1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "intel_backlight_regs.h"
11 #include "intel_cdclk.h"
12 #include "intel_combo_phy.h"
13 #include "intel_de.h"
14 #include "intel_display_power.h"
15 #include "intel_display_power_map.h"
16 #include "intel_display_power_well.h"
17 #include "intel_display_types.h"
18 #include "intel_dmc.h"
19 #include "intel_mchbar_regs.h"
20 #include "intel_pch_refclk.h"
21 #include "intel_pcode.h"
22 #include "intel_snps_phy.h"
23 #include "skl_watermark.h"
24 #include "vlv_sideband.h"
25 
26 #define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
27 	for_each_power_well(__dev_priv, __power_well)				\
28 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
29 
30 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
31 	for_each_power_well_reverse(__dev_priv, __power_well)		        \
32 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
33 
34 const char *
35 intel_display_power_domain_str(enum intel_display_power_domain domain)
36 {
37 	switch (domain) {
38 	case POWER_DOMAIN_DISPLAY_CORE:
39 		return "DISPLAY_CORE";
40 	case POWER_DOMAIN_PIPE_A:
41 		return "PIPE_A";
42 	case POWER_DOMAIN_PIPE_B:
43 		return "PIPE_B";
44 	case POWER_DOMAIN_PIPE_C:
45 		return "PIPE_C";
46 	case POWER_DOMAIN_PIPE_D:
47 		return "PIPE_D";
48 	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
49 		return "PIPE_PANEL_FITTER_A";
50 	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
51 		return "PIPE_PANEL_FITTER_B";
52 	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
53 		return "PIPE_PANEL_FITTER_C";
54 	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
55 		return "PIPE_PANEL_FITTER_D";
56 	case POWER_DOMAIN_TRANSCODER_A:
57 		return "TRANSCODER_A";
58 	case POWER_DOMAIN_TRANSCODER_B:
59 		return "TRANSCODER_B";
60 	case POWER_DOMAIN_TRANSCODER_C:
61 		return "TRANSCODER_C";
62 	case POWER_DOMAIN_TRANSCODER_D:
63 		return "TRANSCODER_D";
64 	case POWER_DOMAIN_TRANSCODER_EDP:
65 		return "TRANSCODER_EDP";
66 	case POWER_DOMAIN_TRANSCODER_DSI_A:
67 		return "TRANSCODER_DSI_A";
68 	case POWER_DOMAIN_TRANSCODER_DSI_C:
69 		return "TRANSCODER_DSI_C";
70 	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
71 		return "TRANSCODER_VDSC_PW2";
72 	case POWER_DOMAIN_PORT_DDI_LANES_A:
73 		return "PORT_DDI_LANES_A";
74 	case POWER_DOMAIN_PORT_DDI_LANES_B:
75 		return "PORT_DDI_LANES_B";
76 	case POWER_DOMAIN_PORT_DDI_LANES_C:
77 		return "PORT_DDI_LANES_C";
78 	case POWER_DOMAIN_PORT_DDI_LANES_D:
79 		return "PORT_DDI_LANES_D";
80 	case POWER_DOMAIN_PORT_DDI_LANES_E:
81 		return "PORT_DDI_LANES_E";
82 	case POWER_DOMAIN_PORT_DDI_LANES_F:
83 		return "PORT_DDI_LANES_F";
84 	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
85 		return "PORT_DDI_LANES_TC1";
86 	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
87 		return "PORT_DDI_LANES_TC2";
88 	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
89 		return "PORT_DDI_LANES_TC3";
90 	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
91 		return "PORT_DDI_LANES_TC4";
92 	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
93 		return "PORT_DDI_LANES_TC5";
94 	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
95 		return "PORT_DDI_LANES_TC6";
96 	case POWER_DOMAIN_PORT_DDI_IO_A:
97 		return "PORT_DDI_IO_A";
98 	case POWER_DOMAIN_PORT_DDI_IO_B:
99 		return "PORT_DDI_IO_B";
100 	case POWER_DOMAIN_PORT_DDI_IO_C:
101 		return "PORT_DDI_IO_C";
102 	case POWER_DOMAIN_PORT_DDI_IO_D:
103 		return "PORT_DDI_IO_D";
104 	case POWER_DOMAIN_PORT_DDI_IO_E:
105 		return "PORT_DDI_IO_E";
106 	case POWER_DOMAIN_PORT_DDI_IO_F:
107 		return "PORT_DDI_IO_F";
108 	case POWER_DOMAIN_PORT_DDI_IO_TC1:
109 		return "PORT_DDI_IO_TC1";
110 	case POWER_DOMAIN_PORT_DDI_IO_TC2:
111 		return "PORT_DDI_IO_TC2";
112 	case POWER_DOMAIN_PORT_DDI_IO_TC3:
113 		return "PORT_DDI_IO_TC3";
114 	case POWER_DOMAIN_PORT_DDI_IO_TC4:
115 		return "PORT_DDI_IO_TC4";
116 	case POWER_DOMAIN_PORT_DDI_IO_TC5:
117 		return "PORT_DDI_IO_TC5";
118 	case POWER_DOMAIN_PORT_DDI_IO_TC6:
119 		return "PORT_DDI_IO_TC6";
120 	case POWER_DOMAIN_PORT_DSI:
121 		return "PORT_DSI";
122 	case POWER_DOMAIN_PORT_CRT:
123 		return "PORT_CRT";
124 	case POWER_DOMAIN_PORT_OTHER:
125 		return "PORT_OTHER";
126 	case POWER_DOMAIN_VGA:
127 		return "VGA";
128 	case POWER_DOMAIN_AUDIO_MMIO:
129 		return "AUDIO_MMIO";
130 	case POWER_DOMAIN_AUDIO_PLAYBACK:
131 		return "AUDIO_PLAYBACK";
132 	case POWER_DOMAIN_AUX_IO_A:
133 		return "AUX_IO_A";
134 	case POWER_DOMAIN_AUX_IO_B:
135 		return "AUX_IO_B";
136 	case POWER_DOMAIN_AUX_IO_C:
137 		return "AUX_IO_C";
138 	case POWER_DOMAIN_AUX_IO_D:
139 		return "AUX_IO_D";
140 	case POWER_DOMAIN_AUX_IO_E:
141 		return "AUX_IO_E";
142 	case POWER_DOMAIN_AUX_IO_F:
143 		return "AUX_IO_F";
144 	case POWER_DOMAIN_AUX_A:
145 		return "AUX_A";
146 	case POWER_DOMAIN_AUX_B:
147 		return "AUX_B";
148 	case POWER_DOMAIN_AUX_C:
149 		return "AUX_C";
150 	case POWER_DOMAIN_AUX_D:
151 		return "AUX_D";
152 	case POWER_DOMAIN_AUX_E:
153 		return "AUX_E";
154 	case POWER_DOMAIN_AUX_F:
155 		return "AUX_F";
156 	case POWER_DOMAIN_AUX_USBC1:
157 		return "AUX_USBC1";
158 	case POWER_DOMAIN_AUX_USBC2:
159 		return "AUX_USBC2";
160 	case POWER_DOMAIN_AUX_USBC3:
161 		return "AUX_USBC3";
162 	case POWER_DOMAIN_AUX_USBC4:
163 		return "AUX_USBC4";
164 	case POWER_DOMAIN_AUX_USBC5:
165 		return "AUX_USBC5";
166 	case POWER_DOMAIN_AUX_USBC6:
167 		return "AUX_USBC6";
168 	case POWER_DOMAIN_AUX_TBT1:
169 		return "AUX_TBT1";
170 	case POWER_DOMAIN_AUX_TBT2:
171 		return "AUX_TBT2";
172 	case POWER_DOMAIN_AUX_TBT3:
173 		return "AUX_TBT3";
174 	case POWER_DOMAIN_AUX_TBT4:
175 		return "AUX_TBT4";
176 	case POWER_DOMAIN_AUX_TBT5:
177 		return "AUX_TBT5";
178 	case POWER_DOMAIN_AUX_TBT6:
179 		return "AUX_TBT6";
180 	case POWER_DOMAIN_GMBUS:
181 		return "GMBUS";
182 	case POWER_DOMAIN_INIT:
183 		return "INIT";
184 	case POWER_DOMAIN_MODESET:
185 		return "MODESET";
186 	case POWER_DOMAIN_GT_IRQ:
187 		return "GT_IRQ";
188 	case POWER_DOMAIN_DC_OFF:
189 		return "DC_OFF";
190 	case POWER_DOMAIN_TC_COLD_OFF:
191 		return "TC_COLD_OFF";
192 	default:
193 		MISSING_CASE(domain);
194 		return "?";
195 	}
196 }
197 
198 /**
199  * __intel_display_power_is_enabled - unlocked check for a power domain
200  * @dev_priv: i915 device instance
201  * @domain: power domain to check
202  *
203  * This is the unlocked version of intel_display_power_is_enabled() and should
204  * only be used from error capture and recovery code where deadlocks are
205  * possible.
206  *
207  * Returns:
208  * True when the power domain is enabled, false otherwise.
209  */
210 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
211 				      enum intel_display_power_domain domain)
212 {
213 	struct i915_power_well *power_well;
214 	bool is_enabled;
215 
216 	if (dev_priv->runtime_pm.suspended)
217 		return false;
218 
219 	is_enabled = true;
220 
221 	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
222 		if (intel_power_well_is_always_on(power_well))
223 			continue;
224 
225 		if (!intel_power_well_is_enabled_cached(power_well)) {
226 			is_enabled = false;
227 			break;
228 		}
229 	}
230 
231 	return is_enabled;
232 }
233 
234 /**
235  * intel_display_power_is_enabled - check for a power domain
236  * @dev_priv: i915 device instance
237  * @domain: power domain to check
238  *
239  * This function can be used to check the hw power domain state. It is mostly
240  * used in hardware state readout functions. Everywhere else code should rely
241  * upon explicit power domain reference counting to ensure that the hardware
242  * block is powered up before accessing it.
243  *
244  * Callers must hold the relevant modesetting locks to ensure that concurrent
245  * threads can't disable the power well while the caller tries to read a few
246  * registers.
247  *
248  * Returns:
249  * True when the power domain is enabled, false otherwise.
250  */
251 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
252 				    enum intel_display_power_domain domain)
253 {
254 	struct i915_power_domains *power_domains;
255 	bool ret;
256 
257 	power_domains = &dev_priv->display.power.domains;
258 
259 	mutex_lock(&power_domains->lock);
260 	ret = __intel_display_power_is_enabled(dev_priv, domain);
261 	mutex_unlock(&power_domains->lock);
262 
263 	return ret;
264 }
265 
266 static u32
267 sanitize_target_dc_state(struct drm_i915_private *i915,
268 			 u32 target_dc_state)
269 {
270 	struct i915_power_domains *power_domains = &i915->display.power.domains;
271 	static const u32 states[] = {
272 		DC_STATE_EN_UPTO_DC6,
273 		DC_STATE_EN_UPTO_DC5,
274 		DC_STATE_EN_DC3CO,
275 		DC_STATE_DISABLE,
276 	};
277 	int i;
278 
279 	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
280 		if (target_dc_state != states[i])
281 			continue;
282 
283 		if (power_domains->allowed_dc_mask & target_dc_state)
284 			break;
285 
286 		target_dc_state = states[i + 1];
287 	}
288 
289 	return target_dc_state;
290 }
291 
292 /**
293  * intel_display_power_set_target_dc_state - Set target dc state.
294  * @dev_priv: i915 device
295  * @state: state which needs to be set as target_dc_state.
296  *
297  * This function set the "DC off" power well target_dc_state,
298  * based upon this target_dc_stste, "DC off" power well will
299  * enable desired DC state.
300  */
301 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
302 					     u32 state)
303 {
304 	struct i915_power_well *power_well;
305 	bool dc_off_enabled;
306 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
307 
308 	mutex_lock(&power_domains->lock);
309 	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
310 
311 	if (drm_WARN_ON(&dev_priv->drm, !power_well))
312 		goto unlock;
313 
314 	state = sanitize_target_dc_state(dev_priv, state);
315 
316 	if (state == power_domains->target_dc_state)
317 		goto unlock;
318 
319 	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
320 	/*
321 	 * If DC off power well is disabled, need to enable and disable the
322 	 * DC off power well to effect target DC state.
323 	 */
324 	if (!dc_off_enabled)
325 		intel_power_well_enable(dev_priv, power_well);
326 
327 	power_domains->target_dc_state = state;
328 
329 	if (!dc_off_enabled)
330 		intel_power_well_disable(dev_priv, power_well);
331 
332 unlock:
333 	mutex_unlock(&power_domains->lock);
334 }
335 
336 #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
337 
338 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
339 				     struct intel_power_domain_mask *mask)
340 {
341 	bitmap_or(mask->bits,
342 		  power_domains->async_put_domains[0].bits,
343 		  power_domains->async_put_domains[1].bits,
344 		  POWER_DOMAIN_NUM);
345 }
346 
347 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
348 
349 static bool
350 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
351 {
352 	struct drm_i915_private *i915 = container_of(power_domains,
353 						     struct drm_i915_private,
354 						     display.power.domains);
355 
356 	return !drm_WARN_ON(&i915->drm,
357 			    bitmap_intersects(power_domains->async_put_domains[0].bits,
358 					      power_domains->async_put_domains[1].bits,
359 					      POWER_DOMAIN_NUM));
360 }
361 
362 static bool
363 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
364 {
365 	struct drm_i915_private *i915 = container_of(power_domains,
366 						     struct drm_i915_private,
367 						     display.power.domains);
368 	struct intel_power_domain_mask async_put_mask;
369 	enum intel_display_power_domain domain;
370 	bool err = false;
371 
372 	err |= !assert_async_put_domain_masks_disjoint(power_domains);
373 	__async_put_domains_mask(power_domains, &async_put_mask);
374 	err |= drm_WARN_ON(&i915->drm,
375 			   !!power_domains->async_put_wakeref !=
376 			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
377 
378 	for_each_power_domain(domain, &async_put_mask)
379 		err |= drm_WARN_ON(&i915->drm,
380 				   power_domains->domain_use_count[domain] != 1);
381 
382 	return !err;
383 }
384 
385 static void print_power_domains(struct i915_power_domains *power_domains,
386 				const char *prefix, struct intel_power_domain_mask *mask)
387 {
388 	struct drm_i915_private *i915 = container_of(power_domains,
389 						     struct drm_i915_private,
390 						     display.power.domains);
391 	enum intel_display_power_domain domain;
392 
393 	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
394 	for_each_power_domain(domain, mask)
395 		drm_dbg(&i915->drm, "%s use_count %d\n",
396 			intel_display_power_domain_str(domain),
397 			power_domains->domain_use_count[domain]);
398 }
399 
400 static void
401 print_async_put_domains_state(struct i915_power_domains *power_domains)
402 {
403 	struct drm_i915_private *i915 = container_of(power_domains,
404 						     struct drm_i915_private,
405 						     display.power.domains);
406 
407 	drm_dbg(&i915->drm, "async_put_wakeref %u\n",
408 		power_domains->async_put_wakeref);
409 
410 	print_power_domains(power_domains, "async_put_domains[0]",
411 			    &power_domains->async_put_domains[0]);
412 	print_power_domains(power_domains, "async_put_domains[1]",
413 			    &power_domains->async_put_domains[1]);
414 }
415 
416 static void
417 verify_async_put_domains_state(struct i915_power_domains *power_domains)
418 {
419 	if (!__async_put_domains_state_ok(power_domains))
420 		print_async_put_domains_state(power_domains);
421 }
422 
423 #else
424 
425 static void
426 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
427 {
428 }
429 
430 static void
431 verify_async_put_domains_state(struct i915_power_domains *power_domains)
432 {
433 }
434 
435 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
436 
437 static void async_put_domains_mask(struct i915_power_domains *power_domains,
438 				   struct intel_power_domain_mask *mask)
439 
440 {
441 	assert_async_put_domain_masks_disjoint(power_domains);
442 
443 	__async_put_domains_mask(power_domains, mask);
444 }
445 
446 static void
447 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
448 			       enum intel_display_power_domain domain)
449 {
450 	assert_async_put_domain_masks_disjoint(power_domains);
451 
452 	clear_bit(domain, power_domains->async_put_domains[0].bits);
453 	clear_bit(domain, power_domains->async_put_domains[1].bits);
454 }
455 
456 static bool
457 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
458 				       enum intel_display_power_domain domain)
459 {
460 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
461 	struct intel_power_domain_mask async_put_mask;
462 	bool ret = false;
463 
464 	async_put_domains_mask(power_domains, &async_put_mask);
465 	if (!test_bit(domain, async_put_mask.bits))
466 		goto out_verify;
467 
468 	async_put_domains_clear_domain(power_domains, domain);
469 
470 	ret = true;
471 
472 	async_put_domains_mask(power_domains, &async_put_mask);
473 	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
474 		goto out_verify;
475 
476 	cancel_delayed_work(&power_domains->async_put_work);
477 	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
478 				 fetch_and_zero(&power_domains->async_put_wakeref));
479 out_verify:
480 	verify_async_put_domains_state(power_domains);
481 
482 	return ret;
483 }
484 
485 static void
486 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
487 				 enum intel_display_power_domain domain)
488 {
489 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
490 	struct i915_power_well *power_well;
491 
492 	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
493 		return;
494 
495 	for_each_power_domain_well(dev_priv, power_well, domain)
496 		intel_power_well_get(dev_priv, power_well);
497 
498 	power_domains->domain_use_count[domain]++;
499 }
500 
501 /**
502  * intel_display_power_get - grab a power domain reference
503  * @dev_priv: i915 device instance
504  * @domain: power domain to reference
505  *
506  * This function grabs a power domain reference for @domain and ensures that the
507  * power domain and all its parents are powered up. Therefore users should only
508  * grab a reference to the innermost power domain they need.
509  *
510  * Any power domain reference obtained by this function must have a symmetric
511  * call to intel_display_power_put() to release the reference again.
512  */
513 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
514 					enum intel_display_power_domain domain)
515 {
516 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
517 	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
518 
519 	mutex_lock(&power_domains->lock);
520 	__intel_display_power_get_domain(dev_priv, domain);
521 	mutex_unlock(&power_domains->lock);
522 
523 	return wakeref;
524 }
525 
526 /**
527  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
528  * @dev_priv: i915 device instance
529  * @domain: power domain to reference
530  *
531  * This function grabs a power domain reference for @domain and ensures that the
532  * power domain and all its parents are powered up. Therefore users should only
533  * grab a reference to the innermost power domain they need.
534  *
535  * Any power domain reference obtained by this function must have a symmetric
536  * call to intel_display_power_put() to release the reference again.
537  */
538 intel_wakeref_t
539 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
540 				   enum intel_display_power_domain domain)
541 {
542 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
543 	intel_wakeref_t wakeref;
544 	bool is_enabled;
545 
546 	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
547 	if (!wakeref)
548 		return false;
549 
550 	mutex_lock(&power_domains->lock);
551 
552 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
553 		__intel_display_power_get_domain(dev_priv, domain);
554 		is_enabled = true;
555 	} else {
556 		is_enabled = false;
557 	}
558 
559 	mutex_unlock(&power_domains->lock);
560 
561 	if (!is_enabled) {
562 		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
563 		wakeref = 0;
564 	}
565 
566 	return wakeref;
567 }
568 
569 static void
570 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
571 				 enum intel_display_power_domain domain)
572 {
573 	struct i915_power_domains *power_domains;
574 	struct i915_power_well *power_well;
575 	const char *name = intel_display_power_domain_str(domain);
576 	struct intel_power_domain_mask async_put_mask;
577 
578 	power_domains = &dev_priv->display.power.domains;
579 
580 	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
581 		 "Use count on domain %s is already zero\n",
582 		 name);
583 	async_put_domains_mask(power_domains, &async_put_mask);
584 	drm_WARN(&dev_priv->drm,
585 		 test_bit(domain, async_put_mask.bits),
586 		 "Async disabling of domain %s is pending\n",
587 		 name);
588 
589 	power_domains->domain_use_count[domain]--;
590 
591 	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
592 		intel_power_well_put(dev_priv, power_well);
593 }
594 
595 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
596 				      enum intel_display_power_domain domain)
597 {
598 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
599 
600 	mutex_lock(&power_domains->lock);
601 	__intel_display_power_put_domain(dev_priv, domain);
602 	mutex_unlock(&power_domains->lock);
603 }
604 
605 static void
606 queue_async_put_domains_work(struct i915_power_domains *power_domains,
607 			     intel_wakeref_t wakeref)
608 {
609 	struct drm_i915_private *i915 = container_of(power_domains,
610 						     struct drm_i915_private,
611 						     display.power.domains);
612 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
613 	power_domains->async_put_wakeref = wakeref;
614 	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
615 						    &power_domains->async_put_work,
616 						    msecs_to_jiffies(100)));
617 }
618 
619 static void
620 release_async_put_domains(struct i915_power_domains *power_domains,
621 			  struct intel_power_domain_mask *mask)
622 {
623 	struct drm_i915_private *dev_priv =
624 		container_of(power_domains, struct drm_i915_private,
625 			     display.power.domains);
626 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
627 	enum intel_display_power_domain domain;
628 	intel_wakeref_t wakeref;
629 
630 	/*
631 	 * The caller must hold already raw wakeref, upgrade that to a proper
632 	 * wakeref to make the state checker happy about the HW access during
633 	 * power well disabling.
634 	 */
635 	assert_rpm_raw_wakeref_held(rpm);
636 	wakeref = intel_runtime_pm_get(rpm);
637 
638 	for_each_power_domain(domain, mask) {
639 		/* Clear before put, so put's sanity check is happy. */
640 		async_put_domains_clear_domain(power_domains, domain);
641 		__intel_display_power_put_domain(dev_priv, domain);
642 	}
643 
644 	intel_runtime_pm_put(rpm, wakeref);
645 }
646 
647 static void
648 intel_display_power_put_async_work(struct work_struct *work)
649 {
650 	struct drm_i915_private *dev_priv =
651 		container_of(work, struct drm_i915_private,
652 			     display.power.domains.async_put_work.work);
653 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
654 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
655 	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
656 	intel_wakeref_t old_work_wakeref = 0;
657 
658 	mutex_lock(&power_domains->lock);
659 
660 	/*
661 	 * Bail out if all the domain refs pending to be released were grabbed
662 	 * by subsequent gets or a flush_work.
663 	 */
664 	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
665 	if (!old_work_wakeref)
666 		goto out_verify;
667 
668 	release_async_put_domains(power_domains,
669 				  &power_domains->async_put_domains[0]);
670 
671 	/* Requeue the work if more domains were async put meanwhile. */
672 	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
673 		bitmap_copy(power_domains->async_put_domains[0].bits,
674 			    power_domains->async_put_domains[1].bits,
675 			    POWER_DOMAIN_NUM);
676 		bitmap_zero(power_domains->async_put_domains[1].bits,
677 			    POWER_DOMAIN_NUM);
678 		queue_async_put_domains_work(power_domains,
679 					     fetch_and_zero(&new_work_wakeref));
680 	} else {
681 		/*
682 		 * Cancel the work that got queued after this one got dequeued,
683 		 * since here we released the corresponding async-put reference.
684 		 */
685 		cancel_delayed_work(&power_domains->async_put_work);
686 	}
687 
688 out_verify:
689 	verify_async_put_domains_state(power_domains);
690 
691 	mutex_unlock(&power_domains->lock);
692 
693 	if (old_work_wakeref)
694 		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
695 	if (new_work_wakeref)
696 		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
697 }
698 
699 /**
700  * intel_display_power_put_async - release a power domain reference asynchronously
701  * @i915: i915 device instance
702  * @domain: power domain to reference
703  * @wakeref: wakeref acquired for the reference that is being released
704  *
705  * This function drops the power domain reference obtained by
706  * intel_display_power_get*() and schedules a work to power down the
707  * corresponding hardware block if this is the last reference.
708  */
709 void __intel_display_power_put_async(struct drm_i915_private *i915,
710 				     enum intel_display_power_domain domain,
711 				     intel_wakeref_t wakeref)
712 {
713 	struct i915_power_domains *power_domains = &i915->display.power.domains;
714 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
715 	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
716 
717 	mutex_lock(&power_domains->lock);
718 
719 	if (power_domains->domain_use_count[domain] > 1) {
720 		__intel_display_power_put_domain(i915, domain);
721 
722 		goto out_verify;
723 	}
724 
725 	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
726 
727 	/* Let a pending work requeue itself or queue a new one. */
728 	if (power_domains->async_put_wakeref) {
729 		set_bit(domain, power_domains->async_put_domains[1].bits);
730 	} else {
731 		set_bit(domain, power_domains->async_put_domains[0].bits);
732 		queue_async_put_domains_work(power_domains,
733 					     fetch_and_zero(&work_wakeref));
734 	}
735 
736 out_verify:
737 	verify_async_put_domains_state(power_domains);
738 
739 	mutex_unlock(&power_domains->lock);
740 
741 	if (work_wakeref)
742 		intel_runtime_pm_put_raw(rpm, work_wakeref);
743 
744 	intel_runtime_pm_put(rpm, wakeref);
745 }
746 
747 /**
748  * intel_display_power_flush_work - flushes the async display power disabling work
749  * @i915: i915 device instance
750  *
751  * Flushes any pending work that was scheduled by a preceding
752  * intel_display_power_put_async() call, completing the disabling of the
753  * corresponding power domains.
754  *
755  * Note that the work handler function may still be running after this
756  * function returns; to ensure that the work handler isn't running use
757  * intel_display_power_flush_work_sync() instead.
758  */
759 void intel_display_power_flush_work(struct drm_i915_private *i915)
760 {
761 	struct i915_power_domains *power_domains = &i915->display.power.domains;
762 	struct intel_power_domain_mask async_put_mask;
763 	intel_wakeref_t work_wakeref;
764 
765 	mutex_lock(&power_domains->lock);
766 
767 	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
768 	if (!work_wakeref)
769 		goto out_verify;
770 
771 	async_put_domains_mask(power_domains, &async_put_mask);
772 	release_async_put_domains(power_domains, &async_put_mask);
773 	cancel_delayed_work(&power_domains->async_put_work);
774 
775 out_verify:
776 	verify_async_put_domains_state(power_domains);
777 
778 	mutex_unlock(&power_domains->lock);
779 
780 	if (work_wakeref)
781 		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
782 }
783 
784 /**
785  * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
786  * @i915: i915 device instance
787  *
788  * Like intel_display_power_flush_work(), but also ensure that the work
789  * handler function is not running any more when this function returns.
790  */
791 static void
792 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
793 {
794 	struct i915_power_domains *power_domains = &i915->display.power.domains;
795 
796 	intel_display_power_flush_work(i915);
797 	cancel_delayed_work_sync(&power_domains->async_put_work);
798 
799 	verify_async_put_domains_state(power_domains);
800 
801 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
802 }
803 
804 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
805 /**
806  * intel_display_power_put - release a power domain reference
807  * @dev_priv: i915 device instance
808  * @domain: power domain to reference
809  * @wakeref: wakeref acquired for the reference that is being released
810  *
811  * This function drops the power domain reference obtained by
812  * intel_display_power_get() and might power down the corresponding hardware
813  * block right away if this is the last reference.
814  */
815 void intel_display_power_put(struct drm_i915_private *dev_priv,
816 			     enum intel_display_power_domain domain,
817 			     intel_wakeref_t wakeref)
818 {
819 	__intel_display_power_put(dev_priv, domain);
820 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
821 }
822 #else
823 /**
824  * intel_display_power_put_unchecked - release an unchecked power domain reference
825  * @dev_priv: i915 device instance
826  * @domain: power domain to reference
827  *
828  * This function drops the power domain reference obtained by
829  * intel_display_power_get() and might power down the corresponding hardware
830  * block right away if this is the last reference.
831  *
832  * This function is only for the power domain code's internal use to suppress wakeref
833  * tracking when the correspondig debug kconfig option is disabled, should not
834  * be used otherwise.
835  */
836 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
837 				       enum intel_display_power_domain domain)
838 {
839 	__intel_display_power_put(dev_priv, domain);
840 	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
841 }
842 #endif
843 
844 void
845 intel_display_power_get_in_set(struct drm_i915_private *i915,
846 			       struct intel_display_power_domain_set *power_domain_set,
847 			       enum intel_display_power_domain domain)
848 {
849 	intel_wakeref_t __maybe_unused wf;
850 
851 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
852 
853 	wf = intel_display_power_get(i915, domain);
854 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
855 	power_domain_set->wakerefs[domain] = wf;
856 #endif
857 	set_bit(domain, power_domain_set->mask.bits);
858 }
859 
860 bool
861 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
862 					  struct intel_display_power_domain_set *power_domain_set,
863 					  enum intel_display_power_domain domain)
864 {
865 	intel_wakeref_t wf;
866 
867 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
868 
869 	wf = intel_display_power_get_if_enabled(i915, domain);
870 	if (!wf)
871 		return false;
872 
873 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
874 	power_domain_set->wakerefs[domain] = wf;
875 #endif
876 	set_bit(domain, power_domain_set->mask.bits);
877 
878 	return true;
879 }
880 
881 void
882 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
883 				    struct intel_display_power_domain_set *power_domain_set,
884 				    struct intel_power_domain_mask *mask)
885 {
886 	enum intel_display_power_domain domain;
887 
888 	drm_WARN_ON(&i915->drm,
889 		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
890 
891 	for_each_power_domain(domain, mask) {
892 		intel_wakeref_t __maybe_unused wf = -1;
893 
894 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
895 		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
896 #endif
897 		intel_display_power_put(i915, domain, wf);
898 		clear_bit(domain, power_domain_set->mask.bits);
899 	}
900 }
901 
902 static int
903 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
904 				   int disable_power_well)
905 {
906 	if (disable_power_well >= 0)
907 		return !!disable_power_well;
908 
909 	return 1;
910 }
911 
912 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
913 			       int enable_dc)
914 {
915 	u32 mask;
916 	int requested_dc;
917 	int max_dc;
918 
919 	if (!HAS_DISPLAY(dev_priv))
920 		return 0;
921 
922 	if (IS_DG2(dev_priv))
923 		max_dc = 1;
924 	else if (IS_DG1(dev_priv))
925 		max_dc = 3;
926 	else if (DISPLAY_VER(dev_priv) >= 12)
927 		max_dc = 4;
928 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
929 		max_dc = 1;
930 	else if (DISPLAY_VER(dev_priv) >= 9)
931 		max_dc = 2;
932 	else
933 		max_dc = 0;
934 
935 	/*
936 	 * DC9 has a separate HW flow from the rest of the DC states,
937 	 * not depending on the DMC firmware. It's needed by system
938 	 * suspend/resume, so allow it unconditionally.
939 	 */
940 	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
941 		DISPLAY_VER(dev_priv) >= 11 ?
942 	       DC_STATE_EN_DC9 : 0;
943 
944 	if (!dev_priv->params.disable_power_well)
945 		max_dc = 0;
946 
947 	if (enable_dc >= 0 && enable_dc <= max_dc) {
948 		requested_dc = enable_dc;
949 	} else if (enable_dc == -1) {
950 		requested_dc = max_dc;
951 	} else if (enable_dc > max_dc && enable_dc <= 4) {
952 		drm_dbg_kms(&dev_priv->drm,
953 			    "Adjusting requested max DC state (%d->%d)\n",
954 			    enable_dc, max_dc);
955 		requested_dc = max_dc;
956 	} else {
957 		drm_err(&dev_priv->drm,
958 			"Unexpected value for enable_dc (%d)\n", enable_dc);
959 		requested_dc = max_dc;
960 	}
961 
962 	switch (requested_dc) {
963 	case 4:
964 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
965 		break;
966 	case 3:
967 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
968 		break;
969 	case 2:
970 		mask |= DC_STATE_EN_UPTO_DC6;
971 		break;
972 	case 1:
973 		mask |= DC_STATE_EN_UPTO_DC5;
974 		break;
975 	}
976 
977 	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
978 
979 	return mask;
980 }
981 
982 /**
983  * intel_power_domains_init - initializes the power domain structures
984  * @dev_priv: i915 device instance
985  *
986  * Initializes the power domain structures for @dev_priv depending upon the
987  * supported platform.
988  */
989 int intel_power_domains_init(struct drm_i915_private *dev_priv)
990 {
991 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
992 
993 	dev_priv->params.disable_power_well =
994 		sanitize_disable_power_well_option(dev_priv,
995 						   dev_priv->params.disable_power_well);
996 	power_domains->allowed_dc_mask =
997 		get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
998 
999 	power_domains->target_dc_state =
1000 		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
1001 
1002 	mutex_init(&power_domains->lock);
1003 
1004 	INIT_DELAYED_WORK(&power_domains->async_put_work,
1005 			  intel_display_power_put_async_work);
1006 
1007 	return intel_display_power_map_init(power_domains);
1008 }
1009 
1010 /**
1011  * intel_power_domains_cleanup - clean up power domains resources
1012  * @dev_priv: i915 device instance
1013  *
1014  * Release any resources acquired by intel_power_domains_init()
1015  */
1016 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1017 {
1018 	intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1019 }
1020 
1021 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1022 {
1023 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1024 	struct i915_power_well *power_well;
1025 
1026 	mutex_lock(&power_domains->lock);
1027 	for_each_power_well(dev_priv, power_well)
1028 		intel_power_well_sync_hw(dev_priv, power_well);
1029 	mutex_unlock(&power_domains->lock);
1030 }
1031 
1032 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1033 				enum dbuf_slice slice, bool enable)
1034 {
1035 	i915_reg_t reg = DBUF_CTL_S(slice);
1036 	bool state;
1037 
1038 	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1039 		     enable ? DBUF_POWER_REQUEST : 0);
1040 	intel_de_posting_read(dev_priv, reg);
1041 	udelay(10);
1042 
1043 	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1044 	drm_WARN(&dev_priv->drm, enable != state,
1045 		 "DBuf slice %d power %s timeout!\n",
1046 		 slice, str_enable_disable(enable));
1047 }
1048 
1049 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1050 			     u8 req_slices)
1051 {
1052 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1053 	u8 slice_mask = INTEL_INFO(dev_priv)->display.dbuf.slice_mask;
1054 	enum dbuf_slice slice;
1055 
1056 	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1057 		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1058 		 req_slices, slice_mask);
1059 
1060 	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1061 		    req_slices);
1062 
1063 	/*
1064 	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1065 	 * being called from intel_dp_detect for instance,
1066 	 * which causes assertion triggered by race condition,
1067 	 * as gen9_assert_dbuf_enabled might preempt this when registers
1068 	 * were already updated, while dev_priv was not.
1069 	 */
1070 	mutex_lock(&power_domains->lock);
1071 
1072 	for_each_dbuf_slice(dev_priv, slice)
1073 		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1074 
1075 	dev_priv->display.dbuf.enabled_slices = req_slices;
1076 
1077 	mutex_unlock(&power_domains->lock);
1078 }
1079 
1080 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1081 {
1082 	dev_priv->display.dbuf.enabled_slices =
1083 		intel_enabled_dbuf_slices_mask(dev_priv);
1084 
1085 	/*
1086 	 * Just power up at least 1 slice, we will
1087 	 * figure out later which slices we have and what we need.
1088 	 */
1089 	gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) |
1090 				dev_priv->display.dbuf.enabled_slices);
1091 }
1092 
1093 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1094 {
1095 	gen9_dbuf_slices_update(dev_priv, 0);
1096 }
1097 
1098 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1099 {
1100 	enum dbuf_slice slice;
1101 
1102 	if (IS_ALDERLAKE_P(dev_priv))
1103 		return;
1104 
1105 	for_each_dbuf_slice(dev_priv, slice)
1106 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1107 			     DBUF_TRACKER_STATE_SERVICE_MASK,
1108 			     DBUF_TRACKER_STATE_SERVICE(8));
1109 }
1110 
1111 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1112 {
1113 	unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask;
1114 	u32 mask, val, i;
1115 
1116 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1117 		return;
1118 
1119 	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1120 		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1121 		MBUS_ABOX_B_CREDIT_MASK |
1122 		MBUS_ABOX_BW_CREDIT_MASK;
1123 	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1124 		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1125 		MBUS_ABOX_B_CREDIT(1) |
1126 		MBUS_ABOX_BW_CREDIT(1);
1127 
1128 	/*
1129 	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1130 	 * expect us to program the abox_ctl0 register as well, even though
1131 	 * we don't have to program other instance-0 registers like BW_BUDDY.
1132 	 */
1133 	if (DISPLAY_VER(dev_priv) == 12)
1134 		abox_regs |= BIT(0);
1135 
1136 	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1137 		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1138 }
1139 
1140 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1141 {
1142 	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1143 
1144 	/*
1145 	 * The LCPLL register should be turned on by the BIOS. For now
1146 	 * let's just check its state and print errors in case
1147 	 * something is wrong.  Don't even try to turn it on.
1148 	 */
1149 
1150 	if (val & LCPLL_CD_SOURCE_FCLK)
1151 		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1152 
1153 	if (val & LCPLL_PLL_DISABLE)
1154 		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1155 
1156 	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1157 		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1158 }
1159 
1160 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1161 {
1162 	struct intel_crtc *crtc;
1163 
1164 	for_each_intel_crtc(&dev_priv->drm, crtc)
1165 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
1166 				pipe_name(crtc->pipe));
1167 
1168 	I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1169 			"Display power well on\n");
1170 	I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1171 			"SPLL enabled\n");
1172 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1173 			"WRPLL1 enabled\n");
1174 	I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1175 			"WRPLL2 enabled\n");
1176 	I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1177 			"Panel power on\n");
1178 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1179 			"CPU PWM1 enabled\n");
1180 	if (IS_HASWELL(dev_priv))
1181 		I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1182 				"CPU PWM2 enabled\n");
1183 	I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1184 			"PCH PWM1 enabled\n");
1185 	I915_STATE_WARN(intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
1186 			"Utility pin enabled\n");
1187 	I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1188 			"PCH GTC enabled\n");
1189 
1190 	/*
1191 	 * In theory we can still leave IRQs enabled, as long as only the HPD
1192 	 * interrupts remain enabled. We used to check for that, but since it's
1193 	 * gen-specific and since we only disable LCPLL after we fully disable
1194 	 * the interrupts, the check below should be enough.
1195 	 */
1196 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
1197 }
1198 
1199 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1200 {
1201 	if (IS_HASWELL(dev_priv))
1202 		return intel_de_read(dev_priv, D_COMP_HSW);
1203 	else
1204 		return intel_de_read(dev_priv, D_COMP_BDW);
1205 }
1206 
1207 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1208 {
1209 	if (IS_HASWELL(dev_priv)) {
1210 		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1211 			drm_dbg_kms(&dev_priv->drm,
1212 				    "Failed to write to D_COMP\n");
1213 	} else {
1214 		intel_de_write(dev_priv, D_COMP_BDW, val);
1215 		intel_de_posting_read(dev_priv, D_COMP_BDW);
1216 	}
1217 }
1218 
1219 /*
1220  * This function implements pieces of two sequences from BSpec:
1221  * - Sequence for display software to disable LCPLL
1222  * - Sequence for display software to allow package C8+
1223  * The steps implemented here are just the steps that actually touch the LCPLL
1224  * register. Callers should take care of disabling all the display engine
1225  * functions, doing the mode unset, fixing interrupts, etc.
1226  */
1227 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1228 			      bool switch_to_fclk, bool allow_power_down)
1229 {
1230 	u32 val;
1231 
1232 	assert_can_disable_lcpll(dev_priv);
1233 
1234 	val = intel_de_read(dev_priv, LCPLL_CTL);
1235 
1236 	if (switch_to_fclk) {
1237 		val |= LCPLL_CD_SOURCE_FCLK;
1238 		intel_de_write(dev_priv, LCPLL_CTL, val);
1239 
1240 		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1241 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1242 			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1243 
1244 		val = intel_de_read(dev_priv, LCPLL_CTL);
1245 	}
1246 
1247 	val |= LCPLL_PLL_DISABLE;
1248 	intel_de_write(dev_priv, LCPLL_CTL, val);
1249 	intel_de_posting_read(dev_priv, LCPLL_CTL);
1250 
1251 	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1252 		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1253 
1254 	val = hsw_read_dcomp(dev_priv);
1255 	val |= D_COMP_COMP_DISABLE;
1256 	hsw_write_dcomp(dev_priv, val);
1257 	ndelay(100);
1258 
1259 	if (wait_for((hsw_read_dcomp(dev_priv) &
1260 		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1261 		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1262 
1263 	if (allow_power_down) {
1264 		intel_de_rmw(dev_priv, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW);
1265 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1266 	}
1267 }
1268 
1269 /*
1270  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1271  * source.
1272  */
1273 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1274 {
1275 	u32 val;
1276 
1277 	val = intel_de_read(dev_priv, LCPLL_CTL);
1278 
1279 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1280 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1281 		return;
1282 
1283 	/*
1284 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1285 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1286 	 */
1287 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1288 
1289 	if (val & LCPLL_POWER_DOWN_ALLOW) {
1290 		val &= ~LCPLL_POWER_DOWN_ALLOW;
1291 		intel_de_write(dev_priv, LCPLL_CTL, val);
1292 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1293 	}
1294 
1295 	val = hsw_read_dcomp(dev_priv);
1296 	val |= D_COMP_COMP_FORCE;
1297 	val &= ~D_COMP_COMP_DISABLE;
1298 	hsw_write_dcomp(dev_priv, val);
1299 
1300 	val = intel_de_read(dev_priv, LCPLL_CTL);
1301 	val &= ~LCPLL_PLL_DISABLE;
1302 	intel_de_write(dev_priv, LCPLL_CTL, val);
1303 
1304 	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1305 		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1306 
1307 	if (val & LCPLL_CD_SOURCE_FCLK) {
1308 		intel_de_rmw(dev_priv, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0);
1309 
1310 		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1311 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1312 			drm_err(&dev_priv->drm,
1313 				"Switching back to LCPLL failed\n");
1314 	}
1315 
1316 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1317 
1318 	intel_update_cdclk(dev_priv);
1319 	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1320 }
1321 
1322 /*
1323  * Package states C8 and deeper are really deep PC states that can only be
1324  * reached when all the devices on the system allow it, so even if the graphics
1325  * device allows PC8+, it doesn't mean the system will actually get to these
1326  * states. Our driver only allows PC8+ when going into runtime PM.
1327  *
1328  * The requirements for PC8+ are that all the outputs are disabled, the power
1329  * well is disabled and most interrupts are disabled, and these are also
1330  * requirements for runtime PM. When these conditions are met, we manually do
1331  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1332  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1333  * hang the machine.
1334  *
1335  * When we really reach PC8 or deeper states (not just when we allow it) we lose
1336  * the state of some registers, so when we come back from PC8+ we need to
1337  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1338  * need to take care of the registers kept by RC6. Notice that this happens even
1339  * if we don't put the device in PCI D3 state (which is what currently happens
1340  * because of the runtime PM support).
1341  *
1342  * For more, read "Display Sequences for Package C8" on the hardware
1343  * documentation.
1344  */
1345 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1346 {
1347 	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1348 
1349 	if (HAS_PCH_LPT_LP(dev_priv))
1350 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1351 			     PCH_LP_PARTITION_LEVEL_DISABLE, 0);
1352 
1353 	lpt_disable_clkout_dp(dev_priv);
1354 	hsw_disable_lcpll(dev_priv, true, true);
1355 }
1356 
1357 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1358 {
1359 	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1360 
1361 	hsw_restore_lcpll(dev_priv);
1362 	intel_init_pch_refclk(dev_priv);
1363 
1364 	if (HAS_PCH_LPT_LP(dev_priv))
1365 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1366 			     0, PCH_LP_PARTITION_LEVEL_DISABLE);
1367 }
1368 
1369 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1370 				      bool enable)
1371 {
1372 	i915_reg_t reg;
1373 	u32 reset_bits;
1374 
1375 	if (IS_IVYBRIDGE(dev_priv)) {
1376 		reg = GEN7_MSG_CTL;
1377 		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1378 	} else {
1379 		reg = HSW_NDE_RSTWRN_OPT;
1380 		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1381 	}
1382 
1383 	if (DISPLAY_VER(dev_priv) >= 14)
1384 		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1385 
1386 	intel_de_rmw(dev_priv, reg, reset_bits, enable ? reset_bits : 0);
1387 }
1388 
1389 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1390 				  bool resume)
1391 {
1392 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1393 	struct i915_power_well *well;
1394 
1395 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1396 
1397 	/* enable PCH reset handshake */
1398 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1399 
1400 	if (!HAS_DISPLAY(dev_priv))
1401 		return;
1402 
1403 	/* enable PG1 and Misc I/O */
1404 	mutex_lock(&power_domains->lock);
1405 
1406 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1407 	intel_power_well_enable(dev_priv, well);
1408 
1409 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1410 	intel_power_well_enable(dev_priv, well);
1411 
1412 	mutex_unlock(&power_domains->lock);
1413 
1414 	intel_cdclk_init_hw(dev_priv);
1415 
1416 	gen9_dbuf_enable(dev_priv);
1417 
1418 	if (resume)
1419 		intel_dmc_load_program(dev_priv);
1420 }
1421 
1422 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1423 {
1424 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1425 	struct i915_power_well *well;
1426 
1427 	if (!HAS_DISPLAY(dev_priv))
1428 		return;
1429 
1430 	gen9_disable_dc_states(dev_priv);
1431 	/* TODO: disable DMC program */
1432 
1433 	gen9_dbuf_disable(dev_priv);
1434 
1435 	intel_cdclk_uninit_hw(dev_priv);
1436 
1437 	/* The spec doesn't call for removing the reset handshake flag */
1438 	/* disable PG1 and Misc I/O */
1439 
1440 	mutex_lock(&power_domains->lock);
1441 
1442 	/*
1443 	 * BSpec says to keep the MISC IO power well enabled here, only
1444 	 * remove our request for power well 1.
1445 	 * Note that even though the driver's request is removed power well 1
1446 	 * may stay enabled after this due to DMC's own request on it.
1447 	 */
1448 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1449 	intel_power_well_disable(dev_priv, well);
1450 
1451 	mutex_unlock(&power_domains->lock);
1452 
1453 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1454 }
1455 
1456 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1457 {
1458 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1459 	struct i915_power_well *well;
1460 
1461 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1462 
1463 	/*
1464 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1465 	 * or else the reset will hang because there is no PCH to respond.
1466 	 * Move the handshake programming to initialization sequence.
1467 	 * Previously was left up to BIOS.
1468 	 */
1469 	intel_pch_reset_handshake(dev_priv, false);
1470 
1471 	if (!HAS_DISPLAY(dev_priv))
1472 		return;
1473 
1474 	/* Enable PG1 */
1475 	mutex_lock(&power_domains->lock);
1476 
1477 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1478 	intel_power_well_enable(dev_priv, well);
1479 
1480 	mutex_unlock(&power_domains->lock);
1481 
1482 	intel_cdclk_init_hw(dev_priv);
1483 
1484 	gen9_dbuf_enable(dev_priv);
1485 
1486 	if (resume)
1487 		intel_dmc_load_program(dev_priv);
1488 }
1489 
1490 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1491 {
1492 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1493 	struct i915_power_well *well;
1494 
1495 	if (!HAS_DISPLAY(dev_priv))
1496 		return;
1497 
1498 	gen9_disable_dc_states(dev_priv);
1499 	/* TODO: disable DMC program */
1500 
1501 	gen9_dbuf_disable(dev_priv);
1502 
1503 	intel_cdclk_uninit_hw(dev_priv);
1504 
1505 	/* The spec doesn't call for removing the reset handshake flag */
1506 
1507 	/*
1508 	 * Disable PW1 (PG1).
1509 	 * Note that even though the driver's request is removed power well 1
1510 	 * may stay enabled after this due to DMC's own request on it.
1511 	 */
1512 	mutex_lock(&power_domains->lock);
1513 
1514 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1515 	intel_power_well_disable(dev_priv, well);
1516 
1517 	mutex_unlock(&power_domains->lock);
1518 
1519 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1520 }
1521 
1522 struct buddy_page_mask {
1523 	u32 page_mask;
1524 	u8 type;
1525 	u8 num_channels;
1526 };
1527 
1528 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1529 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1530 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1531 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1532 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1533 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1534 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1535 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1536 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1537 	{}
1538 };
1539 
1540 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1541 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1542 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1543 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1544 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1545 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1546 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1547 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1548 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1549 	{}
1550 };
1551 
1552 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1553 {
1554 	enum intel_dram_type type = dev_priv->dram_info.type;
1555 	u8 num_channels = dev_priv->dram_info.num_channels;
1556 	const struct buddy_page_mask *table;
1557 	unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask;
1558 	int config, i;
1559 
1560 	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1561 	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1562 		return;
1563 
1564 	if (IS_ALDERLAKE_S(dev_priv) ||
1565 	    IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1566 		/* Wa_1409767108 */
1567 		table = wa_1409767108_buddy_page_masks;
1568 	else
1569 		table = tgl_buddy_page_masks;
1570 
1571 	for (config = 0; table[config].page_mask != 0; config++)
1572 		if (table[config].num_channels == num_channels &&
1573 		    table[config].type == type)
1574 			break;
1575 
1576 	if (table[config].page_mask == 0) {
1577 		drm_dbg(&dev_priv->drm,
1578 			"Unknown memory configuration; disabling address buddy logic.\n");
1579 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1580 			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1581 				       BW_BUDDY_DISABLE);
1582 	} else {
1583 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1584 			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1585 				       table[config].page_mask);
1586 
1587 			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1588 			if (DISPLAY_VER(dev_priv) == 12)
1589 				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1590 					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1591 					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1592 		}
1593 	}
1594 }
1595 
1596 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1597 				  bool resume)
1598 {
1599 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1600 	struct i915_power_well *well;
1601 
1602 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1603 
1604 	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1605 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1606 	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1607 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1608 			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1609 
1610 	/* 1. Enable PCH reset handshake. */
1611 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1612 
1613 	if (!HAS_DISPLAY(dev_priv))
1614 		return;
1615 
1616 	/* 2. Initialize all combo phys */
1617 	intel_combo_phy_init(dev_priv);
1618 
1619 	/*
1620 	 * 3. Enable Power Well 1 (PG1).
1621 	 *    The AUX IO power wells will be enabled on demand.
1622 	 */
1623 	mutex_lock(&power_domains->lock);
1624 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1625 	intel_power_well_enable(dev_priv, well);
1626 	mutex_unlock(&power_domains->lock);
1627 
1628 	if (DISPLAY_VER(dev_priv) == 14)
1629 		intel_de_rmw(dev_priv, DC_STATE_EN,
1630 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH, 0);
1631 
1632 	/* 4. Enable CDCLK. */
1633 	intel_cdclk_init_hw(dev_priv);
1634 
1635 	if (DISPLAY_VER(dev_priv) >= 12)
1636 		gen12_dbuf_slices_config(dev_priv);
1637 
1638 	/* 5. Enable DBUF. */
1639 	gen9_dbuf_enable(dev_priv);
1640 
1641 	/* 6. Setup MBUS. */
1642 	icl_mbus_init(dev_priv);
1643 
1644 	/* 7. Program arbiter BW_BUDDY registers */
1645 	if (DISPLAY_VER(dev_priv) >= 12)
1646 		tgl_bw_buddy_init(dev_priv);
1647 
1648 	/* 8. Ensure PHYs have completed calibration and adaptation */
1649 	if (IS_DG2(dev_priv))
1650 		intel_snps_phy_wait_for_calibration(dev_priv);
1651 
1652 	if (resume)
1653 		intel_dmc_load_program(dev_priv);
1654 
1655 	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
1656 	if (DISPLAY_VER(dev_priv) >= 12)
1657 		intel_de_rmw(dev_priv, GEN11_CHICKEN_DCPR_2, 0,
1658 			     DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1659 			     DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR);
1660 
1661 	/* Wa_14011503030:xelpd */
1662 	if (DISPLAY_VER(dev_priv) >= 13)
1663 		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1664 }
1665 
1666 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1667 {
1668 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1669 	struct i915_power_well *well;
1670 
1671 	if (!HAS_DISPLAY(dev_priv))
1672 		return;
1673 
1674 	gen9_disable_dc_states(dev_priv);
1675 	intel_dmc_disable_program(dev_priv);
1676 
1677 	/* 1. Disable all display engine functions -> aready done */
1678 
1679 	/* 2. Disable DBUF */
1680 	gen9_dbuf_disable(dev_priv);
1681 
1682 	/* 3. Disable CD clock */
1683 	intel_cdclk_uninit_hw(dev_priv);
1684 
1685 	if (DISPLAY_VER(dev_priv) == 14)
1686 		intel_de_rmw(dev_priv, DC_STATE_EN, 0,
1687 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH);
1688 
1689 	/*
1690 	 * 4. Disable Power Well 1 (PG1).
1691 	 *    The AUX IO power wells are toggled on demand, so they are already
1692 	 *    disabled at this point.
1693 	 */
1694 	mutex_lock(&power_domains->lock);
1695 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1696 	intel_power_well_disable(dev_priv, well);
1697 	mutex_unlock(&power_domains->lock);
1698 
1699 	/* 5. */
1700 	intel_combo_phy_uninit(dev_priv);
1701 }
1702 
1703 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1704 {
1705 	struct i915_power_well *cmn_bc =
1706 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1707 	struct i915_power_well *cmn_d =
1708 		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1709 
1710 	/*
1711 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1712 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1713 	 * instead maintain a shadow copy ourselves. Use the actual
1714 	 * power well state and lane status to reconstruct the
1715 	 * expected initial value.
1716 	 */
1717 	dev_priv->display.power.chv_phy_control =
1718 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1719 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1720 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1721 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1722 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1723 
1724 	/*
1725 	 * If all lanes are disabled we leave the override disabled
1726 	 * with all power down bits cleared to match the state we
1727 	 * would use after disabling the port. Otherwise enable the
1728 	 * override and set the lane powerdown bits accding to the
1729 	 * current lane status.
1730 	 */
1731 	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1732 		u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1733 		unsigned int mask;
1734 
1735 		mask = status & DPLL_PORTB_READY_MASK;
1736 		if (mask == 0xf)
1737 			mask = 0x0;
1738 		else
1739 			dev_priv->display.power.chv_phy_control |=
1740 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1741 
1742 		dev_priv->display.power.chv_phy_control |=
1743 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1744 
1745 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1746 		if (mask == 0xf)
1747 			mask = 0x0;
1748 		else
1749 			dev_priv->display.power.chv_phy_control |=
1750 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1751 
1752 		dev_priv->display.power.chv_phy_control |=
1753 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1754 
1755 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1756 
1757 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1758 	} else {
1759 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1760 	}
1761 
1762 	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1763 		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1764 		unsigned int mask;
1765 
1766 		mask = status & DPLL_PORTD_READY_MASK;
1767 
1768 		if (mask == 0xf)
1769 			mask = 0x0;
1770 		else
1771 			dev_priv->display.power.chv_phy_control |=
1772 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1773 
1774 		dev_priv->display.power.chv_phy_control |=
1775 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1776 
1777 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1778 
1779 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1780 	} else {
1781 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1782 	}
1783 
1784 	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1785 		    dev_priv->display.power.chv_phy_control);
1786 
1787 	/* Defer application of initial phy_control to enabling the powerwell */
1788 }
1789 
1790 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1791 {
1792 	struct i915_power_well *cmn =
1793 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1794 	struct i915_power_well *disp2d =
1795 		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1796 
1797 	/* If the display might be already active skip this */
1798 	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1799 	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1800 	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1801 		return;
1802 
1803 	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1804 
1805 	/* cmnlane needs DPLL registers */
1806 	intel_power_well_enable(dev_priv, disp2d);
1807 
1808 	/*
1809 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1810 	 * Need to assert and de-assert PHY SB reset by gating the
1811 	 * common lane power, then un-gating it.
1812 	 * Simply ungating isn't enough to reset the PHY enough to get
1813 	 * ports and lanes running.
1814 	 */
1815 	intel_power_well_disable(dev_priv, cmn);
1816 }
1817 
1818 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1819 {
1820 	bool ret;
1821 
1822 	vlv_punit_get(dev_priv);
1823 	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1824 	vlv_punit_put(dev_priv);
1825 
1826 	return ret;
1827 }
1828 
1829 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1830 {
1831 	drm_WARN(&dev_priv->drm,
1832 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1833 		 "VED not power gated\n");
1834 }
1835 
1836 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1837 {
1838 	static const struct pci_device_id isp_ids[] = {
1839 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1840 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1841 		{}
1842 	};
1843 
1844 	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1845 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1846 		 "ISP not power gated\n");
1847 }
1848 
1849 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1850 
1851 /**
1852  * intel_power_domains_init_hw - initialize hardware power domain state
1853  * @i915: i915 device instance
1854  * @resume: Called from resume code paths or not
1855  *
1856  * This function initializes the hardware power domain state and enables all
1857  * power wells belonging to the INIT power domain. Power wells in other
1858  * domains (and not in the INIT domain) are referenced or disabled by
1859  * intel_modeset_readout_hw_state(). After that the reference count of each
1860  * power well must match its HW enabled state, see
1861  * intel_power_domains_verify_state().
1862  *
1863  * It will return with power domains disabled (to be enabled later by
1864  * intel_power_domains_enable()) and must be paired with
1865  * intel_power_domains_driver_remove().
1866  */
1867 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1868 {
1869 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1870 
1871 	power_domains->initializing = true;
1872 
1873 	if (DISPLAY_VER(i915) >= 11) {
1874 		icl_display_core_init(i915, resume);
1875 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1876 		bxt_display_core_init(i915, resume);
1877 	} else if (DISPLAY_VER(i915) == 9) {
1878 		skl_display_core_init(i915, resume);
1879 	} else if (IS_CHERRYVIEW(i915)) {
1880 		mutex_lock(&power_domains->lock);
1881 		chv_phy_control_init(i915);
1882 		mutex_unlock(&power_domains->lock);
1883 		assert_isp_power_gated(i915);
1884 	} else if (IS_VALLEYVIEW(i915)) {
1885 		mutex_lock(&power_domains->lock);
1886 		vlv_cmnlane_wa(i915);
1887 		mutex_unlock(&power_domains->lock);
1888 		assert_ved_power_gated(i915);
1889 		assert_isp_power_gated(i915);
1890 	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1891 		hsw_assert_cdclk(i915);
1892 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1893 	} else if (IS_IVYBRIDGE(i915)) {
1894 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1895 	}
1896 
1897 	/*
1898 	 * Keep all power wells enabled for any dependent HW access during
1899 	 * initialization and to make sure we keep BIOS enabled display HW
1900 	 * resources powered until display HW readout is complete. We drop
1901 	 * this reference in intel_power_domains_enable().
1902 	 */
1903 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1904 	power_domains->init_wakeref =
1905 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1906 
1907 	/* Disable power support if the user asked so. */
1908 	if (!i915->params.disable_power_well) {
1909 		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1910 		i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1911 										      POWER_DOMAIN_INIT);
1912 	}
1913 	intel_power_domains_sync_hw(i915);
1914 
1915 	power_domains->initializing = false;
1916 }
1917 
1918 /**
1919  * intel_power_domains_driver_remove - deinitialize hw power domain state
1920  * @i915: i915 device instance
1921  *
1922  * De-initializes the display power domain HW state. It also ensures that the
1923  * device stays powered up so that the driver can be reloaded.
1924  *
1925  * It must be called with power domains already disabled (after a call to
1926  * intel_power_domains_disable()) and must be paired with
1927  * intel_power_domains_init_hw().
1928  */
1929 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1930 {
1931 	intel_wakeref_t wakeref __maybe_unused =
1932 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1933 
1934 	/* Remove the refcount we took to keep power well support disabled. */
1935 	if (!i915->params.disable_power_well)
1936 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1937 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1938 
1939 	intel_display_power_flush_work_sync(i915);
1940 
1941 	intel_power_domains_verify_state(i915);
1942 
1943 	/* Keep the power well enabled, but cancel its rpm wakeref. */
1944 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1945 }
1946 
1947 /**
1948  * intel_power_domains_sanitize_state - sanitize power domains state
1949  * @i915: i915 device instance
1950  *
1951  * Sanitize the power domains state during driver loading and system resume.
1952  * The function will disable all display power wells that BIOS has enabled
1953  * without a user for it (any user for a power well has taken a reference
1954  * on it by the time this function is called, after the state of all the
1955  * pipe, encoder, etc. HW resources have been sanitized).
1956  */
1957 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
1958 {
1959 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1960 	struct i915_power_well *power_well;
1961 
1962 	mutex_lock(&power_domains->lock);
1963 
1964 	for_each_power_well_reverse(i915, power_well) {
1965 		if (power_well->desc->always_on || power_well->count ||
1966 		    !intel_power_well_is_enabled(i915, power_well))
1967 			continue;
1968 
1969 		drm_dbg_kms(&i915->drm,
1970 			    "BIOS left unused %s power well enabled, disabling it\n",
1971 			    intel_power_well_name(power_well));
1972 		intel_power_well_disable(i915, power_well);
1973 	}
1974 
1975 	mutex_unlock(&power_domains->lock);
1976 }
1977 
1978 /**
1979  * intel_power_domains_enable - enable toggling of display power wells
1980  * @i915: i915 device instance
1981  *
1982  * Enable the ondemand enabling/disabling of the display power wells. Note that
1983  * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
1984  * only at specific points of the display modeset sequence, thus they are not
1985  * affected by the intel_power_domains_enable()/disable() calls. The purpose
1986  * of these function is to keep the rest of power wells enabled until the end
1987  * of display HW readout (which will acquire the power references reflecting
1988  * the current HW state).
1989  */
1990 void intel_power_domains_enable(struct drm_i915_private *i915)
1991 {
1992 	intel_wakeref_t wakeref __maybe_unused =
1993 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1994 
1995 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
1996 	intel_power_domains_verify_state(i915);
1997 }
1998 
1999 /**
2000  * intel_power_domains_disable - disable toggling of display power wells
2001  * @i915: i915 device instance
2002  *
2003  * Disable the ondemand enabling/disabling of the display power wells. See
2004  * intel_power_domains_enable() for which power wells this call controls.
2005  */
2006 void intel_power_domains_disable(struct drm_i915_private *i915)
2007 {
2008 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2009 
2010 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2011 	power_domains->init_wakeref =
2012 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2013 
2014 	intel_power_domains_verify_state(i915);
2015 }
2016 
2017 /**
2018  * intel_power_domains_suspend - suspend power domain state
2019  * @i915: i915 device instance
2020  * @suspend_mode: specifies the target suspend state (idle, mem, hibernation)
2021  *
2022  * This function prepares the hardware power domain state before entering
2023  * system suspend.
2024  *
2025  * It must be called with power domains already disabled (after a call to
2026  * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2027  */
2028 void intel_power_domains_suspend(struct drm_i915_private *i915,
2029 				 enum i915_drm_suspend_mode suspend_mode)
2030 {
2031 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2032 	intel_wakeref_t wakeref __maybe_unused =
2033 		fetch_and_zero(&power_domains->init_wakeref);
2034 
2035 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2036 
2037 	/*
2038 	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2039 	 * support don't manually deinit the power domains. This also means the
2040 	 * DMC firmware will stay active, it will power down any HW
2041 	 * resources as required and also enable deeper system power states
2042 	 * that would be blocked if the firmware was inactive.
2043 	 */
2044 	if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) &&
2045 	    suspend_mode == I915_DRM_SUSPEND_IDLE &&
2046 	    intel_dmc_has_payload(i915)) {
2047 		intel_display_power_flush_work(i915);
2048 		intel_power_domains_verify_state(i915);
2049 		return;
2050 	}
2051 
2052 	/*
2053 	 * Even if power well support was disabled we still want to disable
2054 	 * power wells if power domains must be deinitialized for suspend.
2055 	 */
2056 	if (!i915->params.disable_power_well)
2057 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2058 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2059 
2060 	intel_display_power_flush_work(i915);
2061 	intel_power_domains_verify_state(i915);
2062 
2063 	if (DISPLAY_VER(i915) >= 11)
2064 		icl_display_core_uninit(i915);
2065 	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2066 		bxt_display_core_uninit(i915);
2067 	else if (DISPLAY_VER(i915) == 9)
2068 		skl_display_core_uninit(i915);
2069 
2070 	power_domains->display_core_suspended = true;
2071 }
2072 
2073 /**
2074  * intel_power_domains_resume - resume power domain state
2075  * @i915: i915 device instance
2076  *
2077  * This function resume the hardware power domain state during system resume.
2078  *
2079  * It will return with power domain support disabled (to be enabled later by
2080  * intel_power_domains_enable()) and must be paired with
2081  * intel_power_domains_suspend().
2082  */
2083 void intel_power_domains_resume(struct drm_i915_private *i915)
2084 {
2085 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2086 
2087 	if (power_domains->display_core_suspended) {
2088 		intel_power_domains_init_hw(i915, true);
2089 		power_domains->display_core_suspended = false;
2090 	} else {
2091 		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2092 		power_domains->init_wakeref =
2093 			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2094 	}
2095 
2096 	intel_power_domains_verify_state(i915);
2097 }
2098 
2099 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2100 
2101 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2102 {
2103 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2104 	struct i915_power_well *power_well;
2105 
2106 	for_each_power_well(i915, power_well) {
2107 		enum intel_display_power_domain domain;
2108 
2109 		drm_dbg(&i915->drm, "%-25s %d\n",
2110 			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2111 
2112 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2113 			drm_dbg(&i915->drm, "  %-23s %d\n",
2114 				intel_display_power_domain_str(domain),
2115 				power_domains->domain_use_count[domain]);
2116 	}
2117 }
2118 
2119 /**
2120  * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2121  * @i915: i915 device instance
2122  *
2123  * Verify if the reference count of each power well matches its HW enabled
2124  * state and the total refcount of the domains it belongs to. This must be
2125  * called after modeset HW state sanitization, which is responsible for
2126  * acquiring reference counts for any power wells in use and disabling the
2127  * ones left on by BIOS but not required by any active output.
2128  */
2129 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2130 {
2131 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2132 	struct i915_power_well *power_well;
2133 	bool dump_domain_info;
2134 
2135 	mutex_lock(&power_domains->lock);
2136 
2137 	verify_async_put_domains_state(power_domains);
2138 
2139 	dump_domain_info = false;
2140 	for_each_power_well(i915, power_well) {
2141 		enum intel_display_power_domain domain;
2142 		int domains_count;
2143 		bool enabled;
2144 
2145 		enabled = intel_power_well_is_enabled(i915, power_well);
2146 		if ((intel_power_well_refcount(power_well) ||
2147 		     intel_power_well_is_always_on(power_well)) !=
2148 		    enabled)
2149 			drm_err(&i915->drm,
2150 				"power well %s state mismatch (refcount %d/enabled %d)",
2151 				intel_power_well_name(power_well),
2152 				intel_power_well_refcount(power_well), enabled);
2153 
2154 		domains_count = 0;
2155 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2156 			domains_count += power_domains->domain_use_count[domain];
2157 
2158 		if (intel_power_well_refcount(power_well) != domains_count) {
2159 			drm_err(&i915->drm,
2160 				"power well %s refcount/domain refcount mismatch "
2161 				"(refcount %d/domains refcount %d)\n",
2162 				intel_power_well_name(power_well),
2163 				intel_power_well_refcount(power_well),
2164 				domains_count);
2165 			dump_domain_info = true;
2166 		}
2167 	}
2168 
2169 	if (dump_domain_info) {
2170 		static bool dumped;
2171 
2172 		if (!dumped) {
2173 			intel_power_domains_dump_info(i915);
2174 			dumped = true;
2175 		}
2176 	}
2177 
2178 	mutex_unlock(&power_domains->lock);
2179 }
2180 
2181 #else
2182 
2183 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2184 {
2185 }
2186 
2187 #endif
2188 
2189 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2190 {
2191 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2192 	    IS_BROXTON(i915)) {
2193 		bxt_enable_dc9(i915);
2194 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2195 		hsw_enable_pc8(i915);
2196 	}
2197 
2198 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2199 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2200 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2201 }
2202 
2203 void intel_display_power_resume_early(struct drm_i915_private *i915)
2204 {
2205 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2206 	    IS_BROXTON(i915)) {
2207 		gen9_sanitize_dc_state(i915);
2208 		bxt_disable_dc9(i915);
2209 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2210 		hsw_disable_pc8(i915);
2211 	}
2212 
2213 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2214 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2215 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2216 }
2217 
2218 void intel_display_power_suspend(struct drm_i915_private *i915)
2219 {
2220 	if (DISPLAY_VER(i915) >= 11) {
2221 		icl_display_core_uninit(i915);
2222 		bxt_enable_dc9(i915);
2223 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2224 		bxt_display_core_uninit(i915);
2225 		bxt_enable_dc9(i915);
2226 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2227 		hsw_enable_pc8(i915);
2228 	}
2229 }
2230 
2231 void intel_display_power_resume(struct drm_i915_private *i915)
2232 {
2233 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2234 
2235 	if (DISPLAY_VER(i915) >= 11) {
2236 		bxt_disable_dc9(i915);
2237 		icl_display_core_init(i915, true);
2238 		if (intel_dmc_has_payload(i915)) {
2239 			if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
2240 				skl_enable_dc6(i915);
2241 			else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
2242 				gen9_enable_dc5(i915);
2243 		}
2244 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2245 		bxt_disable_dc9(i915);
2246 		bxt_display_core_init(i915, true);
2247 		if (intel_dmc_has_payload(i915) &&
2248 		    (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2249 			gen9_enable_dc5(i915);
2250 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2251 		hsw_disable_pc8(i915);
2252 	}
2253 }
2254 
2255 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2256 {
2257 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2258 	int i;
2259 
2260 	mutex_lock(&power_domains->lock);
2261 
2262 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2263 	for (i = 0; i < power_domains->power_well_count; i++) {
2264 		struct i915_power_well *power_well;
2265 		enum intel_display_power_domain power_domain;
2266 
2267 		power_well = &power_domains->power_wells[i];
2268 		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2269 			   intel_power_well_refcount(power_well));
2270 
2271 		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2272 			seq_printf(m, "  %-23s %d\n",
2273 				   intel_display_power_domain_str(power_domain),
2274 				   power_domains->domain_use_count[power_domain]);
2275 	}
2276 
2277 	mutex_unlock(&power_domains->lock);
2278 }
2279 
2280 struct intel_ddi_port_domains {
2281 	enum port port_start;
2282 	enum port port_end;
2283 	enum aux_ch aux_ch_start;
2284 	enum aux_ch aux_ch_end;
2285 
2286 	enum intel_display_power_domain ddi_lanes;
2287 	enum intel_display_power_domain ddi_io;
2288 	enum intel_display_power_domain aux_io;
2289 	enum intel_display_power_domain aux_legacy_usbc;
2290 	enum intel_display_power_domain aux_tbt;
2291 };
2292 
2293 static const struct intel_ddi_port_domains
2294 i9xx_port_domains[] = {
2295 	{
2296 		.port_start = PORT_A,
2297 		.port_end = PORT_F,
2298 		.aux_ch_start = AUX_CH_A,
2299 		.aux_ch_end = AUX_CH_F,
2300 
2301 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2302 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2303 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2304 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2305 		.aux_tbt = POWER_DOMAIN_INVALID,
2306 	},
2307 };
2308 
2309 static const struct intel_ddi_port_domains
2310 d11_port_domains[] = {
2311 	{
2312 		.port_start = PORT_A,
2313 		.port_end = PORT_B,
2314 		.aux_ch_start = AUX_CH_A,
2315 		.aux_ch_end = AUX_CH_B,
2316 
2317 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2318 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2319 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2320 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2321 		.aux_tbt = POWER_DOMAIN_INVALID,
2322 	}, {
2323 		.port_start = PORT_C,
2324 		.port_end = PORT_F,
2325 		.aux_ch_start = AUX_CH_C,
2326 		.aux_ch_end = AUX_CH_F,
2327 
2328 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2329 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2330 		.aux_io = POWER_DOMAIN_AUX_IO_C,
2331 		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2332 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2333 	},
2334 };
2335 
2336 static const struct intel_ddi_port_domains
2337 d12_port_domains[] = {
2338 	{
2339 		.port_start = PORT_A,
2340 		.port_end = PORT_C,
2341 		.aux_ch_start = AUX_CH_A,
2342 		.aux_ch_end = AUX_CH_C,
2343 
2344 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2345 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2346 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2347 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2348 		.aux_tbt = POWER_DOMAIN_INVALID,
2349 	}, {
2350 		.port_start = PORT_TC1,
2351 		.port_end = PORT_TC6,
2352 		.aux_ch_start = AUX_CH_USBC1,
2353 		.aux_ch_end = AUX_CH_USBC6,
2354 
2355 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2356 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2357 		.aux_io = POWER_DOMAIN_INVALID,
2358 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2359 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2360 	},
2361 };
2362 
2363 static const struct intel_ddi_port_domains
2364 d13_port_domains[] = {
2365 	{
2366 		.port_start = PORT_A,
2367 		.port_end = PORT_C,
2368 		.aux_ch_start = AUX_CH_A,
2369 		.aux_ch_end = AUX_CH_C,
2370 
2371 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2372 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2373 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2374 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2375 		.aux_tbt = POWER_DOMAIN_INVALID,
2376 	}, {
2377 		.port_start = PORT_TC1,
2378 		.port_end = PORT_TC4,
2379 		.aux_ch_start = AUX_CH_USBC1,
2380 		.aux_ch_end = AUX_CH_USBC4,
2381 
2382 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2383 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2384 		.aux_io = POWER_DOMAIN_INVALID,
2385 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2386 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2387 	}, {
2388 		.port_start = PORT_D_XELPD,
2389 		.port_end = PORT_E_XELPD,
2390 		.aux_ch_start = AUX_CH_D_XELPD,
2391 		.aux_ch_end = AUX_CH_E_XELPD,
2392 
2393 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2394 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2395 		.aux_io = POWER_DOMAIN_AUX_IO_D,
2396 		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2397 		.aux_tbt = POWER_DOMAIN_INVALID,
2398 	},
2399 };
2400 
2401 static void
2402 intel_port_domains_for_platform(struct drm_i915_private *i915,
2403 				const struct intel_ddi_port_domains **domains,
2404 				int *domains_size)
2405 {
2406 	if (DISPLAY_VER(i915) >= 13) {
2407 		*domains = d13_port_domains;
2408 		*domains_size = ARRAY_SIZE(d13_port_domains);
2409 	} else if (DISPLAY_VER(i915) >= 12) {
2410 		*domains = d12_port_domains;
2411 		*domains_size = ARRAY_SIZE(d12_port_domains);
2412 	} else if (DISPLAY_VER(i915) >= 11) {
2413 		*domains = d11_port_domains;
2414 		*domains_size = ARRAY_SIZE(d11_port_domains);
2415 	} else {
2416 		*domains = i9xx_port_domains;
2417 		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2418 	}
2419 }
2420 
2421 static const struct intel_ddi_port_domains *
2422 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2423 {
2424 	const struct intel_ddi_port_domains *domains;
2425 	int domains_size;
2426 	int i;
2427 
2428 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2429 	for (i = 0; i < domains_size; i++)
2430 		if (port >= domains[i].port_start && port <= domains[i].port_end)
2431 			return &domains[i];
2432 
2433 	return NULL;
2434 }
2435 
2436 enum intel_display_power_domain
2437 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2438 {
2439 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2440 
2441 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID))
2442 		return POWER_DOMAIN_PORT_DDI_IO_A;
2443 
2444 	return domains->ddi_io + (int)(port - domains->port_start);
2445 }
2446 
2447 enum intel_display_power_domain
2448 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2449 {
2450 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2451 
2452 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID))
2453 		return POWER_DOMAIN_PORT_DDI_LANES_A;
2454 
2455 	return domains->ddi_lanes + (int)(port - domains->port_start);
2456 }
2457 
2458 static const struct intel_ddi_port_domains *
2459 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2460 {
2461 	const struct intel_ddi_port_domains *domains;
2462 	int domains_size;
2463 	int i;
2464 
2465 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2466 	for (i = 0; i < domains_size; i++)
2467 		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2468 			return &domains[i];
2469 
2470 	return NULL;
2471 }
2472 
2473 enum intel_display_power_domain
2474 intel_display_power_aux_io_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2475 {
2476 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2477 
2478 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID))
2479 		return POWER_DOMAIN_AUX_IO_A;
2480 
2481 	return domains->aux_io + (int)(aux_ch - domains->aux_ch_start);
2482 }
2483 
2484 enum intel_display_power_domain
2485 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2486 {
2487 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2488 
2489 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID))
2490 		return POWER_DOMAIN_AUX_A;
2491 
2492 	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2493 }
2494 
2495 enum intel_display_power_domain
2496 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2497 {
2498 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2499 
2500 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID))
2501 		return POWER_DOMAIN_AUX_TBT1;
2502 
2503 	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2504 }
2505