1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "intel_backlight_regs.h"
11 #include "intel_cdclk.h"
12 #include "intel_combo_phy.h"
13 #include "intel_de.h"
14 #include "intel_display_power.h"
15 #include "intel_display_power_map.h"
16 #include "intel_display_power_well.h"
17 #include "intel_display_types.h"
18 #include "intel_dmc.h"
19 #include "intel_mchbar_regs.h"
20 #include "intel_pch_refclk.h"
21 #include "intel_pcode.h"
22 #include "intel_snps_phy.h"
23 #include "skl_watermark.h"
24 #include "vlv_sideband.h"
25 
26 #define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
27 	for_each_power_well(__dev_priv, __power_well)				\
28 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
29 
30 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
31 	for_each_power_well_reverse(__dev_priv, __power_well)		        \
32 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
33 
34 const char *
35 intel_display_power_domain_str(enum intel_display_power_domain domain)
36 {
37 	switch (domain) {
38 	case POWER_DOMAIN_DISPLAY_CORE:
39 		return "DISPLAY_CORE";
40 	case POWER_DOMAIN_PIPE_A:
41 		return "PIPE_A";
42 	case POWER_DOMAIN_PIPE_B:
43 		return "PIPE_B";
44 	case POWER_DOMAIN_PIPE_C:
45 		return "PIPE_C";
46 	case POWER_DOMAIN_PIPE_D:
47 		return "PIPE_D";
48 	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
49 		return "PIPE_PANEL_FITTER_A";
50 	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
51 		return "PIPE_PANEL_FITTER_B";
52 	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
53 		return "PIPE_PANEL_FITTER_C";
54 	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
55 		return "PIPE_PANEL_FITTER_D";
56 	case POWER_DOMAIN_TRANSCODER_A:
57 		return "TRANSCODER_A";
58 	case POWER_DOMAIN_TRANSCODER_B:
59 		return "TRANSCODER_B";
60 	case POWER_DOMAIN_TRANSCODER_C:
61 		return "TRANSCODER_C";
62 	case POWER_DOMAIN_TRANSCODER_D:
63 		return "TRANSCODER_D";
64 	case POWER_DOMAIN_TRANSCODER_EDP:
65 		return "TRANSCODER_EDP";
66 	case POWER_DOMAIN_TRANSCODER_DSI_A:
67 		return "TRANSCODER_DSI_A";
68 	case POWER_DOMAIN_TRANSCODER_DSI_C:
69 		return "TRANSCODER_DSI_C";
70 	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
71 		return "TRANSCODER_VDSC_PW2";
72 	case POWER_DOMAIN_PORT_DDI_LANES_A:
73 		return "PORT_DDI_LANES_A";
74 	case POWER_DOMAIN_PORT_DDI_LANES_B:
75 		return "PORT_DDI_LANES_B";
76 	case POWER_DOMAIN_PORT_DDI_LANES_C:
77 		return "PORT_DDI_LANES_C";
78 	case POWER_DOMAIN_PORT_DDI_LANES_D:
79 		return "PORT_DDI_LANES_D";
80 	case POWER_DOMAIN_PORT_DDI_LANES_E:
81 		return "PORT_DDI_LANES_E";
82 	case POWER_DOMAIN_PORT_DDI_LANES_F:
83 		return "PORT_DDI_LANES_F";
84 	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
85 		return "PORT_DDI_LANES_TC1";
86 	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
87 		return "PORT_DDI_LANES_TC2";
88 	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
89 		return "PORT_DDI_LANES_TC3";
90 	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
91 		return "PORT_DDI_LANES_TC4";
92 	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
93 		return "PORT_DDI_LANES_TC5";
94 	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
95 		return "PORT_DDI_LANES_TC6";
96 	case POWER_DOMAIN_PORT_DDI_IO_A:
97 		return "PORT_DDI_IO_A";
98 	case POWER_DOMAIN_PORT_DDI_IO_B:
99 		return "PORT_DDI_IO_B";
100 	case POWER_DOMAIN_PORT_DDI_IO_C:
101 		return "PORT_DDI_IO_C";
102 	case POWER_DOMAIN_PORT_DDI_IO_D:
103 		return "PORT_DDI_IO_D";
104 	case POWER_DOMAIN_PORT_DDI_IO_E:
105 		return "PORT_DDI_IO_E";
106 	case POWER_DOMAIN_PORT_DDI_IO_F:
107 		return "PORT_DDI_IO_F";
108 	case POWER_DOMAIN_PORT_DDI_IO_TC1:
109 		return "PORT_DDI_IO_TC1";
110 	case POWER_DOMAIN_PORT_DDI_IO_TC2:
111 		return "PORT_DDI_IO_TC2";
112 	case POWER_DOMAIN_PORT_DDI_IO_TC3:
113 		return "PORT_DDI_IO_TC3";
114 	case POWER_DOMAIN_PORT_DDI_IO_TC4:
115 		return "PORT_DDI_IO_TC4";
116 	case POWER_DOMAIN_PORT_DDI_IO_TC5:
117 		return "PORT_DDI_IO_TC5";
118 	case POWER_DOMAIN_PORT_DDI_IO_TC6:
119 		return "PORT_DDI_IO_TC6";
120 	case POWER_DOMAIN_PORT_DSI:
121 		return "PORT_DSI";
122 	case POWER_DOMAIN_PORT_CRT:
123 		return "PORT_CRT";
124 	case POWER_DOMAIN_PORT_OTHER:
125 		return "PORT_OTHER";
126 	case POWER_DOMAIN_VGA:
127 		return "VGA";
128 	case POWER_DOMAIN_AUDIO_MMIO:
129 		return "AUDIO_MMIO";
130 	case POWER_DOMAIN_AUDIO_PLAYBACK:
131 		return "AUDIO_PLAYBACK";
132 	case POWER_DOMAIN_AUX_IO_A:
133 		return "AUX_IO_A";
134 	case POWER_DOMAIN_AUX_IO_B:
135 		return "AUX_IO_B";
136 	case POWER_DOMAIN_AUX_IO_C:
137 		return "AUX_IO_C";
138 	case POWER_DOMAIN_AUX_IO_D:
139 		return "AUX_IO_D";
140 	case POWER_DOMAIN_AUX_IO_E:
141 		return "AUX_IO_E";
142 	case POWER_DOMAIN_AUX_IO_F:
143 		return "AUX_IO_F";
144 	case POWER_DOMAIN_AUX_A:
145 		return "AUX_A";
146 	case POWER_DOMAIN_AUX_B:
147 		return "AUX_B";
148 	case POWER_DOMAIN_AUX_C:
149 		return "AUX_C";
150 	case POWER_DOMAIN_AUX_D:
151 		return "AUX_D";
152 	case POWER_DOMAIN_AUX_E:
153 		return "AUX_E";
154 	case POWER_DOMAIN_AUX_F:
155 		return "AUX_F";
156 	case POWER_DOMAIN_AUX_USBC1:
157 		return "AUX_USBC1";
158 	case POWER_DOMAIN_AUX_USBC2:
159 		return "AUX_USBC2";
160 	case POWER_DOMAIN_AUX_USBC3:
161 		return "AUX_USBC3";
162 	case POWER_DOMAIN_AUX_USBC4:
163 		return "AUX_USBC4";
164 	case POWER_DOMAIN_AUX_USBC5:
165 		return "AUX_USBC5";
166 	case POWER_DOMAIN_AUX_USBC6:
167 		return "AUX_USBC6";
168 	case POWER_DOMAIN_AUX_TBT1:
169 		return "AUX_TBT1";
170 	case POWER_DOMAIN_AUX_TBT2:
171 		return "AUX_TBT2";
172 	case POWER_DOMAIN_AUX_TBT3:
173 		return "AUX_TBT3";
174 	case POWER_DOMAIN_AUX_TBT4:
175 		return "AUX_TBT4";
176 	case POWER_DOMAIN_AUX_TBT5:
177 		return "AUX_TBT5";
178 	case POWER_DOMAIN_AUX_TBT6:
179 		return "AUX_TBT6";
180 	case POWER_DOMAIN_GMBUS:
181 		return "GMBUS";
182 	case POWER_DOMAIN_INIT:
183 		return "INIT";
184 	case POWER_DOMAIN_MODESET:
185 		return "MODESET";
186 	case POWER_DOMAIN_GT_IRQ:
187 		return "GT_IRQ";
188 	case POWER_DOMAIN_DC_OFF:
189 		return "DC_OFF";
190 	case POWER_DOMAIN_TC_COLD_OFF:
191 		return "TC_COLD_OFF";
192 	default:
193 		MISSING_CASE(domain);
194 		return "?";
195 	}
196 }
197 
198 /**
199  * __intel_display_power_is_enabled - unlocked check for a power domain
200  * @dev_priv: i915 device instance
201  * @domain: power domain to check
202  *
203  * This is the unlocked version of intel_display_power_is_enabled() and should
204  * only be used from error capture and recovery code where deadlocks are
205  * possible.
206  *
207  * Returns:
208  * True when the power domain is enabled, false otherwise.
209  */
210 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
211 				      enum intel_display_power_domain domain)
212 {
213 	struct i915_power_well *power_well;
214 	bool is_enabled;
215 
216 	if (dev_priv->runtime_pm.suspended)
217 		return false;
218 
219 	is_enabled = true;
220 
221 	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
222 		if (intel_power_well_is_always_on(power_well))
223 			continue;
224 
225 		if (!intel_power_well_is_enabled_cached(power_well)) {
226 			is_enabled = false;
227 			break;
228 		}
229 	}
230 
231 	return is_enabled;
232 }
233 
234 /**
235  * intel_display_power_is_enabled - check for a power domain
236  * @dev_priv: i915 device instance
237  * @domain: power domain to check
238  *
239  * This function can be used to check the hw power domain state. It is mostly
240  * used in hardware state readout functions. Everywhere else code should rely
241  * upon explicit power domain reference counting to ensure that the hardware
242  * block is powered up before accessing it.
243  *
244  * Callers must hold the relevant modesetting locks to ensure that concurrent
245  * threads can't disable the power well while the caller tries to read a few
246  * registers.
247  *
248  * Returns:
249  * True when the power domain is enabled, false otherwise.
250  */
251 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
252 				    enum intel_display_power_domain domain)
253 {
254 	struct i915_power_domains *power_domains;
255 	bool ret;
256 
257 	power_domains = &dev_priv->display.power.domains;
258 
259 	mutex_lock(&power_domains->lock);
260 	ret = __intel_display_power_is_enabled(dev_priv, domain);
261 	mutex_unlock(&power_domains->lock);
262 
263 	return ret;
264 }
265 
266 static u32
267 sanitize_target_dc_state(struct drm_i915_private *i915,
268 			 u32 target_dc_state)
269 {
270 	struct i915_power_domains *power_domains = &i915->display.power.domains;
271 	static const u32 states[] = {
272 		DC_STATE_EN_UPTO_DC6,
273 		DC_STATE_EN_UPTO_DC5,
274 		DC_STATE_EN_DC3CO,
275 		DC_STATE_DISABLE,
276 	};
277 	int i;
278 
279 	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
280 		if (target_dc_state != states[i])
281 			continue;
282 
283 		if (power_domains->allowed_dc_mask & target_dc_state)
284 			break;
285 
286 		target_dc_state = states[i + 1];
287 	}
288 
289 	return target_dc_state;
290 }
291 
292 /**
293  * intel_display_power_set_target_dc_state - Set target dc state.
294  * @dev_priv: i915 device
295  * @state: state which needs to be set as target_dc_state.
296  *
297  * This function set the "DC off" power well target_dc_state,
298  * based upon this target_dc_stste, "DC off" power well will
299  * enable desired DC state.
300  */
301 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
302 					     u32 state)
303 {
304 	struct i915_power_well *power_well;
305 	bool dc_off_enabled;
306 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
307 
308 	mutex_lock(&power_domains->lock);
309 	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
310 
311 	if (drm_WARN_ON(&dev_priv->drm, !power_well))
312 		goto unlock;
313 
314 	state = sanitize_target_dc_state(dev_priv, state);
315 
316 	if (state == power_domains->target_dc_state)
317 		goto unlock;
318 
319 	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
320 	/*
321 	 * If DC off power well is disabled, need to enable and disable the
322 	 * DC off power well to effect target DC state.
323 	 */
324 	if (!dc_off_enabled)
325 		intel_power_well_enable(dev_priv, power_well);
326 
327 	power_domains->target_dc_state = state;
328 
329 	if (!dc_off_enabled)
330 		intel_power_well_disable(dev_priv, power_well);
331 
332 unlock:
333 	mutex_unlock(&power_domains->lock);
334 }
335 
336 #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
337 
338 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
339 				     struct intel_power_domain_mask *mask)
340 {
341 	bitmap_or(mask->bits,
342 		  power_domains->async_put_domains[0].bits,
343 		  power_domains->async_put_domains[1].bits,
344 		  POWER_DOMAIN_NUM);
345 }
346 
347 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
348 
349 static bool
350 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
351 {
352 	struct drm_i915_private *i915 = container_of(power_domains,
353 						     struct drm_i915_private,
354 						     display.power.domains);
355 
356 	return !drm_WARN_ON(&i915->drm,
357 			    bitmap_intersects(power_domains->async_put_domains[0].bits,
358 					      power_domains->async_put_domains[1].bits,
359 					      POWER_DOMAIN_NUM));
360 }
361 
362 static bool
363 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
364 {
365 	struct drm_i915_private *i915 = container_of(power_domains,
366 						     struct drm_i915_private,
367 						     display.power.domains);
368 	struct intel_power_domain_mask async_put_mask;
369 	enum intel_display_power_domain domain;
370 	bool err = false;
371 
372 	err |= !assert_async_put_domain_masks_disjoint(power_domains);
373 	__async_put_domains_mask(power_domains, &async_put_mask);
374 	err |= drm_WARN_ON(&i915->drm,
375 			   !!power_domains->async_put_wakeref !=
376 			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
377 
378 	for_each_power_domain(domain, &async_put_mask)
379 		err |= drm_WARN_ON(&i915->drm,
380 				   power_domains->domain_use_count[domain] != 1);
381 
382 	return !err;
383 }
384 
385 static void print_power_domains(struct i915_power_domains *power_domains,
386 				const char *prefix, struct intel_power_domain_mask *mask)
387 {
388 	struct drm_i915_private *i915 = container_of(power_domains,
389 						     struct drm_i915_private,
390 						     display.power.domains);
391 	enum intel_display_power_domain domain;
392 
393 	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
394 	for_each_power_domain(domain, mask)
395 		drm_dbg(&i915->drm, "%s use_count %d\n",
396 			intel_display_power_domain_str(domain),
397 			power_domains->domain_use_count[domain]);
398 }
399 
400 static void
401 print_async_put_domains_state(struct i915_power_domains *power_domains)
402 {
403 	struct drm_i915_private *i915 = container_of(power_domains,
404 						     struct drm_i915_private,
405 						     display.power.domains);
406 
407 	drm_dbg(&i915->drm, "async_put_wakeref %u\n",
408 		power_domains->async_put_wakeref);
409 
410 	print_power_domains(power_domains, "async_put_domains[0]",
411 			    &power_domains->async_put_domains[0]);
412 	print_power_domains(power_domains, "async_put_domains[1]",
413 			    &power_domains->async_put_domains[1]);
414 }
415 
416 static void
417 verify_async_put_domains_state(struct i915_power_domains *power_domains)
418 {
419 	if (!__async_put_domains_state_ok(power_domains))
420 		print_async_put_domains_state(power_domains);
421 }
422 
423 #else
424 
425 static void
426 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
427 {
428 }
429 
430 static void
431 verify_async_put_domains_state(struct i915_power_domains *power_domains)
432 {
433 }
434 
435 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
436 
437 static void async_put_domains_mask(struct i915_power_domains *power_domains,
438 				   struct intel_power_domain_mask *mask)
439 
440 {
441 	assert_async_put_domain_masks_disjoint(power_domains);
442 
443 	__async_put_domains_mask(power_domains, mask);
444 }
445 
446 static void
447 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
448 			       enum intel_display_power_domain domain)
449 {
450 	assert_async_put_domain_masks_disjoint(power_domains);
451 
452 	clear_bit(domain, power_domains->async_put_domains[0].bits);
453 	clear_bit(domain, power_domains->async_put_domains[1].bits);
454 }
455 
456 static bool
457 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
458 				       enum intel_display_power_domain domain)
459 {
460 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
461 	struct intel_power_domain_mask async_put_mask;
462 	bool ret = false;
463 
464 	async_put_domains_mask(power_domains, &async_put_mask);
465 	if (!test_bit(domain, async_put_mask.bits))
466 		goto out_verify;
467 
468 	async_put_domains_clear_domain(power_domains, domain);
469 
470 	ret = true;
471 
472 	async_put_domains_mask(power_domains, &async_put_mask);
473 	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
474 		goto out_verify;
475 
476 	cancel_delayed_work(&power_domains->async_put_work);
477 	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
478 				 fetch_and_zero(&power_domains->async_put_wakeref));
479 out_verify:
480 	verify_async_put_domains_state(power_domains);
481 
482 	return ret;
483 }
484 
485 static void
486 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
487 				 enum intel_display_power_domain domain)
488 {
489 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
490 	struct i915_power_well *power_well;
491 
492 	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
493 		return;
494 
495 	for_each_power_domain_well(dev_priv, power_well, domain)
496 		intel_power_well_get(dev_priv, power_well);
497 
498 	power_domains->domain_use_count[domain]++;
499 }
500 
501 /**
502  * intel_display_power_get - grab a power domain reference
503  * @dev_priv: i915 device instance
504  * @domain: power domain to reference
505  *
506  * This function grabs a power domain reference for @domain and ensures that the
507  * power domain and all its parents are powered up. Therefore users should only
508  * grab a reference to the innermost power domain they need.
509  *
510  * Any power domain reference obtained by this function must have a symmetric
511  * call to intel_display_power_put() to release the reference again.
512  */
513 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
514 					enum intel_display_power_domain domain)
515 {
516 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
517 	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
518 
519 	mutex_lock(&power_domains->lock);
520 	__intel_display_power_get_domain(dev_priv, domain);
521 	mutex_unlock(&power_domains->lock);
522 
523 	return wakeref;
524 }
525 
526 /**
527  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
528  * @dev_priv: i915 device instance
529  * @domain: power domain to reference
530  *
531  * This function grabs a power domain reference for @domain and ensures that the
532  * power domain and all its parents are powered up. Therefore users should only
533  * grab a reference to the innermost power domain they need.
534  *
535  * Any power domain reference obtained by this function must have a symmetric
536  * call to intel_display_power_put() to release the reference again.
537  */
538 intel_wakeref_t
539 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
540 				   enum intel_display_power_domain domain)
541 {
542 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
543 	intel_wakeref_t wakeref;
544 	bool is_enabled;
545 
546 	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
547 	if (!wakeref)
548 		return false;
549 
550 	mutex_lock(&power_domains->lock);
551 
552 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
553 		__intel_display_power_get_domain(dev_priv, domain);
554 		is_enabled = true;
555 	} else {
556 		is_enabled = false;
557 	}
558 
559 	mutex_unlock(&power_domains->lock);
560 
561 	if (!is_enabled) {
562 		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
563 		wakeref = 0;
564 	}
565 
566 	return wakeref;
567 }
568 
569 static void
570 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
571 				 enum intel_display_power_domain domain)
572 {
573 	struct i915_power_domains *power_domains;
574 	struct i915_power_well *power_well;
575 	const char *name = intel_display_power_domain_str(domain);
576 	struct intel_power_domain_mask async_put_mask;
577 
578 	power_domains = &dev_priv->display.power.domains;
579 
580 	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
581 		 "Use count on domain %s is already zero\n",
582 		 name);
583 	async_put_domains_mask(power_domains, &async_put_mask);
584 	drm_WARN(&dev_priv->drm,
585 		 test_bit(domain, async_put_mask.bits),
586 		 "Async disabling of domain %s is pending\n",
587 		 name);
588 
589 	power_domains->domain_use_count[domain]--;
590 
591 	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
592 		intel_power_well_put(dev_priv, power_well);
593 }
594 
595 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
596 				      enum intel_display_power_domain domain)
597 {
598 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
599 
600 	mutex_lock(&power_domains->lock);
601 	__intel_display_power_put_domain(dev_priv, domain);
602 	mutex_unlock(&power_domains->lock);
603 }
604 
605 static void
606 queue_async_put_domains_work(struct i915_power_domains *power_domains,
607 			     intel_wakeref_t wakeref)
608 {
609 	struct drm_i915_private *i915 = container_of(power_domains,
610 						     struct drm_i915_private,
611 						     display.power.domains);
612 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
613 	power_domains->async_put_wakeref = wakeref;
614 	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
615 						    &power_domains->async_put_work,
616 						    msecs_to_jiffies(100)));
617 }
618 
619 static void
620 release_async_put_domains(struct i915_power_domains *power_domains,
621 			  struct intel_power_domain_mask *mask)
622 {
623 	struct drm_i915_private *dev_priv =
624 		container_of(power_domains, struct drm_i915_private,
625 			     display.power.domains);
626 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
627 	enum intel_display_power_domain domain;
628 	intel_wakeref_t wakeref;
629 
630 	/*
631 	 * The caller must hold already raw wakeref, upgrade that to a proper
632 	 * wakeref to make the state checker happy about the HW access during
633 	 * power well disabling.
634 	 */
635 	assert_rpm_raw_wakeref_held(rpm);
636 	wakeref = intel_runtime_pm_get(rpm);
637 
638 	for_each_power_domain(domain, mask) {
639 		/* Clear before put, so put's sanity check is happy. */
640 		async_put_domains_clear_domain(power_domains, domain);
641 		__intel_display_power_put_domain(dev_priv, domain);
642 	}
643 
644 	intel_runtime_pm_put(rpm, wakeref);
645 }
646 
647 static void
648 intel_display_power_put_async_work(struct work_struct *work)
649 {
650 	struct drm_i915_private *dev_priv =
651 		container_of(work, struct drm_i915_private,
652 			     display.power.domains.async_put_work.work);
653 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
654 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
655 	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
656 	intel_wakeref_t old_work_wakeref = 0;
657 
658 	mutex_lock(&power_domains->lock);
659 
660 	/*
661 	 * Bail out if all the domain refs pending to be released were grabbed
662 	 * by subsequent gets or a flush_work.
663 	 */
664 	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
665 	if (!old_work_wakeref)
666 		goto out_verify;
667 
668 	release_async_put_domains(power_domains,
669 				  &power_domains->async_put_domains[0]);
670 
671 	/* Requeue the work if more domains were async put meanwhile. */
672 	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
673 		bitmap_copy(power_domains->async_put_domains[0].bits,
674 			    power_domains->async_put_domains[1].bits,
675 			    POWER_DOMAIN_NUM);
676 		bitmap_zero(power_domains->async_put_domains[1].bits,
677 			    POWER_DOMAIN_NUM);
678 		queue_async_put_domains_work(power_domains,
679 					     fetch_and_zero(&new_work_wakeref));
680 	} else {
681 		/*
682 		 * Cancel the work that got queued after this one got dequeued,
683 		 * since here we released the corresponding async-put reference.
684 		 */
685 		cancel_delayed_work(&power_domains->async_put_work);
686 	}
687 
688 out_verify:
689 	verify_async_put_domains_state(power_domains);
690 
691 	mutex_unlock(&power_domains->lock);
692 
693 	if (old_work_wakeref)
694 		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
695 	if (new_work_wakeref)
696 		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
697 }
698 
699 /**
700  * intel_display_power_put_async - release a power domain reference asynchronously
701  * @i915: i915 device instance
702  * @domain: power domain to reference
703  * @wakeref: wakeref acquired for the reference that is being released
704  *
705  * This function drops the power domain reference obtained by
706  * intel_display_power_get*() and schedules a work to power down the
707  * corresponding hardware block if this is the last reference.
708  */
709 void __intel_display_power_put_async(struct drm_i915_private *i915,
710 				     enum intel_display_power_domain domain,
711 				     intel_wakeref_t wakeref)
712 {
713 	struct i915_power_domains *power_domains = &i915->display.power.domains;
714 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
715 	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
716 
717 	mutex_lock(&power_domains->lock);
718 
719 	if (power_domains->domain_use_count[domain] > 1) {
720 		__intel_display_power_put_domain(i915, domain);
721 
722 		goto out_verify;
723 	}
724 
725 	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
726 
727 	/* Let a pending work requeue itself or queue a new one. */
728 	if (power_domains->async_put_wakeref) {
729 		set_bit(domain, power_domains->async_put_domains[1].bits);
730 	} else {
731 		set_bit(domain, power_domains->async_put_domains[0].bits);
732 		queue_async_put_domains_work(power_domains,
733 					     fetch_and_zero(&work_wakeref));
734 	}
735 
736 out_verify:
737 	verify_async_put_domains_state(power_domains);
738 
739 	mutex_unlock(&power_domains->lock);
740 
741 	if (work_wakeref)
742 		intel_runtime_pm_put_raw(rpm, work_wakeref);
743 
744 	intel_runtime_pm_put(rpm, wakeref);
745 }
746 
747 /**
748  * intel_display_power_flush_work - flushes the async display power disabling work
749  * @i915: i915 device instance
750  *
751  * Flushes any pending work that was scheduled by a preceding
752  * intel_display_power_put_async() call, completing the disabling of the
753  * corresponding power domains.
754  *
755  * Note that the work handler function may still be running after this
756  * function returns; to ensure that the work handler isn't running use
757  * intel_display_power_flush_work_sync() instead.
758  */
759 void intel_display_power_flush_work(struct drm_i915_private *i915)
760 {
761 	struct i915_power_domains *power_domains = &i915->display.power.domains;
762 	struct intel_power_domain_mask async_put_mask;
763 	intel_wakeref_t work_wakeref;
764 
765 	mutex_lock(&power_domains->lock);
766 
767 	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
768 	if (!work_wakeref)
769 		goto out_verify;
770 
771 	async_put_domains_mask(power_domains, &async_put_mask);
772 	release_async_put_domains(power_domains, &async_put_mask);
773 	cancel_delayed_work(&power_domains->async_put_work);
774 
775 out_verify:
776 	verify_async_put_domains_state(power_domains);
777 
778 	mutex_unlock(&power_domains->lock);
779 
780 	if (work_wakeref)
781 		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
782 }
783 
784 /**
785  * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
786  * @i915: i915 device instance
787  *
788  * Like intel_display_power_flush_work(), but also ensure that the work
789  * handler function is not running any more when this function returns.
790  */
791 static void
792 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
793 {
794 	struct i915_power_domains *power_domains = &i915->display.power.domains;
795 
796 	intel_display_power_flush_work(i915);
797 	cancel_delayed_work_sync(&power_domains->async_put_work);
798 
799 	verify_async_put_domains_state(power_domains);
800 
801 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
802 }
803 
804 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
805 /**
806  * intel_display_power_put - release a power domain reference
807  * @dev_priv: i915 device instance
808  * @domain: power domain to reference
809  * @wakeref: wakeref acquired for the reference that is being released
810  *
811  * This function drops the power domain reference obtained by
812  * intel_display_power_get() and might power down the corresponding hardware
813  * block right away if this is the last reference.
814  */
815 void intel_display_power_put(struct drm_i915_private *dev_priv,
816 			     enum intel_display_power_domain domain,
817 			     intel_wakeref_t wakeref)
818 {
819 	__intel_display_power_put(dev_priv, domain);
820 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
821 }
822 #else
823 /**
824  * intel_display_power_put_unchecked - release an unchecked power domain reference
825  * @dev_priv: i915 device instance
826  * @domain: power domain to reference
827  *
828  * This function drops the power domain reference obtained by
829  * intel_display_power_get() and might power down the corresponding hardware
830  * block right away if this is the last reference.
831  *
832  * This function is only for the power domain code's internal use to suppress wakeref
833  * tracking when the correspondig debug kconfig option is disabled, should not
834  * be used otherwise.
835  */
836 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
837 				       enum intel_display_power_domain domain)
838 {
839 	__intel_display_power_put(dev_priv, domain);
840 	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
841 }
842 #endif
843 
844 void
845 intel_display_power_get_in_set(struct drm_i915_private *i915,
846 			       struct intel_display_power_domain_set *power_domain_set,
847 			       enum intel_display_power_domain domain)
848 {
849 	intel_wakeref_t __maybe_unused wf;
850 
851 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
852 
853 	wf = intel_display_power_get(i915, domain);
854 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
855 	power_domain_set->wakerefs[domain] = wf;
856 #endif
857 	set_bit(domain, power_domain_set->mask.bits);
858 }
859 
860 bool
861 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
862 					  struct intel_display_power_domain_set *power_domain_set,
863 					  enum intel_display_power_domain domain)
864 {
865 	intel_wakeref_t wf;
866 
867 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
868 
869 	wf = intel_display_power_get_if_enabled(i915, domain);
870 	if (!wf)
871 		return false;
872 
873 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
874 	power_domain_set->wakerefs[domain] = wf;
875 #endif
876 	set_bit(domain, power_domain_set->mask.bits);
877 
878 	return true;
879 }
880 
881 void
882 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
883 				    struct intel_display_power_domain_set *power_domain_set,
884 				    struct intel_power_domain_mask *mask)
885 {
886 	enum intel_display_power_domain domain;
887 
888 	drm_WARN_ON(&i915->drm,
889 		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
890 
891 	for_each_power_domain(domain, mask) {
892 		intel_wakeref_t __maybe_unused wf = -1;
893 
894 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
895 		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
896 #endif
897 		intel_display_power_put(i915, domain, wf);
898 		clear_bit(domain, power_domain_set->mask.bits);
899 	}
900 }
901 
902 static int
903 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
904 				   int disable_power_well)
905 {
906 	if (disable_power_well >= 0)
907 		return !!disable_power_well;
908 
909 	return 1;
910 }
911 
912 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
913 			       int enable_dc)
914 {
915 	u32 mask;
916 	int requested_dc;
917 	int max_dc;
918 
919 	if (!HAS_DISPLAY(dev_priv))
920 		return 0;
921 
922 	if (IS_DG2(dev_priv))
923 		max_dc = 1;
924 	else if (IS_DG1(dev_priv))
925 		max_dc = 3;
926 	else if (DISPLAY_VER(dev_priv) >= 12)
927 		max_dc = 4;
928 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
929 		max_dc = 1;
930 	else if (DISPLAY_VER(dev_priv) >= 9)
931 		max_dc = 2;
932 	else
933 		max_dc = 0;
934 
935 	/*
936 	 * DC9 has a separate HW flow from the rest of the DC states,
937 	 * not depending on the DMC firmware. It's needed by system
938 	 * suspend/resume, so allow it unconditionally.
939 	 */
940 	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
941 		DISPLAY_VER(dev_priv) >= 11 ?
942 	       DC_STATE_EN_DC9 : 0;
943 
944 	if (!dev_priv->params.disable_power_well)
945 		max_dc = 0;
946 
947 	if (enable_dc >= 0 && enable_dc <= max_dc) {
948 		requested_dc = enable_dc;
949 	} else if (enable_dc == -1) {
950 		requested_dc = max_dc;
951 	} else if (enable_dc > max_dc && enable_dc <= 4) {
952 		drm_dbg_kms(&dev_priv->drm,
953 			    "Adjusting requested max DC state (%d->%d)\n",
954 			    enable_dc, max_dc);
955 		requested_dc = max_dc;
956 	} else {
957 		drm_err(&dev_priv->drm,
958 			"Unexpected value for enable_dc (%d)\n", enable_dc);
959 		requested_dc = max_dc;
960 	}
961 
962 	switch (requested_dc) {
963 	case 4:
964 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
965 		break;
966 	case 3:
967 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
968 		break;
969 	case 2:
970 		mask |= DC_STATE_EN_UPTO_DC6;
971 		break;
972 	case 1:
973 		mask |= DC_STATE_EN_UPTO_DC5;
974 		break;
975 	}
976 
977 	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
978 
979 	return mask;
980 }
981 
982 /**
983  * intel_power_domains_init - initializes the power domain structures
984  * @dev_priv: i915 device instance
985  *
986  * Initializes the power domain structures for @dev_priv depending upon the
987  * supported platform.
988  */
989 int intel_power_domains_init(struct drm_i915_private *dev_priv)
990 {
991 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
992 
993 	dev_priv->params.disable_power_well =
994 		sanitize_disable_power_well_option(dev_priv,
995 						   dev_priv->params.disable_power_well);
996 	power_domains->allowed_dc_mask =
997 		get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
998 
999 	power_domains->target_dc_state =
1000 		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
1001 
1002 	mutex_init(&power_domains->lock);
1003 
1004 	INIT_DELAYED_WORK(&power_domains->async_put_work,
1005 			  intel_display_power_put_async_work);
1006 
1007 	return intel_display_power_map_init(power_domains);
1008 }
1009 
1010 /**
1011  * intel_power_domains_cleanup - clean up power domains resources
1012  * @dev_priv: i915 device instance
1013  *
1014  * Release any resources acquired by intel_power_domains_init()
1015  */
1016 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1017 {
1018 	intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1019 }
1020 
1021 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1022 {
1023 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1024 	struct i915_power_well *power_well;
1025 
1026 	mutex_lock(&power_domains->lock);
1027 	for_each_power_well(dev_priv, power_well)
1028 		intel_power_well_sync_hw(dev_priv, power_well);
1029 	mutex_unlock(&power_domains->lock);
1030 }
1031 
1032 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1033 				enum dbuf_slice slice, bool enable)
1034 {
1035 	i915_reg_t reg = DBUF_CTL_S(slice);
1036 	bool state;
1037 
1038 	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1039 		     enable ? DBUF_POWER_REQUEST : 0);
1040 	intel_de_posting_read(dev_priv, reg);
1041 	udelay(10);
1042 
1043 	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1044 	drm_WARN(&dev_priv->drm, enable != state,
1045 		 "DBuf slice %d power %s timeout!\n",
1046 		 slice, str_enable_disable(enable));
1047 }
1048 
1049 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1050 			     u8 req_slices)
1051 {
1052 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1053 	u8 slice_mask = INTEL_INFO(dev_priv)->display.dbuf.slice_mask;
1054 	enum dbuf_slice slice;
1055 
1056 	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1057 		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1058 		 req_slices, slice_mask);
1059 
1060 	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1061 		    req_slices);
1062 
1063 	/*
1064 	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1065 	 * being called from intel_dp_detect for instance,
1066 	 * which causes assertion triggered by race condition,
1067 	 * as gen9_assert_dbuf_enabled might preempt this when registers
1068 	 * were already updated, while dev_priv was not.
1069 	 */
1070 	mutex_lock(&power_domains->lock);
1071 
1072 	for_each_dbuf_slice(dev_priv, slice)
1073 		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1074 
1075 	dev_priv->display.dbuf.enabled_slices = req_slices;
1076 
1077 	mutex_unlock(&power_domains->lock);
1078 }
1079 
1080 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1081 {
1082 	dev_priv->display.dbuf.enabled_slices =
1083 		intel_enabled_dbuf_slices_mask(dev_priv);
1084 
1085 	/*
1086 	 * Just power up at least 1 slice, we will
1087 	 * figure out later which slices we have and what we need.
1088 	 */
1089 	gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) |
1090 				dev_priv->display.dbuf.enabled_slices);
1091 }
1092 
1093 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1094 {
1095 	gen9_dbuf_slices_update(dev_priv, 0);
1096 }
1097 
1098 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1099 {
1100 	enum dbuf_slice slice;
1101 
1102 	if (IS_ALDERLAKE_P(dev_priv))
1103 		return;
1104 
1105 	for_each_dbuf_slice(dev_priv, slice)
1106 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1107 			     DBUF_TRACKER_STATE_SERVICE_MASK,
1108 			     DBUF_TRACKER_STATE_SERVICE(8));
1109 }
1110 
1111 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1112 {
1113 	unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask;
1114 	u32 mask, val, i;
1115 
1116 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1117 		return;
1118 
1119 	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1120 		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1121 		MBUS_ABOX_B_CREDIT_MASK |
1122 		MBUS_ABOX_BW_CREDIT_MASK;
1123 	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1124 		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1125 		MBUS_ABOX_B_CREDIT(1) |
1126 		MBUS_ABOX_BW_CREDIT(1);
1127 
1128 	/*
1129 	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1130 	 * expect us to program the abox_ctl0 register as well, even though
1131 	 * we don't have to program other instance-0 registers like BW_BUDDY.
1132 	 */
1133 	if (DISPLAY_VER(dev_priv) == 12)
1134 		abox_regs |= BIT(0);
1135 
1136 	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1137 		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1138 }
1139 
1140 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1141 {
1142 	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1143 
1144 	/*
1145 	 * The LCPLL register should be turned on by the BIOS. For now
1146 	 * let's just check its state and print errors in case
1147 	 * something is wrong.  Don't even try to turn it on.
1148 	 */
1149 
1150 	if (val & LCPLL_CD_SOURCE_FCLK)
1151 		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1152 
1153 	if (val & LCPLL_PLL_DISABLE)
1154 		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1155 
1156 	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1157 		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1158 }
1159 
1160 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1161 {
1162 	struct intel_crtc *crtc;
1163 
1164 	for_each_intel_crtc(&dev_priv->drm, crtc)
1165 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
1166 				pipe_name(crtc->pipe));
1167 
1168 	I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1169 			"Display power well on\n");
1170 	I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1171 			"SPLL enabled\n");
1172 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1173 			"WRPLL1 enabled\n");
1174 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1175 			"WRPLL2 enabled\n");
1176 	I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1177 			"Panel power on\n");
1178 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1179 			"CPU PWM1 enabled\n");
1180 	if (IS_HASWELL(dev_priv))
1181 		I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1182 				"CPU PWM2 enabled\n");
1183 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1184 			"PCH PWM1 enabled\n");
1185 	I915_STATE_WARN(intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
1186 			"Utility pin enabled\n");
1187 	I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1188 			"PCH GTC enabled\n");
1189 
1190 	/*
1191 	 * In theory we can still leave IRQs enabled, as long as only the HPD
1192 	 * interrupts remain enabled. We used to check for that, but since it's
1193 	 * gen-specific and since we only disable LCPLL after we fully disable
1194 	 * the interrupts, the check below should be enough.
1195 	 */
1196 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
1197 }
1198 
1199 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1200 {
1201 	if (IS_HASWELL(dev_priv))
1202 		return intel_de_read(dev_priv, D_COMP_HSW);
1203 	else
1204 		return intel_de_read(dev_priv, D_COMP_BDW);
1205 }
1206 
1207 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1208 {
1209 	if (IS_HASWELL(dev_priv)) {
1210 		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1211 			drm_dbg_kms(&dev_priv->drm,
1212 				    "Failed to write to D_COMP\n");
1213 	} else {
1214 		intel_de_write(dev_priv, D_COMP_BDW, val);
1215 		intel_de_posting_read(dev_priv, D_COMP_BDW);
1216 	}
1217 }
1218 
1219 /*
1220  * This function implements pieces of two sequences from BSpec:
1221  * - Sequence for display software to disable LCPLL
1222  * - Sequence for display software to allow package C8+
1223  * The steps implemented here are just the steps that actually touch the LCPLL
1224  * register. Callers should take care of disabling all the display engine
1225  * functions, doing the mode unset, fixing interrupts, etc.
1226  */
1227 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1228 			      bool switch_to_fclk, bool allow_power_down)
1229 {
1230 	u32 val;
1231 
1232 	assert_can_disable_lcpll(dev_priv);
1233 
1234 	val = intel_de_read(dev_priv, LCPLL_CTL);
1235 
1236 	if (switch_to_fclk) {
1237 		val |= LCPLL_CD_SOURCE_FCLK;
1238 		intel_de_write(dev_priv, LCPLL_CTL, val);
1239 
1240 		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1241 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1242 			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1243 
1244 		val = intel_de_read(dev_priv, LCPLL_CTL);
1245 	}
1246 
1247 	val |= LCPLL_PLL_DISABLE;
1248 	intel_de_write(dev_priv, LCPLL_CTL, val);
1249 	intel_de_posting_read(dev_priv, LCPLL_CTL);
1250 
1251 	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1252 		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1253 
1254 	val = hsw_read_dcomp(dev_priv);
1255 	val |= D_COMP_COMP_DISABLE;
1256 	hsw_write_dcomp(dev_priv, val);
1257 	ndelay(100);
1258 
1259 	if (wait_for((hsw_read_dcomp(dev_priv) &
1260 		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1261 		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1262 
1263 	if (allow_power_down) {
1264 		intel_de_rmw(dev_priv, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW);
1265 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1266 	}
1267 }
1268 
1269 /*
1270  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1271  * source.
1272  */
1273 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1274 {
1275 	u32 val;
1276 
1277 	val = intel_de_read(dev_priv, LCPLL_CTL);
1278 
1279 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1280 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1281 		return;
1282 
1283 	/*
1284 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1285 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1286 	 */
1287 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1288 
1289 	if (val & LCPLL_POWER_DOWN_ALLOW) {
1290 		val &= ~LCPLL_POWER_DOWN_ALLOW;
1291 		intel_de_write(dev_priv, LCPLL_CTL, val);
1292 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1293 	}
1294 
1295 	val = hsw_read_dcomp(dev_priv);
1296 	val |= D_COMP_COMP_FORCE;
1297 	val &= ~D_COMP_COMP_DISABLE;
1298 	hsw_write_dcomp(dev_priv, val);
1299 
1300 	val = intel_de_read(dev_priv, LCPLL_CTL);
1301 	val &= ~LCPLL_PLL_DISABLE;
1302 	intel_de_write(dev_priv, LCPLL_CTL, val);
1303 
1304 	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1305 		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1306 
1307 	if (val & LCPLL_CD_SOURCE_FCLK) {
1308 		intel_de_rmw(dev_priv, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0);
1309 
1310 		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1311 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1312 			drm_err(&dev_priv->drm,
1313 				"Switching back to LCPLL failed\n");
1314 	}
1315 
1316 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1317 
1318 	intel_update_cdclk(dev_priv);
1319 	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1320 }
1321 
1322 /*
1323  * Package states C8 and deeper are really deep PC states that can only be
1324  * reached when all the devices on the system allow it, so even if the graphics
1325  * device allows PC8+, it doesn't mean the system will actually get to these
1326  * states. Our driver only allows PC8+ when going into runtime PM.
1327  *
1328  * The requirements for PC8+ are that all the outputs are disabled, the power
1329  * well is disabled and most interrupts are disabled, and these are also
1330  * requirements for runtime PM. When these conditions are met, we manually do
1331  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1332  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1333  * hang the machine.
1334  *
1335  * When we really reach PC8 or deeper states (not just when we allow it) we lose
1336  * the state of some registers, so when we come back from PC8+ we need to
1337  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1338  * need to take care of the registers kept by RC6. Notice that this happens even
1339  * if we don't put the device in PCI D3 state (which is what currently happens
1340  * because of the runtime PM support).
1341  *
1342  * For more, read "Display Sequences for Package C8" on the hardware
1343  * documentation.
1344  */
1345 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1346 {
1347 	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1348 
1349 	if (HAS_PCH_LPT_LP(dev_priv))
1350 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1351 			     PCH_LP_PARTITION_LEVEL_DISABLE, 0);
1352 
1353 	lpt_disable_clkout_dp(dev_priv);
1354 	hsw_disable_lcpll(dev_priv, true, true);
1355 }
1356 
1357 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1358 {
1359 	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1360 
1361 	hsw_restore_lcpll(dev_priv);
1362 	intel_init_pch_refclk(dev_priv);
1363 
1364 	if (HAS_PCH_LPT_LP(dev_priv))
1365 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1366 			     0, PCH_LP_PARTITION_LEVEL_DISABLE);
1367 }
1368 
1369 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1370 				      bool enable)
1371 {
1372 	i915_reg_t reg;
1373 	u32 reset_bits;
1374 
1375 	if (IS_IVYBRIDGE(dev_priv)) {
1376 		reg = GEN7_MSG_CTL;
1377 		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1378 	} else {
1379 		reg = HSW_NDE_RSTWRN_OPT;
1380 		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1381 	}
1382 
1383 	if (DISPLAY_VER(dev_priv) >= 14)
1384 		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1385 
1386 	intel_de_rmw(dev_priv, reg, reset_bits, enable ? reset_bits : 0);
1387 }
1388 
1389 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1390 				  bool resume)
1391 {
1392 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1393 	struct i915_power_well *well;
1394 
1395 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1396 
1397 	/* enable PCH reset handshake */
1398 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1399 
1400 	if (!HAS_DISPLAY(dev_priv))
1401 		return;
1402 
1403 	/* enable PG1 and Misc I/O */
1404 	mutex_lock(&power_domains->lock);
1405 
1406 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1407 	intel_power_well_enable(dev_priv, well);
1408 
1409 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1410 	intel_power_well_enable(dev_priv, well);
1411 
1412 	mutex_unlock(&power_domains->lock);
1413 
1414 	intel_cdclk_init_hw(dev_priv);
1415 
1416 	gen9_dbuf_enable(dev_priv);
1417 
1418 	if (resume)
1419 		intel_dmc_load_program(dev_priv);
1420 }
1421 
1422 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1423 {
1424 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1425 	struct i915_power_well *well;
1426 
1427 	if (!HAS_DISPLAY(dev_priv))
1428 		return;
1429 
1430 	gen9_disable_dc_states(dev_priv);
1431 	/* TODO: disable DMC program */
1432 
1433 	gen9_dbuf_disable(dev_priv);
1434 
1435 	intel_cdclk_uninit_hw(dev_priv);
1436 
1437 	/* The spec doesn't call for removing the reset handshake flag */
1438 	/* disable PG1 and Misc I/O */
1439 
1440 	mutex_lock(&power_domains->lock);
1441 
1442 	/*
1443 	 * BSpec says to keep the MISC IO power well enabled here, only
1444 	 * remove our request for power well 1.
1445 	 * Note that even though the driver's request is removed power well 1
1446 	 * may stay enabled after this due to DMC's own request on it.
1447 	 */
1448 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1449 	intel_power_well_disable(dev_priv, well);
1450 
1451 	mutex_unlock(&power_domains->lock);
1452 
1453 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1454 }
1455 
1456 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1457 {
1458 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1459 	struct i915_power_well *well;
1460 
1461 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1462 
1463 	/*
1464 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1465 	 * or else the reset will hang because there is no PCH to respond.
1466 	 * Move the handshake programming to initialization sequence.
1467 	 * Previously was left up to BIOS.
1468 	 */
1469 	intel_pch_reset_handshake(dev_priv, false);
1470 
1471 	if (!HAS_DISPLAY(dev_priv))
1472 		return;
1473 
1474 	/* Enable PG1 */
1475 	mutex_lock(&power_domains->lock);
1476 
1477 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1478 	intel_power_well_enable(dev_priv, well);
1479 
1480 	mutex_unlock(&power_domains->lock);
1481 
1482 	intel_cdclk_init_hw(dev_priv);
1483 
1484 	gen9_dbuf_enable(dev_priv);
1485 
1486 	if (resume)
1487 		intel_dmc_load_program(dev_priv);
1488 }
1489 
1490 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1491 {
1492 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1493 	struct i915_power_well *well;
1494 
1495 	if (!HAS_DISPLAY(dev_priv))
1496 		return;
1497 
1498 	gen9_disable_dc_states(dev_priv);
1499 	/* TODO: disable DMC program */
1500 
1501 	gen9_dbuf_disable(dev_priv);
1502 
1503 	intel_cdclk_uninit_hw(dev_priv);
1504 
1505 	/* The spec doesn't call for removing the reset handshake flag */
1506 
1507 	/*
1508 	 * Disable PW1 (PG1).
1509 	 * Note that even though the driver's request is removed power well 1
1510 	 * may stay enabled after this due to DMC's own request on it.
1511 	 */
1512 	mutex_lock(&power_domains->lock);
1513 
1514 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1515 	intel_power_well_disable(dev_priv, well);
1516 
1517 	mutex_unlock(&power_domains->lock);
1518 
1519 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1520 }
1521 
1522 struct buddy_page_mask {
1523 	u32 page_mask;
1524 	u8 type;
1525 	u8 num_channels;
1526 };
1527 
1528 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1529 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1530 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1531 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1532 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1533 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1534 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1535 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1536 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1537 	{}
1538 };
1539 
1540 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1541 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1542 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1543 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1544 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1545 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1546 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1547 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1548 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1549 	{}
1550 };
1551 
1552 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1553 {
1554 	enum intel_dram_type type = dev_priv->dram_info.type;
1555 	u8 num_channels = dev_priv->dram_info.num_channels;
1556 	const struct buddy_page_mask *table;
1557 	unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask;
1558 	int config, i;
1559 
1560 	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1561 	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1562 		return;
1563 
1564 	if (IS_ALDERLAKE_S(dev_priv) ||
1565 	    IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1566 		/* Wa_1409767108 */
1567 		table = wa_1409767108_buddy_page_masks;
1568 	else
1569 		table = tgl_buddy_page_masks;
1570 
1571 	for (config = 0; table[config].page_mask != 0; config++)
1572 		if (table[config].num_channels == num_channels &&
1573 		    table[config].type == type)
1574 			break;
1575 
1576 	if (table[config].page_mask == 0) {
1577 		drm_dbg(&dev_priv->drm,
1578 			"Unknown memory configuration; disabling address buddy logic.\n");
1579 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1580 			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1581 				       BW_BUDDY_DISABLE);
1582 	} else {
1583 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1584 			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1585 				       table[config].page_mask);
1586 
1587 			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1588 			if (DISPLAY_VER(dev_priv) == 12)
1589 				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1590 					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1591 					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1592 		}
1593 	}
1594 }
1595 
1596 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1597 				  bool resume)
1598 {
1599 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1600 	struct i915_power_well *well;
1601 
1602 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1603 
1604 	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1605 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1606 	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1607 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1608 			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1609 
1610 	/* 1. Enable PCH reset handshake. */
1611 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1612 
1613 	if (!HAS_DISPLAY(dev_priv))
1614 		return;
1615 
1616 	/* 2. Initialize all combo phys */
1617 	intel_combo_phy_init(dev_priv);
1618 
1619 	/*
1620 	 * 3. Enable Power Well 1 (PG1).
1621 	 *    The AUX IO power wells will be enabled on demand.
1622 	 */
1623 	mutex_lock(&power_domains->lock);
1624 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1625 	intel_power_well_enable(dev_priv, well);
1626 	mutex_unlock(&power_domains->lock);
1627 
1628 	/* 4. Enable CDCLK. */
1629 	intel_cdclk_init_hw(dev_priv);
1630 
1631 	if (DISPLAY_VER(dev_priv) >= 12)
1632 		gen12_dbuf_slices_config(dev_priv);
1633 
1634 	/* 5. Enable DBUF. */
1635 	gen9_dbuf_enable(dev_priv);
1636 
1637 	/* 6. Setup MBUS. */
1638 	icl_mbus_init(dev_priv);
1639 
1640 	/* 7. Program arbiter BW_BUDDY registers */
1641 	if (DISPLAY_VER(dev_priv) >= 12)
1642 		tgl_bw_buddy_init(dev_priv);
1643 
1644 	/* 8. Ensure PHYs have completed calibration and adaptation */
1645 	if (IS_DG2(dev_priv))
1646 		intel_snps_phy_wait_for_calibration(dev_priv);
1647 
1648 	if (resume)
1649 		intel_dmc_load_program(dev_priv);
1650 
1651 	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
1652 	if (DISPLAY_VER(dev_priv) >= 12)
1653 		intel_de_rmw(dev_priv, GEN11_CHICKEN_DCPR_2, 0,
1654 			     DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1655 			     DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR);
1656 
1657 	/* Wa_14011503030:xelpd */
1658 	if (DISPLAY_VER(dev_priv) >= 13)
1659 		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1660 }
1661 
1662 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1663 {
1664 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1665 	struct i915_power_well *well;
1666 
1667 	if (!HAS_DISPLAY(dev_priv))
1668 		return;
1669 
1670 	gen9_disable_dc_states(dev_priv);
1671 	intel_dmc_disable_program(dev_priv);
1672 
1673 	/* 1. Disable all display engine functions -> aready done */
1674 
1675 	/* 2. Disable DBUF */
1676 	gen9_dbuf_disable(dev_priv);
1677 
1678 	/* 3. Disable CD clock */
1679 	intel_cdclk_uninit_hw(dev_priv);
1680 
1681 	/*
1682 	 * 4. Disable Power Well 1 (PG1).
1683 	 *    The AUX IO power wells are toggled on demand, so they are already
1684 	 *    disabled at this point.
1685 	 */
1686 	mutex_lock(&power_domains->lock);
1687 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1688 	intel_power_well_disable(dev_priv, well);
1689 	mutex_unlock(&power_domains->lock);
1690 
1691 	/* 5. */
1692 	intel_combo_phy_uninit(dev_priv);
1693 }
1694 
1695 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1696 {
1697 	struct i915_power_well *cmn_bc =
1698 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1699 	struct i915_power_well *cmn_d =
1700 		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1701 
1702 	/*
1703 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1704 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1705 	 * instead maintain a shadow copy ourselves. Use the actual
1706 	 * power well state and lane status to reconstruct the
1707 	 * expected initial value.
1708 	 */
1709 	dev_priv->display.power.chv_phy_control =
1710 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1711 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1712 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1713 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1714 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1715 
1716 	/*
1717 	 * If all lanes are disabled we leave the override disabled
1718 	 * with all power down bits cleared to match the state we
1719 	 * would use after disabling the port. Otherwise enable the
1720 	 * override and set the lane powerdown bits accding to the
1721 	 * current lane status.
1722 	 */
1723 	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1724 		u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1725 		unsigned int mask;
1726 
1727 		mask = status & DPLL_PORTB_READY_MASK;
1728 		if (mask == 0xf)
1729 			mask = 0x0;
1730 		else
1731 			dev_priv->display.power.chv_phy_control |=
1732 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1733 
1734 		dev_priv->display.power.chv_phy_control |=
1735 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1736 
1737 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1738 		if (mask == 0xf)
1739 			mask = 0x0;
1740 		else
1741 			dev_priv->display.power.chv_phy_control |=
1742 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1743 
1744 		dev_priv->display.power.chv_phy_control |=
1745 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1746 
1747 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1748 
1749 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1750 	} else {
1751 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1752 	}
1753 
1754 	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1755 		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1756 		unsigned int mask;
1757 
1758 		mask = status & DPLL_PORTD_READY_MASK;
1759 
1760 		if (mask == 0xf)
1761 			mask = 0x0;
1762 		else
1763 			dev_priv->display.power.chv_phy_control |=
1764 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1765 
1766 		dev_priv->display.power.chv_phy_control |=
1767 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1768 
1769 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1770 
1771 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1772 	} else {
1773 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1774 	}
1775 
1776 	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1777 		    dev_priv->display.power.chv_phy_control);
1778 
1779 	/* Defer application of initial phy_control to enabling the powerwell */
1780 }
1781 
1782 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1783 {
1784 	struct i915_power_well *cmn =
1785 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1786 	struct i915_power_well *disp2d =
1787 		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1788 
1789 	/* If the display might be already active skip this */
1790 	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1791 	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1792 	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1793 		return;
1794 
1795 	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1796 
1797 	/* cmnlane needs DPLL registers */
1798 	intel_power_well_enable(dev_priv, disp2d);
1799 
1800 	/*
1801 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1802 	 * Need to assert and de-assert PHY SB reset by gating the
1803 	 * common lane power, then un-gating it.
1804 	 * Simply ungating isn't enough to reset the PHY enough to get
1805 	 * ports and lanes running.
1806 	 */
1807 	intel_power_well_disable(dev_priv, cmn);
1808 }
1809 
1810 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1811 {
1812 	bool ret;
1813 
1814 	vlv_punit_get(dev_priv);
1815 	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1816 	vlv_punit_put(dev_priv);
1817 
1818 	return ret;
1819 }
1820 
1821 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1822 {
1823 	drm_WARN(&dev_priv->drm,
1824 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1825 		 "VED not power gated\n");
1826 }
1827 
1828 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1829 {
1830 	static const struct pci_device_id isp_ids[] = {
1831 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1832 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1833 		{}
1834 	};
1835 
1836 	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1837 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1838 		 "ISP not power gated\n");
1839 }
1840 
1841 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1842 
1843 /**
1844  * intel_power_domains_init_hw - initialize hardware power domain state
1845  * @i915: i915 device instance
1846  * @resume: Called from resume code paths or not
1847  *
1848  * This function initializes the hardware power domain state and enables all
1849  * power wells belonging to the INIT power domain. Power wells in other
1850  * domains (and not in the INIT domain) are referenced or disabled by
1851  * intel_modeset_readout_hw_state(). After that the reference count of each
1852  * power well must match its HW enabled state, see
1853  * intel_power_domains_verify_state().
1854  *
1855  * It will return with power domains disabled (to be enabled later by
1856  * intel_power_domains_enable()) and must be paired with
1857  * intel_power_domains_driver_remove().
1858  */
1859 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1860 {
1861 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1862 
1863 	power_domains->initializing = true;
1864 
1865 	if (DISPLAY_VER(i915) >= 11) {
1866 		icl_display_core_init(i915, resume);
1867 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1868 		bxt_display_core_init(i915, resume);
1869 	} else if (DISPLAY_VER(i915) == 9) {
1870 		skl_display_core_init(i915, resume);
1871 	} else if (IS_CHERRYVIEW(i915)) {
1872 		mutex_lock(&power_domains->lock);
1873 		chv_phy_control_init(i915);
1874 		mutex_unlock(&power_domains->lock);
1875 		assert_isp_power_gated(i915);
1876 	} else if (IS_VALLEYVIEW(i915)) {
1877 		mutex_lock(&power_domains->lock);
1878 		vlv_cmnlane_wa(i915);
1879 		mutex_unlock(&power_domains->lock);
1880 		assert_ved_power_gated(i915);
1881 		assert_isp_power_gated(i915);
1882 	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1883 		hsw_assert_cdclk(i915);
1884 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1885 	} else if (IS_IVYBRIDGE(i915)) {
1886 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1887 	}
1888 
1889 	/*
1890 	 * Keep all power wells enabled for any dependent HW access during
1891 	 * initialization and to make sure we keep BIOS enabled display HW
1892 	 * resources powered until display HW readout is complete. We drop
1893 	 * this reference in intel_power_domains_enable().
1894 	 */
1895 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1896 	power_domains->init_wakeref =
1897 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1898 
1899 	/* Disable power support if the user asked so. */
1900 	if (!i915->params.disable_power_well) {
1901 		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1902 		i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1903 										      POWER_DOMAIN_INIT);
1904 	}
1905 	intel_power_domains_sync_hw(i915);
1906 
1907 	power_domains->initializing = false;
1908 }
1909 
1910 /**
1911  * intel_power_domains_driver_remove - deinitialize hw power domain state
1912  * @i915: i915 device instance
1913  *
1914  * De-initializes the display power domain HW state. It also ensures that the
1915  * device stays powered up so that the driver can be reloaded.
1916  *
1917  * It must be called with power domains already disabled (after a call to
1918  * intel_power_domains_disable()) and must be paired with
1919  * intel_power_domains_init_hw().
1920  */
1921 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1922 {
1923 	intel_wakeref_t wakeref __maybe_unused =
1924 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1925 
1926 	/* Remove the refcount we took to keep power well support disabled. */
1927 	if (!i915->params.disable_power_well)
1928 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1929 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1930 
1931 	intel_display_power_flush_work_sync(i915);
1932 
1933 	intel_power_domains_verify_state(i915);
1934 
1935 	/* Keep the power well enabled, but cancel its rpm wakeref. */
1936 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1937 }
1938 
1939 /**
1940  * intel_power_domains_sanitize_state - sanitize power domains state
1941  * @i915: i915 device instance
1942  *
1943  * Sanitize the power domains state during driver loading and system resume.
1944  * The function will disable all display power wells that BIOS has enabled
1945  * without a user for it (any user for a power well has taken a reference
1946  * on it by the time this function is called, after the state of all the
1947  * pipe, encoder, etc. HW resources have been sanitized).
1948  */
1949 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
1950 {
1951 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1952 	struct i915_power_well *power_well;
1953 
1954 	mutex_lock(&power_domains->lock);
1955 
1956 	for_each_power_well_reverse(i915, power_well) {
1957 		if (power_well->desc->always_on || power_well->count ||
1958 		    !intel_power_well_is_enabled(i915, power_well))
1959 			continue;
1960 
1961 		drm_dbg_kms(&i915->drm,
1962 			    "BIOS left unused %s power well enabled, disabling it\n",
1963 			    intel_power_well_name(power_well));
1964 		intel_power_well_disable(i915, power_well);
1965 	}
1966 
1967 	mutex_unlock(&power_domains->lock);
1968 }
1969 
1970 /**
1971  * intel_power_domains_enable - enable toggling of display power wells
1972  * @i915: i915 device instance
1973  *
1974  * Enable the ondemand enabling/disabling of the display power wells. Note that
1975  * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
1976  * only at specific points of the display modeset sequence, thus they are not
1977  * affected by the intel_power_domains_enable()/disable() calls. The purpose
1978  * of these function is to keep the rest of power wells enabled until the end
1979  * of display HW readout (which will acquire the power references reflecting
1980  * the current HW state).
1981  */
1982 void intel_power_domains_enable(struct drm_i915_private *i915)
1983 {
1984 	intel_wakeref_t wakeref __maybe_unused =
1985 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1986 
1987 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
1988 	intel_power_domains_verify_state(i915);
1989 }
1990 
1991 /**
1992  * intel_power_domains_disable - disable toggling of display power wells
1993  * @i915: i915 device instance
1994  *
1995  * Disable the ondemand enabling/disabling of the display power wells. See
1996  * intel_power_domains_enable() for which power wells this call controls.
1997  */
1998 void intel_power_domains_disable(struct drm_i915_private *i915)
1999 {
2000 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2001 
2002 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2003 	power_domains->init_wakeref =
2004 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2005 
2006 	intel_power_domains_verify_state(i915);
2007 }
2008 
2009 /**
2010  * intel_power_domains_suspend - suspend power domain state
2011  * @i915: i915 device instance
2012  * @suspend_mode: specifies the target suspend state (idle, mem, hibernation)
2013  *
2014  * This function prepares the hardware power domain state before entering
2015  * system suspend.
2016  *
2017  * It must be called with power domains already disabled (after a call to
2018  * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2019  */
2020 void intel_power_domains_suspend(struct drm_i915_private *i915,
2021 				 enum i915_drm_suspend_mode suspend_mode)
2022 {
2023 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2024 	intel_wakeref_t wakeref __maybe_unused =
2025 		fetch_and_zero(&power_domains->init_wakeref);
2026 
2027 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2028 
2029 	/*
2030 	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2031 	 * support don't manually deinit the power domains. This also means the
2032 	 * DMC firmware will stay active, it will power down any HW
2033 	 * resources as required and also enable deeper system power states
2034 	 * that would be blocked if the firmware was inactive.
2035 	 */
2036 	if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) &&
2037 	    suspend_mode == I915_DRM_SUSPEND_IDLE &&
2038 	    intel_dmc_has_payload(i915)) {
2039 		intel_display_power_flush_work(i915);
2040 		intel_power_domains_verify_state(i915);
2041 		return;
2042 	}
2043 
2044 	/*
2045 	 * Even if power well support was disabled we still want to disable
2046 	 * power wells if power domains must be deinitialized for suspend.
2047 	 */
2048 	if (!i915->params.disable_power_well)
2049 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2050 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2051 
2052 	intel_display_power_flush_work(i915);
2053 	intel_power_domains_verify_state(i915);
2054 
2055 	if (DISPLAY_VER(i915) >= 11)
2056 		icl_display_core_uninit(i915);
2057 	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2058 		bxt_display_core_uninit(i915);
2059 	else if (DISPLAY_VER(i915) == 9)
2060 		skl_display_core_uninit(i915);
2061 
2062 	power_domains->display_core_suspended = true;
2063 }
2064 
2065 /**
2066  * intel_power_domains_resume - resume power domain state
2067  * @i915: i915 device instance
2068  *
2069  * This function resume the hardware power domain state during system resume.
2070  *
2071  * It will return with power domain support disabled (to be enabled later by
2072  * intel_power_domains_enable()) and must be paired with
2073  * intel_power_domains_suspend().
2074  */
2075 void intel_power_domains_resume(struct drm_i915_private *i915)
2076 {
2077 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2078 
2079 	if (power_domains->display_core_suspended) {
2080 		intel_power_domains_init_hw(i915, true);
2081 		power_domains->display_core_suspended = false;
2082 	} else {
2083 		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2084 		power_domains->init_wakeref =
2085 			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2086 	}
2087 
2088 	intel_power_domains_verify_state(i915);
2089 }
2090 
2091 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2092 
2093 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2094 {
2095 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2096 	struct i915_power_well *power_well;
2097 
2098 	for_each_power_well(i915, power_well) {
2099 		enum intel_display_power_domain domain;
2100 
2101 		drm_dbg(&i915->drm, "%-25s %d\n",
2102 			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2103 
2104 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2105 			drm_dbg(&i915->drm, "  %-23s %d\n",
2106 				intel_display_power_domain_str(domain),
2107 				power_domains->domain_use_count[domain]);
2108 	}
2109 }
2110 
2111 /**
2112  * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2113  * @i915: i915 device instance
2114  *
2115  * Verify if the reference count of each power well matches its HW enabled
2116  * state and the total refcount of the domains it belongs to. This must be
2117  * called after modeset HW state sanitization, which is responsible for
2118  * acquiring reference counts for any power wells in use and disabling the
2119  * ones left on by BIOS but not required by any active output.
2120  */
2121 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2122 {
2123 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2124 	struct i915_power_well *power_well;
2125 	bool dump_domain_info;
2126 
2127 	mutex_lock(&power_domains->lock);
2128 
2129 	verify_async_put_domains_state(power_domains);
2130 
2131 	dump_domain_info = false;
2132 	for_each_power_well(i915, power_well) {
2133 		enum intel_display_power_domain domain;
2134 		int domains_count;
2135 		bool enabled;
2136 
2137 		enabled = intel_power_well_is_enabled(i915, power_well);
2138 		if ((intel_power_well_refcount(power_well) ||
2139 		     intel_power_well_is_always_on(power_well)) !=
2140 		    enabled)
2141 			drm_err(&i915->drm,
2142 				"power well %s state mismatch (refcount %d/enabled %d)",
2143 				intel_power_well_name(power_well),
2144 				intel_power_well_refcount(power_well), enabled);
2145 
2146 		domains_count = 0;
2147 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2148 			domains_count += power_domains->domain_use_count[domain];
2149 
2150 		if (intel_power_well_refcount(power_well) != domains_count) {
2151 			drm_err(&i915->drm,
2152 				"power well %s refcount/domain refcount mismatch "
2153 				"(refcount %d/domains refcount %d)\n",
2154 				intel_power_well_name(power_well),
2155 				intel_power_well_refcount(power_well),
2156 				domains_count);
2157 			dump_domain_info = true;
2158 		}
2159 	}
2160 
2161 	if (dump_domain_info) {
2162 		static bool dumped;
2163 
2164 		if (!dumped) {
2165 			intel_power_domains_dump_info(i915);
2166 			dumped = true;
2167 		}
2168 	}
2169 
2170 	mutex_unlock(&power_domains->lock);
2171 }
2172 
2173 #else
2174 
2175 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2176 {
2177 }
2178 
2179 #endif
2180 
2181 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2182 {
2183 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2184 	    IS_BROXTON(i915)) {
2185 		bxt_enable_dc9(i915);
2186 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2187 		hsw_enable_pc8(i915);
2188 	}
2189 
2190 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2191 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2192 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2193 }
2194 
2195 void intel_display_power_resume_early(struct drm_i915_private *i915)
2196 {
2197 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2198 	    IS_BROXTON(i915)) {
2199 		gen9_sanitize_dc_state(i915);
2200 		bxt_disable_dc9(i915);
2201 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2202 		hsw_disable_pc8(i915);
2203 	}
2204 
2205 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2206 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2207 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2208 }
2209 
2210 void intel_display_power_suspend(struct drm_i915_private *i915)
2211 {
2212 	if (DISPLAY_VER(i915) >= 11) {
2213 		icl_display_core_uninit(i915);
2214 		bxt_enable_dc9(i915);
2215 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2216 		bxt_display_core_uninit(i915);
2217 		bxt_enable_dc9(i915);
2218 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2219 		hsw_enable_pc8(i915);
2220 	}
2221 }
2222 
2223 void intel_display_power_resume(struct drm_i915_private *i915)
2224 {
2225 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2226 
2227 	if (DISPLAY_VER(i915) >= 11) {
2228 		bxt_disable_dc9(i915);
2229 		icl_display_core_init(i915, true);
2230 		if (intel_dmc_has_payload(i915)) {
2231 			if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
2232 				skl_enable_dc6(i915);
2233 			else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
2234 				gen9_enable_dc5(i915);
2235 		}
2236 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2237 		bxt_disable_dc9(i915);
2238 		bxt_display_core_init(i915, true);
2239 		if (intel_dmc_has_payload(i915) &&
2240 		    (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2241 			gen9_enable_dc5(i915);
2242 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2243 		hsw_disable_pc8(i915);
2244 	}
2245 }
2246 
2247 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2248 {
2249 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2250 	int i;
2251 
2252 	mutex_lock(&power_domains->lock);
2253 
2254 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2255 	for (i = 0; i < power_domains->power_well_count; i++) {
2256 		struct i915_power_well *power_well;
2257 		enum intel_display_power_domain power_domain;
2258 
2259 		power_well = &power_domains->power_wells[i];
2260 		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2261 			   intel_power_well_refcount(power_well));
2262 
2263 		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2264 			seq_printf(m, "  %-23s %d\n",
2265 				   intel_display_power_domain_str(power_domain),
2266 				   power_domains->domain_use_count[power_domain]);
2267 	}
2268 
2269 	mutex_unlock(&power_domains->lock);
2270 }
2271 
2272 struct intel_ddi_port_domains {
2273 	enum port port_start;
2274 	enum port port_end;
2275 	enum aux_ch aux_ch_start;
2276 	enum aux_ch aux_ch_end;
2277 
2278 	enum intel_display_power_domain ddi_lanes;
2279 	enum intel_display_power_domain ddi_io;
2280 	enum intel_display_power_domain aux_io;
2281 	enum intel_display_power_domain aux_legacy_usbc;
2282 	enum intel_display_power_domain aux_tbt;
2283 };
2284 
2285 static const struct intel_ddi_port_domains
2286 i9xx_port_domains[] = {
2287 	{
2288 		.port_start = PORT_A,
2289 		.port_end = PORT_F,
2290 		.aux_ch_start = AUX_CH_A,
2291 		.aux_ch_end = AUX_CH_F,
2292 
2293 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2294 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2295 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2296 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2297 		.aux_tbt = POWER_DOMAIN_INVALID,
2298 	},
2299 };
2300 
2301 static const struct intel_ddi_port_domains
2302 d11_port_domains[] = {
2303 	{
2304 		.port_start = PORT_A,
2305 		.port_end = PORT_B,
2306 		.aux_ch_start = AUX_CH_A,
2307 		.aux_ch_end = AUX_CH_B,
2308 
2309 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2310 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2311 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2312 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2313 		.aux_tbt = POWER_DOMAIN_INVALID,
2314 	}, {
2315 		.port_start = PORT_C,
2316 		.port_end = PORT_F,
2317 		.aux_ch_start = AUX_CH_C,
2318 		.aux_ch_end = AUX_CH_F,
2319 
2320 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2321 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2322 		.aux_io = POWER_DOMAIN_AUX_IO_C,
2323 		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2324 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2325 	},
2326 };
2327 
2328 static const struct intel_ddi_port_domains
2329 d12_port_domains[] = {
2330 	{
2331 		.port_start = PORT_A,
2332 		.port_end = PORT_C,
2333 		.aux_ch_start = AUX_CH_A,
2334 		.aux_ch_end = AUX_CH_C,
2335 
2336 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2337 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2338 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2339 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2340 		.aux_tbt = POWER_DOMAIN_INVALID,
2341 	}, {
2342 		.port_start = PORT_TC1,
2343 		.port_end = PORT_TC6,
2344 		.aux_ch_start = AUX_CH_USBC1,
2345 		.aux_ch_end = AUX_CH_USBC6,
2346 
2347 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2348 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2349 		.aux_io = POWER_DOMAIN_INVALID,
2350 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2351 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2352 	},
2353 };
2354 
2355 static const struct intel_ddi_port_domains
2356 d13_port_domains[] = {
2357 	{
2358 		.port_start = PORT_A,
2359 		.port_end = PORT_C,
2360 		.aux_ch_start = AUX_CH_A,
2361 		.aux_ch_end = AUX_CH_C,
2362 
2363 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2364 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2365 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2366 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2367 		.aux_tbt = POWER_DOMAIN_INVALID,
2368 	}, {
2369 		.port_start = PORT_TC1,
2370 		.port_end = PORT_TC4,
2371 		.aux_ch_start = AUX_CH_USBC1,
2372 		.aux_ch_end = AUX_CH_USBC4,
2373 
2374 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2375 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2376 		.aux_io = POWER_DOMAIN_INVALID,
2377 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2378 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2379 	}, {
2380 		.port_start = PORT_D_XELPD,
2381 		.port_end = PORT_E_XELPD,
2382 		.aux_ch_start = AUX_CH_D_XELPD,
2383 		.aux_ch_end = AUX_CH_E_XELPD,
2384 
2385 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2386 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2387 		.aux_io = POWER_DOMAIN_AUX_IO_D,
2388 		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2389 		.aux_tbt = POWER_DOMAIN_INVALID,
2390 	},
2391 };
2392 
2393 static void
2394 intel_port_domains_for_platform(struct drm_i915_private *i915,
2395 				const struct intel_ddi_port_domains **domains,
2396 				int *domains_size)
2397 {
2398 	if (DISPLAY_VER(i915) >= 13) {
2399 		*domains = d13_port_domains;
2400 		*domains_size = ARRAY_SIZE(d13_port_domains);
2401 	} else if (DISPLAY_VER(i915) >= 12) {
2402 		*domains = d12_port_domains;
2403 		*domains_size = ARRAY_SIZE(d12_port_domains);
2404 	} else if (DISPLAY_VER(i915) >= 11) {
2405 		*domains = d11_port_domains;
2406 		*domains_size = ARRAY_SIZE(d11_port_domains);
2407 	} else {
2408 		*domains = i9xx_port_domains;
2409 		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2410 	}
2411 }
2412 
2413 static const struct intel_ddi_port_domains *
2414 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2415 {
2416 	const struct intel_ddi_port_domains *domains;
2417 	int domains_size;
2418 	int i;
2419 
2420 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2421 	for (i = 0; i < domains_size; i++)
2422 		if (port >= domains[i].port_start && port <= domains[i].port_end)
2423 			return &domains[i];
2424 
2425 	return NULL;
2426 }
2427 
2428 enum intel_display_power_domain
2429 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2430 {
2431 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2432 
2433 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID))
2434 		return POWER_DOMAIN_PORT_DDI_IO_A;
2435 
2436 	return domains->ddi_io + (int)(port - domains->port_start);
2437 }
2438 
2439 enum intel_display_power_domain
2440 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2441 {
2442 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2443 
2444 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID))
2445 		return POWER_DOMAIN_PORT_DDI_LANES_A;
2446 
2447 	return domains->ddi_lanes + (int)(port - domains->port_start);
2448 }
2449 
2450 static const struct intel_ddi_port_domains *
2451 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2452 {
2453 	const struct intel_ddi_port_domains *domains;
2454 	int domains_size;
2455 	int i;
2456 
2457 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2458 	for (i = 0; i < domains_size; i++)
2459 		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2460 			return &domains[i];
2461 
2462 	return NULL;
2463 }
2464 
2465 enum intel_display_power_domain
2466 intel_display_power_aux_io_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2467 {
2468 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2469 
2470 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID))
2471 		return POWER_DOMAIN_AUX_IO_A;
2472 
2473 	return domains->aux_io + (int)(aux_ch - domains->aux_ch_start);
2474 }
2475 
2476 enum intel_display_power_domain
2477 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2478 {
2479 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2480 
2481 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID))
2482 		return POWER_DOMAIN_AUX_A;
2483 
2484 	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2485 }
2486 
2487 enum intel_display_power_domain
2488 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2489 {
2490 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2491 
2492 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID))
2493 		return POWER_DOMAIN_AUX_TBT1;
2494 
2495 	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2496 }
2497