1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "intel_backlight_regs.h"
11 #include "intel_cdclk.h"
12 #include "intel_combo_phy.h"
13 #include "intel_de.h"
14 #include "intel_display_power.h"
15 #include "intel_display_power_map.h"
16 #include "intel_display_power_well.h"
17 #include "intel_display_types.h"
18 #include "intel_dmc.h"
19 #include "intel_mchbar_regs.h"
20 #include "intel_pch_refclk.h"
21 #include "intel_pcode.h"
22 #include "intel_pps_regs.h"
23 #include "intel_snps_phy.h"
24 #include "skl_watermark.h"
25 #include "skl_watermark_regs.h"
26 #include "vlv_sideband.h"
27 
28 #define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
29 	for_each_power_well(__dev_priv, __power_well)				\
30 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
31 
32 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
33 	for_each_power_well_reverse(__dev_priv, __power_well)		        \
34 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
35 
36 const char *
37 intel_display_power_domain_str(enum intel_display_power_domain domain)
38 {
39 	switch (domain) {
40 	case POWER_DOMAIN_DISPLAY_CORE:
41 		return "DISPLAY_CORE";
42 	case POWER_DOMAIN_PIPE_A:
43 		return "PIPE_A";
44 	case POWER_DOMAIN_PIPE_B:
45 		return "PIPE_B";
46 	case POWER_DOMAIN_PIPE_C:
47 		return "PIPE_C";
48 	case POWER_DOMAIN_PIPE_D:
49 		return "PIPE_D";
50 	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
51 		return "PIPE_PANEL_FITTER_A";
52 	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
53 		return "PIPE_PANEL_FITTER_B";
54 	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
55 		return "PIPE_PANEL_FITTER_C";
56 	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
57 		return "PIPE_PANEL_FITTER_D";
58 	case POWER_DOMAIN_TRANSCODER_A:
59 		return "TRANSCODER_A";
60 	case POWER_DOMAIN_TRANSCODER_B:
61 		return "TRANSCODER_B";
62 	case POWER_DOMAIN_TRANSCODER_C:
63 		return "TRANSCODER_C";
64 	case POWER_DOMAIN_TRANSCODER_D:
65 		return "TRANSCODER_D";
66 	case POWER_DOMAIN_TRANSCODER_EDP:
67 		return "TRANSCODER_EDP";
68 	case POWER_DOMAIN_TRANSCODER_DSI_A:
69 		return "TRANSCODER_DSI_A";
70 	case POWER_DOMAIN_TRANSCODER_DSI_C:
71 		return "TRANSCODER_DSI_C";
72 	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
73 		return "TRANSCODER_VDSC_PW2";
74 	case POWER_DOMAIN_PORT_DDI_LANES_A:
75 		return "PORT_DDI_LANES_A";
76 	case POWER_DOMAIN_PORT_DDI_LANES_B:
77 		return "PORT_DDI_LANES_B";
78 	case POWER_DOMAIN_PORT_DDI_LANES_C:
79 		return "PORT_DDI_LANES_C";
80 	case POWER_DOMAIN_PORT_DDI_LANES_D:
81 		return "PORT_DDI_LANES_D";
82 	case POWER_DOMAIN_PORT_DDI_LANES_E:
83 		return "PORT_DDI_LANES_E";
84 	case POWER_DOMAIN_PORT_DDI_LANES_F:
85 		return "PORT_DDI_LANES_F";
86 	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
87 		return "PORT_DDI_LANES_TC1";
88 	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
89 		return "PORT_DDI_LANES_TC2";
90 	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
91 		return "PORT_DDI_LANES_TC3";
92 	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
93 		return "PORT_DDI_LANES_TC4";
94 	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
95 		return "PORT_DDI_LANES_TC5";
96 	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
97 		return "PORT_DDI_LANES_TC6";
98 	case POWER_DOMAIN_PORT_DDI_IO_A:
99 		return "PORT_DDI_IO_A";
100 	case POWER_DOMAIN_PORT_DDI_IO_B:
101 		return "PORT_DDI_IO_B";
102 	case POWER_DOMAIN_PORT_DDI_IO_C:
103 		return "PORT_DDI_IO_C";
104 	case POWER_DOMAIN_PORT_DDI_IO_D:
105 		return "PORT_DDI_IO_D";
106 	case POWER_DOMAIN_PORT_DDI_IO_E:
107 		return "PORT_DDI_IO_E";
108 	case POWER_DOMAIN_PORT_DDI_IO_F:
109 		return "PORT_DDI_IO_F";
110 	case POWER_DOMAIN_PORT_DDI_IO_TC1:
111 		return "PORT_DDI_IO_TC1";
112 	case POWER_DOMAIN_PORT_DDI_IO_TC2:
113 		return "PORT_DDI_IO_TC2";
114 	case POWER_DOMAIN_PORT_DDI_IO_TC3:
115 		return "PORT_DDI_IO_TC3";
116 	case POWER_DOMAIN_PORT_DDI_IO_TC4:
117 		return "PORT_DDI_IO_TC4";
118 	case POWER_DOMAIN_PORT_DDI_IO_TC5:
119 		return "PORT_DDI_IO_TC5";
120 	case POWER_DOMAIN_PORT_DDI_IO_TC6:
121 		return "PORT_DDI_IO_TC6";
122 	case POWER_DOMAIN_PORT_DSI:
123 		return "PORT_DSI";
124 	case POWER_DOMAIN_PORT_CRT:
125 		return "PORT_CRT";
126 	case POWER_DOMAIN_PORT_OTHER:
127 		return "PORT_OTHER";
128 	case POWER_DOMAIN_VGA:
129 		return "VGA";
130 	case POWER_DOMAIN_AUDIO_MMIO:
131 		return "AUDIO_MMIO";
132 	case POWER_DOMAIN_AUDIO_PLAYBACK:
133 		return "AUDIO_PLAYBACK";
134 	case POWER_DOMAIN_AUX_IO_A:
135 		return "AUX_IO_A";
136 	case POWER_DOMAIN_AUX_IO_B:
137 		return "AUX_IO_B";
138 	case POWER_DOMAIN_AUX_IO_C:
139 		return "AUX_IO_C";
140 	case POWER_DOMAIN_AUX_IO_D:
141 		return "AUX_IO_D";
142 	case POWER_DOMAIN_AUX_IO_E:
143 		return "AUX_IO_E";
144 	case POWER_DOMAIN_AUX_IO_F:
145 		return "AUX_IO_F";
146 	case POWER_DOMAIN_AUX_A:
147 		return "AUX_A";
148 	case POWER_DOMAIN_AUX_B:
149 		return "AUX_B";
150 	case POWER_DOMAIN_AUX_C:
151 		return "AUX_C";
152 	case POWER_DOMAIN_AUX_D:
153 		return "AUX_D";
154 	case POWER_DOMAIN_AUX_E:
155 		return "AUX_E";
156 	case POWER_DOMAIN_AUX_F:
157 		return "AUX_F";
158 	case POWER_DOMAIN_AUX_USBC1:
159 		return "AUX_USBC1";
160 	case POWER_DOMAIN_AUX_USBC2:
161 		return "AUX_USBC2";
162 	case POWER_DOMAIN_AUX_USBC3:
163 		return "AUX_USBC3";
164 	case POWER_DOMAIN_AUX_USBC4:
165 		return "AUX_USBC4";
166 	case POWER_DOMAIN_AUX_USBC5:
167 		return "AUX_USBC5";
168 	case POWER_DOMAIN_AUX_USBC6:
169 		return "AUX_USBC6";
170 	case POWER_DOMAIN_AUX_TBT1:
171 		return "AUX_TBT1";
172 	case POWER_DOMAIN_AUX_TBT2:
173 		return "AUX_TBT2";
174 	case POWER_DOMAIN_AUX_TBT3:
175 		return "AUX_TBT3";
176 	case POWER_DOMAIN_AUX_TBT4:
177 		return "AUX_TBT4";
178 	case POWER_DOMAIN_AUX_TBT5:
179 		return "AUX_TBT5";
180 	case POWER_DOMAIN_AUX_TBT6:
181 		return "AUX_TBT6";
182 	case POWER_DOMAIN_GMBUS:
183 		return "GMBUS";
184 	case POWER_DOMAIN_INIT:
185 		return "INIT";
186 	case POWER_DOMAIN_MODESET:
187 		return "MODESET";
188 	case POWER_DOMAIN_GT_IRQ:
189 		return "GT_IRQ";
190 	case POWER_DOMAIN_DC_OFF:
191 		return "DC_OFF";
192 	case POWER_DOMAIN_TC_COLD_OFF:
193 		return "TC_COLD_OFF";
194 	default:
195 		MISSING_CASE(domain);
196 		return "?";
197 	}
198 }
199 
200 /**
201  * __intel_display_power_is_enabled - unlocked check for a power domain
202  * @dev_priv: i915 device instance
203  * @domain: power domain to check
204  *
205  * This is the unlocked version of intel_display_power_is_enabled() and should
206  * only be used from error capture and recovery code where deadlocks are
207  * possible.
208  *
209  * Returns:
210  * True when the power domain is enabled, false otherwise.
211  */
212 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
213 				      enum intel_display_power_domain domain)
214 {
215 	struct i915_power_well *power_well;
216 	bool is_enabled;
217 
218 	if (dev_priv->runtime_pm.suspended)
219 		return false;
220 
221 	is_enabled = true;
222 
223 	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
224 		if (intel_power_well_is_always_on(power_well))
225 			continue;
226 
227 		if (!intel_power_well_is_enabled_cached(power_well)) {
228 			is_enabled = false;
229 			break;
230 		}
231 	}
232 
233 	return is_enabled;
234 }
235 
236 /**
237  * intel_display_power_is_enabled - check for a power domain
238  * @dev_priv: i915 device instance
239  * @domain: power domain to check
240  *
241  * This function can be used to check the hw power domain state. It is mostly
242  * used in hardware state readout functions. Everywhere else code should rely
243  * upon explicit power domain reference counting to ensure that the hardware
244  * block is powered up before accessing it.
245  *
246  * Callers must hold the relevant modesetting locks to ensure that concurrent
247  * threads can't disable the power well while the caller tries to read a few
248  * registers.
249  *
250  * Returns:
251  * True when the power domain is enabled, false otherwise.
252  */
253 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
254 				    enum intel_display_power_domain domain)
255 {
256 	struct i915_power_domains *power_domains;
257 	bool ret;
258 
259 	power_domains = &dev_priv->display.power.domains;
260 
261 	mutex_lock(&power_domains->lock);
262 	ret = __intel_display_power_is_enabled(dev_priv, domain);
263 	mutex_unlock(&power_domains->lock);
264 
265 	return ret;
266 }
267 
268 static u32
269 sanitize_target_dc_state(struct drm_i915_private *i915,
270 			 u32 target_dc_state)
271 {
272 	struct i915_power_domains *power_domains = &i915->display.power.domains;
273 	static const u32 states[] = {
274 		DC_STATE_EN_UPTO_DC6,
275 		DC_STATE_EN_UPTO_DC5,
276 		DC_STATE_EN_DC3CO,
277 		DC_STATE_DISABLE,
278 	};
279 	int i;
280 
281 	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
282 		if (target_dc_state != states[i])
283 			continue;
284 
285 		if (power_domains->allowed_dc_mask & target_dc_state)
286 			break;
287 
288 		target_dc_state = states[i + 1];
289 	}
290 
291 	return target_dc_state;
292 }
293 
294 /**
295  * intel_display_power_set_target_dc_state - Set target dc state.
296  * @dev_priv: i915 device
297  * @state: state which needs to be set as target_dc_state.
298  *
299  * This function set the "DC off" power well target_dc_state,
300  * based upon this target_dc_stste, "DC off" power well will
301  * enable desired DC state.
302  */
303 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
304 					     u32 state)
305 {
306 	struct i915_power_well *power_well;
307 	bool dc_off_enabled;
308 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
309 
310 	mutex_lock(&power_domains->lock);
311 	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
312 
313 	if (drm_WARN_ON(&dev_priv->drm, !power_well))
314 		goto unlock;
315 
316 	state = sanitize_target_dc_state(dev_priv, state);
317 
318 	if (state == power_domains->target_dc_state)
319 		goto unlock;
320 
321 	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
322 	/*
323 	 * If DC off power well is disabled, need to enable and disable the
324 	 * DC off power well to effect target DC state.
325 	 */
326 	if (!dc_off_enabled)
327 		intel_power_well_enable(dev_priv, power_well);
328 
329 	power_domains->target_dc_state = state;
330 
331 	if (!dc_off_enabled)
332 		intel_power_well_disable(dev_priv, power_well);
333 
334 unlock:
335 	mutex_unlock(&power_domains->lock);
336 }
337 
338 #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
339 
340 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
341 				     struct intel_power_domain_mask *mask)
342 {
343 	bitmap_or(mask->bits,
344 		  power_domains->async_put_domains[0].bits,
345 		  power_domains->async_put_domains[1].bits,
346 		  POWER_DOMAIN_NUM);
347 }
348 
349 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
350 
351 static bool
352 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
353 {
354 	struct drm_i915_private *i915 = container_of(power_domains,
355 						     struct drm_i915_private,
356 						     display.power.domains);
357 
358 	return !drm_WARN_ON(&i915->drm,
359 			    bitmap_intersects(power_domains->async_put_domains[0].bits,
360 					      power_domains->async_put_domains[1].bits,
361 					      POWER_DOMAIN_NUM));
362 }
363 
364 static bool
365 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
366 {
367 	struct drm_i915_private *i915 = container_of(power_domains,
368 						     struct drm_i915_private,
369 						     display.power.domains);
370 	struct intel_power_domain_mask async_put_mask;
371 	enum intel_display_power_domain domain;
372 	bool err = false;
373 
374 	err |= !assert_async_put_domain_masks_disjoint(power_domains);
375 	__async_put_domains_mask(power_domains, &async_put_mask);
376 	err |= drm_WARN_ON(&i915->drm,
377 			   !!power_domains->async_put_wakeref !=
378 			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
379 
380 	for_each_power_domain(domain, &async_put_mask)
381 		err |= drm_WARN_ON(&i915->drm,
382 				   power_domains->domain_use_count[domain] != 1);
383 
384 	return !err;
385 }
386 
387 static void print_power_domains(struct i915_power_domains *power_domains,
388 				const char *prefix, struct intel_power_domain_mask *mask)
389 {
390 	struct drm_i915_private *i915 = container_of(power_domains,
391 						     struct drm_i915_private,
392 						     display.power.domains);
393 	enum intel_display_power_domain domain;
394 
395 	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
396 	for_each_power_domain(domain, mask)
397 		drm_dbg(&i915->drm, "%s use_count %d\n",
398 			intel_display_power_domain_str(domain),
399 			power_domains->domain_use_count[domain]);
400 }
401 
402 static void
403 print_async_put_domains_state(struct i915_power_domains *power_domains)
404 {
405 	struct drm_i915_private *i915 = container_of(power_domains,
406 						     struct drm_i915_private,
407 						     display.power.domains);
408 
409 	drm_dbg(&i915->drm, "async_put_wakeref %u\n",
410 		power_domains->async_put_wakeref);
411 
412 	print_power_domains(power_domains, "async_put_domains[0]",
413 			    &power_domains->async_put_domains[0]);
414 	print_power_domains(power_domains, "async_put_domains[1]",
415 			    &power_domains->async_put_domains[1]);
416 }
417 
418 static void
419 verify_async_put_domains_state(struct i915_power_domains *power_domains)
420 {
421 	if (!__async_put_domains_state_ok(power_domains))
422 		print_async_put_domains_state(power_domains);
423 }
424 
425 #else
426 
427 static void
428 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
429 {
430 }
431 
432 static void
433 verify_async_put_domains_state(struct i915_power_domains *power_domains)
434 {
435 }
436 
437 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
438 
439 static void async_put_domains_mask(struct i915_power_domains *power_domains,
440 				   struct intel_power_domain_mask *mask)
441 
442 {
443 	assert_async_put_domain_masks_disjoint(power_domains);
444 
445 	__async_put_domains_mask(power_domains, mask);
446 }
447 
448 static void
449 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
450 			       enum intel_display_power_domain domain)
451 {
452 	assert_async_put_domain_masks_disjoint(power_domains);
453 
454 	clear_bit(domain, power_domains->async_put_domains[0].bits);
455 	clear_bit(domain, power_domains->async_put_domains[1].bits);
456 }
457 
458 static bool
459 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
460 				       enum intel_display_power_domain domain)
461 {
462 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
463 	struct intel_power_domain_mask async_put_mask;
464 	bool ret = false;
465 
466 	async_put_domains_mask(power_domains, &async_put_mask);
467 	if (!test_bit(domain, async_put_mask.bits))
468 		goto out_verify;
469 
470 	async_put_domains_clear_domain(power_domains, domain);
471 
472 	ret = true;
473 
474 	async_put_domains_mask(power_domains, &async_put_mask);
475 	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
476 		goto out_verify;
477 
478 	cancel_delayed_work(&power_domains->async_put_work);
479 	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
480 				 fetch_and_zero(&power_domains->async_put_wakeref));
481 out_verify:
482 	verify_async_put_domains_state(power_domains);
483 
484 	return ret;
485 }
486 
487 static void
488 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
489 				 enum intel_display_power_domain domain)
490 {
491 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
492 	struct i915_power_well *power_well;
493 
494 	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
495 		return;
496 
497 	for_each_power_domain_well(dev_priv, power_well, domain)
498 		intel_power_well_get(dev_priv, power_well);
499 
500 	power_domains->domain_use_count[domain]++;
501 }
502 
503 /**
504  * intel_display_power_get - grab a power domain reference
505  * @dev_priv: i915 device instance
506  * @domain: power domain to reference
507  *
508  * This function grabs a power domain reference for @domain and ensures that the
509  * power domain and all its parents are powered up. Therefore users should only
510  * grab a reference to the innermost power domain they need.
511  *
512  * Any power domain reference obtained by this function must have a symmetric
513  * call to intel_display_power_put() to release the reference again.
514  */
515 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
516 					enum intel_display_power_domain domain)
517 {
518 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
519 	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
520 
521 	mutex_lock(&power_domains->lock);
522 	__intel_display_power_get_domain(dev_priv, domain);
523 	mutex_unlock(&power_domains->lock);
524 
525 	return wakeref;
526 }
527 
528 /**
529  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
530  * @dev_priv: i915 device instance
531  * @domain: power domain to reference
532  *
533  * This function grabs a power domain reference for @domain and ensures that the
534  * power domain and all its parents are powered up. Therefore users should only
535  * grab a reference to the innermost power domain they need.
536  *
537  * Any power domain reference obtained by this function must have a symmetric
538  * call to intel_display_power_put() to release the reference again.
539  */
540 intel_wakeref_t
541 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
542 				   enum intel_display_power_domain domain)
543 {
544 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
545 	intel_wakeref_t wakeref;
546 	bool is_enabled;
547 
548 	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
549 	if (!wakeref)
550 		return false;
551 
552 	mutex_lock(&power_domains->lock);
553 
554 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
555 		__intel_display_power_get_domain(dev_priv, domain);
556 		is_enabled = true;
557 	} else {
558 		is_enabled = false;
559 	}
560 
561 	mutex_unlock(&power_domains->lock);
562 
563 	if (!is_enabled) {
564 		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
565 		wakeref = 0;
566 	}
567 
568 	return wakeref;
569 }
570 
571 static void
572 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
573 				 enum intel_display_power_domain domain)
574 {
575 	struct i915_power_domains *power_domains;
576 	struct i915_power_well *power_well;
577 	const char *name = intel_display_power_domain_str(domain);
578 	struct intel_power_domain_mask async_put_mask;
579 
580 	power_domains = &dev_priv->display.power.domains;
581 
582 	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
583 		 "Use count on domain %s is already zero\n",
584 		 name);
585 	async_put_domains_mask(power_domains, &async_put_mask);
586 	drm_WARN(&dev_priv->drm,
587 		 test_bit(domain, async_put_mask.bits),
588 		 "Async disabling of domain %s is pending\n",
589 		 name);
590 
591 	power_domains->domain_use_count[domain]--;
592 
593 	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
594 		intel_power_well_put(dev_priv, power_well);
595 }
596 
597 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
598 				      enum intel_display_power_domain domain)
599 {
600 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
601 
602 	mutex_lock(&power_domains->lock);
603 	__intel_display_power_put_domain(dev_priv, domain);
604 	mutex_unlock(&power_domains->lock);
605 }
606 
607 static void
608 queue_async_put_domains_work(struct i915_power_domains *power_domains,
609 			     intel_wakeref_t wakeref)
610 {
611 	struct drm_i915_private *i915 = container_of(power_domains,
612 						     struct drm_i915_private,
613 						     display.power.domains);
614 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
615 	power_domains->async_put_wakeref = wakeref;
616 	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
617 						    &power_domains->async_put_work,
618 						    msecs_to_jiffies(100)));
619 }
620 
621 static void
622 release_async_put_domains(struct i915_power_domains *power_domains,
623 			  struct intel_power_domain_mask *mask)
624 {
625 	struct drm_i915_private *dev_priv =
626 		container_of(power_domains, struct drm_i915_private,
627 			     display.power.domains);
628 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
629 	enum intel_display_power_domain domain;
630 	intel_wakeref_t wakeref;
631 
632 	/*
633 	 * The caller must hold already raw wakeref, upgrade that to a proper
634 	 * wakeref to make the state checker happy about the HW access during
635 	 * power well disabling.
636 	 */
637 	assert_rpm_raw_wakeref_held(rpm);
638 	wakeref = intel_runtime_pm_get(rpm);
639 
640 	for_each_power_domain(domain, mask) {
641 		/* Clear before put, so put's sanity check is happy. */
642 		async_put_domains_clear_domain(power_domains, domain);
643 		__intel_display_power_put_domain(dev_priv, domain);
644 	}
645 
646 	intel_runtime_pm_put(rpm, wakeref);
647 }
648 
649 static void
650 intel_display_power_put_async_work(struct work_struct *work)
651 {
652 	struct drm_i915_private *dev_priv =
653 		container_of(work, struct drm_i915_private,
654 			     display.power.domains.async_put_work.work);
655 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
656 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
657 	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
658 	intel_wakeref_t old_work_wakeref = 0;
659 
660 	mutex_lock(&power_domains->lock);
661 
662 	/*
663 	 * Bail out if all the domain refs pending to be released were grabbed
664 	 * by subsequent gets or a flush_work.
665 	 */
666 	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
667 	if (!old_work_wakeref)
668 		goto out_verify;
669 
670 	release_async_put_domains(power_domains,
671 				  &power_domains->async_put_domains[0]);
672 
673 	/* Requeue the work if more domains were async put meanwhile. */
674 	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
675 		bitmap_copy(power_domains->async_put_domains[0].bits,
676 			    power_domains->async_put_domains[1].bits,
677 			    POWER_DOMAIN_NUM);
678 		bitmap_zero(power_domains->async_put_domains[1].bits,
679 			    POWER_DOMAIN_NUM);
680 		queue_async_put_domains_work(power_domains,
681 					     fetch_and_zero(&new_work_wakeref));
682 	} else {
683 		/*
684 		 * Cancel the work that got queued after this one got dequeued,
685 		 * since here we released the corresponding async-put reference.
686 		 */
687 		cancel_delayed_work(&power_domains->async_put_work);
688 	}
689 
690 out_verify:
691 	verify_async_put_domains_state(power_domains);
692 
693 	mutex_unlock(&power_domains->lock);
694 
695 	if (old_work_wakeref)
696 		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
697 	if (new_work_wakeref)
698 		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
699 }
700 
701 /**
702  * __intel_display_power_put_async - release a power domain reference asynchronously
703  * @i915: i915 device instance
704  * @domain: power domain to reference
705  * @wakeref: wakeref acquired for the reference that is being released
706  *
707  * This function drops the power domain reference obtained by
708  * intel_display_power_get*() and schedules a work to power down the
709  * corresponding hardware block if this is the last reference.
710  */
711 void __intel_display_power_put_async(struct drm_i915_private *i915,
712 				     enum intel_display_power_domain domain,
713 				     intel_wakeref_t wakeref)
714 {
715 	struct i915_power_domains *power_domains = &i915->display.power.domains;
716 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
717 	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
718 
719 	mutex_lock(&power_domains->lock);
720 
721 	if (power_domains->domain_use_count[domain] > 1) {
722 		__intel_display_power_put_domain(i915, domain);
723 
724 		goto out_verify;
725 	}
726 
727 	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
728 
729 	/* Let a pending work requeue itself or queue a new one. */
730 	if (power_domains->async_put_wakeref) {
731 		set_bit(domain, power_domains->async_put_domains[1].bits);
732 	} else {
733 		set_bit(domain, power_domains->async_put_domains[0].bits);
734 		queue_async_put_domains_work(power_domains,
735 					     fetch_and_zero(&work_wakeref));
736 	}
737 
738 out_verify:
739 	verify_async_put_domains_state(power_domains);
740 
741 	mutex_unlock(&power_domains->lock);
742 
743 	if (work_wakeref)
744 		intel_runtime_pm_put_raw(rpm, work_wakeref);
745 
746 	intel_runtime_pm_put(rpm, wakeref);
747 }
748 
749 /**
750  * intel_display_power_flush_work - flushes the async display power disabling work
751  * @i915: i915 device instance
752  *
753  * Flushes any pending work that was scheduled by a preceding
754  * intel_display_power_put_async() call, completing the disabling of the
755  * corresponding power domains.
756  *
757  * Note that the work handler function may still be running after this
758  * function returns; to ensure that the work handler isn't running use
759  * intel_display_power_flush_work_sync() instead.
760  */
761 void intel_display_power_flush_work(struct drm_i915_private *i915)
762 {
763 	struct i915_power_domains *power_domains = &i915->display.power.domains;
764 	struct intel_power_domain_mask async_put_mask;
765 	intel_wakeref_t work_wakeref;
766 
767 	mutex_lock(&power_domains->lock);
768 
769 	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
770 	if (!work_wakeref)
771 		goto out_verify;
772 
773 	async_put_domains_mask(power_domains, &async_put_mask);
774 	release_async_put_domains(power_domains, &async_put_mask);
775 	cancel_delayed_work(&power_domains->async_put_work);
776 
777 out_verify:
778 	verify_async_put_domains_state(power_domains);
779 
780 	mutex_unlock(&power_domains->lock);
781 
782 	if (work_wakeref)
783 		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
784 }
785 
786 /**
787  * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
788  * @i915: i915 device instance
789  *
790  * Like intel_display_power_flush_work(), but also ensure that the work
791  * handler function is not running any more when this function returns.
792  */
793 static void
794 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
795 {
796 	struct i915_power_domains *power_domains = &i915->display.power.domains;
797 
798 	intel_display_power_flush_work(i915);
799 	cancel_delayed_work_sync(&power_domains->async_put_work);
800 
801 	verify_async_put_domains_state(power_domains);
802 
803 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
804 }
805 
806 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
807 /**
808  * intel_display_power_put - release a power domain reference
809  * @dev_priv: i915 device instance
810  * @domain: power domain to reference
811  * @wakeref: wakeref acquired for the reference that is being released
812  *
813  * This function drops the power domain reference obtained by
814  * intel_display_power_get() and might power down the corresponding hardware
815  * block right away if this is the last reference.
816  */
817 void intel_display_power_put(struct drm_i915_private *dev_priv,
818 			     enum intel_display_power_domain domain,
819 			     intel_wakeref_t wakeref)
820 {
821 	__intel_display_power_put(dev_priv, domain);
822 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
823 }
824 #else
825 /**
826  * intel_display_power_put_unchecked - release an unchecked power domain reference
827  * @dev_priv: i915 device instance
828  * @domain: power domain to reference
829  *
830  * This function drops the power domain reference obtained by
831  * intel_display_power_get() and might power down the corresponding hardware
832  * block right away if this is the last reference.
833  *
834  * This function is only for the power domain code's internal use to suppress wakeref
835  * tracking when the correspondig debug kconfig option is disabled, should not
836  * be used otherwise.
837  */
838 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
839 				       enum intel_display_power_domain domain)
840 {
841 	__intel_display_power_put(dev_priv, domain);
842 	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
843 }
844 #endif
845 
846 void
847 intel_display_power_get_in_set(struct drm_i915_private *i915,
848 			       struct intel_display_power_domain_set *power_domain_set,
849 			       enum intel_display_power_domain domain)
850 {
851 	intel_wakeref_t __maybe_unused wf;
852 
853 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
854 
855 	wf = intel_display_power_get(i915, domain);
856 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
857 	power_domain_set->wakerefs[domain] = wf;
858 #endif
859 	set_bit(domain, power_domain_set->mask.bits);
860 }
861 
862 bool
863 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
864 					  struct intel_display_power_domain_set *power_domain_set,
865 					  enum intel_display_power_domain domain)
866 {
867 	intel_wakeref_t wf;
868 
869 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
870 
871 	wf = intel_display_power_get_if_enabled(i915, domain);
872 	if (!wf)
873 		return false;
874 
875 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
876 	power_domain_set->wakerefs[domain] = wf;
877 #endif
878 	set_bit(domain, power_domain_set->mask.bits);
879 
880 	return true;
881 }
882 
883 void
884 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
885 				    struct intel_display_power_domain_set *power_domain_set,
886 				    struct intel_power_domain_mask *mask)
887 {
888 	enum intel_display_power_domain domain;
889 
890 	drm_WARN_ON(&i915->drm,
891 		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
892 
893 	for_each_power_domain(domain, mask) {
894 		intel_wakeref_t __maybe_unused wf = -1;
895 
896 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
897 		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
898 #endif
899 		intel_display_power_put(i915, domain, wf);
900 		clear_bit(domain, power_domain_set->mask.bits);
901 	}
902 }
903 
904 static int
905 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
906 				   int disable_power_well)
907 {
908 	if (disable_power_well >= 0)
909 		return !!disable_power_well;
910 
911 	return 1;
912 }
913 
914 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
915 			       int enable_dc)
916 {
917 	u32 mask;
918 	int requested_dc;
919 	int max_dc;
920 
921 	if (!HAS_DISPLAY(dev_priv))
922 		return 0;
923 
924 	if (IS_DG2(dev_priv))
925 		max_dc = 1;
926 	else if (IS_DG1(dev_priv))
927 		max_dc = 3;
928 	else if (DISPLAY_VER(dev_priv) >= 12)
929 		max_dc = 4;
930 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
931 		max_dc = 1;
932 	else if (DISPLAY_VER(dev_priv) >= 9)
933 		max_dc = 2;
934 	else
935 		max_dc = 0;
936 
937 	/*
938 	 * DC9 has a separate HW flow from the rest of the DC states,
939 	 * not depending on the DMC firmware. It's needed by system
940 	 * suspend/resume, so allow it unconditionally.
941 	 */
942 	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
943 		DISPLAY_VER(dev_priv) >= 11 ?
944 	       DC_STATE_EN_DC9 : 0;
945 
946 	if (!dev_priv->params.disable_power_well)
947 		max_dc = 0;
948 
949 	if (enable_dc >= 0 && enable_dc <= max_dc) {
950 		requested_dc = enable_dc;
951 	} else if (enable_dc == -1) {
952 		requested_dc = max_dc;
953 	} else if (enable_dc > max_dc && enable_dc <= 4) {
954 		drm_dbg_kms(&dev_priv->drm,
955 			    "Adjusting requested max DC state (%d->%d)\n",
956 			    enable_dc, max_dc);
957 		requested_dc = max_dc;
958 	} else {
959 		drm_err(&dev_priv->drm,
960 			"Unexpected value for enable_dc (%d)\n", enable_dc);
961 		requested_dc = max_dc;
962 	}
963 
964 	switch (requested_dc) {
965 	case 4:
966 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
967 		break;
968 	case 3:
969 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
970 		break;
971 	case 2:
972 		mask |= DC_STATE_EN_UPTO_DC6;
973 		break;
974 	case 1:
975 		mask |= DC_STATE_EN_UPTO_DC5;
976 		break;
977 	}
978 
979 	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
980 
981 	return mask;
982 }
983 
984 /**
985  * intel_power_domains_init - initializes the power domain structures
986  * @dev_priv: i915 device instance
987  *
988  * Initializes the power domain structures for @dev_priv depending upon the
989  * supported platform.
990  */
991 int intel_power_domains_init(struct drm_i915_private *dev_priv)
992 {
993 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
994 
995 	dev_priv->params.disable_power_well =
996 		sanitize_disable_power_well_option(dev_priv,
997 						   dev_priv->params.disable_power_well);
998 	power_domains->allowed_dc_mask =
999 		get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
1000 
1001 	power_domains->target_dc_state =
1002 		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
1003 
1004 	mutex_init(&power_domains->lock);
1005 
1006 	INIT_DELAYED_WORK(&power_domains->async_put_work,
1007 			  intel_display_power_put_async_work);
1008 
1009 	return intel_display_power_map_init(power_domains);
1010 }
1011 
1012 /**
1013  * intel_power_domains_cleanup - clean up power domains resources
1014  * @dev_priv: i915 device instance
1015  *
1016  * Release any resources acquired by intel_power_domains_init()
1017  */
1018 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1019 {
1020 	intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1021 }
1022 
1023 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1024 {
1025 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1026 	struct i915_power_well *power_well;
1027 
1028 	mutex_lock(&power_domains->lock);
1029 	for_each_power_well(dev_priv, power_well)
1030 		intel_power_well_sync_hw(dev_priv, power_well);
1031 	mutex_unlock(&power_domains->lock);
1032 }
1033 
1034 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1035 				enum dbuf_slice slice, bool enable)
1036 {
1037 	i915_reg_t reg = DBUF_CTL_S(slice);
1038 	bool state;
1039 
1040 	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1041 		     enable ? DBUF_POWER_REQUEST : 0);
1042 	intel_de_posting_read(dev_priv, reg);
1043 	udelay(10);
1044 
1045 	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1046 	drm_WARN(&dev_priv->drm, enable != state,
1047 		 "DBuf slice %d power %s timeout!\n",
1048 		 slice, str_enable_disable(enable));
1049 }
1050 
1051 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1052 			     u8 req_slices)
1053 {
1054 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1055 	u8 slice_mask = INTEL_INFO(dev_priv)->display.dbuf.slice_mask;
1056 	enum dbuf_slice slice;
1057 
1058 	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1059 		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1060 		 req_slices, slice_mask);
1061 
1062 	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1063 		    req_slices);
1064 
1065 	/*
1066 	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1067 	 * being called from intel_dp_detect for instance,
1068 	 * which causes assertion triggered by race condition,
1069 	 * as gen9_assert_dbuf_enabled might preempt this when registers
1070 	 * were already updated, while dev_priv was not.
1071 	 */
1072 	mutex_lock(&power_domains->lock);
1073 
1074 	for_each_dbuf_slice(dev_priv, slice)
1075 		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1076 
1077 	dev_priv->display.dbuf.enabled_slices = req_slices;
1078 
1079 	mutex_unlock(&power_domains->lock);
1080 }
1081 
1082 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1083 {
1084 	dev_priv->display.dbuf.enabled_slices =
1085 		intel_enabled_dbuf_slices_mask(dev_priv);
1086 
1087 	/*
1088 	 * Just power up at least 1 slice, we will
1089 	 * figure out later which slices we have and what we need.
1090 	 */
1091 	gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) |
1092 				dev_priv->display.dbuf.enabled_slices);
1093 }
1094 
1095 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1096 {
1097 	gen9_dbuf_slices_update(dev_priv, 0);
1098 }
1099 
1100 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1101 {
1102 	enum dbuf_slice slice;
1103 
1104 	if (IS_ALDERLAKE_P(dev_priv))
1105 		return;
1106 
1107 	for_each_dbuf_slice(dev_priv, slice)
1108 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1109 			     DBUF_TRACKER_STATE_SERVICE_MASK,
1110 			     DBUF_TRACKER_STATE_SERVICE(8));
1111 }
1112 
1113 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1114 {
1115 	unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask;
1116 	u32 mask, val, i;
1117 
1118 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1119 		return;
1120 
1121 	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1122 		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1123 		MBUS_ABOX_B_CREDIT_MASK |
1124 		MBUS_ABOX_BW_CREDIT_MASK;
1125 	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1126 		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1127 		MBUS_ABOX_B_CREDIT(1) |
1128 		MBUS_ABOX_BW_CREDIT(1);
1129 
1130 	/*
1131 	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1132 	 * expect us to program the abox_ctl0 register as well, even though
1133 	 * we don't have to program other instance-0 registers like BW_BUDDY.
1134 	 */
1135 	if (DISPLAY_VER(dev_priv) == 12)
1136 		abox_regs |= BIT(0);
1137 
1138 	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1139 		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1140 }
1141 
1142 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1143 {
1144 	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1145 
1146 	/*
1147 	 * The LCPLL register should be turned on by the BIOS. For now
1148 	 * let's just check its state and print errors in case
1149 	 * something is wrong.  Don't even try to turn it on.
1150 	 */
1151 
1152 	if (val & LCPLL_CD_SOURCE_FCLK)
1153 		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1154 
1155 	if (val & LCPLL_PLL_DISABLE)
1156 		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1157 
1158 	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1159 		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1160 }
1161 
1162 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1163 {
1164 	struct intel_crtc *crtc;
1165 
1166 	for_each_intel_crtc(&dev_priv->drm, crtc)
1167 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
1168 				pipe_name(crtc->pipe));
1169 
1170 	I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1171 			"Display power well on\n");
1172 	I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1173 			"SPLL enabled\n");
1174 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1175 			"WRPLL1 enabled\n");
1176 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1177 			"WRPLL2 enabled\n");
1178 	I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1179 			"Panel power on\n");
1180 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1181 			"CPU PWM1 enabled\n");
1182 	if (IS_HASWELL(dev_priv))
1183 		I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1184 				"CPU PWM2 enabled\n");
1185 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1186 			"PCH PWM1 enabled\n");
1187 	I915_STATE_WARN((intel_de_read(dev_priv, UTIL_PIN_CTL) &
1188 			 (UTIL_PIN_ENABLE | UTIL_PIN_MODE_MASK)) ==
1189 			(UTIL_PIN_ENABLE | UTIL_PIN_MODE_PWM),
1190 			"Utility pin enabled in PWM mode\n");
1191 	I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1192 			"PCH GTC enabled\n");
1193 
1194 	/*
1195 	 * In theory we can still leave IRQs enabled, as long as only the HPD
1196 	 * interrupts remain enabled. We used to check for that, but since it's
1197 	 * gen-specific and since we only disable LCPLL after we fully disable
1198 	 * the interrupts, the check below should be enough.
1199 	 */
1200 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
1201 }
1202 
1203 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1204 {
1205 	if (IS_HASWELL(dev_priv))
1206 		return intel_de_read(dev_priv, D_COMP_HSW);
1207 	else
1208 		return intel_de_read(dev_priv, D_COMP_BDW);
1209 }
1210 
1211 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1212 {
1213 	if (IS_HASWELL(dev_priv)) {
1214 		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1215 			drm_dbg_kms(&dev_priv->drm,
1216 				    "Failed to write to D_COMP\n");
1217 	} else {
1218 		intel_de_write(dev_priv, D_COMP_BDW, val);
1219 		intel_de_posting_read(dev_priv, D_COMP_BDW);
1220 	}
1221 }
1222 
1223 /*
1224  * This function implements pieces of two sequences from BSpec:
1225  * - Sequence for display software to disable LCPLL
1226  * - Sequence for display software to allow package C8+
1227  * The steps implemented here are just the steps that actually touch the LCPLL
1228  * register. Callers should take care of disabling all the display engine
1229  * functions, doing the mode unset, fixing interrupts, etc.
1230  */
1231 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1232 			      bool switch_to_fclk, bool allow_power_down)
1233 {
1234 	u32 val;
1235 
1236 	assert_can_disable_lcpll(dev_priv);
1237 
1238 	val = intel_de_read(dev_priv, LCPLL_CTL);
1239 
1240 	if (switch_to_fclk) {
1241 		val |= LCPLL_CD_SOURCE_FCLK;
1242 		intel_de_write(dev_priv, LCPLL_CTL, val);
1243 
1244 		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1245 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1246 			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1247 
1248 		val = intel_de_read(dev_priv, LCPLL_CTL);
1249 	}
1250 
1251 	val |= LCPLL_PLL_DISABLE;
1252 	intel_de_write(dev_priv, LCPLL_CTL, val);
1253 	intel_de_posting_read(dev_priv, LCPLL_CTL);
1254 
1255 	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1256 		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1257 
1258 	val = hsw_read_dcomp(dev_priv);
1259 	val |= D_COMP_COMP_DISABLE;
1260 	hsw_write_dcomp(dev_priv, val);
1261 	ndelay(100);
1262 
1263 	if (wait_for((hsw_read_dcomp(dev_priv) &
1264 		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1265 		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1266 
1267 	if (allow_power_down) {
1268 		intel_de_rmw(dev_priv, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW);
1269 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1270 	}
1271 }
1272 
1273 /*
1274  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1275  * source.
1276  */
1277 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1278 {
1279 	u32 val;
1280 
1281 	val = intel_de_read(dev_priv, LCPLL_CTL);
1282 
1283 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1284 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1285 		return;
1286 
1287 	/*
1288 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1289 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1290 	 */
1291 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1292 
1293 	if (val & LCPLL_POWER_DOWN_ALLOW) {
1294 		val &= ~LCPLL_POWER_DOWN_ALLOW;
1295 		intel_de_write(dev_priv, LCPLL_CTL, val);
1296 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1297 	}
1298 
1299 	val = hsw_read_dcomp(dev_priv);
1300 	val |= D_COMP_COMP_FORCE;
1301 	val &= ~D_COMP_COMP_DISABLE;
1302 	hsw_write_dcomp(dev_priv, val);
1303 
1304 	val = intel_de_read(dev_priv, LCPLL_CTL);
1305 	val &= ~LCPLL_PLL_DISABLE;
1306 	intel_de_write(dev_priv, LCPLL_CTL, val);
1307 
1308 	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1309 		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1310 
1311 	if (val & LCPLL_CD_SOURCE_FCLK) {
1312 		intel_de_rmw(dev_priv, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0);
1313 
1314 		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1315 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1316 			drm_err(&dev_priv->drm,
1317 				"Switching back to LCPLL failed\n");
1318 	}
1319 
1320 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1321 
1322 	intel_update_cdclk(dev_priv);
1323 	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1324 }
1325 
1326 /*
1327  * Package states C8 and deeper are really deep PC states that can only be
1328  * reached when all the devices on the system allow it, so even if the graphics
1329  * device allows PC8+, it doesn't mean the system will actually get to these
1330  * states. Our driver only allows PC8+ when going into runtime PM.
1331  *
1332  * The requirements for PC8+ are that all the outputs are disabled, the power
1333  * well is disabled and most interrupts are disabled, and these are also
1334  * requirements for runtime PM. When these conditions are met, we manually do
1335  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1336  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1337  * hang the machine.
1338  *
1339  * When we really reach PC8 or deeper states (not just when we allow it) we lose
1340  * the state of some registers, so when we come back from PC8+ we need to
1341  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1342  * need to take care of the registers kept by RC6. Notice that this happens even
1343  * if we don't put the device in PCI D3 state (which is what currently happens
1344  * because of the runtime PM support).
1345  *
1346  * For more, read "Display Sequences for Package C8" on the hardware
1347  * documentation.
1348  */
1349 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1350 {
1351 	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1352 
1353 	if (HAS_PCH_LPT_LP(dev_priv))
1354 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1355 			     PCH_LP_PARTITION_LEVEL_DISABLE, 0);
1356 
1357 	lpt_disable_clkout_dp(dev_priv);
1358 	hsw_disable_lcpll(dev_priv, true, true);
1359 }
1360 
1361 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1362 {
1363 	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1364 
1365 	hsw_restore_lcpll(dev_priv);
1366 	intel_init_pch_refclk(dev_priv);
1367 
1368 	if (HAS_PCH_LPT_LP(dev_priv))
1369 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1370 			     0, PCH_LP_PARTITION_LEVEL_DISABLE);
1371 }
1372 
1373 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1374 				      bool enable)
1375 {
1376 	i915_reg_t reg;
1377 	u32 reset_bits;
1378 
1379 	if (IS_IVYBRIDGE(dev_priv)) {
1380 		reg = GEN7_MSG_CTL;
1381 		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1382 	} else {
1383 		reg = HSW_NDE_RSTWRN_OPT;
1384 		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1385 	}
1386 
1387 	if (DISPLAY_VER(dev_priv) >= 14)
1388 		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1389 
1390 	intel_de_rmw(dev_priv, reg, reset_bits, enable ? reset_bits : 0);
1391 }
1392 
1393 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1394 				  bool resume)
1395 {
1396 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1397 	struct i915_power_well *well;
1398 
1399 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1400 
1401 	/* enable PCH reset handshake */
1402 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1403 
1404 	if (!HAS_DISPLAY(dev_priv))
1405 		return;
1406 
1407 	/* enable PG1 and Misc I/O */
1408 	mutex_lock(&power_domains->lock);
1409 
1410 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1411 	intel_power_well_enable(dev_priv, well);
1412 
1413 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1414 	intel_power_well_enable(dev_priv, well);
1415 
1416 	mutex_unlock(&power_domains->lock);
1417 
1418 	intel_cdclk_init_hw(dev_priv);
1419 
1420 	gen9_dbuf_enable(dev_priv);
1421 
1422 	if (resume)
1423 		intel_dmc_load_program(dev_priv);
1424 }
1425 
1426 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1427 {
1428 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1429 	struct i915_power_well *well;
1430 
1431 	if (!HAS_DISPLAY(dev_priv))
1432 		return;
1433 
1434 	gen9_disable_dc_states(dev_priv);
1435 	/* TODO: disable DMC program */
1436 
1437 	gen9_dbuf_disable(dev_priv);
1438 
1439 	intel_cdclk_uninit_hw(dev_priv);
1440 
1441 	/* The spec doesn't call for removing the reset handshake flag */
1442 	/* disable PG1 and Misc I/O */
1443 
1444 	mutex_lock(&power_domains->lock);
1445 
1446 	/*
1447 	 * BSpec says to keep the MISC IO power well enabled here, only
1448 	 * remove our request for power well 1.
1449 	 * Note that even though the driver's request is removed power well 1
1450 	 * may stay enabled after this due to DMC's own request on it.
1451 	 */
1452 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1453 	intel_power_well_disable(dev_priv, well);
1454 
1455 	mutex_unlock(&power_domains->lock);
1456 
1457 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1458 }
1459 
1460 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1461 {
1462 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1463 	struct i915_power_well *well;
1464 
1465 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1466 
1467 	/*
1468 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1469 	 * or else the reset will hang because there is no PCH to respond.
1470 	 * Move the handshake programming to initialization sequence.
1471 	 * Previously was left up to BIOS.
1472 	 */
1473 	intel_pch_reset_handshake(dev_priv, false);
1474 
1475 	if (!HAS_DISPLAY(dev_priv))
1476 		return;
1477 
1478 	/* Enable PG1 */
1479 	mutex_lock(&power_domains->lock);
1480 
1481 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1482 	intel_power_well_enable(dev_priv, well);
1483 
1484 	mutex_unlock(&power_domains->lock);
1485 
1486 	intel_cdclk_init_hw(dev_priv);
1487 
1488 	gen9_dbuf_enable(dev_priv);
1489 
1490 	if (resume)
1491 		intel_dmc_load_program(dev_priv);
1492 }
1493 
1494 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1495 {
1496 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1497 	struct i915_power_well *well;
1498 
1499 	if (!HAS_DISPLAY(dev_priv))
1500 		return;
1501 
1502 	gen9_disable_dc_states(dev_priv);
1503 	/* TODO: disable DMC program */
1504 
1505 	gen9_dbuf_disable(dev_priv);
1506 
1507 	intel_cdclk_uninit_hw(dev_priv);
1508 
1509 	/* The spec doesn't call for removing the reset handshake flag */
1510 
1511 	/*
1512 	 * Disable PW1 (PG1).
1513 	 * Note that even though the driver's request is removed power well 1
1514 	 * may stay enabled after this due to DMC's own request on it.
1515 	 */
1516 	mutex_lock(&power_domains->lock);
1517 
1518 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1519 	intel_power_well_disable(dev_priv, well);
1520 
1521 	mutex_unlock(&power_domains->lock);
1522 
1523 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1524 }
1525 
1526 struct buddy_page_mask {
1527 	u32 page_mask;
1528 	u8 type;
1529 	u8 num_channels;
1530 };
1531 
1532 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1533 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1534 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1535 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1536 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1537 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1538 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1539 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1540 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1541 	{}
1542 };
1543 
1544 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1545 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1546 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1547 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1548 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1549 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1550 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1551 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1552 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1553 	{}
1554 };
1555 
1556 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1557 {
1558 	enum intel_dram_type type = dev_priv->dram_info.type;
1559 	u8 num_channels = dev_priv->dram_info.num_channels;
1560 	const struct buddy_page_mask *table;
1561 	unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask;
1562 	int config, i;
1563 
1564 	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1565 	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1566 		return;
1567 
1568 	if (IS_ALDERLAKE_S(dev_priv) ||
1569 	    IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1570 		/* Wa_1409767108 */
1571 		table = wa_1409767108_buddy_page_masks;
1572 	else
1573 		table = tgl_buddy_page_masks;
1574 
1575 	for (config = 0; table[config].page_mask != 0; config++)
1576 		if (table[config].num_channels == num_channels &&
1577 		    table[config].type == type)
1578 			break;
1579 
1580 	if (table[config].page_mask == 0) {
1581 		drm_dbg(&dev_priv->drm,
1582 			"Unknown memory configuration; disabling address buddy logic.\n");
1583 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1584 			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1585 				       BW_BUDDY_DISABLE);
1586 	} else {
1587 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1588 			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1589 				       table[config].page_mask);
1590 
1591 			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1592 			if (DISPLAY_VER(dev_priv) == 12)
1593 				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1594 					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1595 					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1596 		}
1597 	}
1598 }
1599 
1600 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1601 				  bool resume)
1602 {
1603 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1604 	struct i915_power_well *well;
1605 
1606 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1607 
1608 	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1609 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1610 	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1611 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1612 			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1613 
1614 	/* 1. Enable PCH reset handshake. */
1615 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1616 
1617 	if (!HAS_DISPLAY(dev_priv))
1618 		return;
1619 
1620 	/* 2. Initialize all combo phys */
1621 	intel_combo_phy_init(dev_priv);
1622 
1623 	/*
1624 	 * 3. Enable Power Well 1 (PG1).
1625 	 *    The AUX IO power wells will be enabled on demand.
1626 	 */
1627 	mutex_lock(&power_domains->lock);
1628 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1629 	intel_power_well_enable(dev_priv, well);
1630 	mutex_unlock(&power_domains->lock);
1631 
1632 	if (DISPLAY_VER(dev_priv) == 14)
1633 		intel_de_rmw(dev_priv, DC_STATE_EN,
1634 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH, 0);
1635 
1636 	/* 4. Enable CDCLK. */
1637 	intel_cdclk_init_hw(dev_priv);
1638 
1639 	if (DISPLAY_VER(dev_priv) >= 12)
1640 		gen12_dbuf_slices_config(dev_priv);
1641 
1642 	/* 5. Enable DBUF. */
1643 	gen9_dbuf_enable(dev_priv);
1644 
1645 	/* 6. Setup MBUS. */
1646 	icl_mbus_init(dev_priv);
1647 
1648 	/* 7. Program arbiter BW_BUDDY registers */
1649 	if (DISPLAY_VER(dev_priv) >= 12)
1650 		tgl_bw_buddy_init(dev_priv);
1651 
1652 	/* 8. Ensure PHYs have completed calibration and adaptation */
1653 	if (IS_DG2(dev_priv))
1654 		intel_snps_phy_wait_for_calibration(dev_priv);
1655 
1656 	if (resume)
1657 		intel_dmc_load_program(dev_priv);
1658 
1659 	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
1660 	if (DISPLAY_VER(dev_priv) >= 12)
1661 		intel_de_rmw(dev_priv, GEN11_CHICKEN_DCPR_2, 0,
1662 			     DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1663 			     DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR);
1664 
1665 	/* Wa_14011503030:xelpd */
1666 	if (DISPLAY_VER(dev_priv) >= 13)
1667 		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1668 }
1669 
1670 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1671 {
1672 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1673 	struct i915_power_well *well;
1674 
1675 	if (!HAS_DISPLAY(dev_priv))
1676 		return;
1677 
1678 	gen9_disable_dc_states(dev_priv);
1679 	intel_dmc_disable_program(dev_priv);
1680 
1681 	/* 1. Disable all display engine functions -> aready done */
1682 
1683 	/* 2. Disable DBUF */
1684 	gen9_dbuf_disable(dev_priv);
1685 
1686 	/* 3. Disable CD clock */
1687 	intel_cdclk_uninit_hw(dev_priv);
1688 
1689 	if (DISPLAY_VER(dev_priv) == 14)
1690 		intel_de_rmw(dev_priv, DC_STATE_EN, 0,
1691 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH);
1692 
1693 	/*
1694 	 * 4. Disable Power Well 1 (PG1).
1695 	 *    The AUX IO power wells are toggled on demand, so they are already
1696 	 *    disabled at this point.
1697 	 */
1698 	mutex_lock(&power_domains->lock);
1699 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1700 	intel_power_well_disable(dev_priv, well);
1701 	mutex_unlock(&power_domains->lock);
1702 
1703 	/* 5. */
1704 	intel_combo_phy_uninit(dev_priv);
1705 }
1706 
1707 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1708 {
1709 	struct i915_power_well *cmn_bc =
1710 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1711 	struct i915_power_well *cmn_d =
1712 		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1713 
1714 	/*
1715 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1716 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1717 	 * instead maintain a shadow copy ourselves. Use the actual
1718 	 * power well state and lane status to reconstruct the
1719 	 * expected initial value.
1720 	 */
1721 	dev_priv->display.power.chv_phy_control =
1722 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1723 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1724 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1725 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1726 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1727 
1728 	/*
1729 	 * If all lanes are disabled we leave the override disabled
1730 	 * with all power down bits cleared to match the state we
1731 	 * would use after disabling the port. Otherwise enable the
1732 	 * override and set the lane powerdown bits accding to the
1733 	 * current lane status.
1734 	 */
1735 	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1736 		u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1737 		unsigned int mask;
1738 
1739 		mask = status & DPLL_PORTB_READY_MASK;
1740 		if (mask == 0xf)
1741 			mask = 0x0;
1742 		else
1743 			dev_priv->display.power.chv_phy_control |=
1744 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1745 
1746 		dev_priv->display.power.chv_phy_control |=
1747 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1748 
1749 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1750 		if (mask == 0xf)
1751 			mask = 0x0;
1752 		else
1753 			dev_priv->display.power.chv_phy_control |=
1754 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1755 
1756 		dev_priv->display.power.chv_phy_control |=
1757 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1758 
1759 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1760 
1761 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1762 	} else {
1763 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1764 	}
1765 
1766 	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1767 		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1768 		unsigned int mask;
1769 
1770 		mask = status & DPLL_PORTD_READY_MASK;
1771 
1772 		if (mask == 0xf)
1773 			mask = 0x0;
1774 		else
1775 			dev_priv->display.power.chv_phy_control |=
1776 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1777 
1778 		dev_priv->display.power.chv_phy_control |=
1779 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1780 
1781 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1782 
1783 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1784 	} else {
1785 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1786 	}
1787 
1788 	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1789 		    dev_priv->display.power.chv_phy_control);
1790 
1791 	/* Defer application of initial phy_control to enabling the powerwell */
1792 }
1793 
1794 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1795 {
1796 	struct i915_power_well *cmn =
1797 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1798 	struct i915_power_well *disp2d =
1799 		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1800 
1801 	/* If the display might be already active skip this */
1802 	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1803 	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1804 	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1805 		return;
1806 
1807 	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1808 
1809 	/* cmnlane needs DPLL registers */
1810 	intel_power_well_enable(dev_priv, disp2d);
1811 
1812 	/*
1813 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1814 	 * Need to assert and de-assert PHY SB reset by gating the
1815 	 * common lane power, then un-gating it.
1816 	 * Simply ungating isn't enough to reset the PHY enough to get
1817 	 * ports and lanes running.
1818 	 */
1819 	intel_power_well_disable(dev_priv, cmn);
1820 }
1821 
1822 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1823 {
1824 	bool ret;
1825 
1826 	vlv_punit_get(dev_priv);
1827 	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1828 	vlv_punit_put(dev_priv);
1829 
1830 	return ret;
1831 }
1832 
1833 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1834 {
1835 	drm_WARN(&dev_priv->drm,
1836 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1837 		 "VED not power gated\n");
1838 }
1839 
1840 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1841 {
1842 	static const struct pci_device_id isp_ids[] = {
1843 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1844 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1845 		{}
1846 	};
1847 
1848 	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1849 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1850 		 "ISP not power gated\n");
1851 }
1852 
1853 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1854 
1855 /**
1856  * intel_power_domains_init_hw - initialize hardware power domain state
1857  * @i915: i915 device instance
1858  * @resume: Called from resume code paths or not
1859  *
1860  * This function initializes the hardware power domain state and enables all
1861  * power wells belonging to the INIT power domain. Power wells in other
1862  * domains (and not in the INIT domain) are referenced or disabled by
1863  * intel_modeset_readout_hw_state(). After that the reference count of each
1864  * power well must match its HW enabled state, see
1865  * intel_power_domains_verify_state().
1866  *
1867  * It will return with power domains disabled (to be enabled later by
1868  * intel_power_domains_enable()) and must be paired with
1869  * intel_power_domains_driver_remove().
1870  */
1871 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1872 {
1873 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1874 
1875 	power_domains->initializing = true;
1876 
1877 	if (DISPLAY_VER(i915) >= 11) {
1878 		icl_display_core_init(i915, resume);
1879 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1880 		bxt_display_core_init(i915, resume);
1881 	} else if (DISPLAY_VER(i915) == 9) {
1882 		skl_display_core_init(i915, resume);
1883 	} else if (IS_CHERRYVIEW(i915)) {
1884 		mutex_lock(&power_domains->lock);
1885 		chv_phy_control_init(i915);
1886 		mutex_unlock(&power_domains->lock);
1887 		assert_isp_power_gated(i915);
1888 	} else if (IS_VALLEYVIEW(i915)) {
1889 		mutex_lock(&power_domains->lock);
1890 		vlv_cmnlane_wa(i915);
1891 		mutex_unlock(&power_domains->lock);
1892 		assert_ved_power_gated(i915);
1893 		assert_isp_power_gated(i915);
1894 	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1895 		hsw_assert_cdclk(i915);
1896 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1897 	} else if (IS_IVYBRIDGE(i915)) {
1898 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1899 	}
1900 
1901 	/*
1902 	 * Keep all power wells enabled for any dependent HW access during
1903 	 * initialization and to make sure we keep BIOS enabled display HW
1904 	 * resources powered until display HW readout is complete. We drop
1905 	 * this reference in intel_power_domains_enable().
1906 	 */
1907 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1908 	power_domains->init_wakeref =
1909 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1910 
1911 	/* Disable power support if the user asked so. */
1912 	if (!i915->params.disable_power_well) {
1913 		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1914 		i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1915 										      POWER_DOMAIN_INIT);
1916 	}
1917 	intel_power_domains_sync_hw(i915);
1918 
1919 	power_domains->initializing = false;
1920 }
1921 
1922 /**
1923  * intel_power_domains_driver_remove - deinitialize hw power domain state
1924  * @i915: i915 device instance
1925  *
1926  * De-initializes the display power domain HW state. It also ensures that the
1927  * device stays powered up so that the driver can be reloaded.
1928  *
1929  * It must be called with power domains already disabled (after a call to
1930  * intel_power_domains_disable()) and must be paired with
1931  * intel_power_domains_init_hw().
1932  */
1933 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1934 {
1935 	intel_wakeref_t wakeref __maybe_unused =
1936 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1937 
1938 	/* Remove the refcount we took to keep power well support disabled. */
1939 	if (!i915->params.disable_power_well)
1940 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1941 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1942 
1943 	intel_display_power_flush_work_sync(i915);
1944 
1945 	intel_power_domains_verify_state(i915);
1946 
1947 	/* Keep the power well enabled, but cancel its rpm wakeref. */
1948 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1949 }
1950 
1951 /**
1952  * intel_power_domains_sanitize_state - sanitize power domains state
1953  * @i915: i915 device instance
1954  *
1955  * Sanitize the power domains state during driver loading and system resume.
1956  * The function will disable all display power wells that BIOS has enabled
1957  * without a user for it (any user for a power well has taken a reference
1958  * on it by the time this function is called, after the state of all the
1959  * pipe, encoder, etc. HW resources have been sanitized).
1960  */
1961 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
1962 {
1963 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1964 	struct i915_power_well *power_well;
1965 
1966 	mutex_lock(&power_domains->lock);
1967 
1968 	for_each_power_well_reverse(i915, power_well) {
1969 		if (power_well->desc->always_on || power_well->count ||
1970 		    !intel_power_well_is_enabled(i915, power_well))
1971 			continue;
1972 
1973 		drm_dbg_kms(&i915->drm,
1974 			    "BIOS left unused %s power well enabled, disabling it\n",
1975 			    intel_power_well_name(power_well));
1976 		intel_power_well_disable(i915, power_well);
1977 	}
1978 
1979 	mutex_unlock(&power_domains->lock);
1980 }
1981 
1982 /**
1983  * intel_power_domains_enable - enable toggling of display power wells
1984  * @i915: i915 device instance
1985  *
1986  * Enable the ondemand enabling/disabling of the display power wells. Note that
1987  * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
1988  * only at specific points of the display modeset sequence, thus they are not
1989  * affected by the intel_power_domains_enable()/disable() calls. The purpose
1990  * of these function is to keep the rest of power wells enabled until the end
1991  * of display HW readout (which will acquire the power references reflecting
1992  * the current HW state).
1993  */
1994 void intel_power_domains_enable(struct drm_i915_private *i915)
1995 {
1996 	intel_wakeref_t wakeref __maybe_unused =
1997 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1998 
1999 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2000 	intel_power_domains_verify_state(i915);
2001 }
2002 
2003 /**
2004  * intel_power_domains_disable - disable toggling of display power wells
2005  * @i915: i915 device instance
2006  *
2007  * Disable the ondemand enabling/disabling of the display power wells. See
2008  * intel_power_domains_enable() for which power wells this call controls.
2009  */
2010 void intel_power_domains_disable(struct drm_i915_private *i915)
2011 {
2012 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2013 
2014 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2015 	power_domains->init_wakeref =
2016 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2017 
2018 	intel_power_domains_verify_state(i915);
2019 }
2020 
2021 /**
2022  * intel_power_domains_suspend - suspend power domain state
2023  * @i915: i915 device instance
2024  * @suspend_mode: specifies the target suspend state (idle, mem, hibernation)
2025  *
2026  * This function prepares the hardware power domain state before entering
2027  * system suspend.
2028  *
2029  * It must be called with power domains already disabled (after a call to
2030  * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2031  */
2032 void intel_power_domains_suspend(struct drm_i915_private *i915,
2033 				 enum i915_drm_suspend_mode suspend_mode)
2034 {
2035 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2036 	intel_wakeref_t wakeref __maybe_unused =
2037 		fetch_and_zero(&power_domains->init_wakeref);
2038 
2039 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2040 
2041 	/*
2042 	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2043 	 * support don't manually deinit the power domains. This also means the
2044 	 * DMC firmware will stay active, it will power down any HW
2045 	 * resources as required and also enable deeper system power states
2046 	 * that would be blocked if the firmware was inactive.
2047 	 */
2048 	if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) &&
2049 	    suspend_mode == I915_DRM_SUSPEND_IDLE &&
2050 	    intel_dmc_has_payload(i915)) {
2051 		intel_display_power_flush_work(i915);
2052 		intel_power_domains_verify_state(i915);
2053 		return;
2054 	}
2055 
2056 	/*
2057 	 * Even if power well support was disabled we still want to disable
2058 	 * power wells if power domains must be deinitialized for suspend.
2059 	 */
2060 	if (!i915->params.disable_power_well)
2061 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2062 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2063 
2064 	intel_display_power_flush_work(i915);
2065 	intel_power_domains_verify_state(i915);
2066 
2067 	if (DISPLAY_VER(i915) >= 11)
2068 		icl_display_core_uninit(i915);
2069 	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2070 		bxt_display_core_uninit(i915);
2071 	else if (DISPLAY_VER(i915) == 9)
2072 		skl_display_core_uninit(i915);
2073 
2074 	power_domains->display_core_suspended = true;
2075 }
2076 
2077 /**
2078  * intel_power_domains_resume - resume power domain state
2079  * @i915: i915 device instance
2080  *
2081  * This function resume the hardware power domain state during system resume.
2082  *
2083  * It will return with power domain support disabled (to be enabled later by
2084  * intel_power_domains_enable()) and must be paired with
2085  * intel_power_domains_suspend().
2086  */
2087 void intel_power_domains_resume(struct drm_i915_private *i915)
2088 {
2089 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2090 
2091 	if (power_domains->display_core_suspended) {
2092 		intel_power_domains_init_hw(i915, true);
2093 		power_domains->display_core_suspended = false;
2094 	} else {
2095 		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2096 		power_domains->init_wakeref =
2097 			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2098 	}
2099 
2100 	intel_power_domains_verify_state(i915);
2101 }
2102 
2103 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2104 
2105 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2106 {
2107 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2108 	struct i915_power_well *power_well;
2109 
2110 	for_each_power_well(i915, power_well) {
2111 		enum intel_display_power_domain domain;
2112 
2113 		drm_dbg(&i915->drm, "%-25s %d\n",
2114 			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2115 
2116 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2117 			drm_dbg(&i915->drm, "  %-23s %d\n",
2118 				intel_display_power_domain_str(domain),
2119 				power_domains->domain_use_count[domain]);
2120 	}
2121 }
2122 
2123 /**
2124  * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2125  * @i915: i915 device instance
2126  *
2127  * Verify if the reference count of each power well matches its HW enabled
2128  * state and the total refcount of the domains it belongs to. This must be
2129  * called after modeset HW state sanitization, which is responsible for
2130  * acquiring reference counts for any power wells in use and disabling the
2131  * ones left on by BIOS but not required by any active output.
2132  */
2133 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2134 {
2135 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2136 	struct i915_power_well *power_well;
2137 	bool dump_domain_info;
2138 
2139 	mutex_lock(&power_domains->lock);
2140 
2141 	verify_async_put_domains_state(power_domains);
2142 
2143 	dump_domain_info = false;
2144 	for_each_power_well(i915, power_well) {
2145 		enum intel_display_power_domain domain;
2146 		int domains_count;
2147 		bool enabled;
2148 
2149 		enabled = intel_power_well_is_enabled(i915, power_well);
2150 		if ((intel_power_well_refcount(power_well) ||
2151 		     intel_power_well_is_always_on(power_well)) !=
2152 		    enabled)
2153 			drm_err(&i915->drm,
2154 				"power well %s state mismatch (refcount %d/enabled %d)",
2155 				intel_power_well_name(power_well),
2156 				intel_power_well_refcount(power_well), enabled);
2157 
2158 		domains_count = 0;
2159 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2160 			domains_count += power_domains->domain_use_count[domain];
2161 
2162 		if (intel_power_well_refcount(power_well) != domains_count) {
2163 			drm_err(&i915->drm,
2164 				"power well %s refcount/domain refcount mismatch "
2165 				"(refcount %d/domains refcount %d)\n",
2166 				intel_power_well_name(power_well),
2167 				intel_power_well_refcount(power_well),
2168 				domains_count);
2169 			dump_domain_info = true;
2170 		}
2171 	}
2172 
2173 	if (dump_domain_info) {
2174 		static bool dumped;
2175 
2176 		if (!dumped) {
2177 			intel_power_domains_dump_info(i915);
2178 			dumped = true;
2179 		}
2180 	}
2181 
2182 	mutex_unlock(&power_domains->lock);
2183 }
2184 
2185 #else
2186 
2187 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2188 {
2189 }
2190 
2191 #endif
2192 
2193 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2194 {
2195 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2196 	    IS_BROXTON(i915)) {
2197 		bxt_enable_dc9(i915);
2198 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2199 		hsw_enable_pc8(i915);
2200 	}
2201 
2202 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2203 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2204 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2205 }
2206 
2207 void intel_display_power_resume_early(struct drm_i915_private *i915)
2208 {
2209 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2210 	    IS_BROXTON(i915)) {
2211 		gen9_sanitize_dc_state(i915);
2212 		bxt_disable_dc9(i915);
2213 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2214 		hsw_disable_pc8(i915);
2215 	}
2216 
2217 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2218 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2219 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2220 }
2221 
2222 void intel_display_power_suspend(struct drm_i915_private *i915)
2223 {
2224 	if (DISPLAY_VER(i915) >= 11) {
2225 		icl_display_core_uninit(i915);
2226 		bxt_enable_dc9(i915);
2227 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2228 		bxt_display_core_uninit(i915);
2229 		bxt_enable_dc9(i915);
2230 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2231 		hsw_enable_pc8(i915);
2232 	}
2233 }
2234 
2235 void intel_display_power_resume(struct drm_i915_private *i915)
2236 {
2237 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2238 
2239 	if (DISPLAY_VER(i915) >= 11) {
2240 		bxt_disable_dc9(i915);
2241 		icl_display_core_init(i915, true);
2242 		if (intel_dmc_has_payload(i915)) {
2243 			if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
2244 				skl_enable_dc6(i915);
2245 			else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
2246 				gen9_enable_dc5(i915);
2247 		}
2248 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2249 		bxt_disable_dc9(i915);
2250 		bxt_display_core_init(i915, true);
2251 		if (intel_dmc_has_payload(i915) &&
2252 		    (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2253 			gen9_enable_dc5(i915);
2254 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2255 		hsw_disable_pc8(i915);
2256 	}
2257 }
2258 
2259 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2260 {
2261 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2262 	int i;
2263 
2264 	mutex_lock(&power_domains->lock);
2265 
2266 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2267 	for (i = 0; i < power_domains->power_well_count; i++) {
2268 		struct i915_power_well *power_well;
2269 		enum intel_display_power_domain power_domain;
2270 
2271 		power_well = &power_domains->power_wells[i];
2272 		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2273 			   intel_power_well_refcount(power_well));
2274 
2275 		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2276 			seq_printf(m, "  %-23s %d\n",
2277 				   intel_display_power_domain_str(power_domain),
2278 				   power_domains->domain_use_count[power_domain]);
2279 	}
2280 
2281 	mutex_unlock(&power_domains->lock);
2282 }
2283 
2284 struct intel_ddi_port_domains {
2285 	enum port port_start;
2286 	enum port port_end;
2287 	enum aux_ch aux_ch_start;
2288 	enum aux_ch aux_ch_end;
2289 
2290 	enum intel_display_power_domain ddi_lanes;
2291 	enum intel_display_power_domain ddi_io;
2292 	enum intel_display_power_domain aux_io;
2293 	enum intel_display_power_domain aux_legacy_usbc;
2294 	enum intel_display_power_domain aux_tbt;
2295 };
2296 
2297 static const struct intel_ddi_port_domains
2298 i9xx_port_domains[] = {
2299 	{
2300 		.port_start = PORT_A,
2301 		.port_end = PORT_F,
2302 		.aux_ch_start = AUX_CH_A,
2303 		.aux_ch_end = AUX_CH_F,
2304 
2305 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2306 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2307 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2308 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2309 		.aux_tbt = POWER_DOMAIN_INVALID,
2310 	},
2311 };
2312 
2313 static const struct intel_ddi_port_domains
2314 d11_port_domains[] = {
2315 	{
2316 		.port_start = PORT_A,
2317 		.port_end = PORT_B,
2318 		.aux_ch_start = AUX_CH_A,
2319 		.aux_ch_end = AUX_CH_B,
2320 
2321 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2322 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2323 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2324 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2325 		.aux_tbt = POWER_DOMAIN_INVALID,
2326 	}, {
2327 		.port_start = PORT_C,
2328 		.port_end = PORT_F,
2329 		.aux_ch_start = AUX_CH_C,
2330 		.aux_ch_end = AUX_CH_F,
2331 
2332 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2333 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2334 		.aux_io = POWER_DOMAIN_AUX_IO_C,
2335 		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2336 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2337 	},
2338 };
2339 
2340 static const struct intel_ddi_port_domains
2341 d12_port_domains[] = {
2342 	{
2343 		.port_start = PORT_A,
2344 		.port_end = PORT_C,
2345 		.aux_ch_start = AUX_CH_A,
2346 		.aux_ch_end = AUX_CH_C,
2347 
2348 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2349 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2350 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2351 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2352 		.aux_tbt = POWER_DOMAIN_INVALID,
2353 	}, {
2354 		.port_start = PORT_TC1,
2355 		.port_end = PORT_TC6,
2356 		.aux_ch_start = AUX_CH_USBC1,
2357 		.aux_ch_end = AUX_CH_USBC6,
2358 
2359 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2360 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2361 		.aux_io = POWER_DOMAIN_INVALID,
2362 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2363 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2364 	},
2365 };
2366 
2367 static const struct intel_ddi_port_domains
2368 d13_port_domains[] = {
2369 	{
2370 		.port_start = PORT_A,
2371 		.port_end = PORT_C,
2372 		.aux_ch_start = AUX_CH_A,
2373 		.aux_ch_end = AUX_CH_C,
2374 
2375 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2376 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2377 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2378 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2379 		.aux_tbt = POWER_DOMAIN_INVALID,
2380 	}, {
2381 		.port_start = PORT_TC1,
2382 		.port_end = PORT_TC4,
2383 		.aux_ch_start = AUX_CH_USBC1,
2384 		.aux_ch_end = AUX_CH_USBC4,
2385 
2386 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2387 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2388 		.aux_io = POWER_DOMAIN_INVALID,
2389 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2390 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2391 	}, {
2392 		.port_start = PORT_D_XELPD,
2393 		.port_end = PORT_E_XELPD,
2394 		.aux_ch_start = AUX_CH_D_XELPD,
2395 		.aux_ch_end = AUX_CH_E_XELPD,
2396 
2397 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2398 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2399 		.aux_io = POWER_DOMAIN_AUX_IO_D,
2400 		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2401 		.aux_tbt = POWER_DOMAIN_INVALID,
2402 	},
2403 };
2404 
2405 static void
2406 intel_port_domains_for_platform(struct drm_i915_private *i915,
2407 				const struct intel_ddi_port_domains **domains,
2408 				int *domains_size)
2409 {
2410 	if (DISPLAY_VER(i915) >= 13) {
2411 		*domains = d13_port_domains;
2412 		*domains_size = ARRAY_SIZE(d13_port_domains);
2413 	} else if (DISPLAY_VER(i915) >= 12) {
2414 		*domains = d12_port_domains;
2415 		*domains_size = ARRAY_SIZE(d12_port_domains);
2416 	} else if (DISPLAY_VER(i915) >= 11) {
2417 		*domains = d11_port_domains;
2418 		*domains_size = ARRAY_SIZE(d11_port_domains);
2419 	} else {
2420 		*domains = i9xx_port_domains;
2421 		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2422 	}
2423 }
2424 
2425 static const struct intel_ddi_port_domains *
2426 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2427 {
2428 	const struct intel_ddi_port_domains *domains;
2429 	int domains_size;
2430 	int i;
2431 
2432 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2433 	for (i = 0; i < domains_size; i++)
2434 		if (port >= domains[i].port_start && port <= domains[i].port_end)
2435 			return &domains[i];
2436 
2437 	return NULL;
2438 }
2439 
2440 enum intel_display_power_domain
2441 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2442 {
2443 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2444 
2445 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID))
2446 		return POWER_DOMAIN_PORT_DDI_IO_A;
2447 
2448 	return domains->ddi_io + (int)(port - domains->port_start);
2449 }
2450 
2451 enum intel_display_power_domain
2452 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2453 {
2454 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2455 
2456 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID))
2457 		return POWER_DOMAIN_PORT_DDI_LANES_A;
2458 
2459 	return domains->ddi_lanes + (int)(port - domains->port_start);
2460 }
2461 
2462 static const struct intel_ddi_port_domains *
2463 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2464 {
2465 	const struct intel_ddi_port_domains *domains;
2466 	int domains_size;
2467 	int i;
2468 
2469 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2470 	for (i = 0; i < domains_size; i++)
2471 		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2472 			return &domains[i];
2473 
2474 	return NULL;
2475 }
2476 
2477 enum intel_display_power_domain
2478 intel_display_power_aux_io_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2479 {
2480 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2481 
2482 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID))
2483 		return POWER_DOMAIN_AUX_IO_A;
2484 
2485 	return domains->aux_io + (int)(aux_ch - domains->aux_ch_start);
2486 }
2487 
2488 enum intel_display_power_domain
2489 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2490 {
2491 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2492 
2493 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID))
2494 		return POWER_DOMAIN_AUX_A;
2495 
2496 	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2497 }
2498 
2499 enum intel_display_power_domain
2500 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2501 {
2502 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2503 
2504 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID))
2505 		return POWER_DOMAIN_AUX_TBT1;
2506 
2507 	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2508 }
2509