1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_hdcp.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/i915_drm.h> 44 45 #include "i915_debugfs.h" 46 #include "i915_drv.h" 47 #include "i915_trace.h" 48 #include "intel_atomic.h" 49 #include "intel_audio.h" 50 #include "intel_connector.h" 51 #include "intel_ddi.h" 52 #include "intel_display_types.h" 53 #include "intel_dp.h" 54 #include "intel_dp_link_training.h" 55 #include "intel_dp_mst.h" 56 #include "intel_dpio_phy.h" 57 #include "intel_fifo_underrun.h" 58 #include "intel_hdcp.h" 59 #include "intel_hdmi.h" 60 #include "intel_hotplug.h" 61 #include "intel_lspcon.h" 62 #include "intel_lvds.h" 63 #include "intel_panel.h" 64 #include "intel_psr.h" 65 #include "intel_sideband.h" 66 #include "intel_tc.h" 67 #include "intel_vdsc.h" 68 69 #define DP_DPRX_ESI_LEN 14 70 71 /* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */ 72 #define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER 61440 73 #define DP_DSC_MIN_SUPPORTED_BPC 8 74 #define DP_DSC_MAX_SUPPORTED_BPC 10 75 76 /* DP DSC throughput values used for slice count calculations KPixels/s */ 77 #define DP_DSC_PEAK_PIXEL_RATE 2720000 78 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 79 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 80 81 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 82 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 83 84 /* Compliance test status bits */ 85 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 86 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 87 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 88 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 89 90 struct dp_link_dpll { 91 int clock; 92 struct dpll dpll; 93 }; 94 95 static const struct dp_link_dpll g4x_dpll[] = { 96 { 162000, 97 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 98 { 270000, 99 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 100 }; 101 102 static const struct dp_link_dpll pch_dpll[] = { 103 { 162000, 104 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 105 { 270000, 106 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 107 }; 108 109 static const struct dp_link_dpll vlv_dpll[] = { 110 { 162000, 111 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 112 { 270000, 113 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 114 }; 115 116 /* 117 * CHV supports eDP 1.4 that have more link rates. 118 * Below only provides the fixed rate but exclude variable rate. 119 */ 120 static const struct dp_link_dpll chv_dpll[] = { 121 /* 122 * CHV requires to program fractional division for m2. 123 * m2 is stored in fixed point format using formula below 124 * (m2_int << 22) | m2_fraction 125 */ 126 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 127 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 128 { 270000, /* m2_int = 27, m2_fraction = 0 */ 129 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 130 }; 131 132 /* Constants for DP DSC configurations */ 133 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 134 135 /* With Single pipe configuration, HW is capable of supporting maximum 136 * of 4 slices per line. 137 */ 138 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 139 140 /** 141 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 142 * @intel_dp: DP struct 143 * 144 * If a CPU or PCH DP output is attached to an eDP panel, this function 145 * will return true, and false otherwise. 146 */ 147 bool intel_dp_is_edp(struct intel_dp *intel_dp) 148 { 149 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 150 151 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 152 } 153 154 static struct intel_dp *intel_attached_dp(struct drm_connector *connector) 155 { 156 return enc_to_intel_dp(&intel_attached_encoder(connector)->base); 157 } 158 159 static void intel_dp_link_down(struct intel_encoder *encoder, 160 const struct intel_crtc_state *old_crtc_state); 161 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 162 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 163 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 164 const struct intel_crtc_state *crtc_state); 165 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 166 enum pipe pipe); 167 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 168 169 /* update sink rates from dpcd */ 170 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 171 { 172 static const int dp_rates[] = { 173 162000, 270000, 540000, 810000 174 }; 175 int i, max_rate; 176 177 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 178 179 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 180 if (dp_rates[i] > max_rate) 181 break; 182 intel_dp->sink_rates[i] = dp_rates[i]; 183 } 184 185 intel_dp->num_sink_rates = i; 186 } 187 188 /* Get length of rates array potentially limited by max_rate. */ 189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 190 { 191 int i; 192 193 /* Limit results by potentially reduced max rate */ 194 for (i = 0; i < len; i++) { 195 if (rates[len - i - 1] <= max_rate) 196 return len - i; 197 } 198 199 return 0; 200 } 201 202 /* Get length of common rates array potentially limited by max_rate. */ 203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 204 int max_rate) 205 { 206 return intel_dp_rate_limit_len(intel_dp->common_rates, 207 intel_dp->num_common_rates, max_rate); 208 } 209 210 /* Theoretical max between source and sink */ 211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 212 { 213 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 214 } 215 216 /* Theoretical max between source and sink */ 217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 218 { 219 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 220 int source_max = intel_dig_port->max_lanes; 221 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 222 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); 223 224 return min3(source_max, sink_max, fia_max); 225 } 226 227 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 228 { 229 return intel_dp->max_link_lane_count; 230 } 231 232 int 233 intel_dp_link_required(int pixel_clock, int bpp) 234 { 235 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 236 return DIV_ROUND_UP(pixel_clock * bpp, 8); 237 } 238 239 int 240 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 241 { 242 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 243 * link rate that is generally expressed in Gbps. Since, 8 bits of data 244 * is transmitted every LS_Clk per lane, there is no need to account for 245 * the channel encoding that is done in the PHY layer here. 246 */ 247 248 return max_link_clock * max_lanes; 249 } 250 251 static int 252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 253 { 254 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 255 struct intel_encoder *encoder = &intel_dig_port->base; 256 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 257 int max_dotclk = dev_priv->max_dotclk_freq; 258 int ds_max_dotclk; 259 260 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 261 262 if (type != DP_DS_PORT_TYPE_VGA) 263 return max_dotclk; 264 265 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 266 intel_dp->downstream_ports); 267 268 if (ds_max_dotclk != 0) 269 max_dotclk = min(max_dotclk, ds_max_dotclk); 270 271 return max_dotclk; 272 } 273 274 static int cnl_max_source_rate(struct intel_dp *intel_dp) 275 { 276 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 277 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 278 enum port port = dig_port->base.port; 279 280 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 281 282 /* Low voltage SKUs are limited to max of 5.4G */ 283 if (voltage == VOLTAGE_INFO_0_85V) 284 return 540000; 285 286 /* For this SKU 8.1G is supported in all ports */ 287 if (IS_CNL_WITH_PORT_F(dev_priv)) 288 return 810000; 289 290 /* For other SKUs, max rate on ports A and D is 5.4G */ 291 if (port == PORT_A || port == PORT_D) 292 return 540000; 293 294 return 810000; 295 } 296 297 static int icl_max_source_rate(struct intel_dp *intel_dp) 298 { 299 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 300 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 301 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 302 303 if (intel_phy_is_combo(dev_priv, phy) && 304 !IS_ELKHARTLAKE(dev_priv) && 305 !intel_dp_is_edp(intel_dp)) 306 return 540000; 307 308 return 810000; 309 } 310 311 static void 312 intel_dp_set_source_rates(struct intel_dp *intel_dp) 313 { 314 /* The values must be in increasing order */ 315 static const int cnl_rates[] = { 316 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 317 }; 318 static const int bxt_rates[] = { 319 162000, 216000, 243000, 270000, 324000, 432000, 540000 320 }; 321 static const int skl_rates[] = { 322 162000, 216000, 270000, 324000, 432000, 540000 323 }; 324 static const int hsw_rates[] = { 325 162000, 270000, 540000 326 }; 327 static const int g4x_rates[] = { 328 162000, 270000 329 }; 330 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 331 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 332 const struct ddi_vbt_port_info *info = 333 &dev_priv->vbt.ddi_port_info[dig_port->base.port]; 334 const int *source_rates; 335 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate; 336 337 /* This should only be done once */ 338 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates); 339 340 if (INTEL_GEN(dev_priv) >= 10) { 341 source_rates = cnl_rates; 342 size = ARRAY_SIZE(cnl_rates); 343 if (IS_GEN(dev_priv, 10)) 344 max_rate = cnl_max_source_rate(intel_dp); 345 else 346 max_rate = icl_max_source_rate(intel_dp); 347 } else if (IS_GEN9_LP(dev_priv)) { 348 source_rates = bxt_rates; 349 size = ARRAY_SIZE(bxt_rates); 350 } else if (IS_GEN9_BC(dev_priv)) { 351 source_rates = skl_rates; 352 size = ARRAY_SIZE(skl_rates); 353 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 354 IS_BROADWELL(dev_priv)) { 355 source_rates = hsw_rates; 356 size = ARRAY_SIZE(hsw_rates); 357 } else { 358 source_rates = g4x_rates; 359 size = ARRAY_SIZE(g4x_rates); 360 } 361 362 if (max_rate && vbt_max_rate) 363 max_rate = min(max_rate, vbt_max_rate); 364 else if (vbt_max_rate) 365 max_rate = vbt_max_rate; 366 367 if (max_rate) 368 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 369 370 intel_dp->source_rates = source_rates; 371 intel_dp->num_source_rates = size; 372 } 373 374 static int intersect_rates(const int *source_rates, int source_len, 375 const int *sink_rates, int sink_len, 376 int *common_rates) 377 { 378 int i = 0, j = 0, k = 0; 379 380 while (i < source_len && j < sink_len) { 381 if (source_rates[i] == sink_rates[j]) { 382 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 383 return k; 384 common_rates[k] = source_rates[i]; 385 ++k; 386 ++i; 387 ++j; 388 } else if (source_rates[i] < sink_rates[j]) { 389 ++i; 390 } else { 391 ++j; 392 } 393 } 394 return k; 395 } 396 397 /* return index of rate in rates array, or -1 if not found */ 398 static int intel_dp_rate_index(const int *rates, int len, int rate) 399 { 400 int i; 401 402 for (i = 0; i < len; i++) 403 if (rate == rates[i]) 404 return i; 405 406 return -1; 407 } 408 409 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 410 { 411 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); 412 413 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 414 intel_dp->num_source_rates, 415 intel_dp->sink_rates, 416 intel_dp->num_sink_rates, 417 intel_dp->common_rates); 418 419 /* Paranoia, there should always be something in common. */ 420 if (WARN_ON(intel_dp->num_common_rates == 0)) { 421 intel_dp->common_rates[0] = 162000; 422 intel_dp->num_common_rates = 1; 423 } 424 } 425 426 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 427 u8 lane_count) 428 { 429 /* 430 * FIXME: we need to synchronize the current link parameters with 431 * hardware readout. Currently fast link training doesn't work on 432 * boot-up. 433 */ 434 if (link_rate == 0 || 435 link_rate > intel_dp->max_link_rate) 436 return false; 437 438 if (lane_count == 0 || 439 lane_count > intel_dp_max_lane_count(intel_dp)) 440 return false; 441 442 return true; 443 } 444 445 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 446 int link_rate, 447 u8 lane_count) 448 { 449 const struct drm_display_mode *fixed_mode = 450 intel_dp->attached_connector->panel.fixed_mode; 451 int mode_rate, max_rate; 452 453 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 454 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 455 if (mode_rate > max_rate) 456 return false; 457 458 return true; 459 } 460 461 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 462 int link_rate, u8 lane_count) 463 { 464 int index; 465 466 index = intel_dp_rate_index(intel_dp->common_rates, 467 intel_dp->num_common_rates, 468 link_rate); 469 if (index > 0) { 470 if (intel_dp_is_edp(intel_dp) && 471 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 472 intel_dp->common_rates[index - 1], 473 lane_count)) { 474 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 475 return 0; 476 } 477 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 478 intel_dp->max_link_lane_count = lane_count; 479 } else if (lane_count > 1) { 480 if (intel_dp_is_edp(intel_dp) && 481 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 482 intel_dp_max_common_rate(intel_dp), 483 lane_count >> 1)) { 484 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 485 return 0; 486 } 487 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 488 intel_dp->max_link_lane_count = lane_count >> 1; 489 } else { 490 DRM_ERROR("Link Training Unsuccessful\n"); 491 return -1; 492 } 493 494 return 0; 495 } 496 497 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 498 { 499 return div_u64(mul_u32_u32(mode_clock, 1000000U), 500 DP_DSC_FEC_OVERHEAD_FACTOR); 501 } 502 503 static u16 intel_dp_dsc_get_output_bpp(u32 link_clock, u32 lane_count, 504 u32 mode_clock, u32 mode_hdisplay) 505 { 506 u32 bits_per_pixel, max_bpp_small_joiner_ram; 507 int i; 508 509 /* 510 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 511 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 512 * for SST -> TimeSlotsPerMTP is 1, 513 * for MST -> TimeSlotsPerMTP has to be calculated 514 */ 515 bits_per_pixel = (link_clock * lane_count * 8) / 516 intel_dp_mode_to_fec_clock(mode_clock); 517 DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel); 518 519 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 520 max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER / mode_hdisplay; 521 DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram); 522 523 /* 524 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 525 * check, output bpp from small joiner RAM check) 526 */ 527 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 528 529 /* Error out if the max bpp is less than smallest allowed valid bpp */ 530 if (bits_per_pixel < valid_dsc_bpp[0]) { 531 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n", 532 bits_per_pixel, valid_dsc_bpp[0]); 533 return 0; 534 } 535 536 /* Find the nearest match in the array of known BPPs from VESA */ 537 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 538 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 539 break; 540 } 541 bits_per_pixel = valid_dsc_bpp[i]; 542 543 /* 544 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 545 * fractional part is 0 546 */ 547 return bits_per_pixel << 4; 548 } 549 550 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 551 int mode_clock, int mode_hdisplay) 552 { 553 u8 min_slice_count, i; 554 int max_slice_width; 555 556 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 557 min_slice_count = DIV_ROUND_UP(mode_clock, 558 DP_DSC_MAX_ENC_THROUGHPUT_0); 559 else 560 min_slice_count = DIV_ROUND_UP(mode_clock, 561 DP_DSC_MAX_ENC_THROUGHPUT_1); 562 563 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 564 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 565 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n", 566 max_slice_width); 567 return 0; 568 } 569 /* Also take into account max slice width */ 570 min_slice_count = min_t(u8, min_slice_count, 571 DIV_ROUND_UP(mode_hdisplay, 572 max_slice_width)); 573 574 /* Find the closest match to the valid slice count values */ 575 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 576 if (valid_dsc_slicecount[i] > 577 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 578 false)) 579 break; 580 if (min_slice_count <= valid_dsc_slicecount[i]) 581 return valid_dsc_slicecount[i]; 582 } 583 584 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count); 585 return 0; 586 } 587 588 static enum drm_mode_status 589 intel_dp_mode_valid(struct drm_connector *connector, 590 struct drm_display_mode *mode) 591 { 592 struct intel_dp *intel_dp = intel_attached_dp(connector); 593 struct intel_connector *intel_connector = to_intel_connector(connector); 594 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 595 struct drm_i915_private *dev_priv = to_i915(connector->dev); 596 int target_clock = mode->clock; 597 int max_rate, mode_rate, max_lanes, max_link_clock; 598 int max_dotclk; 599 u16 dsc_max_output_bpp = 0; 600 u8 dsc_slice_count = 0; 601 602 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 603 return MODE_NO_DBLESCAN; 604 605 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 606 607 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 608 if (mode->hdisplay > fixed_mode->hdisplay) 609 return MODE_PANEL; 610 611 if (mode->vdisplay > fixed_mode->vdisplay) 612 return MODE_PANEL; 613 614 target_clock = fixed_mode->clock; 615 } 616 617 max_link_clock = intel_dp_max_link_rate(intel_dp); 618 max_lanes = intel_dp_max_lane_count(intel_dp); 619 620 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 621 mode_rate = intel_dp_link_required(target_clock, 18); 622 623 /* 624 * Output bpp is stored in 6.4 format so right shift by 4 to get the 625 * integer value since we support only integer values of bpp. 626 */ 627 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 628 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 629 if (intel_dp_is_edp(intel_dp)) { 630 dsc_max_output_bpp = 631 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 632 dsc_slice_count = 633 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 634 true); 635 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 636 dsc_max_output_bpp = 637 intel_dp_dsc_get_output_bpp(max_link_clock, 638 max_lanes, 639 target_clock, 640 mode->hdisplay) >> 4; 641 dsc_slice_count = 642 intel_dp_dsc_get_slice_count(intel_dp, 643 target_clock, 644 mode->hdisplay); 645 } 646 } 647 648 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 649 target_clock > max_dotclk) 650 return MODE_CLOCK_HIGH; 651 652 if (mode->clock < 10000) 653 return MODE_CLOCK_LOW; 654 655 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 656 return MODE_H_ILLEGAL; 657 658 return MODE_OK; 659 } 660 661 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 662 { 663 int i; 664 u32 v = 0; 665 666 if (src_bytes > 4) 667 src_bytes = 4; 668 for (i = 0; i < src_bytes; i++) 669 v |= ((u32)src[i]) << ((3 - i) * 8); 670 return v; 671 } 672 673 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 674 { 675 int i; 676 if (dst_bytes > 4) 677 dst_bytes = 4; 678 for (i = 0; i < dst_bytes; i++) 679 dst[i] = src >> ((3-i) * 8); 680 } 681 682 static void 683 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 684 static void 685 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 686 bool force_disable_vdd); 687 static void 688 intel_dp_pps_init(struct intel_dp *intel_dp); 689 690 static intel_wakeref_t 691 pps_lock(struct intel_dp *intel_dp) 692 { 693 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 694 intel_wakeref_t wakeref; 695 696 /* 697 * See intel_power_sequencer_reset() why we need 698 * a power domain reference here. 699 */ 700 wakeref = intel_display_power_get(dev_priv, 701 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 702 703 mutex_lock(&dev_priv->pps_mutex); 704 705 return wakeref; 706 } 707 708 static intel_wakeref_t 709 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 710 { 711 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 712 713 mutex_unlock(&dev_priv->pps_mutex); 714 intel_display_power_put(dev_priv, 715 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 716 wakeref); 717 return 0; 718 } 719 720 #define with_pps_lock(dp, wf) \ 721 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 722 723 static void 724 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 725 { 726 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 727 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 728 enum pipe pipe = intel_dp->pps_pipe; 729 bool pll_enabled, release_cl_override = false; 730 enum dpio_phy phy = DPIO_PHY(pipe); 731 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 732 u32 DP; 733 734 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, 735 "skipping pipe %c power sequencer kick due to port %c being active\n", 736 pipe_name(pipe), port_name(intel_dig_port->base.port))) 737 return; 738 739 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n", 740 pipe_name(pipe), port_name(intel_dig_port->base.port)); 741 742 /* Preserve the BIOS-computed detected bit. This is 743 * supposed to be read-only. 744 */ 745 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 746 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 747 DP |= DP_PORT_WIDTH(1); 748 DP |= DP_LINK_TRAIN_PAT_1; 749 750 if (IS_CHERRYVIEW(dev_priv)) 751 DP |= DP_PIPE_SEL_CHV(pipe); 752 else 753 DP |= DP_PIPE_SEL(pipe); 754 755 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; 756 757 /* 758 * The DPLL for the pipe must be enabled for this to work. 759 * So enable temporarily it if it's not already enabled. 760 */ 761 if (!pll_enabled) { 762 release_cl_override = IS_CHERRYVIEW(dev_priv) && 763 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 764 765 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 766 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 767 DRM_ERROR("Failed to force on pll for pipe %c!\n", 768 pipe_name(pipe)); 769 return; 770 } 771 } 772 773 /* 774 * Similar magic as in intel_dp_enable_port(). 775 * We _must_ do this port enable + disable trick 776 * to make this power sequencer lock onto the port. 777 * Otherwise even VDD force bit won't work. 778 */ 779 I915_WRITE(intel_dp->output_reg, DP); 780 POSTING_READ(intel_dp->output_reg); 781 782 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); 783 POSTING_READ(intel_dp->output_reg); 784 785 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); 786 POSTING_READ(intel_dp->output_reg); 787 788 if (!pll_enabled) { 789 vlv_force_pll_off(dev_priv, pipe); 790 791 if (release_cl_override) 792 chv_phy_powergate_ch(dev_priv, phy, ch, false); 793 } 794 } 795 796 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 797 { 798 struct intel_encoder *encoder; 799 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 800 801 /* 802 * We don't have power sequencer currently. 803 * Pick one that's not used by other ports. 804 */ 805 for_each_intel_dp(&dev_priv->drm, encoder) { 806 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 807 808 if (encoder->type == INTEL_OUTPUT_EDP) { 809 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 810 intel_dp->active_pipe != intel_dp->pps_pipe); 811 812 if (intel_dp->pps_pipe != INVALID_PIPE) 813 pipes &= ~(1 << intel_dp->pps_pipe); 814 } else { 815 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE); 816 817 if (intel_dp->active_pipe != INVALID_PIPE) 818 pipes &= ~(1 << intel_dp->active_pipe); 819 } 820 } 821 822 if (pipes == 0) 823 return INVALID_PIPE; 824 825 return ffs(pipes) - 1; 826 } 827 828 static enum pipe 829 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 830 { 831 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 832 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 833 enum pipe pipe; 834 835 lockdep_assert_held(&dev_priv->pps_mutex); 836 837 /* We should never land here with regular DP ports */ 838 WARN_ON(!intel_dp_is_edp(intel_dp)); 839 840 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 841 intel_dp->active_pipe != intel_dp->pps_pipe); 842 843 if (intel_dp->pps_pipe != INVALID_PIPE) 844 return intel_dp->pps_pipe; 845 846 pipe = vlv_find_free_pps(dev_priv); 847 848 /* 849 * Didn't find one. This should not happen since there 850 * are two power sequencers and up to two eDP ports. 851 */ 852 if (WARN_ON(pipe == INVALID_PIPE)) 853 pipe = PIPE_A; 854 855 vlv_steal_power_sequencer(dev_priv, pipe); 856 intel_dp->pps_pipe = pipe; 857 858 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n", 859 pipe_name(intel_dp->pps_pipe), 860 port_name(intel_dig_port->base.port)); 861 862 /* init power sequencer on this pipe and port */ 863 intel_dp_init_panel_power_sequencer(intel_dp); 864 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 865 866 /* 867 * Even vdd force doesn't work until we've made 868 * the power sequencer lock in on the port. 869 */ 870 vlv_power_sequencer_kick(intel_dp); 871 872 return intel_dp->pps_pipe; 873 } 874 875 static int 876 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 877 { 878 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 879 int backlight_controller = dev_priv->vbt.backlight.controller; 880 881 lockdep_assert_held(&dev_priv->pps_mutex); 882 883 /* We should never land here with regular DP ports */ 884 WARN_ON(!intel_dp_is_edp(intel_dp)); 885 886 if (!intel_dp->pps_reset) 887 return backlight_controller; 888 889 intel_dp->pps_reset = false; 890 891 /* 892 * Only the HW needs to be reprogrammed, the SW state is fixed and 893 * has been setup during connector init. 894 */ 895 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 896 897 return backlight_controller; 898 } 899 900 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 901 enum pipe pipe); 902 903 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 904 enum pipe pipe) 905 { 906 return I915_READ(PP_STATUS(pipe)) & PP_ON; 907 } 908 909 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 910 enum pipe pipe) 911 { 912 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD; 913 } 914 915 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 916 enum pipe pipe) 917 { 918 return true; 919 } 920 921 static enum pipe 922 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 923 enum port port, 924 vlv_pipe_check pipe_check) 925 { 926 enum pipe pipe; 927 928 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 929 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) & 930 PANEL_PORT_SELECT_MASK; 931 932 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 933 continue; 934 935 if (!pipe_check(dev_priv, pipe)) 936 continue; 937 938 return pipe; 939 } 940 941 return INVALID_PIPE; 942 } 943 944 static void 945 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 946 { 947 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 948 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 949 enum port port = intel_dig_port->base.port; 950 951 lockdep_assert_held(&dev_priv->pps_mutex); 952 953 /* try to find a pipe with this port selected */ 954 /* first pick one where the panel is on */ 955 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 956 vlv_pipe_has_pp_on); 957 /* didn't find one? pick one where vdd is on */ 958 if (intel_dp->pps_pipe == INVALID_PIPE) 959 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 960 vlv_pipe_has_vdd_on); 961 /* didn't find one? pick one with just the correct port */ 962 if (intel_dp->pps_pipe == INVALID_PIPE) 963 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 964 vlv_pipe_any); 965 966 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 967 if (intel_dp->pps_pipe == INVALID_PIPE) { 968 DRM_DEBUG_KMS("no initial power sequencer for port %c\n", 969 port_name(port)); 970 return; 971 } 972 973 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n", 974 port_name(port), pipe_name(intel_dp->pps_pipe)); 975 976 intel_dp_init_panel_power_sequencer(intel_dp); 977 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 978 } 979 980 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 981 { 982 struct intel_encoder *encoder; 983 984 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 985 !IS_GEN9_LP(dev_priv))) 986 return; 987 988 /* 989 * We can't grab pps_mutex here due to deadlock with power_domain 990 * mutex when power_domain functions are called while holding pps_mutex. 991 * That also means that in order to use pps_pipe the code needs to 992 * hold both a power domain reference and pps_mutex, and the power domain 993 * reference get/put must be done while _not_ holding pps_mutex. 994 * pps_{lock,unlock}() do these steps in the correct order, so one 995 * should use them always. 996 */ 997 998 for_each_intel_dp(&dev_priv->drm, encoder) { 999 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 1000 1001 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 1002 1003 if (encoder->type != INTEL_OUTPUT_EDP) 1004 continue; 1005 1006 if (IS_GEN9_LP(dev_priv)) 1007 intel_dp->pps_reset = true; 1008 else 1009 intel_dp->pps_pipe = INVALID_PIPE; 1010 } 1011 } 1012 1013 struct pps_registers { 1014 i915_reg_t pp_ctrl; 1015 i915_reg_t pp_stat; 1016 i915_reg_t pp_on; 1017 i915_reg_t pp_off; 1018 i915_reg_t pp_div; 1019 }; 1020 1021 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1022 struct pps_registers *regs) 1023 { 1024 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1025 int pps_idx = 0; 1026 1027 memset(regs, 0, sizeof(*regs)); 1028 1029 if (IS_GEN9_LP(dev_priv)) 1030 pps_idx = bxt_power_sequencer_idx(intel_dp); 1031 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1032 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1033 1034 regs->pp_ctrl = PP_CONTROL(pps_idx); 1035 regs->pp_stat = PP_STATUS(pps_idx); 1036 regs->pp_on = PP_ON_DELAYS(pps_idx); 1037 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1038 1039 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1040 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1041 regs->pp_div = INVALID_MMIO_REG; 1042 else 1043 regs->pp_div = PP_DIVISOR(pps_idx); 1044 } 1045 1046 static i915_reg_t 1047 _pp_ctrl_reg(struct intel_dp *intel_dp) 1048 { 1049 struct pps_registers regs; 1050 1051 intel_pps_get_registers(intel_dp, ®s); 1052 1053 return regs.pp_ctrl; 1054 } 1055 1056 static i915_reg_t 1057 _pp_stat_reg(struct intel_dp *intel_dp) 1058 { 1059 struct pps_registers regs; 1060 1061 intel_pps_get_registers(intel_dp, ®s); 1062 1063 return regs.pp_stat; 1064 } 1065 1066 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1067 This function only applicable when panel PM state is not to be tracked */ 1068 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1069 void *unused) 1070 { 1071 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1072 edp_notifier); 1073 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1074 intel_wakeref_t wakeref; 1075 1076 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1077 return 0; 1078 1079 with_pps_lock(intel_dp, wakeref) { 1080 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1081 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1082 i915_reg_t pp_ctrl_reg, pp_div_reg; 1083 u32 pp_div; 1084 1085 pp_ctrl_reg = PP_CONTROL(pipe); 1086 pp_div_reg = PP_DIVISOR(pipe); 1087 pp_div = I915_READ(pp_div_reg); 1088 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1089 1090 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1091 I915_WRITE(pp_div_reg, pp_div | 0x1F); 1092 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS); 1093 msleep(intel_dp->panel_power_cycle_delay); 1094 } 1095 } 1096 1097 return 0; 1098 } 1099 1100 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1101 { 1102 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1103 1104 lockdep_assert_held(&dev_priv->pps_mutex); 1105 1106 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1107 intel_dp->pps_pipe == INVALID_PIPE) 1108 return false; 1109 1110 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; 1111 } 1112 1113 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1114 { 1115 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1116 1117 lockdep_assert_held(&dev_priv->pps_mutex); 1118 1119 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1120 intel_dp->pps_pipe == INVALID_PIPE) 1121 return false; 1122 1123 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1124 } 1125 1126 static void 1127 intel_dp_check_edp(struct intel_dp *intel_dp) 1128 { 1129 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1130 1131 if (!intel_dp_is_edp(intel_dp)) 1132 return; 1133 1134 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1135 WARN(1, "eDP powered off while attempting aux channel communication.\n"); 1136 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", 1137 I915_READ(_pp_stat_reg(intel_dp)), 1138 I915_READ(_pp_ctrl_reg(intel_dp))); 1139 } 1140 } 1141 1142 static u32 1143 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1144 { 1145 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1146 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1147 u32 status; 1148 bool done; 1149 1150 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1151 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1152 msecs_to_jiffies_timeout(10)); 1153 1154 /* just trace the final value */ 1155 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1156 1157 if (!done) 1158 DRM_ERROR("dp aux hw did not signal timeout!\n"); 1159 #undef C 1160 1161 return status; 1162 } 1163 1164 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1165 { 1166 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1167 1168 if (index) 1169 return 0; 1170 1171 /* 1172 * The clock divider is based off the hrawclk, and would like to run at 1173 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1174 */ 1175 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1176 } 1177 1178 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1179 { 1180 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1181 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1182 1183 if (index) 1184 return 0; 1185 1186 /* 1187 * The clock divider is based off the cdclk or PCH rawclk, and would 1188 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1189 * divide by 2000 and use that 1190 */ 1191 if (dig_port->aux_ch == AUX_CH_A) 1192 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000); 1193 else 1194 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1195 } 1196 1197 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1198 { 1199 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1200 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1201 1202 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1203 /* Workaround for non-ULT HSW */ 1204 switch (index) { 1205 case 0: return 63; 1206 case 1: return 72; 1207 default: return 0; 1208 } 1209 } 1210 1211 return ilk_get_aux_clock_divider(intel_dp, index); 1212 } 1213 1214 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1215 { 1216 /* 1217 * SKL doesn't need us to program the AUX clock divider (Hardware will 1218 * derive the clock from CDCLK automatically). We still implement the 1219 * get_aux_clock_divider vfunc to plug-in into the existing code. 1220 */ 1221 return index ? 0 : 1; 1222 } 1223 1224 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1225 int send_bytes, 1226 u32 aux_clock_divider) 1227 { 1228 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1229 struct drm_i915_private *dev_priv = 1230 to_i915(intel_dig_port->base.base.dev); 1231 u32 precharge, timeout; 1232 1233 if (IS_GEN(dev_priv, 6)) 1234 precharge = 3; 1235 else 1236 precharge = 5; 1237 1238 if (IS_BROADWELL(dev_priv)) 1239 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1240 else 1241 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1242 1243 return DP_AUX_CH_CTL_SEND_BUSY | 1244 DP_AUX_CH_CTL_DONE | 1245 DP_AUX_CH_CTL_INTERRUPT | 1246 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1247 timeout | 1248 DP_AUX_CH_CTL_RECEIVE_ERROR | 1249 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1250 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1251 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1252 } 1253 1254 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1255 int send_bytes, 1256 u32 unused) 1257 { 1258 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1259 u32 ret; 1260 1261 ret = DP_AUX_CH_CTL_SEND_BUSY | 1262 DP_AUX_CH_CTL_DONE | 1263 DP_AUX_CH_CTL_INTERRUPT | 1264 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1265 DP_AUX_CH_CTL_TIME_OUT_MAX | 1266 DP_AUX_CH_CTL_RECEIVE_ERROR | 1267 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1268 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1269 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1270 1271 if (intel_dig_port->tc_mode == TC_PORT_TBT_ALT) 1272 ret |= DP_AUX_CH_CTL_TBT_IO; 1273 1274 return ret; 1275 } 1276 1277 static int 1278 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1279 const u8 *send, int send_bytes, 1280 u8 *recv, int recv_size, 1281 u32 aux_send_ctl_flags) 1282 { 1283 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1284 struct drm_i915_private *i915 = 1285 to_i915(intel_dig_port->base.base.dev); 1286 struct intel_uncore *uncore = &i915->uncore; 1287 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1288 bool is_tc_port = intel_phy_is_tc(i915, phy); 1289 i915_reg_t ch_ctl, ch_data[5]; 1290 u32 aux_clock_divider; 1291 enum intel_display_power_domain aux_domain = 1292 intel_aux_power_domain(intel_dig_port); 1293 intel_wakeref_t aux_wakeref; 1294 intel_wakeref_t pps_wakeref; 1295 int i, ret, recv_bytes; 1296 int try, clock = 0; 1297 u32 status; 1298 bool vdd; 1299 1300 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1301 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1302 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1303 1304 if (is_tc_port) 1305 intel_tc_port_lock(intel_dig_port); 1306 1307 aux_wakeref = intel_display_power_get(i915, aux_domain); 1308 pps_wakeref = pps_lock(intel_dp); 1309 1310 /* 1311 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1312 * In such cases we want to leave VDD enabled and it's up to upper layers 1313 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1314 * ourselves. 1315 */ 1316 vdd = edp_panel_vdd_on(intel_dp); 1317 1318 /* dp aux is extremely sensitive to irq latency, hence request the 1319 * lowest possible wakeup latency and so prevent the cpu from going into 1320 * deep sleep states. 1321 */ 1322 pm_qos_update_request(&i915->pm_qos, 0); 1323 1324 intel_dp_check_edp(intel_dp); 1325 1326 /* Try to wait for any previous AUX channel activity */ 1327 for (try = 0; try < 3; try++) { 1328 status = intel_uncore_read_notrace(uncore, ch_ctl); 1329 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1330 break; 1331 msleep(1); 1332 } 1333 /* just trace the final value */ 1334 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1335 1336 if (try == 3) { 1337 static u32 last_status = -1; 1338 const u32 status = intel_uncore_read(uncore, ch_ctl); 1339 1340 if (status != last_status) { 1341 WARN(1, "dp_aux_ch not started status 0x%08x\n", 1342 status); 1343 last_status = status; 1344 } 1345 1346 ret = -EBUSY; 1347 goto out; 1348 } 1349 1350 /* Only 5 data registers! */ 1351 if (WARN_ON(send_bytes > 20 || recv_size > 20)) { 1352 ret = -E2BIG; 1353 goto out; 1354 } 1355 1356 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1357 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1358 send_bytes, 1359 aux_clock_divider); 1360 1361 send_ctl |= aux_send_ctl_flags; 1362 1363 /* Must try at least 3 times according to DP spec */ 1364 for (try = 0; try < 5; try++) { 1365 /* Load the send data into the aux channel data registers */ 1366 for (i = 0; i < send_bytes; i += 4) 1367 intel_uncore_write(uncore, 1368 ch_data[i >> 2], 1369 intel_dp_pack_aux(send + i, 1370 send_bytes - i)); 1371 1372 /* Send the command and wait for it to complete */ 1373 intel_uncore_write(uncore, ch_ctl, send_ctl); 1374 1375 status = intel_dp_aux_wait_done(intel_dp); 1376 1377 /* Clear done status and any errors */ 1378 intel_uncore_write(uncore, 1379 ch_ctl, 1380 status | 1381 DP_AUX_CH_CTL_DONE | 1382 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1383 DP_AUX_CH_CTL_RECEIVE_ERROR); 1384 1385 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1386 * 400us delay required for errors and timeouts 1387 * Timeout errors from the HW already meet this 1388 * requirement so skip to next iteration 1389 */ 1390 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1391 continue; 1392 1393 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1394 usleep_range(400, 500); 1395 continue; 1396 } 1397 if (status & DP_AUX_CH_CTL_DONE) 1398 goto done; 1399 } 1400 } 1401 1402 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1403 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); 1404 ret = -EBUSY; 1405 goto out; 1406 } 1407 1408 done: 1409 /* Check for timeout or receive error. 1410 * Timeouts occur when the sink is not connected 1411 */ 1412 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1413 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); 1414 ret = -EIO; 1415 goto out; 1416 } 1417 1418 /* Timeouts occur when the device isn't connected, so they're 1419 * "normal" -- don't fill the kernel log with these */ 1420 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1421 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); 1422 ret = -ETIMEDOUT; 1423 goto out; 1424 } 1425 1426 /* Unload any bytes sent back from the other side */ 1427 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1428 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1429 1430 /* 1431 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1432 * We have no idea of what happened so we return -EBUSY so 1433 * drm layer takes care for the necessary retries. 1434 */ 1435 if (recv_bytes == 0 || recv_bytes > 20) { 1436 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n", 1437 recv_bytes); 1438 ret = -EBUSY; 1439 goto out; 1440 } 1441 1442 if (recv_bytes > recv_size) 1443 recv_bytes = recv_size; 1444 1445 for (i = 0; i < recv_bytes; i += 4) 1446 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1447 recv + i, recv_bytes - i); 1448 1449 ret = recv_bytes; 1450 out: 1451 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1452 1453 if (vdd) 1454 edp_panel_vdd_off(intel_dp, false); 1455 1456 pps_unlock(intel_dp, pps_wakeref); 1457 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1458 1459 if (is_tc_port) 1460 intel_tc_port_unlock(intel_dig_port); 1461 1462 return ret; 1463 } 1464 1465 #define BARE_ADDRESS_SIZE 3 1466 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1467 1468 static void 1469 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1470 const struct drm_dp_aux_msg *msg) 1471 { 1472 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1473 txbuf[1] = (msg->address >> 8) & 0xff; 1474 txbuf[2] = msg->address & 0xff; 1475 txbuf[3] = msg->size - 1; 1476 } 1477 1478 static ssize_t 1479 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1480 { 1481 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1482 u8 txbuf[20], rxbuf[20]; 1483 size_t txsize, rxsize; 1484 int ret; 1485 1486 intel_dp_aux_header(txbuf, msg); 1487 1488 switch (msg->request & ~DP_AUX_I2C_MOT) { 1489 case DP_AUX_NATIVE_WRITE: 1490 case DP_AUX_I2C_WRITE: 1491 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1492 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1493 rxsize = 2; /* 0 or 1 data bytes */ 1494 1495 if (WARN_ON(txsize > 20)) 1496 return -E2BIG; 1497 1498 WARN_ON(!msg->buffer != !msg->size); 1499 1500 if (msg->buffer) 1501 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1502 1503 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1504 rxbuf, rxsize, 0); 1505 if (ret > 0) { 1506 msg->reply = rxbuf[0] >> 4; 1507 1508 if (ret > 1) { 1509 /* Number of bytes written in a short write. */ 1510 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1511 } else { 1512 /* Return payload size. */ 1513 ret = msg->size; 1514 } 1515 } 1516 break; 1517 1518 case DP_AUX_NATIVE_READ: 1519 case DP_AUX_I2C_READ: 1520 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1521 rxsize = msg->size + 1; 1522 1523 if (WARN_ON(rxsize > 20)) 1524 return -E2BIG; 1525 1526 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1527 rxbuf, rxsize, 0); 1528 if (ret > 0) { 1529 msg->reply = rxbuf[0] >> 4; 1530 /* 1531 * Assume happy day, and copy the data. The caller is 1532 * expected to check msg->reply before touching it. 1533 * 1534 * Return payload size. 1535 */ 1536 ret--; 1537 memcpy(msg->buffer, rxbuf + 1, ret); 1538 } 1539 break; 1540 1541 default: 1542 ret = -EINVAL; 1543 break; 1544 } 1545 1546 return ret; 1547 } 1548 1549 1550 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1551 { 1552 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1553 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1554 enum aux_ch aux_ch = dig_port->aux_ch; 1555 1556 switch (aux_ch) { 1557 case AUX_CH_B: 1558 case AUX_CH_C: 1559 case AUX_CH_D: 1560 return DP_AUX_CH_CTL(aux_ch); 1561 default: 1562 MISSING_CASE(aux_ch); 1563 return DP_AUX_CH_CTL(AUX_CH_B); 1564 } 1565 } 1566 1567 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1568 { 1569 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1570 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1571 enum aux_ch aux_ch = dig_port->aux_ch; 1572 1573 switch (aux_ch) { 1574 case AUX_CH_B: 1575 case AUX_CH_C: 1576 case AUX_CH_D: 1577 return DP_AUX_CH_DATA(aux_ch, index); 1578 default: 1579 MISSING_CASE(aux_ch); 1580 return DP_AUX_CH_DATA(AUX_CH_B, index); 1581 } 1582 } 1583 1584 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1585 { 1586 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1587 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1588 enum aux_ch aux_ch = dig_port->aux_ch; 1589 1590 switch (aux_ch) { 1591 case AUX_CH_A: 1592 return DP_AUX_CH_CTL(aux_ch); 1593 case AUX_CH_B: 1594 case AUX_CH_C: 1595 case AUX_CH_D: 1596 return PCH_DP_AUX_CH_CTL(aux_ch); 1597 default: 1598 MISSING_CASE(aux_ch); 1599 return DP_AUX_CH_CTL(AUX_CH_A); 1600 } 1601 } 1602 1603 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1604 { 1605 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1606 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1607 enum aux_ch aux_ch = dig_port->aux_ch; 1608 1609 switch (aux_ch) { 1610 case AUX_CH_A: 1611 return DP_AUX_CH_DATA(aux_ch, index); 1612 case AUX_CH_B: 1613 case AUX_CH_C: 1614 case AUX_CH_D: 1615 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1616 default: 1617 MISSING_CASE(aux_ch); 1618 return DP_AUX_CH_DATA(AUX_CH_A, index); 1619 } 1620 } 1621 1622 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1623 { 1624 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1625 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1626 enum aux_ch aux_ch = dig_port->aux_ch; 1627 1628 switch (aux_ch) { 1629 case AUX_CH_A: 1630 case AUX_CH_B: 1631 case AUX_CH_C: 1632 case AUX_CH_D: 1633 case AUX_CH_E: 1634 case AUX_CH_F: 1635 return DP_AUX_CH_CTL(aux_ch); 1636 default: 1637 MISSING_CASE(aux_ch); 1638 return DP_AUX_CH_CTL(AUX_CH_A); 1639 } 1640 } 1641 1642 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1643 { 1644 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1645 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1646 enum aux_ch aux_ch = dig_port->aux_ch; 1647 1648 switch (aux_ch) { 1649 case AUX_CH_A: 1650 case AUX_CH_B: 1651 case AUX_CH_C: 1652 case AUX_CH_D: 1653 case AUX_CH_E: 1654 case AUX_CH_F: 1655 return DP_AUX_CH_DATA(aux_ch, index); 1656 default: 1657 MISSING_CASE(aux_ch); 1658 return DP_AUX_CH_DATA(AUX_CH_A, index); 1659 } 1660 } 1661 1662 static void 1663 intel_dp_aux_fini(struct intel_dp *intel_dp) 1664 { 1665 kfree(intel_dp->aux.name); 1666 } 1667 1668 static void 1669 intel_dp_aux_init(struct intel_dp *intel_dp) 1670 { 1671 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1672 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1673 struct intel_encoder *encoder = &dig_port->base; 1674 1675 if (INTEL_GEN(dev_priv) >= 9) { 1676 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1677 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1678 } else if (HAS_PCH_SPLIT(dev_priv)) { 1679 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1680 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1681 } else { 1682 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1683 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1684 } 1685 1686 if (INTEL_GEN(dev_priv) >= 9) 1687 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1688 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1689 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1690 else if (HAS_PCH_SPLIT(dev_priv)) 1691 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1692 else 1693 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1694 1695 if (INTEL_GEN(dev_priv) >= 9) 1696 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1697 else 1698 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1699 1700 drm_dp_aux_init(&intel_dp->aux); 1701 1702 /* Failure to allocate our preferred name is not critical */ 1703 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", 1704 port_name(encoder->port)); 1705 intel_dp->aux.transfer = intel_dp_aux_transfer; 1706 } 1707 1708 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1709 { 1710 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1711 1712 return max_rate >= 540000; 1713 } 1714 1715 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1716 { 1717 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1718 1719 return max_rate >= 810000; 1720 } 1721 1722 static void 1723 intel_dp_set_clock(struct intel_encoder *encoder, 1724 struct intel_crtc_state *pipe_config) 1725 { 1726 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1727 const struct dp_link_dpll *divisor = NULL; 1728 int i, count = 0; 1729 1730 if (IS_G4X(dev_priv)) { 1731 divisor = g4x_dpll; 1732 count = ARRAY_SIZE(g4x_dpll); 1733 } else if (HAS_PCH_SPLIT(dev_priv)) { 1734 divisor = pch_dpll; 1735 count = ARRAY_SIZE(pch_dpll); 1736 } else if (IS_CHERRYVIEW(dev_priv)) { 1737 divisor = chv_dpll; 1738 count = ARRAY_SIZE(chv_dpll); 1739 } else if (IS_VALLEYVIEW(dev_priv)) { 1740 divisor = vlv_dpll; 1741 count = ARRAY_SIZE(vlv_dpll); 1742 } 1743 1744 if (divisor && count) { 1745 for (i = 0; i < count; i++) { 1746 if (pipe_config->port_clock == divisor[i].clock) { 1747 pipe_config->dpll = divisor[i].dpll; 1748 pipe_config->clock_set = true; 1749 break; 1750 } 1751 } 1752 } 1753 } 1754 1755 static void snprintf_int_array(char *str, size_t len, 1756 const int *array, int nelem) 1757 { 1758 int i; 1759 1760 str[0] = '\0'; 1761 1762 for (i = 0; i < nelem; i++) { 1763 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1764 if (r >= len) 1765 return; 1766 str += r; 1767 len -= r; 1768 } 1769 } 1770 1771 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1772 { 1773 char str[128]; /* FIXME: too big for stack? */ 1774 1775 if ((drm_debug & DRM_UT_KMS) == 0) 1776 return; 1777 1778 snprintf_int_array(str, sizeof(str), 1779 intel_dp->source_rates, intel_dp->num_source_rates); 1780 DRM_DEBUG_KMS("source rates: %s\n", str); 1781 1782 snprintf_int_array(str, sizeof(str), 1783 intel_dp->sink_rates, intel_dp->num_sink_rates); 1784 DRM_DEBUG_KMS("sink rates: %s\n", str); 1785 1786 snprintf_int_array(str, sizeof(str), 1787 intel_dp->common_rates, intel_dp->num_common_rates); 1788 DRM_DEBUG_KMS("common rates: %s\n", str); 1789 } 1790 1791 int 1792 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1793 { 1794 int len; 1795 1796 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1797 if (WARN_ON(len <= 0)) 1798 return 162000; 1799 1800 return intel_dp->common_rates[len - 1]; 1801 } 1802 1803 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1804 { 1805 int i = intel_dp_rate_index(intel_dp->sink_rates, 1806 intel_dp->num_sink_rates, rate); 1807 1808 if (WARN_ON(i < 0)) 1809 i = 0; 1810 1811 return i; 1812 } 1813 1814 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1815 u8 *link_bw, u8 *rate_select) 1816 { 1817 /* eDP 1.4 rate select method. */ 1818 if (intel_dp->use_rate_select) { 1819 *link_bw = 0; 1820 *rate_select = 1821 intel_dp_rate_select(intel_dp, port_clock); 1822 } else { 1823 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1824 *rate_select = 0; 1825 } 1826 } 1827 1828 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1829 const struct intel_crtc_state *pipe_config) 1830 { 1831 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1832 1833 return INTEL_GEN(dev_priv) >= 11 && 1834 pipe_config->cpu_transcoder != TRANSCODER_A; 1835 } 1836 1837 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1838 const struct intel_crtc_state *pipe_config) 1839 { 1840 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1841 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1842 } 1843 1844 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp, 1845 const struct intel_crtc_state *pipe_config) 1846 { 1847 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1848 1849 return INTEL_GEN(dev_priv) >= 10 && 1850 pipe_config->cpu_transcoder != TRANSCODER_A; 1851 } 1852 1853 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1854 const struct intel_crtc_state *pipe_config) 1855 { 1856 if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable) 1857 return false; 1858 1859 return intel_dp_source_supports_dsc(intel_dp, pipe_config) && 1860 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1861 } 1862 1863 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1864 struct intel_crtc_state *pipe_config) 1865 { 1866 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1867 struct intel_connector *intel_connector = intel_dp->attached_connector; 1868 int bpp, bpc; 1869 1870 bpp = pipe_config->pipe_bpp; 1871 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1872 1873 if (bpc > 0) 1874 bpp = min(bpp, 3*bpc); 1875 1876 if (intel_dp_is_edp(intel_dp)) { 1877 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1878 if (intel_connector->base.display_info.bpc == 0 && 1879 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1880 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", 1881 dev_priv->vbt.edp.bpp); 1882 bpp = dev_priv->vbt.edp.bpp; 1883 } 1884 } 1885 1886 return bpp; 1887 } 1888 1889 /* Adjust link config limits based on compliance test requests. */ 1890 void 1891 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1892 struct intel_crtc_state *pipe_config, 1893 struct link_config_limits *limits) 1894 { 1895 /* For DP Compliance we override the computed bpp for the pipe */ 1896 if (intel_dp->compliance.test_data.bpc != 0) { 1897 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1898 1899 limits->min_bpp = limits->max_bpp = bpp; 1900 pipe_config->dither_force_disable = bpp == 6 * 3; 1901 1902 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); 1903 } 1904 1905 /* Use values requested by Compliance Test Request */ 1906 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 1907 int index; 1908 1909 /* Validate the compliance test data since max values 1910 * might have changed due to link train fallback. 1911 */ 1912 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 1913 intel_dp->compliance.test_lane_count)) { 1914 index = intel_dp_rate_index(intel_dp->common_rates, 1915 intel_dp->num_common_rates, 1916 intel_dp->compliance.test_link_rate); 1917 if (index >= 0) 1918 limits->min_clock = limits->max_clock = index; 1919 limits->min_lane_count = limits->max_lane_count = 1920 intel_dp->compliance.test_lane_count; 1921 } 1922 } 1923 } 1924 1925 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 1926 { 1927 /* 1928 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1929 * format of the number of bytes per pixel will be half the number 1930 * of bytes of RGB pixel. 1931 */ 1932 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1933 bpp /= 2; 1934 1935 return bpp; 1936 } 1937 1938 /* Optimize link config in order: max bpp, min clock, min lanes */ 1939 static int 1940 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 1941 struct intel_crtc_state *pipe_config, 1942 const struct link_config_limits *limits) 1943 { 1944 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 1945 int bpp, clock, lane_count; 1946 int mode_rate, link_clock, link_avail; 1947 1948 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 1949 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 1950 1951 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 1952 output_bpp); 1953 1954 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 1955 for (lane_count = limits->min_lane_count; 1956 lane_count <= limits->max_lane_count; 1957 lane_count <<= 1) { 1958 link_clock = intel_dp->common_rates[clock]; 1959 link_avail = intel_dp_max_data_rate(link_clock, 1960 lane_count); 1961 1962 if (mode_rate <= link_avail) { 1963 pipe_config->lane_count = lane_count; 1964 pipe_config->pipe_bpp = bpp; 1965 pipe_config->port_clock = link_clock; 1966 1967 return 0; 1968 } 1969 } 1970 } 1971 } 1972 1973 return -EINVAL; 1974 } 1975 1976 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 1977 { 1978 int i, num_bpc; 1979 u8 dsc_bpc[3] = {0}; 1980 1981 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 1982 dsc_bpc); 1983 for (i = 0; i < num_bpc; i++) { 1984 if (dsc_max_bpc >= dsc_bpc[i]) 1985 return dsc_bpc[i] * 3; 1986 } 1987 1988 return 0; 1989 } 1990 1991 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 1992 struct intel_crtc_state *pipe_config, 1993 struct drm_connector_state *conn_state, 1994 struct link_config_limits *limits) 1995 { 1996 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1997 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 1998 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 1999 u8 dsc_max_bpc; 2000 int pipe_bpp; 2001 int ret; 2002 2003 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2004 intel_dp_supports_fec(intel_dp, pipe_config); 2005 2006 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2007 return -EINVAL; 2008 2009 dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC, 2010 conn_state->max_requested_bpc); 2011 2012 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2013 if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) { 2014 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n"); 2015 return -EINVAL; 2016 } 2017 2018 /* 2019 * For now enable DSC for max bpp, max link rate, max lane count. 2020 * Optimize this later for the minimum possible link rate/lane count 2021 * with DSC enabled for the requested mode. 2022 */ 2023 pipe_config->pipe_bpp = pipe_bpp; 2024 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2025 pipe_config->lane_count = limits->max_lane_count; 2026 2027 if (intel_dp_is_edp(intel_dp)) { 2028 pipe_config->dsc_params.compressed_bpp = 2029 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2030 pipe_config->pipe_bpp); 2031 pipe_config->dsc_params.slice_count = 2032 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2033 true); 2034 } else { 2035 u16 dsc_max_output_bpp; 2036 u8 dsc_dp_slice_count; 2037 2038 dsc_max_output_bpp = 2039 intel_dp_dsc_get_output_bpp(pipe_config->port_clock, 2040 pipe_config->lane_count, 2041 adjusted_mode->crtc_clock, 2042 adjusted_mode->crtc_hdisplay); 2043 dsc_dp_slice_count = 2044 intel_dp_dsc_get_slice_count(intel_dp, 2045 adjusted_mode->crtc_clock, 2046 adjusted_mode->crtc_hdisplay); 2047 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2048 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n"); 2049 return -EINVAL; 2050 } 2051 pipe_config->dsc_params.compressed_bpp = min_t(u16, 2052 dsc_max_output_bpp >> 4, 2053 pipe_config->pipe_bpp); 2054 pipe_config->dsc_params.slice_count = dsc_dp_slice_count; 2055 } 2056 /* 2057 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2058 * is greater than the maximum Cdclock and if slice count is even 2059 * then we need to use 2 VDSC instances. 2060 */ 2061 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 2062 if (pipe_config->dsc_params.slice_count > 1) { 2063 pipe_config->dsc_params.dsc_split = true; 2064 } else { 2065 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n"); 2066 return -EINVAL; 2067 } 2068 } 2069 2070 ret = intel_dp_compute_dsc_params(intel_dp, pipe_config); 2071 if (ret < 0) { 2072 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d " 2073 "Compressed BPP = %d\n", 2074 pipe_config->pipe_bpp, 2075 pipe_config->dsc_params.compressed_bpp); 2076 return ret; 2077 } 2078 2079 pipe_config->dsc_params.compression_enable = true; 2080 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d " 2081 "Compressed Bpp = %d Slice Count = %d\n", 2082 pipe_config->pipe_bpp, 2083 pipe_config->dsc_params.compressed_bpp, 2084 pipe_config->dsc_params.slice_count); 2085 2086 return 0; 2087 } 2088 2089 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2090 { 2091 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2092 return 6 * 3; 2093 else 2094 return 8 * 3; 2095 } 2096 2097 static int 2098 intel_dp_compute_link_config(struct intel_encoder *encoder, 2099 struct intel_crtc_state *pipe_config, 2100 struct drm_connector_state *conn_state) 2101 { 2102 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2103 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2104 struct link_config_limits limits; 2105 int common_len; 2106 int ret; 2107 2108 common_len = intel_dp_common_len_rate_limit(intel_dp, 2109 intel_dp->max_link_rate); 2110 2111 /* No common link rates between source and sink */ 2112 WARN_ON(common_len <= 0); 2113 2114 limits.min_clock = 0; 2115 limits.max_clock = common_len - 1; 2116 2117 limits.min_lane_count = 1; 2118 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2119 2120 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2121 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2122 2123 if (intel_dp_is_edp(intel_dp)) { 2124 /* 2125 * Use the maximum clock and number of lanes the eDP panel 2126 * advertizes being capable of. The panels are generally 2127 * designed to support only a single clock and lane 2128 * configuration, and typically these values correspond to the 2129 * native resolution of the panel. 2130 */ 2131 limits.min_lane_count = limits.max_lane_count; 2132 limits.min_clock = limits.max_clock; 2133 } 2134 2135 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2136 2137 DRM_DEBUG_KMS("DP link computation with max lane count %i " 2138 "max rate %d max bpp %d pixel clock %iKHz\n", 2139 limits.max_lane_count, 2140 intel_dp->common_rates[limits.max_clock], 2141 limits.max_bpp, adjusted_mode->crtc_clock); 2142 2143 /* 2144 * Optimize for slow and wide. This is the place to add alternative 2145 * optimization policy. 2146 */ 2147 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2148 2149 /* enable compression if the mode doesn't fit available BW */ 2150 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en); 2151 if (ret || intel_dp->force_dsc_en) { 2152 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2153 conn_state, &limits); 2154 if (ret < 0) 2155 return ret; 2156 } 2157 2158 if (pipe_config->dsc_params.compression_enable) { 2159 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2160 pipe_config->lane_count, pipe_config->port_clock, 2161 pipe_config->pipe_bpp, 2162 pipe_config->dsc_params.compressed_bpp); 2163 2164 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2165 intel_dp_link_required(adjusted_mode->crtc_clock, 2166 pipe_config->dsc_params.compressed_bpp), 2167 intel_dp_max_data_rate(pipe_config->port_clock, 2168 pipe_config->lane_count)); 2169 } else { 2170 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", 2171 pipe_config->lane_count, pipe_config->port_clock, 2172 pipe_config->pipe_bpp); 2173 2174 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2175 intel_dp_link_required(adjusted_mode->crtc_clock, 2176 pipe_config->pipe_bpp), 2177 intel_dp_max_data_rate(pipe_config->port_clock, 2178 pipe_config->lane_count)); 2179 } 2180 return 0; 2181 } 2182 2183 static int 2184 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2185 struct drm_connector *connector, 2186 struct intel_crtc_state *crtc_state) 2187 { 2188 const struct drm_display_info *info = &connector->display_info; 2189 const struct drm_display_mode *adjusted_mode = 2190 &crtc_state->base.adjusted_mode; 2191 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 2192 int ret; 2193 2194 if (!drm_mode_is_420_only(info, adjusted_mode) || 2195 !intel_dp_get_colorimetry_status(intel_dp) || 2196 !connector->ycbcr_420_allowed) 2197 return 0; 2198 2199 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2200 2201 /* YCBCR 420 output conversion needs a scaler */ 2202 ret = skl_update_scaler_crtc(crtc_state); 2203 if (ret) { 2204 DRM_DEBUG_KMS("Scaler allocation for output failed\n"); 2205 return ret; 2206 } 2207 2208 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN); 2209 2210 return 0; 2211 } 2212 2213 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2214 const struct drm_connector_state *conn_state) 2215 { 2216 const struct intel_digital_connector_state *intel_conn_state = 2217 to_intel_digital_connector_state(conn_state); 2218 const struct drm_display_mode *adjusted_mode = 2219 &crtc_state->base.adjusted_mode; 2220 2221 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2222 /* 2223 * See: 2224 * CEA-861-E - 5.1 Default Encoding Parameters 2225 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2226 */ 2227 return crtc_state->pipe_bpp != 18 && 2228 drm_default_rgb_quant_range(adjusted_mode) == 2229 HDMI_QUANTIZATION_RANGE_LIMITED; 2230 } else { 2231 return intel_conn_state->broadcast_rgb == 2232 INTEL_BROADCAST_RGB_LIMITED; 2233 } 2234 } 2235 2236 int 2237 intel_dp_compute_config(struct intel_encoder *encoder, 2238 struct intel_crtc_state *pipe_config, 2239 struct drm_connector_state *conn_state) 2240 { 2241 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2242 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2243 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2244 struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base); 2245 enum port port = encoder->port; 2246 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); 2247 struct intel_connector *intel_connector = intel_dp->attached_connector; 2248 struct intel_digital_connector_state *intel_conn_state = 2249 to_intel_digital_connector_state(conn_state); 2250 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 2251 DP_DPCD_QUIRK_CONSTANT_N); 2252 int ret = 0, output_bpp; 2253 2254 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2255 pipe_config->has_pch_encoder = true; 2256 2257 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2258 if (lspcon->active) 2259 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2260 else 2261 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base, 2262 pipe_config); 2263 2264 if (ret) 2265 return ret; 2266 2267 pipe_config->has_drrs = false; 2268 if (IS_G4X(dev_priv) || port == PORT_A) 2269 pipe_config->has_audio = false; 2270 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2271 pipe_config->has_audio = intel_dp->has_audio; 2272 else 2273 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2274 2275 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2276 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2277 adjusted_mode); 2278 2279 if (INTEL_GEN(dev_priv) >= 9) { 2280 ret = skl_update_scaler_crtc(pipe_config); 2281 if (ret) 2282 return ret; 2283 } 2284 2285 if (HAS_GMCH(dev_priv)) 2286 intel_gmch_panel_fitting(intel_crtc, pipe_config, 2287 conn_state->scaling_mode); 2288 else 2289 intel_pch_panel_fitting(intel_crtc, pipe_config, 2290 conn_state->scaling_mode); 2291 } 2292 2293 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2294 return -EINVAL; 2295 2296 if (HAS_GMCH(dev_priv) && 2297 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2298 return -EINVAL; 2299 2300 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2301 return -EINVAL; 2302 2303 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2304 if (ret < 0) 2305 return ret; 2306 2307 pipe_config->limited_color_range = 2308 intel_dp_limited_color_range(pipe_config, conn_state); 2309 2310 if (pipe_config->dsc_params.compression_enable) 2311 output_bpp = pipe_config->dsc_params.compressed_bpp; 2312 else 2313 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2314 2315 intel_link_compute_m_n(output_bpp, 2316 pipe_config->lane_count, 2317 adjusted_mode->crtc_clock, 2318 pipe_config->port_clock, 2319 &pipe_config->dp_m_n, 2320 constant_n, pipe_config->fec_enable); 2321 2322 if (intel_connector->panel.downclock_mode != NULL && 2323 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2324 pipe_config->has_drrs = true; 2325 intel_link_compute_m_n(output_bpp, 2326 pipe_config->lane_count, 2327 intel_connector->panel.downclock_mode->clock, 2328 pipe_config->port_clock, 2329 &pipe_config->dp_m2_n2, 2330 constant_n, pipe_config->fec_enable); 2331 } 2332 2333 if (!HAS_DDI(dev_priv)) 2334 intel_dp_set_clock(encoder, pipe_config); 2335 2336 intel_psr_compute_config(intel_dp, pipe_config); 2337 2338 return 0; 2339 } 2340 2341 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2342 int link_rate, u8 lane_count, 2343 bool link_mst) 2344 { 2345 intel_dp->link_trained = false; 2346 intel_dp->link_rate = link_rate; 2347 intel_dp->lane_count = lane_count; 2348 intel_dp->link_mst = link_mst; 2349 } 2350 2351 static void intel_dp_prepare(struct intel_encoder *encoder, 2352 const struct intel_crtc_state *pipe_config) 2353 { 2354 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2355 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 2356 enum port port = encoder->port; 2357 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 2358 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 2359 2360 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2361 pipe_config->lane_count, 2362 intel_crtc_has_type(pipe_config, 2363 INTEL_OUTPUT_DP_MST)); 2364 2365 /* 2366 * There are four kinds of DP registers: 2367 * 2368 * IBX PCH 2369 * SNB CPU 2370 * IVB CPU 2371 * CPT PCH 2372 * 2373 * IBX PCH and CPU are the same for almost everything, 2374 * except that the CPU DP PLL is configured in this 2375 * register 2376 * 2377 * CPT PCH is quite different, having many bits moved 2378 * to the TRANS_DP_CTL register instead. That 2379 * configuration happens (oddly) in ironlake_pch_enable 2380 */ 2381 2382 /* Preserve the BIOS-computed detected bit. This is 2383 * supposed to be read-only. 2384 */ 2385 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 2386 2387 /* Handle DP bits in common between all three register formats */ 2388 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2389 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2390 2391 /* Split out the IBX/CPU vs CPT settings */ 2392 2393 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2394 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2395 intel_dp->DP |= DP_SYNC_HS_HIGH; 2396 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2397 intel_dp->DP |= DP_SYNC_VS_HIGH; 2398 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2399 2400 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2401 intel_dp->DP |= DP_ENHANCED_FRAMING; 2402 2403 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2404 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2405 u32 trans_dp; 2406 2407 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2408 2409 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 2410 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2411 trans_dp |= TRANS_DP_ENH_FRAMING; 2412 else 2413 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2414 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); 2415 } else { 2416 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2417 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2418 2419 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2420 intel_dp->DP |= DP_SYNC_HS_HIGH; 2421 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2422 intel_dp->DP |= DP_SYNC_VS_HIGH; 2423 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2424 2425 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2426 intel_dp->DP |= DP_ENHANCED_FRAMING; 2427 2428 if (IS_CHERRYVIEW(dev_priv)) 2429 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2430 else 2431 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2432 } 2433 } 2434 2435 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2436 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2437 2438 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2439 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2440 2441 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2442 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2443 2444 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2445 2446 static void wait_panel_status(struct intel_dp *intel_dp, 2447 u32 mask, 2448 u32 value) 2449 { 2450 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2451 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2452 2453 lockdep_assert_held(&dev_priv->pps_mutex); 2454 2455 intel_pps_verify_state(intel_dp); 2456 2457 pp_stat_reg = _pp_stat_reg(intel_dp); 2458 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2459 2460 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", 2461 mask, value, 2462 I915_READ(pp_stat_reg), 2463 I915_READ(pp_ctrl_reg)); 2464 2465 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2466 mask, value, 5000)) 2467 DRM_ERROR("Panel status timeout: status %08x control %08x\n", 2468 I915_READ(pp_stat_reg), 2469 I915_READ(pp_ctrl_reg)); 2470 2471 DRM_DEBUG_KMS("Wait complete\n"); 2472 } 2473 2474 static void wait_panel_on(struct intel_dp *intel_dp) 2475 { 2476 DRM_DEBUG_KMS("Wait for panel power on\n"); 2477 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2478 } 2479 2480 static void wait_panel_off(struct intel_dp *intel_dp) 2481 { 2482 DRM_DEBUG_KMS("Wait for panel power off time\n"); 2483 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2484 } 2485 2486 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2487 { 2488 ktime_t panel_power_on_time; 2489 s64 panel_power_off_duration; 2490 2491 DRM_DEBUG_KMS("Wait for panel power cycle\n"); 2492 2493 /* take the difference of currrent time and panel power off time 2494 * and then make panel wait for t11_t12 if needed. */ 2495 panel_power_on_time = ktime_get_boottime(); 2496 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2497 2498 /* When we disable the VDD override bit last we have to do the manual 2499 * wait. */ 2500 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2501 wait_remaining_ms_from_jiffies(jiffies, 2502 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2503 2504 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2505 } 2506 2507 static void wait_backlight_on(struct intel_dp *intel_dp) 2508 { 2509 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2510 intel_dp->backlight_on_delay); 2511 } 2512 2513 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2514 { 2515 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2516 intel_dp->backlight_off_delay); 2517 } 2518 2519 /* Read the current pp_control value, unlocking the register if it 2520 * is locked 2521 */ 2522 2523 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) 2524 { 2525 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2526 u32 control; 2527 2528 lockdep_assert_held(&dev_priv->pps_mutex); 2529 2530 control = I915_READ(_pp_ctrl_reg(intel_dp)); 2531 if (WARN_ON(!HAS_DDI(dev_priv) && 2532 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2533 control &= ~PANEL_UNLOCK_MASK; 2534 control |= PANEL_UNLOCK_REGS; 2535 } 2536 return control; 2537 } 2538 2539 /* 2540 * Must be paired with edp_panel_vdd_off(). 2541 * Must hold pps_mutex around the whole on/off sequence. 2542 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2543 */ 2544 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2545 { 2546 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2547 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2548 u32 pp; 2549 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2550 bool need_to_disable = !intel_dp->want_panel_vdd; 2551 2552 lockdep_assert_held(&dev_priv->pps_mutex); 2553 2554 if (!intel_dp_is_edp(intel_dp)) 2555 return false; 2556 2557 cancel_delayed_work(&intel_dp->panel_vdd_work); 2558 intel_dp->want_panel_vdd = true; 2559 2560 if (edp_have_panel_vdd(intel_dp)) 2561 return need_to_disable; 2562 2563 intel_display_power_get(dev_priv, 2564 intel_aux_power_domain(intel_dig_port)); 2565 2566 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n", 2567 port_name(intel_dig_port->base.port)); 2568 2569 if (!edp_have_panel_power(intel_dp)) 2570 wait_panel_power_cycle(intel_dp); 2571 2572 pp = ironlake_get_pp_control(intel_dp); 2573 pp |= EDP_FORCE_VDD; 2574 2575 pp_stat_reg = _pp_stat_reg(intel_dp); 2576 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2577 2578 I915_WRITE(pp_ctrl_reg, pp); 2579 POSTING_READ(pp_ctrl_reg); 2580 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2581 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2582 /* 2583 * If the panel wasn't on, delay before accessing aux channel 2584 */ 2585 if (!edp_have_panel_power(intel_dp)) { 2586 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n", 2587 port_name(intel_dig_port->base.port)); 2588 msleep(intel_dp->panel_power_up_delay); 2589 } 2590 2591 return need_to_disable; 2592 } 2593 2594 /* 2595 * Must be paired with intel_edp_panel_vdd_off() or 2596 * intel_edp_panel_off(). 2597 * Nested calls to these functions are not allowed since 2598 * we drop the lock. Caller must use some higher level 2599 * locking to prevent nested calls from other threads. 2600 */ 2601 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2602 { 2603 intel_wakeref_t wakeref; 2604 bool vdd; 2605 2606 if (!intel_dp_is_edp(intel_dp)) 2607 return; 2608 2609 vdd = false; 2610 with_pps_lock(intel_dp, wakeref) 2611 vdd = edp_panel_vdd_on(intel_dp); 2612 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n", 2613 port_name(dp_to_dig_port(intel_dp)->base.port)); 2614 } 2615 2616 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2617 { 2618 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2619 struct intel_digital_port *intel_dig_port = 2620 dp_to_dig_port(intel_dp); 2621 u32 pp; 2622 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2623 2624 lockdep_assert_held(&dev_priv->pps_mutex); 2625 2626 WARN_ON(intel_dp->want_panel_vdd); 2627 2628 if (!edp_have_panel_vdd(intel_dp)) 2629 return; 2630 2631 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n", 2632 port_name(intel_dig_port->base.port)); 2633 2634 pp = ironlake_get_pp_control(intel_dp); 2635 pp &= ~EDP_FORCE_VDD; 2636 2637 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2638 pp_stat_reg = _pp_stat_reg(intel_dp); 2639 2640 I915_WRITE(pp_ctrl_reg, pp); 2641 POSTING_READ(pp_ctrl_reg); 2642 2643 /* Make sure sequencer is idle before allowing subsequent activity */ 2644 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2645 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2646 2647 if ((pp & PANEL_POWER_ON) == 0) 2648 intel_dp->panel_power_off_time = ktime_get_boottime(); 2649 2650 intel_display_power_put_unchecked(dev_priv, 2651 intel_aux_power_domain(intel_dig_port)); 2652 } 2653 2654 static void edp_panel_vdd_work(struct work_struct *__work) 2655 { 2656 struct intel_dp *intel_dp = 2657 container_of(to_delayed_work(__work), 2658 struct intel_dp, panel_vdd_work); 2659 intel_wakeref_t wakeref; 2660 2661 with_pps_lock(intel_dp, wakeref) { 2662 if (!intel_dp->want_panel_vdd) 2663 edp_panel_vdd_off_sync(intel_dp); 2664 } 2665 } 2666 2667 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 2668 { 2669 unsigned long delay; 2670 2671 /* 2672 * Queue the timer to fire a long time from now (relative to the power 2673 * down delay) to keep the panel power up across a sequence of 2674 * operations. 2675 */ 2676 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 2677 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 2678 } 2679 2680 /* 2681 * Must be paired with edp_panel_vdd_on(). 2682 * Must hold pps_mutex around the whole on/off sequence. 2683 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2684 */ 2685 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 2686 { 2687 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2688 2689 lockdep_assert_held(&dev_priv->pps_mutex); 2690 2691 if (!intel_dp_is_edp(intel_dp)) 2692 return; 2693 2694 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on", 2695 port_name(dp_to_dig_port(intel_dp)->base.port)); 2696 2697 intel_dp->want_panel_vdd = false; 2698 2699 if (sync) 2700 edp_panel_vdd_off_sync(intel_dp); 2701 else 2702 edp_panel_vdd_schedule_off(intel_dp); 2703 } 2704 2705 static void edp_panel_on(struct intel_dp *intel_dp) 2706 { 2707 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2708 u32 pp; 2709 i915_reg_t pp_ctrl_reg; 2710 2711 lockdep_assert_held(&dev_priv->pps_mutex); 2712 2713 if (!intel_dp_is_edp(intel_dp)) 2714 return; 2715 2716 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n", 2717 port_name(dp_to_dig_port(intel_dp)->base.port)); 2718 2719 if (WARN(edp_have_panel_power(intel_dp), 2720 "eDP port %c panel power already on\n", 2721 port_name(dp_to_dig_port(intel_dp)->base.port))) 2722 return; 2723 2724 wait_panel_power_cycle(intel_dp); 2725 2726 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2727 pp = ironlake_get_pp_control(intel_dp); 2728 if (IS_GEN(dev_priv, 5)) { 2729 /* ILK workaround: disable reset around power sequence */ 2730 pp &= ~PANEL_POWER_RESET; 2731 I915_WRITE(pp_ctrl_reg, pp); 2732 POSTING_READ(pp_ctrl_reg); 2733 } 2734 2735 pp |= PANEL_POWER_ON; 2736 if (!IS_GEN(dev_priv, 5)) 2737 pp |= PANEL_POWER_RESET; 2738 2739 I915_WRITE(pp_ctrl_reg, pp); 2740 POSTING_READ(pp_ctrl_reg); 2741 2742 wait_panel_on(intel_dp); 2743 intel_dp->last_power_on = jiffies; 2744 2745 if (IS_GEN(dev_priv, 5)) { 2746 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 2747 I915_WRITE(pp_ctrl_reg, pp); 2748 POSTING_READ(pp_ctrl_reg); 2749 } 2750 } 2751 2752 void intel_edp_panel_on(struct intel_dp *intel_dp) 2753 { 2754 intel_wakeref_t wakeref; 2755 2756 if (!intel_dp_is_edp(intel_dp)) 2757 return; 2758 2759 with_pps_lock(intel_dp, wakeref) 2760 edp_panel_on(intel_dp); 2761 } 2762 2763 2764 static void edp_panel_off(struct intel_dp *intel_dp) 2765 { 2766 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2767 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2768 u32 pp; 2769 i915_reg_t pp_ctrl_reg; 2770 2771 lockdep_assert_held(&dev_priv->pps_mutex); 2772 2773 if (!intel_dp_is_edp(intel_dp)) 2774 return; 2775 2776 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n", 2777 port_name(dig_port->base.port)); 2778 2779 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n", 2780 port_name(dig_port->base.port)); 2781 2782 pp = ironlake_get_pp_control(intel_dp); 2783 /* We need to switch off panel power _and_ force vdd, for otherwise some 2784 * panels get very unhappy and cease to work. */ 2785 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 2786 EDP_BLC_ENABLE); 2787 2788 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2789 2790 intel_dp->want_panel_vdd = false; 2791 2792 I915_WRITE(pp_ctrl_reg, pp); 2793 POSTING_READ(pp_ctrl_reg); 2794 2795 wait_panel_off(intel_dp); 2796 intel_dp->panel_power_off_time = ktime_get_boottime(); 2797 2798 /* We got a reference when we enabled the VDD. */ 2799 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 2800 } 2801 2802 void intel_edp_panel_off(struct intel_dp *intel_dp) 2803 { 2804 intel_wakeref_t wakeref; 2805 2806 if (!intel_dp_is_edp(intel_dp)) 2807 return; 2808 2809 with_pps_lock(intel_dp, wakeref) 2810 edp_panel_off(intel_dp); 2811 } 2812 2813 /* Enable backlight in the panel power control. */ 2814 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 2815 { 2816 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2817 intel_wakeref_t wakeref; 2818 2819 /* 2820 * If we enable the backlight right away following a panel power 2821 * on, we may see slight flicker as the panel syncs with the eDP 2822 * link. So delay a bit to make sure the image is solid before 2823 * allowing it to appear. 2824 */ 2825 wait_backlight_on(intel_dp); 2826 2827 with_pps_lock(intel_dp, wakeref) { 2828 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2829 u32 pp; 2830 2831 pp = ironlake_get_pp_control(intel_dp); 2832 pp |= EDP_BLC_ENABLE; 2833 2834 I915_WRITE(pp_ctrl_reg, pp); 2835 POSTING_READ(pp_ctrl_reg); 2836 } 2837 } 2838 2839 /* Enable backlight PWM and backlight PP control. */ 2840 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 2841 const struct drm_connector_state *conn_state) 2842 { 2843 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder); 2844 2845 if (!intel_dp_is_edp(intel_dp)) 2846 return; 2847 2848 DRM_DEBUG_KMS("\n"); 2849 2850 intel_panel_enable_backlight(crtc_state, conn_state); 2851 _intel_edp_backlight_on(intel_dp); 2852 } 2853 2854 /* Disable backlight in the panel power control. */ 2855 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 2856 { 2857 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2858 intel_wakeref_t wakeref; 2859 2860 if (!intel_dp_is_edp(intel_dp)) 2861 return; 2862 2863 with_pps_lock(intel_dp, wakeref) { 2864 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2865 u32 pp; 2866 2867 pp = ironlake_get_pp_control(intel_dp); 2868 pp &= ~EDP_BLC_ENABLE; 2869 2870 I915_WRITE(pp_ctrl_reg, pp); 2871 POSTING_READ(pp_ctrl_reg); 2872 } 2873 2874 intel_dp->last_backlight_off = jiffies; 2875 edp_wait_backlight_off(intel_dp); 2876 } 2877 2878 /* Disable backlight PP control and backlight PWM. */ 2879 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 2880 { 2881 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder); 2882 2883 if (!intel_dp_is_edp(intel_dp)) 2884 return; 2885 2886 DRM_DEBUG_KMS("\n"); 2887 2888 _intel_edp_backlight_off(intel_dp); 2889 intel_panel_disable_backlight(old_conn_state); 2890 } 2891 2892 /* 2893 * Hook for controlling the panel power control backlight through the bl_power 2894 * sysfs attribute. Take care to handle multiple calls. 2895 */ 2896 static void intel_edp_backlight_power(struct intel_connector *connector, 2897 bool enable) 2898 { 2899 struct intel_dp *intel_dp = intel_attached_dp(&connector->base); 2900 intel_wakeref_t wakeref; 2901 bool is_enabled; 2902 2903 is_enabled = false; 2904 with_pps_lock(intel_dp, wakeref) 2905 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 2906 if (is_enabled == enable) 2907 return; 2908 2909 DRM_DEBUG_KMS("panel power control backlight %s\n", 2910 enable ? "enable" : "disable"); 2911 2912 if (enable) 2913 _intel_edp_backlight_on(intel_dp); 2914 else 2915 _intel_edp_backlight_off(intel_dp); 2916 } 2917 2918 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 2919 { 2920 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2921 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2922 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN; 2923 2924 I915_STATE_WARN(cur_state != state, 2925 "DP port %c state assertion failure (expected %s, current %s)\n", 2926 port_name(dig_port->base.port), 2927 onoff(state), onoff(cur_state)); 2928 } 2929 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 2930 2931 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 2932 { 2933 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE; 2934 2935 I915_STATE_WARN(cur_state != state, 2936 "eDP PLL state assertion failure (expected %s, current %s)\n", 2937 onoff(state), onoff(cur_state)); 2938 } 2939 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 2940 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 2941 2942 static void ironlake_edp_pll_on(struct intel_dp *intel_dp, 2943 const struct intel_crtc_state *pipe_config) 2944 { 2945 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 2946 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2947 2948 assert_pipe_disabled(dev_priv, crtc->pipe); 2949 assert_dp_port_disabled(intel_dp); 2950 assert_edp_pll_disabled(dev_priv); 2951 2952 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n", 2953 pipe_config->port_clock); 2954 2955 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 2956 2957 if (pipe_config->port_clock == 162000) 2958 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 2959 else 2960 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 2961 2962 I915_WRITE(DP_A, intel_dp->DP); 2963 POSTING_READ(DP_A); 2964 udelay(500); 2965 2966 /* 2967 * [DevILK] Work around required when enabling DP PLL 2968 * while a pipe is enabled going to FDI: 2969 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 2970 * 2. Program DP PLL enable 2971 */ 2972 if (IS_GEN(dev_priv, 5)) 2973 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 2974 2975 intel_dp->DP |= DP_PLL_ENABLE; 2976 2977 I915_WRITE(DP_A, intel_dp->DP); 2978 POSTING_READ(DP_A); 2979 udelay(200); 2980 } 2981 2982 static void ironlake_edp_pll_off(struct intel_dp *intel_dp, 2983 const struct intel_crtc_state *old_crtc_state) 2984 { 2985 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 2986 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2987 2988 assert_pipe_disabled(dev_priv, crtc->pipe); 2989 assert_dp_port_disabled(intel_dp); 2990 assert_edp_pll_enabled(dev_priv); 2991 2992 DRM_DEBUG_KMS("disabling eDP PLL\n"); 2993 2994 intel_dp->DP &= ~DP_PLL_ENABLE; 2995 2996 I915_WRITE(DP_A, intel_dp->DP); 2997 POSTING_READ(DP_A); 2998 udelay(200); 2999 } 3000 3001 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3002 { 3003 /* 3004 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3005 * be capable of signalling downstream hpd with a long pulse. 3006 * Whether or not that means D3 is safe to use is not clear, 3007 * but let's assume so until proven otherwise. 3008 * 3009 * FIXME should really check all downstream ports... 3010 */ 3011 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3012 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 3013 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3014 } 3015 3016 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3017 const struct intel_crtc_state *crtc_state, 3018 bool enable) 3019 { 3020 int ret; 3021 3022 if (!crtc_state->dsc_params.compression_enable) 3023 return; 3024 3025 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3026 enable ? DP_DECOMPRESSION_EN : 0); 3027 if (ret < 0) 3028 DRM_DEBUG_KMS("Failed to %s sink decompression state\n", 3029 enable ? "enable" : "disable"); 3030 } 3031 3032 /* If the sink supports it, try to set the power state appropriately */ 3033 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 3034 { 3035 int ret, i; 3036 3037 /* Should have a valid DPCD by this point */ 3038 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3039 return; 3040 3041 if (mode != DRM_MODE_DPMS_ON) { 3042 if (downstream_hpd_needs_d0(intel_dp)) 3043 return; 3044 3045 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3046 DP_SET_POWER_D3); 3047 } else { 3048 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3049 3050 /* 3051 * When turning on, we need to retry for 1ms to give the sink 3052 * time to wake up. 3053 */ 3054 for (i = 0; i < 3; i++) { 3055 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3056 DP_SET_POWER_D0); 3057 if (ret == 1) 3058 break; 3059 msleep(1); 3060 } 3061 3062 if (ret == 1 && lspcon->active) 3063 lspcon_wait_pcon_mode(lspcon); 3064 } 3065 3066 if (ret != 1) 3067 DRM_DEBUG_KMS("failed to %s sink power state\n", 3068 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 3069 } 3070 3071 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3072 enum port port, enum pipe *pipe) 3073 { 3074 enum pipe p; 3075 3076 for_each_pipe(dev_priv, p) { 3077 u32 val = I915_READ(TRANS_DP_CTL(p)); 3078 3079 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3080 *pipe = p; 3081 return true; 3082 } 3083 } 3084 3085 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port)); 3086 3087 /* must initialize pipe to something for the asserts */ 3088 *pipe = PIPE_A; 3089 3090 return false; 3091 } 3092 3093 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3094 i915_reg_t dp_reg, enum port port, 3095 enum pipe *pipe) 3096 { 3097 bool ret; 3098 u32 val; 3099 3100 val = I915_READ(dp_reg); 3101 3102 ret = val & DP_PORT_EN; 3103 3104 /* asserts want to know the pipe even if the port is disabled */ 3105 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3106 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3107 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3108 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3109 else if (IS_CHERRYVIEW(dev_priv)) 3110 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3111 else 3112 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3113 3114 return ret; 3115 } 3116 3117 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3118 enum pipe *pipe) 3119 { 3120 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3121 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3122 intel_wakeref_t wakeref; 3123 bool ret; 3124 3125 wakeref = intel_display_power_get_if_enabled(dev_priv, 3126 encoder->power_domain); 3127 if (!wakeref) 3128 return false; 3129 3130 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3131 encoder->port, pipe); 3132 3133 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3134 3135 return ret; 3136 } 3137 3138 static void intel_dp_get_config(struct intel_encoder *encoder, 3139 struct intel_crtc_state *pipe_config) 3140 { 3141 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3142 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3143 u32 tmp, flags = 0; 3144 enum port port = encoder->port; 3145 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3146 3147 if (encoder->type == INTEL_OUTPUT_EDP) 3148 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3149 else 3150 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3151 3152 tmp = I915_READ(intel_dp->output_reg); 3153 3154 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3155 3156 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3157 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 3158 3159 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3160 flags |= DRM_MODE_FLAG_PHSYNC; 3161 else 3162 flags |= DRM_MODE_FLAG_NHSYNC; 3163 3164 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3165 flags |= DRM_MODE_FLAG_PVSYNC; 3166 else 3167 flags |= DRM_MODE_FLAG_NVSYNC; 3168 } else { 3169 if (tmp & DP_SYNC_HS_HIGH) 3170 flags |= DRM_MODE_FLAG_PHSYNC; 3171 else 3172 flags |= DRM_MODE_FLAG_NHSYNC; 3173 3174 if (tmp & DP_SYNC_VS_HIGH) 3175 flags |= DRM_MODE_FLAG_PVSYNC; 3176 else 3177 flags |= DRM_MODE_FLAG_NVSYNC; 3178 } 3179 3180 pipe_config->base.adjusted_mode.flags |= flags; 3181 3182 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3183 pipe_config->limited_color_range = true; 3184 3185 pipe_config->lane_count = 3186 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3187 3188 intel_dp_get_m_n(crtc, pipe_config); 3189 3190 if (port == PORT_A) { 3191 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3192 pipe_config->port_clock = 162000; 3193 else 3194 pipe_config->port_clock = 270000; 3195 } 3196 3197 pipe_config->base.adjusted_mode.crtc_clock = 3198 intel_dotclock_calculate(pipe_config->port_clock, 3199 &pipe_config->dp_m_n); 3200 3201 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3202 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3203 /* 3204 * This is a big fat ugly hack. 3205 * 3206 * Some machines in UEFI boot mode provide us a VBT that has 18 3207 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3208 * unknown we fail to light up. Yet the same BIOS boots up with 3209 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3210 * max, not what it tells us to use. 3211 * 3212 * Note: This will still be broken if the eDP panel is not lit 3213 * up by the BIOS, and thus we can't get the mode at module 3214 * load. 3215 */ 3216 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3217 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3218 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3219 } 3220 } 3221 3222 static void intel_disable_dp(struct intel_encoder *encoder, 3223 const struct intel_crtc_state *old_crtc_state, 3224 const struct drm_connector_state *old_conn_state) 3225 { 3226 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3227 3228 intel_dp->link_trained = false; 3229 3230 if (old_crtc_state->has_audio) 3231 intel_audio_codec_disable(encoder, 3232 old_crtc_state, old_conn_state); 3233 3234 /* Make sure the panel is off before trying to change the mode. But also 3235 * ensure that we have vdd while we switch off the panel. */ 3236 intel_edp_panel_vdd_on(intel_dp); 3237 intel_edp_backlight_off(old_conn_state); 3238 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3239 intel_edp_panel_off(intel_dp); 3240 } 3241 3242 static void g4x_disable_dp(struct intel_encoder *encoder, 3243 const struct intel_crtc_state *old_crtc_state, 3244 const struct drm_connector_state *old_conn_state) 3245 { 3246 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3247 } 3248 3249 static void vlv_disable_dp(struct intel_encoder *encoder, 3250 const struct intel_crtc_state *old_crtc_state, 3251 const struct drm_connector_state *old_conn_state) 3252 { 3253 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3254 } 3255 3256 static void g4x_post_disable_dp(struct intel_encoder *encoder, 3257 const struct intel_crtc_state *old_crtc_state, 3258 const struct drm_connector_state *old_conn_state) 3259 { 3260 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3261 enum port port = encoder->port; 3262 3263 /* 3264 * Bspec does not list a specific disable sequence for g4x DP. 3265 * Follow the ilk+ sequence (disable pipe before the port) for 3266 * g4x DP as it does not suffer from underruns like the normal 3267 * g4x modeset sequence (disable pipe after the port). 3268 */ 3269 intel_dp_link_down(encoder, old_crtc_state); 3270 3271 /* Only ilk+ has port A */ 3272 if (port == PORT_A) 3273 ironlake_edp_pll_off(intel_dp, old_crtc_state); 3274 } 3275 3276 static void vlv_post_disable_dp(struct intel_encoder *encoder, 3277 const struct intel_crtc_state *old_crtc_state, 3278 const struct drm_connector_state *old_conn_state) 3279 { 3280 intel_dp_link_down(encoder, old_crtc_state); 3281 } 3282 3283 static void chv_post_disable_dp(struct intel_encoder *encoder, 3284 const struct intel_crtc_state *old_crtc_state, 3285 const struct drm_connector_state *old_conn_state) 3286 { 3287 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3288 3289 intel_dp_link_down(encoder, old_crtc_state); 3290 3291 vlv_dpio_get(dev_priv); 3292 3293 /* Assert data lane reset */ 3294 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3295 3296 vlv_dpio_put(dev_priv); 3297 } 3298 3299 static void 3300 _intel_dp_set_link_train(struct intel_dp *intel_dp, 3301 u32 *DP, 3302 u8 dp_train_pat) 3303 { 3304 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3305 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3306 enum port port = intel_dig_port->base.port; 3307 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 3308 3309 if (dp_train_pat & train_pat_mask) 3310 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n", 3311 dp_train_pat & train_pat_mask); 3312 3313 if (HAS_DDI(dev_priv)) { 3314 u32 temp = I915_READ(DP_TP_CTL(port)); 3315 3316 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) 3317 temp |= DP_TP_CTL_SCRAMBLE_DISABLE; 3318 else 3319 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; 3320 3321 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3322 switch (dp_train_pat & train_pat_mask) { 3323 case DP_TRAINING_PATTERN_DISABLE: 3324 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; 3325 3326 break; 3327 case DP_TRAINING_PATTERN_1: 3328 temp |= DP_TP_CTL_LINK_TRAIN_PAT1; 3329 break; 3330 case DP_TRAINING_PATTERN_2: 3331 temp |= DP_TP_CTL_LINK_TRAIN_PAT2; 3332 break; 3333 case DP_TRAINING_PATTERN_3: 3334 temp |= DP_TP_CTL_LINK_TRAIN_PAT3; 3335 break; 3336 case DP_TRAINING_PATTERN_4: 3337 temp |= DP_TP_CTL_LINK_TRAIN_PAT4; 3338 break; 3339 } 3340 I915_WRITE(DP_TP_CTL(port), temp); 3341 3342 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3343 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3344 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3345 3346 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3347 case DP_TRAINING_PATTERN_DISABLE: 3348 *DP |= DP_LINK_TRAIN_OFF_CPT; 3349 break; 3350 case DP_TRAINING_PATTERN_1: 3351 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3352 break; 3353 case DP_TRAINING_PATTERN_2: 3354 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3355 break; 3356 case DP_TRAINING_PATTERN_3: 3357 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3358 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3359 break; 3360 } 3361 3362 } else { 3363 *DP &= ~DP_LINK_TRAIN_MASK; 3364 3365 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3366 case DP_TRAINING_PATTERN_DISABLE: 3367 *DP |= DP_LINK_TRAIN_OFF; 3368 break; 3369 case DP_TRAINING_PATTERN_1: 3370 *DP |= DP_LINK_TRAIN_PAT_1; 3371 break; 3372 case DP_TRAINING_PATTERN_2: 3373 *DP |= DP_LINK_TRAIN_PAT_2; 3374 break; 3375 case DP_TRAINING_PATTERN_3: 3376 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3377 *DP |= DP_LINK_TRAIN_PAT_2; 3378 break; 3379 } 3380 } 3381 } 3382 3383 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3384 const struct intel_crtc_state *old_crtc_state) 3385 { 3386 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3387 3388 /* enable with pattern 1 (as per spec) */ 3389 3390 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3391 3392 /* 3393 * Magic for VLV/CHV. We _must_ first set up the register 3394 * without actually enabling the port, and then do another 3395 * write to enable the port. Otherwise link training will 3396 * fail when the power sequencer is freshly used for this port. 3397 */ 3398 intel_dp->DP |= DP_PORT_EN; 3399 if (old_crtc_state->has_audio) 3400 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3401 3402 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3403 POSTING_READ(intel_dp->output_reg); 3404 } 3405 3406 static void intel_enable_dp(struct intel_encoder *encoder, 3407 const struct intel_crtc_state *pipe_config, 3408 const struct drm_connector_state *conn_state) 3409 { 3410 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3411 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3412 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 3413 u32 dp_reg = I915_READ(intel_dp->output_reg); 3414 enum pipe pipe = crtc->pipe; 3415 intel_wakeref_t wakeref; 3416 3417 if (WARN_ON(dp_reg & DP_PORT_EN)) 3418 return; 3419 3420 with_pps_lock(intel_dp, wakeref) { 3421 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3422 vlv_init_panel_power_sequencer(encoder, pipe_config); 3423 3424 intel_dp_enable_port(intel_dp, pipe_config); 3425 3426 edp_panel_vdd_on(intel_dp); 3427 edp_panel_on(intel_dp); 3428 edp_panel_vdd_off(intel_dp, true); 3429 } 3430 3431 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3432 unsigned int lane_mask = 0x0; 3433 3434 if (IS_CHERRYVIEW(dev_priv)) 3435 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3436 3437 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3438 lane_mask); 3439 } 3440 3441 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3442 intel_dp_start_link_train(intel_dp); 3443 intel_dp_stop_link_train(intel_dp); 3444 3445 if (pipe_config->has_audio) { 3446 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", 3447 pipe_name(pipe)); 3448 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3449 } 3450 } 3451 3452 static void g4x_enable_dp(struct intel_encoder *encoder, 3453 const struct intel_crtc_state *pipe_config, 3454 const struct drm_connector_state *conn_state) 3455 { 3456 intel_enable_dp(encoder, pipe_config, conn_state); 3457 intel_edp_backlight_on(pipe_config, conn_state); 3458 } 3459 3460 static void vlv_enable_dp(struct intel_encoder *encoder, 3461 const struct intel_crtc_state *pipe_config, 3462 const struct drm_connector_state *conn_state) 3463 { 3464 intel_edp_backlight_on(pipe_config, conn_state); 3465 } 3466 3467 static void g4x_pre_enable_dp(struct intel_encoder *encoder, 3468 const struct intel_crtc_state *pipe_config, 3469 const struct drm_connector_state *conn_state) 3470 { 3471 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3472 enum port port = encoder->port; 3473 3474 intel_dp_prepare(encoder, pipe_config); 3475 3476 /* Only ilk+ has port A */ 3477 if (port == PORT_A) 3478 ironlake_edp_pll_on(intel_dp, pipe_config); 3479 } 3480 3481 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3482 { 3483 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3484 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3485 enum pipe pipe = intel_dp->pps_pipe; 3486 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3487 3488 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3489 3490 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) 3491 return; 3492 3493 edp_panel_vdd_off_sync(intel_dp); 3494 3495 /* 3496 * VLV seems to get confused when multiple power sequencers 3497 * have the same port selected (even if only one has power/vdd 3498 * enabled). The failure manifests as vlv_wait_port_ready() failing 3499 * CHV on the other hand doesn't seem to mind having the same port 3500 * selected in multiple power sequencers, but let's clear the 3501 * port select always when logically disconnecting a power sequencer 3502 * from a port. 3503 */ 3504 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n", 3505 pipe_name(pipe), port_name(intel_dig_port->base.port)); 3506 I915_WRITE(pp_on_reg, 0); 3507 POSTING_READ(pp_on_reg); 3508 3509 intel_dp->pps_pipe = INVALID_PIPE; 3510 } 3511 3512 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3513 enum pipe pipe) 3514 { 3515 struct intel_encoder *encoder; 3516 3517 lockdep_assert_held(&dev_priv->pps_mutex); 3518 3519 for_each_intel_dp(&dev_priv->drm, encoder) { 3520 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3521 enum port port = encoder->port; 3522 3523 WARN(intel_dp->active_pipe == pipe, 3524 "stealing pipe %c power sequencer from active (e)DP port %c\n", 3525 pipe_name(pipe), port_name(port)); 3526 3527 if (intel_dp->pps_pipe != pipe) 3528 continue; 3529 3530 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n", 3531 pipe_name(pipe), port_name(port)); 3532 3533 /* make sure vdd is off before we steal it */ 3534 vlv_detach_power_sequencer(intel_dp); 3535 } 3536 } 3537 3538 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3539 const struct intel_crtc_state *crtc_state) 3540 { 3541 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3542 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 3543 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 3544 3545 lockdep_assert_held(&dev_priv->pps_mutex); 3546 3547 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3548 3549 if (intel_dp->pps_pipe != INVALID_PIPE && 3550 intel_dp->pps_pipe != crtc->pipe) { 3551 /* 3552 * If another power sequencer was being used on this 3553 * port previously make sure to turn off vdd there while 3554 * we still have control of it. 3555 */ 3556 vlv_detach_power_sequencer(intel_dp); 3557 } 3558 3559 /* 3560 * We may be stealing the power 3561 * sequencer from another port. 3562 */ 3563 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3564 3565 intel_dp->active_pipe = crtc->pipe; 3566 3567 if (!intel_dp_is_edp(intel_dp)) 3568 return; 3569 3570 /* now it's all ours */ 3571 intel_dp->pps_pipe = crtc->pipe; 3572 3573 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n", 3574 pipe_name(intel_dp->pps_pipe), port_name(encoder->port)); 3575 3576 /* init power sequencer on this pipe and port */ 3577 intel_dp_init_panel_power_sequencer(intel_dp); 3578 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3579 } 3580 3581 static void vlv_pre_enable_dp(struct intel_encoder *encoder, 3582 const struct intel_crtc_state *pipe_config, 3583 const struct drm_connector_state *conn_state) 3584 { 3585 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3586 3587 intel_enable_dp(encoder, pipe_config, conn_state); 3588 } 3589 3590 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, 3591 const struct intel_crtc_state *pipe_config, 3592 const struct drm_connector_state *conn_state) 3593 { 3594 intel_dp_prepare(encoder, pipe_config); 3595 3596 vlv_phy_pre_pll_enable(encoder, pipe_config); 3597 } 3598 3599 static void chv_pre_enable_dp(struct intel_encoder *encoder, 3600 const struct intel_crtc_state *pipe_config, 3601 const struct drm_connector_state *conn_state) 3602 { 3603 chv_phy_pre_encoder_enable(encoder, pipe_config); 3604 3605 intel_enable_dp(encoder, pipe_config, conn_state); 3606 3607 /* Second common lane will stay alive on its own now */ 3608 chv_phy_release_cl2_override(encoder); 3609 } 3610 3611 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, 3612 const struct intel_crtc_state *pipe_config, 3613 const struct drm_connector_state *conn_state) 3614 { 3615 intel_dp_prepare(encoder, pipe_config); 3616 3617 chv_phy_pre_pll_enable(encoder, pipe_config); 3618 } 3619 3620 static void chv_dp_post_pll_disable(struct intel_encoder *encoder, 3621 const struct intel_crtc_state *old_crtc_state, 3622 const struct drm_connector_state *old_conn_state) 3623 { 3624 chv_phy_post_pll_disable(encoder, old_crtc_state); 3625 } 3626 3627 /* 3628 * Fetch AUX CH registers 0x202 - 0x207 which contain 3629 * link status information 3630 */ 3631 bool 3632 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3633 { 3634 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 3635 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 3636 } 3637 3638 /* These are source-specific values. */ 3639 u8 3640 intel_dp_voltage_max(struct intel_dp *intel_dp) 3641 { 3642 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3643 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3644 enum port port = encoder->port; 3645 3646 if (HAS_DDI(dev_priv)) 3647 return intel_ddi_dp_voltage_max(encoder); 3648 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3649 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3650 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3651 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3652 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3653 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3654 else 3655 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3656 } 3657 3658 u8 3659 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) 3660 { 3661 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3662 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3663 enum port port = encoder->port; 3664 3665 if (HAS_DDI(dev_priv)) { 3666 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); 3667 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3668 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3669 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3670 return DP_TRAIN_PRE_EMPH_LEVEL_3; 3671 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3672 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3673 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3674 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3675 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3676 default: 3677 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3678 } 3679 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3680 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3681 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3682 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3683 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3684 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3685 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3686 default: 3687 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3688 } 3689 } else { 3690 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3691 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3692 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3693 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3694 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3695 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3696 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3697 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3698 default: 3699 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3700 } 3701 } 3702 } 3703 3704 static u32 vlv_signal_levels(struct intel_dp *intel_dp) 3705 { 3706 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3707 unsigned long demph_reg_value, preemph_reg_value, 3708 uniqtranscale_reg_value; 3709 u8 train_set = intel_dp->train_set[0]; 3710 3711 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3712 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3713 preemph_reg_value = 0x0004000; 3714 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3715 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3716 demph_reg_value = 0x2B405555; 3717 uniqtranscale_reg_value = 0x552AB83A; 3718 break; 3719 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3720 demph_reg_value = 0x2B404040; 3721 uniqtranscale_reg_value = 0x5548B83A; 3722 break; 3723 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3724 demph_reg_value = 0x2B245555; 3725 uniqtranscale_reg_value = 0x5560B83A; 3726 break; 3727 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3728 demph_reg_value = 0x2B405555; 3729 uniqtranscale_reg_value = 0x5598DA3A; 3730 break; 3731 default: 3732 return 0; 3733 } 3734 break; 3735 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3736 preemph_reg_value = 0x0002000; 3737 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3738 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3739 demph_reg_value = 0x2B404040; 3740 uniqtranscale_reg_value = 0x5552B83A; 3741 break; 3742 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3743 demph_reg_value = 0x2B404848; 3744 uniqtranscale_reg_value = 0x5580B83A; 3745 break; 3746 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3747 demph_reg_value = 0x2B404040; 3748 uniqtranscale_reg_value = 0x55ADDA3A; 3749 break; 3750 default: 3751 return 0; 3752 } 3753 break; 3754 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3755 preemph_reg_value = 0x0000000; 3756 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3757 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3758 demph_reg_value = 0x2B305555; 3759 uniqtranscale_reg_value = 0x5570B83A; 3760 break; 3761 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3762 demph_reg_value = 0x2B2B4040; 3763 uniqtranscale_reg_value = 0x55ADDA3A; 3764 break; 3765 default: 3766 return 0; 3767 } 3768 break; 3769 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3770 preemph_reg_value = 0x0006000; 3771 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3772 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3773 demph_reg_value = 0x1B405555; 3774 uniqtranscale_reg_value = 0x55ADDA3A; 3775 break; 3776 default: 3777 return 0; 3778 } 3779 break; 3780 default: 3781 return 0; 3782 } 3783 3784 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 3785 uniqtranscale_reg_value, 0); 3786 3787 return 0; 3788 } 3789 3790 static u32 chv_signal_levels(struct intel_dp *intel_dp) 3791 { 3792 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3793 u32 deemph_reg_value, margin_reg_value; 3794 bool uniq_trans_scale = false; 3795 u8 train_set = intel_dp->train_set[0]; 3796 3797 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3798 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3799 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3800 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3801 deemph_reg_value = 128; 3802 margin_reg_value = 52; 3803 break; 3804 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3805 deemph_reg_value = 128; 3806 margin_reg_value = 77; 3807 break; 3808 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3809 deemph_reg_value = 128; 3810 margin_reg_value = 102; 3811 break; 3812 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3813 deemph_reg_value = 128; 3814 margin_reg_value = 154; 3815 uniq_trans_scale = true; 3816 break; 3817 default: 3818 return 0; 3819 } 3820 break; 3821 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3822 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3823 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3824 deemph_reg_value = 85; 3825 margin_reg_value = 78; 3826 break; 3827 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3828 deemph_reg_value = 85; 3829 margin_reg_value = 116; 3830 break; 3831 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3832 deemph_reg_value = 85; 3833 margin_reg_value = 154; 3834 break; 3835 default: 3836 return 0; 3837 } 3838 break; 3839 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3840 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3841 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3842 deemph_reg_value = 64; 3843 margin_reg_value = 104; 3844 break; 3845 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3846 deemph_reg_value = 64; 3847 margin_reg_value = 154; 3848 break; 3849 default: 3850 return 0; 3851 } 3852 break; 3853 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3854 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3855 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3856 deemph_reg_value = 43; 3857 margin_reg_value = 154; 3858 break; 3859 default: 3860 return 0; 3861 } 3862 break; 3863 default: 3864 return 0; 3865 } 3866 3867 chv_set_phy_signal_level(encoder, deemph_reg_value, 3868 margin_reg_value, uniq_trans_scale); 3869 3870 return 0; 3871 } 3872 3873 static u32 3874 g4x_signal_levels(u8 train_set) 3875 { 3876 u32 signal_levels = 0; 3877 3878 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3879 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3880 default: 3881 signal_levels |= DP_VOLTAGE_0_4; 3882 break; 3883 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3884 signal_levels |= DP_VOLTAGE_0_6; 3885 break; 3886 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3887 signal_levels |= DP_VOLTAGE_0_8; 3888 break; 3889 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3890 signal_levels |= DP_VOLTAGE_1_2; 3891 break; 3892 } 3893 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3894 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3895 default: 3896 signal_levels |= DP_PRE_EMPHASIS_0; 3897 break; 3898 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3899 signal_levels |= DP_PRE_EMPHASIS_3_5; 3900 break; 3901 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3902 signal_levels |= DP_PRE_EMPHASIS_6; 3903 break; 3904 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3905 signal_levels |= DP_PRE_EMPHASIS_9_5; 3906 break; 3907 } 3908 return signal_levels; 3909 } 3910 3911 /* SNB CPU eDP voltage swing and pre-emphasis control */ 3912 static u32 3913 snb_cpu_edp_signal_levels(u8 train_set) 3914 { 3915 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 3916 DP_TRAIN_PRE_EMPHASIS_MASK); 3917 switch (signal_levels) { 3918 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3919 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3920 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 3921 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3922 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 3923 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3924 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3925 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 3926 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3927 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3928 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 3929 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3930 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3931 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 3932 default: 3933 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 3934 "0x%x\n", signal_levels); 3935 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 3936 } 3937 } 3938 3939 /* IVB CPU eDP voltage swing and pre-emphasis control */ 3940 static u32 3941 ivb_cpu_edp_signal_levels(u8 train_set) 3942 { 3943 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 3944 DP_TRAIN_PRE_EMPHASIS_MASK); 3945 switch (signal_levels) { 3946 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3947 return EDP_LINK_TRAIN_400MV_0DB_IVB; 3948 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3949 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 3950 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 3951 return EDP_LINK_TRAIN_400MV_6DB_IVB; 3952 3953 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3954 return EDP_LINK_TRAIN_600MV_0DB_IVB; 3955 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3956 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 3957 3958 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 3959 return EDP_LINK_TRAIN_800MV_0DB_IVB; 3960 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 3961 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 3962 3963 default: 3964 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 3965 "0x%x\n", signal_levels); 3966 return EDP_LINK_TRAIN_500MV_0DB_IVB; 3967 } 3968 } 3969 3970 void 3971 intel_dp_set_signal_levels(struct intel_dp *intel_dp) 3972 { 3973 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3974 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3975 enum port port = intel_dig_port->base.port; 3976 u32 signal_levels, mask = 0; 3977 u8 train_set = intel_dp->train_set[0]; 3978 3979 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) { 3980 signal_levels = bxt_signal_levels(intel_dp); 3981 } else if (HAS_DDI(dev_priv)) { 3982 signal_levels = ddi_signal_levels(intel_dp); 3983 mask = DDI_BUF_EMP_MASK; 3984 } else if (IS_CHERRYVIEW(dev_priv)) { 3985 signal_levels = chv_signal_levels(intel_dp); 3986 } else if (IS_VALLEYVIEW(dev_priv)) { 3987 signal_levels = vlv_signal_levels(intel_dp); 3988 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3989 signal_levels = ivb_cpu_edp_signal_levels(train_set); 3990 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 3991 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) { 3992 signal_levels = snb_cpu_edp_signal_levels(train_set); 3993 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 3994 } else { 3995 signal_levels = g4x_signal_levels(train_set); 3996 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; 3997 } 3998 3999 if (mask) 4000 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); 4001 4002 DRM_DEBUG_KMS("Using vswing level %d\n", 4003 train_set & DP_TRAIN_VOLTAGE_SWING_MASK); 4004 DRM_DEBUG_KMS("Using pre-emphasis level %d\n", 4005 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4006 DP_TRAIN_PRE_EMPHASIS_SHIFT); 4007 4008 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; 4009 4010 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4011 POSTING_READ(intel_dp->output_reg); 4012 } 4013 4014 void 4015 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4016 u8 dp_train_pat) 4017 { 4018 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4019 struct drm_i915_private *dev_priv = 4020 to_i915(intel_dig_port->base.base.dev); 4021 4022 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); 4023 4024 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4025 POSTING_READ(intel_dp->output_reg); 4026 } 4027 4028 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 4029 { 4030 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4031 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4032 enum port port = intel_dig_port->base.port; 4033 u32 val; 4034 4035 if (!HAS_DDI(dev_priv)) 4036 return; 4037 4038 val = I915_READ(DP_TP_CTL(port)); 4039 val &= ~DP_TP_CTL_LINK_TRAIN_MASK; 4040 val |= DP_TP_CTL_LINK_TRAIN_IDLE; 4041 I915_WRITE(DP_TP_CTL(port), val); 4042 4043 /* 4044 * On PORT_A we can have only eDP in SST mode. There the only reason 4045 * we need to set idle transmission mode is to work around a HW issue 4046 * where we enable the pipe while not in idle link-training mode. 4047 * In this case there is requirement to wait for a minimum number of 4048 * idle patterns to be sent. 4049 */ 4050 if (port == PORT_A) 4051 return; 4052 4053 if (intel_de_wait_for_set(dev_priv, DP_TP_STATUS(port), 4054 DP_TP_STATUS_IDLE_DONE, 1)) 4055 DRM_ERROR("Timed out waiting for DP idle patterns\n"); 4056 } 4057 4058 static void 4059 intel_dp_link_down(struct intel_encoder *encoder, 4060 const struct intel_crtc_state *old_crtc_state) 4061 { 4062 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4063 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 4064 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 4065 enum port port = encoder->port; 4066 u32 DP = intel_dp->DP; 4067 4068 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) 4069 return; 4070 4071 DRM_DEBUG_KMS("\n"); 4072 4073 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4074 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4075 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4076 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4077 } else { 4078 DP &= ~DP_LINK_TRAIN_MASK; 4079 DP |= DP_LINK_TRAIN_PAT_IDLE; 4080 } 4081 I915_WRITE(intel_dp->output_reg, DP); 4082 POSTING_READ(intel_dp->output_reg); 4083 4084 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4085 I915_WRITE(intel_dp->output_reg, DP); 4086 POSTING_READ(intel_dp->output_reg); 4087 4088 /* 4089 * HW workaround for IBX, we need to move the port 4090 * to transcoder A after disabling it to allow the 4091 * matching HDMI port to be enabled on transcoder A. 4092 */ 4093 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4094 /* 4095 * We get CPU/PCH FIFO underruns on the other pipe when 4096 * doing the workaround. Sweep them under the rug. 4097 */ 4098 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4099 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4100 4101 /* always enable with pattern 1 (as per spec) */ 4102 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4103 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4104 DP_LINK_TRAIN_PAT_1; 4105 I915_WRITE(intel_dp->output_reg, DP); 4106 POSTING_READ(intel_dp->output_reg); 4107 4108 DP &= ~DP_PORT_EN; 4109 I915_WRITE(intel_dp->output_reg, DP); 4110 POSTING_READ(intel_dp->output_reg); 4111 4112 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4113 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4114 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4115 } 4116 4117 msleep(intel_dp->panel_power_down_delay); 4118 4119 intel_dp->DP = DP; 4120 4121 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4122 intel_wakeref_t wakeref; 4123 4124 with_pps_lock(intel_dp, wakeref) 4125 intel_dp->active_pipe = INVALID_PIPE; 4126 } 4127 } 4128 4129 static void 4130 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4131 { 4132 u8 dpcd_ext[6]; 4133 4134 /* 4135 * Prior to DP1.3 the bit represented by 4136 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4137 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4138 * the true capability of the panel. The only way to check is to 4139 * then compare 0000h and 2200h. 4140 */ 4141 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4142 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4143 return; 4144 4145 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4146 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4147 DRM_ERROR("DPCD failed read at extended capabilities\n"); 4148 return; 4149 } 4150 4151 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4152 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n"); 4153 return; 4154 } 4155 4156 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4157 return; 4158 4159 DRM_DEBUG_KMS("Base DPCD: %*ph\n", 4160 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4161 4162 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4163 } 4164 4165 bool 4166 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4167 { 4168 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4169 sizeof(intel_dp->dpcd)) < 0) 4170 return false; /* aux transfer failed */ 4171 4172 intel_dp_extended_receiver_capabilities(intel_dp); 4173 4174 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); 4175 4176 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4177 } 4178 4179 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4180 { 4181 u8 dprx = 0; 4182 4183 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4184 &dprx) != 1) 4185 return false; 4186 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4187 } 4188 4189 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4190 { 4191 /* 4192 * Clear the cached register set to avoid using stale values 4193 * for the sinks that do not support DSC. 4194 */ 4195 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4196 4197 /* Clear fec_capable to avoid using stale values */ 4198 intel_dp->fec_capable = 0; 4199 4200 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4201 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4202 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4203 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4204 intel_dp->dsc_dpcd, 4205 sizeof(intel_dp->dsc_dpcd)) < 0) 4206 DRM_ERROR("Failed to read DPCD register 0x%x\n", 4207 DP_DSC_SUPPORT); 4208 4209 DRM_DEBUG_KMS("DSC DPCD: %*ph\n", 4210 (int)sizeof(intel_dp->dsc_dpcd), 4211 intel_dp->dsc_dpcd); 4212 4213 /* FEC is supported only on DP 1.4 */ 4214 if (!intel_dp_is_edp(intel_dp) && 4215 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4216 &intel_dp->fec_capable) < 0) 4217 DRM_ERROR("Failed to read FEC DPCD register\n"); 4218 4219 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable); 4220 } 4221 } 4222 4223 static bool 4224 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4225 { 4226 struct drm_i915_private *dev_priv = 4227 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4228 4229 /* this function is meant to be called only once */ 4230 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0); 4231 4232 if (!intel_dp_read_dpcd(intel_dp)) 4233 return false; 4234 4235 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4236 drm_dp_is_branch(intel_dp->dpcd)); 4237 4238 /* 4239 * Read the eDP display control registers. 4240 * 4241 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4242 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4243 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4244 * method). The display control registers should read zero if they're 4245 * not supported anyway. 4246 */ 4247 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4248 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4249 sizeof(intel_dp->edp_dpcd)) 4250 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd), 4251 intel_dp->edp_dpcd); 4252 4253 /* 4254 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4255 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4256 */ 4257 intel_psr_init_dpcd(intel_dp); 4258 4259 /* Read the eDP 1.4+ supported link rates. */ 4260 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4261 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4262 int i; 4263 4264 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4265 sink_rates, sizeof(sink_rates)); 4266 4267 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4268 int val = le16_to_cpu(sink_rates[i]); 4269 4270 if (val == 0) 4271 break; 4272 4273 /* Value read multiplied by 200kHz gives the per-lane 4274 * link rate in kHz. The source rates are, however, 4275 * stored in terms of LS_Clk kHz. The full conversion 4276 * back to symbols is 4277 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4278 */ 4279 intel_dp->sink_rates[i] = (val * 200) / 10; 4280 } 4281 intel_dp->num_sink_rates = i; 4282 } 4283 4284 /* 4285 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4286 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4287 */ 4288 if (intel_dp->num_sink_rates) 4289 intel_dp->use_rate_select = true; 4290 else 4291 intel_dp_set_sink_rates(intel_dp); 4292 4293 intel_dp_set_common_rates(intel_dp); 4294 4295 /* Read the eDP DSC DPCD registers */ 4296 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4297 intel_dp_get_dsc_sink_cap(intel_dp); 4298 4299 return true; 4300 } 4301 4302 4303 static bool 4304 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4305 { 4306 if (!intel_dp_read_dpcd(intel_dp)) 4307 return false; 4308 4309 /* 4310 * Don't clobber cached eDP rates. Also skip re-reading 4311 * the OUI/ID since we know it won't change. 4312 */ 4313 if (!intel_dp_is_edp(intel_dp)) { 4314 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4315 drm_dp_is_branch(intel_dp->dpcd)); 4316 4317 intel_dp_set_sink_rates(intel_dp); 4318 intel_dp_set_common_rates(intel_dp); 4319 } 4320 4321 /* 4322 * Some eDP panels do not set a valid value for sink count, that is why 4323 * it don't care about read it here and in intel_edp_init_dpcd(). 4324 */ 4325 if (!intel_dp_is_edp(intel_dp) && 4326 !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) { 4327 u8 count; 4328 ssize_t r; 4329 4330 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4331 if (r < 1) 4332 return false; 4333 4334 /* 4335 * Sink count can change between short pulse hpd hence 4336 * a member variable in intel_dp will track any changes 4337 * between short pulse interrupts. 4338 */ 4339 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4340 4341 /* 4342 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4343 * a dongle is present but no display. Unless we require to know 4344 * if a dongle is present or not, we don't need to update 4345 * downstream port information. So, an early return here saves 4346 * time from performing other operations which are not required. 4347 */ 4348 if (!intel_dp->sink_count) 4349 return false; 4350 } 4351 4352 if (!drm_dp_is_branch(intel_dp->dpcd)) 4353 return true; /* native DP sink */ 4354 4355 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4356 return true; /* no per-port downstream info */ 4357 4358 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4359 intel_dp->downstream_ports, 4360 DP_MAX_DOWNSTREAM_PORTS) < 0) 4361 return false; /* downstream port status fetch failed */ 4362 4363 return true; 4364 } 4365 4366 static bool 4367 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4368 { 4369 u8 mstm_cap; 4370 4371 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4372 return false; 4373 4374 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4375 return false; 4376 4377 return mstm_cap & DP_MST_CAP; 4378 } 4379 4380 static bool 4381 intel_dp_can_mst(struct intel_dp *intel_dp) 4382 { 4383 return i915_modparams.enable_dp_mst && 4384 intel_dp->can_mst && 4385 intel_dp_sink_can_mst(intel_dp); 4386 } 4387 4388 static void 4389 intel_dp_configure_mst(struct intel_dp *intel_dp) 4390 { 4391 struct intel_encoder *encoder = 4392 &dp_to_dig_port(intel_dp)->base; 4393 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4394 4395 DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n", 4396 port_name(encoder->port), yesno(intel_dp->can_mst), 4397 yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst)); 4398 4399 if (!intel_dp->can_mst) 4400 return; 4401 4402 intel_dp->is_mst = sink_can_mst && 4403 i915_modparams.enable_dp_mst; 4404 4405 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4406 intel_dp->is_mst); 4407 } 4408 4409 static bool 4410 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4411 { 4412 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4413 sink_irq_vector, DP_DPRX_ESI_LEN) == 4414 DP_DPRX_ESI_LEN; 4415 } 4416 4417 static void 4418 intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp, 4419 const struct intel_crtc_state *crtc_state) 4420 { 4421 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4422 struct dp_sdp vsc_sdp = {}; 4423 4424 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */ 4425 vsc_sdp.sdp_header.HB0 = 0; 4426 vsc_sdp.sdp_header.HB1 = 0x7; 4427 4428 /* 4429 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 4430 * Colorimetry Format indication. 4431 */ 4432 vsc_sdp.sdp_header.HB2 = 0x5; 4433 4434 /* 4435 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/ 4436 * Colorimetry Format indication (HB2 = 05h). 4437 */ 4438 vsc_sdp.sdp_header.HB3 = 0x13; 4439 4440 /* 4441 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h 4442 * DB16[3:0] DP 1.4a spec, Table 2-120 4443 */ 4444 vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/ 4445 /* RGB->YCBCR color conversion uses the BT.709 color space. */ 4446 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */ 4447 4448 /* 4449 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only, 4450 * the following Component Bit Depth values are defined: 4451 * 001b = 8bpc. 4452 * 010b = 10bpc. 4453 * 011b = 12bpc. 4454 * 100b = 16bpc. 4455 */ 4456 switch (crtc_state->pipe_bpp) { 4457 case 24: /* 8bpc */ 4458 vsc_sdp.db[17] = 0x1; 4459 break; 4460 case 30: /* 10bpc */ 4461 vsc_sdp.db[17] = 0x2; 4462 break; 4463 case 36: /* 12bpc */ 4464 vsc_sdp.db[17] = 0x3; 4465 break; 4466 case 48: /* 16bpc */ 4467 vsc_sdp.db[17] = 0x4; 4468 break; 4469 default: 4470 MISSING_CASE(crtc_state->pipe_bpp); 4471 break; 4472 } 4473 4474 /* 4475 * Dynamic Range (Bit 7) 4476 * 0 = VESA range, 1 = CTA range. 4477 * all YCbCr are always limited range 4478 */ 4479 vsc_sdp.db[17] |= 0x80; 4480 4481 /* 4482 * Content Type (Bits 2:0) 4483 * 000b = Not defined. 4484 * 001b = Graphics. 4485 * 010b = Photo. 4486 * 011b = Video. 4487 * 100b = Game 4488 * All other values are RESERVED. 4489 * Note: See CTA-861-G for the definition and expected 4490 * processing by a stream sink for the above contect types. 4491 */ 4492 vsc_sdp.db[18] = 0; 4493 4494 intel_dig_port->write_infoframe(&intel_dig_port->base, 4495 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp)); 4496 } 4497 4498 void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp, 4499 const struct intel_crtc_state *crtc_state) 4500 { 4501 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420) 4502 return; 4503 4504 intel_pixel_encoding_setup_vsc(intel_dp, crtc_state); 4505 } 4506 4507 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 4508 { 4509 int status = 0; 4510 int test_link_rate; 4511 u8 test_lane_count, test_link_bw; 4512 /* (DP CTS 1.2) 4513 * 4.3.1.11 4514 */ 4515 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 4516 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 4517 &test_lane_count); 4518 4519 if (status <= 0) { 4520 DRM_DEBUG_KMS("Lane count read failed\n"); 4521 return DP_TEST_NAK; 4522 } 4523 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 4524 4525 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 4526 &test_link_bw); 4527 if (status <= 0) { 4528 DRM_DEBUG_KMS("Link Rate read failed\n"); 4529 return DP_TEST_NAK; 4530 } 4531 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 4532 4533 /* Validate the requested link rate and lane count */ 4534 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 4535 test_lane_count)) 4536 return DP_TEST_NAK; 4537 4538 intel_dp->compliance.test_lane_count = test_lane_count; 4539 intel_dp->compliance.test_link_rate = test_link_rate; 4540 4541 return DP_TEST_ACK; 4542 } 4543 4544 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 4545 { 4546 u8 test_pattern; 4547 u8 test_misc; 4548 __be16 h_width, v_height; 4549 int status = 0; 4550 4551 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 4552 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 4553 &test_pattern); 4554 if (status <= 0) { 4555 DRM_DEBUG_KMS("Test pattern read failed\n"); 4556 return DP_TEST_NAK; 4557 } 4558 if (test_pattern != DP_COLOR_RAMP) 4559 return DP_TEST_NAK; 4560 4561 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 4562 &h_width, 2); 4563 if (status <= 0) { 4564 DRM_DEBUG_KMS("H Width read failed\n"); 4565 return DP_TEST_NAK; 4566 } 4567 4568 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 4569 &v_height, 2); 4570 if (status <= 0) { 4571 DRM_DEBUG_KMS("V Height read failed\n"); 4572 return DP_TEST_NAK; 4573 } 4574 4575 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 4576 &test_misc); 4577 if (status <= 0) { 4578 DRM_DEBUG_KMS("TEST MISC read failed\n"); 4579 return DP_TEST_NAK; 4580 } 4581 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 4582 return DP_TEST_NAK; 4583 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 4584 return DP_TEST_NAK; 4585 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 4586 case DP_TEST_BIT_DEPTH_6: 4587 intel_dp->compliance.test_data.bpc = 6; 4588 break; 4589 case DP_TEST_BIT_DEPTH_8: 4590 intel_dp->compliance.test_data.bpc = 8; 4591 break; 4592 default: 4593 return DP_TEST_NAK; 4594 } 4595 4596 intel_dp->compliance.test_data.video_pattern = test_pattern; 4597 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 4598 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 4599 /* Set test active flag here so userspace doesn't interrupt things */ 4600 intel_dp->compliance.test_active = 1; 4601 4602 return DP_TEST_ACK; 4603 } 4604 4605 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 4606 { 4607 u8 test_result = DP_TEST_ACK; 4608 struct intel_connector *intel_connector = intel_dp->attached_connector; 4609 struct drm_connector *connector = &intel_connector->base; 4610 4611 if (intel_connector->detect_edid == NULL || 4612 connector->edid_corrupt || 4613 intel_dp->aux.i2c_defer_count > 6) { 4614 /* Check EDID read for NACKs, DEFERs and corruption 4615 * (DP CTS 1.2 Core r1.1) 4616 * 4.2.2.4 : Failed EDID read, I2C_NAK 4617 * 4.2.2.5 : Failed EDID read, I2C_DEFER 4618 * 4.2.2.6 : EDID corruption detected 4619 * Use failsafe mode for all cases 4620 */ 4621 if (intel_dp->aux.i2c_nack_count > 0 || 4622 intel_dp->aux.i2c_defer_count > 0) 4623 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", 4624 intel_dp->aux.i2c_nack_count, 4625 intel_dp->aux.i2c_defer_count); 4626 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 4627 } else { 4628 struct edid *block = intel_connector->detect_edid; 4629 4630 /* We have to write the checksum 4631 * of the last block read 4632 */ 4633 block += intel_connector->detect_edid->extensions; 4634 4635 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 4636 block->checksum) <= 0) 4637 DRM_DEBUG_KMS("Failed to write EDID checksum\n"); 4638 4639 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 4640 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 4641 } 4642 4643 /* Set test active flag here so userspace doesn't interrupt things */ 4644 intel_dp->compliance.test_active = 1; 4645 4646 return test_result; 4647 } 4648 4649 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 4650 { 4651 u8 test_result = DP_TEST_NAK; 4652 return test_result; 4653 } 4654 4655 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 4656 { 4657 u8 response = DP_TEST_NAK; 4658 u8 request = 0; 4659 int status; 4660 4661 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 4662 if (status <= 0) { 4663 DRM_DEBUG_KMS("Could not read test request from sink\n"); 4664 goto update_status; 4665 } 4666 4667 switch (request) { 4668 case DP_TEST_LINK_TRAINING: 4669 DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); 4670 response = intel_dp_autotest_link_training(intel_dp); 4671 break; 4672 case DP_TEST_LINK_VIDEO_PATTERN: 4673 DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); 4674 response = intel_dp_autotest_video_pattern(intel_dp); 4675 break; 4676 case DP_TEST_LINK_EDID_READ: 4677 DRM_DEBUG_KMS("EDID test requested\n"); 4678 response = intel_dp_autotest_edid(intel_dp); 4679 break; 4680 case DP_TEST_LINK_PHY_TEST_PATTERN: 4681 DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); 4682 response = intel_dp_autotest_phy_pattern(intel_dp); 4683 break; 4684 default: 4685 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); 4686 break; 4687 } 4688 4689 if (response & DP_TEST_ACK) 4690 intel_dp->compliance.test_type = request; 4691 4692 update_status: 4693 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 4694 if (status <= 0) 4695 DRM_DEBUG_KMS("Could not write test response to sink\n"); 4696 } 4697 4698 static int 4699 intel_dp_check_mst_status(struct intel_dp *intel_dp) 4700 { 4701 bool bret; 4702 4703 if (intel_dp->is_mst) { 4704 u8 esi[DP_DPRX_ESI_LEN] = { 0 }; 4705 int ret = 0; 4706 int retry; 4707 bool handled; 4708 4709 WARN_ON_ONCE(intel_dp->active_mst_links < 0); 4710 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4711 go_again: 4712 if (bret == true) { 4713 4714 /* check link status - esi[10] = 0x200c */ 4715 if (intel_dp->active_mst_links > 0 && 4716 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 4717 DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); 4718 intel_dp_start_link_train(intel_dp); 4719 intel_dp_stop_link_train(intel_dp); 4720 } 4721 4722 DRM_DEBUG_KMS("got esi %3ph\n", esi); 4723 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 4724 4725 if (handled) { 4726 for (retry = 0; retry < 3; retry++) { 4727 int wret; 4728 wret = drm_dp_dpcd_write(&intel_dp->aux, 4729 DP_SINK_COUNT_ESI+1, 4730 &esi[1], 3); 4731 if (wret == 3) { 4732 break; 4733 } 4734 } 4735 4736 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 4737 if (bret == true) { 4738 DRM_DEBUG_KMS("got esi2 %3ph\n", esi); 4739 goto go_again; 4740 } 4741 } else 4742 ret = 0; 4743 4744 return ret; 4745 } else { 4746 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); 4747 intel_dp->is_mst = false; 4748 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4749 intel_dp->is_mst); 4750 } 4751 } 4752 return -EINVAL; 4753 } 4754 4755 static bool 4756 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 4757 { 4758 u8 link_status[DP_LINK_STATUS_SIZE]; 4759 4760 if (!intel_dp->link_trained) 4761 return false; 4762 4763 /* 4764 * While PSR source HW is enabled, it will control main-link sending 4765 * frames, enabling and disabling it so trying to do a retrain will fail 4766 * as the link would or not be on or it could mix training patterns 4767 * and frame data at the same time causing retrain to fail. 4768 * Also when exiting PSR, HW will retrain the link anyways fixing 4769 * any link status error. 4770 */ 4771 if (intel_psr_enabled(intel_dp)) 4772 return false; 4773 4774 if (!intel_dp_get_link_status(intel_dp, link_status)) 4775 return false; 4776 4777 /* 4778 * Validate the cached values of intel_dp->link_rate and 4779 * intel_dp->lane_count before attempting to retrain. 4780 */ 4781 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 4782 intel_dp->lane_count)) 4783 return false; 4784 4785 /* Retrain if Channel EQ or CR not ok */ 4786 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 4787 } 4788 4789 int intel_dp_retrain_link(struct intel_encoder *encoder, 4790 struct drm_modeset_acquire_ctx *ctx) 4791 { 4792 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4793 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); 4794 struct intel_connector *connector = intel_dp->attached_connector; 4795 struct drm_connector_state *conn_state; 4796 struct intel_crtc_state *crtc_state; 4797 struct intel_crtc *crtc; 4798 int ret; 4799 4800 /* FIXME handle the MST connectors as well */ 4801 4802 if (!connector || connector->base.status != connector_status_connected) 4803 return 0; 4804 4805 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 4806 ctx); 4807 if (ret) 4808 return ret; 4809 4810 conn_state = connector->base.state; 4811 4812 crtc = to_intel_crtc(conn_state->crtc); 4813 if (!crtc) 4814 return 0; 4815 4816 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 4817 if (ret) 4818 return ret; 4819 4820 crtc_state = to_intel_crtc_state(crtc->base.state); 4821 4822 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state)); 4823 4824 if (!crtc_state->base.active) 4825 return 0; 4826 4827 if (conn_state->commit && 4828 !try_wait_for_completion(&conn_state->commit->hw_done)) 4829 return 0; 4830 4831 if (!intel_dp_needs_link_retrain(intel_dp)) 4832 return 0; 4833 4834 /* Suppress underruns caused by re-training */ 4835 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 4836 if (crtc_state->has_pch_encoder) 4837 intel_set_pch_fifo_underrun_reporting(dev_priv, 4838 intel_crtc_pch_transcoder(crtc), false); 4839 4840 intel_dp_start_link_train(intel_dp); 4841 intel_dp_stop_link_train(intel_dp); 4842 4843 /* Keep underrun reporting disabled until things are stable */ 4844 intel_wait_for_vblank(dev_priv, crtc->pipe); 4845 4846 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 4847 if (crtc_state->has_pch_encoder) 4848 intel_set_pch_fifo_underrun_reporting(dev_priv, 4849 intel_crtc_pch_transcoder(crtc), true); 4850 4851 return 0; 4852 } 4853 4854 /* 4855 * If display is now connected check links status, 4856 * there has been known issues of link loss triggering 4857 * long pulse. 4858 * 4859 * Some sinks (eg. ASUS PB287Q) seem to perform some 4860 * weird HPD ping pong during modesets. So we can apparently 4861 * end up with HPD going low during a modeset, and then 4862 * going back up soon after. And once that happens we must 4863 * retrain the link to get a picture. That's in case no 4864 * userspace component reacted to intermittent HPD dip. 4865 */ 4866 static enum intel_hotplug_state 4867 intel_dp_hotplug(struct intel_encoder *encoder, 4868 struct intel_connector *connector, 4869 bool irq_received) 4870 { 4871 struct drm_modeset_acquire_ctx ctx; 4872 enum intel_hotplug_state state; 4873 int ret; 4874 4875 state = intel_encoder_hotplug(encoder, connector, irq_received); 4876 4877 drm_modeset_acquire_init(&ctx, 0); 4878 4879 for (;;) { 4880 ret = intel_dp_retrain_link(encoder, &ctx); 4881 4882 if (ret == -EDEADLK) { 4883 drm_modeset_backoff(&ctx); 4884 continue; 4885 } 4886 4887 break; 4888 } 4889 4890 drm_modeset_drop_locks(&ctx); 4891 drm_modeset_acquire_fini(&ctx); 4892 WARN(ret, "Acquiring modeset locks failed with %i\n", ret); 4893 4894 /* 4895 * Keeping it consistent with intel_ddi_hotplug() and 4896 * intel_hdmi_hotplug(). 4897 */ 4898 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received) 4899 state = INTEL_HOTPLUG_RETRY; 4900 4901 return state; 4902 } 4903 4904 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 4905 { 4906 u8 val; 4907 4908 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 4909 return; 4910 4911 if (drm_dp_dpcd_readb(&intel_dp->aux, 4912 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 4913 return; 4914 4915 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 4916 4917 if (val & DP_AUTOMATED_TEST_REQUEST) 4918 intel_dp_handle_test_request(intel_dp); 4919 4920 if (val & DP_CP_IRQ) 4921 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 4922 4923 if (val & DP_SINK_SPECIFIC_IRQ) 4924 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n"); 4925 } 4926 4927 /* 4928 * According to DP spec 4929 * 5.1.2: 4930 * 1. Read DPCD 4931 * 2. Configure link according to Receiver Capabilities 4932 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 4933 * 4. Check link status on receipt of hot-plug interrupt 4934 * 4935 * intel_dp_short_pulse - handles short pulse interrupts 4936 * when full detection is not required. 4937 * Returns %true if short pulse is handled and full detection 4938 * is NOT required and %false otherwise. 4939 */ 4940 static bool 4941 intel_dp_short_pulse(struct intel_dp *intel_dp) 4942 { 4943 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4944 u8 old_sink_count = intel_dp->sink_count; 4945 bool ret; 4946 4947 /* 4948 * Clearing compliance test variables to allow capturing 4949 * of values for next automated test request. 4950 */ 4951 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 4952 4953 /* 4954 * Now read the DPCD to see if it's actually running 4955 * If the current value of sink count doesn't match with 4956 * the value that was stored earlier or dpcd read failed 4957 * we need to do full detection 4958 */ 4959 ret = intel_dp_get_dpcd(intel_dp); 4960 4961 if ((old_sink_count != intel_dp->sink_count) || !ret) { 4962 /* No need to proceed if we are going to do full detect */ 4963 return false; 4964 } 4965 4966 intel_dp_check_service_irq(intel_dp); 4967 4968 /* Handle CEC interrupts, if any */ 4969 drm_dp_cec_irq(&intel_dp->aux); 4970 4971 /* defer to the hotplug work for link retraining if needed */ 4972 if (intel_dp_needs_link_retrain(intel_dp)) 4973 return false; 4974 4975 intel_psr_short_pulse(intel_dp); 4976 4977 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 4978 DRM_DEBUG_KMS("Link Training Compliance Test requested\n"); 4979 /* Send a Hotplug Uevent to userspace to start modeset */ 4980 drm_kms_helper_hotplug_event(&dev_priv->drm); 4981 } 4982 4983 return true; 4984 } 4985 4986 /* XXX this is probably wrong for multiple downstream ports */ 4987 static enum drm_connector_status 4988 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 4989 { 4990 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 4991 u8 *dpcd = intel_dp->dpcd; 4992 u8 type; 4993 4994 if (WARN_ON(intel_dp_is_edp(intel_dp))) 4995 return connector_status_connected; 4996 4997 if (lspcon->active) 4998 lspcon_resume(lspcon); 4999 5000 if (!intel_dp_get_dpcd(intel_dp)) 5001 return connector_status_disconnected; 5002 5003 /* if there's no downstream port, we're done */ 5004 if (!drm_dp_is_branch(dpcd)) 5005 return connector_status_connected; 5006 5007 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5008 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5009 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5010 5011 return intel_dp->sink_count ? 5012 connector_status_connected : connector_status_disconnected; 5013 } 5014 5015 if (intel_dp_can_mst(intel_dp)) 5016 return connector_status_connected; 5017 5018 /* If no HPD, poke DDC gently */ 5019 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5020 return connector_status_connected; 5021 5022 /* Well we tried, say unknown for unreliable port types */ 5023 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5024 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5025 if (type == DP_DS_PORT_TYPE_VGA || 5026 type == DP_DS_PORT_TYPE_NON_EDID) 5027 return connector_status_unknown; 5028 } else { 5029 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5030 DP_DWN_STRM_PORT_TYPE_MASK; 5031 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5032 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5033 return connector_status_unknown; 5034 } 5035 5036 /* Anything else is out of spec, warn and ignore */ 5037 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); 5038 return connector_status_disconnected; 5039 } 5040 5041 static enum drm_connector_status 5042 edp_detect(struct intel_dp *intel_dp) 5043 { 5044 return connector_status_connected; 5045 } 5046 5047 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 5048 { 5049 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5050 u32 bit; 5051 5052 switch (encoder->hpd_pin) { 5053 case HPD_PORT_B: 5054 bit = SDE_PORTB_HOTPLUG; 5055 break; 5056 case HPD_PORT_C: 5057 bit = SDE_PORTC_HOTPLUG; 5058 break; 5059 case HPD_PORT_D: 5060 bit = SDE_PORTD_HOTPLUG; 5061 break; 5062 default: 5063 MISSING_CASE(encoder->hpd_pin); 5064 return false; 5065 } 5066 5067 return I915_READ(SDEISR) & bit; 5068 } 5069 5070 static bool cpt_digital_port_connected(struct intel_encoder *encoder) 5071 { 5072 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5073 u32 bit; 5074 5075 switch (encoder->hpd_pin) { 5076 case HPD_PORT_B: 5077 bit = SDE_PORTB_HOTPLUG_CPT; 5078 break; 5079 case HPD_PORT_C: 5080 bit = SDE_PORTC_HOTPLUG_CPT; 5081 break; 5082 case HPD_PORT_D: 5083 bit = SDE_PORTD_HOTPLUG_CPT; 5084 break; 5085 default: 5086 MISSING_CASE(encoder->hpd_pin); 5087 return false; 5088 } 5089 5090 return I915_READ(SDEISR) & bit; 5091 } 5092 5093 static bool spt_digital_port_connected(struct intel_encoder *encoder) 5094 { 5095 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5096 u32 bit; 5097 5098 switch (encoder->hpd_pin) { 5099 case HPD_PORT_A: 5100 bit = SDE_PORTA_HOTPLUG_SPT; 5101 break; 5102 case HPD_PORT_E: 5103 bit = SDE_PORTE_HOTPLUG_SPT; 5104 break; 5105 default: 5106 return cpt_digital_port_connected(encoder); 5107 } 5108 5109 return I915_READ(SDEISR) & bit; 5110 } 5111 5112 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 5113 { 5114 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5115 u32 bit; 5116 5117 switch (encoder->hpd_pin) { 5118 case HPD_PORT_B: 5119 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 5120 break; 5121 case HPD_PORT_C: 5122 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 5123 break; 5124 case HPD_PORT_D: 5125 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 5126 break; 5127 default: 5128 MISSING_CASE(encoder->hpd_pin); 5129 return false; 5130 } 5131 5132 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5133 } 5134 5135 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 5136 { 5137 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5138 u32 bit; 5139 5140 switch (encoder->hpd_pin) { 5141 case HPD_PORT_B: 5142 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 5143 break; 5144 case HPD_PORT_C: 5145 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 5146 break; 5147 case HPD_PORT_D: 5148 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 5149 break; 5150 default: 5151 MISSING_CASE(encoder->hpd_pin); 5152 return false; 5153 } 5154 5155 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5156 } 5157 5158 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 5159 { 5160 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5161 5162 if (encoder->hpd_pin == HPD_PORT_A) 5163 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5164 else 5165 return ibx_digital_port_connected(encoder); 5166 } 5167 5168 static bool snb_digital_port_connected(struct intel_encoder *encoder) 5169 { 5170 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5171 5172 if (encoder->hpd_pin == HPD_PORT_A) 5173 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5174 else 5175 return cpt_digital_port_connected(encoder); 5176 } 5177 5178 static bool ivb_digital_port_connected(struct intel_encoder *encoder) 5179 { 5180 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5181 5182 if (encoder->hpd_pin == HPD_PORT_A) 5183 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB; 5184 else 5185 return cpt_digital_port_connected(encoder); 5186 } 5187 5188 static bool bdw_digital_port_connected(struct intel_encoder *encoder) 5189 { 5190 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5191 5192 if (encoder->hpd_pin == HPD_PORT_A) 5193 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; 5194 else 5195 return cpt_digital_port_connected(encoder); 5196 } 5197 5198 static bool bxt_digital_port_connected(struct intel_encoder *encoder) 5199 { 5200 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5201 u32 bit; 5202 5203 switch (encoder->hpd_pin) { 5204 case HPD_PORT_A: 5205 bit = BXT_DE_PORT_HP_DDIA; 5206 break; 5207 case HPD_PORT_B: 5208 bit = BXT_DE_PORT_HP_DDIB; 5209 break; 5210 case HPD_PORT_C: 5211 bit = BXT_DE_PORT_HP_DDIC; 5212 break; 5213 default: 5214 MISSING_CASE(encoder->hpd_pin); 5215 return false; 5216 } 5217 5218 return I915_READ(GEN8_DE_PORT_ISR) & bit; 5219 } 5220 5221 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv, 5222 struct intel_digital_port *intel_dig_port) 5223 { 5224 enum port port = intel_dig_port->base.port; 5225 5226 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port); 5227 } 5228 5229 static bool icl_digital_port_connected(struct intel_encoder *encoder) 5230 { 5231 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5232 struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); 5233 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 5234 5235 if (intel_phy_is_combo(dev_priv, phy)) 5236 return icl_combo_port_connected(dev_priv, dig_port); 5237 else if (intel_phy_is_tc(dev_priv, phy)) 5238 return intel_tc_port_connected(dig_port); 5239 else 5240 MISSING_CASE(encoder->hpd_pin); 5241 5242 return false; 5243 } 5244 5245 /* 5246 * intel_digital_port_connected - is the specified port connected? 5247 * @encoder: intel_encoder 5248 * 5249 * In cases where there's a connector physically connected but it can't be used 5250 * by our hardware we also return false, since the rest of the driver should 5251 * pretty much treat the port as disconnected. This is relevant for type-C 5252 * (starting on ICL) where there's ownership involved. 5253 * 5254 * Return %true if port is connected, %false otherwise. 5255 */ 5256 static bool __intel_digital_port_connected(struct intel_encoder *encoder) 5257 { 5258 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5259 5260 if (HAS_GMCH(dev_priv)) { 5261 if (IS_GM45(dev_priv)) 5262 return gm45_digital_port_connected(encoder); 5263 else 5264 return g4x_digital_port_connected(encoder); 5265 } 5266 5267 if (INTEL_GEN(dev_priv) >= 11) 5268 return icl_digital_port_connected(encoder); 5269 else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv)) 5270 return spt_digital_port_connected(encoder); 5271 else if (IS_GEN9_LP(dev_priv)) 5272 return bxt_digital_port_connected(encoder); 5273 else if (IS_GEN(dev_priv, 8)) 5274 return bdw_digital_port_connected(encoder); 5275 else if (IS_GEN(dev_priv, 7)) 5276 return ivb_digital_port_connected(encoder); 5277 else if (IS_GEN(dev_priv, 6)) 5278 return snb_digital_port_connected(encoder); 5279 else if (IS_GEN(dev_priv, 5)) 5280 return ilk_digital_port_connected(encoder); 5281 5282 MISSING_CASE(INTEL_GEN(dev_priv)); 5283 return false; 5284 } 5285 5286 bool intel_digital_port_connected(struct intel_encoder *encoder) 5287 { 5288 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5289 bool is_connected = false; 5290 intel_wakeref_t wakeref; 5291 5292 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 5293 is_connected = __intel_digital_port_connected(encoder); 5294 5295 return is_connected; 5296 } 5297 5298 static struct edid * 5299 intel_dp_get_edid(struct intel_dp *intel_dp) 5300 { 5301 struct intel_connector *intel_connector = intel_dp->attached_connector; 5302 5303 /* use cached edid if we have one */ 5304 if (intel_connector->edid) { 5305 /* invalid edid */ 5306 if (IS_ERR(intel_connector->edid)) 5307 return NULL; 5308 5309 return drm_edid_duplicate(intel_connector->edid); 5310 } else 5311 return drm_get_edid(&intel_connector->base, 5312 &intel_dp->aux.ddc); 5313 } 5314 5315 static void 5316 intel_dp_set_edid(struct intel_dp *intel_dp) 5317 { 5318 struct intel_connector *intel_connector = intel_dp->attached_connector; 5319 struct edid *edid; 5320 5321 intel_dp_unset_edid(intel_dp); 5322 edid = intel_dp_get_edid(intel_dp); 5323 intel_connector->detect_edid = edid; 5324 5325 intel_dp->has_audio = drm_detect_monitor_audio(edid); 5326 drm_dp_cec_set_edid(&intel_dp->aux, edid); 5327 } 5328 5329 static void 5330 intel_dp_unset_edid(struct intel_dp *intel_dp) 5331 { 5332 struct intel_connector *intel_connector = intel_dp->attached_connector; 5333 5334 drm_dp_cec_unset_edid(&intel_dp->aux); 5335 kfree(intel_connector->detect_edid); 5336 intel_connector->detect_edid = NULL; 5337 5338 intel_dp->has_audio = false; 5339 } 5340 5341 static int 5342 intel_dp_detect(struct drm_connector *connector, 5343 struct drm_modeset_acquire_ctx *ctx, 5344 bool force) 5345 { 5346 struct drm_i915_private *dev_priv = to_i915(connector->dev); 5347 struct intel_dp *intel_dp = intel_attached_dp(connector); 5348 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5349 struct intel_encoder *encoder = &dig_port->base; 5350 enum drm_connector_status status; 5351 5352 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5353 connector->base.id, connector->name); 5354 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 5355 5356 /* Can't disconnect eDP */ 5357 if (intel_dp_is_edp(intel_dp)) 5358 status = edp_detect(intel_dp); 5359 else if (intel_digital_port_connected(encoder)) 5360 status = intel_dp_detect_dpcd(intel_dp); 5361 else 5362 status = connector_status_disconnected; 5363 5364 if (status == connector_status_disconnected) { 5365 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5366 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 5367 5368 if (intel_dp->is_mst) { 5369 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 5370 intel_dp->is_mst, 5371 intel_dp->mst_mgr.mst_state); 5372 intel_dp->is_mst = false; 5373 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5374 intel_dp->is_mst); 5375 } 5376 5377 goto out; 5378 } 5379 5380 if (intel_dp->reset_link_params) { 5381 /* Initial max link lane count */ 5382 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 5383 5384 /* Initial max link rate */ 5385 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 5386 5387 intel_dp->reset_link_params = false; 5388 } 5389 5390 intel_dp_print_rates(intel_dp); 5391 5392 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 5393 if (INTEL_GEN(dev_priv) >= 11) 5394 intel_dp_get_dsc_sink_cap(intel_dp); 5395 5396 intel_dp_configure_mst(intel_dp); 5397 5398 if (intel_dp->is_mst) { 5399 /* 5400 * If we are in MST mode then this connector 5401 * won't appear connected or have anything 5402 * with EDID on it 5403 */ 5404 status = connector_status_disconnected; 5405 goto out; 5406 } 5407 5408 /* 5409 * Some external monitors do not signal loss of link synchronization 5410 * with an IRQ_HPD, so force a link status check. 5411 */ 5412 if (!intel_dp_is_edp(intel_dp)) { 5413 int ret; 5414 5415 ret = intel_dp_retrain_link(encoder, ctx); 5416 if (ret) 5417 return ret; 5418 } 5419 5420 /* 5421 * Clearing NACK and defer counts to get their exact values 5422 * while reading EDID which are required by Compliance tests 5423 * 4.2.2.4 and 4.2.2.5 5424 */ 5425 intel_dp->aux.i2c_nack_count = 0; 5426 intel_dp->aux.i2c_defer_count = 0; 5427 5428 intel_dp_set_edid(intel_dp); 5429 if (intel_dp_is_edp(intel_dp) || 5430 to_intel_connector(connector)->detect_edid) 5431 status = connector_status_connected; 5432 5433 intel_dp_check_service_irq(intel_dp); 5434 5435 out: 5436 if (status != connector_status_connected && !intel_dp->is_mst) 5437 intel_dp_unset_edid(intel_dp); 5438 5439 return status; 5440 } 5441 5442 static void 5443 intel_dp_force(struct drm_connector *connector) 5444 { 5445 struct intel_dp *intel_dp = intel_attached_dp(connector); 5446 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5447 struct intel_encoder *intel_encoder = &dig_port->base; 5448 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 5449 enum intel_display_power_domain aux_domain = 5450 intel_aux_power_domain(dig_port); 5451 intel_wakeref_t wakeref; 5452 5453 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5454 connector->base.id, connector->name); 5455 intel_dp_unset_edid(intel_dp); 5456 5457 if (connector->status != connector_status_connected) 5458 return; 5459 5460 wakeref = intel_display_power_get(dev_priv, aux_domain); 5461 5462 intel_dp_set_edid(intel_dp); 5463 5464 intel_display_power_put(dev_priv, aux_domain, wakeref); 5465 } 5466 5467 static int intel_dp_get_modes(struct drm_connector *connector) 5468 { 5469 struct intel_connector *intel_connector = to_intel_connector(connector); 5470 struct edid *edid; 5471 5472 edid = intel_connector->detect_edid; 5473 if (edid) { 5474 int ret = intel_connector_update_modes(connector, edid); 5475 if (ret) 5476 return ret; 5477 } 5478 5479 /* if eDP has no EDID, fall back to fixed mode */ 5480 if (intel_dp_is_edp(intel_attached_dp(connector)) && 5481 intel_connector->panel.fixed_mode) { 5482 struct drm_display_mode *mode; 5483 5484 mode = drm_mode_duplicate(connector->dev, 5485 intel_connector->panel.fixed_mode); 5486 if (mode) { 5487 drm_mode_probed_add(connector, mode); 5488 return 1; 5489 } 5490 } 5491 5492 return 0; 5493 } 5494 5495 static int 5496 intel_dp_connector_register(struct drm_connector *connector) 5497 { 5498 struct intel_dp *intel_dp = intel_attached_dp(connector); 5499 struct drm_device *dev = connector->dev; 5500 int ret; 5501 5502 ret = intel_connector_register(connector); 5503 if (ret) 5504 return ret; 5505 5506 i915_debugfs_connector_add(connector); 5507 5508 DRM_DEBUG_KMS("registering %s bus for %s\n", 5509 intel_dp->aux.name, connector->kdev->kobj.name); 5510 5511 intel_dp->aux.dev = connector->kdev; 5512 ret = drm_dp_aux_register(&intel_dp->aux); 5513 if (!ret) 5514 drm_dp_cec_register_connector(&intel_dp->aux, 5515 connector->name, dev->dev); 5516 return ret; 5517 } 5518 5519 static void 5520 intel_dp_connector_unregister(struct drm_connector *connector) 5521 { 5522 struct intel_dp *intel_dp = intel_attached_dp(connector); 5523 5524 drm_dp_cec_unregister_connector(&intel_dp->aux); 5525 drm_dp_aux_unregister(&intel_dp->aux); 5526 intel_connector_unregister(connector); 5527 } 5528 5529 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 5530 { 5531 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 5532 struct intel_dp *intel_dp = &intel_dig_port->dp; 5533 5534 intel_dp_mst_encoder_cleanup(intel_dig_port); 5535 if (intel_dp_is_edp(intel_dp)) { 5536 intel_wakeref_t wakeref; 5537 5538 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5539 /* 5540 * vdd might still be enabled do to the delayed vdd off. 5541 * Make sure vdd is actually turned off here. 5542 */ 5543 with_pps_lock(intel_dp, wakeref) 5544 edp_panel_vdd_off_sync(intel_dp); 5545 5546 if (intel_dp->edp_notifier.notifier_call) { 5547 unregister_reboot_notifier(&intel_dp->edp_notifier); 5548 intel_dp->edp_notifier.notifier_call = NULL; 5549 } 5550 } 5551 5552 intel_dp_aux_fini(intel_dp); 5553 } 5554 5555 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 5556 { 5557 intel_dp_encoder_flush_work(encoder); 5558 5559 drm_encoder_cleanup(encoder); 5560 kfree(enc_to_dig_port(encoder)); 5561 } 5562 5563 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 5564 { 5565 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); 5566 intel_wakeref_t wakeref; 5567 5568 if (!intel_dp_is_edp(intel_dp)) 5569 return; 5570 5571 /* 5572 * vdd might still be enabled do to the delayed vdd off. 5573 * Make sure vdd is actually turned off here. 5574 */ 5575 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5576 with_pps_lock(intel_dp, wakeref) 5577 edp_panel_vdd_off_sync(intel_dp); 5578 } 5579 5580 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 5581 { 5582 long ret; 5583 5584 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 5585 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, 5586 msecs_to_jiffies(timeout)); 5587 5588 if (!ret) 5589 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 5590 } 5591 5592 static 5593 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 5594 u8 *an) 5595 { 5596 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base); 5597 static const struct drm_dp_aux_msg msg = { 5598 .request = DP_AUX_NATIVE_WRITE, 5599 .address = DP_AUX_HDCP_AKSV, 5600 .size = DRM_HDCP_KSV_LEN, 5601 }; 5602 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 5603 ssize_t dpcd_ret; 5604 int ret; 5605 5606 /* Output An first, that's easy */ 5607 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 5608 an, DRM_HDCP_AN_LEN); 5609 if (dpcd_ret != DRM_HDCP_AN_LEN) { 5610 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n", 5611 dpcd_ret); 5612 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 5613 } 5614 5615 /* 5616 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 5617 * order to get it on the wire, we need to create the AUX header as if 5618 * we were writing the data, and then tickle the hardware to output the 5619 * data once the header is sent out. 5620 */ 5621 intel_dp_aux_header(txbuf, &msg); 5622 5623 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 5624 rxbuf, sizeof(rxbuf), 5625 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 5626 if (ret < 0) { 5627 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret); 5628 return ret; 5629 } else if (ret == 0) { 5630 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n"); 5631 return -EIO; 5632 } 5633 5634 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 5635 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 5636 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 5637 reply); 5638 return -EIO; 5639 } 5640 return 0; 5641 } 5642 5643 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 5644 u8 *bksv) 5645 { 5646 ssize_t ret; 5647 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 5648 DRM_HDCP_KSV_LEN); 5649 if (ret != DRM_HDCP_KSV_LEN) { 5650 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret); 5651 return ret >= 0 ? -EIO : ret; 5652 } 5653 return 0; 5654 } 5655 5656 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 5657 u8 *bstatus) 5658 { 5659 ssize_t ret; 5660 /* 5661 * For some reason the HDMI and DP HDCP specs call this register 5662 * definition by different names. In the HDMI spec, it's called BSTATUS, 5663 * but in DP it's called BINFO. 5664 */ 5665 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 5666 bstatus, DRM_HDCP_BSTATUS_LEN); 5667 if (ret != DRM_HDCP_BSTATUS_LEN) { 5668 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5669 return ret >= 0 ? -EIO : ret; 5670 } 5671 return 0; 5672 } 5673 5674 static 5675 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 5676 u8 *bcaps) 5677 { 5678 ssize_t ret; 5679 5680 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 5681 bcaps, 1); 5682 if (ret != 1) { 5683 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret); 5684 return ret >= 0 ? -EIO : ret; 5685 } 5686 5687 return 0; 5688 } 5689 5690 static 5691 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 5692 bool *repeater_present) 5693 { 5694 ssize_t ret; 5695 u8 bcaps; 5696 5697 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 5698 if (ret) 5699 return ret; 5700 5701 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 5702 return 0; 5703 } 5704 5705 static 5706 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 5707 u8 *ri_prime) 5708 { 5709 ssize_t ret; 5710 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 5711 ri_prime, DRM_HDCP_RI_LEN); 5712 if (ret != DRM_HDCP_RI_LEN) { 5713 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret); 5714 return ret >= 0 ? -EIO : ret; 5715 } 5716 return 0; 5717 } 5718 5719 static 5720 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 5721 bool *ksv_ready) 5722 { 5723 ssize_t ret; 5724 u8 bstatus; 5725 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5726 &bstatus, 1); 5727 if (ret != 1) { 5728 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5729 return ret >= 0 ? -EIO : ret; 5730 } 5731 *ksv_ready = bstatus & DP_BSTATUS_READY; 5732 return 0; 5733 } 5734 5735 static 5736 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 5737 int num_downstream, u8 *ksv_fifo) 5738 { 5739 ssize_t ret; 5740 int i; 5741 5742 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 5743 for (i = 0; i < num_downstream; i += 3) { 5744 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 5745 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5746 DP_AUX_HDCP_KSV_FIFO, 5747 ksv_fifo + i * DRM_HDCP_KSV_LEN, 5748 len); 5749 if (ret != len) { 5750 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n", 5751 i, ret); 5752 return ret >= 0 ? -EIO : ret; 5753 } 5754 } 5755 return 0; 5756 } 5757 5758 static 5759 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 5760 int i, u32 *part) 5761 { 5762 ssize_t ret; 5763 5764 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 5765 return -EINVAL; 5766 5767 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5768 DP_AUX_HDCP_V_PRIME(i), part, 5769 DRM_HDCP_V_PRIME_PART_LEN); 5770 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 5771 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 5772 return ret >= 0 ? -EIO : ret; 5773 } 5774 return 0; 5775 } 5776 5777 static 5778 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 5779 bool enable) 5780 { 5781 /* Not used for single stream DisplayPort setups */ 5782 return 0; 5783 } 5784 5785 static 5786 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 5787 { 5788 ssize_t ret; 5789 u8 bstatus; 5790 5791 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 5792 &bstatus, 1); 5793 if (ret != 1) { 5794 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5795 return false; 5796 } 5797 5798 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 5799 } 5800 5801 static 5802 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 5803 bool *hdcp_capable) 5804 { 5805 ssize_t ret; 5806 u8 bcaps; 5807 5808 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 5809 if (ret) 5810 return ret; 5811 5812 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 5813 return 0; 5814 } 5815 5816 struct hdcp2_dp_errata_stream_type { 5817 u8 msg_id; 5818 u8 stream_type; 5819 } __packed; 5820 5821 struct hdcp2_dp_msg_data { 5822 u8 msg_id; 5823 u32 offset; 5824 bool msg_detectable; 5825 u32 timeout; 5826 u32 timeout2; /* Added for non_paired situation */ 5827 }; 5828 5829 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { 5830 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, 5831 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 5832 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, 5833 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 5834 false, 0, 0 }, 5835 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 5836 false, 0, 0 }, 5837 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 5838 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 5839 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, 5840 { HDCP_2_2_AKE_SEND_PAIRING_INFO, 5841 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 5842 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, 5843 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, 5844 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 5845 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, 5846 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 5847 0, 0 }, 5848 { HDCP_2_2_REP_SEND_RECVID_LIST, 5849 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 5850 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, 5851 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 5852 0, 0 }, 5853 { HDCP_2_2_REP_STREAM_MANAGE, 5854 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 5855 0, 0 }, 5856 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 5857 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, 5858 /* local define to shovel this through the write_2_2 interface */ 5859 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 5860 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, 5861 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 5862 0, 0 }, 5863 }; 5864 5865 static inline 5866 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 5867 u8 *rx_status) 5868 { 5869 ssize_t ret; 5870 5871 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 5872 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 5873 HDCP_2_2_DP_RXSTATUS_LEN); 5874 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 5875 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 5876 return ret >= 0 ? -EIO : ret; 5877 } 5878 5879 return 0; 5880 } 5881 5882 static 5883 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 5884 u8 msg_id, bool *msg_ready) 5885 { 5886 u8 rx_status; 5887 int ret; 5888 5889 *msg_ready = false; 5890 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 5891 if (ret < 0) 5892 return ret; 5893 5894 switch (msg_id) { 5895 case HDCP_2_2_AKE_SEND_HPRIME: 5896 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 5897 *msg_ready = true; 5898 break; 5899 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 5900 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 5901 *msg_ready = true; 5902 break; 5903 case HDCP_2_2_REP_SEND_RECVID_LIST: 5904 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 5905 *msg_ready = true; 5906 break; 5907 default: 5908 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 5909 return -EINVAL; 5910 } 5911 5912 return 0; 5913 } 5914 5915 static ssize_t 5916 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 5917 const struct hdcp2_dp_msg_data *hdcp2_msg_data) 5918 { 5919 struct intel_dp *dp = &intel_dig_port->dp; 5920 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 5921 u8 msg_id = hdcp2_msg_data->msg_id; 5922 int ret, timeout; 5923 bool msg_ready = false; 5924 5925 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 5926 timeout = hdcp2_msg_data->timeout2; 5927 else 5928 timeout = hdcp2_msg_data->timeout; 5929 5930 /* 5931 * There is no way to detect the CERT, LPRIME and STREAM_READY 5932 * availability. So Wait for timeout and read the msg. 5933 */ 5934 if (!hdcp2_msg_data->msg_detectable) { 5935 mdelay(timeout); 5936 ret = 0; 5937 } else { 5938 /* 5939 * As we want to check the msg availability at timeout, Ignoring 5940 * the timeout at wait for CP_IRQ. 5941 */ 5942 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 5943 ret = hdcp2_detect_msg_availability(intel_dig_port, 5944 msg_id, &msg_ready); 5945 if (!msg_ready) 5946 ret = -ETIMEDOUT; 5947 } 5948 5949 if (ret) 5950 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n", 5951 hdcp2_msg_data->msg_id, ret, timeout); 5952 5953 return ret; 5954 } 5955 5956 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 5957 { 5958 int i; 5959 5960 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) 5961 if (hdcp2_dp_msg_data[i].msg_id == msg_id) 5962 return &hdcp2_dp_msg_data[i]; 5963 5964 return NULL; 5965 } 5966 5967 static 5968 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 5969 void *buf, size_t size) 5970 { 5971 struct intel_dp *dp = &intel_dig_port->dp; 5972 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 5973 unsigned int offset; 5974 u8 *byte = buf; 5975 ssize_t ret, bytes_to_write, len; 5976 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 5977 5978 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 5979 if (!hdcp2_msg_data) 5980 return -EINVAL; 5981 5982 offset = hdcp2_msg_data->offset; 5983 5984 /* No msg_id in DP HDCP2.2 msgs */ 5985 bytes_to_write = size - 1; 5986 byte++; 5987 5988 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 5989 5990 while (bytes_to_write) { 5991 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 5992 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 5993 5994 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 5995 offset, (void *)byte, len); 5996 if (ret < 0) 5997 return ret; 5998 5999 bytes_to_write -= ret; 6000 byte += ret; 6001 offset += ret; 6002 } 6003 6004 return size; 6005 } 6006 6007 static 6008 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6009 { 6010 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6011 u32 dev_cnt; 6012 ssize_t ret; 6013 6014 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6015 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6016 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6017 if (ret != HDCP_2_2_RXINFO_LEN) 6018 return ret >= 0 ? -EIO : ret; 6019 6020 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6021 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6022 6023 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6024 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6025 6026 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6027 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6028 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6029 6030 return ret; 6031 } 6032 6033 static 6034 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6035 u8 msg_id, void *buf, size_t size) 6036 { 6037 unsigned int offset; 6038 u8 *byte = buf; 6039 ssize_t ret, bytes_to_recv, len; 6040 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6041 6042 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6043 if (!hdcp2_msg_data) 6044 return -EINVAL; 6045 offset = hdcp2_msg_data->offset; 6046 6047 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6048 if (ret < 0) 6049 return ret; 6050 6051 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6052 ret = get_receiver_id_list_size(intel_dig_port); 6053 if (ret < 0) 6054 return ret; 6055 6056 size = ret; 6057 } 6058 bytes_to_recv = size - 1; 6059 6060 /* DP adaptation msgs has no msg_id */ 6061 byte++; 6062 6063 while (bytes_to_recv) { 6064 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6065 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6066 6067 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6068 (void *)byte, len); 6069 if (ret < 0) { 6070 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret); 6071 return ret; 6072 } 6073 6074 bytes_to_recv -= ret; 6075 byte += ret; 6076 offset += ret; 6077 } 6078 byte = buf; 6079 *byte = msg_id; 6080 6081 return size; 6082 } 6083 6084 static 6085 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6086 bool is_repeater, u8 content_type) 6087 { 6088 struct hdcp2_dp_errata_stream_type stream_type_msg; 6089 6090 if (is_repeater) 6091 return 0; 6092 6093 /* 6094 * Errata for DP: As Stream type is used for encryption, Receiver 6095 * should be communicated with stream type for the decryption of the 6096 * content. 6097 * Repeater will be communicated with stream type as a part of it's 6098 * auth later in time. 6099 */ 6100 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6101 stream_type_msg.stream_type = content_type; 6102 6103 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6104 sizeof(stream_type_msg)); 6105 } 6106 6107 static 6108 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6109 { 6110 u8 rx_status; 6111 int ret; 6112 6113 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6114 if (ret) 6115 return ret; 6116 6117 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6118 ret = HDCP_REAUTH_REQUEST; 6119 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6120 ret = HDCP_LINK_INTEGRITY_FAILURE; 6121 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6122 ret = HDCP_TOPOLOGY_CHANGE; 6123 6124 return ret; 6125 } 6126 6127 static 6128 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6129 bool *capable) 6130 { 6131 u8 rx_caps[3]; 6132 int ret; 6133 6134 *capable = false; 6135 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6136 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6137 rx_caps, HDCP_2_2_RXCAPS_LEN); 6138 if (ret != HDCP_2_2_RXCAPS_LEN) 6139 return ret >= 0 ? -EIO : ret; 6140 6141 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6142 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6143 *capable = true; 6144 6145 return 0; 6146 } 6147 6148 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6149 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6150 .read_bksv = intel_dp_hdcp_read_bksv, 6151 .read_bstatus = intel_dp_hdcp_read_bstatus, 6152 .repeater_present = intel_dp_hdcp_repeater_present, 6153 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6154 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6155 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6156 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6157 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6158 .check_link = intel_dp_hdcp_check_link, 6159 .hdcp_capable = intel_dp_hdcp_capable, 6160 .write_2_2_msg = intel_dp_hdcp2_write_msg, 6161 .read_2_2_msg = intel_dp_hdcp2_read_msg, 6162 .config_stream_type = intel_dp_hdcp2_config_stream_type, 6163 .check_2_2_link = intel_dp_hdcp2_check_link, 6164 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 6165 .protocol = HDCP_PROTOCOL_DP, 6166 }; 6167 6168 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6169 { 6170 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6171 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6172 6173 lockdep_assert_held(&dev_priv->pps_mutex); 6174 6175 if (!edp_have_panel_vdd(intel_dp)) 6176 return; 6177 6178 /* 6179 * The VDD bit needs a power domain reference, so if the bit is 6180 * already enabled when we boot or resume, grab this reference and 6181 * schedule a vdd off, so we don't hold on to the reference 6182 * indefinitely. 6183 */ 6184 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); 6185 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6186 6187 edp_panel_vdd_schedule_off(intel_dp); 6188 } 6189 6190 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6191 { 6192 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6193 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6194 enum pipe pipe; 6195 6196 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6197 encoder->port, &pipe)) 6198 return pipe; 6199 6200 return INVALID_PIPE; 6201 } 6202 6203 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6204 { 6205 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6206 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 6207 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6208 intel_wakeref_t wakeref; 6209 6210 if (!HAS_DDI(dev_priv)) 6211 intel_dp->DP = I915_READ(intel_dp->output_reg); 6212 6213 if (lspcon->active) 6214 lspcon_resume(lspcon); 6215 6216 intel_dp->reset_link_params = true; 6217 6218 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6219 !intel_dp_is_edp(intel_dp)) 6220 return; 6221 6222 with_pps_lock(intel_dp, wakeref) { 6223 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6224 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6225 6226 if (intel_dp_is_edp(intel_dp)) { 6227 /* 6228 * Reinit the power sequencer, in case BIOS did 6229 * something nasty with it. 6230 */ 6231 intel_dp_pps_init(intel_dp); 6232 intel_edp_panel_vdd_sanitize(intel_dp); 6233 } 6234 } 6235 } 6236 6237 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6238 .force = intel_dp_force, 6239 .fill_modes = drm_helper_probe_single_connector_modes, 6240 .atomic_get_property = intel_digital_connector_atomic_get_property, 6241 .atomic_set_property = intel_digital_connector_atomic_set_property, 6242 .late_register = intel_dp_connector_register, 6243 .early_unregister = intel_dp_connector_unregister, 6244 .destroy = intel_connector_destroy, 6245 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6246 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6247 }; 6248 6249 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6250 .detect_ctx = intel_dp_detect, 6251 .get_modes = intel_dp_get_modes, 6252 .mode_valid = intel_dp_mode_valid, 6253 .atomic_check = intel_digital_connector_atomic_check, 6254 }; 6255 6256 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6257 .reset = intel_dp_encoder_reset, 6258 .destroy = intel_dp_encoder_destroy, 6259 }; 6260 6261 enum irqreturn 6262 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 6263 { 6264 struct intel_dp *intel_dp = &intel_dig_port->dp; 6265 6266 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { 6267 /* 6268 * vdd off can generate a long pulse on eDP which 6269 * would require vdd on to handle it, and thus we 6270 * would end up in an endless cycle of 6271 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." 6272 */ 6273 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n", 6274 port_name(intel_dig_port->base.port)); 6275 return IRQ_HANDLED; 6276 } 6277 6278 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n", 6279 port_name(intel_dig_port->base.port), 6280 long_hpd ? "long" : "short"); 6281 6282 if (long_hpd) { 6283 intel_dp->reset_link_params = true; 6284 return IRQ_NONE; 6285 } 6286 6287 if (intel_dp->is_mst) { 6288 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { 6289 /* 6290 * If we were in MST mode, and device is not 6291 * there, get out of MST mode 6292 */ 6293 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 6294 intel_dp->is_mst, intel_dp->mst_mgr.mst_state); 6295 intel_dp->is_mst = false; 6296 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6297 intel_dp->is_mst); 6298 6299 return IRQ_NONE; 6300 } 6301 } 6302 6303 if (!intel_dp->is_mst) { 6304 bool handled; 6305 6306 handled = intel_dp_short_pulse(intel_dp); 6307 6308 if (!handled) 6309 return IRQ_NONE; 6310 } 6311 6312 return IRQ_HANDLED; 6313 } 6314 6315 /* check the VBT to see whether the eDP is on another port */ 6316 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6317 { 6318 /* 6319 * eDP not supported on g4x. so bail out early just 6320 * for a bit extra safety in case the VBT is bonkers. 6321 */ 6322 if (INTEL_GEN(dev_priv) < 5) 6323 return false; 6324 6325 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 6326 return true; 6327 6328 return intel_bios_is_port_edp(dev_priv, port); 6329 } 6330 6331 static void 6332 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6333 { 6334 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6335 enum port port = dp_to_dig_port(intel_dp)->base.port; 6336 6337 if (!IS_G4X(dev_priv) && port != PORT_A) 6338 intel_attach_force_audio_property(connector); 6339 6340 intel_attach_broadcast_rgb_property(connector); 6341 if (HAS_GMCH(dev_priv)) 6342 drm_connector_attach_max_bpc_property(connector, 6, 10); 6343 else if (INTEL_GEN(dev_priv) >= 5) 6344 drm_connector_attach_max_bpc_property(connector, 6, 12); 6345 6346 if (intel_dp_is_edp(intel_dp)) { 6347 u32 allowed_scalers; 6348 6349 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 6350 if (!HAS_GMCH(dev_priv)) 6351 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 6352 6353 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 6354 6355 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 6356 6357 } 6358 } 6359 6360 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 6361 { 6362 intel_dp->panel_power_off_time = ktime_get_boottime(); 6363 intel_dp->last_power_on = jiffies; 6364 intel_dp->last_backlight_off = jiffies; 6365 } 6366 6367 static void 6368 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 6369 { 6370 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6371 u32 pp_on, pp_off, pp_ctl; 6372 struct pps_registers regs; 6373 6374 intel_pps_get_registers(intel_dp, ®s); 6375 6376 pp_ctl = ironlake_get_pp_control(intel_dp); 6377 6378 /* Ensure PPS is unlocked */ 6379 if (!HAS_DDI(dev_priv)) 6380 I915_WRITE(regs.pp_ctrl, pp_ctl); 6381 6382 pp_on = I915_READ(regs.pp_on); 6383 pp_off = I915_READ(regs.pp_off); 6384 6385 /* Pull timing values out of registers */ 6386 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 6387 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 6388 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 6389 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 6390 6391 if (i915_mmio_reg_valid(regs.pp_div)) { 6392 u32 pp_div; 6393 6394 pp_div = I915_READ(regs.pp_div); 6395 6396 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 6397 } else { 6398 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 6399 } 6400 } 6401 6402 static void 6403 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 6404 { 6405 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 6406 state_name, 6407 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 6408 } 6409 6410 static void 6411 intel_pps_verify_state(struct intel_dp *intel_dp) 6412 { 6413 struct edp_power_seq hw; 6414 struct edp_power_seq *sw = &intel_dp->pps_delays; 6415 6416 intel_pps_readout_hw_state(intel_dp, &hw); 6417 6418 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 6419 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 6420 DRM_ERROR("PPS state mismatch\n"); 6421 intel_pps_dump_state("sw", sw); 6422 intel_pps_dump_state("hw", &hw); 6423 } 6424 } 6425 6426 static void 6427 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 6428 { 6429 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6430 struct edp_power_seq cur, vbt, spec, 6431 *final = &intel_dp->pps_delays; 6432 6433 lockdep_assert_held(&dev_priv->pps_mutex); 6434 6435 /* already initialized? */ 6436 if (final->t11_t12 != 0) 6437 return; 6438 6439 intel_pps_readout_hw_state(intel_dp, &cur); 6440 6441 intel_pps_dump_state("cur", &cur); 6442 6443 vbt = dev_priv->vbt.edp.pps; 6444 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 6445 * of 500ms appears to be too short. Ocassionally the panel 6446 * just fails to power back on. Increasing the delay to 800ms 6447 * seems sufficient to avoid this problem. 6448 */ 6449 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 6450 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 6451 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n", 6452 vbt.t11_t12); 6453 } 6454 /* T11_T12 delay is special and actually in units of 100ms, but zero 6455 * based in the hw (so we need to add 100 ms). But the sw vbt 6456 * table multiplies it with 1000 to make it in units of 100usec, 6457 * too. */ 6458 vbt.t11_t12 += 100 * 10; 6459 6460 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 6461 * our hw here, which are all in 100usec. */ 6462 spec.t1_t3 = 210 * 10; 6463 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 6464 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 6465 spec.t10 = 500 * 10; 6466 /* This one is special and actually in units of 100ms, but zero 6467 * based in the hw (so we need to add 100 ms). But the sw vbt 6468 * table multiplies it with 1000 to make it in units of 100usec, 6469 * too. */ 6470 spec.t11_t12 = (510 + 100) * 10; 6471 6472 intel_pps_dump_state("vbt", &vbt); 6473 6474 /* Use the max of the register settings and vbt. If both are 6475 * unset, fall back to the spec limits. */ 6476 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 6477 spec.field : \ 6478 max(cur.field, vbt.field)) 6479 assign_final(t1_t3); 6480 assign_final(t8); 6481 assign_final(t9); 6482 assign_final(t10); 6483 assign_final(t11_t12); 6484 #undef assign_final 6485 6486 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 6487 intel_dp->panel_power_up_delay = get_delay(t1_t3); 6488 intel_dp->backlight_on_delay = get_delay(t8); 6489 intel_dp->backlight_off_delay = get_delay(t9); 6490 intel_dp->panel_power_down_delay = get_delay(t10); 6491 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 6492 #undef get_delay 6493 6494 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", 6495 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, 6496 intel_dp->panel_power_cycle_delay); 6497 6498 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", 6499 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); 6500 6501 /* 6502 * We override the HW backlight delays to 1 because we do manual waits 6503 * on them. For T8, even BSpec recommends doing it. For T9, if we 6504 * don't do this, we'll end up waiting for the backlight off delay 6505 * twice: once when we do the manual sleep, and once when we disable 6506 * the panel and wait for the PP_STATUS bit to become zero. 6507 */ 6508 final->t8 = 1; 6509 final->t9 = 1; 6510 6511 /* 6512 * HW has only a 100msec granularity for t11_t12 so round it up 6513 * accordingly. 6514 */ 6515 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 6516 } 6517 6518 static void 6519 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 6520 bool force_disable_vdd) 6521 { 6522 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6523 u32 pp_on, pp_off, port_sel = 0; 6524 int div = dev_priv->rawclk_freq / 1000; 6525 struct pps_registers regs; 6526 enum port port = dp_to_dig_port(intel_dp)->base.port; 6527 const struct edp_power_seq *seq = &intel_dp->pps_delays; 6528 6529 lockdep_assert_held(&dev_priv->pps_mutex); 6530 6531 intel_pps_get_registers(intel_dp, ®s); 6532 6533 /* 6534 * On some VLV machines the BIOS can leave the VDD 6535 * enabled even on power sequencers which aren't 6536 * hooked up to any port. This would mess up the 6537 * power domain tracking the first time we pick 6538 * one of these power sequencers for use since 6539 * edp_panel_vdd_on() would notice that the VDD was 6540 * already on and therefore wouldn't grab the power 6541 * domain reference. Disable VDD first to avoid this. 6542 * This also avoids spuriously turning the VDD on as 6543 * soon as the new power sequencer gets initialized. 6544 */ 6545 if (force_disable_vdd) { 6546 u32 pp = ironlake_get_pp_control(intel_dp); 6547 6548 WARN(pp & PANEL_POWER_ON, "Panel power already on\n"); 6549 6550 if (pp & EDP_FORCE_VDD) 6551 DRM_DEBUG_KMS("VDD already on, disabling first\n"); 6552 6553 pp &= ~EDP_FORCE_VDD; 6554 6555 I915_WRITE(regs.pp_ctrl, pp); 6556 } 6557 6558 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 6559 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 6560 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 6561 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 6562 6563 /* Haswell doesn't have any port selection bits for the panel 6564 * power sequencer any more. */ 6565 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6566 port_sel = PANEL_PORT_SELECT_VLV(port); 6567 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 6568 switch (port) { 6569 case PORT_A: 6570 port_sel = PANEL_PORT_SELECT_DPA; 6571 break; 6572 case PORT_C: 6573 port_sel = PANEL_PORT_SELECT_DPC; 6574 break; 6575 case PORT_D: 6576 port_sel = PANEL_PORT_SELECT_DPD; 6577 break; 6578 default: 6579 MISSING_CASE(port); 6580 break; 6581 } 6582 } 6583 6584 pp_on |= port_sel; 6585 6586 I915_WRITE(regs.pp_on, pp_on); 6587 I915_WRITE(regs.pp_off, pp_off); 6588 6589 /* 6590 * Compute the divisor for the pp clock, simply match the Bspec formula. 6591 */ 6592 if (i915_mmio_reg_valid(regs.pp_div)) { 6593 I915_WRITE(regs.pp_div, 6594 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | 6595 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 6596 } else { 6597 u32 pp_ctl; 6598 6599 pp_ctl = I915_READ(regs.pp_ctrl); 6600 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 6601 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 6602 I915_WRITE(regs.pp_ctrl, pp_ctl); 6603 } 6604 6605 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 6606 I915_READ(regs.pp_on), 6607 I915_READ(regs.pp_off), 6608 i915_mmio_reg_valid(regs.pp_div) ? 6609 I915_READ(regs.pp_div) : 6610 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 6611 } 6612 6613 static void intel_dp_pps_init(struct intel_dp *intel_dp) 6614 { 6615 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6616 6617 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6618 vlv_initial_power_sequencer_setup(intel_dp); 6619 } else { 6620 intel_dp_init_panel_power_sequencer(intel_dp); 6621 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 6622 } 6623 } 6624 6625 /** 6626 * intel_dp_set_drrs_state - program registers for RR switch to take effect 6627 * @dev_priv: i915 device 6628 * @crtc_state: a pointer to the active intel_crtc_state 6629 * @refresh_rate: RR to be programmed 6630 * 6631 * This function gets called when refresh rate (RR) has to be changed from 6632 * one frequency to another. Switches can be between high and low RR 6633 * supported by the panel or to any other RR based on media playback (in 6634 * this case, RR value needs to be passed from user space). 6635 * 6636 * The caller of this function needs to take a lock on dev_priv->drrs. 6637 */ 6638 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 6639 const struct intel_crtc_state *crtc_state, 6640 int refresh_rate) 6641 { 6642 struct intel_dp *intel_dp = dev_priv->drrs.dp; 6643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 6644 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 6645 6646 if (refresh_rate <= 0) { 6647 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); 6648 return; 6649 } 6650 6651 if (intel_dp == NULL) { 6652 DRM_DEBUG_KMS("DRRS not supported.\n"); 6653 return; 6654 } 6655 6656 if (!intel_crtc) { 6657 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); 6658 return; 6659 } 6660 6661 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 6662 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); 6663 return; 6664 } 6665 6666 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == 6667 refresh_rate) 6668 index = DRRS_LOW_RR; 6669 6670 if (index == dev_priv->drrs.refresh_rate_type) { 6671 DRM_DEBUG_KMS( 6672 "DRRS requested for previously set RR...ignoring\n"); 6673 return; 6674 } 6675 6676 if (!crtc_state->base.active) { 6677 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); 6678 return; 6679 } 6680 6681 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 6682 switch (index) { 6683 case DRRS_HIGH_RR: 6684 intel_dp_set_m_n(crtc_state, M1_N1); 6685 break; 6686 case DRRS_LOW_RR: 6687 intel_dp_set_m_n(crtc_state, M2_N2); 6688 break; 6689 case DRRS_MAX_RR: 6690 default: 6691 DRM_ERROR("Unsupported refreshrate type\n"); 6692 } 6693 } else if (INTEL_GEN(dev_priv) > 6) { 6694 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 6695 u32 val; 6696 6697 val = I915_READ(reg); 6698 if (index > DRRS_HIGH_RR) { 6699 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6700 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6701 else 6702 val |= PIPECONF_EDP_RR_MODE_SWITCH; 6703 } else { 6704 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6705 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 6706 else 6707 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 6708 } 6709 I915_WRITE(reg, val); 6710 } 6711 6712 dev_priv->drrs.refresh_rate_type = index; 6713 6714 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); 6715 } 6716 6717 /** 6718 * intel_edp_drrs_enable - init drrs struct if supported 6719 * @intel_dp: DP struct 6720 * @crtc_state: A pointer to the active crtc state. 6721 * 6722 * Initializes frontbuffer_bits and drrs.dp 6723 */ 6724 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 6725 const struct intel_crtc_state *crtc_state) 6726 { 6727 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6728 6729 if (!crtc_state->has_drrs) { 6730 DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); 6731 return; 6732 } 6733 6734 if (dev_priv->psr.enabled) { 6735 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n"); 6736 return; 6737 } 6738 6739 mutex_lock(&dev_priv->drrs.mutex); 6740 if (dev_priv->drrs.dp) { 6741 DRM_DEBUG_KMS("DRRS already enabled\n"); 6742 goto unlock; 6743 } 6744 6745 dev_priv->drrs.busy_frontbuffer_bits = 0; 6746 6747 dev_priv->drrs.dp = intel_dp; 6748 6749 unlock: 6750 mutex_unlock(&dev_priv->drrs.mutex); 6751 } 6752 6753 /** 6754 * intel_edp_drrs_disable - Disable DRRS 6755 * @intel_dp: DP struct 6756 * @old_crtc_state: Pointer to old crtc_state. 6757 * 6758 */ 6759 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 6760 const struct intel_crtc_state *old_crtc_state) 6761 { 6762 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6763 6764 if (!old_crtc_state->has_drrs) 6765 return; 6766 6767 mutex_lock(&dev_priv->drrs.mutex); 6768 if (!dev_priv->drrs.dp) { 6769 mutex_unlock(&dev_priv->drrs.mutex); 6770 return; 6771 } 6772 6773 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6774 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 6775 intel_dp->attached_connector->panel.fixed_mode->vrefresh); 6776 6777 dev_priv->drrs.dp = NULL; 6778 mutex_unlock(&dev_priv->drrs.mutex); 6779 6780 cancel_delayed_work_sync(&dev_priv->drrs.work); 6781 } 6782 6783 static void intel_edp_drrs_downclock_work(struct work_struct *work) 6784 { 6785 struct drm_i915_private *dev_priv = 6786 container_of(work, typeof(*dev_priv), drrs.work.work); 6787 struct intel_dp *intel_dp; 6788 6789 mutex_lock(&dev_priv->drrs.mutex); 6790 6791 intel_dp = dev_priv->drrs.dp; 6792 6793 if (!intel_dp) 6794 goto unlock; 6795 6796 /* 6797 * The delayed work can race with an invalidate hence we need to 6798 * recheck. 6799 */ 6800 6801 if (dev_priv->drrs.busy_frontbuffer_bits) 6802 goto unlock; 6803 6804 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 6805 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 6806 6807 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6808 intel_dp->attached_connector->panel.downclock_mode->vrefresh); 6809 } 6810 6811 unlock: 6812 mutex_unlock(&dev_priv->drrs.mutex); 6813 } 6814 6815 /** 6816 * intel_edp_drrs_invalidate - Disable Idleness DRRS 6817 * @dev_priv: i915 device 6818 * @frontbuffer_bits: frontbuffer plane tracking bits 6819 * 6820 * This function gets called everytime rendering on the given planes start. 6821 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 6822 * 6823 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 6824 */ 6825 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 6826 unsigned int frontbuffer_bits) 6827 { 6828 struct drm_crtc *crtc; 6829 enum pipe pipe; 6830 6831 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 6832 return; 6833 6834 cancel_delayed_work(&dev_priv->drrs.work); 6835 6836 mutex_lock(&dev_priv->drrs.mutex); 6837 if (!dev_priv->drrs.dp) { 6838 mutex_unlock(&dev_priv->drrs.mutex); 6839 return; 6840 } 6841 6842 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 6843 pipe = to_intel_crtc(crtc)->pipe; 6844 6845 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 6846 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 6847 6848 /* invalidate means busy screen hence upclock */ 6849 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6850 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6851 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 6852 6853 mutex_unlock(&dev_priv->drrs.mutex); 6854 } 6855 6856 /** 6857 * intel_edp_drrs_flush - Restart Idleness DRRS 6858 * @dev_priv: i915 device 6859 * @frontbuffer_bits: frontbuffer plane tracking bits 6860 * 6861 * This function gets called every time rendering on the given planes has 6862 * completed or flip on a crtc is completed. So DRRS should be upclocked 6863 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 6864 * if no other planes are dirty. 6865 * 6866 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 6867 */ 6868 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 6869 unsigned int frontbuffer_bits) 6870 { 6871 struct drm_crtc *crtc; 6872 enum pipe pipe; 6873 6874 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 6875 return; 6876 6877 cancel_delayed_work(&dev_priv->drrs.work); 6878 6879 mutex_lock(&dev_priv->drrs.mutex); 6880 if (!dev_priv->drrs.dp) { 6881 mutex_unlock(&dev_priv->drrs.mutex); 6882 return; 6883 } 6884 6885 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 6886 pipe = to_intel_crtc(crtc)->pipe; 6887 6888 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 6889 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 6890 6891 /* flush means busy screen hence upclock */ 6892 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 6893 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 6894 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 6895 6896 /* 6897 * flush also means no more activity hence schedule downclock, if all 6898 * other fbs are quiescent too 6899 */ 6900 if (!dev_priv->drrs.busy_frontbuffer_bits) 6901 schedule_delayed_work(&dev_priv->drrs.work, 6902 msecs_to_jiffies(1000)); 6903 mutex_unlock(&dev_priv->drrs.mutex); 6904 } 6905 6906 /** 6907 * DOC: Display Refresh Rate Switching (DRRS) 6908 * 6909 * Display Refresh Rate Switching (DRRS) is a power conservation feature 6910 * which enables swtching between low and high refresh rates, 6911 * dynamically, based on the usage scenario. This feature is applicable 6912 * for internal panels. 6913 * 6914 * Indication that the panel supports DRRS is given by the panel EDID, which 6915 * would list multiple refresh rates for one resolution. 6916 * 6917 * DRRS is of 2 types - static and seamless. 6918 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 6919 * (may appear as a blink on screen) and is used in dock-undock scenario. 6920 * Seamless DRRS involves changing RR without any visual effect to the user 6921 * and can be used during normal system usage. This is done by programming 6922 * certain registers. 6923 * 6924 * Support for static/seamless DRRS may be indicated in the VBT based on 6925 * inputs from the panel spec. 6926 * 6927 * DRRS saves power by switching to low RR based on usage scenarios. 6928 * 6929 * The implementation is based on frontbuffer tracking implementation. When 6930 * there is a disturbance on the screen triggered by user activity or a periodic 6931 * system activity, DRRS is disabled (RR is changed to high RR). When there is 6932 * no movement on screen, after a timeout of 1 second, a switch to low RR is 6933 * made. 6934 * 6935 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 6936 * and intel_edp_drrs_flush() are called. 6937 * 6938 * DRRS can be further extended to support other internal panels and also 6939 * the scenario of video playback wherein RR is set based on the rate 6940 * requested by userspace. 6941 */ 6942 6943 /** 6944 * intel_dp_drrs_init - Init basic DRRS work and mutex. 6945 * @connector: eDP connector 6946 * @fixed_mode: preferred mode of panel 6947 * 6948 * This function is called only once at driver load to initialize basic 6949 * DRRS stuff. 6950 * 6951 * Returns: 6952 * Downclock mode if panel supports it, else return NULL. 6953 * DRRS support is determined by the presence of downclock mode (apart 6954 * from VBT setting). 6955 */ 6956 static struct drm_display_mode * 6957 intel_dp_drrs_init(struct intel_connector *connector, 6958 struct drm_display_mode *fixed_mode) 6959 { 6960 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 6961 struct drm_display_mode *downclock_mode = NULL; 6962 6963 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 6964 mutex_init(&dev_priv->drrs.mutex); 6965 6966 if (INTEL_GEN(dev_priv) <= 6) { 6967 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); 6968 return NULL; 6969 } 6970 6971 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 6972 DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); 6973 return NULL; 6974 } 6975 6976 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 6977 if (!downclock_mode) { 6978 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); 6979 return NULL; 6980 } 6981 6982 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 6983 6984 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 6985 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); 6986 return downclock_mode; 6987 } 6988 6989 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 6990 struct intel_connector *intel_connector) 6991 { 6992 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6993 struct drm_device *dev = &dev_priv->drm; 6994 struct drm_connector *connector = &intel_connector->base; 6995 struct drm_display_mode *fixed_mode = NULL; 6996 struct drm_display_mode *downclock_mode = NULL; 6997 bool has_dpcd; 6998 enum pipe pipe = INVALID_PIPE; 6999 intel_wakeref_t wakeref; 7000 struct edid *edid; 7001 7002 if (!intel_dp_is_edp(intel_dp)) 7003 return true; 7004 7005 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7006 7007 /* 7008 * On IBX/CPT we may get here with LVDS already registered. Since the 7009 * driver uses the only internal power sequencer available for both 7010 * eDP and LVDS bail out early in this case to prevent interfering 7011 * with an already powered-on LVDS power sequencer. 7012 */ 7013 if (intel_get_lvds_encoder(dev_priv)) { 7014 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7015 DRM_INFO("LVDS was detected, not registering eDP\n"); 7016 7017 return false; 7018 } 7019 7020 with_pps_lock(intel_dp, wakeref) { 7021 intel_dp_init_panel_power_timestamps(intel_dp); 7022 intel_dp_pps_init(intel_dp); 7023 intel_edp_panel_vdd_sanitize(intel_dp); 7024 } 7025 7026 /* Cache DPCD and EDID for edp. */ 7027 has_dpcd = intel_edp_init_dpcd(intel_dp); 7028 7029 if (!has_dpcd) { 7030 /* if this fails, presume the device is a ghost */ 7031 DRM_INFO("failed to retrieve link info, disabling eDP\n"); 7032 goto out_vdd_off; 7033 } 7034 7035 mutex_lock(&dev->mode_config.mutex); 7036 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7037 if (edid) { 7038 if (drm_add_edid_modes(connector, edid)) { 7039 drm_connector_update_edid_property(connector, 7040 edid); 7041 } else { 7042 kfree(edid); 7043 edid = ERR_PTR(-EINVAL); 7044 } 7045 } else { 7046 edid = ERR_PTR(-ENOENT); 7047 } 7048 intel_connector->edid = edid; 7049 7050 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7051 if (fixed_mode) 7052 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7053 7054 /* fallback to VBT if available for eDP */ 7055 if (!fixed_mode) 7056 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7057 mutex_unlock(&dev->mode_config.mutex); 7058 7059 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7060 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7061 register_reboot_notifier(&intel_dp->edp_notifier); 7062 7063 /* 7064 * Figure out the current pipe for the initial backlight setup. 7065 * If the current pipe isn't valid, try the PPS pipe, and if that 7066 * fails just assume pipe A. 7067 */ 7068 pipe = vlv_active_pipe(intel_dp); 7069 7070 if (pipe != PIPE_A && pipe != PIPE_B) 7071 pipe = intel_dp->pps_pipe; 7072 7073 if (pipe != PIPE_A && pipe != PIPE_B) 7074 pipe = PIPE_A; 7075 7076 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", 7077 pipe_name(pipe)); 7078 } 7079 7080 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7081 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7082 intel_panel_setup_backlight(connector, pipe); 7083 7084 if (fixed_mode) 7085 drm_connector_init_panel_orientation_property( 7086 connector, fixed_mode->hdisplay, fixed_mode->vdisplay); 7087 7088 return true; 7089 7090 out_vdd_off: 7091 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7092 /* 7093 * vdd might still be enabled do to the delayed vdd off. 7094 * Make sure vdd is actually turned off here. 7095 */ 7096 with_pps_lock(intel_dp, wakeref) 7097 edp_panel_vdd_off_sync(intel_dp); 7098 7099 return false; 7100 } 7101 7102 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7103 { 7104 struct intel_connector *intel_connector; 7105 struct drm_connector *connector; 7106 7107 intel_connector = container_of(work, typeof(*intel_connector), 7108 modeset_retry_work); 7109 connector = &intel_connector->base; 7110 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7111 connector->name); 7112 7113 /* Grab the locks before changing connector property*/ 7114 mutex_lock(&connector->dev->mode_config.mutex); 7115 /* Set connector link status to BAD and send a Uevent to notify 7116 * userspace to do a modeset. 7117 */ 7118 drm_connector_set_link_status_property(connector, 7119 DRM_MODE_LINK_STATUS_BAD); 7120 mutex_unlock(&connector->dev->mode_config.mutex); 7121 /* Send Hotplug uevent so userspace can reprobe */ 7122 drm_kms_helper_hotplug_event(connector->dev); 7123 } 7124 7125 bool 7126 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 7127 struct intel_connector *intel_connector) 7128 { 7129 struct drm_connector *connector = &intel_connector->base; 7130 struct intel_dp *intel_dp = &intel_dig_port->dp; 7131 struct intel_encoder *intel_encoder = &intel_dig_port->base; 7132 struct drm_device *dev = intel_encoder->base.dev; 7133 struct drm_i915_private *dev_priv = to_i915(dev); 7134 enum port port = intel_encoder->port; 7135 enum phy phy = intel_port_to_phy(dev_priv, port); 7136 int type; 7137 7138 /* Initialize the work for modeset in case of link train failure */ 7139 INIT_WORK(&intel_connector->modeset_retry_work, 7140 intel_dp_modeset_retry_work_fn); 7141 7142 if (WARN(intel_dig_port->max_lanes < 1, 7143 "Not enough lanes (%d) for DP on port %c\n", 7144 intel_dig_port->max_lanes, port_name(port))) 7145 return false; 7146 7147 intel_dp_set_source_rates(intel_dp); 7148 7149 intel_dp->reset_link_params = true; 7150 intel_dp->pps_pipe = INVALID_PIPE; 7151 intel_dp->active_pipe = INVALID_PIPE; 7152 7153 /* Preserve the current hw state. */ 7154 intel_dp->DP = I915_READ(intel_dp->output_reg); 7155 intel_dp->attached_connector = intel_connector; 7156 7157 if (intel_dp_is_port_edp(dev_priv, port)) { 7158 /* 7159 * Currently we don't support eDP on TypeC ports, although in 7160 * theory it could work on TypeC legacy ports. 7161 */ 7162 WARN_ON(intel_phy_is_tc(dev_priv, phy)); 7163 type = DRM_MODE_CONNECTOR_eDP; 7164 } else { 7165 type = DRM_MODE_CONNECTOR_DisplayPort; 7166 } 7167 7168 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7169 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7170 7171 /* 7172 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7173 * for DP the encoder type can be set by the caller to 7174 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7175 */ 7176 if (type == DRM_MODE_CONNECTOR_eDP) 7177 intel_encoder->type = INTEL_OUTPUT_EDP; 7178 7179 /* eDP only on port B and/or C on vlv/chv */ 7180 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 7181 intel_dp_is_edp(intel_dp) && 7182 port != PORT_B && port != PORT_C)) 7183 return false; 7184 7185 DRM_DEBUG_KMS("Adding %s connector on port %c\n", 7186 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7187 port_name(port)); 7188 7189 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7190 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7191 7192 if (!HAS_GMCH(dev_priv)) 7193 connector->interlace_allowed = true; 7194 connector->doublescan_allowed = 0; 7195 7196 if (INTEL_GEN(dev_priv) >= 11) 7197 connector->ycbcr_420_allowed = true; 7198 7199 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7200 7201 intel_dp_aux_init(intel_dp); 7202 7203 intel_connector_attach_encoder(intel_connector, intel_encoder); 7204 7205 if (HAS_DDI(dev_priv)) 7206 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7207 else 7208 intel_connector->get_hw_state = intel_connector_get_hw_state; 7209 7210 /* init MST on ports that can support it */ 7211 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) && 7212 (port == PORT_B || port == PORT_C || 7213 port == PORT_D || port == PORT_F)) 7214 intel_dp_mst_encoder_init(intel_dig_port, 7215 intel_connector->base.base.id); 7216 7217 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7218 intel_dp_aux_fini(intel_dp); 7219 intel_dp_mst_encoder_cleanup(intel_dig_port); 7220 goto fail; 7221 } 7222 7223 intel_dp_add_properties(intel_dp, connector); 7224 7225 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7226 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 7227 if (ret) 7228 DRM_DEBUG_KMS("HDCP init failed, skipping.\n"); 7229 } 7230 7231 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7232 * 0xd. Failure to do so will result in spurious interrupts being 7233 * generated on the port when a cable is not attached. 7234 */ 7235 if (IS_G45(dev_priv)) { 7236 u32 temp = I915_READ(PEG_BAND_GAP_DATA); 7237 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); 7238 } 7239 7240 return true; 7241 7242 fail: 7243 drm_connector_cleanup(connector); 7244 7245 return false; 7246 } 7247 7248 bool intel_dp_init(struct drm_i915_private *dev_priv, 7249 i915_reg_t output_reg, 7250 enum port port) 7251 { 7252 struct intel_digital_port *intel_dig_port; 7253 struct intel_encoder *intel_encoder; 7254 struct drm_encoder *encoder; 7255 struct intel_connector *intel_connector; 7256 7257 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 7258 if (!intel_dig_port) 7259 return false; 7260 7261 intel_connector = intel_connector_alloc(); 7262 if (!intel_connector) 7263 goto err_connector_alloc; 7264 7265 intel_encoder = &intel_dig_port->base; 7266 encoder = &intel_encoder->base; 7267 7268 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7269 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7270 "DP %c", port_name(port))) 7271 goto err_encoder_init; 7272 7273 intel_encoder->hotplug = intel_dp_hotplug; 7274 intel_encoder->compute_config = intel_dp_compute_config; 7275 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7276 intel_encoder->get_config = intel_dp_get_config; 7277 intel_encoder->update_pipe = intel_panel_update_backlight; 7278 intel_encoder->suspend = intel_dp_encoder_suspend; 7279 if (IS_CHERRYVIEW(dev_priv)) { 7280 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7281 intel_encoder->pre_enable = chv_pre_enable_dp; 7282 intel_encoder->enable = vlv_enable_dp; 7283 intel_encoder->disable = vlv_disable_dp; 7284 intel_encoder->post_disable = chv_post_disable_dp; 7285 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 7286 } else if (IS_VALLEYVIEW(dev_priv)) { 7287 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 7288 intel_encoder->pre_enable = vlv_pre_enable_dp; 7289 intel_encoder->enable = vlv_enable_dp; 7290 intel_encoder->disable = vlv_disable_dp; 7291 intel_encoder->post_disable = vlv_post_disable_dp; 7292 } else { 7293 intel_encoder->pre_enable = g4x_pre_enable_dp; 7294 intel_encoder->enable = g4x_enable_dp; 7295 intel_encoder->disable = g4x_disable_dp; 7296 intel_encoder->post_disable = g4x_post_disable_dp; 7297 } 7298 7299 intel_dig_port->dp.output_reg = output_reg; 7300 intel_dig_port->max_lanes = 4; 7301 7302 intel_encoder->type = INTEL_OUTPUT_DP; 7303 intel_encoder->power_domain = intel_port_to_power_domain(port); 7304 if (IS_CHERRYVIEW(dev_priv)) { 7305 if (port == PORT_D) 7306 intel_encoder->crtc_mask = 1 << 2; 7307 else 7308 intel_encoder->crtc_mask = (1 << 0) | (1 << 1); 7309 } else { 7310 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); 7311 } 7312 intel_encoder->cloneable = 0; 7313 intel_encoder->port = port; 7314 7315 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 7316 7317 if (port != PORT_A) 7318 intel_infoframe_init(intel_dig_port); 7319 7320 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 7321 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 7322 goto err_init_connector; 7323 7324 return true; 7325 7326 err_init_connector: 7327 drm_encoder_cleanup(encoder); 7328 err_encoder_init: 7329 kfree(intel_connector); 7330 err_connector_alloc: 7331 kfree(intel_dig_port); 7332 return false; 7333 } 7334 7335 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 7336 { 7337 struct intel_encoder *encoder; 7338 7339 for_each_intel_encoder(&dev_priv->drm, encoder) { 7340 struct intel_dp *intel_dp; 7341 7342 if (encoder->type != INTEL_OUTPUT_DDI) 7343 continue; 7344 7345 intel_dp = enc_to_intel_dp(&encoder->base); 7346 7347 if (!intel_dp->can_mst) 7348 continue; 7349 7350 if (intel_dp->is_mst) 7351 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 7352 } 7353 } 7354 7355 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 7356 { 7357 struct intel_encoder *encoder; 7358 7359 for_each_intel_encoder(&dev_priv->drm, encoder) { 7360 struct intel_dp *intel_dp; 7361 int ret; 7362 7363 if (encoder->type != INTEL_OUTPUT_DDI) 7364 continue; 7365 7366 intel_dp = enc_to_intel_dp(&encoder->base); 7367 7368 if (!intel_dp->can_mst) 7369 continue; 7370 7371 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr); 7372 if (ret) { 7373 intel_dp->is_mst = false; 7374 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 7375 false); 7376 } 7377 } 7378 } 7379