1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "intel_cdclk.h"
11 #include "intel_combo_phy.h"
12 #include "intel_de.h"
13 #include "intel_display_power.h"
14 #include "intel_display_power_map.h"
15 #include "intel_display_power_well.h"
16 #include "intel_display_types.h"
17 #include "intel_dmc.h"
18 #include "intel_mchbar_regs.h"
19 #include "intel_pch_refclk.h"
20 #include "intel_pcode.h"
21 #include "intel_pm.h"
22 #include "intel_snps_phy.h"
23 #include "vlv_sideband.h"
24 
25 #define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
26 	for_each_power_well(__dev_priv, __power_well)				\
27 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
28 
29 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
30 	for_each_power_well_reverse(__dev_priv, __power_well)		        \
31 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
32 
33 const char *
34 intel_display_power_domain_str(enum intel_display_power_domain domain)
35 {
36 	switch (domain) {
37 	case POWER_DOMAIN_DISPLAY_CORE:
38 		return "DISPLAY_CORE";
39 	case POWER_DOMAIN_PIPE_A:
40 		return "PIPE_A";
41 	case POWER_DOMAIN_PIPE_B:
42 		return "PIPE_B";
43 	case POWER_DOMAIN_PIPE_C:
44 		return "PIPE_C";
45 	case POWER_DOMAIN_PIPE_D:
46 		return "PIPE_D";
47 	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
48 		return "PIPE_PANEL_FITTER_A";
49 	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
50 		return "PIPE_PANEL_FITTER_B";
51 	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
52 		return "PIPE_PANEL_FITTER_C";
53 	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
54 		return "PIPE_PANEL_FITTER_D";
55 	case POWER_DOMAIN_TRANSCODER_A:
56 		return "TRANSCODER_A";
57 	case POWER_DOMAIN_TRANSCODER_B:
58 		return "TRANSCODER_B";
59 	case POWER_DOMAIN_TRANSCODER_C:
60 		return "TRANSCODER_C";
61 	case POWER_DOMAIN_TRANSCODER_D:
62 		return "TRANSCODER_D";
63 	case POWER_DOMAIN_TRANSCODER_EDP:
64 		return "TRANSCODER_EDP";
65 	case POWER_DOMAIN_TRANSCODER_DSI_A:
66 		return "TRANSCODER_DSI_A";
67 	case POWER_DOMAIN_TRANSCODER_DSI_C:
68 		return "TRANSCODER_DSI_C";
69 	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
70 		return "TRANSCODER_VDSC_PW2";
71 	case POWER_DOMAIN_PORT_DDI_LANES_A:
72 		return "PORT_DDI_LANES_A";
73 	case POWER_DOMAIN_PORT_DDI_LANES_B:
74 		return "PORT_DDI_LANES_B";
75 	case POWER_DOMAIN_PORT_DDI_LANES_C:
76 		return "PORT_DDI_LANES_C";
77 	case POWER_DOMAIN_PORT_DDI_LANES_D:
78 		return "PORT_DDI_LANES_D";
79 	case POWER_DOMAIN_PORT_DDI_LANES_E:
80 		return "PORT_DDI_LANES_E";
81 	case POWER_DOMAIN_PORT_DDI_LANES_F:
82 		return "PORT_DDI_LANES_F";
83 	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
84 		return "PORT_DDI_LANES_TC1";
85 	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
86 		return "PORT_DDI_LANES_TC2";
87 	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
88 		return "PORT_DDI_LANES_TC3";
89 	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
90 		return "PORT_DDI_LANES_TC4";
91 	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
92 		return "PORT_DDI_LANES_TC5";
93 	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
94 		return "PORT_DDI_LANES_TC6";
95 	case POWER_DOMAIN_PORT_DDI_IO_A:
96 		return "PORT_DDI_IO_A";
97 	case POWER_DOMAIN_PORT_DDI_IO_B:
98 		return "PORT_DDI_IO_B";
99 	case POWER_DOMAIN_PORT_DDI_IO_C:
100 		return "PORT_DDI_IO_C";
101 	case POWER_DOMAIN_PORT_DDI_IO_D:
102 		return "PORT_DDI_IO_D";
103 	case POWER_DOMAIN_PORT_DDI_IO_E:
104 		return "PORT_DDI_IO_E";
105 	case POWER_DOMAIN_PORT_DDI_IO_F:
106 		return "PORT_DDI_IO_F";
107 	case POWER_DOMAIN_PORT_DDI_IO_TC1:
108 		return "PORT_DDI_IO_TC1";
109 	case POWER_DOMAIN_PORT_DDI_IO_TC2:
110 		return "PORT_DDI_IO_TC2";
111 	case POWER_DOMAIN_PORT_DDI_IO_TC3:
112 		return "PORT_DDI_IO_TC3";
113 	case POWER_DOMAIN_PORT_DDI_IO_TC4:
114 		return "PORT_DDI_IO_TC4";
115 	case POWER_DOMAIN_PORT_DDI_IO_TC5:
116 		return "PORT_DDI_IO_TC5";
117 	case POWER_DOMAIN_PORT_DDI_IO_TC6:
118 		return "PORT_DDI_IO_TC6";
119 	case POWER_DOMAIN_PORT_DSI:
120 		return "PORT_DSI";
121 	case POWER_DOMAIN_PORT_CRT:
122 		return "PORT_CRT";
123 	case POWER_DOMAIN_PORT_OTHER:
124 		return "PORT_OTHER";
125 	case POWER_DOMAIN_VGA:
126 		return "VGA";
127 	case POWER_DOMAIN_AUDIO_MMIO:
128 		return "AUDIO_MMIO";
129 	case POWER_DOMAIN_AUDIO_PLAYBACK:
130 		return "AUDIO_PLAYBACK";
131 	case POWER_DOMAIN_AUX_A:
132 		return "AUX_A";
133 	case POWER_DOMAIN_AUX_B:
134 		return "AUX_B";
135 	case POWER_DOMAIN_AUX_C:
136 		return "AUX_C";
137 	case POWER_DOMAIN_AUX_D:
138 		return "AUX_D";
139 	case POWER_DOMAIN_AUX_E:
140 		return "AUX_E";
141 	case POWER_DOMAIN_AUX_F:
142 		return "AUX_F";
143 	case POWER_DOMAIN_AUX_USBC1:
144 		return "AUX_USBC1";
145 	case POWER_DOMAIN_AUX_USBC2:
146 		return "AUX_USBC2";
147 	case POWER_DOMAIN_AUX_USBC3:
148 		return "AUX_USBC3";
149 	case POWER_DOMAIN_AUX_USBC4:
150 		return "AUX_USBC4";
151 	case POWER_DOMAIN_AUX_USBC5:
152 		return "AUX_USBC5";
153 	case POWER_DOMAIN_AUX_USBC6:
154 		return "AUX_USBC6";
155 	case POWER_DOMAIN_AUX_IO_A:
156 		return "AUX_IO_A";
157 	case POWER_DOMAIN_AUX_TBT1:
158 		return "AUX_TBT1";
159 	case POWER_DOMAIN_AUX_TBT2:
160 		return "AUX_TBT2";
161 	case POWER_DOMAIN_AUX_TBT3:
162 		return "AUX_TBT3";
163 	case POWER_DOMAIN_AUX_TBT4:
164 		return "AUX_TBT4";
165 	case POWER_DOMAIN_AUX_TBT5:
166 		return "AUX_TBT5";
167 	case POWER_DOMAIN_AUX_TBT6:
168 		return "AUX_TBT6";
169 	case POWER_DOMAIN_GMBUS:
170 		return "GMBUS";
171 	case POWER_DOMAIN_INIT:
172 		return "INIT";
173 	case POWER_DOMAIN_MODESET:
174 		return "MODESET";
175 	case POWER_DOMAIN_GT_IRQ:
176 		return "GT_IRQ";
177 	case POWER_DOMAIN_DC_OFF:
178 		return "DC_OFF";
179 	case POWER_DOMAIN_TC_COLD_OFF:
180 		return "TC_COLD_OFF";
181 	default:
182 		MISSING_CASE(domain);
183 		return "?";
184 	}
185 }
186 
187 /**
188  * __intel_display_power_is_enabled - unlocked check for a power domain
189  * @dev_priv: i915 device instance
190  * @domain: power domain to check
191  *
192  * This is the unlocked version of intel_display_power_is_enabled() and should
193  * only be used from error capture and recovery code where deadlocks are
194  * possible.
195  *
196  * Returns:
197  * True when the power domain is enabled, false otherwise.
198  */
199 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
200 				      enum intel_display_power_domain domain)
201 {
202 	struct i915_power_well *power_well;
203 	bool is_enabled;
204 
205 	if (dev_priv->runtime_pm.suspended)
206 		return false;
207 
208 	is_enabled = true;
209 
210 	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
211 		if (intel_power_well_is_always_on(power_well))
212 			continue;
213 
214 		if (!intel_power_well_is_enabled_cached(power_well)) {
215 			is_enabled = false;
216 			break;
217 		}
218 	}
219 
220 	return is_enabled;
221 }
222 
223 /**
224  * intel_display_power_is_enabled - check for a power domain
225  * @dev_priv: i915 device instance
226  * @domain: power domain to check
227  *
228  * This function can be used to check the hw power domain state. It is mostly
229  * used in hardware state readout functions. Everywhere else code should rely
230  * upon explicit power domain reference counting to ensure that the hardware
231  * block is powered up before accessing it.
232  *
233  * Callers must hold the relevant modesetting locks to ensure that concurrent
234  * threads can't disable the power well while the caller tries to read a few
235  * registers.
236  *
237  * Returns:
238  * True when the power domain is enabled, false otherwise.
239  */
240 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
241 				    enum intel_display_power_domain domain)
242 {
243 	struct i915_power_domains *power_domains;
244 	bool ret;
245 
246 	power_domains = &dev_priv->power_domains;
247 
248 	mutex_lock(&power_domains->lock);
249 	ret = __intel_display_power_is_enabled(dev_priv, domain);
250 	mutex_unlock(&power_domains->lock);
251 
252 	return ret;
253 }
254 
255 static u32
256 sanitize_target_dc_state(struct drm_i915_private *dev_priv,
257 			 u32 target_dc_state)
258 {
259 	static const u32 states[] = {
260 		DC_STATE_EN_UPTO_DC6,
261 		DC_STATE_EN_UPTO_DC5,
262 		DC_STATE_EN_DC3CO,
263 		DC_STATE_DISABLE,
264 	};
265 	int i;
266 
267 	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
268 		if (target_dc_state != states[i])
269 			continue;
270 
271 		if (dev_priv->dmc.allowed_dc_mask & target_dc_state)
272 			break;
273 
274 		target_dc_state = states[i + 1];
275 	}
276 
277 	return target_dc_state;
278 }
279 
280 /**
281  * intel_display_power_set_target_dc_state - Set target dc state.
282  * @dev_priv: i915 device
283  * @state: state which needs to be set as target_dc_state.
284  *
285  * This function set the "DC off" power well target_dc_state,
286  * based upon this target_dc_stste, "DC off" power well will
287  * enable desired DC state.
288  */
289 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
290 					     u32 state)
291 {
292 	struct i915_power_well *power_well;
293 	bool dc_off_enabled;
294 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
295 
296 	mutex_lock(&power_domains->lock);
297 	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
298 
299 	if (drm_WARN_ON(&dev_priv->drm, !power_well))
300 		goto unlock;
301 
302 	state = sanitize_target_dc_state(dev_priv, state);
303 
304 	if (state == dev_priv->dmc.target_dc_state)
305 		goto unlock;
306 
307 	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
308 	/*
309 	 * If DC off power well is disabled, need to enable and disable the
310 	 * DC off power well to effect target DC state.
311 	 */
312 	if (!dc_off_enabled)
313 		intel_power_well_enable(dev_priv, power_well);
314 
315 	dev_priv->dmc.target_dc_state = state;
316 
317 	if (!dc_off_enabled)
318 		intel_power_well_disable(dev_priv, power_well);
319 
320 unlock:
321 	mutex_unlock(&power_domains->lock);
322 }
323 
324 #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
325 
326 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
327 				     struct intel_power_domain_mask *mask)
328 {
329 	bitmap_or(mask->bits,
330 		  power_domains->async_put_domains[0].bits,
331 		  power_domains->async_put_domains[1].bits,
332 		  POWER_DOMAIN_NUM);
333 }
334 
335 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
336 
337 static bool
338 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
339 {
340 	struct drm_i915_private *i915 = container_of(power_domains,
341 						     struct drm_i915_private,
342 						     power_domains);
343 
344 	return !drm_WARN_ON(&i915->drm,
345 			    bitmap_intersects(power_domains->async_put_domains[0].bits,
346 					      power_domains->async_put_domains[1].bits,
347 					      POWER_DOMAIN_NUM));
348 }
349 
350 static bool
351 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
352 {
353 	struct drm_i915_private *i915 = container_of(power_domains,
354 						     struct drm_i915_private,
355 						     power_domains);
356 	struct intel_power_domain_mask async_put_mask;
357 	enum intel_display_power_domain domain;
358 	bool err = false;
359 
360 	err |= !assert_async_put_domain_masks_disjoint(power_domains);
361 	__async_put_domains_mask(power_domains, &async_put_mask);
362 	err |= drm_WARN_ON(&i915->drm,
363 			   !!power_domains->async_put_wakeref !=
364 			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
365 
366 	for_each_power_domain(domain, &async_put_mask)
367 		err |= drm_WARN_ON(&i915->drm,
368 				   power_domains->domain_use_count[domain] != 1);
369 
370 	return !err;
371 }
372 
373 static void print_power_domains(struct i915_power_domains *power_domains,
374 				const char *prefix, struct intel_power_domain_mask *mask)
375 {
376 	struct drm_i915_private *i915 = container_of(power_domains,
377 						     struct drm_i915_private,
378 						     power_domains);
379 	enum intel_display_power_domain domain;
380 
381 	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
382 	for_each_power_domain(domain, mask)
383 		drm_dbg(&i915->drm, "%s use_count %d\n",
384 			intel_display_power_domain_str(domain),
385 			power_domains->domain_use_count[domain]);
386 }
387 
388 static void
389 print_async_put_domains_state(struct i915_power_domains *power_domains)
390 {
391 	struct drm_i915_private *i915 = container_of(power_domains,
392 						     struct drm_i915_private,
393 						     power_domains);
394 
395 	drm_dbg(&i915->drm, "async_put_wakeref %u\n",
396 		power_domains->async_put_wakeref);
397 
398 	print_power_domains(power_domains, "async_put_domains[0]",
399 			    &power_domains->async_put_domains[0]);
400 	print_power_domains(power_domains, "async_put_domains[1]",
401 			    &power_domains->async_put_domains[1]);
402 }
403 
404 static void
405 verify_async_put_domains_state(struct i915_power_domains *power_domains)
406 {
407 	if (!__async_put_domains_state_ok(power_domains))
408 		print_async_put_domains_state(power_domains);
409 }
410 
411 #else
412 
413 static void
414 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
415 {
416 }
417 
418 static void
419 verify_async_put_domains_state(struct i915_power_domains *power_domains)
420 {
421 }
422 
423 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
424 
425 static void async_put_domains_mask(struct i915_power_domains *power_domains,
426 				   struct intel_power_domain_mask *mask)
427 
428 {
429 	assert_async_put_domain_masks_disjoint(power_domains);
430 
431 	__async_put_domains_mask(power_domains, mask);
432 }
433 
434 static void
435 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
436 			       enum intel_display_power_domain domain)
437 {
438 	assert_async_put_domain_masks_disjoint(power_domains);
439 
440 	clear_bit(domain, power_domains->async_put_domains[0].bits);
441 	clear_bit(domain, power_domains->async_put_domains[1].bits);
442 }
443 
444 static bool
445 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
446 				       enum intel_display_power_domain domain)
447 {
448 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
449 	struct intel_power_domain_mask async_put_mask;
450 	bool ret = false;
451 
452 	async_put_domains_mask(power_domains, &async_put_mask);
453 	if (!test_bit(domain, async_put_mask.bits))
454 		goto out_verify;
455 
456 	async_put_domains_clear_domain(power_domains, domain);
457 
458 	ret = true;
459 
460 	async_put_domains_mask(power_domains, &async_put_mask);
461 	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
462 		goto out_verify;
463 
464 	cancel_delayed_work(&power_domains->async_put_work);
465 	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
466 				 fetch_and_zero(&power_domains->async_put_wakeref));
467 out_verify:
468 	verify_async_put_domains_state(power_domains);
469 
470 	return ret;
471 }
472 
473 static void
474 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
475 				 enum intel_display_power_domain domain)
476 {
477 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
478 	struct i915_power_well *power_well;
479 
480 	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
481 		return;
482 
483 	for_each_power_domain_well(dev_priv, power_well, domain)
484 		intel_power_well_get(dev_priv, power_well);
485 
486 	power_domains->domain_use_count[domain]++;
487 }
488 
489 /**
490  * intel_display_power_get - grab a power domain reference
491  * @dev_priv: i915 device instance
492  * @domain: power domain to reference
493  *
494  * This function grabs a power domain reference for @domain and ensures that the
495  * power domain and all its parents are powered up. Therefore users should only
496  * grab a reference to the innermost power domain they need.
497  *
498  * Any power domain reference obtained by this function must have a symmetric
499  * call to intel_display_power_put() to release the reference again.
500  */
501 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
502 					enum intel_display_power_domain domain)
503 {
504 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
505 	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
506 
507 	mutex_lock(&power_domains->lock);
508 	__intel_display_power_get_domain(dev_priv, domain);
509 	mutex_unlock(&power_domains->lock);
510 
511 	return wakeref;
512 }
513 
514 /**
515  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
516  * @dev_priv: i915 device instance
517  * @domain: power domain to reference
518  *
519  * This function grabs a power domain reference for @domain and ensures that the
520  * power domain and all its parents are powered up. Therefore users should only
521  * grab a reference to the innermost power domain they need.
522  *
523  * Any power domain reference obtained by this function must have a symmetric
524  * call to intel_display_power_put() to release the reference again.
525  */
526 intel_wakeref_t
527 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
528 				   enum intel_display_power_domain domain)
529 {
530 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
531 	intel_wakeref_t wakeref;
532 	bool is_enabled;
533 
534 	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
535 	if (!wakeref)
536 		return false;
537 
538 	mutex_lock(&power_domains->lock);
539 
540 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
541 		__intel_display_power_get_domain(dev_priv, domain);
542 		is_enabled = true;
543 	} else {
544 		is_enabled = false;
545 	}
546 
547 	mutex_unlock(&power_domains->lock);
548 
549 	if (!is_enabled) {
550 		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
551 		wakeref = 0;
552 	}
553 
554 	return wakeref;
555 }
556 
557 static void
558 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
559 				 enum intel_display_power_domain domain)
560 {
561 	struct i915_power_domains *power_domains;
562 	struct i915_power_well *power_well;
563 	const char *name = intel_display_power_domain_str(domain);
564 	struct intel_power_domain_mask async_put_mask;
565 
566 	power_domains = &dev_priv->power_domains;
567 
568 	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
569 		 "Use count on domain %s is already zero\n",
570 		 name);
571 	async_put_domains_mask(power_domains, &async_put_mask);
572 	drm_WARN(&dev_priv->drm,
573 		 test_bit(domain, async_put_mask.bits),
574 		 "Async disabling of domain %s is pending\n",
575 		 name);
576 
577 	power_domains->domain_use_count[domain]--;
578 
579 	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
580 		intel_power_well_put(dev_priv, power_well);
581 }
582 
583 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
584 				      enum intel_display_power_domain domain)
585 {
586 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
587 
588 	mutex_lock(&power_domains->lock);
589 	__intel_display_power_put_domain(dev_priv, domain);
590 	mutex_unlock(&power_domains->lock);
591 }
592 
593 static void
594 queue_async_put_domains_work(struct i915_power_domains *power_domains,
595 			     intel_wakeref_t wakeref)
596 {
597 	struct drm_i915_private *i915 = container_of(power_domains,
598 						     struct drm_i915_private,
599 						     power_domains);
600 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
601 	power_domains->async_put_wakeref = wakeref;
602 	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
603 						    &power_domains->async_put_work,
604 						    msecs_to_jiffies(100)));
605 }
606 
607 static void
608 release_async_put_domains(struct i915_power_domains *power_domains,
609 			  struct intel_power_domain_mask *mask)
610 {
611 	struct drm_i915_private *dev_priv =
612 		container_of(power_domains, struct drm_i915_private,
613 			     power_domains);
614 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
615 	enum intel_display_power_domain domain;
616 	intel_wakeref_t wakeref;
617 
618 	/*
619 	 * The caller must hold already raw wakeref, upgrade that to a proper
620 	 * wakeref to make the state checker happy about the HW access during
621 	 * power well disabling.
622 	 */
623 	assert_rpm_raw_wakeref_held(rpm);
624 	wakeref = intel_runtime_pm_get(rpm);
625 
626 	for_each_power_domain(domain, mask) {
627 		/* Clear before put, so put's sanity check is happy. */
628 		async_put_domains_clear_domain(power_domains, domain);
629 		__intel_display_power_put_domain(dev_priv, domain);
630 	}
631 
632 	intel_runtime_pm_put(rpm, wakeref);
633 }
634 
635 static void
636 intel_display_power_put_async_work(struct work_struct *work)
637 {
638 	struct drm_i915_private *dev_priv =
639 		container_of(work, struct drm_i915_private,
640 			     power_domains.async_put_work.work);
641 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
642 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
643 	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
644 	intel_wakeref_t old_work_wakeref = 0;
645 
646 	mutex_lock(&power_domains->lock);
647 
648 	/*
649 	 * Bail out if all the domain refs pending to be released were grabbed
650 	 * by subsequent gets or a flush_work.
651 	 */
652 	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
653 	if (!old_work_wakeref)
654 		goto out_verify;
655 
656 	release_async_put_domains(power_domains,
657 				  &power_domains->async_put_domains[0]);
658 
659 	/* Requeue the work if more domains were async put meanwhile. */
660 	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
661 		bitmap_copy(power_domains->async_put_domains[0].bits,
662 			    power_domains->async_put_domains[1].bits,
663 			    POWER_DOMAIN_NUM);
664 		bitmap_zero(power_domains->async_put_domains[1].bits,
665 			    POWER_DOMAIN_NUM);
666 		queue_async_put_domains_work(power_domains,
667 					     fetch_and_zero(&new_work_wakeref));
668 	} else {
669 		/*
670 		 * Cancel the work that got queued after this one got dequeued,
671 		 * since here we released the corresponding async-put reference.
672 		 */
673 		cancel_delayed_work(&power_domains->async_put_work);
674 	}
675 
676 out_verify:
677 	verify_async_put_domains_state(power_domains);
678 
679 	mutex_unlock(&power_domains->lock);
680 
681 	if (old_work_wakeref)
682 		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
683 	if (new_work_wakeref)
684 		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
685 }
686 
687 /**
688  * intel_display_power_put_async - release a power domain reference asynchronously
689  * @i915: i915 device instance
690  * @domain: power domain to reference
691  * @wakeref: wakeref acquired for the reference that is being released
692  *
693  * This function drops the power domain reference obtained by
694  * intel_display_power_get*() and schedules a work to power down the
695  * corresponding hardware block if this is the last reference.
696  */
697 void __intel_display_power_put_async(struct drm_i915_private *i915,
698 				     enum intel_display_power_domain domain,
699 				     intel_wakeref_t wakeref)
700 {
701 	struct i915_power_domains *power_domains = &i915->power_domains;
702 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
703 	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
704 
705 	mutex_lock(&power_domains->lock);
706 
707 	if (power_domains->domain_use_count[domain] > 1) {
708 		__intel_display_power_put_domain(i915, domain);
709 
710 		goto out_verify;
711 	}
712 
713 	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
714 
715 	/* Let a pending work requeue itself or queue a new one. */
716 	if (power_domains->async_put_wakeref) {
717 		set_bit(domain, power_domains->async_put_domains[1].bits);
718 	} else {
719 		set_bit(domain, power_domains->async_put_domains[0].bits);
720 		queue_async_put_domains_work(power_domains,
721 					     fetch_and_zero(&work_wakeref));
722 	}
723 
724 out_verify:
725 	verify_async_put_domains_state(power_domains);
726 
727 	mutex_unlock(&power_domains->lock);
728 
729 	if (work_wakeref)
730 		intel_runtime_pm_put_raw(rpm, work_wakeref);
731 
732 	intel_runtime_pm_put(rpm, wakeref);
733 }
734 
735 /**
736  * intel_display_power_flush_work - flushes the async display power disabling work
737  * @i915: i915 device instance
738  *
739  * Flushes any pending work that was scheduled by a preceding
740  * intel_display_power_put_async() call, completing the disabling of the
741  * corresponding power domains.
742  *
743  * Note that the work handler function may still be running after this
744  * function returns; to ensure that the work handler isn't running use
745  * intel_display_power_flush_work_sync() instead.
746  */
747 void intel_display_power_flush_work(struct drm_i915_private *i915)
748 {
749 	struct i915_power_domains *power_domains = &i915->power_domains;
750 	struct intel_power_domain_mask async_put_mask;
751 	intel_wakeref_t work_wakeref;
752 
753 	mutex_lock(&power_domains->lock);
754 
755 	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
756 	if (!work_wakeref)
757 		goto out_verify;
758 
759 	async_put_domains_mask(power_domains, &async_put_mask);
760 	release_async_put_domains(power_domains, &async_put_mask);
761 	cancel_delayed_work(&power_domains->async_put_work);
762 
763 out_verify:
764 	verify_async_put_domains_state(power_domains);
765 
766 	mutex_unlock(&power_domains->lock);
767 
768 	if (work_wakeref)
769 		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
770 }
771 
772 /**
773  * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
774  * @i915: i915 device instance
775  *
776  * Like intel_display_power_flush_work(), but also ensure that the work
777  * handler function is not running any more when this function returns.
778  */
779 static void
780 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
781 {
782 	struct i915_power_domains *power_domains = &i915->power_domains;
783 
784 	intel_display_power_flush_work(i915);
785 	cancel_delayed_work_sync(&power_domains->async_put_work);
786 
787 	verify_async_put_domains_state(power_domains);
788 
789 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
790 }
791 
792 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
793 /**
794  * intel_display_power_put - release a power domain reference
795  * @dev_priv: i915 device instance
796  * @domain: power domain to reference
797  * @wakeref: wakeref acquired for the reference that is being released
798  *
799  * This function drops the power domain reference obtained by
800  * intel_display_power_get() and might power down the corresponding hardware
801  * block right away if this is the last reference.
802  */
803 void intel_display_power_put(struct drm_i915_private *dev_priv,
804 			     enum intel_display_power_domain domain,
805 			     intel_wakeref_t wakeref)
806 {
807 	__intel_display_power_put(dev_priv, domain);
808 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
809 }
810 #else
811 /**
812  * intel_display_power_put_unchecked - release an unchecked power domain reference
813  * @dev_priv: i915 device instance
814  * @domain: power domain to reference
815  *
816  * This function drops the power domain reference obtained by
817  * intel_display_power_get() and might power down the corresponding hardware
818  * block right away if this is the last reference.
819  *
820  * This function is only for the power domain code's internal use to suppress wakeref
821  * tracking when the correspondig debug kconfig option is disabled, should not
822  * be used otherwise.
823  */
824 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
825 				       enum intel_display_power_domain domain)
826 {
827 	__intel_display_power_put(dev_priv, domain);
828 	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
829 }
830 #endif
831 
832 void
833 intel_display_power_get_in_set(struct drm_i915_private *i915,
834 			       struct intel_display_power_domain_set *power_domain_set,
835 			       enum intel_display_power_domain domain)
836 {
837 	intel_wakeref_t __maybe_unused wf;
838 
839 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
840 
841 	wf = intel_display_power_get(i915, domain);
842 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
843 	power_domain_set->wakerefs[domain] = wf;
844 #endif
845 	set_bit(domain, power_domain_set->mask.bits);
846 }
847 
848 bool
849 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
850 					  struct intel_display_power_domain_set *power_domain_set,
851 					  enum intel_display_power_domain domain)
852 {
853 	intel_wakeref_t wf;
854 
855 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
856 
857 	wf = intel_display_power_get_if_enabled(i915, domain);
858 	if (!wf)
859 		return false;
860 
861 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
862 	power_domain_set->wakerefs[domain] = wf;
863 #endif
864 	set_bit(domain, power_domain_set->mask.bits);
865 
866 	return true;
867 }
868 
869 void
870 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
871 				    struct intel_display_power_domain_set *power_domain_set,
872 				    struct intel_power_domain_mask *mask)
873 {
874 	enum intel_display_power_domain domain;
875 
876 	drm_WARN_ON(&i915->drm,
877 		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
878 
879 	for_each_power_domain(domain, mask) {
880 		intel_wakeref_t __maybe_unused wf = -1;
881 
882 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
883 		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
884 #endif
885 		intel_display_power_put(i915, domain, wf);
886 		clear_bit(domain, power_domain_set->mask.bits);
887 	}
888 }
889 
890 static int
891 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
892 				   int disable_power_well)
893 {
894 	if (disable_power_well >= 0)
895 		return !!disable_power_well;
896 
897 	return 1;
898 }
899 
900 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
901 			       int enable_dc)
902 {
903 	u32 mask;
904 	int requested_dc;
905 	int max_dc;
906 
907 	if (!HAS_DISPLAY(dev_priv))
908 		return 0;
909 
910 	if (IS_DG1(dev_priv))
911 		max_dc = 3;
912 	else if (DISPLAY_VER(dev_priv) >= 12)
913 		max_dc = 4;
914 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
915 		max_dc = 1;
916 	else if (DISPLAY_VER(dev_priv) >= 9)
917 		max_dc = 2;
918 	else
919 		max_dc = 0;
920 
921 	/*
922 	 * DC9 has a separate HW flow from the rest of the DC states,
923 	 * not depending on the DMC firmware. It's needed by system
924 	 * suspend/resume, so allow it unconditionally.
925 	 */
926 	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
927 		DISPLAY_VER(dev_priv) >= 11 ?
928 	       DC_STATE_EN_DC9 : 0;
929 
930 	if (!dev_priv->params.disable_power_well)
931 		max_dc = 0;
932 
933 	if (enable_dc >= 0 && enable_dc <= max_dc) {
934 		requested_dc = enable_dc;
935 	} else if (enable_dc == -1) {
936 		requested_dc = max_dc;
937 	} else if (enable_dc > max_dc && enable_dc <= 4) {
938 		drm_dbg_kms(&dev_priv->drm,
939 			    "Adjusting requested max DC state (%d->%d)\n",
940 			    enable_dc, max_dc);
941 		requested_dc = max_dc;
942 	} else {
943 		drm_err(&dev_priv->drm,
944 			"Unexpected value for enable_dc (%d)\n", enable_dc);
945 		requested_dc = max_dc;
946 	}
947 
948 	switch (requested_dc) {
949 	case 4:
950 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
951 		break;
952 	case 3:
953 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
954 		break;
955 	case 2:
956 		mask |= DC_STATE_EN_UPTO_DC6;
957 		break;
958 	case 1:
959 		mask |= DC_STATE_EN_UPTO_DC5;
960 		break;
961 	}
962 
963 	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
964 
965 	return mask;
966 }
967 
968 /**
969  * intel_power_domains_init - initializes the power domain structures
970  * @dev_priv: i915 device instance
971  *
972  * Initializes the power domain structures for @dev_priv depending upon the
973  * supported platform.
974  */
975 int intel_power_domains_init(struct drm_i915_private *dev_priv)
976 {
977 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
978 
979 	dev_priv->params.disable_power_well =
980 		sanitize_disable_power_well_option(dev_priv,
981 						   dev_priv->params.disable_power_well);
982 	dev_priv->dmc.allowed_dc_mask =
983 		get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
984 
985 	dev_priv->dmc.target_dc_state =
986 		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
987 
988 	mutex_init(&power_domains->lock);
989 
990 	INIT_DELAYED_WORK(&power_domains->async_put_work,
991 			  intel_display_power_put_async_work);
992 
993 	return intel_display_power_map_init(power_domains);
994 }
995 
996 /**
997  * intel_power_domains_cleanup - clean up power domains resources
998  * @dev_priv: i915 device instance
999  *
1000  * Release any resources acquired by intel_power_domains_init()
1001  */
1002 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1003 {
1004 	intel_display_power_map_cleanup(&dev_priv->power_domains);
1005 }
1006 
1007 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1008 {
1009 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1010 	struct i915_power_well *power_well;
1011 
1012 	mutex_lock(&power_domains->lock);
1013 	for_each_power_well(dev_priv, power_well)
1014 		intel_power_well_sync_hw(dev_priv, power_well);
1015 	mutex_unlock(&power_domains->lock);
1016 }
1017 
1018 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1019 				enum dbuf_slice slice, bool enable)
1020 {
1021 	i915_reg_t reg = DBUF_CTL_S(slice);
1022 	bool state;
1023 
1024 	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1025 		     enable ? DBUF_POWER_REQUEST : 0);
1026 	intel_de_posting_read(dev_priv, reg);
1027 	udelay(10);
1028 
1029 	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1030 	drm_WARN(&dev_priv->drm, enable != state,
1031 		 "DBuf slice %d power %s timeout!\n",
1032 		 slice, str_enable_disable(enable));
1033 }
1034 
1035 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1036 			     u8 req_slices)
1037 {
1038 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1039 	u8 slice_mask = INTEL_INFO(dev_priv)->dbuf.slice_mask;
1040 	enum dbuf_slice slice;
1041 
1042 	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1043 		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1044 		 req_slices, slice_mask);
1045 
1046 	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1047 		    req_slices);
1048 
1049 	/*
1050 	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1051 	 * being called from intel_dp_detect for instance,
1052 	 * which causes assertion triggered by race condition,
1053 	 * as gen9_assert_dbuf_enabled might preempt this when registers
1054 	 * were already updated, while dev_priv was not.
1055 	 */
1056 	mutex_lock(&power_domains->lock);
1057 
1058 	for_each_dbuf_slice(dev_priv, slice)
1059 		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1060 
1061 	dev_priv->dbuf.enabled_slices = req_slices;
1062 
1063 	mutex_unlock(&power_domains->lock);
1064 }
1065 
1066 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1067 {
1068 	dev_priv->dbuf.enabled_slices =
1069 		intel_enabled_dbuf_slices_mask(dev_priv);
1070 
1071 	/*
1072 	 * Just power up at least 1 slice, we will
1073 	 * figure out later which slices we have and what we need.
1074 	 */
1075 	gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) |
1076 				dev_priv->dbuf.enabled_slices);
1077 }
1078 
1079 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1080 {
1081 	gen9_dbuf_slices_update(dev_priv, 0);
1082 }
1083 
1084 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1085 {
1086 	enum dbuf_slice slice;
1087 
1088 	if (IS_ALDERLAKE_P(dev_priv))
1089 		return;
1090 
1091 	for_each_dbuf_slice(dev_priv, slice)
1092 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1093 			     DBUF_TRACKER_STATE_SERVICE_MASK,
1094 			     DBUF_TRACKER_STATE_SERVICE(8));
1095 }
1096 
1097 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1098 {
1099 	unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask;
1100 	u32 mask, val, i;
1101 
1102 	if (IS_ALDERLAKE_P(dev_priv))
1103 		return;
1104 
1105 	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1106 		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1107 		MBUS_ABOX_B_CREDIT_MASK |
1108 		MBUS_ABOX_BW_CREDIT_MASK;
1109 	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1110 		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1111 		MBUS_ABOX_B_CREDIT(1) |
1112 		MBUS_ABOX_BW_CREDIT(1);
1113 
1114 	/*
1115 	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1116 	 * expect us to program the abox_ctl0 register as well, even though
1117 	 * we don't have to program other instance-0 registers like BW_BUDDY.
1118 	 */
1119 	if (DISPLAY_VER(dev_priv) == 12)
1120 		abox_regs |= BIT(0);
1121 
1122 	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1123 		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1124 }
1125 
1126 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1127 {
1128 	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1129 
1130 	/*
1131 	 * The LCPLL register should be turned on by the BIOS. For now
1132 	 * let's just check its state and print errors in case
1133 	 * something is wrong.  Don't even try to turn it on.
1134 	 */
1135 
1136 	if (val & LCPLL_CD_SOURCE_FCLK)
1137 		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1138 
1139 	if (val & LCPLL_PLL_DISABLE)
1140 		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1141 
1142 	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1143 		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1144 }
1145 
1146 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1147 {
1148 	struct drm_device *dev = &dev_priv->drm;
1149 	struct intel_crtc *crtc;
1150 
1151 	for_each_intel_crtc(dev, crtc)
1152 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
1153 				pipe_name(crtc->pipe));
1154 
1155 	I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1156 			"Display power well on\n");
1157 	I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1158 			"SPLL enabled\n");
1159 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1160 			"WRPLL1 enabled\n");
1161 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1162 			"WRPLL2 enabled\n");
1163 	I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1164 			"Panel power on\n");
1165 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1166 			"CPU PWM1 enabled\n");
1167 	if (IS_HASWELL(dev_priv))
1168 		I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1169 				"CPU PWM2 enabled\n");
1170 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1171 			"PCH PWM1 enabled\n");
1172 	I915_STATE_WARN(intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
1173 			"Utility pin enabled\n");
1174 	I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1175 			"PCH GTC enabled\n");
1176 
1177 	/*
1178 	 * In theory we can still leave IRQs enabled, as long as only the HPD
1179 	 * interrupts remain enabled. We used to check for that, but since it's
1180 	 * gen-specific and since we only disable LCPLL after we fully disable
1181 	 * the interrupts, the check below should be enough.
1182 	 */
1183 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
1184 }
1185 
1186 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1187 {
1188 	if (IS_HASWELL(dev_priv))
1189 		return intel_de_read(dev_priv, D_COMP_HSW);
1190 	else
1191 		return intel_de_read(dev_priv, D_COMP_BDW);
1192 }
1193 
1194 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1195 {
1196 	if (IS_HASWELL(dev_priv)) {
1197 		if (snb_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
1198 			drm_dbg_kms(&dev_priv->drm,
1199 				    "Failed to write to D_COMP\n");
1200 	} else {
1201 		intel_de_write(dev_priv, D_COMP_BDW, val);
1202 		intel_de_posting_read(dev_priv, D_COMP_BDW);
1203 	}
1204 }
1205 
1206 /*
1207  * This function implements pieces of two sequences from BSpec:
1208  * - Sequence for display software to disable LCPLL
1209  * - Sequence for display software to allow package C8+
1210  * The steps implemented here are just the steps that actually touch the LCPLL
1211  * register. Callers should take care of disabling all the display engine
1212  * functions, doing the mode unset, fixing interrupts, etc.
1213  */
1214 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1215 			      bool switch_to_fclk, bool allow_power_down)
1216 {
1217 	u32 val;
1218 
1219 	assert_can_disable_lcpll(dev_priv);
1220 
1221 	val = intel_de_read(dev_priv, LCPLL_CTL);
1222 
1223 	if (switch_to_fclk) {
1224 		val |= LCPLL_CD_SOURCE_FCLK;
1225 		intel_de_write(dev_priv, LCPLL_CTL, val);
1226 
1227 		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1228 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1229 			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1230 
1231 		val = intel_de_read(dev_priv, LCPLL_CTL);
1232 	}
1233 
1234 	val |= LCPLL_PLL_DISABLE;
1235 	intel_de_write(dev_priv, LCPLL_CTL, val);
1236 	intel_de_posting_read(dev_priv, LCPLL_CTL);
1237 
1238 	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1239 		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1240 
1241 	val = hsw_read_dcomp(dev_priv);
1242 	val |= D_COMP_COMP_DISABLE;
1243 	hsw_write_dcomp(dev_priv, val);
1244 	ndelay(100);
1245 
1246 	if (wait_for((hsw_read_dcomp(dev_priv) &
1247 		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1248 		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1249 
1250 	if (allow_power_down) {
1251 		val = intel_de_read(dev_priv, LCPLL_CTL);
1252 		val |= LCPLL_POWER_DOWN_ALLOW;
1253 		intel_de_write(dev_priv, LCPLL_CTL, val);
1254 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1255 	}
1256 }
1257 
1258 /*
1259  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1260  * source.
1261  */
1262 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1263 {
1264 	u32 val;
1265 
1266 	val = intel_de_read(dev_priv, LCPLL_CTL);
1267 
1268 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1269 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1270 		return;
1271 
1272 	/*
1273 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1274 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1275 	 */
1276 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1277 
1278 	if (val & LCPLL_POWER_DOWN_ALLOW) {
1279 		val &= ~LCPLL_POWER_DOWN_ALLOW;
1280 		intel_de_write(dev_priv, LCPLL_CTL, val);
1281 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1282 	}
1283 
1284 	val = hsw_read_dcomp(dev_priv);
1285 	val |= D_COMP_COMP_FORCE;
1286 	val &= ~D_COMP_COMP_DISABLE;
1287 	hsw_write_dcomp(dev_priv, val);
1288 
1289 	val = intel_de_read(dev_priv, LCPLL_CTL);
1290 	val &= ~LCPLL_PLL_DISABLE;
1291 	intel_de_write(dev_priv, LCPLL_CTL, val);
1292 
1293 	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1294 		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1295 
1296 	if (val & LCPLL_CD_SOURCE_FCLK) {
1297 		val = intel_de_read(dev_priv, LCPLL_CTL);
1298 		val &= ~LCPLL_CD_SOURCE_FCLK;
1299 		intel_de_write(dev_priv, LCPLL_CTL, val);
1300 
1301 		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1302 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1303 			drm_err(&dev_priv->drm,
1304 				"Switching back to LCPLL failed\n");
1305 	}
1306 
1307 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1308 
1309 	intel_update_cdclk(dev_priv);
1310 	intel_cdclk_dump_config(dev_priv, &dev_priv->cdclk.hw, "Current CDCLK");
1311 }
1312 
1313 /*
1314  * Package states C8 and deeper are really deep PC states that can only be
1315  * reached when all the devices on the system allow it, so even if the graphics
1316  * device allows PC8+, it doesn't mean the system will actually get to these
1317  * states. Our driver only allows PC8+ when going into runtime PM.
1318  *
1319  * The requirements for PC8+ are that all the outputs are disabled, the power
1320  * well is disabled and most interrupts are disabled, and these are also
1321  * requirements for runtime PM. When these conditions are met, we manually do
1322  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1323  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1324  * hang the machine.
1325  *
1326  * When we really reach PC8 or deeper states (not just when we allow it) we lose
1327  * the state of some registers, so when we come back from PC8+ we need to
1328  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1329  * need to take care of the registers kept by RC6. Notice that this happens even
1330  * if we don't put the device in PCI D3 state (which is what currently happens
1331  * because of the runtime PM support).
1332  *
1333  * For more, read "Display Sequences for Package C8" on the hardware
1334  * documentation.
1335  */
1336 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1337 {
1338 	u32 val;
1339 
1340 	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1341 
1342 	if (HAS_PCH_LPT_LP(dev_priv)) {
1343 		val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
1344 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
1345 		intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
1346 	}
1347 
1348 	lpt_disable_clkout_dp(dev_priv);
1349 	hsw_disable_lcpll(dev_priv, true, true);
1350 }
1351 
1352 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1353 {
1354 	u32 val;
1355 
1356 	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1357 
1358 	hsw_restore_lcpll(dev_priv);
1359 	intel_init_pch_refclk(dev_priv);
1360 
1361 	if (HAS_PCH_LPT_LP(dev_priv)) {
1362 		val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
1363 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
1364 		intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
1365 	}
1366 }
1367 
1368 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1369 				      bool enable)
1370 {
1371 	i915_reg_t reg;
1372 	u32 reset_bits, val;
1373 
1374 	if (IS_IVYBRIDGE(dev_priv)) {
1375 		reg = GEN7_MSG_CTL;
1376 		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1377 	} else {
1378 		reg = HSW_NDE_RSTWRN_OPT;
1379 		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1380 	}
1381 
1382 	val = intel_de_read(dev_priv, reg);
1383 
1384 	if (enable)
1385 		val |= reset_bits;
1386 	else
1387 		val &= ~reset_bits;
1388 
1389 	intel_de_write(dev_priv, reg, val);
1390 }
1391 
1392 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1393 				  bool resume)
1394 {
1395 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1396 	struct i915_power_well *well;
1397 
1398 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1399 
1400 	/* enable PCH reset handshake */
1401 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1402 
1403 	if (!HAS_DISPLAY(dev_priv))
1404 		return;
1405 
1406 	/* enable PG1 and Misc I/O */
1407 	mutex_lock(&power_domains->lock);
1408 
1409 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1410 	intel_power_well_enable(dev_priv, well);
1411 
1412 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1413 	intel_power_well_enable(dev_priv, well);
1414 
1415 	mutex_unlock(&power_domains->lock);
1416 
1417 	intel_cdclk_init_hw(dev_priv);
1418 
1419 	gen9_dbuf_enable(dev_priv);
1420 
1421 	if (resume)
1422 		intel_dmc_load_program(dev_priv);
1423 }
1424 
1425 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1426 {
1427 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1428 	struct i915_power_well *well;
1429 
1430 	if (!HAS_DISPLAY(dev_priv))
1431 		return;
1432 
1433 	gen9_disable_dc_states(dev_priv);
1434 
1435 	gen9_dbuf_disable(dev_priv);
1436 
1437 	intel_cdclk_uninit_hw(dev_priv);
1438 
1439 	/* The spec doesn't call for removing the reset handshake flag */
1440 	/* disable PG1 and Misc I/O */
1441 
1442 	mutex_lock(&power_domains->lock);
1443 
1444 	/*
1445 	 * BSpec says to keep the MISC IO power well enabled here, only
1446 	 * remove our request for power well 1.
1447 	 * Note that even though the driver's request is removed power well 1
1448 	 * may stay enabled after this due to DMC's own request on it.
1449 	 */
1450 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1451 	intel_power_well_disable(dev_priv, well);
1452 
1453 	mutex_unlock(&power_domains->lock);
1454 
1455 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1456 }
1457 
1458 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1459 {
1460 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1461 	struct i915_power_well *well;
1462 
1463 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1464 
1465 	/*
1466 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1467 	 * or else the reset will hang because there is no PCH to respond.
1468 	 * Move the handshake programming to initialization sequence.
1469 	 * Previously was left up to BIOS.
1470 	 */
1471 	intel_pch_reset_handshake(dev_priv, false);
1472 
1473 	if (!HAS_DISPLAY(dev_priv))
1474 		return;
1475 
1476 	/* Enable PG1 */
1477 	mutex_lock(&power_domains->lock);
1478 
1479 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1480 	intel_power_well_enable(dev_priv, well);
1481 
1482 	mutex_unlock(&power_domains->lock);
1483 
1484 	intel_cdclk_init_hw(dev_priv);
1485 
1486 	gen9_dbuf_enable(dev_priv);
1487 
1488 	if (resume)
1489 		intel_dmc_load_program(dev_priv);
1490 }
1491 
1492 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1493 {
1494 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1495 	struct i915_power_well *well;
1496 
1497 	if (!HAS_DISPLAY(dev_priv))
1498 		return;
1499 
1500 	gen9_disable_dc_states(dev_priv);
1501 
1502 	gen9_dbuf_disable(dev_priv);
1503 
1504 	intel_cdclk_uninit_hw(dev_priv);
1505 
1506 	/* The spec doesn't call for removing the reset handshake flag */
1507 
1508 	/*
1509 	 * Disable PW1 (PG1).
1510 	 * Note that even though the driver's request is removed power well 1
1511 	 * may stay enabled after this due to DMC's own request on it.
1512 	 */
1513 	mutex_lock(&power_domains->lock);
1514 
1515 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1516 	intel_power_well_disable(dev_priv, well);
1517 
1518 	mutex_unlock(&power_domains->lock);
1519 
1520 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1521 }
1522 
1523 struct buddy_page_mask {
1524 	u32 page_mask;
1525 	u8 type;
1526 	u8 num_channels;
1527 };
1528 
1529 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1530 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1531 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1532 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1533 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1534 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1535 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1536 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1537 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1538 	{}
1539 };
1540 
1541 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1542 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1543 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1544 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1545 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1546 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1547 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1548 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1549 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1550 	{}
1551 };
1552 
1553 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1554 {
1555 	enum intel_dram_type type = dev_priv->dram_info.type;
1556 	u8 num_channels = dev_priv->dram_info.num_channels;
1557 	const struct buddy_page_mask *table;
1558 	unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask;
1559 	int config, i;
1560 
1561 	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1562 	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1563 		return;
1564 
1565 	if (IS_ALDERLAKE_S(dev_priv) ||
1566 	    IS_DG1_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1567 	    IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1568 	    IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
1569 		/* Wa_1409767108:tgl,dg1,adl-s */
1570 		table = wa_1409767108_buddy_page_masks;
1571 	else
1572 		table = tgl_buddy_page_masks;
1573 
1574 	for (config = 0; table[config].page_mask != 0; config++)
1575 		if (table[config].num_channels == num_channels &&
1576 		    table[config].type == type)
1577 			break;
1578 
1579 	if (table[config].page_mask == 0) {
1580 		drm_dbg(&dev_priv->drm,
1581 			"Unknown memory configuration; disabling address buddy logic.\n");
1582 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1583 			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1584 				       BW_BUDDY_DISABLE);
1585 	} else {
1586 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1587 			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1588 				       table[config].page_mask);
1589 
1590 			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1591 			if (DISPLAY_VER(dev_priv) == 12)
1592 				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1593 					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1594 					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1595 		}
1596 	}
1597 }
1598 
1599 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1600 				  bool resume)
1601 {
1602 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1603 	struct i915_power_well *well;
1604 	u32 val;
1605 
1606 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1607 
1608 	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1609 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_JSP &&
1610 	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1611 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1612 			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1613 
1614 	/* 1. Enable PCH reset handshake. */
1615 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1616 
1617 	if (!HAS_DISPLAY(dev_priv))
1618 		return;
1619 
1620 	/* 2. Initialize all combo phys */
1621 	intel_combo_phy_init(dev_priv);
1622 
1623 	/*
1624 	 * 3. Enable Power Well 1 (PG1).
1625 	 *    The AUX IO power wells will be enabled on demand.
1626 	 */
1627 	mutex_lock(&power_domains->lock);
1628 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1629 	intel_power_well_enable(dev_priv, well);
1630 	mutex_unlock(&power_domains->lock);
1631 
1632 	/* 4. Enable CDCLK. */
1633 	intel_cdclk_init_hw(dev_priv);
1634 
1635 	if (DISPLAY_VER(dev_priv) >= 12)
1636 		gen12_dbuf_slices_config(dev_priv);
1637 
1638 	/* 5. Enable DBUF. */
1639 	gen9_dbuf_enable(dev_priv);
1640 
1641 	/* 6. Setup MBUS. */
1642 	icl_mbus_init(dev_priv);
1643 
1644 	/* 7. Program arbiter BW_BUDDY registers */
1645 	if (DISPLAY_VER(dev_priv) >= 12)
1646 		tgl_bw_buddy_init(dev_priv);
1647 
1648 	/* 8. Ensure PHYs have completed calibration and adaptation */
1649 	if (IS_DG2(dev_priv))
1650 		intel_snps_phy_wait_for_calibration(dev_priv);
1651 
1652 	if (resume)
1653 		intel_dmc_load_program(dev_priv);
1654 
1655 	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
1656 	if (DISPLAY_VER(dev_priv) >= 12) {
1657 		val = DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1658 		      DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR;
1659 		intel_uncore_rmw(&dev_priv->uncore, GEN11_CHICKEN_DCPR_2, 0, val);
1660 	}
1661 
1662 	/* Wa_14011503030:xelpd */
1663 	if (DISPLAY_VER(dev_priv) >= 13)
1664 		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1665 }
1666 
1667 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1668 {
1669 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1670 	struct i915_power_well *well;
1671 
1672 	if (!HAS_DISPLAY(dev_priv))
1673 		return;
1674 
1675 	gen9_disable_dc_states(dev_priv);
1676 
1677 	/* 1. Disable all display engine functions -> aready done */
1678 
1679 	/* 2. Disable DBUF */
1680 	gen9_dbuf_disable(dev_priv);
1681 
1682 	/* 3. Disable CD clock */
1683 	intel_cdclk_uninit_hw(dev_priv);
1684 
1685 	/*
1686 	 * 4. Disable Power Well 1 (PG1).
1687 	 *    The AUX IO power wells are toggled on demand, so they are already
1688 	 *    disabled at this point.
1689 	 */
1690 	mutex_lock(&power_domains->lock);
1691 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1692 	intel_power_well_disable(dev_priv, well);
1693 	mutex_unlock(&power_domains->lock);
1694 
1695 	/* 5. */
1696 	intel_combo_phy_uninit(dev_priv);
1697 }
1698 
1699 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1700 {
1701 	struct i915_power_well *cmn_bc =
1702 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1703 	struct i915_power_well *cmn_d =
1704 		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1705 
1706 	/*
1707 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1708 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1709 	 * instead maintain a shadow copy ourselves. Use the actual
1710 	 * power well state and lane status to reconstruct the
1711 	 * expected initial value.
1712 	 */
1713 	dev_priv->chv_phy_control =
1714 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1715 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1716 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1717 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1718 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1719 
1720 	/*
1721 	 * If all lanes are disabled we leave the override disabled
1722 	 * with all power down bits cleared to match the state we
1723 	 * would use after disabling the port. Otherwise enable the
1724 	 * override and set the lane powerdown bits accding to the
1725 	 * current lane status.
1726 	 */
1727 	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1728 		u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1729 		unsigned int mask;
1730 
1731 		mask = status & DPLL_PORTB_READY_MASK;
1732 		if (mask == 0xf)
1733 			mask = 0x0;
1734 		else
1735 			dev_priv->chv_phy_control |=
1736 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1737 
1738 		dev_priv->chv_phy_control |=
1739 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1740 
1741 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1742 		if (mask == 0xf)
1743 			mask = 0x0;
1744 		else
1745 			dev_priv->chv_phy_control |=
1746 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1747 
1748 		dev_priv->chv_phy_control |=
1749 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1750 
1751 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1752 
1753 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
1754 	} else {
1755 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
1756 	}
1757 
1758 	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1759 		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1760 		unsigned int mask;
1761 
1762 		mask = status & DPLL_PORTD_READY_MASK;
1763 
1764 		if (mask == 0xf)
1765 			mask = 0x0;
1766 		else
1767 			dev_priv->chv_phy_control |=
1768 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1769 
1770 		dev_priv->chv_phy_control |=
1771 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1772 
1773 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1774 
1775 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
1776 	} else {
1777 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
1778 	}
1779 
1780 	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1781 		    dev_priv->chv_phy_control);
1782 
1783 	/* Defer application of initial phy_control to enabling the powerwell */
1784 }
1785 
1786 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1787 {
1788 	struct i915_power_well *cmn =
1789 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1790 	struct i915_power_well *disp2d =
1791 		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1792 
1793 	/* If the display might be already active skip this */
1794 	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1795 	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1796 	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1797 		return;
1798 
1799 	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1800 
1801 	/* cmnlane needs DPLL registers */
1802 	intel_power_well_enable(dev_priv, disp2d);
1803 
1804 	/*
1805 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1806 	 * Need to assert and de-assert PHY SB reset by gating the
1807 	 * common lane power, then un-gating it.
1808 	 * Simply ungating isn't enough to reset the PHY enough to get
1809 	 * ports and lanes running.
1810 	 */
1811 	intel_power_well_disable(dev_priv, cmn);
1812 }
1813 
1814 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1815 {
1816 	bool ret;
1817 
1818 	vlv_punit_get(dev_priv);
1819 	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1820 	vlv_punit_put(dev_priv);
1821 
1822 	return ret;
1823 }
1824 
1825 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1826 {
1827 	drm_WARN(&dev_priv->drm,
1828 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1829 		 "VED not power gated\n");
1830 }
1831 
1832 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1833 {
1834 	static const struct pci_device_id isp_ids[] = {
1835 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1836 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1837 		{}
1838 	};
1839 
1840 	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1841 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1842 		 "ISP not power gated\n");
1843 }
1844 
1845 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1846 
1847 /**
1848  * intel_power_domains_init_hw - initialize hardware power domain state
1849  * @i915: i915 device instance
1850  * @resume: Called from resume code paths or not
1851  *
1852  * This function initializes the hardware power domain state and enables all
1853  * power wells belonging to the INIT power domain. Power wells in other
1854  * domains (and not in the INIT domain) are referenced or disabled by
1855  * intel_modeset_readout_hw_state(). After that the reference count of each
1856  * power well must match its HW enabled state, see
1857  * intel_power_domains_verify_state().
1858  *
1859  * It will return with power domains disabled (to be enabled later by
1860  * intel_power_domains_enable()) and must be paired with
1861  * intel_power_domains_driver_remove().
1862  */
1863 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1864 {
1865 	struct i915_power_domains *power_domains = &i915->power_domains;
1866 
1867 	power_domains->initializing = true;
1868 
1869 	if (DISPLAY_VER(i915) >= 11) {
1870 		icl_display_core_init(i915, resume);
1871 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1872 		bxt_display_core_init(i915, resume);
1873 	} else if (DISPLAY_VER(i915) == 9) {
1874 		skl_display_core_init(i915, resume);
1875 	} else if (IS_CHERRYVIEW(i915)) {
1876 		mutex_lock(&power_domains->lock);
1877 		chv_phy_control_init(i915);
1878 		mutex_unlock(&power_domains->lock);
1879 		assert_isp_power_gated(i915);
1880 	} else if (IS_VALLEYVIEW(i915)) {
1881 		mutex_lock(&power_domains->lock);
1882 		vlv_cmnlane_wa(i915);
1883 		mutex_unlock(&power_domains->lock);
1884 		assert_ved_power_gated(i915);
1885 		assert_isp_power_gated(i915);
1886 	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1887 		hsw_assert_cdclk(i915);
1888 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1889 	} else if (IS_IVYBRIDGE(i915)) {
1890 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1891 	}
1892 
1893 	/*
1894 	 * Keep all power wells enabled for any dependent HW access during
1895 	 * initialization and to make sure we keep BIOS enabled display HW
1896 	 * resources powered until display HW readout is complete. We drop
1897 	 * this reference in intel_power_domains_enable().
1898 	 */
1899 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1900 	power_domains->init_wakeref =
1901 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1902 
1903 	/* Disable power support if the user asked so. */
1904 	if (!i915->params.disable_power_well) {
1905 		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1906 		i915->power_domains.disable_wakeref = intel_display_power_get(i915,
1907 									      POWER_DOMAIN_INIT);
1908 	}
1909 	intel_power_domains_sync_hw(i915);
1910 
1911 	power_domains->initializing = false;
1912 }
1913 
1914 /**
1915  * intel_power_domains_driver_remove - deinitialize hw power domain state
1916  * @i915: i915 device instance
1917  *
1918  * De-initializes the display power domain HW state. It also ensures that the
1919  * device stays powered up so that the driver can be reloaded.
1920  *
1921  * It must be called with power domains already disabled (after a call to
1922  * intel_power_domains_disable()) and must be paired with
1923  * intel_power_domains_init_hw().
1924  */
1925 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1926 {
1927 	intel_wakeref_t wakeref __maybe_unused =
1928 		fetch_and_zero(&i915->power_domains.init_wakeref);
1929 
1930 	/* Remove the refcount we took to keep power well support disabled. */
1931 	if (!i915->params.disable_power_well)
1932 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1933 					fetch_and_zero(&i915->power_domains.disable_wakeref));
1934 
1935 	intel_display_power_flush_work_sync(i915);
1936 
1937 	intel_power_domains_verify_state(i915);
1938 
1939 	/* Keep the power well enabled, but cancel its rpm wakeref. */
1940 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1941 }
1942 
1943 /**
1944  * intel_power_domains_sanitize_state - sanitize power domains state
1945  * @i915: i915 device instance
1946  *
1947  * Sanitize the power domains state during driver loading and system resume.
1948  * The function will disable all display power wells that BIOS has enabled
1949  * without a user for it (any user for a power well has taken a reference
1950  * on it by the time this function is called, after the state of all the
1951  * pipe, encoder, etc. HW resources have been sanitized).
1952  */
1953 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
1954 {
1955 	struct i915_power_domains *power_domains = &i915->power_domains;
1956 	struct i915_power_well *power_well;
1957 
1958 	mutex_lock(&power_domains->lock);
1959 
1960 	for_each_power_well_reverse(i915, power_well) {
1961 		if (power_well->desc->always_on || power_well->count ||
1962 		    !intel_power_well_is_enabled(i915, power_well))
1963 			continue;
1964 
1965 		drm_dbg_kms(&i915->drm,
1966 			    "BIOS left unused %s power well enabled, disabling it\n",
1967 			    intel_power_well_name(power_well));
1968 		intel_power_well_disable(i915, power_well);
1969 	}
1970 
1971 	mutex_unlock(&power_domains->lock);
1972 }
1973 
1974 /**
1975  * intel_power_domains_enable - enable toggling of display power wells
1976  * @i915: i915 device instance
1977  *
1978  * Enable the ondemand enabling/disabling of the display power wells. Note that
1979  * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
1980  * only at specific points of the display modeset sequence, thus they are not
1981  * affected by the intel_power_domains_enable()/disable() calls. The purpose
1982  * of these function is to keep the rest of power wells enabled until the end
1983  * of display HW readout (which will acquire the power references reflecting
1984  * the current HW state).
1985  */
1986 void intel_power_domains_enable(struct drm_i915_private *i915)
1987 {
1988 	intel_wakeref_t wakeref __maybe_unused =
1989 		fetch_and_zero(&i915->power_domains.init_wakeref);
1990 
1991 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
1992 	intel_power_domains_verify_state(i915);
1993 }
1994 
1995 /**
1996  * intel_power_domains_disable - disable toggling of display power wells
1997  * @i915: i915 device instance
1998  *
1999  * Disable the ondemand enabling/disabling of the display power wells. See
2000  * intel_power_domains_enable() for which power wells this call controls.
2001  */
2002 void intel_power_domains_disable(struct drm_i915_private *i915)
2003 {
2004 	struct i915_power_domains *power_domains = &i915->power_domains;
2005 
2006 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2007 	power_domains->init_wakeref =
2008 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2009 
2010 	intel_power_domains_verify_state(i915);
2011 }
2012 
2013 /**
2014  * intel_power_domains_suspend - suspend power domain state
2015  * @i915: i915 device instance
2016  * @suspend_mode: specifies the target suspend state (idle, mem, hibernation)
2017  *
2018  * This function prepares the hardware power domain state before entering
2019  * system suspend.
2020  *
2021  * It must be called with power domains already disabled (after a call to
2022  * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2023  */
2024 void intel_power_domains_suspend(struct drm_i915_private *i915,
2025 				 enum i915_drm_suspend_mode suspend_mode)
2026 {
2027 	struct i915_power_domains *power_domains = &i915->power_domains;
2028 	intel_wakeref_t wakeref __maybe_unused =
2029 		fetch_and_zero(&power_domains->init_wakeref);
2030 
2031 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2032 
2033 	/*
2034 	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2035 	 * support don't manually deinit the power domains. This also means the
2036 	 * DMC firmware will stay active, it will power down any HW
2037 	 * resources as required and also enable deeper system power states
2038 	 * that would be blocked if the firmware was inactive.
2039 	 */
2040 	if (!(i915->dmc.allowed_dc_mask & DC_STATE_EN_DC9) &&
2041 	    suspend_mode == I915_DRM_SUSPEND_IDLE &&
2042 	    intel_dmc_has_payload(i915)) {
2043 		intel_display_power_flush_work(i915);
2044 		intel_power_domains_verify_state(i915);
2045 		return;
2046 	}
2047 
2048 	/*
2049 	 * Even if power well support was disabled we still want to disable
2050 	 * power wells if power domains must be deinitialized for suspend.
2051 	 */
2052 	if (!i915->params.disable_power_well)
2053 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2054 					fetch_and_zero(&i915->power_domains.disable_wakeref));
2055 
2056 	intel_display_power_flush_work(i915);
2057 	intel_power_domains_verify_state(i915);
2058 
2059 	if (DISPLAY_VER(i915) >= 11)
2060 		icl_display_core_uninit(i915);
2061 	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2062 		bxt_display_core_uninit(i915);
2063 	else if (DISPLAY_VER(i915) == 9)
2064 		skl_display_core_uninit(i915);
2065 
2066 	power_domains->display_core_suspended = true;
2067 }
2068 
2069 /**
2070  * intel_power_domains_resume - resume power domain state
2071  * @i915: i915 device instance
2072  *
2073  * This function resume the hardware power domain state during system resume.
2074  *
2075  * It will return with power domain support disabled (to be enabled later by
2076  * intel_power_domains_enable()) and must be paired with
2077  * intel_power_domains_suspend().
2078  */
2079 void intel_power_domains_resume(struct drm_i915_private *i915)
2080 {
2081 	struct i915_power_domains *power_domains = &i915->power_domains;
2082 
2083 	if (power_domains->display_core_suspended) {
2084 		intel_power_domains_init_hw(i915, true);
2085 		power_domains->display_core_suspended = false;
2086 	} else {
2087 		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2088 		power_domains->init_wakeref =
2089 			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2090 	}
2091 
2092 	intel_power_domains_verify_state(i915);
2093 }
2094 
2095 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2096 
2097 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2098 {
2099 	struct i915_power_domains *power_domains = &i915->power_domains;
2100 	struct i915_power_well *power_well;
2101 
2102 	for_each_power_well(i915, power_well) {
2103 		enum intel_display_power_domain domain;
2104 
2105 		drm_dbg(&i915->drm, "%-25s %d\n",
2106 			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2107 
2108 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2109 			drm_dbg(&i915->drm, "  %-23s %d\n",
2110 				intel_display_power_domain_str(domain),
2111 				power_domains->domain_use_count[domain]);
2112 	}
2113 }
2114 
2115 /**
2116  * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2117  * @i915: i915 device instance
2118  *
2119  * Verify if the reference count of each power well matches its HW enabled
2120  * state and the total refcount of the domains it belongs to. This must be
2121  * called after modeset HW state sanitization, which is responsible for
2122  * acquiring reference counts for any power wells in use and disabling the
2123  * ones left on by BIOS but not required by any active output.
2124  */
2125 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2126 {
2127 	struct i915_power_domains *power_domains = &i915->power_domains;
2128 	struct i915_power_well *power_well;
2129 	bool dump_domain_info;
2130 
2131 	mutex_lock(&power_domains->lock);
2132 
2133 	verify_async_put_domains_state(power_domains);
2134 
2135 	dump_domain_info = false;
2136 	for_each_power_well(i915, power_well) {
2137 		enum intel_display_power_domain domain;
2138 		int domains_count;
2139 		bool enabled;
2140 
2141 		enabled = intel_power_well_is_enabled(i915, power_well);
2142 		if ((intel_power_well_refcount(power_well) ||
2143 		     intel_power_well_is_always_on(power_well)) !=
2144 		    enabled)
2145 			drm_err(&i915->drm,
2146 				"power well %s state mismatch (refcount %d/enabled %d)",
2147 				intel_power_well_name(power_well),
2148 				intel_power_well_refcount(power_well), enabled);
2149 
2150 		domains_count = 0;
2151 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2152 			domains_count += power_domains->domain_use_count[domain];
2153 
2154 		if (intel_power_well_refcount(power_well) != domains_count) {
2155 			drm_err(&i915->drm,
2156 				"power well %s refcount/domain refcount mismatch "
2157 				"(refcount %d/domains refcount %d)\n",
2158 				intel_power_well_name(power_well),
2159 				intel_power_well_refcount(power_well),
2160 				domains_count);
2161 			dump_domain_info = true;
2162 		}
2163 	}
2164 
2165 	if (dump_domain_info) {
2166 		static bool dumped;
2167 
2168 		if (!dumped) {
2169 			intel_power_domains_dump_info(i915);
2170 			dumped = true;
2171 		}
2172 	}
2173 
2174 	mutex_unlock(&power_domains->lock);
2175 }
2176 
2177 #else
2178 
2179 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2180 {
2181 }
2182 
2183 #endif
2184 
2185 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2186 {
2187 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2188 	    IS_BROXTON(i915)) {
2189 		bxt_enable_dc9(i915);
2190 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2191 		hsw_enable_pc8(i915);
2192 	}
2193 
2194 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2195 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2196 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2197 }
2198 
2199 void intel_display_power_resume_early(struct drm_i915_private *i915)
2200 {
2201 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2202 	    IS_BROXTON(i915)) {
2203 		gen9_sanitize_dc_state(i915);
2204 		bxt_disable_dc9(i915);
2205 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2206 		hsw_disable_pc8(i915);
2207 	}
2208 
2209 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2210 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2211 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2212 }
2213 
2214 void intel_display_power_suspend(struct drm_i915_private *i915)
2215 {
2216 	if (DISPLAY_VER(i915) >= 11) {
2217 		icl_display_core_uninit(i915);
2218 		bxt_enable_dc9(i915);
2219 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2220 		bxt_display_core_uninit(i915);
2221 		bxt_enable_dc9(i915);
2222 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2223 		hsw_enable_pc8(i915);
2224 	}
2225 }
2226 
2227 void intel_display_power_resume(struct drm_i915_private *i915)
2228 {
2229 	if (DISPLAY_VER(i915) >= 11) {
2230 		bxt_disable_dc9(i915);
2231 		icl_display_core_init(i915, true);
2232 		if (intel_dmc_has_payload(i915)) {
2233 			if (i915->dmc.allowed_dc_mask &
2234 			    DC_STATE_EN_UPTO_DC6)
2235 				skl_enable_dc6(i915);
2236 			else if (i915->dmc.allowed_dc_mask &
2237 				 DC_STATE_EN_UPTO_DC5)
2238 				gen9_enable_dc5(i915);
2239 		}
2240 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2241 		bxt_disable_dc9(i915);
2242 		bxt_display_core_init(i915, true);
2243 		if (intel_dmc_has_payload(i915) &&
2244 		    (i915->dmc.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2245 			gen9_enable_dc5(i915);
2246 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2247 		hsw_disable_pc8(i915);
2248 	}
2249 }
2250 
2251 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2252 {
2253 	struct i915_power_domains *power_domains = &i915->power_domains;
2254 	int i;
2255 
2256 	mutex_lock(&power_domains->lock);
2257 
2258 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2259 	for (i = 0; i < power_domains->power_well_count; i++) {
2260 		struct i915_power_well *power_well;
2261 		enum intel_display_power_domain power_domain;
2262 
2263 		power_well = &power_domains->power_wells[i];
2264 		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2265 			   intel_power_well_refcount(power_well));
2266 
2267 		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2268 			seq_printf(m, "  %-23s %d\n",
2269 				   intel_display_power_domain_str(power_domain),
2270 				   power_domains->domain_use_count[power_domain]);
2271 	}
2272 
2273 	mutex_unlock(&power_domains->lock);
2274 }
2275 
2276 struct intel_ddi_port_domains {
2277 	enum port port_start;
2278 	enum port port_end;
2279 	enum aux_ch aux_ch_start;
2280 	enum aux_ch aux_ch_end;
2281 
2282 	enum intel_display_power_domain ddi_lanes;
2283 	enum intel_display_power_domain ddi_io;
2284 	enum intel_display_power_domain aux_legacy_usbc;
2285 	enum intel_display_power_domain aux_tbt;
2286 };
2287 
2288 static const struct intel_ddi_port_domains
2289 i9xx_port_domains[] = {
2290 	{
2291 		.port_start = PORT_A,
2292 		.port_end = PORT_F,
2293 		.aux_ch_start = AUX_CH_A,
2294 		.aux_ch_end = AUX_CH_F,
2295 
2296 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2297 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2298 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2299 		.aux_tbt = POWER_DOMAIN_INVALID,
2300 	},
2301 };
2302 
2303 static const struct intel_ddi_port_domains
2304 d11_port_domains[] = {
2305 	{
2306 		.port_start = PORT_A,
2307 		.port_end = PORT_B,
2308 		.aux_ch_start = AUX_CH_A,
2309 		.aux_ch_end = AUX_CH_B,
2310 
2311 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2312 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2313 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2314 		.aux_tbt = POWER_DOMAIN_INVALID,
2315 	}, {
2316 		.port_start = PORT_C,
2317 		.port_end = PORT_F,
2318 		.aux_ch_start = AUX_CH_C,
2319 		.aux_ch_end = AUX_CH_F,
2320 
2321 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2322 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2323 		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2324 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2325 	},
2326 };
2327 
2328 static const struct intel_ddi_port_domains
2329 d12_port_domains[] = {
2330 	{
2331 		.port_start = PORT_A,
2332 		.port_end = PORT_C,
2333 		.aux_ch_start = AUX_CH_A,
2334 		.aux_ch_end = AUX_CH_C,
2335 
2336 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2337 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2338 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2339 		.aux_tbt = POWER_DOMAIN_INVALID,
2340 	}, {
2341 		.port_start = PORT_TC1,
2342 		.port_end = PORT_TC6,
2343 		.aux_ch_start = AUX_CH_USBC1,
2344 		.aux_ch_end = AUX_CH_USBC6,
2345 
2346 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2347 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2348 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2349 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2350 	},
2351 };
2352 
2353 static const struct intel_ddi_port_domains
2354 d13_port_domains[] = {
2355 	{
2356 		.port_start = PORT_A,
2357 		.port_end = PORT_C,
2358 		.aux_ch_start = AUX_CH_A,
2359 		.aux_ch_end = AUX_CH_C,
2360 
2361 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2362 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2363 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2364 		.aux_tbt = POWER_DOMAIN_INVALID,
2365 	}, {
2366 		.port_start = PORT_TC1,
2367 		.port_end = PORT_TC4,
2368 		.aux_ch_start = AUX_CH_USBC1,
2369 		.aux_ch_end = AUX_CH_USBC4,
2370 
2371 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2372 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2373 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2374 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2375 	}, {
2376 		.port_start = PORT_D_XELPD,
2377 		.port_end = PORT_E_XELPD,
2378 		.aux_ch_start = AUX_CH_D_XELPD,
2379 		.aux_ch_end = AUX_CH_E_XELPD,
2380 
2381 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2382 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2383 		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2384 		.aux_tbt = POWER_DOMAIN_INVALID,
2385 	},
2386 };
2387 
2388 static void
2389 intel_port_domains_for_platform(struct drm_i915_private *i915,
2390 				const struct intel_ddi_port_domains **domains,
2391 				int *domains_size)
2392 {
2393 	if (DISPLAY_VER(i915) >= 13) {
2394 		*domains = d13_port_domains;
2395 		*domains_size = ARRAY_SIZE(d13_port_domains);
2396 	} else if (DISPLAY_VER(i915) >= 12) {
2397 		*domains = d12_port_domains;
2398 		*domains_size = ARRAY_SIZE(d12_port_domains);
2399 	} else if (DISPLAY_VER(i915) >= 11) {
2400 		*domains = d11_port_domains;
2401 		*domains_size = ARRAY_SIZE(d11_port_domains);
2402 	} else {
2403 		*domains = i9xx_port_domains;
2404 		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2405 	}
2406 }
2407 
2408 static const struct intel_ddi_port_domains *
2409 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2410 {
2411 	const struct intel_ddi_port_domains *domains;
2412 	int domains_size;
2413 	int i;
2414 
2415 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2416 	for (i = 0; i < domains_size; i++)
2417 		if (port >= domains[i].port_start && port <= domains[i].port_end)
2418 			return &domains[i];
2419 
2420 	return NULL;
2421 }
2422 
2423 enum intel_display_power_domain
2424 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2425 {
2426 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2427 
2428 	if (drm_WARN_ON(&i915->drm, !domains) || domains->ddi_io == POWER_DOMAIN_INVALID)
2429 		return POWER_DOMAIN_PORT_DDI_IO_A;
2430 
2431 	return domains->ddi_io + (int)(port - domains->port_start);
2432 }
2433 
2434 enum intel_display_power_domain
2435 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2436 {
2437 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2438 
2439 	if (drm_WARN_ON(&i915->drm, !domains) || domains->ddi_lanes == POWER_DOMAIN_INVALID)
2440 		return POWER_DOMAIN_PORT_DDI_LANES_A;
2441 
2442 	return domains->ddi_lanes + (int)(port - domains->port_start);
2443 }
2444 
2445 static const struct intel_ddi_port_domains *
2446 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2447 {
2448 	const struct intel_ddi_port_domains *domains;
2449 	int domains_size;
2450 	int i;
2451 
2452 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2453 	for (i = 0; i < domains_size; i++)
2454 		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2455 			return &domains[i];
2456 
2457 	return NULL;
2458 }
2459 
2460 enum intel_display_power_domain
2461 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2462 {
2463 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2464 
2465 	if (drm_WARN_ON(&i915->drm, !domains) || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID)
2466 		return POWER_DOMAIN_AUX_A;
2467 
2468 	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2469 }
2470 
2471 enum intel_display_power_domain
2472 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2473 {
2474 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2475 
2476 	if (drm_WARN_ON(&i915->drm, !domains) || domains->aux_tbt == POWER_DOMAIN_INVALID)
2477 		return POWER_DOMAIN_AUX_TBT1;
2478 
2479 	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2480 }
2481