1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "intel_backlight_regs.h"
11 #include "intel_cdclk.h"
12 #include "intel_combo_phy.h"
13 #include "intel_de.h"
14 #include "intel_display_power.h"
15 #include "intel_display_power_map.h"
16 #include "intel_display_power_well.h"
17 #include "intel_display_types.h"
18 #include "intel_dmc.h"
19 #include "intel_mchbar_regs.h"
20 #include "intel_pch_refclk.h"
21 #include "intel_pcode.h"
22 #include "intel_snps_phy.h"
23 #include "skl_watermark.h"
24 #include "vlv_sideband.h"
25 
26 #define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
27 	for_each_power_well(__dev_priv, __power_well)				\
28 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
29 
30 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
31 	for_each_power_well_reverse(__dev_priv, __power_well)		        \
32 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
33 
34 const char *
35 intel_display_power_domain_str(enum intel_display_power_domain domain)
36 {
37 	switch (domain) {
38 	case POWER_DOMAIN_DISPLAY_CORE:
39 		return "DISPLAY_CORE";
40 	case POWER_DOMAIN_PIPE_A:
41 		return "PIPE_A";
42 	case POWER_DOMAIN_PIPE_B:
43 		return "PIPE_B";
44 	case POWER_DOMAIN_PIPE_C:
45 		return "PIPE_C";
46 	case POWER_DOMAIN_PIPE_D:
47 		return "PIPE_D";
48 	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
49 		return "PIPE_PANEL_FITTER_A";
50 	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
51 		return "PIPE_PANEL_FITTER_B";
52 	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
53 		return "PIPE_PANEL_FITTER_C";
54 	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
55 		return "PIPE_PANEL_FITTER_D";
56 	case POWER_DOMAIN_TRANSCODER_A:
57 		return "TRANSCODER_A";
58 	case POWER_DOMAIN_TRANSCODER_B:
59 		return "TRANSCODER_B";
60 	case POWER_DOMAIN_TRANSCODER_C:
61 		return "TRANSCODER_C";
62 	case POWER_DOMAIN_TRANSCODER_D:
63 		return "TRANSCODER_D";
64 	case POWER_DOMAIN_TRANSCODER_EDP:
65 		return "TRANSCODER_EDP";
66 	case POWER_DOMAIN_TRANSCODER_DSI_A:
67 		return "TRANSCODER_DSI_A";
68 	case POWER_DOMAIN_TRANSCODER_DSI_C:
69 		return "TRANSCODER_DSI_C";
70 	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
71 		return "TRANSCODER_VDSC_PW2";
72 	case POWER_DOMAIN_PORT_DDI_LANES_A:
73 		return "PORT_DDI_LANES_A";
74 	case POWER_DOMAIN_PORT_DDI_LANES_B:
75 		return "PORT_DDI_LANES_B";
76 	case POWER_DOMAIN_PORT_DDI_LANES_C:
77 		return "PORT_DDI_LANES_C";
78 	case POWER_DOMAIN_PORT_DDI_LANES_D:
79 		return "PORT_DDI_LANES_D";
80 	case POWER_DOMAIN_PORT_DDI_LANES_E:
81 		return "PORT_DDI_LANES_E";
82 	case POWER_DOMAIN_PORT_DDI_LANES_F:
83 		return "PORT_DDI_LANES_F";
84 	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
85 		return "PORT_DDI_LANES_TC1";
86 	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
87 		return "PORT_DDI_LANES_TC2";
88 	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
89 		return "PORT_DDI_LANES_TC3";
90 	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
91 		return "PORT_DDI_LANES_TC4";
92 	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
93 		return "PORT_DDI_LANES_TC5";
94 	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
95 		return "PORT_DDI_LANES_TC6";
96 	case POWER_DOMAIN_PORT_DDI_IO_A:
97 		return "PORT_DDI_IO_A";
98 	case POWER_DOMAIN_PORT_DDI_IO_B:
99 		return "PORT_DDI_IO_B";
100 	case POWER_DOMAIN_PORT_DDI_IO_C:
101 		return "PORT_DDI_IO_C";
102 	case POWER_DOMAIN_PORT_DDI_IO_D:
103 		return "PORT_DDI_IO_D";
104 	case POWER_DOMAIN_PORT_DDI_IO_E:
105 		return "PORT_DDI_IO_E";
106 	case POWER_DOMAIN_PORT_DDI_IO_F:
107 		return "PORT_DDI_IO_F";
108 	case POWER_DOMAIN_PORT_DDI_IO_TC1:
109 		return "PORT_DDI_IO_TC1";
110 	case POWER_DOMAIN_PORT_DDI_IO_TC2:
111 		return "PORT_DDI_IO_TC2";
112 	case POWER_DOMAIN_PORT_DDI_IO_TC3:
113 		return "PORT_DDI_IO_TC3";
114 	case POWER_DOMAIN_PORT_DDI_IO_TC4:
115 		return "PORT_DDI_IO_TC4";
116 	case POWER_DOMAIN_PORT_DDI_IO_TC5:
117 		return "PORT_DDI_IO_TC5";
118 	case POWER_DOMAIN_PORT_DDI_IO_TC6:
119 		return "PORT_DDI_IO_TC6";
120 	case POWER_DOMAIN_PORT_DSI:
121 		return "PORT_DSI";
122 	case POWER_DOMAIN_PORT_CRT:
123 		return "PORT_CRT";
124 	case POWER_DOMAIN_PORT_OTHER:
125 		return "PORT_OTHER";
126 	case POWER_DOMAIN_VGA:
127 		return "VGA";
128 	case POWER_DOMAIN_AUDIO_MMIO:
129 		return "AUDIO_MMIO";
130 	case POWER_DOMAIN_AUDIO_PLAYBACK:
131 		return "AUDIO_PLAYBACK";
132 	case POWER_DOMAIN_AUX_A:
133 		return "AUX_A";
134 	case POWER_DOMAIN_AUX_B:
135 		return "AUX_B";
136 	case POWER_DOMAIN_AUX_C:
137 		return "AUX_C";
138 	case POWER_DOMAIN_AUX_D:
139 		return "AUX_D";
140 	case POWER_DOMAIN_AUX_E:
141 		return "AUX_E";
142 	case POWER_DOMAIN_AUX_F:
143 		return "AUX_F";
144 	case POWER_DOMAIN_AUX_USBC1:
145 		return "AUX_USBC1";
146 	case POWER_DOMAIN_AUX_USBC2:
147 		return "AUX_USBC2";
148 	case POWER_DOMAIN_AUX_USBC3:
149 		return "AUX_USBC3";
150 	case POWER_DOMAIN_AUX_USBC4:
151 		return "AUX_USBC4";
152 	case POWER_DOMAIN_AUX_USBC5:
153 		return "AUX_USBC5";
154 	case POWER_DOMAIN_AUX_USBC6:
155 		return "AUX_USBC6";
156 	case POWER_DOMAIN_AUX_IO_A:
157 		return "AUX_IO_A";
158 	case POWER_DOMAIN_AUX_TBT1:
159 		return "AUX_TBT1";
160 	case POWER_DOMAIN_AUX_TBT2:
161 		return "AUX_TBT2";
162 	case POWER_DOMAIN_AUX_TBT3:
163 		return "AUX_TBT3";
164 	case POWER_DOMAIN_AUX_TBT4:
165 		return "AUX_TBT4";
166 	case POWER_DOMAIN_AUX_TBT5:
167 		return "AUX_TBT5";
168 	case POWER_DOMAIN_AUX_TBT6:
169 		return "AUX_TBT6";
170 	case POWER_DOMAIN_GMBUS:
171 		return "GMBUS";
172 	case POWER_DOMAIN_INIT:
173 		return "INIT";
174 	case POWER_DOMAIN_MODESET:
175 		return "MODESET";
176 	case POWER_DOMAIN_GT_IRQ:
177 		return "GT_IRQ";
178 	case POWER_DOMAIN_DC_OFF:
179 		return "DC_OFF";
180 	case POWER_DOMAIN_TC_COLD_OFF:
181 		return "TC_COLD_OFF";
182 	default:
183 		MISSING_CASE(domain);
184 		return "?";
185 	}
186 }
187 
188 /**
189  * __intel_display_power_is_enabled - unlocked check for a power domain
190  * @dev_priv: i915 device instance
191  * @domain: power domain to check
192  *
193  * This is the unlocked version of intel_display_power_is_enabled() and should
194  * only be used from error capture and recovery code where deadlocks are
195  * possible.
196  *
197  * Returns:
198  * True when the power domain is enabled, false otherwise.
199  */
200 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
201 				      enum intel_display_power_domain domain)
202 {
203 	struct i915_power_well *power_well;
204 	bool is_enabled;
205 
206 	if (dev_priv->runtime_pm.suspended)
207 		return false;
208 
209 	is_enabled = true;
210 
211 	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
212 		if (intel_power_well_is_always_on(power_well))
213 			continue;
214 
215 		if (!intel_power_well_is_enabled_cached(power_well)) {
216 			is_enabled = false;
217 			break;
218 		}
219 	}
220 
221 	return is_enabled;
222 }
223 
224 /**
225  * intel_display_power_is_enabled - check for a power domain
226  * @dev_priv: i915 device instance
227  * @domain: power domain to check
228  *
229  * This function can be used to check the hw power domain state. It is mostly
230  * used in hardware state readout functions. Everywhere else code should rely
231  * upon explicit power domain reference counting to ensure that the hardware
232  * block is powered up before accessing it.
233  *
234  * Callers must hold the relevant modesetting locks to ensure that concurrent
235  * threads can't disable the power well while the caller tries to read a few
236  * registers.
237  *
238  * Returns:
239  * True when the power domain is enabled, false otherwise.
240  */
241 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
242 				    enum intel_display_power_domain domain)
243 {
244 	struct i915_power_domains *power_domains;
245 	bool ret;
246 
247 	power_domains = &dev_priv->display.power.domains;
248 
249 	mutex_lock(&power_domains->lock);
250 	ret = __intel_display_power_is_enabled(dev_priv, domain);
251 	mutex_unlock(&power_domains->lock);
252 
253 	return ret;
254 }
255 
256 static u32
257 sanitize_target_dc_state(struct drm_i915_private *dev_priv,
258 			 u32 target_dc_state)
259 {
260 	static const u32 states[] = {
261 		DC_STATE_EN_UPTO_DC6,
262 		DC_STATE_EN_UPTO_DC5,
263 		DC_STATE_EN_DC3CO,
264 		DC_STATE_DISABLE,
265 	};
266 	int i;
267 
268 	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
269 		if (target_dc_state != states[i])
270 			continue;
271 
272 		if (dev_priv->display.dmc.allowed_dc_mask & target_dc_state)
273 			break;
274 
275 		target_dc_state = states[i + 1];
276 	}
277 
278 	return target_dc_state;
279 }
280 
281 /**
282  * intel_display_power_set_target_dc_state - Set target dc state.
283  * @dev_priv: i915 device
284  * @state: state which needs to be set as target_dc_state.
285  *
286  * This function set the "DC off" power well target_dc_state,
287  * based upon this target_dc_stste, "DC off" power well will
288  * enable desired DC state.
289  */
290 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
291 					     u32 state)
292 {
293 	struct i915_power_well *power_well;
294 	bool dc_off_enabled;
295 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
296 
297 	mutex_lock(&power_domains->lock);
298 	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
299 
300 	if (drm_WARN_ON(&dev_priv->drm, !power_well))
301 		goto unlock;
302 
303 	state = sanitize_target_dc_state(dev_priv, state);
304 
305 	if (state == dev_priv->display.dmc.target_dc_state)
306 		goto unlock;
307 
308 	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
309 	/*
310 	 * If DC off power well is disabled, need to enable and disable the
311 	 * DC off power well to effect target DC state.
312 	 */
313 	if (!dc_off_enabled)
314 		intel_power_well_enable(dev_priv, power_well);
315 
316 	dev_priv->display.dmc.target_dc_state = state;
317 
318 	if (!dc_off_enabled)
319 		intel_power_well_disable(dev_priv, power_well);
320 
321 unlock:
322 	mutex_unlock(&power_domains->lock);
323 }
324 
325 #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
326 
327 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
328 				     struct intel_power_domain_mask *mask)
329 {
330 	bitmap_or(mask->bits,
331 		  power_domains->async_put_domains[0].bits,
332 		  power_domains->async_put_domains[1].bits,
333 		  POWER_DOMAIN_NUM);
334 }
335 
336 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
337 
338 static bool
339 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
340 {
341 	struct drm_i915_private *i915 = container_of(power_domains,
342 						     struct drm_i915_private,
343 						     display.power.domains);
344 
345 	return !drm_WARN_ON(&i915->drm,
346 			    bitmap_intersects(power_domains->async_put_domains[0].bits,
347 					      power_domains->async_put_domains[1].bits,
348 					      POWER_DOMAIN_NUM));
349 }
350 
351 static bool
352 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
353 {
354 	struct drm_i915_private *i915 = container_of(power_domains,
355 						     struct drm_i915_private,
356 						     display.power.domains);
357 	struct intel_power_domain_mask async_put_mask;
358 	enum intel_display_power_domain domain;
359 	bool err = false;
360 
361 	err |= !assert_async_put_domain_masks_disjoint(power_domains);
362 	__async_put_domains_mask(power_domains, &async_put_mask);
363 	err |= drm_WARN_ON(&i915->drm,
364 			   !!power_domains->async_put_wakeref !=
365 			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
366 
367 	for_each_power_domain(domain, &async_put_mask)
368 		err |= drm_WARN_ON(&i915->drm,
369 				   power_domains->domain_use_count[domain] != 1);
370 
371 	return !err;
372 }
373 
374 static void print_power_domains(struct i915_power_domains *power_domains,
375 				const char *prefix, struct intel_power_domain_mask *mask)
376 {
377 	struct drm_i915_private *i915 = container_of(power_domains,
378 						     struct drm_i915_private,
379 						     display.power.domains);
380 	enum intel_display_power_domain domain;
381 
382 	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
383 	for_each_power_domain(domain, mask)
384 		drm_dbg(&i915->drm, "%s use_count %d\n",
385 			intel_display_power_domain_str(domain),
386 			power_domains->domain_use_count[domain]);
387 }
388 
389 static void
390 print_async_put_domains_state(struct i915_power_domains *power_domains)
391 {
392 	struct drm_i915_private *i915 = container_of(power_domains,
393 						     struct drm_i915_private,
394 						     display.power.domains);
395 
396 	drm_dbg(&i915->drm, "async_put_wakeref %u\n",
397 		power_domains->async_put_wakeref);
398 
399 	print_power_domains(power_domains, "async_put_domains[0]",
400 			    &power_domains->async_put_domains[0]);
401 	print_power_domains(power_domains, "async_put_domains[1]",
402 			    &power_domains->async_put_domains[1]);
403 }
404 
405 static void
406 verify_async_put_domains_state(struct i915_power_domains *power_domains)
407 {
408 	if (!__async_put_domains_state_ok(power_domains))
409 		print_async_put_domains_state(power_domains);
410 }
411 
412 #else
413 
414 static void
415 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
416 {
417 }
418 
419 static void
420 verify_async_put_domains_state(struct i915_power_domains *power_domains)
421 {
422 }
423 
424 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
425 
426 static void async_put_domains_mask(struct i915_power_domains *power_domains,
427 				   struct intel_power_domain_mask *mask)
428 
429 {
430 	assert_async_put_domain_masks_disjoint(power_domains);
431 
432 	__async_put_domains_mask(power_domains, mask);
433 }
434 
435 static void
436 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
437 			       enum intel_display_power_domain domain)
438 {
439 	assert_async_put_domain_masks_disjoint(power_domains);
440 
441 	clear_bit(domain, power_domains->async_put_domains[0].bits);
442 	clear_bit(domain, power_domains->async_put_domains[1].bits);
443 }
444 
445 static bool
446 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
447 				       enum intel_display_power_domain domain)
448 {
449 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
450 	struct intel_power_domain_mask async_put_mask;
451 	bool ret = false;
452 
453 	async_put_domains_mask(power_domains, &async_put_mask);
454 	if (!test_bit(domain, async_put_mask.bits))
455 		goto out_verify;
456 
457 	async_put_domains_clear_domain(power_domains, domain);
458 
459 	ret = true;
460 
461 	async_put_domains_mask(power_domains, &async_put_mask);
462 	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
463 		goto out_verify;
464 
465 	cancel_delayed_work(&power_domains->async_put_work);
466 	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
467 				 fetch_and_zero(&power_domains->async_put_wakeref));
468 out_verify:
469 	verify_async_put_domains_state(power_domains);
470 
471 	return ret;
472 }
473 
474 static void
475 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
476 				 enum intel_display_power_domain domain)
477 {
478 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
479 	struct i915_power_well *power_well;
480 
481 	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
482 		return;
483 
484 	for_each_power_domain_well(dev_priv, power_well, domain)
485 		intel_power_well_get(dev_priv, power_well);
486 
487 	power_domains->domain_use_count[domain]++;
488 }
489 
490 /**
491  * intel_display_power_get - grab a power domain reference
492  * @dev_priv: i915 device instance
493  * @domain: power domain to reference
494  *
495  * This function grabs a power domain reference for @domain and ensures that the
496  * power domain and all its parents are powered up. Therefore users should only
497  * grab a reference to the innermost power domain they need.
498  *
499  * Any power domain reference obtained by this function must have a symmetric
500  * call to intel_display_power_put() to release the reference again.
501  */
502 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
503 					enum intel_display_power_domain domain)
504 {
505 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
506 	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
507 
508 	mutex_lock(&power_domains->lock);
509 	__intel_display_power_get_domain(dev_priv, domain);
510 	mutex_unlock(&power_domains->lock);
511 
512 	return wakeref;
513 }
514 
515 /**
516  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
517  * @dev_priv: i915 device instance
518  * @domain: power domain to reference
519  *
520  * This function grabs a power domain reference for @domain and ensures that the
521  * power domain and all its parents are powered up. Therefore users should only
522  * grab a reference to the innermost power domain they need.
523  *
524  * Any power domain reference obtained by this function must have a symmetric
525  * call to intel_display_power_put() to release the reference again.
526  */
527 intel_wakeref_t
528 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
529 				   enum intel_display_power_domain domain)
530 {
531 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
532 	intel_wakeref_t wakeref;
533 	bool is_enabled;
534 
535 	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
536 	if (!wakeref)
537 		return false;
538 
539 	mutex_lock(&power_domains->lock);
540 
541 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
542 		__intel_display_power_get_domain(dev_priv, domain);
543 		is_enabled = true;
544 	} else {
545 		is_enabled = false;
546 	}
547 
548 	mutex_unlock(&power_domains->lock);
549 
550 	if (!is_enabled) {
551 		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
552 		wakeref = 0;
553 	}
554 
555 	return wakeref;
556 }
557 
558 static void
559 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
560 				 enum intel_display_power_domain domain)
561 {
562 	struct i915_power_domains *power_domains;
563 	struct i915_power_well *power_well;
564 	const char *name = intel_display_power_domain_str(domain);
565 	struct intel_power_domain_mask async_put_mask;
566 
567 	power_domains = &dev_priv->display.power.domains;
568 
569 	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
570 		 "Use count on domain %s is already zero\n",
571 		 name);
572 	async_put_domains_mask(power_domains, &async_put_mask);
573 	drm_WARN(&dev_priv->drm,
574 		 test_bit(domain, async_put_mask.bits),
575 		 "Async disabling of domain %s is pending\n",
576 		 name);
577 
578 	power_domains->domain_use_count[domain]--;
579 
580 	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
581 		intel_power_well_put(dev_priv, power_well);
582 }
583 
584 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
585 				      enum intel_display_power_domain domain)
586 {
587 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
588 
589 	mutex_lock(&power_domains->lock);
590 	__intel_display_power_put_domain(dev_priv, domain);
591 	mutex_unlock(&power_domains->lock);
592 }
593 
594 static void
595 queue_async_put_domains_work(struct i915_power_domains *power_domains,
596 			     intel_wakeref_t wakeref)
597 {
598 	struct drm_i915_private *i915 = container_of(power_domains,
599 						     struct drm_i915_private,
600 						     display.power.domains);
601 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
602 	power_domains->async_put_wakeref = wakeref;
603 	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
604 						    &power_domains->async_put_work,
605 						    msecs_to_jiffies(100)));
606 }
607 
608 static void
609 release_async_put_domains(struct i915_power_domains *power_domains,
610 			  struct intel_power_domain_mask *mask)
611 {
612 	struct drm_i915_private *dev_priv =
613 		container_of(power_domains, struct drm_i915_private,
614 			     display.power.domains);
615 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
616 	enum intel_display_power_domain domain;
617 	intel_wakeref_t wakeref;
618 
619 	/*
620 	 * The caller must hold already raw wakeref, upgrade that to a proper
621 	 * wakeref to make the state checker happy about the HW access during
622 	 * power well disabling.
623 	 */
624 	assert_rpm_raw_wakeref_held(rpm);
625 	wakeref = intel_runtime_pm_get(rpm);
626 
627 	for_each_power_domain(domain, mask) {
628 		/* Clear before put, so put's sanity check is happy. */
629 		async_put_domains_clear_domain(power_domains, domain);
630 		__intel_display_power_put_domain(dev_priv, domain);
631 	}
632 
633 	intel_runtime_pm_put(rpm, wakeref);
634 }
635 
636 static void
637 intel_display_power_put_async_work(struct work_struct *work)
638 {
639 	struct drm_i915_private *dev_priv =
640 		container_of(work, struct drm_i915_private,
641 			     display.power.domains.async_put_work.work);
642 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
643 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
644 	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
645 	intel_wakeref_t old_work_wakeref = 0;
646 
647 	mutex_lock(&power_domains->lock);
648 
649 	/*
650 	 * Bail out if all the domain refs pending to be released were grabbed
651 	 * by subsequent gets or a flush_work.
652 	 */
653 	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
654 	if (!old_work_wakeref)
655 		goto out_verify;
656 
657 	release_async_put_domains(power_domains,
658 				  &power_domains->async_put_domains[0]);
659 
660 	/* Requeue the work if more domains were async put meanwhile. */
661 	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
662 		bitmap_copy(power_domains->async_put_domains[0].bits,
663 			    power_domains->async_put_domains[1].bits,
664 			    POWER_DOMAIN_NUM);
665 		bitmap_zero(power_domains->async_put_domains[1].bits,
666 			    POWER_DOMAIN_NUM);
667 		queue_async_put_domains_work(power_domains,
668 					     fetch_and_zero(&new_work_wakeref));
669 	} else {
670 		/*
671 		 * Cancel the work that got queued after this one got dequeued,
672 		 * since here we released the corresponding async-put reference.
673 		 */
674 		cancel_delayed_work(&power_domains->async_put_work);
675 	}
676 
677 out_verify:
678 	verify_async_put_domains_state(power_domains);
679 
680 	mutex_unlock(&power_domains->lock);
681 
682 	if (old_work_wakeref)
683 		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
684 	if (new_work_wakeref)
685 		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
686 }
687 
688 /**
689  * intel_display_power_put_async - release a power domain reference asynchronously
690  * @i915: i915 device instance
691  * @domain: power domain to reference
692  * @wakeref: wakeref acquired for the reference that is being released
693  *
694  * This function drops the power domain reference obtained by
695  * intel_display_power_get*() and schedules a work to power down the
696  * corresponding hardware block if this is the last reference.
697  */
698 void __intel_display_power_put_async(struct drm_i915_private *i915,
699 				     enum intel_display_power_domain domain,
700 				     intel_wakeref_t wakeref)
701 {
702 	struct i915_power_domains *power_domains = &i915->display.power.domains;
703 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
704 	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
705 
706 	mutex_lock(&power_domains->lock);
707 
708 	if (power_domains->domain_use_count[domain] > 1) {
709 		__intel_display_power_put_domain(i915, domain);
710 
711 		goto out_verify;
712 	}
713 
714 	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
715 
716 	/* Let a pending work requeue itself or queue a new one. */
717 	if (power_domains->async_put_wakeref) {
718 		set_bit(domain, power_domains->async_put_domains[1].bits);
719 	} else {
720 		set_bit(domain, power_domains->async_put_domains[0].bits);
721 		queue_async_put_domains_work(power_domains,
722 					     fetch_and_zero(&work_wakeref));
723 	}
724 
725 out_verify:
726 	verify_async_put_domains_state(power_domains);
727 
728 	mutex_unlock(&power_domains->lock);
729 
730 	if (work_wakeref)
731 		intel_runtime_pm_put_raw(rpm, work_wakeref);
732 
733 	intel_runtime_pm_put(rpm, wakeref);
734 }
735 
736 /**
737  * intel_display_power_flush_work - flushes the async display power disabling work
738  * @i915: i915 device instance
739  *
740  * Flushes any pending work that was scheduled by a preceding
741  * intel_display_power_put_async() call, completing the disabling of the
742  * corresponding power domains.
743  *
744  * Note that the work handler function may still be running after this
745  * function returns; to ensure that the work handler isn't running use
746  * intel_display_power_flush_work_sync() instead.
747  */
748 void intel_display_power_flush_work(struct drm_i915_private *i915)
749 {
750 	struct i915_power_domains *power_domains = &i915->display.power.domains;
751 	struct intel_power_domain_mask async_put_mask;
752 	intel_wakeref_t work_wakeref;
753 
754 	mutex_lock(&power_domains->lock);
755 
756 	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
757 	if (!work_wakeref)
758 		goto out_verify;
759 
760 	async_put_domains_mask(power_domains, &async_put_mask);
761 	release_async_put_domains(power_domains, &async_put_mask);
762 	cancel_delayed_work(&power_domains->async_put_work);
763 
764 out_verify:
765 	verify_async_put_domains_state(power_domains);
766 
767 	mutex_unlock(&power_domains->lock);
768 
769 	if (work_wakeref)
770 		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
771 }
772 
773 /**
774  * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
775  * @i915: i915 device instance
776  *
777  * Like intel_display_power_flush_work(), but also ensure that the work
778  * handler function is not running any more when this function returns.
779  */
780 static void
781 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
782 {
783 	struct i915_power_domains *power_domains = &i915->display.power.domains;
784 
785 	intel_display_power_flush_work(i915);
786 	cancel_delayed_work_sync(&power_domains->async_put_work);
787 
788 	verify_async_put_domains_state(power_domains);
789 
790 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
791 }
792 
793 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
794 /**
795  * intel_display_power_put - release a power domain reference
796  * @dev_priv: i915 device instance
797  * @domain: power domain to reference
798  * @wakeref: wakeref acquired for the reference that is being released
799  *
800  * This function drops the power domain reference obtained by
801  * intel_display_power_get() and might power down the corresponding hardware
802  * block right away if this is the last reference.
803  */
804 void intel_display_power_put(struct drm_i915_private *dev_priv,
805 			     enum intel_display_power_domain domain,
806 			     intel_wakeref_t wakeref)
807 {
808 	__intel_display_power_put(dev_priv, domain);
809 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
810 }
811 #else
812 /**
813  * intel_display_power_put_unchecked - release an unchecked power domain reference
814  * @dev_priv: i915 device instance
815  * @domain: power domain to reference
816  *
817  * This function drops the power domain reference obtained by
818  * intel_display_power_get() and might power down the corresponding hardware
819  * block right away if this is the last reference.
820  *
821  * This function is only for the power domain code's internal use to suppress wakeref
822  * tracking when the correspondig debug kconfig option is disabled, should not
823  * be used otherwise.
824  */
825 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
826 				       enum intel_display_power_domain domain)
827 {
828 	__intel_display_power_put(dev_priv, domain);
829 	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
830 }
831 #endif
832 
833 void
834 intel_display_power_get_in_set(struct drm_i915_private *i915,
835 			       struct intel_display_power_domain_set *power_domain_set,
836 			       enum intel_display_power_domain domain)
837 {
838 	intel_wakeref_t __maybe_unused wf;
839 
840 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
841 
842 	wf = intel_display_power_get(i915, domain);
843 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
844 	power_domain_set->wakerefs[domain] = wf;
845 #endif
846 	set_bit(domain, power_domain_set->mask.bits);
847 }
848 
849 bool
850 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
851 					  struct intel_display_power_domain_set *power_domain_set,
852 					  enum intel_display_power_domain domain)
853 {
854 	intel_wakeref_t wf;
855 
856 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
857 
858 	wf = intel_display_power_get_if_enabled(i915, domain);
859 	if (!wf)
860 		return false;
861 
862 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
863 	power_domain_set->wakerefs[domain] = wf;
864 #endif
865 	set_bit(domain, power_domain_set->mask.bits);
866 
867 	return true;
868 }
869 
870 void
871 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
872 				    struct intel_display_power_domain_set *power_domain_set,
873 				    struct intel_power_domain_mask *mask)
874 {
875 	enum intel_display_power_domain domain;
876 
877 	drm_WARN_ON(&i915->drm,
878 		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
879 
880 	for_each_power_domain(domain, mask) {
881 		intel_wakeref_t __maybe_unused wf = -1;
882 
883 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
884 		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
885 #endif
886 		intel_display_power_put(i915, domain, wf);
887 		clear_bit(domain, power_domain_set->mask.bits);
888 	}
889 }
890 
891 static int
892 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
893 				   int disable_power_well)
894 {
895 	if (disable_power_well >= 0)
896 		return !!disable_power_well;
897 
898 	return 1;
899 }
900 
901 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
902 			       int enable_dc)
903 {
904 	u32 mask;
905 	int requested_dc;
906 	int max_dc;
907 
908 	if (!HAS_DISPLAY(dev_priv))
909 		return 0;
910 
911 	if (IS_DG2(dev_priv))
912 		max_dc = 1;
913 	else if (IS_DG1(dev_priv))
914 		max_dc = 3;
915 	else if (DISPLAY_VER(dev_priv) >= 12)
916 		max_dc = 4;
917 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
918 		max_dc = 1;
919 	else if (DISPLAY_VER(dev_priv) >= 9)
920 		max_dc = 2;
921 	else
922 		max_dc = 0;
923 
924 	/*
925 	 * DC9 has a separate HW flow from the rest of the DC states,
926 	 * not depending on the DMC firmware. It's needed by system
927 	 * suspend/resume, so allow it unconditionally.
928 	 */
929 	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
930 		DISPLAY_VER(dev_priv) >= 11 ?
931 	       DC_STATE_EN_DC9 : 0;
932 
933 	if (!dev_priv->params.disable_power_well)
934 		max_dc = 0;
935 
936 	if (enable_dc >= 0 && enable_dc <= max_dc) {
937 		requested_dc = enable_dc;
938 	} else if (enable_dc == -1) {
939 		requested_dc = max_dc;
940 	} else if (enable_dc > max_dc && enable_dc <= 4) {
941 		drm_dbg_kms(&dev_priv->drm,
942 			    "Adjusting requested max DC state (%d->%d)\n",
943 			    enable_dc, max_dc);
944 		requested_dc = max_dc;
945 	} else {
946 		drm_err(&dev_priv->drm,
947 			"Unexpected value for enable_dc (%d)\n", enable_dc);
948 		requested_dc = max_dc;
949 	}
950 
951 	switch (requested_dc) {
952 	case 4:
953 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
954 		break;
955 	case 3:
956 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
957 		break;
958 	case 2:
959 		mask |= DC_STATE_EN_UPTO_DC6;
960 		break;
961 	case 1:
962 		mask |= DC_STATE_EN_UPTO_DC5;
963 		break;
964 	}
965 
966 	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
967 
968 	return mask;
969 }
970 
971 /**
972  * intel_power_domains_init - initializes the power domain structures
973  * @dev_priv: i915 device instance
974  *
975  * Initializes the power domain structures for @dev_priv depending upon the
976  * supported platform.
977  */
978 int intel_power_domains_init(struct drm_i915_private *dev_priv)
979 {
980 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
981 
982 	dev_priv->params.disable_power_well =
983 		sanitize_disable_power_well_option(dev_priv,
984 						   dev_priv->params.disable_power_well);
985 	dev_priv->display.dmc.allowed_dc_mask =
986 		get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
987 
988 	dev_priv->display.dmc.target_dc_state =
989 		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
990 
991 	mutex_init(&power_domains->lock);
992 
993 	INIT_DELAYED_WORK(&power_domains->async_put_work,
994 			  intel_display_power_put_async_work);
995 
996 	return intel_display_power_map_init(power_domains);
997 }
998 
999 /**
1000  * intel_power_domains_cleanup - clean up power domains resources
1001  * @dev_priv: i915 device instance
1002  *
1003  * Release any resources acquired by intel_power_domains_init()
1004  */
1005 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1006 {
1007 	intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1008 }
1009 
1010 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1011 {
1012 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1013 	struct i915_power_well *power_well;
1014 
1015 	mutex_lock(&power_domains->lock);
1016 	for_each_power_well(dev_priv, power_well)
1017 		intel_power_well_sync_hw(dev_priv, power_well);
1018 	mutex_unlock(&power_domains->lock);
1019 }
1020 
1021 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1022 				enum dbuf_slice slice, bool enable)
1023 {
1024 	i915_reg_t reg = DBUF_CTL_S(slice);
1025 	bool state;
1026 
1027 	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1028 		     enable ? DBUF_POWER_REQUEST : 0);
1029 	intel_de_posting_read(dev_priv, reg);
1030 	udelay(10);
1031 
1032 	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1033 	drm_WARN(&dev_priv->drm, enable != state,
1034 		 "DBuf slice %d power %s timeout!\n",
1035 		 slice, str_enable_disable(enable));
1036 }
1037 
1038 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1039 			     u8 req_slices)
1040 {
1041 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1042 	u8 slice_mask = INTEL_INFO(dev_priv)->display.dbuf.slice_mask;
1043 	enum dbuf_slice slice;
1044 
1045 	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1046 		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1047 		 req_slices, slice_mask);
1048 
1049 	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1050 		    req_slices);
1051 
1052 	/*
1053 	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1054 	 * being called from intel_dp_detect for instance,
1055 	 * which causes assertion triggered by race condition,
1056 	 * as gen9_assert_dbuf_enabled might preempt this when registers
1057 	 * were already updated, while dev_priv was not.
1058 	 */
1059 	mutex_lock(&power_domains->lock);
1060 
1061 	for_each_dbuf_slice(dev_priv, slice)
1062 		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1063 
1064 	dev_priv->display.dbuf.enabled_slices = req_slices;
1065 
1066 	mutex_unlock(&power_domains->lock);
1067 }
1068 
1069 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1070 {
1071 	dev_priv->display.dbuf.enabled_slices =
1072 		intel_enabled_dbuf_slices_mask(dev_priv);
1073 
1074 	/*
1075 	 * Just power up at least 1 slice, we will
1076 	 * figure out later which slices we have and what we need.
1077 	 */
1078 	gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) |
1079 				dev_priv->display.dbuf.enabled_slices);
1080 }
1081 
1082 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1083 {
1084 	gen9_dbuf_slices_update(dev_priv, 0);
1085 }
1086 
1087 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1088 {
1089 	enum dbuf_slice slice;
1090 
1091 	if (IS_ALDERLAKE_P(dev_priv))
1092 		return;
1093 
1094 	for_each_dbuf_slice(dev_priv, slice)
1095 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1096 			     DBUF_TRACKER_STATE_SERVICE_MASK,
1097 			     DBUF_TRACKER_STATE_SERVICE(8));
1098 }
1099 
1100 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1101 {
1102 	unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask;
1103 	u32 mask, val, i;
1104 
1105 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1106 		return;
1107 
1108 	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1109 		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1110 		MBUS_ABOX_B_CREDIT_MASK |
1111 		MBUS_ABOX_BW_CREDIT_MASK;
1112 	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1113 		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1114 		MBUS_ABOX_B_CREDIT(1) |
1115 		MBUS_ABOX_BW_CREDIT(1);
1116 
1117 	/*
1118 	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1119 	 * expect us to program the abox_ctl0 register as well, even though
1120 	 * we don't have to program other instance-0 registers like BW_BUDDY.
1121 	 */
1122 	if (DISPLAY_VER(dev_priv) == 12)
1123 		abox_regs |= BIT(0);
1124 
1125 	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1126 		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1127 }
1128 
1129 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1130 {
1131 	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1132 
1133 	/*
1134 	 * The LCPLL register should be turned on by the BIOS. For now
1135 	 * let's just check its state and print errors in case
1136 	 * something is wrong.  Don't even try to turn it on.
1137 	 */
1138 
1139 	if (val & LCPLL_CD_SOURCE_FCLK)
1140 		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1141 
1142 	if (val & LCPLL_PLL_DISABLE)
1143 		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1144 
1145 	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1146 		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1147 }
1148 
1149 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1150 {
1151 	struct intel_crtc *crtc;
1152 
1153 	for_each_intel_crtc(&dev_priv->drm, crtc)
1154 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
1155 				pipe_name(crtc->pipe));
1156 
1157 	I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1158 			"Display power well on\n");
1159 	I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1160 			"SPLL enabled\n");
1161 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1162 			"WRPLL1 enabled\n");
1163 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1164 			"WRPLL2 enabled\n");
1165 	I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1166 			"Panel power on\n");
1167 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1168 			"CPU PWM1 enabled\n");
1169 	if (IS_HASWELL(dev_priv))
1170 		I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1171 				"CPU PWM2 enabled\n");
1172 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1173 			"PCH PWM1 enabled\n");
1174 	I915_STATE_WARN(intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
1175 			"Utility pin enabled\n");
1176 	I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1177 			"PCH GTC enabled\n");
1178 
1179 	/*
1180 	 * In theory we can still leave IRQs enabled, as long as only the HPD
1181 	 * interrupts remain enabled. We used to check for that, but since it's
1182 	 * gen-specific and since we only disable LCPLL after we fully disable
1183 	 * the interrupts, the check below should be enough.
1184 	 */
1185 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
1186 }
1187 
1188 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1189 {
1190 	if (IS_HASWELL(dev_priv))
1191 		return intel_de_read(dev_priv, D_COMP_HSW);
1192 	else
1193 		return intel_de_read(dev_priv, D_COMP_BDW);
1194 }
1195 
1196 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1197 {
1198 	if (IS_HASWELL(dev_priv)) {
1199 		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1200 			drm_dbg_kms(&dev_priv->drm,
1201 				    "Failed to write to D_COMP\n");
1202 	} else {
1203 		intel_de_write(dev_priv, D_COMP_BDW, val);
1204 		intel_de_posting_read(dev_priv, D_COMP_BDW);
1205 	}
1206 }
1207 
1208 /*
1209  * This function implements pieces of two sequences from BSpec:
1210  * - Sequence for display software to disable LCPLL
1211  * - Sequence for display software to allow package C8+
1212  * The steps implemented here are just the steps that actually touch the LCPLL
1213  * register. Callers should take care of disabling all the display engine
1214  * functions, doing the mode unset, fixing interrupts, etc.
1215  */
1216 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1217 			      bool switch_to_fclk, bool allow_power_down)
1218 {
1219 	u32 val;
1220 
1221 	assert_can_disable_lcpll(dev_priv);
1222 
1223 	val = intel_de_read(dev_priv, LCPLL_CTL);
1224 
1225 	if (switch_to_fclk) {
1226 		val |= LCPLL_CD_SOURCE_FCLK;
1227 		intel_de_write(dev_priv, LCPLL_CTL, val);
1228 
1229 		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1230 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1231 			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1232 
1233 		val = intel_de_read(dev_priv, LCPLL_CTL);
1234 	}
1235 
1236 	val |= LCPLL_PLL_DISABLE;
1237 	intel_de_write(dev_priv, LCPLL_CTL, val);
1238 	intel_de_posting_read(dev_priv, LCPLL_CTL);
1239 
1240 	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1241 		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1242 
1243 	val = hsw_read_dcomp(dev_priv);
1244 	val |= D_COMP_COMP_DISABLE;
1245 	hsw_write_dcomp(dev_priv, val);
1246 	ndelay(100);
1247 
1248 	if (wait_for((hsw_read_dcomp(dev_priv) &
1249 		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1250 		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1251 
1252 	if (allow_power_down) {
1253 		val = intel_de_read(dev_priv, LCPLL_CTL);
1254 		val |= LCPLL_POWER_DOWN_ALLOW;
1255 		intel_de_write(dev_priv, LCPLL_CTL, val);
1256 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1257 	}
1258 }
1259 
1260 /*
1261  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1262  * source.
1263  */
1264 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1265 {
1266 	u32 val;
1267 
1268 	val = intel_de_read(dev_priv, LCPLL_CTL);
1269 
1270 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1271 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1272 		return;
1273 
1274 	/*
1275 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1276 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1277 	 */
1278 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1279 
1280 	if (val & LCPLL_POWER_DOWN_ALLOW) {
1281 		val &= ~LCPLL_POWER_DOWN_ALLOW;
1282 		intel_de_write(dev_priv, LCPLL_CTL, val);
1283 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1284 	}
1285 
1286 	val = hsw_read_dcomp(dev_priv);
1287 	val |= D_COMP_COMP_FORCE;
1288 	val &= ~D_COMP_COMP_DISABLE;
1289 	hsw_write_dcomp(dev_priv, val);
1290 
1291 	val = intel_de_read(dev_priv, LCPLL_CTL);
1292 	val &= ~LCPLL_PLL_DISABLE;
1293 	intel_de_write(dev_priv, LCPLL_CTL, val);
1294 
1295 	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1296 		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1297 
1298 	if (val & LCPLL_CD_SOURCE_FCLK) {
1299 		val = intel_de_read(dev_priv, LCPLL_CTL);
1300 		val &= ~LCPLL_CD_SOURCE_FCLK;
1301 		intel_de_write(dev_priv, LCPLL_CTL, val);
1302 
1303 		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1304 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1305 			drm_err(&dev_priv->drm,
1306 				"Switching back to LCPLL failed\n");
1307 	}
1308 
1309 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1310 
1311 	intel_update_cdclk(dev_priv);
1312 	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1313 }
1314 
1315 /*
1316  * Package states C8 and deeper are really deep PC states that can only be
1317  * reached when all the devices on the system allow it, so even if the graphics
1318  * device allows PC8+, it doesn't mean the system will actually get to these
1319  * states. Our driver only allows PC8+ when going into runtime PM.
1320  *
1321  * The requirements for PC8+ are that all the outputs are disabled, the power
1322  * well is disabled and most interrupts are disabled, and these are also
1323  * requirements for runtime PM. When these conditions are met, we manually do
1324  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1325  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1326  * hang the machine.
1327  *
1328  * When we really reach PC8 or deeper states (not just when we allow it) we lose
1329  * the state of some registers, so when we come back from PC8+ we need to
1330  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1331  * need to take care of the registers kept by RC6. Notice that this happens even
1332  * if we don't put the device in PCI D3 state (which is what currently happens
1333  * because of the runtime PM support).
1334  *
1335  * For more, read "Display Sequences for Package C8" on the hardware
1336  * documentation.
1337  */
1338 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1339 {
1340 	u32 val;
1341 
1342 	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1343 
1344 	if (HAS_PCH_LPT_LP(dev_priv)) {
1345 		val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
1346 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
1347 		intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
1348 	}
1349 
1350 	lpt_disable_clkout_dp(dev_priv);
1351 	hsw_disable_lcpll(dev_priv, true, true);
1352 }
1353 
1354 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1355 {
1356 	u32 val;
1357 
1358 	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1359 
1360 	hsw_restore_lcpll(dev_priv);
1361 	intel_init_pch_refclk(dev_priv);
1362 
1363 	if (HAS_PCH_LPT_LP(dev_priv)) {
1364 		val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
1365 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
1366 		intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
1367 	}
1368 }
1369 
1370 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1371 				      bool enable)
1372 {
1373 	i915_reg_t reg;
1374 	u32 reset_bits, val;
1375 
1376 	if (IS_IVYBRIDGE(dev_priv)) {
1377 		reg = GEN7_MSG_CTL;
1378 		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1379 	} else {
1380 		reg = HSW_NDE_RSTWRN_OPT;
1381 		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1382 	}
1383 
1384 	if (DISPLAY_VER(dev_priv) >= 14)
1385 		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1386 
1387 	val = intel_de_read(dev_priv, reg);
1388 
1389 	if (enable)
1390 		val |= reset_bits;
1391 	else
1392 		val &= ~reset_bits;
1393 
1394 	intel_de_write(dev_priv, reg, val);
1395 }
1396 
1397 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1398 				  bool resume)
1399 {
1400 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1401 	struct i915_power_well *well;
1402 
1403 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1404 
1405 	/* enable PCH reset handshake */
1406 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1407 
1408 	if (!HAS_DISPLAY(dev_priv))
1409 		return;
1410 
1411 	/* enable PG1 and Misc I/O */
1412 	mutex_lock(&power_domains->lock);
1413 
1414 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1415 	intel_power_well_enable(dev_priv, well);
1416 
1417 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1418 	intel_power_well_enable(dev_priv, well);
1419 
1420 	mutex_unlock(&power_domains->lock);
1421 
1422 	intel_cdclk_init_hw(dev_priv);
1423 
1424 	gen9_dbuf_enable(dev_priv);
1425 
1426 	if (resume)
1427 		intel_dmc_load_program(dev_priv);
1428 }
1429 
1430 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1431 {
1432 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1433 	struct i915_power_well *well;
1434 
1435 	if (!HAS_DISPLAY(dev_priv))
1436 		return;
1437 
1438 	gen9_disable_dc_states(dev_priv);
1439 	/* TODO: disable DMC program */
1440 
1441 	gen9_dbuf_disable(dev_priv);
1442 
1443 	intel_cdclk_uninit_hw(dev_priv);
1444 
1445 	/* The spec doesn't call for removing the reset handshake flag */
1446 	/* disable PG1 and Misc I/O */
1447 
1448 	mutex_lock(&power_domains->lock);
1449 
1450 	/*
1451 	 * BSpec says to keep the MISC IO power well enabled here, only
1452 	 * remove our request for power well 1.
1453 	 * Note that even though the driver's request is removed power well 1
1454 	 * may stay enabled after this due to DMC's own request on it.
1455 	 */
1456 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1457 	intel_power_well_disable(dev_priv, well);
1458 
1459 	mutex_unlock(&power_domains->lock);
1460 
1461 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1462 }
1463 
1464 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1465 {
1466 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1467 	struct i915_power_well *well;
1468 
1469 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1470 
1471 	/*
1472 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1473 	 * or else the reset will hang because there is no PCH to respond.
1474 	 * Move the handshake programming to initialization sequence.
1475 	 * Previously was left up to BIOS.
1476 	 */
1477 	intel_pch_reset_handshake(dev_priv, false);
1478 
1479 	if (!HAS_DISPLAY(dev_priv))
1480 		return;
1481 
1482 	/* Enable PG1 */
1483 	mutex_lock(&power_domains->lock);
1484 
1485 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1486 	intel_power_well_enable(dev_priv, well);
1487 
1488 	mutex_unlock(&power_domains->lock);
1489 
1490 	intel_cdclk_init_hw(dev_priv);
1491 
1492 	gen9_dbuf_enable(dev_priv);
1493 
1494 	if (resume)
1495 		intel_dmc_load_program(dev_priv);
1496 }
1497 
1498 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1499 {
1500 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1501 	struct i915_power_well *well;
1502 
1503 	if (!HAS_DISPLAY(dev_priv))
1504 		return;
1505 
1506 	gen9_disable_dc_states(dev_priv);
1507 	/* TODO: disable DMC program */
1508 
1509 	gen9_dbuf_disable(dev_priv);
1510 
1511 	intel_cdclk_uninit_hw(dev_priv);
1512 
1513 	/* The spec doesn't call for removing the reset handshake flag */
1514 
1515 	/*
1516 	 * Disable PW1 (PG1).
1517 	 * Note that even though the driver's request is removed power well 1
1518 	 * may stay enabled after this due to DMC's own request on it.
1519 	 */
1520 	mutex_lock(&power_domains->lock);
1521 
1522 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1523 	intel_power_well_disable(dev_priv, well);
1524 
1525 	mutex_unlock(&power_domains->lock);
1526 
1527 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1528 }
1529 
1530 struct buddy_page_mask {
1531 	u32 page_mask;
1532 	u8 type;
1533 	u8 num_channels;
1534 };
1535 
1536 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1537 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1538 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1539 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1540 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1541 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1542 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1543 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1544 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1545 	{}
1546 };
1547 
1548 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1549 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1550 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1551 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1552 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1553 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1554 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1555 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1556 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1557 	{}
1558 };
1559 
1560 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1561 {
1562 	enum intel_dram_type type = dev_priv->dram_info.type;
1563 	u8 num_channels = dev_priv->dram_info.num_channels;
1564 	const struct buddy_page_mask *table;
1565 	unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask;
1566 	int config, i;
1567 
1568 	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1569 	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1570 		return;
1571 
1572 	if (IS_ALDERLAKE_S(dev_priv) ||
1573 	    IS_DG1_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1574 	    IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1575 	    IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
1576 		/* Wa_1409767108:tgl,dg1,adl-s */
1577 		table = wa_1409767108_buddy_page_masks;
1578 	else
1579 		table = tgl_buddy_page_masks;
1580 
1581 	for (config = 0; table[config].page_mask != 0; config++)
1582 		if (table[config].num_channels == num_channels &&
1583 		    table[config].type == type)
1584 			break;
1585 
1586 	if (table[config].page_mask == 0) {
1587 		drm_dbg(&dev_priv->drm,
1588 			"Unknown memory configuration; disabling address buddy logic.\n");
1589 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1590 			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1591 				       BW_BUDDY_DISABLE);
1592 	} else {
1593 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1594 			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1595 				       table[config].page_mask);
1596 
1597 			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1598 			if (DISPLAY_VER(dev_priv) == 12)
1599 				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1600 					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1601 					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1602 		}
1603 	}
1604 }
1605 
1606 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1607 				  bool resume)
1608 {
1609 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1610 	struct i915_power_well *well;
1611 	u32 val;
1612 
1613 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1614 
1615 	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1616 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1617 	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1618 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1619 			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1620 
1621 	/* 1. Enable PCH reset handshake. */
1622 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1623 
1624 	if (!HAS_DISPLAY(dev_priv))
1625 		return;
1626 
1627 	/* 2. Initialize all combo phys */
1628 	intel_combo_phy_init(dev_priv);
1629 
1630 	/*
1631 	 * 3. Enable Power Well 1 (PG1).
1632 	 *    The AUX IO power wells will be enabled on demand.
1633 	 */
1634 	mutex_lock(&power_domains->lock);
1635 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1636 	intel_power_well_enable(dev_priv, well);
1637 	mutex_unlock(&power_domains->lock);
1638 
1639 	/* 4. Enable CDCLK. */
1640 	intel_cdclk_init_hw(dev_priv);
1641 
1642 	if (DISPLAY_VER(dev_priv) >= 12)
1643 		gen12_dbuf_slices_config(dev_priv);
1644 
1645 	/* 5. Enable DBUF. */
1646 	gen9_dbuf_enable(dev_priv);
1647 
1648 	/* 6. Setup MBUS. */
1649 	icl_mbus_init(dev_priv);
1650 
1651 	/* 7. Program arbiter BW_BUDDY registers */
1652 	if (DISPLAY_VER(dev_priv) >= 12)
1653 		tgl_bw_buddy_init(dev_priv);
1654 
1655 	/* 8. Ensure PHYs have completed calibration and adaptation */
1656 	if (IS_DG2(dev_priv))
1657 		intel_snps_phy_wait_for_calibration(dev_priv);
1658 
1659 	if (resume)
1660 		intel_dmc_load_program(dev_priv);
1661 
1662 	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
1663 	if (DISPLAY_VER(dev_priv) >= 12) {
1664 		val = DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1665 		      DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR;
1666 		intel_uncore_rmw(&dev_priv->uncore, GEN11_CHICKEN_DCPR_2, 0, val);
1667 	}
1668 
1669 	/* Wa_14011503030:xelpd */
1670 	if (DISPLAY_VER(dev_priv) >= 13)
1671 		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1672 }
1673 
1674 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1675 {
1676 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1677 	struct i915_power_well *well;
1678 
1679 	if (!HAS_DISPLAY(dev_priv))
1680 		return;
1681 
1682 	gen9_disable_dc_states(dev_priv);
1683 	intel_dmc_disable_program(dev_priv);
1684 
1685 	/* 1. Disable all display engine functions -> aready done */
1686 
1687 	/* 2. Disable DBUF */
1688 	gen9_dbuf_disable(dev_priv);
1689 
1690 	/* 3. Disable CD clock */
1691 	intel_cdclk_uninit_hw(dev_priv);
1692 
1693 	/*
1694 	 * 4. Disable Power Well 1 (PG1).
1695 	 *    The AUX IO power wells are toggled on demand, so they are already
1696 	 *    disabled at this point.
1697 	 */
1698 	mutex_lock(&power_domains->lock);
1699 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1700 	intel_power_well_disable(dev_priv, well);
1701 	mutex_unlock(&power_domains->lock);
1702 
1703 	/* 5. */
1704 	intel_combo_phy_uninit(dev_priv);
1705 }
1706 
1707 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1708 {
1709 	struct i915_power_well *cmn_bc =
1710 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1711 	struct i915_power_well *cmn_d =
1712 		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1713 
1714 	/*
1715 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1716 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1717 	 * instead maintain a shadow copy ourselves. Use the actual
1718 	 * power well state and lane status to reconstruct the
1719 	 * expected initial value.
1720 	 */
1721 	dev_priv->display.power.chv_phy_control =
1722 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1723 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1724 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1725 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1726 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1727 
1728 	/*
1729 	 * If all lanes are disabled we leave the override disabled
1730 	 * with all power down bits cleared to match the state we
1731 	 * would use after disabling the port. Otherwise enable the
1732 	 * override and set the lane powerdown bits accding to the
1733 	 * current lane status.
1734 	 */
1735 	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1736 		u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1737 		unsigned int mask;
1738 
1739 		mask = status & DPLL_PORTB_READY_MASK;
1740 		if (mask == 0xf)
1741 			mask = 0x0;
1742 		else
1743 			dev_priv->display.power.chv_phy_control |=
1744 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1745 
1746 		dev_priv->display.power.chv_phy_control |=
1747 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1748 
1749 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1750 		if (mask == 0xf)
1751 			mask = 0x0;
1752 		else
1753 			dev_priv->display.power.chv_phy_control |=
1754 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1755 
1756 		dev_priv->display.power.chv_phy_control |=
1757 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1758 
1759 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1760 
1761 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1762 	} else {
1763 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1764 	}
1765 
1766 	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1767 		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1768 		unsigned int mask;
1769 
1770 		mask = status & DPLL_PORTD_READY_MASK;
1771 
1772 		if (mask == 0xf)
1773 			mask = 0x0;
1774 		else
1775 			dev_priv->display.power.chv_phy_control |=
1776 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1777 
1778 		dev_priv->display.power.chv_phy_control |=
1779 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1780 
1781 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1782 
1783 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1784 	} else {
1785 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1786 	}
1787 
1788 	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1789 		    dev_priv->display.power.chv_phy_control);
1790 
1791 	/* Defer application of initial phy_control to enabling the powerwell */
1792 }
1793 
1794 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1795 {
1796 	struct i915_power_well *cmn =
1797 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1798 	struct i915_power_well *disp2d =
1799 		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1800 
1801 	/* If the display might be already active skip this */
1802 	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1803 	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1804 	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1805 		return;
1806 
1807 	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1808 
1809 	/* cmnlane needs DPLL registers */
1810 	intel_power_well_enable(dev_priv, disp2d);
1811 
1812 	/*
1813 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1814 	 * Need to assert and de-assert PHY SB reset by gating the
1815 	 * common lane power, then un-gating it.
1816 	 * Simply ungating isn't enough to reset the PHY enough to get
1817 	 * ports and lanes running.
1818 	 */
1819 	intel_power_well_disable(dev_priv, cmn);
1820 }
1821 
1822 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1823 {
1824 	bool ret;
1825 
1826 	vlv_punit_get(dev_priv);
1827 	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1828 	vlv_punit_put(dev_priv);
1829 
1830 	return ret;
1831 }
1832 
1833 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1834 {
1835 	drm_WARN(&dev_priv->drm,
1836 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1837 		 "VED not power gated\n");
1838 }
1839 
1840 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1841 {
1842 	static const struct pci_device_id isp_ids[] = {
1843 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1844 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1845 		{}
1846 	};
1847 
1848 	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1849 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1850 		 "ISP not power gated\n");
1851 }
1852 
1853 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1854 
1855 /**
1856  * intel_power_domains_init_hw - initialize hardware power domain state
1857  * @i915: i915 device instance
1858  * @resume: Called from resume code paths or not
1859  *
1860  * This function initializes the hardware power domain state and enables all
1861  * power wells belonging to the INIT power domain. Power wells in other
1862  * domains (and not in the INIT domain) are referenced or disabled by
1863  * intel_modeset_readout_hw_state(). After that the reference count of each
1864  * power well must match its HW enabled state, see
1865  * intel_power_domains_verify_state().
1866  *
1867  * It will return with power domains disabled (to be enabled later by
1868  * intel_power_domains_enable()) and must be paired with
1869  * intel_power_domains_driver_remove().
1870  */
1871 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1872 {
1873 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1874 
1875 	power_domains->initializing = true;
1876 
1877 	if (DISPLAY_VER(i915) >= 11) {
1878 		icl_display_core_init(i915, resume);
1879 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1880 		bxt_display_core_init(i915, resume);
1881 	} else if (DISPLAY_VER(i915) == 9) {
1882 		skl_display_core_init(i915, resume);
1883 	} else if (IS_CHERRYVIEW(i915)) {
1884 		mutex_lock(&power_domains->lock);
1885 		chv_phy_control_init(i915);
1886 		mutex_unlock(&power_domains->lock);
1887 		assert_isp_power_gated(i915);
1888 	} else if (IS_VALLEYVIEW(i915)) {
1889 		mutex_lock(&power_domains->lock);
1890 		vlv_cmnlane_wa(i915);
1891 		mutex_unlock(&power_domains->lock);
1892 		assert_ved_power_gated(i915);
1893 		assert_isp_power_gated(i915);
1894 	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1895 		hsw_assert_cdclk(i915);
1896 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1897 	} else if (IS_IVYBRIDGE(i915)) {
1898 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1899 	}
1900 
1901 	/*
1902 	 * Keep all power wells enabled for any dependent HW access during
1903 	 * initialization and to make sure we keep BIOS enabled display HW
1904 	 * resources powered until display HW readout is complete. We drop
1905 	 * this reference in intel_power_domains_enable().
1906 	 */
1907 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1908 	power_domains->init_wakeref =
1909 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1910 
1911 	/* Disable power support if the user asked so. */
1912 	if (!i915->params.disable_power_well) {
1913 		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1914 		i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1915 										      POWER_DOMAIN_INIT);
1916 	}
1917 	intel_power_domains_sync_hw(i915);
1918 
1919 	power_domains->initializing = false;
1920 }
1921 
1922 /**
1923  * intel_power_domains_driver_remove - deinitialize hw power domain state
1924  * @i915: i915 device instance
1925  *
1926  * De-initializes the display power domain HW state. It also ensures that the
1927  * device stays powered up so that the driver can be reloaded.
1928  *
1929  * It must be called with power domains already disabled (after a call to
1930  * intel_power_domains_disable()) and must be paired with
1931  * intel_power_domains_init_hw().
1932  */
1933 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1934 {
1935 	intel_wakeref_t wakeref __maybe_unused =
1936 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1937 
1938 	/* Remove the refcount we took to keep power well support disabled. */
1939 	if (!i915->params.disable_power_well)
1940 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1941 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1942 
1943 	intel_display_power_flush_work_sync(i915);
1944 
1945 	intel_power_domains_verify_state(i915);
1946 
1947 	/* Keep the power well enabled, but cancel its rpm wakeref. */
1948 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1949 }
1950 
1951 /**
1952  * intel_power_domains_sanitize_state - sanitize power domains state
1953  * @i915: i915 device instance
1954  *
1955  * Sanitize the power domains state during driver loading and system resume.
1956  * The function will disable all display power wells that BIOS has enabled
1957  * without a user for it (any user for a power well has taken a reference
1958  * on it by the time this function is called, after the state of all the
1959  * pipe, encoder, etc. HW resources have been sanitized).
1960  */
1961 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
1962 {
1963 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1964 	struct i915_power_well *power_well;
1965 
1966 	mutex_lock(&power_domains->lock);
1967 
1968 	for_each_power_well_reverse(i915, power_well) {
1969 		if (power_well->desc->always_on || power_well->count ||
1970 		    !intel_power_well_is_enabled(i915, power_well))
1971 			continue;
1972 
1973 		drm_dbg_kms(&i915->drm,
1974 			    "BIOS left unused %s power well enabled, disabling it\n",
1975 			    intel_power_well_name(power_well));
1976 		intel_power_well_disable(i915, power_well);
1977 	}
1978 
1979 	mutex_unlock(&power_domains->lock);
1980 }
1981 
1982 /**
1983  * intel_power_domains_enable - enable toggling of display power wells
1984  * @i915: i915 device instance
1985  *
1986  * Enable the ondemand enabling/disabling of the display power wells. Note that
1987  * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
1988  * only at specific points of the display modeset sequence, thus they are not
1989  * affected by the intel_power_domains_enable()/disable() calls. The purpose
1990  * of these function is to keep the rest of power wells enabled until the end
1991  * of display HW readout (which will acquire the power references reflecting
1992  * the current HW state).
1993  */
1994 void intel_power_domains_enable(struct drm_i915_private *i915)
1995 {
1996 	intel_wakeref_t wakeref __maybe_unused =
1997 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1998 
1999 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2000 	intel_power_domains_verify_state(i915);
2001 }
2002 
2003 /**
2004  * intel_power_domains_disable - disable toggling of display power wells
2005  * @i915: i915 device instance
2006  *
2007  * Disable the ondemand enabling/disabling of the display power wells. See
2008  * intel_power_domains_enable() for which power wells this call controls.
2009  */
2010 void intel_power_domains_disable(struct drm_i915_private *i915)
2011 {
2012 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2013 
2014 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2015 	power_domains->init_wakeref =
2016 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2017 
2018 	intel_power_domains_verify_state(i915);
2019 }
2020 
2021 /**
2022  * intel_power_domains_suspend - suspend power domain state
2023  * @i915: i915 device instance
2024  * @suspend_mode: specifies the target suspend state (idle, mem, hibernation)
2025  *
2026  * This function prepares the hardware power domain state before entering
2027  * system suspend.
2028  *
2029  * It must be called with power domains already disabled (after a call to
2030  * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2031  */
2032 void intel_power_domains_suspend(struct drm_i915_private *i915,
2033 				 enum i915_drm_suspend_mode suspend_mode)
2034 {
2035 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2036 	intel_wakeref_t wakeref __maybe_unused =
2037 		fetch_and_zero(&power_domains->init_wakeref);
2038 
2039 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2040 
2041 	/*
2042 	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2043 	 * support don't manually deinit the power domains. This also means the
2044 	 * DMC firmware will stay active, it will power down any HW
2045 	 * resources as required and also enable deeper system power states
2046 	 * that would be blocked if the firmware was inactive.
2047 	 */
2048 	if (!(i915->display.dmc.allowed_dc_mask & DC_STATE_EN_DC9) &&
2049 	    suspend_mode == I915_DRM_SUSPEND_IDLE &&
2050 	    intel_dmc_has_payload(i915)) {
2051 		intel_display_power_flush_work(i915);
2052 		intel_power_domains_verify_state(i915);
2053 		return;
2054 	}
2055 
2056 	/*
2057 	 * Even if power well support was disabled we still want to disable
2058 	 * power wells if power domains must be deinitialized for suspend.
2059 	 */
2060 	if (!i915->params.disable_power_well)
2061 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2062 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2063 
2064 	intel_display_power_flush_work(i915);
2065 	intel_power_domains_verify_state(i915);
2066 
2067 	if (DISPLAY_VER(i915) >= 11)
2068 		icl_display_core_uninit(i915);
2069 	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2070 		bxt_display_core_uninit(i915);
2071 	else if (DISPLAY_VER(i915) == 9)
2072 		skl_display_core_uninit(i915);
2073 
2074 	power_domains->display_core_suspended = true;
2075 }
2076 
2077 /**
2078  * intel_power_domains_resume - resume power domain state
2079  * @i915: i915 device instance
2080  *
2081  * This function resume the hardware power domain state during system resume.
2082  *
2083  * It will return with power domain support disabled (to be enabled later by
2084  * intel_power_domains_enable()) and must be paired with
2085  * intel_power_domains_suspend().
2086  */
2087 void intel_power_domains_resume(struct drm_i915_private *i915)
2088 {
2089 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2090 
2091 	if (power_domains->display_core_suspended) {
2092 		intel_power_domains_init_hw(i915, true);
2093 		power_domains->display_core_suspended = false;
2094 	} else {
2095 		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2096 		power_domains->init_wakeref =
2097 			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2098 	}
2099 
2100 	intel_power_domains_verify_state(i915);
2101 }
2102 
2103 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2104 
2105 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2106 {
2107 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2108 	struct i915_power_well *power_well;
2109 
2110 	for_each_power_well(i915, power_well) {
2111 		enum intel_display_power_domain domain;
2112 
2113 		drm_dbg(&i915->drm, "%-25s %d\n",
2114 			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2115 
2116 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2117 			drm_dbg(&i915->drm, "  %-23s %d\n",
2118 				intel_display_power_domain_str(domain),
2119 				power_domains->domain_use_count[domain]);
2120 	}
2121 }
2122 
2123 /**
2124  * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2125  * @i915: i915 device instance
2126  *
2127  * Verify if the reference count of each power well matches its HW enabled
2128  * state and the total refcount of the domains it belongs to. This must be
2129  * called after modeset HW state sanitization, which is responsible for
2130  * acquiring reference counts for any power wells in use and disabling the
2131  * ones left on by BIOS but not required by any active output.
2132  */
2133 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2134 {
2135 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2136 	struct i915_power_well *power_well;
2137 	bool dump_domain_info;
2138 
2139 	mutex_lock(&power_domains->lock);
2140 
2141 	verify_async_put_domains_state(power_domains);
2142 
2143 	dump_domain_info = false;
2144 	for_each_power_well(i915, power_well) {
2145 		enum intel_display_power_domain domain;
2146 		int domains_count;
2147 		bool enabled;
2148 
2149 		enabled = intel_power_well_is_enabled(i915, power_well);
2150 		if ((intel_power_well_refcount(power_well) ||
2151 		     intel_power_well_is_always_on(power_well)) !=
2152 		    enabled)
2153 			drm_err(&i915->drm,
2154 				"power well %s state mismatch (refcount %d/enabled %d)",
2155 				intel_power_well_name(power_well),
2156 				intel_power_well_refcount(power_well), enabled);
2157 
2158 		domains_count = 0;
2159 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2160 			domains_count += power_domains->domain_use_count[domain];
2161 
2162 		if (intel_power_well_refcount(power_well) != domains_count) {
2163 			drm_err(&i915->drm,
2164 				"power well %s refcount/domain refcount mismatch "
2165 				"(refcount %d/domains refcount %d)\n",
2166 				intel_power_well_name(power_well),
2167 				intel_power_well_refcount(power_well),
2168 				domains_count);
2169 			dump_domain_info = true;
2170 		}
2171 	}
2172 
2173 	if (dump_domain_info) {
2174 		static bool dumped;
2175 
2176 		if (!dumped) {
2177 			intel_power_domains_dump_info(i915);
2178 			dumped = true;
2179 		}
2180 	}
2181 
2182 	mutex_unlock(&power_domains->lock);
2183 }
2184 
2185 #else
2186 
2187 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2188 {
2189 }
2190 
2191 #endif
2192 
2193 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2194 {
2195 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2196 	    IS_BROXTON(i915)) {
2197 		bxt_enable_dc9(i915);
2198 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2199 		hsw_enable_pc8(i915);
2200 	}
2201 
2202 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2203 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2204 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2205 }
2206 
2207 void intel_display_power_resume_early(struct drm_i915_private *i915)
2208 {
2209 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2210 	    IS_BROXTON(i915)) {
2211 		gen9_sanitize_dc_state(i915);
2212 		bxt_disable_dc9(i915);
2213 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2214 		hsw_disable_pc8(i915);
2215 	}
2216 
2217 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2218 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2219 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2220 }
2221 
2222 void intel_display_power_suspend(struct drm_i915_private *i915)
2223 {
2224 	if (DISPLAY_VER(i915) >= 11) {
2225 		icl_display_core_uninit(i915);
2226 		bxt_enable_dc9(i915);
2227 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2228 		bxt_display_core_uninit(i915);
2229 		bxt_enable_dc9(i915);
2230 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2231 		hsw_enable_pc8(i915);
2232 	}
2233 }
2234 
2235 void intel_display_power_resume(struct drm_i915_private *i915)
2236 {
2237 	if (DISPLAY_VER(i915) >= 11) {
2238 		bxt_disable_dc9(i915);
2239 		icl_display_core_init(i915, true);
2240 		if (intel_dmc_has_payload(i915)) {
2241 			if (i915->display.dmc.allowed_dc_mask &
2242 			    DC_STATE_EN_UPTO_DC6)
2243 				skl_enable_dc6(i915);
2244 			else if (i915->display.dmc.allowed_dc_mask &
2245 				 DC_STATE_EN_UPTO_DC5)
2246 				gen9_enable_dc5(i915);
2247 		}
2248 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2249 		bxt_disable_dc9(i915);
2250 		bxt_display_core_init(i915, true);
2251 		if (intel_dmc_has_payload(i915) &&
2252 		    (i915->display.dmc.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2253 			gen9_enable_dc5(i915);
2254 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2255 		hsw_disable_pc8(i915);
2256 	}
2257 }
2258 
2259 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2260 {
2261 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2262 	int i;
2263 
2264 	mutex_lock(&power_domains->lock);
2265 
2266 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2267 	for (i = 0; i < power_domains->power_well_count; i++) {
2268 		struct i915_power_well *power_well;
2269 		enum intel_display_power_domain power_domain;
2270 
2271 		power_well = &power_domains->power_wells[i];
2272 		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2273 			   intel_power_well_refcount(power_well));
2274 
2275 		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2276 			seq_printf(m, "  %-23s %d\n",
2277 				   intel_display_power_domain_str(power_domain),
2278 				   power_domains->domain_use_count[power_domain]);
2279 	}
2280 
2281 	mutex_unlock(&power_domains->lock);
2282 }
2283 
2284 struct intel_ddi_port_domains {
2285 	enum port port_start;
2286 	enum port port_end;
2287 	enum aux_ch aux_ch_start;
2288 	enum aux_ch aux_ch_end;
2289 
2290 	enum intel_display_power_domain ddi_lanes;
2291 	enum intel_display_power_domain ddi_io;
2292 	enum intel_display_power_domain aux_legacy_usbc;
2293 	enum intel_display_power_domain aux_tbt;
2294 };
2295 
2296 static const struct intel_ddi_port_domains
2297 i9xx_port_domains[] = {
2298 	{
2299 		.port_start = PORT_A,
2300 		.port_end = PORT_F,
2301 		.aux_ch_start = AUX_CH_A,
2302 		.aux_ch_end = AUX_CH_F,
2303 
2304 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2305 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2306 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2307 		.aux_tbt = POWER_DOMAIN_INVALID,
2308 	},
2309 };
2310 
2311 static const struct intel_ddi_port_domains
2312 d11_port_domains[] = {
2313 	{
2314 		.port_start = PORT_A,
2315 		.port_end = PORT_B,
2316 		.aux_ch_start = AUX_CH_A,
2317 		.aux_ch_end = AUX_CH_B,
2318 
2319 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2320 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2321 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2322 		.aux_tbt = POWER_DOMAIN_INVALID,
2323 	}, {
2324 		.port_start = PORT_C,
2325 		.port_end = PORT_F,
2326 		.aux_ch_start = AUX_CH_C,
2327 		.aux_ch_end = AUX_CH_F,
2328 
2329 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2330 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2331 		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2332 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2333 	},
2334 };
2335 
2336 static const struct intel_ddi_port_domains
2337 d12_port_domains[] = {
2338 	{
2339 		.port_start = PORT_A,
2340 		.port_end = PORT_C,
2341 		.aux_ch_start = AUX_CH_A,
2342 		.aux_ch_end = AUX_CH_C,
2343 
2344 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2345 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2346 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2347 		.aux_tbt = POWER_DOMAIN_INVALID,
2348 	}, {
2349 		.port_start = PORT_TC1,
2350 		.port_end = PORT_TC6,
2351 		.aux_ch_start = AUX_CH_USBC1,
2352 		.aux_ch_end = AUX_CH_USBC6,
2353 
2354 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2355 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2356 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2357 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2358 	},
2359 };
2360 
2361 static const struct intel_ddi_port_domains
2362 d13_port_domains[] = {
2363 	{
2364 		.port_start = PORT_A,
2365 		.port_end = PORT_C,
2366 		.aux_ch_start = AUX_CH_A,
2367 		.aux_ch_end = AUX_CH_C,
2368 
2369 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2370 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2371 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2372 		.aux_tbt = POWER_DOMAIN_INVALID,
2373 	}, {
2374 		.port_start = PORT_TC1,
2375 		.port_end = PORT_TC4,
2376 		.aux_ch_start = AUX_CH_USBC1,
2377 		.aux_ch_end = AUX_CH_USBC4,
2378 
2379 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2380 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2381 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2382 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2383 	}, {
2384 		.port_start = PORT_D_XELPD,
2385 		.port_end = PORT_E_XELPD,
2386 		.aux_ch_start = AUX_CH_D_XELPD,
2387 		.aux_ch_end = AUX_CH_E_XELPD,
2388 
2389 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2390 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2391 		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2392 		.aux_tbt = POWER_DOMAIN_INVALID,
2393 	},
2394 };
2395 
2396 static void
2397 intel_port_domains_for_platform(struct drm_i915_private *i915,
2398 				const struct intel_ddi_port_domains **domains,
2399 				int *domains_size)
2400 {
2401 	if (DISPLAY_VER(i915) >= 13) {
2402 		*domains = d13_port_domains;
2403 		*domains_size = ARRAY_SIZE(d13_port_domains);
2404 	} else if (DISPLAY_VER(i915) >= 12) {
2405 		*domains = d12_port_domains;
2406 		*domains_size = ARRAY_SIZE(d12_port_domains);
2407 	} else if (DISPLAY_VER(i915) >= 11) {
2408 		*domains = d11_port_domains;
2409 		*domains_size = ARRAY_SIZE(d11_port_domains);
2410 	} else {
2411 		*domains = i9xx_port_domains;
2412 		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2413 	}
2414 }
2415 
2416 static const struct intel_ddi_port_domains *
2417 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2418 {
2419 	const struct intel_ddi_port_domains *domains;
2420 	int domains_size;
2421 	int i;
2422 
2423 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2424 	for (i = 0; i < domains_size; i++)
2425 		if (port >= domains[i].port_start && port <= domains[i].port_end)
2426 			return &domains[i];
2427 
2428 	return NULL;
2429 }
2430 
2431 enum intel_display_power_domain
2432 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2433 {
2434 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2435 
2436 	if (drm_WARN_ON(&i915->drm, !domains) || domains->ddi_io == POWER_DOMAIN_INVALID)
2437 		return POWER_DOMAIN_PORT_DDI_IO_A;
2438 
2439 	return domains->ddi_io + (int)(port - domains->port_start);
2440 }
2441 
2442 enum intel_display_power_domain
2443 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2444 {
2445 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2446 
2447 	if (drm_WARN_ON(&i915->drm, !domains) || domains->ddi_lanes == POWER_DOMAIN_INVALID)
2448 		return POWER_DOMAIN_PORT_DDI_LANES_A;
2449 
2450 	return domains->ddi_lanes + (int)(port - domains->port_start);
2451 }
2452 
2453 static const struct intel_ddi_port_domains *
2454 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2455 {
2456 	const struct intel_ddi_port_domains *domains;
2457 	int domains_size;
2458 	int i;
2459 
2460 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2461 	for (i = 0; i < domains_size; i++)
2462 		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2463 			return &domains[i];
2464 
2465 	return NULL;
2466 }
2467 
2468 enum intel_display_power_domain
2469 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2470 {
2471 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2472 
2473 	if (drm_WARN_ON(&i915->drm, !domains) || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID)
2474 		return POWER_DOMAIN_AUX_A;
2475 
2476 	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2477 }
2478 
2479 enum intel_display_power_domain
2480 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2481 {
2482 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2483 
2484 	if (drm_WARN_ON(&i915->drm, !domains) || domains->aux_tbt == POWER_DOMAIN_INVALID)
2485 		return POWER_DOMAIN_AUX_TBT1;
2486 
2487 	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2488 }
2489