1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "intel_backlight_regs.h"
11 #include "intel_cdclk.h"
12 #include "intel_combo_phy.h"
13 #include "intel_de.h"
14 #include "intel_display_power.h"
15 #include "intel_display_power_map.h"
16 #include "intel_display_power_well.h"
17 #include "intel_display_types.h"
18 #include "intel_dmc.h"
19 #include "intel_mchbar_regs.h"
20 #include "intel_pch_refclk.h"
21 #include "intel_pcode.h"
22 #include "intel_snps_phy.h"
23 #include "skl_watermark.h"
24 #include "vlv_sideband.h"
25 
26 #define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
27 	for_each_power_well(__dev_priv, __power_well)				\
28 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
29 
30 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
31 	for_each_power_well_reverse(__dev_priv, __power_well)		        \
32 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
33 
34 const char *
35 intel_display_power_domain_str(enum intel_display_power_domain domain)
36 {
37 	switch (domain) {
38 	case POWER_DOMAIN_DISPLAY_CORE:
39 		return "DISPLAY_CORE";
40 	case POWER_DOMAIN_PIPE_A:
41 		return "PIPE_A";
42 	case POWER_DOMAIN_PIPE_B:
43 		return "PIPE_B";
44 	case POWER_DOMAIN_PIPE_C:
45 		return "PIPE_C";
46 	case POWER_DOMAIN_PIPE_D:
47 		return "PIPE_D";
48 	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
49 		return "PIPE_PANEL_FITTER_A";
50 	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
51 		return "PIPE_PANEL_FITTER_B";
52 	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
53 		return "PIPE_PANEL_FITTER_C";
54 	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
55 		return "PIPE_PANEL_FITTER_D";
56 	case POWER_DOMAIN_TRANSCODER_A:
57 		return "TRANSCODER_A";
58 	case POWER_DOMAIN_TRANSCODER_B:
59 		return "TRANSCODER_B";
60 	case POWER_DOMAIN_TRANSCODER_C:
61 		return "TRANSCODER_C";
62 	case POWER_DOMAIN_TRANSCODER_D:
63 		return "TRANSCODER_D";
64 	case POWER_DOMAIN_TRANSCODER_EDP:
65 		return "TRANSCODER_EDP";
66 	case POWER_DOMAIN_TRANSCODER_DSI_A:
67 		return "TRANSCODER_DSI_A";
68 	case POWER_DOMAIN_TRANSCODER_DSI_C:
69 		return "TRANSCODER_DSI_C";
70 	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
71 		return "TRANSCODER_VDSC_PW2";
72 	case POWER_DOMAIN_PORT_DDI_LANES_A:
73 		return "PORT_DDI_LANES_A";
74 	case POWER_DOMAIN_PORT_DDI_LANES_B:
75 		return "PORT_DDI_LANES_B";
76 	case POWER_DOMAIN_PORT_DDI_LANES_C:
77 		return "PORT_DDI_LANES_C";
78 	case POWER_DOMAIN_PORT_DDI_LANES_D:
79 		return "PORT_DDI_LANES_D";
80 	case POWER_DOMAIN_PORT_DDI_LANES_E:
81 		return "PORT_DDI_LANES_E";
82 	case POWER_DOMAIN_PORT_DDI_LANES_F:
83 		return "PORT_DDI_LANES_F";
84 	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
85 		return "PORT_DDI_LANES_TC1";
86 	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
87 		return "PORT_DDI_LANES_TC2";
88 	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
89 		return "PORT_DDI_LANES_TC3";
90 	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
91 		return "PORT_DDI_LANES_TC4";
92 	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
93 		return "PORT_DDI_LANES_TC5";
94 	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
95 		return "PORT_DDI_LANES_TC6";
96 	case POWER_DOMAIN_PORT_DDI_IO_A:
97 		return "PORT_DDI_IO_A";
98 	case POWER_DOMAIN_PORT_DDI_IO_B:
99 		return "PORT_DDI_IO_B";
100 	case POWER_DOMAIN_PORT_DDI_IO_C:
101 		return "PORT_DDI_IO_C";
102 	case POWER_DOMAIN_PORT_DDI_IO_D:
103 		return "PORT_DDI_IO_D";
104 	case POWER_DOMAIN_PORT_DDI_IO_E:
105 		return "PORT_DDI_IO_E";
106 	case POWER_DOMAIN_PORT_DDI_IO_F:
107 		return "PORT_DDI_IO_F";
108 	case POWER_DOMAIN_PORT_DDI_IO_TC1:
109 		return "PORT_DDI_IO_TC1";
110 	case POWER_DOMAIN_PORT_DDI_IO_TC2:
111 		return "PORT_DDI_IO_TC2";
112 	case POWER_DOMAIN_PORT_DDI_IO_TC3:
113 		return "PORT_DDI_IO_TC3";
114 	case POWER_DOMAIN_PORT_DDI_IO_TC4:
115 		return "PORT_DDI_IO_TC4";
116 	case POWER_DOMAIN_PORT_DDI_IO_TC5:
117 		return "PORT_DDI_IO_TC5";
118 	case POWER_DOMAIN_PORT_DDI_IO_TC6:
119 		return "PORT_DDI_IO_TC6";
120 	case POWER_DOMAIN_PORT_DSI:
121 		return "PORT_DSI";
122 	case POWER_DOMAIN_PORT_CRT:
123 		return "PORT_CRT";
124 	case POWER_DOMAIN_PORT_OTHER:
125 		return "PORT_OTHER";
126 	case POWER_DOMAIN_VGA:
127 		return "VGA";
128 	case POWER_DOMAIN_AUDIO_MMIO:
129 		return "AUDIO_MMIO";
130 	case POWER_DOMAIN_AUDIO_PLAYBACK:
131 		return "AUDIO_PLAYBACK";
132 	case POWER_DOMAIN_AUX_A:
133 		return "AUX_A";
134 	case POWER_DOMAIN_AUX_B:
135 		return "AUX_B";
136 	case POWER_DOMAIN_AUX_C:
137 		return "AUX_C";
138 	case POWER_DOMAIN_AUX_D:
139 		return "AUX_D";
140 	case POWER_DOMAIN_AUX_E:
141 		return "AUX_E";
142 	case POWER_DOMAIN_AUX_F:
143 		return "AUX_F";
144 	case POWER_DOMAIN_AUX_USBC1:
145 		return "AUX_USBC1";
146 	case POWER_DOMAIN_AUX_USBC2:
147 		return "AUX_USBC2";
148 	case POWER_DOMAIN_AUX_USBC3:
149 		return "AUX_USBC3";
150 	case POWER_DOMAIN_AUX_USBC4:
151 		return "AUX_USBC4";
152 	case POWER_DOMAIN_AUX_USBC5:
153 		return "AUX_USBC5";
154 	case POWER_DOMAIN_AUX_USBC6:
155 		return "AUX_USBC6";
156 	case POWER_DOMAIN_AUX_IO_A:
157 		return "AUX_IO_A";
158 	case POWER_DOMAIN_AUX_TBT1:
159 		return "AUX_TBT1";
160 	case POWER_DOMAIN_AUX_TBT2:
161 		return "AUX_TBT2";
162 	case POWER_DOMAIN_AUX_TBT3:
163 		return "AUX_TBT3";
164 	case POWER_DOMAIN_AUX_TBT4:
165 		return "AUX_TBT4";
166 	case POWER_DOMAIN_AUX_TBT5:
167 		return "AUX_TBT5";
168 	case POWER_DOMAIN_AUX_TBT6:
169 		return "AUX_TBT6";
170 	case POWER_DOMAIN_GMBUS:
171 		return "GMBUS";
172 	case POWER_DOMAIN_INIT:
173 		return "INIT";
174 	case POWER_DOMAIN_MODESET:
175 		return "MODESET";
176 	case POWER_DOMAIN_GT_IRQ:
177 		return "GT_IRQ";
178 	case POWER_DOMAIN_DC_OFF:
179 		return "DC_OFF";
180 	case POWER_DOMAIN_TC_COLD_OFF:
181 		return "TC_COLD_OFF";
182 	default:
183 		MISSING_CASE(domain);
184 		return "?";
185 	}
186 }
187 
188 /**
189  * __intel_display_power_is_enabled - unlocked check for a power domain
190  * @dev_priv: i915 device instance
191  * @domain: power domain to check
192  *
193  * This is the unlocked version of intel_display_power_is_enabled() and should
194  * only be used from error capture and recovery code where deadlocks are
195  * possible.
196  *
197  * Returns:
198  * True when the power domain is enabled, false otherwise.
199  */
200 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
201 				      enum intel_display_power_domain domain)
202 {
203 	struct i915_power_well *power_well;
204 	bool is_enabled;
205 
206 	if (dev_priv->runtime_pm.suspended)
207 		return false;
208 
209 	is_enabled = true;
210 
211 	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
212 		if (intel_power_well_is_always_on(power_well))
213 			continue;
214 
215 		if (!intel_power_well_is_enabled_cached(power_well)) {
216 			is_enabled = false;
217 			break;
218 		}
219 	}
220 
221 	return is_enabled;
222 }
223 
224 /**
225  * intel_display_power_is_enabled - check for a power domain
226  * @dev_priv: i915 device instance
227  * @domain: power domain to check
228  *
229  * This function can be used to check the hw power domain state. It is mostly
230  * used in hardware state readout functions. Everywhere else code should rely
231  * upon explicit power domain reference counting to ensure that the hardware
232  * block is powered up before accessing it.
233  *
234  * Callers must hold the relevant modesetting locks to ensure that concurrent
235  * threads can't disable the power well while the caller tries to read a few
236  * registers.
237  *
238  * Returns:
239  * True when the power domain is enabled, false otherwise.
240  */
241 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
242 				    enum intel_display_power_domain domain)
243 {
244 	struct i915_power_domains *power_domains;
245 	bool ret;
246 
247 	power_domains = &dev_priv->display.power.domains;
248 
249 	mutex_lock(&power_domains->lock);
250 	ret = __intel_display_power_is_enabled(dev_priv, domain);
251 	mutex_unlock(&power_domains->lock);
252 
253 	return ret;
254 }
255 
256 static u32
257 sanitize_target_dc_state(struct drm_i915_private *dev_priv,
258 			 u32 target_dc_state)
259 {
260 	static const u32 states[] = {
261 		DC_STATE_EN_UPTO_DC6,
262 		DC_STATE_EN_UPTO_DC5,
263 		DC_STATE_EN_DC3CO,
264 		DC_STATE_DISABLE,
265 	};
266 	int i;
267 
268 	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
269 		if (target_dc_state != states[i])
270 			continue;
271 
272 		if (dev_priv->display.dmc.allowed_dc_mask & target_dc_state)
273 			break;
274 
275 		target_dc_state = states[i + 1];
276 	}
277 
278 	return target_dc_state;
279 }
280 
281 /**
282  * intel_display_power_set_target_dc_state - Set target dc state.
283  * @dev_priv: i915 device
284  * @state: state which needs to be set as target_dc_state.
285  *
286  * This function set the "DC off" power well target_dc_state,
287  * based upon this target_dc_stste, "DC off" power well will
288  * enable desired DC state.
289  */
290 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
291 					     u32 state)
292 {
293 	struct i915_power_well *power_well;
294 	bool dc_off_enabled;
295 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
296 
297 	mutex_lock(&power_domains->lock);
298 	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
299 
300 	if (drm_WARN_ON(&dev_priv->drm, !power_well))
301 		goto unlock;
302 
303 	state = sanitize_target_dc_state(dev_priv, state);
304 
305 	if (state == dev_priv->display.dmc.target_dc_state)
306 		goto unlock;
307 
308 	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
309 	/*
310 	 * If DC off power well is disabled, need to enable and disable the
311 	 * DC off power well to effect target DC state.
312 	 */
313 	if (!dc_off_enabled)
314 		intel_power_well_enable(dev_priv, power_well);
315 
316 	dev_priv->display.dmc.target_dc_state = state;
317 
318 	if (!dc_off_enabled)
319 		intel_power_well_disable(dev_priv, power_well);
320 
321 unlock:
322 	mutex_unlock(&power_domains->lock);
323 }
324 
325 #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
326 
327 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
328 				     struct intel_power_domain_mask *mask)
329 {
330 	bitmap_or(mask->bits,
331 		  power_domains->async_put_domains[0].bits,
332 		  power_domains->async_put_domains[1].bits,
333 		  POWER_DOMAIN_NUM);
334 }
335 
336 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
337 
338 static bool
339 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
340 {
341 	struct drm_i915_private *i915 = container_of(power_domains,
342 						     struct drm_i915_private,
343 						     display.power.domains);
344 
345 	return !drm_WARN_ON(&i915->drm,
346 			    bitmap_intersects(power_domains->async_put_domains[0].bits,
347 					      power_domains->async_put_domains[1].bits,
348 					      POWER_DOMAIN_NUM));
349 }
350 
351 static bool
352 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
353 {
354 	struct drm_i915_private *i915 = container_of(power_domains,
355 						     struct drm_i915_private,
356 						     display.power.domains);
357 	struct intel_power_domain_mask async_put_mask;
358 	enum intel_display_power_domain domain;
359 	bool err = false;
360 
361 	err |= !assert_async_put_domain_masks_disjoint(power_domains);
362 	__async_put_domains_mask(power_domains, &async_put_mask);
363 	err |= drm_WARN_ON(&i915->drm,
364 			   !!power_domains->async_put_wakeref !=
365 			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
366 
367 	for_each_power_domain(domain, &async_put_mask)
368 		err |= drm_WARN_ON(&i915->drm,
369 				   power_domains->domain_use_count[domain] != 1);
370 
371 	return !err;
372 }
373 
374 static void print_power_domains(struct i915_power_domains *power_domains,
375 				const char *prefix, struct intel_power_domain_mask *mask)
376 {
377 	struct drm_i915_private *i915 = container_of(power_domains,
378 						     struct drm_i915_private,
379 						     display.power.domains);
380 	enum intel_display_power_domain domain;
381 
382 	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
383 	for_each_power_domain(domain, mask)
384 		drm_dbg(&i915->drm, "%s use_count %d\n",
385 			intel_display_power_domain_str(domain),
386 			power_domains->domain_use_count[domain]);
387 }
388 
389 static void
390 print_async_put_domains_state(struct i915_power_domains *power_domains)
391 {
392 	struct drm_i915_private *i915 = container_of(power_domains,
393 						     struct drm_i915_private,
394 						     display.power.domains);
395 
396 	drm_dbg(&i915->drm, "async_put_wakeref %u\n",
397 		power_domains->async_put_wakeref);
398 
399 	print_power_domains(power_domains, "async_put_domains[0]",
400 			    &power_domains->async_put_domains[0]);
401 	print_power_domains(power_domains, "async_put_domains[1]",
402 			    &power_domains->async_put_domains[1]);
403 }
404 
405 static void
406 verify_async_put_domains_state(struct i915_power_domains *power_domains)
407 {
408 	if (!__async_put_domains_state_ok(power_domains))
409 		print_async_put_domains_state(power_domains);
410 }
411 
412 #else
413 
414 static void
415 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
416 {
417 }
418 
419 static void
420 verify_async_put_domains_state(struct i915_power_domains *power_domains)
421 {
422 }
423 
424 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
425 
426 static void async_put_domains_mask(struct i915_power_domains *power_domains,
427 				   struct intel_power_domain_mask *mask)
428 
429 {
430 	assert_async_put_domain_masks_disjoint(power_domains);
431 
432 	__async_put_domains_mask(power_domains, mask);
433 }
434 
435 static void
436 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
437 			       enum intel_display_power_domain domain)
438 {
439 	assert_async_put_domain_masks_disjoint(power_domains);
440 
441 	clear_bit(domain, power_domains->async_put_domains[0].bits);
442 	clear_bit(domain, power_domains->async_put_domains[1].bits);
443 }
444 
445 static bool
446 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
447 				       enum intel_display_power_domain domain)
448 {
449 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
450 	struct intel_power_domain_mask async_put_mask;
451 	bool ret = false;
452 
453 	async_put_domains_mask(power_domains, &async_put_mask);
454 	if (!test_bit(domain, async_put_mask.bits))
455 		goto out_verify;
456 
457 	async_put_domains_clear_domain(power_domains, domain);
458 
459 	ret = true;
460 
461 	async_put_domains_mask(power_domains, &async_put_mask);
462 	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
463 		goto out_verify;
464 
465 	cancel_delayed_work(&power_domains->async_put_work);
466 	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
467 				 fetch_and_zero(&power_domains->async_put_wakeref));
468 out_verify:
469 	verify_async_put_domains_state(power_domains);
470 
471 	return ret;
472 }
473 
474 static void
475 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
476 				 enum intel_display_power_domain domain)
477 {
478 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
479 	struct i915_power_well *power_well;
480 
481 	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
482 		return;
483 
484 	for_each_power_domain_well(dev_priv, power_well, domain)
485 		intel_power_well_get(dev_priv, power_well);
486 
487 	power_domains->domain_use_count[domain]++;
488 }
489 
490 /**
491  * intel_display_power_get - grab a power domain reference
492  * @dev_priv: i915 device instance
493  * @domain: power domain to reference
494  *
495  * This function grabs a power domain reference for @domain and ensures that the
496  * power domain and all its parents are powered up. Therefore users should only
497  * grab a reference to the innermost power domain they need.
498  *
499  * Any power domain reference obtained by this function must have a symmetric
500  * call to intel_display_power_put() to release the reference again.
501  */
502 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
503 					enum intel_display_power_domain domain)
504 {
505 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
506 	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
507 
508 	mutex_lock(&power_domains->lock);
509 	__intel_display_power_get_domain(dev_priv, domain);
510 	mutex_unlock(&power_domains->lock);
511 
512 	return wakeref;
513 }
514 
515 /**
516  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
517  * @dev_priv: i915 device instance
518  * @domain: power domain to reference
519  *
520  * This function grabs a power domain reference for @domain and ensures that the
521  * power domain and all its parents are powered up. Therefore users should only
522  * grab a reference to the innermost power domain they need.
523  *
524  * Any power domain reference obtained by this function must have a symmetric
525  * call to intel_display_power_put() to release the reference again.
526  */
527 intel_wakeref_t
528 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
529 				   enum intel_display_power_domain domain)
530 {
531 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
532 	intel_wakeref_t wakeref;
533 	bool is_enabled;
534 
535 	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
536 	if (!wakeref)
537 		return false;
538 
539 	mutex_lock(&power_domains->lock);
540 
541 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
542 		__intel_display_power_get_domain(dev_priv, domain);
543 		is_enabled = true;
544 	} else {
545 		is_enabled = false;
546 	}
547 
548 	mutex_unlock(&power_domains->lock);
549 
550 	if (!is_enabled) {
551 		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
552 		wakeref = 0;
553 	}
554 
555 	return wakeref;
556 }
557 
558 static void
559 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
560 				 enum intel_display_power_domain domain)
561 {
562 	struct i915_power_domains *power_domains;
563 	struct i915_power_well *power_well;
564 	const char *name = intel_display_power_domain_str(domain);
565 	struct intel_power_domain_mask async_put_mask;
566 
567 	power_domains = &dev_priv->display.power.domains;
568 
569 	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
570 		 "Use count on domain %s is already zero\n",
571 		 name);
572 	async_put_domains_mask(power_domains, &async_put_mask);
573 	drm_WARN(&dev_priv->drm,
574 		 test_bit(domain, async_put_mask.bits),
575 		 "Async disabling of domain %s is pending\n",
576 		 name);
577 
578 	power_domains->domain_use_count[domain]--;
579 
580 	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
581 		intel_power_well_put(dev_priv, power_well);
582 }
583 
584 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
585 				      enum intel_display_power_domain domain)
586 {
587 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
588 
589 	mutex_lock(&power_domains->lock);
590 	__intel_display_power_put_domain(dev_priv, domain);
591 	mutex_unlock(&power_domains->lock);
592 }
593 
594 static void
595 queue_async_put_domains_work(struct i915_power_domains *power_domains,
596 			     intel_wakeref_t wakeref)
597 {
598 	struct drm_i915_private *i915 = container_of(power_domains,
599 						     struct drm_i915_private,
600 						     display.power.domains);
601 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
602 	power_domains->async_put_wakeref = wakeref;
603 	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
604 						    &power_domains->async_put_work,
605 						    msecs_to_jiffies(100)));
606 }
607 
608 static void
609 release_async_put_domains(struct i915_power_domains *power_domains,
610 			  struct intel_power_domain_mask *mask)
611 {
612 	struct drm_i915_private *dev_priv =
613 		container_of(power_domains, struct drm_i915_private,
614 			     display.power.domains);
615 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
616 	enum intel_display_power_domain domain;
617 	intel_wakeref_t wakeref;
618 
619 	/*
620 	 * The caller must hold already raw wakeref, upgrade that to a proper
621 	 * wakeref to make the state checker happy about the HW access during
622 	 * power well disabling.
623 	 */
624 	assert_rpm_raw_wakeref_held(rpm);
625 	wakeref = intel_runtime_pm_get(rpm);
626 
627 	for_each_power_domain(domain, mask) {
628 		/* Clear before put, so put's sanity check is happy. */
629 		async_put_domains_clear_domain(power_domains, domain);
630 		__intel_display_power_put_domain(dev_priv, domain);
631 	}
632 
633 	intel_runtime_pm_put(rpm, wakeref);
634 }
635 
636 static void
637 intel_display_power_put_async_work(struct work_struct *work)
638 {
639 	struct drm_i915_private *dev_priv =
640 		container_of(work, struct drm_i915_private,
641 			     display.power.domains.async_put_work.work);
642 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
643 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
644 	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
645 	intel_wakeref_t old_work_wakeref = 0;
646 
647 	mutex_lock(&power_domains->lock);
648 
649 	/*
650 	 * Bail out if all the domain refs pending to be released were grabbed
651 	 * by subsequent gets or a flush_work.
652 	 */
653 	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
654 	if (!old_work_wakeref)
655 		goto out_verify;
656 
657 	release_async_put_domains(power_domains,
658 				  &power_domains->async_put_domains[0]);
659 
660 	/* Requeue the work if more domains were async put meanwhile. */
661 	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
662 		bitmap_copy(power_domains->async_put_domains[0].bits,
663 			    power_domains->async_put_domains[1].bits,
664 			    POWER_DOMAIN_NUM);
665 		bitmap_zero(power_domains->async_put_domains[1].bits,
666 			    POWER_DOMAIN_NUM);
667 		queue_async_put_domains_work(power_domains,
668 					     fetch_and_zero(&new_work_wakeref));
669 	} else {
670 		/*
671 		 * Cancel the work that got queued after this one got dequeued,
672 		 * since here we released the corresponding async-put reference.
673 		 */
674 		cancel_delayed_work(&power_domains->async_put_work);
675 	}
676 
677 out_verify:
678 	verify_async_put_domains_state(power_domains);
679 
680 	mutex_unlock(&power_domains->lock);
681 
682 	if (old_work_wakeref)
683 		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
684 	if (new_work_wakeref)
685 		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
686 }
687 
688 /**
689  * intel_display_power_put_async - release a power domain reference asynchronously
690  * @i915: i915 device instance
691  * @domain: power domain to reference
692  * @wakeref: wakeref acquired for the reference that is being released
693  *
694  * This function drops the power domain reference obtained by
695  * intel_display_power_get*() and schedules a work to power down the
696  * corresponding hardware block if this is the last reference.
697  */
698 void __intel_display_power_put_async(struct drm_i915_private *i915,
699 				     enum intel_display_power_domain domain,
700 				     intel_wakeref_t wakeref)
701 {
702 	struct i915_power_domains *power_domains = &i915->display.power.domains;
703 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
704 	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
705 
706 	mutex_lock(&power_domains->lock);
707 
708 	if (power_domains->domain_use_count[domain] > 1) {
709 		__intel_display_power_put_domain(i915, domain);
710 
711 		goto out_verify;
712 	}
713 
714 	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
715 
716 	/* Let a pending work requeue itself or queue a new one. */
717 	if (power_domains->async_put_wakeref) {
718 		set_bit(domain, power_domains->async_put_domains[1].bits);
719 	} else {
720 		set_bit(domain, power_domains->async_put_domains[0].bits);
721 		queue_async_put_domains_work(power_domains,
722 					     fetch_and_zero(&work_wakeref));
723 	}
724 
725 out_verify:
726 	verify_async_put_domains_state(power_domains);
727 
728 	mutex_unlock(&power_domains->lock);
729 
730 	if (work_wakeref)
731 		intel_runtime_pm_put_raw(rpm, work_wakeref);
732 
733 	intel_runtime_pm_put(rpm, wakeref);
734 }
735 
736 /**
737  * intel_display_power_flush_work - flushes the async display power disabling work
738  * @i915: i915 device instance
739  *
740  * Flushes any pending work that was scheduled by a preceding
741  * intel_display_power_put_async() call, completing the disabling of the
742  * corresponding power domains.
743  *
744  * Note that the work handler function may still be running after this
745  * function returns; to ensure that the work handler isn't running use
746  * intel_display_power_flush_work_sync() instead.
747  */
748 void intel_display_power_flush_work(struct drm_i915_private *i915)
749 {
750 	struct i915_power_domains *power_domains = &i915->display.power.domains;
751 	struct intel_power_domain_mask async_put_mask;
752 	intel_wakeref_t work_wakeref;
753 
754 	mutex_lock(&power_domains->lock);
755 
756 	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
757 	if (!work_wakeref)
758 		goto out_verify;
759 
760 	async_put_domains_mask(power_domains, &async_put_mask);
761 	release_async_put_domains(power_domains, &async_put_mask);
762 	cancel_delayed_work(&power_domains->async_put_work);
763 
764 out_verify:
765 	verify_async_put_domains_state(power_domains);
766 
767 	mutex_unlock(&power_domains->lock);
768 
769 	if (work_wakeref)
770 		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
771 }
772 
773 /**
774  * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
775  * @i915: i915 device instance
776  *
777  * Like intel_display_power_flush_work(), but also ensure that the work
778  * handler function is not running any more when this function returns.
779  */
780 static void
781 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
782 {
783 	struct i915_power_domains *power_domains = &i915->display.power.domains;
784 
785 	intel_display_power_flush_work(i915);
786 	cancel_delayed_work_sync(&power_domains->async_put_work);
787 
788 	verify_async_put_domains_state(power_domains);
789 
790 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
791 }
792 
793 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
794 /**
795  * intel_display_power_put - release a power domain reference
796  * @dev_priv: i915 device instance
797  * @domain: power domain to reference
798  * @wakeref: wakeref acquired for the reference that is being released
799  *
800  * This function drops the power domain reference obtained by
801  * intel_display_power_get() and might power down the corresponding hardware
802  * block right away if this is the last reference.
803  */
804 void intel_display_power_put(struct drm_i915_private *dev_priv,
805 			     enum intel_display_power_domain domain,
806 			     intel_wakeref_t wakeref)
807 {
808 	__intel_display_power_put(dev_priv, domain);
809 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
810 }
811 #else
812 /**
813  * intel_display_power_put_unchecked - release an unchecked power domain reference
814  * @dev_priv: i915 device instance
815  * @domain: power domain to reference
816  *
817  * This function drops the power domain reference obtained by
818  * intel_display_power_get() and might power down the corresponding hardware
819  * block right away if this is the last reference.
820  *
821  * This function is only for the power domain code's internal use to suppress wakeref
822  * tracking when the correspondig debug kconfig option is disabled, should not
823  * be used otherwise.
824  */
825 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
826 				       enum intel_display_power_domain domain)
827 {
828 	__intel_display_power_put(dev_priv, domain);
829 	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
830 }
831 #endif
832 
833 void
834 intel_display_power_get_in_set(struct drm_i915_private *i915,
835 			       struct intel_display_power_domain_set *power_domain_set,
836 			       enum intel_display_power_domain domain)
837 {
838 	intel_wakeref_t __maybe_unused wf;
839 
840 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
841 
842 	wf = intel_display_power_get(i915, domain);
843 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
844 	power_domain_set->wakerefs[domain] = wf;
845 #endif
846 	set_bit(domain, power_domain_set->mask.bits);
847 }
848 
849 bool
850 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
851 					  struct intel_display_power_domain_set *power_domain_set,
852 					  enum intel_display_power_domain domain)
853 {
854 	intel_wakeref_t wf;
855 
856 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
857 
858 	wf = intel_display_power_get_if_enabled(i915, domain);
859 	if (!wf)
860 		return false;
861 
862 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
863 	power_domain_set->wakerefs[domain] = wf;
864 #endif
865 	set_bit(domain, power_domain_set->mask.bits);
866 
867 	return true;
868 }
869 
870 void
871 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
872 				    struct intel_display_power_domain_set *power_domain_set,
873 				    struct intel_power_domain_mask *mask)
874 {
875 	enum intel_display_power_domain domain;
876 
877 	drm_WARN_ON(&i915->drm,
878 		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
879 
880 	for_each_power_domain(domain, mask) {
881 		intel_wakeref_t __maybe_unused wf = -1;
882 
883 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
884 		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
885 #endif
886 		intel_display_power_put(i915, domain, wf);
887 		clear_bit(domain, power_domain_set->mask.bits);
888 	}
889 }
890 
891 static int
892 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
893 				   int disable_power_well)
894 {
895 	if (disable_power_well >= 0)
896 		return !!disable_power_well;
897 
898 	return 1;
899 }
900 
901 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
902 			       int enable_dc)
903 {
904 	u32 mask;
905 	int requested_dc;
906 	int max_dc;
907 
908 	if (!HAS_DISPLAY(dev_priv))
909 		return 0;
910 
911 	if (IS_DG2(dev_priv))
912 		max_dc = 1;
913 	else if (IS_DG1(dev_priv))
914 		max_dc = 3;
915 	else if (DISPLAY_VER(dev_priv) >= 12)
916 		max_dc = 4;
917 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
918 		max_dc = 1;
919 	else if (DISPLAY_VER(dev_priv) >= 9)
920 		max_dc = 2;
921 	else
922 		max_dc = 0;
923 
924 	/*
925 	 * DC9 has a separate HW flow from the rest of the DC states,
926 	 * not depending on the DMC firmware. It's needed by system
927 	 * suspend/resume, so allow it unconditionally.
928 	 */
929 	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
930 		DISPLAY_VER(dev_priv) >= 11 ?
931 	       DC_STATE_EN_DC9 : 0;
932 
933 	if (!dev_priv->params.disable_power_well)
934 		max_dc = 0;
935 
936 	if (enable_dc >= 0 && enable_dc <= max_dc) {
937 		requested_dc = enable_dc;
938 	} else if (enable_dc == -1) {
939 		requested_dc = max_dc;
940 	} else if (enable_dc > max_dc && enable_dc <= 4) {
941 		drm_dbg_kms(&dev_priv->drm,
942 			    "Adjusting requested max DC state (%d->%d)\n",
943 			    enable_dc, max_dc);
944 		requested_dc = max_dc;
945 	} else {
946 		drm_err(&dev_priv->drm,
947 			"Unexpected value for enable_dc (%d)\n", enable_dc);
948 		requested_dc = max_dc;
949 	}
950 
951 	switch (requested_dc) {
952 	case 4:
953 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
954 		break;
955 	case 3:
956 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
957 		break;
958 	case 2:
959 		mask |= DC_STATE_EN_UPTO_DC6;
960 		break;
961 	case 1:
962 		mask |= DC_STATE_EN_UPTO_DC5;
963 		break;
964 	}
965 
966 	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
967 
968 	return mask;
969 }
970 
971 /**
972  * intel_power_domains_init - initializes the power domain structures
973  * @dev_priv: i915 device instance
974  *
975  * Initializes the power domain structures for @dev_priv depending upon the
976  * supported platform.
977  */
978 int intel_power_domains_init(struct drm_i915_private *dev_priv)
979 {
980 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
981 
982 	dev_priv->params.disable_power_well =
983 		sanitize_disable_power_well_option(dev_priv,
984 						   dev_priv->params.disable_power_well);
985 	dev_priv->display.dmc.allowed_dc_mask =
986 		get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
987 
988 	dev_priv->display.dmc.target_dc_state =
989 		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
990 
991 	mutex_init(&power_domains->lock);
992 
993 	INIT_DELAYED_WORK(&power_domains->async_put_work,
994 			  intel_display_power_put_async_work);
995 
996 	return intel_display_power_map_init(power_domains);
997 }
998 
999 /**
1000  * intel_power_domains_cleanup - clean up power domains resources
1001  * @dev_priv: i915 device instance
1002  *
1003  * Release any resources acquired by intel_power_domains_init()
1004  */
1005 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1006 {
1007 	intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1008 }
1009 
1010 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1011 {
1012 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1013 	struct i915_power_well *power_well;
1014 
1015 	mutex_lock(&power_domains->lock);
1016 	for_each_power_well(dev_priv, power_well)
1017 		intel_power_well_sync_hw(dev_priv, power_well);
1018 	mutex_unlock(&power_domains->lock);
1019 }
1020 
1021 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1022 				enum dbuf_slice slice, bool enable)
1023 {
1024 	i915_reg_t reg = DBUF_CTL_S(slice);
1025 	bool state;
1026 
1027 	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1028 		     enable ? DBUF_POWER_REQUEST : 0);
1029 	intel_de_posting_read(dev_priv, reg);
1030 	udelay(10);
1031 
1032 	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1033 	drm_WARN(&dev_priv->drm, enable != state,
1034 		 "DBuf slice %d power %s timeout!\n",
1035 		 slice, str_enable_disable(enable));
1036 }
1037 
1038 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1039 			     u8 req_slices)
1040 {
1041 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1042 	u8 slice_mask = INTEL_INFO(dev_priv)->display.dbuf.slice_mask;
1043 	enum dbuf_slice slice;
1044 
1045 	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1046 		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1047 		 req_slices, slice_mask);
1048 
1049 	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1050 		    req_slices);
1051 
1052 	/*
1053 	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1054 	 * being called from intel_dp_detect for instance,
1055 	 * which causes assertion triggered by race condition,
1056 	 * as gen9_assert_dbuf_enabled might preempt this when registers
1057 	 * were already updated, while dev_priv was not.
1058 	 */
1059 	mutex_lock(&power_domains->lock);
1060 
1061 	for_each_dbuf_slice(dev_priv, slice)
1062 		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1063 
1064 	dev_priv->display.dbuf.enabled_slices = req_slices;
1065 
1066 	mutex_unlock(&power_domains->lock);
1067 }
1068 
1069 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1070 {
1071 	dev_priv->display.dbuf.enabled_slices =
1072 		intel_enabled_dbuf_slices_mask(dev_priv);
1073 
1074 	/*
1075 	 * Just power up at least 1 slice, we will
1076 	 * figure out later which slices we have and what we need.
1077 	 */
1078 	gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) |
1079 				dev_priv->display.dbuf.enabled_slices);
1080 }
1081 
1082 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1083 {
1084 	gen9_dbuf_slices_update(dev_priv, 0);
1085 }
1086 
1087 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1088 {
1089 	enum dbuf_slice slice;
1090 
1091 	if (IS_ALDERLAKE_P(dev_priv))
1092 		return;
1093 
1094 	for_each_dbuf_slice(dev_priv, slice)
1095 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1096 			     DBUF_TRACKER_STATE_SERVICE_MASK,
1097 			     DBUF_TRACKER_STATE_SERVICE(8));
1098 }
1099 
1100 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1101 {
1102 	unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask;
1103 	u32 mask, val, i;
1104 
1105 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1106 		return;
1107 
1108 	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1109 		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1110 		MBUS_ABOX_B_CREDIT_MASK |
1111 		MBUS_ABOX_BW_CREDIT_MASK;
1112 	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1113 		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1114 		MBUS_ABOX_B_CREDIT(1) |
1115 		MBUS_ABOX_BW_CREDIT(1);
1116 
1117 	/*
1118 	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1119 	 * expect us to program the abox_ctl0 register as well, even though
1120 	 * we don't have to program other instance-0 registers like BW_BUDDY.
1121 	 */
1122 	if (DISPLAY_VER(dev_priv) == 12)
1123 		abox_regs |= BIT(0);
1124 
1125 	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1126 		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1127 }
1128 
1129 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1130 {
1131 	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1132 
1133 	/*
1134 	 * The LCPLL register should be turned on by the BIOS. For now
1135 	 * let's just check its state and print errors in case
1136 	 * something is wrong.  Don't even try to turn it on.
1137 	 */
1138 
1139 	if (val & LCPLL_CD_SOURCE_FCLK)
1140 		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1141 
1142 	if (val & LCPLL_PLL_DISABLE)
1143 		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1144 
1145 	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1146 		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1147 }
1148 
1149 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1150 {
1151 	struct drm_device *dev = &dev_priv->drm;
1152 	struct intel_crtc *crtc;
1153 
1154 	for_each_intel_crtc(dev, crtc)
1155 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
1156 				pipe_name(crtc->pipe));
1157 
1158 	I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1159 			"Display power well on\n");
1160 	I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1161 			"SPLL enabled\n");
1162 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1163 			"WRPLL1 enabled\n");
1164 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1165 			"WRPLL2 enabled\n");
1166 	I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1167 			"Panel power on\n");
1168 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1169 			"CPU PWM1 enabled\n");
1170 	if (IS_HASWELL(dev_priv))
1171 		I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1172 				"CPU PWM2 enabled\n");
1173 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1174 			"PCH PWM1 enabled\n");
1175 	I915_STATE_WARN(intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
1176 			"Utility pin enabled\n");
1177 	I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1178 			"PCH GTC enabled\n");
1179 
1180 	/*
1181 	 * In theory we can still leave IRQs enabled, as long as only the HPD
1182 	 * interrupts remain enabled. We used to check for that, but since it's
1183 	 * gen-specific and since we only disable LCPLL after we fully disable
1184 	 * the interrupts, the check below should be enough.
1185 	 */
1186 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
1187 }
1188 
1189 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1190 {
1191 	if (IS_HASWELL(dev_priv))
1192 		return intel_de_read(dev_priv, D_COMP_HSW);
1193 	else
1194 		return intel_de_read(dev_priv, D_COMP_BDW);
1195 }
1196 
1197 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1198 {
1199 	if (IS_HASWELL(dev_priv)) {
1200 		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1201 			drm_dbg_kms(&dev_priv->drm,
1202 				    "Failed to write to D_COMP\n");
1203 	} else {
1204 		intel_de_write(dev_priv, D_COMP_BDW, val);
1205 		intel_de_posting_read(dev_priv, D_COMP_BDW);
1206 	}
1207 }
1208 
1209 /*
1210  * This function implements pieces of two sequences from BSpec:
1211  * - Sequence for display software to disable LCPLL
1212  * - Sequence for display software to allow package C8+
1213  * The steps implemented here are just the steps that actually touch the LCPLL
1214  * register. Callers should take care of disabling all the display engine
1215  * functions, doing the mode unset, fixing interrupts, etc.
1216  */
1217 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1218 			      bool switch_to_fclk, bool allow_power_down)
1219 {
1220 	u32 val;
1221 
1222 	assert_can_disable_lcpll(dev_priv);
1223 
1224 	val = intel_de_read(dev_priv, LCPLL_CTL);
1225 
1226 	if (switch_to_fclk) {
1227 		val |= LCPLL_CD_SOURCE_FCLK;
1228 		intel_de_write(dev_priv, LCPLL_CTL, val);
1229 
1230 		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1231 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1232 			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1233 
1234 		val = intel_de_read(dev_priv, LCPLL_CTL);
1235 	}
1236 
1237 	val |= LCPLL_PLL_DISABLE;
1238 	intel_de_write(dev_priv, LCPLL_CTL, val);
1239 	intel_de_posting_read(dev_priv, LCPLL_CTL);
1240 
1241 	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1242 		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1243 
1244 	val = hsw_read_dcomp(dev_priv);
1245 	val |= D_COMP_COMP_DISABLE;
1246 	hsw_write_dcomp(dev_priv, val);
1247 	ndelay(100);
1248 
1249 	if (wait_for((hsw_read_dcomp(dev_priv) &
1250 		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1251 		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1252 
1253 	if (allow_power_down) {
1254 		val = intel_de_read(dev_priv, LCPLL_CTL);
1255 		val |= LCPLL_POWER_DOWN_ALLOW;
1256 		intel_de_write(dev_priv, LCPLL_CTL, val);
1257 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1258 	}
1259 }
1260 
1261 /*
1262  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1263  * source.
1264  */
1265 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1266 {
1267 	u32 val;
1268 
1269 	val = intel_de_read(dev_priv, LCPLL_CTL);
1270 
1271 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1272 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1273 		return;
1274 
1275 	/*
1276 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1277 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1278 	 */
1279 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1280 
1281 	if (val & LCPLL_POWER_DOWN_ALLOW) {
1282 		val &= ~LCPLL_POWER_DOWN_ALLOW;
1283 		intel_de_write(dev_priv, LCPLL_CTL, val);
1284 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1285 	}
1286 
1287 	val = hsw_read_dcomp(dev_priv);
1288 	val |= D_COMP_COMP_FORCE;
1289 	val &= ~D_COMP_COMP_DISABLE;
1290 	hsw_write_dcomp(dev_priv, val);
1291 
1292 	val = intel_de_read(dev_priv, LCPLL_CTL);
1293 	val &= ~LCPLL_PLL_DISABLE;
1294 	intel_de_write(dev_priv, LCPLL_CTL, val);
1295 
1296 	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1297 		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1298 
1299 	if (val & LCPLL_CD_SOURCE_FCLK) {
1300 		val = intel_de_read(dev_priv, LCPLL_CTL);
1301 		val &= ~LCPLL_CD_SOURCE_FCLK;
1302 		intel_de_write(dev_priv, LCPLL_CTL, val);
1303 
1304 		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1305 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1306 			drm_err(&dev_priv->drm,
1307 				"Switching back to LCPLL failed\n");
1308 	}
1309 
1310 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1311 
1312 	intel_update_cdclk(dev_priv);
1313 	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1314 }
1315 
1316 /*
1317  * Package states C8 and deeper are really deep PC states that can only be
1318  * reached when all the devices on the system allow it, so even if the graphics
1319  * device allows PC8+, it doesn't mean the system will actually get to these
1320  * states. Our driver only allows PC8+ when going into runtime PM.
1321  *
1322  * The requirements for PC8+ are that all the outputs are disabled, the power
1323  * well is disabled and most interrupts are disabled, and these are also
1324  * requirements for runtime PM. When these conditions are met, we manually do
1325  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1326  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1327  * hang the machine.
1328  *
1329  * When we really reach PC8 or deeper states (not just when we allow it) we lose
1330  * the state of some registers, so when we come back from PC8+ we need to
1331  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1332  * need to take care of the registers kept by RC6. Notice that this happens even
1333  * if we don't put the device in PCI D3 state (which is what currently happens
1334  * because of the runtime PM support).
1335  *
1336  * For more, read "Display Sequences for Package C8" on the hardware
1337  * documentation.
1338  */
1339 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1340 {
1341 	u32 val;
1342 
1343 	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1344 
1345 	if (HAS_PCH_LPT_LP(dev_priv)) {
1346 		val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
1347 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
1348 		intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
1349 	}
1350 
1351 	lpt_disable_clkout_dp(dev_priv);
1352 	hsw_disable_lcpll(dev_priv, true, true);
1353 }
1354 
1355 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1356 {
1357 	u32 val;
1358 
1359 	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1360 
1361 	hsw_restore_lcpll(dev_priv);
1362 	intel_init_pch_refclk(dev_priv);
1363 
1364 	if (HAS_PCH_LPT_LP(dev_priv)) {
1365 		val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
1366 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
1367 		intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
1368 	}
1369 }
1370 
1371 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1372 				      bool enable)
1373 {
1374 	i915_reg_t reg;
1375 	u32 reset_bits, val;
1376 
1377 	if (IS_IVYBRIDGE(dev_priv)) {
1378 		reg = GEN7_MSG_CTL;
1379 		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1380 	} else {
1381 		reg = HSW_NDE_RSTWRN_OPT;
1382 		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1383 	}
1384 
1385 	if (DISPLAY_VER(dev_priv) >= 14)
1386 		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1387 
1388 	val = intel_de_read(dev_priv, reg);
1389 
1390 	if (enable)
1391 		val |= reset_bits;
1392 	else
1393 		val &= ~reset_bits;
1394 
1395 	intel_de_write(dev_priv, reg, val);
1396 }
1397 
1398 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1399 				  bool resume)
1400 {
1401 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1402 	struct i915_power_well *well;
1403 
1404 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1405 
1406 	/* enable PCH reset handshake */
1407 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1408 
1409 	if (!HAS_DISPLAY(dev_priv))
1410 		return;
1411 
1412 	/* enable PG1 and Misc I/O */
1413 	mutex_lock(&power_domains->lock);
1414 
1415 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1416 	intel_power_well_enable(dev_priv, well);
1417 
1418 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1419 	intel_power_well_enable(dev_priv, well);
1420 
1421 	mutex_unlock(&power_domains->lock);
1422 
1423 	intel_cdclk_init_hw(dev_priv);
1424 
1425 	gen9_dbuf_enable(dev_priv);
1426 
1427 	if (resume)
1428 		intel_dmc_load_program(dev_priv);
1429 }
1430 
1431 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1432 {
1433 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1434 	struct i915_power_well *well;
1435 
1436 	if (!HAS_DISPLAY(dev_priv))
1437 		return;
1438 
1439 	gen9_disable_dc_states(dev_priv);
1440 	/* TODO: disable DMC program */
1441 
1442 	gen9_dbuf_disable(dev_priv);
1443 
1444 	intel_cdclk_uninit_hw(dev_priv);
1445 
1446 	/* The spec doesn't call for removing the reset handshake flag */
1447 	/* disable PG1 and Misc I/O */
1448 
1449 	mutex_lock(&power_domains->lock);
1450 
1451 	/*
1452 	 * BSpec says to keep the MISC IO power well enabled here, only
1453 	 * remove our request for power well 1.
1454 	 * Note that even though the driver's request is removed power well 1
1455 	 * may stay enabled after this due to DMC's own request on it.
1456 	 */
1457 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1458 	intel_power_well_disable(dev_priv, well);
1459 
1460 	mutex_unlock(&power_domains->lock);
1461 
1462 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1463 }
1464 
1465 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1466 {
1467 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1468 	struct i915_power_well *well;
1469 
1470 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1471 
1472 	/*
1473 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1474 	 * or else the reset will hang because there is no PCH to respond.
1475 	 * Move the handshake programming to initialization sequence.
1476 	 * Previously was left up to BIOS.
1477 	 */
1478 	intel_pch_reset_handshake(dev_priv, false);
1479 
1480 	if (!HAS_DISPLAY(dev_priv))
1481 		return;
1482 
1483 	/* Enable PG1 */
1484 	mutex_lock(&power_domains->lock);
1485 
1486 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1487 	intel_power_well_enable(dev_priv, well);
1488 
1489 	mutex_unlock(&power_domains->lock);
1490 
1491 	intel_cdclk_init_hw(dev_priv);
1492 
1493 	gen9_dbuf_enable(dev_priv);
1494 
1495 	if (resume)
1496 		intel_dmc_load_program(dev_priv);
1497 }
1498 
1499 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1500 {
1501 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1502 	struct i915_power_well *well;
1503 
1504 	if (!HAS_DISPLAY(dev_priv))
1505 		return;
1506 
1507 	gen9_disable_dc_states(dev_priv);
1508 	/* TODO: disable DMC program */
1509 
1510 	gen9_dbuf_disable(dev_priv);
1511 
1512 	intel_cdclk_uninit_hw(dev_priv);
1513 
1514 	/* The spec doesn't call for removing the reset handshake flag */
1515 
1516 	/*
1517 	 * Disable PW1 (PG1).
1518 	 * Note that even though the driver's request is removed power well 1
1519 	 * may stay enabled after this due to DMC's own request on it.
1520 	 */
1521 	mutex_lock(&power_domains->lock);
1522 
1523 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1524 	intel_power_well_disable(dev_priv, well);
1525 
1526 	mutex_unlock(&power_domains->lock);
1527 
1528 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1529 }
1530 
1531 struct buddy_page_mask {
1532 	u32 page_mask;
1533 	u8 type;
1534 	u8 num_channels;
1535 };
1536 
1537 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1538 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1539 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1540 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1541 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1542 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1543 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1544 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1545 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1546 	{}
1547 };
1548 
1549 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1550 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1551 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1552 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1553 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1554 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1555 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1556 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1557 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1558 	{}
1559 };
1560 
1561 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1562 {
1563 	enum intel_dram_type type = dev_priv->dram_info.type;
1564 	u8 num_channels = dev_priv->dram_info.num_channels;
1565 	const struct buddy_page_mask *table;
1566 	unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask;
1567 	int config, i;
1568 
1569 	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1570 	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1571 		return;
1572 
1573 	if (IS_ALDERLAKE_S(dev_priv) ||
1574 	    IS_DG1_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1575 	    IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1576 	    IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
1577 		/* Wa_1409767108:tgl,dg1,adl-s */
1578 		table = wa_1409767108_buddy_page_masks;
1579 	else
1580 		table = tgl_buddy_page_masks;
1581 
1582 	for (config = 0; table[config].page_mask != 0; config++)
1583 		if (table[config].num_channels == num_channels &&
1584 		    table[config].type == type)
1585 			break;
1586 
1587 	if (table[config].page_mask == 0) {
1588 		drm_dbg(&dev_priv->drm,
1589 			"Unknown memory configuration; disabling address buddy logic.\n");
1590 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1591 			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1592 				       BW_BUDDY_DISABLE);
1593 	} else {
1594 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1595 			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1596 				       table[config].page_mask);
1597 
1598 			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1599 			if (DISPLAY_VER(dev_priv) == 12)
1600 				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1601 					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1602 					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1603 		}
1604 	}
1605 }
1606 
1607 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1608 				  bool resume)
1609 {
1610 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1611 	struct i915_power_well *well;
1612 	u32 val;
1613 
1614 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1615 
1616 	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1617 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1618 	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1619 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1620 			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1621 
1622 	/* 1. Enable PCH reset handshake. */
1623 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1624 
1625 	if (!HAS_DISPLAY(dev_priv))
1626 		return;
1627 
1628 	/* 2. Initialize all combo phys */
1629 	intel_combo_phy_init(dev_priv);
1630 
1631 	/*
1632 	 * 3. Enable Power Well 1 (PG1).
1633 	 *    The AUX IO power wells will be enabled on demand.
1634 	 */
1635 	mutex_lock(&power_domains->lock);
1636 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1637 	intel_power_well_enable(dev_priv, well);
1638 	mutex_unlock(&power_domains->lock);
1639 
1640 	/* 4. Enable CDCLK. */
1641 	intel_cdclk_init_hw(dev_priv);
1642 
1643 	if (DISPLAY_VER(dev_priv) >= 12)
1644 		gen12_dbuf_slices_config(dev_priv);
1645 
1646 	/* 5. Enable DBUF. */
1647 	gen9_dbuf_enable(dev_priv);
1648 
1649 	/* 6. Setup MBUS. */
1650 	icl_mbus_init(dev_priv);
1651 
1652 	/* 7. Program arbiter BW_BUDDY registers */
1653 	if (DISPLAY_VER(dev_priv) >= 12)
1654 		tgl_bw_buddy_init(dev_priv);
1655 
1656 	/* 8. Ensure PHYs have completed calibration and adaptation */
1657 	if (IS_DG2(dev_priv))
1658 		intel_snps_phy_wait_for_calibration(dev_priv);
1659 
1660 	if (resume)
1661 		intel_dmc_load_program(dev_priv);
1662 
1663 	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
1664 	if (DISPLAY_VER(dev_priv) >= 12) {
1665 		val = DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1666 		      DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR;
1667 		intel_uncore_rmw(&dev_priv->uncore, GEN11_CHICKEN_DCPR_2, 0, val);
1668 	}
1669 
1670 	/* Wa_14011503030:xelpd */
1671 	if (DISPLAY_VER(dev_priv) >= 13)
1672 		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1673 }
1674 
1675 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1676 {
1677 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1678 	struct i915_power_well *well;
1679 
1680 	if (!HAS_DISPLAY(dev_priv))
1681 		return;
1682 
1683 	gen9_disable_dc_states(dev_priv);
1684 	intel_dmc_disable_program(dev_priv);
1685 
1686 	/* 1. Disable all display engine functions -> aready done */
1687 
1688 	/* 2. Disable DBUF */
1689 	gen9_dbuf_disable(dev_priv);
1690 
1691 	/* 3. Disable CD clock */
1692 	intel_cdclk_uninit_hw(dev_priv);
1693 
1694 	/*
1695 	 * 4. Disable Power Well 1 (PG1).
1696 	 *    The AUX IO power wells are toggled on demand, so they are already
1697 	 *    disabled at this point.
1698 	 */
1699 	mutex_lock(&power_domains->lock);
1700 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1701 	intel_power_well_disable(dev_priv, well);
1702 	mutex_unlock(&power_domains->lock);
1703 
1704 	/* 5. */
1705 	intel_combo_phy_uninit(dev_priv);
1706 }
1707 
1708 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1709 {
1710 	struct i915_power_well *cmn_bc =
1711 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1712 	struct i915_power_well *cmn_d =
1713 		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1714 
1715 	/*
1716 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1717 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1718 	 * instead maintain a shadow copy ourselves. Use the actual
1719 	 * power well state and lane status to reconstruct the
1720 	 * expected initial value.
1721 	 */
1722 	dev_priv->display.power.chv_phy_control =
1723 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1724 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1725 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1726 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1727 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1728 
1729 	/*
1730 	 * If all lanes are disabled we leave the override disabled
1731 	 * with all power down bits cleared to match the state we
1732 	 * would use after disabling the port. Otherwise enable the
1733 	 * override and set the lane powerdown bits accding to the
1734 	 * current lane status.
1735 	 */
1736 	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1737 		u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1738 		unsigned int mask;
1739 
1740 		mask = status & DPLL_PORTB_READY_MASK;
1741 		if (mask == 0xf)
1742 			mask = 0x0;
1743 		else
1744 			dev_priv->display.power.chv_phy_control |=
1745 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1746 
1747 		dev_priv->display.power.chv_phy_control |=
1748 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1749 
1750 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1751 		if (mask == 0xf)
1752 			mask = 0x0;
1753 		else
1754 			dev_priv->display.power.chv_phy_control |=
1755 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1756 
1757 		dev_priv->display.power.chv_phy_control |=
1758 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1759 
1760 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1761 
1762 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1763 	} else {
1764 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1765 	}
1766 
1767 	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1768 		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1769 		unsigned int mask;
1770 
1771 		mask = status & DPLL_PORTD_READY_MASK;
1772 
1773 		if (mask == 0xf)
1774 			mask = 0x0;
1775 		else
1776 			dev_priv->display.power.chv_phy_control |=
1777 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1778 
1779 		dev_priv->display.power.chv_phy_control |=
1780 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1781 
1782 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1783 
1784 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1785 	} else {
1786 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1787 	}
1788 
1789 	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1790 		    dev_priv->display.power.chv_phy_control);
1791 
1792 	/* Defer application of initial phy_control to enabling the powerwell */
1793 }
1794 
1795 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1796 {
1797 	struct i915_power_well *cmn =
1798 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1799 	struct i915_power_well *disp2d =
1800 		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1801 
1802 	/* If the display might be already active skip this */
1803 	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1804 	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1805 	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1806 		return;
1807 
1808 	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1809 
1810 	/* cmnlane needs DPLL registers */
1811 	intel_power_well_enable(dev_priv, disp2d);
1812 
1813 	/*
1814 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1815 	 * Need to assert and de-assert PHY SB reset by gating the
1816 	 * common lane power, then un-gating it.
1817 	 * Simply ungating isn't enough to reset the PHY enough to get
1818 	 * ports and lanes running.
1819 	 */
1820 	intel_power_well_disable(dev_priv, cmn);
1821 }
1822 
1823 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1824 {
1825 	bool ret;
1826 
1827 	vlv_punit_get(dev_priv);
1828 	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1829 	vlv_punit_put(dev_priv);
1830 
1831 	return ret;
1832 }
1833 
1834 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1835 {
1836 	drm_WARN(&dev_priv->drm,
1837 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1838 		 "VED not power gated\n");
1839 }
1840 
1841 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1842 {
1843 	static const struct pci_device_id isp_ids[] = {
1844 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1845 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1846 		{}
1847 	};
1848 
1849 	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1850 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1851 		 "ISP not power gated\n");
1852 }
1853 
1854 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1855 
1856 /**
1857  * intel_power_domains_init_hw - initialize hardware power domain state
1858  * @i915: i915 device instance
1859  * @resume: Called from resume code paths or not
1860  *
1861  * This function initializes the hardware power domain state and enables all
1862  * power wells belonging to the INIT power domain. Power wells in other
1863  * domains (and not in the INIT domain) are referenced or disabled by
1864  * intel_modeset_readout_hw_state(). After that the reference count of each
1865  * power well must match its HW enabled state, see
1866  * intel_power_domains_verify_state().
1867  *
1868  * It will return with power domains disabled (to be enabled later by
1869  * intel_power_domains_enable()) and must be paired with
1870  * intel_power_domains_driver_remove().
1871  */
1872 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1873 {
1874 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1875 
1876 	power_domains->initializing = true;
1877 
1878 	if (DISPLAY_VER(i915) >= 11) {
1879 		icl_display_core_init(i915, resume);
1880 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1881 		bxt_display_core_init(i915, resume);
1882 	} else if (DISPLAY_VER(i915) == 9) {
1883 		skl_display_core_init(i915, resume);
1884 	} else if (IS_CHERRYVIEW(i915)) {
1885 		mutex_lock(&power_domains->lock);
1886 		chv_phy_control_init(i915);
1887 		mutex_unlock(&power_domains->lock);
1888 		assert_isp_power_gated(i915);
1889 	} else if (IS_VALLEYVIEW(i915)) {
1890 		mutex_lock(&power_domains->lock);
1891 		vlv_cmnlane_wa(i915);
1892 		mutex_unlock(&power_domains->lock);
1893 		assert_ved_power_gated(i915);
1894 		assert_isp_power_gated(i915);
1895 	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1896 		hsw_assert_cdclk(i915);
1897 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1898 	} else if (IS_IVYBRIDGE(i915)) {
1899 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1900 	}
1901 
1902 	/*
1903 	 * Keep all power wells enabled for any dependent HW access during
1904 	 * initialization and to make sure we keep BIOS enabled display HW
1905 	 * resources powered until display HW readout is complete. We drop
1906 	 * this reference in intel_power_domains_enable().
1907 	 */
1908 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1909 	power_domains->init_wakeref =
1910 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1911 
1912 	/* Disable power support if the user asked so. */
1913 	if (!i915->params.disable_power_well) {
1914 		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1915 		i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1916 										      POWER_DOMAIN_INIT);
1917 	}
1918 	intel_power_domains_sync_hw(i915);
1919 
1920 	power_domains->initializing = false;
1921 }
1922 
1923 /**
1924  * intel_power_domains_driver_remove - deinitialize hw power domain state
1925  * @i915: i915 device instance
1926  *
1927  * De-initializes the display power domain HW state. It also ensures that the
1928  * device stays powered up so that the driver can be reloaded.
1929  *
1930  * It must be called with power domains already disabled (after a call to
1931  * intel_power_domains_disable()) and must be paired with
1932  * intel_power_domains_init_hw().
1933  */
1934 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1935 {
1936 	intel_wakeref_t wakeref __maybe_unused =
1937 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1938 
1939 	/* Remove the refcount we took to keep power well support disabled. */
1940 	if (!i915->params.disable_power_well)
1941 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1942 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1943 
1944 	intel_display_power_flush_work_sync(i915);
1945 
1946 	intel_power_domains_verify_state(i915);
1947 
1948 	/* Keep the power well enabled, but cancel its rpm wakeref. */
1949 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1950 }
1951 
1952 /**
1953  * intel_power_domains_sanitize_state - sanitize power domains state
1954  * @i915: i915 device instance
1955  *
1956  * Sanitize the power domains state during driver loading and system resume.
1957  * The function will disable all display power wells that BIOS has enabled
1958  * without a user for it (any user for a power well has taken a reference
1959  * on it by the time this function is called, after the state of all the
1960  * pipe, encoder, etc. HW resources have been sanitized).
1961  */
1962 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
1963 {
1964 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1965 	struct i915_power_well *power_well;
1966 
1967 	mutex_lock(&power_domains->lock);
1968 
1969 	for_each_power_well_reverse(i915, power_well) {
1970 		if (power_well->desc->always_on || power_well->count ||
1971 		    !intel_power_well_is_enabled(i915, power_well))
1972 			continue;
1973 
1974 		drm_dbg_kms(&i915->drm,
1975 			    "BIOS left unused %s power well enabled, disabling it\n",
1976 			    intel_power_well_name(power_well));
1977 		intel_power_well_disable(i915, power_well);
1978 	}
1979 
1980 	mutex_unlock(&power_domains->lock);
1981 }
1982 
1983 /**
1984  * intel_power_domains_enable - enable toggling of display power wells
1985  * @i915: i915 device instance
1986  *
1987  * Enable the ondemand enabling/disabling of the display power wells. Note that
1988  * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
1989  * only at specific points of the display modeset sequence, thus they are not
1990  * affected by the intel_power_domains_enable()/disable() calls. The purpose
1991  * of these function is to keep the rest of power wells enabled until the end
1992  * of display HW readout (which will acquire the power references reflecting
1993  * the current HW state).
1994  */
1995 void intel_power_domains_enable(struct drm_i915_private *i915)
1996 {
1997 	intel_wakeref_t wakeref __maybe_unused =
1998 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1999 
2000 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2001 	intel_power_domains_verify_state(i915);
2002 }
2003 
2004 /**
2005  * intel_power_domains_disable - disable toggling of display power wells
2006  * @i915: i915 device instance
2007  *
2008  * Disable the ondemand enabling/disabling of the display power wells. See
2009  * intel_power_domains_enable() for which power wells this call controls.
2010  */
2011 void intel_power_domains_disable(struct drm_i915_private *i915)
2012 {
2013 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2014 
2015 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2016 	power_domains->init_wakeref =
2017 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2018 
2019 	intel_power_domains_verify_state(i915);
2020 }
2021 
2022 /**
2023  * intel_power_domains_suspend - suspend power domain state
2024  * @i915: i915 device instance
2025  * @suspend_mode: specifies the target suspend state (idle, mem, hibernation)
2026  *
2027  * This function prepares the hardware power domain state before entering
2028  * system suspend.
2029  *
2030  * It must be called with power domains already disabled (after a call to
2031  * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2032  */
2033 void intel_power_domains_suspend(struct drm_i915_private *i915,
2034 				 enum i915_drm_suspend_mode suspend_mode)
2035 {
2036 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2037 	intel_wakeref_t wakeref __maybe_unused =
2038 		fetch_and_zero(&power_domains->init_wakeref);
2039 
2040 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2041 
2042 	/*
2043 	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2044 	 * support don't manually deinit the power domains. This also means the
2045 	 * DMC firmware will stay active, it will power down any HW
2046 	 * resources as required and also enable deeper system power states
2047 	 * that would be blocked if the firmware was inactive.
2048 	 */
2049 	if (!(i915->display.dmc.allowed_dc_mask & DC_STATE_EN_DC9) &&
2050 	    suspend_mode == I915_DRM_SUSPEND_IDLE &&
2051 	    intel_dmc_has_payload(i915)) {
2052 		intel_display_power_flush_work(i915);
2053 		intel_power_domains_verify_state(i915);
2054 		return;
2055 	}
2056 
2057 	/*
2058 	 * Even if power well support was disabled we still want to disable
2059 	 * power wells if power domains must be deinitialized for suspend.
2060 	 */
2061 	if (!i915->params.disable_power_well)
2062 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2063 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2064 
2065 	intel_display_power_flush_work(i915);
2066 	intel_power_domains_verify_state(i915);
2067 
2068 	if (DISPLAY_VER(i915) >= 11)
2069 		icl_display_core_uninit(i915);
2070 	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2071 		bxt_display_core_uninit(i915);
2072 	else if (DISPLAY_VER(i915) == 9)
2073 		skl_display_core_uninit(i915);
2074 
2075 	power_domains->display_core_suspended = true;
2076 }
2077 
2078 /**
2079  * intel_power_domains_resume - resume power domain state
2080  * @i915: i915 device instance
2081  *
2082  * This function resume the hardware power domain state during system resume.
2083  *
2084  * It will return with power domain support disabled (to be enabled later by
2085  * intel_power_domains_enable()) and must be paired with
2086  * intel_power_domains_suspend().
2087  */
2088 void intel_power_domains_resume(struct drm_i915_private *i915)
2089 {
2090 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2091 
2092 	if (power_domains->display_core_suspended) {
2093 		intel_power_domains_init_hw(i915, true);
2094 		power_domains->display_core_suspended = false;
2095 	} else {
2096 		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2097 		power_domains->init_wakeref =
2098 			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2099 	}
2100 
2101 	intel_power_domains_verify_state(i915);
2102 }
2103 
2104 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2105 
2106 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2107 {
2108 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2109 	struct i915_power_well *power_well;
2110 
2111 	for_each_power_well(i915, power_well) {
2112 		enum intel_display_power_domain domain;
2113 
2114 		drm_dbg(&i915->drm, "%-25s %d\n",
2115 			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2116 
2117 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2118 			drm_dbg(&i915->drm, "  %-23s %d\n",
2119 				intel_display_power_domain_str(domain),
2120 				power_domains->domain_use_count[domain]);
2121 	}
2122 }
2123 
2124 /**
2125  * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2126  * @i915: i915 device instance
2127  *
2128  * Verify if the reference count of each power well matches its HW enabled
2129  * state and the total refcount of the domains it belongs to. This must be
2130  * called after modeset HW state sanitization, which is responsible for
2131  * acquiring reference counts for any power wells in use and disabling the
2132  * ones left on by BIOS but not required by any active output.
2133  */
2134 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2135 {
2136 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2137 	struct i915_power_well *power_well;
2138 	bool dump_domain_info;
2139 
2140 	mutex_lock(&power_domains->lock);
2141 
2142 	verify_async_put_domains_state(power_domains);
2143 
2144 	dump_domain_info = false;
2145 	for_each_power_well(i915, power_well) {
2146 		enum intel_display_power_domain domain;
2147 		int domains_count;
2148 		bool enabled;
2149 
2150 		enabled = intel_power_well_is_enabled(i915, power_well);
2151 		if ((intel_power_well_refcount(power_well) ||
2152 		     intel_power_well_is_always_on(power_well)) !=
2153 		    enabled)
2154 			drm_err(&i915->drm,
2155 				"power well %s state mismatch (refcount %d/enabled %d)",
2156 				intel_power_well_name(power_well),
2157 				intel_power_well_refcount(power_well), enabled);
2158 
2159 		domains_count = 0;
2160 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2161 			domains_count += power_domains->domain_use_count[domain];
2162 
2163 		if (intel_power_well_refcount(power_well) != domains_count) {
2164 			drm_err(&i915->drm,
2165 				"power well %s refcount/domain refcount mismatch "
2166 				"(refcount %d/domains refcount %d)\n",
2167 				intel_power_well_name(power_well),
2168 				intel_power_well_refcount(power_well),
2169 				domains_count);
2170 			dump_domain_info = true;
2171 		}
2172 	}
2173 
2174 	if (dump_domain_info) {
2175 		static bool dumped;
2176 
2177 		if (!dumped) {
2178 			intel_power_domains_dump_info(i915);
2179 			dumped = true;
2180 		}
2181 	}
2182 
2183 	mutex_unlock(&power_domains->lock);
2184 }
2185 
2186 #else
2187 
2188 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2189 {
2190 }
2191 
2192 #endif
2193 
2194 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2195 {
2196 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2197 	    IS_BROXTON(i915)) {
2198 		bxt_enable_dc9(i915);
2199 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2200 		hsw_enable_pc8(i915);
2201 	}
2202 
2203 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2204 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2205 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2206 }
2207 
2208 void intel_display_power_resume_early(struct drm_i915_private *i915)
2209 {
2210 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2211 	    IS_BROXTON(i915)) {
2212 		gen9_sanitize_dc_state(i915);
2213 		bxt_disable_dc9(i915);
2214 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2215 		hsw_disable_pc8(i915);
2216 	}
2217 
2218 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2219 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2220 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2221 }
2222 
2223 void intel_display_power_suspend(struct drm_i915_private *i915)
2224 {
2225 	if (DISPLAY_VER(i915) >= 11) {
2226 		icl_display_core_uninit(i915);
2227 		bxt_enable_dc9(i915);
2228 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2229 		bxt_display_core_uninit(i915);
2230 		bxt_enable_dc9(i915);
2231 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2232 		hsw_enable_pc8(i915);
2233 	}
2234 }
2235 
2236 void intel_display_power_resume(struct drm_i915_private *i915)
2237 {
2238 	if (DISPLAY_VER(i915) >= 11) {
2239 		bxt_disable_dc9(i915);
2240 		icl_display_core_init(i915, true);
2241 		if (intel_dmc_has_payload(i915)) {
2242 			if (i915->display.dmc.allowed_dc_mask &
2243 			    DC_STATE_EN_UPTO_DC6)
2244 				skl_enable_dc6(i915);
2245 			else if (i915->display.dmc.allowed_dc_mask &
2246 				 DC_STATE_EN_UPTO_DC5)
2247 				gen9_enable_dc5(i915);
2248 		}
2249 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2250 		bxt_disable_dc9(i915);
2251 		bxt_display_core_init(i915, true);
2252 		if (intel_dmc_has_payload(i915) &&
2253 		    (i915->display.dmc.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2254 			gen9_enable_dc5(i915);
2255 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2256 		hsw_disable_pc8(i915);
2257 	}
2258 }
2259 
2260 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2261 {
2262 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2263 	int i;
2264 
2265 	mutex_lock(&power_domains->lock);
2266 
2267 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2268 	for (i = 0; i < power_domains->power_well_count; i++) {
2269 		struct i915_power_well *power_well;
2270 		enum intel_display_power_domain power_domain;
2271 
2272 		power_well = &power_domains->power_wells[i];
2273 		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2274 			   intel_power_well_refcount(power_well));
2275 
2276 		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2277 			seq_printf(m, "  %-23s %d\n",
2278 				   intel_display_power_domain_str(power_domain),
2279 				   power_domains->domain_use_count[power_domain]);
2280 	}
2281 
2282 	mutex_unlock(&power_domains->lock);
2283 }
2284 
2285 struct intel_ddi_port_domains {
2286 	enum port port_start;
2287 	enum port port_end;
2288 	enum aux_ch aux_ch_start;
2289 	enum aux_ch aux_ch_end;
2290 
2291 	enum intel_display_power_domain ddi_lanes;
2292 	enum intel_display_power_domain ddi_io;
2293 	enum intel_display_power_domain aux_legacy_usbc;
2294 	enum intel_display_power_domain aux_tbt;
2295 };
2296 
2297 static const struct intel_ddi_port_domains
2298 i9xx_port_domains[] = {
2299 	{
2300 		.port_start = PORT_A,
2301 		.port_end = PORT_F,
2302 		.aux_ch_start = AUX_CH_A,
2303 		.aux_ch_end = AUX_CH_F,
2304 
2305 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2306 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2307 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2308 		.aux_tbt = POWER_DOMAIN_INVALID,
2309 	},
2310 };
2311 
2312 static const struct intel_ddi_port_domains
2313 d11_port_domains[] = {
2314 	{
2315 		.port_start = PORT_A,
2316 		.port_end = PORT_B,
2317 		.aux_ch_start = AUX_CH_A,
2318 		.aux_ch_end = AUX_CH_B,
2319 
2320 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2321 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2322 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2323 		.aux_tbt = POWER_DOMAIN_INVALID,
2324 	}, {
2325 		.port_start = PORT_C,
2326 		.port_end = PORT_F,
2327 		.aux_ch_start = AUX_CH_C,
2328 		.aux_ch_end = AUX_CH_F,
2329 
2330 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2331 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2332 		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2333 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2334 	},
2335 };
2336 
2337 static const struct intel_ddi_port_domains
2338 d12_port_domains[] = {
2339 	{
2340 		.port_start = PORT_A,
2341 		.port_end = PORT_C,
2342 		.aux_ch_start = AUX_CH_A,
2343 		.aux_ch_end = AUX_CH_C,
2344 
2345 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2346 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2347 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2348 		.aux_tbt = POWER_DOMAIN_INVALID,
2349 	}, {
2350 		.port_start = PORT_TC1,
2351 		.port_end = PORT_TC6,
2352 		.aux_ch_start = AUX_CH_USBC1,
2353 		.aux_ch_end = AUX_CH_USBC6,
2354 
2355 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2356 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2357 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2358 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2359 	},
2360 };
2361 
2362 static const struct intel_ddi_port_domains
2363 d13_port_domains[] = {
2364 	{
2365 		.port_start = PORT_A,
2366 		.port_end = PORT_C,
2367 		.aux_ch_start = AUX_CH_A,
2368 		.aux_ch_end = AUX_CH_C,
2369 
2370 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2371 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2372 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2373 		.aux_tbt = POWER_DOMAIN_INVALID,
2374 	}, {
2375 		.port_start = PORT_TC1,
2376 		.port_end = PORT_TC4,
2377 		.aux_ch_start = AUX_CH_USBC1,
2378 		.aux_ch_end = AUX_CH_USBC4,
2379 
2380 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2381 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2382 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2383 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2384 	}, {
2385 		.port_start = PORT_D_XELPD,
2386 		.port_end = PORT_E_XELPD,
2387 		.aux_ch_start = AUX_CH_D_XELPD,
2388 		.aux_ch_end = AUX_CH_E_XELPD,
2389 
2390 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2391 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2392 		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2393 		.aux_tbt = POWER_DOMAIN_INVALID,
2394 	},
2395 };
2396 
2397 static void
2398 intel_port_domains_for_platform(struct drm_i915_private *i915,
2399 				const struct intel_ddi_port_domains **domains,
2400 				int *domains_size)
2401 {
2402 	if (DISPLAY_VER(i915) >= 13) {
2403 		*domains = d13_port_domains;
2404 		*domains_size = ARRAY_SIZE(d13_port_domains);
2405 	} else if (DISPLAY_VER(i915) >= 12) {
2406 		*domains = d12_port_domains;
2407 		*domains_size = ARRAY_SIZE(d12_port_domains);
2408 	} else if (DISPLAY_VER(i915) >= 11) {
2409 		*domains = d11_port_domains;
2410 		*domains_size = ARRAY_SIZE(d11_port_domains);
2411 	} else {
2412 		*domains = i9xx_port_domains;
2413 		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2414 	}
2415 }
2416 
2417 static const struct intel_ddi_port_domains *
2418 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2419 {
2420 	const struct intel_ddi_port_domains *domains;
2421 	int domains_size;
2422 	int i;
2423 
2424 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2425 	for (i = 0; i < domains_size; i++)
2426 		if (port >= domains[i].port_start && port <= domains[i].port_end)
2427 			return &domains[i];
2428 
2429 	return NULL;
2430 }
2431 
2432 enum intel_display_power_domain
2433 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2434 {
2435 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2436 
2437 	if (drm_WARN_ON(&i915->drm, !domains) || domains->ddi_io == POWER_DOMAIN_INVALID)
2438 		return POWER_DOMAIN_PORT_DDI_IO_A;
2439 
2440 	return domains->ddi_io + (int)(port - domains->port_start);
2441 }
2442 
2443 enum intel_display_power_domain
2444 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2445 {
2446 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2447 
2448 	if (drm_WARN_ON(&i915->drm, !domains) || domains->ddi_lanes == POWER_DOMAIN_INVALID)
2449 		return POWER_DOMAIN_PORT_DDI_LANES_A;
2450 
2451 	return domains->ddi_lanes + (int)(port - domains->port_start);
2452 }
2453 
2454 static const struct intel_ddi_port_domains *
2455 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2456 {
2457 	const struct intel_ddi_port_domains *domains;
2458 	int domains_size;
2459 	int i;
2460 
2461 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2462 	for (i = 0; i < domains_size; i++)
2463 		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2464 			return &domains[i];
2465 
2466 	return NULL;
2467 }
2468 
2469 enum intel_display_power_domain
2470 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2471 {
2472 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2473 
2474 	if (drm_WARN_ON(&i915->drm, !domains) || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID)
2475 		return POWER_DOMAIN_AUX_A;
2476 
2477 	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2478 }
2479 
2480 enum intel_display_power_domain
2481 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2482 {
2483 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2484 
2485 	if (drm_WARN_ON(&i915->drm, !domains) || domains->aux_tbt == POWER_DOMAIN_INVALID)
2486 		return POWER_DOMAIN_AUX_TBT1;
2487 
2488 	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2489 }
2490