <drm/drm_probe_helper.h> 43 44 #include "i915_debugfs.h" 45 #include "i915_drv.h" 46 #include "i915_trace.h" 47 #include "intel_atomic.h" 48 #include "intel_audio.h" 49 #include "intel_connector.h" 50 #include "intel_ddi.h" 51 #include "intel_display_debugfs.h" 52 #include "intel_display_types.h" 53 #include "intel_dp.h" 54 #include "intel_dp_link_training.h" 55 #include "intel_dp_mst.h" 56 #include "intel_dpio_phy.h" 57 #include "intel_fifo_underrun.h" 58 #include "intel_hdcp.h" 59 #include "intel_hdmi.h" 60 #include "intel_hotplug.h" 61 #include "intel_lspcon.h" 62 #include "intel_lvds.h" 63 #include "intel_panel.h" 64 #include "intel_psr.h" 65 #include "intel_sideband.h" 66 #include "intel_tc.h" 67 #include "intel_vdsc.h" 68 69 #define DP_DPRX_ESI_LEN 14 70 71 /* DP DSC throughput values used for slice count calculations KPixels/s */ 72 #define DP_DSC_PEAK_PIXEL_RATE 2720000 73 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 74 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 75 76 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 77 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 78 79 /* Compliance test status bits */ 80 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 81 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 82 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 83 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 84 85 struct dp_link_dpll { 86 int clock; 87 struct dpll dpll; 88 }; 89 90 static const struct dp_link_dpll g4x_dpll[] = { 91 { 162000, 92 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 93 { 270000, 94 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 95 }; 96 97 static const struct dp_link_dpll pch_dpll[] = { 98 { 162000, 99 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 100 { 270000, 101 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 102 }; 103 104 static const struct dp_link_dpll vlv_dpll[] = { 105 { 162000, 106 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 107 { 270000, 108 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 109 }; 110 111 /* 112 * CHV supports eDP 1.4 that have more link rates. 113 * Below only provides the fixed rate but exclude variable rate. 114 */ 115 static const struct dp_link_dpll chv_dpll[] = { 116 /* 117 * CHV requires to program fractional division for m2. 118 * m2 is stored in fixed point format using formula below 119 * (m2_int << 22) | m2_fraction 120 */ 121 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 122 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 123 { 270000, /* m2_int = 27, m2_fraction = 0 */ 124 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 125 }; 126 127 /* Constants for DP DSC configurations */ 128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 129 130 /* With Single pipe configuration, HW is capable of supporting maximum 131 * of 4 slices per line. 132 */ 133 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 134 135 /** 136 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 137 * @intel_dp: DP struct 138 * 139 * If a CPU or PCH DP output is attached to an eDP panel, this function 140 * will return true, and false otherwise. 141 */ 142 bool intel_dp_is_edp(struct intel_dp *intel_dp) 143 { 144 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 145 146 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 147 } 148 149 static void intel_dp_link_down(struct intel_encoder *encoder, 150 const struct intel_crtc_state *old_crtc_state); 151 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 152 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 153 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 154 const struct intel_crtc_state *crtc_state); 155 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 156 enum pipe pipe); 157 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 158 159 /* update sink rates from dpcd */ 160 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 161 { 162 static const int dp_rates[] = { 163 162000, 270000, 540000, 810000 164 }; 165 int i, max_rate; 166 167 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 168 169 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 170 if (dp_rates[i] > max_rate) 171 break; 172 intel_dp->sink_rates[i] = dp_rates[i]; 173 } 174 175 intel_dp->num_sink_rates = i; 176 } 177 178 /* Get length of rates array potentially limited by max_rate. */ 179 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 180 { 181 int i; 182 183 /* Limit results by potentially reduced max rate */ 184 for (i = 0; i < len; i++) { 185 if (rates[len - i - 1] <= max_rate) 186 return len - i; 187 } 188 189 return 0; 190 } 191 192 /* Get length of common rates array potentially limited by max_rate. */ 193 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 194 int max_rate) 195 { 196 return intel_dp_rate_limit_len(intel_dp->common_rates, 197 intel_dp->num_common_rates, max_rate); 198 } 199 200 /* Theoretical max between source and sink */ 201 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 202 { 203 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 204 } 205 206 /* Theoretical max between source and sink */ 207 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 208 { 209 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 210 int source_max = intel_dig_port->max_lanes; 211 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 212 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); 213 214 return min3(source_max, sink_max, fia_max); 215 } 216 217 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 218 { 219 return intel_dp->max_link_lane_count; 220 } 221 222 int 223 intel_dp_link_required(int pixel_clock, int bpp) 224 { 225 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 226 return DIV_ROUND_UP(pixel_clock * bpp, 8); 227 } 228 229 int 230 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 231 { 232 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 233 * link rate that is generally expressed in Gbps. Since, 8 bits of data 234 * is transmitted every LS_Clk per lane, there is no need to account for 235 * the channel encoding that is done in the PHY layer here. 236 */ 237 238 return max_link_clock * max_lanes; 239 } 240 241 static int 242 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 243 { 244 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 245 struct intel_encoder *encoder = &intel_dig_port->base; 246 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 247 int max_dotclk = dev_priv->max_dotclk_freq; 248 int ds_max_dotclk; 249 250 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 251 252 if (type != DP_DS_PORT_TYPE_VGA) 253 return max_dotclk; 254 255 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 256 intel_dp->downstream_ports); 257 258 if (ds_max_dotclk != 0) 259 max_dotclk = min(max_dotclk, ds_max_dotclk); 260 261 return max_dotclk; 262 } 263 264 static int cnl_max_source_rate(struct intel_dp *intel_dp) 265 { 266 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 267 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 268 enum port port = dig_port->base.port; 269 270 u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 271 272 /* Low voltage SKUs are limited to max of 5.4G */ 273 if (voltage == VOLTAGE_INFO_0_85V) 274 return 540000; 275 276 /* For this SKU 8.1G is supported in all ports */ 277 if (IS_CNL_WITH_PORT_F(dev_priv)) 278 return 810000; 279 280 /* For other SKUs, max rate on ports A and D is 5.4G */ 281 if (port == PORT_A || port == PORT_D) 282 return 540000; 283 284 return 810000; 285 } 286 287 static int icl_max_source_rate(struct intel_dp *intel_dp) 288 { 289 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 290 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 291 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 292 293 if (intel_phy_is_combo(dev_priv, phy) && 294 !IS_ELKHARTLAKE(dev_priv) && 295 !intel_dp_is_edp(intel_dp)) 296 return 540000; 297 298 return 810000; 299 } 300 301 static void 302 intel_dp_set_source_rates(struct intel_dp *intel_dp) 303 { 304 /* The values must be in increasing order */ 305 static const int cnl_rates[] = { 306 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 307 }; 308 static const int bxt_rates[] = { 309 162000, 216000, 243000, 270000, 324000, 432000, 540000 310 }; 311 static const int skl_rates[] = { 312 162000, 216000, 270000, 324000, 432000, 540000 313 }; 314 static const int hsw_rates[] = { 315 162000, 270000, 540000 316 }; 317 static const int g4x_rates[] = { 318 162000, 270000 319 }; 320 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 321 struct intel_encoder *encoder = &dig_port->base; 322 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 323 const int *source_rates; 324 int size, max_rate = 0, vbt_max_rate; 325 326 /* This should only be done once */ 327 drm_WARN_ON(&dev_priv->drm, 328 intel_dp->source_rates || intel_dp->num_source_rates); 329 330 if (INTEL_GEN(dev_priv) >= 10) { 331 source_rates = cnl_rates; 332 size = ARRAY_SIZE(cnl_rates); 333 if (IS_GEN(dev_priv, 10)) 334 max_rate = cnl_max_source_rate(intel_dp); 335 else 336 max_rate = icl_max_source_rate(intel_dp); 337 } else if (IS_GEN9_LP(dev_priv)) { 338 source_rates = bxt_rates; 339 size = ARRAY_SIZE(bxt_rates); 340 } else if (IS_GEN9_BC(dev_priv)) { 341 source_rates = skl_rates; 342 size = ARRAY_SIZE(skl_rates); 343 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 344 IS_BROADWELL(dev_priv)) { 345 source_rates = hsw_rates; 346 size = ARRAY_SIZE(hsw_rates); 347 } else { 348 source_rates = g4x_rates; 349 size = ARRAY_SIZE(g4x_rates); 350 } 351 352 vbt_max_rate = intel_bios_dp_max_link_rate(encoder); 353 if (max_rate && vbt_max_rate) 354 max_rate = min(max_rate, vbt_max_rate); 355 else if (vbt_max_rate) 356 max_rate = vbt_max_rate; 357 358 if (max_rate) 359 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 360 361 intel_dp->source_rates = source_rates; 362 intel_dp->num_source_rates = size; 363 } 364 365 static int intersect_rates(const int *source_rates, int source_len, 366 const int *sink_rates, int sink_len, 367 int *common_rates) 368 { 369 int i = 0, j = 0, k = 0; 370 371 while (i < source_len && j < sink_len) { 372 if (source_rates[i] == sink_rates[j]) { 373 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 374 return k; 375 common_rates[k] = source_rates[i]; 376 ++k; 377 ++i; 378 ++j; 379 } else if (source_rates[i] < sink_rates[j]) { 380 ++i; 381 } else { 382 ++j; 383 } 384 } 385 return k; 386 } 387 388 /* return index of rate in rates array, or -1 if not found */ 389 static int intel_dp_rate_index(const int *rates, int len, int rate) 390 { 391 int i; 392 393 for (i = 0; i < len; i++) 394 if (rate == rates[i]) 395 return i; 396 397 return -1; 398 } 399 400 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 401 { 402 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); 403 404 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 405 intel_dp->num_source_rates, 406 intel_dp->sink_rates, 407 intel_dp->num_sink_rates, 408 intel_dp->common_rates); 409 410 /* Paranoia, there should always be something in common. */ 411 if (WARN_ON(intel_dp->num_common_rates == 0)) { 412 intel_dp->common_rates[0] = 162000; 413 intel_dp->num_common_rates = 1; 414 } 415 } 416 417 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 418 u8 lane_count) 419 { 420 /* 421 * FIXME: we need to synchronize the current link parameters with 422 * hardware readout. Currently fast link training doesn't work on 423 * boot-up. 424 */ 425 if (link_rate == 0 || 426 link_rate > intel_dp->max_link_rate) 427 return false; 428 429 if (lane_count == 0 || 430 lane_count > intel_dp_max_lane_count(intel_dp)) 431 return false; 432 433 return true; 434 } 435 436 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 437 int link_rate, 438 u8 lane_count) 439 { 440 const struct drm_display_mode *fixed_mode = 441 intel_dp->attached_connector->panel.fixed_mode; 442 int mode_rate, max_rate; 443 444 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 445 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 446 if (mode_rate > max_rate) 447 return false; 448 449 return true; 450 } 451 452 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 453 int link_rate, u8 lane_count) 454 { 455 int index; 456 457 index = intel_dp_rate_index(intel_dp->common_rates, 458 intel_dp->num_common_rates, 459 link_rate); 460 if (index > 0) { 461 if (intel_dp_is_edp(intel_dp) && 462 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 463 intel_dp->common_rates[index - 1], 464 lane_count)) { 465 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 466 return 0; 467 } 468 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 469 intel_dp->max_link_lane_count = lane_count; 470 } else if (lane_count > 1) { 471 if (intel_dp_is_edp(intel_dp) && 472 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 473 intel_dp_max_common_rate(intel_dp), 474 lane_count >> 1)) { 475 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 476 return 0; 477 } 478 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 479 intel_dp->max_link_lane_count = lane_count >> 1; 480 } else { 481 DRM_ERROR("Link Training Unsuccessful\n"); 482 return -1; 483 } 484 485 return 0; 486 } 487 488 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 489 { 490 return div_u64(mul_u32_u32(mode_clock, 1000000U), 491 DP_DSC_FEC_OVERHEAD_FACTOR); 492 } 493 494 static int 495 small_joiner_ram_size_bits(struct drm_i915_private *i915) 496 { 497 if (INTEL_GEN(i915) >= 11) 498 return 7680 * 8; 499 else 500 return 6144 * 8; 501 } 502 503 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, 504 u32 link_clock, u32 lane_count, 505 u32 mode_clock, u32 mode_hdisplay) 506 { 507 u32 bits_per_pixel, max_bpp_small_joiner_ram; 508 int i; 509 510 /* 511 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 512 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 513 * for SST -> TimeSlotsPerMTP is 1, 514 * for MST -> TimeSlotsPerMTP has to be calculated 515 */ 516 bits_per_pixel = (link_clock * lane_count * 8) / 517 intel_dp_mode_to_fec_clock(mode_clock); 518 drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel); 519 520 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 521 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / 522 mode_hdisplay; 523 drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n", 524 max_bpp_small_joiner_ram); 525 526 /* 527 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 528 * check, output bpp from small joiner RAM check) 529 */ 530 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 531 532 /* Error out if the max bpp is less than smallest allowed valid bpp */ 533 if (bits_per_pixel < valid_dsc_bpp[0]) { 534 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n", 535 bits_per_pixel, valid_dsc_bpp[0]); 536 return 0; 537 } 538 539 /* Find the nearest match in the array of known BPPs from VESA */ 540 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 541 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 542 break; 543 } 544 bits_per_pixel = valid_dsc_bpp[i]; 545 546 /* 547 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 548 * fractional part is 0 549 */ 550 return bits_per_pixel << 4; 551 } 552 553 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 554 int mode_clock, int mode_hdisplay) 555 { 556 u8 min_slice_count, i; 557 int max_slice_width; 558 559 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 560 min_slice_count = DIV_ROUND_UP(mode_clock, 561 DP_DSC_MAX_ENC_THROUGHPUT_0); 562 else 563 min_slice_count = DIV_ROUND_UP(mode_clock, 564 DP_DSC_MAX_ENC_THROUGHPUT_1); 565 566 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 567 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 568 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n", 569 max_slice_width); 570 return 0; 571 } 572 /* Also take into account max slice width */ 573 min_slice_count = min_t(u8, min_slice_count, 574 DIV_ROUND_UP(mode_hdisplay, 575 max_slice_width)); 576 577 /* Find the closest match to the valid slice count values */ 578 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 579 if (valid_dsc_slicecount[i] > 580 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 581 false)) 582 break; 583 if (min_slice_count <= valid_dsc_slicecount[i]) 584 return valid_dsc_slicecount[i]; 585 } 586 587 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count); 588 return 0; 589 } 590 591 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, 592 int hdisplay) 593 { 594 /* 595 * Older platforms don't like hdisplay==4096 with DP. 596 * 597 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline 598 * and frame counter increment), but we don't get vblank interrupts, 599 * and the pipe underruns immediately. The link also doesn't seem 600 * to get trained properly. 601 * 602 * On CHV the vblank interrupts don't seem to disappear but 603 * otherwise the symptoms are similar. 604 * 605 * TODO: confirm the behaviour on HSW+ 606 */ 607 return hdisplay == 4096 && !HAS_DDI(dev_priv); 608 } 609 610 static enum drm_mode_status 611 intel_dp_mode_valid(struct drm_connector *connector, 612 struct drm_display_mode *mode) 613 { 614 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 615 struct intel_connector *intel_connector = to_intel_connector(connector); 616 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 617 struct drm_i915_private *dev_priv = to_i915(connector->dev); 618 int target_clock = mode->clock; 619 int max_rate, mode_rate, max_lanes, max_link_clock; 620 int max_dotclk; 621 u16 dsc_max_output_bpp = 0; 622 u8 dsc_slice_count = 0; 623 624 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 625 return MODE_NO_DBLESCAN; 626 627 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 628 629 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 630 if (mode->hdisplay > fixed_mode->hdisplay) 631 return MODE_PANEL; 632 633 if (mode->vdisplay > fixed_mode->vdisplay) 634 return MODE_PANEL; 635 636 target_clock = fixed_mode->clock; 637 } 638 639 max_link_clock = intel_dp_max_link_rate(intel_dp); 640 max_lanes = intel_dp_max_lane_count(intel_dp); 641 642 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 643 mode_rate = intel_dp_link_required(target_clock, 18); 644 645 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) 646 return MODE_H_ILLEGAL; 647 648 /* 649 * Output bpp is stored in 6.4 format so right shift by 4 to get the 650 * integer value since we support only integer values of bpp. 651 */ 652 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 653 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 654 if (intel_dp_is_edp(intel_dp)) { 655 dsc_max_output_bpp = 656 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 657 dsc_slice_count = 658 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 659 true); 660 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 661 dsc_max_output_bpp = 662 intel_dp_dsc_get_output_bpp(dev_priv, 663 max_link_clock, 664 max_lanes, 665 target_clock, 666 mode->hdisplay) >> 4; 667 dsc_slice_count = 668 intel_dp_dsc_get_slice_count(intel_dp, 669 target_clock, 670 mode->hdisplay); 671 } 672 } 673 674 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 675 target_clock > max_dotclk) 676 return MODE_CLOCK_HIGH; 677 678 if (mode->clock < 10000) 679 return MODE_CLOCK_LOW; 680 681 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 682 return MODE_H_ILLEGAL; 683 684 return intel_mode_valid_max_plane_size(dev_priv, mode); 685 } 686 687 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 688 { 689 int i; 690 u32 v = 0; 691 692 if (src_bytes > 4) 693 src_bytes = 4; 694 for (i = 0; i < src_bytes; i++) 695 v |= ((u32)src[i]) << ((3 - i) * 8); 696 return v; 697 } 698 699 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 700 { 701 int i; 702 if (dst_bytes > 4) 703 dst_bytes = 4; 704 for (i = 0; i < dst_bytes; i++) 705 dst[i] = src >> ((3-i) * 8); 706 } 707 708 static void 709 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 710 static void 711 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 712 bool force_disable_vdd); 713 static void 714 intel_dp_pps_init(struct intel_dp *intel_dp); 715 716 static intel_wakeref_t 717 pps_lock(struct intel_dp *intel_dp) 718 { 719 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 720 intel_wakeref_t wakeref; 721 722 /* 723 * See intel_power_sequencer_reset() why we need 724 * a power domain reference here. 725 */ 726 wakeref = intel_display_power_get(dev_priv, 727 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 728 729 mutex_lock(&dev_priv->pps_mutex); 730 731 return wakeref; 732 } 733 734 static intel_wakeref_t 735 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 736 { 737 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 738 739 mutex_unlock(&dev_priv->pps_mutex); 740 intel_display_power_put(dev_priv, 741 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 742 wakeref); 743 return 0; 744 } 745 746 #define with_pps_lock(dp, wf) \ 747 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 748 749 static void 750 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 751 { 752 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 753 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 754 enum pipe pipe = intel_dp->pps_pipe; 755 bool pll_enabled, release_cl_override = false; 756 enum dpio_phy phy = DPIO_PHY(pipe); 757 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 758 u32 DP; 759 760 if (drm_WARN(&dev_priv->drm, 761 intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN, 762 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n", 763 pipe_name(pipe), intel_dig_port->base.base.base.id, 764 intel_dig_port->base.base.name)) 765 return; 766 767 drm_dbg_kms(&dev_priv->drm, 768 "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n", 769 pipe_name(pipe), intel_dig_port->base.base.base.id, 770 intel_dig_port->base.base.name); 771 772 /* Preserve the BIOS-computed detected bit. This is 773 * supposed to be read-only. 774 */ 775 DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; 776 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 777 DP |= DP_PORT_WIDTH(1); 778 DP |= DP_LINK_TRAIN_PAT_1; 779 780 if (IS_CHERRYVIEW(dev_priv)) 781 DP |= DP_PIPE_SEL_CHV(pipe); 782 else 783 DP |= DP_PIPE_SEL(pipe); 784 785 pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE; 786 787 /* 788 * The DPLL for the pipe must be enabled for this to work. 789 * So enable temporarily it if it's not already enabled. 790 */ 791 if (!pll_enabled) { 792 release_cl_override = IS_CHERRYVIEW(dev_priv) && 793 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 794 795 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 796 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 797 drm_err(&dev_priv->drm, 798 "Failed to force on pll for pipe %c!\n", 799 pipe_name(pipe)); 800 return; 801 } 802 } 803 804 /* 805 * Similar magic as in intel_dp_enable_port(). 806 * We _must_ do this port enable + disable trick 807 * to make this power sequencer lock onto the port. 808 * Otherwise even VDD force bit won't work. 809 */ 810 intel_de_write(dev_priv, intel_dp->output_reg, DP); 811 intel_de_posting_read(dev_priv, intel_dp->output_reg); 812 813 intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN); 814 intel_de_posting_read(dev_priv, intel_dp->output_reg); 815 816 intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN); 817 intel_de_posting_read(dev_priv, intel_dp->output_reg); 818 819 if (!pll_enabled) { 820 vlv_force_pll_off(dev_priv, pipe); 821 822 if (release_cl_override) 823 chv_phy_powergate_ch(dev_priv, phy, ch, false); 824 } 825 } 826 827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 828 { 829 struct intel_encoder *encoder; 830 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 831 832 /* 833 * We don't have power sequencer currently. 834 * Pick one that's not used by other ports. 835 */ 836 for_each_intel_dp(&dev_priv->drm, encoder) { 837 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 838 839 if (encoder->type == INTEL_OUTPUT_EDP) { 840 drm_WARN_ON(&dev_priv->drm, 841 intel_dp->active_pipe != INVALID_PIPE && 842 intel_dp->active_pipe != 843 intel_dp->pps_pipe); 844 845 if (intel_dp->pps_pipe != INVALID_PIPE) 846 pipes &= ~(1 << intel_dp->pps_pipe); 847 } else { 848 drm_WARN_ON(&dev_priv->drm, 849 intel_dp->pps_pipe != INVALID_PIPE); 850 851 if (intel_dp->active_pipe != INVALID_PIPE) 852 pipes &= ~(1 << intel_dp->active_pipe); 853 } 854 } 855 856 if (pipes == 0) 857 return INVALID_PIPE; 858 859 return ffs(pipes) - 1; 860 } 861 862 static enum pipe 863 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 864 { 865 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 866 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 867 enum pipe pipe; 868 869 lockdep_assert_held(&dev_priv->pps_mutex); 870 871 /* We should never land here with regular DP ports */ 872 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); 873 874 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE && 875 intel_dp->active_pipe != intel_dp->pps_pipe); 876 877 if (intel_dp->pps_pipe != INVALID_PIPE) 878 return intel_dp->pps_pipe; 879 880 pipe = vlv_find_free_pps(dev_priv); 881 882 /* 883 * Didn't find one. This should not happen since there 884 * are two power sequencers and up to two eDP ports. 885 */ 886 if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE)) 887 pipe = PIPE_A; 888 889 vlv_steal_power_sequencer(dev_priv, pipe); 890 intel_dp->pps_pipe = pipe; 891 892 drm_dbg_kms(&dev_priv->drm, 893 "picked pipe %c power sequencer for [ENCODER:%d:%s]\n", 894 pipe_name(intel_dp->pps_pipe), 895 intel_dig_port->base.base.base.id, 896 intel_dig_port->base.base.name); 897 898 /* init power sequencer on this pipe and port */ 899 intel_dp_init_panel_power_sequencer(intel_dp); 900 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 901 902 /* 903 * Even vdd force doesn't work until we've made 904 * the power sequencer lock in on the port. 905 */ 906 vlv_power_sequencer_kick(intel_dp); 907 908 return intel_dp->pps_pipe; 909 } 910 911 static int 912 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 913 { 914 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 915 int backlight_controller = dev_priv->vbt.backlight.controller; 916 917 lockdep_assert_held(&dev_priv->pps_mutex); 918 919 /* We should never land here with regular DP ports */ 920 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); 921 922 if (!intel_dp->pps_reset) 923 return backlight_controller; 924 925 intel_dp->pps_reset = false; 926 927 /* 928 * Only the HW needs to be reprogrammed, the SW state is fixed and 929 * has been setup during connector init. 930 */ 931 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 932 933 return backlight_controller; 934 } 935 936 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 937 enum pipe pipe); 938 939 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 940 enum pipe pipe) 941 { 942 return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON; 943 } 944 945 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 946 enum pipe pipe) 947 { 948 return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD; 949 } 950 951 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 952 enum pipe pipe) 953 { 954 return true; 955 } 956 957 static enum pipe 958 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 959 enum port port, 960 vlv_pipe_check pipe_check) 961 { 962 enum pipe pipe; 963 964 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 965 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) & 966 PANEL_PORT_SELECT_MASK; 967 968 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 969 continue; 970 971 if (!pipe_check(dev_priv, pipe)) 972 continue; 973 974 return pipe; 975 } 976 977 return INVALID_PIPE; 978 } 979 980 static void 981 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 982 { 983 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 984 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 985 enum port port = intel_dig_port->base.port; 986 987 lockdep_assert_held(&dev_priv->pps_mutex); 988 989 /* try to find a pipe with this port selected */ 990 /* first pick one where the panel is on */ 991 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 992 vlv_pipe_has_pp_on); 993 /* didn't find one? pick one where vdd is on */ 994 if (intel_dp->pps_pipe == INVALID_PIPE) 995 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 996 vlv_pipe_has_vdd_on); 997 /* didn't find one? pick one with just the correct port */ 998 if (intel_dp->pps_pipe == INVALID_PIPE) 999 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1000 vlv_pipe_any); 1001 1002 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 1003 if (intel_dp->pps_pipe == INVALID_PIPE) { 1004 drm_dbg_kms(&dev_priv->drm, 1005 "no initial power sequencer for [ENCODER:%d:%s]\n", 1006 intel_dig_port->base.base.base.id, 1007 intel_dig_port->base.base.name); 1008 return; 1009 } 1010 1011 drm_dbg_kms(&dev_priv->drm, 1012 "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n", 1013 intel_dig_port->base.base.base.id, 1014 intel_dig_port->base.base.name, 1015 pipe_name(intel_dp->pps_pipe)); 1016 1017 intel_dp_init_panel_power_sequencer(intel_dp); 1018 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 1019 } 1020 1021 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 1022 { 1023 struct intel_encoder *encoder; 1024 1025 if (drm_WARN_ON(&dev_priv->drm, 1026 !(IS_VALLEYVIEW(dev_priv) || 1027 IS_CHERRYVIEW(dev_priv) || 1028 IS_GEN9_LP(dev_priv)))) 1029 return; 1030 1031 /* 1032 * We can't grab pps_mutex here due to deadlock with power_domain 1033 * mutex when power_domain functions are called while holding pps_mutex. 1034 * That also means that in order to use pps_pipe the code needs to 1035 * hold both a power domain reference and pps_mutex, and the power domain 1036 * reference get/put must be done while _not_ holding pps_mutex. 1037 * pps_{lock,unlock}() do these steps in the correct order, so one 1038 * should use them always. 1039 */ 1040 1041 for_each_intel_dp(&dev_priv->drm, encoder) { 1042 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1043 1044 drm_WARN_ON(&dev_priv->drm, 1045 intel_dp->active_pipe != INVALID_PIPE); 1046 1047 if (encoder->type != INTEL_OUTPUT_EDP) 1048 continue; 1049 1050 if (IS_GEN9_LP(dev_priv)) 1051 intel_dp->pps_reset = true; 1052 else 1053 intel_dp->pps_pipe = INVALID_PIPE; 1054 } 1055 } 1056 1057 struct pps_registers { 1058 i915_reg_t pp_ctrl; 1059 i915_reg_t pp_stat; 1060 i915_reg_t pp_on; 1061 i915_reg_t pp_off; 1062 i915_reg_t pp_div; 1063 }; 1064 1065 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1066 struct pps_registers *regs) 1067 { 1068 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1069 int pps_idx = 0; 1070 1071 memset(regs, 0, sizeof(*regs)); 1072 1073 if (IS_GEN9_LP(dev_priv)) 1074 pps_idx = bxt_power_sequencer_idx(intel_dp); 1075 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1076 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1077 1078 regs->pp_ctrl = PP_CONTROL(pps_idx); 1079 regs->pp_stat = PP_STATUS(pps_idx); 1080 regs->pp_on = PP_ON_DELAYS(pps_idx); 1081 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1082 1083 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1084 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1085 regs->pp_div = INVALID_MMIO_REG; 1086 else 1087 regs->pp_div = PP_DIVISOR(pps_idx); 1088 } 1089 1090 static i915_reg_t 1091 _pp_ctrl_reg(struct intel_dp *intel_dp) 1092 { 1093 struct pps_registers regs; 1094 1095 intel_pps_get_registers(intel_dp, ®s); 1096 1097 return regs.pp_ctrl; 1098 } 1099 1100 static i915_reg_t 1101 _pp_stat_reg(struct intel_dp *intel_dp) 1102 { 1103 struct pps_registers regs; 1104 1105 intel_pps_get_registers(intel_dp, ®s); 1106 1107 return regs.pp_stat; 1108 } 1109 1110 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1111 This function only applicable when panel PM state is not to be tracked */ 1112 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1113 void *unused) 1114 { 1115 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1116 edp_notifier); 1117 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1118 intel_wakeref_t wakeref; 1119 1120 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1121 return 0; 1122 1123 with_pps_lock(intel_dp, wakeref) { 1124 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1125 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1126 i915_reg_t pp_ctrl_reg, pp_div_reg; 1127 u32 pp_div; 1128 1129 pp_ctrl_reg = PP_CONTROL(pipe); 1130 pp_div_reg = PP_DIVISOR(pipe); 1131 pp_div = intel_de_read(dev_priv, pp_div_reg); 1132 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1133 1134 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1135 intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F); 1136 intel_de_write(dev_priv, pp_ctrl_reg, 1137 PANEL_UNLOCK_REGS); 1138 msleep(intel_dp->panel_power_cycle_delay); 1139 } 1140 } 1141 1142 return 0; 1143 } 1144 1145 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1146 { 1147 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1148 1149 lockdep_assert_held(&dev_priv->pps_mutex); 1150 1151 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1152 intel_dp->pps_pipe == INVALID_PIPE) 1153 return false; 1154 1155 return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0; 1156 } 1157 1158 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1159 { 1160 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1161 1162 lockdep_assert_held(&dev_priv->pps_mutex); 1163 1164 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1165 intel_dp->pps_pipe == INVALID_PIPE) 1166 return false; 1167 1168 return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1169 } 1170 1171 static void 1172 intel_dp_check_edp(struct intel_dp *intel_dp) 1173 { 1174 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1175 1176 if (!intel_dp_is_edp(intel_dp)) 1177 return; 1178 1179 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1180 drm_WARN(&dev_priv->drm, 1, 1181 "eDP powered off while attempting aux channel communication.\n"); 1182 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n", 1183 intel_de_read(dev_priv, _pp_stat_reg(intel_dp)), 1184 intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp))); 1185 } 1186 } 1187 1188 static u32 1189 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1190 { 1191 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1192 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1193 const unsigned int timeout_ms = 10; 1194 u32 status; 1195 bool done; 1196 1197 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1198 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1199 msecs_to_jiffies_timeout(timeout_ms)); 1200 1201 /* just trace the final value */ 1202 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1203 1204 if (!done) 1205 drm_err(&i915->drm, 1206 "%s: did not complete or timeout within %ums (status 0x%08x)\n", 1207 intel_dp->aux.name, timeout_ms, status); 1208 #undef C 1209 1210 return status; 1211 } 1212 1213 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1214 { 1215 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1216 1217 if (index) 1218 return 0; 1219 1220 /* 1221 * The clock divider is based off the hrawclk, and would like to run at 1222 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1223 */ 1224 return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000); 1225 } 1226 1227 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1228 { 1229 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1230 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1231 u32 freq; 1232 1233 if (index) 1234 return 0; 1235 1236 /* 1237 * The clock divider is based off the cdclk or PCH rawclk, and would 1238 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1239 * divide by 2000 and use that 1240 */ 1241 if (dig_port->aux_ch == AUX_CH_A) 1242 freq = dev_priv->cdclk.hw.cdclk; 1243 else 1244 freq = RUNTIME_INFO(dev_priv)->rawclk_freq; 1245 return DIV_ROUND_CLOSEST(freq, 2000); 1246 } 1247 1248 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1249 { 1250 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1251 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1252 1253 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1254 /* Workaround for non-ULT HSW */ 1255 switch (index) { 1256 case 0: return 63; 1257 case 1: return 72; 1258 default: return 0; 1259 } 1260 } 1261 1262 return ilk_get_aux_clock_divider(intel_dp, index); 1263 } 1264 1265 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1266 { 1267 /* 1268 * SKL doesn't need us to program the AUX clock divider (Hardware will 1269 * derive the clock from CDCLK automatically). We still implement the 1270 * get_aux_clock_divider vfunc to plug-in into the existing code. 1271 */ 1272 return index ? 0 : 1; 1273 } 1274 1275 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1276 int send_bytes, 1277 u32 aux_clock_divider) 1278 { 1279 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1280 struct drm_i915_private *dev_priv = 1281 to_i915(intel_dig_port->base.base.dev); 1282 u32 precharge, timeout; 1283 1284 if (IS_GEN(dev_priv, 6)) 1285 precharge = 3; 1286 else 1287 precharge = 5; 1288 1289 if (IS_BROADWELL(dev_priv)) 1290 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1291 else 1292 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1293 1294 return DP_AUX_CH_CTL_SEND_BUSY | 1295 DP_AUX_CH_CTL_DONE | 1296 DP_AUX_CH_CTL_INTERRUPT | 1297 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1298 timeout | 1299 DP_AUX_CH_CTL_RECEIVE_ERROR | 1300 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1301 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1302 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1303 } 1304 1305 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1306 int send_bytes, 1307 u32 unused) 1308 { 1309 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1310 struct drm_i915_private *i915 = 1311 to_i915(intel_dig_port->base.base.dev); 1312 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1313 u32 ret; 1314 1315 ret = DP_AUX_CH_CTL_SEND_BUSY | 1316 DP_AUX_CH_CTL_DONE | 1317 DP_AUX_CH_CTL_INTERRUPT | 1318 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1319 DP_AUX_CH_CTL_TIME_OUT_MAX | 1320 DP_AUX_CH_CTL_RECEIVE_ERROR | 1321 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1322 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1323 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1324 1325 if (intel_phy_is_tc(i915, phy) && 1326 intel_dig_port->tc_mode == TC_PORT_TBT_ALT) 1327 ret |= DP_AUX_CH_CTL_TBT_IO; 1328 1329 return ret; 1330 } 1331 1332 static int 1333 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1334 const u8 *send, int send_bytes, 1335 u8 *recv, int recv_size, 1336 u32 aux_send_ctl_flags) 1337 { 1338 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1339 struct drm_i915_private *i915 = 1340 to_i915(intel_dig_port->base.base.dev); 1341 struct intel_uncore *uncore = &i915->uncore; 1342 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1343 bool is_tc_port = intel_phy_is_tc(i915, phy); 1344 i915_reg_t ch_ctl, ch_data[5]; 1345 u32 aux_clock_divider; 1346 enum intel_display_power_domain aux_domain = 1347 intel_aux_power_domain(intel_dig_port); 1348 intel_wakeref_t aux_wakeref; 1349 intel_wakeref_t pps_wakeref; 1350 int i, ret, recv_bytes; 1351 int try, clock = 0; 1352 u32 status; 1353 bool vdd; 1354 1355 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1356 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1357 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1358 1359 if (is_tc_port) 1360 intel_tc_port_lock(intel_dig_port); 1361 1362 aux_wakeref = intel_display_power_get(i915, aux_domain); 1363 pps_wakeref = pps_lock(intel_dp); 1364 1365 /* 1366 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1367 * In such cases we want to leave VDD enabled and it's up to upper layers 1368 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1369 * ourselves. 1370 */ 1371 vdd = edp_panel_vdd_on(intel_dp); 1372 1373 /* dp aux is extremely sensitive to irq latency, hence request the 1374 * lowest possible wakeup latency and so prevent the cpu from going into 1375 * deep sleep states. 1376 */ 1377 cpu_latency_qos_update_request(&i915->pm_qos, 0); 1378 1379 intel_dp_check_edp(intel_dp); 1380 1381 /* Try to wait for any previous AUX channel activity */ 1382 for (try = 0; try < 3; try++) { 1383 status = intel_uncore_read_notrace(uncore, ch_ctl); 1384 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1385 break; 1386 msleep(1); 1387 } 1388 /* just trace the final value */ 1389 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1390 1391 if (try == 3) { 1392 const u32 status = intel_uncore_read(uncore, ch_ctl); 1393 1394 if (status != intel_dp->aux_busy_last_status) { 1395 drm_WARN(&i915->drm, 1, 1396 "%s: not started (status 0x%08x)\n", 1397 intel_dp->aux.name, status); 1398 intel_dp->aux_busy_last_status = status; 1399 } 1400 1401 ret = -EBUSY; 1402 goto out; 1403 } 1404 1405 /* Only 5 data registers! */ 1406 if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) { 1407 ret = -E2BIG; 1408 goto out; 1409 } 1410 1411 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1412 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1413 send_bytes, 1414 aux_clock_divider); 1415 1416 send_ctl |= aux_send_ctl_flags; 1417 1418 /* Must try at least 3 times according to DP spec */ 1419 for (try = 0; try < 5; try++) { 1420 /* Load the send data into the aux channel data registers */ 1421 for (i = 0; i < send_bytes; i += 4) 1422 intel_uncore_write(uncore, 1423 ch_data[i >> 2], 1424 intel_dp_pack_aux(send + i, 1425 send_bytes - i)); 1426 1427 /* Send the command and wait for it to complete */ 1428 intel_uncore_write(uncore, ch_ctl, send_ctl); 1429 1430 status = intel_dp_aux_wait_done(intel_dp); 1431 1432 /* Clear done status and any errors */ 1433 intel_uncore_write(uncore, 1434 ch_ctl, 1435 status | 1436 DP_AUX_CH_CTL_DONE | 1437 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1438 DP_AUX_CH_CTL_RECEIVE_ERROR); 1439 1440 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1441 * 400us delay required for errors and timeouts 1442 * Timeout errors from the HW already meet this 1443 * requirement so skip to next iteration 1444 */ 1445 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1446 continue; 1447 1448 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1449 usleep_range(400, 500); 1450 continue; 1451 } 1452 if (status & DP_AUX_CH_CTL_DONE) 1453 goto done; 1454 } 1455 } 1456 1457 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1458 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n", 1459 intel_dp->aux.name, status); 1460 ret = -EBUSY; 1461 goto out; 1462 } 1463 1464 done: 1465 /* Check for timeout or receive error. 1466 * Timeouts occur when the sink is not connected 1467 */ 1468 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1469 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n", 1470 intel_dp->aux.name, status); 1471 ret = -EIO; 1472 goto out; 1473 } 1474 1475 /* Timeouts occur when the device isn't connected, so they're 1476 * "normal" -- don't fill the kernel log with these */ 1477 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1478 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n", 1479 intel_dp->aux.name, status); 1480 ret = -ETIMEDOUT; 1481 goto out; 1482 } 1483 1484 /* Unload any bytes sent back from the other side */ 1485 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1486 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1487 1488 /* 1489 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1490 * We have no idea of what happened so we return -EBUSY so 1491 * drm layer takes care for the necessary retries. 1492 */ 1493 if (recv_bytes == 0 || recv_bytes > 20) { 1494 drm_dbg_kms(&i915->drm, 1495 "%s: Forbidden recv_bytes = %d on aux transaction\n", 1496 intel_dp->aux.name, recv_bytes); 1497 ret = -EBUSY; 1498 goto out; 1499 } 1500 1501 if (recv_bytes > recv_size) 1502 recv_bytes = recv_size; 1503 1504 for (i = 0; i < recv_bytes; i += 4) 1505 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1506 recv + i, recv_bytes - i); 1507 1508 ret = recv_bytes; 1509 out: 1510 cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1511 1512 if (vdd) 1513 edp_panel_vdd_off(intel_dp, false); 1514 1515 pps_unlock(intel_dp, pps_wakeref); 1516 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1517 1518 if (is_tc_port) 1519 intel_tc_port_unlock(intel_dig_port); 1520 1521 return ret; 1522 } 1523 1524 #define BARE_ADDRESS_SIZE 3 1525 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1526 1527 static void 1528 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1529 const struct drm_dp_aux_msg *msg) 1530 { 1531 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1532 txbuf[1] = (msg->address >> 8) & 0xff; 1533 txbuf[2] = msg->address & 0xff; 1534 txbuf[3] = msg->size - 1; 1535 } 1536 1537 static ssize_t 1538 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1539 { 1540 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1541 u8 txbuf[20], rxbuf[20]; 1542 size_t txsize, rxsize; 1543 int ret; 1544 1545 intel_dp_aux_header(txbuf, msg); 1546 1547 switch (msg->request & ~DP_AUX_I2C_MOT) { 1548 case DP_AUX_NATIVE_WRITE: 1549 case DP_AUX_I2C_WRITE: 1550 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1551 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1552 rxsize = 2; /* 0 or 1 data bytes */ 1553 1554 if (WARN_ON(txsize > 20)) 1555 return -E2BIG; 1556 1557 WARN_ON(!msg->buffer != !msg->size); 1558 1559 if (msg->buffer) 1560 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1561 1562 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1563 rxbuf, rxsize, 0); 1564 if (ret > 0) { 1565 msg->reply = rxbuf[0] >> 4; 1566 1567 if (ret > 1) { 1568 /* Number of bytes written in a short write. */ 1569 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1570 } else { 1571 /* Return payload size. */ 1572 ret = msg->size; 1573 } 1574 } 1575 break; 1576 1577 case DP_AUX_NATIVE_READ: 1578 case DP_AUX_I2C_READ: 1579 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1580 rxsize = msg->size + 1; 1581 1582 if (WARN_ON(rxsize > 20)) 1583 return -E2BIG; 1584 1585 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1586 rxbuf, rxsize, 0); 1587 if (ret > 0) { 1588 msg->reply = rxbuf[0] >> 4; 1589 /* 1590 * Assume happy day, and copy the data. The caller is 1591 * expected to check msg->reply before touching it. 1592 * 1593 * Return payload size. 1594 */ 1595 ret--; 1596 memcpy(msg->buffer, rxbuf + 1, ret); 1597 } 1598 break; 1599 1600 default: 1601 ret = -EINVAL; 1602 break; 1603 } 1604 1605 return ret; 1606 } 1607 1608 1609 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1610 { 1611 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1612 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1613 enum aux_ch aux_ch = dig_port->aux_ch; 1614 1615 switch (aux_ch) { 1616 case AUX_CH_B: 1617 case AUX_CH_C: 1618 case AUX_CH_D: 1619 return DP_AUX_CH_CTL(aux_ch); 1620 default: 1621 MISSING_CASE(aux_ch); 1622 return DP_AUX_CH_CTL(AUX_CH_B); 1623 } 1624 } 1625 1626 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1627 { 1628 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1629 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1630 enum aux_ch aux_ch = dig_port->aux_ch; 1631 1632 switch (aux_ch) { 1633 case AUX_CH_B: 1634 case AUX_CH_C: 1635 case AUX_CH_D: 1636 return DP_AUX_CH_DATA(aux_ch, index); 1637 default: 1638 MISSING_CASE(aux_ch); 1639 return DP_AUX_CH_DATA(AUX_CH_B, index); 1640 } 1641 } 1642 1643 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1644 { 1645 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1646 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1647 enum aux_ch aux_ch = dig_port->aux_ch; 1648 1649 switch (aux_ch) { 1650 case AUX_CH_A: 1651 return DP_AUX_CH_CTL(aux_ch); 1652 case AUX_CH_B: 1653 case AUX_CH_C: 1654 case AUX_CH_D: 1655 return PCH_DP_AUX_CH_CTL(aux_ch); 1656 default: 1657 MISSING_CASE(aux_ch); 1658 return DP_AUX_CH_CTL(AUX_CH_A); 1659 } 1660 } 1661 1662 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1663 { 1664 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1665 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1666 enum aux_ch aux_ch = dig_port->aux_ch; 1667 1668 switch (aux_ch) { 1669 case AUX_CH_A: 1670 return DP_AUX_CH_DATA(aux_ch, index); 1671 case AUX_CH_B: 1672 case AUX_CH_C: 1673 case AUX_CH_D: 1674 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1675 default: 1676 MISSING_CASE(aux_ch); 1677 return DP_AUX_CH_DATA(AUX_CH_A, index); 1678 } 1679 } 1680 1681 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1682 { 1683 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1684 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1685 enum aux_ch aux_ch = dig_port->aux_ch; 1686 1687 switch (aux_ch) { 1688 case AUX_CH_A: 1689 case AUX_CH_B: 1690 case AUX_CH_C: 1691 case AUX_CH_D: 1692 case AUX_CH_E: 1693 case AUX_CH_F: 1694 case AUX_CH_G: 1695 return DP_AUX_CH_CTL(aux_ch); 1696 default: 1697 MISSING_CASE(aux_ch); 1698 return DP_AUX_CH_CTL(AUX_CH_A); 1699 } 1700 } 1701 1702 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1703 { 1704 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1705 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1706 enum aux_ch aux_ch = dig_port->aux_ch; 1707 1708 switch (aux_ch) { 1709 case AUX_CH_A: 1710 case AUX_CH_B: 1711 case AUX_CH_C: 1712 case AUX_CH_D: 1713 case AUX_CH_E: 1714 case AUX_CH_F: 1715 case AUX_CH_G: 1716 return DP_AUX_CH_DATA(aux_ch, index); 1717 default: 1718 MISSING_CASE(aux_ch); 1719 return DP_AUX_CH_DATA(AUX_CH_A, index); 1720 } 1721 } 1722 1723 static void 1724 intel_dp_aux_fini(struct intel_dp *intel_dp) 1725 { 1726 kfree(intel_dp->aux.name); 1727 } 1728 1729 static void 1730 intel_dp_aux_init(struct intel_dp *intel_dp) 1731 { 1732 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1733 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1734 struct intel_encoder *encoder = &dig_port->base; 1735 1736 if (INTEL_GEN(dev_priv) >= 9) { 1737 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1738 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1739 } else if (HAS_PCH_SPLIT(dev_priv)) { 1740 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1741 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1742 } else { 1743 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1744 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1745 } 1746 1747 if (INTEL_GEN(dev_priv) >= 9) 1748 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1749 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1750 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1751 else if (HAS_PCH_SPLIT(dev_priv)) 1752 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1753 else 1754 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1755 1756 if (INTEL_GEN(dev_priv) >= 9) 1757 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1758 else 1759 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1760 1761 drm_dp_aux_init(&intel_dp->aux); 1762 1763 /* Failure to allocate our preferred name is not critical */ 1764 intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c", 1765 aux_ch_name(dig_port->aux_ch), 1766 port_name(encoder->port)); 1767 intel_dp->aux.transfer = intel_dp_aux_transfer; 1768 } 1769 1770 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1771 { 1772 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1773 1774 return max_rate >= 540000; 1775 } 1776 1777 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1778 { 1779 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1780 1781 return max_rate >= 810000; 1782 } 1783 1784 static void 1785 intel_dp_set_clock(struct intel_encoder *encoder, 1786 struct intel_crtc_state *pipe_config) 1787 { 1788 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1789 const struct dp_link_dpll *divisor = NULL; 1790 int i, count = 0; 1791 1792 if (IS_G4X(dev_priv)) { 1793 divisor = g4x_dpll; 1794 count = ARRAY_SIZE(g4x_dpll); 1795 } else if (HAS_PCH_SPLIT(dev_priv)) { 1796 divisor = pch_dpll; 1797 count = ARRAY_SIZE(pch_dpll); 1798 } else if (IS_CHERRYVIEW(dev_priv)) { 1799 divisor = chv_dpll; 1800 count = ARRAY_SIZE(chv_dpll); 1801 } else if (IS_VALLEYVIEW(dev_priv)) { 1802 divisor = vlv_dpll; 1803 count = ARRAY_SIZE(vlv_dpll); 1804 } 1805 1806 if (divisor && count) { 1807 for (i = 0; i < count; i++) { 1808 if (pipe_config->port_clock == divisor[i].clock) { 1809 pipe_config->dpll = divisor[i].dpll; 1810 pipe_config->clock_set = true; 1811 break; 1812 } 1813 } 1814 } 1815 } 1816 1817 static void snprintf_int_array(char *str, size_t len, 1818 const int *array, int nelem) 1819 { 1820 int i; 1821 1822 str[0] = '\0'; 1823 1824 for (i = 0; i < nelem; i++) { 1825 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1826 if (r >= len) 1827 return; 1828 str += r; 1829 len -= r; 1830 } 1831 } 1832 1833 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1834 { 1835 char str[128]; /* FIXME: too big for stack? */ 1836 1837 if (!drm_debug_enabled(DRM_UT_KMS)) 1838 return; 1839 1840 snprintf_int_array(str, sizeof(str), 1841 intel_dp->source_rates, intel_dp->num_source_rates); 1842 DRM_DEBUG_KMS("source rates: %s\n", str); 1843 1844 snprintf_int_array(str, sizeof(str), 1845 intel_dp->sink_rates, intel_dp->num_sink_rates); 1846 DRM_DEBUG_KMS("sink rates: %s\n", str); 1847 1848 snprintf_int_array(str, sizeof(str), 1849 intel_dp->common_rates, intel_dp->num_common_rates); 1850 DRM_DEBUG_KMS("common rates: %s\n", str); 1851 } 1852 1853 int 1854 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1855 { 1856 int len; 1857 1858 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1859 if (WARN_ON(len <= 0)) 1860 return 162000; 1861 1862 return intel_dp->common_rates[len - 1]; 1863 } 1864 1865 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1866 { 1867 int i = intel_dp_rate_index(intel_dp->sink_rates, 1868 intel_dp->num_sink_rates, rate); 1869 1870 if (WARN_ON(i < 0)) 1871 i = 0; 1872 1873 return i; 1874 } 1875 1876 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1877 u8 *link_bw, u8 *rate_select) 1878 { 1879 /* eDP 1.4 rate select method. */ 1880 if (intel_dp->use_rate_select) { 1881 *link_bw = 0; 1882 *rate_select = 1883 intel_dp_rate_select(intel_dp, port_clock); 1884 } else { 1885 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1886 *rate_select = 0; 1887 } 1888 } 1889 1890 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1891 const struct intel_crtc_state *pipe_config) 1892 { 1893 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1894 1895 /* On TGL, FEC is supported on all Pipes */ 1896 if (INTEL_GEN(dev_priv) >= 12) 1897 return true; 1898 1899 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A) 1900 return true; 1901 1902 return false; 1903 } 1904 1905 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1906 const struct intel_crtc_state *pipe_config) 1907 { 1908 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1909 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1910 } 1911 1912 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1913 const struct intel_crtc_state *crtc_state) 1914 { 1915 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 1916 1917 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable) 1918 return false; 1919 1920 return intel_dsc_source_support(encoder, crtc_state) && 1921 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1922 } 1923 1924 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1925 struct intel_crtc_state *pipe_config) 1926 { 1927 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1928 struct intel_connector *intel_connector = intel_dp->attached_connector; 1929 int bpp, bpc; 1930 1931 bpp = pipe_config->pipe_bpp; 1932 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1933 1934 if (bpc > 0) 1935 bpp = min(bpp, 3*bpc); 1936 1937 if (intel_dp_is_edp(intel_dp)) { 1938 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1939 if (intel_connector->base.display_info.bpc == 0 && 1940 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1941 drm_dbg_kms(&dev_priv->drm, 1942 "clamping bpp for eDP panel to BIOS-provided %i\n", 1943 dev_priv->vbt.edp.bpp); 1944 bpp = dev_priv->vbt.edp.bpp; 1945 } 1946 } 1947 1948 return bpp; 1949 } 1950 1951 /* Adjust link config limits based on compliance test requests. */ 1952 void 1953 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1954 struct intel_crtc_state *pipe_config, 1955 struct link_config_limits *limits) 1956 { 1957 /* For DP Compliance we override the computed bpp for the pipe */ 1958 if (intel_dp->compliance.test_data.bpc != 0) { 1959 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1960 1961 limits->min_bpp = limits->max_bpp = bpp; 1962 pipe_config->dither_force_disable = bpp == 6 * 3; 1963 1964 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); 1965 } 1966 1967 /* Use values requested by Compliance Test Request */ 1968 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 1969 int index; 1970 1971 /* Validate the compliance test data since max values 1972 * might have changed due to link train fallback. 1973 */ 1974 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 1975 intel_dp->compliance.test_lane_count)) { 1976 index = intel_dp_rate_index(intel_dp->common_rates, 1977 intel_dp->num_common_rates, 1978 intel_dp->compliance.test_link_rate); 1979 if (index >= 0) 1980 limits->min_clock = limits->max_clock = index; 1981 limits->min_lane_count = limits->max_lane_count = 1982 intel_dp->compliance.test_lane_count; 1983 } 1984 } 1985 } 1986 1987 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 1988 { 1989 /* 1990 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1991 * format of the number of bytes per pixel will be half the number 1992 * of bytes of RGB pixel. 1993 */ 1994 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1995 bpp /= 2; 1996 1997 return bpp; 1998 } 1999 2000 /* Optimize link config in order: max bpp, min clock, min lanes */ 2001 static int 2002 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 2003 struct intel_crtc_state *pipe_config, 2004 const struct link_config_limits *limits) 2005 { 2006 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2007 int bpp, clock, lane_count; 2008 int mode_rate, link_clock, link_avail; 2009 2010 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 2011 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 2012 2013 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 2014 output_bpp); 2015 2016 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 2017 for (lane_count = limits->min_lane_count; 2018 lane_count <= limits->max_lane_count; 2019 lane_count <<= 1) { 2020 link_clock = intel_dp->common_rates[clock]; 2021 link_avail = intel_dp_max_data_rate(link_clock, 2022 lane_count); 2023 2024 if (mode_rate <= link_avail) { 2025 pipe_config->lane_count = lane_count; 2026 pipe_config->pipe_bpp = bpp; 2027 pipe_config->port_clock = link_clock; 2028 2029 return 0; 2030 } 2031 } 2032 } 2033 } 2034 2035 return -EINVAL; 2036 } 2037 2038 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 2039 { 2040 int i, num_bpc; 2041 u8 dsc_bpc[3] = {0}; 2042 2043 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 2044 dsc_bpc); 2045 for (i = 0; i < num_bpc; i++) { 2046 if (dsc_max_bpc >= dsc_bpc[i]) 2047 return dsc_bpc[i] * 3; 2048 } 2049 2050 return 0; 2051 } 2052 2053 #define DSC_SUPPORTED_VERSION_MIN 1 2054 2055 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder, 2056 struct intel_crtc_state *crtc_state) 2057 { 2058 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2059 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 2060 u8 line_buf_depth; 2061 int ret; 2062 2063 ret = intel_dsc_compute_params(encoder, crtc_state); 2064 if (ret) 2065 return ret; 2066 2067 /* 2068 * Slice Height of 8 works for all currently available panels. So start 2069 * with that if pic_height is an integral multiple of 8. Eventually add 2070 * logic to try multiple slice heights. 2071 */ 2072 if (vdsc_cfg->pic_height % 8 == 0) 2073 vdsc_cfg->slice_height = 8; 2074 else if (vdsc_cfg->pic_height % 4 == 0) 2075 vdsc_cfg->slice_height = 4; 2076 else 2077 vdsc_cfg->slice_height = 2; 2078 2079 vdsc_cfg->dsc_version_major = 2080 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2081 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; 2082 vdsc_cfg->dsc_version_minor = 2083 min(DSC_SUPPORTED_VERSION_MIN, 2084 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2085 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT); 2086 2087 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & 2088 DP_DSC_RGB; 2089 2090 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd); 2091 if (!line_buf_depth) { 2092 DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n"); 2093 return -EINVAL; 2094 } 2095 2096 if (vdsc_cfg->dsc_version_minor == 2) 2097 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ? 2098 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth; 2099 else 2100 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ? 2101 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth; 2102 2103 vdsc_cfg->block_pred_enable = 2104 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & 2105 DP_DSC_BLK_PREDICTION_IS_SUPPORTED; 2106 2107 return drm_dsc_compute_rc_parameters(vdsc_cfg); 2108 } 2109 2110 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2111 struct intel_crtc_state *pipe_config, 2112 struct drm_connector_state *conn_state, 2113 struct link_config_limits *limits) 2114 { 2115 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2116 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2117 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2118 u8 dsc_max_bpc; 2119 int pipe_bpp; 2120 int ret; 2121 2122 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2123 intel_dp_supports_fec(intel_dp, pipe_config); 2124 2125 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2126 return -EINVAL; 2127 2128 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 2129 if (INTEL_GEN(dev_priv) >= 12) 2130 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc); 2131 else 2132 dsc_max_bpc = min_t(u8, 10, 2133 conn_state->max_requested_bpc); 2134 2135 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2136 2137 /* Min Input BPC for ICL+ is 8 */ 2138 if (pipe_bpp < 8 * 3) { 2139 drm_dbg_kms(&dev_priv->drm, 2140 "No DSC support for less than 8bpc\n"); 2141 return -EINVAL; 2142 } 2143 2144 /* 2145 * For now enable DSC for max bpp, max link rate, max lane count. 2146 * Optimize this later for the minimum possible link rate/lane count 2147 * with DSC enabled for the requested mode. 2148 */ 2149 pipe_config->pipe_bpp = pipe_bpp; 2150 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2151 pipe_config->lane_count = limits->max_lane_count; 2152 2153 if (intel_dp_is_edp(intel_dp)) { 2154 pipe_config->dsc.compressed_bpp = 2155 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2156 pipe_config->pipe_bpp); 2157 pipe_config->dsc.slice_count = 2158 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2159 true); 2160 } else { 2161 u16 dsc_max_output_bpp; 2162 u8 dsc_dp_slice_count; 2163 2164 dsc_max_output_bpp = 2165 intel_dp_dsc_get_output_bpp(dev_priv, 2166 pipe_config->port_clock, 2167 pipe_config->lane_count, 2168 adjusted_mode->crtc_clock, 2169 adjusted_mode->crtc_hdisplay); 2170 dsc_dp_slice_count = 2171 intel_dp_dsc_get_slice_count(intel_dp, 2172 adjusted_mode->crtc_clock, 2173 adjusted_mode->crtc_hdisplay); 2174 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2175 drm_dbg_kms(&dev_priv->drm, 2176 "Compressed BPP/Slice Count not supported\n"); 2177 return -EINVAL; 2178 } 2179 pipe_config->dsc.compressed_bpp = min_t(u16, 2180 dsc_max_output_bpp >> 4, 2181 pipe_config->pipe_bpp); 2182 pipe_config->dsc.slice_count = dsc_dp_slice_count; 2183 } 2184 /* 2185 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2186 * is greater than the maximum Cdclock and if slice count is even 2187 * then we need to use 2 VDSC instances. 2188 */ 2189 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 2190 if (pipe_config->dsc.slice_count > 1) { 2191 pipe_config->dsc.dsc_split = true; 2192 } else { 2193 drm_dbg_kms(&dev_priv->drm, 2194 "Cannot split stream to use 2 VDSC instances\n"); 2195 return -EINVAL; 2196 } 2197 } 2198 2199 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config); 2200 if (ret < 0) { 2201 drm_dbg_kms(&dev_priv->drm, 2202 "Cannot compute valid DSC parameters for Input Bpp = %d " 2203 "Compressed BPP = %d\n", 2204 pipe_config->pipe_bpp, 2205 pipe_config->dsc.compressed_bpp); 2206 return ret; 2207 } 2208 2209 pipe_config->dsc.compression_enable = true; 2210 drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d " 2211 "Compressed Bpp = %d Slice Count = %d\n", 2212 pipe_config->pipe_bpp, 2213 pipe_config->dsc.compressed_bpp, 2214 pipe_config->dsc.slice_count); 2215 2216 return 0; 2217 } 2218 2219 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2220 { 2221 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2222 return 6 * 3; 2223 else 2224 return 8 * 3; 2225 } 2226 2227 static int 2228 intel_dp_compute_link_config(struct intel_encoder *encoder, 2229 struct intel_crtc_state *pipe_config, 2230 struct drm_connector_state *conn_state) 2231 { 2232 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2233 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2234 struct link_config_limits limits; 2235 int common_len; 2236 int ret; 2237 2238 common_len = intel_dp_common_len_rate_limit(intel_dp, 2239 intel_dp->max_link_rate); 2240 2241 /* No common link rates between source and sink */ 2242 drm_WARN_ON(encoder->base.dev, common_len <= 0); 2243 2244 limits.min_clock = 0; 2245 limits.max_clock = common_len - 1; 2246 2247 limits.min_lane_count = 1; 2248 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2249 2250 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2251 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2252 2253 if (intel_dp_is_edp(intel_dp)) { 2254 /* 2255 * Use the maximum clock and number of lanes the eDP panel 2256 * advertizes being capable of. The panels are generally 2257 * designed to support only a single clock and lane 2258 * configuration, and typically these values correspond to the 2259 * native resolution of the panel. 2260 */ 2261 limits.min_lane_count = limits.max_lane_count; 2262 limits.min_clock = limits.max_clock; 2263 } 2264 2265 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2266 2267 DRM_DEBUG_KMS("DP link computation with max lane count %i " 2268 "max rate %d max bpp %d pixel clock %iKHz\n", 2269 limits.max_lane_count, 2270 intel_dp->common_rates[limits.max_clock], 2271 limits.max_bpp, adjusted_mode->crtc_clock); 2272 2273 /* 2274 * Optimize for slow and wide. This is the place to add alternative 2275 * optimization policy. 2276 */ 2277 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2278 2279 /* enable compression if the mode doesn't fit available BW */ 2280 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en); 2281 if (ret || intel_dp->force_dsc_en) { 2282 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2283 conn_state, &limits); 2284 if (ret < 0) 2285 return ret; 2286 } 2287 2288 if (pipe_config->dsc.compression_enable) { 2289 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2290 pipe_config->lane_count, pipe_config->port_clock, 2291 pipe_config->pipe_bpp, 2292 pipe_config->dsc.compressed_bpp); 2293 2294 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2295 intel_dp_link_required(adjusted_mode->crtc_clock, 2296 pipe_config->dsc.compressed_bpp), 2297 intel_dp_max_data_rate(pipe_config->port_clock, 2298 pipe_config->lane_count)); 2299 } else { 2300 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", 2301 pipe_config->lane_count, pipe_config->port_clock, 2302 pipe_config->pipe_bpp); 2303 2304 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2305 intel_dp_link_required(adjusted_mode->crtc_clock, 2306 pipe_config->pipe_bpp), 2307 intel_dp_max_data_rate(pipe_config->port_clock, 2308 pipe_config->lane_count)); 2309 } 2310 return 0; 2311 } 2312 2313 static int 2314 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2315 struct drm_connector *connector, 2316 struct intel_crtc_state *crtc_state) 2317 { 2318 const struct drm_display_info *info = &connector->display_info; 2319 const struct drm_display_mode *adjusted_mode = 2320 &crtc_state->hw.adjusted_mode; 2321 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2322 int ret; 2323 2324 if (!drm_mode_is_420_only(info, adjusted_mode) || 2325 !intel_dp_get_colorimetry_status(intel_dp) || 2326 !connector->ycbcr_420_allowed) 2327 return 0; 2328 2329 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2330 2331 /* YCBCR 420 output conversion needs a scaler */ 2332 ret = skl_update_scaler_crtc(crtc_state); 2333 if (ret) { 2334 DRM_DEBUG_KMS("Scaler allocation for output failed\n"); 2335 return ret; 2336 } 2337 2338 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN); 2339 2340 return 0; 2341 } 2342 2343 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2344 const struct drm_connector_state *conn_state) 2345 { 2346 const struct intel_digital_connector_state *intel_conn_state = 2347 to_intel_digital_connector_state(conn_state); 2348 const struct drm_display_mode *adjusted_mode = 2349 &crtc_state->hw.adjusted_mode; 2350 2351 /* 2352 * Our YCbCr output is always limited range. 2353 * crtc_state->limited_color_range only applies to RGB, 2354 * and it must never be set for YCbCr or we risk setting 2355 * some conflicting bits in PIPECONF which will mess up 2356 * the colors on the monitor. 2357 */ 2358 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2359 return false; 2360 2361 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2362 /* 2363 * See: 2364 * CEA-861-E - 5.1 Default Encoding Parameters 2365 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2366 */ 2367 return crtc_state->pipe_bpp != 18 && 2368 drm_default_rgb_quant_range(adjusted_mode) == 2369 HDMI_QUANTIZATION_RANGE_LIMITED; 2370 } else { 2371 return intel_conn_state->broadcast_rgb == 2372 INTEL_BROADCAST_RGB_LIMITED; 2373 } 2374 } 2375 2376 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv, 2377 enum port port) 2378 { 2379 if (IS_G4X(dev_priv)) 2380 return false; 2381 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A) 2382 return false; 2383 2384 return true; 2385 } 2386 2387 int 2388 intel_dp_compute_config(struct intel_encoder *encoder, 2389 struct intel_crtc_state *pipe_config, 2390 struct drm_connector_state *conn_state) 2391 { 2392 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2393 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2394 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2395 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder); 2396 enum port port = encoder->port; 2397 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc); 2398 struct intel_connector *intel_connector = intel_dp->attached_connector; 2399 struct intel_digital_connector_state *intel_conn_state = 2400 to_intel_digital_connector_state(conn_state); 2401 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0, 2402 DP_DPCD_QUIRK_CONSTANT_N); 2403 int ret = 0, output_bpp; 2404 2405 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2406 pipe_config->has_pch_encoder = true; 2407 2408 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2409 2410 if (lspcon->active) 2411 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2412 else 2413 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base, 2414 pipe_config); 2415 2416 if (ret) 2417 return ret; 2418 2419 pipe_config->has_drrs = false; 2420 if (!intel_dp_port_has_audio(dev_priv, port)) 2421 pipe_config->has_audio = false; 2422 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2423 pipe_config->has_audio = intel_dp->has_audio; 2424 else 2425 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2426 2427 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2428 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2429 adjusted_mode); 2430 2431 if (INTEL_GEN(dev_priv) >= 9) { 2432 ret = skl_update_scaler_crtc(pipe_config); 2433 if (ret) 2434 return ret; 2435 } 2436 2437 if (HAS_GMCH(dev_priv)) 2438 intel_gmch_panel_fitting(intel_crtc, pipe_config, 2439 conn_state->scaling_mode); 2440 else 2441 intel_pch_panel_fitting(intel_crtc, pipe_config, 2442 conn_state->scaling_mode); 2443 } 2444 2445 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2446 return -EINVAL; 2447 2448 if (HAS_GMCH(dev_priv) && 2449 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2450 return -EINVAL; 2451 2452 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2453 return -EINVAL; 2454 2455 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) 2456 return -EINVAL; 2457 2458 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2459 if (ret < 0) 2460 return ret; 2461 2462 pipe_config->limited_color_range = 2463 intel_dp_limited_color_range(pipe_config, conn_state); 2464 2465 if (pipe_config->dsc.compression_enable) 2466 output_bpp = pipe_config->dsc.compressed_bpp; 2467 else 2468 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2469 2470 intel_link_compute_m_n(output_bpp, 2471 pipe_config->lane_count, 2472 adjusted_mode->crtc_clock, 2473 pipe_config->port_clock, 2474 &pipe_config->dp_m_n, 2475 constant_n, pipe_config->fec_enable); 2476 2477 if (intel_connector->panel.downclock_mode != NULL && 2478 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2479 pipe_config->has_drrs = true; 2480 intel_link_compute_m_n(output_bpp, 2481 pipe_config->lane_count, 2482 intel_connector->panel.downclock_mode->clock, 2483 pipe_config->port_clock, 2484 &pipe_config->dp_m2_n2, 2485 constant_n, pipe_config->fec_enable); 2486 } 2487 2488 if (!HAS_DDI(dev_priv)) 2489 intel_dp_set_clock(encoder, pipe_config); 2490 2491 intel_psr_compute_config(intel_dp, pipe_config); 2492 2493 return 0; 2494 } 2495 2496 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2497 int link_rate, u8 lane_count, 2498 bool link_mst) 2499 { 2500 intel_dp->link_trained = false; 2501 intel_dp->link_rate = link_rate; 2502 intel_dp->lane_count = lane_count; 2503 intel_dp->link_mst = link_mst; 2504 } 2505 2506 static void intel_dp_prepare(struct intel_encoder *encoder, 2507 const struct intel_crtc_state *pipe_config) 2508 { 2509 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2510 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2511 enum port port = encoder->port; 2512 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 2513 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2514 2515 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2516 pipe_config->lane_count, 2517 intel_crtc_has_type(pipe_config, 2518 INTEL_OUTPUT_DP_MST)); 2519 2520 intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port); 2521 intel_dp->regs.dp_tp_status = DP_TP_STATUS(port); 2522 2523 /* 2524 * There are four kinds of DP registers: 2525 * 2526 * IBX PCH 2527 * SNB CPU 2528 * IVB CPU 2529 * CPT PCH 2530 * 2531 * IBX PCH and CPU are the same for almost everything, 2532 * except that the CPU DP PLL is configured in this 2533 * register 2534 * 2535 * CPT PCH is quite different, having many bits moved 2536 * to the TRANS_DP_CTL register instead. That 2537 * configuration happens (oddly) in ilk_pch_enable 2538 */ 2539 2540 /* Preserve the BIOS-computed detected bit. This is 2541 * supposed to be read-only. 2542 */ 2543 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; 2544 2545 /* Handle DP bits in common between all three register formats */ 2546 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2547 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2548 2549 /* Split out the IBX/CPU vs CPT settings */ 2550 2551 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2552 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2553 intel_dp->DP |= DP_SYNC_HS_HIGH; 2554 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2555 intel_dp->DP |= DP_SYNC_VS_HIGH; 2556 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2557 2558 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2559 intel_dp->DP |= DP_ENHANCED_FRAMING; 2560 2561 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2562 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2563 u32 trans_dp; 2564 2565 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2566 2567 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe)); 2568 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2569 trans_dp |= TRANS_DP_ENH_FRAMING; 2570 else 2571 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2572 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp); 2573 } else { 2574 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2575 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2576 2577 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2578 intel_dp->DP |= DP_SYNC_HS_HIGH; 2579 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2580 intel_dp->DP |= DP_SYNC_VS_HIGH; 2581 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2582 2583 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2584 intel_dp->DP |= DP_ENHANCED_FRAMING; 2585 2586 if (IS_CHERRYVIEW(dev_priv)) 2587 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2588 else 2589 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2590 } 2591 } 2592 2593 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2594 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2595 2596 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2597 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2598 2599 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2600 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2601 2602 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2603 2604 static void wait_panel_status(struct intel_dp *intel_dp, 2605 u32 mask, 2606 u32 value) 2607 { 2608 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2609 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2610 2611 lockdep_assert_held(&dev_priv->pps_mutex); 2612 2613 intel_pps_verify_state(intel_dp); 2614 2615 pp_stat_reg = _pp_stat_reg(intel_dp); 2616 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2617 2618 drm_dbg_kms(&dev_priv->drm, 2619 "mask %08x value %08x status %08x control %08x\n", 2620 mask, value, 2621 intel_de_read(dev_priv, pp_stat_reg), 2622 intel_de_read(dev_priv, pp_ctrl_reg)); 2623 2624 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2625 mask, value, 5000)) 2626 drm_err(&dev_priv->drm, 2627 "Panel status timeout: status %08x control %08x\n", 2628 intel_de_read(dev_priv, pp_stat_reg), 2629 intel_de_read(dev_priv, pp_ctrl_reg)); 2630 2631 drm_dbg_kms(&dev_priv->drm, "Wait complete\n"); 2632 } 2633 2634 static void wait_panel_on(struct intel_dp *intel_dp) 2635 { 2636 DRM_DEBUG_KMS("Wait for panel power on\n"); 2637 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2638 } 2639 2640 static void wait_panel_off(struct intel_dp *intel_dp) 2641 { 2642 DRM_DEBUG_KMS("Wait for panel power off time\n"); 2643 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2644 } 2645 2646 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2647 { 2648 ktime_t panel_power_on_time; 2649 s64 panel_power_off_duration; 2650 2651 DRM_DEBUG_KMS("Wait for panel power cycle\n"); 2652 2653 /* take the difference of currrent time and panel power off time 2654 * and then make panel wait for t11_t12 if needed. */ 2655 panel_power_on_time = ktime_get_boottime(); 2656 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2657 2658 /* When we disable the VDD override bit last we have to do the manual 2659 * wait. */ 2660 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2661 wait_remaining_ms_from_jiffies(jiffies, 2662 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2663 2664 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2665 } 2666 2667 static void wait_backlight_on(struct intel_dp *intel_dp) 2668 { 2669 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2670 intel_dp->backlight_on_delay); 2671 } 2672 2673 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2674 { 2675 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2676 intel_dp->backlight_off_delay); 2677 } 2678 2679 /* Read the current pp_control value, unlocking the register if it 2680 * is locked 2681 */ 2682 2683 static u32 ilk_get_pp_control(struct intel_dp *intel_dp) 2684 { 2685 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2686 u32 control; 2687 2688 lockdep_assert_held(&dev_priv->pps_mutex); 2689 2690 control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)); 2691 if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) && 2692 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2693 control &= ~PANEL_UNLOCK_MASK; 2694 control |= PANEL_UNLOCK_REGS; 2695 } 2696 return control; 2697 } 2698 2699 /* 2700 * Must be paired with edp_panel_vdd_off(). 2701 * Must hold pps_mutex around the whole on/off sequence. 2702 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2703 */ 2704 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2705 { 2706 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2707 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2708 u32 pp; 2709 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2710 bool need_to_disable = !intel_dp->want_panel_vdd; 2711 2712 lockdep_assert_held(&dev_priv->pps_mutex); 2713 2714 if (!intel_dp_is_edp(intel_dp)) 2715 return false; 2716 2717 cancel_delayed_work(&intel_dp->panel_vdd_work); 2718 intel_dp->want_panel_vdd = true; 2719 2720 if (edp_have_panel_vdd(intel_dp)) 2721 return need_to_disable; 2722 2723 intel_display_power_get(dev_priv, 2724 intel_aux_power_domain(intel_dig_port)); 2725 2726 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n", 2727 intel_dig_port->base.base.base.id, 2728 intel_dig_port->base.base.name); 2729 2730 if (!edp_have_panel_power(intel_dp)) 2731 wait_panel_power_cycle(intel_dp); 2732 2733 pp = ilk_get_pp_control(intel_dp); 2734 pp |= EDP_FORCE_VDD; 2735 2736 pp_stat_reg = _pp_stat_reg(intel_dp); 2737 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2738 2739 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2740 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2741 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2742 intel_de_read(dev_priv, pp_stat_reg), 2743 intel_de_read(dev_priv, pp_ctrl_reg)); 2744 /* 2745 * If the panel wasn't on, delay before accessing aux channel 2746 */ 2747 if (!edp_have_panel_power(intel_dp)) { 2748 drm_dbg_kms(&dev_priv->drm, 2749 "[ENCODER:%d:%s] panel power wasn't enabled\n", 2750 intel_dig_port->base.base.base.id, 2751 intel_dig_port->base.base.name); 2752 msleep(intel_dp->panel_power_up_delay); 2753 } 2754 2755 return need_to_disable; 2756 } 2757 2758 /* 2759 * Must be paired with intel_edp_panel_vdd_off() or 2760 * intel_edp_panel_off(). 2761 * Nested calls to these functions are not allowed since 2762 * we drop the lock. Caller must use some higher level 2763 * locking to prevent nested calls from other threads. 2764 */ 2765 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2766 { 2767 intel_wakeref_t wakeref; 2768 bool vdd; 2769 2770 if (!intel_dp_is_edp(intel_dp)) 2771 return; 2772 2773 vdd = false; 2774 with_pps_lock(intel_dp, wakeref) 2775 vdd = edp_panel_vdd_on(intel_dp); 2776 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n", 2777 dp_to_dig_port(intel_dp)->base.base.base.id, 2778 dp_to_dig_port(intel_dp)->base.base.name); 2779 } 2780 2781 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2782 { 2783 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2784 struct intel_digital_port *intel_dig_port = 2785 dp_to_dig_port(intel_dp); 2786 u32 pp; 2787 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2788 2789 lockdep_assert_held(&dev_priv->pps_mutex); 2790 2791 drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd); 2792 2793 if (!edp_have_panel_vdd(intel_dp)) 2794 return; 2795 2796 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n", 2797 intel_dig_port->base.base.base.id, 2798 intel_dig_port->base.base.name); 2799 2800 pp = ilk_get_pp_control(intel_dp); 2801 pp &= ~EDP_FORCE_VDD; 2802 2803 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2804 pp_stat_reg = _pp_stat_reg(intel_dp); 2805 2806 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2807 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2808 2809 /* Make sure sequencer is idle before allowing subsequent activity */ 2810 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2811 intel_de_read(dev_priv, pp_stat_reg), 2812 intel_de_read(dev_priv, pp_ctrl_reg)); 2813 2814 if ((pp & PANEL_POWER_ON) == 0) 2815 intel_dp->panel_power_off_time = ktime_get_boottime(); 2816 2817 intel_display_power_put_unchecked(dev_priv, 2818 intel_aux_power_domain(intel_dig_port)); 2819 } 2820 2821 static void edp_panel_vdd_work(struct work_struct *__work) 2822 { 2823 struct intel_dp *intel_dp = 2824 container_of(to_delayed_work(__work), 2825 struct intel_dp, panel_vdd_work); 2826 intel_wakeref_t wakeref; 2827 2828 with_pps_lock(intel_dp, wakeref) { 2829 if (!intel_dp->want_panel_vdd) 2830 edp_panel_vdd_off_sync(intel_dp); 2831 } 2832 } 2833 2834 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 2835 { 2836 unsigned long delay; 2837 2838 /* 2839 * Queue the timer to fire a long time from now (relative to the power 2840 * down delay) to keep the panel power up across a sequence of 2841 * operations. 2842 */ 2843 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 2844 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 2845 } 2846 2847 /* 2848 * Must be paired with edp_panel_vdd_on(). 2849 * Must hold pps_mutex around the whole on/off sequence. 2850 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2851 */ 2852 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 2853 { 2854 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2855 2856 lockdep_assert_held(&dev_priv->pps_mutex); 2857 2858 if (!intel_dp_is_edp(intel_dp)) 2859 return; 2860 2861 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on", 2862 dp_to_dig_port(intel_dp)->base.base.base.id, 2863 dp_to_dig_port(intel_dp)->base.base.name); 2864 2865 intel_dp->want_panel_vdd = false; 2866 2867 if (sync) 2868 edp_panel_vdd_off_sync(intel_dp); 2869 else 2870 edp_panel_vdd_schedule_off(intel_dp); 2871 } 2872 2873 static void edp_panel_on(struct intel_dp *intel_dp) 2874 { 2875 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2876 u32 pp; 2877 i915_reg_t pp_ctrl_reg; 2878 2879 lockdep_assert_held(&dev_priv->pps_mutex); 2880 2881 if (!intel_dp_is_edp(intel_dp)) 2882 return; 2883 2884 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n", 2885 dp_to_dig_port(intel_dp)->base.base.base.id, 2886 dp_to_dig_port(intel_dp)->base.base.name); 2887 2888 if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp), 2889 "[ENCODER:%d:%s] panel power already on\n", 2890 dp_to_dig_port(intel_dp)->base.base.base.id, 2891 dp_to_dig_port(intel_dp)->base.base.name)) 2892 return; 2893 2894 wait_panel_power_cycle(intel_dp); 2895 2896 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2897 pp = ilk_get_pp_control(intel_dp); 2898 if (IS_GEN(dev_priv, 5)) { 2899 /* ILK workaround: disable reset around power sequence */ 2900 pp &= ~PANEL_POWER_RESET; 2901 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2902 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2903 } 2904 2905 pp |= PANEL_POWER_ON; 2906 if (!IS_GEN(dev_priv, 5)) 2907 pp |= PANEL_POWER_RESET; 2908 2909 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2910 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2911 2912 wait_panel_on(intel_dp); 2913 intel_dp->last_power_on = jiffies; 2914 2915 if (IS_GEN(dev_priv, 5)) { 2916 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 2917 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2918 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2919 } 2920 } 2921 2922 void intel_edp_panel_on(struct intel_dp *intel_dp) 2923 { 2924 intel_wakeref_t wakeref; 2925 2926 if (!intel_dp_is_edp(intel_dp)) 2927 return; 2928 2929 with_pps_lock(intel_dp, wakeref) 2930 edp_panel_on(intel_dp); 2931 } 2932 2933 2934 static void edp_panel_off(struct intel_dp *intel_dp) 2935 { 2936 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2937 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2938 u32 pp; 2939 i915_reg_t pp_ctrl_reg; 2940 2941 lockdep_assert_held(&dev_priv->pps_mutex); 2942 2943 if (!intel_dp_is_edp(intel_dp)) 2944 return; 2945 2946 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n", 2947 dig_port->base.base.base.id, dig_port->base.base.name); 2948 2949 drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd, 2950 "Need [ENCODER:%d:%s] VDD to turn off panel\n", 2951 dig_port->base.base.base.id, dig_port->base.base.name); 2952 2953 pp = ilk_get_pp_control(intel_dp); 2954 /* We need to switch off panel power _and_ force vdd, for otherwise some 2955 * panels get very unhappy and cease to work. */ 2956 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 2957 EDP_BLC_ENABLE); 2958 2959 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2960 2961 intel_dp->want_panel_vdd = false; 2962 2963 intel_de_write(dev_priv, pp_ctrl_reg, pp); 2964 intel_de_posting_read(dev_priv, pp_ctrl_reg); 2965 2966 wait_panel_off(intel_dp); 2967 intel_dp->panel_power_off_time = ktime_get_boottime(); 2968 2969 /* We got a reference when we enabled the VDD. */ 2970 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 2971 } 2972 2973 void intel_edp_panel_off(struct intel_dp *intel_dp) 2974 { 2975 intel_wakeref_t wakeref; 2976 2977 if (!intel_dp_is_edp(intel_dp)) 2978 return; 2979 2980 with_pps_lock(intel_dp, wakeref) 2981 edp_panel_off(intel_dp); 2982 } 2983 2984 /* Enable backlight in the panel power control. */ 2985 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 2986 { 2987 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2988 intel_wakeref_t wakeref; 2989 2990 /* 2991 * If we enable the backlight right away following a panel power 2992 * on, we may see slight flicker as the panel syncs with the eDP 2993 * link. So delay a bit to make sure the image is solid before 2994 * allowing it to appear. 2995 */ 2996 wait_backlight_on(intel_dp); 2997 2998 with_pps_lock(intel_dp, wakeref) { 2999 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3000 u32 pp; 3001 3002 pp = ilk_get_pp_control(intel_dp); 3003 pp |= EDP_BLC_ENABLE; 3004 3005 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3006 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3007 } 3008 } 3009 3010 /* Enable backlight PWM and backlight PP control. */ 3011 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 3012 const struct drm_connector_state *conn_state) 3013 { 3014 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); 3015 3016 if (!intel_dp_is_edp(intel_dp)) 3017 return; 3018 3019 DRM_DEBUG_KMS("\n"); 3020 3021 intel_panel_enable_backlight(crtc_state, conn_state); 3022 _intel_edp_backlight_on(intel_dp); 3023 } 3024 3025 /* Disable backlight in the panel power control. */ 3026 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 3027 { 3028 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3029 intel_wakeref_t wakeref; 3030 3031 if (!intel_dp_is_edp(intel_dp)) 3032 return; 3033 3034 with_pps_lock(intel_dp, wakeref) { 3035 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3036 u32 pp; 3037 3038 pp = ilk_get_pp_control(intel_dp); 3039 pp &= ~EDP_BLC_ENABLE; 3040 3041 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3042 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3043 } 3044 3045 intel_dp->last_backlight_off = jiffies; 3046 edp_wait_backlight_off(intel_dp); 3047 } 3048 3049 /* Disable backlight PP control and backlight PWM. */ 3050 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 3051 { 3052 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); 3053 3054 if (!intel_dp_is_edp(intel_dp)) 3055 return; 3056 3057 DRM_DEBUG_KMS("\n"); 3058 3059 _intel_edp_backlight_off(intel_dp); 3060 intel_panel_disable_backlight(old_conn_state); 3061 } 3062 3063 /* 3064 * Hook for controlling the panel power control backlight through the bl_power 3065 * sysfs attribute. Take care to handle multiple calls. 3066 */ 3067 static void intel_edp_backlight_power(struct intel_connector *connector, 3068 bool enable) 3069 { 3070 struct intel_dp *intel_dp = intel_attached_dp(connector); 3071 intel_wakeref_t wakeref; 3072 bool is_enabled; 3073 3074 is_enabled = false; 3075 with_pps_lock(intel_dp, wakeref) 3076 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 3077 if (is_enabled == enable) 3078 return; 3079 3080 DRM_DEBUG_KMS("panel power control backlight %s\n", 3081 enable ? "enable" : "disable"); 3082 3083 if (enable) 3084 _intel_edp_backlight_on(intel_dp); 3085 else 3086 _intel_edp_backlight_off(intel_dp); 3087 } 3088 3089 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 3090 { 3091 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3092 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3093 bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN; 3094 3095 I915_STATE_WARN(cur_state != state, 3096 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", 3097 dig_port->base.base.base.id, dig_port->base.base.name, 3098 onoff(state), onoff(cur_state)); 3099 } 3100 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 3101 3102 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 3103 { 3104 bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE; 3105 3106 I915_STATE_WARN(cur_state != state, 3107 "eDP PLL state assertion failure (expected %s, current %s)\n", 3108 onoff(state), onoff(cur_state)); 3109 } 3110 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 3111 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 3112 3113 static void ilk_edp_pll_on(struct intel_dp *intel_dp, 3114 const struct intel_crtc_state *pipe_config) 3115 { 3116 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3117 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3118 3119 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 3120 assert_dp_port_disabled(intel_dp); 3121 assert_edp_pll_disabled(dev_priv); 3122 3123 drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n", 3124 pipe_config->port_clock); 3125 3126 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 3127 3128 if (pipe_config->port_clock == 162000) 3129 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 3130 else 3131 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 3132 3133 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3134 intel_de_posting_read(dev_priv, DP_A); 3135 udelay(500); 3136 3137 /* 3138 * [DevILK] Work around required when enabling DP PLL 3139 * while a pipe is enabled going to FDI: 3140 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 3141 * 2. Program DP PLL enable 3142 */ 3143 if (IS_GEN(dev_priv, 5)) 3144 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 3145 3146 intel_dp->DP |= DP_PLL_ENABLE; 3147 3148 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3149 intel_de_posting_read(dev_priv, DP_A); 3150 udelay(200); 3151 } 3152 3153 static void ilk_edp_pll_off(struct intel_dp *intel_dp, 3154 const struct intel_crtc_state *old_crtc_state) 3155 { 3156 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3157 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3158 3159 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 3160 assert_dp_port_disabled(intel_dp); 3161 assert_edp_pll_enabled(dev_priv); 3162 3163 drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n"); 3164 3165 intel_dp->DP &= ~DP_PLL_ENABLE; 3166 3167 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3168 intel_de_posting_read(dev_priv, DP_A); 3169 udelay(200); 3170 } 3171 3172 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3173 { 3174 /* 3175 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3176 * be capable of signalling downstream hpd with a long pulse. 3177 * Whether or not that means D3 is safe to use is not clear, 3178 * but let's assume so until proven otherwise. 3179 * 3180 * FIXME should really check all downstream ports... 3181 */ 3182 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3183 drm_dp_is_branch(intel_dp->dpcd) && 3184 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3185 } 3186 3187 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3188 const struct intel_crtc_state *crtc_state, 3189 bool enable) 3190 { 3191 int ret; 3192 3193 if (!crtc_state->dsc.compression_enable) 3194 return; 3195 3196 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3197 enable ? DP_DECOMPRESSION_EN : 0); 3198 if (ret < 0) 3199 DRM_DEBUG_KMS("Failed to %s sink decompression state\n", 3200 enable ? "enable" : "disable"); 3201 } 3202 3203 /* If the sink supports it, try to set the power state appropriately */ 3204 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 3205 { 3206 int ret, i; 3207 3208 /* Should have a valid DPCD by this point */ 3209 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3210 return; 3211 3212 if (mode != DRM_MODE_DPMS_ON) { 3213 if (downstream_hpd_needs_d0(intel_dp)) 3214 return; 3215 3216 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3217 DP_SET_POWER_D3); 3218 } else { 3219 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3220 3221 /* 3222 * When turning on, we need to retry for 1ms to give the sink 3223 * time to wake up. 3224 */ 3225 for (i = 0; i < 3; i++) { 3226 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3227 DP_SET_POWER_D0); 3228 if (ret == 1) 3229 break; 3230 msleep(1); 3231 } 3232 3233 if (ret == 1 && lspcon->active) 3234 lspcon_wait_pcon_mode(lspcon); 3235 } 3236 3237 if (ret != 1) 3238 DRM_DEBUG_KMS("failed to %s sink power state\n", 3239 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 3240 } 3241 3242 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3243 enum port port, enum pipe *pipe) 3244 { 3245 enum pipe p; 3246 3247 for_each_pipe(dev_priv, p) { 3248 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p)); 3249 3250 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3251 *pipe = p; 3252 return true; 3253 } 3254 } 3255 3256 drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n", 3257 port_name(port)); 3258 3259 /* must initialize pipe to something for the asserts */ 3260 *pipe = PIPE_A; 3261 3262 return false; 3263 } 3264 3265 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3266 i915_reg_t dp_reg, enum port port, 3267 enum pipe *pipe) 3268 { 3269 bool ret; 3270 u32 val; 3271 3272 val = intel_de_read(dev_priv, dp_reg); 3273 3274 ret = val & DP_PORT_EN; 3275 3276 /* asserts want to know the pipe even if the port is disabled */ 3277 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3278 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3279 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3280 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3281 else if (IS_CHERRYVIEW(dev_priv)) 3282 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3283 else 3284 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3285 3286 return ret; 3287 } 3288 3289 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3290 enum pipe *pipe) 3291 { 3292 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3293 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3294 intel_wakeref_t wakeref; 3295 bool ret; 3296 3297 wakeref = intel_display_power_get_if_enabled(dev_priv, 3298 encoder->power_domain); 3299 if (!wakeref) 3300 return false; 3301 3302 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3303 encoder->port, pipe); 3304 3305 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3306 3307 return ret; 3308 } 3309 3310 static void intel_dp_get_config(struct intel_encoder *encoder, 3311 struct intel_crtc_state *pipe_config) 3312 { 3313 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3314 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3315 u32 tmp, flags = 0; 3316 enum port port = encoder->port; 3317 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3318 3319 if (encoder->type == INTEL_OUTPUT_EDP) 3320 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3321 else 3322 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3323 3324 tmp = intel_de_read(dev_priv, intel_dp->output_reg); 3325 3326 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3327 3328 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3329 u32 trans_dp = intel_de_read(dev_priv, 3330 TRANS_DP_CTL(crtc->pipe)); 3331 3332 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3333 flags |= DRM_MODE_FLAG_PHSYNC; 3334 else 3335 flags |= DRM_MODE_FLAG_NHSYNC; 3336 3337 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3338 flags |= DRM_MODE_FLAG_PVSYNC; 3339 else 3340 flags |= DRM_MODE_FLAG_NVSYNC; 3341 } else { 3342 if (tmp & DP_SYNC_HS_HIGH) 3343 flags |= DRM_MODE_FLAG_PHSYNC; 3344 else 3345 flags |= DRM_MODE_FLAG_NHSYNC; 3346 3347 if (tmp & DP_SYNC_VS_HIGH) 3348 flags |= DRM_MODE_FLAG_PVSYNC; 3349 else 3350 flags |= DRM_MODE_FLAG_NVSYNC; 3351 } 3352 3353 pipe_config->hw.adjusted_mode.flags |= flags; 3354 3355 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3356 pipe_config->limited_color_range = true; 3357 3358 pipe_config->lane_count = 3359 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3360 3361 intel_dp_get_m_n(crtc, pipe_config); 3362 3363 if (port == PORT_A) { 3364 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3365 pipe_config->port_clock = 162000; 3366 else 3367 pipe_config->port_clock = 270000; 3368 } 3369 3370 pipe_config->hw.adjusted_mode.crtc_clock = 3371 intel_dotclock_calculate(pipe_config->port_clock, 3372 &pipe_config->dp_m_n); 3373 3374 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3375 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3376 /* 3377 * This is a big fat ugly hack. 3378 * 3379 * Some machines in UEFI boot mode provide us a VBT that has 18 3380 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3381 * unknown we fail to light up. Yet the same BIOS boots up with 3382 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3383 * max, not what it tells us to use. 3384 * 3385 * Note: This will still be broken if the eDP panel is not lit 3386 * up by the BIOS, and thus we can't get the mode at module 3387 * load. 3388 */ 3389 drm_dbg_kms(&dev_priv->drm, 3390 "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3391 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3392 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3393 } 3394 } 3395 3396 static void intel_disable_dp(struct intel_encoder *encoder, 3397 const struct intel_crtc_state *old_crtc_state, 3398 const struct drm_connector_state *old_conn_state) 3399 { 3400 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3401 3402 intel_dp->link_trained = false; 3403 3404 if (old_crtc_state->has_audio) 3405 intel_audio_codec_disable(encoder, 3406 old_crtc_state, old_conn_state); 3407 3408 /* Make sure the panel is off before trying to change the mode. But also 3409 * ensure that we have vdd while we switch off the panel. */ 3410 intel_edp_panel_vdd_on(intel_dp); 3411 intel_edp_backlight_off(old_conn_state); 3412 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3413 intel_edp_panel_off(intel_dp); 3414 } 3415 3416 static void g4x_disable_dp(struct intel_encoder *encoder, 3417 const struct intel_crtc_state *old_crtc_state, 3418 const struct drm_connector_state *old_conn_state) 3419 { 3420 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3421 } 3422 3423 static void vlv_disable_dp(struct intel_encoder *encoder, 3424 const struct intel_crtc_state *old_crtc_state, 3425 const struct drm_connector_state *old_conn_state) 3426 { 3427 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3428 } 3429 3430 static void g4x_post_disable_dp(struct intel_encoder *encoder, 3431 const struct intel_crtc_state *old_crtc_state, 3432 const struct drm_connector_state *old_conn_state) 3433 { 3434 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3435 enum port port = encoder->port; 3436 3437 /* 3438 * Bspec does not list a specific disable sequence for g4x DP. 3439 * Follow the ilk+ sequence (disable pipe before the port) for 3440 * g4x DP as it does not suffer from underruns like the normal 3441 * g4x modeset sequence (disable pipe after the port). 3442 */ 3443 intel_dp_link_down(encoder, old_crtc_state); 3444 3445 /* Only ilk+ has port A */ 3446 if (port == PORT_A) 3447 ilk_edp_pll_off(intel_dp, old_crtc_state); 3448 } 3449 3450 static void vlv_post_disable_dp(struct intel_encoder *encoder, 3451 const struct intel_crtc_state *old_crtc_state, 3452 const struct drm_connector_state *old_conn_state) 3453 { 3454 intel_dp_link_down(encoder, old_crtc_state); 3455 } 3456 3457 static void chv_post_disable_dp(struct intel_encoder *encoder, 3458 const struct intel_crtc_state *old_crtc_state, 3459 const struct drm_connector_state *old_conn_state) 3460 { 3461 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3462 3463 intel_dp_link_down(encoder, old_crtc_state); 3464 3465 vlv_dpio_get(dev_priv); 3466 3467 /* Assert data lane reset */ 3468 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3469 3470 vlv_dpio_put(dev_priv); 3471 } 3472 3473 static void 3474 _intel_dp_set_link_train(struct intel_dp *intel_dp, 3475 u32 *DP, 3476 u8 dp_train_pat) 3477 { 3478 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3479 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3480 enum port port = intel_dig_port->base.port; 3481 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 3482 3483 if (dp_train_pat & train_pat_mask) 3484 drm_dbg_kms(&dev_priv->drm, 3485 "Using DP training pattern TPS%d\n", 3486 dp_train_pat & train_pat_mask); 3487 3488 if (HAS_DDI(dev_priv)) { 3489 u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl); 3490 3491 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) 3492 temp |= DP_TP_CTL_SCRAMBLE_DISABLE; 3493 else 3494 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; 3495 3496 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3497 switch (dp_train_pat & train_pat_mask) { 3498 case DP_TRAINING_PATTERN_DISABLE: 3499 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; 3500 3501 break; 3502 case DP_TRAINING_PATTERN_1: 3503 temp |= DP_TP_CTL_LINK_TRAIN_PAT1; 3504 break; 3505 case DP_TRAINING_PATTERN_2: 3506 temp |= DP_TP_CTL_LINK_TRAIN_PAT2; 3507 break; 3508 case DP_TRAINING_PATTERN_3: 3509 temp |= DP_TP_CTL_LINK_TRAIN_PAT3; 3510 break; 3511 case DP_TRAINING_PATTERN_4: 3512 temp |= DP_TP_CTL_LINK_TRAIN_PAT4; 3513 break; 3514 } 3515 intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp); 3516 3517 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3518 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3519 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3520 3521 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3522 case DP_TRAINING_PATTERN_DISABLE: 3523 *DP |= DP_LINK_TRAIN_OFF_CPT; 3524 break; 3525 case DP_TRAINING_PATTERN_1: 3526 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3527 break; 3528 case DP_TRAINING_PATTERN_2: 3529 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3530 break; 3531 case DP_TRAINING_PATTERN_3: 3532 drm_dbg_kms(&dev_priv->drm, 3533 "TPS3 not supported, using TPS2 instead\n"); 3534 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3535 break; 3536 } 3537 3538 } else { 3539 *DP &= ~DP_LINK_TRAIN_MASK; 3540 3541 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3542 case DP_TRAINING_PATTERN_DISABLE: 3543 *DP |= DP_LINK_TRAIN_OFF; 3544 break; 3545 case DP_TRAINING_PATTERN_1: 3546 *DP |= DP_LINK_TRAIN_PAT_1; 3547 break; 3548 case DP_TRAINING_PATTERN_2: 3549 *DP |= DP_LINK_TRAIN_PAT_2; 3550 break; 3551 case DP_TRAINING_PATTERN_3: 3552 drm_dbg_kms(&dev_priv->drm, 3553 "TPS3 not supported, using TPS2 instead\n"); 3554 *DP |= DP_LINK_TRAIN_PAT_2; 3555 break; 3556 } 3557 } 3558 } 3559 3560 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3561 const struct intel_crtc_state *old_crtc_state) 3562 { 3563 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3564 3565 /* enable with pattern 1 (as per spec) */ 3566 3567 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3568 3569 /* 3570 * Magic for VLV/CHV. We _must_ first set up the register 3571 * without actually enabling the port, and then do another 3572 * write to enable the port. Otherwise link training will 3573 * fail when the power sequencer is freshly used for this port. 3574 */ 3575 intel_dp->DP |= DP_PORT_EN; 3576 if (old_crtc_state->has_audio) 3577 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3578 3579 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 3580 intel_de_posting_read(dev_priv, intel_dp->output_reg); 3581 } 3582 3583 static void intel_enable_dp(struct intel_encoder *encoder, 3584 const struct intel_crtc_state *pipe_config, 3585 const struct drm_connector_state *conn_state) 3586 { 3587 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3588 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3589 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3590 u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg); 3591 enum pipe pipe = crtc->pipe; 3592 intel_wakeref_t wakeref; 3593 3594 if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN)) 3595 return; 3596 3597 with_pps_lock(intel_dp, wakeref) { 3598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3599 vlv_init_panel_power_sequencer(encoder, pipe_config); 3600 3601 intel_dp_enable_port(intel_dp, pipe_config); 3602 3603 edp_panel_vdd_on(intel_dp); 3604 edp_panel_on(intel_dp); 3605 edp_panel_vdd_off(intel_dp, true); 3606 } 3607 3608 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3609 unsigned int lane_mask = 0x0; 3610 3611 if (IS_CHERRYVIEW(dev_priv)) 3612 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3613 3614 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3615 lane_mask); 3616 } 3617 3618 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3619 intel_dp_start_link_train(intel_dp); 3620 intel_dp_stop_link_train(intel_dp); 3621 3622 if (pipe_config->has_audio) { 3623 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n", 3624 pipe_name(pipe)); 3625 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3626 } 3627 } 3628 3629 static void g4x_enable_dp(struct intel_encoder *encoder, 3630 const struct intel_crtc_state *pipe_config, 3631 const struct drm_connector_state *conn_state) 3632 { 3633 intel_enable_dp(encoder, pipe_config, conn_state); 3634 intel_edp_backlight_on(pipe_config, conn_state); 3635 } 3636 3637 static void vlv_enable_dp(struct intel_encoder *encoder, 3638 const struct intel_crtc_state *pipe_config, 3639 const struct drm_connector_state *conn_state) 3640 { 3641 intel_edp_backlight_on(pipe_config, conn_state); 3642 } 3643 3644 static void g4x_pre_enable_dp(struct intel_encoder *encoder, 3645 const struct intel_crtc_state *pipe_config, 3646 const struct drm_connector_state *conn_state) 3647 { 3648 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3649 enum port port = encoder->port; 3650 3651 intel_dp_prepare(encoder, pipe_config); 3652 3653 /* Only ilk+ has port A */ 3654 if (port == PORT_A) 3655 ilk_edp_pll_on(intel_dp, pipe_config); 3656 } 3657 3658 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3659 { 3660 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3661 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3662 enum pipe pipe = intel_dp->pps_pipe; 3663 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3664 3665 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); 3666 3667 if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B)) 3668 return; 3669 3670 edp_panel_vdd_off_sync(intel_dp); 3671 3672 /* 3673 * VLV seems to get confused when multiple power sequencers 3674 * have the same port selected (even if only one has power/vdd 3675 * enabled). The failure manifests as vlv_wait_port_ready() failing 3676 * CHV on the other hand doesn't seem to mind having the same port 3677 * selected in multiple power sequencers, but let's clear the 3678 * port select always when logically disconnecting a power sequencer 3679 * from a port. 3680 */ 3681 drm_dbg_kms(&dev_priv->drm, 3682 "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n", 3683 pipe_name(pipe), intel_dig_port->base.base.base.id, 3684 intel_dig_port->base.base.name); 3685 intel_de_write(dev_priv, pp_on_reg, 0); 3686 intel_de_posting_read(dev_priv, pp_on_reg); 3687 3688 intel_dp->pps_pipe = INVALID_PIPE; 3689 } 3690 3691 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3692 enum pipe pipe) 3693 { 3694 struct intel_encoder *encoder; 3695 3696 lockdep_assert_held(&dev_priv->pps_mutex); 3697 3698 for_each_intel_dp(&dev_priv->drm, encoder) { 3699 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3700 3701 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe, 3702 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n", 3703 pipe_name(pipe), encoder->base.base.id, 3704 encoder->base.name); 3705 3706 if (intel_dp->pps_pipe != pipe) 3707 continue; 3708 3709 drm_dbg_kms(&dev_priv->drm, 3710 "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n", 3711 pipe_name(pipe), encoder->base.base.id, 3712 encoder->base.name); 3713 3714 /* make sure vdd is off before we steal it */ 3715 vlv_detach_power_sequencer(intel_dp); 3716 } 3717 } 3718 3719 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3720 const struct intel_crtc_state *crtc_state) 3721 { 3722 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3723 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3724 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3725 3726 lockdep_assert_held(&dev_priv->pps_mutex); 3727 3728 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); 3729 3730 if (intel_dp->pps_pipe != INVALID_PIPE && 3731 intel_dp->pps_pipe != crtc->pipe) { 3732 /* 3733 * If another power sequencer was being used on this 3734 * port previously make sure to turn off vdd there while 3735 * we still have control of it. 3736 */ 3737 vlv_detach_power_sequencer(intel_dp); 3738 } 3739 3740 /* 3741 * We may be stealing the power 3742 * sequencer from another port. 3743 */ 3744 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3745 3746 intel_dp->active_pipe = crtc->pipe; 3747 3748 if (!intel_dp_is_edp(intel_dp)) 3749 return; 3750 3751 /* now it's all ours */ 3752 intel_dp->pps_pipe = crtc->pipe; 3753 3754 drm_dbg_kms(&dev_priv->drm, 3755 "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n", 3756 pipe_name(intel_dp->pps_pipe), encoder->base.base.id, 3757 encoder->base.name); 3758 3759 /* init power sequencer on this pipe and port */ 3760 intel_dp_init_panel_power_sequencer(intel_dp); 3761 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3762 } 3763 3764 static void vlv_pre_enable_dp(struct intel_encoder *encoder, 3765 const struct intel_crtc_state *pipe_config, 3766 const struct drm_connector_state *conn_state) 3767 { 3768 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3769 3770 intel_enable_dp(encoder, pipe_config, conn_state); 3771 } 3772 3773 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, 3774 const struct intel_crtc_state *pipe_config, 3775 const struct drm_connector_state *conn_state) 3776 { 3777 intel_dp_prepare(encoder, pipe_config); 3778 3779 vlv_phy_pre_pll_enable(encoder, pipe_config); 3780 } 3781 3782 static void chv_pre_enable_dp(struct intel_encoder *encoder, 3783 const struct intel_crtc_state *pipe_config, 3784 const struct drm_connector_state *conn_state) 3785 { 3786 chv_phy_pre_encoder_enable(encoder, pipe_config); 3787 3788 intel_enable_dp(encoder, pipe_config, conn_state); 3789 3790 /* Second common lane will stay alive on its own now */ 3791 chv_phy_release_cl2_override(encoder); 3792 } 3793 3794 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, 3795 const struct intel_crtc_state *pipe_config, 3796 const struct drm_connector_state *conn_state) 3797 { 3798 intel_dp_prepare(encoder, pipe_config); 3799 3800 chv_phy_pre_pll_enable(encoder, pipe_config); 3801 } 3802 3803 static void chv_dp_post_pll_disable(struct intel_encoder *encoder, 3804 const struct intel_crtc_state *old_crtc_state, 3805 const struct drm_connector_state *old_conn_state) 3806 { 3807 chv_phy_post_pll_disable(encoder, old_crtc_state); 3808 } 3809 3810 /* 3811 * Fetch AUX CH registers 0x202 - 0x207 which contain 3812 * link status information 3813 */ 3814 bool 3815 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3816 { 3817 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 3818 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 3819 } 3820 3821 /* These are source-specific values. */ 3822 u8 3823 intel_dp_voltage_max(struct intel_dp *intel_dp) 3824 { 3825 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3826 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3827 enum port port = encoder->port; 3828 3829 if (HAS_DDI(dev_priv)) 3830 return intel_ddi_dp_voltage_max(encoder); 3831 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3832 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3833 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3834 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3835 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3836 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3837 else 3838 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3839 } 3840 3841 u8 3842 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) 3843 { 3844 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3845 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3846 enum port port = encoder->port; 3847 3848 if (HAS_DDI(dev_priv)) { 3849 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); 3850 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3851 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3852 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3853 return DP_TRAIN_PRE_EMPH_LEVEL_3; 3854 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3855 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3856 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3857 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3858 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3859 default: 3860 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3861 } 3862 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3863 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3864 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3865 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3866 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3867 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3868 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3869 default: 3870 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3871 } 3872 } else { 3873 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3874 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3875 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3876 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3877 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3878 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3879 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3880 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3881 default: 3882 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3883 } 3884 } 3885 } 3886 3887 static u32 vlv_signal_levels(struct intel_dp *intel_dp) 3888 { 3889 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3890 unsigned long demph_reg_value, preemph_reg_value, 3891 uniqtranscale_reg_value; 3892 u8 train_set = intel_dp->train_set[0]; 3893 3894 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3895 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3896 preemph_reg_value = 0x0004000; 3897 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3898 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3899 demph_reg_value = 0x2B405555; 3900 uniqtranscale_reg_value = 0x552AB83A; 3901 break; 3902 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3903 demph_reg_value = 0x2B404040; 3904 uniqtranscale_reg_value = 0x5548B83A; 3905 break; 3906 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3907 demph_reg_value = 0x2B245555; 3908 uniqtranscale_reg_value = 0x5560B83A; 3909 break; 3910 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3911 demph_reg_value = 0x2B405555; 3912 uniqtranscale_reg_value = 0x5598DA3A; 3913 break; 3914 default: 3915 return 0; 3916 } 3917 break; 3918 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3919 preemph_reg_value = 0x0002000; 3920 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3921 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3922 demph_reg_value = 0x2B404040; 3923 uniqtranscale_reg_value = 0x5552B83A; 3924 break; 3925 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3926 demph_reg_value = 0x2B404848; 3927 uniqtranscale_reg_value = 0x5580B83A; 3928 break; 3929 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3930 demph_reg_value = 0x2B404040; 3931 uniqtranscale_reg_value = 0x55ADDA3A; 3932 break; 3933 default: 3934 return 0; 3935 } 3936 break; 3937 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3938 preemph_reg_value = 0x0000000; 3939 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3940 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3941 demph_reg_value = 0x2B305555; 3942 uniqtranscale_reg_value = 0x5570B83A; 3943 break; 3944 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3945 demph_reg_value = 0x2B2B4040; 3946 uniqtranscale_reg_value = 0x55ADDA3A; 3947 break; 3948 default: 3949 return 0; 3950 } 3951 break; 3952 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3953 preemph_reg_value = 0x0006000; 3954 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3955 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3956 demph_reg_value = 0x1B405555; 3957 uniqtranscale_reg_value = 0x55ADDA3A; 3958 break; 3959 default: 3960 return 0; 3961 } 3962 break; 3963 default: 3964 return 0; 3965 } 3966 3967 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 3968 uniqtranscale_reg_value, 0); 3969 3970 return 0; 3971 } 3972 3973 static u32 chv_signal_levels(struct intel_dp *intel_dp) 3974 { 3975 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3976 u32 deemph_reg_value, margin_reg_value; 3977 bool uniq_trans_scale = false; 3978 u8 train_set = intel_dp->train_set[0]; 3979 3980 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3981 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3982 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3983 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3984 deemph_reg_value = 128; 3985 margin_reg_value = 52; 3986 break; 3987 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3988 deemph_reg_value = 128; 3989 margin_reg_value = 77; 3990 break; 3991 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3992 deemph_reg_value = 128; 3993 margin_reg_value = 102; 3994 break; 3995 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3996 deemph_reg_value = 128; 3997 margin_reg_value = 154; 3998 uniq_trans_scale = true; 3999 break; 4000 default: 4001 return 0; 4002 } 4003 break; 4004 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4005 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4006 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4007 deemph_reg_value = 85; 4008 margin_reg_value = 78; 4009 break; 4010 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4011 deemph_reg_value = 85; 4012 margin_reg_value = 116; 4013 break; 4014 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4015 deemph_reg_value = 85; 4016 margin_reg_value = 154; 4017 break; 4018 default: 4019 return 0; 4020 } 4021 break; 4022 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4023 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4024 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4025 deemph_reg_value = 64; 4026 margin_reg_value = 104; 4027 break; 4028 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4029 deemph_reg_value = 64; 4030 margin_reg_value = 154; 4031 break; 4032 default: 4033 return 0; 4034 } 4035 break; 4036 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4037 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4038 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4039 deemph_reg_value = 43; 4040 margin_reg_value = 154; 4041 break; 4042 default: 4043 return 0; 4044 } 4045 break; 4046 default: 4047 return 0; 4048 } 4049 4050 chv_set_phy_signal_level(encoder, deemph_reg_value, 4051 margin_reg_value, uniq_trans_scale); 4052 4053 return 0; 4054 } 4055 4056 static u32 4057 g4x_signal_levels(u8 train_set) 4058 { 4059 u32 signal_levels = 0; 4060 4061 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4062 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4063 default: 4064 signal_levels |= DP_VOLTAGE_0_4; 4065 break; 4066 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4067 signal_levels |= DP_VOLTAGE_0_6; 4068 break; 4069 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4070 signal_levels |= DP_VOLTAGE_0_8; 4071 break; 4072 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4073 signal_levels |= DP_VOLTAGE_1_2; 4074 break; 4075 } 4076 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4077 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4078 default: 4079 signal_levels |= DP_PRE_EMPHASIS_0; 4080 break; 4081 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4082 signal_levels |= DP_PRE_EMPHASIS_3_5; 4083 break; 4084 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4085 signal_levels |= DP_PRE_EMPHASIS_6; 4086 break; 4087 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4088 signal_levels |= DP_PRE_EMPHASIS_9_5; 4089 break; 4090 } 4091 return signal_levels; 4092 } 4093 4094 /* SNB CPU eDP voltage swing and pre-emphasis control */ 4095 static u32 4096 snb_cpu_edp_signal_levels(u8 train_set) 4097 { 4098 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4099 DP_TRAIN_PRE_EMPHASIS_MASK); 4100 switch (signal_levels) { 4101 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4102 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4103 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4104 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4105 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 4106 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4107 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4108 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 4109 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4110 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4111 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 4112 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4113 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4114 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 4115 default: 4116 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4117 "0x%x\n", signal_levels); 4118 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4119 } 4120 } 4121 4122 /* IVB CPU eDP voltage swing and pre-emphasis control */ 4123 static u32 4124 ivb_cpu_edp_signal_levels(u8 train_set) 4125 { 4126 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4127 DP_TRAIN_PRE_EMPHASIS_MASK); 4128 switch (signal_levels) { 4129 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4130 return EDP_LINK_TRAIN_400MV_0DB_IVB; 4131 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4132 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 4133 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4134 return EDP_LINK_TRAIN_400MV_6DB_IVB; 4135 4136 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4137 return EDP_LINK_TRAIN_600MV_0DB_IVB; 4138 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4139 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 4140 4141 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4142 return EDP_LINK_TRAIN_800MV_0DB_IVB; 4143 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4144 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 4145 4146 default: 4147 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4148 "0x%x\n", signal_levels); 4149 return EDP_LINK_TRAIN_500MV_0DB_IVB; 4150 } 4151 } 4152 4153 void 4154 intel_dp_set_signal_levels(struct intel_dp *intel_dp) 4155 { 4156 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4157 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4158 enum port port = intel_dig_port->base.port; 4159 u32 signal_levels, mask = 0; 4160 u8 train_set = intel_dp->train_set[0]; 4161 4162 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) { 4163 signal_levels = bxt_signal_levels(intel_dp); 4164 } else if (HAS_DDI(dev_priv)) { 4165 signal_levels = ddi_signal_levels(intel_dp); 4166 mask = DDI_BUF_EMP_MASK; 4167 } else if (IS_CHERRYVIEW(dev_priv)) { 4168 signal_levels = chv_signal_levels(intel_dp); 4169 } else if (IS_VALLEYVIEW(dev_priv)) { 4170 signal_levels = vlv_signal_levels(intel_dp); 4171 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 4172 signal_levels = ivb_cpu_edp_signal_levels(train_set); 4173 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 4174 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) { 4175 signal_levels = snb_cpu_edp_signal_levels(train_set); 4176 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 4177 } else { 4178 signal_levels = g4x_signal_levels(train_set); 4179 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; 4180 } 4181 4182 if (mask) 4183 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", 4184 signal_levels); 4185 4186 drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n", 4187 train_set & DP_TRAIN_VOLTAGE_SWING_MASK, 4188 train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : ""); 4189 drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n", 4190 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4191 DP_TRAIN_PRE_EMPHASIS_SHIFT, 4192 train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ? 4193 " (max)" : ""); 4194 4195 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; 4196 4197 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4198 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4199 } 4200 4201 void 4202 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4203 u8 dp_train_pat) 4204 { 4205 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4206 struct drm_i915_private *dev_priv = 4207 to_i915(intel_dig_port->base.base.dev); 4208 4209 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); 4210 4211 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4212 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4213 } 4214 4215 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 4216 { 4217 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4218 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4219 enum port port = intel_dig_port->base.port; 4220 u32 val; 4221 4222 if (!HAS_DDI(dev_priv)) 4223 return; 4224 4225 val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl); 4226 val &= ~DP_TP_CTL_LINK_TRAIN_MASK; 4227 val |= DP_TP_CTL_LINK_TRAIN_IDLE; 4228 intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val); 4229 4230 /* 4231 * Until TGL on PORT_A we can have only eDP in SST mode. There the only 4232 * reason we need to set idle transmission mode is to work around a HW 4233 * issue where we enable the pipe while not in idle link-training mode. 4234 * In this case there is requirement to wait for a minimum number of 4235 * idle patterns to be sent. 4236 */ 4237 if (port == PORT_A && INTEL_GEN(dev_priv) < 12) 4238 return; 4239 4240 if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status, 4241 DP_TP_STATUS_IDLE_DONE, 1)) 4242 drm_err(&dev_priv->drm, 4243 "Timed out waiting for DP idle patterns\n"); 4244 } 4245 4246 static void 4247 intel_dp_link_down(struct intel_encoder *encoder, 4248 const struct intel_crtc_state *old_crtc_state) 4249 { 4250 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4251 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4252 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4253 enum port port = encoder->port; 4254 u32 DP = intel_dp->DP; 4255 4256 if (drm_WARN_ON(&dev_priv->drm, 4257 (intel_de_read(dev_priv, intel_dp->output_reg) & 4258 DP_PORT_EN) == 0)) 4259 return; 4260 4261 drm_dbg_kms(&dev_priv->drm, "\n"); 4262 4263 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4264 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4265 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4266 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4267 } else { 4268 DP &= ~DP_LINK_TRAIN_MASK; 4269 DP |= DP_LINK_TRAIN_PAT_IDLE; 4270 } 4271 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4272 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4273 4274 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4275 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4276 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4277 4278 /* 4279 * HW workaround for IBX, we need to move the port 4280 * to transcoder A after disabling it to allow the 4281 * matching HDMI port to be enabled on transcoder A. 4282 */ 4283 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4284 /* 4285 * We get CPU/PCH FIFO underruns on the other pipe when 4286 * doing the workaround. Sweep them under the rug. 4287 */ 4288 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4289 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4290 4291 /* always enable with pattern 1 (as per spec) */ 4292 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4293 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4294 DP_LINK_TRAIN_PAT_1; 4295 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4296 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4297 4298 DP &= ~DP_PORT_EN; 4299 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4300 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4301 4302 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4303 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4304 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4305 } 4306 4307 msleep(intel_dp->panel_power_down_delay); 4308 4309 intel_dp->DP = DP; 4310 4311 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4312 intel_wakeref_t wakeref; 4313 4314 with_pps_lock(intel_dp, wakeref) 4315 intel_dp->active_pipe = INVALID_PIPE; 4316 } 4317 } 4318 4319 static void 4320 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4321 { 4322 u8 dpcd_ext[6]; 4323 4324 /* 4325 * Prior to DP1.3 the bit represented by 4326 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4327 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4328 * the true capability of the panel. The only way to check is to 4329 * then compare 0000h and 2200h. 4330 */ 4331 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4332 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4333 return; 4334 4335 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4336 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4337 DRM_ERROR("DPCD failed read at extended capabilities\n"); 4338 return; 4339 } 4340 4341 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4342 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n"); 4343 return; 4344 } 4345 4346 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4347 return; 4348 4349 DRM_DEBUG_KMS("Base DPCD: %*ph\n", 4350 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4351 4352 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4353 } 4354 4355 bool 4356 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4357 { 4358 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4359 sizeof(intel_dp->dpcd)) < 0) 4360 return false; /* aux transfer failed */ 4361 4362 intel_dp_extended_receiver_capabilities(intel_dp); 4363 4364 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); 4365 4366 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4367 } 4368 4369 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4370 { 4371 u8 dprx = 0; 4372 4373 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4374 &dprx) != 1) 4375 return false; 4376 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4377 } 4378 4379 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4380 { 4381 /* 4382 * Clear the cached register set to avoid using stale values 4383 * for the sinks that do not support DSC. 4384 */ 4385 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4386 4387 /* Clear fec_capable to avoid using stale values */ 4388 intel_dp->fec_capable = 0; 4389 4390 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4391 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4392 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4393 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4394 intel_dp->dsc_dpcd, 4395 sizeof(intel_dp->dsc_dpcd)) < 0) 4396 DRM_ERROR("Failed to read DPCD register 0x%x\n", 4397 DP_DSC_SUPPORT); 4398 4399 DRM_DEBUG_KMS("DSC DPCD: %*ph\n", 4400 (int)sizeof(intel_dp->dsc_dpcd), 4401 intel_dp->dsc_dpcd); 4402 4403 /* FEC is supported only on DP 1.4 */ 4404 if (!intel_dp_is_edp(intel_dp) && 4405 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4406 &intel_dp->fec_capable) < 0) 4407 DRM_ERROR("Failed to read FEC DPCD register\n"); 4408 4409 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable); 4410 } 4411 } 4412 4413 static bool 4414 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4415 { 4416 struct drm_i915_private *dev_priv = 4417 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4418 4419 /* this function is meant to be called only once */ 4420 drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0); 4421 4422 if (!intel_dp_read_dpcd(intel_dp)) 4423 return false; 4424 4425 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4426 drm_dp_is_branch(intel_dp->dpcd)); 4427 4428 /* 4429 * Read the eDP display control registers. 4430 * 4431 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4432 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4433 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4434 * method). The display control registers should read zero if they're 4435 * not supported anyway. 4436 */ 4437 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4438 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4439 sizeof(intel_dp->edp_dpcd)) 4440 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n", 4441 (int)sizeof(intel_dp->edp_dpcd), 4442 intel_dp->edp_dpcd); 4443 4444 /* 4445 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4446 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4447 */ 4448 intel_psr_init_dpcd(intel_dp); 4449 4450 /* Read the eDP 1.4+ supported link rates. */ 4451 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4452 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4453 int i; 4454 4455 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4456 sink_rates, sizeof(sink_rates)); 4457 4458 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4459 int val = le16_to_cpu(sink_rates[i]); 4460 4461 if (val == 0) 4462 break; 4463 4464 /* Value read multiplied by 200kHz gives the per-lane 4465 * link rate in kHz. The source rates are, however, 4466 * stored in terms of LS_Clk kHz. The full conversion 4467 * back to symbols is 4468 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4469 */ 4470 intel_dp->sink_rates[i] = (val * 200) / 10; 4471 } 4472 intel_dp->num_sink_rates = i; 4473 } 4474 4475 /* 4476 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4477 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4478 */ 4479 if (intel_dp->num_sink_rates) 4480 intel_dp->use_rate_select = true; 4481 else 4482 intel_dp_set_sink_rates(intel_dp); 4483 4484 intel_dp_set_common_rates(intel_dp); 4485 4486 /* Read the eDP DSC DPCD registers */ 4487 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4488 intel_dp_get_dsc_sink_cap(intel_dp); 4489 4490 return true; 4491 } 4492 4493 4494 static bool 4495 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4496 { 4497 if (!intel_dp_read_dpcd(intel_dp)) 4498 return false; 4499 4500 /* 4501 * Don't clobber cached eDP rates. Also skip re-reading 4502 * the OUI/ID since we know it won't change. 4503 */ 4504 if (!intel_dp_is_edp(intel_dp)) { 4505 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4506 drm_dp_is_branch(intel_dp->dpcd)); 4507 4508 intel_dp_set_sink_rates(intel_dp); 4509 intel_dp_set_common_rates(intel_dp); 4510 } 4511 4512 /* 4513 * Some eDP panels do not set a valid value for sink count, that is why 4514 * it don't care about read it here and in intel_edp_init_dpcd(). 4515 */ 4516 if (!intel_dp_is_edp(intel_dp) && 4517 !drm_dp_has_quirk(&intel_dp->desc, 0, 4518 DP_DPCD_QUIRK_NO_SINK_COUNT)) { 4519 u8 count; 4520 ssize_t r; 4521 4522 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4523 if (r < 1) 4524 return false; 4525 4526 /* 4527 * Sink count can change between short pulse hpd hence 4528 * a member variable in intel_dp will track any changes 4529 * between short pulse interrupts. 4530 */ 4531 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4532 4533 /* 4534 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4535 * a dongle is present but no display. Unless we require to know 4536 * if a dongle is present or not, we don't need to update 4537 * downstream port information. So, an early return here saves 4538 * time from performing other operations which are not required. 4539 */ 4540 if (!intel_dp->sink_count) 4541 return false; 4542 } 4543 4544 if (!drm_dp_is_branch(intel_dp->dpcd)) 4545 return true; /* native DP sink */ 4546 4547 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4548 return true; /* no per-port downstream info */ 4549 4550 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4551 intel_dp->downstream_ports, 4552 DP_MAX_DOWNSTREAM_PORTS) < 0) 4553 return false; /* downstream port status fetch failed */ 4554 4555 return true; 4556 } 4557 4558 static bool 4559 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4560 { 4561 u8 mstm_cap; 4562 4563 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4564 return false; 4565 4566 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4567 return false; 4568 4569 return mstm_cap & DP_MST_CAP; 4570 } 4571 4572 static bool 4573 intel_dp_can_mst(struct intel_dp *intel_dp) 4574 { 4575 return i915_modparams.enable_dp_mst && 4576 intel_dp->can_mst && 4577 intel_dp_sink_can_mst(intel_dp); 4578 } 4579 4580 static void 4581 intel_dp_configure_mst(struct intel_dp *intel_dp) 4582 { 4583 struct intel_encoder *encoder = 4584 &dp_to_dig_port(intel_dp)->base; 4585 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4586 4587 DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n", 4588 encoder->base.base.id, encoder->base.name, 4589 yesno(intel_dp->can_mst), yesno(sink_can_mst), 4590 yesno(i915_modparams.enable_dp_mst)); 4591 4592 if (!intel_dp->can_mst) 4593 return; 4594 4595 intel_dp->is_mst = sink_can_mst && 4596 i915_modparams.enable_dp_mst; 4597 4598 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4599 intel_dp->is_mst); 4600 } 4601 4602 static bool 4603 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4604 { 4605 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4606 sink_irq_vector, DP_DPRX_ESI_LEN) == 4607 DP_DPRX_ESI_LEN; 4608 } 4609 4610 bool 4611 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, 4612 const struct drm_connector_state *conn_state) 4613 { 4614 /* 4615 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication 4616 * of Color Encoding Format and Content Color Gamut], in order to 4617 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. 4618 */ 4619 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4620 return true; 4621 4622 switch (conn_state->colorspace) { 4623 case DRM_MODE_COLORIMETRY_SYCC_601: 4624 case DRM_MODE_COLORIMETRY_OPYCC_601: 4625 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4626 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4627 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4628 return true; 4629 default: 4630 break; 4631 } 4632 4633 return false; 4634 } 4635 4636 static void 4637 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp, 4638 const struct intel_crtc_state *crtc_state, 4639 const struct drm_connector_state *conn_state) 4640 { 4641 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4642 struct dp_sdp vsc_sdp = {}; 4643 4644 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */ 4645 vsc_sdp.sdp_header.HB0 = 0; 4646 vsc_sdp.sdp_header.HB1 = 0x7; 4647 4648 /* 4649 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 4650 * Colorimetry Format indication. 4651 */ 4652 vsc_sdp.sdp_header.HB2 = 0x5; 4653 4654 /* 4655 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/ 4656 * Colorimetry Format indication (HB2 = 05h). 4657 */ 4658 vsc_sdp.sdp_header.HB3 = 0x13; 4659 4660 /* DP 1.4a spec, Table 2-120 */ 4661 switch (crtc_state->output_format) { 4662 case INTEL_OUTPUT_FORMAT_YCBCR444: 4663 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */ 4664 break; 4665 case INTEL_OUTPUT_FORMAT_YCBCR420: 4666 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */ 4667 break; 4668 case INTEL_OUTPUT_FORMAT_RGB: 4669 default: 4670 /* RGB: DB16[7:4] = 0h */ 4671 break; 4672 } 4673 4674 switch (conn_state->colorspace) { 4675 case DRM_MODE_COLORIMETRY_BT709_YCC: 4676 vsc_sdp.db[16] |= 0x1; 4677 break; 4678 case DRM_MODE_COLORIMETRY_XVYCC_601: 4679 vsc_sdp.db[16] |= 0x2; 4680 break; 4681 case DRM_MODE_COLORIMETRY_XVYCC_709: 4682 vsc_sdp.db[16] |= 0x3; 4683 break; 4684 case DRM_MODE_COLORIMETRY_SYCC_601: 4685 vsc_sdp.db[16] |= 0x4; 4686 break; 4687 case DRM_MODE_COLORIMETRY_OPYCC_601: 4688 vsc_sdp.db[16] |= 0x5; 4689 break; 4690 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4691 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4692 vsc_sdp.db[16] |= 0x6; 4693 break; 4694 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4695 vsc_sdp.db[16] |= 0x7; 4696 break; 4697 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 4698 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 4699 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */ 4700 break; 4701 default: 4702 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */ 4703 4704 /* RGB->YCBCR color conversion uses the BT.709 color space. */ 4705 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4706 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */ 4707 break; 4708 } 4709 4710 /* 4711 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only, 4712 * the following Component Bit Depth values are defined: 4713 * 001b = 8bpc. 4714 * 010b = 10bpc. 4715 * 011b = 12bpc. 4716 * 100b = 16bpc. 4717 */ 4718 switch (crtc_state->pipe_bpp) { 4719 case 24: /* 8bpc */ 4720 vsc_sdp.db[17] = 0x1; 4721 break; 4722 case 30: /* 10bpc */ 4723 vsc_sdp.db[17] = 0x2; 4724 break; 4725 case 36: /* 12bpc */ 4726 vsc_sdp.db[17] = 0x3; 4727 break; 4728 case 48: /* 16bpc */ 4729 vsc_sdp.db[17] = 0x4; 4730 break; 4731 default: 4732 MISSING_CASE(crtc_state->pipe_bpp); 4733 break; 4734 } 4735 4736 /* 4737 * Dynamic Range (Bit 7) 4738 * 0 = VESA range, 1 = CTA range. 4739 * all YCbCr are always limited range 4740 */ 4741 vsc_sdp.db[17] |= 0x80; 4742 4743 /* 4744 * Content Type (Bits 2:0) 4745 * 000b = Not defined. 4746 * 001b = Graphics. 4747 * 010b = Photo. 4748 * 011b = Video. 4749 * 100b = Game 4750 * All other values are RESERVED. 4751 * Note: See CTA-861-G for the definition and expected 4752 * processing by a stream sink for the above contect types. 4753 */ 4754 vsc_sdp.db[18] = 0; 4755 4756 intel_dig_port->write_infoframe(&intel_dig_port->base, 4757 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp)); 4758 } 4759 4760 static void 4761 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, 4762 const struct intel_crtc_state *crtc_state, 4763 const struct drm_connector_state *conn_state) 4764 { 4765 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4766 struct dp_sdp infoframe_sdp = {}; 4767 struct hdmi_drm_infoframe drm_infoframe = {}; 4768 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; 4769 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; 4770 ssize_t len; 4771 int ret; 4772 4773 ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state); 4774 if (ret) { 4775 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n"); 4776 return; 4777 } 4778 4779 len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf)); 4780 if (len < 0) { 4781 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n"); 4782 return; 4783 } 4784 4785 if (len != infoframe_size) { 4786 DRM_DEBUG_KMS("wrong static hdr metadata size\n"); 4787 return; 4788 } 4789 4790 /* 4791 * Set up the infoframe sdp packet for HDR static metadata. 4792 * Prepare VSC Header for SU as per DP 1.4a spec, 4793 * Table 2-100 and Table 2-101 4794 */ 4795 4796 /* Packet ID, 00h for non-Audio INFOFRAME */ 4797 infoframe_sdp.sdp_header.HB0 = 0; 4798 /* 4799 * Packet Type 80h + Non-audio INFOFRAME Type value 4800 * HDMI_INFOFRAME_TYPE_DRM: 0x87, 4801 */ 4802 infoframe_sdp.sdp_header.HB1 = drm_infoframe.type; 4803 /* 4804 * Least Significant Eight Bits of (Data Byte Count – 1) 4805 * infoframe_size - 1, 4806 */ 4807 infoframe_sdp.sdp_header.HB2 = 0x1D; 4808 /* INFOFRAME SDP Version Number */ 4809 infoframe_sdp.sdp_header.HB3 = (0x13 << 2); 4810 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 4811 infoframe_sdp.db[0] = drm_infoframe.version; 4812 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 4813 infoframe_sdp.db[1] = drm_infoframe.length; 4814 /* 4815 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after 4816 * HDMI_INFOFRAME_HEADER_SIZE 4817 */ 4818 BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2); 4819 memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], 4820 HDMI_DRM_INFOFRAME_SIZE); 4821 4822 /* 4823 * Size of DP infoframe sdp packet for HDR static metadata is consist of 4824 * - DP SDP Header(struct dp_sdp_header): 4 bytes 4825 * - Two Data Blocks: 2 bytes 4826 * CTA Header Byte2 (INFOFRAME Version Number) 4827 * CTA Header Byte3 (Length of INFOFRAME) 4828 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes 4829 * 4830 * Prior to GEN11's GMP register size is identical to DP HDR static metadata 4831 * infoframe size. But GEN11+ has larger than that size, write_infoframe 4832 * will pad rest of the size. 4833 */ 4834 intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state, 4835 HDMI_PACKET_TYPE_GAMUT_METADATA, 4836 &infoframe_sdp, 4837 sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE); 4838 } 4839 4840 void intel_dp_vsc_enable(struct intel_dp *intel_dp, 4841 const struct intel_crtc_state *crtc_state, 4842 const struct drm_connector_state *conn_state) 4843 { 4844 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) 4845 return; 4846 4847 intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state); 4848 } 4849 4850 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp, 4851 const struct intel_crtc_state *crtc_state, 4852 const struct drm_connector_state *conn_state) 4853 { 4854 if (!conn_state->hdr_output_metadata) 4855 return; 4856 4857 intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp, 4858 crtc_state, 4859 conn_state); 4860 } 4861 4862 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 4863 { 4864 int status = 0; 4865 int test_link_rate; 4866 u8 test_lane_count, test_link_bw; 4867 /* (DP CTS 1.2) 4868 * 4.3.1.11 4869 */ 4870 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 4871 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 4872 &test_lane_count); 4873 4874 if (status <= 0) { 4875 DRM_DEBUG_KMS("Lane count read failed\n"); 4876 return DP_TEST_NAK; 4877 } 4878 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 4879 4880 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 4881 &test_link_bw); 4882 if (status <= 0) { 4883 DRM_DEBUG_KMS("Link Rate read failed\n"); 4884 return DP_TEST_NAK; 4885 } 4886 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 4887 4888 /* Validate the requested link rate and lane count */ 4889 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 4890 test_lane_count)) 4891 return DP_TEST_NAK; 4892 4893 intel_dp->compliance.test_lane_count = test_lane_count; 4894 intel_dp->compliance.test_link_rate = test_link_rate; 4895 4896 return DP_TEST_ACK; 4897 } 4898 4899 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 4900 { 4901 u8 test_pattern; 4902 u8 test_misc; 4903 __be16 h_width, v_height; 4904 int status = 0; 4905 4906 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 4907 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 4908 &test_pattern); 4909 if (status <= 0) { 4910 DRM_DEBUG_KMS("Test pattern read failed\n"); 4911 return DP_TEST_NAK; 4912 } 4913 if (test_pattern != DP_COLOR_RAMP) 4914 return DP_TEST_NAK; 4915 4916 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 4917 &h_width, 2); 4918 if (status <= 0) { 4919 DRM_DEBUG_KMS("H Width read failed\n"); 4920 return DP_TEST_NAK; 4921 } 4922 4923 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 4924 &v_height, 2); 4925 if (status <= 0) { 4926 DRM_DEBUG_KMS("V Height read failed\n"); 4927 return DP_TEST_NAK; 4928 } 4929 4930 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 4931 &test_misc); 4932 if (status <= 0) { 4933 DRM_DEBUG_KMS("TEST MISC read failed\n"); 4934 return DP_TEST_NAK; 4935 } 4936 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 4937 return DP_TEST_NAK; 4938 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 4939 return DP_TEST_NAK; 4940 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 4941 case DP_TEST_BIT_DEPTH_6: 4942 intel_dp->compliance.test_data.bpc = 6; 4943 break; 4944 case DP_TEST_BIT_DEPTH_8: 4945 intel_dp->compliance.test_data.bpc = 8; 4946 break; 4947 default: 4948 return DP_TEST_NAK; 4949 } 4950 4951 intel_dp->compliance.test_data.video_pattern = test_pattern; 4952 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 4953 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 4954 /* Set test active flag here so userspace doesn't interrupt things */ 4955 intel_dp->compliance.test_active = true; 4956 4957 return DP_TEST_ACK; 4958 } 4959 4960 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 4961 { 4962 u8 test_result = DP_TEST_ACK; 4963 struct intel_connector *intel_connector = intel_dp->attached_connector; 4964 struct drm_connector *connector = &intel_connector->base; 4965 4966 if (intel_connector->detect_edid == NULL || 4967 connector->edid_corrupt || 4968 intel_dp->aux.i2c_defer_count > 6) { 4969 /* Check EDID read for NACKs, DEFERs and corruption 4970 * (DP CTS 1.2 Core r1.1) 4971 * 4.2.2.4 : Failed EDID read, I2C_NAK 4972 * 4.2.2.5 : Failed EDID read, I2C_DEFER 4973 * 4.2.2.6 : EDID corruption detected 4974 * Use failsafe mode for all cases 4975 */ 4976 if (intel_dp->aux.i2c_nack_count > 0 || 4977 intel_dp->aux.i2c_defer_count > 0) 4978 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", 4979 intel_dp->aux.i2c_nack_count, 4980 intel_dp->aux.i2c_defer_count); 4981 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 4982 } else { 4983 struct edid *block = intel_connector->detect_edid; 4984 4985 /* We have to write the checksum 4986 * of the last block read 4987 */ 4988 block += intel_connector->detect_edid->extensions; 4989 4990 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 4991 block->checksum) <= 0) 4992 DRM_DEBUG_KMS("Failed to write EDID checksum\n"); 4993 4994 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 4995 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 4996 } 4997 4998 /* Set test active flag here so userspace doesn't interrupt things */ 4999 intel_dp->compliance.test_active = true; 5000 5001 return test_result; 5002 } 5003 5004 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp) 5005 { 5006 struct drm_dp_phy_test_params *data = 5007 &intel_dp->compliance.test_data.phytest; 5008 5009 if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) { 5010 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n"); 5011 return DP_TEST_NAK; 5012 } 5013 5014 /* 5015 * link_mst is set to false to avoid executing mst related code 5016 * during compliance testing. 5017 */ 5018 intel_dp->link_mst = false; 5019 5020 return DP_TEST_ACK; 5021 } 5022 5023 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp) 5024 { 5025 struct drm_i915_private *dev_priv = 5026 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 5027 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 5028 struct drm_dp_phy_test_params *data = 5029 &intel_dp->compliance.test_data.phytest; 5030 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); 5031 enum pipe pipe = crtc->pipe; 5032 u32 pattern_val; 5033 5034 switch (data->phy_pattern) { 5035 case DP_PHY_TEST_PATTERN_NONE: 5036 DRM_DEBUG_KMS("Disable Phy Test Pattern\n"); 5037 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0); 5038 break; 5039 case DP_PHY_TEST_PATTERN_D10_2: 5040 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n"); 5041 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5042 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2); 5043 break; 5044 case DP_PHY_TEST_PATTERN_ERROR_COUNT: 5045 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n"); 5046 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5047 DDI_DP_COMP_CTL_ENABLE | 5048 DDI_DP_COMP_CTL_SCRAMBLED_0); 5049 break; 5050 case DP_PHY_TEST_PATTERN_PRBS7: 5051 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n"); 5052 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5053 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7); 5054 break; 5055 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM: 5056 /* 5057 * FIXME: Ideally pattern should come from DPCD 0x250. As 5058 * current firmware of DPR-100 could not set it, so hardcoding 5059 * now for complaince test. 5060 */ 5061 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n"); 5062 pattern_val = 0x3e0f83e0; 5063 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val); 5064 pattern_val = 0x0f83e0f8; 5065 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val); 5066 pattern_val = 0x0000f83e; 5067 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val); 5068 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5069 DDI_DP_COMP_CTL_ENABLE | 5070 DDI_DP_COMP_CTL_CUSTOM80); 5071 break; 5072 case DP_PHY_TEST_PATTERN_CP2520: 5073 /* 5074 * FIXME: Ideally pattern should come from DPCD 0x24A. As 5075 * current firmware of DPR-100 could not set it, so hardcoding 5076 * now for complaince test. 5077 */ 5078 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n"); 5079 pattern_val = 0xFB; 5080 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5081 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 | 5082 pattern_val); 5083 break; 5084 default: 5085 WARN(1, "Invalid Phy Test Pattern\n"); 5086 } 5087 } 5088 5089 static void 5090 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp) 5091 { 5092 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 5093 struct drm_device *dev = intel_dig_port->base.base.dev; 5094 struct drm_i915_private *dev_priv = to_i915(dev); 5095 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); 5096 enum pipe pipe = crtc->pipe; 5097 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value; 5098 5099 trans_ddi_func_ctl_value = intel_de_read(dev_priv, 5100 TRANS_DDI_FUNC_CTL(pipe)); 5101 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe)); 5102 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe)); 5103 5104 trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE | 5105 TGL_TRANS_DDI_PORT_MASK); 5106 trans_conf_value &= ~PIPECONF_ENABLE; 5107 dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE; 5108 5109 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value); 5110 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe), 5111 trans_ddi_func_ctl_value); 5112 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value); 5113 } 5114 5115 static void 5116 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt) 5117 { 5118 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 5119 struct drm_device *dev = intel_dig_port->base.base.dev; 5120 struct drm_i915_private *dev_priv = to_i915(dev); 5121 enum port port = intel_dig_port->base.port; 5122 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); 5123 enum pipe pipe = crtc->pipe; 5124 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value; 5125 5126 trans_ddi_func_ctl_value = intel_de_read(dev_priv, 5127 TRANS_DDI_FUNC_CTL(pipe)); 5128 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe)); 5129 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe)); 5130 5131 trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE | 5132 TGL_TRANS_DDI_SELECT_PORT(port); 5133 trans_conf_value |= PIPECONF_ENABLE; 5134 dp_tp_ctl_value |= DP_TP_CTL_ENABLE; 5135 5136 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value); 5137 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value); 5138 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe), 5139 trans_ddi_func_ctl_value); 5140 } 5141 5142 void intel_dp_process_phy_request(struct intel_dp *intel_dp) 5143 { 5144 struct drm_dp_phy_test_params *data = 5145 &intel_dp->compliance.test_data.phytest; 5146 u8 link_status[DP_LINK_STATUS_SIZE]; 5147 5148 if (!intel_dp_get_link_status(intel_dp, link_status)) { 5149 DRM_DEBUG_KMS("failed to get link status\n"); 5150 return; 5151 } 5152 5153 /* retrieve vswing & pre-emphasis setting */ 5154 intel_dp_get_adjust_train(intel_dp, link_status); 5155 5156 intel_dp_autotest_phy_ddi_disable(intel_dp); 5157 5158 intel_dp_set_signal_levels(intel_dp); 5159 5160 intel_dp_phy_pattern_update(intel_dp); 5161 5162 intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes); 5163 5164 drm_dp_set_phy_test_pattern(&intel_dp->aux, data, 5165 link_status[DP_DPCD_REV]); 5166 } 5167 5168 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 5169 { 5170 u8 test_result = DP_TEST_NAK; 5171 5172 test_result = intel_dp_prepare_phytest(intel_dp); 5173 if (test_result != DP_TEST_ACK) 5174 DRM_ERROR("Phy test preparation failed\n"); 5175 5176 intel_dp_process_phy_request(intel_dp); 5177 5178 return test_result; 5179 } 5180 5181 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 5182 { 5183 u8 response = DP_TEST_NAK; 5184 u8 request = 0; 5185 int status; 5186 5187 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 5188 if (status <= 0) { 5189 DRM_DEBUG_KMS("Could not read test request from sink\n"); 5190 goto update_status; 5191 } 5192 5193 switch (request) { 5194 case DP_TEST_LINK_TRAINING: 5195 DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); 5196 response = intel_dp_autotest_link_training(intel_dp); 5197 break; 5198 case DP_TEST_LINK_VIDEO_PATTERN: 5199 DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); 5200 response = intel_dp_autotest_video_pattern(intel_dp); 5201 break; 5202 case DP_TEST_LINK_EDID_READ: 5203 DRM_DEBUG_KMS("EDID test requested\n"); 5204 response = intel_dp_autotest_edid(intel_dp); 5205 break; 5206 case DP_TEST_LINK_PHY_TEST_PATTERN: 5207 DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); 5208 response = intel_dp_autotest_phy_pattern(intel_dp); 5209 break; 5210 default: 5211 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); 5212 break; 5213 } 5214 5215 if (response & DP_TEST_ACK) 5216 intel_dp->compliance.test_type = request; 5217 5218 update_status: 5219 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 5220 if (status <= 0) 5221 DRM_DEBUG_KMS("Could not write test response to sink\n"); 5222 } 5223 5224 static int 5225 intel_dp_check_mst_status(struct intel_dp *intel_dp) 5226 { 5227 bool bret; 5228 5229 if (intel_dp->is_mst) { 5230 u8 esi[DP_DPRX_ESI_LEN] = { 0 }; 5231 int ret = 0; 5232 int retry; 5233 bool handled; 5234 5235 WARN_ON_ONCE(intel_dp->active_mst_links < 0); 5236 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 5237 go_again: 5238 if (bret == true) { 5239 5240 /* check link status - esi[10] = 0x200c */ 5241 if (intel_dp->active_mst_links > 0 && 5242 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 5243 DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); 5244 intel_dp_start_link_train(intel_dp); 5245 intel_dp_stop_link_train(intel_dp); 5246 } 5247 5248 DRM_DEBUG_KMS("got esi %3ph\n", esi); 5249 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 5250 5251 if (handled) { 5252 for (retry = 0; retry < 3; retry++) { 5253 int wret; 5254 wret = drm_dp_dpcd_write(&intel_dp->aux, 5255 DP_SINK_COUNT_ESI+1, 5256 &esi[1], 3); 5257 if (wret == 3) { 5258 break; 5259 } 5260 } 5261 5262 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 5263 if (bret == true) { 5264 DRM_DEBUG_KMS("got esi2 %3ph\n", esi); 5265 goto go_again; 5266 } 5267 } else 5268 ret = 0; 5269 5270 return ret; 5271 } else { 5272 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); 5273 intel_dp->is_mst = false; 5274 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5275 intel_dp->is_mst); 5276 } 5277 } 5278 return -EINVAL; 5279 } 5280 5281 static bool 5282 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 5283 { 5284 u8 link_status[DP_LINK_STATUS_SIZE]; 5285 5286 if (!intel_dp->link_trained) 5287 return false; 5288 5289 /* 5290 * While PSR source HW is enabled, it will control main-link sending 5291 * frames, enabling and disabling it so trying to do a retrain will fail 5292 * as the link would or not be on or it could mix training patterns 5293 * and frame data at the same time causing retrain to fail. 5294 * Also when exiting PSR, HW will retrain the link anyways fixing 5295 * any link status error. 5296 */ 5297 if (intel_psr_enabled(intel_dp)) 5298 return false; 5299 5300 if (!intel_dp_get_link_status(intel_dp, link_status)) 5301 return false; 5302 5303 /* 5304 * Validate the cached values of intel_dp->link_rate and 5305 * intel_dp->lane_count before attempting to retrain. 5306 */ 5307 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 5308 intel_dp->lane_count)) 5309 return false; 5310 5311 /* Retrain if Channel EQ or CR not ok */ 5312 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 5313 } 5314 5315 int intel_dp_retrain_link(struct intel_encoder *encoder, 5316 struct drm_modeset_acquire_ctx *ctx) 5317 { 5318 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5319 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5320 struct intel_connector *connector = intel_dp->attached_connector; 5321 struct drm_connector_state *conn_state; 5322 struct intel_crtc_state *crtc_state; 5323 struct intel_crtc *crtc; 5324 int ret; 5325 5326 /* FIXME handle the MST connectors as well */ 5327 5328 if (!connector || connector->base.status != connector_status_connected) 5329 return 0; 5330 5331 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 5332 ctx); 5333 if (ret) 5334 return ret; 5335 5336 conn_state = connector->base.state; 5337 5338 crtc = to_intel_crtc(conn_state->crtc); 5339 if (!crtc) 5340 return 0; 5341 5342 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5343 if (ret) 5344 return ret; 5345 5346 crtc_state = to_intel_crtc_state(crtc->base.state); 5347 5348 drm_WARN_ON(&dev_priv->drm, !intel_crtc_has_dp_encoder(crtc_state)); 5349 5350 if (!crtc_state->hw.active) 5351 return 0; 5352 5353 if (conn_state->commit && 5354 !try_wait_for_completion(&conn_state->commit->hw_done)) 5355 return 0; 5356 5357 if (!intel_dp_needs_link_retrain(intel_dp)) 5358 return 0; 5359 5360 /* Suppress underruns caused by re-training */ 5361 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 5362 if (crtc_state->has_pch_encoder) 5363 intel_set_pch_fifo_underrun_reporting(dev_priv, 5364 intel_crtc_pch_transcoder(crtc), false); 5365 5366 intel_dp_start_link_train(intel_dp); 5367 intel_dp_stop_link_train(intel_dp); 5368 5369 /* Keep underrun reporting disabled until things are stable */ 5370 intel_wait_for_vblank(dev_priv, crtc->pipe); 5371 5372 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 5373 if (crtc_state->has_pch_encoder) 5374 intel_set_pch_fifo_underrun_reporting(dev_priv, 5375 intel_crtc_pch_transcoder(crtc), true); 5376 5377 return 0; 5378 } 5379 5380 /* 5381 * If display is now connected check links status, 5382 * there has been known issues of link loss triggering 5383 * long pulse. 5384 * 5385 * Some sinks (eg. ASUS PB287Q) seem to perform some 5386 * weird HPD ping pong during modesets. So we can apparently 5387 * end up with HPD going low during a modeset, and then 5388 * going back up soon after. And once that happens we must 5389 * retrain the link to get a picture. That's in case no 5390 * userspace component reacted to intermittent HPD dip. 5391 */ 5392 static enum intel_hotplug_state 5393 intel_dp_hotplug(struct intel_encoder *encoder, 5394 struct intel_connector *connector, 5395 bool irq_received) 5396 { 5397 struct drm_modeset_acquire_ctx ctx; 5398 enum intel_hotplug_state state; 5399 int ret; 5400 5401 state = intel_encoder_hotplug(encoder, connector, irq_received); 5402 5403 drm_modeset_acquire_init(&ctx, 0); 5404 5405 for (;;) { 5406 ret = intel_dp_retrain_link(encoder, &ctx); 5407 5408 if (ret == -EDEADLK) { 5409 drm_modeset_backoff(&ctx); 5410 continue; 5411 } 5412 5413 break; 5414 } 5415 5416 drm_modeset_drop_locks(&ctx); 5417 drm_modeset_acquire_fini(&ctx); 5418 drm_WARN(encoder->base.dev, ret, 5419 "Acquiring modeset locks failed with %i\n", ret); 5420 5421 /* 5422 * Keeping it consistent with intel_ddi_hotplug() and 5423 * intel_hdmi_hotplug(). 5424 */ 5425 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received) 5426 state = INTEL_HOTPLUG_RETRY; 5427 5428 return state; 5429 } 5430 5431 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 5432 { 5433 u8 val; 5434 5435 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5436 return; 5437 5438 if (drm_dp_dpcd_readb(&intel_dp->aux, 5439 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 5440 return; 5441 5442 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 5443 5444 if (val & DP_AUTOMATED_TEST_REQUEST) 5445 intel_dp_handle_test_request(intel_dp); 5446 5447 if (val & DP_CP_IRQ) 5448 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 5449 5450 if (val & DP_SINK_SPECIFIC_IRQ) 5451 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n"); 5452 } 5453 5454 /* 5455 * According to DP spec 5456 * 5.1.2: 5457 * 1. Read DPCD 5458 * 2. Configure link according to Receiver Capabilities 5459 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 5460 * 4. Check link status on receipt of hot-plug interrupt 5461 * 5462 * intel_dp_short_pulse - handles short pulse interrupts 5463 * when full detection is not required. 5464 * Returns %true if short pulse is handled and full detection 5465 * is NOT required and %false otherwise. 5466 */ 5467 static bool 5468 intel_dp_short_pulse(struct intel_dp *intel_dp) 5469 { 5470 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 5471 u8 old_sink_count = intel_dp->sink_count; 5472 bool ret; 5473 5474 /* 5475 * Clearing compliance test variables to allow capturing 5476 * of values for next automated test request. 5477 */ 5478 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5479 5480 /* 5481 * Now read the DPCD to see if it's actually running 5482 * If the current value of sink count doesn't match with 5483 * the value that was stored earlier or dpcd read failed 5484 * we need to do full detection 5485 */ 5486 ret = intel_dp_get_dpcd(intel_dp); 5487 5488 if ((old_sink_count != intel_dp->sink_count) || !ret) { 5489 /* No need to proceed if we are going to do full detect */ 5490 return false; 5491 } 5492 5493 intel_dp_check_service_irq(intel_dp); 5494 5495 /* Handle CEC interrupts, if any */ 5496 drm_dp_cec_irq(&intel_dp->aux); 5497 5498 /* defer to the hotplug work for link retraining if needed */ 5499 if (intel_dp_needs_link_retrain(intel_dp)) 5500 return false; 5501 5502 intel_psr_short_pulse(intel_dp); 5503 5504 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 5505 drm_dbg_kms(&dev_priv->drm, 5506 "Link Training Compliance Test requested\n"); 5507 /* Send a Hotplug Uevent to userspace to start modeset */ 5508 drm_kms_helper_hotplug_event(&dev_priv->drm); 5509 } 5510 5511 return true; 5512 } 5513 5514 /* XXX this is probably wrong for multiple downstream ports */ 5515 static enum drm_connector_status 5516 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 5517 { 5518 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 5519 u8 *dpcd = intel_dp->dpcd; 5520 u8 type; 5521 5522 if (WARN_ON(intel_dp_is_edp(intel_dp))) 5523 return connector_status_connected; 5524 5525 if (lspcon->active) 5526 lspcon_resume(lspcon); 5527 5528 if (!intel_dp_get_dpcd(intel_dp)) 5529 return connector_status_disconnected; 5530 5531 /* if there's no downstream port, we're done */ 5532 if (!drm_dp_is_branch(dpcd)) 5533 return connector_status_connected; 5534 5535 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5536 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5537 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5538 5539 return intel_dp->sink_count ? 5540 connector_status_connected : connector_status_disconnected; 5541 } 5542 5543 if (intel_dp_can_mst(intel_dp)) 5544 return connector_status_connected; 5545 5546 /* If no HPD, poke DDC gently */ 5547 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5548 return connector_status_connected; 5549 5550 /* Well we tried, say unknown for unreliable port types */ 5551 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5552 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5553 if (type == DP_DS_PORT_TYPE_VGA || 5554 type == DP_DS_PORT_TYPE_NON_EDID) 5555 return connector_status_unknown; 5556 } else { 5557 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5558 DP_DWN_STRM_PORT_TYPE_MASK; 5559 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5560 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5561 return connector_status_unknown; 5562 } 5563 5564 /* Anything else is out of spec, warn and ignore */ 5565 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); 5566 return connector_status_disconnected; 5567 } 5568 5569 static enum drm_connector_status 5570 edp_detect(struct intel_dp *intel_dp) 5571 { 5572 return connector_status_connected; 5573 } 5574 5575 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 5576 { 5577 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5578 u32 bit; 5579 5580 switch (encoder->hpd_pin) { 5581 case HPD_PORT_B: 5582 bit = SDE_PORTB_HOTPLUG; 5583 break; 5584 case HPD_PORT_C: 5585 bit = SDE_PORTC_HOTPLUG; 5586 break; 5587 case HPD_PORT_D: 5588 bit = SDE_PORTD_HOTPLUG; 5589 break; 5590 default: 5591 MISSING_CASE(encoder->hpd_pin); 5592 return false; 5593 } 5594 5595 return intel_de_read(dev_priv, SDEISR) & bit; 5596 } 5597 5598 static bool cpt_digital_port_connected(struct intel_encoder *encoder) 5599 { 5600 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5601 u32 bit; 5602 5603 switch (encoder->hpd_pin) { 5604 case HPD_PORT_B: 5605 bit = SDE_PORTB_HOTPLUG_CPT; 5606 break; 5607 case HPD_PORT_C: 5608 bit = SDE_PORTC_HOTPLUG_CPT; 5609 break; 5610 case HPD_PORT_D: 5611 bit = SDE_PORTD_HOTPLUG_CPT; 5612 break; 5613 default: 5614 MISSING_CASE(encoder->hpd_pin); 5615 return false; 5616 } 5617 5618 return intel_de_read(dev_priv, SDEISR) & bit; 5619 } 5620 5621 static bool spt_digital_port_connected(struct intel_encoder *encoder) 5622 { 5623 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5624 u32 bit; 5625 5626 switch (encoder->hpd_pin) { 5627 case HPD_PORT_A: 5628 bit = SDE_PORTA_HOTPLUG_SPT; 5629 break; 5630 case HPD_PORT_E: 5631 bit = SDE_PORTE_HOTPLUG_SPT; 5632 break; 5633 default: 5634 return cpt_digital_port_connected(encoder); 5635 } 5636 5637 return intel_de_read(dev_priv, SDEISR) & bit; 5638 } 5639 5640 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 5641 { 5642 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5643 u32 bit; 5644 5645 switch (encoder->hpd_pin) { 5646 case HPD_PORT_B: 5647 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 5648 break; 5649 case HPD_PORT_C: 5650 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 5651 break; 5652 case HPD_PORT_D: 5653 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 5654 break; 5655 default: 5656 MISSING_CASE(encoder->hpd_pin); 5657 return false; 5658 } 5659 5660 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; 5661 } 5662 5663 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 5664 { 5665 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5666 u32 bit; 5667 5668 switch (encoder->hpd_pin) { 5669 case HPD_PORT_B: 5670 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 5671 break; 5672 case HPD_PORT_C: 5673 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 5674 break; 5675 case HPD_PORT_D: 5676 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 5677 break; 5678 default: 5679 MISSING_CASE(encoder->hpd_pin); 5680 return false; 5681 } 5682 5683 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; 5684 } 5685 5686 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 5687 { 5688 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5689 5690 if (encoder->hpd_pin == HPD_PORT_A) 5691 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG; 5692 else 5693 return ibx_digital_port_connected(encoder); 5694 } 5695 5696 static bool snb_digital_port_connected(struct intel_encoder *encoder) 5697 { 5698 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5699 5700 if (encoder->hpd_pin == HPD_PORT_A) 5701 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG; 5702 else 5703 return cpt_digital_port_connected(encoder); 5704 } 5705 5706 static bool ivb_digital_port_connected(struct intel_encoder *encoder) 5707 { 5708 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5709 5710 if (encoder->hpd_pin == HPD_PORT_A) 5711 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB; 5712 else 5713 return cpt_digital_port_connected(encoder); 5714 } 5715 5716 static bool bdw_digital_port_connected(struct intel_encoder *encoder) 5717 { 5718 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5719 5720 if (encoder->hpd_pin == HPD_PORT_A) 5721 return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; 5722 else 5723 return cpt_digital_port_connected(encoder); 5724 } 5725 5726 static bool bxt_digital_port_connected(struct intel_encoder *encoder) 5727 { 5728 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5729 u32 bit; 5730 5731 switch (encoder->hpd_pin) { 5732 case HPD_PORT_A: 5733 bit = BXT_DE_PORT_HP_DDIA; 5734 break; 5735 case HPD_PORT_B: 5736 bit = BXT_DE_PORT_HP_DDIB; 5737 break; 5738 case HPD_PORT_C: 5739 bit = BXT_DE_PORT_HP_DDIC; 5740 break; 5741 default: 5742 MISSING_CASE(encoder->hpd_pin); 5743 return false; 5744 } 5745 5746 return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit; 5747 } 5748 5749 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv, 5750 enum phy phy) 5751 { 5752 if (HAS_PCH_MCC(dev_priv) && phy == PHY_C) 5753 return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1); 5754 5755 return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy); 5756 } 5757 5758 static bool icp_digital_port_connected(struct intel_encoder *encoder) 5759 { 5760 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5761 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5762 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 5763 5764 if (intel_phy_is_combo(dev_priv, phy)) 5765 return intel_combo_phy_connected(dev_priv, phy); 5766 else if (intel_phy_is_tc(dev_priv, phy)) 5767 return intel_tc_port_connected(dig_port); 5768 else 5769 MISSING_CASE(encoder->hpd_pin); 5770 5771 return false; 5772 } 5773 5774 /* 5775 * intel_digital_port_connected - is the specified port connected? 5776 * @encoder: intel_encoder 5777 * 5778 * In cases where there's a connector physically connected but it can't be used 5779 * by our hardware we also return false, since the rest of the driver should 5780 * pretty much treat the port as disconnected. This is relevant for type-C 5781 * (starting on ICL) where there's ownership involved. 5782 * 5783 * Return %true if port is connected, %false otherwise. 5784 */ 5785 static bool __intel_digital_port_connected(struct intel_encoder *encoder) 5786 { 5787 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5788 5789 if (HAS_GMCH(dev_priv)) { 5790 if (IS_GM45(dev_priv)) 5791 return gm45_digital_port_connected(encoder); 5792 else 5793 return g4x_digital_port_connected(encoder); 5794 } 5795 5796 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 5797 return icp_digital_port_connected(encoder); 5798 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 5799 return spt_digital_port_connected(encoder); 5800 else if (IS_GEN9_LP(dev_priv)) 5801 return bxt_digital_port_connected(encoder); 5802 else if (IS_GEN(dev_priv, 8)) 5803 return bdw_digital_port_connected(encoder); 5804 else if (IS_GEN(dev_priv, 7)) 5805 return ivb_digital_port_connected(encoder); 5806 else if (IS_GEN(dev_priv, 6)) 5807 return snb_digital_port_connected(encoder); 5808 else if (IS_GEN(dev_priv, 5)) 5809 return ilk_digital_port_connected(encoder); 5810 5811 MISSING_CASE(INTEL_GEN(dev_priv)); 5812 return false; 5813 } 5814 5815 bool intel_digital_port_connected(struct intel_encoder *encoder) 5816 { 5817 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5818 bool is_connected = false; 5819 intel_wakeref_t wakeref; 5820 5821 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 5822 is_connected = __intel_digital_port_connected(encoder); 5823 5824 return is_connected; 5825 } 5826 5827 static struct edid * 5828 intel_dp_get_edid(struct intel_dp *intel_dp) 5829 { 5830 struct intel_connector *intel_connector = intel_dp->attached_connector; 5831 5832 /* use cached edid if we have one */ 5833 if (intel_connector->edid) { 5834 /* invalid edid */ 5835 if (IS_ERR(intel_connector->edid)) 5836 return NULL; 5837 5838 return drm_edid_duplicate(intel_connector->edid); 5839 } else 5840 return drm_get_edid(&intel_connector->base, 5841 &intel_dp->aux.ddc); 5842 } 5843 5844 static void 5845 intel_dp_set_edid(struct intel_dp *intel_dp) 5846 { 5847 struct intel_connector *intel_connector = intel_dp->attached_connector; 5848 struct edid *edid; 5849 5850 intel_dp_unset_edid(intel_dp); 5851 edid = intel_dp_get_edid(intel_dp); 5852 intel_connector->detect_edid = edid; 5853 5854 intel_dp->has_audio = drm_detect_monitor_audio(edid); 5855 drm_dp_cec_set_edid(&intel_dp->aux, edid); 5856 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid); 5857 } 5858 5859 static void 5860 intel_dp_unset_edid(struct intel_dp *intel_dp) 5861 { 5862 struct intel_connector *intel_connector = intel_dp->attached_connector; 5863 5864 drm_dp_cec_unset_edid(&intel_dp->aux); 5865 kfree(intel_connector->detect_edid); 5866 intel_connector->detect_edid = NULL; 5867 5868 intel_dp->has_audio = false; 5869 intel_dp->edid_quirks = 0; 5870 } 5871 5872 static int 5873 intel_dp_detect(struct drm_connector *connector, 5874 struct drm_modeset_acquire_ctx *ctx, 5875 bool force) 5876 { 5877 struct drm_i915_private *dev_priv = to_i915(connector->dev); 5878 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5879 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5880 struct intel_encoder *encoder = &dig_port->base; 5881 enum drm_connector_status status; 5882 5883 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 5884 connector->base.id, connector->name); 5885 drm_WARN_ON(&dev_priv->drm, 5886 !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 5887 5888 /* Can't disconnect eDP */ 5889 if (intel_dp_is_edp(intel_dp)) 5890 status = edp_detect(intel_dp); 5891 else if (intel_digital_port_connected(encoder)) 5892 status = intel_dp_detect_dpcd(intel_dp); 5893 else 5894 status = connector_status_disconnected; 5895 5896 if (status == connector_status_disconnected) { 5897 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5898 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 5899 5900 if (intel_dp->is_mst) { 5901 drm_dbg_kms(&dev_priv->drm, 5902 "MST device may have disappeared %d vs %d\n", 5903 intel_dp->is_mst, 5904 intel_dp->mst_mgr.mst_state); 5905 intel_dp->is_mst = false; 5906 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5907 intel_dp->is_mst); 5908 } 5909 5910 goto out; 5911 } 5912 5913 if (intel_dp->reset_link_params) { 5914 /* Initial max link lane count */ 5915 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 5916 5917 /* Initial max link rate */ 5918 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 5919 5920 intel_dp->reset_link_params = false; 5921 } 5922 5923 intel_dp_print_rates(intel_dp); 5924 5925 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 5926 if (INTEL_GEN(dev_priv) >= 11) 5927 intel_dp_get_dsc_sink_cap(intel_dp); 5928 5929 intel_dp_configure_mst(intel_dp); 5930 5931 if (intel_dp->is_mst) { 5932 /* 5933 * If we are in MST mode then this connector 5934 * won't appear connected or have anything 5935 * with EDID on it 5936 */ 5937 status = connector_status_disconnected; 5938 goto out; 5939 } 5940 5941 /* 5942 * Some external monitors do not signal loss of link synchronization 5943 * with an IRQ_HPD, so force a link status check. 5944 */ 5945 if (!intel_dp_is_edp(intel_dp)) { 5946 int ret; 5947 5948 ret = intel_dp_retrain_link(encoder, ctx); 5949 if (ret) 5950 return ret; 5951 } 5952 5953 /* 5954 * Clearing NACK and defer counts to get their exact values 5955 * while reading EDID which are required by Compliance tests 5956 * 4.2.2.4 and 4.2.2.5 5957 */ 5958 intel_dp->aux.i2c_nack_count = 0; 5959 intel_dp->aux.i2c_defer_count = 0; 5960 5961 intel_dp_set_edid(intel_dp); 5962 if (intel_dp_is_edp(intel_dp) || 5963 to_intel_connector(connector)->detect_edid) 5964 status = connector_status_connected; 5965 5966 intel_dp_check_service_irq(intel_dp); 5967 5968 out: 5969 if (status != connector_status_connected && !intel_dp->is_mst) 5970 intel_dp_unset_edid(intel_dp); 5971 5972 /* 5973 * Make sure the refs for power wells enabled during detect are 5974 * dropped to avoid a new detect cycle triggered by HPD polling. 5975 */ 5976 intel_display_power_flush_work(dev_priv); 5977 5978 return status; 5979 } 5980 5981 static void 5982 intel_dp_force(struct drm_connector *connector) 5983 { 5984 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5985 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5986 struct intel_encoder *intel_encoder = &dig_port->base; 5987 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 5988 enum intel_display_power_domain aux_domain = 5989 intel_aux_power_domain(dig_port); 5990 intel_wakeref_t wakeref; 5991 5992 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 5993 connector->base.id, connector->name); 5994 intel_dp_unset_edid(intel_dp); 5995 5996 if (connector->status != connector_status_connected) 5997 return; 5998 5999 wakeref = intel_display_power_get(dev_priv, aux_domain); 6000 6001 intel_dp_set_edid(intel_dp); 6002 6003 intel_display_power_put(dev_priv, aux_domain, wakeref); 6004 } 6005 6006 static int intel_dp_get_modes(struct drm_connector *connector) 6007 { 6008 struct intel_connector *intel_connector = to_intel_connector(connector); 6009 struct edid *edid; 6010 6011 edid = intel_connector->detect_edid; 6012 if (edid) { 6013 int ret = intel_connector_update_modes(connector, edid); 6014 if (ret) 6015 return ret; 6016 } 6017 6018 /* if eDP has no EDID, fall back to fixed mode */ 6019 if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) && 6020 intel_connector->panel.fixed_mode) { 6021 struct drm_display_mode *mode; 6022 6023 mode = drm_mode_duplicate(connector->dev, 6024 intel_connector->panel.fixed_mode); 6025 if (mode) { 6026 drm_mode_probed_add(connector, mode); 6027 return 1; 6028 } 6029 } 6030 6031 return 0; 6032 } 6033 6034 static int 6035 intel_dp_connector_register(struct drm_connector *connector) 6036 { 6037 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6038 int ret; 6039 6040 ret = intel_connector_register(connector); 6041 if (ret) 6042 return ret; 6043 6044 intel_connector_debugfs_add(connector); 6045 6046 DRM_DEBUG_KMS("registering %s bus for %s\n", 6047 intel_dp->aux.name, connector->kdev->kobj.name); 6048 6049 intel_dp->aux.dev = connector->kdev; 6050 ret = drm_dp_aux_register(&intel_dp->aux); 6051 if (!ret) 6052 drm_dp_cec_register_connector(&intel_dp->aux, connector); 6053 return ret; 6054 } 6055 6056 static void 6057 intel_dp_connector_unregister(struct drm_connector *connector) 6058 { 6059 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6060 6061 drm_dp_cec_unregister_connector(&intel_dp->aux); 6062 drm_dp_aux_unregister(&intel_dp->aux); 6063 intel_connector_unregister(connector); 6064 } 6065 6066 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 6067 { 6068 struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder)); 6069 struct intel_dp *intel_dp = &intel_dig_port->dp; 6070 6071 intel_dp_mst_encoder_cleanup(intel_dig_port); 6072 if (intel_dp_is_edp(intel_dp)) { 6073 intel_wakeref_t wakeref; 6074 6075 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 6076 /* 6077 * vdd might still be enabled do to the delayed vdd off. 6078 * Make sure vdd is actually turned off here. 6079 */ 6080 with_pps_lock(intel_dp, wakeref) 6081 edp_panel_vdd_off_sync(intel_dp); 6082 6083 if (intel_dp->edp_notifier.notifier_call) { 6084 unregister_reboot_notifier(&intel_dp->edp_notifier); 6085 intel_dp->edp_notifier.notifier_call = NULL; 6086 } 6087 } 6088 6089 intel_dp_aux_fini(intel_dp); 6090 } 6091 6092 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 6093 { 6094 intel_dp_encoder_flush_work(encoder); 6095 6096 drm_encoder_cleanup(encoder); 6097 kfree(enc_to_dig_port(to_intel_encoder(encoder))); 6098 } 6099 6100 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 6101 { 6102 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); 6103 intel_wakeref_t wakeref; 6104 6105 if (!intel_dp_is_edp(intel_dp)) 6106 return; 6107 6108 /* 6109 * vdd might still be enabled do to the delayed vdd off. 6110 * Make sure vdd is actually turned off here. 6111 */ 6112 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 6113 with_pps_lock(intel_dp, wakeref) 6114 edp_panel_vdd_off_sync(intel_dp); 6115 } 6116 6117 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 6118 { 6119 long ret; 6120 6121 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 6122 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, 6123 msecs_to_jiffies(timeout)); 6124 6125 if (!ret) 6126 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 6127 } 6128 6129 static 6130 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 6131 u8 *an) 6132 { 6133 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base)); 6134 static const struct drm_dp_aux_msg msg = { 6135 .request = DP_AUX_NATIVE_WRITE, 6136 .address = DP_AUX_HDCP_AKSV, 6137 .size = DRM_HDCP_KSV_LEN, 6138 }; 6139 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 6140 ssize_t dpcd_ret; 6141 int ret; 6142 6143 /* Output An first, that's easy */ 6144 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 6145 an, DRM_HDCP_AN_LEN); 6146 if (dpcd_ret != DRM_HDCP_AN_LEN) { 6147 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n", 6148 dpcd_ret); 6149 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 6150 } 6151 6152 /* 6153 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 6154 * order to get it on the wire, we need to create the AUX header as if 6155 * we were writing the data, and then tickle the hardware to output the 6156 * data once the header is sent out. 6157 */ 6158 intel_dp_aux_header(txbuf, &msg); 6159 6160 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 6161 rxbuf, sizeof(rxbuf), 6162 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 6163 if (ret < 0) { 6164 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret); 6165 return ret; 6166 } else if (ret == 0) { 6167 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n"); 6168 return -EIO; 6169 } 6170 6171 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 6172 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 6173 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 6174 reply); 6175 return -EIO; 6176 } 6177 return 0; 6178 } 6179 6180 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 6181 u8 *bksv) 6182 { 6183 ssize_t ret; 6184 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 6185 DRM_HDCP_KSV_LEN); 6186 if (ret != DRM_HDCP_KSV_LEN) { 6187 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret); 6188 return ret >= 0 ? -EIO : ret; 6189 } 6190 return 0; 6191 } 6192 6193 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 6194 u8 *bstatus) 6195 { 6196 ssize_t ret; 6197 /* 6198 * For some reason the HDMI and DP HDCP specs call this register 6199 * definition by different names. In the HDMI spec, it's called BSTATUS, 6200 * but in DP it's called BINFO. 6201 */ 6202 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 6203 bstatus, DRM_HDCP_BSTATUS_LEN); 6204 if (ret != DRM_HDCP_BSTATUS_LEN) { 6205 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6206 return ret >= 0 ? -EIO : ret; 6207 } 6208 return 0; 6209 } 6210 6211 static 6212 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 6213 u8 *bcaps) 6214 { 6215 ssize_t ret; 6216 6217 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 6218 bcaps, 1); 6219 if (ret != 1) { 6220 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret); 6221 return ret >= 0 ? -EIO : ret; 6222 } 6223 6224 return 0; 6225 } 6226 6227 static 6228 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 6229 bool *repeater_present) 6230 { 6231 ssize_t ret; 6232 u8 bcaps; 6233 6234 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6235 if (ret) 6236 return ret; 6237 6238 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 6239 return 0; 6240 } 6241 6242 static 6243 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 6244 u8 *ri_prime) 6245 { 6246 ssize_t ret; 6247 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 6248 ri_prime, DRM_HDCP_RI_LEN); 6249 if (ret != DRM_HDCP_RI_LEN) { 6250 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret); 6251 return ret >= 0 ? -EIO : ret; 6252 } 6253 return 0; 6254 } 6255 6256 static 6257 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 6258 bool *ksv_ready) 6259 { 6260 ssize_t ret; 6261 u8 bstatus; 6262 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6263 &bstatus, 1); 6264 if (ret != 1) { 6265 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6266 return ret >= 0 ? -EIO : ret; 6267 } 6268 *ksv_ready = bstatus & DP_BSTATUS_READY; 6269 return 0; 6270 } 6271 6272 static 6273 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 6274 int num_downstream, u8 *ksv_fifo) 6275 { 6276 ssize_t ret; 6277 int i; 6278 6279 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 6280 for (i = 0; i < num_downstream; i += 3) { 6281 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 6282 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6283 DP_AUX_HDCP_KSV_FIFO, 6284 ksv_fifo + i * DRM_HDCP_KSV_LEN, 6285 len); 6286 if (ret != len) { 6287 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n", 6288 i, ret); 6289 return ret >= 0 ? -EIO : ret; 6290 } 6291 } 6292 return 0; 6293 } 6294 6295 static 6296 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 6297 int i, u32 *part) 6298 { 6299 ssize_t ret; 6300 6301 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 6302 return -EINVAL; 6303 6304 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6305 DP_AUX_HDCP_V_PRIME(i), part, 6306 DRM_HDCP_V_PRIME_PART_LEN); 6307 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 6308 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 6309 return ret >= 0 ? -EIO : ret; 6310 } 6311 return 0; 6312 } 6313 6314 static 6315 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 6316 bool enable) 6317 { 6318 /* Not used for single stream DisplayPort setups */ 6319 return 0; 6320 } 6321 6322 static 6323 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 6324 { 6325 ssize_t ret; 6326 u8 bstatus; 6327 6328 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6329 &bstatus, 1); 6330 if (ret != 1) { 6331 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6332 return false; 6333 } 6334 6335 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 6336 } 6337 6338 static 6339 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 6340 bool *hdcp_capable) 6341 { 6342 ssize_t ret; 6343 u8 bcaps; 6344 6345 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6346 if (ret) 6347 return ret; 6348 6349 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 6350 return 0; 6351 } 6352 6353 struct hdcp2_dp_errata_stream_type { 6354 u8 msg_id; 6355 u8 stream_type; 6356 } __packed; 6357 6358 struct hdcp2_dp_msg_data { 6359 u8 msg_id; 6360 u32 offset; 6361 bool msg_detectable; 6362 u32 timeout; 6363 u32 timeout2; /* Added for non_paired situation */ 6364 }; 6365 6366 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { 6367 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, 6368 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 6369 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, 6370 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 6371 false, 0, 0 }, 6372 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 6373 false, 0, 0 }, 6374 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 6375 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 6376 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, 6377 { HDCP_2_2_AKE_SEND_PAIRING_INFO, 6378 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 6379 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, 6380 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, 6381 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 6382 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, 6383 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 6384 0, 0 }, 6385 { HDCP_2_2_REP_SEND_RECVID_LIST, 6386 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 6387 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, 6388 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 6389 0, 0 }, 6390 { HDCP_2_2_REP_STREAM_MANAGE, 6391 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 6392 0, 0 }, 6393 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 6394 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, 6395 /* local define to shovel this through the write_2_2 interface */ 6396 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 6397 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, 6398 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 6399 0, 0 }, 6400 }; 6401 6402 static inline 6403 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 6404 u8 *rx_status) 6405 { 6406 ssize_t ret; 6407 6408 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6409 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 6410 HDCP_2_2_DP_RXSTATUS_LEN); 6411 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 6412 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6413 return ret >= 0 ? -EIO : ret; 6414 } 6415 6416 return 0; 6417 } 6418 6419 static 6420 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 6421 u8 msg_id, bool *msg_ready) 6422 { 6423 u8 rx_status; 6424 int ret; 6425 6426 *msg_ready = false; 6427 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6428 if (ret < 0) 6429 return ret; 6430 6431 switch (msg_id) { 6432 case HDCP_2_2_AKE_SEND_HPRIME: 6433 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 6434 *msg_ready = true; 6435 break; 6436 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 6437 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 6438 *msg_ready = true; 6439 break; 6440 case HDCP_2_2_REP_SEND_RECVID_LIST: 6441 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6442 *msg_ready = true; 6443 break; 6444 default: 6445 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 6446 return -EINVAL; 6447 } 6448 6449 return 0; 6450 } 6451 6452 static ssize_t 6453 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 6454 const struct hdcp2_dp_msg_data *hdcp2_msg_data) 6455 { 6456 struct intel_dp *dp = &intel_dig_port->dp; 6457 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6458 u8 msg_id = hdcp2_msg_data->msg_id; 6459 int ret, timeout; 6460 bool msg_ready = false; 6461 6462 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 6463 timeout = hdcp2_msg_data->timeout2; 6464 else 6465 timeout = hdcp2_msg_data->timeout; 6466 6467 /* 6468 * There is no way to detect the CERT, LPRIME and STREAM_READY 6469 * availability. So Wait for timeout and read the msg. 6470 */ 6471 if (!hdcp2_msg_data->msg_detectable) { 6472 mdelay(timeout); 6473 ret = 0; 6474 } else { 6475 /* 6476 * As we want to check the msg availability at timeout, Ignoring 6477 * the timeout at wait for CP_IRQ. 6478 */ 6479 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 6480 ret = hdcp2_detect_msg_availability(intel_dig_port, 6481 msg_id, &msg_ready); 6482 if (!msg_ready) 6483 ret = -ETIMEDOUT; 6484 } 6485 6486 if (ret) 6487 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n", 6488 hdcp2_msg_data->msg_id, ret, timeout); 6489 6490 return ret; 6491 } 6492 6493 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 6494 { 6495 int i; 6496 6497 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) 6498 if (hdcp2_dp_msg_data[i].msg_id == msg_id) 6499 return &hdcp2_dp_msg_data[i]; 6500 6501 return NULL; 6502 } 6503 6504 static 6505 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 6506 void *buf, size_t size) 6507 { 6508 struct intel_dp *dp = &intel_dig_port->dp; 6509 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6510 unsigned int offset; 6511 u8 *byte = buf; 6512 ssize_t ret, bytes_to_write, len; 6513 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6514 6515 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 6516 if (!hdcp2_msg_data) 6517 return -EINVAL; 6518 6519 offset = hdcp2_msg_data->offset; 6520 6521 /* No msg_id in DP HDCP2.2 msgs */ 6522 bytes_to_write = size - 1; 6523 byte++; 6524 6525 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 6526 6527 while (bytes_to_write) { 6528 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 6529 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 6530 6531 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 6532 offset, (void *)byte, len); 6533 if (ret < 0) 6534 return ret; 6535 6536 bytes_to_write -= ret; 6537 byte += ret; 6538 offset += ret; 6539 } 6540 6541 return size; 6542 } 6543 6544 static 6545 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6546 { 6547 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6548 u32 dev_cnt; 6549 ssize_t ret; 6550 6551 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6552 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6553 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6554 if (ret != HDCP_2_2_RXINFO_LEN) 6555 return ret >= 0 ? -EIO : ret; 6556 6557 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6558 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6559 6560 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6561 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6562 6563 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6564 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6565 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6566 6567 return ret; 6568 } 6569 6570 static 6571 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6572 u8 msg_id, void *buf, size_t size) 6573 { 6574 unsigned int offset; 6575 u8 *byte = buf; 6576 ssize_t ret, bytes_to_recv, len; 6577 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6578 6579 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6580 if (!hdcp2_msg_data) 6581 return -EINVAL; 6582 offset = hdcp2_msg_data->offset; 6583 6584 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6585 if (ret < 0) 6586 return ret; 6587 6588 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6589 ret = get_receiver_id_list_size(intel_dig_port); 6590 if (ret < 0) 6591 return ret; 6592 6593 size = ret; 6594 } 6595 bytes_to_recv = size - 1; 6596 6597 /* DP adaptation msgs has no msg_id */ 6598 byte++; 6599 6600 while (bytes_to_recv) { 6601 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6602 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6603 6604 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6605 (void *)byte, len); 6606 if (ret < 0) { 6607 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret); 6608 return ret; 6609 } 6610 6611 bytes_to_recv -= ret; 6612 byte += ret; 6613 offset += ret; 6614 } 6615 byte = buf; 6616 *byte = msg_id; 6617 6618 return size; 6619 } 6620 6621 static 6622 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6623 bool is_repeater, u8 content_type) 6624 { 6625 int ret; 6626 struct hdcp2_dp_errata_stream_type stream_type_msg; 6627 6628 if (is_repeater) 6629 return 0; 6630 6631 /* 6632 * Errata for DP: As Stream type is used for encryption, Receiver 6633 * should be communicated with stream type for the decryption of the 6634 * content. 6635 * Repeater will be communicated with stream type as a part of it's 6636 * auth later in time. 6637 */ 6638 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6639 stream_type_msg.stream_type = content_type; 6640 6641 ret = intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6642 sizeof(stream_type_msg)); 6643 6644 return ret < 0 ? ret : 0; 6645 6646 } 6647 6648 static 6649 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6650 { 6651 u8 rx_status; 6652 int ret; 6653 6654 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6655 if (ret) 6656 return ret; 6657 6658 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6659 ret = HDCP_REAUTH_REQUEST; 6660 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6661 ret = HDCP_LINK_INTEGRITY_FAILURE; 6662 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6663 ret = HDCP_TOPOLOGY_CHANGE; 6664 6665 return ret; 6666 } 6667 6668 static 6669 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6670 bool *capable) 6671 { 6672 u8 rx_caps[3]; 6673 int ret; 6674 6675 *capable = false; 6676 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6677 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6678 rx_caps, HDCP_2_2_RXCAPS_LEN); 6679 if (ret != HDCP_2_2_RXCAPS_LEN) 6680 return ret >= 0 ? -EIO : ret; 6681 6682 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6683 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6684 *capable = true; 6685 6686 return 0; 6687 } 6688 6689 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6690 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6691 .read_bksv = intel_dp_hdcp_read_bksv, 6692 .read_bstatus = intel_dp_hdcp_read_bstatus, 6693 .repeater_present = intel_dp_hdcp_repeater_present, 6694 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6695 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6696 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6697 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6698 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6699 .check_link = intel_dp_hdcp_check_link, 6700 .hdcp_capable = intel_dp_hdcp_capable, 6701 .write_2_2_msg = intel_dp_hdcp2_write_msg, 6702 .read_2_2_msg = intel_dp_hdcp2_read_msg, 6703 .config_stream_type = intel_dp_hdcp2_config_stream_type, 6704 .check_2_2_link = intel_dp_hdcp2_check_link, 6705 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 6706 .protocol = HDCP_PROTOCOL_DP, 6707 }; 6708 6709 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6710 { 6711 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6712 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6713 6714 lockdep_assert_held(&dev_priv->pps_mutex); 6715 6716 if (!edp_have_panel_vdd(intel_dp)) 6717 return; 6718 6719 /* 6720 * The VDD bit needs a power domain reference, so if the bit is 6721 * already enabled when we boot or resume, grab this reference and 6722 * schedule a vdd off, so we don't hold on to the reference 6723 * indefinitely. 6724 */ 6725 drm_dbg_kms(&dev_priv->drm, 6726 "VDD left on by BIOS, adjusting state tracking\n"); 6727 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6728 6729 edp_panel_vdd_schedule_off(intel_dp); 6730 } 6731 6732 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6733 { 6734 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6735 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6736 enum pipe pipe; 6737 6738 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6739 encoder->port, &pipe)) 6740 return pipe; 6741 6742 return INVALID_PIPE; 6743 } 6744 6745 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6746 { 6747 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6748 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder)); 6749 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6750 intel_wakeref_t wakeref; 6751 6752 if (!HAS_DDI(dev_priv)) 6753 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); 6754 6755 if (lspcon->active) 6756 lspcon_resume(lspcon); 6757 6758 intel_dp->reset_link_params = true; 6759 6760 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6761 !intel_dp_is_edp(intel_dp)) 6762 return; 6763 6764 with_pps_lock(intel_dp, wakeref) { 6765 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6766 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6767 6768 if (intel_dp_is_edp(intel_dp)) { 6769 /* 6770 * Reinit the power sequencer, in case BIOS did 6771 * something nasty with it. 6772 */ 6773 intel_dp_pps_init(intel_dp); 6774 intel_edp_panel_vdd_sanitize(intel_dp); 6775 } 6776 } 6777 } 6778 6779 static int intel_modeset_tile_group(struct intel_atomic_state *state, 6780 int tile_group_id) 6781 { 6782 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6783 struct drm_connector_list_iter conn_iter; 6784 struct drm_connector *connector; 6785 int ret = 0; 6786 6787 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter); 6788 drm_for_each_connector_iter(connector, &conn_iter) { 6789 struct drm_connector_state *conn_state; 6790 struct intel_crtc_state *crtc_state; 6791 struct intel_crtc *crtc; 6792 6793 if (!connector->has_tile || 6794 connector->tile_group->id != tile_group_id) 6795 continue; 6796 6797 conn_state = drm_atomic_get_connector_state(&state->base, 6798 connector); 6799 if (IS_ERR(conn_state)) { 6800 ret = PTR_ERR(conn_state); 6801 break; 6802 } 6803 6804 crtc = to_intel_crtc(conn_state->crtc); 6805 6806 if (!crtc) 6807 continue; 6808 6809 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 6810 crtc_state->uapi.mode_changed = true; 6811 6812 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 6813 if (ret) 6814 break; 6815 } 6816 drm_connector_list_iter_end(&conn_iter); 6817 6818 return ret; 6819 } 6820 6821 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders) 6822 { 6823 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6824 struct intel_crtc *crtc; 6825 6826 if (transcoders == 0) 6827 return 0; 6828 6829 for_each_intel_crtc(&dev_priv->drm, crtc) { 6830 struct intel_crtc_state *crtc_state; 6831 int ret; 6832 6833 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 6834 if (IS_ERR(crtc_state)) 6835 return PTR_ERR(crtc_state); 6836 6837 if (!crtc_state->hw.enable) 6838 continue; 6839 6840 if (!(transcoders & BIT(crtc_state->cpu_transcoder))) 6841 continue; 6842 6843 crtc_state->uapi.mode_changed = true; 6844 6845 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); 6846 if (ret) 6847 return ret; 6848 6849 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 6850 if (ret) 6851 return ret; 6852 6853 transcoders &= ~BIT(crtc_state->cpu_transcoder); 6854 } 6855 6856 drm_WARN_ON(&dev_priv->drm, transcoders != 0); 6857 6858 return 0; 6859 } 6860 6861 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state, 6862 struct drm_connector *connector) 6863 { 6864 const struct drm_connector_state *old_conn_state = 6865 drm_atomic_get_old_connector_state(&state->base, connector); 6866 const struct intel_crtc_state *old_crtc_state; 6867 struct intel_crtc *crtc; 6868 u8 transcoders; 6869 6870 crtc = to_intel_crtc(old_conn_state->crtc); 6871 if (!crtc) 6872 return 0; 6873 6874 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); 6875 6876 if (!old_crtc_state->hw.active) 6877 return 0; 6878 6879 transcoders = old_crtc_state->sync_mode_slaves_mask; 6880 if (old_crtc_state->master_transcoder != INVALID_TRANSCODER) 6881 transcoders |= BIT(old_crtc_state->master_transcoder); 6882 6883 return intel_modeset_affected_transcoders(state, 6884 transcoders); 6885 } 6886 6887 static int intel_dp_connector_atomic_check(struct drm_connector *conn, 6888 struct drm_atomic_state *_state) 6889 { 6890 struct drm_i915_private *dev_priv = to_i915(conn->dev); 6891 struct intel_atomic_state *state = to_intel_atomic_state(_state); 6892 int ret; 6893 6894 ret = intel_digital_connector_atomic_check(conn, &state->base); 6895 if (ret) 6896 return ret; 6897 6898 if (INTEL_GEN(dev_priv) < 11) 6899 return 0; 6900 6901 if (!intel_connector_needs_modeset(state, conn)) 6902 return 0; 6903 6904 if (conn->has_tile) { 6905 ret = intel_modeset_tile_group(state, conn->tile_group->id); 6906 if (ret) 6907 return ret; 6908 } 6909 6910 return intel_modeset_synced_crtcs(state, conn); 6911 } 6912 6913 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6914 .force = intel_dp_force, 6915 .fill_modes = drm_helper_probe_single_connector_modes, 6916 .atomic_get_property = intel_digital_connector_atomic_get_property, 6917 .atomic_set_property = intel_digital_connector_atomic_set_property, 6918 .late_register = intel_dp_connector_register, 6919 .early_unregister = intel_dp_connector_unregister, 6920 .destroy = intel_connector_destroy, 6921 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6922 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6923 }; 6924 6925 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6926 .detect_ctx = intel_dp_detect, 6927 .get_modes = intel_dp_get_modes, 6928 .mode_valid = intel_dp_mode_valid, 6929 .atomic_check = intel_dp_connector_atomic_check, 6930 }; 6931 6932 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6933 .reset = intel_dp_encoder_reset, 6934 .destroy = intel_dp_encoder_destroy, 6935 }; 6936 6937 enum irqreturn 6938 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 6939 { 6940 struct intel_dp *intel_dp = &intel_dig_port->dp; 6941 6942 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { 6943 /* 6944 * vdd off can generate a long pulse on eDP which 6945 * would require vdd on to handle it, and thus we 6946 * would end up in an endless cycle of 6947 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." 6948 */ 6949 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n", 6950 intel_dig_port->base.base.base.id, 6951 intel_dig_port->base.base.name); 6952 return IRQ_HANDLED; 6953 } 6954 6955 DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n", 6956 intel_dig_port->base.base.base.id, 6957 intel_dig_port->base.base.name, 6958 long_hpd ? "long" : "short"); 6959 6960 if (long_hpd) { 6961 intel_dp->reset_link_params = true; 6962 return IRQ_NONE; 6963 } 6964 6965 if (intel_dp->is_mst) { 6966 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { 6967 /* 6968 * If we were in MST mode, and device is not 6969 * there, get out of MST mode 6970 */ 6971 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 6972 intel_dp->is_mst, intel_dp->mst_mgr.mst_state); 6973 intel_dp->is_mst = false; 6974 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6975 intel_dp->is_mst); 6976 6977 return IRQ_NONE; 6978 } 6979 } 6980 6981 if (!intel_dp->is_mst) { 6982 bool handled; 6983 6984 handled = intel_dp_short_pulse(intel_dp); 6985 6986 if (!handled) 6987 return IRQ_NONE; 6988 } 6989 6990 return IRQ_HANDLED; 6991 } 6992 6993 /* check the VBT to see whether the eDP is on another port */ 6994 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6995 { 6996 /* 6997 * eDP not supported on g4x. so bail out early just 6998 * for a bit extra safety in case the VBT is bonkers. 6999 */ 7000 if (INTEL_GEN(dev_priv) < 5) 7001 return false; 7002 7003 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 7004 return true; 7005 7006 return intel_bios_is_port_edp(dev_priv, port); 7007 } 7008 7009 static void 7010 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 7011 { 7012 struct drm_i915_private *dev_priv = to_i915(connector->dev); 7013 enum port port = dp_to_dig_port(intel_dp)->base.port; 7014 7015 if (!IS_G4X(dev_priv) && port != PORT_A) 7016 intel_attach_force_audio_property(connector); 7017 7018 intel_attach_broadcast_rgb_property(connector); 7019 if (HAS_GMCH(dev_priv)) 7020 drm_connector_attach_max_bpc_property(connector, 6, 10); 7021 else if (INTEL_GEN(dev_priv) >= 5) 7022 drm_connector_attach_max_bpc_property(connector, 6, 12); 7023 7024 intel_attach_colorspace_property(connector); 7025 7026 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11) 7027 drm_object_attach_property(&connector->base, 7028 connector->dev->mode_config.hdr_output_metadata_property, 7029 0); 7030 7031 if (intel_dp_is_edp(intel_dp)) { 7032 u32 allowed_scalers; 7033 7034 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 7035 if (!HAS_GMCH(dev_priv)) 7036 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 7037 7038 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 7039 7040 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 7041 7042 } 7043 } 7044 7045 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 7046 { 7047 intel_dp->panel_power_off_time = ktime_get_boottime(); 7048 intel_dp->last_power_on = jiffies; 7049 intel_dp->last_backlight_off = jiffies; 7050 } 7051 7052 static void 7053 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 7054 { 7055 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7056 u32 pp_on, pp_off, pp_ctl; 7057 struct pps_registers regs; 7058 7059 intel_pps_get_registers(intel_dp, ®s); 7060 7061 pp_ctl = ilk_get_pp_control(intel_dp); 7062 7063 /* Ensure PPS is unlocked */ 7064 if (!HAS_DDI(dev_priv)) 7065 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); 7066 7067 pp_on = intel_de_read(dev_priv, regs.pp_on); 7068 pp_off = intel_de_read(dev_priv, regs.pp_off); 7069 7070 /* Pull timing values out of registers */ 7071 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 7072 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 7073 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 7074 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 7075 7076 if (i915_mmio_reg_valid(regs.pp_div)) { 7077 u32 pp_div; 7078 7079 pp_div = intel_de_read(dev_priv, regs.pp_div); 7080 7081 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 7082 } else { 7083 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 7084 } 7085 } 7086 7087 static void 7088 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 7089 { 7090 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 7091 state_name, 7092 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 7093 } 7094 7095 static void 7096 intel_pps_verify_state(struct intel_dp *intel_dp) 7097 { 7098 struct edp_power_seq hw; 7099 struct edp_power_seq *sw = &intel_dp->pps_delays; 7100 7101 intel_pps_readout_hw_state(intel_dp, &hw); 7102 7103 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 7104 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 7105 DRM_ERROR("PPS state mismatch\n"); 7106 intel_pps_dump_state("sw", sw); 7107 intel_pps_dump_state("hw", &hw); 7108 } 7109 } 7110 7111 static void 7112 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 7113 { 7114 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7115 struct edp_power_seq cur, vbt, spec, 7116 *final = &intel_dp->pps_delays; 7117 7118 lockdep_assert_held(&dev_priv->pps_mutex); 7119 7120 /* already initialized? */ 7121 if (final->t11_t12 != 0) 7122 return; 7123 7124 intel_pps_readout_hw_state(intel_dp, &cur); 7125 7126 intel_pps_dump_state("cur", &cur); 7127 7128 vbt = dev_priv->vbt.edp.pps; 7129 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 7130 * of 500ms appears to be too short. Ocassionally the panel 7131 * just fails to power back on. Increasing the delay to 800ms 7132 * seems sufficient to avoid this problem. 7133 */ 7134 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 7135 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 7136 drm_dbg_kms(&dev_priv->drm, 7137 "Increasing T12 panel delay as per the quirk to %d\n", 7138 vbt.t11_t12); 7139 } 7140 /* T11_T12 delay is special and actually in units of 100ms, but zero 7141 * based in the hw (so we need to add 100 ms). But the sw vbt 7142 * table multiplies it with 1000 to make it in units of 100usec, 7143 * too. */ 7144 vbt.t11_t12 += 100 * 10; 7145 7146 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 7147 * our hw here, which are all in 100usec. */ 7148 spec.t1_t3 = 210 * 10; 7149 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 7150 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 7151 spec.t10 = 500 * 10; 7152 /* This one is special and actually in units of 100ms, but zero 7153 * based in the hw (so we need to add 100 ms). But the sw vbt 7154 * table multiplies it with 1000 to make it in units of 100usec, 7155 * too. */ 7156 spec.t11_t12 = (510 + 100) * 10; 7157 7158 intel_pps_dump_state("vbt", &vbt); 7159 7160 /* Use the max of the register settings and vbt. If both are 7161 * unset, fall back to the spec limits. */ 7162 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 7163 spec.field : \ 7164 max(cur.field, vbt.field)) 7165 assign_final(t1_t3); 7166 assign_final(t8); 7167 assign_final(t9); 7168 assign_final(t10); 7169 assign_final(t11_t12); 7170 #undef assign_final 7171 7172 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 7173 intel_dp->panel_power_up_delay = get_delay(t1_t3); 7174 intel_dp->backlight_on_delay = get_delay(t8); 7175 intel_dp->backlight_off_delay = get_delay(t9); 7176 intel_dp->panel_power_down_delay = get_delay(t10); 7177 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 7178 #undef get_delay 7179 7180 drm_dbg_kms(&dev_priv->drm, 7181 "panel power up delay %d, power down delay %d, power cycle delay %d\n", 7182 intel_dp->panel_power_up_delay, 7183 intel_dp->panel_power_down_delay, 7184 intel_dp->panel_power_cycle_delay); 7185 7186 drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n", 7187 intel_dp->backlight_on_delay, 7188 intel_dp->backlight_off_delay); 7189 7190 /* 7191 * We override the HW backlight delays to 1 because we do manual waits 7192 * on them. For T8, even BSpec recommends doing it. For T9, if we 7193 * don't do this, we'll end up waiting for the backlight off delay 7194 * twice: once when we do the manual sleep, and once when we disable 7195 * the panel and wait for the PP_STATUS bit to become zero. 7196 */ 7197 final->t8 = 1; 7198 final->t9 = 1; 7199 7200 /* 7201 * HW has only a 100msec granularity for t11_t12 so round it up 7202 * accordingly. 7203 */ 7204 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 7205 } 7206 7207 static void 7208 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 7209 bool force_disable_vdd) 7210 { 7211 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7212 u32 pp_on, pp_off, port_sel = 0; 7213 int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000; 7214 struct pps_registers regs; 7215 enum port port = dp_to_dig_port(intel_dp)->base.port; 7216 const struct edp_power_seq *seq = &intel_dp->pps_delays; 7217 7218 lockdep_assert_held(&dev_priv->pps_mutex); 7219 7220 intel_pps_get_registers(intel_dp, ®s); 7221 7222 /* 7223 * On some VLV machines the BIOS can leave the VDD 7224 * enabled even on power sequencers which aren't 7225 * hooked up to any port. This would mess up the 7226 * power domain tracking the first time we pick 7227 * one of these power sequencers for use since 7228 * edp_panel_vdd_on() would notice that the VDD was 7229 * already on and therefore wouldn't grab the power 7230 * domain reference. Disable VDD first to avoid this. 7231 * This also avoids spuriously turning the VDD on as 7232 * soon as the new power sequencer gets initialized. 7233 */ 7234 if (force_disable_vdd) { 7235 u32 pp = ilk_get_pp_control(intel_dp); 7236 7237 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON, 7238 "Panel power already on\n"); 7239 7240 if (pp & EDP_FORCE_VDD) 7241 drm_dbg_kms(&dev_priv->drm, 7242 "VDD already on, disabling first\n"); 7243 7244 pp &= ~EDP_FORCE_VDD; 7245 7246 intel_de_write(dev_priv, regs.pp_ctrl, pp); 7247 } 7248 7249 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 7250 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 7251 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 7252 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 7253 7254 /* Haswell doesn't have any port selection bits for the panel 7255 * power sequencer any more. */ 7256 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7257 port_sel = PANEL_PORT_SELECT_VLV(port); 7258 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 7259 switch (port) { 7260 case PORT_A: 7261 port_sel = PANEL_PORT_SELECT_DPA; 7262 break; 7263 case PORT_C: 7264 port_sel = PANEL_PORT_SELECT_DPC; 7265 break; 7266 case PORT_D: 7267 port_sel = PANEL_PORT_SELECT_DPD; 7268 break; 7269 default: 7270 MISSING_CASE(port); 7271 break; 7272 } 7273 } 7274 7275 pp_on |= port_sel; 7276 7277 intel_de_write(dev_priv, regs.pp_on, pp_on); 7278 intel_de_write(dev_priv, regs.pp_off, pp_off); 7279 7280 /* 7281 * Compute the divisor for the pp clock, simply match the Bspec formula. 7282 */ 7283 if (i915_mmio_reg_valid(regs.pp_div)) { 7284 intel_de_write(dev_priv, regs.pp_div, 7285 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 7286 } else { 7287 u32 pp_ctl; 7288 7289 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl); 7290 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 7291 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 7292 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); 7293 } 7294 7295 drm_dbg_kms(&dev_priv->drm, 7296 "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 7297 intel_de_read(dev_priv, regs.pp_on), 7298 intel_de_read(dev_priv, regs.pp_off), 7299 i915_mmio_reg_valid(regs.pp_div) ? 7300 intel_de_read(dev_priv, regs.pp_div) : 7301 (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 7302 } 7303 7304 static void intel_dp_pps_init(struct intel_dp *intel_dp) 7305 { 7306 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7307 7308 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7309 vlv_initial_power_sequencer_setup(intel_dp); 7310 } else { 7311 intel_dp_init_panel_power_sequencer(intel_dp); 7312 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 7313 } 7314 } 7315 7316 /** 7317 * intel_dp_set_drrs_state - program registers for RR switch to take effect 7318 * @dev_priv: i915 device 7319 * @crtc_state: a pointer to the active intel_crtc_state 7320 * @refresh_rate: RR to be programmed 7321 * 7322 * This function gets called when refresh rate (RR) has to be changed from 7323 * one frequency to another. Switches can be between high and low RR 7324 * supported by the panel or to any other RR based on media playback (in 7325 * this case, RR value needs to be passed from user space). 7326 * 7327 * The caller of this function needs to take a lock on dev_priv->drrs. 7328 */ 7329 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 7330 const struct intel_crtc_state *crtc_state, 7331 int refresh_rate) 7332 { 7333 struct intel_dp *intel_dp = dev_priv->drrs.dp; 7334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 7335 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 7336 7337 if (refresh_rate <= 0) { 7338 drm_dbg_kms(&dev_priv->drm, 7339 "Refresh rate should be positive non-zero.\n"); 7340 return; 7341 } 7342 7343 if (intel_dp == NULL) { 7344 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n"); 7345 return; 7346 } 7347 7348 if (!intel_crtc) { 7349 drm_dbg_kms(&dev_priv->drm, 7350 "DRRS: intel_crtc not initialized\n"); 7351 return; 7352 } 7353 7354 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 7355 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n"); 7356 return; 7357 } 7358 7359 if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) == 7360 refresh_rate) 7361 index = DRRS_LOW_RR; 7362 7363 if (index == dev_priv->drrs.refresh_rate_type) { 7364 drm_dbg_kms(&dev_priv->drm, 7365 "DRRS requested for previously set RR...ignoring\n"); 7366 return; 7367 } 7368 7369 if (!crtc_state->hw.active) { 7370 drm_dbg_kms(&dev_priv->drm, 7371 "eDP encoder disabled. CRTC not Active\n"); 7372 return; 7373 } 7374 7375 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 7376 switch (index) { 7377 case DRRS_HIGH_RR: 7378 intel_dp_set_m_n(crtc_state, M1_N1); 7379 break; 7380 case DRRS_LOW_RR: 7381 intel_dp_set_m_n(crtc_state, M2_N2); 7382 break; 7383 case DRRS_MAX_RR: 7384 default: 7385 drm_err(&dev_priv->drm, 7386 "Unsupported refreshrate type\n"); 7387 } 7388 } else if (INTEL_GEN(dev_priv) > 6) { 7389 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 7390 u32 val; 7391 7392 val = intel_de_read(dev_priv, reg); 7393 if (index > DRRS_HIGH_RR) { 7394 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7395 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7396 else 7397 val |= PIPECONF_EDP_RR_MODE_SWITCH; 7398 } else { 7399 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7400 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7401 else 7402 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 7403 } 7404 intel_de_write(dev_priv, reg, val); 7405 } 7406 7407 dev_priv->drrs.refresh_rate_type = index; 7408 7409 drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n", 7410 refresh_rate); 7411 } 7412 7413 /** 7414 * intel_edp_drrs_enable - init drrs struct if supported 7415 * @intel_dp: DP struct 7416 * @crtc_state: A pointer to the active crtc state. 7417 * 7418 * Initializes frontbuffer_bits and drrs.dp 7419 */ 7420 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 7421 const struct intel_crtc_state *crtc_state) 7422 { 7423 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7424 7425 if (!crtc_state->has_drrs) { 7426 drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n"); 7427 return; 7428 } 7429 7430 if (dev_priv->psr.enabled) { 7431 drm_dbg_kms(&dev_priv->drm, 7432 "PSR enabled. Not enabling DRRS.\n"); 7433 return; 7434 } 7435 7436 mutex_lock(&dev_priv->drrs.mutex); 7437 if (dev_priv->drrs.dp) { 7438 drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n"); 7439 goto unlock; 7440 } 7441 7442 dev_priv->drrs.busy_frontbuffer_bits = 0; 7443 7444 dev_priv->drrs.dp = intel_dp; 7445 7446 unlock: 7447 mutex_unlock(&dev_priv->drrs.mutex); 7448 } 7449 7450 /** 7451 * intel_edp_drrs_disable - Disable DRRS 7452 * @intel_dp: DP struct 7453 * @old_crtc_state: Pointer to old crtc_state. 7454 * 7455 */ 7456 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 7457 const struct intel_crtc_state *old_crtc_state) 7458 { 7459 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7460 7461 if (!old_crtc_state->has_drrs) 7462 return; 7463 7464 mutex_lock(&dev_priv->drrs.mutex); 7465 if (!dev_priv->drrs.dp) { 7466 mutex_unlock(&dev_priv->drrs.mutex); 7467 return; 7468 } 7469 7470 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7471 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 7472 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode)); 7473 7474 dev_priv->drrs.dp = NULL; 7475 mutex_unlock(&dev_priv->drrs.mutex); 7476 7477 cancel_delayed_work_sync(&dev_priv->drrs.work); 7478 } 7479 7480 static void intel_edp_drrs_downclock_work(struct work_struct *work) 7481 { 7482 struct drm_i915_private *dev_priv = 7483 container_of(work, typeof(*dev_priv), drrs.work.work); 7484 struct intel_dp *intel_dp; 7485 7486 mutex_lock(&dev_priv->drrs.mutex); 7487 7488 intel_dp = dev_priv->drrs.dp; 7489 7490 if (!intel_dp) 7491 goto unlock; 7492 7493 /* 7494 * The delayed work can race with an invalidate hence we need to 7495 * recheck. 7496 */ 7497 7498 if (dev_priv->drrs.busy_frontbuffer_bits) 7499 goto unlock; 7500 7501 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 7502 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7503 7504 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7505 drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode)); 7506 } 7507 7508 unlock: 7509 mutex_unlock(&dev_priv->drrs.mutex); 7510 } 7511 7512 /** 7513 * intel_edp_drrs_invalidate - Disable Idleness DRRS 7514 * @dev_priv: i915 device 7515 * @frontbuffer_bits: frontbuffer plane tracking bits 7516 * 7517 * This function gets called everytime rendering on the given planes start. 7518 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 7519 * 7520 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7521 */ 7522 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 7523 unsigned int frontbuffer_bits) 7524 { 7525 struct intel_dp *intel_dp; 7526 struct drm_crtc *crtc; 7527 enum pipe pipe; 7528 7529 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7530 return; 7531 7532 cancel_delayed_work(&dev_priv->drrs.work); 7533 7534 mutex_lock(&dev_priv->drrs.mutex); 7535 7536 intel_dp = dev_priv->drrs.dp; 7537 if (!intel_dp) { 7538 mutex_unlock(&dev_priv->drrs.mutex); 7539 return; 7540 } 7541 7542 crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7543 pipe = to_intel_crtc(crtc)->pipe; 7544 7545 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7546 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 7547 7548 /* invalidate means busy screen hence upclock */ 7549 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7550 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7551 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode)); 7552 7553 mutex_unlock(&dev_priv->drrs.mutex); 7554 } 7555 7556 /** 7557 * intel_edp_drrs_flush - Restart Idleness DRRS 7558 * @dev_priv: i915 device 7559 * @frontbuffer_bits: frontbuffer plane tracking bits 7560 * 7561 * This function gets called every time rendering on the given planes has 7562 * completed or flip on a crtc is completed. So DRRS should be upclocked 7563 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 7564 * if no other planes are dirty. 7565 * 7566 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7567 */ 7568 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 7569 unsigned int frontbuffer_bits) 7570 { 7571 struct intel_dp *intel_dp; 7572 struct drm_crtc *crtc; 7573 enum pipe pipe; 7574 7575 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7576 return; 7577 7578 cancel_delayed_work(&dev_priv->drrs.work); 7579 7580 mutex_lock(&dev_priv->drrs.mutex); 7581 7582 intel_dp = dev_priv->drrs.dp; 7583 if (!intel_dp) { 7584 mutex_unlock(&dev_priv->drrs.mutex); 7585 return; 7586 } 7587 7588 crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7589 pipe = to_intel_crtc(crtc)->pipe; 7590 7591 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7592 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 7593 7594 /* flush means busy screen hence upclock */ 7595 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7596 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7597 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode)); 7598 7599 /* 7600 * flush also means no more activity hence schedule downclock, if all 7601 * other fbs are quiescent too 7602 */ 7603 if (!dev_priv->drrs.busy_frontbuffer_bits) 7604 schedule_delayed_work(&dev_priv->drrs.work, 7605 msecs_to_jiffies(1000)); 7606 mutex_unlock(&dev_priv->drrs.mutex); 7607 } 7608 7609 /** 7610 * DOC: Display Refresh Rate Switching (DRRS) 7611 * 7612 * Display Refresh Rate Switching (DRRS) is a power conservation feature 7613 * which enables swtching between low and high refresh rates, 7614 * dynamically, based on the usage scenario. This feature is applicable 7615 * for internal panels. 7616 * 7617 * Indication that the panel supports DRRS is given by the panel EDID, which 7618 * would list multiple refresh rates for one resolution. 7619 * 7620 * DRRS is of 2 types - static and seamless. 7621 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 7622 * (may appear as a blink on screen) and is used in dock-undock scenario. 7623 * Seamless DRRS involves changing RR without any visual effect to the user 7624 * and can be used during normal system usage. This is done by programming 7625 * certain registers. 7626 * 7627 * Support for static/seamless DRRS may be indicated in the VBT based on 7628 * inputs from the panel spec. 7629 * 7630 * DRRS saves power by switching to low RR based on usage scenarios. 7631 * 7632 * The implementation is based on frontbuffer tracking implementation. When 7633 * there is a disturbance on the screen triggered by user activity or a periodic 7634 * system activity, DRRS is disabled (RR is changed to high RR). When there is 7635 * no movement on screen, after a timeout of 1 second, a switch to low RR is 7636 * made. 7637 * 7638 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 7639 * and intel_edp_drrs_flush() are called. 7640 * 7641 * DRRS can be further extended to support other internal panels and also 7642 * the scenario of video playback wherein RR is set based on the rate 7643 * requested by userspace. 7644 */ 7645 7646 /** 7647 * intel_dp_drrs_init - Init basic DRRS work and mutex. 7648 * @connector: eDP connector 7649 * @fixed_mode: preferred mode of panel 7650 * 7651 * This function is called only once at driver load to initialize basic 7652 * DRRS stuff. 7653 * 7654 * Returns: 7655 * Downclock mode if panel supports it, else return NULL. 7656 * DRRS support is determined by the presence of downclock mode (apart 7657 * from VBT setting). 7658 */ 7659 static struct drm_display_mode * 7660 intel_dp_drrs_init(struct intel_connector *connector, 7661 struct drm_display_mode *fixed_mode) 7662 { 7663 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 7664 struct drm_display_mode *downclock_mode = NULL; 7665 7666 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 7667 mutex_init(&dev_priv->drrs.mutex); 7668 7669 if (INTEL_GEN(dev_priv) <= 6) { 7670 drm_dbg_kms(&dev_priv->drm, 7671 "DRRS supported for Gen7 and above\n"); 7672 return NULL; 7673 } 7674 7675 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 7676 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n"); 7677 return NULL; 7678 } 7679 7680 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 7681 if (!downclock_mode) { 7682 drm_dbg_kms(&dev_priv->drm, 7683 "Downclock mode is not found. DRRS not supported\n"); 7684 return NULL; 7685 } 7686 7687 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 7688 7689 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 7690 drm_dbg_kms(&dev_priv->drm, 7691 "seamless DRRS supported for eDP panel.\n"); 7692 return downclock_mode; 7693 } 7694 7695 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7696 struct intel_connector *intel_connector) 7697 { 7698 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7699 struct drm_device *dev = &dev_priv->drm; 7700 struct drm_connector *connector = &intel_connector->base; 7701 struct drm_display_mode *fixed_mode = NULL; 7702 struct drm_display_mode *downclock_mode = NULL; 7703 bool has_dpcd; 7704 enum pipe pipe = INVALID_PIPE; 7705 intel_wakeref_t wakeref; 7706 struct edid *edid; 7707 7708 if (!intel_dp_is_edp(intel_dp)) 7709 return true; 7710 7711 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7712 7713 /* 7714 * On IBX/CPT we may get here with LVDS already registered. Since the 7715 * driver uses the only internal power sequencer available for both 7716 * eDP and LVDS bail out early in this case to prevent interfering 7717 * with an already powered-on LVDS power sequencer. 7718 */ 7719 if (intel_get_lvds_encoder(dev_priv)) { 7720 drm_WARN_ON(dev, 7721 !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7722 drm_info(&dev_priv->drm, 7723 "LVDS was detected, not registering eDP\n"); 7724 7725 return false; 7726 } 7727 7728 with_pps_lock(intel_dp, wakeref) { 7729 intel_dp_init_panel_power_timestamps(intel_dp); 7730 intel_dp_pps_init(intel_dp); 7731 intel_edp_panel_vdd_sanitize(intel_dp); 7732 } 7733 7734 /* Cache DPCD and EDID for edp. */ 7735 has_dpcd = intel_edp_init_dpcd(intel_dp); 7736 7737 if (!has_dpcd) { 7738 /* if this fails, presume the device is a ghost */ 7739 drm_info(&dev_priv->drm, 7740 "failed to retrieve link info, disabling eDP\n"); 7741 goto out_vdd_off; 7742 } 7743 7744 mutex_lock(&dev->mode_config.mutex); 7745 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7746 if (edid) { 7747 if (drm_add_edid_modes(connector, edid)) { 7748 drm_connector_update_edid_property(connector, edid); 7749 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid); 7750 } else { 7751 kfree(edid); 7752 edid = ERR_PTR(-EINVAL); 7753 } 7754 } else { 7755 edid = ERR_PTR(-ENOENT); 7756 } 7757 intel_connector->edid = edid; 7758 7759 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7760 if (fixed_mode) 7761 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7762 7763 /* fallback to VBT if available for eDP */ 7764 if (!fixed_mode) 7765 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7766 mutex_unlock(&dev->mode_config.mutex); 7767 7768 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7769 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7770 register_reboot_notifier(&intel_dp->edp_notifier); 7771 7772 /* 7773 * Figure out the current pipe for the initial backlight setup. 7774 * If the current pipe isn't valid, try the PPS pipe, and if that 7775 * fails just assume pipe A. 7776 */ 7777 pipe = vlv_active_pipe(intel_dp); 7778 7779 if (pipe != PIPE_A && pipe != PIPE_B) 7780 pipe = intel_dp->pps_pipe; 7781 7782 if (pipe != PIPE_A && pipe != PIPE_B) 7783 pipe = PIPE_A; 7784 7785 drm_dbg_kms(&dev_priv->drm, 7786 "using pipe %c for initial backlight setup\n", 7787 pipe_name(pipe)); 7788 } 7789 7790 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7791 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7792 intel_panel_setup_backlight(connector, pipe); 7793 7794 if (fixed_mode) { 7795 drm_connector_set_panel_orientation_with_quirk(connector, 7796 dev_priv->vbt.orientation, 7797 fixed_mode->hdisplay, fixed_mode->vdisplay); 7798 } 7799 7800 return true; 7801 7802 out_vdd_off: 7803 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7804 /* 7805 * vdd might still be enabled do to the delayed vdd off. 7806 * Make sure vdd is actually turned off here. 7807 */ 7808 with_pps_lock(intel_dp, wakeref) 7809 edp_panel_vdd_off_sync(intel_dp); 7810 7811 return false; 7812 } 7813 7814 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7815 { 7816 struct intel_connector *intel_connector; 7817 struct drm_connector *connector; 7818 7819 intel_connector = container_of(work, typeof(*intel_connector), 7820 modeset_retry_work); 7821 connector = &intel_connector->base; 7822 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7823 connector->name); 7824 7825 /* Grab the locks before changing connector property*/ 7826 mutex_lock(&connector->dev->mode_config.mutex); 7827 /* Set connector link status to BAD and send a Uevent to notify 7828 * userspace to do a modeset. 7829 */ 7830 drm_connector_set_link_status_property(connector, 7831 DRM_MODE_LINK_STATUS_BAD); 7832 mutex_unlock(&connector->dev->mode_config.mutex); 7833 /* Send Hotplug uevent so userspace can reprobe */ 7834 drm_kms_helper_hotplug_event(connector->dev); 7835 } 7836 7837 bool 7838 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 7839 struct intel_connector *intel_connector) 7840 { 7841 struct drm_connector *connector = &intel_connector->base; 7842 struct intel_dp *intel_dp = &intel_dig_port->dp; 7843 struct intel_encoder *intel_encoder = &intel_dig_port->base; 7844 struct drm_device *dev = intel_encoder->base.dev; 7845 struct drm_i915_private *dev_priv = to_i915(dev); 7846 enum port port = intel_encoder->port; 7847 enum phy phy = intel_port_to_phy(dev_priv, port); 7848 int type; 7849 7850 /* Initialize the work for modeset in case of link train failure */ 7851 INIT_WORK(&intel_connector->modeset_retry_work, 7852 intel_dp_modeset_retry_work_fn); 7853 7854 if (drm_WARN(dev, intel_dig_port->max_lanes < 1, 7855 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 7856 intel_dig_port->max_lanes, intel_encoder->base.base.id, 7857 intel_encoder->base.name)) 7858 return false; 7859 7860 intel_dp_set_source_rates(intel_dp); 7861 7862 intel_dp->reset_link_params = true; 7863 intel_dp->pps_pipe = INVALID_PIPE; 7864 intel_dp->active_pipe = INVALID_PIPE; 7865 7866 /* Preserve the current hw state. */ 7867 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); 7868 intel_dp->attached_connector = intel_connector; 7869 7870 if (intel_dp_is_port_edp(dev_priv, port)) { 7871 /* 7872 * Currently we don't support eDP on TypeC ports, although in 7873 * theory it could work on TypeC legacy ports. 7874 */ 7875 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy)); 7876 type = DRM_MODE_CONNECTOR_eDP; 7877 } else { 7878 type = DRM_MODE_CONNECTOR_DisplayPort; 7879 } 7880 7881 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7882 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7883 7884 /* 7885 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7886 * for DP the encoder type can be set by the caller to 7887 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7888 */ 7889 if (type == DRM_MODE_CONNECTOR_eDP) 7890 intel_encoder->type = INTEL_OUTPUT_EDP; 7891 7892 /* eDP only on port B and/or C on vlv/chv */ 7893 if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) || 7894 IS_CHERRYVIEW(dev_priv)) && 7895 intel_dp_is_edp(intel_dp) && 7896 port != PORT_B && port != PORT_C)) 7897 return false; 7898 7899 drm_dbg_kms(&dev_priv->drm, 7900 "Adding %s connector on [ENCODER:%d:%s]\n", 7901 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7902 intel_encoder->base.base.id, intel_encoder->base.name); 7903 7904 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7905 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7906 7907 if (!HAS_GMCH(dev_priv)) 7908 connector->interlace_allowed = true; 7909 connector->doublescan_allowed = 0; 7910 7911 if (INTEL_GEN(dev_priv) >= 11) 7912 connector->ycbcr_420_allowed = true; 7913 7914 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7915 intel_connector->polled = DRM_CONNECTOR_POLL_HPD; 7916 7917 intel_dp_aux_init(intel_dp); 7918 7919 intel_connector_attach_encoder(intel_connector, intel_encoder); 7920 7921 if (HAS_DDI(dev_priv)) 7922 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7923 else 7924 intel_connector->get_hw_state = intel_connector_get_hw_state; 7925 7926 /* init MST on ports that can support it */ 7927 intel_dp_mst_encoder_init(intel_dig_port, 7928 intel_connector->base.base.id); 7929 7930 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7931 intel_dp_aux_fini(intel_dp); 7932 intel_dp_mst_encoder_cleanup(intel_dig_port); 7933 goto fail; 7934 } 7935 7936 intel_dp_add_properties(intel_dp, connector); 7937 7938 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7939 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 7940 if (ret) 7941 drm_dbg_kms(&dev_priv->drm, 7942 "HDCP init failed, skipping.\n"); 7943 } 7944 7945 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7946 * 0xd. Failure to do so will result in spurious interrupts being 7947 * generated on the port when a cable is not attached. 7948 */ 7949 if (IS_G45(dev_priv)) { 7950 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); 7951 intel_de_write(dev_priv, PEG_BAND_GAP_DATA, 7952 (temp & ~0xf) | 0xd); 7953 } 7954 7955 return true; 7956 7957 fail: 7958 drm_connector_cleanup(connector); 7959 7960 return false; 7961 } 7962 7963 bool intel_dp_init(struct drm_i915_private *dev_priv, 7964 i915_reg_t output_reg, 7965 enum port port) 7966 { 7967 struct intel_digital_port *intel_dig_port; 7968 struct intel_encoder *intel_encoder; 7969 struct drm_encoder *encoder; 7970 struct intel_connector *intel_connector; 7971 7972 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 7973 if (!intel_dig_port) 7974 return false; 7975 7976 intel_connector = intel_connector_alloc(); 7977 if (!intel_connector) 7978 goto err_connector_alloc; 7979 7980 intel_encoder = &intel_dig_port->base; 7981 encoder = &intel_encoder->base; 7982 7983 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7984 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7985 "DP %c", port_name(port))) 7986 goto err_encoder_init; 7987 7988 intel_encoder->hotplug = intel_dp_hotplug; 7989 intel_encoder->compute_config = intel_dp_compute_config; 7990 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7991 intel_encoder->get_config = intel_dp_get_config; 7992 intel_encoder->update_pipe = intel_panel_update_backlight; 7993 intel_encoder->suspend = intel_dp_encoder_suspend; 7994 if (IS_CHERRYVIEW(dev_priv)) { 7995 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7996 intel_encoder->pre_enable = chv_pre_enable_dp; 7997 intel_encoder->enable = vlv_enable_dp; 7998 intel_encoder->disable = vlv_disable_dp; 7999 intel_encoder->post_disable = chv_post_disable_dp; 8000 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 8001 } else if (IS_VALLEYVIEW(dev_priv)) { 8002 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 8003 intel_encoder->pre_enable = vlv_pre_enable_dp; 8004 intel_encoder->enable = vlv_enable_dp; 8005 intel_encoder->disable = vlv_disable_dp; 8006 intel_encoder->post_disable = vlv_post_disable_dp; 8007 } else { 8008 intel_encoder->pre_enable = g4x_pre_enable_dp; 8009 intel_encoder->enable = g4x_enable_dp; 8010 intel_encoder->disable = g4x_disable_dp; 8011 intel_encoder->post_disable = g4x_post_disable_dp; 8012 } 8013 8014 intel_dig_port->dp.output_reg = output_reg; 8015 intel_dig_port->max_lanes = 4; 8016 8017 intel_encoder->type = INTEL_OUTPUT_DP; 8018 intel_encoder->power_domain = intel_port_to_power_domain(port); 8019 if (IS_CHERRYVIEW(dev_priv)) { 8020 if (port == PORT_D) 8021 intel_encoder->pipe_mask = BIT(PIPE_C); 8022 else 8023 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); 8024 } else { 8025 intel_encoder->pipe_mask = ~0; 8026 } 8027 intel_encoder->cloneable = 0; 8028 intel_encoder->port = port; 8029 8030 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 8031 8032 if (port != PORT_A) 8033 intel_infoframe_init(intel_dig_port); 8034 8035 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 8036 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 8037 goto err_init_connector; 8038 8039 return true; 8040 8041 err_init_connector: 8042 drm_encoder_cleanup(encoder); 8043 err_encoder_init: 8044 kfree(intel_connector); 8045 err_connector_alloc: 8046 kfree(intel_dig_port); 8047 return false; 8048 } 8049 8050 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 8051 { 8052 struct intel_encoder *encoder; 8053 8054 for_each_intel_encoder(&dev_priv->drm, encoder) { 8055 struct intel_dp *intel_dp; 8056 8057 if (encoder->type != INTEL_OUTPUT_DDI) 8058 continue; 8059 8060 intel_dp = enc_to_intel_dp(encoder); 8061 8062 if (!intel_dp->can_mst) 8063 continue; 8064 8065 if (intel_dp->is_mst) 8066 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 8067 } 8068 } 8069 8070 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 8071 { 8072 struct intel_encoder *encoder; 8073 8074 for_each_intel_encoder(&dev_priv->drm, encoder) { 8075 struct intel_dp *intel_dp; 8076 int ret; 8077 8078 if (encoder->type != INTEL_OUTPUT_DDI) 8079 continue; 8080 8081 intel_dp = enc_to_intel_dp(encoder); 8082 8083 if (!intel_dp->can_mst) 8084 continue; 8085 8086 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, 8087 true); 8088 if (ret) { 8089 intel_dp->is_mst = false; 8090 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 8091 false); 8092 } 8093 } 8094 } 8095