1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_debugfs.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68 
69 #define DP_DPRX_ESI_LEN 14
70 
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE			2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
75 
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
78 
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
81 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84 
85 struct dp_link_dpll {
86 	int clock;
87 	struct dpll dpll;
88 };
89 
90 static const struct dp_link_dpll g4x_dpll[] = {
91 	{ 162000,
92 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93 	{ 270000,
94 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96 
97 static const struct dp_link_dpll pch_dpll[] = {
98 	{ 162000,
99 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100 	{ 270000,
101 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103 
104 static const struct dp_link_dpll vlv_dpll[] = {
105 	{ 162000,
106 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107 	{ 270000,
108 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110 
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116 	/*
117 	 * CHV requires to program fractional division for m2.
118 	 * m2 is stored in fixed point format using formula below
119 	 * (m2_int << 22) | m2_fraction
120 	 */
121 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
122 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
124 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126 
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129 
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134 
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145 
146 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148 
149 static void intel_dp_link_down(struct intel_encoder *encoder,
150 			       const struct intel_crtc_state *old_crtc_state);
151 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
152 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
153 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
154 					   const struct intel_crtc_state *crtc_state);
155 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
156 				      enum pipe pipe);
157 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
158 
159 /* update sink rates from dpcd */
160 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
161 {
162 	static const int dp_rates[] = {
163 		162000, 270000, 540000, 810000
164 	};
165 	int i, max_rate;
166 
167 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
168 
169 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
170 		if (dp_rates[i] > max_rate)
171 			break;
172 		intel_dp->sink_rates[i] = dp_rates[i];
173 	}
174 
175 	intel_dp->num_sink_rates = i;
176 }
177 
178 /* Get length of rates array potentially limited by max_rate. */
179 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
180 {
181 	int i;
182 
183 	/* Limit results by potentially reduced max rate */
184 	for (i = 0; i < len; i++) {
185 		if (rates[len - i - 1] <= max_rate)
186 			return len - i;
187 	}
188 
189 	return 0;
190 }
191 
192 /* Get length of common rates array potentially limited by max_rate. */
193 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
194 					  int max_rate)
195 {
196 	return intel_dp_rate_limit_len(intel_dp->common_rates,
197 				       intel_dp->num_common_rates, max_rate);
198 }
199 
200 /* Theoretical max between source and sink */
201 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
202 {
203 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
204 }
205 
206 /* Theoretical max between source and sink */
207 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
208 {
209 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
210 	int source_max = intel_dig_port->max_lanes;
211 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
212 	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
213 
214 	return min3(source_max, sink_max, fia_max);
215 }
216 
217 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
218 {
219 	return intel_dp->max_link_lane_count;
220 }
221 
222 int
223 intel_dp_link_required(int pixel_clock, int bpp)
224 {
225 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
226 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
227 }
228 
229 int
230 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
231 {
232 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
233 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
234 	 * is transmitted every LS_Clk per lane, there is no need to account for
235 	 * the channel encoding that is done in the PHY layer here.
236 	 */
237 
238 	return max_link_clock * max_lanes;
239 }
240 
241 static int
242 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
243 {
244 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
245 	struct intel_encoder *encoder = &intel_dig_port->base;
246 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
247 	int max_dotclk = dev_priv->max_dotclk_freq;
248 	int ds_max_dotclk;
249 
250 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
251 
252 	if (type != DP_DS_PORT_TYPE_VGA)
253 		return max_dotclk;
254 
255 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
256 						    intel_dp->downstream_ports);
257 
258 	if (ds_max_dotclk != 0)
259 		max_dotclk = min(max_dotclk, ds_max_dotclk);
260 
261 	return max_dotclk;
262 }
263 
264 static int cnl_max_source_rate(struct intel_dp *intel_dp)
265 {
266 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
267 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
268 	enum port port = dig_port->base.port;
269 
270 	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
271 
272 	/* Low voltage SKUs are limited to max of 5.4G */
273 	if (voltage == VOLTAGE_INFO_0_85V)
274 		return 540000;
275 
276 	/* For this SKU 8.1G is supported in all ports */
277 	if (IS_CNL_WITH_PORT_F(dev_priv))
278 		return 810000;
279 
280 	/* For other SKUs, max rate on ports A and D is 5.4G */
281 	if (port == PORT_A || port == PORT_D)
282 		return 540000;
283 
284 	return 810000;
285 }
286 
287 static int icl_max_source_rate(struct intel_dp *intel_dp)
288 {
289 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
290 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
291 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
292 
293 	if (intel_phy_is_combo(dev_priv, phy) &&
294 	    !IS_ELKHARTLAKE(dev_priv) &&
295 	    !intel_dp_is_edp(intel_dp))
296 		return 540000;
297 
298 	return 810000;
299 }
300 
301 static void
302 intel_dp_set_source_rates(struct intel_dp *intel_dp)
303 {
304 	/* The values must be in increasing order */
305 	static const int cnl_rates[] = {
306 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
307 	};
308 	static const int bxt_rates[] = {
309 		162000, 216000, 243000, 270000, 324000, 432000, 540000
310 	};
311 	static const int skl_rates[] = {
312 		162000, 216000, 270000, 324000, 432000, 540000
313 	};
314 	static const int hsw_rates[] = {
315 		162000, 270000, 540000
316 	};
317 	static const int g4x_rates[] = {
318 		162000, 270000
319 	};
320 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
321 	struct intel_encoder *encoder = &dig_port->base;
322 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
323 	const int *source_rates;
324 	int size, max_rate = 0, vbt_max_rate;
325 
326 	/* This should only be done once */
327 	drm_WARN_ON(&dev_priv->drm,
328 		    intel_dp->source_rates || intel_dp->num_source_rates);
329 
330 	if (INTEL_GEN(dev_priv) >= 10) {
331 		source_rates = cnl_rates;
332 		size = ARRAY_SIZE(cnl_rates);
333 		if (IS_GEN(dev_priv, 10))
334 			max_rate = cnl_max_source_rate(intel_dp);
335 		else
336 			max_rate = icl_max_source_rate(intel_dp);
337 	} else if (IS_GEN9_LP(dev_priv)) {
338 		source_rates = bxt_rates;
339 		size = ARRAY_SIZE(bxt_rates);
340 	} else if (IS_GEN9_BC(dev_priv)) {
341 		source_rates = skl_rates;
342 		size = ARRAY_SIZE(skl_rates);
343 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
344 		   IS_BROADWELL(dev_priv)) {
345 		source_rates = hsw_rates;
346 		size = ARRAY_SIZE(hsw_rates);
347 	} else {
348 		source_rates = g4x_rates;
349 		size = ARRAY_SIZE(g4x_rates);
350 	}
351 
352 	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
353 	if (max_rate && vbt_max_rate)
354 		max_rate = min(max_rate, vbt_max_rate);
355 	else if (vbt_max_rate)
356 		max_rate = vbt_max_rate;
357 
358 	if (max_rate)
359 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
360 
361 	intel_dp->source_rates = source_rates;
362 	intel_dp->num_source_rates = size;
363 }
364 
365 static int intersect_rates(const int *source_rates, int source_len,
366 			   const int *sink_rates, int sink_len,
367 			   int *common_rates)
368 {
369 	int i = 0, j = 0, k = 0;
370 
371 	while (i < source_len && j < sink_len) {
372 		if (source_rates[i] == sink_rates[j]) {
373 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
374 				return k;
375 			common_rates[k] = source_rates[i];
376 			++k;
377 			++i;
378 			++j;
379 		} else if (source_rates[i] < sink_rates[j]) {
380 			++i;
381 		} else {
382 			++j;
383 		}
384 	}
385 	return k;
386 }
387 
388 /* return index of rate in rates array, or -1 if not found */
389 static int intel_dp_rate_index(const int *rates, int len, int rate)
390 {
391 	int i;
392 
393 	for (i = 0; i < len; i++)
394 		if (rate == rates[i])
395 			return i;
396 
397 	return -1;
398 }
399 
400 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
401 {
402 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
403 
404 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
405 						     intel_dp->num_source_rates,
406 						     intel_dp->sink_rates,
407 						     intel_dp->num_sink_rates,
408 						     intel_dp->common_rates);
409 
410 	/* Paranoia, there should always be something in common. */
411 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
412 		intel_dp->common_rates[0] = 162000;
413 		intel_dp->num_common_rates = 1;
414 	}
415 }
416 
417 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
418 				       u8 lane_count)
419 {
420 	/*
421 	 * FIXME: we need to synchronize the current link parameters with
422 	 * hardware readout. Currently fast link training doesn't work on
423 	 * boot-up.
424 	 */
425 	if (link_rate == 0 ||
426 	    link_rate > intel_dp->max_link_rate)
427 		return false;
428 
429 	if (lane_count == 0 ||
430 	    lane_count > intel_dp_max_lane_count(intel_dp))
431 		return false;
432 
433 	return true;
434 }
435 
436 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
437 						     int link_rate,
438 						     u8 lane_count)
439 {
440 	const struct drm_display_mode *fixed_mode =
441 		intel_dp->attached_connector->panel.fixed_mode;
442 	int mode_rate, max_rate;
443 
444 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
445 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
446 	if (mode_rate > max_rate)
447 		return false;
448 
449 	return true;
450 }
451 
452 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
453 					    int link_rate, u8 lane_count)
454 {
455 	int index;
456 
457 	index = intel_dp_rate_index(intel_dp->common_rates,
458 				    intel_dp->num_common_rates,
459 				    link_rate);
460 	if (index > 0) {
461 		if (intel_dp_is_edp(intel_dp) &&
462 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
463 							      intel_dp->common_rates[index - 1],
464 							      lane_count)) {
465 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
466 			return 0;
467 		}
468 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
469 		intel_dp->max_link_lane_count = lane_count;
470 	} else if (lane_count > 1) {
471 		if (intel_dp_is_edp(intel_dp) &&
472 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
473 							      intel_dp_max_common_rate(intel_dp),
474 							      lane_count >> 1)) {
475 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
476 			return 0;
477 		}
478 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
479 		intel_dp->max_link_lane_count = lane_count >> 1;
480 	} else {
481 		DRM_ERROR("Link Training Unsuccessful\n");
482 		return -1;
483 	}
484 
485 	return 0;
486 }
487 
488 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
489 {
490 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
491 		       DP_DSC_FEC_OVERHEAD_FACTOR);
492 }
493 
494 static int
495 small_joiner_ram_size_bits(struct drm_i915_private *i915)
496 {
497 	if (INTEL_GEN(i915) >= 11)
498 		return 7680 * 8;
499 	else
500 		return 6144 * 8;
501 }
502 
503 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
504 				       u32 link_clock, u32 lane_count,
505 				       u32 mode_clock, u32 mode_hdisplay)
506 {
507 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
508 	int i;
509 
510 	/*
511 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
512 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
513 	 * for SST -> TimeSlotsPerMTP is 1,
514 	 * for MST -> TimeSlotsPerMTP has to be calculated
515 	 */
516 	bits_per_pixel = (link_clock * lane_count * 8) /
517 			 intel_dp_mode_to_fec_clock(mode_clock);
518 	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
519 
520 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
521 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
522 		mode_hdisplay;
523 	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
524 		    max_bpp_small_joiner_ram);
525 
526 	/*
527 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
528 	 * check, output bpp from small joiner RAM check)
529 	 */
530 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
531 
532 	/* Error out if the max bpp is less than smallest allowed valid bpp */
533 	if (bits_per_pixel < valid_dsc_bpp[0]) {
534 		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
535 			    bits_per_pixel, valid_dsc_bpp[0]);
536 		return 0;
537 	}
538 
539 	/* Find the nearest match in the array of known BPPs from VESA */
540 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
541 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
542 			break;
543 	}
544 	bits_per_pixel = valid_dsc_bpp[i];
545 
546 	/*
547 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
548 	 * fractional part is 0
549 	 */
550 	return bits_per_pixel << 4;
551 }
552 
553 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
554 				       int mode_clock, int mode_hdisplay)
555 {
556 	u8 min_slice_count, i;
557 	int max_slice_width;
558 
559 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
560 		min_slice_count = DIV_ROUND_UP(mode_clock,
561 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
562 	else
563 		min_slice_count = DIV_ROUND_UP(mode_clock,
564 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
565 
566 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
567 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
568 		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
569 			      max_slice_width);
570 		return 0;
571 	}
572 	/* Also take into account max slice width */
573 	min_slice_count = min_t(u8, min_slice_count,
574 				DIV_ROUND_UP(mode_hdisplay,
575 					     max_slice_width));
576 
577 	/* Find the closest match to the valid slice count values */
578 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
579 		if (valid_dsc_slicecount[i] >
580 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
581 						    false))
582 			break;
583 		if (min_slice_count  <= valid_dsc_slicecount[i])
584 			return valid_dsc_slicecount[i];
585 	}
586 
587 	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
588 	return 0;
589 }
590 
591 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
592 				  int hdisplay)
593 {
594 	/*
595 	 * Older platforms don't like hdisplay==4096 with DP.
596 	 *
597 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
598 	 * and frame counter increment), but we don't get vblank interrupts,
599 	 * and the pipe underruns immediately. The link also doesn't seem
600 	 * to get trained properly.
601 	 *
602 	 * On CHV the vblank interrupts don't seem to disappear but
603 	 * otherwise the symptoms are similar.
604 	 *
605 	 * TODO: confirm the behaviour on HSW+
606 	 */
607 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
608 }
609 
610 static enum drm_mode_status
611 intel_dp_mode_valid(struct drm_connector *connector,
612 		    struct drm_display_mode *mode)
613 {
614 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
615 	struct intel_connector *intel_connector = to_intel_connector(connector);
616 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
617 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
618 	int target_clock = mode->clock;
619 	int max_rate, mode_rate, max_lanes, max_link_clock;
620 	int max_dotclk;
621 	u16 dsc_max_output_bpp = 0;
622 	u8 dsc_slice_count = 0;
623 
624 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
625 		return MODE_NO_DBLESCAN;
626 
627 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
628 
629 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
630 		if (mode->hdisplay > fixed_mode->hdisplay)
631 			return MODE_PANEL;
632 
633 		if (mode->vdisplay > fixed_mode->vdisplay)
634 			return MODE_PANEL;
635 
636 		target_clock = fixed_mode->clock;
637 	}
638 
639 	max_link_clock = intel_dp_max_link_rate(intel_dp);
640 	max_lanes = intel_dp_max_lane_count(intel_dp);
641 
642 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
643 	mode_rate = intel_dp_link_required(target_clock, 18);
644 
645 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
646 		return MODE_H_ILLEGAL;
647 
648 	/*
649 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
650 	 * integer value since we support only integer values of bpp.
651 	 */
652 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
653 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
654 		if (intel_dp_is_edp(intel_dp)) {
655 			dsc_max_output_bpp =
656 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
657 			dsc_slice_count =
658 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
659 								true);
660 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
661 			dsc_max_output_bpp =
662 				intel_dp_dsc_get_output_bpp(dev_priv,
663 							    max_link_clock,
664 							    max_lanes,
665 							    target_clock,
666 							    mode->hdisplay) >> 4;
667 			dsc_slice_count =
668 				intel_dp_dsc_get_slice_count(intel_dp,
669 							     target_clock,
670 							     mode->hdisplay);
671 		}
672 	}
673 
674 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
675 	    target_clock > max_dotclk)
676 		return MODE_CLOCK_HIGH;
677 
678 	if (mode->clock < 10000)
679 		return MODE_CLOCK_LOW;
680 
681 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
682 		return MODE_H_ILLEGAL;
683 
684 	return intel_mode_valid_max_plane_size(dev_priv, mode);
685 }
686 
687 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
688 {
689 	int i;
690 	u32 v = 0;
691 
692 	if (src_bytes > 4)
693 		src_bytes = 4;
694 	for (i = 0; i < src_bytes; i++)
695 		v |= ((u32)src[i]) << ((3 - i) * 8);
696 	return v;
697 }
698 
699 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
700 {
701 	int i;
702 	if (dst_bytes > 4)
703 		dst_bytes = 4;
704 	for (i = 0; i < dst_bytes; i++)
705 		dst[i] = src >> ((3-i) * 8);
706 }
707 
708 static void
709 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
710 static void
711 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
712 					      bool force_disable_vdd);
713 static void
714 intel_dp_pps_init(struct intel_dp *intel_dp);
715 
716 static intel_wakeref_t
717 pps_lock(struct intel_dp *intel_dp)
718 {
719 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
720 	intel_wakeref_t wakeref;
721 
722 	/*
723 	 * See intel_power_sequencer_reset() why we need
724 	 * a power domain reference here.
725 	 */
726 	wakeref = intel_display_power_get(dev_priv,
727 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
728 
729 	mutex_lock(&dev_priv->pps_mutex);
730 
731 	return wakeref;
732 }
733 
734 static intel_wakeref_t
735 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
736 {
737 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
738 
739 	mutex_unlock(&dev_priv->pps_mutex);
740 	intel_display_power_put(dev_priv,
741 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
742 				wakeref);
743 	return 0;
744 }
745 
746 #define with_pps_lock(dp, wf) \
747 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
748 
749 static void
750 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
751 {
752 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
753 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
754 	enum pipe pipe = intel_dp->pps_pipe;
755 	bool pll_enabled, release_cl_override = false;
756 	enum dpio_phy phy = DPIO_PHY(pipe);
757 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
758 	u32 DP;
759 
760 	if (drm_WARN(&dev_priv->drm,
761 		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
762 		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
763 		     pipe_name(pipe), intel_dig_port->base.base.base.id,
764 		     intel_dig_port->base.base.name))
765 		return;
766 
767 	drm_dbg_kms(&dev_priv->drm,
768 		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
769 		    pipe_name(pipe), intel_dig_port->base.base.base.id,
770 		    intel_dig_port->base.base.name);
771 
772 	/* Preserve the BIOS-computed detected bit. This is
773 	 * supposed to be read-only.
774 	 */
775 	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
776 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
777 	DP |= DP_PORT_WIDTH(1);
778 	DP |= DP_LINK_TRAIN_PAT_1;
779 
780 	if (IS_CHERRYVIEW(dev_priv))
781 		DP |= DP_PIPE_SEL_CHV(pipe);
782 	else
783 		DP |= DP_PIPE_SEL(pipe);
784 
785 	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
786 
787 	/*
788 	 * The DPLL for the pipe must be enabled for this to work.
789 	 * So enable temporarily it if it's not already enabled.
790 	 */
791 	if (!pll_enabled) {
792 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
793 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
794 
795 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
796 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
797 			drm_err(&dev_priv->drm,
798 				"Failed to force on pll for pipe %c!\n",
799 				pipe_name(pipe));
800 			return;
801 		}
802 	}
803 
804 	/*
805 	 * Similar magic as in intel_dp_enable_port().
806 	 * We _must_ do this port enable + disable trick
807 	 * to make this power sequencer lock onto the port.
808 	 * Otherwise even VDD force bit won't work.
809 	 */
810 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
811 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
812 
813 	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
814 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
815 
816 	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
817 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
818 
819 	if (!pll_enabled) {
820 		vlv_force_pll_off(dev_priv, pipe);
821 
822 		if (release_cl_override)
823 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
824 	}
825 }
826 
827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
828 {
829 	struct intel_encoder *encoder;
830 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
831 
832 	/*
833 	 * We don't have power sequencer currently.
834 	 * Pick one that's not used by other ports.
835 	 */
836 	for_each_intel_dp(&dev_priv->drm, encoder) {
837 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
838 
839 		if (encoder->type == INTEL_OUTPUT_EDP) {
840 			drm_WARN_ON(&dev_priv->drm,
841 				    intel_dp->active_pipe != INVALID_PIPE &&
842 				    intel_dp->active_pipe !=
843 				    intel_dp->pps_pipe);
844 
845 			if (intel_dp->pps_pipe != INVALID_PIPE)
846 				pipes &= ~(1 << intel_dp->pps_pipe);
847 		} else {
848 			drm_WARN_ON(&dev_priv->drm,
849 				    intel_dp->pps_pipe != INVALID_PIPE);
850 
851 			if (intel_dp->active_pipe != INVALID_PIPE)
852 				pipes &= ~(1 << intel_dp->active_pipe);
853 		}
854 	}
855 
856 	if (pipes == 0)
857 		return INVALID_PIPE;
858 
859 	return ffs(pipes) - 1;
860 }
861 
862 static enum pipe
863 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
864 {
865 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
866 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
867 	enum pipe pipe;
868 
869 	lockdep_assert_held(&dev_priv->pps_mutex);
870 
871 	/* We should never land here with regular DP ports */
872 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
873 
874 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
875 		    intel_dp->active_pipe != intel_dp->pps_pipe);
876 
877 	if (intel_dp->pps_pipe != INVALID_PIPE)
878 		return intel_dp->pps_pipe;
879 
880 	pipe = vlv_find_free_pps(dev_priv);
881 
882 	/*
883 	 * Didn't find one. This should not happen since there
884 	 * are two power sequencers and up to two eDP ports.
885 	 */
886 	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
887 		pipe = PIPE_A;
888 
889 	vlv_steal_power_sequencer(dev_priv, pipe);
890 	intel_dp->pps_pipe = pipe;
891 
892 	drm_dbg_kms(&dev_priv->drm,
893 		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
894 		    pipe_name(intel_dp->pps_pipe),
895 		    intel_dig_port->base.base.base.id,
896 		    intel_dig_port->base.base.name);
897 
898 	/* init power sequencer on this pipe and port */
899 	intel_dp_init_panel_power_sequencer(intel_dp);
900 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
901 
902 	/*
903 	 * Even vdd force doesn't work until we've made
904 	 * the power sequencer lock in on the port.
905 	 */
906 	vlv_power_sequencer_kick(intel_dp);
907 
908 	return intel_dp->pps_pipe;
909 }
910 
911 static int
912 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
913 {
914 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
915 	int backlight_controller = dev_priv->vbt.backlight.controller;
916 
917 	lockdep_assert_held(&dev_priv->pps_mutex);
918 
919 	/* We should never land here with regular DP ports */
920 	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
921 
922 	if (!intel_dp->pps_reset)
923 		return backlight_controller;
924 
925 	intel_dp->pps_reset = false;
926 
927 	/*
928 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
929 	 * has been setup during connector init.
930 	 */
931 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
932 
933 	return backlight_controller;
934 }
935 
936 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
937 			       enum pipe pipe);
938 
939 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
940 			       enum pipe pipe)
941 {
942 	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
943 }
944 
945 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
946 				enum pipe pipe)
947 {
948 	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
949 }
950 
951 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
952 			 enum pipe pipe)
953 {
954 	return true;
955 }
956 
957 static enum pipe
958 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
959 		     enum port port,
960 		     vlv_pipe_check pipe_check)
961 {
962 	enum pipe pipe;
963 
964 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
965 		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
966 			PANEL_PORT_SELECT_MASK;
967 
968 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
969 			continue;
970 
971 		if (!pipe_check(dev_priv, pipe))
972 			continue;
973 
974 		return pipe;
975 	}
976 
977 	return INVALID_PIPE;
978 }
979 
980 static void
981 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
982 {
983 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
984 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
985 	enum port port = intel_dig_port->base.port;
986 
987 	lockdep_assert_held(&dev_priv->pps_mutex);
988 
989 	/* try to find a pipe with this port selected */
990 	/* first pick one where the panel is on */
991 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
992 						  vlv_pipe_has_pp_on);
993 	/* didn't find one? pick one where vdd is on */
994 	if (intel_dp->pps_pipe == INVALID_PIPE)
995 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
996 							  vlv_pipe_has_vdd_on);
997 	/* didn't find one? pick one with just the correct port */
998 	if (intel_dp->pps_pipe == INVALID_PIPE)
999 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1000 							  vlv_pipe_any);
1001 
1002 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1003 	if (intel_dp->pps_pipe == INVALID_PIPE) {
1004 		drm_dbg_kms(&dev_priv->drm,
1005 			    "no initial power sequencer for [ENCODER:%d:%s]\n",
1006 			    intel_dig_port->base.base.base.id,
1007 			    intel_dig_port->base.base.name);
1008 		return;
1009 	}
1010 
1011 	drm_dbg_kms(&dev_priv->drm,
1012 		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1013 		    intel_dig_port->base.base.base.id,
1014 		    intel_dig_port->base.base.name,
1015 		    pipe_name(intel_dp->pps_pipe));
1016 
1017 	intel_dp_init_panel_power_sequencer(intel_dp);
1018 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1019 }
1020 
1021 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1022 {
1023 	struct intel_encoder *encoder;
1024 
1025 	if (drm_WARN_ON(&dev_priv->drm,
1026 			!(IS_VALLEYVIEW(dev_priv) ||
1027 			  IS_CHERRYVIEW(dev_priv) ||
1028 			  IS_GEN9_LP(dev_priv))))
1029 		return;
1030 
1031 	/*
1032 	 * We can't grab pps_mutex here due to deadlock with power_domain
1033 	 * mutex when power_domain functions are called while holding pps_mutex.
1034 	 * That also means that in order to use pps_pipe the code needs to
1035 	 * hold both a power domain reference and pps_mutex, and the power domain
1036 	 * reference get/put must be done while _not_ holding pps_mutex.
1037 	 * pps_{lock,unlock}() do these steps in the correct order, so one
1038 	 * should use them always.
1039 	 */
1040 
1041 	for_each_intel_dp(&dev_priv->drm, encoder) {
1042 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1043 
1044 		drm_WARN_ON(&dev_priv->drm,
1045 			    intel_dp->active_pipe != INVALID_PIPE);
1046 
1047 		if (encoder->type != INTEL_OUTPUT_EDP)
1048 			continue;
1049 
1050 		if (IS_GEN9_LP(dev_priv))
1051 			intel_dp->pps_reset = true;
1052 		else
1053 			intel_dp->pps_pipe = INVALID_PIPE;
1054 	}
1055 }
1056 
1057 struct pps_registers {
1058 	i915_reg_t pp_ctrl;
1059 	i915_reg_t pp_stat;
1060 	i915_reg_t pp_on;
1061 	i915_reg_t pp_off;
1062 	i915_reg_t pp_div;
1063 };
1064 
1065 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1066 				    struct pps_registers *regs)
1067 {
1068 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1069 	int pps_idx = 0;
1070 
1071 	memset(regs, 0, sizeof(*regs));
1072 
1073 	if (IS_GEN9_LP(dev_priv))
1074 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1075 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1076 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1077 
1078 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1079 	regs->pp_stat = PP_STATUS(pps_idx);
1080 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1081 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1082 
1083 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1084 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1085 		regs->pp_div = INVALID_MMIO_REG;
1086 	else
1087 		regs->pp_div = PP_DIVISOR(pps_idx);
1088 }
1089 
1090 static i915_reg_t
1091 _pp_ctrl_reg(struct intel_dp *intel_dp)
1092 {
1093 	struct pps_registers regs;
1094 
1095 	intel_pps_get_registers(intel_dp, &regs);
1096 
1097 	return regs.pp_ctrl;
1098 }
1099 
1100 static i915_reg_t
1101 _pp_stat_reg(struct intel_dp *intel_dp)
1102 {
1103 	struct pps_registers regs;
1104 
1105 	intel_pps_get_registers(intel_dp, &regs);
1106 
1107 	return regs.pp_stat;
1108 }
1109 
1110 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1111    This function only applicable when panel PM state is not to be tracked */
1112 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1113 			      void *unused)
1114 {
1115 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1116 						 edp_notifier);
1117 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1118 	intel_wakeref_t wakeref;
1119 
1120 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1121 		return 0;
1122 
1123 	with_pps_lock(intel_dp, wakeref) {
1124 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1125 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1126 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1127 			u32 pp_div;
1128 
1129 			pp_ctrl_reg = PP_CONTROL(pipe);
1130 			pp_div_reg  = PP_DIVISOR(pipe);
1131 			pp_div = intel_de_read(dev_priv, pp_div_reg);
1132 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1133 
1134 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1135 			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1136 			intel_de_write(dev_priv, pp_ctrl_reg,
1137 				       PANEL_UNLOCK_REGS);
1138 			msleep(intel_dp->panel_power_cycle_delay);
1139 		}
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1146 {
1147 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1148 
1149 	lockdep_assert_held(&dev_priv->pps_mutex);
1150 
1151 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1152 	    intel_dp->pps_pipe == INVALID_PIPE)
1153 		return false;
1154 
1155 	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1156 }
1157 
1158 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1159 {
1160 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1161 
1162 	lockdep_assert_held(&dev_priv->pps_mutex);
1163 
1164 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1165 	    intel_dp->pps_pipe == INVALID_PIPE)
1166 		return false;
1167 
1168 	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1169 }
1170 
1171 static void
1172 intel_dp_check_edp(struct intel_dp *intel_dp)
1173 {
1174 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1175 
1176 	if (!intel_dp_is_edp(intel_dp))
1177 		return;
1178 
1179 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1180 		drm_WARN(&dev_priv->drm, 1,
1181 			 "eDP powered off while attempting aux channel communication.\n");
1182 		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1183 			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1184 			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1185 	}
1186 }
1187 
1188 static u32
1189 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1190 {
1191 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1192 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1193 	const unsigned int timeout_ms = 10;
1194 	u32 status;
1195 	bool done;
1196 
1197 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1198 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1199 				  msecs_to_jiffies_timeout(timeout_ms));
1200 
1201 	/* just trace the final value */
1202 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1203 
1204 	if (!done)
1205 		drm_err(&i915->drm,
1206 			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1207 			intel_dp->aux.name, timeout_ms, status);
1208 #undef C
1209 
1210 	return status;
1211 }
1212 
1213 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1214 {
1215 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1216 
1217 	if (index)
1218 		return 0;
1219 
1220 	/*
1221 	 * The clock divider is based off the hrawclk, and would like to run at
1222 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1223 	 */
1224 	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1225 }
1226 
1227 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1228 {
1229 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1230 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1231 	u32 freq;
1232 
1233 	if (index)
1234 		return 0;
1235 
1236 	/*
1237 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1238 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1239 	 * divide by 2000 and use that
1240 	 */
1241 	if (dig_port->aux_ch == AUX_CH_A)
1242 		freq = dev_priv->cdclk.hw.cdclk;
1243 	else
1244 		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1245 	return DIV_ROUND_CLOSEST(freq, 2000);
1246 }
1247 
1248 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1249 {
1250 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1251 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1252 
1253 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1254 		/* Workaround for non-ULT HSW */
1255 		switch (index) {
1256 		case 0: return 63;
1257 		case 1: return 72;
1258 		default: return 0;
1259 		}
1260 	}
1261 
1262 	return ilk_get_aux_clock_divider(intel_dp, index);
1263 }
1264 
1265 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1266 {
1267 	/*
1268 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1269 	 * derive the clock from CDCLK automatically). We still implement the
1270 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1271 	 */
1272 	return index ? 0 : 1;
1273 }
1274 
1275 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1276 				int send_bytes,
1277 				u32 aux_clock_divider)
1278 {
1279 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1280 	struct drm_i915_private *dev_priv =
1281 			to_i915(intel_dig_port->base.base.dev);
1282 	u32 precharge, timeout;
1283 
1284 	if (IS_GEN(dev_priv, 6))
1285 		precharge = 3;
1286 	else
1287 		precharge = 5;
1288 
1289 	if (IS_BROADWELL(dev_priv))
1290 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1291 	else
1292 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1293 
1294 	return DP_AUX_CH_CTL_SEND_BUSY |
1295 	       DP_AUX_CH_CTL_DONE |
1296 	       DP_AUX_CH_CTL_INTERRUPT |
1297 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1298 	       timeout |
1299 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1300 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1301 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1302 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1303 }
1304 
1305 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1306 				int send_bytes,
1307 				u32 unused)
1308 {
1309 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1310 	struct drm_i915_private *i915 =
1311 			to_i915(intel_dig_port->base.base.dev);
1312 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1313 	u32 ret;
1314 
1315 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1316 	      DP_AUX_CH_CTL_DONE |
1317 	      DP_AUX_CH_CTL_INTERRUPT |
1318 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1319 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1320 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1321 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1322 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1323 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1324 
1325 	if (intel_phy_is_tc(i915, phy) &&
1326 	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1327 		ret |= DP_AUX_CH_CTL_TBT_IO;
1328 
1329 	return ret;
1330 }
1331 
1332 static int
1333 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1334 		  const u8 *send, int send_bytes,
1335 		  u8 *recv, int recv_size,
1336 		  u32 aux_send_ctl_flags)
1337 {
1338 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1339 	struct drm_i915_private *i915 =
1340 			to_i915(intel_dig_port->base.base.dev);
1341 	struct intel_uncore *uncore = &i915->uncore;
1342 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1343 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1344 	i915_reg_t ch_ctl, ch_data[5];
1345 	u32 aux_clock_divider;
1346 	enum intel_display_power_domain aux_domain =
1347 		intel_aux_power_domain(intel_dig_port);
1348 	intel_wakeref_t aux_wakeref;
1349 	intel_wakeref_t pps_wakeref;
1350 	int i, ret, recv_bytes;
1351 	int try, clock = 0;
1352 	u32 status;
1353 	bool vdd;
1354 
1355 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1356 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1357 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1358 
1359 	if (is_tc_port)
1360 		intel_tc_port_lock(intel_dig_port);
1361 
1362 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1363 	pps_wakeref = pps_lock(intel_dp);
1364 
1365 	/*
1366 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1367 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1368 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1369 	 * ourselves.
1370 	 */
1371 	vdd = edp_panel_vdd_on(intel_dp);
1372 
1373 	/* dp aux is extremely sensitive to irq latency, hence request the
1374 	 * lowest possible wakeup latency and so prevent the cpu from going into
1375 	 * deep sleep states.
1376 	 */
1377 	cpu_latency_qos_update_request(&i915->pm_qos, 0);
1378 
1379 	intel_dp_check_edp(intel_dp);
1380 
1381 	/* Try to wait for any previous AUX channel activity */
1382 	for (try = 0; try < 3; try++) {
1383 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1384 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1385 			break;
1386 		msleep(1);
1387 	}
1388 	/* just trace the final value */
1389 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1390 
1391 	if (try == 3) {
1392 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1393 
1394 		if (status != intel_dp->aux_busy_last_status) {
1395 			drm_WARN(&i915->drm, 1,
1396 				 "%s: not started (status 0x%08x)\n",
1397 				 intel_dp->aux.name, status);
1398 			intel_dp->aux_busy_last_status = status;
1399 		}
1400 
1401 		ret = -EBUSY;
1402 		goto out;
1403 	}
1404 
1405 	/* Only 5 data registers! */
1406 	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1407 		ret = -E2BIG;
1408 		goto out;
1409 	}
1410 
1411 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1412 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1413 							  send_bytes,
1414 							  aux_clock_divider);
1415 
1416 		send_ctl |= aux_send_ctl_flags;
1417 
1418 		/* Must try at least 3 times according to DP spec */
1419 		for (try = 0; try < 5; try++) {
1420 			/* Load the send data into the aux channel data registers */
1421 			for (i = 0; i < send_bytes; i += 4)
1422 				intel_uncore_write(uncore,
1423 						   ch_data[i >> 2],
1424 						   intel_dp_pack_aux(send + i,
1425 								     send_bytes - i));
1426 
1427 			/* Send the command and wait for it to complete */
1428 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1429 
1430 			status = intel_dp_aux_wait_done(intel_dp);
1431 
1432 			/* Clear done status and any errors */
1433 			intel_uncore_write(uncore,
1434 					   ch_ctl,
1435 					   status |
1436 					   DP_AUX_CH_CTL_DONE |
1437 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1438 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1439 
1440 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1441 			 *   400us delay required for errors and timeouts
1442 			 *   Timeout errors from the HW already meet this
1443 			 *   requirement so skip to next iteration
1444 			 */
1445 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1446 				continue;
1447 
1448 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1449 				usleep_range(400, 500);
1450 				continue;
1451 			}
1452 			if (status & DP_AUX_CH_CTL_DONE)
1453 				goto done;
1454 		}
1455 	}
1456 
1457 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1458 		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1459 			intel_dp->aux.name, status);
1460 		ret = -EBUSY;
1461 		goto out;
1462 	}
1463 
1464 done:
1465 	/* Check for timeout or receive error.
1466 	 * Timeouts occur when the sink is not connected
1467 	 */
1468 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1469 		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1470 			intel_dp->aux.name, status);
1471 		ret = -EIO;
1472 		goto out;
1473 	}
1474 
1475 	/* Timeouts occur when the device isn't connected, so they're
1476 	 * "normal" -- don't fill the kernel log with these */
1477 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1478 		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1479 			    intel_dp->aux.name, status);
1480 		ret = -ETIMEDOUT;
1481 		goto out;
1482 	}
1483 
1484 	/* Unload any bytes sent back from the other side */
1485 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1486 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1487 
1488 	/*
1489 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1490 	 * We have no idea of what happened so we return -EBUSY so
1491 	 * drm layer takes care for the necessary retries.
1492 	 */
1493 	if (recv_bytes == 0 || recv_bytes > 20) {
1494 		drm_dbg_kms(&i915->drm,
1495 			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
1496 			    intel_dp->aux.name, recv_bytes);
1497 		ret = -EBUSY;
1498 		goto out;
1499 	}
1500 
1501 	if (recv_bytes > recv_size)
1502 		recv_bytes = recv_size;
1503 
1504 	for (i = 0; i < recv_bytes; i += 4)
1505 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1506 				    recv + i, recv_bytes - i);
1507 
1508 	ret = recv_bytes;
1509 out:
1510 	cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1511 
1512 	if (vdd)
1513 		edp_panel_vdd_off(intel_dp, false);
1514 
1515 	pps_unlock(intel_dp, pps_wakeref);
1516 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1517 
1518 	if (is_tc_port)
1519 		intel_tc_port_unlock(intel_dig_port);
1520 
1521 	return ret;
1522 }
1523 
1524 #define BARE_ADDRESS_SIZE	3
1525 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1526 
1527 static void
1528 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1529 		    const struct drm_dp_aux_msg *msg)
1530 {
1531 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1532 	txbuf[1] = (msg->address >> 8) & 0xff;
1533 	txbuf[2] = msg->address & 0xff;
1534 	txbuf[3] = msg->size - 1;
1535 }
1536 
1537 static ssize_t
1538 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1539 {
1540 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1541 	u8 txbuf[20], rxbuf[20];
1542 	size_t txsize, rxsize;
1543 	int ret;
1544 
1545 	intel_dp_aux_header(txbuf, msg);
1546 
1547 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1548 	case DP_AUX_NATIVE_WRITE:
1549 	case DP_AUX_I2C_WRITE:
1550 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1551 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1552 		rxsize = 2; /* 0 or 1 data bytes */
1553 
1554 		if (WARN_ON(txsize > 20))
1555 			return -E2BIG;
1556 
1557 		WARN_ON(!msg->buffer != !msg->size);
1558 
1559 		if (msg->buffer)
1560 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1561 
1562 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1563 					rxbuf, rxsize, 0);
1564 		if (ret > 0) {
1565 			msg->reply = rxbuf[0] >> 4;
1566 
1567 			if (ret > 1) {
1568 				/* Number of bytes written in a short write. */
1569 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1570 			} else {
1571 				/* Return payload size. */
1572 				ret = msg->size;
1573 			}
1574 		}
1575 		break;
1576 
1577 	case DP_AUX_NATIVE_READ:
1578 	case DP_AUX_I2C_READ:
1579 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1580 		rxsize = msg->size + 1;
1581 
1582 		if (WARN_ON(rxsize > 20))
1583 			return -E2BIG;
1584 
1585 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1586 					rxbuf, rxsize, 0);
1587 		if (ret > 0) {
1588 			msg->reply = rxbuf[0] >> 4;
1589 			/*
1590 			 * Assume happy day, and copy the data. The caller is
1591 			 * expected to check msg->reply before touching it.
1592 			 *
1593 			 * Return payload size.
1594 			 */
1595 			ret--;
1596 			memcpy(msg->buffer, rxbuf + 1, ret);
1597 		}
1598 		break;
1599 
1600 	default:
1601 		ret = -EINVAL;
1602 		break;
1603 	}
1604 
1605 	return ret;
1606 }
1607 
1608 
1609 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1610 {
1611 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1612 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1613 	enum aux_ch aux_ch = dig_port->aux_ch;
1614 
1615 	switch (aux_ch) {
1616 	case AUX_CH_B:
1617 	case AUX_CH_C:
1618 	case AUX_CH_D:
1619 		return DP_AUX_CH_CTL(aux_ch);
1620 	default:
1621 		MISSING_CASE(aux_ch);
1622 		return DP_AUX_CH_CTL(AUX_CH_B);
1623 	}
1624 }
1625 
1626 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1627 {
1628 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1629 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1630 	enum aux_ch aux_ch = dig_port->aux_ch;
1631 
1632 	switch (aux_ch) {
1633 	case AUX_CH_B:
1634 	case AUX_CH_C:
1635 	case AUX_CH_D:
1636 		return DP_AUX_CH_DATA(aux_ch, index);
1637 	default:
1638 		MISSING_CASE(aux_ch);
1639 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1640 	}
1641 }
1642 
1643 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1644 {
1645 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647 	enum aux_ch aux_ch = dig_port->aux_ch;
1648 
1649 	switch (aux_ch) {
1650 	case AUX_CH_A:
1651 		return DP_AUX_CH_CTL(aux_ch);
1652 	case AUX_CH_B:
1653 	case AUX_CH_C:
1654 	case AUX_CH_D:
1655 		return PCH_DP_AUX_CH_CTL(aux_ch);
1656 	default:
1657 		MISSING_CASE(aux_ch);
1658 		return DP_AUX_CH_CTL(AUX_CH_A);
1659 	}
1660 }
1661 
1662 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1663 {
1664 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666 	enum aux_ch aux_ch = dig_port->aux_ch;
1667 
1668 	switch (aux_ch) {
1669 	case AUX_CH_A:
1670 		return DP_AUX_CH_DATA(aux_ch, index);
1671 	case AUX_CH_B:
1672 	case AUX_CH_C:
1673 	case AUX_CH_D:
1674 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1675 	default:
1676 		MISSING_CASE(aux_ch);
1677 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1678 	}
1679 }
1680 
1681 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1682 {
1683 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1684 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1685 	enum aux_ch aux_ch = dig_port->aux_ch;
1686 
1687 	switch (aux_ch) {
1688 	case AUX_CH_A:
1689 	case AUX_CH_B:
1690 	case AUX_CH_C:
1691 	case AUX_CH_D:
1692 	case AUX_CH_E:
1693 	case AUX_CH_F:
1694 	case AUX_CH_G:
1695 		return DP_AUX_CH_CTL(aux_ch);
1696 	default:
1697 		MISSING_CASE(aux_ch);
1698 		return DP_AUX_CH_CTL(AUX_CH_A);
1699 	}
1700 }
1701 
1702 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1703 {
1704 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1705 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1706 	enum aux_ch aux_ch = dig_port->aux_ch;
1707 
1708 	switch (aux_ch) {
1709 	case AUX_CH_A:
1710 	case AUX_CH_B:
1711 	case AUX_CH_C:
1712 	case AUX_CH_D:
1713 	case AUX_CH_E:
1714 	case AUX_CH_F:
1715 	case AUX_CH_G:
1716 		return DP_AUX_CH_DATA(aux_ch, index);
1717 	default:
1718 		MISSING_CASE(aux_ch);
1719 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1720 	}
1721 }
1722 
1723 static void
1724 intel_dp_aux_fini(struct intel_dp *intel_dp)
1725 {
1726 	kfree(intel_dp->aux.name);
1727 }
1728 
1729 static void
1730 intel_dp_aux_init(struct intel_dp *intel_dp)
1731 {
1732 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1733 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1734 	struct intel_encoder *encoder = &dig_port->base;
1735 
1736 	if (INTEL_GEN(dev_priv) >= 9) {
1737 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1738 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1739 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1740 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1741 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1742 	} else {
1743 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1744 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1745 	}
1746 
1747 	if (INTEL_GEN(dev_priv) >= 9)
1748 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1749 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1750 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1751 	else if (HAS_PCH_SPLIT(dev_priv))
1752 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1753 	else
1754 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1755 
1756 	if (INTEL_GEN(dev_priv) >= 9)
1757 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1758 	else
1759 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1760 
1761 	drm_dp_aux_init(&intel_dp->aux);
1762 
1763 	/* Failure to allocate our preferred name is not critical */
1764 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1765 				       aux_ch_name(dig_port->aux_ch),
1766 				       port_name(encoder->port));
1767 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1768 }
1769 
1770 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1771 {
1772 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1773 
1774 	return max_rate >= 540000;
1775 }
1776 
1777 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1778 {
1779 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1780 
1781 	return max_rate >= 810000;
1782 }
1783 
1784 static void
1785 intel_dp_set_clock(struct intel_encoder *encoder,
1786 		   struct intel_crtc_state *pipe_config)
1787 {
1788 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1789 	const struct dp_link_dpll *divisor = NULL;
1790 	int i, count = 0;
1791 
1792 	if (IS_G4X(dev_priv)) {
1793 		divisor = g4x_dpll;
1794 		count = ARRAY_SIZE(g4x_dpll);
1795 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1796 		divisor = pch_dpll;
1797 		count = ARRAY_SIZE(pch_dpll);
1798 	} else if (IS_CHERRYVIEW(dev_priv)) {
1799 		divisor = chv_dpll;
1800 		count = ARRAY_SIZE(chv_dpll);
1801 	} else if (IS_VALLEYVIEW(dev_priv)) {
1802 		divisor = vlv_dpll;
1803 		count = ARRAY_SIZE(vlv_dpll);
1804 	}
1805 
1806 	if (divisor && count) {
1807 		for (i = 0; i < count; i++) {
1808 			if (pipe_config->port_clock == divisor[i].clock) {
1809 				pipe_config->dpll = divisor[i].dpll;
1810 				pipe_config->clock_set = true;
1811 				break;
1812 			}
1813 		}
1814 	}
1815 }
1816 
1817 static void snprintf_int_array(char *str, size_t len,
1818 			       const int *array, int nelem)
1819 {
1820 	int i;
1821 
1822 	str[0] = '\0';
1823 
1824 	for (i = 0; i < nelem; i++) {
1825 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1826 		if (r >= len)
1827 			return;
1828 		str += r;
1829 		len -= r;
1830 	}
1831 }
1832 
1833 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1834 {
1835 	char str[128]; /* FIXME: too big for stack? */
1836 
1837 	if (!drm_debug_enabled(DRM_UT_KMS))
1838 		return;
1839 
1840 	snprintf_int_array(str, sizeof(str),
1841 			   intel_dp->source_rates, intel_dp->num_source_rates);
1842 	DRM_DEBUG_KMS("source rates: %s\n", str);
1843 
1844 	snprintf_int_array(str, sizeof(str),
1845 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1846 	DRM_DEBUG_KMS("sink rates: %s\n", str);
1847 
1848 	snprintf_int_array(str, sizeof(str),
1849 			   intel_dp->common_rates, intel_dp->num_common_rates);
1850 	DRM_DEBUG_KMS("common rates: %s\n", str);
1851 }
1852 
1853 int
1854 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1855 {
1856 	int len;
1857 
1858 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1859 	if (WARN_ON(len <= 0))
1860 		return 162000;
1861 
1862 	return intel_dp->common_rates[len - 1];
1863 }
1864 
1865 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1866 {
1867 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1868 				    intel_dp->num_sink_rates, rate);
1869 
1870 	if (WARN_ON(i < 0))
1871 		i = 0;
1872 
1873 	return i;
1874 }
1875 
1876 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1877 			   u8 *link_bw, u8 *rate_select)
1878 {
1879 	/* eDP 1.4 rate select method. */
1880 	if (intel_dp->use_rate_select) {
1881 		*link_bw = 0;
1882 		*rate_select =
1883 			intel_dp_rate_select(intel_dp, port_clock);
1884 	} else {
1885 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1886 		*rate_select = 0;
1887 	}
1888 }
1889 
1890 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1891 					 const struct intel_crtc_state *pipe_config)
1892 {
1893 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1894 
1895 	/* On TGL, FEC is supported on all Pipes */
1896 	if (INTEL_GEN(dev_priv) >= 12)
1897 		return true;
1898 
1899 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1900 		return true;
1901 
1902 	return false;
1903 }
1904 
1905 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1906 				  const struct intel_crtc_state *pipe_config)
1907 {
1908 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1909 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1910 }
1911 
1912 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1913 				  const struct intel_crtc_state *crtc_state)
1914 {
1915 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1916 
1917 	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1918 		return false;
1919 
1920 	return intel_dsc_source_support(encoder, crtc_state) &&
1921 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1922 }
1923 
1924 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1925 				struct intel_crtc_state *pipe_config)
1926 {
1927 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1928 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1929 	int bpp, bpc;
1930 
1931 	bpp = pipe_config->pipe_bpp;
1932 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1933 
1934 	if (bpc > 0)
1935 		bpp = min(bpp, 3*bpc);
1936 
1937 	if (intel_dp_is_edp(intel_dp)) {
1938 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1939 		if (intel_connector->base.display_info.bpc == 0 &&
1940 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1941 			drm_dbg_kms(&dev_priv->drm,
1942 				    "clamping bpp for eDP panel to BIOS-provided %i\n",
1943 				    dev_priv->vbt.edp.bpp);
1944 			bpp = dev_priv->vbt.edp.bpp;
1945 		}
1946 	}
1947 
1948 	return bpp;
1949 }
1950 
1951 /* Adjust link config limits based on compliance test requests. */
1952 void
1953 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1954 				  struct intel_crtc_state *pipe_config,
1955 				  struct link_config_limits *limits)
1956 {
1957 	/* For DP Compliance we override the computed bpp for the pipe */
1958 	if (intel_dp->compliance.test_data.bpc != 0) {
1959 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1960 
1961 		limits->min_bpp = limits->max_bpp = bpp;
1962 		pipe_config->dither_force_disable = bpp == 6 * 3;
1963 
1964 		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1965 	}
1966 
1967 	/* Use values requested by Compliance Test Request */
1968 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1969 		int index;
1970 
1971 		/* Validate the compliance test data since max values
1972 		 * might have changed due to link train fallback.
1973 		 */
1974 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1975 					       intel_dp->compliance.test_lane_count)) {
1976 			index = intel_dp_rate_index(intel_dp->common_rates,
1977 						    intel_dp->num_common_rates,
1978 						    intel_dp->compliance.test_link_rate);
1979 			if (index >= 0)
1980 				limits->min_clock = limits->max_clock = index;
1981 			limits->min_lane_count = limits->max_lane_count =
1982 				intel_dp->compliance.test_lane_count;
1983 		}
1984 	}
1985 }
1986 
1987 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1988 {
1989 	/*
1990 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1991 	 * format of the number of bytes per pixel will be half the number
1992 	 * of bytes of RGB pixel.
1993 	 */
1994 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1995 		bpp /= 2;
1996 
1997 	return bpp;
1998 }
1999 
2000 /* Optimize link config in order: max bpp, min clock, min lanes */
2001 static int
2002 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2003 				  struct intel_crtc_state *pipe_config,
2004 				  const struct link_config_limits *limits)
2005 {
2006 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2007 	int bpp, clock, lane_count;
2008 	int mode_rate, link_clock, link_avail;
2009 
2010 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2011 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2012 
2013 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2014 						   output_bpp);
2015 
2016 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2017 			for (lane_count = limits->min_lane_count;
2018 			     lane_count <= limits->max_lane_count;
2019 			     lane_count <<= 1) {
2020 				link_clock = intel_dp->common_rates[clock];
2021 				link_avail = intel_dp_max_data_rate(link_clock,
2022 								    lane_count);
2023 
2024 				if (mode_rate <= link_avail) {
2025 					pipe_config->lane_count = lane_count;
2026 					pipe_config->pipe_bpp = bpp;
2027 					pipe_config->port_clock = link_clock;
2028 
2029 					return 0;
2030 				}
2031 			}
2032 		}
2033 	}
2034 
2035 	return -EINVAL;
2036 }
2037 
2038 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2039 {
2040 	int i, num_bpc;
2041 	u8 dsc_bpc[3] = {0};
2042 
2043 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2044 						       dsc_bpc);
2045 	for (i = 0; i < num_bpc; i++) {
2046 		if (dsc_max_bpc >= dsc_bpc[i])
2047 			return dsc_bpc[i] * 3;
2048 	}
2049 
2050 	return 0;
2051 }
2052 
2053 #define DSC_SUPPORTED_VERSION_MIN		1
2054 
2055 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2056 				       struct intel_crtc_state *crtc_state)
2057 {
2058 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2059 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2060 	u8 line_buf_depth;
2061 	int ret;
2062 
2063 	ret = intel_dsc_compute_params(encoder, crtc_state);
2064 	if (ret)
2065 		return ret;
2066 
2067 	/*
2068 	 * Slice Height of 8 works for all currently available panels. So start
2069 	 * with that if pic_height is an integral multiple of 8. Eventually add
2070 	 * logic to try multiple slice heights.
2071 	 */
2072 	if (vdsc_cfg->pic_height % 8 == 0)
2073 		vdsc_cfg->slice_height = 8;
2074 	else if (vdsc_cfg->pic_height % 4 == 0)
2075 		vdsc_cfg->slice_height = 4;
2076 	else
2077 		vdsc_cfg->slice_height = 2;
2078 
2079 	vdsc_cfg->dsc_version_major =
2080 		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2081 		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2082 	vdsc_cfg->dsc_version_minor =
2083 		min(DSC_SUPPORTED_VERSION_MIN,
2084 		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2085 		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2086 
2087 	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2088 		DP_DSC_RGB;
2089 
2090 	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2091 	if (!line_buf_depth) {
2092 		DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
2093 		return -EINVAL;
2094 	}
2095 
2096 	if (vdsc_cfg->dsc_version_minor == 2)
2097 		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2098 			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2099 	else
2100 		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2101 			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2102 
2103 	vdsc_cfg->block_pred_enable =
2104 		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2105 		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2106 
2107 	return drm_dsc_compute_rc_parameters(vdsc_cfg);
2108 }
2109 
2110 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2111 				       struct intel_crtc_state *pipe_config,
2112 				       struct drm_connector_state *conn_state,
2113 				       struct link_config_limits *limits)
2114 {
2115 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2116 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2117 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2118 	u8 dsc_max_bpc;
2119 	int pipe_bpp;
2120 	int ret;
2121 
2122 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2123 		intel_dp_supports_fec(intel_dp, pipe_config);
2124 
2125 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2126 		return -EINVAL;
2127 
2128 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2129 	if (INTEL_GEN(dev_priv) >= 12)
2130 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2131 	else
2132 		dsc_max_bpc = min_t(u8, 10,
2133 				    conn_state->max_requested_bpc);
2134 
2135 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2136 
2137 	/* Min Input BPC for ICL+ is 8 */
2138 	if (pipe_bpp < 8 * 3) {
2139 		drm_dbg_kms(&dev_priv->drm,
2140 			    "No DSC support for less than 8bpc\n");
2141 		return -EINVAL;
2142 	}
2143 
2144 	/*
2145 	 * For now enable DSC for max bpp, max link rate, max lane count.
2146 	 * Optimize this later for the minimum possible link rate/lane count
2147 	 * with DSC enabled for the requested mode.
2148 	 */
2149 	pipe_config->pipe_bpp = pipe_bpp;
2150 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2151 	pipe_config->lane_count = limits->max_lane_count;
2152 
2153 	if (intel_dp_is_edp(intel_dp)) {
2154 		pipe_config->dsc.compressed_bpp =
2155 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2156 			      pipe_config->pipe_bpp);
2157 		pipe_config->dsc.slice_count =
2158 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2159 							true);
2160 	} else {
2161 		u16 dsc_max_output_bpp;
2162 		u8 dsc_dp_slice_count;
2163 
2164 		dsc_max_output_bpp =
2165 			intel_dp_dsc_get_output_bpp(dev_priv,
2166 						    pipe_config->port_clock,
2167 						    pipe_config->lane_count,
2168 						    adjusted_mode->crtc_clock,
2169 						    adjusted_mode->crtc_hdisplay);
2170 		dsc_dp_slice_count =
2171 			intel_dp_dsc_get_slice_count(intel_dp,
2172 						     adjusted_mode->crtc_clock,
2173 						     adjusted_mode->crtc_hdisplay);
2174 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2175 			drm_dbg_kms(&dev_priv->drm,
2176 				    "Compressed BPP/Slice Count not supported\n");
2177 			return -EINVAL;
2178 		}
2179 		pipe_config->dsc.compressed_bpp = min_t(u16,
2180 							       dsc_max_output_bpp >> 4,
2181 							       pipe_config->pipe_bpp);
2182 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2183 	}
2184 	/*
2185 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2186 	 * is greater than the maximum Cdclock and if slice count is even
2187 	 * then we need to use 2 VDSC instances.
2188 	 */
2189 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2190 		if (pipe_config->dsc.slice_count > 1) {
2191 			pipe_config->dsc.dsc_split = true;
2192 		} else {
2193 			drm_dbg_kms(&dev_priv->drm,
2194 				    "Cannot split stream to use 2 VDSC instances\n");
2195 			return -EINVAL;
2196 		}
2197 	}
2198 
2199 	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2200 	if (ret < 0) {
2201 		drm_dbg_kms(&dev_priv->drm,
2202 			    "Cannot compute valid DSC parameters for Input Bpp = %d "
2203 			    "Compressed BPP = %d\n",
2204 			    pipe_config->pipe_bpp,
2205 			    pipe_config->dsc.compressed_bpp);
2206 		return ret;
2207 	}
2208 
2209 	pipe_config->dsc.compression_enable = true;
2210 	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2211 		    "Compressed Bpp = %d Slice Count = %d\n",
2212 		    pipe_config->pipe_bpp,
2213 		    pipe_config->dsc.compressed_bpp,
2214 		    pipe_config->dsc.slice_count);
2215 
2216 	return 0;
2217 }
2218 
2219 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2220 {
2221 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2222 		return 6 * 3;
2223 	else
2224 		return 8 * 3;
2225 }
2226 
2227 static int
2228 intel_dp_compute_link_config(struct intel_encoder *encoder,
2229 			     struct intel_crtc_state *pipe_config,
2230 			     struct drm_connector_state *conn_state)
2231 {
2232 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2233 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2234 	struct link_config_limits limits;
2235 	int common_len;
2236 	int ret;
2237 
2238 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2239 						    intel_dp->max_link_rate);
2240 
2241 	/* No common link rates between source and sink */
2242 	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2243 
2244 	limits.min_clock = 0;
2245 	limits.max_clock = common_len - 1;
2246 
2247 	limits.min_lane_count = 1;
2248 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2249 
2250 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2251 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2252 
2253 	if (intel_dp_is_edp(intel_dp)) {
2254 		/*
2255 		 * Use the maximum clock and number of lanes the eDP panel
2256 		 * advertizes being capable of. The panels are generally
2257 		 * designed to support only a single clock and lane
2258 		 * configuration, and typically these values correspond to the
2259 		 * native resolution of the panel.
2260 		 */
2261 		limits.min_lane_count = limits.max_lane_count;
2262 		limits.min_clock = limits.max_clock;
2263 	}
2264 
2265 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2266 
2267 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
2268 		      "max rate %d max bpp %d pixel clock %iKHz\n",
2269 		      limits.max_lane_count,
2270 		      intel_dp->common_rates[limits.max_clock],
2271 		      limits.max_bpp, adjusted_mode->crtc_clock);
2272 
2273 	/*
2274 	 * Optimize for slow and wide. This is the place to add alternative
2275 	 * optimization policy.
2276 	 */
2277 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2278 
2279 	/* enable compression if the mode doesn't fit available BW */
2280 	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2281 	if (ret || intel_dp->force_dsc_en) {
2282 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2283 						  conn_state, &limits);
2284 		if (ret < 0)
2285 			return ret;
2286 	}
2287 
2288 	if (pipe_config->dsc.compression_enable) {
2289 		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2290 			      pipe_config->lane_count, pipe_config->port_clock,
2291 			      pipe_config->pipe_bpp,
2292 			      pipe_config->dsc.compressed_bpp);
2293 
2294 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2295 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2296 						     pipe_config->dsc.compressed_bpp),
2297 			      intel_dp_max_data_rate(pipe_config->port_clock,
2298 						     pipe_config->lane_count));
2299 	} else {
2300 		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2301 			      pipe_config->lane_count, pipe_config->port_clock,
2302 			      pipe_config->pipe_bpp);
2303 
2304 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2305 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2306 						     pipe_config->pipe_bpp),
2307 			      intel_dp_max_data_rate(pipe_config->port_clock,
2308 						     pipe_config->lane_count));
2309 	}
2310 	return 0;
2311 }
2312 
2313 static int
2314 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2315 			 struct drm_connector *connector,
2316 			 struct intel_crtc_state *crtc_state)
2317 {
2318 	const struct drm_display_info *info = &connector->display_info;
2319 	const struct drm_display_mode *adjusted_mode =
2320 		&crtc_state->hw.adjusted_mode;
2321 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2322 	int ret;
2323 
2324 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2325 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2326 	    !connector->ycbcr_420_allowed)
2327 		return 0;
2328 
2329 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2330 
2331 	/* YCBCR 420 output conversion needs a scaler */
2332 	ret = skl_update_scaler_crtc(crtc_state);
2333 	if (ret) {
2334 		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2335 		return ret;
2336 	}
2337 
2338 	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2339 
2340 	return 0;
2341 }
2342 
2343 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2344 				  const struct drm_connector_state *conn_state)
2345 {
2346 	const struct intel_digital_connector_state *intel_conn_state =
2347 		to_intel_digital_connector_state(conn_state);
2348 	const struct drm_display_mode *adjusted_mode =
2349 		&crtc_state->hw.adjusted_mode;
2350 
2351 	/*
2352 	 * Our YCbCr output is always limited range.
2353 	 * crtc_state->limited_color_range only applies to RGB,
2354 	 * and it must never be set for YCbCr or we risk setting
2355 	 * some conflicting bits in PIPECONF which will mess up
2356 	 * the colors on the monitor.
2357 	 */
2358 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2359 		return false;
2360 
2361 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2362 		/*
2363 		 * See:
2364 		 * CEA-861-E - 5.1 Default Encoding Parameters
2365 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2366 		 */
2367 		return crtc_state->pipe_bpp != 18 &&
2368 			drm_default_rgb_quant_range(adjusted_mode) ==
2369 			HDMI_QUANTIZATION_RANGE_LIMITED;
2370 	} else {
2371 		return intel_conn_state->broadcast_rgb ==
2372 			INTEL_BROADCAST_RGB_LIMITED;
2373 	}
2374 }
2375 
2376 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2377 				    enum port port)
2378 {
2379 	if (IS_G4X(dev_priv))
2380 		return false;
2381 	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2382 		return false;
2383 
2384 	return true;
2385 }
2386 
2387 int
2388 intel_dp_compute_config(struct intel_encoder *encoder,
2389 			struct intel_crtc_state *pipe_config,
2390 			struct drm_connector_state *conn_state)
2391 {
2392 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2393 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2394 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2395 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2396 	enum port port = encoder->port;
2397 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2398 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2399 	struct intel_digital_connector_state *intel_conn_state =
2400 		to_intel_digital_connector_state(conn_state);
2401 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2402 					   DP_DPCD_QUIRK_CONSTANT_N);
2403 	int ret = 0, output_bpp;
2404 
2405 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2406 		pipe_config->has_pch_encoder = true;
2407 
2408 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2409 
2410 	if (lspcon->active)
2411 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2412 	else
2413 		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2414 					       pipe_config);
2415 
2416 	if (ret)
2417 		return ret;
2418 
2419 	pipe_config->has_drrs = false;
2420 	if (!intel_dp_port_has_audio(dev_priv, port))
2421 		pipe_config->has_audio = false;
2422 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2423 		pipe_config->has_audio = intel_dp->has_audio;
2424 	else
2425 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2426 
2427 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2428 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2429 				       adjusted_mode);
2430 
2431 		if (INTEL_GEN(dev_priv) >= 9) {
2432 			ret = skl_update_scaler_crtc(pipe_config);
2433 			if (ret)
2434 				return ret;
2435 		}
2436 
2437 		if (HAS_GMCH(dev_priv))
2438 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
2439 						 conn_state->scaling_mode);
2440 		else
2441 			intel_pch_panel_fitting(intel_crtc, pipe_config,
2442 						conn_state->scaling_mode);
2443 	}
2444 
2445 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2446 		return -EINVAL;
2447 
2448 	if (HAS_GMCH(dev_priv) &&
2449 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2450 		return -EINVAL;
2451 
2452 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2453 		return -EINVAL;
2454 
2455 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2456 		return -EINVAL;
2457 
2458 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2459 	if (ret < 0)
2460 		return ret;
2461 
2462 	pipe_config->limited_color_range =
2463 		intel_dp_limited_color_range(pipe_config, conn_state);
2464 
2465 	if (pipe_config->dsc.compression_enable)
2466 		output_bpp = pipe_config->dsc.compressed_bpp;
2467 	else
2468 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2469 
2470 	intel_link_compute_m_n(output_bpp,
2471 			       pipe_config->lane_count,
2472 			       adjusted_mode->crtc_clock,
2473 			       pipe_config->port_clock,
2474 			       &pipe_config->dp_m_n,
2475 			       constant_n, pipe_config->fec_enable);
2476 
2477 	if (intel_connector->panel.downclock_mode != NULL &&
2478 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2479 			pipe_config->has_drrs = true;
2480 			intel_link_compute_m_n(output_bpp,
2481 					       pipe_config->lane_count,
2482 					       intel_connector->panel.downclock_mode->clock,
2483 					       pipe_config->port_clock,
2484 					       &pipe_config->dp_m2_n2,
2485 					       constant_n, pipe_config->fec_enable);
2486 	}
2487 
2488 	if (!HAS_DDI(dev_priv))
2489 		intel_dp_set_clock(encoder, pipe_config);
2490 
2491 	intel_psr_compute_config(intel_dp, pipe_config);
2492 
2493 	return 0;
2494 }
2495 
2496 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2497 			      int link_rate, u8 lane_count,
2498 			      bool link_mst)
2499 {
2500 	intel_dp->link_trained = false;
2501 	intel_dp->link_rate = link_rate;
2502 	intel_dp->lane_count = lane_count;
2503 	intel_dp->link_mst = link_mst;
2504 }
2505 
2506 static void intel_dp_prepare(struct intel_encoder *encoder,
2507 			     const struct intel_crtc_state *pipe_config)
2508 {
2509 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2510 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2511 	enum port port = encoder->port;
2512 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2513 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2514 
2515 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2516 				 pipe_config->lane_count,
2517 				 intel_crtc_has_type(pipe_config,
2518 						     INTEL_OUTPUT_DP_MST));
2519 
2520 	intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2521 	intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2522 
2523 	/*
2524 	 * There are four kinds of DP registers:
2525 	 *
2526 	 * 	IBX PCH
2527 	 * 	SNB CPU
2528 	 *	IVB CPU
2529 	 * 	CPT PCH
2530 	 *
2531 	 * IBX PCH and CPU are the same for almost everything,
2532 	 * except that the CPU DP PLL is configured in this
2533 	 * register
2534 	 *
2535 	 * CPT PCH is quite different, having many bits moved
2536 	 * to the TRANS_DP_CTL register instead. That
2537 	 * configuration happens (oddly) in ilk_pch_enable
2538 	 */
2539 
2540 	/* Preserve the BIOS-computed detected bit. This is
2541 	 * supposed to be read-only.
2542 	 */
2543 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2544 
2545 	/* Handle DP bits in common between all three register formats */
2546 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2547 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2548 
2549 	/* Split out the IBX/CPU vs CPT settings */
2550 
2551 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2552 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2553 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2554 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2555 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2556 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2557 
2558 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2559 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2560 
2561 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2562 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2563 		u32 trans_dp;
2564 
2565 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2566 
2567 		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2568 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2569 			trans_dp |= TRANS_DP_ENH_FRAMING;
2570 		else
2571 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2572 		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2573 	} else {
2574 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2575 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2576 
2577 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2578 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2579 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2580 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2581 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2582 
2583 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2584 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2585 
2586 		if (IS_CHERRYVIEW(dev_priv))
2587 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2588 		else
2589 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2590 	}
2591 }
2592 
2593 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2594 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2595 
2596 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2597 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2598 
2599 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2600 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2601 
2602 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2603 
2604 static void wait_panel_status(struct intel_dp *intel_dp,
2605 				       u32 mask,
2606 				       u32 value)
2607 {
2608 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2609 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2610 
2611 	lockdep_assert_held(&dev_priv->pps_mutex);
2612 
2613 	intel_pps_verify_state(intel_dp);
2614 
2615 	pp_stat_reg = _pp_stat_reg(intel_dp);
2616 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2617 
2618 	drm_dbg_kms(&dev_priv->drm,
2619 		    "mask %08x value %08x status %08x control %08x\n",
2620 		    mask, value,
2621 		    intel_de_read(dev_priv, pp_stat_reg),
2622 		    intel_de_read(dev_priv, pp_ctrl_reg));
2623 
2624 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2625 				       mask, value, 5000))
2626 		drm_err(&dev_priv->drm,
2627 			"Panel status timeout: status %08x control %08x\n",
2628 			intel_de_read(dev_priv, pp_stat_reg),
2629 			intel_de_read(dev_priv, pp_ctrl_reg));
2630 
2631 	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2632 }
2633 
2634 static void wait_panel_on(struct intel_dp *intel_dp)
2635 {
2636 	DRM_DEBUG_KMS("Wait for panel power on\n");
2637 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2638 }
2639 
2640 static void wait_panel_off(struct intel_dp *intel_dp)
2641 {
2642 	DRM_DEBUG_KMS("Wait for panel power off time\n");
2643 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2644 }
2645 
2646 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2647 {
2648 	ktime_t panel_power_on_time;
2649 	s64 panel_power_off_duration;
2650 
2651 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2652 
2653 	/* take the difference of currrent time and panel power off time
2654 	 * and then make panel wait for t11_t12 if needed. */
2655 	panel_power_on_time = ktime_get_boottime();
2656 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2657 
2658 	/* When we disable the VDD override bit last we have to do the manual
2659 	 * wait. */
2660 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2661 		wait_remaining_ms_from_jiffies(jiffies,
2662 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2663 
2664 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2665 }
2666 
2667 static void wait_backlight_on(struct intel_dp *intel_dp)
2668 {
2669 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2670 				       intel_dp->backlight_on_delay);
2671 }
2672 
2673 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2674 {
2675 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2676 				       intel_dp->backlight_off_delay);
2677 }
2678 
2679 /* Read the current pp_control value, unlocking the register if it
2680  * is locked
2681  */
2682 
2683 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2684 {
2685 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2686 	u32 control;
2687 
2688 	lockdep_assert_held(&dev_priv->pps_mutex);
2689 
2690 	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2691 	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2692 			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2693 		control &= ~PANEL_UNLOCK_MASK;
2694 		control |= PANEL_UNLOCK_REGS;
2695 	}
2696 	return control;
2697 }
2698 
2699 /*
2700  * Must be paired with edp_panel_vdd_off().
2701  * Must hold pps_mutex around the whole on/off sequence.
2702  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2703  */
2704 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2705 {
2706 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2707 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2708 	u32 pp;
2709 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2710 	bool need_to_disable = !intel_dp->want_panel_vdd;
2711 
2712 	lockdep_assert_held(&dev_priv->pps_mutex);
2713 
2714 	if (!intel_dp_is_edp(intel_dp))
2715 		return false;
2716 
2717 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2718 	intel_dp->want_panel_vdd = true;
2719 
2720 	if (edp_have_panel_vdd(intel_dp))
2721 		return need_to_disable;
2722 
2723 	intel_display_power_get(dev_priv,
2724 				intel_aux_power_domain(intel_dig_port));
2725 
2726 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2727 		    intel_dig_port->base.base.base.id,
2728 		    intel_dig_port->base.base.name);
2729 
2730 	if (!edp_have_panel_power(intel_dp))
2731 		wait_panel_power_cycle(intel_dp);
2732 
2733 	pp = ilk_get_pp_control(intel_dp);
2734 	pp |= EDP_FORCE_VDD;
2735 
2736 	pp_stat_reg = _pp_stat_reg(intel_dp);
2737 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2738 
2739 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2740 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2741 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2742 		    intel_de_read(dev_priv, pp_stat_reg),
2743 		    intel_de_read(dev_priv, pp_ctrl_reg));
2744 	/*
2745 	 * If the panel wasn't on, delay before accessing aux channel
2746 	 */
2747 	if (!edp_have_panel_power(intel_dp)) {
2748 		drm_dbg_kms(&dev_priv->drm,
2749 			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
2750 			    intel_dig_port->base.base.base.id,
2751 			    intel_dig_port->base.base.name);
2752 		msleep(intel_dp->panel_power_up_delay);
2753 	}
2754 
2755 	return need_to_disable;
2756 }
2757 
2758 /*
2759  * Must be paired with intel_edp_panel_vdd_off() or
2760  * intel_edp_panel_off().
2761  * Nested calls to these functions are not allowed since
2762  * we drop the lock. Caller must use some higher level
2763  * locking to prevent nested calls from other threads.
2764  */
2765 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2766 {
2767 	intel_wakeref_t wakeref;
2768 	bool vdd;
2769 
2770 	if (!intel_dp_is_edp(intel_dp))
2771 		return;
2772 
2773 	vdd = false;
2774 	with_pps_lock(intel_dp, wakeref)
2775 		vdd = edp_panel_vdd_on(intel_dp);
2776 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2777 			dp_to_dig_port(intel_dp)->base.base.base.id,
2778 			dp_to_dig_port(intel_dp)->base.base.name);
2779 }
2780 
2781 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2782 {
2783 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2784 	struct intel_digital_port *intel_dig_port =
2785 		dp_to_dig_port(intel_dp);
2786 	u32 pp;
2787 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2788 
2789 	lockdep_assert_held(&dev_priv->pps_mutex);
2790 
2791 	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2792 
2793 	if (!edp_have_panel_vdd(intel_dp))
2794 		return;
2795 
2796 	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2797 		    intel_dig_port->base.base.base.id,
2798 		    intel_dig_port->base.base.name);
2799 
2800 	pp = ilk_get_pp_control(intel_dp);
2801 	pp &= ~EDP_FORCE_VDD;
2802 
2803 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2804 	pp_stat_reg = _pp_stat_reg(intel_dp);
2805 
2806 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2807 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2808 
2809 	/* Make sure sequencer is idle before allowing subsequent activity */
2810 	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2811 		    intel_de_read(dev_priv, pp_stat_reg),
2812 		    intel_de_read(dev_priv, pp_ctrl_reg));
2813 
2814 	if ((pp & PANEL_POWER_ON) == 0)
2815 		intel_dp->panel_power_off_time = ktime_get_boottime();
2816 
2817 	intel_display_power_put_unchecked(dev_priv,
2818 					  intel_aux_power_domain(intel_dig_port));
2819 }
2820 
2821 static void edp_panel_vdd_work(struct work_struct *__work)
2822 {
2823 	struct intel_dp *intel_dp =
2824 		container_of(to_delayed_work(__work),
2825 			     struct intel_dp, panel_vdd_work);
2826 	intel_wakeref_t wakeref;
2827 
2828 	with_pps_lock(intel_dp, wakeref) {
2829 		if (!intel_dp->want_panel_vdd)
2830 			edp_panel_vdd_off_sync(intel_dp);
2831 	}
2832 }
2833 
2834 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2835 {
2836 	unsigned long delay;
2837 
2838 	/*
2839 	 * Queue the timer to fire a long time from now (relative to the power
2840 	 * down delay) to keep the panel power up across a sequence of
2841 	 * operations.
2842 	 */
2843 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2844 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2845 }
2846 
2847 /*
2848  * Must be paired with edp_panel_vdd_on().
2849  * Must hold pps_mutex around the whole on/off sequence.
2850  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2851  */
2852 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2853 {
2854 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2855 
2856 	lockdep_assert_held(&dev_priv->pps_mutex);
2857 
2858 	if (!intel_dp_is_edp(intel_dp))
2859 		return;
2860 
2861 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2862 			dp_to_dig_port(intel_dp)->base.base.base.id,
2863 			dp_to_dig_port(intel_dp)->base.base.name);
2864 
2865 	intel_dp->want_panel_vdd = false;
2866 
2867 	if (sync)
2868 		edp_panel_vdd_off_sync(intel_dp);
2869 	else
2870 		edp_panel_vdd_schedule_off(intel_dp);
2871 }
2872 
2873 static void edp_panel_on(struct intel_dp *intel_dp)
2874 {
2875 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2876 	u32 pp;
2877 	i915_reg_t pp_ctrl_reg;
2878 
2879 	lockdep_assert_held(&dev_priv->pps_mutex);
2880 
2881 	if (!intel_dp_is_edp(intel_dp))
2882 		return;
2883 
2884 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
2885 		    dp_to_dig_port(intel_dp)->base.base.base.id,
2886 		    dp_to_dig_port(intel_dp)->base.base.name);
2887 
2888 	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
2889 		     "[ENCODER:%d:%s] panel power already on\n",
2890 		     dp_to_dig_port(intel_dp)->base.base.base.id,
2891 		     dp_to_dig_port(intel_dp)->base.base.name))
2892 		return;
2893 
2894 	wait_panel_power_cycle(intel_dp);
2895 
2896 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2897 	pp = ilk_get_pp_control(intel_dp);
2898 	if (IS_GEN(dev_priv, 5)) {
2899 		/* ILK workaround: disable reset around power sequence */
2900 		pp &= ~PANEL_POWER_RESET;
2901 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
2902 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
2903 	}
2904 
2905 	pp |= PANEL_POWER_ON;
2906 	if (!IS_GEN(dev_priv, 5))
2907 		pp |= PANEL_POWER_RESET;
2908 
2909 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2910 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2911 
2912 	wait_panel_on(intel_dp);
2913 	intel_dp->last_power_on = jiffies;
2914 
2915 	if (IS_GEN(dev_priv, 5)) {
2916 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2917 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
2918 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
2919 	}
2920 }
2921 
2922 void intel_edp_panel_on(struct intel_dp *intel_dp)
2923 {
2924 	intel_wakeref_t wakeref;
2925 
2926 	if (!intel_dp_is_edp(intel_dp))
2927 		return;
2928 
2929 	with_pps_lock(intel_dp, wakeref)
2930 		edp_panel_on(intel_dp);
2931 }
2932 
2933 
2934 static void edp_panel_off(struct intel_dp *intel_dp)
2935 {
2936 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2937 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2938 	u32 pp;
2939 	i915_reg_t pp_ctrl_reg;
2940 
2941 	lockdep_assert_held(&dev_priv->pps_mutex);
2942 
2943 	if (!intel_dp_is_edp(intel_dp))
2944 		return;
2945 
2946 	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
2947 		    dig_port->base.base.base.id, dig_port->base.base.name);
2948 
2949 	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
2950 		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2951 		 dig_port->base.base.base.id, dig_port->base.base.name);
2952 
2953 	pp = ilk_get_pp_control(intel_dp);
2954 	/* We need to switch off panel power _and_ force vdd, for otherwise some
2955 	 * panels get very unhappy and cease to work. */
2956 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2957 		EDP_BLC_ENABLE);
2958 
2959 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2960 
2961 	intel_dp->want_panel_vdd = false;
2962 
2963 	intel_de_write(dev_priv, pp_ctrl_reg, pp);
2964 	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2965 
2966 	wait_panel_off(intel_dp);
2967 	intel_dp->panel_power_off_time = ktime_get_boottime();
2968 
2969 	/* We got a reference when we enabled the VDD. */
2970 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2971 }
2972 
2973 void intel_edp_panel_off(struct intel_dp *intel_dp)
2974 {
2975 	intel_wakeref_t wakeref;
2976 
2977 	if (!intel_dp_is_edp(intel_dp))
2978 		return;
2979 
2980 	with_pps_lock(intel_dp, wakeref)
2981 		edp_panel_off(intel_dp);
2982 }
2983 
2984 /* Enable backlight in the panel power control. */
2985 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2986 {
2987 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2988 	intel_wakeref_t wakeref;
2989 
2990 	/*
2991 	 * If we enable the backlight right away following a panel power
2992 	 * on, we may see slight flicker as the panel syncs with the eDP
2993 	 * link.  So delay a bit to make sure the image is solid before
2994 	 * allowing it to appear.
2995 	 */
2996 	wait_backlight_on(intel_dp);
2997 
2998 	with_pps_lock(intel_dp, wakeref) {
2999 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3000 		u32 pp;
3001 
3002 		pp = ilk_get_pp_control(intel_dp);
3003 		pp |= EDP_BLC_ENABLE;
3004 
3005 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3006 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3007 	}
3008 }
3009 
3010 /* Enable backlight PWM and backlight PP control. */
3011 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3012 			    const struct drm_connector_state *conn_state)
3013 {
3014 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3015 
3016 	if (!intel_dp_is_edp(intel_dp))
3017 		return;
3018 
3019 	DRM_DEBUG_KMS("\n");
3020 
3021 	intel_panel_enable_backlight(crtc_state, conn_state);
3022 	_intel_edp_backlight_on(intel_dp);
3023 }
3024 
3025 /* Disable backlight in the panel power control. */
3026 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3027 {
3028 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3029 	intel_wakeref_t wakeref;
3030 
3031 	if (!intel_dp_is_edp(intel_dp))
3032 		return;
3033 
3034 	with_pps_lock(intel_dp, wakeref) {
3035 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3036 		u32 pp;
3037 
3038 		pp = ilk_get_pp_control(intel_dp);
3039 		pp &= ~EDP_BLC_ENABLE;
3040 
3041 		intel_de_write(dev_priv, pp_ctrl_reg, pp);
3042 		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3043 	}
3044 
3045 	intel_dp->last_backlight_off = jiffies;
3046 	edp_wait_backlight_off(intel_dp);
3047 }
3048 
3049 /* Disable backlight PP control and backlight PWM. */
3050 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3051 {
3052 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3053 
3054 	if (!intel_dp_is_edp(intel_dp))
3055 		return;
3056 
3057 	DRM_DEBUG_KMS("\n");
3058 
3059 	_intel_edp_backlight_off(intel_dp);
3060 	intel_panel_disable_backlight(old_conn_state);
3061 }
3062 
3063 /*
3064  * Hook for controlling the panel power control backlight through the bl_power
3065  * sysfs attribute. Take care to handle multiple calls.
3066  */
3067 static void intel_edp_backlight_power(struct intel_connector *connector,
3068 				      bool enable)
3069 {
3070 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3071 	intel_wakeref_t wakeref;
3072 	bool is_enabled;
3073 
3074 	is_enabled = false;
3075 	with_pps_lock(intel_dp, wakeref)
3076 		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3077 	if (is_enabled == enable)
3078 		return;
3079 
3080 	DRM_DEBUG_KMS("panel power control backlight %s\n",
3081 		      enable ? "enable" : "disable");
3082 
3083 	if (enable)
3084 		_intel_edp_backlight_on(intel_dp);
3085 	else
3086 		_intel_edp_backlight_off(intel_dp);
3087 }
3088 
3089 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3090 {
3091 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3092 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3093 	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3094 
3095 	I915_STATE_WARN(cur_state != state,
3096 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3097 			dig_port->base.base.base.id, dig_port->base.base.name,
3098 			onoff(state), onoff(cur_state));
3099 }
3100 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3101 
3102 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3103 {
3104 	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3105 
3106 	I915_STATE_WARN(cur_state != state,
3107 			"eDP PLL state assertion failure (expected %s, current %s)\n",
3108 			onoff(state), onoff(cur_state));
3109 }
3110 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3111 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3112 
3113 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3114 			   const struct intel_crtc_state *pipe_config)
3115 {
3116 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3117 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3118 
3119 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3120 	assert_dp_port_disabled(intel_dp);
3121 	assert_edp_pll_disabled(dev_priv);
3122 
3123 	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3124 		    pipe_config->port_clock);
3125 
3126 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3127 
3128 	if (pipe_config->port_clock == 162000)
3129 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3130 	else
3131 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3132 
3133 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3134 	intel_de_posting_read(dev_priv, DP_A);
3135 	udelay(500);
3136 
3137 	/*
3138 	 * [DevILK] Work around required when enabling DP PLL
3139 	 * while a pipe is enabled going to FDI:
3140 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3141 	 * 2. Program DP PLL enable
3142 	 */
3143 	if (IS_GEN(dev_priv, 5))
3144 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3145 
3146 	intel_dp->DP |= DP_PLL_ENABLE;
3147 
3148 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3149 	intel_de_posting_read(dev_priv, DP_A);
3150 	udelay(200);
3151 }
3152 
3153 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3154 			    const struct intel_crtc_state *old_crtc_state)
3155 {
3156 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3157 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3158 
3159 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3160 	assert_dp_port_disabled(intel_dp);
3161 	assert_edp_pll_enabled(dev_priv);
3162 
3163 	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3164 
3165 	intel_dp->DP &= ~DP_PLL_ENABLE;
3166 
3167 	intel_de_write(dev_priv, DP_A, intel_dp->DP);
3168 	intel_de_posting_read(dev_priv, DP_A);
3169 	udelay(200);
3170 }
3171 
3172 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3173 {
3174 	/*
3175 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3176 	 * be capable of signalling downstream hpd with a long pulse.
3177 	 * Whether or not that means D3 is safe to use is not clear,
3178 	 * but let's assume so until proven otherwise.
3179 	 *
3180 	 * FIXME should really check all downstream ports...
3181 	 */
3182 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3183 		drm_dp_is_branch(intel_dp->dpcd) &&
3184 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3185 }
3186 
3187 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3188 					   const struct intel_crtc_state *crtc_state,
3189 					   bool enable)
3190 {
3191 	int ret;
3192 
3193 	if (!crtc_state->dsc.compression_enable)
3194 		return;
3195 
3196 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3197 				 enable ? DP_DECOMPRESSION_EN : 0);
3198 	if (ret < 0)
3199 		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3200 			      enable ? "enable" : "disable");
3201 }
3202 
3203 /* If the sink supports it, try to set the power state appropriately */
3204 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3205 {
3206 	int ret, i;
3207 
3208 	/* Should have a valid DPCD by this point */
3209 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3210 		return;
3211 
3212 	if (mode != DRM_MODE_DPMS_ON) {
3213 		if (downstream_hpd_needs_d0(intel_dp))
3214 			return;
3215 
3216 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3217 					 DP_SET_POWER_D3);
3218 	} else {
3219 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3220 
3221 		/*
3222 		 * When turning on, we need to retry for 1ms to give the sink
3223 		 * time to wake up.
3224 		 */
3225 		for (i = 0; i < 3; i++) {
3226 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3227 						 DP_SET_POWER_D0);
3228 			if (ret == 1)
3229 				break;
3230 			msleep(1);
3231 		}
3232 
3233 		if (ret == 1 && lspcon->active)
3234 			lspcon_wait_pcon_mode(lspcon);
3235 	}
3236 
3237 	if (ret != 1)
3238 		DRM_DEBUG_KMS("failed to %s sink power state\n",
3239 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3240 }
3241 
3242 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3243 				 enum port port, enum pipe *pipe)
3244 {
3245 	enum pipe p;
3246 
3247 	for_each_pipe(dev_priv, p) {
3248 		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3249 
3250 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3251 			*pipe = p;
3252 			return true;
3253 		}
3254 	}
3255 
3256 	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3257 		    port_name(port));
3258 
3259 	/* must initialize pipe to something for the asserts */
3260 	*pipe = PIPE_A;
3261 
3262 	return false;
3263 }
3264 
3265 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3266 			   i915_reg_t dp_reg, enum port port,
3267 			   enum pipe *pipe)
3268 {
3269 	bool ret;
3270 	u32 val;
3271 
3272 	val = intel_de_read(dev_priv, dp_reg);
3273 
3274 	ret = val & DP_PORT_EN;
3275 
3276 	/* asserts want to know the pipe even if the port is disabled */
3277 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3278 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3279 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3280 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3281 	else if (IS_CHERRYVIEW(dev_priv))
3282 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3283 	else
3284 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3285 
3286 	return ret;
3287 }
3288 
3289 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3290 				  enum pipe *pipe)
3291 {
3292 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3293 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3294 	intel_wakeref_t wakeref;
3295 	bool ret;
3296 
3297 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3298 						     encoder->power_domain);
3299 	if (!wakeref)
3300 		return false;
3301 
3302 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3303 				    encoder->port, pipe);
3304 
3305 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3306 
3307 	return ret;
3308 }
3309 
3310 static void intel_dp_get_config(struct intel_encoder *encoder,
3311 				struct intel_crtc_state *pipe_config)
3312 {
3313 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3314 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3315 	u32 tmp, flags = 0;
3316 	enum port port = encoder->port;
3317 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3318 
3319 	if (encoder->type == INTEL_OUTPUT_EDP)
3320 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3321 	else
3322 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3323 
3324 	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3325 
3326 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3327 
3328 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3329 		u32 trans_dp = intel_de_read(dev_priv,
3330 					     TRANS_DP_CTL(crtc->pipe));
3331 
3332 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3333 			flags |= DRM_MODE_FLAG_PHSYNC;
3334 		else
3335 			flags |= DRM_MODE_FLAG_NHSYNC;
3336 
3337 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3338 			flags |= DRM_MODE_FLAG_PVSYNC;
3339 		else
3340 			flags |= DRM_MODE_FLAG_NVSYNC;
3341 	} else {
3342 		if (tmp & DP_SYNC_HS_HIGH)
3343 			flags |= DRM_MODE_FLAG_PHSYNC;
3344 		else
3345 			flags |= DRM_MODE_FLAG_NHSYNC;
3346 
3347 		if (tmp & DP_SYNC_VS_HIGH)
3348 			flags |= DRM_MODE_FLAG_PVSYNC;
3349 		else
3350 			flags |= DRM_MODE_FLAG_NVSYNC;
3351 	}
3352 
3353 	pipe_config->hw.adjusted_mode.flags |= flags;
3354 
3355 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3356 		pipe_config->limited_color_range = true;
3357 
3358 	pipe_config->lane_count =
3359 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3360 
3361 	intel_dp_get_m_n(crtc, pipe_config);
3362 
3363 	if (port == PORT_A) {
3364 		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3365 			pipe_config->port_clock = 162000;
3366 		else
3367 			pipe_config->port_clock = 270000;
3368 	}
3369 
3370 	pipe_config->hw.adjusted_mode.crtc_clock =
3371 		intel_dotclock_calculate(pipe_config->port_clock,
3372 					 &pipe_config->dp_m_n);
3373 
3374 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3375 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3376 		/*
3377 		 * This is a big fat ugly hack.
3378 		 *
3379 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3380 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3381 		 * unknown we fail to light up. Yet the same BIOS boots up with
3382 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3383 		 * max, not what it tells us to use.
3384 		 *
3385 		 * Note: This will still be broken if the eDP panel is not lit
3386 		 * up by the BIOS, and thus we can't get the mode at module
3387 		 * load.
3388 		 */
3389 		drm_dbg_kms(&dev_priv->drm,
3390 			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3391 			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3392 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3393 	}
3394 }
3395 
3396 static void intel_disable_dp(struct intel_encoder *encoder,
3397 			     const struct intel_crtc_state *old_crtc_state,
3398 			     const struct drm_connector_state *old_conn_state)
3399 {
3400 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3401 
3402 	intel_dp->link_trained = false;
3403 
3404 	if (old_crtc_state->has_audio)
3405 		intel_audio_codec_disable(encoder,
3406 					  old_crtc_state, old_conn_state);
3407 
3408 	/* Make sure the panel is off before trying to change the mode. But also
3409 	 * ensure that we have vdd while we switch off the panel. */
3410 	intel_edp_panel_vdd_on(intel_dp);
3411 	intel_edp_backlight_off(old_conn_state);
3412 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3413 	intel_edp_panel_off(intel_dp);
3414 }
3415 
3416 static void g4x_disable_dp(struct intel_encoder *encoder,
3417 			   const struct intel_crtc_state *old_crtc_state,
3418 			   const struct drm_connector_state *old_conn_state)
3419 {
3420 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3421 }
3422 
3423 static void vlv_disable_dp(struct intel_encoder *encoder,
3424 			   const struct intel_crtc_state *old_crtc_state,
3425 			   const struct drm_connector_state *old_conn_state)
3426 {
3427 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3428 }
3429 
3430 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3431 				const struct intel_crtc_state *old_crtc_state,
3432 				const struct drm_connector_state *old_conn_state)
3433 {
3434 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3435 	enum port port = encoder->port;
3436 
3437 	/*
3438 	 * Bspec does not list a specific disable sequence for g4x DP.
3439 	 * Follow the ilk+ sequence (disable pipe before the port) for
3440 	 * g4x DP as it does not suffer from underruns like the normal
3441 	 * g4x modeset sequence (disable pipe after the port).
3442 	 */
3443 	intel_dp_link_down(encoder, old_crtc_state);
3444 
3445 	/* Only ilk+ has port A */
3446 	if (port == PORT_A)
3447 		ilk_edp_pll_off(intel_dp, old_crtc_state);
3448 }
3449 
3450 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3451 				const struct intel_crtc_state *old_crtc_state,
3452 				const struct drm_connector_state *old_conn_state)
3453 {
3454 	intel_dp_link_down(encoder, old_crtc_state);
3455 }
3456 
3457 static void chv_post_disable_dp(struct intel_encoder *encoder,
3458 				const struct intel_crtc_state *old_crtc_state,
3459 				const struct drm_connector_state *old_conn_state)
3460 {
3461 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3462 
3463 	intel_dp_link_down(encoder, old_crtc_state);
3464 
3465 	vlv_dpio_get(dev_priv);
3466 
3467 	/* Assert data lane reset */
3468 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3469 
3470 	vlv_dpio_put(dev_priv);
3471 }
3472 
3473 static void
3474 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3475 			 u32 *DP,
3476 			 u8 dp_train_pat)
3477 {
3478 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3479 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3480 	enum port port = intel_dig_port->base.port;
3481 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3482 
3483 	if (dp_train_pat & train_pat_mask)
3484 		drm_dbg_kms(&dev_priv->drm,
3485 			    "Using DP training pattern TPS%d\n",
3486 			    dp_train_pat & train_pat_mask);
3487 
3488 	if (HAS_DDI(dev_priv)) {
3489 		u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
3490 
3491 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3492 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3493 		else
3494 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3495 
3496 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3497 		switch (dp_train_pat & train_pat_mask) {
3498 		case DP_TRAINING_PATTERN_DISABLE:
3499 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3500 
3501 			break;
3502 		case DP_TRAINING_PATTERN_1:
3503 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3504 			break;
3505 		case DP_TRAINING_PATTERN_2:
3506 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3507 			break;
3508 		case DP_TRAINING_PATTERN_3:
3509 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3510 			break;
3511 		case DP_TRAINING_PATTERN_4:
3512 			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3513 			break;
3514 		}
3515 		intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp);
3516 
3517 	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3518 		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3519 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3520 
3521 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3522 		case DP_TRAINING_PATTERN_DISABLE:
3523 			*DP |= DP_LINK_TRAIN_OFF_CPT;
3524 			break;
3525 		case DP_TRAINING_PATTERN_1:
3526 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3527 			break;
3528 		case DP_TRAINING_PATTERN_2:
3529 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3530 			break;
3531 		case DP_TRAINING_PATTERN_3:
3532 			drm_dbg_kms(&dev_priv->drm,
3533 				    "TPS3 not supported, using TPS2 instead\n");
3534 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3535 			break;
3536 		}
3537 
3538 	} else {
3539 		*DP &= ~DP_LINK_TRAIN_MASK;
3540 
3541 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3542 		case DP_TRAINING_PATTERN_DISABLE:
3543 			*DP |= DP_LINK_TRAIN_OFF;
3544 			break;
3545 		case DP_TRAINING_PATTERN_1:
3546 			*DP |= DP_LINK_TRAIN_PAT_1;
3547 			break;
3548 		case DP_TRAINING_PATTERN_2:
3549 			*DP |= DP_LINK_TRAIN_PAT_2;
3550 			break;
3551 		case DP_TRAINING_PATTERN_3:
3552 			drm_dbg_kms(&dev_priv->drm,
3553 				    "TPS3 not supported, using TPS2 instead\n");
3554 			*DP |= DP_LINK_TRAIN_PAT_2;
3555 			break;
3556 		}
3557 	}
3558 }
3559 
3560 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3561 				 const struct intel_crtc_state *old_crtc_state)
3562 {
3563 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3564 
3565 	/* enable with pattern 1 (as per spec) */
3566 
3567 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3568 
3569 	/*
3570 	 * Magic for VLV/CHV. We _must_ first set up the register
3571 	 * without actually enabling the port, and then do another
3572 	 * write to enable the port. Otherwise link training will
3573 	 * fail when the power sequencer is freshly used for this port.
3574 	 */
3575 	intel_dp->DP |= DP_PORT_EN;
3576 	if (old_crtc_state->has_audio)
3577 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3578 
3579 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3580 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3581 }
3582 
3583 static void intel_enable_dp(struct intel_encoder *encoder,
3584 			    const struct intel_crtc_state *pipe_config,
3585 			    const struct drm_connector_state *conn_state)
3586 {
3587 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3588 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3589 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3590 	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3591 	enum pipe pipe = crtc->pipe;
3592 	intel_wakeref_t wakeref;
3593 
3594 	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3595 		return;
3596 
3597 	with_pps_lock(intel_dp, wakeref) {
3598 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3599 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3600 
3601 		intel_dp_enable_port(intel_dp, pipe_config);
3602 
3603 		edp_panel_vdd_on(intel_dp);
3604 		edp_panel_on(intel_dp);
3605 		edp_panel_vdd_off(intel_dp, true);
3606 	}
3607 
3608 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3609 		unsigned int lane_mask = 0x0;
3610 
3611 		if (IS_CHERRYVIEW(dev_priv))
3612 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3613 
3614 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3615 				    lane_mask);
3616 	}
3617 
3618 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3619 	intel_dp_start_link_train(intel_dp);
3620 	intel_dp_stop_link_train(intel_dp);
3621 
3622 	if (pipe_config->has_audio) {
3623 		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3624 			pipe_name(pipe));
3625 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3626 	}
3627 }
3628 
3629 static void g4x_enable_dp(struct intel_encoder *encoder,
3630 			  const struct intel_crtc_state *pipe_config,
3631 			  const struct drm_connector_state *conn_state)
3632 {
3633 	intel_enable_dp(encoder, pipe_config, conn_state);
3634 	intel_edp_backlight_on(pipe_config, conn_state);
3635 }
3636 
3637 static void vlv_enable_dp(struct intel_encoder *encoder,
3638 			  const struct intel_crtc_state *pipe_config,
3639 			  const struct drm_connector_state *conn_state)
3640 {
3641 	intel_edp_backlight_on(pipe_config, conn_state);
3642 }
3643 
3644 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3645 			      const struct intel_crtc_state *pipe_config,
3646 			      const struct drm_connector_state *conn_state)
3647 {
3648 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3649 	enum port port = encoder->port;
3650 
3651 	intel_dp_prepare(encoder, pipe_config);
3652 
3653 	/* Only ilk+ has port A */
3654 	if (port == PORT_A)
3655 		ilk_edp_pll_on(intel_dp, pipe_config);
3656 }
3657 
3658 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3659 {
3660 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3661 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3662 	enum pipe pipe = intel_dp->pps_pipe;
3663 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3664 
3665 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3666 
3667 	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3668 		return;
3669 
3670 	edp_panel_vdd_off_sync(intel_dp);
3671 
3672 	/*
3673 	 * VLV seems to get confused when multiple power sequencers
3674 	 * have the same port selected (even if only one has power/vdd
3675 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3676 	 * CHV on the other hand doesn't seem to mind having the same port
3677 	 * selected in multiple power sequencers, but let's clear the
3678 	 * port select always when logically disconnecting a power sequencer
3679 	 * from a port.
3680 	 */
3681 	drm_dbg_kms(&dev_priv->drm,
3682 		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3683 		    pipe_name(pipe), intel_dig_port->base.base.base.id,
3684 		    intel_dig_port->base.base.name);
3685 	intel_de_write(dev_priv, pp_on_reg, 0);
3686 	intel_de_posting_read(dev_priv, pp_on_reg);
3687 
3688 	intel_dp->pps_pipe = INVALID_PIPE;
3689 }
3690 
3691 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3692 				      enum pipe pipe)
3693 {
3694 	struct intel_encoder *encoder;
3695 
3696 	lockdep_assert_held(&dev_priv->pps_mutex);
3697 
3698 	for_each_intel_dp(&dev_priv->drm, encoder) {
3699 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3700 
3701 		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3702 			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3703 			 pipe_name(pipe), encoder->base.base.id,
3704 			 encoder->base.name);
3705 
3706 		if (intel_dp->pps_pipe != pipe)
3707 			continue;
3708 
3709 		drm_dbg_kms(&dev_priv->drm,
3710 			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3711 			    pipe_name(pipe), encoder->base.base.id,
3712 			    encoder->base.name);
3713 
3714 		/* make sure vdd is off before we steal it */
3715 		vlv_detach_power_sequencer(intel_dp);
3716 	}
3717 }
3718 
3719 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3720 					   const struct intel_crtc_state *crtc_state)
3721 {
3722 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3723 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3724 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3725 
3726 	lockdep_assert_held(&dev_priv->pps_mutex);
3727 
3728 	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3729 
3730 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3731 	    intel_dp->pps_pipe != crtc->pipe) {
3732 		/*
3733 		 * If another power sequencer was being used on this
3734 		 * port previously make sure to turn off vdd there while
3735 		 * we still have control of it.
3736 		 */
3737 		vlv_detach_power_sequencer(intel_dp);
3738 	}
3739 
3740 	/*
3741 	 * We may be stealing the power
3742 	 * sequencer from another port.
3743 	 */
3744 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3745 
3746 	intel_dp->active_pipe = crtc->pipe;
3747 
3748 	if (!intel_dp_is_edp(intel_dp))
3749 		return;
3750 
3751 	/* now it's all ours */
3752 	intel_dp->pps_pipe = crtc->pipe;
3753 
3754 	drm_dbg_kms(&dev_priv->drm,
3755 		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3756 		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3757 		    encoder->base.name);
3758 
3759 	/* init power sequencer on this pipe and port */
3760 	intel_dp_init_panel_power_sequencer(intel_dp);
3761 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3762 }
3763 
3764 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3765 			      const struct intel_crtc_state *pipe_config,
3766 			      const struct drm_connector_state *conn_state)
3767 {
3768 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3769 
3770 	intel_enable_dp(encoder, pipe_config, conn_state);
3771 }
3772 
3773 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3774 				  const struct intel_crtc_state *pipe_config,
3775 				  const struct drm_connector_state *conn_state)
3776 {
3777 	intel_dp_prepare(encoder, pipe_config);
3778 
3779 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3780 }
3781 
3782 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3783 			      const struct intel_crtc_state *pipe_config,
3784 			      const struct drm_connector_state *conn_state)
3785 {
3786 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3787 
3788 	intel_enable_dp(encoder, pipe_config, conn_state);
3789 
3790 	/* Second common lane will stay alive on its own now */
3791 	chv_phy_release_cl2_override(encoder);
3792 }
3793 
3794 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3795 				  const struct intel_crtc_state *pipe_config,
3796 				  const struct drm_connector_state *conn_state)
3797 {
3798 	intel_dp_prepare(encoder, pipe_config);
3799 
3800 	chv_phy_pre_pll_enable(encoder, pipe_config);
3801 }
3802 
3803 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3804 				    const struct intel_crtc_state *old_crtc_state,
3805 				    const struct drm_connector_state *old_conn_state)
3806 {
3807 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3808 }
3809 
3810 /*
3811  * Fetch AUX CH registers 0x202 - 0x207 which contain
3812  * link status information
3813  */
3814 bool
3815 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3816 {
3817 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3818 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3819 }
3820 
3821 /* These are source-specific values. */
3822 u8
3823 intel_dp_voltage_max(struct intel_dp *intel_dp)
3824 {
3825 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3826 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3827 	enum port port = encoder->port;
3828 
3829 	if (HAS_DDI(dev_priv))
3830 		return intel_ddi_dp_voltage_max(encoder);
3831 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3832 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3833 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3834 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3835 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3836 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3837 	else
3838 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3839 }
3840 
3841 u8
3842 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3843 {
3844 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3845 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3846 	enum port port = encoder->port;
3847 
3848 	if (HAS_DDI(dev_priv)) {
3849 		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3850 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3851 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3852 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3853 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3854 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3855 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3856 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3857 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3858 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3859 		default:
3860 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3861 		}
3862 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3863 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3864 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3865 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3866 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3867 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3868 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3869 		default:
3870 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3871 		}
3872 	} else {
3873 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3874 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3875 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3876 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3877 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3878 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3879 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3880 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3881 		default:
3882 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3883 		}
3884 	}
3885 }
3886 
3887 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3888 {
3889 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3890 	unsigned long demph_reg_value, preemph_reg_value,
3891 		uniqtranscale_reg_value;
3892 	u8 train_set = intel_dp->train_set[0];
3893 
3894 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3895 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3896 		preemph_reg_value = 0x0004000;
3897 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3898 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3899 			demph_reg_value = 0x2B405555;
3900 			uniqtranscale_reg_value = 0x552AB83A;
3901 			break;
3902 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3903 			demph_reg_value = 0x2B404040;
3904 			uniqtranscale_reg_value = 0x5548B83A;
3905 			break;
3906 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3907 			demph_reg_value = 0x2B245555;
3908 			uniqtranscale_reg_value = 0x5560B83A;
3909 			break;
3910 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3911 			demph_reg_value = 0x2B405555;
3912 			uniqtranscale_reg_value = 0x5598DA3A;
3913 			break;
3914 		default:
3915 			return 0;
3916 		}
3917 		break;
3918 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3919 		preemph_reg_value = 0x0002000;
3920 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3921 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3922 			demph_reg_value = 0x2B404040;
3923 			uniqtranscale_reg_value = 0x5552B83A;
3924 			break;
3925 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3926 			demph_reg_value = 0x2B404848;
3927 			uniqtranscale_reg_value = 0x5580B83A;
3928 			break;
3929 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3930 			demph_reg_value = 0x2B404040;
3931 			uniqtranscale_reg_value = 0x55ADDA3A;
3932 			break;
3933 		default:
3934 			return 0;
3935 		}
3936 		break;
3937 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3938 		preemph_reg_value = 0x0000000;
3939 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3940 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3941 			demph_reg_value = 0x2B305555;
3942 			uniqtranscale_reg_value = 0x5570B83A;
3943 			break;
3944 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3945 			demph_reg_value = 0x2B2B4040;
3946 			uniqtranscale_reg_value = 0x55ADDA3A;
3947 			break;
3948 		default:
3949 			return 0;
3950 		}
3951 		break;
3952 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3953 		preemph_reg_value = 0x0006000;
3954 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3955 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3956 			demph_reg_value = 0x1B405555;
3957 			uniqtranscale_reg_value = 0x55ADDA3A;
3958 			break;
3959 		default:
3960 			return 0;
3961 		}
3962 		break;
3963 	default:
3964 		return 0;
3965 	}
3966 
3967 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3968 				 uniqtranscale_reg_value, 0);
3969 
3970 	return 0;
3971 }
3972 
3973 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3974 {
3975 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3976 	u32 deemph_reg_value, margin_reg_value;
3977 	bool uniq_trans_scale = false;
3978 	u8 train_set = intel_dp->train_set[0];
3979 
3980 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3981 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3982 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3983 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3984 			deemph_reg_value = 128;
3985 			margin_reg_value = 52;
3986 			break;
3987 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3988 			deemph_reg_value = 128;
3989 			margin_reg_value = 77;
3990 			break;
3991 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3992 			deemph_reg_value = 128;
3993 			margin_reg_value = 102;
3994 			break;
3995 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3996 			deemph_reg_value = 128;
3997 			margin_reg_value = 154;
3998 			uniq_trans_scale = true;
3999 			break;
4000 		default:
4001 			return 0;
4002 		}
4003 		break;
4004 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4005 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4006 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4007 			deemph_reg_value = 85;
4008 			margin_reg_value = 78;
4009 			break;
4010 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4011 			deemph_reg_value = 85;
4012 			margin_reg_value = 116;
4013 			break;
4014 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4015 			deemph_reg_value = 85;
4016 			margin_reg_value = 154;
4017 			break;
4018 		default:
4019 			return 0;
4020 		}
4021 		break;
4022 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4023 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4024 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4025 			deemph_reg_value = 64;
4026 			margin_reg_value = 104;
4027 			break;
4028 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4029 			deemph_reg_value = 64;
4030 			margin_reg_value = 154;
4031 			break;
4032 		default:
4033 			return 0;
4034 		}
4035 		break;
4036 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4037 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4038 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4039 			deemph_reg_value = 43;
4040 			margin_reg_value = 154;
4041 			break;
4042 		default:
4043 			return 0;
4044 		}
4045 		break;
4046 	default:
4047 		return 0;
4048 	}
4049 
4050 	chv_set_phy_signal_level(encoder, deemph_reg_value,
4051 				 margin_reg_value, uniq_trans_scale);
4052 
4053 	return 0;
4054 }
4055 
4056 static u32
4057 g4x_signal_levels(u8 train_set)
4058 {
4059 	u32 signal_levels = 0;
4060 
4061 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4062 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4063 	default:
4064 		signal_levels |= DP_VOLTAGE_0_4;
4065 		break;
4066 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4067 		signal_levels |= DP_VOLTAGE_0_6;
4068 		break;
4069 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4070 		signal_levels |= DP_VOLTAGE_0_8;
4071 		break;
4072 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4073 		signal_levels |= DP_VOLTAGE_1_2;
4074 		break;
4075 	}
4076 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4077 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4078 	default:
4079 		signal_levels |= DP_PRE_EMPHASIS_0;
4080 		break;
4081 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4082 		signal_levels |= DP_PRE_EMPHASIS_3_5;
4083 		break;
4084 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4085 		signal_levels |= DP_PRE_EMPHASIS_6;
4086 		break;
4087 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4088 		signal_levels |= DP_PRE_EMPHASIS_9_5;
4089 		break;
4090 	}
4091 	return signal_levels;
4092 }
4093 
4094 /* SNB CPU eDP voltage swing and pre-emphasis control */
4095 static u32
4096 snb_cpu_edp_signal_levels(u8 train_set)
4097 {
4098 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4099 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4100 	switch (signal_levels) {
4101 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4102 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4103 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4104 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4105 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4106 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4107 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4108 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4109 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4110 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4111 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4112 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4113 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4114 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4115 	default:
4116 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4117 			      "0x%x\n", signal_levels);
4118 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4119 	}
4120 }
4121 
4122 /* IVB CPU eDP voltage swing and pre-emphasis control */
4123 static u32
4124 ivb_cpu_edp_signal_levels(u8 train_set)
4125 {
4126 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4127 					 DP_TRAIN_PRE_EMPHASIS_MASK);
4128 	switch (signal_levels) {
4129 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4130 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4131 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4132 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4133 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4134 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
4135 
4136 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4137 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4138 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4139 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4140 
4141 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4142 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4143 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4144 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4145 
4146 	default:
4147 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4148 			      "0x%x\n", signal_levels);
4149 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
4150 	}
4151 }
4152 
4153 void
4154 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4155 {
4156 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4157 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4158 	enum port port = intel_dig_port->base.port;
4159 	u32 signal_levels, mask = 0;
4160 	u8 train_set = intel_dp->train_set[0];
4161 
4162 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4163 		signal_levels = bxt_signal_levels(intel_dp);
4164 	} else if (HAS_DDI(dev_priv)) {
4165 		signal_levels = ddi_signal_levels(intel_dp);
4166 		mask = DDI_BUF_EMP_MASK;
4167 	} else if (IS_CHERRYVIEW(dev_priv)) {
4168 		signal_levels = chv_signal_levels(intel_dp);
4169 	} else if (IS_VALLEYVIEW(dev_priv)) {
4170 		signal_levels = vlv_signal_levels(intel_dp);
4171 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4172 		signal_levels = ivb_cpu_edp_signal_levels(train_set);
4173 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4174 	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4175 		signal_levels = snb_cpu_edp_signal_levels(train_set);
4176 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4177 	} else {
4178 		signal_levels = g4x_signal_levels(train_set);
4179 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4180 	}
4181 
4182 	if (mask)
4183 		drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4184 			    signal_levels);
4185 
4186 	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4187 		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4188 		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4189 	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4190 		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4191 		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
4192 		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4193 		    " (max)" : "");
4194 
4195 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4196 
4197 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4198 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4199 }
4200 
4201 void
4202 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4203 				       u8 dp_train_pat)
4204 {
4205 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4206 	struct drm_i915_private *dev_priv =
4207 		to_i915(intel_dig_port->base.base.dev);
4208 
4209 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4210 
4211 	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4212 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4213 }
4214 
4215 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4216 {
4217 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4218 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4219 	enum port port = intel_dig_port->base.port;
4220 	u32 val;
4221 
4222 	if (!HAS_DDI(dev_priv))
4223 		return;
4224 
4225 	val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
4226 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4227 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4228 	intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val);
4229 
4230 	/*
4231 	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4232 	 * reason we need to set idle transmission mode is to work around a HW
4233 	 * issue where we enable the pipe while not in idle link-training mode.
4234 	 * In this case there is requirement to wait for a minimum number of
4235 	 * idle patterns to be sent.
4236 	 */
4237 	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4238 		return;
4239 
4240 	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4241 				  DP_TP_STATUS_IDLE_DONE, 1))
4242 		drm_err(&dev_priv->drm,
4243 			"Timed out waiting for DP idle patterns\n");
4244 }
4245 
4246 static void
4247 intel_dp_link_down(struct intel_encoder *encoder,
4248 		   const struct intel_crtc_state *old_crtc_state)
4249 {
4250 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4251 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4252 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4253 	enum port port = encoder->port;
4254 	u32 DP = intel_dp->DP;
4255 
4256 	if (drm_WARN_ON(&dev_priv->drm,
4257 			(intel_de_read(dev_priv, intel_dp->output_reg) &
4258 			 DP_PORT_EN) == 0))
4259 		return;
4260 
4261 	drm_dbg_kms(&dev_priv->drm, "\n");
4262 
4263 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4264 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4265 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4266 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4267 	} else {
4268 		DP &= ~DP_LINK_TRAIN_MASK;
4269 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4270 	}
4271 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4272 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4273 
4274 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4275 	intel_de_write(dev_priv, intel_dp->output_reg, DP);
4276 	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4277 
4278 	/*
4279 	 * HW workaround for IBX, we need to move the port
4280 	 * to transcoder A after disabling it to allow the
4281 	 * matching HDMI port to be enabled on transcoder A.
4282 	 */
4283 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4284 		/*
4285 		 * We get CPU/PCH FIFO underruns on the other pipe when
4286 		 * doing the workaround. Sweep them under the rug.
4287 		 */
4288 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4289 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4290 
4291 		/* always enable with pattern 1 (as per spec) */
4292 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4293 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4294 			DP_LINK_TRAIN_PAT_1;
4295 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4296 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4297 
4298 		DP &= ~DP_PORT_EN;
4299 		intel_de_write(dev_priv, intel_dp->output_reg, DP);
4300 		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4301 
4302 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4303 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4304 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4305 	}
4306 
4307 	msleep(intel_dp->panel_power_down_delay);
4308 
4309 	intel_dp->DP = DP;
4310 
4311 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4312 		intel_wakeref_t wakeref;
4313 
4314 		with_pps_lock(intel_dp, wakeref)
4315 			intel_dp->active_pipe = INVALID_PIPE;
4316 	}
4317 }
4318 
4319 static void
4320 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4321 {
4322 	u8 dpcd_ext[6];
4323 
4324 	/*
4325 	 * Prior to DP1.3 the bit represented by
4326 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4327 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4328 	 * the true capability of the panel. The only way to check is to
4329 	 * then compare 0000h and 2200h.
4330 	 */
4331 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4332 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4333 		return;
4334 
4335 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4336 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4337 		DRM_ERROR("DPCD failed read at extended capabilities\n");
4338 		return;
4339 	}
4340 
4341 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4342 		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4343 		return;
4344 	}
4345 
4346 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4347 		return;
4348 
4349 	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4350 		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4351 
4352 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4353 }
4354 
4355 bool
4356 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4357 {
4358 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4359 			     sizeof(intel_dp->dpcd)) < 0)
4360 		return false; /* aux transfer failed */
4361 
4362 	intel_dp_extended_receiver_capabilities(intel_dp);
4363 
4364 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4365 
4366 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4367 }
4368 
4369 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4370 {
4371 	u8 dprx = 0;
4372 
4373 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4374 			      &dprx) != 1)
4375 		return false;
4376 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4377 }
4378 
4379 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4380 {
4381 	/*
4382 	 * Clear the cached register set to avoid using stale values
4383 	 * for the sinks that do not support DSC.
4384 	 */
4385 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4386 
4387 	/* Clear fec_capable to avoid using stale values */
4388 	intel_dp->fec_capable = 0;
4389 
4390 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4391 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4392 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4393 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4394 				     intel_dp->dsc_dpcd,
4395 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4396 			DRM_ERROR("Failed to read DPCD register 0x%x\n",
4397 				  DP_DSC_SUPPORT);
4398 
4399 		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4400 			      (int)sizeof(intel_dp->dsc_dpcd),
4401 			      intel_dp->dsc_dpcd);
4402 
4403 		/* FEC is supported only on DP 1.4 */
4404 		if (!intel_dp_is_edp(intel_dp) &&
4405 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4406 				      &intel_dp->fec_capable) < 0)
4407 			DRM_ERROR("Failed to read FEC DPCD register\n");
4408 
4409 		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4410 	}
4411 }
4412 
4413 static bool
4414 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4415 {
4416 	struct drm_i915_private *dev_priv =
4417 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4418 
4419 	/* this function is meant to be called only once */
4420 	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4421 
4422 	if (!intel_dp_read_dpcd(intel_dp))
4423 		return false;
4424 
4425 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4426 			 drm_dp_is_branch(intel_dp->dpcd));
4427 
4428 	/*
4429 	 * Read the eDP display control registers.
4430 	 *
4431 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4432 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4433 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4434 	 * method). The display control registers should read zero if they're
4435 	 * not supported anyway.
4436 	 */
4437 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4438 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4439 			     sizeof(intel_dp->edp_dpcd))
4440 		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4441 			    (int)sizeof(intel_dp->edp_dpcd),
4442 			    intel_dp->edp_dpcd);
4443 
4444 	/*
4445 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4446 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4447 	 */
4448 	intel_psr_init_dpcd(intel_dp);
4449 
4450 	/* Read the eDP 1.4+ supported link rates. */
4451 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4452 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4453 		int i;
4454 
4455 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4456 				sink_rates, sizeof(sink_rates));
4457 
4458 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4459 			int val = le16_to_cpu(sink_rates[i]);
4460 
4461 			if (val == 0)
4462 				break;
4463 
4464 			/* Value read multiplied by 200kHz gives the per-lane
4465 			 * link rate in kHz. The source rates are, however,
4466 			 * stored in terms of LS_Clk kHz. The full conversion
4467 			 * back to symbols is
4468 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4469 			 */
4470 			intel_dp->sink_rates[i] = (val * 200) / 10;
4471 		}
4472 		intel_dp->num_sink_rates = i;
4473 	}
4474 
4475 	/*
4476 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4477 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4478 	 */
4479 	if (intel_dp->num_sink_rates)
4480 		intel_dp->use_rate_select = true;
4481 	else
4482 		intel_dp_set_sink_rates(intel_dp);
4483 
4484 	intel_dp_set_common_rates(intel_dp);
4485 
4486 	/* Read the eDP DSC DPCD registers */
4487 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4488 		intel_dp_get_dsc_sink_cap(intel_dp);
4489 
4490 	return true;
4491 }
4492 
4493 
4494 static bool
4495 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4496 {
4497 	if (!intel_dp_read_dpcd(intel_dp))
4498 		return false;
4499 
4500 	/*
4501 	 * Don't clobber cached eDP rates. Also skip re-reading
4502 	 * the OUI/ID since we know it won't change.
4503 	 */
4504 	if (!intel_dp_is_edp(intel_dp)) {
4505 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4506 				 drm_dp_is_branch(intel_dp->dpcd));
4507 
4508 		intel_dp_set_sink_rates(intel_dp);
4509 		intel_dp_set_common_rates(intel_dp);
4510 	}
4511 
4512 	/*
4513 	 * Some eDP panels do not set a valid value for sink count, that is why
4514 	 * it don't care about read it here and in intel_edp_init_dpcd().
4515 	 */
4516 	if (!intel_dp_is_edp(intel_dp) &&
4517 	    !drm_dp_has_quirk(&intel_dp->desc, 0,
4518 			      DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4519 		u8 count;
4520 		ssize_t r;
4521 
4522 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4523 		if (r < 1)
4524 			return false;
4525 
4526 		/*
4527 		 * Sink count can change between short pulse hpd hence
4528 		 * a member variable in intel_dp will track any changes
4529 		 * between short pulse interrupts.
4530 		 */
4531 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4532 
4533 		/*
4534 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4535 		 * a dongle is present but no display. Unless we require to know
4536 		 * if a dongle is present or not, we don't need to update
4537 		 * downstream port information. So, an early return here saves
4538 		 * time from performing other operations which are not required.
4539 		 */
4540 		if (!intel_dp->sink_count)
4541 			return false;
4542 	}
4543 
4544 	if (!drm_dp_is_branch(intel_dp->dpcd))
4545 		return true; /* native DP sink */
4546 
4547 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4548 		return true; /* no per-port downstream info */
4549 
4550 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4551 			     intel_dp->downstream_ports,
4552 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4553 		return false; /* downstream port status fetch failed */
4554 
4555 	return true;
4556 }
4557 
4558 static bool
4559 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4560 {
4561 	u8 mstm_cap;
4562 
4563 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4564 		return false;
4565 
4566 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4567 		return false;
4568 
4569 	return mstm_cap & DP_MST_CAP;
4570 }
4571 
4572 static bool
4573 intel_dp_can_mst(struct intel_dp *intel_dp)
4574 {
4575 	return i915_modparams.enable_dp_mst &&
4576 		intel_dp->can_mst &&
4577 		intel_dp_sink_can_mst(intel_dp);
4578 }
4579 
4580 static void
4581 intel_dp_configure_mst(struct intel_dp *intel_dp)
4582 {
4583 	struct intel_encoder *encoder =
4584 		&dp_to_dig_port(intel_dp)->base;
4585 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4586 
4587 	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4588 		      encoder->base.base.id, encoder->base.name,
4589 		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
4590 		      yesno(i915_modparams.enable_dp_mst));
4591 
4592 	if (!intel_dp->can_mst)
4593 		return;
4594 
4595 	intel_dp->is_mst = sink_can_mst &&
4596 		i915_modparams.enable_dp_mst;
4597 
4598 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4599 					intel_dp->is_mst);
4600 }
4601 
4602 static bool
4603 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4604 {
4605 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4606 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4607 		DP_DPRX_ESI_LEN;
4608 }
4609 
4610 bool
4611 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4612 		       const struct drm_connector_state *conn_state)
4613 {
4614 	/*
4615 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4616 	 * of Color Encoding Format and Content Color Gamut], in order to
4617 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4618 	 */
4619 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4620 		return true;
4621 
4622 	switch (conn_state->colorspace) {
4623 	case DRM_MODE_COLORIMETRY_SYCC_601:
4624 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4625 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4626 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4627 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4628 		return true;
4629 	default:
4630 		break;
4631 	}
4632 
4633 	return false;
4634 }
4635 
4636 static void
4637 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4638 		       const struct intel_crtc_state *crtc_state,
4639 		       const struct drm_connector_state *conn_state)
4640 {
4641 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4642 	struct dp_sdp vsc_sdp = {};
4643 
4644 	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4645 	vsc_sdp.sdp_header.HB0 = 0;
4646 	vsc_sdp.sdp_header.HB1 = 0x7;
4647 
4648 	/*
4649 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4650 	 * Colorimetry Format indication.
4651 	 */
4652 	vsc_sdp.sdp_header.HB2 = 0x5;
4653 
4654 	/*
4655 	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4656 	 * Colorimetry Format indication (HB2 = 05h).
4657 	 */
4658 	vsc_sdp.sdp_header.HB3 = 0x13;
4659 
4660 	/* DP 1.4a spec, Table 2-120 */
4661 	switch (crtc_state->output_format) {
4662 	case INTEL_OUTPUT_FORMAT_YCBCR444:
4663 		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4664 		break;
4665 	case INTEL_OUTPUT_FORMAT_YCBCR420:
4666 		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4667 		break;
4668 	case INTEL_OUTPUT_FORMAT_RGB:
4669 	default:
4670 		/* RGB: DB16[7:4] = 0h */
4671 		break;
4672 	}
4673 
4674 	switch (conn_state->colorspace) {
4675 	case DRM_MODE_COLORIMETRY_BT709_YCC:
4676 		vsc_sdp.db[16] |= 0x1;
4677 		break;
4678 	case DRM_MODE_COLORIMETRY_XVYCC_601:
4679 		vsc_sdp.db[16] |= 0x2;
4680 		break;
4681 	case DRM_MODE_COLORIMETRY_XVYCC_709:
4682 		vsc_sdp.db[16] |= 0x3;
4683 		break;
4684 	case DRM_MODE_COLORIMETRY_SYCC_601:
4685 		vsc_sdp.db[16] |= 0x4;
4686 		break;
4687 	case DRM_MODE_COLORIMETRY_OPYCC_601:
4688 		vsc_sdp.db[16] |= 0x5;
4689 		break;
4690 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4691 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
4692 		vsc_sdp.db[16] |= 0x6;
4693 		break;
4694 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
4695 		vsc_sdp.db[16] |= 0x7;
4696 		break;
4697 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4698 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4699 		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4700 		break;
4701 	default:
4702 		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4703 
4704 		/* RGB->YCBCR color conversion uses the BT.709 color space. */
4705 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4706 			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4707 		break;
4708 	}
4709 
4710 	/*
4711 	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4712 	 * the following Component Bit Depth values are defined:
4713 	 * 001b = 8bpc.
4714 	 * 010b = 10bpc.
4715 	 * 011b = 12bpc.
4716 	 * 100b = 16bpc.
4717 	 */
4718 	switch (crtc_state->pipe_bpp) {
4719 	case 24: /* 8bpc */
4720 		vsc_sdp.db[17] = 0x1;
4721 		break;
4722 	case 30: /* 10bpc */
4723 		vsc_sdp.db[17] = 0x2;
4724 		break;
4725 	case 36: /* 12bpc */
4726 		vsc_sdp.db[17] = 0x3;
4727 		break;
4728 	case 48: /* 16bpc */
4729 		vsc_sdp.db[17] = 0x4;
4730 		break;
4731 	default:
4732 		MISSING_CASE(crtc_state->pipe_bpp);
4733 		break;
4734 	}
4735 
4736 	/*
4737 	 * Dynamic Range (Bit 7)
4738 	 * 0 = VESA range, 1 = CTA range.
4739 	 * all YCbCr are always limited range
4740 	 */
4741 	vsc_sdp.db[17] |= 0x80;
4742 
4743 	/*
4744 	 * Content Type (Bits 2:0)
4745 	 * 000b = Not defined.
4746 	 * 001b = Graphics.
4747 	 * 010b = Photo.
4748 	 * 011b = Video.
4749 	 * 100b = Game
4750 	 * All other values are RESERVED.
4751 	 * Note: See CTA-861-G for the definition and expected
4752 	 * processing by a stream sink for the above contect types.
4753 	 */
4754 	vsc_sdp.db[18] = 0;
4755 
4756 	intel_dig_port->write_infoframe(&intel_dig_port->base,
4757 			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4758 }
4759 
4760 static void
4761 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4762 					  const struct intel_crtc_state *crtc_state,
4763 					  const struct drm_connector_state *conn_state)
4764 {
4765 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4766 	struct dp_sdp infoframe_sdp = {};
4767 	struct hdmi_drm_infoframe drm_infoframe = {};
4768 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4769 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4770 	ssize_t len;
4771 	int ret;
4772 
4773 	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4774 	if (ret) {
4775 		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4776 		return;
4777 	}
4778 
4779 	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4780 	if (len < 0) {
4781 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4782 		return;
4783 	}
4784 
4785 	if (len != infoframe_size) {
4786 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4787 		return;
4788 	}
4789 
4790 	/*
4791 	 * Set up the infoframe sdp packet for HDR static metadata.
4792 	 * Prepare VSC Header for SU as per DP 1.4a spec,
4793 	 * Table 2-100 and Table 2-101
4794 	 */
4795 
4796 	/* Packet ID, 00h for non-Audio INFOFRAME */
4797 	infoframe_sdp.sdp_header.HB0 = 0;
4798 	/*
4799 	 * Packet Type 80h + Non-audio INFOFRAME Type value
4800 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4801 	 */
4802 	infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4803 	/*
4804 	 * Least Significant Eight Bits of (Data Byte Count – 1)
4805 	 * infoframe_size - 1,
4806 	 */
4807 	infoframe_sdp.sdp_header.HB2 = 0x1D;
4808 	/* INFOFRAME SDP Version Number */
4809 	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4810 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
4811 	infoframe_sdp.db[0] = drm_infoframe.version;
4812 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4813 	infoframe_sdp.db[1] = drm_infoframe.length;
4814 	/*
4815 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4816 	 * HDMI_INFOFRAME_HEADER_SIZE
4817 	 */
4818 	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4819 	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4820 	       HDMI_DRM_INFOFRAME_SIZE);
4821 
4822 	/*
4823 	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
4824 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4825 	 * - Two Data Blocks: 2 bytes
4826 	 *    CTA Header Byte2 (INFOFRAME Version Number)
4827 	 *    CTA Header Byte3 (Length of INFOFRAME)
4828 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4829 	 *
4830 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4831 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4832 	 * will pad rest of the size.
4833 	 */
4834 	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4835 					HDMI_PACKET_TYPE_GAMUT_METADATA,
4836 					&infoframe_sdp,
4837 					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4838 }
4839 
4840 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4841 			 const struct intel_crtc_state *crtc_state,
4842 			 const struct drm_connector_state *conn_state)
4843 {
4844 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4845 		return;
4846 
4847 	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4848 }
4849 
4850 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4851 				  const struct intel_crtc_state *crtc_state,
4852 				  const struct drm_connector_state *conn_state)
4853 {
4854 	if (!conn_state->hdr_output_metadata)
4855 		return;
4856 
4857 	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4858 						  crtc_state,
4859 						  conn_state);
4860 }
4861 
4862 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4863 {
4864 	int status = 0;
4865 	int test_link_rate;
4866 	u8 test_lane_count, test_link_bw;
4867 	/* (DP CTS 1.2)
4868 	 * 4.3.1.11
4869 	 */
4870 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4871 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4872 				   &test_lane_count);
4873 
4874 	if (status <= 0) {
4875 		DRM_DEBUG_KMS("Lane count read failed\n");
4876 		return DP_TEST_NAK;
4877 	}
4878 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4879 
4880 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4881 				   &test_link_bw);
4882 	if (status <= 0) {
4883 		DRM_DEBUG_KMS("Link Rate read failed\n");
4884 		return DP_TEST_NAK;
4885 	}
4886 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4887 
4888 	/* Validate the requested link rate and lane count */
4889 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4890 					test_lane_count))
4891 		return DP_TEST_NAK;
4892 
4893 	intel_dp->compliance.test_lane_count = test_lane_count;
4894 	intel_dp->compliance.test_link_rate = test_link_rate;
4895 
4896 	return DP_TEST_ACK;
4897 }
4898 
4899 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4900 {
4901 	u8 test_pattern;
4902 	u8 test_misc;
4903 	__be16 h_width, v_height;
4904 	int status = 0;
4905 
4906 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4907 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4908 				   &test_pattern);
4909 	if (status <= 0) {
4910 		DRM_DEBUG_KMS("Test pattern read failed\n");
4911 		return DP_TEST_NAK;
4912 	}
4913 	if (test_pattern != DP_COLOR_RAMP)
4914 		return DP_TEST_NAK;
4915 
4916 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4917 				  &h_width, 2);
4918 	if (status <= 0) {
4919 		DRM_DEBUG_KMS("H Width read failed\n");
4920 		return DP_TEST_NAK;
4921 	}
4922 
4923 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4924 				  &v_height, 2);
4925 	if (status <= 0) {
4926 		DRM_DEBUG_KMS("V Height read failed\n");
4927 		return DP_TEST_NAK;
4928 	}
4929 
4930 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4931 				   &test_misc);
4932 	if (status <= 0) {
4933 		DRM_DEBUG_KMS("TEST MISC read failed\n");
4934 		return DP_TEST_NAK;
4935 	}
4936 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4937 		return DP_TEST_NAK;
4938 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4939 		return DP_TEST_NAK;
4940 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4941 	case DP_TEST_BIT_DEPTH_6:
4942 		intel_dp->compliance.test_data.bpc = 6;
4943 		break;
4944 	case DP_TEST_BIT_DEPTH_8:
4945 		intel_dp->compliance.test_data.bpc = 8;
4946 		break;
4947 	default:
4948 		return DP_TEST_NAK;
4949 	}
4950 
4951 	intel_dp->compliance.test_data.video_pattern = test_pattern;
4952 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4953 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4954 	/* Set test active flag here so userspace doesn't interrupt things */
4955 	intel_dp->compliance.test_active = true;
4956 
4957 	return DP_TEST_ACK;
4958 }
4959 
4960 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4961 {
4962 	u8 test_result = DP_TEST_ACK;
4963 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4964 	struct drm_connector *connector = &intel_connector->base;
4965 
4966 	if (intel_connector->detect_edid == NULL ||
4967 	    connector->edid_corrupt ||
4968 	    intel_dp->aux.i2c_defer_count > 6) {
4969 		/* Check EDID read for NACKs, DEFERs and corruption
4970 		 * (DP CTS 1.2 Core r1.1)
4971 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
4972 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
4973 		 *    4.2.2.6 : EDID corruption detected
4974 		 * Use failsafe mode for all cases
4975 		 */
4976 		if (intel_dp->aux.i2c_nack_count > 0 ||
4977 			intel_dp->aux.i2c_defer_count > 0)
4978 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4979 				      intel_dp->aux.i2c_nack_count,
4980 				      intel_dp->aux.i2c_defer_count);
4981 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4982 	} else {
4983 		struct edid *block = intel_connector->detect_edid;
4984 
4985 		/* We have to write the checksum
4986 		 * of the last block read
4987 		 */
4988 		block += intel_connector->detect_edid->extensions;
4989 
4990 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4991 				       block->checksum) <= 0)
4992 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4993 
4994 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4995 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4996 	}
4997 
4998 	/* Set test active flag here so userspace doesn't interrupt things */
4999 	intel_dp->compliance.test_active = true;
5000 
5001 	return test_result;
5002 }
5003 
5004 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5005 {
5006 	u8 test_result = DP_TEST_NAK;
5007 	return test_result;
5008 }
5009 
5010 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5011 {
5012 	u8 response = DP_TEST_NAK;
5013 	u8 request = 0;
5014 	int status;
5015 
5016 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5017 	if (status <= 0) {
5018 		DRM_DEBUG_KMS("Could not read test request from sink\n");
5019 		goto update_status;
5020 	}
5021 
5022 	switch (request) {
5023 	case DP_TEST_LINK_TRAINING:
5024 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
5025 		response = intel_dp_autotest_link_training(intel_dp);
5026 		break;
5027 	case DP_TEST_LINK_VIDEO_PATTERN:
5028 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
5029 		response = intel_dp_autotest_video_pattern(intel_dp);
5030 		break;
5031 	case DP_TEST_LINK_EDID_READ:
5032 		DRM_DEBUG_KMS("EDID test requested\n");
5033 		response = intel_dp_autotest_edid(intel_dp);
5034 		break;
5035 	case DP_TEST_LINK_PHY_TEST_PATTERN:
5036 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
5037 		response = intel_dp_autotest_phy_pattern(intel_dp);
5038 		break;
5039 	default:
5040 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
5041 		break;
5042 	}
5043 
5044 	if (response & DP_TEST_ACK)
5045 		intel_dp->compliance.test_type = request;
5046 
5047 update_status:
5048 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5049 	if (status <= 0)
5050 		DRM_DEBUG_KMS("Could not write test response to sink\n");
5051 }
5052 
5053 static int
5054 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5055 {
5056 	bool bret;
5057 
5058 	if (intel_dp->is_mst) {
5059 		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5060 		int ret = 0;
5061 		int retry;
5062 		bool handled;
5063 
5064 		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5065 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5066 go_again:
5067 		if (bret == true) {
5068 
5069 			/* check link status - esi[10] = 0x200c */
5070 			if (intel_dp->active_mst_links > 0 &&
5071 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5072 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
5073 				intel_dp_start_link_train(intel_dp);
5074 				intel_dp_stop_link_train(intel_dp);
5075 			}
5076 
5077 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
5078 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5079 
5080 			if (handled) {
5081 				for (retry = 0; retry < 3; retry++) {
5082 					int wret;
5083 					wret = drm_dp_dpcd_write(&intel_dp->aux,
5084 								 DP_SINK_COUNT_ESI+1,
5085 								 &esi[1], 3);
5086 					if (wret == 3) {
5087 						break;
5088 					}
5089 				}
5090 
5091 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5092 				if (bret == true) {
5093 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5094 					goto go_again;
5095 				}
5096 			} else
5097 				ret = 0;
5098 
5099 			return ret;
5100 		} else {
5101 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5102 			intel_dp->is_mst = false;
5103 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5104 							intel_dp->is_mst);
5105 		}
5106 	}
5107 	return -EINVAL;
5108 }
5109 
5110 static bool
5111 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5112 {
5113 	u8 link_status[DP_LINK_STATUS_SIZE];
5114 
5115 	if (!intel_dp->link_trained)
5116 		return false;
5117 
5118 	/*
5119 	 * While PSR source HW is enabled, it will control main-link sending
5120 	 * frames, enabling and disabling it so trying to do a retrain will fail
5121 	 * as the link would or not be on or it could mix training patterns
5122 	 * and frame data at the same time causing retrain to fail.
5123 	 * Also when exiting PSR, HW will retrain the link anyways fixing
5124 	 * any link status error.
5125 	 */
5126 	if (intel_psr_enabled(intel_dp))
5127 		return false;
5128 
5129 	if (!intel_dp_get_link_status(intel_dp, link_status))
5130 		return false;
5131 
5132 	/*
5133 	 * Validate the cached values of intel_dp->link_rate and
5134 	 * intel_dp->lane_count before attempting to retrain.
5135 	 */
5136 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5137 					intel_dp->lane_count))
5138 		return false;
5139 
5140 	/* Retrain if Channel EQ or CR not ok */
5141 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5142 }
5143 
5144 int intel_dp_retrain_link(struct intel_encoder *encoder,
5145 			  struct drm_modeset_acquire_ctx *ctx)
5146 {
5147 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5148 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5149 	struct intel_connector *connector = intel_dp->attached_connector;
5150 	struct drm_connector_state *conn_state;
5151 	struct intel_crtc_state *crtc_state;
5152 	struct intel_crtc *crtc;
5153 	int ret;
5154 
5155 	/* FIXME handle the MST connectors as well */
5156 
5157 	if (!connector || connector->base.status != connector_status_connected)
5158 		return 0;
5159 
5160 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5161 			       ctx);
5162 	if (ret)
5163 		return ret;
5164 
5165 	conn_state = connector->base.state;
5166 
5167 	crtc = to_intel_crtc(conn_state->crtc);
5168 	if (!crtc)
5169 		return 0;
5170 
5171 	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5172 	if (ret)
5173 		return ret;
5174 
5175 	crtc_state = to_intel_crtc_state(crtc->base.state);
5176 
5177 	drm_WARN_ON(&dev_priv->drm, !intel_crtc_has_dp_encoder(crtc_state));
5178 
5179 	if (!crtc_state->hw.active)
5180 		return 0;
5181 
5182 	if (conn_state->commit &&
5183 	    !try_wait_for_completion(&conn_state->commit->hw_done))
5184 		return 0;
5185 
5186 	if (!intel_dp_needs_link_retrain(intel_dp))
5187 		return 0;
5188 
5189 	/* Suppress underruns caused by re-training */
5190 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5191 	if (crtc_state->has_pch_encoder)
5192 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5193 						      intel_crtc_pch_transcoder(crtc), false);
5194 
5195 	intel_dp_start_link_train(intel_dp);
5196 	intel_dp_stop_link_train(intel_dp);
5197 
5198 	/* Keep underrun reporting disabled until things are stable */
5199 	intel_wait_for_vblank(dev_priv, crtc->pipe);
5200 
5201 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5202 	if (crtc_state->has_pch_encoder)
5203 		intel_set_pch_fifo_underrun_reporting(dev_priv,
5204 						      intel_crtc_pch_transcoder(crtc), true);
5205 
5206 	return 0;
5207 }
5208 
5209 /*
5210  * If display is now connected check links status,
5211  * there has been known issues of link loss triggering
5212  * long pulse.
5213  *
5214  * Some sinks (eg. ASUS PB287Q) seem to perform some
5215  * weird HPD ping pong during modesets. So we can apparently
5216  * end up with HPD going low during a modeset, and then
5217  * going back up soon after. And once that happens we must
5218  * retrain the link to get a picture. That's in case no
5219  * userspace component reacted to intermittent HPD dip.
5220  */
5221 static enum intel_hotplug_state
5222 intel_dp_hotplug(struct intel_encoder *encoder,
5223 		 struct intel_connector *connector,
5224 		 bool irq_received)
5225 {
5226 	struct drm_modeset_acquire_ctx ctx;
5227 	enum intel_hotplug_state state;
5228 	int ret;
5229 
5230 	state = intel_encoder_hotplug(encoder, connector, irq_received);
5231 
5232 	drm_modeset_acquire_init(&ctx, 0);
5233 
5234 	for (;;) {
5235 		ret = intel_dp_retrain_link(encoder, &ctx);
5236 
5237 		if (ret == -EDEADLK) {
5238 			drm_modeset_backoff(&ctx);
5239 			continue;
5240 		}
5241 
5242 		break;
5243 	}
5244 
5245 	drm_modeset_drop_locks(&ctx);
5246 	drm_modeset_acquire_fini(&ctx);
5247 	drm_WARN(encoder->base.dev, ret,
5248 		 "Acquiring modeset locks failed with %i\n", ret);
5249 
5250 	/*
5251 	 * Keeping it consistent with intel_ddi_hotplug() and
5252 	 * intel_hdmi_hotplug().
5253 	 */
5254 	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5255 		state = INTEL_HOTPLUG_RETRY;
5256 
5257 	return state;
5258 }
5259 
5260 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5261 {
5262 	u8 val;
5263 
5264 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5265 		return;
5266 
5267 	if (drm_dp_dpcd_readb(&intel_dp->aux,
5268 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5269 		return;
5270 
5271 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5272 
5273 	if (val & DP_AUTOMATED_TEST_REQUEST)
5274 		intel_dp_handle_test_request(intel_dp);
5275 
5276 	if (val & DP_CP_IRQ)
5277 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5278 
5279 	if (val & DP_SINK_SPECIFIC_IRQ)
5280 		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5281 }
5282 
5283 /*
5284  * According to DP spec
5285  * 5.1.2:
5286  *  1. Read DPCD
5287  *  2. Configure link according to Receiver Capabilities
5288  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5289  *  4. Check link status on receipt of hot-plug interrupt
5290  *
5291  * intel_dp_short_pulse -  handles short pulse interrupts
5292  * when full detection is not required.
5293  * Returns %true if short pulse is handled and full detection
5294  * is NOT required and %false otherwise.
5295  */
5296 static bool
5297 intel_dp_short_pulse(struct intel_dp *intel_dp)
5298 {
5299 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5300 	u8 old_sink_count = intel_dp->sink_count;
5301 	bool ret;
5302 
5303 	/*
5304 	 * Clearing compliance test variables to allow capturing
5305 	 * of values for next automated test request.
5306 	 */
5307 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5308 
5309 	/*
5310 	 * Now read the DPCD to see if it's actually running
5311 	 * If the current value of sink count doesn't match with
5312 	 * the value that was stored earlier or dpcd read failed
5313 	 * we need to do full detection
5314 	 */
5315 	ret = intel_dp_get_dpcd(intel_dp);
5316 
5317 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
5318 		/* No need to proceed if we are going to do full detect */
5319 		return false;
5320 	}
5321 
5322 	intel_dp_check_service_irq(intel_dp);
5323 
5324 	/* Handle CEC interrupts, if any */
5325 	drm_dp_cec_irq(&intel_dp->aux);
5326 
5327 	/* defer to the hotplug work for link retraining if needed */
5328 	if (intel_dp_needs_link_retrain(intel_dp))
5329 		return false;
5330 
5331 	intel_psr_short_pulse(intel_dp);
5332 
5333 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5334 		drm_dbg_kms(&dev_priv->drm,
5335 			    "Link Training Compliance Test requested\n");
5336 		/* Send a Hotplug Uevent to userspace to start modeset */
5337 		drm_kms_helper_hotplug_event(&dev_priv->drm);
5338 	}
5339 
5340 	return true;
5341 }
5342 
5343 /* XXX this is probably wrong for multiple downstream ports */
5344 static enum drm_connector_status
5345 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5346 {
5347 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5348 	u8 *dpcd = intel_dp->dpcd;
5349 	u8 type;
5350 
5351 	if (WARN_ON(intel_dp_is_edp(intel_dp)))
5352 		return connector_status_connected;
5353 
5354 	if (lspcon->active)
5355 		lspcon_resume(lspcon);
5356 
5357 	if (!intel_dp_get_dpcd(intel_dp))
5358 		return connector_status_disconnected;
5359 
5360 	/* if there's no downstream port, we're done */
5361 	if (!drm_dp_is_branch(dpcd))
5362 		return connector_status_connected;
5363 
5364 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5365 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5366 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5367 
5368 		return intel_dp->sink_count ?
5369 		connector_status_connected : connector_status_disconnected;
5370 	}
5371 
5372 	if (intel_dp_can_mst(intel_dp))
5373 		return connector_status_connected;
5374 
5375 	/* If no HPD, poke DDC gently */
5376 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5377 		return connector_status_connected;
5378 
5379 	/* Well we tried, say unknown for unreliable port types */
5380 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5381 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5382 		if (type == DP_DS_PORT_TYPE_VGA ||
5383 		    type == DP_DS_PORT_TYPE_NON_EDID)
5384 			return connector_status_unknown;
5385 	} else {
5386 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5387 			DP_DWN_STRM_PORT_TYPE_MASK;
5388 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5389 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5390 			return connector_status_unknown;
5391 	}
5392 
5393 	/* Anything else is out of spec, warn and ignore */
5394 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5395 	return connector_status_disconnected;
5396 }
5397 
5398 static enum drm_connector_status
5399 edp_detect(struct intel_dp *intel_dp)
5400 {
5401 	return connector_status_connected;
5402 }
5403 
5404 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5405 {
5406 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5407 	u32 bit;
5408 
5409 	switch (encoder->hpd_pin) {
5410 	case HPD_PORT_B:
5411 		bit = SDE_PORTB_HOTPLUG;
5412 		break;
5413 	case HPD_PORT_C:
5414 		bit = SDE_PORTC_HOTPLUG;
5415 		break;
5416 	case HPD_PORT_D:
5417 		bit = SDE_PORTD_HOTPLUG;
5418 		break;
5419 	default:
5420 		MISSING_CASE(encoder->hpd_pin);
5421 		return false;
5422 	}
5423 
5424 	return intel_de_read(dev_priv, SDEISR) & bit;
5425 }
5426 
5427 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5428 {
5429 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5430 	u32 bit;
5431 
5432 	switch (encoder->hpd_pin) {
5433 	case HPD_PORT_B:
5434 		bit = SDE_PORTB_HOTPLUG_CPT;
5435 		break;
5436 	case HPD_PORT_C:
5437 		bit = SDE_PORTC_HOTPLUG_CPT;
5438 		break;
5439 	case HPD_PORT_D:
5440 		bit = SDE_PORTD_HOTPLUG_CPT;
5441 		break;
5442 	default:
5443 		MISSING_CASE(encoder->hpd_pin);
5444 		return false;
5445 	}
5446 
5447 	return intel_de_read(dev_priv, SDEISR) & bit;
5448 }
5449 
5450 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5451 {
5452 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5453 	u32 bit;
5454 
5455 	switch (encoder->hpd_pin) {
5456 	case HPD_PORT_A:
5457 		bit = SDE_PORTA_HOTPLUG_SPT;
5458 		break;
5459 	case HPD_PORT_E:
5460 		bit = SDE_PORTE_HOTPLUG_SPT;
5461 		break;
5462 	default:
5463 		return cpt_digital_port_connected(encoder);
5464 	}
5465 
5466 	return intel_de_read(dev_priv, SDEISR) & bit;
5467 }
5468 
5469 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5470 {
5471 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5472 	u32 bit;
5473 
5474 	switch (encoder->hpd_pin) {
5475 	case HPD_PORT_B:
5476 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5477 		break;
5478 	case HPD_PORT_C:
5479 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5480 		break;
5481 	case HPD_PORT_D:
5482 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5483 		break;
5484 	default:
5485 		MISSING_CASE(encoder->hpd_pin);
5486 		return false;
5487 	}
5488 
5489 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5490 }
5491 
5492 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5493 {
5494 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5495 	u32 bit;
5496 
5497 	switch (encoder->hpd_pin) {
5498 	case HPD_PORT_B:
5499 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5500 		break;
5501 	case HPD_PORT_C:
5502 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5503 		break;
5504 	case HPD_PORT_D:
5505 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5506 		break;
5507 	default:
5508 		MISSING_CASE(encoder->hpd_pin);
5509 		return false;
5510 	}
5511 
5512 	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5513 }
5514 
5515 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5516 {
5517 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5518 
5519 	if (encoder->hpd_pin == HPD_PORT_A)
5520 		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5521 	else
5522 		return ibx_digital_port_connected(encoder);
5523 }
5524 
5525 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5526 {
5527 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5528 
5529 	if (encoder->hpd_pin == HPD_PORT_A)
5530 		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5531 	else
5532 		return cpt_digital_port_connected(encoder);
5533 }
5534 
5535 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5536 {
5537 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5538 
5539 	if (encoder->hpd_pin == HPD_PORT_A)
5540 		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB;
5541 	else
5542 		return cpt_digital_port_connected(encoder);
5543 }
5544 
5545 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5546 {
5547 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5548 
5549 	if (encoder->hpd_pin == HPD_PORT_A)
5550 		return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5551 	else
5552 		return cpt_digital_port_connected(encoder);
5553 }
5554 
5555 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5556 {
5557 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5558 	u32 bit;
5559 
5560 	switch (encoder->hpd_pin) {
5561 	case HPD_PORT_A:
5562 		bit = BXT_DE_PORT_HP_DDIA;
5563 		break;
5564 	case HPD_PORT_B:
5565 		bit = BXT_DE_PORT_HP_DDIB;
5566 		break;
5567 	case HPD_PORT_C:
5568 		bit = BXT_DE_PORT_HP_DDIC;
5569 		break;
5570 	default:
5571 		MISSING_CASE(encoder->hpd_pin);
5572 		return false;
5573 	}
5574 
5575 	return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit;
5576 }
5577 
5578 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5579 				      enum phy phy)
5580 {
5581 	if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5582 		return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5583 
5584 	return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5585 }
5586 
5587 static bool icp_digital_port_connected(struct intel_encoder *encoder)
5588 {
5589 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5590 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5591 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5592 
5593 	if (intel_phy_is_combo(dev_priv, phy))
5594 		return intel_combo_phy_connected(dev_priv, phy);
5595 	else if (intel_phy_is_tc(dev_priv, phy))
5596 		return intel_tc_port_connected(dig_port);
5597 	else
5598 		MISSING_CASE(encoder->hpd_pin);
5599 
5600 	return false;
5601 }
5602 
5603 /*
5604  * intel_digital_port_connected - is the specified port connected?
5605  * @encoder: intel_encoder
5606  *
5607  * In cases where there's a connector physically connected but it can't be used
5608  * by our hardware we also return false, since the rest of the driver should
5609  * pretty much treat the port as disconnected. This is relevant for type-C
5610  * (starting on ICL) where there's ownership involved.
5611  *
5612  * Return %true if port is connected, %false otherwise.
5613  */
5614 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5615 {
5616 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5617 
5618 	if (HAS_GMCH(dev_priv)) {
5619 		if (IS_GM45(dev_priv))
5620 			return gm45_digital_port_connected(encoder);
5621 		else
5622 			return g4x_digital_port_connected(encoder);
5623 	}
5624 
5625 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
5626 		return icp_digital_port_connected(encoder);
5627 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5628 		return spt_digital_port_connected(encoder);
5629 	else if (IS_GEN9_LP(dev_priv))
5630 		return bxt_digital_port_connected(encoder);
5631 	else if (IS_GEN(dev_priv, 8))
5632 		return bdw_digital_port_connected(encoder);
5633 	else if (IS_GEN(dev_priv, 7))
5634 		return ivb_digital_port_connected(encoder);
5635 	else if (IS_GEN(dev_priv, 6))
5636 		return snb_digital_port_connected(encoder);
5637 	else if (IS_GEN(dev_priv, 5))
5638 		return ilk_digital_port_connected(encoder);
5639 
5640 	MISSING_CASE(INTEL_GEN(dev_priv));
5641 	return false;
5642 }
5643 
5644 bool intel_digital_port_connected(struct intel_encoder *encoder)
5645 {
5646 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5647 	bool is_connected = false;
5648 	intel_wakeref_t wakeref;
5649 
5650 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5651 		is_connected = __intel_digital_port_connected(encoder);
5652 
5653 	return is_connected;
5654 }
5655 
5656 static struct edid *
5657 intel_dp_get_edid(struct intel_dp *intel_dp)
5658 {
5659 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5660 
5661 	/* use cached edid if we have one */
5662 	if (intel_connector->edid) {
5663 		/* invalid edid */
5664 		if (IS_ERR(intel_connector->edid))
5665 			return NULL;
5666 
5667 		return drm_edid_duplicate(intel_connector->edid);
5668 	} else
5669 		return drm_get_edid(&intel_connector->base,
5670 				    &intel_dp->aux.ddc);
5671 }
5672 
5673 static void
5674 intel_dp_set_edid(struct intel_dp *intel_dp)
5675 {
5676 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5677 	struct edid *edid;
5678 
5679 	intel_dp_unset_edid(intel_dp);
5680 	edid = intel_dp_get_edid(intel_dp);
5681 	intel_connector->detect_edid = edid;
5682 
5683 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5684 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5685 	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
5686 }
5687 
5688 static void
5689 intel_dp_unset_edid(struct intel_dp *intel_dp)
5690 {
5691 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5692 
5693 	drm_dp_cec_unset_edid(&intel_dp->aux);
5694 	kfree(intel_connector->detect_edid);
5695 	intel_connector->detect_edid = NULL;
5696 
5697 	intel_dp->has_audio = false;
5698 	intel_dp->edid_quirks = 0;
5699 }
5700 
5701 static int
5702 intel_dp_detect(struct drm_connector *connector,
5703 		struct drm_modeset_acquire_ctx *ctx,
5704 		bool force)
5705 {
5706 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5707 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5708 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5709 	struct intel_encoder *encoder = &dig_port->base;
5710 	enum drm_connector_status status;
5711 
5712 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
5713 		    connector->base.id, connector->name);
5714 	drm_WARN_ON(&dev_priv->drm,
5715 		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5716 
5717 	/* Can't disconnect eDP */
5718 	if (intel_dp_is_edp(intel_dp))
5719 		status = edp_detect(intel_dp);
5720 	else if (intel_digital_port_connected(encoder))
5721 		status = intel_dp_detect_dpcd(intel_dp);
5722 	else
5723 		status = connector_status_disconnected;
5724 
5725 	if (status == connector_status_disconnected) {
5726 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5727 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5728 
5729 		if (intel_dp->is_mst) {
5730 			drm_dbg_kms(&dev_priv->drm,
5731 				    "MST device may have disappeared %d vs %d\n",
5732 				    intel_dp->is_mst,
5733 				    intel_dp->mst_mgr.mst_state);
5734 			intel_dp->is_mst = false;
5735 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5736 							intel_dp->is_mst);
5737 		}
5738 
5739 		goto out;
5740 	}
5741 
5742 	if (intel_dp->reset_link_params) {
5743 		/* Initial max link lane count */
5744 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5745 
5746 		/* Initial max link rate */
5747 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5748 
5749 		intel_dp->reset_link_params = false;
5750 	}
5751 
5752 	intel_dp_print_rates(intel_dp);
5753 
5754 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5755 	if (INTEL_GEN(dev_priv) >= 11)
5756 		intel_dp_get_dsc_sink_cap(intel_dp);
5757 
5758 	intel_dp_configure_mst(intel_dp);
5759 
5760 	if (intel_dp->is_mst) {
5761 		/*
5762 		 * If we are in MST mode then this connector
5763 		 * won't appear connected or have anything
5764 		 * with EDID on it
5765 		 */
5766 		status = connector_status_disconnected;
5767 		goto out;
5768 	}
5769 
5770 	/*
5771 	 * Some external monitors do not signal loss of link synchronization
5772 	 * with an IRQ_HPD, so force a link status check.
5773 	 */
5774 	if (!intel_dp_is_edp(intel_dp)) {
5775 		int ret;
5776 
5777 		ret = intel_dp_retrain_link(encoder, ctx);
5778 		if (ret)
5779 			return ret;
5780 	}
5781 
5782 	/*
5783 	 * Clearing NACK and defer counts to get their exact values
5784 	 * while reading EDID which are required by Compliance tests
5785 	 * 4.2.2.4 and 4.2.2.5
5786 	 */
5787 	intel_dp->aux.i2c_nack_count = 0;
5788 	intel_dp->aux.i2c_defer_count = 0;
5789 
5790 	intel_dp_set_edid(intel_dp);
5791 	if (intel_dp_is_edp(intel_dp) ||
5792 	    to_intel_connector(connector)->detect_edid)
5793 		status = connector_status_connected;
5794 
5795 	intel_dp_check_service_irq(intel_dp);
5796 
5797 out:
5798 	if (status != connector_status_connected && !intel_dp->is_mst)
5799 		intel_dp_unset_edid(intel_dp);
5800 
5801 	/*
5802 	 * Make sure the refs for power wells enabled during detect are
5803 	 * dropped to avoid a new detect cycle triggered by HPD polling.
5804 	 */
5805 	intel_display_power_flush_work(dev_priv);
5806 
5807 	return status;
5808 }
5809 
5810 static void
5811 intel_dp_force(struct drm_connector *connector)
5812 {
5813 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5814 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5815 	struct intel_encoder *intel_encoder = &dig_port->base;
5816 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5817 	enum intel_display_power_domain aux_domain =
5818 		intel_aux_power_domain(dig_port);
5819 	intel_wakeref_t wakeref;
5820 
5821 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
5822 		    connector->base.id, connector->name);
5823 	intel_dp_unset_edid(intel_dp);
5824 
5825 	if (connector->status != connector_status_connected)
5826 		return;
5827 
5828 	wakeref = intel_display_power_get(dev_priv, aux_domain);
5829 
5830 	intel_dp_set_edid(intel_dp);
5831 
5832 	intel_display_power_put(dev_priv, aux_domain, wakeref);
5833 }
5834 
5835 static int intel_dp_get_modes(struct drm_connector *connector)
5836 {
5837 	struct intel_connector *intel_connector = to_intel_connector(connector);
5838 	struct edid *edid;
5839 
5840 	edid = intel_connector->detect_edid;
5841 	if (edid) {
5842 		int ret = intel_connector_update_modes(connector, edid);
5843 		if (ret)
5844 			return ret;
5845 	}
5846 
5847 	/* if eDP has no EDID, fall back to fixed mode */
5848 	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
5849 	    intel_connector->panel.fixed_mode) {
5850 		struct drm_display_mode *mode;
5851 
5852 		mode = drm_mode_duplicate(connector->dev,
5853 					  intel_connector->panel.fixed_mode);
5854 		if (mode) {
5855 			drm_mode_probed_add(connector, mode);
5856 			return 1;
5857 		}
5858 	}
5859 
5860 	return 0;
5861 }
5862 
5863 static int
5864 intel_dp_connector_register(struct drm_connector *connector)
5865 {
5866 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5867 	int ret;
5868 
5869 	ret = intel_connector_register(connector);
5870 	if (ret)
5871 		return ret;
5872 
5873 	intel_connector_debugfs_add(connector);
5874 
5875 	DRM_DEBUG_KMS("registering %s bus for %s\n",
5876 		      intel_dp->aux.name, connector->kdev->kobj.name);
5877 
5878 	intel_dp->aux.dev = connector->kdev;
5879 	ret = drm_dp_aux_register(&intel_dp->aux);
5880 	if (!ret)
5881 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
5882 	return ret;
5883 }
5884 
5885 static void
5886 intel_dp_connector_unregister(struct drm_connector *connector)
5887 {
5888 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5889 
5890 	drm_dp_cec_unregister_connector(&intel_dp->aux);
5891 	drm_dp_aux_unregister(&intel_dp->aux);
5892 	intel_connector_unregister(connector);
5893 }
5894 
5895 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5896 {
5897 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
5898 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5899 
5900 	intel_dp_mst_encoder_cleanup(intel_dig_port);
5901 	if (intel_dp_is_edp(intel_dp)) {
5902 		intel_wakeref_t wakeref;
5903 
5904 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5905 		/*
5906 		 * vdd might still be enabled do to the delayed vdd off.
5907 		 * Make sure vdd is actually turned off here.
5908 		 */
5909 		with_pps_lock(intel_dp, wakeref)
5910 			edp_panel_vdd_off_sync(intel_dp);
5911 
5912 		if (intel_dp->edp_notifier.notifier_call) {
5913 			unregister_reboot_notifier(&intel_dp->edp_notifier);
5914 			intel_dp->edp_notifier.notifier_call = NULL;
5915 		}
5916 	}
5917 
5918 	intel_dp_aux_fini(intel_dp);
5919 }
5920 
5921 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5922 {
5923 	intel_dp_encoder_flush_work(encoder);
5924 
5925 	drm_encoder_cleanup(encoder);
5926 	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
5927 }
5928 
5929 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5930 {
5931 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
5932 	intel_wakeref_t wakeref;
5933 
5934 	if (!intel_dp_is_edp(intel_dp))
5935 		return;
5936 
5937 	/*
5938 	 * vdd might still be enabled do to the delayed vdd off.
5939 	 * Make sure vdd is actually turned off here.
5940 	 */
5941 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5942 	with_pps_lock(intel_dp, wakeref)
5943 		edp_panel_vdd_off_sync(intel_dp);
5944 }
5945 
5946 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5947 {
5948 	long ret;
5949 
5950 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5951 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5952 					       msecs_to_jiffies(timeout));
5953 
5954 	if (!ret)
5955 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5956 }
5957 
5958 static
5959 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5960 				u8 *an)
5961 {
5962 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
5963 	static const struct drm_dp_aux_msg msg = {
5964 		.request = DP_AUX_NATIVE_WRITE,
5965 		.address = DP_AUX_HDCP_AKSV,
5966 		.size = DRM_HDCP_KSV_LEN,
5967 	};
5968 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5969 	ssize_t dpcd_ret;
5970 	int ret;
5971 
5972 	/* Output An first, that's easy */
5973 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5974 				     an, DRM_HDCP_AN_LEN);
5975 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5976 		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5977 			      dpcd_ret);
5978 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5979 	}
5980 
5981 	/*
5982 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5983 	 * order to get it on the wire, we need to create the AUX header as if
5984 	 * we were writing the data, and then tickle the hardware to output the
5985 	 * data once the header is sent out.
5986 	 */
5987 	intel_dp_aux_header(txbuf, &msg);
5988 
5989 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5990 				rxbuf, sizeof(rxbuf),
5991 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5992 	if (ret < 0) {
5993 		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5994 		return ret;
5995 	} else if (ret == 0) {
5996 		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5997 		return -EIO;
5998 	}
5999 
6000 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6001 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6002 		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6003 			      reply);
6004 		return -EIO;
6005 	}
6006 	return 0;
6007 }
6008 
6009 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6010 				   u8 *bksv)
6011 {
6012 	ssize_t ret;
6013 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6014 			       DRM_HDCP_KSV_LEN);
6015 	if (ret != DRM_HDCP_KSV_LEN) {
6016 		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
6017 		return ret >= 0 ? -EIO : ret;
6018 	}
6019 	return 0;
6020 }
6021 
6022 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6023 				      u8 *bstatus)
6024 {
6025 	ssize_t ret;
6026 	/*
6027 	 * For some reason the HDMI and DP HDCP specs call this register
6028 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
6029 	 * but in DP it's called BINFO.
6030 	 */
6031 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6032 			       bstatus, DRM_HDCP_BSTATUS_LEN);
6033 	if (ret != DRM_HDCP_BSTATUS_LEN) {
6034 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6035 		return ret >= 0 ? -EIO : ret;
6036 	}
6037 	return 0;
6038 }
6039 
6040 static
6041 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6042 			     u8 *bcaps)
6043 {
6044 	ssize_t ret;
6045 
6046 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6047 			       bcaps, 1);
6048 	if (ret != 1) {
6049 		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
6050 		return ret >= 0 ? -EIO : ret;
6051 	}
6052 
6053 	return 0;
6054 }
6055 
6056 static
6057 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6058 				   bool *repeater_present)
6059 {
6060 	ssize_t ret;
6061 	u8 bcaps;
6062 
6063 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6064 	if (ret)
6065 		return ret;
6066 
6067 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6068 	return 0;
6069 }
6070 
6071 static
6072 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6073 				u8 *ri_prime)
6074 {
6075 	ssize_t ret;
6076 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6077 			       ri_prime, DRM_HDCP_RI_LEN);
6078 	if (ret != DRM_HDCP_RI_LEN) {
6079 		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
6080 		return ret >= 0 ? -EIO : ret;
6081 	}
6082 	return 0;
6083 }
6084 
6085 static
6086 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6087 				 bool *ksv_ready)
6088 {
6089 	ssize_t ret;
6090 	u8 bstatus;
6091 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6092 			       &bstatus, 1);
6093 	if (ret != 1) {
6094 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6095 		return ret >= 0 ? -EIO : ret;
6096 	}
6097 	*ksv_ready = bstatus & DP_BSTATUS_READY;
6098 	return 0;
6099 }
6100 
6101 static
6102 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6103 				int num_downstream, u8 *ksv_fifo)
6104 {
6105 	ssize_t ret;
6106 	int i;
6107 
6108 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6109 	for (i = 0; i < num_downstream; i += 3) {
6110 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6111 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6112 				       DP_AUX_HDCP_KSV_FIFO,
6113 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
6114 				       len);
6115 		if (ret != len) {
6116 			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6117 				      i, ret);
6118 			return ret >= 0 ? -EIO : ret;
6119 		}
6120 	}
6121 	return 0;
6122 }
6123 
6124 static
6125 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6126 				    int i, u32 *part)
6127 {
6128 	ssize_t ret;
6129 
6130 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6131 		return -EINVAL;
6132 
6133 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6134 			       DP_AUX_HDCP_V_PRIME(i), part,
6135 			       DRM_HDCP_V_PRIME_PART_LEN);
6136 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6137 		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6138 		return ret >= 0 ? -EIO : ret;
6139 	}
6140 	return 0;
6141 }
6142 
6143 static
6144 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6145 				    bool enable)
6146 {
6147 	/* Not used for single stream DisplayPort setups */
6148 	return 0;
6149 }
6150 
6151 static
6152 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6153 {
6154 	ssize_t ret;
6155 	u8 bstatus;
6156 
6157 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6158 			       &bstatus, 1);
6159 	if (ret != 1) {
6160 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6161 		return false;
6162 	}
6163 
6164 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6165 }
6166 
6167 static
6168 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6169 			  bool *hdcp_capable)
6170 {
6171 	ssize_t ret;
6172 	u8 bcaps;
6173 
6174 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6175 	if (ret)
6176 		return ret;
6177 
6178 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6179 	return 0;
6180 }
6181 
6182 struct hdcp2_dp_errata_stream_type {
6183 	u8	msg_id;
6184 	u8	stream_type;
6185 } __packed;
6186 
6187 struct hdcp2_dp_msg_data {
6188 	u8 msg_id;
6189 	u32 offset;
6190 	bool msg_detectable;
6191 	u32 timeout;
6192 	u32 timeout2; /* Added for non_paired situation */
6193 };
6194 
6195 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6196 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6197 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6198 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6199 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6200 	  false, 0, 0 },
6201 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6202 	  false, 0, 0 },
6203 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6204 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6205 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6206 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
6207 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6208 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6209 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6210 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6211 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6212 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6213 	  0, 0 },
6214 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
6215 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6216 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6217 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6218 	  0, 0 },
6219 	{ HDCP_2_2_REP_STREAM_MANAGE,
6220 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6221 	  0, 0 },
6222 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6223 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6224 /* local define to shovel this through the write_2_2 interface */
6225 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6226 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6227 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6228 	  0, 0 },
6229 };
6230 
6231 static inline
6232 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6233 				  u8 *rx_status)
6234 {
6235 	ssize_t ret;
6236 
6237 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6238 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6239 			       HDCP_2_2_DP_RXSTATUS_LEN);
6240 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6241 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6242 		return ret >= 0 ? -EIO : ret;
6243 	}
6244 
6245 	return 0;
6246 }
6247 
6248 static
6249 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6250 				  u8 msg_id, bool *msg_ready)
6251 {
6252 	u8 rx_status;
6253 	int ret;
6254 
6255 	*msg_ready = false;
6256 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6257 	if (ret < 0)
6258 		return ret;
6259 
6260 	switch (msg_id) {
6261 	case HDCP_2_2_AKE_SEND_HPRIME:
6262 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6263 			*msg_ready = true;
6264 		break;
6265 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6266 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6267 			*msg_ready = true;
6268 		break;
6269 	case HDCP_2_2_REP_SEND_RECVID_LIST:
6270 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6271 			*msg_ready = true;
6272 		break;
6273 	default:
6274 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6275 		return -EINVAL;
6276 	}
6277 
6278 	return 0;
6279 }
6280 
6281 static ssize_t
6282 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6283 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6284 {
6285 	struct intel_dp *dp = &intel_dig_port->dp;
6286 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6287 	u8 msg_id = hdcp2_msg_data->msg_id;
6288 	int ret, timeout;
6289 	bool msg_ready = false;
6290 
6291 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6292 		timeout = hdcp2_msg_data->timeout2;
6293 	else
6294 		timeout = hdcp2_msg_data->timeout;
6295 
6296 	/*
6297 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
6298 	 * availability. So Wait for timeout and read the msg.
6299 	 */
6300 	if (!hdcp2_msg_data->msg_detectable) {
6301 		mdelay(timeout);
6302 		ret = 0;
6303 	} else {
6304 		/*
6305 		 * As we want to check the msg availability at timeout, Ignoring
6306 		 * the timeout at wait for CP_IRQ.
6307 		 */
6308 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6309 		ret = hdcp2_detect_msg_availability(intel_dig_port,
6310 						    msg_id, &msg_ready);
6311 		if (!msg_ready)
6312 			ret = -ETIMEDOUT;
6313 	}
6314 
6315 	if (ret)
6316 		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6317 			      hdcp2_msg_data->msg_id, ret, timeout);
6318 
6319 	return ret;
6320 }
6321 
6322 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6323 {
6324 	int i;
6325 
6326 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6327 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6328 			return &hdcp2_dp_msg_data[i];
6329 
6330 	return NULL;
6331 }
6332 
6333 static
6334 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6335 			     void *buf, size_t size)
6336 {
6337 	struct intel_dp *dp = &intel_dig_port->dp;
6338 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6339 	unsigned int offset;
6340 	u8 *byte = buf;
6341 	ssize_t ret, bytes_to_write, len;
6342 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6343 
6344 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6345 	if (!hdcp2_msg_data)
6346 		return -EINVAL;
6347 
6348 	offset = hdcp2_msg_data->offset;
6349 
6350 	/* No msg_id in DP HDCP2.2 msgs */
6351 	bytes_to_write = size - 1;
6352 	byte++;
6353 
6354 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6355 
6356 	while (bytes_to_write) {
6357 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6358 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6359 
6360 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6361 					offset, (void *)byte, len);
6362 		if (ret < 0)
6363 			return ret;
6364 
6365 		bytes_to_write -= ret;
6366 		byte += ret;
6367 		offset += ret;
6368 	}
6369 
6370 	return size;
6371 }
6372 
6373 static
6374 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6375 {
6376 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6377 	u32 dev_cnt;
6378 	ssize_t ret;
6379 
6380 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6381 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6382 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6383 	if (ret != HDCP_2_2_RXINFO_LEN)
6384 		return ret >= 0 ? -EIO : ret;
6385 
6386 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6387 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6388 
6389 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6390 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6391 
6392 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6393 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6394 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6395 
6396 	return ret;
6397 }
6398 
6399 static
6400 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6401 			    u8 msg_id, void *buf, size_t size)
6402 {
6403 	unsigned int offset;
6404 	u8 *byte = buf;
6405 	ssize_t ret, bytes_to_recv, len;
6406 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6407 
6408 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6409 	if (!hdcp2_msg_data)
6410 		return -EINVAL;
6411 	offset = hdcp2_msg_data->offset;
6412 
6413 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6414 	if (ret < 0)
6415 		return ret;
6416 
6417 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6418 		ret = get_receiver_id_list_size(intel_dig_port);
6419 		if (ret < 0)
6420 			return ret;
6421 
6422 		size = ret;
6423 	}
6424 	bytes_to_recv = size - 1;
6425 
6426 	/* DP adaptation msgs has no msg_id */
6427 	byte++;
6428 
6429 	while (bytes_to_recv) {
6430 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6431 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6432 
6433 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6434 				       (void *)byte, len);
6435 		if (ret < 0) {
6436 			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6437 			return ret;
6438 		}
6439 
6440 		bytes_to_recv -= ret;
6441 		byte += ret;
6442 		offset += ret;
6443 	}
6444 	byte = buf;
6445 	*byte = msg_id;
6446 
6447 	return size;
6448 }
6449 
6450 static
6451 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6452 				      bool is_repeater, u8 content_type)
6453 {
6454 	int ret;
6455 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6456 
6457 	if (is_repeater)
6458 		return 0;
6459 
6460 	/*
6461 	 * Errata for DP: As Stream type is used for encryption, Receiver
6462 	 * should be communicated with stream type for the decryption of the
6463 	 * content.
6464 	 * Repeater will be communicated with stream type as a part of it's
6465 	 * auth later in time.
6466 	 */
6467 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6468 	stream_type_msg.stream_type = content_type;
6469 
6470 	ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6471 					sizeof(stream_type_msg));
6472 
6473 	return ret < 0 ? ret : 0;
6474 
6475 }
6476 
6477 static
6478 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6479 {
6480 	u8 rx_status;
6481 	int ret;
6482 
6483 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6484 	if (ret)
6485 		return ret;
6486 
6487 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6488 		ret = HDCP_REAUTH_REQUEST;
6489 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6490 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6491 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6492 		ret = HDCP_TOPOLOGY_CHANGE;
6493 
6494 	return ret;
6495 }
6496 
6497 static
6498 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6499 			   bool *capable)
6500 {
6501 	u8 rx_caps[3];
6502 	int ret;
6503 
6504 	*capable = false;
6505 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6506 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6507 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6508 	if (ret != HDCP_2_2_RXCAPS_LEN)
6509 		return ret >= 0 ? -EIO : ret;
6510 
6511 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6512 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6513 		*capable = true;
6514 
6515 	return 0;
6516 }
6517 
6518 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6519 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
6520 	.read_bksv = intel_dp_hdcp_read_bksv,
6521 	.read_bstatus = intel_dp_hdcp_read_bstatus,
6522 	.repeater_present = intel_dp_hdcp_repeater_present,
6523 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
6524 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6525 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6526 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6527 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
6528 	.check_link = intel_dp_hdcp_check_link,
6529 	.hdcp_capable = intel_dp_hdcp_capable,
6530 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
6531 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
6532 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
6533 	.check_2_2_link = intel_dp_hdcp2_check_link,
6534 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
6535 	.protocol = HDCP_PROTOCOL_DP,
6536 };
6537 
6538 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6539 {
6540 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6541 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6542 
6543 	lockdep_assert_held(&dev_priv->pps_mutex);
6544 
6545 	if (!edp_have_panel_vdd(intel_dp))
6546 		return;
6547 
6548 	/*
6549 	 * The VDD bit needs a power domain reference, so if the bit is
6550 	 * already enabled when we boot or resume, grab this reference and
6551 	 * schedule a vdd off, so we don't hold on to the reference
6552 	 * indefinitely.
6553 	 */
6554 	drm_dbg_kms(&dev_priv->drm,
6555 		    "VDD left on by BIOS, adjusting state tracking\n");
6556 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6557 
6558 	edp_panel_vdd_schedule_off(intel_dp);
6559 }
6560 
6561 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6562 {
6563 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6564 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6565 	enum pipe pipe;
6566 
6567 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6568 				  encoder->port, &pipe))
6569 		return pipe;
6570 
6571 	return INVALID_PIPE;
6572 }
6573 
6574 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6575 {
6576 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6577 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6578 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6579 	intel_wakeref_t wakeref;
6580 
6581 	if (!HAS_DDI(dev_priv))
6582 		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6583 
6584 	if (lspcon->active)
6585 		lspcon_resume(lspcon);
6586 
6587 	intel_dp->reset_link_params = true;
6588 
6589 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6590 	    !intel_dp_is_edp(intel_dp))
6591 		return;
6592 
6593 	with_pps_lock(intel_dp, wakeref) {
6594 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6595 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6596 
6597 		if (intel_dp_is_edp(intel_dp)) {
6598 			/*
6599 			 * Reinit the power sequencer, in case BIOS did
6600 			 * something nasty with it.
6601 			 */
6602 			intel_dp_pps_init(intel_dp);
6603 			intel_edp_panel_vdd_sanitize(intel_dp);
6604 		}
6605 	}
6606 }
6607 
6608 static int intel_modeset_tile_group(struct intel_atomic_state *state,
6609 				    int tile_group_id)
6610 {
6611 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6612 	struct drm_connector_list_iter conn_iter;
6613 	struct drm_connector *connector;
6614 	int ret = 0;
6615 
6616 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
6617 	drm_for_each_connector_iter(connector, &conn_iter) {
6618 		struct drm_connector_state *conn_state;
6619 		struct intel_crtc_state *crtc_state;
6620 		struct intel_crtc *crtc;
6621 
6622 		if (!connector->has_tile ||
6623 		    connector->tile_group->id != tile_group_id)
6624 			continue;
6625 
6626 		conn_state = drm_atomic_get_connector_state(&state->base,
6627 							    connector);
6628 		if (IS_ERR(conn_state)) {
6629 			ret = PTR_ERR(conn_state);
6630 			break;
6631 		}
6632 
6633 		crtc = to_intel_crtc(conn_state->crtc);
6634 
6635 		if (!crtc)
6636 			continue;
6637 
6638 		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
6639 		crtc_state->uapi.mode_changed = true;
6640 
6641 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6642 		if (ret)
6643 			break;
6644 	}
6645 	drm_connector_list_iter_end(&conn_iter);
6646 
6647 	return ret;
6648 }
6649 
6650 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
6651 {
6652 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6653 	struct intel_crtc *crtc;
6654 
6655 	if (transcoders == 0)
6656 		return 0;
6657 
6658 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6659 		struct intel_crtc_state *crtc_state;
6660 		int ret;
6661 
6662 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
6663 		if (IS_ERR(crtc_state))
6664 			return PTR_ERR(crtc_state);
6665 
6666 		if (!crtc_state->hw.enable)
6667 			continue;
6668 
6669 		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
6670 			continue;
6671 
6672 		crtc_state->uapi.mode_changed = true;
6673 
6674 		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
6675 		if (ret)
6676 			return ret;
6677 
6678 		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6679 		if (ret)
6680 			return ret;
6681 
6682 		transcoders &= ~BIT(crtc_state->cpu_transcoder);
6683 	}
6684 
6685 	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
6686 
6687 	return 0;
6688 }
6689 
6690 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
6691 				      struct drm_connector *connector)
6692 {
6693 	const struct drm_connector_state *old_conn_state =
6694 		drm_atomic_get_old_connector_state(&state->base, connector);
6695 	const struct intel_crtc_state *old_crtc_state;
6696 	struct intel_crtc *crtc;
6697 	u8 transcoders;
6698 
6699 	crtc = to_intel_crtc(old_conn_state->crtc);
6700 	if (!crtc)
6701 		return 0;
6702 
6703 	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
6704 
6705 	if (!old_crtc_state->hw.active)
6706 		return 0;
6707 
6708 	transcoders = old_crtc_state->sync_mode_slaves_mask;
6709 	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
6710 		transcoders |= BIT(old_crtc_state->master_transcoder);
6711 
6712 	return intel_modeset_affected_transcoders(state,
6713 						  transcoders);
6714 }
6715 
6716 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
6717 					   struct drm_atomic_state *_state)
6718 {
6719 	struct drm_i915_private *dev_priv = to_i915(conn->dev);
6720 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
6721 	int ret;
6722 
6723 	ret = intel_digital_connector_atomic_check(conn, &state->base);
6724 	if (ret)
6725 		return ret;
6726 
6727 	if (INTEL_GEN(dev_priv) < 11)
6728 		return 0;
6729 
6730 	if (!intel_connector_needs_modeset(state, conn))
6731 		return 0;
6732 
6733 	if (conn->has_tile) {
6734 		ret = intel_modeset_tile_group(state, conn->tile_group->id);
6735 		if (ret)
6736 			return ret;
6737 	}
6738 
6739 	return intel_modeset_synced_crtcs(state, conn);
6740 }
6741 
6742 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6743 	.force = intel_dp_force,
6744 	.fill_modes = drm_helper_probe_single_connector_modes,
6745 	.atomic_get_property = intel_digital_connector_atomic_get_property,
6746 	.atomic_set_property = intel_digital_connector_atomic_set_property,
6747 	.late_register = intel_dp_connector_register,
6748 	.early_unregister = intel_dp_connector_unregister,
6749 	.destroy = intel_connector_destroy,
6750 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6751 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6752 };
6753 
6754 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6755 	.detect_ctx = intel_dp_detect,
6756 	.get_modes = intel_dp_get_modes,
6757 	.mode_valid = intel_dp_mode_valid,
6758 	.atomic_check = intel_dp_connector_atomic_check,
6759 };
6760 
6761 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6762 	.reset = intel_dp_encoder_reset,
6763 	.destroy = intel_dp_encoder_destroy,
6764 };
6765 
6766 enum irqreturn
6767 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6768 {
6769 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6770 
6771 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6772 		/*
6773 		 * vdd off can generate a long pulse on eDP which
6774 		 * would require vdd on to handle it, and thus we
6775 		 * would end up in an endless cycle of
6776 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6777 		 */
6778 		DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6779 			      intel_dig_port->base.base.base.id,
6780 			      intel_dig_port->base.base.name);
6781 		return IRQ_HANDLED;
6782 	}
6783 
6784 	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6785 		      intel_dig_port->base.base.base.id,
6786 		      intel_dig_port->base.base.name,
6787 		      long_hpd ? "long" : "short");
6788 
6789 	if (long_hpd) {
6790 		intel_dp->reset_link_params = true;
6791 		return IRQ_NONE;
6792 	}
6793 
6794 	if (intel_dp->is_mst) {
6795 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6796 			/*
6797 			 * If we were in MST mode, and device is not
6798 			 * there, get out of MST mode
6799 			 */
6800 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6801 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6802 			intel_dp->is_mst = false;
6803 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6804 							intel_dp->is_mst);
6805 
6806 			return IRQ_NONE;
6807 		}
6808 	}
6809 
6810 	if (!intel_dp->is_mst) {
6811 		bool handled;
6812 
6813 		handled = intel_dp_short_pulse(intel_dp);
6814 
6815 		if (!handled)
6816 			return IRQ_NONE;
6817 	}
6818 
6819 	return IRQ_HANDLED;
6820 }
6821 
6822 /* check the VBT to see whether the eDP is on another port */
6823 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6824 {
6825 	/*
6826 	 * eDP not supported on g4x. so bail out early just
6827 	 * for a bit extra safety in case the VBT is bonkers.
6828 	 */
6829 	if (INTEL_GEN(dev_priv) < 5)
6830 		return false;
6831 
6832 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6833 		return true;
6834 
6835 	return intel_bios_is_port_edp(dev_priv, port);
6836 }
6837 
6838 static void
6839 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6840 {
6841 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6842 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6843 
6844 	if (!IS_G4X(dev_priv) && port != PORT_A)
6845 		intel_attach_force_audio_property(connector);
6846 
6847 	intel_attach_broadcast_rgb_property(connector);
6848 	if (HAS_GMCH(dev_priv))
6849 		drm_connector_attach_max_bpc_property(connector, 6, 10);
6850 	else if (INTEL_GEN(dev_priv) >= 5)
6851 		drm_connector_attach_max_bpc_property(connector, 6, 12);
6852 
6853 	intel_attach_colorspace_property(connector);
6854 
6855 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6856 		drm_object_attach_property(&connector->base,
6857 					   connector->dev->mode_config.hdr_output_metadata_property,
6858 					   0);
6859 
6860 	if (intel_dp_is_edp(intel_dp)) {
6861 		u32 allowed_scalers;
6862 
6863 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6864 		if (!HAS_GMCH(dev_priv))
6865 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6866 
6867 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6868 
6869 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6870 
6871 	}
6872 }
6873 
6874 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6875 {
6876 	intel_dp->panel_power_off_time = ktime_get_boottime();
6877 	intel_dp->last_power_on = jiffies;
6878 	intel_dp->last_backlight_off = jiffies;
6879 }
6880 
6881 static void
6882 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6883 {
6884 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6885 	u32 pp_on, pp_off, pp_ctl;
6886 	struct pps_registers regs;
6887 
6888 	intel_pps_get_registers(intel_dp, &regs);
6889 
6890 	pp_ctl = ilk_get_pp_control(intel_dp);
6891 
6892 	/* Ensure PPS is unlocked */
6893 	if (!HAS_DDI(dev_priv))
6894 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
6895 
6896 	pp_on = intel_de_read(dev_priv, regs.pp_on);
6897 	pp_off = intel_de_read(dev_priv, regs.pp_off);
6898 
6899 	/* Pull timing values out of registers */
6900 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6901 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6902 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6903 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6904 
6905 	if (i915_mmio_reg_valid(regs.pp_div)) {
6906 		u32 pp_div;
6907 
6908 		pp_div = intel_de_read(dev_priv, regs.pp_div);
6909 
6910 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6911 	} else {
6912 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6913 	}
6914 }
6915 
6916 static void
6917 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6918 {
6919 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6920 		      state_name,
6921 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6922 }
6923 
6924 static void
6925 intel_pps_verify_state(struct intel_dp *intel_dp)
6926 {
6927 	struct edp_power_seq hw;
6928 	struct edp_power_seq *sw = &intel_dp->pps_delays;
6929 
6930 	intel_pps_readout_hw_state(intel_dp, &hw);
6931 
6932 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6933 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6934 		DRM_ERROR("PPS state mismatch\n");
6935 		intel_pps_dump_state("sw", sw);
6936 		intel_pps_dump_state("hw", &hw);
6937 	}
6938 }
6939 
6940 static void
6941 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6942 {
6943 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6944 	struct edp_power_seq cur, vbt, spec,
6945 		*final = &intel_dp->pps_delays;
6946 
6947 	lockdep_assert_held(&dev_priv->pps_mutex);
6948 
6949 	/* already initialized? */
6950 	if (final->t11_t12 != 0)
6951 		return;
6952 
6953 	intel_pps_readout_hw_state(intel_dp, &cur);
6954 
6955 	intel_pps_dump_state("cur", &cur);
6956 
6957 	vbt = dev_priv->vbt.edp.pps;
6958 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6959 	 * of 500ms appears to be too short. Ocassionally the panel
6960 	 * just fails to power back on. Increasing the delay to 800ms
6961 	 * seems sufficient to avoid this problem.
6962 	 */
6963 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6964 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6965 		drm_dbg_kms(&dev_priv->drm,
6966 			    "Increasing T12 panel delay as per the quirk to %d\n",
6967 			    vbt.t11_t12);
6968 	}
6969 	/* T11_T12 delay is special and actually in units of 100ms, but zero
6970 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6971 	 * table multiplies it with 1000 to make it in units of 100usec,
6972 	 * too. */
6973 	vbt.t11_t12 += 100 * 10;
6974 
6975 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6976 	 * our hw here, which are all in 100usec. */
6977 	spec.t1_t3 = 210 * 10;
6978 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6979 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6980 	spec.t10 = 500 * 10;
6981 	/* This one is special and actually in units of 100ms, but zero
6982 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6983 	 * table multiplies it with 1000 to make it in units of 100usec,
6984 	 * too. */
6985 	spec.t11_t12 = (510 + 100) * 10;
6986 
6987 	intel_pps_dump_state("vbt", &vbt);
6988 
6989 	/* Use the max of the register settings and vbt. If both are
6990 	 * unset, fall back to the spec limits. */
6991 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6992 				       spec.field : \
6993 				       max(cur.field, vbt.field))
6994 	assign_final(t1_t3);
6995 	assign_final(t8);
6996 	assign_final(t9);
6997 	assign_final(t10);
6998 	assign_final(t11_t12);
6999 #undef assign_final
7000 
7001 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
7002 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
7003 	intel_dp->backlight_on_delay = get_delay(t8);
7004 	intel_dp->backlight_off_delay = get_delay(t9);
7005 	intel_dp->panel_power_down_delay = get_delay(t10);
7006 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7007 #undef get_delay
7008 
7009 	drm_dbg_kms(&dev_priv->drm,
7010 		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7011 		    intel_dp->panel_power_up_delay,
7012 		    intel_dp->panel_power_down_delay,
7013 		    intel_dp->panel_power_cycle_delay);
7014 
7015 	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7016 		    intel_dp->backlight_on_delay,
7017 		    intel_dp->backlight_off_delay);
7018 
7019 	/*
7020 	 * We override the HW backlight delays to 1 because we do manual waits
7021 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
7022 	 * don't do this, we'll end up waiting for the backlight off delay
7023 	 * twice: once when we do the manual sleep, and once when we disable
7024 	 * the panel and wait for the PP_STATUS bit to become zero.
7025 	 */
7026 	final->t8 = 1;
7027 	final->t9 = 1;
7028 
7029 	/*
7030 	 * HW has only a 100msec granularity for t11_t12 so round it up
7031 	 * accordingly.
7032 	 */
7033 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7034 }
7035 
7036 static void
7037 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7038 					      bool force_disable_vdd)
7039 {
7040 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7041 	u32 pp_on, pp_off, port_sel = 0;
7042 	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7043 	struct pps_registers regs;
7044 	enum port port = dp_to_dig_port(intel_dp)->base.port;
7045 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7046 
7047 	lockdep_assert_held(&dev_priv->pps_mutex);
7048 
7049 	intel_pps_get_registers(intel_dp, &regs);
7050 
7051 	/*
7052 	 * On some VLV machines the BIOS can leave the VDD
7053 	 * enabled even on power sequencers which aren't
7054 	 * hooked up to any port. This would mess up the
7055 	 * power domain tracking the first time we pick
7056 	 * one of these power sequencers for use since
7057 	 * edp_panel_vdd_on() would notice that the VDD was
7058 	 * already on and therefore wouldn't grab the power
7059 	 * domain reference. Disable VDD first to avoid this.
7060 	 * This also avoids spuriously turning the VDD on as
7061 	 * soon as the new power sequencer gets initialized.
7062 	 */
7063 	if (force_disable_vdd) {
7064 		u32 pp = ilk_get_pp_control(intel_dp);
7065 
7066 		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7067 			 "Panel power already on\n");
7068 
7069 		if (pp & EDP_FORCE_VDD)
7070 			drm_dbg_kms(&dev_priv->drm,
7071 				    "VDD already on, disabling first\n");
7072 
7073 		pp &= ~EDP_FORCE_VDD;
7074 
7075 		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7076 	}
7077 
7078 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7079 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7080 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7081 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7082 
7083 	/* Haswell doesn't have any port selection bits for the panel
7084 	 * power sequencer any more. */
7085 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7086 		port_sel = PANEL_PORT_SELECT_VLV(port);
7087 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7088 		switch (port) {
7089 		case PORT_A:
7090 			port_sel = PANEL_PORT_SELECT_DPA;
7091 			break;
7092 		case PORT_C:
7093 			port_sel = PANEL_PORT_SELECT_DPC;
7094 			break;
7095 		case PORT_D:
7096 			port_sel = PANEL_PORT_SELECT_DPD;
7097 			break;
7098 		default:
7099 			MISSING_CASE(port);
7100 			break;
7101 		}
7102 	}
7103 
7104 	pp_on |= port_sel;
7105 
7106 	intel_de_write(dev_priv, regs.pp_on, pp_on);
7107 	intel_de_write(dev_priv, regs.pp_off, pp_off);
7108 
7109 	/*
7110 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
7111 	 */
7112 	if (i915_mmio_reg_valid(regs.pp_div)) {
7113 		intel_de_write(dev_priv, regs.pp_div,
7114 			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7115 	} else {
7116 		u32 pp_ctl;
7117 
7118 		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7119 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7120 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7121 		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7122 	}
7123 
7124 	drm_dbg_kms(&dev_priv->drm,
7125 		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7126 		    intel_de_read(dev_priv, regs.pp_on),
7127 		    intel_de_read(dev_priv, regs.pp_off),
7128 		    i915_mmio_reg_valid(regs.pp_div) ?
7129 		    intel_de_read(dev_priv, regs.pp_div) :
7130 		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7131 }
7132 
7133 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7134 {
7135 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7136 
7137 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7138 		vlv_initial_power_sequencer_setup(intel_dp);
7139 	} else {
7140 		intel_dp_init_panel_power_sequencer(intel_dp);
7141 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7142 	}
7143 }
7144 
7145 /**
7146  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7147  * @dev_priv: i915 device
7148  * @crtc_state: a pointer to the active intel_crtc_state
7149  * @refresh_rate: RR to be programmed
7150  *
7151  * This function gets called when refresh rate (RR) has to be changed from
7152  * one frequency to another. Switches can be between high and low RR
7153  * supported by the panel or to any other RR based on media playback (in
7154  * this case, RR value needs to be passed from user space).
7155  *
7156  * The caller of this function needs to take a lock on dev_priv->drrs.
7157  */
7158 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7159 				    const struct intel_crtc_state *crtc_state,
7160 				    int refresh_rate)
7161 {
7162 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7163 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7164 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7165 
7166 	if (refresh_rate <= 0) {
7167 		drm_dbg_kms(&dev_priv->drm,
7168 			    "Refresh rate should be positive non-zero.\n");
7169 		return;
7170 	}
7171 
7172 	if (intel_dp == NULL) {
7173 		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7174 		return;
7175 	}
7176 
7177 	if (!intel_crtc) {
7178 		drm_dbg_kms(&dev_priv->drm,
7179 			    "DRRS: intel_crtc not initialized\n");
7180 		return;
7181 	}
7182 
7183 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7184 		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7185 		return;
7186 	}
7187 
7188 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
7189 			refresh_rate)
7190 		index = DRRS_LOW_RR;
7191 
7192 	if (index == dev_priv->drrs.refresh_rate_type) {
7193 		drm_dbg_kms(&dev_priv->drm,
7194 			    "DRRS requested for previously set RR...ignoring\n");
7195 		return;
7196 	}
7197 
7198 	if (!crtc_state->hw.active) {
7199 		drm_dbg_kms(&dev_priv->drm,
7200 			    "eDP encoder disabled. CRTC not Active\n");
7201 		return;
7202 	}
7203 
7204 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7205 		switch (index) {
7206 		case DRRS_HIGH_RR:
7207 			intel_dp_set_m_n(crtc_state, M1_N1);
7208 			break;
7209 		case DRRS_LOW_RR:
7210 			intel_dp_set_m_n(crtc_state, M2_N2);
7211 			break;
7212 		case DRRS_MAX_RR:
7213 		default:
7214 			drm_err(&dev_priv->drm,
7215 				"Unsupported refreshrate type\n");
7216 		}
7217 	} else if (INTEL_GEN(dev_priv) > 6) {
7218 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7219 		u32 val;
7220 
7221 		val = intel_de_read(dev_priv, reg);
7222 		if (index > DRRS_HIGH_RR) {
7223 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7224 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7225 			else
7226 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7227 		} else {
7228 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7229 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7230 			else
7231 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7232 		}
7233 		intel_de_write(dev_priv, reg, val);
7234 	}
7235 
7236 	dev_priv->drrs.refresh_rate_type = index;
7237 
7238 	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7239 		    refresh_rate);
7240 }
7241 
7242 /**
7243  * intel_edp_drrs_enable - init drrs struct if supported
7244  * @intel_dp: DP struct
7245  * @crtc_state: A pointer to the active crtc state.
7246  *
7247  * Initializes frontbuffer_bits and drrs.dp
7248  */
7249 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7250 			   const struct intel_crtc_state *crtc_state)
7251 {
7252 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7253 
7254 	if (!crtc_state->has_drrs) {
7255 		drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7256 		return;
7257 	}
7258 
7259 	if (dev_priv->psr.enabled) {
7260 		drm_dbg_kms(&dev_priv->drm,
7261 			    "PSR enabled. Not enabling DRRS.\n");
7262 		return;
7263 	}
7264 
7265 	mutex_lock(&dev_priv->drrs.mutex);
7266 	if (dev_priv->drrs.dp) {
7267 		drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7268 		goto unlock;
7269 	}
7270 
7271 	dev_priv->drrs.busy_frontbuffer_bits = 0;
7272 
7273 	dev_priv->drrs.dp = intel_dp;
7274 
7275 unlock:
7276 	mutex_unlock(&dev_priv->drrs.mutex);
7277 }
7278 
7279 /**
7280  * intel_edp_drrs_disable - Disable DRRS
7281  * @intel_dp: DP struct
7282  * @old_crtc_state: Pointer to old crtc_state.
7283  *
7284  */
7285 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7286 			    const struct intel_crtc_state *old_crtc_state)
7287 {
7288 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7289 
7290 	if (!old_crtc_state->has_drrs)
7291 		return;
7292 
7293 	mutex_lock(&dev_priv->drrs.mutex);
7294 	if (!dev_priv->drrs.dp) {
7295 		mutex_unlock(&dev_priv->drrs.mutex);
7296 		return;
7297 	}
7298 
7299 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7300 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7301 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7302 
7303 	dev_priv->drrs.dp = NULL;
7304 	mutex_unlock(&dev_priv->drrs.mutex);
7305 
7306 	cancel_delayed_work_sync(&dev_priv->drrs.work);
7307 }
7308 
7309 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7310 {
7311 	struct drm_i915_private *dev_priv =
7312 		container_of(work, typeof(*dev_priv), drrs.work.work);
7313 	struct intel_dp *intel_dp;
7314 
7315 	mutex_lock(&dev_priv->drrs.mutex);
7316 
7317 	intel_dp = dev_priv->drrs.dp;
7318 
7319 	if (!intel_dp)
7320 		goto unlock;
7321 
7322 	/*
7323 	 * The delayed work can race with an invalidate hence we need to
7324 	 * recheck.
7325 	 */
7326 
7327 	if (dev_priv->drrs.busy_frontbuffer_bits)
7328 		goto unlock;
7329 
7330 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7331 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7332 
7333 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7334 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7335 	}
7336 
7337 unlock:
7338 	mutex_unlock(&dev_priv->drrs.mutex);
7339 }
7340 
7341 /**
7342  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7343  * @dev_priv: i915 device
7344  * @frontbuffer_bits: frontbuffer plane tracking bits
7345  *
7346  * This function gets called everytime rendering on the given planes start.
7347  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7348  *
7349  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7350  */
7351 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7352 			       unsigned int frontbuffer_bits)
7353 {
7354 	struct drm_crtc *crtc;
7355 	enum pipe pipe;
7356 
7357 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7358 		return;
7359 
7360 	cancel_delayed_work(&dev_priv->drrs.work);
7361 
7362 	mutex_lock(&dev_priv->drrs.mutex);
7363 	if (!dev_priv->drrs.dp) {
7364 		mutex_unlock(&dev_priv->drrs.mutex);
7365 		return;
7366 	}
7367 
7368 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7369 	pipe = to_intel_crtc(crtc)->pipe;
7370 
7371 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7372 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7373 
7374 	/* invalidate means busy screen hence upclock */
7375 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7376 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7377 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7378 
7379 	mutex_unlock(&dev_priv->drrs.mutex);
7380 }
7381 
7382 /**
7383  * intel_edp_drrs_flush - Restart Idleness DRRS
7384  * @dev_priv: i915 device
7385  * @frontbuffer_bits: frontbuffer plane tracking bits
7386  *
7387  * This function gets called every time rendering on the given planes has
7388  * completed or flip on a crtc is completed. So DRRS should be upclocked
7389  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7390  * if no other planes are dirty.
7391  *
7392  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7393  */
7394 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7395 			  unsigned int frontbuffer_bits)
7396 {
7397 	struct drm_crtc *crtc;
7398 	enum pipe pipe;
7399 
7400 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7401 		return;
7402 
7403 	cancel_delayed_work(&dev_priv->drrs.work);
7404 
7405 	mutex_lock(&dev_priv->drrs.mutex);
7406 	if (!dev_priv->drrs.dp) {
7407 		mutex_unlock(&dev_priv->drrs.mutex);
7408 		return;
7409 	}
7410 
7411 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7412 	pipe = to_intel_crtc(crtc)->pipe;
7413 
7414 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7415 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7416 
7417 	/* flush means busy screen hence upclock */
7418 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7419 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7420 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7421 
7422 	/*
7423 	 * flush also means no more activity hence schedule downclock, if all
7424 	 * other fbs are quiescent too
7425 	 */
7426 	if (!dev_priv->drrs.busy_frontbuffer_bits)
7427 		schedule_delayed_work(&dev_priv->drrs.work,
7428 				msecs_to_jiffies(1000));
7429 	mutex_unlock(&dev_priv->drrs.mutex);
7430 }
7431 
7432 /**
7433  * DOC: Display Refresh Rate Switching (DRRS)
7434  *
7435  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7436  * which enables swtching between low and high refresh rates,
7437  * dynamically, based on the usage scenario. This feature is applicable
7438  * for internal panels.
7439  *
7440  * Indication that the panel supports DRRS is given by the panel EDID, which
7441  * would list multiple refresh rates for one resolution.
7442  *
7443  * DRRS is of 2 types - static and seamless.
7444  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7445  * (may appear as a blink on screen) and is used in dock-undock scenario.
7446  * Seamless DRRS involves changing RR without any visual effect to the user
7447  * and can be used during normal system usage. This is done by programming
7448  * certain registers.
7449  *
7450  * Support for static/seamless DRRS may be indicated in the VBT based on
7451  * inputs from the panel spec.
7452  *
7453  * DRRS saves power by switching to low RR based on usage scenarios.
7454  *
7455  * The implementation is based on frontbuffer tracking implementation.  When
7456  * there is a disturbance on the screen triggered by user activity or a periodic
7457  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7458  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7459  * made.
7460  *
7461  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7462  * and intel_edp_drrs_flush() are called.
7463  *
7464  * DRRS can be further extended to support other internal panels and also
7465  * the scenario of video playback wherein RR is set based on the rate
7466  * requested by userspace.
7467  */
7468 
7469 /**
7470  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7471  * @connector: eDP connector
7472  * @fixed_mode: preferred mode of panel
7473  *
7474  * This function is  called only once at driver load to initialize basic
7475  * DRRS stuff.
7476  *
7477  * Returns:
7478  * Downclock mode if panel supports it, else return NULL.
7479  * DRRS support is determined by the presence of downclock mode (apart
7480  * from VBT setting).
7481  */
7482 static struct drm_display_mode *
7483 intel_dp_drrs_init(struct intel_connector *connector,
7484 		   struct drm_display_mode *fixed_mode)
7485 {
7486 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7487 	struct drm_display_mode *downclock_mode = NULL;
7488 
7489 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7490 	mutex_init(&dev_priv->drrs.mutex);
7491 
7492 	if (INTEL_GEN(dev_priv) <= 6) {
7493 		drm_dbg_kms(&dev_priv->drm,
7494 			    "DRRS supported for Gen7 and above\n");
7495 		return NULL;
7496 	}
7497 
7498 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7499 		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7500 		return NULL;
7501 	}
7502 
7503 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7504 	if (!downclock_mode) {
7505 		drm_dbg_kms(&dev_priv->drm,
7506 			    "Downclock mode is not found. DRRS not supported\n");
7507 		return NULL;
7508 	}
7509 
7510 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7511 
7512 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7513 	drm_dbg_kms(&dev_priv->drm,
7514 		    "seamless DRRS supported for eDP panel.\n");
7515 	return downclock_mode;
7516 }
7517 
7518 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7519 				     struct intel_connector *intel_connector)
7520 {
7521 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7522 	struct drm_device *dev = &dev_priv->drm;
7523 	struct drm_connector *connector = &intel_connector->base;
7524 	struct drm_display_mode *fixed_mode = NULL;
7525 	struct drm_display_mode *downclock_mode = NULL;
7526 	bool has_dpcd;
7527 	enum pipe pipe = INVALID_PIPE;
7528 	intel_wakeref_t wakeref;
7529 	struct edid *edid;
7530 
7531 	if (!intel_dp_is_edp(intel_dp))
7532 		return true;
7533 
7534 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7535 
7536 	/*
7537 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7538 	 * driver uses the only internal power sequencer available for both
7539 	 * eDP and LVDS bail out early in this case to prevent interfering
7540 	 * with an already powered-on LVDS power sequencer.
7541 	 */
7542 	if (intel_get_lvds_encoder(dev_priv)) {
7543 		drm_WARN_ON(dev,
7544 			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7545 		drm_info(&dev_priv->drm,
7546 			 "LVDS was detected, not registering eDP\n");
7547 
7548 		return false;
7549 	}
7550 
7551 	with_pps_lock(intel_dp, wakeref) {
7552 		intel_dp_init_panel_power_timestamps(intel_dp);
7553 		intel_dp_pps_init(intel_dp);
7554 		intel_edp_panel_vdd_sanitize(intel_dp);
7555 	}
7556 
7557 	/* Cache DPCD and EDID for edp. */
7558 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7559 
7560 	if (!has_dpcd) {
7561 		/* if this fails, presume the device is a ghost */
7562 		drm_info(&dev_priv->drm,
7563 			 "failed to retrieve link info, disabling eDP\n");
7564 		goto out_vdd_off;
7565 	}
7566 
7567 	mutex_lock(&dev->mode_config.mutex);
7568 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7569 	if (edid) {
7570 		if (drm_add_edid_modes(connector, edid)) {
7571 			drm_connector_update_edid_property(connector, edid);
7572 			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
7573 		} else {
7574 			kfree(edid);
7575 			edid = ERR_PTR(-EINVAL);
7576 		}
7577 	} else {
7578 		edid = ERR_PTR(-ENOENT);
7579 	}
7580 	intel_connector->edid = edid;
7581 
7582 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7583 	if (fixed_mode)
7584 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7585 
7586 	/* fallback to VBT if available for eDP */
7587 	if (!fixed_mode)
7588 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7589 	mutex_unlock(&dev->mode_config.mutex);
7590 
7591 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7592 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7593 		register_reboot_notifier(&intel_dp->edp_notifier);
7594 
7595 		/*
7596 		 * Figure out the current pipe for the initial backlight setup.
7597 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7598 		 * fails just assume pipe A.
7599 		 */
7600 		pipe = vlv_active_pipe(intel_dp);
7601 
7602 		if (pipe != PIPE_A && pipe != PIPE_B)
7603 			pipe = intel_dp->pps_pipe;
7604 
7605 		if (pipe != PIPE_A && pipe != PIPE_B)
7606 			pipe = PIPE_A;
7607 
7608 		drm_dbg_kms(&dev_priv->drm,
7609 			    "using pipe %c for initial backlight setup\n",
7610 			    pipe_name(pipe));
7611 	}
7612 
7613 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7614 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7615 	intel_panel_setup_backlight(connector, pipe);
7616 
7617 	if (fixed_mode) {
7618 		drm_connector_set_panel_orientation_with_quirk(connector,
7619 				dev_priv->vbt.orientation,
7620 				fixed_mode->hdisplay, fixed_mode->vdisplay);
7621 	}
7622 
7623 	return true;
7624 
7625 out_vdd_off:
7626 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7627 	/*
7628 	 * vdd might still be enabled do to the delayed vdd off.
7629 	 * Make sure vdd is actually turned off here.
7630 	 */
7631 	with_pps_lock(intel_dp, wakeref)
7632 		edp_panel_vdd_off_sync(intel_dp);
7633 
7634 	return false;
7635 }
7636 
7637 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7638 {
7639 	struct intel_connector *intel_connector;
7640 	struct drm_connector *connector;
7641 
7642 	intel_connector = container_of(work, typeof(*intel_connector),
7643 				       modeset_retry_work);
7644 	connector = &intel_connector->base;
7645 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7646 		      connector->name);
7647 
7648 	/* Grab the locks before changing connector property*/
7649 	mutex_lock(&connector->dev->mode_config.mutex);
7650 	/* Set connector link status to BAD and send a Uevent to notify
7651 	 * userspace to do a modeset.
7652 	 */
7653 	drm_connector_set_link_status_property(connector,
7654 					       DRM_MODE_LINK_STATUS_BAD);
7655 	mutex_unlock(&connector->dev->mode_config.mutex);
7656 	/* Send Hotplug uevent so userspace can reprobe */
7657 	drm_kms_helper_hotplug_event(connector->dev);
7658 }
7659 
7660 bool
7661 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7662 			struct intel_connector *intel_connector)
7663 {
7664 	struct drm_connector *connector = &intel_connector->base;
7665 	struct intel_dp *intel_dp = &intel_dig_port->dp;
7666 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
7667 	struct drm_device *dev = intel_encoder->base.dev;
7668 	struct drm_i915_private *dev_priv = to_i915(dev);
7669 	enum port port = intel_encoder->port;
7670 	enum phy phy = intel_port_to_phy(dev_priv, port);
7671 	int type;
7672 
7673 	/* Initialize the work for modeset in case of link train failure */
7674 	INIT_WORK(&intel_connector->modeset_retry_work,
7675 		  intel_dp_modeset_retry_work_fn);
7676 
7677 	if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
7678 		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7679 		     intel_dig_port->max_lanes, intel_encoder->base.base.id,
7680 		     intel_encoder->base.name))
7681 		return false;
7682 
7683 	intel_dp_set_source_rates(intel_dp);
7684 
7685 	intel_dp->reset_link_params = true;
7686 	intel_dp->pps_pipe = INVALID_PIPE;
7687 	intel_dp->active_pipe = INVALID_PIPE;
7688 
7689 	/* Preserve the current hw state. */
7690 	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7691 	intel_dp->attached_connector = intel_connector;
7692 
7693 	if (intel_dp_is_port_edp(dev_priv, port)) {
7694 		/*
7695 		 * Currently we don't support eDP on TypeC ports, although in
7696 		 * theory it could work on TypeC legacy ports.
7697 		 */
7698 		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
7699 		type = DRM_MODE_CONNECTOR_eDP;
7700 	} else {
7701 		type = DRM_MODE_CONNECTOR_DisplayPort;
7702 	}
7703 
7704 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7705 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7706 
7707 	/*
7708 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7709 	 * for DP the encoder type can be set by the caller to
7710 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7711 	 */
7712 	if (type == DRM_MODE_CONNECTOR_eDP)
7713 		intel_encoder->type = INTEL_OUTPUT_EDP;
7714 
7715 	/* eDP only on port B and/or C on vlv/chv */
7716 	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
7717 			      IS_CHERRYVIEW(dev_priv)) &&
7718 			intel_dp_is_edp(intel_dp) &&
7719 			port != PORT_B && port != PORT_C))
7720 		return false;
7721 
7722 	drm_dbg_kms(&dev_priv->drm,
7723 		    "Adding %s connector on [ENCODER:%d:%s]\n",
7724 		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7725 		    intel_encoder->base.base.id, intel_encoder->base.name);
7726 
7727 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7728 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7729 
7730 	if (!HAS_GMCH(dev_priv))
7731 		connector->interlace_allowed = true;
7732 	connector->doublescan_allowed = 0;
7733 
7734 	if (INTEL_GEN(dev_priv) >= 11)
7735 		connector->ycbcr_420_allowed = true;
7736 
7737 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7738 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
7739 
7740 	intel_dp_aux_init(intel_dp);
7741 
7742 	intel_connector_attach_encoder(intel_connector, intel_encoder);
7743 
7744 	if (HAS_DDI(dev_priv))
7745 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7746 	else
7747 		intel_connector->get_hw_state = intel_connector_get_hw_state;
7748 
7749 	/* init MST on ports that can support it */
7750 	intel_dp_mst_encoder_init(intel_dig_port,
7751 				  intel_connector->base.base.id);
7752 
7753 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7754 		intel_dp_aux_fini(intel_dp);
7755 		intel_dp_mst_encoder_cleanup(intel_dig_port);
7756 		goto fail;
7757 	}
7758 
7759 	intel_dp_add_properties(intel_dp, connector);
7760 
7761 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7762 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7763 		if (ret)
7764 			drm_dbg_kms(&dev_priv->drm,
7765 				    "HDCP init failed, skipping.\n");
7766 	}
7767 
7768 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7769 	 * 0xd.  Failure to do so will result in spurious interrupts being
7770 	 * generated on the port when a cable is not attached.
7771 	 */
7772 	if (IS_G45(dev_priv)) {
7773 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
7774 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
7775 			       (temp & ~0xf) | 0xd);
7776 	}
7777 
7778 	return true;
7779 
7780 fail:
7781 	drm_connector_cleanup(connector);
7782 
7783 	return false;
7784 }
7785 
7786 bool intel_dp_init(struct drm_i915_private *dev_priv,
7787 		   i915_reg_t output_reg,
7788 		   enum port port)
7789 {
7790 	struct intel_digital_port *intel_dig_port;
7791 	struct intel_encoder *intel_encoder;
7792 	struct drm_encoder *encoder;
7793 	struct intel_connector *intel_connector;
7794 
7795 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7796 	if (!intel_dig_port)
7797 		return false;
7798 
7799 	intel_connector = intel_connector_alloc();
7800 	if (!intel_connector)
7801 		goto err_connector_alloc;
7802 
7803 	intel_encoder = &intel_dig_port->base;
7804 	encoder = &intel_encoder->base;
7805 
7806 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7807 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7808 			     "DP %c", port_name(port)))
7809 		goto err_encoder_init;
7810 
7811 	intel_encoder->hotplug = intel_dp_hotplug;
7812 	intel_encoder->compute_config = intel_dp_compute_config;
7813 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7814 	intel_encoder->get_config = intel_dp_get_config;
7815 	intel_encoder->update_pipe = intel_panel_update_backlight;
7816 	intel_encoder->suspend = intel_dp_encoder_suspend;
7817 	if (IS_CHERRYVIEW(dev_priv)) {
7818 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7819 		intel_encoder->pre_enable = chv_pre_enable_dp;
7820 		intel_encoder->enable = vlv_enable_dp;
7821 		intel_encoder->disable = vlv_disable_dp;
7822 		intel_encoder->post_disable = chv_post_disable_dp;
7823 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7824 	} else if (IS_VALLEYVIEW(dev_priv)) {
7825 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7826 		intel_encoder->pre_enable = vlv_pre_enable_dp;
7827 		intel_encoder->enable = vlv_enable_dp;
7828 		intel_encoder->disable = vlv_disable_dp;
7829 		intel_encoder->post_disable = vlv_post_disable_dp;
7830 	} else {
7831 		intel_encoder->pre_enable = g4x_pre_enable_dp;
7832 		intel_encoder->enable = g4x_enable_dp;
7833 		intel_encoder->disable = g4x_disable_dp;
7834 		intel_encoder->post_disable = g4x_post_disable_dp;
7835 	}
7836 
7837 	intel_dig_port->dp.output_reg = output_reg;
7838 	intel_dig_port->max_lanes = 4;
7839 
7840 	intel_encoder->type = INTEL_OUTPUT_DP;
7841 	intel_encoder->power_domain = intel_port_to_power_domain(port);
7842 	if (IS_CHERRYVIEW(dev_priv)) {
7843 		if (port == PORT_D)
7844 			intel_encoder->pipe_mask = BIT(PIPE_C);
7845 		else
7846 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7847 	} else {
7848 		intel_encoder->pipe_mask = ~0;
7849 	}
7850 	intel_encoder->cloneable = 0;
7851 	intel_encoder->port = port;
7852 
7853 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7854 
7855 	if (port != PORT_A)
7856 		intel_infoframe_init(intel_dig_port);
7857 
7858 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7859 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7860 		goto err_init_connector;
7861 
7862 	return true;
7863 
7864 err_init_connector:
7865 	drm_encoder_cleanup(encoder);
7866 err_encoder_init:
7867 	kfree(intel_connector);
7868 err_connector_alloc:
7869 	kfree(intel_dig_port);
7870 	return false;
7871 }
7872 
7873 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7874 {
7875 	struct intel_encoder *encoder;
7876 
7877 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7878 		struct intel_dp *intel_dp;
7879 
7880 		if (encoder->type != INTEL_OUTPUT_DDI)
7881 			continue;
7882 
7883 		intel_dp = enc_to_intel_dp(encoder);
7884 
7885 		if (!intel_dp->can_mst)
7886 			continue;
7887 
7888 		if (intel_dp->is_mst)
7889 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7890 	}
7891 }
7892 
7893 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7894 {
7895 	struct intel_encoder *encoder;
7896 
7897 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7898 		struct intel_dp *intel_dp;
7899 		int ret;
7900 
7901 		if (encoder->type != INTEL_OUTPUT_DDI)
7902 			continue;
7903 
7904 		intel_dp = enc_to_intel_dp(encoder);
7905 
7906 		if (!intel_dp->can_mst)
7907 			continue;
7908 
7909 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7910 						     true);
7911 		if (ret) {
7912 			intel_dp->is_mst = false;
7913 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7914 							false);
7915 		}
7916 	}
7917 }
7918