1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <linux/i2c.h> 28 #include <linux/input.h> 29 #include <linux/intel-iommu.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/dma-resv.h> 33 #include <linux/slab.h> 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_atomic_uapi.h> 38 #include <drm/drm_dp_helper.h> 39 #include <drm/drm_edid.h> 40 #include <drm/drm_fourcc.h> 41 #include <drm/drm_plane_helper.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/drm_rect.h> 44 #include <drm/i915_drm.h> 45 46 #include "display/intel_crt.h" 47 #include "display/intel_ddi.h" 48 #include "display/intel_dp.h" 49 #include "display/intel_dsi.h" 50 #include "display/intel_dvo.h" 51 #include "display/intel_gmbus.h" 52 #include "display/intel_hdmi.h" 53 #include "display/intel_lvds.h" 54 #include "display/intel_sdvo.h" 55 #include "display/intel_tv.h" 56 #include "display/intel_vdsc.h" 57 58 #include "gt/intel_rps.h" 59 60 #include "i915_drv.h" 61 #include "i915_trace.h" 62 #include "intel_acpi.h" 63 #include "intel_atomic.h" 64 #include "intel_atomic_plane.h" 65 #include "intel_bw.h" 66 #include "intel_cdclk.h" 67 #include "intel_color.h" 68 #include "intel_display_types.h" 69 #include "intel_dp_link_training.h" 70 #include "intel_fbc.h" 71 #include "intel_fbdev.h" 72 #include "intel_fifo_underrun.h" 73 #include "intel_frontbuffer.h" 74 #include "intel_hdcp.h" 75 #include "intel_hotplug.h" 76 #include "intel_overlay.h" 77 #include "intel_pipe_crc.h" 78 #include "intel_pm.h" 79 #include "intel_psr.h" 80 #include "intel_quirks.h" 81 #include "intel_sideband.h" 82 #include "intel_sprite.h" 83 #include "intel_tc.h" 84 #include "intel_vga.h" 85 86 /* Primary plane formats for gen <= 3 */ 87 static const u32 i8xx_primary_formats[] = { 88 DRM_FORMAT_C8, 89 DRM_FORMAT_RGB565, 90 DRM_FORMAT_XRGB1555, 91 DRM_FORMAT_XRGB8888, 92 }; 93 94 /* Primary plane formats for ivb (no fp16 due to hw issue) */ 95 static const u32 ivb_primary_formats[] = { 96 DRM_FORMAT_C8, 97 DRM_FORMAT_RGB565, 98 DRM_FORMAT_XRGB8888, 99 DRM_FORMAT_XBGR8888, 100 DRM_FORMAT_XRGB2101010, 101 DRM_FORMAT_XBGR2101010, 102 }; 103 104 /* Primary plane formats for gen >= 4, except ivb */ 105 static const u32 i965_primary_formats[] = { 106 DRM_FORMAT_C8, 107 DRM_FORMAT_RGB565, 108 DRM_FORMAT_XRGB8888, 109 DRM_FORMAT_XBGR8888, 110 DRM_FORMAT_XRGB2101010, 111 DRM_FORMAT_XBGR2101010, 112 DRM_FORMAT_XBGR16161616F, 113 }; 114 115 static const u64 i9xx_format_modifiers[] = { 116 I915_FORMAT_MOD_X_TILED, 117 DRM_FORMAT_MOD_LINEAR, 118 DRM_FORMAT_MOD_INVALID 119 }; 120 121 /* Cursor formats */ 122 static const u32 intel_cursor_formats[] = { 123 DRM_FORMAT_ARGB8888, 124 }; 125 126 static const u64 cursor_format_modifiers[] = { 127 DRM_FORMAT_MOD_LINEAR, 128 DRM_FORMAT_MOD_INVALID 129 }; 130 131 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 132 struct intel_crtc_state *pipe_config); 133 static void ironlake_pch_clock_get(struct intel_crtc *crtc, 134 struct intel_crtc_state *pipe_config); 135 136 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 137 struct drm_i915_gem_object *obj, 138 struct drm_mode_fb_cmd2 *mode_cmd); 139 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state); 140 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 141 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 142 const struct intel_link_m_n *m_n, 143 const struct intel_link_m_n *m2_n2); 144 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 145 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state); 146 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state); 147 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 148 static void vlv_prepare_pll(struct intel_crtc *crtc, 149 const struct intel_crtc_state *pipe_config); 150 static void chv_prepare_pll(struct intel_crtc *crtc, 151 const struct intel_crtc_state *pipe_config); 152 static void intel_crtc_init_scalers(struct intel_crtc *crtc, 153 struct intel_crtc_state *crtc_state); 154 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state); 155 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state); 156 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state); 157 static void intel_modeset_setup_hw_state(struct drm_device *dev, 158 struct drm_modeset_acquire_ctx *ctx); 159 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc); 160 161 struct intel_limit { 162 struct { 163 int min, max; 164 } dot, vco, n, m, m1, m2, p, p1; 165 166 struct { 167 int dot_limit; 168 int p2_slow, p2_fast; 169 } p2; 170 }; 171 172 /* returns HPLL frequency in kHz */ 173 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 174 { 175 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 176 177 /* Obtain SKU information */ 178 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 179 CCK_FUSE_HPLL_FREQ_MASK; 180 181 return vco_freq[hpll_freq] * 1000; 182 } 183 184 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 185 const char *name, u32 reg, int ref_freq) 186 { 187 u32 val; 188 int divider; 189 190 val = vlv_cck_read(dev_priv, reg); 191 divider = val & CCK_FREQUENCY_VALUES; 192 193 WARN((val & CCK_FREQUENCY_STATUS) != 194 (divider << CCK_FREQUENCY_STATUS_SHIFT), 195 "%s change in progress\n", name); 196 197 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 198 } 199 200 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 201 const char *name, u32 reg) 202 { 203 int hpll; 204 205 vlv_cck_get(dev_priv); 206 207 if (dev_priv->hpll_freq == 0) 208 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 209 210 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 211 212 vlv_cck_put(dev_priv); 213 214 return hpll; 215 } 216 217 static void intel_update_czclk(struct drm_i915_private *dev_priv) 218 { 219 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 220 return; 221 222 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 223 CCK_CZ_CLOCK_CONTROL); 224 225 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq); 226 } 227 228 static inline u32 /* units of 100MHz */ 229 intel_fdi_link_freq(struct drm_i915_private *dev_priv, 230 const struct intel_crtc_state *pipe_config) 231 { 232 if (HAS_DDI(dev_priv)) 233 return pipe_config->port_clock; /* SPLL */ 234 else 235 return dev_priv->fdi_pll_freq; 236 } 237 238 static const struct intel_limit intel_limits_i8xx_dac = { 239 .dot = { .min = 25000, .max = 350000 }, 240 .vco = { .min = 908000, .max = 1512000 }, 241 .n = { .min = 2, .max = 16 }, 242 .m = { .min = 96, .max = 140 }, 243 .m1 = { .min = 18, .max = 26 }, 244 .m2 = { .min = 6, .max = 16 }, 245 .p = { .min = 4, .max = 128 }, 246 .p1 = { .min = 2, .max = 33 }, 247 .p2 = { .dot_limit = 165000, 248 .p2_slow = 4, .p2_fast = 2 }, 249 }; 250 251 static const struct intel_limit intel_limits_i8xx_dvo = { 252 .dot = { .min = 25000, .max = 350000 }, 253 .vco = { .min = 908000, .max = 1512000 }, 254 .n = { .min = 2, .max = 16 }, 255 .m = { .min = 96, .max = 140 }, 256 .m1 = { .min = 18, .max = 26 }, 257 .m2 = { .min = 6, .max = 16 }, 258 .p = { .min = 4, .max = 128 }, 259 .p1 = { .min = 2, .max = 33 }, 260 .p2 = { .dot_limit = 165000, 261 .p2_slow = 4, .p2_fast = 4 }, 262 }; 263 264 static const struct intel_limit intel_limits_i8xx_lvds = { 265 .dot = { .min = 25000, .max = 350000 }, 266 .vco = { .min = 908000, .max = 1512000 }, 267 .n = { .min = 2, .max = 16 }, 268 .m = { .min = 96, .max = 140 }, 269 .m1 = { .min = 18, .max = 26 }, 270 .m2 = { .min = 6, .max = 16 }, 271 .p = { .min = 4, .max = 128 }, 272 .p1 = { .min = 1, .max = 6 }, 273 .p2 = { .dot_limit = 165000, 274 .p2_slow = 14, .p2_fast = 7 }, 275 }; 276 277 static const struct intel_limit intel_limits_i9xx_sdvo = { 278 .dot = { .min = 20000, .max = 400000 }, 279 .vco = { .min = 1400000, .max = 2800000 }, 280 .n = { .min = 1, .max = 6 }, 281 .m = { .min = 70, .max = 120 }, 282 .m1 = { .min = 8, .max = 18 }, 283 .m2 = { .min = 3, .max = 7 }, 284 .p = { .min = 5, .max = 80 }, 285 .p1 = { .min = 1, .max = 8 }, 286 .p2 = { .dot_limit = 200000, 287 .p2_slow = 10, .p2_fast = 5 }, 288 }; 289 290 static const struct intel_limit intel_limits_i9xx_lvds = { 291 .dot = { .min = 20000, .max = 400000 }, 292 .vco = { .min = 1400000, .max = 2800000 }, 293 .n = { .min = 1, .max = 6 }, 294 .m = { .min = 70, .max = 120 }, 295 .m1 = { .min = 8, .max = 18 }, 296 .m2 = { .min = 3, .max = 7 }, 297 .p = { .min = 7, .max = 98 }, 298 .p1 = { .min = 1, .max = 8 }, 299 .p2 = { .dot_limit = 112000, 300 .p2_slow = 14, .p2_fast = 7 }, 301 }; 302 303 304 static const struct intel_limit intel_limits_g4x_sdvo = { 305 .dot = { .min = 25000, .max = 270000 }, 306 .vco = { .min = 1750000, .max = 3500000}, 307 .n = { .min = 1, .max = 4 }, 308 .m = { .min = 104, .max = 138 }, 309 .m1 = { .min = 17, .max = 23 }, 310 .m2 = { .min = 5, .max = 11 }, 311 .p = { .min = 10, .max = 30 }, 312 .p1 = { .min = 1, .max = 3}, 313 .p2 = { .dot_limit = 270000, 314 .p2_slow = 10, 315 .p2_fast = 10 316 }, 317 }; 318 319 static const struct intel_limit intel_limits_g4x_hdmi = { 320 .dot = { .min = 22000, .max = 400000 }, 321 .vco = { .min = 1750000, .max = 3500000}, 322 .n = { .min = 1, .max = 4 }, 323 .m = { .min = 104, .max = 138 }, 324 .m1 = { .min = 16, .max = 23 }, 325 .m2 = { .min = 5, .max = 11 }, 326 .p = { .min = 5, .max = 80 }, 327 .p1 = { .min = 1, .max = 8}, 328 .p2 = { .dot_limit = 165000, 329 .p2_slow = 10, .p2_fast = 5 }, 330 }; 331 332 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 333 .dot = { .min = 20000, .max = 115000 }, 334 .vco = { .min = 1750000, .max = 3500000 }, 335 .n = { .min = 1, .max = 3 }, 336 .m = { .min = 104, .max = 138 }, 337 .m1 = { .min = 17, .max = 23 }, 338 .m2 = { .min = 5, .max = 11 }, 339 .p = { .min = 28, .max = 112 }, 340 .p1 = { .min = 2, .max = 8 }, 341 .p2 = { .dot_limit = 0, 342 .p2_slow = 14, .p2_fast = 14 343 }, 344 }; 345 346 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 347 .dot = { .min = 80000, .max = 224000 }, 348 .vco = { .min = 1750000, .max = 3500000 }, 349 .n = { .min = 1, .max = 3 }, 350 .m = { .min = 104, .max = 138 }, 351 .m1 = { .min = 17, .max = 23 }, 352 .m2 = { .min = 5, .max = 11 }, 353 .p = { .min = 14, .max = 42 }, 354 .p1 = { .min = 2, .max = 6 }, 355 .p2 = { .dot_limit = 0, 356 .p2_slow = 7, .p2_fast = 7 357 }, 358 }; 359 360 static const struct intel_limit intel_limits_pineview_sdvo = { 361 .dot = { .min = 20000, .max = 400000}, 362 .vco = { .min = 1700000, .max = 3500000 }, 363 /* Pineview's Ncounter is a ring counter */ 364 .n = { .min = 3, .max = 6 }, 365 .m = { .min = 2, .max = 256 }, 366 /* Pineview only has one combined m divider, which we treat as m2. */ 367 .m1 = { .min = 0, .max = 0 }, 368 .m2 = { .min = 0, .max = 254 }, 369 .p = { .min = 5, .max = 80 }, 370 .p1 = { .min = 1, .max = 8 }, 371 .p2 = { .dot_limit = 200000, 372 .p2_slow = 10, .p2_fast = 5 }, 373 }; 374 375 static const struct intel_limit intel_limits_pineview_lvds = { 376 .dot = { .min = 20000, .max = 400000 }, 377 .vco = { .min = 1700000, .max = 3500000 }, 378 .n = { .min = 3, .max = 6 }, 379 .m = { .min = 2, .max = 256 }, 380 .m1 = { .min = 0, .max = 0 }, 381 .m2 = { .min = 0, .max = 254 }, 382 .p = { .min = 7, .max = 112 }, 383 .p1 = { .min = 1, .max = 8 }, 384 .p2 = { .dot_limit = 112000, 385 .p2_slow = 14, .p2_fast = 14 }, 386 }; 387 388 /* Ironlake / Sandybridge 389 * 390 * We calculate clock using (register_value + 2) for N/M1/M2, so here 391 * the range value for them is (actual_value - 2). 392 */ 393 static const struct intel_limit intel_limits_ironlake_dac = { 394 .dot = { .min = 25000, .max = 350000 }, 395 .vco = { .min = 1760000, .max = 3510000 }, 396 .n = { .min = 1, .max = 5 }, 397 .m = { .min = 79, .max = 127 }, 398 .m1 = { .min = 12, .max = 22 }, 399 .m2 = { .min = 5, .max = 9 }, 400 .p = { .min = 5, .max = 80 }, 401 .p1 = { .min = 1, .max = 8 }, 402 .p2 = { .dot_limit = 225000, 403 .p2_slow = 10, .p2_fast = 5 }, 404 }; 405 406 static const struct intel_limit intel_limits_ironlake_single_lvds = { 407 .dot = { .min = 25000, .max = 350000 }, 408 .vco = { .min = 1760000, .max = 3510000 }, 409 .n = { .min = 1, .max = 3 }, 410 .m = { .min = 79, .max = 118 }, 411 .m1 = { .min = 12, .max = 22 }, 412 .m2 = { .min = 5, .max = 9 }, 413 .p = { .min = 28, .max = 112 }, 414 .p1 = { .min = 2, .max = 8 }, 415 .p2 = { .dot_limit = 225000, 416 .p2_slow = 14, .p2_fast = 14 }, 417 }; 418 419 static const struct intel_limit intel_limits_ironlake_dual_lvds = { 420 .dot = { .min = 25000, .max = 350000 }, 421 .vco = { .min = 1760000, .max = 3510000 }, 422 .n = { .min = 1, .max = 3 }, 423 .m = { .min = 79, .max = 127 }, 424 .m1 = { .min = 12, .max = 22 }, 425 .m2 = { .min = 5, .max = 9 }, 426 .p = { .min = 14, .max = 56 }, 427 .p1 = { .min = 2, .max = 8 }, 428 .p2 = { .dot_limit = 225000, 429 .p2_slow = 7, .p2_fast = 7 }, 430 }; 431 432 /* LVDS 100mhz refclk limits. */ 433 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = { 434 .dot = { .min = 25000, .max = 350000 }, 435 .vco = { .min = 1760000, .max = 3510000 }, 436 .n = { .min = 1, .max = 2 }, 437 .m = { .min = 79, .max = 126 }, 438 .m1 = { .min = 12, .max = 22 }, 439 .m2 = { .min = 5, .max = 9 }, 440 .p = { .min = 28, .max = 112 }, 441 .p1 = { .min = 2, .max = 8 }, 442 .p2 = { .dot_limit = 225000, 443 .p2_slow = 14, .p2_fast = 14 }, 444 }; 445 446 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = { 447 .dot = { .min = 25000, .max = 350000 }, 448 .vco = { .min = 1760000, .max = 3510000 }, 449 .n = { .min = 1, .max = 3 }, 450 .m = { .min = 79, .max = 126 }, 451 .m1 = { .min = 12, .max = 22 }, 452 .m2 = { .min = 5, .max = 9 }, 453 .p = { .min = 14, .max = 42 }, 454 .p1 = { .min = 2, .max = 6 }, 455 .p2 = { .dot_limit = 225000, 456 .p2_slow = 7, .p2_fast = 7 }, 457 }; 458 459 static const struct intel_limit intel_limits_vlv = { 460 /* 461 * These are the data rate limits (measured in fast clocks) 462 * since those are the strictest limits we have. The fast 463 * clock and actual rate limits are more relaxed, so checking 464 * them would make no difference. 465 */ 466 .dot = { .min = 25000 * 5, .max = 270000 * 5 }, 467 .vco = { .min = 4000000, .max = 6000000 }, 468 .n = { .min = 1, .max = 7 }, 469 .m1 = { .min = 2, .max = 3 }, 470 .m2 = { .min = 11, .max = 156 }, 471 .p1 = { .min = 2, .max = 3 }, 472 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 473 }; 474 475 static const struct intel_limit intel_limits_chv = { 476 /* 477 * These are the data rate limits (measured in fast clocks) 478 * since those are the strictest limits we have. The fast 479 * clock and actual rate limits are more relaxed, so checking 480 * them would make no difference. 481 */ 482 .dot = { .min = 25000 * 5, .max = 540000 * 5}, 483 .vco = { .min = 4800000, .max = 6480000 }, 484 .n = { .min = 1, .max = 1 }, 485 .m1 = { .min = 2, .max = 2 }, 486 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 487 .p1 = { .min = 2, .max = 4 }, 488 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 489 }; 490 491 static const struct intel_limit intel_limits_bxt = { 492 /* FIXME: find real dot limits */ 493 .dot = { .min = 0, .max = INT_MAX }, 494 .vco = { .min = 4800000, .max = 6700000 }, 495 .n = { .min = 1, .max = 1 }, 496 .m1 = { .min = 2, .max = 2 }, 497 /* FIXME: find real m2 limits */ 498 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 499 .p1 = { .min = 2, .max = 4 }, 500 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 501 }; 502 503 /* WA Display #0827: Gen9:all */ 504 static void 505 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 506 { 507 if (enable) 508 I915_WRITE(CLKGATE_DIS_PSL(pipe), 509 I915_READ(CLKGATE_DIS_PSL(pipe)) | 510 DUPS1_GATING_DIS | DUPS2_GATING_DIS); 511 else 512 I915_WRITE(CLKGATE_DIS_PSL(pipe), 513 I915_READ(CLKGATE_DIS_PSL(pipe)) & 514 ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 515 } 516 517 /* Wa_2006604312:icl */ 518 static void 519 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 520 bool enable) 521 { 522 if (enable) 523 I915_WRITE(CLKGATE_DIS_PSL(pipe), 524 I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 525 else 526 I915_WRITE(CLKGATE_DIS_PSL(pipe), 527 I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 528 } 529 530 static bool 531 needs_modeset(const struct intel_crtc_state *state) 532 { 533 return drm_atomic_crtc_needs_modeset(&state->base); 534 } 535 536 bool 537 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 538 { 539 return (crtc_state->master_transcoder != INVALID_TRANSCODER || 540 crtc_state->sync_mode_slaves_mask); 541 } 542 543 static bool 544 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 545 { 546 return (crtc_state->master_transcoder == INVALID_TRANSCODER && 547 crtc_state->sync_mode_slaves_mask); 548 } 549 550 /* 551 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 552 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 553 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 554 * The helpers' return value is the rate of the clock that is fed to the 555 * display engine's pipe which can be the above fast dot clock rate or a 556 * divided-down version of it. 557 */ 558 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 559 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 560 { 561 clock->m = clock->m2 + 2; 562 clock->p = clock->p1 * clock->p2; 563 if (WARN_ON(clock->n == 0 || clock->p == 0)) 564 return 0; 565 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 566 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 567 568 return clock->dot; 569 } 570 571 static u32 i9xx_dpll_compute_m(struct dpll *dpll) 572 { 573 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 574 } 575 576 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 577 { 578 clock->m = i9xx_dpll_compute_m(clock); 579 clock->p = clock->p1 * clock->p2; 580 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) 581 return 0; 582 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 583 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 584 585 return clock->dot; 586 } 587 588 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 589 { 590 clock->m = clock->m1 * clock->m2; 591 clock->p = clock->p1 * clock->p2; 592 if (WARN_ON(clock->n == 0 || clock->p == 0)) 593 return 0; 594 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 595 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 596 597 return clock->dot / 5; 598 } 599 600 int chv_calc_dpll_params(int refclk, struct dpll *clock) 601 { 602 clock->m = clock->m1 * clock->m2; 603 clock->p = clock->p1 * clock->p2; 604 if (WARN_ON(clock->n == 0 || clock->p == 0)) 605 return 0; 606 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), 607 clock->n << 22); 608 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 609 610 return clock->dot / 5; 611 } 612 613 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) 614 615 /* 616 * Returns whether the given set of divisors are valid for a given refclk with 617 * the given connectors. 618 */ 619 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv, 620 const struct intel_limit *limit, 621 const struct dpll *clock) 622 { 623 if (clock->n < limit->n.min || limit->n.max < clock->n) 624 INTELPllInvalid("n out of range\n"); 625 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 626 INTELPllInvalid("p1 out of range\n"); 627 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 628 INTELPllInvalid("m2 out of range\n"); 629 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 630 INTELPllInvalid("m1 out of range\n"); 631 632 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && 633 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) 634 if (clock->m1 <= clock->m2) 635 INTELPllInvalid("m1 <= m2\n"); 636 637 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 638 !IS_GEN9_LP(dev_priv)) { 639 if (clock->p < limit->p.min || limit->p.max < clock->p) 640 INTELPllInvalid("p out of range\n"); 641 if (clock->m < limit->m.min || limit->m.max < clock->m) 642 INTELPllInvalid("m out of range\n"); 643 } 644 645 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 646 INTELPllInvalid("vco out of range\n"); 647 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 648 * connector, etc., rather than just a single range. 649 */ 650 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 651 INTELPllInvalid("dot out of range\n"); 652 653 return true; 654 } 655 656 static int 657 i9xx_select_p2_div(const struct intel_limit *limit, 658 const struct intel_crtc_state *crtc_state, 659 int target) 660 { 661 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 662 663 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 664 /* 665 * For LVDS just rely on its current settings for dual-channel. 666 * We haven't figured out how to reliably set up different 667 * single/dual channel state, if we even can. 668 */ 669 if (intel_is_dual_link_lvds(dev_priv)) 670 return limit->p2.p2_fast; 671 else 672 return limit->p2.p2_slow; 673 } else { 674 if (target < limit->p2.dot_limit) 675 return limit->p2.p2_slow; 676 else 677 return limit->p2.p2_fast; 678 } 679 } 680 681 /* 682 * Returns a set of divisors for the desired target clock with the given 683 * refclk, or FALSE. The returned values represent the clock equation: 684 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 685 * 686 * Target and reference clocks are specified in kHz. 687 * 688 * If match_clock is provided, then best_clock P divider must match the P 689 * divider from @match_clock used for LVDS downclocking. 690 */ 691 static bool 692 i9xx_find_best_dpll(const struct intel_limit *limit, 693 struct intel_crtc_state *crtc_state, 694 int target, int refclk, struct dpll *match_clock, 695 struct dpll *best_clock) 696 { 697 struct drm_device *dev = crtc_state->base.crtc->dev; 698 struct dpll clock; 699 int err = target; 700 701 memset(best_clock, 0, sizeof(*best_clock)); 702 703 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 704 705 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 706 clock.m1++) { 707 for (clock.m2 = limit->m2.min; 708 clock.m2 <= limit->m2.max; clock.m2++) { 709 if (clock.m2 >= clock.m1) 710 break; 711 for (clock.n = limit->n.min; 712 clock.n <= limit->n.max; clock.n++) { 713 for (clock.p1 = limit->p1.min; 714 clock.p1 <= limit->p1.max; clock.p1++) { 715 int this_err; 716 717 i9xx_calc_dpll_params(refclk, &clock); 718 if (!intel_PLL_is_valid(to_i915(dev), 719 limit, 720 &clock)) 721 continue; 722 if (match_clock && 723 clock.p != match_clock->p) 724 continue; 725 726 this_err = abs(clock.dot - target); 727 if (this_err < err) { 728 *best_clock = clock; 729 err = this_err; 730 } 731 } 732 } 733 } 734 } 735 736 return (err != target); 737 } 738 739 /* 740 * Returns a set of divisors for the desired target clock with the given 741 * refclk, or FALSE. The returned values represent the clock equation: 742 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 743 * 744 * Target and reference clocks are specified in kHz. 745 * 746 * If match_clock is provided, then best_clock P divider must match the P 747 * divider from @match_clock used for LVDS downclocking. 748 */ 749 static bool 750 pnv_find_best_dpll(const struct intel_limit *limit, 751 struct intel_crtc_state *crtc_state, 752 int target, int refclk, struct dpll *match_clock, 753 struct dpll *best_clock) 754 { 755 struct drm_device *dev = crtc_state->base.crtc->dev; 756 struct dpll clock; 757 int err = target; 758 759 memset(best_clock, 0, sizeof(*best_clock)); 760 761 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 762 763 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 764 clock.m1++) { 765 for (clock.m2 = limit->m2.min; 766 clock.m2 <= limit->m2.max; clock.m2++) { 767 for (clock.n = limit->n.min; 768 clock.n <= limit->n.max; clock.n++) { 769 for (clock.p1 = limit->p1.min; 770 clock.p1 <= limit->p1.max; clock.p1++) { 771 int this_err; 772 773 pnv_calc_dpll_params(refclk, &clock); 774 if (!intel_PLL_is_valid(to_i915(dev), 775 limit, 776 &clock)) 777 continue; 778 if (match_clock && 779 clock.p != match_clock->p) 780 continue; 781 782 this_err = abs(clock.dot - target); 783 if (this_err < err) { 784 *best_clock = clock; 785 err = this_err; 786 } 787 } 788 } 789 } 790 } 791 792 return (err != target); 793 } 794 795 /* 796 * Returns a set of divisors for the desired target clock with the given 797 * refclk, or FALSE. The returned values represent the clock equation: 798 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 799 * 800 * Target and reference clocks are specified in kHz. 801 * 802 * If match_clock is provided, then best_clock P divider must match the P 803 * divider from @match_clock used for LVDS downclocking. 804 */ 805 static bool 806 g4x_find_best_dpll(const struct intel_limit *limit, 807 struct intel_crtc_state *crtc_state, 808 int target, int refclk, struct dpll *match_clock, 809 struct dpll *best_clock) 810 { 811 struct drm_device *dev = crtc_state->base.crtc->dev; 812 struct dpll clock; 813 int max_n; 814 bool found = false; 815 /* approximately equals target * 0.00585 */ 816 int err_most = (target >> 8) + (target >> 9); 817 818 memset(best_clock, 0, sizeof(*best_clock)); 819 820 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 821 822 max_n = limit->n.max; 823 /* based on hardware requirement, prefer smaller n to precision */ 824 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 825 /* based on hardware requirement, prefere larger m1,m2 */ 826 for (clock.m1 = limit->m1.max; 827 clock.m1 >= limit->m1.min; clock.m1--) { 828 for (clock.m2 = limit->m2.max; 829 clock.m2 >= limit->m2.min; clock.m2--) { 830 for (clock.p1 = limit->p1.max; 831 clock.p1 >= limit->p1.min; clock.p1--) { 832 int this_err; 833 834 i9xx_calc_dpll_params(refclk, &clock); 835 if (!intel_PLL_is_valid(to_i915(dev), 836 limit, 837 &clock)) 838 continue; 839 840 this_err = abs(clock.dot - target); 841 if (this_err < err_most) { 842 *best_clock = clock; 843 err_most = this_err; 844 max_n = clock.n; 845 found = true; 846 } 847 } 848 } 849 } 850 } 851 return found; 852 } 853 854 /* 855 * Check if the calculated PLL configuration is more optimal compared to the 856 * best configuration and error found so far. Return the calculated error. 857 */ 858 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 859 const struct dpll *calculated_clock, 860 const struct dpll *best_clock, 861 unsigned int best_error_ppm, 862 unsigned int *error_ppm) 863 { 864 /* 865 * For CHV ignore the error and consider only the P value. 866 * Prefer a bigger P value based on HW requirements. 867 */ 868 if (IS_CHERRYVIEW(to_i915(dev))) { 869 *error_ppm = 0; 870 871 return calculated_clock->p > best_clock->p; 872 } 873 874 if (WARN_ON_ONCE(!target_freq)) 875 return false; 876 877 *error_ppm = div_u64(1000000ULL * 878 abs(target_freq - calculated_clock->dot), 879 target_freq); 880 /* 881 * Prefer a better P value over a better (smaller) error if the error 882 * is small. Ensure this preference for future configurations too by 883 * setting the error to 0. 884 */ 885 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 886 *error_ppm = 0; 887 888 return true; 889 } 890 891 return *error_ppm + 10 < best_error_ppm; 892 } 893 894 /* 895 * Returns a set of divisors for the desired target clock with the given 896 * refclk, or FALSE. The returned values represent the clock equation: 897 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 898 */ 899 static bool 900 vlv_find_best_dpll(const struct intel_limit *limit, 901 struct intel_crtc_state *crtc_state, 902 int target, int refclk, struct dpll *match_clock, 903 struct dpll *best_clock) 904 { 905 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 906 struct drm_device *dev = crtc->base.dev; 907 struct dpll clock; 908 unsigned int bestppm = 1000000; 909 /* min update 19.2 MHz */ 910 int max_n = min(limit->n.max, refclk / 19200); 911 bool found = false; 912 913 target *= 5; /* fast clock */ 914 915 memset(best_clock, 0, sizeof(*best_clock)); 916 917 /* based on hardware requirement, prefer smaller n to precision */ 918 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 919 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 920 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 921 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 922 clock.p = clock.p1 * clock.p2; 923 /* based on hardware requirement, prefer bigger m1,m2 values */ 924 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 925 unsigned int ppm; 926 927 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 928 refclk * clock.m1); 929 930 vlv_calc_dpll_params(refclk, &clock); 931 932 if (!intel_PLL_is_valid(to_i915(dev), 933 limit, 934 &clock)) 935 continue; 936 937 if (!vlv_PLL_is_optimal(dev, target, 938 &clock, 939 best_clock, 940 bestppm, &ppm)) 941 continue; 942 943 *best_clock = clock; 944 bestppm = ppm; 945 found = true; 946 } 947 } 948 } 949 } 950 951 return found; 952 } 953 954 /* 955 * Returns a set of divisors for the desired target clock with the given 956 * refclk, or FALSE. The returned values represent the clock equation: 957 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 958 */ 959 static bool 960 chv_find_best_dpll(const struct intel_limit *limit, 961 struct intel_crtc_state *crtc_state, 962 int target, int refclk, struct dpll *match_clock, 963 struct dpll *best_clock) 964 { 965 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 966 struct drm_device *dev = crtc->base.dev; 967 unsigned int best_error_ppm; 968 struct dpll clock; 969 u64 m2; 970 int found = false; 971 972 memset(best_clock, 0, sizeof(*best_clock)); 973 best_error_ppm = 1000000; 974 975 /* 976 * Based on hardware doc, the n always set to 1, and m1 always 977 * set to 2. If requires to support 200Mhz refclk, we need to 978 * revisit this because n may not 1 anymore. 979 */ 980 clock.n = 1, clock.m1 = 2; 981 target *= 5; /* fast clock */ 982 983 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 984 for (clock.p2 = limit->p2.p2_fast; 985 clock.p2 >= limit->p2.p2_slow; 986 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 987 unsigned int error_ppm; 988 989 clock.p = clock.p1 * clock.p2; 990 991 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 992 refclk * clock.m1); 993 994 if (m2 > INT_MAX/clock.m1) 995 continue; 996 997 clock.m2 = m2; 998 999 chv_calc_dpll_params(refclk, &clock); 1000 1001 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock)) 1002 continue; 1003 1004 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 1005 best_error_ppm, &error_ppm)) 1006 continue; 1007 1008 *best_clock = clock; 1009 best_error_ppm = error_ppm; 1010 found = true; 1011 } 1012 } 1013 1014 return found; 1015 } 1016 1017 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 1018 struct dpll *best_clock) 1019 { 1020 int refclk = 100000; 1021 const struct intel_limit *limit = &intel_limits_bxt; 1022 1023 return chv_find_best_dpll(limit, crtc_state, 1024 crtc_state->port_clock, refclk, 1025 NULL, best_clock); 1026 } 1027 1028 bool intel_crtc_active(struct intel_crtc *crtc) 1029 { 1030 /* Be paranoid as we can arrive here with only partial 1031 * state retrieved from the hardware during setup. 1032 * 1033 * We can ditch the adjusted_mode.crtc_clock check as soon 1034 * as Haswell has gained clock readout/fastboot support. 1035 * 1036 * We can ditch the crtc->primary->state->fb check as soon as we can 1037 * properly reconstruct framebuffers. 1038 * 1039 * FIXME: The intel_crtc->active here should be switched to 1040 * crtc->state->active once we have proper CRTC states wired up 1041 * for atomic. 1042 */ 1043 return crtc->active && crtc->base.primary->state->fb && 1044 crtc->config->base.adjusted_mode.crtc_clock; 1045 } 1046 1047 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, 1048 enum pipe pipe) 1049 { 1050 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 1051 1052 return crtc->config->cpu_transcoder; 1053 } 1054 1055 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 1056 enum pipe pipe) 1057 { 1058 i915_reg_t reg = PIPEDSL(pipe); 1059 u32 line1, line2; 1060 u32 line_mask; 1061 1062 if (IS_GEN(dev_priv, 2)) 1063 line_mask = DSL_LINEMASK_GEN2; 1064 else 1065 line_mask = DSL_LINEMASK_GEN3; 1066 1067 line1 = I915_READ(reg) & line_mask; 1068 msleep(5); 1069 line2 = I915_READ(reg) & line_mask; 1070 1071 return line1 != line2; 1072 } 1073 1074 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 1075 { 1076 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1077 enum pipe pipe = crtc->pipe; 1078 1079 /* Wait for the display line to settle/start moving */ 1080 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 1081 DRM_ERROR("pipe %c scanline %s wait timed out\n", 1082 pipe_name(pipe), onoff(state)); 1083 } 1084 1085 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 1086 { 1087 wait_for_pipe_scanline_moving(crtc, false); 1088 } 1089 1090 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 1091 { 1092 wait_for_pipe_scanline_moving(crtc, true); 1093 } 1094 1095 static void 1096 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 1097 { 1098 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 1099 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1100 1101 if (INTEL_GEN(dev_priv) >= 4) { 1102 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1103 i915_reg_t reg = PIPECONF(cpu_transcoder); 1104 1105 /* Wait for the Pipe State to go off */ 1106 if (intel_de_wait_for_clear(dev_priv, reg, 1107 I965_PIPECONF_ACTIVE, 100)) 1108 WARN(1, "pipe_off wait timed out\n"); 1109 } else { 1110 intel_wait_for_pipe_scanline_stopped(crtc); 1111 } 1112 } 1113 1114 /* Only for pre-ILK configs */ 1115 void assert_pll(struct drm_i915_private *dev_priv, 1116 enum pipe pipe, bool state) 1117 { 1118 u32 val; 1119 bool cur_state; 1120 1121 val = I915_READ(DPLL(pipe)); 1122 cur_state = !!(val & DPLL_VCO_ENABLE); 1123 I915_STATE_WARN(cur_state != state, 1124 "PLL state assertion failure (expected %s, current %s)\n", 1125 onoff(state), onoff(cur_state)); 1126 } 1127 1128 /* XXX: the dsi pll is shared between MIPI DSI ports */ 1129 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 1130 { 1131 u32 val; 1132 bool cur_state; 1133 1134 vlv_cck_get(dev_priv); 1135 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 1136 vlv_cck_put(dev_priv); 1137 1138 cur_state = val & DSI_PLL_VCO_EN; 1139 I915_STATE_WARN(cur_state != state, 1140 "DSI PLL state assertion failure (expected %s, current %s)\n", 1141 onoff(state), onoff(cur_state)); 1142 } 1143 1144 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 1145 enum pipe pipe, bool state) 1146 { 1147 bool cur_state; 1148 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, 1149 pipe); 1150 1151 if (HAS_DDI(dev_priv)) { 1152 /* DDI does not have a specific FDI_TX register */ 1153 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); 1154 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 1155 } else { 1156 u32 val = I915_READ(FDI_TX_CTL(pipe)); 1157 cur_state = !!(val & FDI_TX_ENABLE); 1158 } 1159 I915_STATE_WARN(cur_state != state, 1160 "FDI TX state assertion failure (expected %s, current %s)\n", 1161 onoff(state), onoff(cur_state)); 1162 } 1163 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 1164 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 1165 1166 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 1167 enum pipe pipe, bool state) 1168 { 1169 u32 val; 1170 bool cur_state; 1171 1172 val = I915_READ(FDI_RX_CTL(pipe)); 1173 cur_state = !!(val & FDI_RX_ENABLE); 1174 I915_STATE_WARN(cur_state != state, 1175 "FDI RX state assertion failure (expected %s, current %s)\n", 1176 onoff(state), onoff(cur_state)); 1177 } 1178 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 1179 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 1180 1181 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 1182 enum pipe pipe) 1183 { 1184 u32 val; 1185 1186 /* ILK FDI PLL is always enabled */ 1187 if (IS_GEN(dev_priv, 5)) 1188 return; 1189 1190 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 1191 if (HAS_DDI(dev_priv)) 1192 return; 1193 1194 val = I915_READ(FDI_TX_CTL(pipe)); 1195 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 1196 } 1197 1198 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 1199 enum pipe pipe, bool state) 1200 { 1201 u32 val; 1202 bool cur_state; 1203 1204 val = I915_READ(FDI_RX_CTL(pipe)); 1205 cur_state = !!(val & FDI_RX_PLL_ENABLE); 1206 I915_STATE_WARN(cur_state != state, 1207 "FDI RX PLL assertion failure (expected %s, current %s)\n", 1208 onoff(state), onoff(cur_state)); 1209 } 1210 1211 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 1212 { 1213 i915_reg_t pp_reg; 1214 u32 val; 1215 enum pipe panel_pipe = INVALID_PIPE; 1216 bool locked = true; 1217 1218 if (WARN_ON(HAS_DDI(dev_priv))) 1219 return; 1220 1221 if (HAS_PCH_SPLIT(dev_priv)) { 1222 u32 port_sel; 1223 1224 pp_reg = PP_CONTROL(0); 1225 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1226 1227 switch (port_sel) { 1228 case PANEL_PORT_SELECT_LVDS: 1229 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 1230 break; 1231 case PANEL_PORT_SELECT_DPA: 1232 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 1233 break; 1234 case PANEL_PORT_SELECT_DPC: 1235 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 1236 break; 1237 case PANEL_PORT_SELECT_DPD: 1238 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 1239 break; 1240 default: 1241 MISSING_CASE(port_sel); 1242 break; 1243 } 1244 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1245 /* presumably write lock depends on pipe, not port select */ 1246 pp_reg = PP_CONTROL(pipe); 1247 panel_pipe = pipe; 1248 } else { 1249 u32 port_sel; 1250 1251 pp_reg = PP_CONTROL(0); 1252 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1253 1254 WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS); 1255 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 1256 } 1257 1258 val = I915_READ(pp_reg); 1259 if (!(val & PANEL_POWER_ON) || 1260 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 1261 locked = false; 1262 1263 I915_STATE_WARN(panel_pipe == pipe && locked, 1264 "panel assertion failure, pipe %c regs locked\n", 1265 pipe_name(pipe)); 1266 } 1267 1268 void assert_pipe(struct drm_i915_private *dev_priv, 1269 enum pipe pipe, bool state) 1270 { 1271 bool cur_state; 1272 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, 1273 pipe); 1274 enum intel_display_power_domain power_domain; 1275 intel_wakeref_t wakeref; 1276 1277 /* we keep both pipes enabled on 830 */ 1278 if (IS_I830(dev_priv)) 1279 state = true; 1280 1281 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 1282 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 1283 if (wakeref) { 1284 u32 val = I915_READ(PIPECONF(cpu_transcoder)); 1285 cur_state = !!(val & PIPECONF_ENABLE); 1286 1287 intel_display_power_put(dev_priv, power_domain, wakeref); 1288 } else { 1289 cur_state = false; 1290 } 1291 1292 I915_STATE_WARN(cur_state != state, 1293 "pipe %c assertion failure (expected %s, current %s)\n", 1294 pipe_name(pipe), onoff(state), onoff(cur_state)); 1295 } 1296 1297 static void assert_plane(struct intel_plane *plane, bool state) 1298 { 1299 enum pipe pipe; 1300 bool cur_state; 1301 1302 cur_state = plane->get_hw_state(plane, &pipe); 1303 1304 I915_STATE_WARN(cur_state != state, 1305 "%s assertion failure (expected %s, current %s)\n", 1306 plane->base.name, onoff(state), onoff(cur_state)); 1307 } 1308 1309 #define assert_plane_enabled(p) assert_plane(p, true) 1310 #define assert_plane_disabled(p) assert_plane(p, false) 1311 1312 static void assert_planes_disabled(struct intel_crtc *crtc) 1313 { 1314 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1315 struct intel_plane *plane; 1316 1317 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 1318 assert_plane_disabled(plane); 1319 } 1320 1321 static void assert_vblank_disabled(struct drm_crtc *crtc) 1322 { 1323 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 1324 drm_crtc_vblank_put(crtc); 1325 } 1326 1327 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 1328 enum pipe pipe) 1329 { 1330 u32 val; 1331 bool enabled; 1332 1333 val = I915_READ(PCH_TRANSCONF(pipe)); 1334 enabled = !!(val & TRANS_ENABLE); 1335 I915_STATE_WARN(enabled, 1336 "transcoder assertion failed, should be off on pipe %c but is still active\n", 1337 pipe_name(pipe)); 1338 } 1339 1340 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1341 enum pipe pipe, enum port port, 1342 i915_reg_t dp_reg) 1343 { 1344 enum pipe port_pipe; 1345 bool state; 1346 1347 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 1348 1349 I915_STATE_WARN(state && port_pipe == pipe, 1350 "PCH DP %c enabled on transcoder %c, should be disabled\n", 1351 port_name(port), pipe_name(pipe)); 1352 1353 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1354 "IBX PCH DP %c still using transcoder B\n", 1355 port_name(port)); 1356 } 1357 1358 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1359 enum pipe pipe, enum port port, 1360 i915_reg_t hdmi_reg) 1361 { 1362 enum pipe port_pipe; 1363 bool state; 1364 1365 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 1366 1367 I915_STATE_WARN(state && port_pipe == pipe, 1368 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 1369 port_name(port), pipe_name(pipe)); 1370 1371 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1372 "IBX PCH HDMI %c still using transcoder B\n", 1373 port_name(port)); 1374 } 1375 1376 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1377 enum pipe pipe) 1378 { 1379 enum pipe port_pipe; 1380 1381 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 1382 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 1383 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 1384 1385 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 1386 port_pipe == pipe, 1387 "PCH VGA enabled on transcoder %c, should be disabled\n", 1388 pipe_name(pipe)); 1389 1390 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 1391 port_pipe == pipe, 1392 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1393 pipe_name(pipe)); 1394 1395 /* PCH SDVOB multiplex with HDMIB */ 1396 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 1397 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 1398 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 1399 } 1400 1401 static void _vlv_enable_pll(struct intel_crtc *crtc, 1402 const struct intel_crtc_state *pipe_config) 1403 { 1404 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1405 enum pipe pipe = crtc->pipe; 1406 1407 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1408 POSTING_READ(DPLL(pipe)); 1409 udelay(150); 1410 1411 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1412 DRM_ERROR("DPLL %d failed to lock\n", pipe); 1413 } 1414 1415 static void vlv_enable_pll(struct intel_crtc *crtc, 1416 const struct intel_crtc_state *pipe_config) 1417 { 1418 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1419 enum pipe pipe = crtc->pipe; 1420 1421 assert_pipe_disabled(dev_priv, pipe); 1422 1423 /* PLL is protected by panel, make sure we can write it */ 1424 assert_panel_unlocked(dev_priv, pipe); 1425 1426 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1427 _vlv_enable_pll(crtc, pipe_config); 1428 1429 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); 1430 POSTING_READ(DPLL_MD(pipe)); 1431 } 1432 1433 1434 static void _chv_enable_pll(struct intel_crtc *crtc, 1435 const struct intel_crtc_state *pipe_config) 1436 { 1437 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1438 enum pipe pipe = crtc->pipe; 1439 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1440 u32 tmp; 1441 1442 vlv_dpio_get(dev_priv); 1443 1444 /* Enable back the 10bit clock to display controller */ 1445 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1446 tmp |= DPIO_DCLKP_EN; 1447 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); 1448 1449 vlv_dpio_put(dev_priv); 1450 1451 /* 1452 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 1453 */ 1454 udelay(1); 1455 1456 /* Enable PLL */ 1457 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1458 1459 /* Check PLL is locked */ 1460 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1461 DRM_ERROR("PLL %d failed to lock\n", pipe); 1462 } 1463 1464 static void chv_enable_pll(struct intel_crtc *crtc, 1465 const struct intel_crtc_state *pipe_config) 1466 { 1467 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1468 enum pipe pipe = crtc->pipe; 1469 1470 assert_pipe_disabled(dev_priv, pipe); 1471 1472 /* PLL is protected by panel, make sure we can write it */ 1473 assert_panel_unlocked(dev_priv, pipe); 1474 1475 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1476 _chv_enable_pll(crtc, pipe_config); 1477 1478 if (pipe != PIPE_A) { 1479 /* 1480 * WaPixelRepeatModeFixForC0:chv 1481 * 1482 * DPLLCMD is AWOL. Use chicken bits to propagate 1483 * the value from DPLLBMD to either pipe B or C. 1484 */ 1485 I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 1486 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md); 1487 I915_WRITE(CBR4_VLV, 0); 1488 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; 1489 1490 /* 1491 * DPLLB VGA mode also seems to cause problems. 1492 * We should always have it disabled. 1493 */ 1494 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0); 1495 } else { 1496 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); 1497 POSTING_READ(DPLL_MD(pipe)); 1498 } 1499 } 1500 1501 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1502 { 1503 if (IS_I830(dev_priv)) 1504 return false; 1505 1506 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1507 } 1508 1509 static void i9xx_enable_pll(struct intel_crtc *crtc, 1510 const struct intel_crtc_state *crtc_state) 1511 { 1512 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1513 i915_reg_t reg = DPLL(crtc->pipe); 1514 u32 dpll = crtc_state->dpll_hw_state.dpll; 1515 int i; 1516 1517 assert_pipe_disabled(dev_priv, crtc->pipe); 1518 1519 /* PLL is protected by panel, make sure we can write it */ 1520 if (i9xx_has_pps(dev_priv)) 1521 assert_panel_unlocked(dev_priv, crtc->pipe); 1522 1523 /* 1524 * Apparently we need to have VGA mode enabled prior to changing 1525 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1526 * dividers, even though the register value does change. 1527 */ 1528 I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS); 1529 I915_WRITE(reg, dpll); 1530 1531 /* Wait for the clocks to stabilize. */ 1532 POSTING_READ(reg); 1533 udelay(150); 1534 1535 if (INTEL_GEN(dev_priv) >= 4) { 1536 I915_WRITE(DPLL_MD(crtc->pipe), 1537 crtc_state->dpll_hw_state.dpll_md); 1538 } else { 1539 /* The pixel multiplier can only be updated once the 1540 * DPLL is enabled and the clocks are stable. 1541 * 1542 * So write it again. 1543 */ 1544 I915_WRITE(reg, dpll); 1545 } 1546 1547 /* We do this three times for luck */ 1548 for (i = 0; i < 3; i++) { 1549 I915_WRITE(reg, dpll); 1550 POSTING_READ(reg); 1551 udelay(150); /* wait for warmup */ 1552 } 1553 } 1554 1555 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 1556 { 1557 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1558 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1559 enum pipe pipe = crtc->pipe; 1560 1561 /* Don't disable pipe or pipe PLLs if needed */ 1562 if (IS_I830(dev_priv)) 1563 return; 1564 1565 /* Make sure the pipe isn't still relying on us */ 1566 assert_pipe_disabled(dev_priv, pipe); 1567 1568 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS); 1569 POSTING_READ(DPLL(pipe)); 1570 } 1571 1572 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1573 { 1574 u32 val; 1575 1576 /* Make sure the pipe isn't still relying on us */ 1577 assert_pipe_disabled(dev_priv, pipe); 1578 1579 val = DPLL_INTEGRATED_REF_CLK_VLV | 1580 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1581 if (pipe != PIPE_A) 1582 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1583 1584 I915_WRITE(DPLL(pipe), val); 1585 POSTING_READ(DPLL(pipe)); 1586 } 1587 1588 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1589 { 1590 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1591 u32 val; 1592 1593 /* Make sure the pipe isn't still relying on us */ 1594 assert_pipe_disabled(dev_priv, pipe); 1595 1596 val = DPLL_SSC_REF_CLK_CHV | 1597 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1598 if (pipe != PIPE_A) 1599 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1600 1601 I915_WRITE(DPLL(pipe), val); 1602 POSTING_READ(DPLL(pipe)); 1603 1604 vlv_dpio_get(dev_priv); 1605 1606 /* Disable 10bit clock to display controller */ 1607 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1608 val &= ~DPIO_DCLKP_EN; 1609 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); 1610 1611 vlv_dpio_put(dev_priv); 1612 } 1613 1614 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 1615 struct intel_digital_port *dport, 1616 unsigned int expected_mask) 1617 { 1618 u32 port_mask; 1619 i915_reg_t dpll_reg; 1620 1621 switch (dport->base.port) { 1622 case PORT_B: 1623 port_mask = DPLL_PORTB_READY_MASK; 1624 dpll_reg = DPLL(0); 1625 break; 1626 case PORT_C: 1627 port_mask = DPLL_PORTC_READY_MASK; 1628 dpll_reg = DPLL(0); 1629 expected_mask <<= 4; 1630 break; 1631 case PORT_D: 1632 port_mask = DPLL_PORTD_READY_MASK; 1633 dpll_reg = DPIO_PHY_STATUS; 1634 break; 1635 default: 1636 BUG(); 1637 } 1638 1639 if (intel_de_wait_for_register(dev_priv, dpll_reg, 1640 port_mask, expected_mask, 1000)) 1641 WARN(1, "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 1642 dport->base.base.base.id, dport->base.base.name, 1643 I915_READ(dpll_reg) & port_mask, expected_mask); 1644 } 1645 1646 static void ironlake_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 1647 { 1648 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1649 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1650 enum pipe pipe = crtc->pipe; 1651 i915_reg_t reg; 1652 u32 val, pipeconf_val; 1653 1654 /* Make sure PCH DPLL is enabled */ 1655 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 1656 1657 /* FDI must be feeding us bits for PCH ports */ 1658 assert_fdi_tx_enabled(dev_priv, pipe); 1659 assert_fdi_rx_enabled(dev_priv, pipe); 1660 1661 if (HAS_PCH_CPT(dev_priv)) { 1662 /* Workaround: Set the timing override bit before enabling the 1663 * pch transcoder. */ 1664 reg = TRANS_CHICKEN2(pipe); 1665 val = I915_READ(reg); 1666 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1667 I915_WRITE(reg, val); 1668 } 1669 1670 reg = PCH_TRANSCONF(pipe); 1671 val = I915_READ(reg); 1672 pipeconf_val = I915_READ(PIPECONF(pipe)); 1673 1674 if (HAS_PCH_IBX(dev_priv)) { 1675 /* 1676 * Make the BPC in transcoder be consistent with 1677 * that in pipeconf reg. For HDMI we must use 8bpc 1678 * here for both 8bpc and 12bpc. 1679 */ 1680 val &= ~PIPECONF_BPC_MASK; 1681 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1682 val |= PIPECONF_8BPC; 1683 else 1684 val |= pipeconf_val & PIPECONF_BPC_MASK; 1685 } 1686 1687 val &= ~TRANS_INTERLACE_MASK; 1688 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 1689 if (HAS_PCH_IBX(dev_priv) && 1690 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 1691 val |= TRANS_LEGACY_INTERLACED_ILK; 1692 else 1693 val |= TRANS_INTERLACED; 1694 } else { 1695 val |= TRANS_PROGRESSIVE; 1696 } 1697 1698 I915_WRITE(reg, val | TRANS_ENABLE); 1699 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 1700 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe)); 1701 } 1702 1703 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1704 enum transcoder cpu_transcoder) 1705 { 1706 u32 val, pipeconf_val; 1707 1708 /* FDI must be feeding us bits for PCH ports */ 1709 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 1710 assert_fdi_rx_enabled(dev_priv, PIPE_A); 1711 1712 /* Workaround: set timing override bit. */ 1713 val = I915_READ(TRANS_CHICKEN2(PIPE_A)); 1714 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1715 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); 1716 1717 val = TRANS_ENABLE; 1718 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); 1719 1720 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 1721 PIPECONF_INTERLACED_ILK) 1722 val |= TRANS_INTERLACED; 1723 else 1724 val |= TRANS_PROGRESSIVE; 1725 1726 I915_WRITE(LPT_TRANSCONF, val); 1727 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 1728 TRANS_STATE_ENABLE, 100)) 1729 DRM_ERROR("Failed to enable PCH transcoder\n"); 1730 } 1731 1732 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, 1733 enum pipe pipe) 1734 { 1735 i915_reg_t reg; 1736 u32 val; 1737 1738 /* FDI relies on the transcoder */ 1739 assert_fdi_tx_disabled(dev_priv, pipe); 1740 assert_fdi_rx_disabled(dev_priv, pipe); 1741 1742 /* Ports must be off as well */ 1743 assert_pch_ports_disabled(dev_priv, pipe); 1744 1745 reg = PCH_TRANSCONF(pipe); 1746 val = I915_READ(reg); 1747 val &= ~TRANS_ENABLE; 1748 I915_WRITE(reg, val); 1749 /* wait for PCH transcoder off, transcoder state */ 1750 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 1751 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe)); 1752 1753 if (HAS_PCH_CPT(dev_priv)) { 1754 /* Workaround: Clear the timing override chicken bit again. */ 1755 reg = TRANS_CHICKEN2(pipe); 1756 val = I915_READ(reg); 1757 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1758 I915_WRITE(reg, val); 1759 } 1760 } 1761 1762 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 1763 { 1764 u32 val; 1765 1766 val = I915_READ(LPT_TRANSCONF); 1767 val &= ~TRANS_ENABLE; 1768 I915_WRITE(LPT_TRANSCONF, val); 1769 /* wait for PCH transcoder off, transcoder state */ 1770 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 1771 TRANS_STATE_ENABLE, 50)) 1772 DRM_ERROR("Failed to disable PCH transcoder\n"); 1773 1774 /* Workaround: clear timing override bit. */ 1775 val = I915_READ(TRANS_CHICKEN2(PIPE_A)); 1776 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1777 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); 1778 } 1779 1780 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 1781 { 1782 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1783 1784 if (HAS_PCH_LPT(dev_priv)) 1785 return PIPE_A; 1786 else 1787 return crtc->pipe; 1788 } 1789 1790 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 1791 { 1792 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 1793 1794 /* 1795 * On i965gm the hardware frame counter reads 1796 * zero when the TV encoder is enabled :( 1797 */ 1798 if (IS_I965GM(dev_priv) && 1799 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 1800 return 0; 1801 1802 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1803 return 0xffffffff; /* full 32 bit counter */ 1804 else if (INTEL_GEN(dev_priv) >= 3) 1805 return 0xffffff; /* only 24 bits of frame count */ 1806 else 1807 return 0; /* Gen2 doesn't have a hardware frame counter */ 1808 } 1809 1810 static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 1811 { 1812 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1813 1814 drm_crtc_set_max_vblank_count(&crtc->base, 1815 intel_crtc_max_vblank_count(crtc_state)); 1816 drm_crtc_vblank_on(&crtc->base); 1817 } 1818 1819 static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 1820 { 1821 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 1822 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1823 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 1824 enum pipe pipe = crtc->pipe; 1825 i915_reg_t reg; 1826 u32 val; 1827 1828 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe)); 1829 1830 assert_planes_disabled(crtc); 1831 1832 /* 1833 * A pipe without a PLL won't actually be able to drive bits from 1834 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1835 * need the check. 1836 */ 1837 if (HAS_GMCH(dev_priv)) { 1838 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 1839 assert_dsi_pll_enabled(dev_priv); 1840 else 1841 assert_pll_enabled(dev_priv, pipe); 1842 } else { 1843 if (new_crtc_state->has_pch_encoder) { 1844 /* if driving the PCH, we need FDI enabled */ 1845 assert_fdi_rx_pll_enabled(dev_priv, 1846 intel_crtc_pch_transcoder(crtc)); 1847 assert_fdi_tx_pll_enabled(dev_priv, 1848 (enum pipe) cpu_transcoder); 1849 } 1850 /* FIXME: assert CPU port conditions for SNB+ */ 1851 } 1852 1853 trace_intel_pipe_enable(crtc); 1854 1855 reg = PIPECONF(cpu_transcoder); 1856 val = I915_READ(reg); 1857 if (val & PIPECONF_ENABLE) { 1858 /* we keep both pipes enabled on 830 */ 1859 WARN_ON(!IS_I830(dev_priv)); 1860 return; 1861 } 1862 1863 I915_WRITE(reg, val | PIPECONF_ENABLE); 1864 POSTING_READ(reg); 1865 1866 /* 1867 * Until the pipe starts PIPEDSL reads will return a stale value, 1868 * which causes an apparent vblank timestamp jump when PIPEDSL 1869 * resets to its proper value. That also messes up the frame count 1870 * when it's derived from the timestamps. So let's wait for the 1871 * pipe to start properly before we call drm_crtc_vblank_on() 1872 */ 1873 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1874 intel_wait_for_pipe_scanline_moving(crtc); 1875 } 1876 1877 static void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1878 { 1879 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 1880 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1881 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1882 enum pipe pipe = crtc->pipe; 1883 i915_reg_t reg; 1884 u32 val; 1885 1886 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe)); 1887 1888 /* 1889 * Make sure planes won't keep trying to pump pixels to us, 1890 * or we might hang the display. 1891 */ 1892 assert_planes_disabled(crtc); 1893 1894 trace_intel_pipe_disable(crtc); 1895 1896 reg = PIPECONF(cpu_transcoder); 1897 val = I915_READ(reg); 1898 if ((val & PIPECONF_ENABLE) == 0) 1899 return; 1900 1901 /* 1902 * Double wide has implications for planes 1903 * so best keep it disabled when not needed. 1904 */ 1905 if (old_crtc_state->double_wide) 1906 val &= ~PIPECONF_DOUBLE_WIDE; 1907 1908 /* Don't disable pipe or pipe PLLs if needed */ 1909 if (!IS_I830(dev_priv)) 1910 val &= ~PIPECONF_ENABLE; 1911 1912 I915_WRITE(reg, val); 1913 if ((val & PIPECONF_ENABLE) == 0) 1914 intel_wait_for_pipe_off(old_crtc_state); 1915 } 1916 1917 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 1918 { 1919 return IS_GEN(dev_priv, 2) ? 2048 : 4096; 1920 } 1921 1922 static unsigned int 1923 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 1924 { 1925 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1926 unsigned int cpp = fb->format->cpp[color_plane]; 1927 1928 switch (fb->modifier) { 1929 case DRM_FORMAT_MOD_LINEAR: 1930 return intel_tile_size(dev_priv); 1931 case I915_FORMAT_MOD_X_TILED: 1932 if (IS_GEN(dev_priv, 2)) 1933 return 128; 1934 else 1935 return 512; 1936 case I915_FORMAT_MOD_Y_TILED_CCS: 1937 if (color_plane == 1) 1938 return 128; 1939 /* fall through */ 1940 case I915_FORMAT_MOD_Y_TILED: 1941 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) 1942 return 128; 1943 else 1944 return 512; 1945 case I915_FORMAT_MOD_Yf_TILED_CCS: 1946 if (color_plane == 1) 1947 return 128; 1948 /* fall through */ 1949 case I915_FORMAT_MOD_Yf_TILED: 1950 switch (cpp) { 1951 case 1: 1952 return 64; 1953 case 2: 1954 case 4: 1955 return 128; 1956 case 8: 1957 case 16: 1958 return 256; 1959 default: 1960 MISSING_CASE(cpp); 1961 return cpp; 1962 } 1963 break; 1964 default: 1965 MISSING_CASE(fb->modifier); 1966 return cpp; 1967 } 1968 } 1969 1970 static unsigned int 1971 intel_tile_height(const struct drm_framebuffer *fb, int color_plane) 1972 { 1973 return intel_tile_size(to_i915(fb->dev)) / 1974 intel_tile_width_bytes(fb, color_plane); 1975 } 1976 1977 /* Return the tile dimensions in pixel units */ 1978 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, 1979 unsigned int *tile_width, 1980 unsigned int *tile_height) 1981 { 1982 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); 1983 unsigned int cpp = fb->format->cpp[color_plane]; 1984 1985 *tile_width = tile_width_bytes / cpp; 1986 *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes; 1987 } 1988 1989 unsigned int 1990 intel_fb_align_height(const struct drm_framebuffer *fb, 1991 int color_plane, unsigned int height) 1992 { 1993 unsigned int tile_height = intel_tile_height(fb, color_plane); 1994 1995 return ALIGN(height, tile_height); 1996 } 1997 1998 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 1999 { 2000 unsigned int size = 0; 2001 int i; 2002 2003 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 2004 size += rot_info->plane[i].width * rot_info->plane[i].height; 2005 2006 return size; 2007 } 2008 2009 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 2010 { 2011 unsigned int size = 0; 2012 int i; 2013 2014 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 2015 size += rem_info->plane[i].width * rem_info->plane[i].height; 2016 2017 return size; 2018 } 2019 2020 static void 2021 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 2022 const struct drm_framebuffer *fb, 2023 unsigned int rotation) 2024 { 2025 view->type = I915_GGTT_VIEW_NORMAL; 2026 if (drm_rotation_90_or_270(rotation)) { 2027 view->type = I915_GGTT_VIEW_ROTATED; 2028 view->rotated = to_intel_framebuffer(fb)->rot_info; 2029 } 2030 } 2031 2032 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) 2033 { 2034 if (IS_I830(dev_priv)) 2035 return 16 * 1024; 2036 else if (IS_I85X(dev_priv)) 2037 return 256; 2038 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) 2039 return 32; 2040 else 2041 return 4 * 1024; 2042 } 2043 2044 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 2045 { 2046 if (INTEL_GEN(dev_priv) >= 9) 2047 return 256 * 1024; 2048 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 2049 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2050 return 128 * 1024; 2051 else if (INTEL_GEN(dev_priv) >= 4) 2052 return 4 * 1024; 2053 else 2054 return 0; 2055 } 2056 2057 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 2058 int color_plane) 2059 { 2060 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2061 2062 /* AUX_DIST needs only 4K alignment */ 2063 if (color_plane == 1) 2064 return 4096; 2065 2066 switch (fb->modifier) { 2067 case DRM_FORMAT_MOD_LINEAR: 2068 return intel_linear_alignment(dev_priv); 2069 case I915_FORMAT_MOD_X_TILED: 2070 if (INTEL_GEN(dev_priv) >= 9) 2071 return 256 * 1024; 2072 return 0; 2073 case I915_FORMAT_MOD_Y_TILED_CCS: 2074 case I915_FORMAT_MOD_Yf_TILED_CCS: 2075 case I915_FORMAT_MOD_Y_TILED: 2076 case I915_FORMAT_MOD_Yf_TILED: 2077 return 1 * 1024 * 1024; 2078 default: 2079 MISSING_CASE(fb->modifier); 2080 return 0; 2081 } 2082 } 2083 2084 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 2085 { 2086 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 2087 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2088 2089 return INTEL_GEN(dev_priv) < 4 || 2090 (plane->has_fbc && 2091 plane_state->view.type == I915_GGTT_VIEW_NORMAL); 2092 } 2093 2094 struct i915_vma * 2095 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 2096 const struct i915_ggtt_view *view, 2097 bool uses_fence, 2098 unsigned long *out_flags) 2099 { 2100 struct drm_device *dev = fb->dev; 2101 struct drm_i915_private *dev_priv = to_i915(dev); 2102 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2103 intel_wakeref_t wakeref; 2104 struct i915_vma *vma; 2105 unsigned int pinctl; 2106 u32 alignment; 2107 2108 if (WARN_ON(!i915_gem_object_is_framebuffer(obj))) 2109 return ERR_PTR(-EINVAL); 2110 2111 alignment = intel_surf_alignment(fb, 0); 2112 2113 /* Note that the w/a also requires 64 PTE of padding following the 2114 * bo. We currently fill all unused PTE with the shadow page and so 2115 * we should always have valid PTE following the scanout preventing 2116 * the VT-d warning. 2117 */ 2118 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 2119 alignment = 256 * 1024; 2120 2121 /* 2122 * Global gtt pte registers are special registers which actually forward 2123 * writes to a chunk of system memory. Which means that there is no risk 2124 * that the register values disappear as soon as we call 2125 * intel_runtime_pm_put(), so it is correct to wrap only the 2126 * pin/unpin/fence and not more. 2127 */ 2128 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2129 i915_gem_object_lock(obj); 2130 2131 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 2132 2133 pinctl = 0; 2134 2135 /* Valleyview is definitely limited to scanning out the first 2136 * 512MiB. Lets presume this behaviour was inherited from the 2137 * g4x display engine and that all earlier gen are similarly 2138 * limited. Testing suggests that it is a little more 2139 * complicated than this. For example, Cherryview appears quite 2140 * happy to scanout from anywhere within its global aperture. 2141 */ 2142 if (HAS_GMCH(dev_priv)) 2143 pinctl |= PIN_MAPPABLE; 2144 2145 vma = i915_gem_object_pin_to_display_plane(obj, 2146 alignment, view, pinctl); 2147 if (IS_ERR(vma)) 2148 goto err; 2149 2150 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 2151 int ret; 2152 2153 /* Install a fence for tiled scan-out. Pre-i965 always needs a 2154 * fence, whereas 965+ only requires a fence if using 2155 * framebuffer compression. For simplicity, we always, when 2156 * possible, install a fence as the cost is not that onerous. 2157 * 2158 * If we fail to fence the tiled scanout, then either the 2159 * modeset will reject the change (which is highly unlikely as 2160 * the affected systems, all but one, do not have unmappable 2161 * space) or we will not be able to enable full powersaving 2162 * techniques (also likely not to apply due to various limits 2163 * FBC and the like impose on the size of the buffer, which 2164 * presumably we violated anyway with this unmappable buffer). 2165 * Anyway, it is presumably better to stumble onwards with 2166 * something and try to run the system in a "less than optimal" 2167 * mode that matches the user configuration. 2168 */ 2169 ret = i915_vma_pin_fence(vma); 2170 if (ret != 0 && INTEL_GEN(dev_priv) < 4) { 2171 i915_gem_object_unpin_from_display_plane(vma); 2172 vma = ERR_PTR(ret); 2173 goto err; 2174 } 2175 2176 if (ret == 0 && vma->fence) 2177 *out_flags |= PLANE_HAS_FENCE; 2178 } 2179 2180 i915_vma_get(vma); 2181 err: 2182 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 2183 2184 i915_gem_object_unlock(obj); 2185 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 2186 return vma; 2187 } 2188 2189 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 2190 { 2191 i915_gem_object_lock(vma->obj); 2192 if (flags & PLANE_HAS_FENCE) 2193 i915_vma_unpin_fence(vma); 2194 i915_gem_object_unpin_from_display_plane(vma); 2195 i915_gem_object_unlock(vma->obj); 2196 2197 i915_vma_put(vma); 2198 } 2199 2200 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, 2201 unsigned int rotation) 2202 { 2203 if (drm_rotation_90_or_270(rotation)) 2204 return to_intel_framebuffer(fb)->rotated[color_plane].pitch; 2205 else 2206 return fb->pitches[color_plane]; 2207 } 2208 2209 /* 2210 * Convert the x/y offsets into a linear offset. 2211 * Only valid with 0/180 degree rotation, which is fine since linear 2212 * offset is only used with linear buffers on pre-hsw and tiled buffers 2213 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 2214 */ 2215 u32 intel_fb_xy_to_linear(int x, int y, 2216 const struct intel_plane_state *state, 2217 int color_plane) 2218 { 2219 const struct drm_framebuffer *fb = state->base.fb; 2220 unsigned int cpp = fb->format->cpp[color_plane]; 2221 unsigned int pitch = state->color_plane[color_plane].stride; 2222 2223 return y * pitch + x * cpp; 2224 } 2225 2226 /* 2227 * Add the x/y offsets derived from fb->offsets[] to the user 2228 * specified plane src x/y offsets. The resulting x/y offsets 2229 * specify the start of scanout from the beginning of the gtt mapping. 2230 */ 2231 void intel_add_fb_offsets(int *x, int *y, 2232 const struct intel_plane_state *state, 2233 int color_plane) 2234 2235 { 2236 *x += state->color_plane[color_plane].x; 2237 *y += state->color_plane[color_plane].y; 2238 } 2239 2240 static u32 intel_adjust_tile_offset(int *x, int *y, 2241 unsigned int tile_width, 2242 unsigned int tile_height, 2243 unsigned int tile_size, 2244 unsigned int pitch_tiles, 2245 u32 old_offset, 2246 u32 new_offset) 2247 { 2248 unsigned int pitch_pixels = pitch_tiles * tile_width; 2249 unsigned int tiles; 2250 2251 WARN_ON(old_offset & (tile_size - 1)); 2252 WARN_ON(new_offset & (tile_size - 1)); 2253 WARN_ON(new_offset > old_offset); 2254 2255 tiles = (old_offset - new_offset) / tile_size; 2256 2257 *y += tiles / pitch_tiles * tile_height; 2258 *x += tiles % pitch_tiles * tile_width; 2259 2260 /* minimize x in case it got needlessly big */ 2261 *y += *x / pitch_pixels * tile_height; 2262 *x %= pitch_pixels; 2263 2264 return new_offset; 2265 } 2266 2267 static bool is_surface_linear(u64 modifier, int color_plane) 2268 { 2269 return modifier == DRM_FORMAT_MOD_LINEAR; 2270 } 2271 2272 static u32 intel_adjust_aligned_offset(int *x, int *y, 2273 const struct drm_framebuffer *fb, 2274 int color_plane, 2275 unsigned int rotation, 2276 unsigned int pitch, 2277 u32 old_offset, u32 new_offset) 2278 { 2279 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2280 unsigned int cpp = fb->format->cpp[color_plane]; 2281 2282 WARN_ON(new_offset > old_offset); 2283 2284 if (!is_surface_linear(fb->modifier, color_plane)) { 2285 unsigned int tile_size, tile_width, tile_height; 2286 unsigned int pitch_tiles; 2287 2288 tile_size = intel_tile_size(dev_priv); 2289 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2290 2291 if (drm_rotation_90_or_270(rotation)) { 2292 pitch_tiles = pitch / tile_height; 2293 swap(tile_width, tile_height); 2294 } else { 2295 pitch_tiles = pitch / (tile_width * cpp); 2296 } 2297 2298 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2299 tile_size, pitch_tiles, 2300 old_offset, new_offset); 2301 } else { 2302 old_offset += *y * pitch + *x * cpp; 2303 2304 *y = (old_offset - new_offset) / pitch; 2305 *x = ((old_offset - new_offset) - *y * pitch) / cpp; 2306 } 2307 2308 return new_offset; 2309 } 2310 2311 /* 2312 * Adjust the tile offset by moving the difference into 2313 * the x/y offsets. 2314 */ 2315 static u32 intel_plane_adjust_aligned_offset(int *x, int *y, 2316 const struct intel_plane_state *state, 2317 int color_plane, 2318 u32 old_offset, u32 new_offset) 2319 { 2320 return intel_adjust_aligned_offset(x, y, state->base.fb, color_plane, 2321 state->base.rotation, 2322 state->color_plane[color_plane].stride, 2323 old_offset, new_offset); 2324 } 2325 2326 /* 2327 * Computes the aligned offset to the base tile and adjusts 2328 * x, y. bytes per pixel is assumed to be a power-of-two. 2329 * 2330 * In the 90/270 rotated case, x and y are assumed 2331 * to be already rotated to match the rotated GTT view, and 2332 * pitch is the tile_height aligned framebuffer height. 2333 * 2334 * This function is used when computing the derived information 2335 * under intel_framebuffer, so using any of that information 2336 * here is not allowed. Anything under drm_framebuffer can be 2337 * used. This is why the user has to pass in the pitch since it 2338 * is specified in the rotated orientation. 2339 */ 2340 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, 2341 int *x, int *y, 2342 const struct drm_framebuffer *fb, 2343 int color_plane, 2344 unsigned int pitch, 2345 unsigned int rotation, 2346 u32 alignment) 2347 { 2348 unsigned int cpp = fb->format->cpp[color_plane]; 2349 u32 offset, offset_aligned; 2350 2351 if (alignment) 2352 alignment--; 2353 2354 if (!is_surface_linear(fb->modifier, color_plane)) { 2355 unsigned int tile_size, tile_width, tile_height; 2356 unsigned int tile_rows, tiles, pitch_tiles; 2357 2358 tile_size = intel_tile_size(dev_priv); 2359 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2360 2361 if (drm_rotation_90_or_270(rotation)) { 2362 pitch_tiles = pitch / tile_height; 2363 swap(tile_width, tile_height); 2364 } else { 2365 pitch_tiles = pitch / (tile_width * cpp); 2366 } 2367 2368 tile_rows = *y / tile_height; 2369 *y %= tile_height; 2370 2371 tiles = *x / tile_width; 2372 *x %= tile_width; 2373 2374 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 2375 offset_aligned = offset & ~alignment; 2376 2377 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2378 tile_size, pitch_tiles, 2379 offset, offset_aligned); 2380 } else { 2381 offset = *y * pitch + *x * cpp; 2382 offset_aligned = offset & ~alignment; 2383 2384 *y = (offset & alignment) / pitch; 2385 *x = ((offset & alignment) - *y * pitch) / cpp; 2386 } 2387 2388 return offset_aligned; 2389 } 2390 2391 static u32 intel_plane_compute_aligned_offset(int *x, int *y, 2392 const struct intel_plane_state *state, 2393 int color_plane) 2394 { 2395 struct intel_plane *intel_plane = to_intel_plane(state->base.plane); 2396 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 2397 const struct drm_framebuffer *fb = state->base.fb; 2398 unsigned int rotation = state->base.rotation; 2399 int pitch = state->color_plane[color_plane].stride; 2400 u32 alignment; 2401 2402 if (intel_plane->id == PLANE_CURSOR) 2403 alignment = intel_cursor_alignment(dev_priv); 2404 else 2405 alignment = intel_surf_alignment(fb, color_plane); 2406 2407 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, 2408 pitch, rotation, alignment); 2409 } 2410 2411 /* Convert the fb->offset[] into x/y offsets */ 2412 static int intel_fb_offset_to_xy(int *x, int *y, 2413 const struct drm_framebuffer *fb, 2414 int color_plane) 2415 { 2416 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2417 unsigned int height; 2418 2419 if (fb->modifier != DRM_FORMAT_MOD_LINEAR && 2420 fb->offsets[color_plane] % intel_tile_size(dev_priv)) { 2421 DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n", 2422 fb->offsets[color_plane], color_plane); 2423 return -EINVAL; 2424 } 2425 2426 height = drm_framebuffer_plane_height(fb->height, fb, color_plane); 2427 height = ALIGN(height, intel_tile_height(fb, color_plane)); 2428 2429 /* Catch potential overflows early */ 2430 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), 2431 fb->offsets[color_plane])) { 2432 DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n", 2433 fb->offsets[color_plane], fb->pitches[color_plane], 2434 color_plane); 2435 return -ERANGE; 2436 } 2437 2438 *x = 0; 2439 *y = 0; 2440 2441 intel_adjust_aligned_offset(x, y, 2442 fb, color_plane, DRM_MODE_ROTATE_0, 2443 fb->pitches[color_plane], 2444 fb->offsets[color_plane], 0); 2445 2446 return 0; 2447 } 2448 2449 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 2450 { 2451 switch (fb_modifier) { 2452 case I915_FORMAT_MOD_X_TILED: 2453 return I915_TILING_X; 2454 case I915_FORMAT_MOD_Y_TILED: 2455 case I915_FORMAT_MOD_Y_TILED_CCS: 2456 return I915_TILING_Y; 2457 default: 2458 return I915_TILING_NONE; 2459 } 2460 } 2461 2462 /* 2463 * From the Sky Lake PRM: 2464 * "The Color Control Surface (CCS) contains the compression status of 2465 * the cache-line pairs. The compression state of the cache-line pair 2466 * is specified by 2 bits in the CCS. Each CCS cache-line represents 2467 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 2468 * cache-line-pairs. CCS is always Y tiled." 2469 * 2470 * Since cache line pairs refers to horizontally adjacent cache lines, 2471 * each cache line in the CCS corresponds to an area of 32x16 cache 2472 * lines on the main surface. Since each pixel is 4 bytes, this gives 2473 * us a ratio of one byte in the CCS for each 8x16 pixels in the 2474 * main surface. 2475 */ 2476 static const struct drm_format_info ccs_formats[] = { 2477 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2478 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2479 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2480 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2481 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2482 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2483 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2484 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2485 }; 2486 2487 static const struct drm_format_info * 2488 lookup_format_info(const struct drm_format_info formats[], 2489 int num_formats, u32 format) 2490 { 2491 int i; 2492 2493 for (i = 0; i < num_formats; i++) { 2494 if (formats[i].format == format) 2495 return &formats[i]; 2496 } 2497 2498 return NULL; 2499 } 2500 2501 static const struct drm_format_info * 2502 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 2503 { 2504 switch (cmd->modifier[0]) { 2505 case I915_FORMAT_MOD_Y_TILED_CCS: 2506 case I915_FORMAT_MOD_Yf_TILED_CCS: 2507 return lookup_format_info(ccs_formats, 2508 ARRAY_SIZE(ccs_formats), 2509 cmd->pixel_format); 2510 default: 2511 return NULL; 2512 } 2513 } 2514 2515 bool is_ccs_modifier(u64 modifier) 2516 { 2517 return modifier == I915_FORMAT_MOD_Y_TILED_CCS || 2518 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 2519 } 2520 2521 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 2522 u32 pixel_format, u64 modifier) 2523 { 2524 struct intel_crtc *crtc; 2525 struct intel_plane *plane; 2526 2527 /* 2528 * We assume the primary plane for pipe A has 2529 * the highest stride limits of them all. 2530 */ 2531 crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A); 2532 if (!crtc) 2533 return 0; 2534 2535 plane = to_intel_plane(crtc->base.primary); 2536 2537 return plane->max_stride(plane, pixel_format, modifier, 2538 DRM_MODE_ROTATE_0); 2539 } 2540 2541 static 2542 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 2543 u32 pixel_format, u64 modifier) 2544 { 2545 /* 2546 * Arbitrary limit for gen4+ chosen to match the 2547 * render engine max stride. 2548 * 2549 * The new CCS hash mode makes remapping impossible 2550 */ 2551 if (!is_ccs_modifier(modifier)) { 2552 if (INTEL_GEN(dev_priv) >= 7) 2553 return 256*1024; 2554 else if (INTEL_GEN(dev_priv) >= 4) 2555 return 128*1024; 2556 } 2557 2558 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 2559 } 2560 2561 static u32 2562 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 2563 { 2564 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2565 2566 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2567 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 2568 fb->format->format, 2569 fb->modifier); 2570 2571 /* 2572 * To make remapping with linear generally feasible 2573 * we need the stride to be page aligned. 2574 */ 2575 if (fb->pitches[color_plane] > max_stride) 2576 return intel_tile_size(dev_priv); 2577 else 2578 return 64; 2579 } else { 2580 return intel_tile_width_bytes(fb, color_plane); 2581 } 2582 } 2583 2584 bool intel_plane_can_remap(const struct intel_plane_state *plane_state) 2585 { 2586 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 2587 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2588 const struct drm_framebuffer *fb = plane_state->base.fb; 2589 int i; 2590 2591 /* We don't want to deal with remapping with cursors */ 2592 if (plane->id == PLANE_CURSOR) 2593 return false; 2594 2595 /* 2596 * The display engine limits already match/exceed the 2597 * render engine limits, so not much point in remapping. 2598 * Would also need to deal with the fence POT alignment 2599 * and gen2 2KiB GTT tile size. 2600 */ 2601 if (INTEL_GEN(dev_priv) < 4) 2602 return false; 2603 2604 /* 2605 * The new CCS hash mode isn't compatible with remapping as 2606 * the virtual address of the pages affects the compressed data. 2607 */ 2608 if (is_ccs_modifier(fb->modifier)) 2609 return false; 2610 2611 /* Linear needs a page aligned stride for remapping */ 2612 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2613 unsigned int alignment = intel_tile_size(dev_priv) - 1; 2614 2615 for (i = 0; i < fb->format->num_planes; i++) { 2616 if (fb->pitches[i] & alignment) 2617 return false; 2618 } 2619 } 2620 2621 return true; 2622 } 2623 2624 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) 2625 { 2626 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 2627 const struct drm_framebuffer *fb = plane_state->base.fb; 2628 unsigned int rotation = plane_state->base.rotation; 2629 u32 stride, max_stride; 2630 2631 /* 2632 * No remapping for invisible planes since we don't have 2633 * an actual source viewport to remap. 2634 */ 2635 if (!plane_state->base.visible) 2636 return false; 2637 2638 if (!intel_plane_can_remap(plane_state)) 2639 return false; 2640 2641 /* 2642 * FIXME: aux plane limits on gen9+ are 2643 * unclear in Bspec, for now no checking. 2644 */ 2645 stride = intel_fb_pitch(fb, 0, rotation); 2646 max_stride = plane->max_stride(plane, fb->format->format, 2647 fb->modifier, rotation); 2648 2649 return stride > max_stride; 2650 } 2651 2652 static int 2653 intel_fill_fb_info(struct drm_i915_private *dev_priv, 2654 struct drm_framebuffer *fb) 2655 { 2656 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2657 struct intel_rotation_info *rot_info = &intel_fb->rot_info; 2658 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2659 u32 gtt_offset_rotated = 0; 2660 unsigned int max_size = 0; 2661 int i, num_planes = fb->format->num_planes; 2662 unsigned int tile_size = intel_tile_size(dev_priv); 2663 2664 for (i = 0; i < num_planes; i++) { 2665 unsigned int width, height; 2666 unsigned int cpp, size; 2667 u32 offset; 2668 int x, y; 2669 int ret; 2670 2671 cpp = fb->format->cpp[i]; 2672 width = drm_framebuffer_plane_width(fb->width, fb, i); 2673 height = drm_framebuffer_plane_height(fb->height, fb, i); 2674 2675 ret = intel_fb_offset_to_xy(&x, &y, fb, i); 2676 if (ret) { 2677 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n", 2678 i, fb->offsets[i]); 2679 return ret; 2680 } 2681 2682 if (is_ccs_modifier(fb->modifier) && i == 1) { 2683 int hsub = fb->format->hsub; 2684 int vsub = fb->format->vsub; 2685 int tile_width, tile_height; 2686 int main_x, main_y; 2687 int ccs_x, ccs_y; 2688 2689 intel_tile_dims(fb, i, &tile_width, &tile_height); 2690 tile_width *= hsub; 2691 tile_height *= vsub; 2692 2693 ccs_x = (x * hsub) % tile_width; 2694 ccs_y = (y * vsub) % tile_height; 2695 main_x = intel_fb->normal[0].x % tile_width; 2696 main_y = intel_fb->normal[0].y % tile_height; 2697 2698 /* 2699 * CCS doesn't have its own x/y offset register, so the intra CCS tile 2700 * x/y offsets must match between CCS and the main surface. 2701 */ 2702 if (main_x != ccs_x || main_y != ccs_y) { 2703 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", 2704 main_x, main_y, 2705 ccs_x, ccs_y, 2706 intel_fb->normal[0].x, 2707 intel_fb->normal[0].y, 2708 x, y); 2709 return -EINVAL; 2710 } 2711 } 2712 2713 /* 2714 * The fence (if used) is aligned to the start of the object 2715 * so having the framebuffer wrap around across the edge of the 2716 * fenced region doesn't really work. We have no API to configure 2717 * the fence start offset within the object (nor could we probably 2718 * on gen2/3). So it's just easier if we just require that the 2719 * fb layout agrees with the fence layout. We already check that the 2720 * fb stride matches the fence stride elsewhere. 2721 */ 2722 if (i == 0 && i915_gem_object_is_tiled(obj) && 2723 (x + width) * cpp > fb->pitches[i]) { 2724 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n", 2725 i, fb->offsets[i]); 2726 return -EINVAL; 2727 } 2728 2729 /* 2730 * First pixel of the framebuffer from 2731 * the start of the normal gtt mapping. 2732 */ 2733 intel_fb->normal[i].x = x; 2734 intel_fb->normal[i].y = y; 2735 2736 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, 2737 fb->pitches[i], 2738 DRM_MODE_ROTATE_0, 2739 tile_size); 2740 offset /= tile_size; 2741 2742 if (!is_surface_linear(fb->modifier, i)) { 2743 unsigned int tile_width, tile_height; 2744 unsigned int pitch_tiles; 2745 struct drm_rect r; 2746 2747 intel_tile_dims(fb, i, &tile_width, &tile_height); 2748 2749 rot_info->plane[i].offset = offset; 2750 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp); 2751 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 2752 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 2753 2754 intel_fb->rotated[i].pitch = 2755 rot_info->plane[i].height * tile_height; 2756 2757 /* how many tiles does this plane need */ 2758 size = rot_info->plane[i].stride * rot_info->plane[i].height; 2759 /* 2760 * If the plane isn't horizontally tile aligned, 2761 * we need one more tile. 2762 */ 2763 if (x != 0) 2764 size++; 2765 2766 /* rotate the x/y offsets to match the GTT view */ 2767 drm_rect_init(&r, x, y, width, height); 2768 drm_rect_rotate(&r, 2769 rot_info->plane[i].width * tile_width, 2770 rot_info->plane[i].height * tile_height, 2771 DRM_MODE_ROTATE_270); 2772 x = r.x1; 2773 y = r.y1; 2774 2775 /* rotate the tile dimensions to match the GTT view */ 2776 pitch_tiles = intel_fb->rotated[i].pitch / tile_height; 2777 swap(tile_width, tile_height); 2778 2779 /* 2780 * We only keep the x/y offsets, so push all of the 2781 * gtt offset into the x/y offsets. 2782 */ 2783 intel_adjust_tile_offset(&x, &y, 2784 tile_width, tile_height, 2785 tile_size, pitch_tiles, 2786 gtt_offset_rotated * tile_size, 0); 2787 2788 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height; 2789 2790 /* 2791 * First pixel of the framebuffer from 2792 * the start of the rotated gtt mapping. 2793 */ 2794 intel_fb->rotated[i].x = x; 2795 intel_fb->rotated[i].y = y; 2796 } else { 2797 size = DIV_ROUND_UP((y + height) * fb->pitches[i] + 2798 x * cpp, tile_size); 2799 } 2800 2801 /* how many tiles in total needed in the bo */ 2802 max_size = max(max_size, offset + size); 2803 } 2804 2805 if (mul_u32_u32(max_size, tile_size) > obj->base.size) { 2806 DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n", 2807 mul_u32_u32(max_size, tile_size), obj->base.size); 2808 return -EINVAL; 2809 } 2810 2811 return 0; 2812 } 2813 2814 static void 2815 intel_plane_remap_gtt(struct intel_plane_state *plane_state) 2816 { 2817 struct drm_i915_private *dev_priv = 2818 to_i915(plane_state->base.plane->dev); 2819 struct drm_framebuffer *fb = plane_state->base.fb; 2820 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2821 struct intel_rotation_info *info = &plane_state->view.rotated; 2822 unsigned int rotation = plane_state->base.rotation; 2823 int i, num_planes = fb->format->num_planes; 2824 unsigned int tile_size = intel_tile_size(dev_priv); 2825 unsigned int src_x, src_y; 2826 unsigned int src_w, src_h; 2827 u32 gtt_offset = 0; 2828 2829 memset(&plane_state->view, 0, sizeof(plane_state->view)); 2830 plane_state->view.type = drm_rotation_90_or_270(rotation) ? 2831 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; 2832 2833 src_x = plane_state->base.src.x1 >> 16; 2834 src_y = plane_state->base.src.y1 >> 16; 2835 src_w = drm_rect_width(&plane_state->base.src) >> 16; 2836 src_h = drm_rect_height(&plane_state->base.src) >> 16; 2837 2838 WARN_ON(is_ccs_modifier(fb->modifier)); 2839 2840 /* Make src coordinates relative to the viewport */ 2841 drm_rect_translate(&plane_state->base.src, 2842 -(src_x << 16), -(src_y << 16)); 2843 2844 /* Rotate src coordinates to match rotated GTT view */ 2845 if (drm_rotation_90_or_270(rotation)) 2846 drm_rect_rotate(&plane_state->base.src, 2847 src_w << 16, src_h << 16, 2848 DRM_MODE_ROTATE_270); 2849 2850 for (i = 0; i < num_planes; i++) { 2851 unsigned int hsub = i ? fb->format->hsub : 1; 2852 unsigned int vsub = i ? fb->format->vsub : 1; 2853 unsigned int cpp = fb->format->cpp[i]; 2854 unsigned int tile_width, tile_height; 2855 unsigned int width, height; 2856 unsigned int pitch_tiles; 2857 unsigned int x, y; 2858 u32 offset; 2859 2860 intel_tile_dims(fb, i, &tile_width, &tile_height); 2861 2862 x = src_x / hsub; 2863 y = src_y / vsub; 2864 width = src_w / hsub; 2865 height = src_h / vsub; 2866 2867 /* 2868 * First pixel of the src viewport from the 2869 * start of the normal gtt mapping. 2870 */ 2871 x += intel_fb->normal[i].x; 2872 y += intel_fb->normal[i].y; 2873 2874 offset = intel_compute_aligned_offset(dev_priv, &x, &y, 2875 fb, i, fb->pitches[i], 2876 DRM_MODE_ROTATE_0, tile_size); 2877 offset /= tile_size; 2878 2879 info->plane[i].offset = offset; 2880 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], 2881 tile_width * cpp); 2882 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 2883 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 2884 2885 if (drm_rotation_90_or_270(rotation)) { 2886 struct drm_rect r; 2887 2888 /* rotate the x/y offsets to match the GTT view */ 2889 drm_rect_init(&r, x, y, width, height); 2890 drm_rect_rotate(&r, 2891 info->plane[i].width * tile_width, 2892 info->plane[i].height * tile_height, 2893 DRM_MODE_ROTATE_270); 2894 x = r.x1; 2895 y = r.y1; 2896 2897 pitch_tiles = info->plane[i].height; 2898 plane_state->color_plane[i].stride = pitch_tiles * tile_height; 2899 2900 /* rotate the tile dimensions to match the GTT view */ 2901 swap(tile_width, tile_height); 2902 } else { 2903 pitch_tiles = info->plane[i].width; 2904 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; 2905 } 2906 2907 /* 2908 * We only keep the x/y offsets, so push all of the 2909 * gtt offset into the x/y offsets. 2910 */ 2911 intel_adjust_tile_offset(&x, &y, 2912 tile_width, tile_height, 2913 tile_size, pitch_tiles, 2914 gtt_offset * tile_size, 0); 2915 2916 gtt_offset += info->plane[i].width * info->plane[i].height; 2917 2918 plane_state->color_plane[i].offset = 0; 2919 plane_state->color_plane[i].x = x; 2920 plane_state->color_plane[i].y = y; 2921 } 2922 } 2923 2924 static int 2925 intel_plane_compute_gtt(struct intel_plane_state *plane_state) 2926 { 2927 const struct intel_framebuffer *fb = 2928 to_intel_framebuffer(plane_state->base.fb); 2929 unsigned int rotation = plane_state->base.rotation; 2930 int i, num_planes; 2931 2932 if (!fb) 2933 return 0; 2934 2935 num_planes = fb->base.format->num_planes; 2936 2937 if (intel_plane_needs_remap(plane_state)) { 2938 intel_plane_remap_gtt(plane_state); 2939 2940 /* 2941 * Sometimes even remapping can't overcome 2942 * the stride limitations :( Can happen with 2943 * big plane sizes and suitably misaligned 2944 * offsets. 2945 */ 2946 return intel_plane_check_stride(plane_state); 2947 } 2948 2949 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); 2950 2951 for (i = 0; i < num_planes; i++) { 2952 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); 2953 plane_state->color_plane[i].offset = 0; 2954 2955 if (drm_rotation_90_or_270(rotation)) { 2956 plane_state->color_plane[i].x = fb->rotated[i].x; 2957 plane_state->color_plane[i].y = fb->rotated[i].y; 2958 } else { 2959 plane_state->color_plane[i].x = fb->normal[i].x; 2960 plane_state->color_plane[i].y = fb->normal[i].y; 2961 } 2962 } 2963 2964 /* Rotate src coordinates to match rotated GTT view */ 2965 if (drm_rotation_90_or_270(rotation)) 2966 drm_rect_rotate(&plane_state->base.src, 2967 fb->base.width << 16, fb->base.height << 16, 2968 DRM_MODE_ROTATE_270); 2969 2970 return intel_plane_check_stride(plane_state); 2971 } 2972 2973 static int i9xx_format_to_fourcc(int format) 2974 { 2975 switch (format) { 2976 case DISPPLANE_8BPP: 2977 return DRM_FORMAT_C8; 2978 case DISPPLANE_BGRX555: 2979 return DRM_FORMAT_XRGB1555; 2980 case DISPPLANE_BGRX565: 2981 return DRM_FORMAT_RGB565; 2982 default: 2983 case DISPPLANE_BGRX888: 2984 return DRM_FORMAT_XRGB8888; 2985 case DISPPLANE_RGBX888: 2986 return DRM_FORMAT_XBGR8888; 2987 case DISPPLANE_BGRX101010: 2988 return DRM_FORMAT_XRGB2101010; 2989 case DISPPLANE_RGBX101010: 2990 return DRM_FORMAT_XBGR2101010; 2991 case DISPPLANE_RGBX161616: 2992 return DRM_FORMAT_XBGR16161616F; 2993 } 2994 } 2995 2996 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) 2997 { 2998 switch (format) { 2999 case PLANE_CTL_FORMAT_RGB_565: 3000 return DRM_FORMAT_RGB565; 3001 case PLANE_CTL_FORMAT_NV12: 3002 return DRM_FORMAT_NV12; 3003 case PLANE_CTL_FORMAT_P010: 3004 return DRM_FORMAT_P010; 3005 case PLANE_CTL_FORMAT_P012: 3006 return DRM_FORMAT_P012; 3007 case PLANE_CTL_FORMAT_P016: 3008 return DRM_FORMAT_P016; 3009 case PLANE_CTL_FORMAT_Y210: 3010 return DRM_FORMAT_Y210; 3011 case PLANE_CTL_FORMAT_Y212: 3012 return DRM_FORMAT_Y212; 3013 case PLANE_CTL_FORMAT_Y216: 3014 return DRM_FORMAT_Y216; 3015 case PLANE_CTL_FORMAT_Y410: 3016 return DRM_FORMAT_XVYU2101010; 3017 case PLANE_CTL_FORMAT_Y412: 3018 return DRM_FORMAT_XVYU12_16161616; 3019 case PLANE_CTL_FORMAT_Y416: 3020 return DRM_FORMAT_XVYU16161616; 3021 default: 3022 case PLANE_CTL_FORMAT_XRGB_8888: 3023 if (rgb_order) { 3024 if (alpha) 3025 return DRM_FORMAT_ABGR8888; 3026 else 3027 return DRM_FORMAT_XBGR8888; 3028 } else { 3029 if (alpha) 3030 return DRM_FORMAT_ARGB8888; 3031 else 3032 return DRM_FORMAT_XRGB8888; 3033 } 3034 case PLANE_CTL_FORMAT_XRGB_2101010: 3035 if (rgb_order) 3036 return DRM_FORMAT_XBGR2101010; 3037 else 3038 return DRM_FORMAT_XRGB2101010; 3039 case PLANE_CTL_FORMAT_XRGB_16161616F: 3040 if (rgb_order) { 3041 if (alpha) 3042 return DRM_FORMAT_ABGR16161616F; 3043 else 3044 return DRM_FORMAT_XBGR16161616F; 3045 } else { 3046 if (alpha) 3047 return DRM_FORMAT_ARGB16161616F; 3048 else 3049 return DRM_FORMAT_XRGB16161616F; 3050 } 3051 } 3052 } 3053 3054 static bool 3055 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 3056 struct intel_initial_plane_config *plane_config) 3057 { 3058 struct drm_device *dev = crtc->base.dev; 3059 struct drm_i915_private *dev_priv = to_i915(dev); 3060 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 3061 struct drm_framebuffer *fb = &plane_config->fb->base; 3062 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE); 3063 u32 size_aligned = round_up(plane_config->base + plane_config->size, 3064 PAGE_SIZE); 3065 struct drm_i915_gem_object *obj; 3066 bool ret = false; 3067 3068 size_aligned -= base_aligned; 3069 3070 if (plane_config->size == 0) 3071 return false; 3072 3073 /* If the FB is too big, just don't use it since fbdev is not very 3074 * important and we should probably use that space with FBC or other 3075 * features. */ 3076 if (size_aligned * 2 > dev_priv->stolen_usable_size) 3077 return false; 3078 3079 switch (fb->modifier) { 3080 case DRM_FORMAT_MOD_LINEAR: 3081 case I915_FORMAT_MOD_X_TILED: 3082 case I915_FORMAT_MOD_Y_TILED: 3083 break; 3084 default: 3085 DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n", 3086 fb->modifier); 3087 return false; 3088 } 3089 3090 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv, 3091 base_aligned, 3092 base_aligned, 3093 size_aligned); 3094 if (IS_ERR(obj)) 3095 return false; 3096 3097 switch (plane_config->tiling) { 3098 case I915_TILING_NONE: 3099 break; 3100 case I915_TILING_X: 3101 case I915_TILING_Y: 3102 obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling; 3103 break; 3104 default: 3105 MISSING_CASE(plane_config->tiling); 3106 goto out; 3107 } 3108 3109 mode_cmd.pixel_format = fb->format->format; 3110 mode_cmd.width = fb->width; 3111 mode_cmd.height = fb->height; 3112 mode_cmd.pitches[0] = fb->pitches[0]; 3113 mode_cmd.modifier[0] = fb->modifier; 3114 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 3115 3116 if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) { 3117 DRM_DEBUG_KMS("intel fb init failed\n"); 3118 goto out; 3119 } 3120 3121 3122 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj); 3123 ret = true; 3124 out: 3125 i915_gem_object_put(obj); 3126 return ret; 3127 } 3128 3129 static void 3130 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 3131 struct intel_plane_state *plane_state, 3132 bool visible) 3133 { 3134 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 3135 3136 plane_state->base.visible = visible; 3137 3138 if (visible) 3139 crtc_state->base.plane_mask |= drm_plane_mask(&plane->base); 3140 else 3141 crtc_state->base.plane_mask &= ~drm_plane_mask(&plane->base); 3142 } 3143 3144 static void fixup_active_planes(struct intel_crtc_state *crtc_state) 3145 { 3146 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 3147 struct drm_plane *plane; 3148 3149 /* 3150 * Active_planes aliases if multiple "primary" or cursor planes 3151 * have been used on the same (or wrong) pipe. plane_mask uses 3152 * unique ids, hence we can use that to reconstruct active_planes. 3153 */ 3154 crtc_state->active_planes = 0; 3155 3156 drm_for_each_plane_mask(plane, &dev_priv->drm, 3157 crtc_state->base.plane_mask) 3158 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 3159 } 3160 3161 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 3162 struct intel_plane *plane) 3163 { 3164 struct intel_crtc_state *crtc_state = 3165 to_intel_crtc_state(crtc->base.state); 3166 struct intel_plane_state *plane_state = 3167 to_intel_plane_state(plane->base.state); 3168 3169 DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 3170 plane->base.base.id, plane->base.name, 3171 crtc->base.base.id, crtc->base.name); 3172 3173 intel_set_plane_visible(crtc_state, plane_state, false); 3174 fixup_active_planes(crtc_state); 3175 crtc_state->data_rate[plane->id] = 0; 3176 crtc_state->min_cdclk[plane->id] = 0; 3177 3178 if (plane->id == PLANE_PRIMARY) 3179 intel_pre_disable_primary_noatomic(&crtc->base); 3180 3181 intel_disable_plane(plane, crtc_state); 3182 } 3183 3184 static struct intel_frontbuffer * 3185 to_intel_frontbuffer(struct drm_framebuffer *fb) 3186 { 3187 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL; 3188 } 3189 3190 static void 3191 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 3192 struct intel_initial_plane_config *plane_config) 3193 { 3194 struct drm_device *dev = intel_crtc->base.dev; 3195 struct drm_i915_private *dev_priv = to_i915(dev); 3196 struct drm_crtc *c; 3197 struct drm_plane *primary = intel_crtc->base.primary; 3198 struct drm_plane_state *plane_state = primary->state; 3199 struct intel_plane *intel_plane = to_intel_plane(primary); 3200 struct intel_plane_state *intel_state = 3201 to_intel_plane_state(plane_state); 3202 struct drm_framebuffer *fb; 3203 3204 if (!plane_config->fb) 3205 return; 3206 3207 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 3208 fb = &plane_config->fb->base; 3209 goto valid_fb; 3210 } 3211 3212 kfree(plane_config->fb); 3213 3214 /* 3215 * Failed to alloc the obj, check to see if we should share 3216 * an fb with another CRTC instead 3217 */ 3218 for_each_crtc(dev, c) { 3219 struct intel_plane_state *state; 3220 3221 if (c == &intel_crtc->base) 3222 continue; 3223 3224 if (!to_intel_crtc(c)->active) 3225 continue; 3226 3227 state = to_intel_plane_state(c->primary->state); 3228 if (!state->vma) 3229 continue; 3230 3231 if (intel_plane_ggtt_offset(state) == plane_config->base) { 3232 fb = state->base.fb; 3233 drm_framebuffer_get(fb); 3234 goto valid_fb; 3235 } 3236 } 3237 3238 /* 3239 * We've failed to reconstruct the BIOS FB. Current display state 3240 * indicates that the primary plane is visible, but has a NULL FB, 3241 * which will lead to problems later if we don't fix it up. The 3242 * simplest solution is to just disable the primary plane now and 3243 * pretend the BIOS never had it enabled. 3244 */ 3245 intel_plane_disable_noatomic(intel_crtc, intel_plane); 3246 3247 return; 3248 3249 valid_fb: 3250 intel_state->base.rotation = plane_config->rotation; 3251 intel_fill_fb_ggtt_view(&intel_state->view, fb, 3252 intel_state->base.rotation); 3253 intel_state->color_plane[0].stride = 3254 intel_fb_pitch(fb, 0, intel_state->base.rotation); 3255 3256 intel_state->vma = 3257 intel_pin_and_fence_fb_obj(fb, 3258 &intel_state->view, 3259 intel_plane_uses_fence(intel_state), 3260 &intel_state->flags); 3261 if (IS_ERR(intel_state->vma)) { 3262 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n", 3263 intel_crtc->pipe, PTR_ERR(intel_state->vma)); 3264 3265 intel_state->vma = NULL; 3266 drm_framebuffer_put(fb); 3267 return; 3268 } 3269 3270 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 3271 3272 plane_state->src_x = 0; 3273 plane_state->src_y = 0; 3274 plane_state->src_w = fb->width << 16; 3275 plane_state->src_h = fb->height << 16; 3276 3277 plane_state->crtc_x = 0; 3278 plane_state->crtc_y = 0; 3279 plane_state->crtc_w = fb->width; 3280 plane_state->crtc_h = fb->height; 3281 3282 intel_state->base.src = drm_plane_state_src(plane_state); 3283 intel_state->base.dst = drm_plane_state_dest(plane_state); 3284 3285 if (plane_config->tiling) 3286 dev_priv->preserve_bios_swizzle = true; 3287 3288 plane_state->fb = fb; 3289 plane_state->crtc = &intel_crtc->base; 3290 3291 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 3292 &to_intel_frontbuffer(fb)->bits); 3293 } 3294 3295 static int skl_max_plane_width(const struct drm_framebuffer *fb, 3296 int color_plane, 3297 unsigned int rotation) 3298 { 3299 int cpp = fb->format->cpp[color_plane]; 3300 3301 switch (fb->modifier) { 3302 case DRM_FORMAT_MOD_LINEAR: 3303 case I915_FORMAT_MOD_X_TILED: 3304 /* 3305 * Validated limit is 4k, but has 5k should 3306 * work apart from the following features: 3307 * - Ytile (already limited to 4k) 3308 * - FP16 (already limited to 4k) 3309 * - render compression (already limited to 4k) 3310 * - KVMR sprite and cursor (don't care) 3311 * - horizontal panning (TODO verify this) 3312 * - pipe and plane scaling (TODO verify this) 3313 */ 3314 if (cpp == 8) 3315 return 4096; 3316 else 3317 return 5120; 3318 case I915_FORMAT_MOD_Y_TILED_CCS: 3319 case I915_FORMAT_MOD_Yf_TILED_CCS: 3320 /* FIXME AUX plane? */ 3321 case I915_FORMAT_MOD_Y_TILED: 3322 case I915_FORMAT_MOD_Yf_TILED: 3323 if (cpp == 8) 3324 return 2048; 3325 else 3326 return 4096; 3327 default: 3328 MISSING_CASE(fb->modifier); 3329 return 2048; 3330 } 3331 } 3332 3333 static int glk_max_plane_width(const struct drm_framebuffer *fb, 3334 int color_plane, 3335 unsigned int rotation) 3336 { 3337 int cpp = fb->format->cpp[color_plane]; 3338 3339 switch (fb->modifier) { 3340 case DRM_FORMAT_MOD_LINEAR: 3341 case I915_FORMAT_MOD_X_TILED: 3342 if (cpp == 8) 3343 return 4096; 3344 else 3345 return 5120; 3346 case I915_FORMAT_MOD_Y_TILED_CCS: 3347 case I915_FORMAT_MOD_Yf_TILED_CCS: 3348 /* FIXME AUX plane? */ 3349 case I915_FORMAT_MOD_Y_TILED: 3350 case I915_FORMAT_MOD_Yf_TILED: 3351 if (cpp == 8) 3352 return 2048; 3353 else 3354 return 5120; 3355 default: 3356 MISSING_CASE(fb->modifier); 3357 return 2048; 3358 } 3359 } 3360 3361 static int icl_max_plane_width(const struct drm_framebuffer *fb, 3362 int color_plane, 3363 unsigned int rotation) 3364 { 3365 return 5120; 3366 } 3367 3368 static int skl_max_plane_height(void) 3369 { 3370 return 4096; 3371 } 3372 3373 static int icl_max_plane_height(void) 3374 { 3375 return 4320; 3376 } 3377 3378 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, 3379 int main_x, int main_y, u32 main_offset) 3380 { 3381 const struct drm_framebuffer *fb = plane_state->base.fb; 3382 int hsub = fb->format->hsub; 3383 int vsub = fb->format->vsub; 3384 int aux_x = plane_state->color_plane[1].x; 3385 int aux_y = plane_state->color_plane[1].y; 3386 u32 aux_offset = plane_state->color_plane[1].offset; 3387 u32 alignment = intel_surf_alignment(fb, 1); 3388 3389 while (aux_offset >= main_offset && aux_y <= main_y) { 3390 int x, y; 3391 3392 if (aux_x == main_x && aux_y == main_y) 3393 break; 3394 3395 if (aux_offset == 0) 3396 break; 3397 3398 x = aux_x / hsub; 3399 y = aux_y / vsub; 3400 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 1, 3401 aux_offset, aux_offset - alignment); 3402 aux_x = x * hsub + aux_x % hsub; 3403 aux_y = y * vsub + aux_y % vsub; 3404 } 3405 3406 if (aux_x != main_x || aux_y != main_y) 3407 return false; 3408 3409 plane_state->color_plane[1].offset = aux_offset; 3410 plane_state->color_plane[1].x = aux_x; 3411 plane_state->color_plane[1].y = aux_y; 3412 3413 return true; 3414 } 3415 3416 static int skl_check_main_surface(struct intel_plane_state *plane_state) 3417 { 3418 struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); 3419 const struct drm_framebuffer *fb = plane_state->base.fb; 3420 unsigned int rotation = plane_state->base.rotation; 3421 int x = plane_state->base.src.x1 >> 16; 3422 int y = plane_state->base.src.y1 >> 16; 3423 int w = drm_rect_width(&plane_state->base.src) >> 16; 3424 int h = drm_rect_height(&plane_state->base.src) >> 16; 3425 int max_width; 3426 int max_height; 3427 u32 alignment, offset, aux_offset = plane_state->color_plane[1].offset; 3428 3429 if (INTEL_GEN(dev_priv) >= 11) 3430 max_width = icl_max_plane_width(fb, 0, rotation); 3431 else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 3432 max_width = glk_max_plane_width(fb, 0, rotation); 3433 else 3434 max_width = skl_max_plane_width(fb, 0, rotation); 3435 3436 if (INTEL_GEN(dev_priv) >= 11) 3437 max_height = icl_max_plane_height(); 3438 else 3439 max_height = skl_max_plane_height(); 3440 3441 if (w > max_width || h > max_height) { 3442 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n", 3443 w, h, max_width, max_height); 3444 return -EINVAL; 3445 } 3446 3447 intel_add_fb_offsets(&x, &y, plane_state, 0); 3448 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0); 3449 alignment = intel_surf_alignment(fb, 0); 3450 3451 /* 3452 * AUX surface offset is specified as the distance from the 3453 * main surface offset, and it must be non-negative. Make 3454 * sure that is what we will get. 3455 */ 3456 if (offset > aux_offset) 3457 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3458 offset, aux_offset & ~(alignment - 1)); 3459 3460 /* 3461 * When using an X-tiled surface, the plane blows up 3462 * if the x offset + width exceed the stride. 3463 * 3464 * TODO: linear and Y-tiled seem fine, Yf untested, 3465 */ 3466 if (fb->modifier == I915_FORMAT_MOD_X_TILED) { 3467 int cpp = fb->format->cpp[0]; 3468 3469 while ((x + w) * cpp > plane_state->color_plane[0].stride) { 3470 if (offset == 0) { 3471 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n"); 3472 return -EINVAL; 3473 } 3474 3475 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3476 offset, offset - alignment); 3477 } 3478 } 3479 3480 /* 3481 * CCS AUX surface doesn't have its own x/y offsets, we must make sure 3482 * they match with the main surface x/y offsets. 3483 */ 3484 if (is_ccs_modifier(fb->modifier)) { 3485 while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) { 3486 if (offset == 0) 3487 break; 3488 3489 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3490 offset, offset - alignment); 3491 } 3492 3493 if (x != plane_state->color_plane[1].x || y != plane_state->color_plane[1].y) { 3494 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n"); 3495 return -EINVAL; 3496 } 3497 } 3498 3499 plane_state->color_plane[0].offset = offset; 3500 plane_state->color_plane[0].x = x; 3501 plane_state->color_plane[0].y = y; 3502 3503 /* 3504 * Put the final coordinates back so that the src 3505 * coordinate checks will see the right values. 3506 */ 3507 drm_rect_translate_to(&plane_state->base.src, 3508 x << 16, y << 16); 3509 3510 return 0; 3511 } 3512 3513 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) 3514 { 3515 const struct drm_framebuffer *fb = plane_state->base.fb; 3516 unsigned int rotation = plane_state->base.rotation; 3517 int max_width = skl_max_plane_width(fb, 1, rotation); 3518 int max_height = 4096; 3519 int x = plane_state->base.src.x1 >> 17; 3520 int y = plane_state->base.src.y1 >> 17; 3521 int w = drm_rect_width(&plane_state->base.src) >> 17; 3522 int h = drm_rect_height(&plane_state->base.src) >> 17; 3523 u32 offset; 3524 3525 intel_add_fb_offsets(&x, &y, plane_state, 1); 3526 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1); 3527 3528 /* FIXME not quite sure how/if these apply to the chroma plane */ 3529 if (w > max_width || h > max_height) { 3530 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n", 3531 w, h, max_width, max_height); 3532 return -EINVAL; 3533 } 3534 3535 plane_state->color_plane[1].offset = offset; 3536 plane_state->color_plane[1].x = x; 3537 plane_state->color_plane[1].y = y; 3538 3539 return 0; 3540 } 3541 3542 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) 3543 { 3544 const struct drm_framebuffer *fb = plane_state->base.fb; 3545 int src_x = plane_state->base.src.x1 >> 16; 3546 int src_y = plane_state->base.src.y1 >> 16; 3547 int hsub = fb->format->hsub; 3548 int vsub = fb->format->vsub; 3549 int x = src_x / hsub; 3550 int y = src_y / vsub; 3551 u32 offset; 3552 3553 intel_add_fb_offsets(&x, &y, plane_state, 1); 3554 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1); 3555 3556 plane_state->color_plane[1].offset = offset; 3557 plane_state->color_plane[1].x = x * hsub + src_x % hsub; 3558 plane_state->color_plane[1].y = y * vsub + src_y % vsub; 3559 3560 return 0; 3561 } 3562 3563 int skl_check_plane_surface(struct intel_plane_state *plane_state) 3564 { 3565 const struct drm_framebuffer *fb = plane_state->base.fb; 3566 int ret; 3567 3568 ret = intel_plane_compute_gtt(plane_state); 3569 if (ret) 3570 return ret; 3571 3572 if (!plane_state->base.visible) 3573 return 0; 3574 3575 /* 3576 * Handle the AUX surface first since 3577 * the main surface setup depends on it. 3578 */ 3579 if (drm_format_info_is_yuv_semiplanar(fb->format)) { 3580 ret = skl_check_nv12_aux_surface(plane_state); 3581 if (ret) 3582 return ret; 3583 } else if (is_ccs_modifier(fb->modifier)) { 3584 ret = skl_check_ccs_aux_surface(plane_state); 3585 if (ret) 3586 return ret; 3587 } else { 3588 plane_state->color_plane[1].offset = ~0xfff; 3589 plane_state->color_plane[1].x = 0; 3590 plane_state->color_plane[1].y = 0; 3591 } 3592 3593 ret = skl_check_main_surface(plane_state); 3594 if (ret) 3595 return ret; 3596 3597 return 0; 3598 } 3599 3600 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state, 3601 const struct intel_plane_state *plane_state, 3602 unsigned int *num, unsigned int *den) 3603 { 3604 const struct drm_framebuffer *fb = plane_state->base.fb; 3605 unsigned int cpp = fb->format->cpp[0]; 3606 3607 /* 3608 * g4x bspec says 64bpp pixel rate can't exceed 80% 3609 * of cdclk when the sprite plane is enabled on the 3610 * same pipe. ilk/snb bspec says 64bpp pixel rate is 3611 * never allowed to exceed 80% of cdclk. Let's just go 3612 * with the ilk/snb limit always. 3613 */ 3614 if (cpp == 8) { 3615 *num = 10; 3616 *den = 8; 3617 } else { 3618 *num = 1; 3619 *den = 1; 3620 } 3621 } 3622 3623 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state, 3624 const struct intel_plane_state *plane_state) 3625 { 3626 unsigned int pixel_rate; 3627 unsigned int num, den; 3628 3629 /* 3630 * Note that crtc_state->pixel_rate accounts for both 3631 * horizontal and vertical panel fitter downscaling factors. 3632 * Pre-HSW bspec tells us to only consider the horizontal 3633 * downscaling factor here. We ignore that and just consider 3634 * both for simplicity. 3635 */ 3636 pixel_rate = crtc_state->pixel_rate; 3637 3638 i9xx_plane_ratio(crtc_state, plane_state, &num, &den); 3639 3640 /* two pixels per clock with double wide pipe */ 3641 if (crtc_state->double_wide) 3642 den *= 2; 3643 3644 return DIV_ROUND_UP(pixel_rate * num, den); 3645 } 3646 3647 unsigned int 3648 i9xx_plane_max_stride(struct intel_plane *plane, 3649 u32 pixel_format, u64 modifier, 3650 unsigned int rotation) 3651 { 3652 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3653 3654 if (!HAS_GMCH(dev_priv)) { 3655 return 32*1024; 3656 } else if (INTEL_GEN(dev_priv) >= 4) { 3657 if (modifier == I915_FORMAT_MOD_X_TILED) 3658 return 16*1024; 3659 else 3660 return 32*1024; 3661 } else if (INTEL_GEN(dev_priv) >= 3) { 3662 if (modifier == I915_FORMAT_MOD_X_TILED) 3663 return 8*1024; 3664 else 3665 return 16*1024; 3666 } else { 3667 if (plane->i9xx_plane == PLANE_C) 3668 return 4*1024; 3669 else 3670 return 8*1024; 3671 } 3672 } 3673 3674 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 3675 { 3676 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 3677 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3678 u32 dspcntr = 0; 3679 3680 if (crtc_state->gamma_enable) 3681 dspcntr |= DISPPLANE_GAMMA_ENABLE; 3682 3683 if (crtc_state->csc_enable) 3684 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; 3685 3686 if (INTEL_GEN(dev_priv) < 5) 3687 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe); 3688 3689 return dspcntr; 3690 } 3691 3692 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state, 3693 const struct intel_plane_state *plane_state) 3694 { 3695 struct drm_i915_private *dev_priv = 3696 to_i915(plane_state->base.plane->dev); 3697 const struct drm_framebuffer *fb = plane_state->base.fb; 3698 unsigned int rotation = plane_state->base.rotation; 3699 u32 dspcntr; 3700 3701 dspcntr = DISPLAY_PLANE_ENABLE; 3702 3703 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) || 3704 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 3705 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 3706 3707 switch (fb->format->format) { 3708 case DRM_FORMAT_C8: 3709 dspcntr |= DISPPLANE_8BPP; 3710 break; 3711 case DRM_FORMAT_XRGB1555: 3712 dspcntr |= DISPPLANE_BGRX555; 3713 break; 3714 case DRM_FORMAT_RGB565: 3715 dspcntr |= DISPPLANE_BGRX565; 3716 break; 3717 case DRM_FORMAT_XRGB8888: 3718 dspcntr |= DISPPLANE_BGRX888; 3719 break; 3720 case DRM_FORMAT_XBGR8888: 3721 dspcntr |= DISPPLANE_RGBX888; 3722 break; 3723 case DRM_FORMAT_XRGB2101010: 3724 dspcntr |= DISPPLANE_BGRX101010; 3725 break; 3726 case DRM_FORMAT_XBGR2101010: 3727 dspcntr |= DISPPLANE_RGBX101010; 3728 break; 3729 case DRM_FORMAT_XBGR16161616F: 3730 dspcntr |= DISPPLANE_RGBX161616; 3731 break; 3732 default: 3733 MISSING_CASE(fb->format->format); 3734 return 0; 3735 } 3736 3737 if (INTEL_GEN(dev_priv) >= 4 && 3738 fb->modifier == I915_FORMAT_MOD_X_TILED) 3739 dspcntr |= DISPPLANE_TILED; 3740 3741 if (rotation & DRM_MODE_ROTATE_180) 3742 dspcntr |= DISPPLANE_ROTATE_180; 3743 3744 if (rotation & DRM_MODE_REFLECT_X) 3745 dspcntr |= DISPPLANE_MIRROR; 3746 3747 return dspcntr; 3748 } 3749 3750 int i9xx_check_plane_surface(struct intel_plane_state *plane_state) 3751 { 3752 struct drm_i915_private *dev_priv = 3753 to_i915(plane_state->base.plane->dev); 3754 const struct drm_framebuffer *fb = plane_state->base.fb; 3755 int src_x, src_y, src_w; 3756 u32 offset; 3757 int ret; 3758 3759 ret = intel_plane_compute_gtt(plane_state); 3760 if (ret) 3761 return ret; 3762 3763 if (!plane_state->base.visible) 3764 return 0; 3765 3766 src_w = drm_rect_width(&plane_state->base.src) >> 16; 3767 src_x = plane_state->base.src.x1 >> 16; 3768 src_y = plane_state->base.src.y1 >> 16; 3769 3770 /* Undocumented hardware limit on i965/g4x/vlv/chv */ 3771 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048) 3772 return -EINVAL; 3773 3774 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 3775 3776 if (INTEL_GEN(dev_priv) >= 4) 3777 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 3778 plane_state, 0); 3779 else 3780 offset = 0; 3781 3782 /* 3783 * Put the final coordinates back so that the src 3784 * coordinate checks will see the right values. 3785 */ 3786 drm_rect_translate_to(&plane_state->base.src, 3787 src_x << 16, src_y << 16); 3788 3789 /* HSW/BDW do this automagically in hardware */ 3790 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) { 3791 unsigned int rotation = plane_state->base.rotation; 3792 int src_w = drm_rect_width(&plane_state->base.src) >> 16; 3793 int src_h = drm_rect_height(&plane_state->base.src) >> 16; 3794 3795 if (rotation & DRM_MODE_ROTATE_180) { 3796 src_x += src_w - 1; 3797 src_y += src_h - 1; 3798 } else if (rotation & DRM_MODE_REFLECT_X) { 3799 src_x += src_w - 1; 3800 } 3801 } 3802 3803 plane_state->color_plane[0].offset = offset; 3804 plane_state->color_plane[0].x = src_x; 3805 plane_state->color_plane[0].y = src_y; 3806 3807 return 0; 3808 } 3809 3810 static bool i9xx_plane_has_windowing(struct intel_plane *plane) 3811 { 3812 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3813 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3814 3815 if (IS_CHERRYVIEW(dev_priv)) 3816 return i9xx_plane == PLANE_B; 3817 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 3818 return false; 3819 else if (IS_GEN(dev_priv, 4)) 3820 return i9xx_plane == PLANE_C; 3821 else 3822 return i9xx_plane == PLANE_B || 3823 i9xx_plane == PLANE_C; 3824 } 3825 3826 static int 3827 i9xx_plane_check(struct intel_crtc_state *crtc_state, 3828 struct intel_plane_state *plane_state) 3829 { 3830 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 3831 int ret; 3832 3833 ret = chv_plane_check_rotation(plane_state); 3834 if (ret) 3835 return ret; 3836 3837 ret = drm_atomic_helper_check_plane_state(&plane_state->base, 3838 &crtc_state->base, 3839 DRM_PLANE_HELPER_NO_SCALING, 3840 DRM_PLANE_HELPER_NO_SCALING, 3841 i9xx_plane_has_windowing(plane), 3842 true); 3843 if (ret) 3844 return ret; 3845 3846 ret = i9xx_check_plane_surface(plane_state); 3847 if (ret) 3848 return ret; 3849 3850 if (!plane_state->base.visible) 3851 return 0; 3852 3853 ret = intel_plane_check_src_coordinates(plane_state); 3854 if (ret) 3855 return ret; 3856 3857 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state); 3858 3859 return 0; 3860 } 3861 3862 static void i9xx_update_plane(struct intel_plane *plane, 3863 const struct intel_crtc_state *crtc_state, 3864 const struct intel_plane_state *plane_state) 3865 { 3866 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3867 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3868 u32 linear_offset; 3869 int x = plane_state->color_plane[0].x; 3870 int y = plane_state->color_plane[0].y; 3871 int crtc_x = plane_state->base.dst.x1; 3872 int crtc_y = plane_state->base.dst.y1; 3873 int crtc_w = drm_rect_width(&plane_state->base.dst); 3874 int crtc_h = drm_rect_height(&plane_state->base.dst); 3875 unsigned long irqflags; 3876 u32 dspaddr_offset; 3877 u32 dspcntr; 3878 3879 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state); 3880 3881 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); 3882 3883 if (INTEL_GEN(dev_priv) >= 4) 3884 dspaddr_offset = plane_state->color_plane[0].offset; 3885 else 3886 dspaddr_offset = linear_offset; 3887 3888 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 3889 3890 I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride); 3891 3892 if (INTEL_GEN(dev_priv) < 4) { 3893 /* 3894 * PLANE_A doesn't actually have a full window 3895 * generator but let's assume we still need to 3896 * program whatever is there. 3897 */ 3898 I915_WRITE_FW(DSPPOS(i9xx_plane), (crtc_y << 16) | crtc_x); 3899 I915_WRITE_FW(DSPSIZE(i9xx_plane), 3900 ((crtc_h - 1) << 16) | (crtc_w - 1)); 3901 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) { 3902 I915_WRITE_FW(PRIMPOS(i9xx_plane), (crtc_y << 16) | crtc_x); 3903 I915_WRITE_FW(PRIMSIZE(i9xx_plane), 3904 ((crtc_h - 1) << 16) | (crtc_w - 1)); 3905 I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0); 3906 } 3907 3908 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 3909 I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x); 3910 } else if (INTEL_GEN(dev_priv) >= 4) { 3911 I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset); 3912 I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x); 3913 } 3914 3915 /* 3916 * The control register self-arms if the plane was previously 3917 * disabled. Try to make the plane enable atomic by writing 3918 * the control register just before the surface register. 3919 */ 3920 I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr); 3921 if (INTEL_GEN(dev_priv) >= 4) 3922 I915_WRITE_FW(DSPSURF(i9xx_plane), 3923 intel_plane_ggtt_offset(plane_state) + 3924 dspaddr_offset); 3925 else 3926 I915_WRITE_FW(DSPADDR(i9xx_plane), 3927 intel_plane_ggtt_offset(plane_state) + 3928 dspaddr_offset); 3929 3930 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 3931 } 3932 3933 static void i9xx_disable_plane(struct intel_plane *plane, 3934 const struct intel_crtc_state *crtc_state) 3935 { 3936 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3937 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3938 unsigned long irqflags; 3939 u32 dspcntr; 3940 3941 /* 3942 * DSPCNTR pipe gamma enable on g4x+ and pipe csc 3943 * enable on ilk+ affect the pipe bottom color as 3944 * well, so we must configure them even if the plane 3945 * is disabled. 3946 * 3947 * On pre-g4x there is no way to gamma correct the 3948 * pipe bottom color but we'll keep on doing this 3949 * anyway so that the crtc state readout works correctly. 3950 */ 3951 dspcntr = i9xx_plane_ctl_crtc(crtc_state); 3952 3953 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 3954 3955 I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr); 3956 if (INTEL_GEN(dev_priv) >= 4) 3957 I915_WRITE_FW(DSPSURF(i9xx_plane), 0); 3958 else 3959 I915_WRITE_FW(DSPADDR(i9xx_plane), 0); 3960 3961 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 3962 } 3963 3964 static bool i9xx_plane_get_hw_state(struct intel_plane *plane, 3965 enum pipe *pipe) 3966 { 3967 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3968 enum intel_display_power_domain power_domain; 3969 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3970 intel_wakeref_t wakeref; 3971 bool ret; 3972 u32 val; 3973 3974 /* 3975 * Not 100% correct for planes that can move between pipes, 3976 * but that's only the case for gen2-4 which don't have any 3977 * display power wells. 3978 */ 3979 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 3980 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 3981 if (!wakeref) 3982 return false; 3983 3984 val = I915_READ(DSPCNTR(i9xx_plane)); 3985 3986 ret = val & DISPLAY_PLANE_ENABLE; 3987 3988 if (INTEL_GEN(dev_priv) >= 5) 3989 *pipe = plane->pipe; 3990 else 3991 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 3992 DISPPLANE_SEL_PIPE_SHIFT; 3993 3994 intel_display_power_put(dev_priv, power_domain, wakeref); 3995 3996 return ret; 3997 } 3998 3999 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) 4000 { 4001 struct drm_device *dev = intel_crtc->base.dev; 4002 struct drm_i915_private *dev_priv = to_i915(dev); 4003 4004 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0); 4005 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); 4006 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); 4007 } 4008 4009 /* 4010 * This function detaches (aka. unbinds) unused scalers in hardware 4011 */ 4012 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) 4013 { 4014 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 4015 const struct intel_crtc_scaler_state *scaler_state = 4016 &crtc_state->scaler_state; 4017 int i; 4018 4019 /* loop through and disable scalers that aren't in use */ 4020 for (i = 0; i < intel_crtc->num_scalers; i++) { 4021 if (!scaler_state->scalers[i].in_use) 4022 skl_detach_scaler(intel_crtc, i); 4023 } 4024 } 4025 4026 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, 4027 int color_plane, unsigned int rotation) 4028 { 4029 /* 4030 * The stride is either expressed as a multiple of 64 bytes chunks for 4031 * linear buffers or in number of tiles for tiled buffers. 4032 */ 4033 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) 4034 return 64; 4035 else if (drm_rotation_90_or_270(rotation)) 4036 return intel_tile_height(fb, color_plane); 4037 else 4038 return intel_tile_width_bytes(fb, color_plane); 4039 } 4040 4041 u32 skl_plane_stride(const struct intel_plane_state *plane_state, 4042 int color_plane) 4043 { 4044 const struct drm_framebuffer *fb = plane_state->base.fb; 4045 unsigned int rotation = plane_state->base.rotation; 4046 u32 stride = plane_state->color_plane[color_plane].stride; 4047 4048 if (color_plane >= fb->format->num_planes) 4049 return 0; 4050 4051 return stride / skl_plane_stride_mult(fb, color_plane, rotation); 4052 } 4053 4054 static u32 skl_plane_ctl_format(u32 pixel_format) 4055 { 4056 switch (pixel_format) { 4057 case DRM_FORMAT_C8: 4058 return PLANE_CTL_FORMAT_INDEXED; 4059 case DRM_FORMAT_RGB565: 4060 return PLANE_CTL_FORMAT_RGB_565; 4061 case DRM_FORMAT_XBGR8888: 4062 case DRM_FORMAT_ABGR8888: 4063 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; 4064 case DRM_FORMAT_XRGB8888: 4065 case DRM_FORMAT_ARGB8888: 4066 return PLANE_CTL_FORMAT_XRGB_8888; 4067 case DRM_FORMAT_XBGR2101010: 4068 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; 4069 case DRM_FORMAT_XRGB2101010: 4070 return PLANE_CTL_FORMAT_XRGB_2101010; 4071 case DRM_FORMAT_XBGR16161616F: 4072 case DRM_FORMAT_ABGR16161616F: 4073 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; 4074 case DRM_FORMAT_XRGB16161616F: 4075 case DRM_FORMAT_ARGB16161616F: 4076 return PLANE_CTL_FORMAT_XRGB_16161616F; 4077 case DRM_FORMAT_YUYV: 4078 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; 4079 case DRM_FORMAT_YVYU: 4080 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; 4081 case DRM_FORMAT_UYVY: 4082 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; 4083 case DRM_FORMAT_VYUY: 4084 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; 4085 case DRM_FORMAT_NV12: 4086 return PLANE_CTL_FORMAT_NV12; 4087 case DRM_FORMAT_P010: 4088 return PLANE_CTL_FORMAT_P010; 4089 case DRM_FORMAT_P012: 4090 return PLANE_CTL_FORMAT_P012; 4091 case DRM_FORMAT_P016: 4092 return PLANE_CTL_FORMAT_P016; 4093 case DRM_FORMAT_Y210: 4094 return PLANE_CTL_FORMAT_Y210; 4095 case DRM_FORMAT_Y212: 4096 return PLANE_CTL_FORMAT_Y212; 4097 case DRM_FORMAT_Y216: 4098 return PLANE_CTL_FORMAT_Y216; 4099 case DRM_FORMAT_XVYU2101010: 4100 return PLANE_CTL_FORMAT_Y410; 4101 case DRM_FORMAT_XVYU12_16161616: 4102 return PLANE_CTL_FORMAT_Y412; 4103 case DRM_FORMAT_XVYU16161616: 4104 return PLANE_CTL_FORMAT_Y416; 4105 default: 4106 MISSING_CASE(pixel_format); 4107 } 4108 4109 return 0; 4110 } 4111 4112 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) 4113 { 4114 if (!plane_state->base.fb->format->has_alpha) 4115 return PLANE_CTL_ALPHA_DISABLE; 4116 4117 switch (plane_state->base.pixel_blend_mode) { 4118 case DRM_MODE_BLEND_PIXEL_NONE: 4119 return PLANE_CTL_ALPHA_DISABLE; 4120 case DRM_MODE_BLEND_PREMULTI: 4121 return PLANE_CTL_ALPHA_SW_PREMULTIPLY; 4122 case DRM_MODE_BLEND_COVERAGE: 4123 return PLANE_CTL_ALPHA_HW_PREMULTIPLY; 4124 default: 4125 MISSING_CASE(plane_state->base.pixel_blend_mode); 4126 return PLANE_CTL_ALPHA_DISABLE; 4127 } 4128 } 4129 4130 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) 4131 { 4132 if (!plane_state->base.fb->format->has_alpha) 4133 return PLANE_COLOR_ALPHA_DISABLE; 4134 4135 switch (plane_state->base.pixel_blend_mode) { 4136 case DRM_MODE_BLEND_PIXEL_NONE: 4137 return PLANE_COLOR_ALPHA_DISABLE; 4138 case DRM_MODE_BLEND_PREMULTI: 4139 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; 4140 case DRM_MODE_BLEND_COVERAGE: 4141 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; 4142 default: 4143 MISSING_CASE(plane_state->base.pixel_blend_mode); 4144 return PLANE_COLOR_ALPHA_DISABLE; 4145 } 4146 } 4147 4148 static u32 skl_plane_ctl_tiling(u64 fb_modifier) 4149 { 4150 switch (fb_modifier) { 4151 case DRM_FORMAT_MOD_LINEAR: 4152 break; 4153 case I915_FORMAT_MOD_X_TILED: 4154 return PLANE_CTL_TILED_X; 4155 case I915_FORMAT_MOD_Y_TILED: 4156 return PLANE_CTL_TILED_Y; 4157 case I915_FORMAT_MOD_Y_TILED_CCS: 4158 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4159 case I915_FORMAT_MOD_Yf_TILED: 4160 return PLANE_CTL_TILED_YF; 4161 case I915_FORMAT_MOD_Yf_TILED_CCS: 4162 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4163 default: 4164 MISSING_CASE(fb_modifier); 4165 } 4166 4167 return 0; 4168 } 4169 4170 static u32 skl_plane_ctl_rotate(unsigned int rotate) 4171 { 4172 switch (rotate) { 4173 case DRM_MODE_ROTATE_0: 4174 break; 4175 /* 4176 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 4177 * while i915 HW rotation is clockwise, thats why this swapping. 4178 */ 4179 case DRM_MODE_ROTATE_90: 4180 return PLANE_CTL_ROTATE_270; 4181 case DRM_MODE_ROTATE_180: 4182 return PLANE_CTL_ROTATE_180; 4183 case DRM_MODE_ROTATE_270: 4184 return PLANE_CTL_ROTATE_90; 4185 default: 4186 MISSING_CASE(rotate); 4187 } 4188 4189 return 0; 4190 } 4191 4192 static u32 cnl_plane_ctl_flip(unsigned int reflect) 4193 { 4194 switch (reflect) { 4195 case 0: 4196 break; 4197 case DRM_MODE_REFLECT_X: 4198 return PLANE_CTL_FLIP_HORIZONTAL; 4199 case DRM_MODE_REFLECT_Y: 4200 default: 4201 MISSING_CASE(reflect); 4202 } 4203 4204 return 0; 4205 } 4206 4207 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4208 { 4209 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 4210 u32 plane_ctl = 0; 4211 4212 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4213 return plane_ctl; 4214 4215 if (crtc_state->gamma_enable) 4216 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; 4217 4218 if (crtc_state->csc_enable) 4219 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; 4220 4221 return plane_ctl; 4222 } 4223 4224 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, 4225 const struct intel_plane_state *plane_state) 4226 { 4227 struct drm_i915_private *dev_priv = 4228 to_i915(plane_state->base.plane->dev); 4229 const struct drm_framebuffer *fb = plane_state->base.fb; 4230 unsigned int rotation = plane_state->base.rotation; 4231 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; 4232 u32 plane_ctl; 4233 4234 plane_ctl = PLANE_CTL_ENABLE; 4235 4236 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { 4237 plane_ctl |= skl_plane_ctl_alpha(plane_state); 4238 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; 4239 4240 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709) 4241 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; 4242 4243 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4244 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; 4245 } 4246 4247 plane_ctl |= skl_plane_ctl_format(fb->format->format); 4248 plane_ctl |= skl_plane_ctl_tiling(fb->modifier); 4249 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); 4250 4251 if (INTEL_GEN(dev_priv) >= 10) 4252 plane_ctl |= cnl_plane_ctl_flip(rotation & 4253 DRM_MODE_REFLECT_MASK); 4254 4255 if (key->flags & I915_SET_COLORKEY_DESTINATION) 4256 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; 4257 else if (key->flags & I915_SET_COLORKEY_SOURCE) 4258 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; 4259 4260 return plane_ctl; 4261 } 4262 4263 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) 4264 { 4265 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 4266 u32 plane_color_ctl = 0; 4267 4268 if (INTEL_GEN(dev_priv) >= 11) 4269 return plane_color_ctl; 4270 4271 if (crtc_state->gamma_enable) 4272 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; 4273 4274 if (crtc_state->csc_enable) 4275 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; 4276 4277 return plane_color_ctl; 4278 } 4279 4280 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, 4281 const struct intel_plane_state *plane_state) 4282 { 4283 struct drm_i915_private *dev_priv = 4284 to_i915(plane_state->base.plane->dev); 4285 const struct drm_framebuffer *fb = plane_state->base.fb; 4286 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 4287 u32 plane_color_ctl = 0; 4288 4289 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; 4290 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); 4291 4292 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { 4293 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709) 4294 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; 4295 else 4296 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709; 4297 4298 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4299 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; 4300 } else if (fb->format->is_yuv) { 4301 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; 4302 } 4303 4304 return plane_color_ctl; 4305 } 4306 4307 static int 4308 __intel_display_resume(struct drm_device *dev, 4309 struct drm_atomic_state *state, 4310 struct drm_modeset_acquire_ctx *ctx) 4311 { 4312 struct drm_crtc_state *crtc_state; 4313 struct drm_crtc *crtc; 4314 int i, ret; 4315 4316 intel_modeset_setup_hw_state(dev, ctx); 4317 intel_vga_redisable(to_i915(dev)); 4318 4319 if (!state) 4320 return 0; 4321 4322 /* 4323 * We've duplicated the state, pointers to the old state are invalid. 4324 * 4325 * Don't attempt to use the old state until we commit the duplicated state. 4326 */ 4327 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 4328 /* 4329 * Force recalculation even if we restore 4330 * current state. With fast modeset this may not result 4331 * in a modeset when the state is compatible. 4332 */ 4333 crtc_state->mode_changed = true; 4334 } 4335 4336 /* ignore any reset values/BIOS leftovers in the WM registers */ 4337 if (!HAS_GMCH(to_i915(dev))) 4338 to_intel_atomic_state(state)->skip_intermediate_wm = true; 4339 4340 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 4341 4342 WARN_ON(ret == -EDEADLK); 4343 return ret; 4344 } 4345 4346 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 4347 { 4348 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 4349 intel_has_gpu_reset(&dev_priv->gt)); 4350 } 4351 4352 void intel_prepare_reset(struct drm_i915_private *dev_priv) 4353 { 4354 struct drm_device *dev = &dev_priv->drm; 4355 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4356 struct drm_atomic_state *state; 4357 int ret; 4358 4359 /* reset doesn't touch the display */ 4360 if (!i915_modparams.force_reset_modeset_test && 4361 !gpu_reset_clobbers_display(dev_priv)) 4362 return; 4363 4364 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 4365 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4366 smp_mb__after_atomic(); 4367 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 4368 4369 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 4370 DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n"); 4371 intel_gt_set_wedged(&dev_priv->gt); 4372 } 4373 4374 /* 4375 * Need mode_config.mutex so that we don't 4376 * trample ongoing ->detect() and whatnot. 4377 */ 4378 mutex_lock(&dev->mode_config.mutex); 4379 drm_modeset_acquire_init(ctx, 0); 4380 while (1) { 4381 ret = drm_modeset_lock_all_ctx(dev, ctx); 4382 if (ret != -EDEADLK) 4383 break; 4384 4385 drm_modeset_backoff(ctx); 4386 } 4387 /* 4388 * Disabling the crtcs gracefully seems nicer. Also the 4389 * g33 docs say we should at least disable all the planes. 4390 */ 4391 state = drm_atomic_helper_duplicate_state(dev, ctx); 4392 if (IS_ERR(state)) { 4393 ret = PTR_ERR(state); 4394 DRM_ERROR("Duplicating state failed with %i\n", ret); 4395 return; 4396 } 4397 4398 ret = drm_atomic_helper_disable_all(dev, ctx); 4399 if (ret) { 4400 DRM_ERROR("Suspending crtc's failed with %i\n", ret); 4401 drm_atomic_state_put(state); 4402 return; 4403 } 4404 4405 dev_priv->modeset_restore_state = state; 4406 state->acquire_ctx = ctx; 4407 } 4408 4409 void intel_finish_reset(struct drm_i915_private *dev_priv) 4410 { 4411 struct drm_device *dev = &dev_priv->drm; 4412 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4413 struct drm_atomic_state *state; 4414 int ret; 4415 4416 /* reset doesn't touch the display */ 4417 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 4418 return; 4419 4420 state = fetch_and_zero(&dev_priv->modeset_restore_state); 4421 if (!state) 4422 goto unlock; 4423 4424 /* reset doesn't touch the display */ 4425 if (!gpu_reset_clobbers_display(dev_priv)) { 4426 /* for testing only restore the display */ 4427 ret = __intel_display_resume(dev, state, ctx); 4428 if (ret) 4429 DRM_ERROR("Restoring old state failed with %i\n", ret); 4430 } else { 4431 /* 4432 * The display has been reset as well, 4433 * so need a full re-initialization. 4434 */ 4435 intel_pps_unlock_regs_wa(dev_priv); 4436 intel_modeset_init_hw(dev_priv); 4437 intel_init_clock_gating(dev_priv); 4438 4439 spin_lock_irq(&dev_priv->irq_lock); 4440 if (dev_priv->display.hpd_irq_setup) 4441 dev_priv->display.hpd_irq_setup(dev_priv); 4442 spin_unlock_irq(&dev_priv->irq_lock); 4443 4444 ret = __intel_display_resume(dev, state, ctx); 4445 if (ret) 4446 DRM_ERROR("Restoring old state failed with %i\n", ret); 4447 4448 intel_hpd_init(dev_priv); 4449 } 4450 4451 drm_atomic_state_put(state); 4452 unlock: 4453 drm_modeset_drop_locks(ctx); 4454 drm_modeset_acquire_fini(ctx); 4455 mutex_unlock(&dev->mode_config.mutex); 4456 4457 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4458 } 4459 4460 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 4461 { 4462 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4463 enum pipe pipe = crtc->pipe; 4464 u32 tmp; 4465 4466 tmp = I915_READ(PIPE_CHICKEN(pipe)); 4467 4468 /* 4469 * Display WA #1153: icl 4470 * enable hardware to bypass the alpha math 4471 * and rounding for per-pixel values 00 and 0xff 4472 */ 4473 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 4474 /* 4475 * Display WA # 1605353570: icl 4476 * Set the pixel rounding bit to 1 for allowing 4477 * passthrough of Frame buffer pixels unmodified 4478 * across pipe 4479 */ 4480 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 4481 I915_WRITE(PIPE_CHICKEN(pipe), tmp); 4482 } 4483 4484 static void icl_enable_trans_port_sync(const struct intel_crtc_state *crtc_state) 4485 { 4486 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 4487 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4488 u32 trans_ddi_func_ctl2_val; 4489 u8 master_select; 4490 4491 /* 4492 * Configure the master select and enable Transcoder Port Sync for 4493 * Slave CRTCs transcoder. 4494 */ 4495 if (crtc_state->master_transcoder == INVALID_TRANSCODER) 4496 return; 4497 4498 if (crtc_state->master_transcoder == TRANSCODER_EDP) 4499 master_select = 0; 4500 else 4501 master_select = crtc_state->master_transcoder + 1; 4502 4503 /* Set the master select bits for Tranascoder Port Sync */ 4504 trans_ddi_func_ctl2_val = (PORT_SYNC_MODE_MASTER_SELECT(master_select) & 4505 PORT_SYNC_MODE_MASTER_SELECT_MASK) << 4506 PORT_SYNC_MODE_MASTER_SELECT_SHIFT; 4507 /* Enable Transcoder Port Sync */ 4508 trans_ddi_func_ctl2_val |= PORT_SYNC_MODE_ENABLE; 4509 4510 I915_WRITE(TRANS_DDI_FUNC_CTL2(crtc_state->cpu_transcoder), 4511 trans_ddi_func_ctl2_val); 4512 } 4513 4514 static void icl_disable_transcoder_port_sync(const struct intel_crtc_state *old_crtc_state) 4515 { 4516 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 4517 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4518 4519 if (old_crtc_state->master_transcoder == INVALID_TRANSCODER) 4520 return; 4521 4522 DRM_DEBUG_KMS("Disabling Transcoder Port Sync on Slave Transcoder %s\n", 4523 transcoder_name(old_crtc_state->cpu_transcoder)); 4524 4525 I915_WRITE(TRANS_DDI_FUNC_CTL2(old_crtc_state->cpu_transcoder), 0); 4526 } 4527 4528 static void intel_fdi_normal_train(struct intel_crtc *crtc) 4529 { 4530 struct drm_device *dev = crtc->base.dev; 4531 struct drm_i915_private *dev_priv = to_i915(dev); 4532 enum pipe pipe = crtc->pipe; 4533 i915_reg_t reg; 4534 u32 temp; 4535 4536 /* enable normal train */ 4537 reg = FDI_TX_CTL(pipe); 4538 temp = I915_READ(reg); 4539 if (IS_IVYBRIDGE(dev_priv)) { 4540 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 4541 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 4542 } else { 4543 temp &= ~FDI_LINK_TRAIN_NONE; 4544 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 4545 } 4546 I915_WRITE(reg, temp); 4547 4548 reg = FDI_RX_CTL(pipe); 4549 temp = I915_READ(reg); 4550 if (HAS_PCH_CPT(dev_priv)) { 4551 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4552 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 4553 } else { 4554 temp &= ~FDI_LINK_TRAIN_NONE; 4555 temp |= FDI_LINK_TRAIN_NONE; 4556 } 4557 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 4558 4559 /* wait one idle pattern time */ 4560 POSTING_READ(reg); 4561 udelay(1000); 4562 4563 /* IVB wants error correction enabled */ 4564 if (IS_IVYBRIDGE(dev_priv)) 4565 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | 4566 FDI_FE_ERRC_ENABLE); 4567 } 4568 4569 /* The FDI link training functions for ILK/Ibexpeak. */ 4570 static void ironlake_fdi_link_train(struct intel_crtc *crtc, 4571 const struct intel_crtc_state *crtc_state) 4572 { 4573 struct drm_device *dev = crtc->base.dev; 4574 struct drm_i915_private *dev_priv = to_i915(dev); 4575 enum pipe pipe = crtc->pipe; 4576 i915_reg_t reg; 4577 u32 temp, tries; 4578 4579 /* FDI needs bits from pipe first */ 4580 assert_pipe_enabled(dev_priv, pipe); 4581 4582 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 4583 for train result */ 4584 reg = FDI_RX_IMR(pipe); 4585 temp = I915_READ(reg); 4586 temp &= ~FDI_RX_SYMBOL_LOCK; 4587 temp &= ~FDI_RX_BIT_LOCK; 4588 I915_WRITE(reg, temp); 4589 I915_READ(reg); 4590 udelay(150); 4591 4592 /* enable CPU FDI TX and PCH FDI RX */ 4593 reg = FDI_TX_CTL(pipe); 4594 temp = I915_READ(reg); 4595 temp &= ~FDI_DP_PORT_WIDTH_MASK; 4596 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4597 temp &= ~FDI_LINK_TRAIN_NONE; 4598 temp |= FDI_LINK_TRAIN_PATTERN_1; 4599 I915_WRITE(reg, temp | FDI_TX_ENABLE); 4600 4601 reg = FDI_RX_CTL(pipe); 4602 temp = I915_READ(reg); 4603 temp &= ~FDI_LINK_TRAIN_NONE; 4604 temp |= FDI_LINK_TRAIN_PATTERN_1; 4605 I915_WRITE(reg, temp | FDI_RX_ENABLE); 4606 4607 POSTING_READ(reg); 4608 udelay(150); 4609 4610 /* Ironlake workaround, enable clock pointer after FDI enable*/ 4611 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); 4612 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | 4613 FDI_RX_PHASE_SYNC_POINTER_EN); 4614 4615 reg = FDI_RX_IIR(pipe); 4616 for (tries = 0; tries < 5; tries++) { 4617 temp = I915_READ(reg); 4618 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4619 4620 if ((temp & FDI_RX_BIT_LOCK)) { 4621 DRM_DEBUG_KMS("FDI train 1 done.\n"); 4622 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 4623 break; 4624 } 4625 } 4626 if (tries == 5) 4627 DRM_ERROR("FDI train 1 fail!\n"); 4628 4629 /* Train 2 */ 4630 reg = FDI_TX_CTL(pipe); 4631 temp = I915_READ(reg); 4632 temp &= ~FDI_LINK_TRAIN_NONE; 4633 temp |= FDI_LINK_TRAIN_PATTERN_2; 4634 I915_WRITE(reg, temp); 4635 4636 reg = FDI_RX_CTL(pipe); 4637 temp = I915_READ(reg); 4638 temp &= ~FDI_LINK_TRAIN_NONE; 4639 temp |= FDI_LINK_TRAIN_PATTERN_2; 4640 I915_WRITE(reg, temp); 4641 4642 POSTING_READ(reg); 4643 udelay(150); 4644 4645 reg = FDI_RX_IIR(pipe); 4646 for (tries = 0; tries < 5; tries++) { 4647 temp = I915_READ(reg); 4648 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4649 4650 if (temp & FDI_RX_SYMBOL_LOCK) { 4651 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 4652 DRM_DEBUG_KMS("FDI train 2 done.\n"); 4653 break; 4654 } 4655 } 4656 if (tries == 5) 4657 DRM_ERROR("FDI train 2 fail!\n"); 4658 4659 DRM_DEBUG_KMS("FDI train done\n"); 4660 4661 } 4662 4663 static const int snb_b_fdi_train_param[] = { 4664 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 4665 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 4666 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 4667 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 4668 }; 4669 4670 /* The FDI link training functions for SNB/Cougarpoint. */ 4671 static void gen6_fdi_link_train(struct intel_crtc *crtc, 4672 const struct intel_crtc_state *crtc_state) 4673 { 4674 struct drm_device *dev = crtc->base.dev; 4675 struct drm_i915_private *dev_priv = to_i915(dev); 4676 enum pipe pipe = crtc->pipe; 4677 i915_reg_t reg; 4678 u32 temp, i, retry; 4679 4680 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 4681 for train result */ 4682 reg = FDI_RX_IMR(pipe); 4683 temp = I915_READ(reg); 4684 temp &= ~FDI_RX_SYMBOL_LOCK; 4685 temp &= ~FDI_RX_BIT_LOCK; 4686 I915_WRITE(reg, temp); 4687 4688 POSTING_READ(reg); 4689 udelay(150); 4690 4691 /* enable CPU FDI TX and PCH FDI RX */ 4692 reg = FDI_TX_CTL(pipe); 4693 temp = I915_READ(reg); 4694 temp &= ~FDI_DP_PORT_WIDTH_MASK; 4695 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4696 temp &= ~FDI_LINK_TRAIN_NONE; 4697 temp |= FDI_LINK_TRAIN_PATTERN_1; 4698 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4699 /* SNB-B */ 4700 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 4701 I915_WRITE(reg, temp | FDI_TX_ENABLE); 4702 4703 I915_WRITE(FDI_RX_MISC(pipe), 4704 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 4705 4706 reg = FDI_RX_CTL(pipe); 4707 temp = I915_READ(reg); 4708 if (HAS_PCH_CPT(dev_priv)) { 4709 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4710 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 4711 } else { 4712 temp &= ~FDI_LINK_TRAIN_NONE; 4713 temp |= FDI_LINK_TRAIN_PATTERN_1; 4714 } 4715 I915_WRITE(reg, temp | FDI_RX_ENABLE); 4716 4717 POSTING_READ(reg); 4718 udelay(150); 4719 4720 for (i = 0; i < 4; i++) { 4721 reg = FDI_TX_CTL(pipe); 4722 temp = I915_READ(reg); 4723 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4724 temp |= snb_b_fdi_train_param[i]; 4725 I915_WRITE(reg, temp); 4726 4727 POSTING_READ(reg); 4728 udelay(500); 4729 4730 for (retry = 0; retry < 5; retry++) { 4731 reg = FDI_RX_IIR(pipe); 4732 temp = I915_READ(reg); 4733 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4734 if (temp & FDI_RX_BIT_LOCK) { 4735 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 4736 DRM_DEBUG_KMS("FDI train 1 done.\n"); 4737 break; 4738 } 4739 udelay(50); 4740 } 4741 if (retry < 5) 4742 break; 4743 } 4744 if (i == 4) 4745 DRM_ERROR("FDI train 1 fail!\n"); 4746 4747 /* Train 2 */ 4748 reg = FDI_TX_CTL(pipe); 4749 temp = I915_READ(reg); 4750 temp &= ~FDI_LINK_TRAIN_NONE; 4751 temp |= FDI_LINK_TRAIN_PATTERN_2; 4752 if (IS_GEN(dev_priv, 6)) { 4753 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4754 /* SNB-B */ 4755 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 4756 } 4757 I915_WRITE(reg, temp); 4758 4759 reg = FDI_RX_CTL(pipe); 4760 temp = I915_READ(reg); 4761 if (HAS_PCH_CPT(dev_priv)) { 4762 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4763 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 4764 } else { 4765 temp &= ~FDI_LINK_TRAIN_NONE; 4766 temp |= FDI_LINK_TRAIN_PATTERN_2; 4767 } 4768 I915_WRITE(reg, temp); 4769 4770 POSTING_READ(reg); 4771 udelay(150); 4772 4773 for (i = 0; i < 4; i++) { 4774 reg = FDI_TX_CTL(pipe); 4775 temp = I915_READ(reg); 4776 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4777 temp |= snb_b_fdi_train_param[i]; 4778 I915_WRITE(reg, temp); 4779 4780 POSTING_READ(reg); 4781 udelay(500); 4782 4783 for (retry = 0; retry < 5; retry++) { 4784 reg = FDI_RX_IIR(pipe); 4785 temp = I915_READ(reg); 4786 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4787 if (temp & FDI_RX_SYMBOL_LOCK) { 4788 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 4789 DRM_DEBUG_KMS("FDI train 2 done.\n"); 4790 break; 4791 } 4792 udelay(50); 4793 } 4794 if (retry < 5) 4795 break; 4796 } 4797 if (i == 4) 4798 DRM_ERROR("FDI train 2 fail!\n"); 4799 4800 DRM_DEBUG_KMS("FDI train done.\n"); 4801 } 4802 4803 /* Manual link training for Ivy Bridge A0 parts */ 4804 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc, 4805 const struct intel_crtc_state *crtc_state) 4806 { 4807 struct drm_device *dev = crtc->base.dev; 4808 struct drm_i915_private *dev_priv = to_i915(dev); 4809 enum pipe pipe = crtc->pipe; 4810 i915_reg_t reg; 4811 u32 temp, i, j; 4812 4813 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 4814 for train result */ 4815 reg = FDI_RX_IMR(pipe); 4816 temp = I915_READ(reg); 4817 temp &= ~FDI_RX_SYMBOL_LOCK; 4818 temp &= ~FDI_RX_BIT_LOCK; 4819 I915_WRITE(reg, temp); 4820 4821 POSTING_READ(reg); 4822 udelay(150); 4823 4824 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", 4825 I915_READ(FDI_RX_IIR(pipe))); 4826 4827 /* Try each vswing and preemphasis setting twice before moving on */ 4828 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { 4829 /* disable first in case we need to retry */ 4830 reg = FDI_TX_CTL(pipe); 4831 temp = I915_READ(reg); 4832 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 4833 temp &= ~FDI_TX_ENABLE; 4834 I915_WRITE(reg, temp); 4835 4836 reg = FDI_RX_CTL(pipe); 4837 temp = I915_READ(reg); 4838 temp &= ~FDI_LINK_TRAIN_AUTO; 4839 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4840 temp &= ~FDI_RX_ENABLE; 4841 I915_WRITE(reg, temp); 4842 4843 /* enable CPU FDI TX and PCH FDI RX */ 4844 reg = FDI_TX_CTL(pipe); 4845 temp = I915_READ(reg); 4846 temp &= ~FDI_DP_PORT_WIDTH_MASK; 4847 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4848 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 4849 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4850 temp |= snb_b_fdi_train_param[j/2]; 4851 temp |= FDI_COMPOSITE_SYNC; 4852 I915_WRITE(reg, temp | FDI_TX_ENABLE); 4853 4854 I915_WRITE(FDI_RX_MISC(pipe), 4855 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 4856 4857 reg = FDI_RX_CTL(pipe); 4858 temp = I915_READ(reg); 4859 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 4860 temp |= FDI_COMPOSITE_SYNC; 4861 I915_WRITE(reg, temp | FDI_RX_ENABLE); 4862 4863 POSTING_READ(reg); 4864 udelay(1); /* should be 0.5us */ 4865 4866 for (i = 0; i < 4; i++) { 4867 reg = FDI_RX_IIR(pipe); 4868 temp = I915_READ(reg); 4869 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4870 4871 if (temp & FDI_RX_BIT_LOCK || 4872 (I915_READ(reg) & FDI_RX_BIT_LOCK)) { 4873 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 4874 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", 4875 i); 4876 break; 4877 } 4878 udelay(1); /* should be 0.5us */ 4879 } 4880 if (i == 4) { 4881 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2); 4882 continue; 4883 } 4884 4885 /* Train 2 */ 4886 reg = FDI_TX_CTL(pipe); 4887 temp = I915_READ(reg); 4888 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 4889 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 4890 I915_WRITE(reg, temp); 4891 4892 reg = FDI_RX_CTL(pipe); 4893 temp = I915_READ(reg); 4894 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4895 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 4896 I915_WRITE(reg, temp); 4897 4898 POSTING_READ(reg); 4899 udelay(2); /* should be 1.5us */ 4900 4901 for (i = 0; i < 4; i++) { 4902 reg = FDI_RX_IIR(pipe); 4903 temp = I915_READ(reg); 4904 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4905 4906 if (temp & FDI_RX_SYMBOL_LOCK || 4907 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) { 4908 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 4909 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", 4910 i); 4911 goto train_done; 4912 } 4913 udelay(2); /* should be 1.5us */ 4914 } 4915 if (i == 4) 4916 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2); 4917 } 4918 4919 train_done: 4920 DRM_DEBUG_KMS("FDI train done.\n"); 4921 } 4922 4923 static void ironlake_fdi_pll_enable(const struct intel_crtc_state *crtc_state) 4924 { 4925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 4926 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 4927 enum pipe pipe = intel_crtc->pipe; 4928 i915_reg_t reg; 4929 u32 temp; 4930 4931 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 4932 reg = FDI_RX_CTL(pipe); 4933 temp = I915_READ(reg); 4934 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); 4935 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4936 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 4937 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); 4938 4939 POSTING_READ(reg); 4940 udelay(200); 4941 4942 /* Switch from Rawclk to PCDclk */ 4943 temp = I915_READ(reg); 4944 I915_WRITE(reg, temp | FDI_PCDCLK); 4945 4946 POSTING_READ(reg); 4947 udelay(200); 4948 4949 /* Enable CPU FDI TX PLL, always on for Ironlake */ 4950 reg = FDI_TX_CTL(pipe); 4951 temp = I915_READ(reg); 4952 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 4953 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); 4954 4955 POSTING_READ(reg); 4956 udelay(100); 4957 } 4958 } 4959 4960 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) 4961 { 4962 struct drm_device *dev = intel_crtc->base.dev; 4963 struct drm_i915_private *dev_priv = to_i915(dev); 4964 enum pipe pipe = intel_crtc->pipe; 4965 i915_reg_t reg; 4966 u32 temp; 4967 4968 /* Switch from PCDclk to Rawclk */ 4969 reg = FDI_RX_CTL(pipe); 4970 temp = I915_READ(reg); 4971 I915_WRITE(reg, temp & ~FDI_PCDCLK); 4972 4973 /* Disable CPU FDI TX PLL */ 4974 reg = FDI_TX_CTL(pipe); 4975 temp = I915_READ(reg); 4976 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); 4977 4978 POSTING_READ(reg); 4979 udelay(100); 4980 4981 reg = FDI_RX_CTL(pipe); 4982 temp = I915_READ(reg); 4983 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); 4984 4985 /* Wait for the clocks to turn off. */ 4986 POSTING_READ(reg); 4987 udelay(100); 4988 } 4989 4990 static void ironlake_fdi_disable(struct drm_crtc *crtc) 4991 { 4992 struct drm_device *dev = crtc->dev; 4993 struct drm_i915_private *dev_priv = to_i915(dev); 4994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4995 enum pipe pipe = intel_crtc->pipe; 4996 i915_reg_t reg; 4997 u32 temp; 4998 4999 /* disable CPU FDI tx and PCH FDI rx */ 5000 reg = FDI_TX_CTL(pipe); 5001 temp = I915_READ(reg); 5002 I915_WRITE(reg, temp & ~FDI_TX_ENABLE); 5003 POSTING_READ(reg); 5004 5005 reg = FDI_RX_CTL(pipe); 5006 temp = I915_READ(reg); 5007 temp &= ~(0x7 << 16); 5008 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5009 I915_WRITE(reg, temp & ~FDI_RX_ENABLE); 5010 5011 POSTING_READ(reg); 5012 udelay(100); 5013 5014 /* Ironlake workaround, disable clock pointer after downing FDI */ 5015 if (HAS_PCH_IBX(dev_priv)) 5016 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); 5017 5018 /* still set train pattern 1 */ 5019 reg = FDI_TX_CTL(pipe); 5020 temp = I915_READ(reg); 5021 temp &= ~FDI_LINK_TRAIN_NONE; 5022 temp |= FDI_LINK_TRAIN_PATTERN_1; 5023 I915_WRITE(reg, temp); 5024 5025 reg = FDI_RX_CTL(pipe); 5026 temp = I915_READ(reg); 5027 if (HAS_PCH_CPT(dev_priv)) { 5028 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5029 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5030 } else { 5031 temp &= ~FDI_LINK_TRAIN_NONE; 5032 temp |= FDI_LINK_TRAIN_PATTERN_1; 5033 } 5034 /* BPC in FDI rx is consistent with that in PIPECONF */ 5035 temp &= ~(0x07 << 16); 5036 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5037 I915_WRITE(reg, temp); 5038 5039 POSTING_READ(reg); 5040 udelay(100); 5041 } 5042 5043 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 5044 { 5045 struct drm_crtc *crtc; 5046 bool cleanup_done; 5047 5048 drm_for_each_crtc(crtc, &dev_priv->drm) { 5049 struct drm_crtc_commit *commit; 5050 spin_lock(&crtc->commit_lock); 5051 commit = list_first_entry_or_null(&crtc->commit_list, 5052 struct drm_crtc_commit, commit_entry); 5053 cleanup_done = commit ? 5054 try_wait_for_completion(&commit->cleanup_done) : true; 5055 spin_unlock(&crtc->commit_lock); 5056 5057 if (cleanup_done) 5058 continue; 5059 5060 drm_crtc_wait_one_vblank(crtc); 5061 5062 return true; 5063 } 5064 5065 return false; 5066 } 5067 5068 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 5069 { 5070 u32 temp; 5071 5072 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); 5073 5074 mutex_lock(&dev_priv->sb_lock); 5075 5076 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5077 temp |= SBI_SSCCTL_DISABLE; 5078 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5079 5080 mutex_unlock(&dev_priv->sb_lock); 5081 } 5082 5083 /* Program iCLKIP clock to the desired frequency */ 5084 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 5085 { 5086 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5087 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5088 int clock = crtc_state->base.adjusted_mode.crtc_clock; 5089 u32 divsel, phaseinc, auxdiv, phasedir = 0; 5090 u32 temp; 5091 5092 lpt_disable_iclkip(dev_priv); 5093 5094 /* The iCLK virtual clock root frequency is in MHz, 5095 * but the adjusted_mode->crtc_clock in in KHz. To get the 5096 * divisors, it is necessary to divide one by another, so we 5097 * convert the virtual clock precision to KHz here for higher 5098 * precision. 5099 */ 5100 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 5101 u32 iclk_virtual_root_freq = 172800 * 1000; 5102 u32 iclk_pi_range = 64; 5103 u32 desired_divisor; 5104 5105 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5106 clock << auxdiv); 5107 divsel = (desired_divisor / iclk_pi_range) - 2; 5108 phaseinc = desired_divisor % iclk_pi_range; 5109 5110 /* 5111 * Near 20MHz is a corner case which is 5112 * out of range for the 7-bit divisor 5113 */ 5114 if (divsel <= 0x7f) 5115 break; 5116 } 5117 5118 /* This should not happen with any sane values */ 5119 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 5120 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 5121 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & 5122 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 5123 5124 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 5125 clock, 5126 auxdiv, 5127 divsel, 5128 phasedir, 5129 phaseinc); 5130 5131 mutex_lock(&dev_priv->sb_lock); 5132 5133 /* Program SSCDIVINTPHASE6 */ 5134 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5135 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 5136 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 5137 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 5138 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 5139 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 5140 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 5141 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 5142 5143 /* Program SSCAUXDIV */ 5144 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5145 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 5146 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 5147 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 5148 5149 /* Enable modulator and associated divider */ 5150 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5151 temp &= ~SBI_SSCCTL_DISABLE; 5152 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5153 5154 mutex_unlock(&dev_priv->sb_lock); 5155 5156 /* Wait for initialization time */ 5157 udelay(24); 5158 5159 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); 5160 } 5161 5162 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 5163 { 5164 u32 divsel, phaseinc, auxdiv; 5165 u32 iclk_virtual_root_freq = 172800 * 1000; 5166 u32 iclk_pi_range = 64; 5167 u32 desired_divisor; 5168 u32 temp; 5169 5170 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 5171 return 0; 5172 5173 mutex_lock(&dev_priv->sb_lock); 5174 5175 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5176 if (temp & SBI_SSCCTL_DISABLE) { 5177 mutex_unlock(&dev_priv->sb_lock); 5178 return 0; 5179 } 5180 5181 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5182 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 5183 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 5184 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 5185 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 5186 5187 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5188 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 5189 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 5190 5191 mutex_unlock(&dev_priv->sb_lock); 5192 5193 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 5194 5195 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5196 desired_divisor << auxdiv); 5197 } 5198 5199 static void ironlake_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 5200 enum pipe pch_transcoder) 5201 { 5202 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5203 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5204 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5205 5206 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder), 5207 I915_READ(HTOTAL(cpu_transcoder))); 5208 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder), 5209 I915_READ(HBLANK(cpu_transcoder))); 5210 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder), 5211 I915_READ(HSYNC(cpu_transcoder))); 5212 5213 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder), 5214 I915_READ(VTOTAL(cpu_transcoder))); 5215 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder), 5216 I915_READ(VBLANK(cpu_transcoder))); 5217 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder), 5218 I915_READ(VSYNC(cpu_transcoder))); 5219 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder), 5220 I915_READ(VSYNCSHIFT(cpu_transcoder))); 5221 } 5222 5223 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 5224 { 5225 u32 temp; 5226 5227 temp = I915_READ(SOUTH_CHICKEN1); 5228 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 5229 return; 5230 5231 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); 5232 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); 5233 5234 temp &= ~FDI_BC_BIFURCATION_SELECT; 5235 if (enable) 5236 temp |= FDI_BC_BIFURCATION_SELECT; 5237 5238 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis"); 5239 I915_WRITE(SOUTH_CHICKEN1, temp); 5240 POSTING_READ(SOUTH_CHICKEN1); 5241 } 5242 5243 static void ivybridge_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 5244 { 5245 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5246 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5247 5248 switch (crtc->pipe) { 5249 case PIPE_A: 5250 break; 5251 case PIPE_B: 5252 if (crtc_state->fdi_lanes > 2) 5253 cpt_set_fdi_bc_bifurcation(dev_priv, false); 5254 else 5255 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5256 5257 break; 5258 case PIPE_C: 5259 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5260 5261 break; 5262 default: 5263 BUG(); 5264 } 5265 } 5266 5267 /* 5268 * Finds the encoder associated with the given CRTC. This can only be 5269 * used when we know that the CRTC isn't feeding multiple encoders! 5270 */ 5271 static struct intel_encoder * 5272 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 5273 const struct intel_crtc_state *crtc_state) 5274 { 5275 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5276 const struct drm_connector_state *connector_state; 5277 const struct drm_connector *connector; 5278 struct intel_encoder *encoder = NULL; 5279 int num_encoders = 0; 5280 int i; 5281 5282 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 5283 if (connector_state->crtc != &crtc->base) 5284 continue; 5285 5286 encoder = to_intel_encoder(connector_state->best_encoder); 5287 num_encoders++; 5288 } 5289 5290 WARN(num_encoders != 1, "%d encoders for pipe %c\n", 5291 num_encoders, pipe_name(crtc->pipe)); 5292 5293 return encoder; 5294 } 5295 5296 /* 5297 * Enable PCH resources required for PCH ports: 5298 * - PCH PLLs 5299 * - FDI training & RX/TX 5300 * - update transcoder timings 5301 * - DP transcoding bits 5302 * - transcoder 5303 */ 5304 static void ironlake_pch_enable(const struct intel_atomic_state *state, 5305 const struct intel_crtc_state *crtc_state) 5306 { 5307 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5308 struct drm_device *dev = crtc->base.dev; 5309 struct drm_i915_private *dev_priv = to_i915(dev); 5310 enum pipe pipe = crtc->pipe; 5311 u32 temp; 5312 5313 assert_pch_transcoder_disabled(dev_priv, pipe); 5314 5315 if (IS_IVYBRIDGE(dev_priv)) 5316 ivybridge_update_fdi_bc_bifurcation(crtc_state); 5317 5318 /* Write the TU size bits before fdi link training, so that error 5319 * detection works. */ 5320 I915_WRITE(FDI_RX_TUSIZE1(pipe), 5321 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 5322 5323 /* For PCH output, training FDI link */ 5324 dev_priv->display.fdi_link_train(crtc, crtc_state); 5325 5326 /* We need to program the right clock selection before writing the pixel 5327 * mutliplier into the DPLL. */ 5328 if (HAS_PCH_CPT(dev_priv)) { 5329 u32 sel; 5330 5331 temp = I915_READ(PCH_DPLL_SEL); 5332 temp |= TRANS_DPLL_ENABLE(pipe); 5333 sel = TRANS_DPLLB_SEL(pipe); 5334 if (crtc_state->shared_dpll == 5335 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 5336 temp |= sel; 5337 else 5338 temp &= ~sel; 5339 I915_WRITE(PCH_DPLL_SEL, temp); 5340 } 5341 5342 /* XXX: pch pll's can be enabled any time before we enable the PCH 5343 * transcoder, and we actually should do this to not upset any PCH 5344 * transcoder that already use the clock when we share it. 5345 * 5346 * Note that enable_shared_dpll tries to do the right thing, but 5347 * get_shared_dpll unconditionally resets the pll - we need that to have 5348 * the right LVDS enable sequence. */ 5349 intel_enable_shared_dpll(crtc_state); 5350 5351 /* set transcoder timing, panel must allow it */ 5352 assert_panel_unlocked(dev_priv, pipe); 5353 ironlake_pch_transcoder_set_timings(crtc_state, pipe); 5354 5355 intel_fdi_normal_train(crtc); 5356 5357 /* For PCH DP, enable TRANS_DP_CTL */ 5358 if (HAS_PCH_CPT(dev_priv) && 5359 intel_crtc_has_dp_encoder(crtc_state)) { 5360 const struct drm_display_mode *adjusted_mode = 5361 &crtc_state->base.adjusted_mode; 5362 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 5363 i915_reg_t reg = TRANS_DP_CTL(pipe); 5364 enum port port; 5365 5366 temp = I915_READ(reg); 5367 temp &= ~(TRANS_DP_PORT_SEL_MASK | 5368 TRANS_DP_SYNC_MASK | 5369 TRANS_DP_BPC_MASK); 5370 temp |= TRANS_DP_OUTPUT_ENABLE; 5371 temp |= bpc << 9; /* same format but at 11:9 */ 5372 5373 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 5374 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 5375 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 5376 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 5377 5378 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 5379 WARN_ON(port < PORT_B || port > PORT_D); 5380 temp |= TRANS_DP_PORT_SEL(port); 5381 5382 I915_WRITE(reg, temp); 5383 } 5384 5385 ironlake_enable_pch_transcoder(crtc_state); 5386 } 5387 5388 static void lpt_pch_enable(const struct intel_atomic_state *state, 5389 const struct intel_crtc_state *crtc_state) 5390 { 5391 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5392 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5393 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5394 5395 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 5396 5397 lpt_program_iclkip(crtc_state); 5398 5399 /* Set transcoder timing. */ 5400 ironlake_pch_transcoder_set_timings(crtc_state, PIPE_A); 5401 5402 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 5403 } 5404 5405 static void cpt_verify_modeset(struct drm_device *dev, enum pipe pipe) 5406 { 5407 struct drm_i915_private *dev_priv = to_i915(dev); 5408 i915_reg_t dslreg = PIPEDSL(pipe); 5409 u32 temp; 5410 5411 temp = I915_READ(dslreg); 5412 udelay(500); 5413 if (wait_for(I915_READ(dslreg) != temp, 5)) { 5414 if (wait_for(I915_READ(dslreg) != temp, 5)) 5415 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe)); 5416 } 5417 } 5418 5419 /* 5420 * The hardware phase 0.0 refers to the center of the pixel. 5421 * We want to start from the top/left edge which is phase 5422 * -0.5. That matches how the hardware calculates the scaling 5423 * factors (from top-left of the first pixel to bottom-right 5424 * of the last pixel, as opposed to the pixel centers). 5425 * 5426 * For 4:2:0 subsampled chroma planes we obviously have to 5427 * adjust that so that the chroma sample position lands in 5428 * the right spot. 5429 * 5430 * Note that for packed YCbCr 4:2:2 formats there is no way to 5431 * control chroma siting. The hardware simply replicates the 5432 * chroma samples for both of the luma samples, and thus we don't 5433 * actually get the expected MPEG2 chroma siting convention :( 5434 * The same behaviour is observed on pre-SKL platforms as well. 5435 * 5436 * Theory behind the formula (note that we ignore sub-pixel 5437 * source coordinates): 5438 * s = source sample position 5439 * d = destination sample position 5440 * 5441 * Downscaling 4:1: 5442 * -0.5 5443 * | 0.0 5444 * | | 1.5 (initial phase) 5445 * | | | 5446 * v v v 5447 * | s | s | s | s | 5448 * | d | 5449 * 5450 * Upscaling 1:4: 5451 * -0.5 5452 * | -0.375 (initial phase) 5453 * | | 0.0 5454 * | | | 5455 * v v v 5456 * | s | 5457 * | d | d | d | d | 5458 */ 5459 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) 5460 { 5461 int phase = -0x8000; 5462 u16 trip = 0; 5463 5464 if (chroma_cosited) 5465 phase += (sub - 1) * 0x8000 / sub; 5466 5467 phase += scale / (2 * sub); 5468 5469 /* 5470 * Hardware initial phase limited to [-0.5:1.5]. 5471 * Since the max hardware scale factor is 3.0, we 5472 * should never actually excdeed 1.0 here. 5473 */ 5474 WARN_ON(phase < -0x8000 || phase > 0x18000); 5475 5476 if (phase < 0) 5477 phase = 0x10000 + phase; 5478 else 5479 trip = PS_PHASE_TRIP; 5480 5481 return ((phase >> 2) & PS_PHASE_MASK) | trip; 5482 } 5483 5484 #define SKL_MIN_SRC_W 8 5485 #define SKL_MAX_SRC_W 4096 5486 #define SKL_MIN_SRC_H 8 5487 #define SKL_MAX_SRC_H 4096 5488 #define SKL_MIN_DST_W 8 5489 #define SKL_MAX_DST_W 4096 5490 #define SKL_MIN_DST_H 8 5491 #define SKL_MAX_DST_H 4096 5492 #define ICL_MAX_SRC_W 5120 5493 #define ICL_MAX_SRC_H 4096 5494 #define ICL_MAX_DST_W 5120 5495 #define ICL_MAX_DST_H 4096 5496 #define SKL_MIN_YUV_420_SRC_W 16 5497 #define SKL_MIN_YUV_420_SRC_H 16 5498 5499 static int 5500 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, 5501 unsigned int scaler_user, int *scaler_id, 5502 int src_w, int src_h, int dst_w, int dst_h, 5503 const struct drm_format_info *format, bool need_scaler) 5504 { 5505 struct intel_crtc_scaler_state *scaler_state = 5506 &crtc_state->scaler_state; 5507 struct intel_crtc *intel_crtc = 5508 to_intel_crtc(crtc_state->base.crtc); 5509 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 5510 const struct drm_display_mode *adjusted_mode = 5511 &crtc_state->base.adjusted_mode; 5512 5513 /* 5514 * Src coordinates are already rotated by 270 degrees for 5515 * the 90/270 degree plane rotation cases (to match the 5516 * GTT mapping), hence no need to account for rotation here. 5517 */ 5518 if (src_w != dst_w || src_h != dst_h) 5519 need_scaler = true; 5520 5521 /* 5522 * Scaling/fitting not supported in IF-ID mode in GEN9+ 5523 * TODO: Interlace fetch mode doesn't support YUV420 planar formats. 5524 * Once NV12 is enabled, handle it here while allocating scaler 5525 * for NV12. 5526 */ 5527 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable && 5528 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 5529 DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n"); 5530 return -EINVAL; 5531 } 5532 5533 /* 5534 * if plane is being disabled or scaler is no more required or force detach 5535 * - free scaler binded to this plane/crtc 5536 * - in order to do this, update crtc->scaler_usage 5537 * 5538 * Here scaler state in crtc_state is set free so that 5539 * scaler can be assigned to other user. Actual register 5540 * update to free the scaler is done in plane/panel-fit programming. 5541 * For this purpose crtc/plane_state->scaler_id isn't reset here. 5542 */ 5543 if (force_detach || !need_scaler) { 5544 if (*scaler_id >= 0) { 5545 scaler_state->scaler_users &= ~(1 << scaler_user); 5546 scaler_state->scalers[*scaler_id].in_use = 0; 5547 5548 DRM_DEBUG_KMS("scaler_user index %u.%u: " 5549 "Staged freeing scaler id %d scaler_users = 0x%x\n", 5550 intel_crtc->pipe, scaler_user, *scaler_id, 5551 scaler_state->scaler_users); 5552 *scaler_id = -1; 5553 } 5554 return 0; 5555 } 5556 5557 if (format && drm_format_info_is_yuv_semiplanar(format) && 5558 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { 5559 DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n"); 5560 return -EINVAL; 5561 } 5562 5563 /* range checks */ 5564 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || 5565 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || 5566 (INTEL_GEN(dev_priv) >= 11 && 5567 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || 5568 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || 5569 (INTEL_GEN(dev_priv) < 11 && 5570 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || 5571 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { 5572 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u " 5573 "size is out of scaler range\n", 5574 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h); 5575 return -EINVAL; 5576 } 5577 5578 /* mark this plane as a scaler user in crtc_state */ 5579 scaler_state->scaler_users |= (1 << scaler_user); 5580 DRM_DEBUG_KMS("scaler_user index %u.%u: " 5581 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", 5582 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, 5583 scaler_state->scaler_users); 5584 5585 return 0; 5586 } 5587 5588 /** 5589 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc. 5590 * 5591 * @state: crtc's scaler state 5592 * 5593 * Return 5594 * 0 - scaler_usage updated successfully 5595 * error - requested scaling cannot be supported or other error condition 5596 */ 5597 int skl_update_scaler_crtc(struct intel_crtc_state *state) 5598 { 5599 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode; 5600 bool need_scaler = false; 5601 5602 if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 5603 need_scaler = true; 5604 5605 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX, 5606 &state->scaler_state.scaler_id, 5607 state->pipe_src_w, state->pipe_src_h, 5608 adjusted_mode->crtc_hdisplay, 5609 adjusted_mode->crtc_vdisplay, NULL, need_scaler); 5610 } 5611 5612 /** 5613 * skl_update_scaler_plane - Stages update to scaler state for a given plane. 5614 * @crtc_state: crtc's scaler state 5615 * @plane_state: atomic plane state to update 5616 * 5617 * Return 5618 * 0 - scaler_usage updated successfully 5619 * error - requested scaling cannot be supported or other error condition 5620 */ 5621 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, 5622 struct intel_plane_state *plane_state) 5623 { 5624 struct intel_plane *intel_plane = 5625 to_intel_plane(plane_state->base.plane); 5626 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 5627 struct drm_framebuffer *fb = plane_state->base.fb; 5628 int ret; 5629 bool force_detach = !fb || !plane_state->base.visible; 5630 bool need_scaler = false; 5631 5632 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ 5633 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && 5634 fb && drm_format_info_is_yuv_semiplanar(fb->format)) 5635 need_scaler = true; 5636 5637 ret = skl_update_scaler(crtc_state, force_detach, 5638 drm_plane_index(&intel_plane->base), 5639 &plane_state->scaler_id, 5640 drm_rect_width(&plane_state->base.src) >> 16, 5641 drm_rect_height(&plane_state->base.src) >> 16, 5642 drm_rect_width(&plane_state->base.dst), 5643 drm_rect_height(&plane_state->base.dst), 5644 fb ? fb->format : NULL, need_scaler); 5645 5646 if (ret || plane_state->scaler_id < 0) 5647 return ret; 5648 5649 /* check colorkey */ 5650 if (plane_state->ckey.flags) { 5651 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed", 5652 intel_plane->base.base.id, 5653 intel_plane->base.name); 5654 return -EINVAL; 5655 } 5656 5657 /* Check src format */ 5658 switch (fb->format->format) { 5659 case DRM_FORMAT_RGB565: 5660 case DRM_FORMAT_XBGR8888: 5661 case DRM_FORMAT_XRGB8888: 5662 case DRM_FORMAT_ABGR8888: 5663 case DRM_FORMAT_ARGB8888: 5664 case DRM_FORMAT_XRGB2101010: 5665 case DRM_FORMAT_XBGR2101010: 5666 case DRM_FORMAT_YUYV: 5667 case DRM_FORMAT_YVYU: 5668 case DRM_FORMAT_UYVY: 5669 case DRM_FORMAT_VYUY: 5670 case DRM_FORMAT_NV12: 5671 case DRM_FORMAT_P010: 5672 case DRM_FORMAT_P012: 5673 case DRM_FORMAT_P016: 5674 case DRM_FORMAT_Y210: 5675 case DRM_FORMAT_Y212: 5676 case DRM_FORMAT_Y216: 5677 case DRM_FORMAT_XVYU2101010: 5678 case DRM_FORMAT_XVYU12_16161616: 5679 case DRM_FORMAT_XVYU16161616: 5680 break; 5681 case DRM_FORMAT_XBGR16161616F: 5682 case DRM_FORMAT_ABGR16161616F: 5683 case DRM_FORMAT_XRGB16161616F: 5684 case DRM_FORMAT_ARGB16161616F: 5685 if (INTEL_GEN(dev_priv) >= 11) 5686 break; 5687 /* fall through */ 5688 default: 5689 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", 5690 intel_plane->base.base.id, intel_plane->base.name, 5691 fb->base.id, fb->format->format); 5692 return -EINVAL; 5693 } 5694 5695 return 0; 5696 } 5697 5698 static void skylake_scaler_disable(struct intel_crtc *crtc) 5699 { 5700 int i; 5701 5702 for (i = 0; i < crtc->num_scalers; i++) 5703 skl_detach_scaler(crtc, i); 5704 } 5705 5706 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state) 5707 { 5708 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5709 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5710 enum pipe pipe = crtc->pipe; 5711 const struct intel_crtc_scaler_state *scaler_state = 5712 &crtc_state->scaler_state; 5713 5714 if (crtc_state->pch_pfit.enabled) { 5715 u16 uv_rgb_hphase, uv_rgb_vphase; 5716 int pfit_w, pfit_h, hscale, vscale; 5717 int id; 5718 5719 if (WARN_ON(crtc_state->scaler_state.scaler_id < 0)) 5720 return; 5721 5722 pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF; 5723 pfit_h = crtc_state->pch_pfit.size & 0xFFFF; 5724 5725 hscale = (crtc_state->pipe_src_w << 16) / pfit_w; 5726 vscale = (crtc_state->pipe_src_h << 16) / pfit_h; 5727 5728 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); 5729 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); 5730 5731 id = scaler_state->scaler_id; 5732 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN | 5733 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); 5734 I915_WRITE_FW(SKL_PS_VPHASE(pipe, id), 5735 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); 5736 I915_WRITE_FW(SKL_PS_HPHASE(pipe, id), 5737 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); 5738 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos); 5739 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size); 5740 } 5741 } 5742 5743 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state) 5744 { 5745 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5746 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5747 enum pipe pipe = crtc->pipe; 5748 5749 if (crtc_state->pch_pfit.enabled) { 5750 /* Force use of hard-coded filter coefficients 5751 * as some pre-programmed values are broken, 5752 * e.g. x201. 5753 */ 5754 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 5755 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | 5756 PF_PIPE_SEL_IVB(pipe)); 5757 else 5758 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); 5759 I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos); 5760 I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size); 5761 } 5762 } 5763 5764 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 5765 { 5766 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5767 struct drm_device *dev = crtc->base.dev; 5768 struct drm_i915_private *dev_priv = to_i915(dev); 5769 5770 if (!crtc_state->ips_enabled) 5771 return; 5772 5773 /* 5774 * We can only enable IPS after we enable a plane and wait for a vblank 5775 * This function is called from post_plane_update, which is run after 5776 * a vblank wait. 5777 */ 5778 WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 5779 5780 if (IS_BROADWELL(dev_priv)) { 5781 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 5782 IPS_ENABLE | IPS_PCODE_CONTROL)); 5783 /* Quoting Art Runyan: "its not safe to expect any particular 5784 * value in IPS_CTL bit 31 after enabling IPS through the 5785 * mailbox." Moreover, the mailbox may return a bogus state, 5786 * so we need to just enable it and continue on. 5787 */ 5788 } else { 5789 I915_WRITE(IPS_CTL, IPS_ENABLE); 5790 /* The bit only becomes 1 in the next vblank, so this wait here 5791 * is essentially intel_wait_for_vblank. If we don't have this 5792 * and don't wait for vblanks until the end of crtc_enable, then 5793 * the HW state readout code will complain that the expected 5794 * IPS_CTL value is not the one we read. */ 5795 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 5796 DRM_ERROR("Timed out waiting for IPS enable\n"); 5797 } 5798 } 5799 5800 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 5801 { 5802 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5803 struct drm_device *dev = crtc->base.dev; 5804 struct drm_i915_private *dev_priv = to_i915(dev); 5805 5806 if (!crtc_state->ips_enabled) 5807 return; 5808 5809 if (IS_BROADWELL(dev_priv)) { 5810 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 5811 /* 5812 * Wait for PCODE to finish disabling IPS. The BSpec specified 5813 * 42ms timeout value leads to occasional timeouts so use 100ms 5814 * instead. 5815 */ 5816 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 5817 DRM_ERROR("Timed out waiting for IPS disable\n"); 5818 } else { 5819 I915_WRITE(IPS_CTL, 0); 5820 POSTING_READ(IPS_CTL); 5821 } 5822 5823 /* We need to wait for a vblank before we can disable the plane. */ 5824 intel_wait_for_vblank(dev_priv, crtc->pipe); 5825 } 5826 5827 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 5828 { 5829 if (intel_crtc->overlay) 5830 (void) intel_overlay_switch_off(intel_crtc->overlay); 5831 5832 /* Let userspace switch the overlay on again. In most cases userspace 5833 * has to recompute where to put it anyway. 5834 */ 5835 } 5836 5837 /** 5838 * intel_post_enable_primary - Perform operations after enabling primary plane 5839 * @crtc: the CRTC whose primary plane was just enabled 5840 * @new_crtc_state: the enabling state 5841 * 5842 * Performs potentially sleeping operations that must be done after the primary 5843 * plane is enabled, such as updating FBC and IPS. Note that this may be 5844 * called due to an explicit primary plane update, or due to an implicit 5845 * re-enable that is caused when a sprite plane is updated to no longer 5846 * completely hide the primary plane. 5847 */ 5848 static void 5849 intel_post_enable_primary(struct drm_crtc *crtc, 5850 const struct intel_crtc_state *new_crtc_state) 5851 { 5852 struct drm_device *dev = crtc->dev; 5853 struct drm_i915_private *dev_priv = to_i915(dev); 5854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5855 enum pipe pipe = intel_crtc->pipe; 5856 5857 /* 5858 * Gen2 reports pipe underruns whenever all planes are disabled. 5859 * So don't enable underrun reporting before at least some planes 5860 * are enabled. 5861 * FIXME: Need to fix the logic to work when we turn off all planes 5862 * but leave the pipe running. 5863 */ 5864 if (IS_GEN(dev_priv, 2)) 5865 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 5866 5867 /* Underruns don't always raise interrupts, so check manually. */ 5868 intel_check_cpu_fifo_underruns(dev_priv); 5869 intel_check_pch_fifo_underruns(dev_priv); 5870 } 5871 5872 /* FIXME get rid of this and use pre_plane_update */ 5873 static void 5874 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc) 5875 { 5876 struct drm_device *dev = crtc->dev; 5877 struct drm_i915_private *dev_priv = to_i915(dev); 5878 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5879 enum pipe pipe = intel_crtc->pipe; 5880 5881 /* 5882 * Gen2 reports pipe underruns whenever all planes are disabled. 5883 * So disable underrun reporting before all the planes get disabled. 5884 */ 5885 if (IS_GEN(dev_priv, 2)) 5886 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 5887 5888 hsw_disable_ips(to_intel_crtc_state(crtc->state)); 5889 5890 /* 5891 * Vblank time updates from the shadow to live plane control register 5892 * are blocked if the memory self-refresh mode is active at that 5893 * moment. So to make sure the plane gets truly disabled, disable 5894 * first the self-refresh mode. The self-refresh enable bit in turn 5895 * will be checked/applied by the HW only at the next frame start 5896 * event which is after the vblank start event, so we need to have a 5897 * wait-for-vblank between disabling the plane and the pipe. 5898 */ 5899 if (HAS_GMCH(dev_priv) && 5900 intel_set_memory_cxsr(dev_priv, false)) 5901 intel_wait_for_vblank(dev_priv, pipe); 5902 } 5903 5904 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 5905 const struct intel_crtc_state *new_crtc_state) 5906 { 5907 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 5908 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5909 5910 if (!old_crtc_state->ips_enabled) 5911 return false; 5912 5913 if (needs_modeset(new_crtc_state)) 5914 return true; 5915 5916 /* 5917 * Workaround : Do not read or write the pipe palette/gamma data while 5918 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 5919 * 5920 * Disable IPS before we program the LUT. 5921 */ 5922 if (IS_HASWELL(dev_priv) && 5923 (new_crtc_state->base.color_mgmt_changed || 5924 new_crtc_state->update_pipe) && 5925 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 5926 return true; 5927 5928 return !new_crtc_state->ips_enabled; 5929 } 5930 5931 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 5932 const struct intel_crtc_state *new_crtc_state) 5933 { 5934 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 5935 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5936 5937 if (!new_crtc_state->ips_enabled) 5938 return false; 5939 5940 if (needs_modeset(new_crtc_state)) 5941 return true; 5942 5943 /* 5944 * Workaround : Do not read or write the pipe palette/gamma data while 5945 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 5946 * 5947 * Re-enable IPS after the LUT has been programmed. 5948 */ 5949 if (IS_HASWELL(dev_priv) && 5950 (new_crtc_state->base.color_mgmt_changed || 5951 new_crtc_state->update_pipe) && 5952 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 5953 return true; 5954 5955 /* 5956 * We can't read out IPS on broadwell, assume the worst and 5957 * forcibly enable IPS on the first fastset. 5958 */ 5959 if (new_crtc_state->update_pipe && 5960 old_crtc_state->base.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED) 5961 return true; 5962 5963 return !old_crtc_state->ips_enabled; 5964 } 5965 5966 static bool needs_nv12_wa(struct drm_i915_private *dev_priv, 5967 const struct intel_crtc_state *crtc_state) 5968 { 5969 if (!crtc_state->nv12_planes) 5970 return false; 5971 5972 /* WA Display #0827: Gen9:all */ 5973 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) 5974 return true; 5975 5976 return false; 5977 } 5978 5979 static bool needs_scalerclk_wa(struct drm_i915_private *dev_priv, 5980 const struct intel_crtc_state *crtc_state) 5981 { 5982 /* Wa_2006604312:icl */ 5983 if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv)) 5984 return true; 5985 5986 return false; 5987 } 5988 5989 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state) 5990 { 5991 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 5992 struct drm_device *dev = crtc->base.dev; 5993 struct drm_i915_private *dev_priv = to_i915(dev); 5994 struct drm_atomic_state *state = old_crtc_state->base.state; 5995 struct intel_crtc_state *pipe_config = 5996 intel_atomic_get_new_crtc_state(to_intel_atomic_state(state), 5997 crtc); 5998 struct drm_plane *primary = crtc->base.primary; 5999 struct drm_plane_state *old_primary_state = 6000 drm_atomic_get_old_plane_state(state, primary); 6001 6002 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits); 6003 6004 if (pipe_config->update_wm_post && pipe_config->base.active) 6005 intel_update_watermarks(crtc); 6006 6007 if (hsw_post_update_enable_ips(old_crtc_state, pipe_config)) 6008 hsw_enable_ips(pipe_config); 6009 6010 if (old_primary_state) { 6011 struct drm_plane_state *new_primary_state = 6012 drm_atomic_get_new_plane_state(state, primary); 6013 6014 intel_fbc_post_update(crtc); 6015 6016 if (new_primary_state->visible && 6017 (needs_modeset(pipe_config) || 6018 !old_primary_state->visible)) 6019 intel_post_enable_primary(&crtc->base, pipe_config); 6020 } 6021 6022 if (needs_nv12_wa(dev_priv, old_crtc_state) && 6023 !needs_nv12_wa(dev_priv, pipe_config)) 6024 skl_wa_827(dev_priv, crtc->pipe, false); 6025 6026 if (needs_scalerclk_wa(dev_priv, old_crtc_state) && 6027 !needs_scalerclk_wa(dev_priv, pipe_config)) 6028 icl_wa_scalerclkgating(dev_priv, crtc->pipe, false); 6029 } 6030 6031 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state, 6032 struct intel_crtc_state *pipe_config) 6033 { 6034 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 6035 struct drm_device *dev = crtc->base.dev; 6036 struct drm_i915_private *dev_priv = to_i915(dev); 6037 struct drm_atomic_state *state = old_crtc_state->base.state; 6038 struct drm_plane *primary = crtc->base.primary; 6039 struct drm_plane_state *old_primary_state = 6040 drm_atomic_get_old_plane_state(state, primary); 6041 bool modeset = needs_modeset(pipe_config); 6042 struct intel_atomic_state *intel_state = 6043 to_intel_atomic_state(state); 6044 6045 if (hsw_pre_update_disable_ips(old_crtc_state, pipe_config)) 6046 hsw_disable_ips(old_crtc_state); 6047 6048 if (old_primary_state) { 6049 struct intel_plane_state *new_primary_state = 6050 intel_atomic_get_new_plane_state(intel_state, 6051 to_intel_plane(primary)); 6052 6053 intel_fbc_pre_update(crtc, pipe_config, new_primary_state); 6054 /* 6055 * Gen2 reports pipe underruns whenever all planes are disabled. 6056 * So disable underrun reporting before all the planes get disabled. 6057 */ 6058 if (IS_GEN(dev_priv, 2) && old_primary_state->visible && 6059 (modeset || !new_primary_state->base.visible)) 6060 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 6061 } 6062 6063 /* Display WA 827 */ 6064 if (!needs_nv12_wa(dev_priv, old_crtc_state) && 6065 needs_nv12_wa(dev_priv, pipe_config)) 6066 skl_wa_827(dev_priv, crtc->pipe, true); 6067 6068 /* Wa_2006604312:icl */ 6069 if (!needs_scalerclk_wa(dev_priv, old_crtc_state) && 6070 needs_scalerclk_wa(dev_priv, pipe_config)) 6071 icl_wa_scalerclkgating(dev_priv, crtc->pipe, true); 6072 6073 /* 6074 * Vblank time updates from the shadow to live plane control register 6075 * are blocked if the memory self-refresh mode is active at that 6076 * moment. So to make sure the plane gets truly disabled, disable 6077 * first the self-refresh mode. The self-refresh enable bit in turn 6078 * will be checked/applied by the HW only at the next frame start 6079 * event which is after the vblank start event, so we need to have a 6080 * wait-for-vblank between disabling the plane and the pipe. 6081 */ 6082 if (HAS_GMCH(dev_priv) && old_crtc_state->base.active && 6083 pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 6084 intel_wait_for_vblank(dev_priv, crtc->pipe); 6085 6086 /* 6087 * IVB workaround: must disable low power watermarks for at least 6088 * one frame before enabling scaling. LP watermarks can be re-enabled 6089 * when scaling is disabled. 6090 * 6091 * WaCxSRDisabledForSpriteScaling:ivb 6092 */ 6093 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev) && 6094 old_crtc_state->base.active) 6095 intel_wait_for_vblank(dev_priv, crtc->pipe); 6096 6097 /* 6098 * If we're doing a modeset, we're done. No need to do any pre-vblank 6099 * watermark programming here. 6100 */ 6101 if (needs_modeset(pipe_config)) 6102 return; 6103 6104 /* 6105 * For platforms that support atomic watermarks, program the 6106 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 6107 * will be the intermediate values that are safe for both pre- and 6108 * post- vblank; when vblank happens, the 'active' values will be set 6109 * to the final 'target' values and we'll do this again to get the 6110 * optimal watermarks. For gen9+ platforms, the values we program here 6111 * will be the final target values which will get automatically latched 6112 * at vblank time; no further programming will be necessary. 6113 * 6114 * If a platform hasn't been transitioned to atomic watermarks yet, 6115 * we'll continue to update watermarks the old way, if flags tell 6116 * us to. 6117 */ 6118 if (dev_priv->display.initial_watermarks != NULL) 6119 dev_priv->display.initial_watermarks(intel_state, 6120 pipe_config); 6121 else if (pipe_config->update_wm_pre) 6122 intel_update_watermarks(crtc); 6123 } 6124 6125 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 6126 struct intel_crtc *crtc) 6127 { 6128 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6129 const struct intel_crtc_state *new_crtc_state = 6130 intel_atomic_get_new_crtc_state(state, crtc); 6131 unsigned int update_mask = new_crtc_state->update_planes; 6132 const struct intel_plane_state *old_plane_state; 6133 struct intel_plane *plane; 6134 unsigned fb_bits = 0; 6135 int i; 6136 6137 intel_crtc_dpms_overlay_disable(crtc); 6138 6139 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 6140 if (crtc->pipe != plane->pipe || 6141 !(update_mask & BIT(plane->id))) 6142 continue; 6143 6144 intel_disable_plane(plane, new_crtc_state); 6145 6146 if (old_plane_state->base.visible) 6147 fb_bits |= plane->frontbuffer_bit; 6148 } 6149 6150 intel_frontbuffer_flip(dev_priv, fb_bits); 6151 } 6152 6153 /* 6154 * intel_connector_primary_encoder - get the primary encoder for a connector 6155 * @connector: connector for which to return the encoder 6156 * 6157 * Returns the primary encoder for a connector. There is a 1:1 mapping from 6158 * all connectors to their encoder, except for DP-MST connectors which have 6159 * both a virtual and a primary encoder. These DP-MST primary encoders can be 6160 * pointed to by as many DP-MST connectors as there are pipes. 6161 */ 6162 static struct intel_encoder * 6163 intel_connector_primary_encoder(struct intel_connector *connector) 6164 { 6165 struct intel_encoder *encoder; 6166 6167 if (connector->mst_port) 6168 return &dp_to_dig_port(connector->mst_port)->base; 6169 6170 encoder = intel_attached_encoder(&connector->base); 6171 WARN_ON(!encoder); 6172 6173 return encoder; 6174 } 6175 6176 static bool 6177 intel_connector_needs_modeset(struct intel_atomic_state *state, 6178 const struct drm_connector_state *old_conn_state, 6179 const struct drm_connector_state *new_conn_state) 6180 { 6181 struct intel_crtc *old_crtc = old_conn_state->crtc ? 6182 to_intel_crtc(old_conn_state->crtc) : NULL; 6183 struct intel_crtc *new_crtc = new_conn_state->crtc ? 6184 to_intel_crtc(new_conn_state->crtc) : NULL; 6185 6186 return new_crtc != old_crtc || 6187 (new_crtc && 6188 needs_modeset(intel_atomic_get_new_crtc_state(state, new_crtc))); 6189 } 6190 6191 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 6192 { 6193 struct drm_connector_state *old_conn_state; 6194 struct drm_connector_state *new_conn_state; 6195 struct drm_connector *conn; 6196 int i; 6197 6198 for_each_oldnew_connector_in_state(&state->base, conn, 6199 old_conn_state, new_conn_state, i) { 6200 struct intel_encoder *encoder; 6201 struct intel_crtc *crtc; 6202 6203 if (!intel_connector_needs_modeset(state, 6204 old_conn_state, 6205 new_conn_state)) 6206 continue; 6207 6208 encoder = intel_connector_primary_encoder(to_intel_connector(conn)); 6209 if (!encoder->update_prepare) 6210 continue; 6211 6212 crtc = new_conn_state->crtc ? 6213 to_intel_crtc(new_conn_state->crtc) : NULL; 6214 encoder->update_prepare(state, encoder, crtc); 6215 } 6216 } 6217 6218 static void intel_encoders_update_complete(struct intel_atomic_state *state) 6219 { 6220 struct drm_connector_state *old_conn_state; 6221 struct drm_connector_state *new_conn_state; 6222 struct drm_connector *conn; 6223 int i; 6224 6225 for_each_oldnew_connector_in_state(&state->base, conn, 6226 old_conn_state, new_conn_state, i) { 6227 struct intel_encoder *encoder; 6228 struct intel_crtc *crtc; 6229 6230 if (!intel_connector_needs_modeset(state, 6231 old_conn_state, 6232 new_conn_state)) 6233 continue; 6234 6235 encoder = intel_connector_primary_encoder(to_intel_connector(conn)); 6236 if (!encoder->update_complete) 6237 continue; 6238 6239 crtc = new_conn_state->crtc ? 6240 to_intel_crtc(new_conn_state->crtc) : NULL; 6241 encoder->update_complete(state, encoder, crtc); 6242 } 6243 } 6244 6245 static void intel_encoders_pre_pll_enable(struct intel_crtc *crtc, 6246 struct intel_crtc_state *crtc_state, 6247 struct intel_atomic_state *state) 6248 { 6249 struct drm_connector_state *conn_state; 6250 struct drm_connector *conn; 6251 int i; 6252 6253 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6254 struct intel_encoder *encoder = 6255 to_intel_encoder(conn_state->best_encoder); 6256 6257 if (conn_state->crtc != &crtc->base) 6258 continue; 6259 6260 if (encoder->pre_pll_enable) 6261 encoder->pre_pll_enable(encoder, crtc_state, conn_state); 6262 } 6263 } 6264 6265 static void intel_encoders_pre_enable(struct intel_crtc *crtc, 6266 struct intel_crtc_state *crtc_state, 6267 struct intel_atomic_state *state) 6268 { 6269 struct drm_connector_state *conn_state; 6270 struct drm_connector *conn; 6271 int i; 6272 6273 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6274 struct intel_encoder *encoder = 6275 to_intel_encoder(conn_state->best_encoder); 6276 6277 if (conn_state->crtc != &crtc->base) 6278 continue; 6279 6280 if (encoder->pre_enable) 6281 encoder->pre_enable(encoder, crtc_state, conn_state); 6282 } 6283 } 6284 6285 static void intel_encoders_enable(struct intel_crtc *crtc, 6286 struct intel_crtc_state *crtc_state, 6287 struct intel_atomic_state *state) 6288 { 6289 struct drm_connector_state *conn_state; 6290 struct drm_connector *conn; 6291 int i; 6292 6293 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6294 struct intel_encoder *encoder = 6295 to_intel_encoder(conn_state->best_encoder); 6296 6297 if (conn_state->crtc != &crtc->base) 6298 continue; 6299 6300 if (encoder->enable) 6301 encoder->enable(encoder, crtc_state, conn_state); 6302 intel_opregion_notify_encoder(encoder, true); 6303 } 6304 } 6305 6306 static void intel_encoders_disable(struct intel_crtc *crtc, 6307 struct intel_crtc_state *old_crtc_state, 6308 struct intel_atomic_state *state) 6309 { 6310 struct drm_connector_state *old_conn_state; 6311 struct drm_connector *conn; 6312 int i; 6313 6314 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6315 struct intel_encoder *encoder = 6316 to_intel_encoder(old_conn_state->best_encoder); 6317 6318 if (old_conn_state->crtc != &crtc->base) 6319 continue; 6320 6321 intel_opregion_notify_encoder(encoder, false); 6322 if (encoder->disable) 6323 encoder->disable(encoder, old_crtc_state, old_conn_state); 6324 } 6325 } 6326 6327 static void intel_encoders_post_disable(struct intel_crtc *crtc, 6328 struct intel_crtc_state *old_crtc_state, 6329 struct intel_atomic_state *state) 6330 { 6331 struct drm_connector_state *old_conn_state; 6332 struct drm_connector *conn; 6333 int i; 6334 6335 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6336 struct intel_encoder *encoder = 6337 to_intel_encoder(old_conn_state->best_encoder); 6338 6339 if (old_conn_state->crtc != &crtc->base) 6340 continue; 6341 6342 if (encoder->post_disable) 6343 encoder->post_disable(encoder, old_crtc_state, old_conn_state); 6344 } 6345 } 6346 6347 static void intel_encoders_post_pll_disable(struct intel_crtc *crtc, 6348 struct intel_crtc_state *old_crtc_state, 6349 struct intel_atomic_state *state) 6350 { 6351 struct drm_connector_state *old_conn_state; 6352 struct drm_connector *conn; 6353 int i; 6354 6355 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6356 struct intel_encoder *encoder = 6357 to_intel_encoder(old_conn_state->best_encoder); 6358 6359 if (old_conn_state->crtc != &crtc->base) 6360 continue; 6361 6362 if (encoder->post_pll_disable) 6363 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state); 6364 } 6365 } 6366 6367 static void intel_encoders_update_pipe(struct intel_crtc *crtc, 6368 struct intel_crtc_state *crtc_state, 6369 struct intel_atomic_state *state) 6370 { 6371 struct drm_connector_state *conn_state; 6372 struct drm_connector *conn; 6373 int i; 6374 6375 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6376 struct intel_encoder *encoder = 6377 to_intel_encoder(conn_state->best_encoder); 6378 6379 if (conn_state->crtc != &crtc->base) 6380 continue; 6381 6382 if (encoder->update_pipe) 6383 encoder->update_pipe(encoder, crtc_state, conn_state); 6384 } 6385 } 6386 6387 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 6388 { 6389 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6390 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 6391 6392 plane->disable_plane(plane, crtc_state); 6393 } 6394 6395 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config, 6396 struct intel_atomic_state *state) 6397 { 6398 struct drm_crtc *crtc = pipe_config->base.crtc; 6399 struct drm_device *dev = crtc->dev; 6400 struct drm_i915_private *dev_priv = to_i915(dev); 6401 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6402 enum pipe pipe = intel_crtc->pipe; 6403 6404 if (WARN_ON(intel_crtc->active)) 6405 return; 6406 6407 /* 6408 * Sometimes spurious CPU pipe underruns happen during FDI 6409 * training, at least with VGA+HDMI cloning. Suppress them. 6410 * 6411 * On ILK we get an occasional spurious CPU pipe underruns 6412 * between eDP port A enable and vdd enable. Also PCH port 6413 * enable seems to result in the occasional CPU pipe underrun. 6414 * 6415 * Spurious PCH underruns also occur during PCH enabling. 6416 */ 6417 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6418 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6419 6420 if (pipe_config->has_pch_encoder) 6421 intel_prepare_shared_dpll(pipe_config); 6422 6423 if (intel_crtc_has_dp_encoder(pipe_config)) 6424 intel_dp_set_m_n(pipe_config, M1_N1); 6425 6426 intel_set_pipe_timings(pipe_config); 6427 intel_set_pipe_src_size(pipe_config); 6428 6429 if (pipe_config->has_pch_encoder) { 6430 intel_cpu_transcoder_set_m_n(pipe_config, 6431 &pipe_config->fdi_m_n, NULL); 6432 } 6433 6434 ironlake_set_pipeconf(pipe_config); 6435 6436 intel_crtc->active = true; 6437 6438 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 6439 6440 if (pipe_config->has_pch_encoder) { 6441 /* Note: FDI PLL enabling _must_ be done before we enable the 6442 * cpu pipes, hence this is separate from all the other fdi/pch 6443 * enabling. */ 6444 ironlake_fdi_pll_enable(pipe_config); 6445 } else { 6446 assert_fdi_tx_disabled(dev_priv, pipe); 6447 assert_fdi_rx_disabled(dev_priv, pipe); 6448 } 6449 6450 ironlake_pfit_enable(pipe_config); 6451 6452 /* 6453 * On ILK+ LUT must be loaded before the pipe is running but with 6454 * clocks enabled 6455 */ 6456 intel_color_load_luts(pipe_config); 6457 intel_color_commit(pipe_config); 6458 /* update DSPCNTR to configure gamma for pipe bottom color */ 6459 intel_disable_primary_plane(pipe_config); 6460 6461 if (dev_priv->display.initial_watermarks != NULL) 6462 dev_priv->display.initial_watermarks(state, pipe_config); 6463 intel_enable_pipe(pipe_config); 6464 6465 if (pipe_config->has_pch_encoder) 6466 ironlake_pch_enable(state, pipe_config); 6467 6468 assert_vblank_disabled(crtc); 6469 intel_crtc_vblank_on(pipe_config); 6470 6471 intel_encoders_enable(intel_crtc, pipe_config, state); 6472 6473 if (HAS_PCH_CPT(dev_priv)) 6474 cpt_verify_modeset(dev, intel_crtc->pipe); 6475 6476 /* 6477 * Must wait for vblank to avoid spurious PCH FIFO underruns. 6478 * And a second vblank wait is needed at least on ILK with 6479 * some interlaced HDMI modes. Let's do the double wait always 6480 * in case there are more corner cases we don't know about. 6481 */ 6482 if (pipe_config->has_pch_encoder) { 6483 intel_wait_for_vblank(dev_priv, pipe); 6484 intel_wait_for_vblank(dev_priv, pipe); 6485 } 6486 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6487 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 6488 } 6489 6490 /* IPS only exists on ULT machines and is tied to pipe A. */ 6491 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 6492 { 6493 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 6494 } 6495 6496 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 6497 enum pipe pipe, bool apply) 6498 { 6499 u32 val = I915_READ(CLKGATE_DIS_PSL(pipe)); 6500 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 6501 6502 if (apply) 6503 val |= mask; 6504 else 6505 val &= ~mask; 6506 6507 I915_WRITE(CLKGATE_DIS_PSL(pipe), val); 6508 } 6509 6510 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 6511 { 6512 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6513 enum pipe pipe = crtc->pipe; 6514 u32 val; 6515 6516 val = MBUS_DBOX_A_CREDIT(2); 6517 6518 if (INTEL_GEN(dev_priv) >= 12) { 6519 val |= MBUS_DBOX_BW_CREDIT(2); 6520 val |= MBUS_DBOX_B_CREDIT(12); 6521 } else { 6522 val |= MBUS_DBOX_BW_CREDIT(1); 6523 val |= MBUS_DBOX_B_CREDIT(8); 6524 } 6525 6526 I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val); 6527 } 6528 6529 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config, 6530 struct intel_atomic_state *state) 6531 { 6532 struct drm_crtc *crtc = pipe_config->base.crtc; 6533 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 6534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6535 enum pipe pipe = intel_crtc->pipe, hsw_workaround_pipe; 6536 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 6537 bool psl_clkgate_wa; 6538 6539 if (WARN_ON(intel_crtc->active)) 6540 return; 6541 6542 intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state); 6543 6544 if (pipe_config->shared_dpll) 6545 intel_enable_shared_dpll(pipe_config); 6546 6547 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 6548 6549 if (intel_crtc_has_dp_encoder(pipe_config)) 6550 intel_dp_set_m_n(pipe_config, M1_N1); 6551 6552 if (!transcoder_is_dsi(cpu_transcoder)) 6553 intel_set_pipe_timings(pipe_config); 6554 6555 if (INTEL_GEN(dev_priv) >= 11) 6556 icl_enable_trans_port_sync(pipe_config); 6557 6558 intel_set_pipe_src_size(pipe_config); 6559 6560 if (cpu_transcoder != TRANSCODER_EDP && 6561 !transcoder_is_dsi(cpu_transcoder)) { 6562 I915_WRITE(PIPE_MULT(cpu_transcoder), 6563 pipe_config->pixel_multiplier - 1); 6564 } 6565 6566 if (pipe_config->has_pch_encoder) { 6567 intel_cpu_transcoder_set_m_n(pipe_config, 6568 &pipe_config->fdi_m_n, NULL); 6569 } 6570 6571 if (!transcoder_is_dsi(cpu_transcoder)) 6572 haswell_set_pipeconf(pipe_config); 6573 6574 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 6575 bdw_set_pipemisc(pipe_config); 6576 6577 intel_crtc->active = true; 6578 6579 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 6580 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && 6581 pipe_config->pch_pfit.enabled; 6582 if (psl_clkgate_wa) 6583 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 6584 6585 if (INTEL_GEN(dev_priv) >= 9) 6586 skylake_pfit_enable(pipe_config); 6587 else 6588 ironlake_pfit_enable(pipe_config); 6589 6590 /* 6591 * On ILK+ LUT must be loaded before the pipe is running but with 6592 * clocks enabled 6593 */ 6594 intel_color_load_luts(pipe_config); 6595 intel_color_commit(pipe_config); 6596 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 6597 if (INTEL_GEN(dev_priv) < 9) 6598 intel_disable_primary_plane(pipe_config); 6599 6600 if (INTEL_GEN(dev_priv) >= 11) 6601 icl_set_pipe_chicken(intel_crtc); 6602 6603 if (!transcoder_is_dsi(cpu_transcoder)) 6604 intel_ddi_enable_transcoder_func(pipe_config); 6605 6606 if (dev_priv->display.initial_watermarks != NULL) 6607 dev_priv->display.initial_watermarks(state, pipe_config); 6608 6609 if (INTEL_GEN(dev_priv) >= 11) 6610 icl_pipe_mbus_enable(intel_crtc); 6611 6612 /* XXX: Do the pipe assertions at the right place for BXT DSI. */ 6613 if (!transcoder_is_dsi(cpu_transcoder)) 6614 intel_enable_pipe(pipe_config); 6615 6616 if (pipe_config->has_pch_encoder) 6617 lpt_pch_enable(state, pipe_config); 6618 6619 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) 6620 intel_ddi_set_vc_payload_alloc(pipe_config, true); 6621 6622 assert_vblank_disabled(crtc); 6623 intel_crtc_vblank_on(pipe_config); 6624 6625 intel_encoders_enable(intel_crtc, pipe_config, state); 6626 6627 if (psl_clkgate_wa) { 6628 intel_wait_for_vblank(dev_priv, pipe); 6629 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 6630 } 6631 6632 /* If we change the relative order between pipe/planes enabling, we need 6633 * to change the workaround. */ 6634 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe; 6635 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 6636 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 6637 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 6638 } 6639 } 6640 6641 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state) 6642 { 6643 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 6644 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6645 enum pipe pipe = crtc->pipe; 6646 6647 /* To avoid upsetting the power well on haswell only disable the pfit if 6648 * it's in use. The hw state code will make sure we get this right. */ 6649 if (old_crtc_state->pch_pfit.enabled) { 6650 I915_WRITE(PF_CTL(pipe), 0); 6651 I915_WRITE(PF_WIN_POS(pipe), 0); 6652 I915_WRITE(PF_WIN_SZ(pipe), 0); 6653 } 6654 } 6655 6656 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state, 6657 struct intel_atomic_state *state) 6658 { 6659 struct drm_crtc *crtc = old_crtc_state->base.crtc; 6660 struct drm_device *dev = crtc->dev; 6661 struct drm_i915_private *dev_priv = to_i915(dev); 6662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6663 enum pipe pipe = intel_crtc->pipe; 6664 6665 /* 6666 * Sometimes spurious CPU pipe underruns happen when the 6667 * pipe is already disabled, but FDI RX/TX is still enabled. 6668 * Happens at least with VGA+HDMI cloning. Suppress them. 6669 */ 6670 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6671 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6672 6673 intel_encoders_disable(intel_crtc, old_crtc_state, state); 6674 6675 drm_crtc_vblank_off(crtc); 6676 assert_vblank_disabled(crtc); 6677 6678 intel_disable_pipe(old_crtc_state); 6679 6680 ironlake_pfit_disable(old_crtc_state); 6681 6682 if (old_crtc_state->has_pch_encoder) 6683 ironlake_fdi_disable(crtc); 6684 6685 intel_encoders_post_disable(intel_crtc, old_crtc_state, state); 6686 6687 if (old_crtc_state->has_pch_encoder) { 6688 ironlake_disable_pch_transcoder(dev_priv, pipe); 6689 6690 if (HAS_PCH_CPT(dev_priv)) { 6691 i915_reg_t reg; 6692 u32 temp; 6693 6694 /* disable TRANS_DP_CTL */ 6695 reg = TRANS_DP_CTL(pipe); 6696 temp = I915_READ(reg); 6697 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 6698 TRANS_DP_PORT_SEL_MASK); 6699 temp |= TRANS_DP_PORT_SEL_NONE; 6700 I915_WRITE(reg, temp); 6701 6702 /* disable DPLL_SEL */ 6703 temp = I915_READ(PCH_DPLL_SEL); 6704 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 6705 I915_WRITE(PCH_DPLL_SEL, temp); 6706 } 6707 6708 ironlake_fdi_pll_disable(intel_crtc); 6709 } 6710 6711 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6712 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 6713 } 6714 6715 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state, 6716 struct intel_atomic_state *state) 6717 { 6718 struct drm_crtc *crtc = old_crtc_state->base.crtc; 6719 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 6720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6721 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 6722 6723 intel_encoders_disable(intel_crtc, old_crtc_state, state); 6724 6725 drm_crtc_vblank_off(crtc); 6726 assert_vblank_disabled(crtc); 6727 6728 /* XXX: Do the pipe assertions at the right place for BXT DSI. */ 6729 if (!transcoder_is_dsi(cpu_transcoder)) 6730 intel_disable_pipe(old_crtc_state); 6731 6732 if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST)) 6733 intel_ddi_set_vc_payload_alloc(old_crtc_state, false); 6734 6735 if (INTEL_GEN(dev_priv) >= 11) 6736 icl_disable_transcoder_port_sync(old_crtc_state); 6737 6738 if (!transcoder_is_dsi(cpu_transcoder)) 6739 intel_ddi_disable_transcoder_func(old_crtc_state); 6740 6741 intel_dsc_disable(old_crtc_state); 6742 6743 if (INTEL_GEN(dev_priv) >= 9) 6744 skylake_scaler_disable(intel_crtc); 6745 else 6746 ironlake_pfit_disable(old_crtc_state); 6747 6748 intel_encoders_post_disable(intel_crtc, old_crtc_state, state); 6749 6750 intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state); 6751 } 6752 6753 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 6754 { 6755 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6756 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6757 6758 if (!crtc_state->gmch_pfit.control) 6759 return; 6760 6761 /* 6762 * The panel fitter should only be adjusted whilst the pipe is disabled, 6763 * according to register description and PRM. 6764 */ 6765 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE); 6766 assert_pipe_disabled(dev_priv, crtc->pipe); 6767 6768 I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios); 6769 I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control); 6770 6771 /* Border color in case we don't scale up to the full screen. Black by 6772 * default, change to something else for debugging. */ 6773 I915_WRITE(BCLRPAT(crtc->pipe), 0); 6774 } 6775 6776 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 6777 { 6778 if (phy == PHY_NONE) 6779 return false; 6780 6781 if (IS_ELKHARTLAKE(dev_priv)) 6782 return phy <= PHY_C; 6783 6784 if (INTEL_GEN(dev_priv) >= 11) 6785 return phy <= PHY_B; 6786 6787 return false; 6788 } 6789 6790 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 6791 { 6792 if (INTEL_GEN(dev_priv) >= 12) 6793 return phy >= PHY_D && phy <= PHY_I; 6794 6795 if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv)) 6796 return phy >= PHY_C && phy <= PHY_F; 6797 6798 return false; 6799 } 6800 6801 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 6802 { 6803 if (IS_ELKHARTLAKE(i915) && port == PORT_D) 6804 return PHY_A; 6805 6806 return (enum phy)port; 6807 } 6808 6809 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 6810 { 6811 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 6812 return PORT_TC_NONE; 6813 6814 if (INTEL_GEN(dev_priv) >= 12) 6815 return port - PORT_D; 6816 6817 return port - PORT_C; 6818 } 6819 6820 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 6821 { 6822 switch (port) { 6823 case PORT_A: 6824 return POWER_DOMAIN_PORT_DDI_A_LANES; 6825 case PORT_B: 6826 return POWER_DOMAIN_PORT_DDI_B_LANES; 6827 case PORT_C: 6828 return POWER_DOMAIN_PORT_DDI_C_LANES; 6829 case PORT_D: 6830 return POWER_DOMAIN_PORT_DDI_D_LANES; 6831 case PORT_E: 6832 return POWER_DOMAIN_PORT_DDI_E_LANES; 6833 case PORT_F: 6834 return POWER_DOMAIN_PORT_DDI_F_LANES; 6835 case PORT_G: 6836 return POWER_DOMAIN_PORT_DDI_G_LANES; 6837 default: 6838 MISSING_CASE(port); 6839 return POWER_DOMAIN_PORT_OTHER; 6840 } 6841 } 6842 6843 enum intel_display_power_domain 6844 intel_aux_power_domain(struct intel_digital_port *dig_port) 6845 { 6846 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 6847 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 6848 6849 if (intel_phy_is_tc(dev_priv, phy) && 6850 dig_port->tc_mode == TC_PORT_TBT_ALT) { 6851 switch (dig_port->aux_ch) { 6852 case AUX_CH_C: 6853 return POWER_DOMAIN_AUX_C_TBT; 6854 case AUX_CH_D: 6855 return POWER_DOMAIN_AUX_D_TBT; 6856 case AUX_CH_E: 6857 return POWER_DOMAIN_AUX_E_TBT; 6858 case AUX_CH_F: 6859 return POWER_DOMAIN_AUX_F_TBT; 6860 case AUX_CH_G: 6861 return POWER_DOMAIN_AUX_G_TBT; 6862 default: 6863 MISSING_CASE(dig_port->aux_ch); 6864 return POWER_DOMAIN_AUX_C_TBT; 6865 } 6866 } 6867 6868 switch (dig_port->aux_ch) { 6869 case AUX_CH_A: 6870 return POWER_DOMAIN_AUX_A; 6871 case AUX_CH_B: 6872 return POWER_DOMAIN_AUX_B; 6873 case AUX_CH_C: 6874 return POWER_DOMAIN_AUX_C; 6875 case AUX_CH_D: 6876 return POWER_DOMAIN_AUX_D; 6877 case AUX_CH_E: 6878 return POWER_DOMAIN_AUX_E; 6879 case AUX_CH_F: 6880 return POWER_DOMAIN_AUX_F; 6881 case AUX_CH_G: 6882 return POWER_DOMAIN_AUX_G; 6883 default: 6884 MISSING_CASE(dig_port->aux_ch); 6885 return POWER_DOMAIN_AUX_A; 6886 } 6887 } 6888 6889 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 6890 { 6891 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6892 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6893 struct drm_encoder *encoder; 6894 enum pipe pipe = crtc->pipe; 6895 u64 mask; 6896 enum transcoder transcoder = crtc_state->cpu_transcoder; 6897 6898 if (!crtc_state->base.active) 6899 return 0; 6900 6901 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 6902 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 6903 if (crtc_state->pch_pfit.enabled || 6904 crtc_state->pch_pfit.force_thru) 6905 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 6906 6907 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 6908 crtc_state->base.encoder_mask) { 6909 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 6910 6911 mask |= BIT_ULL(intel_encoder->power_domain); 6912 } 6913 6914 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 6915 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 6916 6917 if (crtc_state->shared_dpll) 6918 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 6919 6920 return mask; 6921 } 6922 6923 static u64 6924 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 6925 { 6926 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6927 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6928 enum intel_display_power_domain domain; 6929 u64 domains, new_domains, old_domains; 6930 6931 old_domains = crtc->enabled_power_domains; 6932 crtc->enabled_power_domains = new_domains = 6933 get_crtc_power_domains(crtc_state); 6934 6935 domains = new_domains & ~old_domains; 6936 6937 for_each_power_domain(domain, domains) 6938 intel_display_power_get(dev_priv, domain); 6939 6940 return old_domains & ~new_domains; 6941 } 6942 6943 static void modeset_put_power_domains(struct drm_i915_private *dev_priv, 6944 u64 domains) 6945 { 6946 enum intel_display_power_domain domain; 6947 6948 for_each_power_domain(domain, domains) 6949 intel_display_power_put_unchecked(dev_priv, domain); 6950 } 6951 6952 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config, 6953 struct intel_atomic_state *state) 6954 { 6955 struct drm_crtc *crtc = pipe_config->base.crtc; 6956 struct drm_device *dev = crtc->dev; 6957 struct drm_i915_private *dev_priv = to_i915(dev); 6958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6959 enum pipe pipe = intel_crtc->pipe; 6960 6961 if (WARN_ON(intel_crtc->active)) 6962 return; 6963 6964 if (intel_crtc_has_dp_encoder(pipe_config)) 6965 intel_dp_set_m_n(pipe_config, M1_N1); 6966 6967 intel_set_pipe_timings(pipe_config); 6968 intel_set_pipe_src_size(pipe_config); 6969 6970 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 6971 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY); 6972 I915_WRITE(CHV_CANVAS(pipe), 0); 6973 } 6974 6975 i9xx_set_pipeconf(pipe_config); 6976 6977 intel_crtc->active = true; 6978 6979 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6980 6981 intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state); 6982 6983 if (IS_CHERRYVIEW(dev_priv)) { 6984 chv_prepare_pll(intel_crtc, pipe_config); 6985 chv_enable_pll(intel_crtc, pipe_config); 6986 } else { 6987 vlv_prepare_pll(intel_crtc, pipe_config); 6988 vlv_enable_pll(intel_crtc, pipe_config); 6989 } 6990 6991 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 6992 6993 i9xx_pfit_enable(pipe_config); 6994 6995 intel_color_load_luts(pipe_config); 6996 intel_color_commit(pipe_config); 6997 /* update DSPCNTR to configure gamma for pipe bottom color */ 6998 intel_disable_primary_plane(pipe_config); 6999 7000 dev_priv->display.initial_watermarks(state, pipe_config); 7001 intel_enable_pipe(pipe_config); 7002 7003 assert_vblank_disabled(crtc); 7004 intel_crtc_vblank_on(pipe_config); 7005 7006 intel_encoders_enable(intel_crtc, pipe_config, state); 7007 } 7008 7009 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 7010 { 7011 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 7012 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7013 7014 I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0); 7015 I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1); 7016 } 7017 7018 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config, 7019 struct intel_atomic_state *state) 7020 { 7021 struct drm_crtc *crtc = pipe_config->base.crtc; 7022 struct drm_device *dev = crtc->dev; 7023 struct drm_i915_private *dev_priv = to_i915(dev); 7024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7025 enum pipe pipe = intel_crtc->pipe; 7026 7027 if (WARN_ON(intel_crtc->active)) 7028 return; 7029 7030 i9xx_set_pll_dividers(pipe_config); 7031 7032 if (intel_crtc_has_dp_encoder(pipe_config)) 7033 intel_dp_set_m_n(pipe_config, M1_N1); 7034 7035 intel_set_pipe_timings(pipe_config); 7036 intel_set_pipe_src_size(pipe_config); 7037 7038 i9xx_set_pipeconf(pipe_config); 7039 7040 intel_crtc->active = true; 7041 7042 if (!IS_GEN(dev_priv, 2)) 7043 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7044 7045 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 7046 7047 i9xx_enable_pll(intel_crtc, pipe_config); 7048 7049 i9xx_pfit_enable(pipe_config); 7050 7051 intel_color_load_luts(pipe_config); 7052 intel_color_commit(pipe_config); 7053 /* update DSPCNTR to configure gamma for pipe bottom color */ 7054 intel_disable_primary_plane(pipe_config); 7055 7056 if (dev_priv->display.initial_watermarks != NULL) 7057 dev_priv->display.initial_watermarks(state, 7058 pipe_config); 7059 else 7060 intel_update_watermarks(intel_crtc); 7061 intel_enable_pipe(pipe_config); 7062 7063 assert_vblank_disabled(crtc); 7064 intel_crtc_vblank_on(pipe_config); 7065 7066 intel_encoders_enable(intel_crtc, pipe_config, state); 7067 } 7068 7069 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7070 { 7071 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 7072 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7073 7074 if (!old_crtc_state->gmch_pfit.control) 7075 return; 7076 7077 assert_pipe_disabled(dev_priv, crtc->pipe); 7078 7079 DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n", 7080 I915_READ(PFIT_CONTROL)); 7081 I915_WRITE(PFIT_CONTROL, 0); 7082 } 7083 7084 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state, 7085 struct intel_atomic_state *state) 7086 { 7087 struct drm_crtc *crtc = old_crtc_state->base.crtc; 7088 struct drm_device *dev = crtc->dev; 7089 struct drm_i915_private *dev_priv = to_i915(dev); 7090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7091 enum pipe pipe = intel_crtc->pipe; 7092 7093 /* 7094 * On gen2 planes are double buffered but the pipe isn't, so we must 7095 * wait for planes to fully turn off before disabling the pipe. 7096 */ 7097 if (IS_GEN(dev_priv, 2)) 7098 intel_wait_for_vblank(dev_priv, pipe); 7099 7100 intel_encoders_disable(intel_crtc, old_crtc_state, state); 7101 7102 drm_crtc_vblank_off(crtc); 7103 assert_vblank_disabled(crtc); 7104 7105 intel_disable_pipe(old_crtc_state); 7106 7107 i9xx_pfit_disable(old_crtc_state); 7108 7109 intel_encoders_post_disable(intel_crtc, old_crtc_state, state); 7110 7111 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 7112 if (IS_CHERRYVIEW(dev_priv)) 7113 chv_disable_pll(dev_priv, pipe); 7114 else if (IS_VALLEYVIEW(dev_priv)) 7115 vlv_disable_pll(dev_priv, pipe); 7116 else 7117 i9xx_disable_pll(old_crtc_state); 7118 } 7119 7120 intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state); 7121 7122 if (!IS_GEN(dev_priv, 2)) 7123 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7124 7125 if (!dev_priv->display.initial_watermarks) 7126 intel_update_watermarks(intel_crtc); 7127 7128 /* clock the pipe down to 640x480@60 to potentially save power */ 7129 if (IS_I830(dev_priv)) 7130 i830_enable_pipe(dev_priv, pipe); 7131 } 7132 7133 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc, 7134 struct drm_modeset_acquire_ctx *ctx) 7135 { 7136 struct intel_encoder *encoder; 7137 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7138 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 7139 struct intel_bw_state *bw_state = 7140 to_intel_bw_state(dev_priv->bw_obj.state); 7141 enum intel_display_power_domain domain; 7142 struct intel_plane *plane; 7143 u64 domains; 7144 struct drm_atomic_state *state; 7145 struct intel_crtc_state *crtc_state; 7146 int ret; 7147 7148 if (!intel_crtc->active) 7149 return; 7150 7151 for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) { 7152 const struct intel_plane_state *plane_state = 7153 to_intel_plane_state(plane->base.state); 7154 7155 if (plane_state->base.visible) 7156 intel_plane_disable_noatomic(intel_crtc, plane); 7157 } 7158 7159 state = drm_atomic_state_alloc(crtc->dev); 7160 if (!state) { 7161 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory", 7162 crtc->base.id, crtc->name); 7163 return; 7164 } 7165 7166 state->acquire_ctx = ctx; 7167 7168 /* Everything's already locked, -EDEADLK can't happen. */ 7169 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 7170 ret = drm_atomic_add_affected_connectors(state, crtc); 7171 7172 WARN_ON(IS_ERR(crtc_state) || ret); 7173 7174 dev_priv->display.crtc_disable(crtc_state, to_intel_atomic_state(state)); 7175 7176 drm_atomic_state_put(state); 7177 7178 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 7179 crtc->base.id, crtc->name); 7180 7181 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0); 7182 crtc->state->active = false; 7183 intel_crtc->active = false; 7184 crtc->enabled = false; 7185 crtc->state->connector_mask = 0; 7186 crtc->state->encoder_mask = 0; 7187 7188 for_each_encoder_on_crtc(crtc->dev, crtc, encoder) 7189 encoder->base.crtc = NULL; 7190 7191 intel_fbc_disable(intel_crtc); 7192 intel_update_watermarks(intel_crtc); 7193 intel_disable_shared_dpll(to_intel_crtc_state(crtc->state)); 7194 7195 domains = intel_crtc->enabled_power_domains; 7196 for_each_power_domain(domain, domains) 7197 intel_display_power_put_unchecked(dev_priv, domain); 7198 intel_crtc->enabled_power_domains = 0; 7199 7200 dev_priv->active_pipes &= ~BIT(intel_crtc->pipe); 7201 dev_priv->min_cdclk[intel_crtc->pipe] = 0; 7202 dev_priv->min_voltage_level[intel_crtc->pipe] = 0; 7203 7204 bw_state->data_rate[intel_crtc->pipe] = 0; 7205 bw_state->num_active_planes[intel_crtc->pipe] = 0; 7206 } 7207 7208 /* 7209 * turn all crtc's off, but do not adjust state 7210 * This has to be paired with a call to intel_modeset_setup_hw_state. 7211 */ 7212 int intel_display_suspend(struct drm_device *dev) 7213 { 7214 struct drm_i915_private *dev_priv = to_i915(dev); 7215 struct drm_atomic_state *state; 7216 int ret; 7217 7218 state = drm_atomic_helper_suspend(dev); 7219 ret = PTR_ERR_OR_ZERO(state); 7220 if (ret) 7221 DRM_ERROR("Suspending crtc's failed with %i\n", ret); 7222 else 7223 dev_priv->modeset_restore_state = state; 7224 return ret; 7225 } 7226 7227 void intel_encoder_destroy(struct drm_encoder *encoder) 7228 { 7229 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7230 7231 drm_encoder_cleanup(encoder); 7232 kfree(intel_encoder); 7233 } 7234 7235 /* Cross check the actual hw state with our own modeset state tracking (and it's 7236 * internal consistency). */ 7237 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 7238 struct drm_connector_state *conn_state) 7239 { 7240 struct intel_connector *connector = to_intel_connector(conn_state->connector); 7241 7242 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 7243 connector->base.base.id, 7244 connector->base.name); 7245 7246 if (connector->get_hw_state(connector)) { 7247 struct intel_encoder *encoder = connector->encoder; 7248 7249 I915_STATE_WARN(!crtc_state, 7250 "connector enabled without attached crtc\n"); 7251 7252 if (!crtc_state) 7253 return; 7254 7255 I915_STATE_WARN(!crtc_state->base.active, 7256 "connector is active, but attached crtc isn't\n"); 7257 7258 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 7259 return; 7260 7261 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 7262 "atomic encoder doesn't match attached encoder\n"); 7263 7264 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 7265 "attached encoder crtc differs from connector crtc\n"); 7266 } else { 7267 I915_STATE_WARN(crtc_state && crtc_state->base.active, 7268 "attached crtc is active, but connector isn't\n"); 7269 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 7270 "best encoder set without crtc!\n"); 7271 } 7272 } 7273 7274 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) 7275 { 7276 if (crtc_state->base.enable && crtc_state->has_pch_encoder) 7277 return crtc_state->fdi_lanes; 7278 7279 return 0; 7280 } 7281 7282 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, 7283 struct intel_crtc_state *pipe_config) 7284 { 7285 struct drm_i915_private *dev_priv = to_i915(dev); 7286 struct drm_atomic_state *state = pipe_config->base.state; 7287 struct intel_crtc *other_crtc; 7288 struct intel_crtc_state *other_crtc_state; 7289 7290 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n", 7291 pipe_name(pipe), pipe_config->fdi_lanes); 7292 if (pipe_config->fdi_lanes > 4) { 7293 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n", 7294 pipe_name(pipe), pipe_config->fdi_lanes); 7295 return -EINVAL; 7296 } 7297 7298 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 7299 if (pipe_config->fdi_lanes > 2) { 7300 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n", 7301 pipe_config->fdi_lanes); 7302 return -EINVAL; 7303 } else { 7304 return 0; 7305 } 7306 } 7307 7308 if (INTEL_NUM_PIPES(dev_priv) == 2) 7309 return 0; 7310 7311 /* Ivybridge 3 pipe is really complicated */ 7312 switch (pipe) { 7313 case PIPE_A: 7314 return 0; 7315 case PIPE_B: 7316 if (pipe_config->fdi_lanes <= 2) 7317 return 0; 7318 7319 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C); 7320 other_crtc_state = 7321 intel_atomic_get_crtc_state(state, other_crtc); 7322 if (IS_ERR(other_crtc_state)) 7323 return PTR_ERR(other_crtc_state); 7324 7325 if (pipe_required_fdi_lanes(other_crtc_state) > 0) { 7326 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", 7327 pipe_name(pipe), pipe_config->fdi_lanes); 7328 return -EINVAL; 7329 } 7330 return 0; 7331 case PIPE_C: 7332 if (pipe_config->fdi_lanes > 2) { 7333 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n", 7334 pipe_name(pipe), pipe_config->fdi_lanes); 7335 return -EINVAL; 7336 } 7337 7338 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B); 7339 other_crtc_state = 7340 intel_atomic_get_crtc_state(state, other_crtc); 7341 if (IS_ERR(other_crtc_state)) 7342 return PTR_ERR(other_crtc_state); 7343 7344 if (pipe_required_fdi_lanes(other_crtc_state) > 2) { 7345 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); 7346 return -EINVAL; 7347 } 7348 return 0; 7349 default: 7350 BUG(); 7351 } 7352 } 7353 7354 #define RETRY 1 7355 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc, 7356 struct intel_crtc_state *pipe_config) 7357 { 7358 struct drm_device *dev = intel_crtc->base.dev; 7359 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 7360 int lane, link_bw, fdi_dotclock, ret; 7361 bool needs_recompute = false; 7362 7363 retry: 7364 /* FDI is a binary signal running at ~2.7GHz, encoding 7365 * each output octet as 10 bits. The actual frequency 7366 * is stored as a divider into a 100MHz clock, and the 7367 * mode pixel clock is stored in units of 1KHz. 7368 * Hence the bw of each lane in terms of the mode signal 7369 * is: 7370 */ 7371 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config); 7372 7373 fdi_dotclock = adjusted_mode->crtc_clock; 7374 7375 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw, 7376 pipe_config->pipe_bpp); 7377 7378 pipe_config->fdi_lanes = lane; 7379 7380 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, 7381 link_bw, &pipe_config->fdi_m_n, false, false); 7382 7383 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); 7384 if (ret == -EDEADLK) 7385 return ret; 7386 7387 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { 7388 pipe_config->pipe_bpp -= 2*3; 7389 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n", 7390 pipe_config->pipe_bpp); 7391 needs_recompute = true; 7392 pipe_config->bw_constrained = true; 7393 7394 goto retry; 7395 } 7396 7397 if (needs_recompute) 7398 return RETRY; 7399 7400 return ret; 7401 } 7402 7403 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 7404 { 7405 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 7406 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7407 7408 /* IPS only exists on ULT machines and is tied to pipe A. */ 7409 if (!hsw_crtc_supports_ips(crtc)) 7410 return false; 7411 7412 if (!i915_modparams.enable_ips) 7413 return false; 7414 7415 if (crtc_state->pipe_bpp > 24) 7416 return false; 7417 7418 /* 7419 * We compare against max which means we must take 7420 * the increased cdclk requirement into account when 7421 * calculating the new cdclk. 7422 * 7423 * Should measure whether using a lower cdclk w/o IPS 7424 */ 7425 if (IS_BROADWELL(dev_priv) && 7426 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 7427 return false; 7428 7429 return true; 7430 } 7431 7432 static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 7433 { 7434 struct drm_i915_private *dev_priv = 7435 to_i915(crtc_state->base.crtc->dev); 7436 struct intel_atomic_state *intel_state = 7437 to_intel_atomic_state(crtc_state->base.state); 7438 7439 if (!hsw_crtc_state_ips_capable(crtc_state)) 7440 return false; 7441 7442 /* 7443 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 7444 * enabled and disabled dynamically based on package C states, 7445 * user space can't make reliable use of the CRCs, so let's just 7446 * completely disable it. 7447 */ 7448 if (crtc_state->crc_enabled) 7449 return false; 7450 7451 /* IPS should be fine as long as at least one plane is enabled. */ 7452 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 7453 return false; 7454 7455 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 7456 if (IS_BROADWELL(dev_priv) && 7457 crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100) 7458 return false; 7459 7460 return true; 7461 } 7462 7463 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 7464 { 7465 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7466 7467 /* GDG double wide on either pipe, otherwise pipe A only */ 7468 return INTEL_GEN(dev_priv) < 4 && 7469 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 7470 } 7471 7472 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config) 7473 { 7474 u32 pixel_rate; 7475 7476 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock; 7477 7478 /* 7479 * We only use IF-ID interlacing. If we ever use 7480 * PF-ID we'll need to adjust the pixel_rate here. 7481 */ 7482 7483 if (pipe_config->pch_pfit.enabled) { 7484 u64 pipe_w, pipe_h, pfit_w, pfit_h; 7485 u32 pfit_size = pipe_config->pch_pfit.size; 7486 7487 pipe_w = pipe_config->pipe_src_w; 7488 pipe_h = pipe_config->pipe_src_h; 7489 7490 pfit_w = (pfit_size >> 16) & 0xFFFF; 7491 pfit_h = pfit_size & 0xFFFF; 7492 if (pipe_w < pfit_w) 7493 pipe_w = pfit_w; 7494 if (pipe_h < pfit_h) 7495 pipe_h = pfit_h; 7496 7497 if (WARN_ON(!pfit_w || !pfit_h)) 7498 return pixel_rate; 7499 7500 pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), 7501 pfit_w * pfit_h); 7502 } 7503 7504 return pixel_rate; 7505 } 7506 7507 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 7508 { 7509 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 7510 7511 if (HAS_GMCH(dev_priv)) 7512 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 7513 crtc_state->pixel_rate = 7514 crtc_state->base.adjusted_mode.crtc_clock; 7515 else 7516 crtc_state->pixel_rate = 7517 ilk_pipe_pixel_rate(crtc_state); 7518 } 7519 7520 static int intel_crtc_compute_config(struct intel_crtc *crtc, 7521 struct intel_crtc_state *pipe_config) 7522 { 7523 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7524 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 7525 int clock_limit = dev_priv->max_dotclk_freq; 7526 7527 if (INTEL_GEN(dev_priv) < 4) { 7528 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 7529 7530 /* 7531 * Enable double wide mode when the dot clock 7532 * is > 90% of the (display) core speed. 7533 */ 7534 if (intel_crtc_supports_double_wide(crtc) && 7535 adjusted_mode->crtc_clock > clock_limit) { 7536 clock_limit = dev_priv->max_dotclk_freq; 7537 pipe_config->double_wide = true; 7538 } 7539 } 7540 7541 if (adjusted_mode->crtc_clock > clock_limit) { 7542 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 7543 adjusted_mode->crtc_clock, clock_limit, 7544 yesno(pipe_config->double_wide)); 7545 return -EINVAL; 7546 } 7547 7548 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 7549 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) && 7550 pipe_config->base.ctm) { 7551 /* 7552 * There is only one pipe CSC unit per pipe, and we need that 7553 * for output conversion from RGB->YCBCR. So if CTM is already 7554 * applied we can't support YCBCR420 output. 7555 */ 7556 DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n"); 7557 return -EINVAL; 7558 } 7559 7560 /* 7561 * Pipe horizontal size must be even in: 7562 * - DVO ganged mode 7563 * - LVDS dual channel mode 7564 * - Double wide pipe 7565 */ 7566 if (pipe_config->pipe_src_w & 1) { 7567 if (pipe_config->double_wide) { 7568 DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n"); 7569 return -EINVAL; 7570 } 7571 7572 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 7573 intel_is_dual_link_lvds(dev_priv)) { 7574 DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n"); 7575 return -EINVAL; 7576 } 7577 } 7578 7579 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 7580 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 7581 */ 7582 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && 7583 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) 7584 return -EINVAL; 7585 7586 intel_crtc_compute_pixel_rate(pipe_config); 7587 7588 if (pipe_config->has_pch_encoder) 7589 return ironlake_fdi_compute_config(crtc, pipe_config); 7590 7591 return 0; 7592 } 7593 7594 static void 7595 intel_reduce_m_n_ratio(u32 *num, u32 *den) 7596 { 7597 while (*num > DATA_LINK_M_N_MASK || 7598 *den > DATA_LINK_M_N_MASK) { 7599 *num >>= 1; 7600 *den >>= 1; 7601 } 7602 } 7603 7604 static void compute_m_n(unsigned int m, unsigned int n, 7605 u32 *ret_m, u32 *ret_n, 7606 bool constant_n) 7607 { 7608 /* 7609 * Several DP dongles in particular seem to be fussy about 7610 * too large link M/N values. Give N value as 0x8000 that 7611 * should be acceptable by specific devices. 0x8000 is the 7612 * specified fixed N value for asynchronous clock mode, 7613 * which the devices expect also in synchronous clock mode. 7614 */ 7615 if (constant_n) 7616 *ret_n = 0x8000; 7617 else 7618 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 7619 7620 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 7621 intel_reduce_m_n_ratio(ret_m, ret_n); 7622 } 7623 7624 void 7625 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 7626 int pixel_clock, int link_clock, 7627 struct intel_link_m_n *m_n, 7628 bool constant_n, bool fec_enable) 7629 { 7630 u32 data_clock = bits_per_pixel * pixel_clock; 7631 7632 if (fec_enable) 7633 data_clock = intel_dp_mode_to_fec_clock(data_clock); 7634 7635 m_n->tu = 64; 7636 compute_m_n(data_clock, 7637 link_clock * nlanes * 8, 7638 &m_n->gmch_m, &m_n->gmch_n, 7639 constant_n); 7640 7641 compute_m_n(pixel_clock, link_clock, 7642 &m_n->link_m, &m_n->link_n, 7643 constant_n); 7644 } 7645 7646 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 7647 { 7648 /* 7649 * There may be no VBT; and if the BIOS enabled SSC we can 7650 * just keep using it to avoid unnecessary flicker. Whereas if the 7651 * BIOS isn't using it, don't assume it will work even if the VBT 7652 * indicates as much. 7653 */ 7654 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 7655 bool bios_lvds_use_ssc = I915_READ(PCH_DREF_CONTROL) & 7656 DREF_SSC1_ENABLE; 7657 7658 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 7659 DRM_DEBUG_KMS("SSC %s by BIOS, overriding VBT which says %s\n", 7660 enableddisabled(bios_lvds_use_ssc), 7661 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 7662 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 7663 } 7664 } 7665 } 7666 7667 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 7668 { 7669 if (i915_modparams.panel_use_ssc >= 0) 7670 return i915_modparams.panel_use_ssc != 0; 7671 return dev_priv->vbt.lvds_use_ssc 7672 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 7673 } 7674 7675 static u32 pnv_dpll_compute_fp(struct dpll *dpll) 7676 { 7677 return (1 << dpll->n) << 16 | dpll->m2; 7678 } 7679 7680 static u32 i9xx_dpll_compute_fp(struct dpll *dpll) 7681 { 7682 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 7683 } 7684 7685 static void i9xx_update_pll_dividers(struct intel_crtc *crtc, 7686 struct intel_crtc_state *crtc_state, 7687 struct dpll *reduced_clock) 7688 { 7689 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7690 u32 fp, fp2 = 0; 7691 7692 if (IS_PINEVIEW(dev_priv)) { 7693 fp = pnv_dpll_compute_fp(&crtc_state->dpll); 7694 if (reduced_clock) 7695 fp2 = pnv_dpll_compute_fp(reduced_clock); 7696 } else { 7697 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 7698 if (reduced_clock) 7699 fp2 = i9xx_dpll_compute_fp(reduced_clock); 7700 } 7701 7702 crtc_state->dpll_hw_state.fp0 = fp; 7703 7704 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 7705 reduced_clock) { 7706 crtc_state->dpll_hw_state.fp1 = fp2; 7707 } else { 7708 crtc_state->dpll_hw_state.fp1 = fp; 7709 } 7710 } 7711 7712 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe 7713 pipe) 7714 { 7715 u32 reg_val; 7716 7717 /* 7718 * PLLB opamp always calibrates to max value of 0x3f, force enable it 7719 * and set it to a reasonable value instead. 7720 */ 7721 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 7722 reg_val &= 0xffffff00; 7723 reg_val |= 0x00000030; 7724 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 7725 7726 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 7727 reg_val &= 0x00ffffff; 7728 reg_val |= 0x8c000000; 7729 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 7730 7731 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 7732 reg_val &= 0xffffff00; 7733 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 7734 7735 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 7736 reg_val &= 0x00ffffff; 7737 reg_val |= 0xb0000000; 7738 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 7739 } 7740 7741 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 7742 const struct intel_link_m_n *m_n) 7743 { 7744 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 7745 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7746 enum pipe pipe = crtc->pipe; 7747 7748 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); 7749 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 7750 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m); 7751 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n); 7752 } 7753 7754 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 7755 enum transcoder transcoder) 7756 { 7757 if (IS_HASWELL(dev_priv)) 7758 return transcoder == TRANSCODER_EDP; 7759 7760 /* 7761 * Strictly speaking some registers are available before 7762 * gen7, but we only support DRRS on gen7+ 7763 */ 7764 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); 7765 } 7766 7767 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 7768 const struct intel_link_m_n *m_n, 7769 const struct intel_link_m_n *m2_n2) 7770 { 7771 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 7772 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7773 enum pipe pipe = crtc->pipe; 7774 enum transcoder transcoder = crtc_state->cpu_transcoder; 7775 7776 if (INTEL_GEN(dev_priv) >= 5) { 7777 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m); 7778 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n); 7779 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m); 7780 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n); 7781 /* 7782 * M2_N2 registers are set only if DRRS is supported 7783 * (to make sure the registers are not unnecessarily accessed). 7784 */ 7785 if (m2_n2 && crtc_state->has_drrs && 7786 transcoder_has_m2_n2(dev_priv, transcoder)) { 7787 I915_WRITE(PIPE_DATA_M2(transcoder), 7788 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 7789 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n); 7790 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m); 7791 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n); 7792 } 7793 } else { 7794 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); 7795 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 7796 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m); 7797 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n); 7798 } 7799 } 7800 7801 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 7802 { 7803 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 7804 7805 if (m_n == M1_N1) { 7806 dp_m_n = &crtc_state->dp_m_n; 7807 dp_m2_n2 = &crtc_state->dp_m2_n2; 7808 } else if (m_n == M2_N2) { 7809 7810 /* 7811 * M2_N2 registers are not supported. Hence m2_n2 divider value 7812 * needs to be programmed into M1_N1. 7813 */ 7814 dp_m_n = &crtc_state->dp_m2_n2; 7815 } else { 7816 DRM_ERROR("Unsupported divider value\n"); 7817 return; 7818 } 7819 7820 if (crtc_state->has_pch_encoder) 7821 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 7822 else 7823 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 7824 } 7825 7826 static void vlv_compute_dpll(struct intel_crtc *crtc, 7827 struct intel_crtc_state *pipe_config) 7828 { 7829 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | 7830 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 7831 if (crtc->pipe != PIPE_A) 7832 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 7833 7834 /* DPLL not used with DSI, but still need the rest set up */ 7835 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 7836 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | 7837 DPLL_EXT_BUFFER_ENABLE_VLV; 7838 7839 pipe_config->dpll_hw_state.dpll_md = 7840 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 7841 } 7842 7843 static void chv_compute_dpll(struct intel_crtc *crtc, 7844 struct intel_crtc_state *pipe_config) 7845 { 7846 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | 7847 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 7848 if (crtc->pipe != PIPE_A) 7849 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 7850 7851 /* DPLL not used with DSI, but still need the rest set up */ 7852 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 7853 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; 7854 7855 pipe_config->dpll_hw_state.dpll_md = 7856 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 7857 } 7858 7859 static void vlv_prepare_pll(struct intel_crtc *crtc, 7860 const struct intel_crtc_state *pipe_config) 7861 { 7862 struct drm_device *dev = crtc->base.dev; 7863 struct drm_i915_private *dev_priv = to_i915(dev); 7864 enum pipe pipe = crtc->pipe; 7865 u32 mdiv; 7866 u32 bestn, bestm1, bestm2, bestp1, bestp2; 7867 u32 coreclk, reg_val; 7868 7869 /* Enable Refclk */ 7870 I915_WRITE(DPLL(pipe), 7871 pipe_config->dpll_hw_state.dpll & 7872 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 7873 7874 /* No need to actually set up the DPLL with DSI */ 7875 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 7876 return; 7877 7878 vlv_dpio_get(dev_priv); 7879 7880 bestn = pipe_config->dpll.n; 7881 bestm1 = pipe_config->dpll.m1; 7882 bestm2 = pipe_config->dpll.m2; 7883 bestp1 = pipe_config->dpll.p1; 7884 bestp2 = pipe_config->dpll.p2; 7885 7886 /* See eDP HDMI DPIO driver vbios notes doc */ 7887 7888 /* PLL B needs special handling */ 7889 if (pipe == PIPE_B) 7890 vlv_pllb_recal_opamp(dev_priv, pipe); 7891 7892 /* Set up Tx target for periodic Rcomp update */ 7893 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); 7894 7895 /* Disable target IRef on PLL */ 7896 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); 7897 reg_val &= 0x00ffffff; 7898 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); 7899 7900 /* Disable fast lock */ 7901 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); 7902 7903 /* Set idtafcrecal before PLL is enabled */ 7904 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); 7905 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); 7906 mdiv |= ((bestn << DPIO_N_SHIFT)); 7907 mdiv |= (1 << DPIO_K_SHIFT); 7908 7909 /* 7910 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 7911 * but we don't support that). 7912 * Note: don't use the DAC post divider as it seems unstable. 7913 */ 7914 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); 7915 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 7916 7917 mdiv |= DPIO_ENABLE_CALIBRATION; 7918 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 7919 7920 /* Set HBR and RBR LPF coefficients */ 7921 if (pipe_config->port_clock == 162000 || 7922 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || 7923 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) 7924 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 7925 0x009f0003); 7926 else 7927 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 7928 0x00d0000f); 7929 7930 if (intel_crtc_has_dp_encoder(pipe_config)) { 7931 /* Use SSC source */ 7932 if (pipe == PIPE_A) 7933 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7934 0x0df40000); 7935 else 7936 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7937 0x0df70000); 7938 } else { /* HDMI or VGA */ 7939 /* Use bend source */ 7940 if (pipe == PIPE_A) 7941 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7942 0x0df70000); 7943 else 7944 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7945 0x0df40000); 7946 } 7947 7948 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); 7949 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 7950 if (intel_crtc_has_dp_encoder(pipe_config)) 7951 coreclk |= 0x01000000; 7952 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); 7953 7954 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); 7955 7956 vlv_dpio_put(dev_priv); 7957 } 7958 7959 static void chv_prepare_pll(struct intel_crtc *crtc, 7960 const struct intel_crtc_state *pipe_config) 7961 { 7962 struct drm_device *dev = crtc->base.dev; 7963 struct drm_i915_private *dev_priv = to_i915(dev); 7964 enum pipe pipe = crtc->pipe; 7965 enum dpio_channel port = vlv_pipe_to_channel(pipe); 7966 u32 loopfilter, tribuf_calcntr; 7967 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; 7968 u32 dpio_val; 7969 int vco; 7970 7971 /* Enable Refclk and SSC */ 7972 I915_WRITE(DPLL(pipe), 7973 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); 7974 7975 /* No need to actually set up the DPLL with DSI */ 7976 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 7977 return; 7978 7979 bestn = pipe_config->dpll.n; 7980 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; 7981 bestm1 = pipe_config->dpll.m1; 7982 bestm2 = pipe_config->dpll.m2 >> 22; 7983 bestp1 = pipe_config->dpll.p1; 7984 bestp2 = pipe_config->dpll.p2; 7985 vco = pipe_config->dpll.vco; 7986 dpio_val = 0; 7987 loopfilter = 0; 7988 7989 vlv_dpio_get(dev_priv); 7990 7991 /* p1 and p2 divider */ 7992 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 7993 5 << DPIO_CHV_S1_DIV_SHIFT | 7994 bestp1 << DPIO_CHV_P1_DIV_SHIFT | 7995 bestp2 << DPIO_CHV_P2_DIV_SHIFT | 7996 1 << DPIO_CHV_K_DIV_SHIFT); 7997 7998 /* Feedback post-divider - m2 */ 7999 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); 8000 8001 /* Feedback refclk divider - n and m1 */ 8002 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), 8003 DPIO_CHV_M1_DIV_BY_2 | 8004 1 << DPIO_CHV_N_DIV_SHIFT); 8005 8006 /* M2 fraction division */ 8007 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); 8008 8009 /* M2 fraction division enable */ 8010 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8011 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 8012 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); 8013 if (bestm2_frac) 8014 dpio_val |= DPIO_CHV_FRAC_DIV_EN; 8015 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); 8016 8017 /* Program digital lock detect threshold */ 8018 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); 8019 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 8020 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 8021 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); 8022 if (!bestm2_frac) 8023 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 8024 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); 8025 8026 /* Loop filter */ 8027 if (vco == 5400000) { 8028 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); 8029 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); 8030 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); 8031 tribuf_calcntr = 0x9; 8032 } else if (vco <= 6200000) { 8033 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); 8034 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); 8035 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8036 tribuf_calcntr = 0x9; 8037 } else if (vco <= 6480000) { 8038 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8039 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8040 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8041 tribuf_calcntr = 0x8; 8042 } else { 8043 /* Not supported. Apply the same limits as in the max case */ 8044 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8045 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8046 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8047 tribuf_calcntr = 0; 8048 } 8049 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); 8050 8051 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); 8052 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 8053 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); 8054 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); 8055 8056 /* AFC Recal */ 8057 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), 8058 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | 8059 DPIO_AFC_RECAL); 8060 8061 vlv_dpio_put(dev_priv); 8062 } 8063 8064 /** 8065 * vlv_force_pll_on - forcibly enable just the PLL 8066 * @dev_priv: i915 private structure 8067 * @pipe: pipe PLL to enable 8068 * @dpll: PLL configuration 8069 * 8070 * Enable the PLL for @pipe using the supplied @dpll config. To be used 8071 * in cases where we need the PLL enabled even when @pipe is not going to 8072 * be enabled. 8073 */ 8074 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 8075 const struct dpll *dpll) 8076 { 8077 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 8078 struct intel_crtc_state *pipe_config; 8079 8080 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); 8081 if (!pipe_config) 8082 return -ENOMEM; 8083 8084 pipe_config->base.crtc = &crtc->base; 8085 pipe_config->pixel_multiplier = 1; 8086 pipe_config->dpll = *dpll; 8087 8088 if (IS_CHERRYVIEW(dev_priv)) { 8089 chv_compute_dpll(crtc, pipe_config); 8090 chv_prepare_pll(crtc, pipe_config); 8091 chv_enable_pll(crtc, pipe_config); 8092 } else { 8093 vlv_compute_dpll(crtc, pipe_config); 8094 vlv_prepare_pll(crtc, pipe_config); 8095 vlv_enable_pll(crtc, pipe_config); 8096 } 8097 8098 kfree(pipe_config); 8099 8100 return 0; 8101 } 8102 8103 /** 8104 * vlv_force_pll_off - forcibly disable just the PLL 8105 * @dev_priv: i915 private structure 8106 * @pipe: pipe PLL to disable 8107 * 8108 * Disable the PLL for @pipe. To be used in cases where we need 8109 * the PLL enabled even when @pipe is not going to be enabled. 8110 */ 8111 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 8112 { 8113 if (IS_CHERRYVIEW(dev_priv)) 8114 chv_disable_pll(dev_priv, pipe); 8115 else 8116 vlv_disable_pll(dev_priv, pipe); 8117 } 8118 8119 static void i9xx_compute_dpll(struct intel_crtc *crtc, 8120 struct intel_crtc_state *crtc_state, 8121 struct dpll *reduced_clock) 8122 { 8123 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8124 u32 dpll; 8125 struct dpll *clock = &crtc_state->dpll; 8126 8127 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8128 8129 dpll = DPLL_VGA_MODE_DIS; 8130 8131 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 8132 dpll |= DPLLB_MODE_LVDS; 8133 else 8134 dpll |= DPLLB_MODE_DAC_SERIAL; 8135 8136 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8137 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8138 dpll |= (crtc_state->pixel_multiplier - 1) 8139 << SDVO_MULTIPLIER_SHIFT_HIRES; 8140 } 8141 8142 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 8143 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 8144 dpll |= DPLL_SDVO_HIGH_SPEED; 8145 8146 if (intel_crtc_has_dp_encoder(crtc_state)) 8147 dpll |= DPLL_SDVO_HIGH_SPEED; 8148 8149 /* compute bitmask from p1 value */ 8150 if (IS_PINEVIEW(dev_priv)) 8151 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 8152 else { 8153 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8154 if (IS_G4X(dev_priv) && reduced_clock) 8155 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 8156 } 8157 switch (clock->p2) { 8158 case 5: 8159 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 8160 break; 8161 case 7: 8162 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 8163 break; 8164 case 10: 8165 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 8166 break; 8167 case 14: 8168 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 8169 break; 8170 } 8171 if (INTEL_GEN(dev_priv) >= 4) 8172 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 8173 8174 if (crtc_state->sdvo_tv_clock) 8175 dpll |= PLL_REF_INPUT_TVCLKINBC; 8176 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8177 intel_panel_use_ssc(dev_priv)) 8178 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8179 else 8180 dpll |= PLL_REF_INPUT_DREFCLK; 8181 8182 dpll |= DPLL_VCO_ENABLE; 8183 crtc_state->dpll_hw_state.dpll = dpll; 8184 8185 if (INTEL_GEN(dev_priv) >= 4) { 8186 u32 dpll_md = (crtc_state->pixel_multiplier - 1) 8187 << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8188 crtc_state->dpll_hw_state.dpll_md = dpll_md; 8189 } 8190 } 8191 8192 static void i8xx_compute_dpll(struct intel_crtc *crtc, 8193 struct intel_crtc_state *crtc_state, 8194 struct dpll *reduced_clock) 8195 { 8196 struct drm_device *dev = crtc->base.dev; 8197 struct drm_i915_private *dev_priv = to_i915(dev); 8198 u32 dpll; 8199 struct dpll *clock = &crtc_state->dpll; 8200 8201 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8202 8203 dpll = DPLL_VGA_MODE_DIS; 8204 8205 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8206 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8207 } else { 8208 if (clock->p1 == 2) 8209 dpll |= PLL_P1_DIVIDE_BY_TWO; 8210 else 8211 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8212 if (clock->p2 == 4) 8213 dpll |= PLL_P2_DIVIDE_BY_4; 8214 } 8215 8216 /* 8217 * Bspec: 8218 * "[Almador Errata}: For the correct operation of the muxed DVO pins 8219 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 8220 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 8221 * Enable) must be set to “1” in both the DPLL A Control Register 8222 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 8223 * 8224 * For simplicity We simply keep both bits always enabled in 8225 * both DPLLS. The spec says we should disable the DVO 2X clock 8226 * when not needed, but this seems to work fine in practice. 8227 */ 8228 if (IS_I830(dev_priv) || 8229 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 8230 dpll |= DPLL_DVO_2X_MODE; 8231 8232 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8233 intel_panel_use_ssc(dev_priv)) 8234 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8235 else 8236 dpll |= PLL_REF_INPUT_DREFCLK; 8237 8238 dpll |= DPLL_VCO_ENABLE; 8239 crtc_state->dpll_hw_state.dpll = dpll; 8240 } 8241 8242 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state) 8243 { 8244 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8245 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8246 enum pipe pipe = crtc->pipe; 8247 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8248 const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; 8249 u32 crtc_vtotal, crtc_vblank_end; 8250 int vsyncshift = 0; 8251 8252 /* We need to be careful not to changed the adjusted mode, for otherwise 8253 * the hw state checker will get angry at the mismatch. */ 8254 crtc_vtotal = adjusted_mode->crtc_vtotal; 8255 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 8256 8257 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 8258 /* the chip adds 2 halflines automatically */ 8259 crtc_vtotal -= 1; 8260 crtc_vblank_end -= 1; 8261 8262 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8263 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 8264 else 8265 vsyncshift = adjusted_mode->crtc_hsync_start - 8266 adjusted_mode->crtc_htotal / 2; 8267 if (vsyncshift < 0) 8268 vsyncshift += adjusted_mode->crtc_htotal; 8269 } 8270 8271 if (INTEL_GEN(dev_priv) > 3) 8272 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); 8273 8274 I915_WRITE(HTOTAL(cpu_transcoder), 8275 (adjusted_mode->crtc_hdisplay - 1) | 8276 ((adjusted_mode->crtc_htotal - 1) << 16)); 8277 I915_WRITE(HBLANK(cpu_transcoder), 8278 (adjusted_mode->crtc_hblank_start - 1) | 8279 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 8280 I915_WRITE(HSYNC(cpu_transcoder), 8281 (adjusted_mode->crtc_hsync_start - 1) | 8282 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 8283 8284 I915_WRITE(VTOTAL(cpu_transcoder), 8285 (adjusted_mode->crtc_vdisplay - 1) | 8286 ((crtc_vtotal - 1) << 16)); 8287 I915_WRITE(VBLANK(cpu_transcoder), 8288 (adjusted_mode->crtc_vblank_start - 1) | 8289 ((crtc_vblank_end - 1) << 16)); 8290 I915_WRITE(VSYNC(cpu_transcoder), 8291 (adjusted_mode->crtc_vsync_start - 1) | 8292 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 8293 8294 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 8295 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 8296 * documented on the DDI_FUNC_CTL register description, EDP Input Select 8297 * bits. */ 8298 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 8299 (pipe == PIPE_B || pipe == PIPE_C)) 8300 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); 8301 8302 } 8303 8304 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 8305 { 8306 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8307 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8308 enum pipe pipe = crtc->pipe; 8309 8310 /* pipesrc controls the size that is scaled from, which should 8311 * always be the user's requested size. 8312 */ 8313 I915_WRITE(PIPESRC(pipe), 8314 ((crtc_state->pipe_src_w - 1) << 16) | 8315 (crtc_state->pipe_src_h - 1)); 8316 } 8317 8318 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 8319 { 8320 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 8321 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8322 8323 if (IS_GEN(dev_priv, 2)) 8324 return false; 8325 8326 if (INTEL_GEN(dev_priv) >= 9 || 8327 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 8328 return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 8329 else 8330 return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 8331 } 8332 8333 static void intel_get_pipe_timings(struct intel_crtc *crtc, 8334 struct intel_crtc_state *pipe_config) 8335 { 8336 struct drm_device *dev = crtc->base.dev; 8337 struct drm_i915_private *dev_priv = to_i915(dev); 8338 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 8339 u32 tmp; 8340 8341 tmp = I915_READ(HTOTAL(cpu_transcoder)); 8342 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 8343 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 8344 8345 if (!transcoder_is_dsi(cpu_transcoder)) { 8346 tmp = I915_READ(HBLANK(cpu_transcoder)); 8347 pipe_config->base.adjusted_mode.crtc_hblank_start = 8348 (tmp & 0xffff) + 1; 8349 pipe_config->base.adjusted_mode.crtc_hblank_end = 8350 ((tmp >> 16) & 0xffff) + 1; 8351 } 8352 tmp = I915_READ(HSYNC(cpu_transcoder)); 8353 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 8354 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 8355 8356 tmp = I915_READ(VTOTAL(cpu_transcoder)); 8357 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 8358 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 8359 8360 if (!transcoder_is_dsi(cpu_transcoder)) { 8361 tmp = I915_READ(VBLANK(cpu_transcoder)); 8362 pipe_config->base.adjusted_mode.crtc_vblank_start = 8363 (tmp & 0xffff) + 1; 8364 pipe_config->base.adjusted_mode.crtc_vblank_end = 8365 ((tmp >> 16) & 0xffff) + 1; 8366 } 8367 tmp = I915_READ(VSYNC(cpu_transcoder)); 8368 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 8369 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 8370 8371 if (intel_pipe_is_interlaced(pipe_config)) { 8372 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 8373 pipe_config->base.adjusted_mode.crtc_vtotal += 1; 8374 pipe_config->base.adjusted_mode.crtc_vblank_end += 1; 8375 } 8376 } 8377 8378 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 8379 struct intel_crtc_state *pipe_config) 8380 { 8381 struct drm_device *dev = crtc->base.dev; 8382 struct drm_i915_private *dev_priv = to_i915(dev); 8383 u32 tmp; 8384 8385 tmp = I915_READ(PIPESRC(crtc->pipe)); 8386 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 8387 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 8388 8389 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h; 8390 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w; 8391 } 8392 8393 void intel_mode_from_pipe_config(struct drm_display_mode *mode, 8394 struct intel_crtc_state *pipe_config) 8395 { 8396 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay; 8397 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal; 8398 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start; 8399 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end; 8400 8401 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay; 8402 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal; 8403 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start; 8404 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end; 8405 8406 mode->flags = pipe_config->base.adjusted_mode.flags; 8407 mode->type = DRM_MODE_TYPE_DRIVER; 8408 8409 mode->clock = pipe_config->base.adjusted_mode.crtc_clock; 8410 8411 mode->hsync = drm_mode_hsync(mode); 8412 mode->vrefresh = drm_mode_vrefresh(mode); 8413 drm_mode_set_name(mode); 8414 } 8415 8416 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 8417 { 8418 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8419 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8420 u32 pipeconf; 8421 8422 pipeconf = 0; 8423 8424 /* we keep both pipes enabled on 830 */ 8425 if (IS_I830(dev_priv)) 8426 pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 8427 8428 if (crtc_state->double_wide) 8429 pipeconf |= PIPECONF_DOUBLE_WIDE; 8430 8431 /* only g4x and later have fancy bpc/dither controls */ 8432 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8433 IS_CHERRYVIEW(dev_priv)) { 8434 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 8435 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 8436 pipeconf |= PIPECONF_DITHER_EN | 8437 PIPECONF_DITHER_TYPE_SP; 8438 8439 switch (crtc_state->pipe_bpp) { 8440 case 18: 8441 pipeconf |= PIPECONF_6BPC; 8442 break; 8443 case 24: 8444 pipeconf |= PIPECONF_8BPC; 8445 break; 8446 case 30: 8447 pipeconf |= PIPECONF_10BPC; 8448 break; 8449 default: 8450 /* Case prevented by intel_choose_pipe_bpp_dither. */ 8451 BUG(); 8452 } 8453 } 8454 8455 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 8456 if (INTEL_GEN(dev_priv) < 4 || 8457 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8458 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 8459 else 8460 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 8461 } else { 8462 pipeconf |= PIPECONF_PROGRESSIVE; 8463 } 8464 8465 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 8466 crtc_state->limited_color_range) 8467 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 8468 8469 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 8470 8471 I915_WRITE(PIPECONF(crtc->pipe), pipeconf); 8472 POSTING_READ(PIPECONF(crtc->pipe)); 8473 } 8474 8475 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, 8476 struct intel_crtc_state *crtc_state) 8477 { 8478 struct drm_device *dev = crtc->base.dev; 8479 struct drm_i915_private *dev_priv = to_i915(dev); 8480 const struct intel_limit *limit; 8481 int refclk = 48000; 8482 8483 memset(&crtc_state->dpll_hw_state, 0, 8484 sizeof(crtc_state->dpll_hw_state)); 8485 8486 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8487 if (intel_panel_use_ssc(dev_priv)) { 8488 refclk = dev_priv->vbt.lvds_ssc_freq; 8489 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8490 } 8491 8492 limit = &intel_limits_i8xx_lvds; 8493 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 8494 limit = &intel_limits_i8xx_dvo; 8495 } else { 8496 limit = &intel_limits_i8xx_dac; 8497 } 8498 8499 if (!crtc_state->clock_set && 8500 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8501 refclk, NULL, &crtc_state->dpll)) { 8502 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8503 return -EINVAL; 8504 } 8505 8506 i8xx_compute_dpll(crtc, crtc_state, NULL); 8507 8508 return 0; 8509 } 8510 8511 static int g4x_crtc_compute_clock(struct intel_crtc *crtc, 8512 struct intel_crtc_state *crtc_state) 8513 { 8514 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8515 const struct intel_limit *limit; 8516 int refclk = 96000; 8517 8518 memset(&crtc_state->dpll_hw_state, 0, 8519 sizeof(crtc_state->dpll_hw_state)); 8520 8521 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8522 if (intel_panel_use_ssc(dev_priv)) { 8523 refclk = dev_priv->vbt.lvds_ssc_freq; 8524 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8525 } 8526 8527 if (intel_is_dual_link_lvds(dev_priv)) 8528 limit = &intel_limits_g4x_dual_channel_lvds; 8529 else 8530 limit = &intel_limits_g4x_single_channel_lvds; 8531 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 8532 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 8533 limit = &intel_limits_g4x_hdmi; 8534 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 8535 limit = &intel_limits_g4x_sdvo; 8536 } else { 8537 /* The option is for other outputs */ 8538 limit = &intel_limits_i9xx_sdvo; 8539 } 8540 8541 if (!crtc_state->clock_set && 8542 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8543 refclk, NULL, &crtc_state->dpll)) { 8544 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8545 return -EINVAL; 8546 } 8547 8548 i9xx_compute_dpll(crtc, crtc_state, NULL); 8549 8550 return 0; 8551 } 8552 8553 static int pnv_crtc_compute_clock(struct intel_crtc *crtc, 8554 struct intel_crtc_state *crtc_state) 8555 { 8556 struct drm_device *dev = crtc->base.dev; 8557 struct drm_i915_private *dev_priv = to_i915(dev); 8558 const struct intel_limit *limit; 8559 int refclk = 96000; 8560 8561 memset(&crtc_state->dpll_hw_state, 0, 8562 sizeof(crtc_state->dpll_hw_state)); 8563 8564 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8565 if (intel_panel_use_ssc(dev_priv)) { 8566 refclk = dev_priv->vbt.lvds_ssc_freq; 8567 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8568 } 8569 8570 limit = &intel_limits_pineview_lvds; 8571 } else { 8572 limit = &intel_limits_pineview_sdvo; 8573 } 8574 8575 if (!crtc_state->clock_set && 8576 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8577 refclk, NULL, &crtc_state->dpll)) { 8578 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8579 return -EINVAL; 8580 } 8581 8582 i9xx_compute_dpll(crtc, crtc_state, NULL); 8583 8584 return 0; 8585 } 8586 8587 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, 8588 struct intel_crtc_state *crtc_state) 8589 { 8590 struct drm_device *dev = crtc->base.dev; 8591 struct drm_i915_private *dev_priv = to_i915(dev); 8592 const struct intel_limit *limit; 8593 int refclk = 96000; 8594 8595 memset(&crtc_state->dpll_hw_state, 0, 8596 sizeof(crtc_state->dpll_hw_state)); 8597 8598 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8599 if (intel_panel_use_ssc(dev_priv)) { 8600 refclk = dev_priv->vbt.lvds_ssc_freq; 8601 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8602 } 8603 8604 limit = &intel_limits_i9xx_lvds; 8605 } else { 8606 limit = &intel_limits_i9xx_sdvo; 8607 } 8608 8609 if (!crtc_state->clock_set && 8610 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8611 refclk, NULL, &crtc_state->dpll)) { 8612 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8613 return -EINVAL; 8614 } 8615 8616 i9xx_compute_dpll(crtc, crtc_state, NULL); 8617 8618 return 0; 8619 } 8620 8621 static int chv_crtc_compute_clock(struct intel_crtc *crtc, 8622 struct intel_crtc_state *crtc_state) 8623 { 8624 int refclk = 100000; 8625 const struct intel_limit *limit = &intel_limits_chv; 8626 8627 memset(&crtc_state->dpll_hw_state, 0, 8628 sizeof(crtc_state->dpll_hw_state)); 8629 8630 if (!crtc_state->clock_set && 8631 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8632 refclk, NULL, &crtc_state->dpll)) { 8633 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8634 return -EINVAL; 8635 } 8636 8637 chv_compute_dpll(crtc, crtc_state); 8638 8639 return 0; 8640 } 8641 8642 static int vlv_crtc_compute_clock(struct intel_crtc *crtc, 8643 struct intel_crtc_state *crtc_state) 8644 { 8645 int refclk = 100000; 8646 const struct intel_limit *limit = &intel_limits_vlv; 8647 8648 memset(&crtc_state->dpll_hw_state, 0, 8649 sizeof(crtc_state->dpll_hw_state)); 8650 8651 if (!crtc_state->clock_set && 8652 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8653 refclk, NULL, &crtc_state->dpll)) { 8654 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8655 return -EINVAL; 8656 } 8657 8658 vlv_compute_dpll(crtc, crtc_state); 8659 8660 return 0; 8661 } 8662 8663 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 8664 { 8665 if (IS_I830(dev_priv)) 8666 return false; 8667 8668 return INTEL_GEN(dev_priv) >= 4 || 8669 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 8670 } 8671 8672 static void i9xx_get_pfit_config(struct intel_crtc *crtc, 8673 struct intel_crtc_state *pipe_config) 8674 { 8675 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8676 u32 tmp; 8677 8678 if (!i9xx_has_pfit(dev_priv)) 8679 return; 8680 8681 tmp = I915_READ(PFIT_CONTROL); 8682 if (!(tmp & PFIT_ENABLE)) 8683 return; 8684 8685 /* Check whether the pfit is attached to our pipe. */ 8686 if (INTEL_GEN(dev_priv) < 4) { 8687 if (crtc->pipe != PIPE_B) 8688 return; 8689 } else { 8690 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 8691 return; 8692 } 8693 8694 pipe_config->gmch_pfit.control = tmp; 8695 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS); 8696 } 8697 8698 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 8699 struct intel_crtc_state *pipe_config) 8700 { 8701 struct drm_device *dev = crtc->base.dev; 8702 struct drm_i915_private *dev_priv = to_i915(dev); 8703 enum pipe pipe = crtc->pipe; 8704 struct dpll clock; 8705 u32 mdiv; 8706 int refclk = 100000; 8707 8708 /* In case of DSI, DPLL will not be used */ 8709 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8710 return; 8711 8712 vlv_dpio_get(dev_priv); 8713 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 8714 vlv_dpio_put(dev_priv); 8715 8716 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 8717 clock.m2 = mdiv & DPIO_M2DIV_MASK; 8718 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 8719 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 8720 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 8721 8722 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 8723 } 8724 8725 static void 8726 i9xx_get_initial_plane_config(struct intel_crtc *crtc, 8727 struct intel_initial_plane_config *plane_config) 8728 { 8729 struct drm_device *dev = crtc->base.dev; 8730 struct drm_i915_private *dev_priv = to_i915(dev); 8731 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 8732 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 8733 enum pipe pipe; 8734 u32 val, base, offset; 8735 int fourcc, pixel_format; 8736 unsigned int aligned_height; 8737 struct drm_framebuffer *fb; 8738 struct intel_framebuffer *intel_fb; 8739 8740 if (!plane->get_hw_state(plane, &pipe)) 8741 return; 8742 8743 WARN_ON(pipe != crtc->pipe); 8744 8745 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 8746 if (!intel_fb) { 8747 DRM_DEBUG_KMS("failed to alloc fb\n"); 8748 return; 8749 } 8750 8751 fb = &intel_fb->base; 8752 8753 fb->dev = dev; 8754 8755 val = I915_READ(DSPCNTR(i9xx_plane)); 8756 8757 if (INTEL_GEN(dev_priv) >= 4) { 8758 if (val & DISPPLANE_TILED) { 8759 plane_config->tiling = I915_TILING_X; 8760 fb->modifier = I915_FORMAT_MOD_X_TILED; 8761 } 8762 8763 if (val & DISPPLANE_ROTATE_180) 8764 plane_config->rotation = DRM_MODE_ROTATE_180; 8765 } 8766 8767 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && 8768 val & DISPPLANE_MIRROR) 8769 plane_config->rotation |= DRM_MODE_REFLECT_X; 8770 8771 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 8772 fourcc = i9xx_format_to_fourcc(pixel_format); 8773 fb->format = drm_format_info(fourcc); 8774 8775 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 8776 offset = I915_READ(DSPOFFSET(i9xx_plane)); 8777 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000; 8778 } else if (INTEL_GEN(dev_priv) >= 4) { 8779 if (plane_config->tiling) 8780 offset = I915_READ(DSPTILEOFF(i9xx_plane)); 8781 else 8782 offset = I915_READ(DSPLINOFF(i9xx_plane)); 8783 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000; 8784 } else { 8785 base = I915_READ(DSPADDR(i9xx_plane)); 8786 } 8787 plane_config->base = base; 8788 8789 val = I915_READ(PIPESRC(pipe)); 8790 fb->width = ((val >> 16) & 0xfff) + 1; 8791 fb->height = ((val >> 0) & 0xfff) + 1; 8792 8793 val = I915_READ(DSPSTRIDE(i9xx_plane)); 8794 fb->pitches[0] = val & 0xffffffc0; 8795 8796 aligned_height = intel_fb_align_height(fb, 0, fb->height); 8797 8798 plane_config->size = fb->pitches[0] * aligned_height; 8799 8800 DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 8801 crtc->base.name, plane->base.name, fb->width, fb->height, 8802 fb->format->cpp[0] * 8, base, fb->pitches[0], 8803 plane_config->size); 8804 8805 plane_config->fb = intel_fb; 8806 } 8807 8808 static void chv_crtc_clock_get(struct intel_crtc *crtc, 8809 struct intel_crtc_state *pipe_config) 8810 { 8811 struct drm_device *dev = crtc->base.dev; 8812 struct drm_i915_private *dev_priv = to_i915(dev); 8813 enum pipe pipe = crtc->pipe; 8814 enum dpio_channel port = vlv_pipe_to_channel(pipe); 8815 struct dpll clock; 8816 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 8817 int refclk = 100000; 8818 8819 /* In case of DSI, DPLL will not be used */ 8820 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8821 return; 8822 8823 vlv_dpio_get(dev_priv); 8824 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 8825 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 8826 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 8827 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 8828 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8829 vlv_dpio_put(dev_priv); 8830 8831 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 8832 clock.m2 = (pll_dw0 & 0xff) << 22; 8833 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 8834 clock.m2 |= pll_dw2 & 0x3fffff; 8835 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 8836 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 8837 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 8838 8839 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 8840 } 8841 8842 static enum intel_output_format 8843 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 8844 { 8845 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8846 u32 tmp; 8847 8848 tmp = I915_READ(PIPEMISC(crtc->pipe)); 8849 8850 if (tmp & PIPEMISC_YUV420_ENABLE) { 8851 /* We support 4:2:0 in full blend mode only */ 8852 WARN_ON((tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 8853 8854 return INTEL_OUTPUT_FORMAT_YCBCR420; 8855 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 8856 return INTEL_OUTPUT_FORMAT_YCBCR444; 8857 } else { 8858 return INTEL_OUTPUT_FORMAT_RGB; 8859 } 8860 } 8861 8862 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 8863 { 8864 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8865 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 8866 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8867 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 8868 u32 tmp; 8869 8870 tmp = I915_READ(DSPCNTR(i9xx_plane)); 8871 8872 if (tmp & DISPPLANE_GAMMA_ENABLE) 8873 crtc_state->gamma_enable = true; 8874 8875 if (!HAS_GMCH(dev_priv) && 8876 tmp & DISPPLANE_PIPE_CSC_ENABLE) 8877 crtc_state->csc_enable = true; 8878 } 8879 8880 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 8881 struct intel_crtc_state *pipe_config) 8882 { 8883 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8884 enum intel_display_power_domain power_domain; 8885 intel_wakeref_t wakeref; 8886 u32 tmp; 8887 bool ret; 8888 8889 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 8890 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 8891 if (!wakeref) 8892 return false; 8893 8894 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 8895 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 8896 pipe_config->shared_dpll = NULL; 8897 pipe_config->master_transcoder = INVALID_TRANSCODER; 8898 8899 ret = false; 8900 8901 tmp = I915_READ(PIPECONF(crtc->pipe)); 8902 if (!(tmp & PIPECONF_ENABLE)) 8903 goto out; 8904 8905 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8906 IS_CHERRYVIEW(dev_priv)) { 8907 switch (tmp & PIPECONF_BPC_MASK) { 8908 case PIPECONF_6BPC: 8909 pipe_config->pipe_bpp = 18; 8910 break; 8911 case PIPECONF_8BPC: 8912 pipe_config->pipe_bpp = 24; 8913 break; 8914 case PIPECONF_10BPC: 8915 pipe_config->pipe_bpp = 30; 8916 break; 8917 default: 8918 break; 8919 } 8920 } 8921 8922 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 8923 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 8924 pipe_config->limited_color_range = true; 8925 8926 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 8927 PIPECONF_GAMMA_MODE_SHIFT; 8928 8929 if (IS_CHERRYVIEW(dev_priv)) 8930 pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe)); 8931 8932 i9xx_get_pipe_color_config(pipe_config); 8933 intel_color_get_config(pipe_config); 8934 8935 if (INTEL_GEN(dev_priv) < 4) 8936 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 8937 8938 intel_get_pipe_timings(crtc, pipe_config); 8939 intel_get_pipe_src_size(crtc, pipe_config); 8940 8941 i9xx_get_pfit_config(crtc, pipe_config); 8942 8943 if (INTEL_GEN(dev_priv) >= 4) { 8944 /* No way to read it out on pipes B and C */ 8945 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 8946 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 8947 else 8948 tmp = I915_READ(DPLL_MD(crtc->pipe)); 8949 pipe_config->pixel_multiplier = 8950 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 8951 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 8952 pipe_config->dpll_hw_state.dpll_md = tmp; 8953 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8954 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8955 tmp = I915_READ(DPLL(crtc->pipe)); 8956 pipe_config->pixel_multiplier = 8957 ((tmp & SDVO_MULTIPLIER_MASK) 8958 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 8959 } else { 8960 /* Note that on i915G/GM the pixel multiplier is in the sdvo 8961 * port and will be fixed up in the encoder->get_config 8962 * function. */ 8963 pipe_config->pixel_multiplier = 1; 8964 } 8965 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe)); 8966 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 8967 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe)); 8968 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe)); 8969 } else { 8970 /* Mask out read-only status bits. */ 8971 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 8972 DPLL_PORTC_READY_MASK | 8973 DPLL_PORTB_READY_MASK); 8974 } 8975 8976 if (IS_CHERRYVIEW(dev_priv)) 8977 chv_crtc_clock_get(crtc, pipe_config); 8978 else if (IS_VALLEYVIEW(dev_priv)) 8979 vlv_crtc_clock_get(crtc, pipe_config); 8980 else 8981 i9xx_crtc_clock_get(crtc, pipe_config); 8982 8983 /* 8984 * Normally the dotclock is filled in by the encoder .get_config() 8985 * but in case the pipe is enabled w/o any ports we need a sane 8986 * default. 8987 */ 8988 pipe_config->base.adjusted_mode.crtc_clock = 8989 pipe_config->port_clock / pipe_config->pixel_multiplier; 8990 8991 ret = true; 8992 8993 out: 8994 intel_display_power_put(dev_priv, power_domain, wakeref); 8995 8996 return ret; 8997 } 8998 8999 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv) 9000 { 9001 struct intel_encoder *encoder; 9002 int i; 9003 u32 val, final; 9004 bool has_lvds = false; 9005 bool has_cpu_edp = false; 9006 bool has_panel = false; 9007 bool has_ck505 = false; 9008 bool can_ssc = false; 9009 bool using_ssc_source = false; 9010 9011 /* We need to take the global config into account */ 9012 for_each_intel_encoder(&dev_priv->drm, encoder) { 9013 switch (encoder->type) { 9014 case INTEL_OUTPUT_LVDS: 9015 has_panel = true; 9016 has_lvds = true; 9017 break; 9018 case INTEL_OUTPUT_EDP: 9019 has_panel = true; 9020 if (encoder->port == PORT_A) 9021 has_cpu_edp = true; 9022 break; 9023 default: 9024 break; 9025 } 9026 } 9027 9028 if (HAS_PCH_IBX(dev_priv)) { 9029 has_ck505 = dev_priv->vbt.display_clock_mode; 9030 can_ssc = has_ck505; 9031 } else { 9032 has_ck505 = false; 9033 can_ssc = true; 9034 } 9035 9036 /* Check if any DPLLs are using the SSC source */ 9037 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 9038 u32 temp = I915_READ(PCH_DPLL(i)); 9039 9040 if (!(temp & DPLL_VCO_ENABLE)) 9041 continue; 9042 9043 if ((temp & PLL_REF_INPUT_MASK) == 9044 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 9045 using_ssc_source = true; 9046 break; 9047 } 9048 } 9049 9050 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 9051 has_panel, has_lvds, has_ck505, using_ssc_source); 9052 9053 /* Ironlake: try to setup display ref clock before DPLL 9054 * enabling. This is only under driver's control after 9055 * PCH B stepping, previous chipset stepping should be 9056 * ignoring this setting. 9057 */ 9058 val = I915_READ(PCH_DREF_CONTROL); 9059 9060 /* As we must carefully and slowly disable/enable each source in turn, 9061 * compute the final state we want first and check if we need to 9062 * make any changes at all. 9063 */ 9064 final = val; 9065 final &= ~DREF_NONSPREAD_SOURCE_MASK; 9066 if (has_ck505) 9067 final |= DREF_NONSPREAD_CK505_ENABLE; 9068 else 9069 final |= DREF_NONSPREAD_SOURCE_ENABLE; 9070 9071 final &= ~DREF_SSC_SOURCE_MASK; 9072 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9073 final &= ~DREF_SSC1_ENABLE; 9074 9075 if (has_panel) { 9076 final |= DREF_SSC_SOURCE_ENABLE; 9077 9078 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9079 final |= DREF_SSC1_ENABLE; 9080 9081 if (has_cpu_edp) { 9082 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9083 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9084 else 9085 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9086 } else 9087 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9088 } else if (using_ssc_source) { 9089 final |= DREF_SSC_SOURCE_ENABLE; 9090 final |= DREF_SSC1_ENABLE; 9091 } 9092 9093 if (final == val) 9094 return; 9095 9096 /* Always enable nonspread source */ 9097 val &= ~DREF_NONSPREAD_SOURCE_MASK; 9098 9099 if (has_ck505) 9100 val |= DREF_NONSPREAD_CK505_ENABLE; 9101 else 9102 val |= DREF_NONSPREAD_SOURCE_ENABLE; 9103 9104 if (has_panel) { 9105 val &= ~DREF_SSC_SOURCE_MASK; 9106 val |= DREF_SSC_SOURCE_ENABLE; 9107 9108 /* SSC must be turned on before enabling the CPU output */ 9109 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9110 DRM_DEBUG_KMS("Using SSC on panel\n"); 9111 val |= DREF_SSC1_ENABLE; 9112 } else 9113 val &= ~DREF_SSC1_ENABLE; 9114 9115 /* Get SSC going before enabling the outputs */ 9116 I915_WRITE(PCH_DREF_CONTROL, val); 9117 POSTING_READ(PCH_DREF_CONTROL); 9118 udelay(200); 9119 9120 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9121 9122 /* Enable CPU source on CPU attached eDP */ 9123 if (has_cpu_edp) { 9124 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9125 DRM_DEBUG_KMS("Using SSC on eDP\n"); 9126 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9127 } else 9128 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9129 } else 9130 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9131 9132 I915_WRITE(PCH_DREF_CONTROL, val); 9133 POSTING_READ(PCH_DREF_CONTROL); 9134 udelay(200); 9135 } else { 9136 DRM_DEBUG_KMS("Disabling CPU source output\n"); 9137 9138 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9139 9140 /* Turn off CPU output */ 9141 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9142 9143 I915_WRITE(PCH_DREF_CONTROL, val); 9144 POSTING_READ(PCH_DREF_CONTROL); 9145 udelay(200); 9146 9147 if (!using_ssc_source) { 9148 DRM_DEBUG_KMS("Disabling SSC source\n"); 9149 9150 /* Turn off the SSC source */ 9151 val &= ~DREF_SSC_SOURCE_MASK; 9152 val |= DREF_SSC_SOURCE_DISABLE; 9153 9154 /* Turn off SSC1 */ 9155 val &= ~DREF_SSC1_ENABLE; 9156 9157 I915_WRITE(PCH_DREF_CONTROL, val); 9158 POSTING_READ(PCH_DREF_CONTROL); 9159 udelay(200); 9160 } 9161 } 9162 9163 BUG_ON(val != final); 9164 } 9165 9166 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 9167 { 9168 u32 tmp; 9169 9170 tmp = I915_READ(SOUTH_CHICKEN2); 9171 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 9172 I915_WRITE(SOUTH_CHICKEN2, tmp); 9173 9174 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) & 9175 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 9176 DRM_ERROR("FDI mPHY reset assert timeout\n"); 9177 9178 tmp = I915_READ(SOUTH_CHICKEN2); 9179 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 9180 I915_WRITE(SOUTH_CHICKEN2, tmp); 9181 9182 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) & 9183 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 9184 DRM_ERROR("FDI mPHY reset de-assert timeout\n"); 9185 } 9186 9187 /* WaMPhyProgramming:hsw */ 9188 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 9189 { 9190 u32 tmp; 9191 9192 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 9193 tmp &= ~(0xFF << 24); 9194 tmp |= (0x12 << 24); 9195 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 9196 9197 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 9198 tmp |= (1 << 11); 9199 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 9200 9201 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 9202 tmp |= (1 << 11); 9203 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 9204 9205 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 9206 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9207 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 9208 9209 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 9210 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9211 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 9212 9213 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 9214 tmp &= ~(7 << 13); 9215 tmp |= (5 << 13); 9216 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 9217 9218 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 9219 tmp &= ~(7 << 13); 9220 tmp |= (5 << 13); 9221 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 9222 9223 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 9224 tmp &= ~0xFF; 9225 tmp |= 0x1C; 9226 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 9227 9228 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 9229 tmp &= ~0xFF; 9230 tmp |= 0x1C; 9231 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 9232 9233 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 9234 tmp &= ~(0xFF << 16); 9235 tmp |= (0x1C << 16); 9236 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 9237 9238 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 9239 tmp &= ~(0xFF << 16); 9240 tmp |= (0x1C << 16); 9241 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 9242 9243 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 9244 tmp |= (1 << 27); 9245 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 9246 9247 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 9248 tmp |= (1 << 27); 9249 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 9250 9251 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 9252 tmp &= ~(0xF << 28); 9253 tmp |= (4 << 28); 9254 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 9255 9256 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 9257 tmp &= ~(0xF << 28); 9258 tmp |= (4 << 28); 9259 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 9260 } 9261 9262 /* Implements 3 different sequences from BSpec chapter "Display iCLK 9263 * Programming" based on the parameters passed: 9264 * - Sequence to enable CLKOUT_DP 9265 * - Sequence to enable CLKOUT_DP without spread 9266 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 9267 */ 9268 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 9269 bool with_spread, bool with_fdi) 9270 { 9271 u32 reg, tmp; 9272 9273 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n")) 9274 with_spread = true; 9275 if (WARN(HAS_PCH_LPT_LP(dev_priv) && 9276 with_fdi, "LP PCH doesn't have FDI\n")) 9277 with_fdi = false; 9278 9279 mutex_lock(&dev_priv->sb_lock); 9280 9281 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9282 tmp &= ~SBI_SSCCTL_DISABLE; 9283 tmp |= SBI_SSCCTL_PATHALT; 9284 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9285 9286 udelay(24); 9287 9288 if (with_spread) { 9289 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9290 tmp &= ~SBI_SSCCTL_PATHALT; 9291 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9292 9293 if (with_fdi) { 9294 lpt_reset_fdi_mphy(dev_priv); 9295 lpt_program_fdi_mphy(dev_priv); 9296 } 9297 } 9298 9299 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9300 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9301 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9302 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9303 9304 mutex_unlock(&dev_priv->sb_lock); 9305 } 9306 9307 /* Sequence to disable CLKOUT_DP */ 9308 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 9309 { 9310 u32 reg, tmp; 9311 9312 mutex_lock(&dev_priv->sb_lock); 9313 9314 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9315 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9316 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9317 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9318 9319 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9320 if (!(tmp & SBI_SSCCTL_DISABLE)) { 9321 if (!(tmp & SBI_SSCCTL_PATHALT)) { 9322 tmp |= SBI_SSCCTL_PATHALT; 9323 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9324 udelay(32); 9325 } 9326 tmp |= SBI_SSCCTL_DISABLE; 9327 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9328 } 9329 9330 mutex_unlock(&dev_priv->sb_lock); 9331 } 9332 9333 #define BEND_IDX(steps) ((50 + (steps)) / 5) 9334 9335 static const u16 sscdivintphase[] = { 9336 [BEND_IDX( 50)] = 0x3B23, 9337 [BEND_IDX( 45)] = 0x3B23, 9338 [BEND_IDX( 40)] = 0x3C23, 9339 [BEND_IDX( 35)] = 0x3C23, 9340 [BEND_IDX( 30)] = 0x3D23, 9341 [BEND_IDX( 25)] = 0x3D23, 9342 [BEND_IDX( 20)] = 0x3E23, 9343 [BEND_IDX( 15)] = 0x3E23, 9344 [BEND_IDX( 10)] = 0x3F23, 9345 [BEND_IDX( 5)] = 0x3F23, 9346 [BEND_IDX( 0)] = 0x0025, 9347 [BEND_IDX( -5)] = 0x0025, 9348 [BEND_IDX(-10)] = 0x0125, 9349 [BEND_IDX(-15)] = 0x0125, 9350 [BEND_IDX(-20)] = 0x0225, 9351 [BEND_IDX(-25)] = 0x0225, 9352 [BEND_IDX(-30)] = 0x0325, 9353 [BEND_IDX(-35)] = 0x0325, 9354 [BEND_IDX(-40)] = 0x0425, 9355 [BEND_IDX(-45)] = 0x0425, 9356 [BEND_IDX(-50)] = 0x0525, 9357 }; 9358 9359 /* 9360 * Bend CLKOUT_DP 9361 * steps -50 to 50 inclusive, in steps of 5 9362 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 9363 * change in clock period = -(steps / 10) * 5.787 ps 9364 */ 9365 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 9366 { 9367 u32 tmp; 9368 int idx = BEND_IDX(steps); 9369 9370 if (WARN_ON(steps % 5 != 0)) 9371 return; 9372 9373 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase))) 9374 return; 9375 9376 mutex_lock(&dev_priv->sb_lock); 9377 9378 if (steps % 10 != 0) 9379 tmp = 0xAAAAAAAB; 9380 else 9381 tmp = 0x00000000; 9382 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 9383 9384 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 9385 tmp &= 0xffff0000; 9386 tmp |= sscdivintphase[idx]; 9387 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 9388 9389 mutex_unlock(&dev_priv->sb_lock); 9390 } 9391 9392 #undef BEND_IDX 9393 9394 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 9395 { 9396 u32 fuse_strap = I915_READ(FUSE_STRAP); 9397 u32 ctl = I915_READ(SPLL_CTL); 9398 9399 if ((ctl & SPLL_PLL_ENABLE) == 0) 9400 return false; 9401 9402 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 9403 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9404 return true; 9405 9406 if (IS_BROADWELL(dev_priv) && 9407 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 9408 return true; 9409 9410 return false; 9411 } 9412 9413 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 9414 enum intel_dpll_id id) 9415 { 9416 u32 fuse_strap = I915_READ(FUSE_STRAP); 9417 u32 ctl = I915_READ(WRPLL_CTL(id)); 9418 9419 if ((ctl & WRPLL_PLL_ENABLE) == 0) 9420 return false; 9421 9422 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 9423 return true; 9424 9425 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 9426 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 9427 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9428 return true; 9429 9430 return false; 9431 } 9432 9433 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 9434 { 9435 struct intel_encoder *encoder; 9436 bool has_fdi = false; 9437 9438 for_each_intel_encoder(&dev_priv->drm, encoder) { 9439 switch (encoder->type) { 9440 case INTEL_OUTPUT_ANALOG: 9441 has_fdi = true; 9442 break; 9443 default: 9444 break; 9445 } 9446 } 9447 9448 /* 9449 * The BIOS may have decided to use the PCH SSC 9450 * reference so we must not disable it until the 9451 * relevant PLLs have stopped relying on it. We'll 9452 * just leave the PCH SSC reference enabled in case 9453 * any active PLL is using it. It will get disabled 9454 * after runtime suspend if we don't have FDI. 9455 * 9456 * TODO: Move the whole reference clock handling 9457 * to the modeset sequence proper so that we can 9458 * actually enable/disable/reconfigure these things 9459 * safely. To do that we need to introduce a real 9460 * clock hierarchy. That would also allow us to do 9461 * clock bending finally. 9462 */ 9463 dev_priv->pch_ssc_use = 0; 9464 9465 if (spll_uses_pch_ssc(dev_priv)) { 9466 DRM_DEBUG_KMS("SPLL using PCH SSC\n"); 9467 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 9468 } 9469 9470 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 9471 DRM_DEBUG_KMS("WRPLL1 using PCH SSC\n"); 9472 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 9473 } 9474 9475 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 9476 DRM_DEBUG_KMS("WRPLL2 using PCH SSC\n"); 9477 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 9478 } 9479 9480 if (dev_priv->pch_ssc_use) 9481 return; 9482 9483 if (has_fdi) { 9484 lpt_bend_clkout_dp(dev_priv, 0); 9485 lpt_enable_clkout_dp(dev_priv, true, true); 9486 } else { 9487 lpt_disable_clkout_dp(dev_priv); 9488 } 9489 } 9490 9491 /* 9492 * Initialize reference clocks when the driver loads 9493 */ 9494 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 9495 { 9496 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 9497 ironlake_init_pch_refclk(dev_priv); 9498 else if (HAS_PCH_LPT(dev_priv)) 9499 lpt_init_pch_refclk(dev_priv); 9500 } 9501 9502 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state) 9503 { 9504 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 9505 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9506 enum pipe pipe = crtc->pipe; 9507 u32 val; 9508 9509 val = 0; 9510 9511 switch (crtc_state->pipe_bpp) { 9512 case 18: 9513 val |= PIPECONF_6BPC; 9514 break; 9515 case 24: 9516 val |= PIPECONF_8BPC; 9517 break; 9518 case 30: 9519 val |= PIPECONF_10BPC; 9520 break; 9521 case 36: 9522 val |= PIPECONF_12BPC; 9523 break; 9524 default: 9525 /* Case prevented by intel_choose_pipe_bpp_dither. */ 9526 BUG(); 9527 } 9528 9529 if (crtc_state->dither) 9530 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 9531 9532 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9533 val |= PIPECONF_INTERLACED_ILK; 9534 else 9535 val |= PIPECONF_PROGRESSIVE; 9536 9537 /* 9538 * This would end up with an odd purple hue over 9539 * the entire display. Make sure we don't do it. 9540 */ 9541 WARN_ON(crtc_state->limited_color_range && 9542 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 9543 9544 if (crtc_state->limited_color_range) 9545 val |= PIPECONF_COLOR_RANGE_SELECT; 9546 9547 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 9548 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 9549 9550 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 9551 9552 I915_WRITE(PIPECONF(pipe), val); 9553 POSTING_READ(PIPECONF(pipe)); 9554 } 9555 9556 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state) 9557 { 9558 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 9559 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9560 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 9561 u32 val = 0; 9562 9563 if (IS_HASWELL(dev_priv) && crtc_state->dither) 9564 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 9565 9566 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9567 val |= PIPECONF_INTERLACED_ILK; 9568 else 9569 val |= PIPECONF_PROGRESSIVE; 9570 9571 if (IS_HASWELL(dev_priv) && 9572 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 9573 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 9574 9575 I915_WRITE(PIPECONF(cpu_transcoder), val); 9576 POSTING_READ(PIPECONF(cpu_transcoder)); 9577 } 9578 9579 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 9580 { 9581 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 9582 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9583 u32 val = 0; 9584 9585 switch (crtc_state->pipe_bpp) { 9586 case 18: 9587 val |= PIPEMISC_DITHER_6_BPC; 9588 break; 9589 case 24: 9590 val |= PIPEMISC_DITHER_8_BPC; 9591 break; 9592 case 30: 9593 val |= PIPEMISC_DITHER_10_BPC; 9594 break; 9595 case 36: 9596 val |= PIPEMISC_DITHER_12_BPC; 9597 break; 9598 default: 9599 MISSING_CASE(crtc_state->pipe_bpp); 9600 break; 9601 } 9602 9603 if (crtc_state->dither) 9604 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 9605 9606 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 9607 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 9608 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 9609 9610 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 9611 val |= PIPEMISC_YUV420_ENABLE | 9612 PIPEMISC_YUV420_MODE_FULL_BLEND; 9613 9614 if (INTEL_GEN(dev_priv) >= 11 && 9615 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 9616 BIT(PLANE_CURSOR))) == 0) 9617 val |= PIPEMISC_HDR_MODE_PRECISION; 9618 9619 I915_WRITE(PIPEMISC(crtc->pipe), val); 9620 } 9621 9622 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 9623 { 9624 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9625 u32 tmp; 9626 9627 tmp = I915_READ(PIPEMISC(crtc->pipe)); 9628 9629 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 9630 case PIPEMISC_DITHER_6_BPC: 9631 return 18; 9632 case PIPEMISC_DITHER_8_BPC: 9633 return 24; 9634 case PIPEMISC_DITHER_10_BPC: 9635 return 30; 9636 case PIPEMISC_DITHER_12_BPC: 9637 return 36; 9638 default: 9639 MISSING_CASE(tmp); 9640 return 0; 9641 } 9642 } 9643 9644 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp) 9645 { 9646 /* 9647 * Account for spread spectrum to avoid 9648 * oversubscribing the link. Max center spread 9649 * is 2.5%; use 5% for safety's sake. 9650 */ 9651 u32 bps = target_clock * bpp * 21 / 20; 9652 return DIV_ROUND_UP(bps, link_bw * 8); 9653 } 9654 9655 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor) 9656 { 9657 return i9xx_dpll_compute_m(dpll) < factor * dpll->n; 9658 } 9659 9660 static void ironlake_compute_dpll(struct intel_crtc *crtc, 9661 struct intel_crtc_state *crtc_state, 9662 struct dpll *reduced_clock) 9663 { 9664 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9665 u32 dpll, fp, fp2; 9666 int factor; 9667 9668 /* Enable autotuning of the PLL clock (if permissible) */ 9669 factor = 21; 9670 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9671 if ((intel_panel_use_ssc(dev_priv) && 9672 dev_priv->vbt.lvds_ssc_freq == 100000) || 9673 (HAS_PCH_IBX(dev_priv) && 9674 intel_is_dual_link_lvds(dev_priv))) 9675 factor = 25; 9676 } else if (crtc_state->sdvo_tv_clock) { 9677 factor = 20; 9678 } 9679 9680 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 9681 9682 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor)) 9683 fp |= FP_CB_TUNE; 9684 9685 if (reduced_clock) { 9686 fp2 = i9xx_dpll_compute_fp(reduced_clock); 9687 9688 if (reduced_clock->m < factor * reduced_clock->n) 9689 fp2 |= FP_CB_TUNE; 9690 } else { 9691 fp2 = fp; 9692 } 9693 9694 dpll = 0; 9695 9696 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 9697 dpll |= DPLLB_MODE_LVDS; 9698 else 9699 dpll |= DPLLB_MODE_DAC_SERIAL; 9700 9701 dpll |= (crtc_state->pixel_multiplier - 1) 9702 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 9703 9704 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 9705 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 9706 dpll |= DPLL_SDVO_HIGH_SPEED; 9707 9708 if (intel_crtc_has_dp_encoder(crtc_state)) 9709 dpll |= DPLL_SDVO_HIGH_SPEED; 9710 9711 /* 9712 * The high speed IO clock is only really required for 9713 * SDVO/HDMI/DP, but we also enable it for CRT to make it 9714 * possible to share the DPLL between CRT and HDMI. Enabling 9715 * the clock needlessly does no real harm, except use up a 9716 * bit of power potentially. 9717 * 9718 * We'll limit this to IVB with 3 pipes, since it has only two 9719 * DPLLs and so DPLL sharing is the only way to get three pipes 9720 * driving PCH ports at the same time. On SNB we could do this, 9721 * and potentially avoid enabling the second DPLL, but it's not 9722 * clear if it''s a win or loss power wise. No point in doing 9723 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 9724 */ 9725 if (INTEL_NUM_PIPES(dev_priv) == 3 && 9726 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 9727 dpll |= DPLL_SDVO_HIGH_SPEED; 9728 9729 /* compute bitmask from p1 value */ 9730 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 9731 /* also FPA1 */ 9732 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 9733 9734 switch (crtc_state->dpll.p2) { 9735 case 5: 9736 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 9737 break; 9738 case 7: 9739 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 9740 break; 9741 case 10: 9742 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 9743 break; 9744 case 14: 9745 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 9746 break; 9747 } 9748 9749 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 9750 intel_panel_use_ssc(dev_priv)) 9751 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 9752 else 9753 dpll |= PLL_REF_INPUT_DREFCLK; 9754 9755 dpll |= DPLL_VCO_ENABLE; 9756 9757 crtc_state->dpll_hw_state.dpll = dpll; 9758 crtc_state->dpll_hw_state.fp0 = fp; 9759 crtc_state->dpll_hw_state.fp1 = fp2; 9760 } 9761 9762 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc, 9763 struct intel_crtc_state *crtc_state) 9764 { 9765 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9766 struct intel_atomic_state *state = 9767 to_intel_atomic_state(crtc_state->base.state); 9768 const struct intel_limit *limit; 9769 int refclk = 120000; 9770 9771 memset(&crtc_state->dpll_hw_state, 0, 9772 sizeof(crtc_state->dpll_hw_state)); 9773 9774 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 9775 if (!crtc_state->has_pch_encoder) 9776 return 0; 9777 9778 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9779 if (intel_panel_use_ssc(dev_priv)) { 9780 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", 9781 dev_priv->vbt.lvds_ssc_freq); 9782 refclk = dev_priv->vbt.lvds_ssc_freq; 9783 } 9784 9785 if (intel_is_dual_link_lvds(dev_priv)) { 9786 if (refclk == 100000) 9787 limit = &intel_limits_ironlake_dual_lvds_100m; 9788 else 9789 limit = &intel_limits_ironlake_dual_lvds; 9790 } else { 9791 if (refclk == 100000) 9792 limit = &intel_limits_ironlake_single_lvds_100m; 9793 else 9794 limit = &intel_limits_ironlake_single_lvds; 9795 } 9796 } else { 9797 limit = &intel_limits_ironlake_dac; 9798 } 9799 9800 if (!crtc_state->clock_set && 9801 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9802 refclk, NULL, &crtc_state->dpll)) { 9803 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 9804 return -EINVAL; 9805 } 9806 9807 ironlake_compute_dpll(crtc, crtc_state, NULL); 9808 9809 if (!intel_reserve_shared_dplls(state, crtc, NULL)) { 9810 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n", 9811 pipe_name(crtc->pipe)); 9812 return -EINVAL; 9813 } 9814 9815 return 0; 9816 } 9817 9818 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 9819 struct intel_link_m_n *m_n) 9820 { 9821 struct drm_device *dev = crtc->base.dev; 9822 struct drm_i915_private *dev_priv = to_i915(dev); 9823 enum pipe pipe = crtc->pipe; 9824 9825 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe)); 9826 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe)); 9827 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe)) 9828 & ~TU_SIZE_MASK; 9829 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe)); 9830 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe)) 9831 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9832 } 9833 9834 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 9835 enum transcoder transcoder, 9836 struct intel_link_m_n *m_n, 9837 struct intel_link_m_n *m2_n2) 9838 { 9839 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9840 enum pipe pipe = crtc->pipe; 9841 9842 if (INTEL_GEN(dev_priv) >= 5) { 9843 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder)); 9844 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder)); 9845 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder)) 9846 & ~TU_SIZE_MASK; 9847 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder)); 9848 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder)) 9849 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9850 9851 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 9852 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder)); 9853 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder)); 9854 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder)) 9855 & ~TU_SIZE_MASK; 9856 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder)); 9857 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder)) 9858 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9859 } 9860 } else { 9861 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe)); 9862 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe)); 9863 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe)) 9864 & ~TU_SIZE_MASK; 9865 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe)); 9866 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe)) 9867 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9868 } 9869 } 9870 9871 void intel_dp_get_m_n(struct intel_crtc *crtc, 9872 struct intel_crtc_state *pipe_config) 9873 { 9874 if (pipe_config->has_pch_encoder) 9875 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 9876 else 9877 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 9878 &pipe_config->dp_m_n, 9879 &pipe_config->dp_m2_n2); 9880 } 9881 9882 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc, 9883 struct intel_crtc_state *pipe_config) 9884 { 9885 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 9886 &pipe_config->fdi_m_n, NULL); 9887 } 9888 9889 static void skylake_get_pfit_config(struct intel_crtc *crtc, 9890 struct intel_crtc_state *pipe_config) 9891 { 9892 struct drm_device *dev = crtc->base.dev; 9893 struct drm_i915_private *dev_priv = to_i915(dev); 9894 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state; 9895 u32 ps_ctrl = 0; 9896 int id = -1; 9897 int i; 9898 9899 /* find scaler attached to this pipe */ 9900 for (i = 0; i < crtc->num_scalers; i++) { 9901 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i)); 9902 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) { 9903 id = i; 9904 pipe_config->pch_pfit.enabled = true; 9905 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i)); 9906 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i)); 9907 scaler_state->scalers[i].in_use = true; 9908 break; 9909 } 9910 } 9911 9912 scaler_state->scaler_id = id; 9913 if (id >= 0) { 9914 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 9915 } else { 9916 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 9917 } 9918 } 9919 9920 static void 9921 skylake_get_initial_plane_config(struct intel_crtc *crtc, 9922 struct intel_initial_plane_config *plane_config) 9923 { 9924 struct drm_device *dev = crtc->base.dev; 9925 struct drm_i915_private *dev_priv = to_i915(dev); 9926 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9927 enum plane_id plane_id = plane->id; 9928 enum pipe pipe; 9929 u32 val, base, offset, stride_mult, tiling, alpha; 9930 int fourcc, pixel_format; 9931 unsigned int aligned_height; 9932 struct drm_framebuffer *fb; 9933 struct intel_framebuffer *intel_fb; 9934 9935 if (!plane->get_hw_state(plane, &pipe)) 9936 return; 9937 9938 WARN_ON(pipe != crtc->pipe); 9939 9940 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9941 if (!intel_fb) { 9942 DRM_DEBUG_KMS("failed to alloc fb\n"); 9943 return; 9944 } 9945 9946 fb = &intel_fb->base; 9947 9948 fb->dev = dev; 9949 9950 val = I915_READ(PLANE_CTL(pipe, plane_id)); 9951 9952 if (INTEL_GEN(dev_priv) >= 11) 9953 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; 9954 else 9955 pixel_format = val & PLANE_CTL_FORMAT_MASK; 9956 9957 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 9958 alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id)); 9959 alpha &= PLANE_COLOR_ALPHA_MASK; 9960 } else { 9961 alpha = val & PLANE_CTL_ALPHA_MASK; 9962 } 9963 9964 fourcc = skl_format_to_fourcc(pixel_format, 9965 val & PLANE_CTL_ORDER_RGBX, alpha); 9966 fb->format = drm_format_info(fourcc); 9967 9968 tiling = val & PLANE_CTL_TILED_MASK; 9969 switch (tiling) { 9970 case PLANE_CTL_TILED_LINEAR: 9971 fb->modifier = DRM_FORMAT_MOD_LINEAR; 9972 break; 9973 case PLANE_CTL_TILED_X: 9974 plane_config->tiling = I915_TILING_X; 9975 fb->modifier = I915_FORMAT_MOD_X_TILED; 9976 break; 9977 case PLANE_CTL_TILED_Y: 9978 plane_config->tiling = I915_TILING_Y; 9979 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 9980 fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS; 9981 else 9982 fb->modifier = I915_FORMAT_MOD_Y_TILED; 9983 break; 9984 case PLANE_CTL_TILED_YF: 9985 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 9986 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; 9987 else 9988 fb->modifier = I915_FORMAT_MOD_Yf_TILED; 9989 break; 9990 default: 9991 MISSING_CASE(tiling); 9992 goto error; 9993 } 9994 9995 /* 9996 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 9997 * while i915 HW rotation is clockwise, thats why this swapping. 9998 */ 9999 switch (val & PLANE_CTL_ROTATE_MASK) { 10000 case PLANE_CTL_ROTATE_0: 10001 plane_config->rotation = DRM_MODE_ROTATE_0; 10002 break; 10003 case PLANE_CTL_ROTATE_90: 10004 plane_config->rotation = DRM_MODE_ROTATE_270; 10005 break; 10006 case PLANE_CTL_ROTATE_180: 10007 plane_config->rotation = DRM_MODE_ROTATE_180; 10008 break; 10009 case PLANE_CTL_ROTATE_270: 10010 plane_config->rotation = DRM_MODE_ROTATE_90; 10011 break; 10012 } 10013 10014 if (INTEL_GEN(dev_priv) >= 10 && 10015 val & PLANE_CTL_FLIP_HORIZONTAL) 10016 plane_config->rotation |= DRM_MODE_REFLECT_X; 10017 10018 base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000; 10019 plane_config->base = base; 10020 10021 offset = I915_READ(PLANE_OFFSET(pipe, plane_id)); 10022 10023 val = I915_READ(PLANE_SIZE(pipe, plane_id)); 10024 fb->height = ((val >> 16) & 0xffff) + 1; 10025 fb->width = ((val >> 0) & 0xffff) + 1; 10026 10027 val = I915_READ(PLANE_STRIDE(pipe, plane_id)); 10028 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); 10029 fb->pitches[0] = (val & 0x3ff) * stride_mult; 10030 10031 aligned_height = intel_fb_align_height(fb, 0, fb->height); 10032 10033 plane_config->size = fb->pitches[0] * aligned_height; 10034 10035 DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 10036 crtc->base.name, plane->base.name, fb->width, fb->height, 10037 fb->format->cpp[0] * 8, base, fb->pitches[0], 10038 plane_config->size); 10039 10040 plane_config->fb = intel_fb; 10041 return; 10042 10043 error: 10044 kfree(intel_fb); 10045 } 10046 10047 static void ironlake_get_pfit_config(struct intel_crtc *crtc, 10048 struct intel_crtc_state *pipe_config) 10049 { 10050 struct drm_device *dev = crtc->base.dev; 10051 struct drm_i915_private *dev_priv = to_i915(dev); 10052 u32 tmp; 10053 10054 tmp = I915_READ(PF_CTL(crtc->pipe)); 10055 10056 if (tmp & PF_ENABLE) { 10057 pipe_config->pch_pfit.enabled = true; 10058 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe)); 10059 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe)); 10060 10061 /* We currently do not free assignements of panel fitters on 10062 * ivb/hsw (since we don't use the higher upscaling modes which 10063 * differentiates them) so just WARN about this case for now. */ 10064 if (IS_GEN(dev_priv, 7)) { 10065 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) != 10066 PF_PIPE_SEL_IVB(crtc->pipe)); 10067 } 10068 } 10069 } 10070 10071 static bool ironlake_get_pipe_config(struct intel_crtc *crtc, 10072 struct intel_crtc_state *pipe_config) 10073 { 10074 struct drm_device *dev = crtc->base.dev; 10075 struct drm_i915_private *dev_priv = to_i915(dev); 10076 enum intel_display_power_domain power_domain; 10077 intel_wakeref_t wakeref; 10078 u32 tmp; 10079 bool ret; 10080 10081 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10082 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 10083 if (!wakeref) 10084 return false; 10085 10086 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10087 pipe_config->shared_dpll = NULL; 10088 pipe_config->master_transcoder = INVALID_TRANSCODER; 10089 10090 ret = false; 10091 tmp = I915_READ(PIPECONF(crtc->pipe)); 10092 if (!(tmp & PIPECONF_ENABLE)) 10093 goto out; 10094 10095 switch (tmp & PIPECONF_BPC_MASK) { 10096 case PIPECONF_6BPC: 10097 pipe_config->pipe_bpp = 18; 10098 break; 10099 case PIPECONF_8BPC: 10100 pipe_config->pipe_bpp = 24; 10101 break; 10102 case PIPECONF_10BPC: 10103 pipe_config->pipe_bpp = 30; 10104 break; 10105 case PIPECONF_12BPC: 10106 pipe_config->pipe_bpp = 36; 10107 break; 10108 default: 10109 break; 10110 } 10111 10112 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 10113 pipe_config->limited_color_range = true; 10114 10115 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 10116 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 10117 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 10118 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 10119 break; 10120 default: 10121 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 10122 break; 10123 } 10124 10125 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 10126 PIPECONF_GAMMA_MODE_SHIFT; 10127 10128 pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe)); 10129 10130 i9xx_get_pipe_color_config(pipe_config); 10131 intel_color_get_config(pipe_config); 10132 10133 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 10134 struct intel_shared_dpll *pll; 10135 enum intel_dpll_id pll_id; 10136 10137 pipe_config->has_pch_encoder = true; 10138 10139 tmp = I915_READ(FDI_RX_CTL(crtc->pipe)); 10140 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10141 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10142 10143 ironlake_get_fdi_m_n_config(crtc, pipe_config); 10144 10145 if (HAS_PCH_IBX(dev_priv)) { 10146 /* 10147 * The pipe->pch transcoder and pch transcoder->pll 10148 * mapping is fixed. 10149 */ 10150 pll_id = (enum intel_dpll_id) crtc->pipe; 10151 } else { 10152 tmp = I915_READ(PCH_DPLL_SEL); 10153 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 10154 pll_id = DPLL_ID_PCH_PLL_B; 10155 else 10156 pll_id= DPLL_ID_PCH_PLL_A; 10157 } 10158 10159 pipe_config->shared_dpll = 10160 intel_get_shared_dpll_by_id(dev_priv, pll_id); 10161 pll = pipe_config->shared_dpll; 10162 10163 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll, 10164 &pipe_config->dpll_hw_state)); 10165 10166 tmp = pipe_config->dpll_hw_state.dpll; 10167 pipe_config->pixel_multiplier = 10168 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 10169 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 10170 10171 ironlake_pch_clock_get(crtc, pipe_config); 10172 } else { 10173 pipe_config->pixel_multiplier = 1; 10174 } 10175 10176 intel_get_pipe_timings(crtc, pipe_config); 10177 intel_get_pipe_src_size(crtc, pipe_config); 10178 10179 ironlake_get_pfit_config(crtc, pipe_config); 10180 10181 ret = true; 10182 10183 out: 10184 intel_display_power_put(dev_priv, power_domain, wakeref); 10185 10186 return ret; 10187 } 10188 static int haswell_crtc_compute_clock(struct intel_crtc *crtc, 10189 struct intel_crtc_state *crtc_state) 10190 { 10191 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10192 struct intel_atomic_state *state = 10193 to_intel_atomic_state(crtc_state->base.state); 10194 10195 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || 10196 INTEL_GEN(dev_priv) >= 11) { 10197 struct intel_encoder *encoder = 10198 intel_get_crtc_new_encoder(state, crtc_state); 10199 10200 if (!intel_reserve_shared_dplls(state, crtc, encoder)) { 10201 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n", 10202 pipe_name(crtc->pipe)); 10203 return -EINVAL; 10204 } 10205 } 10206 10207 return 0; 10208 } 10209 10210 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv, 10211 enum port port, 10212 struct intel_crtc_state *pipe_config) 10213 { 10214 enum intel_dpll_id id; 10215 u32 temp; 10216 10217 temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); 10218 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); 10219 10220 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2)) 10221 return; 10222 10223 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10224 } 10225 10226 static void icelake_get_ddi_pll(struct drm_i915_private *dev_priv, 10227 enum port port, 10228 struct intel_crtc_state *pipe_config) 10229 { 10230 enum phy phy = intel_port_to_phy(dev_priv, port); 10231 enum icl_port_dpll_id port_dpll_id; 10232 enum intel_dpll_id id; 10233 u32 temp; 10234 10235 if (intel_phy_is_combo(dev_priv, phy)) { 10236 temp = I915_READ(ICL_DPCLKA_CFGCR0) & 10237 ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10238 id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10239 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10240 } else if (intel_phy_is_tc(dev_priv, phy)) { 10241 u32 clk_sel = I915_READ(DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; 10242 10243 if (clk_sel == DDI_CLK_SEL_MG) { 10244 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, 10245 port)); 10246 port_dpll_id = ICL_PORT_DPLL_MG_PHY; 10247 } else { 10248 WARN_ON(clk_sel < DDI_CLK_SEL_TBT_162); 10249 id = DPLL_ID_ICL_TBTPLL; 10250 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10251 } 10252 } else { 10253 WARN(1, "Invalid port %x\n", port); 10254 return; 10255 } 10256 10257 pipe_config->icl_port_dplls[port_dpll_id].pll = 10258 intel_get_shared_dpll_by_id(dev_priv, id); 10259 10260 icl_set_active_port_dpll(pipe_config, port_dpll_id); 10261 } 10262 10263 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, 10264 enum port port, 10265 struct intel_crtc_state *pipe_config) 10266 { 10267 enum intel_dpll_id id; 10268 10269 switch (port) { 10270 case PORT_A: 10271 id = DPLL_ID_SKL_DPLL0; 10272 break; 10273 case PORT_B: 10274 id = DPLL_ID_SKL_DPLL1; 10275 break; 10276 case PORT_C: 10277 id = DPLL_ID_SKL_DPLL2; 10278 break; 10279 default: 10280 DRM_ERROR("Incorrect port type\n"); 10281 return; 10282 } 10283 10284 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10285 } 10286 10287 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv, 10288 enum port port, 10289 struct intel_crtc_state *pipe_config) 10290 { 10291 enum intel_dpll_id id; 10292 u32 temp; 10293 10294 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); 10295 id = temp >> (port * 3 + 1); 10296 10297 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3)) 10298 return; 10299 10300 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10301 } 10302 10303 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv, 10304 enum port port, 10305 struct intel_crtc_state *pipe_config) 10306 { 10307 enum intel_dpll_id id; 10308 u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port)); 10309 10310 switch (ddi_pll_sel) { 10311 case PORT_CLK_SEL_WRPLL1: 10312 id = DPLL_ID_WRPLL1; 10313 break; 10314 case PORT_CLK_SEL_WRPLL2: 10315 id = DPLL_ID_WRPLL2; 10316 break; 10317 case PORT_CLK_SEL_SPLL: 10318 id = DPLL_ID_SPLL; 10319 break; 10320 case PORT_CLK_SEL_LCPLL_810: 10321 id = DPLL_ID_LCPLL_810; 10322 break; 10323 case PORT_CLK_SEL_LCPLL_1350: 10324 id = DPLL_ID_LCPLL_1350; 10325 break; 10326 case PORT_CLK_SEL_LCPLL_2700: 10327 id = DPLL_ID_LCPLL_2700; 10328 break; 10329 default: 10330 MISSING_CASE(ddi_pll_sel); 10331 /* fall through */ 10332 case PORT_CLK_SEL_NONE: 10333 return; 10334 } 10335 10336 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10337 } 10338 10339 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 10340 struct intel_crtc_state *pipe_config, 10341 u64 *power_domain_mask, 10342 intel_wakeref_t *wakerefs) 10343 { 10344 struct drm_device *dev = crtc->base.dev; 10345 struct drm_i915_private *dev_priv = to_i915(dev); 10346 enum intel_display_power_domain power_domain; 10347 unsigned long panel_transcoder_mask = 0; 10348 unsigned long enabled_panel_transcoders = 0; 10349 enum transcoder panel_transcoder; 10350 intel_wakeref_t wf; 10351 u32 tmp; 10352 10353 if (INTEL_GEN(dev_priv) >= 11) 10354 panel_transcoder_mask |= 10355 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 10356 10357 if (HAS_TRANSCODER_EDP(dev_priv)) 10358 panel_transcoder_mask |= BIT(TRANSCODER_EDP); 10359 10360 /* 10361 * The pipe->transcoder mapping is fixed with the exception of the eDP 10362 * and DSI transcoders handled below. 10363 */ 10364 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10365 10366 /* 10367 * XXX: Do intel_display_power_get_if_enabled before reading this (for 10368 * consistency and less surprising code; it's in always on power). 10369 */ 10370 for_each_set_bit(panel_transcoder, 10371 &panel_transcoder_mask, 10372 ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) { 10373 bool force_thru = false; 10374 enum pipe trans_pipe; 10375 10376 tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder)); 10377 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 10378 continue; 10379 10380 /* 10381 * Log all enabled ones, only use the first one. 10382 * 10383 * FIXME: This won't work for two separate DSI displays. 10384 */ 10385 enabled_panel_transcoders |= BIT(panel_transcoder); 10386 if (enabled_panel_transcoders != BIT(panel_transcoder)) 10387 continue; 10388 10389 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 10390 default: 10391 WARN(1, "unknown pipe linked to transcoder %s\n", 10392 transcoder_name(panel_transcoder)); 10393 /* fall through */ 10394 case TRANS_DDI_EDP_INPUT_A_ONOFF: 10395 force_thru = true; 10396 /* fall through */ 10397 case TRANS_DDI_EDP_INPUT_A_ON: 10398 trans_pipe = PIPE_A; 10399 break; 10400 case TRANS_DDI_EDP_INPUT_B_ONOFF: 10401 trans_pipe = PIPE_B; 10402 break; 10403 case TRANS_DDI_EDP_INPUT_C_ONOFF: 10404 trans_pipe = PIPE_C; 10405 break; 10406 } 10407 10408 if (trans_pipe == crtc->pipe) { 10409 pipe_config->cpu_transcoder = panel_transcoder; 10410 pipe_config->pch_pfit.force_thru = force_thru; 10411 } 10412 } 10413 10414 /* 10415 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 10416 */ 10417 WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 10418 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 10419 10420 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); 10421 WARN_ON(*power_domain_mask & BIT_ULL(power_domain)); 10422 10423 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10424 if (!wf) 10425 return false; 10426 10427 wakerefs[power_domain] = wf; 10428 *power_domain_mask |= BIT_ULL(power_domain); 10429 10430 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); 10431 10432 return tmp & PIPECONF_ENABLE; 10433 } 10434 10435 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 10436 struct intel_crtc_state *pipe_config, 10437 u64 *power_domain_mask, 10438 intel_wakeref_t *wakerefs) 10439 { 10440 struct drm_device *dev = crtc->base.dev; 10441 struct drm_i915_private *dev_priv = to_i915(dev); 10442 enum intel_display_power_domain power_domain; 10443 enum transcoder cpu_transcoder; 10444 intel_wakeref_t wf; 10445 enum port port; 10446 u32 tmp; 10447 10448 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 10449 if (port == PORT_A) 10450 cpu_transcoder = TRANSCODER_DSI_A; 10451 else 10452 cpu_transcoder = TRANSCODER_DSI_C; 10453 10454 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 10455 WARN_ON(*power_domain_mask & BIT_ULL(power_domain)); 10456 10457 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10458 if (!wf) 10459 continue; 10460 10461 wakerefs[power_domain] = wf; 10462 *power_domain_mask |= BIT_ULL(power_domain); 10463 10464 /* 10465 * The PLL needs to be enabled with a valid divider 10466 * configuration, otherwise accessing DSI registers will hang 10467 * the machine. See BSpec North Display Engine 10468 * registers/MIPI[BXT]. We can break out here early, since we 10469 * need the same DSI PLL to be enabled for both DSI ports. 10470 */ 10471 if (!bxt_dsi_pll_is_enabled(dev_priv)) 10472 break; 10473 10474 /* XXX: this works for video mode only */ 10475 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port)); 10476 if (!(tmp & DPI_ENABLE)) 10477 continue; 10478 10479 tmp = I915_READ(MIPI_CTRL(port)); 10480 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 10481 continue; 10482 10483 pipe_config->cpu_transcoder = cpu_transcoder; 10484 break; 10485 } 10486 10487 return transcoder_is_dsi(pipe_config->cpu_transcoder); 10488 } 10489 10490 static void haswell_get_ddi_port_state(struct intel_crtc *crtc, 10491 struct intel_crtc_state *pipe_config) 10492 { 10493 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10494 struct intel_shared_dpll *pll; 10495 enum port port; 10496 u32 tmp; 10497 10498 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); 10499 10500 if (INTEL_GEN(dev_priv) >= 12) 10501 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 10502 else 10503 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 10504 10505 if (INTEL_GEN(dev_priv) >= 11) 10506 icelake_get_ddi_pll(dev_priv, port, pipe_config); 10507 else if (IS_CANNONLAKE(dev_priv)) 10508 cannonlake_get_ddi_pll(dev_priv, port, pipe_config); 10509 else if (IS_GEN9_BC(dev_priv)) 10510 skylake_get_ddi_pll(dev_priv, port, pipe_config); 10511 else if (IS_GEN9_LP(dev_priv)) 10512 bxt_get_ddi_pll(dev_priv, port, pipe_config); 10513 else 10514 haswell_get_ddi_pll(dev_priv, port, pipe_config); 10515 10516 pll = pipe_config->shared_dpll; 10517 if (pll) { 10518 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll, 10519 &pipe_config->dpll_hw_state)); 10520 } 10521 10522 /* 10523 * Haswell has only FDI/PCH transcoder A. It is which is connected to 10524 * DDI E. So just check whether this pipe is wired to DDI E and whether 10525 * the PCH transcoder is on. 10526 */ 10527 if (INTEL_GEN(dev_priv) < 9 && 10528 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) { 10529 pipe_config->has_pch_encoder = true; 10530 10531 tmp = I915_READ(FDI_RX_CTL(PIPE_A)); 10532 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10533 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10534 10535 ironlake_get_fdi_m_n_config(crtc, pipe_config); 10536 } 10537 } 10538 10539 static enum transcoder transcoder_master_readout(struct drm_i915_private *dev_priv, 10540 enum transcoder cpu_transcoder) 10541 { 10542 u32 trans_port_sync, master_select; 10543 10544 trans_port_sync = I915_READ(TRANS_DDI_FUNC_CTL2(cpu_transcoder)); 10545 10546 if ((trans_port_sync & PORT_SYNC_MODE_ENABLE) == 0) 10547 return INVALID_TRANSCODER; 10548 10549 master_select = trans_port_sync & 10550 PORT_SYNC_MODE_MASTER_SELECT_MASK; 10551 if (master_select == 0) 10552 return TRANSCODER_EDP; 10553 else 10554 return master_select - 1; 10555 } 10556 10557 static void icelake_get_trans_port_sync_config(struct intel_crtc_state *crtc_state) 10558 { 10559 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 10560 u32 transcoders; 10561 enum transcoder cpu_transcoder; 10562 10563 crtc_state->master_transcoder = transcoder_master_readout(dev_priv, 10564 crtc_state->cpu_transcoder); 10565 10566 transcoders = BIT(TRANSCODER_A) | 10567 BIT(TRANSCODER_B) | 10568 BIT(TRANSCODER_C) | 10569 BIT(TRANSCODER_D); 10570 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) { 10571 enum intel_display_power_domain power_domain; 10572 intel_wakeref_t trans_wakeref; 10573 10574 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 10575 trans_wakeref = intel_display_power_get_if_enabled(dev_priv, 10576 power_domain); 10577 10578 if (!trans_wakeref) 10579 continue; 10580 10581 if (transcoder_master_readout(dev_priv, cpu_transcoder) == 10582 crtc_state->cpu_transcoder) 10583 crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder); 10584 10585 intel_display_power_put(dev_priv, power_domain, trans_wakeref); 10586 } 10587 10588 WARN_ON(crtc_state->master_transcoder != INVALID_TRANSCODER && 10589 crtc_state->sync_mode_slaves_mask); 10590 } 10591 10592 static bool haswell_get_pipe_config(struct intel_crtc *crtc, 10593 struct intel_crtc_state *pipe_config) 10594 { 10595 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10596 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf; 10597 enum intel_display_power_domain power_domain; 10598 u64 power_domain_mask; 10599 bool active; 10600 10601 intel_crtc_init_scalers(crtc, pipe_config); 10602 10603 pipe_config->master_transcoder = INVALID_TRANSCODER; 10604 10605 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10606 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10607 if (!wf) 10608 return false; 10609 10610 wakerefs[power_domain] = wf; 10611 power_domain_mask = BIT_ULL(power_domain); 10612 10613 pipe_config->shared_dpll = NULL; 10614 10615 active = hsw_get_transcoder_state(crtc, pipe_config, 10616 &power_domain_mask, wakerefs); 10617 10618 if (IS_GEN9_LP(dev_priv) && 10619 bxt_get_dsi_transcoder_state(crtc, pipe_config, 10620 &power_domain_mask, wakerefs)) { 10621 WARN_ON(active); 10622 active = true; 10623 } 10624 10625 if (!active) 10626 goto out; 10627 10628 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 10629 INTEL_GEN(dev_priv) >= 11) { 10630 haswell_get_ddi_port_state(crtc, pipe_config); 10631 intel_get_pipe_timings(crtc, pipe_config); 10632 } 10633 10634 intel_get_pipe_src_size(crtc, pipe_config); 10635 10636 if (IS_HASWELL(dev_priv)) { 10637 u32 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); 10638 10639 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 10640 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 10641 else 10642 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 10643 } else { 10644 pipe_config->output_format = 10645 bdw_get_pipemisc_output_format(crtc); 10646 10647 /* 10648 * Currently there is no interface defined to 10649 * check user preference between RGB/YCBCR444 10650 * or YCBCR420. So the only possible case for 10651 * YCBCR444 usage is driving YCBCR420 output 10652 * with LSPCON, when pipe is configured for 10653 * YCBCR444 output and LSPCON takes care of 10654 * downsampling it. 10655 */ 10656 pipe_config->lspcon_downsampling = 10657 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444; 10658 } 10659 10660 pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe)); 10661 10662 pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe)); 10663 10664 if (INTEL_GEN(dev_priv) >= 9) { 10665 u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe)); 10666 10667 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 10668 pipe_config->gamma_enable = true; 10669 10670 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 10671 pipe_config->csc_enable = true; 10672 } else { 10673 i9xx_get_pipe_color_config(pipe_config); 10674 } 10675 10676 intel_color_get_config(pipe_config); 10677 10678 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); 10679 WARN_ON(power_domain_mask & BIT_ULL(power_domain)); 10680 10681 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10682 if (wf) { 10683 wakerefs[power_domain] = wf; 10684 power_domain_mask |= BIT_ULL(power_domain); 10685 10686 if (INTEL_GEN(dev_priv) >= 9) 10687 skylake_get_pfit_config(crtc, pipe_config); 10688 else 10689 ironlake_get_pfit_config(crtc, pipe_config); 10690 } 10691 10692 if (hsw_crtc_supports_ips(crtc)) { 10693 if (IS_HASWELL(dev_priv)) 10694 pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE; 10695 else { 10696 /* 10697 * We cannot readout IPS state on broadwell, set to 10698 * true so we can set it to a defined state on first 10699 * commit. 10700 */ 10701 pipe_config->ips_enabled = true; 10702 } 10703 } 10704 10705 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 10706 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 10707 pipe_config->pixel_multiplier = 10708 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 10709 } else { 10710 pipe_config->pixel_multiplier = 1; 10711 } 10712 10713 if (INTEL_GEN(dev_priv) >= 11 && 10714 !transcoder_is_dsi(pipe_config->cpu_transcoder)) 10715 icelake_get_trans_port_sync_config(pipe_config); 10716 10717 out: 10718 for_each_power_domain(power_domain, power_domain_mask) 10719 intel_display_power_put(dev_priv, 10720 power_domain, wakerefs[power_domain]); 10721 10722 return active; 10723 } 10724 10725 static u32 intel_cursor_base(const struct intel_plane_state *plane_state) 10726 { 10727 struct drm_i915_private *dev_priv = 10728 to_i915(plane_state->base.plane->dev); 10729 const struct drm_framebuffer *fb = plane_state->base.fb; 10730 const struct drm_i915_gem_object *obj = intel_fb_obj(fb); 10731 u32 base; 10732 10733 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical) 10734 base = obj->phys_handle->busaddr; 10735 else 10736 base = intel_plane_ggtt_offset(plane_state); 10737 10738 return base + plane_state->color_plane[0].offset; 10739 } 10740 10741 static u32 intel_cursor_position(const struct intel_plane_state *plane_state) 10742 { 10743 int x = plane_state->base.dst.x1; 10744 int y = plane_state->base.dst.y1; 10745 u32 pos = 0; 10746 10747 if (x < 0) { 10748 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 10749 x = -x; 10750 } 10751 pos |= x << CURSOR_X_SHIFT; 10752 10753 if (y < 0) { 10754 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 10755 y = -y; 10756 } 10757 pos |= y << CURSOR_Y_SHIFT; 10758 10759 return pos; 10760 } 10761 10762 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state) 10763 { 10764 const struct drm_mode_config *config = 10765 &plane_state->base.plane->dev->mode_config; 10766 int width = drm_rect_width(&plane_state->base.dst); 10767 int height = drm_rect_height(&plane_state->base.dst); 10768 10769 return width > 0 && width <= config->cursor_width && 10770 height > 0 && height <= config->cursor_height; 10771 } 10772 10773 static int intel_cursor_check_surface(struct intel_plane_state *plane_state) 10774 { 10775 struct drm_i915_private *dev_priv = 10776 to_i915(plane_state->base.plane->dev); 10777 unsigned int rotation = plane_state->base.rotation; 10778 int src_x, src_y; 10779 u32 offset; 10780 int ret; 10781 10782 ret = intel_plane_compute_gtt(plane_state); 10783 if (ret) 10784 return ret; 10785 10786 if (!plane_state->base.visible) 10787 return 0; 10788 10789 src_x = plane_state->base.src.x1 >> 16; 10790 src_y = plane_state->base.src.y1 >> 16; 10791 10792 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 10793 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 10794 plane_state, 0); 10795 10796 if (src_x != 0 || src_y != 0) { 10797 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n"); 10798 return -EINVAL; 10799 } 10800 10801 /* 10802 * Put the final coordinates back so that the src 10803 * coordinate checks will see the right values. 10804 */ 10805 drm_rect_translate_to(&plane_state->base.src, 10806 src_x << 16, src_y << 16); 10807 10808 /* ILK+ do this automagically in hardware */ 10809 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) { 10810 const struct drm_framebuffer *fb = plane_state->base.fb; 10811 int src_w = drm_rect_width(&plane_state->base.src) >> 16; 10812 int src_h = drm_rect_height(&plane_state->base.src) >> 16; 10813 10814 offset += (src_h * src_w - 1) * fb->format->cpp[0]; 10815 } 10816 10817 plane_state->color_plane[0].offset = offset; 10818 plane_state->color_plane[0].x = src_x; 10819 plane_state->color_plane[0].y = src_y; 10820 10821 return 0; 10822 } 10823 10824 static int intel_check_cursor(struct intel_crtc_state *crtc_state, 10825 struct intel_plane_state *plane_state) 10826 { 10827 const struct drm_framebuffer *fb = plane_state->base.fb; 10828 int ret; 10829 10830 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) { 10831 DRM_DEBUG_KMS("cursor cannot be tiled\n"); 10832 return -EINVAL; 10833 } 10834 10835 ret = drm_atomic_helper_check_plane_state(&plane_state->base, 10836 &crtc_state->base, 10837 DRM_PLANE_HELPER_NO_SCALING, 10838 DRM_PLANE_HELPER_NO_SCALING, 10839 true, true); 10840 if (ret) 10841 return ret; 10842 10843 /* Use the unclipped src/dst rectangles, which we program to hw */ 10844 plane_state->base.src = drm_plane_state_src(&plane_state->base); 10845 plane_state->base.dst = drm_plane_state_dest(&plane_state->base); 10846 10847 ret = intel_cursor_check_surface(plane_state); 10848 if (ret) 10849 return ret; 10850 10851 if (!plane_state->base.visible) 10852 return 0; 10853 10854 ret = intel_plane_check_src_coordinates(plane_state); 10855 if (ret) 10856 return ret; 10857 10858 return 0; 10859 } 10860 10861 static unsigned int 10862 i845_cursor_max_stride(struct intel_plane *plane, 10863 u32 pixel_format, u64 modifier, 10864 unsigned int rotation) 10865 { 10866 return 2048; 10867 } 10868 10869 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 10870 { 10871 u32 cntl = 0; 10872 10873 if (crtc_state->gamma_enable) 10874 cntl |= CURSOR_GAMMA_ENABLE; 10875 10876 return cntl; 10877 } 10878 10879 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state, 10880 const struct intel_plane_state *plane_state) 10881 { 10882 return CURSOR_ENABLE | 10883 CURSOR_FORMAT_ARGB | 10884 CURSOR_STRIDE(plane_state->color_plane[0].stride); 10885 } 10886 10887 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state) 10888 { 10889 int width = drm_rect_width(&plane_state->base.dst); 10890 10891 /* 10892 * 845g/865g are only limited by the width of their cursors, 10893 * the height is arbitrary up to the precision of the register. 10894 */ 10895 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64); 10896 } 10897 10898 static int i845_check_cursor(struct intel_crtc_state *crtc_state, 10899 struct intel_plane_state *plane_state) 10900 { 10901 const struct drm_framebuffer *fb = plane_state->base.fb; 10902 int ret; 10903 10904 ret = intel_check_cursor(crtc_state, plane_state); 10905 if (ret) 10906 return ret; 10907 10908 /* if we want to turn off the cursor ignore width and height */ 10909 if (!fb) 10910 return 0; 10911 10912 /* Check for which cursor types we support */ 10913 if (!i845_cursor_size_ok(plane_state)) { 10914 DRM_DEBUG("Cursor dimension %dx%d not supported\n", 10915 drm_rect_width(&plane_state->base.dst), 10916 drm_rect_height(&plane_state->base.dst)); 10917 return -EINVAL; 10918 } 10919 10920 WARN_ON(plane_state->base.visible && 10921 plane_state->color_plane[0].stride != fb->pitches[0]); 10922 10923 switch (fb->pitches[0]) { 10924 case 256: 10925 case 512: 10926 case 1024: 10927 case 2048: 10928 break; 10929 default: 10930 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n", 10931 fb->pitches[0]); 10932 return -EINVAL; 10933 } 10934 10935 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state); 10936 10937 return 0; 10938 } 10939 10940 static void i845_update_cursor(struct intel_plane *plane, 10941 const struct intel_crtc_state *crtc_state, 10942 const struct intel_plane_state *plane_state) 10943 { 10944 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10945 u32 cntl = 0, base = 0, pos = 0, size = 0; 10946 unsigned long irqflags; 10947 10948 if (plane_state && plane_state->base.visible) { 10949 unsigned int width = drm_rect_width(&plane_state->base.dst); 10950 unsigned int height = drm_rect_height(&plane_state->base.dst); 10951 10952 cntl = plane_state->ctl | 10953 i845_cursor_ctl_crtc(crtc_state); 10954 10955 size = (height << 12) | width; 10956 10957 base = intel_cursor_base(plane_state); 10958 pos = intel_cursor_position(plane_state); 10959 } 10960 10961 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 10962 10963 /* On these chipsets we can only modify the base/size/stride 10964 * whilst the cursor is disabled. 10965 */ 10966 if (plane->cursor.base != base || 10967 plane->cursor.size != size || 10968 plane->cursor.cntl != cntl) { 10969 I915_WRITE_FW(CURCNTR(PIPE_A), 0); 10970 I915_WRITE_FW(CURBASE(PIPE_A), base); 10971 I915_WRITE_FW(CURSIZE, size); 10972 I915_WRITE_FW(CURPOS(PIPE_A), pos); 10973 I915_WRITE_FW(CURCNTR(PIPE_A), cntl); 10974 10975 plane->cursor.base = base; 10976 plane->cursor.size = size; 10977 plane->cursor.cntl = cntl; 10978 } else { 10979 I915_WRITE_FW(CURPOS(PIPE_A), pos); 10980 } 10981 10982 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 10983 } 10984 10985 static void i845_disable_cursor(struct intel_plane *plane, 10986 const struct intel_crtc_state *crtc_state) 10987 { 10988 i845_update_cursor(plane, crtc_state, NULL); 10989 } 10990 10991 static bool i845_cursor_get_hw_state(struct intel_plane *plane, 10992 enum pipe *pipe) 10993 { 10994 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10995 enum intel_display_power_domain power_domain; 10996 intel_wakeref_t wakeref; 10997 bool ret; 10998 10999 power_domain = POWER_DOMAIN_PIPE(PIPE_A); 11000 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11001 if (!wakeref) 11002 return false; 11003 11004 ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE; 11005 11006 *pipe = PIPE_A; 11007 11008 intel_display_power_put(dev_priv, power_domain, wakeref); 11009 11010 return ret; 11011 } 11012 11013 static unsigned int 11014 i9xx_cursor_max_stride(struct intel_plane *plane, 11015 u32 pixel_format, u64 modifier, 11016 unsigned int rotation) 11017 { 11018 return plane->base.dev->mode_config.cursor_width * 4; 11019 } 11020 11021 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11022 { 11023 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 11024 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11025 u32 cntl = 0; 11026 11027 if (INTEL_GEN(dev_priv) >= 11) 11028 return cntl; 11029 11030 if (crtc_state->gamma_enable) 11031 cntl = MCURSOR_GAMMA_ENABLE; 11032 11033 if (crtc_state->csc_enable) 11034 cntl |= MCURSOR_PIPE_CSC_ENABLE; 11035 11036 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11037 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe); 11038 11039 return cntl; 11040 } 11041 11042 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state, 11043 const struct intel_plane_state *plane_state) 11044 { 11045 struct drm_i915_private *dev_priv = 11046 to_i915(plane_state->base.plane->dev); 11047 u32 cntl = 0; 11048 11049 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 11050 cntl |= MCURSOR_TRICKLE_FEED_DISABLE; 11051 11052 switch (drm_rect_width(&plane_state->base.dst)) { 11053 case 64: 11054 cntl |= MCURSOR_MODE_64_ARGB_AX; 11055 break; 11056 case 128: 11057 cntl |= MCURSOR_MODE_128_ARGB_AX; 11058 break; 11059 case 256: 11060 cntl |= MCURSOR_MODE_256_ARGB_AX; 11061 break; 11062 default: 11063 MISSING_CASE(drm_rect_width(&plane_state->base.dst)); 11064 return 0; 11065 } 11066 11067 if (plane_state->base.rotation & DRM_MODE_ROTATE_180) 11068 cntl |= MCURSOR_ROTATE_180; 11069 11070 return cntl; 11071 } 11072 11073 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state) 11074 { 11075 struct drm_i915_private *dev_priv = 11076 to_i915(plane_state->base.plane->dev); 11077 int width = drm_rect_width(&plane_state->base.dst); 11078 int height = drm_rect_height(&plane_state->base.dst); 11079 11080 if (!intel_cursor_size_ok(plane_state)) 11081 return false; 11082 11083 /* Cursor width is limited to a few power-of-two sizes */ 11084 switch (width) { 11085 case 256: 11086 case 128: 11087 case 64: 11088 break; 11089 default: 11090 return false; 11091 } 11092 11093 /* 11094 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor 11095 * height from 8 lines up to the cursor width, when the 11096 * cursor is not rotated. Everything else requires square 11097 * cursors. 11098 */ 11099 if (HAS_CUR_FBC(dev_priv) && 11100 plane_state->base.rotation & DRM_MODE_ROTATE_0) { 11101 if (height < 8 || height > width) 11102 return false; 11103 } else { 11104 if (height != width) 11105 return false; 11106 } 11107 11108 return true; 11109 } 11110 11111 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state, 11112 struct intel_plane_state *plane_state) 11113 { 11114 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 11115 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11116 const struct drm_framebuffer *fb = plane_state->base.fb; 11117 enum pipe pipe = plane->pipe; 11118 int ret; 11119 11120 ret = intel_check_cursor(crtc_state, plane_state); 11121 if (ret) 11122 return ret; 11123 11124 /* if we want to turn off the cursor ignore width and height */ 11125 if (!fb) 11126 return 0; 11127 11128 /* Check for which cursor types we support */ 11129 if (!i9xx_cursor_size_ok(plane_state)) { 11130 DRM_DEBUG("Cursor dimension %dx%d not supported\n", 11131 drm_rect_width(&plane_state->base.dst), 11132 drm_rect_height(&plane_state->base.dst)); 11133 return -EINVAL; 11134 } 11135 11136 WARN_ON(plane_state->base.visible && 11137 plane_state->color_plane[0].stride != fb->pitches[0]); 11138 11139 if (fb->pitches[0] != 11140 drm_rect_width(&plane_state->base.dst) * fb->format->cpp[0]) { 11141 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n", 11142 fb->pitches[0], 11143 drm_rect_width(&plane_state->base.dst)); 11144 return -EINVAL; 11145 } 11146 11147 /* 11148 * There's something wrong with the cursor on CHV pipe C. 11149 * If it straddles the left edge of the screen then 11150 * moving it away from the edge or disabling it often 11151 * results in a pipe underrun, and often that can lead to 11152 * dead pipe (constant underrun reported, and it scans 11153 * out just a solid color). To recover from that, the 11154 * display power well must be turned off and on again. 11155 * Refuse the put the cursor into that compromised position. 11156 */ 11157 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C && 11158 plane_state->base.visible && plane_state->base.dst.x1 < 0) { 11159 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n"); 11160 return -EINVAL; 11161 } 11162 11163 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state); 11164 11165 return 0; 11166 } 11167 11168 static void i9xx_update_cursor(struct intel_plane *plane, 11169 const struct intel_crtc_state *crtc_state, 11170 const struct intel_plane_state *plane_state) 11171 { 11172 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11173 enum pipe pipe = plane->pipe; 11174 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0; 11175 unsigned long irqflags; 11176 11177 if (plane_state && plane_state->base.visible) { 11178 unsigned width = drm_rect_width(&plane_state->base.dst); 11179 unsigned height = drm_rect_height(&plane_state->base.dst); 11180 11181 cntl = plane_state->ctl | 11182 i9xx_cursor_ctl_crtc(crtc_state); 11183 11184 if (width != height) 11185 fbc_ctl = CUR_FBC_CTL_EN | (height - 1); 11186 11187 base = intel_cursor_base(plane_state); 11188 pos = intel_cursor_position(plane_state); 11189 } 11190 11191 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11192 11193 /* 11194 * On some platforms writing CURCNTR first will also 11195 * cause CURPOS to be armed by the CURBASE write. 11196 * Without the CURCNTR write the CURPOS write would 11197 * arm itself. Thus we always update CURCNTR before 11198 * CURPOS. 11199 * 11200 * On other platforms CURPOS always requires the 11201 * CURBASE write to arm the update. Additonally 11202 * a write to any of the cursor register will cancel 11203 * an already armed cursor update. Thus leaving out 11204 * the CURBASE write after CURPOS could lead to a 11205 * cursor that doesn't appear to move, or even change 11206 * shape. Thus we always write CURBASE. 11207 * 11208 * The other registers are armed by by the CURBASE write 11209 * except when the plane is getting enabled at which time 11210 * the CURCNTR write arms the update. 11211 */ 11212 11213 if (INTEL_GEN(dev_priv) >= 9) 11214 skl_write_cursor_wm(plane, crtc_state); 11215 11216 if (plane->cursor.base != base || 11217 plane->cursor.size != fbc_ctl || 11218 plane->cursor.cntl != cntl) { 11219 if (HAS_CUR_FBC(dev_priv)) 11220 I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl); 11221 I915_WRITE_FW(CURCNTR(pipe), cntl); 11222 I915_WRITE_FW(CURPOS(pipe), pos); 11223 I915_WRITE_FW(CURBASE(pipe), base); 11224 11225 plane->cursor.base = base; 11226 plane->cursor.size = fbc_ctl; 11227 plane->cursor.cntl = cntl; 11228 } else { 11229 I915_WRITE_FW(CURPOS(pipe), pos); 11230 I915_WRITE_FW(CURBASE(pipe), base); 11231 } 11232 11233 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11234 } 11235 11236 static void i9xx_disable_cursor(struct intel_plane *plane, 11237 const struct intel_crtc_state *crtc_state) 11238 { 11239 i9xx_update_cursor(plane, crtc_state, NULL); 11240 } 11241 11242 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane, 11243 enum pipe *pipe) 11244 { 11245 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11246 enum intel_display_power_domain power_domain; 11247 intel_wakeref_t wakeref; 11248 bool ret; 11249 u32 val; 11250 11251 /* 11252 * Not 100% correct for planes that can move between pipes, 11253 * but that's only the case for gen2-3 which don't have any 11254 * display power wells. 11255 */ 11256 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 11257 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11258 if (!wakeref) 11259 return false; 11260 11261 val = I915_READ(CURCNTR(plane->pipe)); 11262 11263 ret = val & MCURSOR_MODE; 11264 11265 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 11266 *pipe = plane->pipe; 11267 else 11268 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >> 11269 MCURSOR_PIPE_SELECT_SHIFT; 11270 11271 intel_display_power_put(dev_priv, power_domain, wakeref); 11272 11273 return ret; 11274 } 11275 11276 /* VESA 640x480x72Hz mode to set on the pipe */ 11277 static const struct drm_display_mode load_detect_mode = { 11278 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 11279 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 11280 }; 11281 11282 struct drm_framebuffer * 11283 intel_framebuffer_create(struct drm_i915_gem_object *obj, 11284 struct drm_mode_fb_cmd2 *mode_cmd) 11285 { 11286 struct intel_framebuffer *intel_fb; 11287 int ret; 11288 11289 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 11290 if (!intel_fb) 11291 return ERR_PTR(-ENOMEM); 11292 11293 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 11294 if (ret) 11295 goto err; 11296 11297 return &intel_fb->base; 11298 11299 err: 11300 kfree(intel_fb); 11301 return ERR_PTR(ret); 11302 } 11303 11304 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 11305 struct drm_crtc *crtc) 11306 { 11307 struct drm_plane *plane; 11308 struct drm_plane_state *plane_state; 11309 int ret, i; 11310 11311 ret = drm_atomic_add_affected_planes(state, crtc); 11312 if (ret) 11313 return ret; 11314 11315 for_each_new_plane_in_state(state, plane, plane_state, i) { 11316 if (plane_state->crtc != crtc) 11317 continue; 11318 11319 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 11320 if (ret) 11321 return ret; 11322 11323 drm_atomic_set_fb_for_plane(plane_state, NULL); 11324 } 11325 11326 return 0; 11327 } 11328 11329 int intel_get_load_detect_pipe(struct drm_connector *connector, 11330 struct intel_load_detect_pipe *old, 11331 struct drm_modeset_acquire_ctx *ctx) 11332 { 11333 struct intel_crtc *intel_crtc; 11334 struct intel_encoder *intel_encoder = 11335 intel_attached_encoder(connector); 11336 struct drm_crtc *possible_crtc; 11337 struct drm_encoder *encoder = &intel_encoder->base; 11338 struct drm_crtc *crtc = NULL; 11339 struct drm_device *dev = encoder->dev; 11340 struct drm_i915_private *dev_priv = to_i915(dev); 11341 struct drm_mode_config *config = &dev->mode_config; 11342 struct drm_atomic_state *state = NULL, *restore_state = NULL; 11343 struct drm_connector_state *connector_state; 11344 struct intel_crtc_state *crtc_state; 11345 int ret, i = -1; 11346 11347 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11348 connector->base.id, connector->name, 11349 encoder->base.id, encoder->name); 11350 11351 old->restore_state = NULL; 11352 11353 WARN_ON(!drm_modeset_is_locked(&config->connection_mutex)); 11354 11355 /* 11356 * Algorithm gets a little messy: 11357 * 11358 * - if the connector already has an assigned crtc, use it (but make 11359 * sure it's on first) 11360 * 11361 * - try to find the first unused crtc that can drive this connector, 11362 * and use that if we find one 11363 */ 11364 11365 /* See if we already have a CRTC for this connector */ 11366 if (connector->state->crtc) { 11367 crtc = connector->state->crtc; 11368 11369 ret = drm_modeset_lock(&crtc->mutex, ctx); 11370 if (ret) 11371 goto fail; 11372 11373 /* Make sure the crtc and connector are running */ 11374 goto found; 11375 } 11376 11377 /* Find an unused one (if possible) */ 11378 for_each_crtc(dev, possible_crtc) { 11379 i++; 11380 if (!(encoder->possible_crtcs & (1 << i))) 11381 continue; 11382 11383 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 11384 if (ret) 11385 goto fail; 11386 11387 if (possible_crtc->state->enable) { 11388 drm_modeset_unlock(&possible_crtc->mutex); 11389 continue; 11390 } 11391 11392 crtc = possible_crtc; 11393 break; 11394 } 11395 11396 /* 11397 * If we didn't find an unused CRTC, don't use any. 11398 */ 11399 if (!crtc) { 11400 DRM_DEBUG_KMS("no pipe available for load-detect\n"); 11401 ret = -ENODEV; 11402 goto fail; 11403 } 11404 11405 found: 11406 intel_crtc = to_intel_crtc(crtc); 11407 11408 state = drm_atomic_state_alloc(dev); 11409 restore_state = drm_atomic_state_alloc(dev); 11410 if (!state || !restore_state) { 11411 ret = -ENOMEM; 11412 goto fail; 11413 } 11414 11415 state->acquire_ctx = ctx; 11416 restore_state->acquire_ctx = ctx; 11417 11418 connector_state = drm_atomic_get_connector_state(state, connector); 11419 if (IS_ERR(connector_state)) { 11420 ret = PTR_ERR(connector_state); 11421 goto fail; 11422 } 11423 11424 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 11425 if (ret) 11426 goto fail; 11427 11428 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 11429 if (IS_ERR(crtc_state)) { 11430 ret = PTR_ERR(crtc_state); 11431 goto fail; 11432 } 11433 11434 crtc_state->base.active = crtc_state->base.enable = true; 11435 11436 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, 11437 &load_detect_mode); 11438 if (ret) 11439 goto fail; 11440 11441 ret = intel_modeset_disable_planes(state, crtc); 11442 if (ret) 11443 goto fail; 11444 11445 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 11446 if (!ret) 11447 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 11448 if (!ret) 11449 ret = drm_atomic_add_affected_planes(restore_state, crtc); 11450 if (ret) { 11451 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret); 11452 goto fail; 11453 } 11454 11455 ret = drm_atomic_commit(state); 11456 if (ret) { 11457 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); 11458 goto fail; 11459 } 11460 11461 old->restore_state = restore_state; 11462 drm_atomic_state_put(state); 11463 11464 /* let the connector get through one full cycle before testing */ 11465 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 11466 return true; 11467 11468 fail: 11469 if (state) { 11470 drm_atomic_state_put(state); 11471 state = NULL; 11472 } 11473 if (restore_state) { 11474 drm_atomic_state_put(restore_state); 11475 restore_state = NULL; 11476 } 11477 11478 if (ret == -EDEADLK) 11479 return ret; 11480 11481 return false; 11482 } 11483 11484 void intel_release_load_detect_pipe(struct drm_connector *connector, 11485 struct intel_load_detect_pipe *old, 11486 struct drm_modeset_acquire_ctx *ctx) 11487 { 11488 struct intel_encoder *intel_encoder = 11489 intel_attached_encoder(connector); 11490 struct drm_encoder *encoder = &intel_encoder->base; 11491 struct drm_atomic_state *state = old->restore_state; 11492 int ret; 11493 11494 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11495 connector->base.id, connector->name, 11496 encoder->base.id, encoder->name); 11497 11498 if (!state) 11499 return; 11500 11501 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 11502 if (ret) 11503 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret); 11504 drm_atomic_state_put(state); 11505 } 11506 11507 static int i9xx_pll_refclk(struct drm_device *dev, 11508 const struct intel_crtc_state *pipe_config) 11509 { 11510 struct drm_i915_private *dev_priv = to_i915(dev); 11511 u32 dpll = pipe_config->dpll_hw_state.dpll; 11512 11513 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 11514 return dev_priv->vbt.lvds_ssc_freq; 11515 else if (HAS_PCH_SPLIT(dev_priv)) 11516 return 120000; 11517 else if (!IS_GEN(dev_priv, 2)) 11518 return 96000; 11519 else 11520 return 48000; 11521 } 11522 11523 /* Returns the clock of the currently programmed mode of the given pipe. */ 11524 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 11525 struct intel_crtc_state *pipe_config) 11526 { 11527 struct drm_device *dev = crtc->base.dev; 11528 struct drm_i915_private *dev_priv = to_i915(dev); 11529 enum pipe pipe = crtc->pipe; 11530 u32 dpll = pipe_config->dpll_hw_state.dpll; 11531 u32 fp; 11532 struct dpll clock; 11533 int port_clock; 11534 int refclk = i9xx_pll_refclk(dev, pipe_config); 11535 11536 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 11537 fp = pipe_config->dpll_hw_state.fp0; 11538 else 11539 fp = pipe_config->dpll_hw_state.fp1; 11540 11541 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 11542 if (IS_PINEVIEW(dev_priv)) { 11543 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 11544 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 11545 } else { 11546 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 11547 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 11548 } 11549 11550 if (!IS_GEN(dev_priv, 2)) { 11551 if (IS_PINEVIEW(dev_priv)) 11552 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 11553 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 11554 else 11555 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 11556 DPLL_FPA01_P1_POST_DIV_SHIFT); 11557 11558 switch (dpll & DPLL_MODE_MASK) { 11559 case DPLLB_MODE_DAC_SERIAL: 11560 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 11561 5 : 10; 11562 break; 11563 case DPLLB_MODE_LVDS: 11564 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 11565 7 : 14; 11566 break; 11567 default: 11568 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " 11569 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 11570 return; 11571 } 11572 11573 if (IS_PINEVIEW(dev_priv)) 11574 port_clock = pnv_calc_dpll_params(refclk, &clock); 11575 else 11576 port_clock = i9xx_calc_dpll_params(refclk, &clock); 11577 } else { 11578 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS); 11579 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 11580 11581 if (is_lvds) { 11582 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 11583 DPLL_FPA01_P1_POST_DIV_SHIFT); 11584 11585 if (lvds & LVDS_CLKB_POWER_UP) 11586 clock.p2 = 7; 11587 else 11588 clock.p2 = 14; 11589 } else { 11590 if (dpll & PLL_P1_DIVIDE_BY_TWO) 11591 clock.p1 = 2; 11592 else { 11593 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 11594 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 11595 } 11596 if (dpll & PLL_P2_DIVIDE_BY_4) 11597 clock.p2 = 4; 11598 else 11599 clock.p2 = 2; 11600 } 11601 11602 port_clock = i9xx_calc_dpll_params(refclk, &clock); 11603 } 11604 11605 /* 11606 * This value includes pixel_multiplier. We will use 11607 * port_clock to compute adjusted_mode.crtc_clock in the 11608 * encoder's get_config() function. 11609 */ 11610 pipe_config->port_clock = port_clock; 11611 } 11612 11613 int intel_dotclock_calculate(int link_freq, 11614 const struct intel_link_m_n *m_n) 11615 { 11616 /* 11617 * The calculation for the data clock is: 11618 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 11619 * But we want to avoid losing precison if possible, so: 11620 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 11621 * 11622 * and the link clock is simpler: 11623 * link_clock = (m * link_clock) / n 11624 */ 11625 11626 if (!m_n->link_n) 11627 return 0; 11628 11629 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 11630 } 11631 11632 static void ironlake_pch_clock_get(struct intel_crtc *crtc, 11633 struct intel_crtc_state *pipe_config) 11634 { 11635 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11636 11637 /* read out port_clock from the DPLL */ 11638 i9xx_crtc_clock_get(crtc, pipe_config); 11639 11640 /* 11641 * In case there is an active pipe without active ports, 11642 * we may need some idea for the dotclock anyway. 11643 * Calculate one based on the FDI configuration. 11644 */ 11645 pipe_config->base.adjusted_mode.crtc_clock = 11646 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 11647 &pipe_config->fdi_m_n); 11648 } 11649 11650 /* Returns the currently programmed mode of the given encoder. */ 11651 struct drm_display_mode * 11652 intel_encoder_current_mode(struct intel_encoder *encoder) 11653 { 11654 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 11655 struct intel_crtc_state *crtc_state; 11656 struct drm_display_mode *mode; 11657 struct intel_crtc *crtc; 11658 enum pipe pipe; 11659 11660 if (!encoder->get_hw_state(encoder, &pipe)) 11661 return NULL; 11662 11663 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 11664 11665 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 11666 if (!mode) 11667 return NULL; 11668 11669 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); 11670 if (!crtc_state) { 11671 kfree(mode); 11672 return NULL; 11673 } 11674 11675 crtc_state->base.crtc = &crtc->base; 11676 11677 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) { 11678 kfree(crtc_state); 11679 kfree(mode); 11680 return NULL; 11681 } 11682 11683 encoder->get_config(encoder, crtc_state); 11684 11685 intel_mode_from_pipe_config(mode, crtc_state); 11686 11687 kfree(crtc_state); 11688 11689 return mode; 11690 } 11691 11692 static void intel_crtc_destroy(struct drm_crtc *crtc) 11693 { 11694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11695 11696 drm_crtc_cleanup(crtc); 11697 kfree(intel_crtc); 11698 } 11699 11700 /** 11701 * intel_wm_need_update - Check whether watermarks need updating 11702 * @cur: current plane state 11703 * @new: new plane state 11704 * 11705 * Check current plane state versus the new one to determine whether 11706 * watermarks need to be recalculated. 11707 * 11708 * Returns true or false. 11709 */ 11710 static bool intel_wm_need_update(const struct intel_plane_state *cur, 11711 struct intel_plane_state *new) 11712 { 11713 /* Update watermarks on tiling or size changes. */ 11714 if (new->base.visible != cur->base.visible) 11715 return true; 11716 11717 if (!cur->base.fb || !new->base.fb) 11718 return false; 11719 11720 if (cur->base.fb->modifier != new->base.fb->modifier || 11721 cur->base.rotation != new->base.rotation || 11722 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) || 11723 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) || 11724 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) || 11725 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst)) 11726 return true; 11727 11728 return false; 11729 } 11730 11731 static bool needs_scaling(const struct intel_plane_state *state) 11732 { 11733 int src_w = drm_rect_width(&state->base.src) >> 16; 11734 int src_h = drm_rect_height(&state->base.src) >> 16; 11735 int dst_w = drm_rect_width(&state->base.dst); 11736 int dst_h = drm_rect_height(&state->base.dst); 11737 11738 return (src_w != dst_w || src_h != dst_h); 11739 } 11740 11741 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 11742 struct intel_crtc_state *crtc_state, 11743 const struct intel_plane_state *old_plane_state, 11744 struct intel_plane_state *plane_state) 11745 { 11746 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 11747 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 11748 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11749 bool mode_changed = needs_modeset(crtc_state); 11750 bool was_crtc_enabled = old_crtc_state->base.active; 11751 bool is_crtc_enabled = crtc_state->base.active; 11752 bool turn_off, turn_on, visible, was_visible; 11753 int ret; 11754 11755 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 11756 ret = skl_update_scaler_plane(crtc_state, plane_state); 11757 if (ret) 11758 return ret; 11759 } 11760 11761 was_visible = old_plane_state->base.visible; 11762 visible = plane_state->base.visible; 11763 11764 if (!was_crtc_enabled && WARN_ON(was_visible)) 11765 was_visible = false; 11766 11767 /* 11768 * Visibility is calculated as if the crtc was on, but 11769 * after scaler setup everything depends on it being off 11770 * when the crtc isn't active. 11771 * 11772 * FIXME this is wrong for watermarks. Watermarks should also 11773 * be computed as if the pipe would be active. Perhaps move 11774 * per-plane wm computation to the .check_plane() hook, and 11775 * only combine the results from all planes in the current place? 11776 */ 11777 if (!is_crtc_enabled) { 11778 plane_state->base.visible = visible = false; 11779 crtc_state->active_planes &= ~BIT(plane->id); 11780 crtc_state->data_rate[plane->id] = 0; 11781 crtc_state->min_cdclk[plane->id] = 0; 11782 } 11783 11784 if (!was_visible && !visible) 11785 return 0; 11786 11787 turn_off = was_visible && (!visible || mode_changed); 11788 turn_on = visible && (!was_visible || mode_changed); 11789 11790 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 11791 crtc->base.base.id, crtc->base.name, 11792 plane->base.base.id, plane->base.name, 11793 was_visible, visible, 11794 turn_off, turn_on, mode_changed); 11795 11796 if (turn_on) { 11797 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11798 crtc_state->update_wm_pre = true; 11799 11800 /* must disable cxsr around plane enable/disable */ 11801 if (plane->id != PLANE_CURSOR) 11802 crtc_state->disable_cxsr = true; 11803 } else if (turn_off) { 11804 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11805 crtc_state->update_wm_post = true; 11806 11807 /* must disable cxsr around plane enable/disable */ 11808 if (plane->id != PLANE_CURSOR) 11809 crtc_state->disable_cxsr = true; 11810 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 11811 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { 11812 /* FIXME bollocks */ 11813 crtc_state->update_wm_pre = true; 11814 crtc_state->update_wm_post = true; 11815 } 11816 } 11817 11818 if (visible || was_visible) 11819 crtc_state->fb_bits |= plane->frontbuffer_bit; 11820 11821 /* 11822 * ILK/SNB DVSACNTR/Sprite Enable 11823 * IVB SPR_CTL/Sprite Enable 11824 * "When in Self Refresh Big FIFO mode, a write to enable the 11825 * plane will be internally buffered and delayed while Big FIFO 11826 * mode is exiting." 11827 * 11828 * Which means that enabling the sprite can take an extra frame 11829 * when we start in big FIFO mode (LP1+). Thus we need to drop 11830 * down to LP0 and wait for vblank in order to make sure the 11831 * sprite gets enabled on the next vblank after the register write. 11832 * Doing otherwise would risk enabling the sprite one frame after 11833 * we've already signalled flip completion. We can resume LP1+ 11834 * once the sprite has been enabled. 11835 * 11836 * 11837 * WaCxSRDisabledForSpriteScaling:ivb 11838 * IVB SPR_SCALE/Scaling Enable 11839 * "Low Power watermarks must be disabled for at least one 11840 * frame before enabling sprite scaling, and kept disabled 11841 * until sprite scaling is disabled." 11842 * 11843 * ILK/SNB DVSASCALE/Scaling Enable 11844 * "When in Self Refresh Big FIFO mode, scaling enable will be 11845 * masked off while Big FIFO mode is exiting." 11846 * 11847 * Despite the w/a only being listed for IVB we assume that 11848 * the ILK/SNB note has similar ramifications, hence we apply 11849 * the w/a on all three platforms. 11850 * 11851 * With experimental results seems this is needed also for primary 11852 * plane, not only sprite plane. 11853 */ 11854 if (plane->id != PLANE_CURSOR && 11855 (IS_GEN_RANGE(dev_priv, 5, 6) || 11856 IS_IVYBRIDGE(dev_priv)) && 11857 (turn_on || (!needs_scaling(old_plane_state) && 11858 needs_scaling(plane_state)))) 11859 crtc_state->disable_lp_wm = true; 11860 11861 return 0; 11862 } 11863 11864 static bool encoders_cloneable(const struct intel_encoder *a, 11865 const struct intel_encoder *b) 11866 { 11867 /* masks could be asymmetric, so check both ways */ 11868 return a == b || (a->cloneable & (1 << b->type) && 11869 b->cloneable & (1 << a->type)); 11870 } 11871 11872 static bool check_single_encoder_cloning(struct drm_atomic_state *state, 11873 struct intel_crtc *crtc, 11874 struct intel_encoder *encoder) 11875 { 11876 struct intel_encoder *source_encoder; 11877 struct drm_connector *connector; 11878 struct drm_connector_state *connector_state; 11879 int i; 11880 11881 for_each_new_connector_in_state(state, connector, connector_state, i) { 11882 if (connector_state->crtc != &crtc->base) 11883 continue; 11884 11885 source_encoder = 11886 to_intel_encoder(connector_state->best_encoder); 11887 if (!encoders_cloneable(encoder, source_encoder)) 11888 return false; 11889 } 11890 11891 return true; 11892 } 11893 11894 static int icl_add_linked_planes(struct intel_atomic_state *state) 11895 { 11896 struct intel_plane *plane, *linked; 11897 struct intel_plane_state *plane_state, *linked_plane_state; 11898 int i; 11899 11900 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 11901 linked = plane_state->planar_linked_plane; 11902 11903 if (!linked) 11904 continue; 11905 11906 linked_plane_state = intel_atomic_get_plane_state(state, linked); 11907 if (IS_ERR(linked_plane_state)) 11908 return PTR_ERR(linked_plane_state); 11909 11910 WARN_ON(linked_plane_state->planar_linked_plane != plane); 11911 WARN_ON(linked_plane_state->planar_slave == plane_state->planar_slave); 11912 } 11913 11914 return 0; 11915 } 11916 11917 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 11918 { 11919 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 11920 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11921 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state); 11922 struct intel_plane *plane, *linked; 11923 struct intel_plane_state *plane_state; 11924 int i; 11925 11926 if (INTEL_GEN(dev_priv) < 11) 11927 return 0; 11928 11929 /* 11930 * Destroy all old plane links and make the slave plane invisible 11931 * in the crtc_state->active_planes mask. 11932 */ 11933 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 11934 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 11935 continue; 11936 11937 plane_state->planar_linked_plane = NULL; 11938 if (plane_state->planar_slave && !plane_state->base.visible) { 11939 crtc_state->active_planes &= ~BIT(plane->id); 11940 crtc_state->update_planes |= BIT(plane->id); 11941 } 11942 11943 plane_state->planar_slave = false; 11944 } 11945 11946 if (!crtc_state->nv12_planes) 11947 return 0; 11948 11949 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 11950 struct intel_plane_state *linked_state = NULL; 11951 11952 if (plane->pipe != crtc->pipe || 11953 !(crtc_state->nv12_planes & BIT(plane->id))) 11954 continue; 11955 11956 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 11957 if (!icl_is_nv12_y_plane(linked->id)) 11958 continue; 11959 11960 if (crtc_state->active_planes & BIT(linked->id)) 11961 continue; 11962 11963 linked_state = intel_atomic_get_plane_state(state, linked); 11964 if (IS_ERR(linked_state)) 11965 return PTR_ERR(linked_state); 11966 11967 break; 11968 } 11969 11970 if (!linked_state) { 11971 DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n", 11972 hweight8(crtc_state->nv12_planes)); 11973 11974 return -EINVAL; 11975 } 11976 11977 plane_state->planar_linked_plane = linked; 11978 11979 linked_state->planar_slave = true; 11980 linked_state->planar_linked_plane = plane; 11981 crtc_state->active_planes |= BIT(linked->id); 11982 crtc_state->update_planes |= BIT(linked->id); 11983 DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name); 11984 } 11985 11986 return 0; 11987 } 11988 11989 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 11990 { 11991 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 11992 struct intel_atomic_state *state = 11993 to_intel_atomic_state(new_crtc_state->base.state); 11994 const struct intel_crtc_state *old_crtc_state = 11995 intel_atomic_get_old_crtc_state(state, crtc); 11996 11997 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 11998 } 11999 12000 static int icl_add_sync_mode_crtcs(struct intel_crtc_state *crtc_state) 12001 { 12002 struct drm_crtc *crtc = crtc_state->base.crtc; 12003 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state); 12004 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 12005 struct drm_connector *master_connector, *connector; 12006 struct drm_connector_state *connector_state; 12007 struct drm_connector_list_iter conn_iter; 12008 struct drm_crtc *master_crtc = NULL; 12009 struct drm_crtc_state *master_crtc_state; 12010 struct intel_crtc_state *master_pipe_config; 12011 int i, tile_group_id; 12012 12013 if (INTEL_GEN(dev_priv) < 11) 12014 return 0; 12015 12016 /* 12017 * In case of tiled displays there could be one or more slaves but there is 12018 * only one master. Lets make the CRTC used by the connector corresponding 12019 * to the last horizonal and last vertical tile a master/genlock CRTC. 12020 * All the other CRTCs corresponding to other tiles of the same Tile group 12021 * are the slave CRTCs and hold a pointer to their genlock CRTC. 12022 */ 12023 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 12024 if (connector_state->crtc != crtc) 12025 continue; 12026 if (!connector->has_tile) 12027 continue; 12028 if (crtc_state->base.mode.hdisplay != connector->tile_h_size || 12029 crtc_state->base.mode.vdisplay != connector->tile_v_size) 12030 return 0; 12031 if (connector->tile_h_loc == connector->num_h_tile - 1 && 12032 connector->tile_v_loc == connector->num_v_tile - 1) 12033 continue; 12034 crtc_state->sync_mode_slaves_mask = 0; 12035 tile_group_id = connector->tile_group->id; 12036 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter); 12037 drm_for_each_connector_iter(master_connector, &conn_iter) { 12038 struct drm_connector_state *master_conn_state = NULL; 12039 12040 if (!master_connector->has_tile) 12041 continue; 12042 if (master_connector->tile_h_loc != master_connector->num_h_tile - 1 || 12043 master_connector->tile_v_loc != master_connector->num_v_tile - 1) 12044 continue; 12045 if (master_connector->tile_group->id != tile_group_id) 12046 continue; 12047 12048 master_conn_state = drm_atomic_get_connector_state(&state->base, 12049 master_connector); 12050 if (IS_ERR(master_conn_state)) { 12051 drm_connector_list_iter_end(&conn_iter); 12052 return PTR_ERR(master_conn_state); 12053 } 12054 if (master_conn_state->crtc) { 12055 master_crtc = master_conn_state->crtc; 12056 break; 12057 } 12058 } 12059 drm_connector_list_iter_end(&conn_iter); 12060 12061 if (!master_crtc) { 12062 DRM_DEBUG_KMS("Could not find Master CRTC for Slave CRTC %d\n", 12063 connector_state->crtc->base.id); 12064 return -EINVAL; 12065 } 12066 12067 master_crtc_state = drm_atomic_get_crtc_state(&state->base, 12068 master_crtc); 12069 if (IS_ERR(master_crtc_state)) 12070 return PTR_ERR(master_crtc_state); 12071 12072 master_pipe_config = to_intel_crtc_state(master_crtc_state); 12073 crtc_state->master_transcoder = master_pipe_config->cpu_transcoder; 12074 master_pipe_config->sync_mode_slaves_mask |= 12075 BIT(crtc_state->cpu_transcoder); 12076 DRM_DEBUG_KMS("Master Transcoder = %s added for Slave CRTC = %d, slave transcoder bitmask = %d\n", 12077 transcoder_name(crtc_state->master_transcoder), 12078 crtc_state->base.crtc->base.id, 12079 master_pipe_config->sync_mode_slaves_mask); 12080 } 12081 12082 return 0; 12083 } 12084 12085 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 12086 struct intel_crtc *crtc) 12087 { 12088 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12089 struct intel_crtc_state *crtc_state = 12090 intel_atomic_get_new_crtc_state(state, crtc); 12091 bool mode_changed = needs_modeset(crtc_state); 12092 int ret; 12093 12094 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && 12095 mode_changed && !crtc_state->base.active) 12096 crtc_state->update_wm_post = true; 12097 12098 if (mode_changed && crtc_state->base.enable && 12099 dev_priv->display.crtc_compute_clock && 12100 !WARN_ON(crtc_state->shared_dpll)) { 12101 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 12102 if (ret) 12103 return ret; 12104 } 12105 12106 /* 12107 * May need to update pipe gamma enable bits 12108 * when C8 planes are getting enabled/disabled. 12109 */ 12110 if (c8_planes_changed(crtc_state)) 12111 crtc_state->base.color_mgmt_changed = true; 12112 12113 if (mode_changed || crtc_state->update_pipe || 12114 crtc_state->base.color_mgmt_changed) { 12115 ret = intel_color_check(crtc_state); 12116 if (ret) 12117 return ret; 12118 } 12119 12120 ret = 0; 12121 if (dev_priv->display.compute_pipe_wm) { 12122 ret = dev_priv->display.compute_pipe_wm(crtc_state); 12123 if (ret) { 12124 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n"); 12125 return ret; 12126 } 12127 } 12128 12129 if (dev_priv->display.compute_intermediate_wm) { 12130 if (WARN_ON(!dev_priv->display.compute_pipe_wm)) 12131 return 0; 12132 12133 /* 12134 * Calculate 'intermediate' watermarks that satisfy both the 12135 * old state and the new state. We can program these 12136 * immediately. 12137 */ 12138 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 12139 if (ret) { 12140 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n"); 12141 return ret; 12142 } 12143 } 12144 12145 if (INTEL_GEN(dev_priv) >= 9) { 12146 if (mode_changed || crtc_state->update_pipe) 12147 ret = skl_update_scaler_crtc(crtc_state); 12148 if (!ret) 12149 ret = intel_atomic_setup_scalers(dev_priv, crtc, 12150 crtc_state); 12151 } 12152 12153 if (HAS_IPS(dev_priv)) 12154 crtc_state->ips_enabled = hsw_compute_ips_config(crtc_state); 12155 12156 return ret; 12157 } 12158 12159 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 12160 { 12161 struct intel_connector *connector; 12162 struct drm_connector_list_iter conn_iter; 12163 12164 drm_connector_list_iter_begin(dev, &conn_iter); 12165 for_each_intel_connector_iter(connector, &conn_iter) { 12166 if (connector->base.state->crtc) 12167 drm_connector_put(&connector->base); 12168 12169 if (connector->base.encoder) { 12170 connector->base.state->best_encoder = 12171 connector->base.encoder; 12172 connector->base.state->crtc = 12173 connector->base.encoder->crtc; 12174 12175 drm_connector_get(&connector->base); 12176 } else { 12177 connector->base.state->best_encoder = NULL; 12178 connector->base.state->crtc = NULL; 12179 } 12180 } 12181 drm_connector_list_iter_end(&conn_iter); 12182 } 12183 12184 static int 12185 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 12186 struct intel_crtc_state *pipe_config) 12187 { 12188 struct drm_connector *connector = conn_state->connector; 12189 const struct drm_display_info *info = &connector->display_info; 12190 int bpp; 12191 12192 switch (conn_state->max_bpc) { 12193 case 6 ... 7: 12194 bpp = 6 * 3; 12195 break; 12196 case 8 ... 9: 12197 bpp = 8 * 3; 12198 break; 12199 case 10 ... 11: 12200 bpp = 10 * 3; 12201 break; 12202 case 12: 12203 bpp = 12 * 3; 12204 break; 12205 default: 12206 return -EINVAL; 12207 } 12208 12209 if (bpp < pipe_config->pipe_bpp) { 12210 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 12211 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 12212 connector->base.id, connector->name, 12213 bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc, 12214 pipe_config->pipe_bpp); 12215 12216 pipe_config->pipe_bpp = bpp; 12217 } 12218 12219 return 0; 12220 } 12221 12222 static int 12223 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 12224 struct intel_crtc_state *pipe_config) 12225 { 12226 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12227 struct drm_atomic_state *state = pipe_config->base.state; 12228 struct drm_connector *connector; 12229 struct drm_connector_state *connector_state; 12230 int bpp, i; 12231 12232 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 12233 IS_CHERRYVIEW(dev_priv))) 12234 bpp = 10*3; 12235 else if (INTEL_GEN(dev_priv) >= 5) 12236 bpp = 12*3; 12237 else 12238 bpp = 8*3; 12239 12240 pipe_config->pipe_bpp = bpp; 12241 12242 /* Clamp display bpp to connector max bpp */ 12243 for_each_new_connector_in_state(state, connector, connector_state, i) { 12244 int ret; 12245 12246 if (connector_state->crtc != &crtc->base) 12247 continue; 12248 12249 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 12250 if (ret) 12251 return ret; 12252 } 12253 12254 return 0; 12255 } 12256 12257 static void intel_dump_crtc_timings(const struct drm_display_mode *mode) 12258 { 12259 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " 12260 "type: 0x%x flags: 0x%x\n", 12261 mode->crtc_clock, 12262 mode->crtc_hdisplay, mode->crtc_hsync_start, 12263 mode->crtc_hsync_end, mode->crtc_htotal, 12264 mode->crtc_vdisplay, mode->crtc_vsync_start, 12265 mode->crtc_vsync_end, mode->crtc_vtotal, 12266 mode->type, mode->flags); 12267 } 12268 12269 static inline void 12270 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 12271 const char *id, unsigned int lane_count, 12272 const struct intel_link_m_n *m_n) 12273 { 12274 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 12275 id, lane_count, 12276 m_n->gmch_m, m_n->gmch_n, 12277 m_n->link_m, m_n->link_n, m_n->tu); 12278 } 12279 12280 static void 12281 intel_dump_infoframe(struct drm_i915_private *dev_priv, 12282 const union hdmi_infoframe *frame) 12283 { 12284 if ((drm_debug & DRM_UT_KMS) == 0) 12285 return; 12286 12287 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 12288 } 12289 12290 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 12291 12292 static const char * const output_type_str[] = { 12293 OUTPUT_TYPE(UNUSED), 12294 OUTPUT_TYPE(ANALOG), 12295 OUTPUT_TYPE(DVO), 12296 OUTPUT_TYPE(SDVO), 12297 OUTPUT_TYPE(LVDS), 12298 OUTPUT_TYPE(TVOUT), 12299 OUTPUT_TYPE(HDMI), 12300 OUTPUT_TYPE(DP), 12301 OUTPUT_TYPE(EDP), 12302 OUTPUT_TYPE(DSI), 12303 OUTPUT_TYPE(DDI), 12304 OUTPUT_TYPE(DP_MST), 12305 }; 12306 12307 #undef OUTPUT_TYPE 12308 12309 static void snprintf_output_types(char *buf, size_t len, 12310 unsigned int output_types) 12311 { 12312 char *str = buf; 12313 int i; 12314 12315 str[0] = '\0'; 12316 12317 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 12318 int r; 12319 12320 if ((output_types & BIT(i)) == 0) 12321 continue; 12322 12323 r = snprintf(str, len, "%s%s", 12324 str != buf ? "," : "", output_type_str[i]); 12325 if (r >= len) 12326 break; 12327 str += r; 12328 len -= r; 12329 12330 output_types &= ~BIT(i); 12331 } 12332 12333 WARN_ON_ONCE(output_types != 0); 12334 } 12335 12336 static const char * const output_format_str[] = { 12337 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", 12338 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 12339 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 12340 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 12341 }; 12342 12343 static const char *output_formats(enum intel_output_format format) 12344 { 12345 if (format >= ARRAY_SIZE(output_format_str)) 12346 format = INTEL_OUTPUT_FORMAT_INVALID; 12347 return output_format_str[format]; 12348 } 12349 12350 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 12351 { 12352 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 12353 const struct drm_framebuffer *fb = plane_state->base.fb; 12354 struct drm_format_name_buf format_name; 12355 12356 if (!fb) { 12357 DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 12358 plane->base.base.id, plane->base.name, 12359 yesno(plane_state->base.visible)); 12360 return; 12361 } 12362 12363 DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n", 12364 plane->base.base.id, plane->base.name, 12365 fb->base.id, fb->width, fb->height, 12366 drm_get_format_name(fb->format->format, &format_name), 12367 yesno(plane_state->base.visible)); 12368 DRM_DEBUG_KMS("\trotation: 0x%x, scaler: %d\n", 12369 plane_state->base.rotation, plane_state->scaler_id); 12370 if (plane_state->base.visible) 12371 DRM_DEBUG_KMS("\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 12372 DRM_RECT_FP_ARG(&plane_state->base.src), 12373 DRM_RECT_ARG(&plane_state->base.dst)); 12374 } 12375 12376 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 12377 struct intel_atomic_state *state, 12378 const char *context) 12379 { 12380 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 12381 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12382 const struct intel_plane_state *plane_state; 12383 struct intel_plane *plane; 12384 char buf[64]; 12385 int i; 12386 12387 DRM_DEBUG_KMS("[CRTC:%d:%s] enable: %s %s\n", 12388 crtc->base.base.id, crtc->base.name, 12389 yesno(pipe_config->base.enable), context); 12390 12391 if (!pipe_config->base.enable) 12392 goto dump_planes; 12393 12394 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 12395 DRM_DEBUG_KMS("active: %s, output_types: %s (0x%x), output format: %s\n", 12396 yesno(pipe_config->base.active), 12397 buf, pipe_config->output_types, 12398 output_formats(pipe_config->output_format)); 12399 12400 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 12401 transcoder_name(pipe_config->cpu_transcoder), 12402 pipe_config->pipe_bpp, pipe_config->dither); 12403 12404 if (pipe_config->has_pch_encoder) 12405 intel_dump_m_n_config(pipe_config, "fdi", 12406 pipe_config->fdi_lanes, 12407 &pipe_config->fdi_m_n); 12408 12409 if (intel_crtc_has_dp_encoder(pipe_config)) { 12410 intel_dump_m_n_config(pipe_config, "dp m_n", 12411 pipe_config->lane_count, &pipe_config->dp_m_n); 12412 if (pipe_config->has_drrs) 12413 intel_dump_m_n_config(pipe_config, "dp m2_n2", 12414 pipe_config->lane_count, 12415 &pipe_config->dp_m2_n2); 12416 } 12417 12418 DRM_DEBUG_KMS("audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 12419 pipe_config->has_audio, pipe_config->has_infoframe, 12420 pipe_config->infoframes.enable); 12421 12422 if (pipe_config->infoframes.enable & 12423 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 12424 DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp); 12425 if (pipe_config->infoframes.enable & 12426 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 12427 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 12428 if (pipe_config->infoframes.enable & 12429 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 12430 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 12431 if (pipe_config->infoframes.enable & 12432 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 12433 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 12434 12435 DRM_DEBUG_KMS("requested mode:\n"); 12436 drm_mode_debug_printmodeline(&pipe_config->base.mode); 12437 DRM_DEBUG_KMS("adjusted mode:\n"); 12438 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode); 12439 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode); 12440 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 12441 pipe_config->port_clock, 12442 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 12443 pipe_config->pixel_rate); 12444 12445 if (INTEL_GEN(dev_priv) >= 9) 12446 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 12447 crtc->num_scalers, 12448 pipe_config->scaler_state.scaler_users, 12449 pipe_config->scaler_state.scaler_id); 12450 12451 if (HAS_GMCH(dev_priv)) 12452 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 12453 pipe_config->gmch_pfit.control, 12454 pipe_config->gmch_pfit.pgm_ratios, 12455 pipe_config->gmch_pfit.lvds_border_bits); 12456 else 12457 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n", 12458 pipe_config->pch_pfit.pos, 12459 pipe_config->pch_pfit.size, 12460 enableddisabled(pipe_config->pch_pfit.enabled), 12461 yesno(pipe_config->pch_pfit.force_thru)); 12462 12463 DRM_DEBUG_KMS("ips: %i, double wide: %i\n", 12464 pipe_config->ips_enabled, pipe_config->double_wide); 12465 12466 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 12467 12468 if (IS_CHERRYVIEW(dev_priv)) 12469 DRM_DEBUG_KMS("cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 12470 pipe_config->cgm_mode, pipe_config->gamma_mode, 12471 pipe_config->gamma_enable, pipe_config->csc_enable); 12472 else 12473 DRM_DEBUG_KMS("csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 12474 pipe_config->csc_mode, pipe_config->gamma_mode, 12475 pipe_config->gamma_enable, pipe_config->csc_enable); 12476 12477 dump_planes: 12478 if (!state) 12479 return; 12480 12481 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12482 if (plane->pipe == crtc->pipe) 12483 intel_dump_plane_state(plane_state); 12484 } 12485 } 12486 12487 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 12488 { 12489 struct drm_device *dev = state->base.dev; 12490 struct drm_connector *connector; 12491 struct drm_connector_list_iter conn_iter; 12492 unsigned int used_ports = 0; 12493 unsigned int used_mst_ports = 0; 12494 bool ret = true; 12495 12496 /* 12497 * We're going to peek into connector->state, 12498 * hence connection_mutex must be held. 12499 */ 12500 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 12501 12502 /* 12503 * Walk the connector list instead of the encoder 12504 * list to detect the problem on ddi platforms 12505 * where there's just one encoder per digital port. 12506 */ 12507 drm_connector_list_iter_begin(dev, &conn_iter); 12508 drm_for_each_connector_iter(connector, &conn_iter) { 12509 struct drm_connector_state *connector_state; 12510 struct intel_encoder *encoder; 12511 12512 connector_state = 12513 drm_atomic_get_new_connector_state(&state->base, 12514 connector); 12515 if (!connector_state) 12516 connector_state = connector->state; 12517 12518 if (!connector_state->best_encoder) 12519 continue; 12520 12521 encoder = to_intel_encoder(connector_state->best_encoder); 12522 12523 WARN_ON(!connector_state->crtc); 12524 12525 switch (encoder->type) { 12526 unsigned int port_mask; 12527 case INTEL_OUTPUT_DDI: 12528 if (WARN_ON(!HAS_DDI(to_i915(dev)))) 12529 break; 12530 /* else, fall through */ 12531 case INTEL_OUTPUT_DP: 12532 case INTEL_OUTPUT_HDMI: 12533 case INTEL_OUTPUT_EDP: 12534 port_mask = 1 << encoder->port; 12535 12536 /* the same port mustn't appear more than once */ 12537 if (used_ports & port_mask) 12538 ret = false; 12539 12540 used_ports |= port_mask; 12541 break; 12542 case INTEL_OUTPUT_DP_MST: 12543 used_mst_ports |= 12544 1 << encoder->port; 12545 break; 12546 default: 12547 break; 12548 } 12549 } 12550 drm_connector_list_iter_end(&conn_iter); 12551 12552 /* can't mix MST and SST/HDMI on the same port */ 12553 if (used_ports & used_mst_ports) 12554 return false; 12555 12556 return ret; 12557 } 12558 12559 static int 12560 clear_intel_crtc_state(struct intel_crtc_state *crtc_state) 12561 { 12562 struct drm_i915_private *dev_priv = 12563 to_i915(crtc_state->base.crtc->dev); 12564 struct intel_crtc_state *saved_state; 12565 12566 saved_state = kzalloc(sizeof(*saved_state), GFP_KERNEL); 12567 if (!saved_state) 12568 return -ENOMEM; 12569 12570 /* FIXME: before the switch to atomic started, a new pipe_config was 12571 * kzalloc'd. Code that depends on any field being zero should be 12572 * fixed, so that the crtc_state can be safely duplicated. For now, 12573 * only fields that are know to not cause problems are preserved. */ 12574 12575 saved_state->scaler_state = crtc_state->scaler_state; 12576 saved_state->shared_dpll = crtc_state->shared_dpll; 12577 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 12578 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 12579 sizeof(saved_state->icl_port_dplls)); 12580 saved_state->crc_enabled = crtc_state->crc_enabled; 12581 if (IS_G4X(dev_priv) || 12582 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 12583 saved_state->wm = crtc_state->wm; 12584 /* 12585 * Save the slave bitmask which gets filled for master crtc state during 12586 * slave atomic check call. 12587 */ 12588 if (is_trans_port_sync_master(crtc_state)) 12589 saved_state->sync_mode_slaves_mask = 12590 crtc_state->sync_mode_slaves_mask; 12591 12592 /* Keep base drm_crtc_state intact, only clear our extended struct */ 12593 BUILD_BUG_ON(offsetof(struct intel_crtc_state, base)); 12594 memcpy(&crtc_state->base + 1, &saved_state->base + 1, 12595 sizeof(*crtc_state) - sizeof(crtc_state->base)); 12596 12597 kfree(saved_state); 12598 return 0; 12599 } 12600 12601 static int 12602 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config) 12603 { 12604 struct drm_crtc *crtc = pipe_config->base.crtc; 12605 struct drm_atomic_state *state = pipe_config->base.state; 12606 struct intel_encoder *encoder; 12607 struct drm_connector *connector; 12608 struct drm_connector_state *connector_state; 12609 int base_bpp, ret; 12610 int i; 12611 bool retry = true; 12612 12613 ret = clear_intel_crtc_state(pipe_config); 12614 if (ret) 12615 return ret; 12616 12617 pipe_config->cpu_transcoder = 12618 (enum transcoder) to_intel_crtc(crtc)->pipe; 12619 12620 /* 12621 * Sanitize sync polarity flags based on requested ones. If neither 12622 * positive or negative polarity is requested, treat this as meaning 12623 * negative polarity. 12624 */ 12625 if (!(pipe_config->base.adjusted_mode.flags & 12626 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 12627 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 12628 12629 if (!(pipe_config->base.adjusted_mode.flags & 12630 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 12631 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 12632 12633 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 12634 pipe_config); 12635 if (ret) 12636 return ret; 12637 12638 base_bpp = pipe_config->pipe_bpp; 12639 12640 /* 12641 * Determine the real pipe dimensions. Note that stereo modes can 12642 * increase the actual pipe size due to the frame doubling and 12643 * insertion of additional space for blanks between the frame. This 12644 * is stored in the crtc timings. We use the requested mode to do this 12645 * computation to clearly distinguish it from the adjusted mode, which 12646 * can be changed by the connectors in the below retry loop. 12647 */ 12648 drm_mode_get_hv_timing(&pipe_config->base.mode, 12649 &pipe_config->pipe_src_w, 12650 &pipe_config->pipe_src_h); 12651 12652 for_each_new_connector_in_state(state, connector, connector_state, i) { 12653 if (connector_state->crtc != crtc) 12654 continue; 12655 12656 encoder = to_intel_encoder(connector_state->best_encoder); 12657 12658 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 12659 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n"); 12660 return -EINVAL; 12661 } 12662 12663 /* 12664 * Determine output_types before calling the .compute_config() 12665 * hooks so that the hooks can use this information safely. 12666 */ 12667 if (encoder->compute_output_type) 12668 pipe_config->output_types |= 12669 BIT(encoder->compute_output_type(encoder, pipe_config, 12670 connector_state)); 12671 else 12672 pipe_config->output_types |= BIT(encoder->type); 12673 } 12674 12675 encoder_retry: 12676 /* Ensure the port clock defaults are reset when retrying. */ 12677 pipe_config->port_clock = 0; 12678 pipe_config->pixel_multiplier = 1; 12679 12680 /* Fill in default crtc timings, allow encoders to overwrite them. */ 12681 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode, 12682 CRTC_STEREO_DOUBLE); 12683 12684 /* Set the crtc_state defaults for trans_port_sync */ 12685 pipe_config->master_transcoder = INVALID_TRANSCODER; 12686 ret = icl_add_sync_mode_crtcs(pipe_config); 12687 if (ret) { 12688 DRM_DEBUG_KMS("Cannot assign Sync Mode CRTCs: %d\n", 12689 ret); 12690 return ret; 12691 } 12692 12693 /* Pass our mode to the connectors and the CRTC to give them a chance to 12694 * adjust it according to limitations or connector properties, and also 12695 * a chance to reject the mode entirely. 12696 */ 12697 for_each_new_connector_in_state(state, connector, connector_state, i) { 12698 if (connector_state->crtc != crtc) 12699 continue; 12700 12701 encoder = to_intel_encoder(connector_state->best_encoder); 12702 ret = encoder->compute_config(encoder, pipe_config, 12703 connector_state); 12704 if (ret < 0) { 12705 if (ret != -EDEADLK) 12706 DRM_DEBUG_KMS("Encoder config failure: %d\n", 12707 ret); 12708 return ret; 12709 } 12710 } 12711 12712 /* Set default port clock if not overwritten by the encoder. Needs to be 12713 * done afterwards in case the encoder adjusts the mode. */ 12714 if (!pipe_config->port_clock) 12715 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock 12716 * pipe_config->pixel_multiplier; 12717 12718 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 12719 if (ret == -EDEADLK) 12720 return ret; 12721 if (ret < 0) { 12722 DRM_DEBUG_KMS("CRTC fixup failed\n"); 12723 return ret; 12724 } 12725 12726 if (ret == RETRY) { 12727 if (WARN(!retry, "loop in pipe configuration computation\n")) 12728 return -EINVAL; 12729 12730 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n"); 12731 retry = false; 12732 goto encoder_retry; 12733 } 12734 12735 /* Dithering seems to not pass-through bits correctly when it should, so 12736 * only enable it on 6bpc panels and when its not a compliance 12737 * test requesting 6bpc video pattern. 12738 */ 12739 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 12740 !pipe_config->dither_force_disable; 12741 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 12742 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 12743 12744 return 0; 12745 } 12746 12747 bool intel_fuzzy_clock_check(int clock1, int clock2) 12748 { 12749 int diff; 12750 12751 if (clock1 == clock2) 12752 return true; 12753 12754 if (!clock1 || !clock2) 12755 return false; 12756 12757 diff = abs(clock1 - clock2); 12758 12759 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 12760 return true; 12761 12762 return false; 12763 } 12764 12765 static bool 12766 intel_compare_m_n(unsigned int m, unsigned int n, 12767 unsigned int m2, unsigned int n2, 12768 bool exact) 12769 { 12770 if (m == m2 && n == n2) 12771 return true; 12772 12773 if (exact || !m || !n || !m2 || !n2) 12774 return false; 12775 12776 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 12777 12778 if (n > n2) { 12779 while (n > n2) { 12780 m2 <<= 1; 12781 n2 <<= 1; 12782 } 12783 } else if (n < n2) { 12784 while (n < n2) { 12785 m <<= 1; 12786 n <<= 1; 12787 } 12788 } 12789 12790 if (n != n2) 12791 return false; 12792 12793 return intel_fuzzy_clock_check(m, m2); 12794 } 12795 12796 static bool 12797 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 12798 const struct intel_link_m_n *m2_n2, 12799 bool exact) 12800 { 12801 return m_n->tu == m2_n2->tu && 12802 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 12803 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 12804 intel_compare_m_n(m_n->link_m, m_n->link_n, 12805 m2_n2->link_m, m2_n2->link_n, exact); 12806 } 12807 12808 static bool 12809 intel_compare_infoframe(const union hdmi_infoframe *a, 12810 const union hdmi_infoframe *b) 12811 { 12812 return memcmp(a, b, sizeof(*a)) == 0; 12813 } 12814 12815 static void 12816 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 12817 bool fastset, const char *name, 12818 const union hdmi_infoframe *a, 12819 const union hdmi_infoframe *b) 12820 { 12821 if (fastset) { 12822 if ((drm_debug & DRM_UT_KMS) == 0) 12823 return; 12824 12825 DRM_DEBUG_KMS("fastset mismatch in %s infoframe\n", name); 12826 DRM_DEBUG_KMS("expected:\n"); 12827 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 12828 DRM_DEBUG_KMS("found:\n"); 12829 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 12830 } else { 12831 DRM_ERROR("mismatch in %s infoframe\n", name); 12832 DRM_ERROR("expected:\n"); 12833 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 12834 DRM_ERROR("found:\n"); 12835 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 12836 } 12837 } 12838 12839 static void __printf(4, 5) 12840 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 12841 const char *name, const char *format, ...) 12842 { 12843 struct va_format vaf; 12844 va_list args; 12845 12846 va_start(args, format); 12847 vaf.fmt = format; 12848 vaf.va = &args; 12849 12850 if (fastset) 12851 DRM_DEBUG_KMS("[CRTC:%d:%s] fastset mismatch in %s %pV\n", 12852 crtc->base.base.id, crtc->base.name, name, &vaf); 12853 else 12854 DRM_ERROR("[CRTC:%d:%s] mismatch in %s %pV\n", 12855 crtc->base.base.id, crtc->base.name, name, &vaf); 12856 12857 va_end(args); 12858 } 12859 12860 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 12861 { 12862 if (i915_modparams.fastboot != -1) 12863 return i915_modparams.fastboot; 12864 12865 /* Enable fastboot by default on Skylake and newer */ 12866 if (INTEL_GEN(dev_priv) >= 9) 12867 return true; 12868 12869 /* Enable fastboot by default on VLV and CHV */ 12870 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 12871 return true; 12872 12873 /* Disabled by default on all others */ 12874 return false; 12875 } 12876 12877 static bool 12878 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 12879 const struct intel_crtc_state *pipe_config, 12880 bool fastset) 12881 { 12882 struct drm_i915_private *dev_priv = to_i915(current_config->base.crtc->dev); 12883 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 12884 bool ret = true; 12885 u32 bp_gamma = 0; 12886 bool fixup_inherited = fastset && 12887 (current_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED) && 12888 !(pipe_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED); 12889 12890 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 12891 DRM_DEBUG_KMS("initial modeset and fastboot not set\n"); 12892 ret = false; 12893 } 12894 12895 #define PIPE_CONF_CHECK_X(name) do { \ 12896 if (current_config->name != pipe_config->name) { \ 12897 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12898 "(expected 0x%08x, found 0x%08x)", \ 12899 current_config->name, \ 12900 pipe_config->name); \ 12901 ret = false; \ 12902 } \ 12903 } while (0) 12904 12905 #define PIPE_CONF_CHECK_I(name) do { \ 12906 if (current_config->name != pipe_config->name) { \ 12907 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12908 "(expected %i, found %i)", \ 12909 current_config->name, \ 12910 pipe_config->name); \ 12911 ret = false; \ 12912 } \ 12913 } while (0) 12914 12915 #define PIPE_CONF_CHECK_BOOL(name) do { \ 12916 if (current_config->name != pipe_config->name) { \ 12917 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12918 "(expected %s, found %s)", \ 12919 yesno(current_config->name), \ 12920 yesno(pipe_config->name)); \ 12921 ret = false; \ 12922 } \ 12923 } while (0) 12924 12925 /* 12926 * Checks state where we only read out the enabling, but not the entire 12927 * state itself (like full infoframes or ELD for audio). These states 12928 * require a full modeset on bootup to fix up. 12929 */ 12930 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 12931 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 12932 PIPE_CONF_CHECK_BOOL(name); \ 12933 } else { \ 12934 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12935 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 12936 yesno(current_config->name), \ 12937 yesno(pipe_config->name)); \ 12938 ret = false; \ 12939 } \ 12940 } while (0) 12941 12942 #define PIPE_CONF_CHECK_P(name) do { \ 12943 if (current_config->name != pipe_config->name) { \ 12944 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12945 "(expected %p, found %p)", \ 12946 current_config->name, \ 12947 pipe_config->name); \ 12948 ret = false; \ 12949 } \ 12950 } while (0) 12951 12952 #define PIPE_CONF_CHECK_M_N(name) do { \ 12953 if (!intel_compare_link_m_n(¤t_config->name, \ 12954 &pipe_config->name,\ 12955 !fastset)) { \ 12956 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12957 "(expected tu %i gmch %i/%i link %i/%i, " \ 12958 "found tu %i, gmch %i/%i link %i/%i)", \ 12959 current_config->name.tu, \ 12960 current_config->name.gmch_m, \ 12961 current_config->name.gmch_n, \ 12962 current_config->name.link_m, \ 12963 current_config->name.link_n, \ 12964 pipe_config->name.tu, \ 12965 pipe_config->name.gmch_m, \ 12966 pipe_config->name.gmch_n, \ 12967 pipe_config->name.link_m, \ 12968 pipe_config->name.link_n); \ 12969 ret = false; \ 12970 } \ 12971 } while (0) 12972 12973 /* This is required for BDW+ where there is only one set of registers for 12974 * switching between high and low RR. 12975 * This macro can be used whenever a comparison has to be made between one 12976 * hw state and multiple sw state variables. 12977 */ 12978 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 12979 if (!intel_compare_link_m_n(¤t_config->name, \ 12980 &pipe_config->name, !fastset) && \ 12981 !intel_compare_link_m_n(¤t_config->alt_name, \ 12982 &pipe_config->name, !fastset)) { \ 12983 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12984 "(expected tu %i gmch %i/%i link %i/%i, " \ 12985 "or tu %i gmch %i/%i link %i/%i, " \ 12986 "found tu %i, gmch %i/%i link %i/%i)", \ 12987 current_config->name.tu, \ 12988 current_config->name.gmch_m, \ 12989 current_config->name.gmch_n, \ 12990 current_config->name.link_m, \ 12991 current_config->name.link_n, \ 12992 current_config->alt_name.tu, \ 12993 current_config->alt_name.gmch_m, \ 12994 current_config->alt_name.gmch_n, \ 12995 current_config->alt_name.link_m, \ 12996 current_config->alt_name.link_n, \ 12997 pipe_config->name.tu, \ 12998 pipe_config->name.gmch_m, \ 12999 pipe_config->name.gmch_n, \ 13000 pipe_config->name.link_m, \ 13001 pipe_config->name.link_n); \ 13002 ret = false; \ 13003 } \ 13004 } while (0) 13005 13006 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 13007 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 13008 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13009 "(%x) (expected %i, found %i)", \ 13010 (mask), \ 13011 current_config->name & (mask), \ 13012 pipe_config->name & (mask)); \ 13013 ret = false; \ 13014 } \ 13015 } while (0) 13016 13017 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 13018 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 13019 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13020 "(expected %i, found %i)", \ 13021 current_config->name, \ 13022 pipe_config->name); \ 13023 ret = false; \ 13024 } \ 13025 } while (0) 13026 13027 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 13028 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 13029 &pipe_config->infoframes.name)) { \ 13030 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 13031 ¤t_config->infoframes.name, \ 13032 &pipe_config->infoframes.name); \ 13033 ret = false; \ 13034 } \ 13035 } while (0) 13036 13037 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 13038 if (current_config->name1 != pipe_config->name1) { \ 13039 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 13040 "(expected %i, found %i, won't compare lut values)", \ 13041 current_config->name1, \ 13042 pipe_config->name1); \ 13043 ret = false;\ 13044 } else { \ 13045 if (!intel_color_lut_equal(current_config->name2, \ 13046 pipe_config->name2, pipe_config->name1, \ 13047 bit_precision)) { \ 13048 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 13049 "hw_state doesn't match sw_state"); \ 13050 ret = false; \ 13051 } \ 13052 } \ 13053 } while (0) 13054 13055 #define PIPE_CONF_QUIRK(quirk) \ 13056 ((current_config->quirks | pipe_config->quirks) & (quirk)) 13057 13058 PIPE_CONF_CHECK_I(cpu_transcoder); 13059 13060 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 13061 PIPE_CONF_CHECK_I(fdi_lanes); 13062 PIPE_CONF_CHECK_M_N(fdi_m_n); 13063 13064 PIPE_CONF_CHECK_I(lane_count); 13065 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 13066 13067 if (INTEL_GEN(dev_priv) < 8) { 13068 PIPE_CONF_CHECK_M_N(dp_m_n); 13069 13070 if (current_config->has_drrs) 13071 PIPE_CONF_CHECK_M_N(dp_m2_n2); 13072 } else 13073 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 13074 13075 PIPE_CONF_CHECK_X(output_types); 13076 13077 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay); 13078 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal); 13079 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start); 13080 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end); 13081 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start); 13082 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end); 13083 13084 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay); 13085 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal); 13086 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start); 13087 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end); 13088 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start); 13089 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end); 13090 13091 PIPE_CONF_CHECK_I(pixel_multiplier); 13092 PIPE_CONF_CHECK_I(output_format); 13093 PIPE_CONF_CHECK_I(dc3co_exitline); 13094 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 13095 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 13096 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13097 PIPE_CONF_CHECK_BOOL(limited_color_range); 13098 13099 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 13100 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 13101 PIPE_CONF_CHECK_BOOL(has_infoframe); 13102 PIPE_CONF_CHECK_BOOL(fec_enable); 13103 13104 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 13105 13106 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 13107 DRM_MODE_FLAG_INTERLACE); 13108 13109 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 13110 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 13111 DRM_MODE_FLAG_PHSYNC); 13112 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 13113 DRM_MODE_FLAG_NHSYNC); 13114 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 13115 DRM_MODE_FLAG_PVSYNC); 13116 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 13117 DRM_MODE_FLAG_NVSYNC); 13118 } 13119 13120 PIPE_CONF_CHECK_X(gmch_pfit.control); 13121 /* pfit ratios are autocomputed by the hw on gen4+ */ 13122 if (INTEL_GEN(dev_priv) < 4) 13123 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 13124 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 13125 13126 /* 13127 * Changing the EDP transcoder input mux 13128 * (A_ONOFF vs. A_ON) requires a full modeset. 13129 */ 13130 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 13131 13132 if (!fastset) { 13133 PIPE_CONF_CHECK_I(pipe_src_w); 13134 PIPE_CONF_CHECK_I(pipe_src_h); 13135 13136 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 13137 if (current_config->pch_pfit.enabled) { 13138 PIPE_CONF_CHECK_X(pch_pfit.pos); 13139 PIPE_CONF_CHECK_X(pch_pfit.size); 13140 } 13141 13142 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 13143 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 13144 13145 PIPE_CONF_CHECK_X(gamma_mode); 13146 if (IS_CHERRYVIEW(dev_priv)) 13147 PIPE_CONF_CHECK_X(cgm_mode); 13148 else 13149 PIPE_CONF_CHECK_X(csc_mode); 13150 PIPE_CONF_CHECK_BOOL(gamma_enable); 13151 PIPE_CONF_CHECK_BOOL(csc_enable); 13152 13153 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 13154 if (bp_gamma) 13155 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, base.gamma_lut, bp_gamma); 13156 13157 } 13158 13159 PIPE_CONF_CHECK_BOOL(double_wide); 13160 13161 PIPE_CONF_CHECK_P(shared_dpll); 13162 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 13163 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 13164 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 13165 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 13166 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 13167 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 13168 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 13169 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 13170 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 13171 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 13172 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 13173 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 13174 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 13175 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 13176 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 13177 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 13178 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 13179 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 13180 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 13181 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 13182 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 13183 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 13184 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 13185 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 13186 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 13187 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 13188 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 13189 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 13190 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 13191 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 13192 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 13193 13194 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 13195 PIPE_CONF_CHECK_X(dsi_pll.div); 13196 13197 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) 13198 PIPE_CONF_CHECK_I(pipe_bpp); 13199 13200 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock); 13201 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 13202 13203 PIPE_CONF_CHECK_I(min_voltage_level); 13204 13205 PIPE_CONF_CHECK_X(infoframes.enable); 13206 PIPE_CONF_CHECK_X(infoframes.gcp); 13207 PIPE_CONF_CHECK_INFOFRAME(avi); 13208 PIPE_CONF_CHECK_INFOFRAME(spd); 13209 PIPE_CONF_CHECK_INFOFRAME(hdmi); 13210 PIPE_CONF_CHECK_INFOFRAME(drm); 13211 13212 PIPE_CONF_CHECK_I(sync_mode_slaves_mask); 13213 PIPE_CONF_CHECK_I(master_transcoder); 13214 13215 #undef PIPE_CONF_CHECK_X 13216 #undef PIPE_CONF_CHECK_I 13217 #undef PIPE_CONF_CHECK_BOOL 13218 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 13219 #undef PIPE_CONF_CHECK_P 13220 #undef PIPE_CONF_CHECK_FLAGS 13221 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 13222 #undef PIPE_CONF_CHECK_COLOR_LUT 13223 #undef PIPE_CONF_QUIRK 13224 13225 return ret; 13226 } 13227 13228 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 13229 const struct intel_crtc_state *pipe_config) 13230 { 13231 if (pipe_config->has_pch_encoder) { 13232 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 13233 &pipe_config->fdi_m_n); 13234 int dotclock = pipe_config->base.adjusted_mode.crtc_clock; 13235 13236 /* 13237 * FDI already provided one idea for the dotclock. 13238 * Yell if the encoder disagrees. 13239 */ 13240 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock), 13241 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 13242 fdi_dotclock, dotclock); 13243 } 13244 } 13245 13246 static void verify_wm_state(struct intel_crtc *crtc, 13247 struct intel_crtc_state *new_crtc_state) 13248 { 13249 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13250 struct skl_hw_state { 13251 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 13252 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 13253 struct skl_ddb_allocation ddb; 13254 struct skl_pipe_wm wm; 13255 } *hw; 13256 struct skl_ddb_allocation *sw_ddb; 13257 struct skl_pipe_wm *sw_wm; 13258 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 13259 const enum pipe pipe = crtc->pipe; 13260 int plane, level, max_level = ilk_wm_max_level(dev_priv); 13261 13262 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->base.active) 13263 return; 13264 13265 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 13266 if (!hw) 13267 return; 13268 13269 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 13270 sw_wm = &new_crtc_state->wm.skl.optimal; 13271 13272 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 13273 13274 skl_ddb_get_hw_state(dev_priv, &hw->ddb); 13275 sw_ddb = &dev_priv->wm.skl_hw.ddb; 13276 13277 if (INTEL_GEN(dev_priv) >= 11 && 13278 hw->ddb.enabled_slices != sw_ddb->enabled_slices) 13279 DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n", 13280 sw_ddb->enabled_slices, 13281 hw->ddb.enabled_slices); 13282 13283 /* planes */ 13284 for_each_universal_plane(dev_priv, pipe, plane) { 13285 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 13286 13287 hw_plane_wm = &hw->wm.planes[plane]; 13288 sw_plane_wm = &sw_wm->planes[plane]; 13289 13290 /* Watermarks */ 13291 for (level = 0; level <= max_level; level++) { 13292 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 13293 &sw_plane_wm->wm[level])) 13294 continue; 13295 13296 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 13297 pipe_name(pipe), plane + 1, level, 13298 sw_plane_wm->wm[level].plane_en, 13299 sw_plane_wm->wm[level].plane_res_b, 13300 sw_plane_wm->wm[level].plane_res_l, 13301 hw_plane_wm->wm[level].plane_en, 13302 hw_plane_wm->wm[level].plane_res_b, 13303 hw_plane_wm->wm[level].plane_res_l); 13304 } 13305 13306 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 13307 &sw_plane_wm->trans_wm)) { 13308 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 13309 pipe_name(pipe), plane + 1, 13310 sw_plane_wm->trans_wm.plane_en, 13311 sw_plane_wm->trans_wm.plane_res_b, 13312 sw_plane_wm->trans_wm.plane_res_l, 13313 hw_plane_wm->trans_wm.plane_en, 13314 hw_plane_wm->trans_wm.plane_res_b, 13315 hw_plane_wm->trans_wm.plane_res_l); 13316 } 13317 13318 /* DDB */ 13319 hw_ddb_entry = &hw->ddb_y[plane]; 13320 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; 13321 13322 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 13323 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", 13324 pipe_name(pipe), plane + 1, 13325 sw_ddb_entry->start, sw_ddb_entry->end, 13326 hw_ddb_entry->start, hw_ddb_entry->end); 13327 } 13328 } 13329 13330 /* 13331 * cursor 13332 * If the cursor plane isn't active, we may not have updated it's ddb 13333 * allocation. In that case since the ddb allocation will be updated 13334 * once the plane becomes visible, we can skip this check 13335 */ 13336 if (1) { 13337 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 13338 13339 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; 13340 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; 13341 13342 /* Watermarks */ 13343 for (level = 0; level <= max_level; level++) { 13344 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 13345 &sw_plane_wm->wm[level])) 13346 continue; 13347 13348 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 13349 pipe_name(pipe), level, 13350 sw_plane_wm->wm[level].plane_en, 13351 sw_plane_wm->wm[level].plane_res_b, 13352 sw_plane_wm->wm[level].plane_res_l, 13353 hw_plane_wm->wm[level].plane_en, 13354 hw_plane_wm->wm[level].plane_res_b, 13355 hw_plane_wm->wm[level].plane_res_l); 13356 } 13357 13358 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 13359 &sw_plane_wm->trans_wm)) { 13360 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 13361 pipe_name(pipe), 13362 sw_plane_wm->trans_wm.plane_en, 13363 sw_plane_wm->trans_wm.plane_res_b, 13364 sw_plane_wm->trans_wm.plane_res_l, 13365 hw_plane_wm->trans_wm.plane_en, 13366 hw_plane_wm->trans_wm.plane_res_b, 13367 hw_plane_wm->trans_wm.plane_res_l); 13368 } 13369 13370 /* DDB */ 13371 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; 13372 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; 13373 13374 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 13375 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", 13376 pipe_name(pipe), 13377 sw_ddb_entry->start, sw_ddb_entry->end, 13378 hw_ddb_entry->start, hw_ddb_entry->end); 13379 } 13380 } 13381 13382 kfree(hw); 13383 } 13384 13385 static void 13386 verify_connector_state(struct intel_atomic_state *state, 13387 struct intel_crtc *crtc) 13388 { 13389 struct drm_connector *connector; 13390 struct drm_connector_state *new_conn_state; 13391 int i; 13392 13393 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 13394 struct drm_encoder *encoder = connector->encoder; 13395 struct intel_crtc_state *crtc_state = NULL; 13396 13397 if (new_conn_state->crtc != &crtc->base) 13398 continue; 13399 13400 if (crtc) 13401 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 13402 13403 intel_connector_verify_state(crtc_state, new_conn_state); 13404 13405 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 13406 "connector's atomic encoder doesn't match legacy encoder\n"); 13407 } 13408 } 13409 13410 static void 13411 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 13412 { 13413 struct intel_encoder *encoder; 13414 struct drm_connector *connector; 13415 struct drm_connector_state *old_conn_state, *new_conn_state; 13416 int i; 13417 13418 for_each_intel_encoder(&dev_priv->drm, encoder) { 13419 bool enabled = false, found = false; 13420 enum pipe pipe; 13421 13422 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", 13423 encoder->base.base.id, 13424 encoder->base.name); 13425 13426 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 13427 new_conn_state, i) { 13428 if (old_conn_state->best_encoder == &encoder->base) 13429 found = true; 13430 13431 if (new_conn_state->best_encoder != &encoder->base) 13432 continue; 13433 found = enabled = true; 13434 13435 I915_STATE_WARN(new_conn_state->crtc != 13436 encoder->base.crtc, 13437 "connector's crtc doesn't match encoder crtc\n"); 13438 } 13439 13440 if (!found) 13441 continue; 13442 13443 I915_STATE_WARN(!!encoder->base.crtc != enabled, 13444 "encoder's enabled state mismatch " 13445 "(expected %i, found %i)\n", 13446 !!encoder->base.crtc, enabled); 13447 13448 if (!encoder->base.crtc) { 13449 bool active; 13450 13451 active = encoder->get_hw_state(encoder, &pipe); 13452 I915_STATE_WARN(active, 13453 "encoder detached but still enabled on pipe %c.\n", 13454 pipe_name(pipe)); 13455 } 13456 } 13457 } 13458 13459 static void 13460 verify_crtc_state(struct intel_crtc *crtc, 13461 struct intel_crtc_state *old_crtc_state, 13462 struct intel_crtc_state *new_crtc_state) 13463 { 13464 struct drm_device *dev = crtc->base.dev; 13465 struct drm_i915_private *dev_priv = to_i915(dev); 13466 struct intel_encoder *encoder; 13467 struct intel_crtc_state *pipe_config; 13468 struct drm_atomic_state *state; 13469 bool active; 13470 13471 state = old_crtc_state->base.state; 13472 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->base); 13473 pipe_config = old_crtc_state; 13474 memset(pipe_config, 0, sizeof(*pipe_config)); 13475 pipe_config->base.crtc = &crtc->base; 13476 pipe_config->base.state = state; 13477 13478 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.base.id, crtc->base.name); 13479 13480 active = dev_priv->display.get_pipe_config(crtc, pipe_config); 13481 13482 /* we keep both pipes enabled on 830 */ 13483 if (IS_I830(dev_priv)) 13484 active = new_crtc_state->base.active; 13485 13486 I915_STATE_WARN(new_crtc_state->base.active != active, 13487 "crtc active state doesn't match with hw state " 13488 "(expected %i, found %i)\n", new_crtc_state->base.active, active); 13489 13490 I915_STATE_WARN(crtc->active != new_crtc_state->base.active, 13491 "transitional active state does not match atomic hw state " 13492 "(expected %i, found %i)\n", new_crtc_state->base.active, crtc->active); 13493 13494 for_each_encoder_on_crtc(dev, &crtc->base, encoder) { 13495 enum pipe pipe; 13496 13497 active = encoder->get_hw_state(encoder, &pipe); 13498 I915_STATE_WARN(active != new_crtc_state->base.active, 13499 "[ENCODER:%i] active %i with crtc active %i\n", 13500 encoder->base.base.id, active, new_crtc_state->base.active); 13501 13502 I915_STATE_WARN(active && crtc->pipe != pipe, 13503 "Encoder connected to wrong pipe %c\n", 13504 pipe_name(pipe)); 13505 13506 if (active) 13507 encoder->get_config(encoder, pipe_config); 13508 } 13509 13510 intel_crtc_compute_pixel_rate(pipe_config); 13511 13512 if (!new_crtc_state->base.active) 13513 return; 13514 13515 intel_pipe_config_sanity_check(dev_priv, pipe_config); 13516 13517 if (!intel_pipe_config_compare(new_crtc_state, 13518 pipe_config, false)) { 13519 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 13520 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 13521 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 13522 } 13523 } 13524 13525 static void 13526 intel_verify_planes(struct intel_atomic_state *state) 13527 { 13528 struct intel_plane *plane; 13529 const struct intel_plane_state *plane_state; 13530 int i; 13531 13532 for_each_new_intel_plane_in_state(state, plane, 13533 plane_state, i) 13534 assert_plane(plane, plane_state->planar_slave || 13535 plane_state->base.visible); 13536 } 13537 13538 static void 13539 verify_single_dpll_state(struct drm_i915_private *dev_priv, 13540 struct intel_shared_dpll *pll, 13541 struct intel_crtc *crtc, 13542 struct intel_crtc_state *new_crtc_state) 13543 { 13544 struct intel_dpll_hw_state dpll_hw_state; 13545 unsigned int crtc_mask; 13546 bool active; 13547 13548 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 13549 13550 DRM_DEBUG_KMS("%s\n", pll->info->name); 13551 13552 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state); 13553 13554 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 13555 I915_STATE_WARN(!pll->on && pll->active_mask, 13556 "pll in active use but not on in sw tracking\n"); 13557 I915_STATE_WARN(pll->on && !pll->active_mask, 13558 "pll is on but not used by any active crtc\n"); 13559 I915_STATE_WARN(pll->on != active, 13560 "pll on state mismatch (expected %i, found %i)\n", 13561 pll->on, active); 13562 } 13563 13564 if (!crtc) { 13565 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, 13566 "more active pll users than references: %x vs %x\n", 13567 pll->active_mask, pll->state.crtc_mask); 13568 13569 return; 13570 } 13571 13572 crtc_mask = drm_crtc_mask(&crtc->base); 13573 13574 if (new_crtc_state->base.active) 13575 I915_STATE_WARN(!(pll->active_mask & crtc_mask), 13576 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", 13577 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask); 13578 else 13579 I915_STATE_WARN(pll->active_mask & crtc_mask, 13580 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", 13581 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask); 13582 13583 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), 13584 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", 13585 crtc_mask, pll->state.crtc_mask); 13586 13587 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 13588 &dpll_hw_state, 13589 sizeof(dpll_hw_state)), 13590 "pll hw state mismatch\n"); 13591 } 13592 13593 static void 13594 verify_shared_dpll_state(struct intel_crtc *crtc, 13595 struct intel_crtc_state *old_crtc_state, 13596 struct intel_crtc_state *new_crtc_state) 13597 { 13598 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13599 13600 if (new_crtc_state->shared_dpll) 13601 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 13602 13603 if (old_crtc_state->shared_dpll && 13604 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 13605 unsigned int crtc_mask = drm_crtc_mask(&crtc->base); 13606 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 13607 13608 I915_STATE_WARN(pll->active_mask & crtc_mask, 13609 "pll active mismatch (didn't expect pipe %c in active mask)\n", 13610 pipe_name(drm_crtc_index(&crtc->base))); 13611 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, 13612 "pll enabled crtcs mismatch (found %x in enabled mask)\n", 13613 pipe_name(drm_crtc_index(&crtc->base))); 13614 } 13615 } 13616 13617 static void 13618 intel_modeset_verify_crtc(struct intel_crtc *crtc, 13619 struct intel_atomic_state *state, 13620 struct intel_crtc_state *old_crtc_state, 13621 struct intel_crtc_state *new_crtc_state) 13622 { 13623 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 13624 return; 13625 13626 verify_wm_state(crtc, new_crtc_state); 13627 verify_connector_state(state, crtc); 13628 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 13629 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 13630 } 13631 13632 static void 13633 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 13634 { 13635 int i; 13636 13637 for (i = 0; i < dev_priv->num_shared_dpll; i++) 13638 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL); 13639 } 13640 13641 static void 13642 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 13643 struct intel_atomic_state *state) 13644 { 13645 verify_encoder_state(dev_priv, state); 13646 verify_connector_state(state, NULL); 13647 verify_disabled_dpll_state(dev_priv); 13648 } 13649 13650 static void 13651 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 13652 { 13653 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 13654 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13655 const struct drm_display_mode *adjusted_mode = 13656 &crtc_state->base.adjusted_mode; 13657 13658 drm_calc_timestamping_constants(&crtc->base, adjusted_mode); 13659 13660 /* 13661 * The scanline counter increments at the leading edge of hsync. 13662 * 13663 * On most platforms it starts counting from vtotal-1 on the 13664 * first active line. That means the scanline counter value is 13665 * always one less than what we would expect. Ie. just after 13666 * start of vblank, which also occurs at start of hsync (on the 13667 * last active line), the scanline counter will read vblank_start-1. 13668 * 13669 * On gen2 the scanline counter starts counting from 1 instead 13670 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 13671 * to keep the value positive), instead of adding one. 13672 * 13673 * On HSW+ the behaviour of the scanline counter depends on the output 13674 * type. For DP ports it behaves like most other platforms, but on HDMI 13675 * there's an extra 1 line difference. So we need to add two instead of 13676 * one to the value. 13677 * 13678 * On VLV/CHV DSI the scanline counter would appear to increment 13679 * approx. 1/3 of a scanline before start of vblank. Unfortunately 13680 * that means we can't tell whether we're in vblank or not while 13681 * we're on that particular line. We must still set scanline_offset 13682 * to 1 so that the vblank timestamps come out correct when we query 13683 * the scanline counter from within the vblank interrupt handler. 13684 * However if queried just before the start of vblank we'll get an 13685 * answer that's slightly in the future. 13686 */ 13687 if (IS_GEN(dev_priv, 2)) { 13688 int vtotal; 13689 13690 vtotal = adjusted_mode->crtc_vtotal; 13691 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 13692 vtotal /= 2; 13693 13694 crtc->scanline_offset = vtotal - 1; 13695 } else if (HAS_DDI(dev_priv) && 13696 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 13697 crtc->scanline_offset = 2; 13698 } else { 13699 crtc->scanline_offset = 1; 13700 } 13701 } 13702 13703 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 13704 { 13705 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13706 struct intel_crtc_state *new_crtc_state; 13707 struct intel_crtc *crtc; 13708 int i; 13709 13710 if (!dev_priv->display.crtc_compute_clock) 13711 return; 13712 13713 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 13714 if (!needs_modeset(new_crtc_state)) 13715 continue; 13716 13717 intel_release_shared_dplls(state, crtc); 13718 } 13719 } 13720 13721 /* 13722 * This implements the workaround described in the "notes" section of the mode 13723 * set sequence documentation. When going from no pipes or single pipe to 13724 * multiple pipes, and planes are enabled after the pipe, we need to wait at 13725 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 13726 */ 13727 static int haswell_mode_set_planes_workaround(struct intel_atomic_state *state) 13728 { 13729 struct intel_crtc_state *crtc_state; 13730 struct intel_crtc *crtc; 13731 struct intel_crtc_state *first_crtc_state = NULL; 13732 struct intel_crtc_state *other_crtc_state = NULL; 13733 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 13734 int i; 13735 13736 /* look at all crtc's that are going to be enabled in during modeset */ 13737 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 13738 if (!crtc_state->base.active || 13739 !needs_modeset(crtc_state)) 13740 continue; 13741 13742 if (first_crtc_state) { 13743 other_crtc_state = crtc_state; 13744 break; 13745 } else { 13746 first_crtc_state = crtc_state; 13747 first_pipe = crtc->pipe; 13748 } 13749 } 13750 13751 /* No workaround needed? */ 13752 if (!first_crtc_state) 13753 return 0; 13754 13755 /* w/a possibly needed, check how many crtc's are already enabled. */ 13756 for_each_intel_crtc(state->base.dev, crtc) { 13757 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 13758 if (IS_ERR(crtc_state)) 13759 return PTR_ERR(crtc_state); 13760 13761 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 13762 13763 if (!crtc_state->base.active || 13764 needs_modeset(crtc_state)) 13765 continue; 13766 13767 /* 2 or more enabled crtcs means no need for w/a */ 13768 if (enabled_pipe != INVALID_PIPE) 13769 return 0; 13770 13771 enabled_pipe = crtc->pipe; 13772 } 13773 13774 if (enabled_pipe != INVALID_PIPE) 13775 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 13776 else if (other_crtc_state) 13777 other_crtc_state->hsw_workaround_pipe = first_pipe; 13778 13779 return 0; 13780 } 13781 13782 static int intel_modeset_checks(struct intel_atomic_state *state) 13783 { 13784 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13785 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 13786 struct intel_crtc *crtc; 13787 int ret, i; 13788 13789 /* keep the current setting */ 13790 if (!state->cdclk.force_min_cdclk_changed) 13791 state->cdclk.force_min_cdclk = dev_priv->cdclk.force_min_cdclk; 13792 13793 state->modeset = true; 13794 state->active_pipes = dev_priv->active_pipes; 13795 state->cdclk.logical = dev_priv->cdclk.logical; 13796 state->cdclk.actual = dev_priv->cdclk.actual; 13797 13798 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 13799 new_crtc_state, i) { 13800 if (new_crtc_state->base.active) 13801 state->active_pipes |= BIT(crtc->pipe); 13802 else 13803 state->active_pipes &= ~BIT(crtc->pipe); 13804 13805 if (old_crtc_state->base.active != new_crtc_state->base.active) 13806 state->active_pipe_changes |= BIT(crtc->pipe); 13807 } 13808 13809 if (state->active_pipe_changes) { 13810 ret = intel_atomic_lock_global_state(state); 13811 if (ret) 13812 return ret; 13813 } 13814 13815 ret = intel_modeset_calc_cdclk(state); 13816 if (ret) 13817 return ret; 13818 13819 intel_modeset_clear_plls(state); 13820 13821 if (IS_HASWELL(dev_priv)) 13822 return haswell_mode_set_planes_workaround(state); 13823 13824 return 0; 13825 } 13826 13827 /* 13828 * Handle calculation of various watermark data at the end of the atomic check 13829 * phase. The code here should be run after the per-crtc and per-plane 'check' 13830 * handlers to ensure that all derived state has been updated. 13831 */ 13832 static int calc_watermark_data(struct intel_atomic_state *state) 13833 { 13834 struct drm_device *dev = state->base.dev; 13835 struct drm_i915_private *dev_priv = to_i915(dev); 13836 13837 /* Is there platform-specific watermark information to calculate? */ 13838 if (dev_priv->display.compute_global_watermarks) 13839 return dev_priv->display.compute_global_watermarks(state); 13840 13841 return 0; 13842 } 13843 13844 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 13845 struct intel_crtc_state *new_crtc_state) 13846 { 13847 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 13848 return; 13849 13850 new_crtc_state->base.mode_changed = false; 13851 new_crtc_state->update_pipe = true; 13852 13853 /* 13854 * If we're not doing the full modeset we want to 13855 * keep the current M/N values as they may be 13856 * sufficiently different to the computed values 13857 * to cause problems. 13858 * 13859 * FIXME: should really copy more fuzzy state here 13860 */ 13861 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 13862 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 13863 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 13864 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 13865 } 13866 13867 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 13868 struct intel_crtc *crtc, 13869 u8 plane_ids_mask) 13870 { 13871 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13872 struct intel_plane *plane; 13873 13874 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 13875 struct intel_plane_state *plane_state; 13876 13877 if ((plane_ids_mask & BIT(plane->id)) == 0) 13878 continue; 13879 13880 plane_state = intel_atomic_get_plane_state(state, plane); 13881 if (IS_ERR(plane_state)) 13882 return PTR_ERR(plane_state); 13883 } 13884 13885 return 0; 13886 } 13887 13888 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 13889 { 13890 /* See {hsw,vlv,ivb}_plane_ratio() */ 13891 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 13892 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 13893 IS_IVYBRIDGE(dev_priv); 13894 } 13895 13896 static int intel_atomic_check_planes(struct intel_atomic_state *state, 13897 bool *need_modeset) 13898 { 13899 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13900 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 13901 struct intel_plane_state *plane_state; 13902 struct intel_plane *plane; 13903 struct intel_crtc *crtc; 13904 int i, ret; 13905 13906 ret = icl_add_linked_planes(state); 13907 if (ret) 13908 return ret; 13909 13910 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 13911 ret = intel_plane_atomic_check(state, plane); 13912 if (ret) { 13913 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] atomic driver check failed\n", 13914 plane->base.base.id, plane->base.name); 13915 return ret; 13916 } 13917 } 13918 13919 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 13920 new_crtc_state, i) { 13921 u8 old_active_planes, new_active_planes; 13922 13923 ret = icl_check_nv12_planes(new_crtc_state); 13924 if (ret) 13925 return ret; 13926 13927 /* 13928 * On some platforms the number of active planes affects 13929 * the planes' minimum cdclk calculation. Add such planes 13930 * to the state before we compute the minimum cdclk. 13931 */ 13932 if (!active_planes_affects_min_cdclk(dev_priv)) 13933 continue; 13934 13935 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 13936 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 13937 13938 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 13939 continue; 13940 13941 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 13942 if (ret) 13943 return ret; 13944 } 13945 13946 /* 13947 * active_planes bitmask has been updated, and potentially 13948 * affected planes are part of the state. We can now 13949 * compute the minimum cdclk for each plane. 13950 */ 13951 for_each_new_intel_plane_in_state(state, plane, plane_state, i) 13952 *need_modeset |= intel_plane_calc_min_cdclk(state, plane); 13953 13954 return 0; 13955 } 13956 13957 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 13958 { 13959 struct intel_crtc_state *crtc_state; 13960 struct intel_crtc *crtc; 13961 int i; 13962 13963 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 13964 int ret = intel_crtc_atomic_check(state, crtc); 13965 if (ret) { 13966 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] atomic driver check failed\n", 13967 crtc->base.base.id, crtc->base.name); 13968 return ret; 13969 } 13970 } 13971 13972 return 0; 13973 } 13974 13975 /** 13976 * intel_atomic_check - validate state object 13977 * @dev: drm device 13978 * @_state: state to validate 13979 */ 13980 static int intel_atomic_check(struct drm_device *dev, 13981 struct drm_atomic_state *_state) 13982 { 13983 struct drm_i915_private *dev_priv = to_i915(dev); 13984 struct intel_atomic_state *state = to_intel_atomic_state(_state); 13985 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 13986 struct intel_crtc *crtc; 13987 int ret, i; 13988 bool any_ms = false; 13989 13990 /* Catch I915_MODE_FLAG_INHERITED */ 13991 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 13992 new_crtc_state, i) { 13993 if (new_crtc_state->base.mode.private_flags != 13994 old_crtc_state->base.mode.private_flags) 13995 new_crtc_state->base.mode_changed = true; 13996 } 13997 13998 ret = drm_atomic_helper_check_modeset(dev, &state->base); 13999 if (ret) 14000 goto fail; 14001 14002 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14003 new_crtc_state, i) { 14004 if (!needs_modeset(new_crtc_state)) 14005 continue; 14006 14007 if (!new_crtc_state->base.enable) { 14008 any_ms = true; 14009 continue; 14010 } 14011 14012 ret = intel_modeset_pipe_config(new_crtc_state); 14013 if (ret) 14014 goto fail; 14015 14016 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 14017 14018 if (needs_modeset(new_crtc_state)) 14019 any_ms = true; 14020 } 14021 14022 if (any_ms && !check_digital_port_conflicts(state)) { 14023 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n"); 14024 ret = EINVAL; 14025 goto fail; 14026 } 14027 14028 ret = drm_dp_mst_atomic_check(&state->base); 14029 if (ret) 14030 goto fail; 14031 14032 any_ms |= state->cdclk.force_min_cdclk_changed; 14033 14034 ret = intel_atomic_check_planes(state, &any_ms); 14035 if (ret) 14036 goto fail; 14037 14038 if (any_ms) { 14039 ret = intel_modeset_checks(state); 14040 if (ret) 14041 goto fail; 14042 } else { 14043 state->cdclk.logical = dev_priv->cdclk.logical; 14044 } 14045 14046 ret = intel_atomic_check_crtcs(state); 14047 if (ret) 14048 goto fail; 14049 14050 intel_fbc_choose_crtc(dev_priv, state); 14051 ret = calc_watermark_data(state); 14052 if (ret) 14053 goto fail; 14054 14055 ret = intel_bw_atomic_check(state); 14056 if (ret) 14057 goto fail; 14058 14059 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14060 new_crtc_state, i) { 14061 if (!needs_modeset(new_crtc_state) && 14062 !new_crtc_state->update_pipe) 14063 continue; 14064 14065 intel_dump_pipe_config(new_crtc_state, state, 14066 needs_modeset(new_crtc_state) ? 14067 "[modeset]" : "[fastset]"); 14068 } 14069 14070 return 0; 14071 14072 fail: 14073 if (ret == -EDEADLK) 14074 return ret; 14075 14076 /* 14077 * FIXME would probably be nice to know which crtc specifically 14078 * caused the failure, in cases where we can pinpoint it. 14079 */ 14080 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14081 new_crtc_state, i) 14082 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 14083 14084 return ret; 14085 } 14086 14087 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 14088 { 14089 return drm_atomic_helper_prepare_planes(state->base.dev, 14090 &state->base); 14091 } 14092 14093 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 14094 { 14095 struct drm_device *dev = crtc->base.dev; 14096 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 14097 14098 if (!vblank->max_vblank_count) 14099 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 14100 14101 return crtc->base.funcs->get_vblank_counter(&crtc->base); 14102 } 14103 14104 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 14105 struct intel_crtc_state *crtc_state) 14106 { 14107 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14108 14109 if (!IS_GEN(dev_priv, 2)) 14110 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 14111 14112 if (crtc_state->has_pch_encoder) { 14113 enum pipe pch_transcoder = 14114 intel_crtc_pch_transcoder(crtc); 14115 14116 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 14117 } 14118 } 14119 14120 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 14121 const struct intel_crtc_state *new_crtc_state) 14122 { 14123 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 14124 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14125 14126 /* 14127 * Update pipe size and adjust fitter if needed: the reason for this is 14128 * that in compute_mode_changes we check the native mode (not the pfit 14129 * mode) to see if we can flip rather than do a full mode set. In the 14130 * fastboot case, we'll flip, but if we don't update the pipesrc and 14131 * pfit state, we'll end up with a big fb scanned out into the wrong 14132 * sized surface. 14133 */ 14134 intel_set_pipe_src_size(new_crtc_state); 14135 14136 /* on skylake this is done by detaching scalers */ 14137 if (INTEL_GEN(dev_priv) >= 9) { 14138 skl_detach_scalers(new_crtc_state); 14139 14140 if (new_crtc_state->pch_pfit.enabled) 14141 skylake_pfit_enable(new_crtc_state); 14142 } else if (HAS_PCH_SPLIT(dev_priv)) { 14143 if (new_crtc_state->pch_pfit.enabled) 14144 ironlake_pfit_enable(new_crtc_state); 14145 else if (old_crtc_state->pch_pfit.enabled) 14146 ironlake_pfit_disable(old_crtc_state); 14147 } 14148 14149 if (INTEL_GEN(dev_priv) >= 11) 14150 icl_set_pipe_chicken(crtc); 14151 } 14152 14153 static void commit_pipe_config(struct intel_atomic_state *state, 14154 struct intel_crtc_state *old_crtc_state, 14155 struct intel_crtc_state *new_crtc_state) 14156 { 14157 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14158 bool modeset = needs_modeset(new_crtc_state); 14159 14160 /* 14161 * During modesets pipe configuration was programmed as the 14162 * CRTC was enabled. 14163 */ 14164 if (!modeset) { 14165 if (new_crtc_state->base.color_mgmt_changed || 14166 new_crtc_state->update_pipe) 14167 intel_color_commit(new_crtc_state); 14168 14169 if (INTEL_GEN(dev_priv) >= 9) 14170 skl_detach_scalers(new_crtc_state); 14171 14172 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 14173 bdw_set_pipemisc(new_crtc_state); 14174 14175 if (new_crtc_state->update_pipe) 14176 intel_pipe_fastset(old_crtc_state, new_crtc_state); 14177 } 14178 14179 if (dev_priv->display.atomic_update_watermarks) 14180 dev_priv->display.atomic_update_watermarks(state, 14181 new_crtc_state); 14182 } 14183 14184 static void intel_update_crtc(struct intel_crtc *crtc, 14185 struct intel_atomic_state *state, 14186 struct intel_crtc_state *old_crtc_state, 14187 struct intel_crtc_state *new_crtc_state) 14188 { 14189 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14190 bool modeset = needs_modeset(new_crtc_state); 14191 struct intel_plane_state *new_plane_state = 14192 intel_atomic_get_new_plane_state(state, 14193 to_intel_plane(crtc->base.primary)); 14194 14195 if (modeset) { 14196 intel_crtc_update_active_timings(new_crtc_state); 14197 14198 dev_priv->display.crtc_enable(new_crtc_state, state); 14199 14200 /* vblanks work again, re-enable pipe CRC. */ 14201 intel_crtc_enable_pipe_crc(crtc); 14202 } else { 14203 if (new_crtc_state->preload_luts && 14204 (new_crtc_state->base.color_mgmt_changed || 14205 new_crtc_state->update_pipe)) 14206 intel_color_load_luts(new_crtc_state); 14207 14208 intel_pre_plane_update(old_crtc_state, new_crtc_state); 14209 14210 if (new_crtc_state->update_pipe) 14211 intel_encoders_update_pipe(crtc, new_crtc_state, state); 14212 } 14213 14214 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 14215 intel_fbc_disable(crtc); 14216 else if (new_plane_state) 14217 intel_fbc_enable(crtc, new_crtc_state, new_plane_state); 14218 14219 /* Perform vblank evasion around commit operation */ 14220 intel_pipe_update_start(new_crtc_state); 14221 14222 commit_pipe_config(state, old_crtc_state, new_crtc_state); 14223 14224 if (INTEL_GEN(dev_priv) >= 9) 14225 skl_update_planes_on_crtc(state, crtc); 14226 else 14227 i9xx_update_planes_on_crtc(state, crtc); 14228 14229 intel_pipe_update_end(new_crtc_state); 14230 14231 /* 14232 * We usually enable FIFO underrun interrupts as part of the 14233 * CRTC enable sequence during modesets. But when we inherit a 14234 * valid pipe configuration from the BIOS we need to take care 14235 * of enabling them on the CRTC's first fastset. 14236 */ 14237 if (new_crtc_state->update_pipe && !modeset && 14238 old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED) 14239 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 14240 } 14241 14242 static struct intel_crtc *intel_get_slave_crtc(const struct intel_crtc_state *new_crtc_state) 14243 { 14244 struct drm_i915_private *dev_priv = to_i915(new_crtc_state->base.crtc->dev); 14245 enum transcoder slave_transcoder; 14246 14247 WARN_ON(!is_power_of_2(new_crtc_state->sync_mode_slaves_mask)); 14248 14249 slave_transcoder = ffs(new_crtc_state->sync_mode_slaves_mask) - 1; 14250 return intel_get_crtc_for_pipe(dev_priv, 14251 (enum pipe)slave_transcoder); 14252 } 14253 14254 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 14255 struct intel_crtc_state *old_crtc_state, 14256 struct intel_crtc_state *new_crtc_state, 14257 struct intel_crtc *crtc) 14258 { 14259 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14260 14261 intel_crtc_disable_planes(state, crtc); 14262 14263 /* 14264 * We need to disable pipe CRC before disabling the pipe, 14265 * or we race against vblank off. 14266 */ 14267 intel_crtc_disable_pipe_crc(crtc); 14268 14269 dev_priv->display.crtc_disable(old_crtc_state, state); 14270 crtc->active = false; 14271 intel_fbc_disable(crtc); 14272 intel_disable_shared_dpll(old_crtc_state); 14273 14274 /* 14275 * Underruns don't always raise interrupts, 14276 * so check manually. 14277 */ 14278 intel_check_cpu_fifo_underruns(dev_priv); 14279 intel_check_pch_fifo_underruns(dev_priv); 14280 14281 /* FIXME unify this for all platforms */ 14282 if (!new_crtc_state->base.active && 14283 !HAS_GMCH(dev_priv) && 14284 dev_priv->display.initial_watermarks) 14285 dev_priv->display.initial_watermarks(state, 14286 new_crtc_state); 14287 } 14288 14289 static void intel_trans_port_sync_modeset_disables(struct intel_atomic_state *state, 14290 struct intel_crtc *crtc, 14291 struct intel_crtc_state *old_crtc_state, 14292 struct intel_crtc_state *new_crtc_state) 14293 { 14294 struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state); 14295 struct intel_crtc_state *new_slave_crtc_state = 14296 intel_atomic_get_new_crtc_state(state, slave_crtc); 14297 struct intel_crtc_state *old_slave_crtc_state = 14298 intel_atomic_get_old_crtc_state(state, slave_crtc); 14299 14300 WARN_ON(!slave_crtc || !new_slave_crtc_state || 14301 !old_slave_crtc_state); 14302 14303 /* Disable Slave first */ 14304 intel_pre_plane_update(old_slave_crtc_state, new_slave_crtc_state); 14305 if (old_slave_crtc_state->base.active) 14306 intel_old_crtc_state_disables(state, 14307 old_slave_crtc_state, 14308 new_slave_crtc_state, 14309 slave_crtc); 14310 14311 /* Disable Master */ 14312 intel_pre_plane_update(old_crtc_state, new_crtc_state); 14313 if (old_crtc_state->base.active) 14314 intel_old_crtc_state_disables(state, 14315 old_crtc_state, 14316 new_crtc_state, 14317 crtc); 14318 } 14319 14320 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 14321 { 14322 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 14323 struct intel_crtc *crtc; 14324 int i; 14325 14326 /* 14327 * Disable CRTC/pipes in reverse order because some features(MST in 14328 * TGL+) requires master and slave relationship between pipes, so it 14329 * should always pick the lowest pipe as master as it will be enabled 14330 * first and disable in the reverse order so the master will be the 14331 * last one to be disabled. 14332 */ 14333 for_each_oldnew_intel_crtc_in_state_reverse(state, crtc, old_crtc_state, 14334 new_crtc_state, i) { 14335 if (!needs_modeset(new_crtc_state)) 14336 continue; 14337 14338 /* In case of Transcoder port Sync master slave CRTCs can be 14339 * assigned in any order and we need to make sure that 14340 * slave CRTCs are disabled first and then master CRTC since 14341 * Slave vblanks are masked till Master Vblanks. 14342 */ 14343 if (is_trans_port_sync_mode(new_crtc_state)) { 14344 if (is_trans_port_sync_master(new_crtc_state)) 14345 intel_trans_port_sync_modeset_disables(state, 14346 crtc, 14347 old_crtc_state, 14348 new_crtc_state); 14349 else 14350 continue; 14351 } else { 14352 intel_pre_plane_update(old_crtc_state, new_crtc_state); 14353 14354 if (old_crtc_state->base.active) 14355 intel_old_crtc_state_disables(state, 14356 old_crtc_state, 14357 new_crtc_state, 14358 crtc); 14359 } 14360 } 14361 } 14362 14363 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 14364 { 14365 struct intel_crtc *crtc; 14366 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14367 int i; 14368 14369 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 14370 if (!new_crtc_state->base.active) 14371 continue; 14372 14373 intel_update_crtc(crtc, state, old_crtc_state, 14374 new_crtc_state); 14375 } 14376 } 14377 14378 static void intel_crtc_enable_trans_port_sync(struct intel_crtc *crtc, 14379 struct intel_atomic_state *state, 14380 struct intel_crtc_state *new_crtc_state) 14381 { 14382 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14383 14384 intel_crtc_update_active_timings(new_crtc_state); 14385 dev_priv->display.crtc_enable(new_crtc_state, state); 14386 intel_crtc_enable_pipe_crc(crtc); 14387 } 14388 14389 static void intel_set_dp_tp_ctl_normal(struct intel_crtc *crtc, 14390 struct intel_atomic_state *state) 14391 { 14392 struct drm_connector *uninitialized_var(conn); 14393 struct drm_connector_state *conn_state; 14394 struct intel_dp *intel_dp; 14395 int i; 14396 14397 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 14398 if (conn_state->crtc == &crtc->base) 14399 break; 14400 } 14401 intel_dp = enc_to_intel_dp(&intel_attached_encoder(conn)->base); 14402 intel_dp_stop_link_train(intel_dp); 14403 } 14404 14405 static void intel_post_crtc_enable_updates(struct intel_crtc *crtc, 14406 struct intel_atomic_state *state) 14407 { 14408 struct intel_crtc_state *new_crtc_state = 14409 intel_atomic_get_new_crtc_state(state, crtc); 14410 struct intel_crtc_state *old_crtc_state = 14411 intel_atomic_get_old_crtc_state(state, crtc); 14412 struct intel_plane_state *new_plane_state = 14413 intel_atomic_get_new_plane_state(state, 14414 to_intel_plane(crtc->base.primary)); 14415 bool modeset = needs_modeset(new_crtc_state); 14416 14417 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 14418 intel_fbc_disable(crtc); 14419 else if (new_plane_state) 14420 intel_fbc_enable(crtc, new_crtc_state, new_plane_state); 14421 14422 /* Perform vblank evasion around commit operation */ 14423 intel_pipe_update_start(new_crtc_state); 14424 commit_pipe_config(state, old_crtc_state, new_crtc_state); 14425 skl_update_planes_on_crtc(state, crtc); 14426 intel_pipe_update_end(new_crtc_state); 14427 14428 /* 14429 * We usually enable FIFO underrun interrupts as part of the 14430 * CRTC enable sequence during modesets. But when we inherit a 14431 * valid pipe configuration from the BIOS we need to take care 14432 * of enabling them on the CRTC's first fastset. 14433 */ 14434 if (new_crtc_state->update_pipe && !modeset && 14435 old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED) 14436 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 14437 } 14438 14439 static void intel_update_trans_port_sync_crtcs(struct intel_crtc *crtc, 14440 struct intel_atomic_state *state, 14441 struct intel_crtc_state *old_crtc_state, 14442 struct intel_crtc_state *new_crtc_state) 14443 { 14444 struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state); 14445 struct intel_crtc_state *new_slave_crtc_state = 14446 intel_atomic_get_new_crtc_state(state, slave_crtc); 14447 struct intel_crtc_state *old_slave_crtc_state = 14448 intel_atomic_get_old_crtc_state(state, slave_crtc); 14449 14450 WARN_ON(!slave_crtc || !new_slave_crtc_state || 14451 !old_slave_crtc_state); 14452 14453 DRM_DEBUG_KMS("Updating Transcoder Port Sync Master CRTC = %d %s and Slave CRTC %d %s\n", 14454 crtc->base.base.id, crtc->base.name, slave_crtc->base.base.id, 14455 slave_crtc->base.name); 14456 14457 /* Enable seq for slave with with DP_TP_CTL left Idle until the 14458 * master is ready 14459 */ 14460 intel_crtc_enable_trans_port_sync(slave_crtc, 14461 state, 14462 new_slave_crtc_state); 14463 14464 /* Enable seq for master with with DP_TP_CTL left Idle */ 14465 intel_crtc_enable_trans_port_sync(crtc, 14466 state, 14467 new_crtc_state); 14468 14469 /* Set Slave's DP_TP_CTL to Normal */ 14470 intel_set_dp_tp_ctl_normal(slave_crtc, 14471 state); 14472 14473 /* Set Master's DP_TP_CTL To Normal */ 14474 usleep_range(200, 400); 14475 intel_set_dp_tp_ctl_normal(crtc, 14476 state); 14477 14478 /* Now do the post crtc enable for all master and slaves */ 14479 intel_post_crtc_enable_updates(slave_crtc, 14480 state); 14481 intel_post_crtc_enable_updates(crtc, 14482 state); 14483 } 14484 14485 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 14486 { 14487 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14488 struct intel_crtc *crtc; 14489 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14490 unsigned int updated = 0; 14491 bool progress; 14492 int i; 14493 u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices; 14494 u8 required_slices = state->wm_results.ddb.enabled_slices; 14495 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 14496 14497 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) 14498 /* ignore allocations for crtc's that have been turned off. */ 14499 if (new_crtc_state->base.active) 14500 entries[i] = old_crtc_state->wm.skl.ddb; 14501 14502 /* If 2nd DBuf slice required, enable it here */ 14503 if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices) 14504 icl_dbuf_slices_update(dev_priv, required_slices); 14505 14506 /* 14507 * Whenever the number of active pipes changes, we need to make sure we 14508 * update the pipes in the right order so that their ddb allocations 14509 * never overlap with eachother inbetween CRTC updates. Otherwise we'll 14510 * cause pipe underruns and other bad stuff. 14511 */ 14512 do { 14513 progress = false; 14514 14515 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 14516 enum pipe pipe = crtc->pipe; 14517 bool vbl_wait = false; 14518 bool modeset = needs_modeset(new_crtc_state); 14519 14520 if (updated & BIT(crtc->pipe) || !new_crtc_state->base.active) 14521 continue; 14522 14523 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 14524 entries, 14525 INTEL_NUM_PIPES(dev_priv), i)) 14526 continue; 14527 14528 updated |= BIT(pipe); 14529 entries[i] = new_crtc_state->wm.skl.ddb; 14530 14531 /* 14532 * If this is an already active pipe, it's DDB changed, 14533 * and this isn't the last pipe that needs updating 14534 * then we need to wait for a vblank to pass for the 14535 * new ddb allocation to take effect. 14536 */ 14537 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 14538 &old_crtc_state->wm.skl.ddb) && 14539 !modeset && 14540 state->wm_results.dirty_pipes != updated) 14541 vbl_wait = true; 14542 14543 if (modeset && is_trans_port_sync_mode(new_crtc_state)) { 14544 if (is_trans_port_sync_master(new_crtc_state)) 14545 intel_update_trans_port_sync_crtcs(crtc, 14546 state, 14547 old_crtc_state, 14548 new_crtc_state); 14549 else 14550 continue; 14551 } else { 14552 intel_update_crtc(crtc, state, old_crtc_state, 14553 new_crtc_state); 14554 } 14555 14556 if (vbl_wait) 14557 intel_wait_for_vblank(dev_priv, pipe); 14558 14559 progress = true; 14560 } 14561 } while (progress); 14562 14563 /* If 2nd DBuf slice is no more required disable it */ 14564 if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices) 14565 icl_dbuf_slices_update(dev_priv, required_slices); 14566 } 14567 14568 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 14569 { 14570 struct intel_atomic_state *state, *next; 14571 struct llist_node *freed; 14572 14573 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 14574 llist_for_each_entry_safe(state, next, freed, freed) 14575 drm_atomic_state_put(&state->base); 14576 } 14577 14578 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 14579 { 14580 struct drm_i915_private *dev_priv = 14581 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 14582 14583 intel_atomic_helper_free_state(dev_priv); 14584 } 14585 14586 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 14587 { 14588 struct wait_queue_entry wait_fence, wait_reset; 14589 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 14590 14591 init_wait_entry(&wait_fence, 0); 14592 init_wait_entry(&wait_reset, 0); 14593 for (;;) { 14594 prepare_to_wait(&intel_state->commit_ready.wait, 14595 &wait_fence, TASK_UNINTERRUPTIBLE); 14596 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 14597 I915_RESET_MODESET), 14598 &wait_reset, TASK_UNINTERRUPTIBLE); 14599 14600 14601 if (i915_sw_fence_done(&intel_state->commit_ready) || 14602 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 14603 break; 14604 14605 schedule(); 14606 } 14607 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 14608 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 14609 I915_RESET_MODESET), 14610 &wait_reset); 14611 } 14612 14613 static void intel_atomic_cleanup_work(struct work_struct *work) 14614 { 14615 struct drm_atomic_state *state = 14616 container_of(work, struct drm_atomic_state, commit_work); 14617 struct drm_i915_private *i915 = to_i915(state->dev); 14618 14619 drm_atomic_helper_cleanup_planes(&i915->drm, state); 14620 drm_atomic_helper_commit_cleanup_done(state); 14621 drm_atomic_state_put(state); 14622 14623 intel_atomic_helper_free_state(i915); 14624 } 14625 14626 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 14627 { 14628 struct drm_device *dev = state->base.dev; 14629 struct drm_i915_private *dev_priv = to_i915(dev); 14630 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 14631 struct intel_crtc *crtc; 14632 u64 put_domains[I915_MAX_PIPES] = {}; 14633 intel_wakeref_t wakeref = 0; 14634 int i; 14635 14636 intel_atomic_commit_fence_wait(state); 14637 14638 drm_atomic_helper_wait_for_dependencies(&state->base); 14639 14640 if (state->modeset) 14641 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 14642 14643 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14644 new_crtc_state, i) { 14645 if (needs_modeset(new_crtc_state) || 14646 new_crtc_state->update_pipe) { 14647 14648 put_domains[crtc->pipe] = 14649 modeset_get_crtc_power_domains(new_crtc_state); 14650 } 14651 } 14652 14653 intel_commit_modeset_disables(state); 14654 14655 /* FIXME: Eventually get rid of our crtc->config pointer */ 14656 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 14657 crtc->config = new_crtc_state; 14658 14659 if (state->modeset) { 14660 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 14661 14662 intel_set_cdclk_pre_plane_update(dev_priv, 14663 &state->cdclk.actual, 14664 &dev_priv->cdclk.actual, 14665 state->cdclk.pipe); 14666 14667 /* 14668 * SKL workaround: bspec recommends we disable the SAGV when we 14669 * have more then one pipe enabled 14670 */ 14671 if (!intel_can_enable_sagv(state)) 14672 intel_disable_sagv(dev_priv); 14673 14674 intel_modeset_verify_disabled(dev_priv, state); 14675 } 14676 14677 /* Complete the events for pipes that have now been disabled */ 14678 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14679 bool modeset = needs_modeset(new_crtc_state); 14680 14681 /* Complete events for now disable pipes here. */ 14682 if (modeset && !new_crtc_state->base.active && new_crtc_state->base.event) { 14683 spin_lock_irq(&dev->event_lock); 14684 drm_crtc_send_vblank_event(&crtc->base, new_crtc_state->base.event); 14685 spin_unlock_irq(&dev->event_lock); 14686 14687 new_crtc_state->base.event = NULL; 14688 } 14689 } 14690 14691 if (state->modeset) 14692 intel_encoders_update_prepare(state); 14693 14694 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 14695 dev_priv->display.commit_modeset_enables(state); 14696 14697 if (state->modeset) { 14698 intel_encoders_update_complete(state); 14699 14700 intel_set_cdclk_post_plane_update(dev_priv, 14701 &state->cdclk.actual, 14702 &dev_priv->cdclk.actual, 14703 state->cdclk.pipe); 14704 } 14705 14706 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 14707 * already, but still need the state for the delayed optimization. To 14708 * fix this: 14709 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 14710 * - schedule that vblank worker _before_ calling hw_done 14711 * - at the start of commit_tail, cancel it _synchrously 14712 * - switch over to the vblank wait helper in the core after that since 14713 * we don't need out special handling any more. 14714 */ 14715 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 14716 14717 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14718 if (new_crtc_state->base.active && 14719 !needs_modeset(new_crtc_state) && 14720 !new_crtc_state->preload_luts && 14721 (new_crtc_state->base.color_mgmt_changed || 14722 new_crtc_state->update_pipe)) 14723 intel_color_load_luts(new_crtc_state); 14724 } 14725 14726 /* 14727 * Now that the vblank has passed, we can go ahead and program the 14728 * optimal watermarks on platforms that need two-step watermark 14729 * programming. 14730 * 14731 * TODO: Move this (and other cleanup) to an async worker eventually. 14732 */ 14733 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14734 if (dev_priv->display.optimize_watermarks) 14735 dev_priv->display.optimize_watermarks(state, 14736 new_crtc_state); 14737 } 14738 14739 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 14740 intel_post_plane_update(old_crtc_state); 14741 14742 if (put_domains[i]) 14743 modeset_put_power_domains(dev_priv, put_domains[i]); 14744 14745 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 14746 } 14747 14748 if (state->modeset) 14749 intel_verify_planes(state); 14750 14751 if (state->modeset && intel_can_enable_sagv(state)) 14752 intel_enable_sagv(dev_priv); 14753 14754 drm_atomic_helper_commit_hw_done(&state->base); 14755 14756 if (state->modeset) { 14757 /* As one of the primary mmio accessors, KMS has a high 14758 * likelihood of triggering bugs in unclaimed access. After we 14759 * finish modesetting, see if an error has been flagged, and if 14760 * so enable debugging for the next modeset - and hope we catch 14761 * the culprit. 14762 */ 14763 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 14764 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 14765 } 14766 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 14767 14768 /* 14769 * Defer the cleanup of the old state to a separate worker to not 14770 * impede the current task (userspace for blocking modesets) that 14771 * are executed inline. For out-of-line asynchronous modesets/flips, 14772 * deferring to a new worker seems overkill, but we would place a 14773 * schedule point (cond_resched()) here anyway to keep latencies 14774 * down. 14775 */ 14776 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 14777 queue_work(system_highpri_wq, &state->base.commit_work); 14778 } 14779 14780 static void intel_atomic_commit_work(struct work_struct *work) 14781 { 14782 struct intel_atomic_state *state = 14783 container_of(work, struct intel_atomic_state, base.commit_work); 14784 14785 intel_atomic_commit_tail(state); 14786 } 14787 14788 static int __i915_sw_fence_call 14789 intel_atomic_commit_ready(struct i915_sw_fence *fence, 14790 enum i915_sw_fence_notify notify) 14791 { 14792 struct intel_atomic_state *state = 14793 container_of(fence, struct intel_atomic_state, commit_ready); 14794 14795 switch (notify) { 14796 case FENCE_COMPLETE: 14797 /* we do blocking waits in the worker, nothing to do here */ 14798 break; 14799 case FENCE_FREE: 14800 { 14801 struct intel_atomic_helper *helper = 14802 &to_i915(state->base.dev)->atomic_helper; 14803 14804 if (llist_add(&state->freed, &helper->free_list)) 14805 schedule_work(&helper->free_work); 14806 break; 14807 } 14808 } 14809 14810 return NOTIFY_DONE; 14811 } 14812 14813 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 14814 { 14815 struct intel_plane_state *old_plane_state, *new_plane_state; 14816 struct intel_plane *plane; 14817 int i; 14818 14819 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 14820 new_plane_state, i) 14821 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->base.fb), 14822 to_intel_frontbuffer(new_plane_state->base.fb), 14823 plane->frontbuffer_bit); 14824 } 14825 14826 static void assert_global_state_locked(struct drm_i915_private *dev_priv) 14827 { 14828 struct intel_crtc *crtc; 14829 14830 for_each_intel_crtc(&dev_priv->drm, crtc) 14831 drm_modeset_lock_assert_held(&crtc->base.mutex); 14832 } 14833 14834 static int intel_atomic_commit(struct drm_device *dev, 14835 struct drm_atomic_state *_state, 14836 bool nonblock) 14837 { 14838 struct intel_atomic_state *state = to_intel_atomic_state(_state); 14839 struct drm_i915_private *dev_priv = to_i915(dev); 14840 int ret = 0; 14841 14842 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 14843 14844 drm_atomic_state_get(&state->base); 14845 i915_sw_fence_init(&state->commit_ready, 14846 intel_atomic_commit_ready); 14847 14848 /* 14849 * The intel_legacy_cursor_update() fast path takes care 14850 * of avoiding the vblank waits for simple cursor 14851 * movement and flips. For cursor on/off and size changes, 14852 * we want to perform the vblank waits so that watermark 14853 * updates happen during the correct frames. Gen9+ have 14854 * double buffered watermarks and so shouldn't need this. 14855 * 14856 * Unset state->legacy_cursor_update before the call to 14857 * drm_atomic_helper_setup_commit() because otherwise 14858 * drm_atomic_helper_wait_for_flip_done() is a noop and 14859 * we get FIFO underruns because we didn't wait 14860 * for vblank. 14861 * 14862 * FIXME doing watermarks and fb cleanup from a vblank worker 14863 * (assuming we had any) would solve these problems. 14864 */ 14865 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { 14866 struct intel_crtc_state *new_crtc_state; 14867 struct intel_crtc *crtc; 14868 int i; 14869 14870 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 14871 if (new_crtc_state->wm.need_postvbl_update || 14872 new_crtc_state->update_wm_post) 14873 state->base.legacy_cursor_update = false; 14874 } 14875 14876 ret = intel_atomic_prepare_commit(state); 14877 if (ret) { 14878 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret); 14879 i915_sw_fence_commit(&state->commit_ready); 14880 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 14881 return ret; 14882 } 14883 14884 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 14885 if (!ret) 14886 ret = drm_atomic_helper_swap_state(&state->base, true); 14887 14888 if (ret) { 14889 i915_sw_fence_commit(&state->commit_ready); 14890 14891 drm_atomic_helper_cleanup_planes(dev, &state->base); 14892 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 14893 return ret; 14894 } 14895 dev_priv->wm.distrust_bios_wm = false; 14896 intel_shared_dpll_swap_state(state); 14897 intel_atomic_track_fbs(state); 14898 14899 if (state->global_state_changed) { 14900 assert_global_state_locked(dev_priv); 14901 14902 memcpy(dev_priv->min_cdclk, state->min_cdclk, 14903 sizeof(state->min_cdclk)); 14904 memcpy(dev_priv->min_voltage_level, state->min_voltage_level, 14905 sizeof(state->min_voltage_level)); 14906 dev_priv->active_pipes = state->active_pipes; 14907 dev_priv->cdclk.force_min_cdclk = state->cdclk.force_min_cdclk; 14908 14909 intel_cdclk_swap_state(state); 14910 } 14911 14912 drm_atomic_state_get(&state->base); 14913 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 14914 14915 i915_sw_fence_commit(&state->commit_ready); 14916 if (nonblock && state->modeset) { 14917 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 14918 } else if (nonblock) { 14919 queue_work(dev_priv->flip_wq, &state->base.commit_work); 14920 } else { 14921 if (state->modeset) 14922 flush_workqueue(dev_priv->modeset_wq); 14923 intel_atomic_commit_tail(state); 14924 } 14925 14926 return 0; 14927 } 14928 14929 struct wait_rps_boost { 14930 struct wait_queue_entry wait; 14931 14932 struct drm_crtc *crtc; 14933 struct i915_request *request; 14934 }; 14935 14936 static int do_rps_boost(struct wait_queue_entry *_wait, 14937 unsigned mode, int sync, void *key) 14938 { 14939 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 14940 struct i915_request *rq = wait->request; 14941 14942 /* 14943 * If we missed the vblank, but the request is already running it 14944 * is reasonable to assume that it will complete before the next 14945 * vblank without our intervention, so leave RPS alone. 14946 */ 14947 if (!i915_request_started(rq)) 14948 intel_rps_boost(rq); 14949 i915_request_put(rq); 14950 14951 drm_crtc_vblank_put(wait->crtc); 14952 14953 list_del(&wait->wait.entry); 14954 kfree(wait); 14955 return 1; 14956 } 14957 14958 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 14959 struct dma_fence *fence) 14960 { 14961 struct wait_rps_boost *wait; 14962 14963 if (!dma_fence_is_i915(fence)) 14964 return; 14965 14966 if (INTEL_GEN(to_i915(crtc->dev)) < 6) 14967 return; 14968 14969 if (drm_crtc_vblank_get(crtc)) 14970 return; 14971 14972 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 14973 if (!wait) { 14974 drm_crtc_vblank_put(crtc); 14975 return; 14976 } 14977 14978 wait->request = to_request(dma_fence_get(fence)); 14979 wait->crtc = crtc; 14980 14981 wait->wait.func = do_rps_boost; 14982 wait->wait.flags = 0; 14983 14984 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 14985 } 14986 14987 static int intel_plane_pin_fb(struct intel_plane_state *plane_state) 14988 { 14989 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 14990 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 14991 struct drm_framebuffer *fb = plane_state->base.fb; 14992 struct i915_vma *vma; 14993 14994 if (plane->id == PLANE_CURSOR && 14995 INTEL_INFO(dev_priv)->display.cursor_needs_physical) { 14996 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 14997 const int align = intel_cursor_alignment(dev_priv); 14998 int err; 14999 15000 err = i915_gem_object_attach_phys(obj, align); 15001 if (err) 15002 return err; 15003 } 15004 15005 vma = intel_pin_and_fence_fb_obj(fb, 15006 &plane_state->view, 15007 intel_plane_uses_fence(plane_state), 15008 &plane_state->flags); 15009 if (IS_ERR(vma)) 15010 return PTR_ERR(vma); 15011 15012 plane_state->vma = vma; 15013 15014 return 0; 15015 } 15016 15017 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 15018 { 15019 struct i915_vma *vma; 15020 15021 vma = fetch_and_zero(&old_plane_state->vma); 15022 if (vma) 15023 intel_unpin_fb_vma(vma, old_plane_state->flags); 15024 } 15025 15026 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) 15027 { 15028 struct i915_sched_attr attr = { 15029 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY), 15030 }; 15031 15032 i915_gem_object_wait_priority(obj, 0, &attr); 15033 } 15034 15035 /** 15036 * intel_prepare_plane_fb - Prepare fb for usage on plane 15037 * @plane: drm plane to prepare for 15038 * @_new_plane_state: the plane state being prepared 15039 * 15040 * Prepares a framebuffer for usage on a display plane. Generally this 15041 * involves pinning the underlying object and updating the frontbuffer tracking 15042 * bits. Some older platforms need special physical address handling for 15043 * cursor planes. 15044 * 15045 * Returns 0 on success, negative error code on failure. 15046 */ 15047 int 15048 intel_prepare_plane_fb(struct drm_plane *plane, 15049 struct drm_plane_state *_new_plane_state) 15050 { 15051 struct intel_plane_state *new_plane_state = 15052 to_intel_plane_state(_new_plane_state); 15053 struct intel_atomic_state *intel_state = 15054 to_intel_atomic_state(new_plane_state->base.state); 15055 struct drm_i915_private *dev_priv = to_i915(plane->dev); 15056 struct drm_framebuffer *fb = new_plane_state->base.fb; 15057 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 15058 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb); 15059 int ret; 15060 15061 if (old_obj) { 15062 struct intel_crtc_state *crtc_state = 15063 intel_atomic_get_new_crtc_state(intel_state, 15064 to_intel_crtc(plane->state->crtc)); 15065 15066 /* Big Hammer, we also need to ensure that any pending 15067 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 15068 * current scanout is retired before unpinning the old 15069 * framebuffer. Note that we rely on userspace rendering 15070 * into the buffer attached to the pipe they are waiting 15071 * on. If not, userspace generates a GPU hang with IPEHR 15072 * point to the MI_WAIT_FOR_EVENT. 15073 * 15074 * This should only fail upon a hung GPU, in which case we 15075 * can safely continue. 15076 */ 15077 if (needs_modeset(crtc_state)) { 15078 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready, 15079 old_obj->base.resv, NULL, 15080 false, 0, 15081 GFP_KERNEL); 15082 if (ret < 0) 15083 return ret; 15084 } 15085 } 15086 15087 if (new_plane_state->base.fence) { /* explicit fencing */ 15088 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready, 15089 new_plane_state->base.fence, 15090 I915_FENCE_TIMEOUT, 15091 GFP_KERNEL); 15092 if (ret < 0) 15093 return ret; 15094 } 15095 15096 if (!obj) 15097 return 0; 15098 15099 ret = i915_gem_object_pin_pages(obj); 15100 if (ret) 15101 return ret; 15102 15103 ret = intel_plane_pin_fb(new_plane_state); 15104 15105 i915_gem_object_unpin_pages(obj); 15106 if (ret) 15107 return ret; 15108 15109 fb_obj_bump_render_priority(obj); 15110 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 15111 15112 if (!new_plane_state->base.fence) { /* implicit fencing */ 15113 struct dma_fence *fence; 15114 15115 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready, 15116 obj->base.resv, NULL, 15117 false, I915_FENCE_TIMEOUT, 15118 GFP_KERNEL); 15119 if (ret < 0) 15120 return ret; 15121 15122 fence = dma_resv_get_excl_rcu(obj->base.resv); 15123 if (fence) { 15124 add_rps_boost_after_vblank(new_plane_state->base.crtc, 15125 fence); 15126 dma_fence_put(fence); 15127 } 15128 } else { 15129 add_rps_boost_after_vblank(new_plane_state->base.crtc, 15130 new_plane_state->base.fence); 15131 } 15132 15133 /* 15134 * We declare pageflips to be interactive and so merit a small bias 15135 * towards upclocking to deliver the frame on time. By only changing 15136 * the RPS thresholds to sample more regularly and aim for higher 15137 * clocks we can hopefully deliver low power workloads (like kodi) 15138 * that are not quite steady state without resorting to forcing 15139 * maximum clocks following a vblank miss (see do_rps_boost()). 15140 */ 15141 if (!intel_state->rps_interactive) { 15142 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 15143 intel_state->rps_interactive = true; 15144 } 15145 15146 return 0; 15147 } 15148 15149 /** 15150 * intel_cleanup_plane_fb - Cleans up an fb after plane use 15151 * @plane: drm plane to clean up for 15152 * @_old_plane_state: the state from the previous modeset 15153 * 15154 * Cleans up a framebuffer that has just been removed from a plane. 15155 */ 15156 void 15157 intel_cleanup_plane_fb(struct drm_plane *plane, 15158 struct drm_plane_state *_old_plane_state) 15159 { 15160 struct intel_plane_state *old_plane_state = 15161 to_intel_plane_state(_old_plane_state); 15162 struct intel_atomic_state *intel_state = 15163 to_intel_atomic_state(old_plane_state->base.state); 15164 struct drm_i915_private *dev_priv = to_i915(plane->dev); 15165 15166 if (intel_state->rps_interactive) { 15167 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 15168 intel_state->rps_interactive = false; 15169 } 15170 15171 /* Should only be called after a successful intel_prepare_plane_fb()! */ 15172 intel_plane_unpin_fb(old_plane_state); 15173 } 15174 15175 /** 15176 * intel_plane_destroy - destroy a plane 15177 * @plane: plane to destroy 15178 * 15179 * Common destruction function for all types of planes (primary, cursor, 15180 * sprite). 15181 */ 15182 void intel_plane_destroy(struct drm_plane *plane) 15183 { 15184 drm_plane_cleanup(plane); 15185 kfree(to_intel_plane(plane)); 15186 } 15187 15188 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane, 15189 u32 format, u64 modifier) 15190 { 15191 switch (modifier) { 15192 case DRM_FORMAT_MOD_LINEAR: 15193 case I915_FORMAT_MOD_X_TILED: 15194 break; 15195 default: 15196 return false; 15197 } 15198 15199 switch (format) { 15200 case DRM_FORMAT_C8: 15201 case DRM_FORMAT_RGB565: 15202 case DRM_FORMAT_XRGB1555: 15203 case DRM_FORMAT_XRGB8888: 15204 return modifier == DRM_FORMAT_MOD_LINEAR || 15205 modifier == I915_FORMAT_MOD_X_TILED; 15206 default: 15207 return false; 15208 } 15209 } 15210 15211 static bool i965_plane_format_mod_supported(struct drm_plane *_plane, 15212 u32 format, u64 modifier) 15213 { 15214 switch (modifier) { 15215 case DRM_FORMAT_MOD_LINEAR: 15216 case I915_FORMAT_MOD_X_TILED: 15217 break; 15218 default: 15219 return false; 15220 } 15221 15222 switch (format) { 15223 case DRM_FORMAT_C8: 15224 case DRM_FORMAT_RGB565: 15225 case DRM_FORMAT_XRGB8888: 15226 case DRM_FORMAT_XBGR8888: 15227 case DRM_FORMAT_XRGB2101010: 15228 case DRM_FORMAT_XBGR2101010: 15229 case DRM_FORMAT_XBGR16161616F: 15230 return modifier == DRM_FORMAT_MOD_LINEAR || 15231 modifier == I915_FORMAT_MOD_X_TILED; 15232 default: 15233 return false; 15234 } 15235 } 15236 15237 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane, 15238 u32 format, u64 modifier) 15239 { 15240 return modifier == DRM_FORMAT_MOD_LINEAR && 15241 format == DRM_FORMAT_ARGB8888; 15242 } 15243 15244 static const struct drm_plane_funcs i965_plane_funcs = { 15245 .update_plane = drm_atomic_helper_update_plane, 15246 .disable_plane = drm_atomic_helper_disable_plane, 15247 .destroy = intel_plane_destroy, 15248 .atomic_duplicate_state = intel_plane_duplicate_state, 15249 .atomic_destroy_state = intel_plane_destroy_state, 15250 .format_mod_supported = i965_plane_format_mod_supported, 15251 }; 15252 15253 static const struct drm_plane_funcs i8xx_plane_funcs = { 15254 .update_plane = drm_atomic_helper_update_plane, 15255 .disable_plane = drm_atomic_helper_disable_plane, 15256 .destroy = intel_plane_destroy, 15257 .atomic_duplicate_state = intel_plane_duplicate_state, 15258 .atomic_destroy_state = intel_plane_destroy_state, 15259 .format_mod_supported = i8xx_plane_format_mod_supported, 15260 }; 15261 15262 static int 15263 intel_legacy_cursor_update(struct drm_plane *_plane, 15264 struct drm_crtc *_crtc, 15265 struct drm_framebuffer *fb, 15266 int crtc_x, int crtc_y, 15267 unsigned int crtc_w, unsigned int crtc_h, 15268 u32 src_x, u32 src_y, 15269 u32 src_w, u32 src_h, 15270 struct drm_modeset_acquire_ctx *ctx) 15271 { 15272 struct intel_plane *plane = to_intel_plane(_plane); 15273 struct intel_crtc *crtc = to_intel_crtc(_crtc); 15274 struct intel_plane_state *old_plane_state = 15275 to_intel_plane_state(plane->base.state); 15276 struct intel_plane_state *new_plane_state; 15277 struct intel_crtc_state *crtc_state = 15278 to_intel_crtc_state(crtc->base.state); 15279 struct intel_crtc_state *new_crtc_state; 15280 int ret; 15281 15282 /* 15283 * When crtc is inactive or there is a modeset pending, 15284 * wait for it to complete in the slowpath 15285 */ 15286 if (!crtc_state->base.active || needs_modeset(crtc_state) || 15287 crtc_state->update_pipe) 15288 goto slow; 15289 15290 /* 15291 * Don't do an async update if there is an outstanding commit modifying 15292 * the plane. This prevents our async update's changes from getting 15293 * overridden by a previous synchronous update's state. 15294 */ 15295 if (old_plane_state->base.commit && 15296 !try_wait_for_completion(&old_plane_state->base.commit->hw_done)) 15297 goto slow; 15298 15299 /* 15300 * If any parameters change that may affect watermarks, 15301 * take the slowpath. Only changing fb or position should be 15302 * in the fastpath. 15303 */ 15304 if (old_plane_state->base.crtc != &crtc->base || 15305 old_plane_state->base.src_w != src_w || 15306 old_plane_state->base.src_h != src_h || 15307 old_plane_state->base.crtc_w != crtc_w || 15308 old_plane_state->base.crtc_h != crtc_h || 15309 !old_plane_state->base.fb != !fb) 15310 goto slow; 15311 15312 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base)); 15313 if (!new_plane_state) 15314 return -ENOMEM; 15315 15316 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base)); 15317 if (!new_crtc_state) { 15318 ret = -ENOMEM; 15319 goto out_free; 15320 } 15321 15322 drm_atomic_set_fb_for_plane(&new_plane_state->base, fb); 15323 15324 new_plane_state->base.src_x = src_x; 15325 new_plane_state->base.src_y = src_y; 15326 new_plane_state->base.src_w = src_w; 15327 new_plane_state->base.src_h = src_h; 15328 new_plane_state->base.crtc_x = crtc_x; 15329 new_plane_state->base.crtc_y = crtc_y; 15330 new_plane_state->base.crtc_w = crtc_w; 15331 new_plane_state->base.crtc_h = crtc_h; 15332 15333 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state, 15334 old_plane_state, new_plane_state); 15335 if (ret) 15336 goto out_free; 15337 15338 ret = intel_plane_pin_fb(new_plane_state); 15339 if (ret) 15340 goto out_free; 15341 15342 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->base.fb), ORIGIN_FLIP); 15343 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->base.fb), 15344 to_intel_frontbuffer(new_plane_state->base.fb), 15345 plane->frontbuffer_bit); 15346 15347 /* Swap plane state */ 15348 plane->base.state = &new_plane_state->base; 15349 15350 /* 15351 * We cannot swap crtc_state as it may be in use by an atomic commit or 15352 * page flip that's running simultaneously. If we swap crtc_state and 15353 * destroy the old state, we will cause a use-after-free there. 15354 * 15355 * Only update active_planes, which is needed for our internal 15356 * bookkeeping. Either value will do the right thing when updating 15357 * planes atomically. If the cursor was part of the atomic update then 15358 * we would have taken the slowpath. 15359 */ 15360 crtc_state->active_planes = new_crtc_state->active_planes; 15361 15362 if (new_plane_state->base.visible) 15363 intel_update_plane(plane, crtc_state, new_plane_state); 15364 else 15365 intel_disable_plane(plane, crtc_state); 15366 15367 intel_plane_unpin_fb(old_plane_state); 15368 15369 out_free: 15370 if (new_crtc_state) 15371 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->base); 15372 if (ret) 15373 intel_plane_destroy_state(&plane->base, &new_plane_state->base); 15374 else 15375 intel_plane_destroy_state(&plane->base, &old_plane_state->base); 15376 return ret; 15377 15378 slow: 15379 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb, 15380 crtc_x, crtc_y, crtc_w, crtc_h, 15381 src_x, src_y, src_w, src_h, ctx); 15382 } 15383 15384 static const struct drm_plane_funcs intel_cursor_plane_funcs = { 15385 .update_plane = intel_legacy_cursor_update, 15386 .disable_plane = drm_atomic_helper_disable_plane, 15387 .destroy = intel_plane_destroy, 15388 .atomic_duplicate_state = intel_plane_duplicate_state, 15389 .atomic_destroy_state = intel_plane_destroy_state, 15390 .format_mod_supported = intel_cursor_format_mod_supported, 15391 }; 15392 15393 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv, 15394 enum i9xx_plane_id i9xx_plane) 15395 { 15396 if (!HAS_FBC(dev_priv)) 15397 return false; 15398 15399 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 15400 return i9xx_plane == PLANE_A; /* tied to pipe A */ 15401 else if (IS_IVYBRIDGE(dev_priv)) 15402 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B || 15403 i9xx_plane == PLANE_C; 15404 else if (INTEL_GEN(dev_priv) >= 4) 15405 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B; 15406 else 15407 return i9xx_plane == PLANE_A; 15408 } 15409 15410 static struct intel_plane * 15411 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) 15412 { 15413 struct intel_plane *plane; 15414 const struct drm_plane_funcs *plane_funcs; 15415 unsigned int supported_rotations; 15416 unsigned int possible_crtcs; 15417 const u64 *modifiers; 15418 const u32 *formats; 15419 int num_formats; 15420 int ret, zpos; 15421 15422 if (INTEL_GEN(dev_priv) >= 9) 15423 return skl_universal_plane_create(dev_priv, pipe, 15424 PLANE_PRIMARY); 15425 15426 plane = intel_plane_alloc(); 15427 if (IS_ERR(plane)) 15428 return plane; 15429 15430 plane->pipe = pipe; 15431 /* 15432 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS 15433 * port is hooked to pipe B. Hence we want plane A feeding pipe B. 15434 */ 15435 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4) 15436 plane->i9xx_plane = (enum i9xx_plane_id) !pipe; 15437 else 15438 plane->i9xx_plane = (enum i9xx_plane_id) pipe; 15439 plane->id = PLANE_PRIMARY; 15440 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id); 15441 15442 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane); 15443 if (plane->has_fbc) { 15444 struct intel_fbc *fbc = &dev_priv->fbc; 15445 15446 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit; 15447 } 15448 15449 if (INTEL_GEN(dev_priv) >= 4) { 15450 /* 15451 * WaFP16GammaEnabling:ivb 15452 * "Workaround : When using the 64-bit format, the plane 15453 * output on each color channel has one quarter amplitude. 15454 * It can be brought up to full amplitude by using pipe 15455 * gamma correction or pipe color space conversion to 15456 * multiply the plane output by four." 15457 * 15458 * There is no dedicated plane gamma for the primary plane, 15459 * and using the pipe gamma/csc could conflict with other 15460 * planes, so we choose not to expose fp16 on IVB primary 15461 * planes. HSW primary planes no longer have this problem. 15462 */ 15463 if (IS_IVYBRIDGE(dev_priv)) { 15464 formats = ivb_primary_formats; 15465 num_formats = ARRAY_SIZE(ivb_primary_formats); 15466 } else { 15467 formats = i965_primary_formats; 15468 num_formats = ARRAY_SIZE(i965_primary_formats); 15469 } 15470 modifiers = i9xx_format_modifiers; 15471 15472 plane->max_stride = i9xx_plane_max_stride; 15473 plane->update_plane = i9xx_update_plane; 15474 plane->disable_plane = i9xx_disable_plane; 15475 plane->get_hw_state = i9xx_plane_get_hw_state; 15476 plane->check_plane = i9xx_plane_check; 15477 15478 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 15479 plane->min_cdclk = hsw_plane_min_cdclk; 15480 else if (IS_IVYBRIDGE(dev_priv)) 15481 plane->min_cdclk = ivb_plane_min_cdclk; 15482 else if (IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv)) 15483 plane->min_cdclk = vlv_plane_min_cdclk; 15484 else 15485 plane->min_cdclk = i9xx_plane_min_cdclk; 15486 15487 plane_funcs = &i965_plane_funcs; 15488 } else { 15489 formats = i8xx_primary_formats; 15490 num_formats = ARRAY_SIZE(i8xx_primary_formats); 15491 modifiers = i9xx_format_modifiers; 15492 15493 plane->max_stride = i9xx_plane_max_stride; 15494 plane->update_plane = i9xx_update_plane; 15495 plane->disable_plane = i9xx_disable_plane; 15496 plane->get_hw_state = i9xx_plane_get_hw_state; 15497 plane->check_plane = i9xx_plane_check; 15498 plane->min_cdclk = i9xx_plane_min_cdclk; 15499 15500 plane_funcs = &i8xx_plane_funcs; 15501 } 15502 15503 possible_crtcs = BIT(pipe); 15504 15505 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 15506 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 15507 possible_crtcs, plane_funcs, 15508 formats, num_formats, modifiers, 15509 DRM_PLANE_TYPE_PRIMARY, 15510 "primary %c", pipe_name(pipe)); 15511 else 15512 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 15513 possible_crtcs, plane_funcs, 15514 formats, num_formats, modifiers, 15515 DRM_PLANE_TYPE_PRIMARY, 15516 "plane %c", 15517 plane_name(plane->i9xx_plane)); 15518 if (ret) 15519 goto fail; 15520 15521 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 15522 supported_rotations = 15523 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | 15524 DRM_MODE_REFLECT_X; 15525 } else if (INTEL_GEN(dev_priv) >= 4) { 15526 supported_rotations = 15527 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180; 15528 } else { 15529 supported_rotations = DRM_MODE_ROTATE_0; 15530 } 15531 15532 if (INTEL_GEN(dev_priv) >= 4) 15533 drm_plane_create_rotation_property(&plane->base, 15534 DRM_MODE_ROTATE_0, 15535 supported_rotations); 15536 15537 zpos = 0; 15538 drm_plane_create_zpos_immutable_property(&plane->base, zpos); 15539 15540 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs); 15541 15542 return plane; 15543 15544 fail: 15545 intel_plane_free(plane); 15546 15547 return ERR_PTR(ret); 15548 } 15549 15550 static struct intel_plane * 15551 intel_cursor_plane_create(struct drm_i915_private *dev_priv, 15552 enum pipe pipe) 15553 { 15554 unsigned int possible_crtcs; 15555 struct intel_plane *cursor; 15556 int ret, zpos; 15557 15558 cursor = intel_plane_alloc(); 15559 if (IS_ERR(cursor)) 15560 return cursor; 15561 15562 cursor->pipe = pipe; 15563 cursor->i9xx_plane = (enum i9xx_plane_id) pipe; 15564 cursor->id = PLANE_CURSOR; 15565 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id); 15566 15567 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { 15568 cursor->max_stride = i845_cursor_max_stride; 15569 cursor->update_plane = i845_update_cursor; 15570 cursor->disable_plane = i845_disable_cursor; 15571 cursor->get_hw_state = i845_cursor_get_hw_state; 15572 cursor->check_plane = i845_check_cursor; 15573 } else { 15574 cursor->max_stride = i9xx_cursor_max_stride; 15575 cursor->update_plane = i9xx_update_cursor; 15576 cursor->disable_plane = i9xx_disable_cursor; 15577 cursor->get_hw_state = i9xx_cursor_get_hw_state; 15578 cursor->check_plane = i9xx_check_cursor; 15579 } 15580 15581 cursor->cursor.base = ~0; 15582 cursor->cursor.cntl = ~0; 15583 15584 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv)) 15585 cursor->cursor.size = ~0; 15586 15587 possible_crtcs = BIT(pipe); 15588 15589 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base, 15590 possible_crtcs, &intel_cursor_plane_funcs, 15591 intel_cursor_formats, 15592 ARRAY_SIZE(intel_cursor_formats), 15593 cursor_format_modifiers, 15594 DRM_PLANE_TYPE_CURSOR, 15595 "cursor %c", pipe_name(pipe)); 15596 if (ret) 15597 goto fail; 15598 15599 if (INTEL_GEN(dev_priv) >= 4) 15600 drm_plane_create_rotation_property(&cursor->base, 15601 DRM_MODE_ROTATE_0, 15602 DRM_MODE_ROTATE_0 | 15603 DRM_MODE_ROTATE_180); 15604 15605 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1; 15606 drm_plane_create_zpos_immutable_property(&cursor->base, zpos); 15607 15608 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); 15609 15610 return cursor; 15611 15612 fail: 15613 intel_plane_free(cursor); 15614 15615 return ERR_PTR(ret); 15616 } 15617 15618 static void intel_crtc_init_scalers(struct intel_crtc *crtc, 15619 struct intel_crtc_state *crtc_state) 15620 { 15621 struct intel_crtc_scaler_state *scaler_state = 15622 &crtc_state->scaler_state; 15623 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 15624 int i; 15625 15626 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[crtc->pipe]; 15627 if (!crtc->num_scalers) 15628 return; 15629 15630 for (i = 0; i < crtc->num_scalers; i++) { 15631 struct intel_scaler *scaler = &scaler_state->scalers[i]; 15632 15633 scaler->in_use = 0; 15634 scaler->mode = 0; 15635 } 15636 15637 scaler_state->scaler_id = -1; 15638 } 15639 15640 #define INTEL_CRTC_FUNCS \ 15641 .gamma_set = drm_atomic_helper_legacy_gamma_set, \ 15642 .set_config = drm_atomic_helper_set_config, \ 15643 .destroy = intel_crtc_destroy, \ 15644 .page_flip = drm_atomic_helper_page_flip, \ 15645 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 15646 .atomic_destroy_state = intel_crtc_destroy_state, \ 15647 .set_crc_source = intel_crtc_set_crc_source, \ 15648 .verify_crc_source = intel_crtc_verify_crc_source, \ 15649 .get_crc_sources = intel_crtc_get_crc_sources 15650 15651 static const struct drm_crtc_funcs bdw_crtc_funcs = { 15652 INTEL_CRTC_FUNCS, 15653 15654 .get_vblank_counter = g4x_get_vblank_counter, 15655 .enable_vblank = bdw_enable_vblank, 15656 .disable_vblank = bdw_disable_vblank, 15657 }; 15658 15659 static const struct drm_crtc_funcs ilk_crtc_funcs = { 15660 INTEL_CRTC_FUNCS, 15661 15662 .get_vblank_counter = g4x_get_vblank_counter, 15663 .enable_vblank = ilk_enable_vblank, 15664 .disable_vblank = ilk_disable_vblank, 15665 }; 15666 15667 static const struct drm_crtc_funcs g4x_crtc_funcs = { 15668 INTEL_CRTC_FUNCS, 15669 15670 .get_vblank_counter = g4x_get_vblank_counter, 15671 .enable_vblank = i965_enable_vblank, 15672 .disable_vblank = i965_disable_vblank, 15673 }; 15674 15675 static const struct drm_crtc_funcs i965_crtc_funcs = { 15676 INTEL_CRTC_FUNCS, 15677 15678 .get_vblank_counter = i915_get_vblank_counter, 15679 .enable_vblank = i965_enable_vblank, 15680 .disable_vblank = i965_disable_vblank, 15681 }; 15682 15683 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 15684 INTEL_CRTC_FUNCS, 15685 15686 .get_vblank_counter = i915_get_vblank_counter, 15687 .enable_vblank = i915gm_enable_vblank, 15688 .disable_vblank = i915gm_disable_vblank, 15689 }; 15690 15691 static const struct drm_crtc_funcs i915_crtc_funcs = { 15692 INTEL_CRTC_FUNCS, 15693 15694 .get_vblank_counter = i915_get_vblank_counter, 15695 .enable_vblank = i8xx_enable_vblank, 15696 .disable_vblank = i8xx_disable_vblank, 15697 }; 15698 15699 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 15700 INTEL_CRTC_FUNCS, 15701 15702 /* no hw vblank counter */ 15703 .enable_vblank = i8xx_enable_vblank, 15704 .disable_vblank = i8xx_disable_vblank, 15705 }; 15706 15707 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 15708 { 15709 const struct drm_crtc_funcs *funcs; 15710 struct intel_crtc *intel_crtc; 15711 struct intel_crtc_state *crtc_state = NULL; 15712 struct intel_plane *primary = NULL; 15713 struct intel_plane *cursor = NULL; 15714 int sprite, ret; 15715 15716 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL); 15717 if (!intel_crtc) 15718 return -ENOMEM; 15719 15720 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); 15721 if (!crtc_state) { 15722 ret = -ENOMEM; 15723 goto fail; 15724 } 15725 __drm_atomic_helper_crtc_reset(&intel_crtc->base, &crtc_state->base); 15726 intel_crtc->config = crtc_state; 15727 15728 primary = intel_primary_plane_create(dev_priv, pipe); 15729 if (IS_ERR(primary)) { 15730 ret = PTR_ERR(primary); 15731 goto fail; 15732 } 15733 intel_crtc->plane_ids_mask |= BIT(primary->id); 15734 15735 for_each_sprite(dev_priv, pipe, sprite) { 15736 struct intel_plane *plane; 15737 15738 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 15739 if (IS_ERR(plane)) { 15740 ret = PTR_ERR(plane); 15741 goto fail; 15742 } 15743 intel_crtc->plane_ids_mask |= BIT(plane->id); 15744 } 15745 15746 cursor = intel_cursor_plane_create(dev_priv, pipe); 15747 if (IS_ERR(cursor)) { 15748 ret = PTR_ERR(cursor); 15749 goto fail; 15750 } 15751 intel_crtc->plane_ids_mask |= BIT(cursor->id); 15752 15753 if (HAS_GMCH(dev_priv)) { 15754 if (IS_CHERRYVIEW(dev_priv) || 15755 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 15756 funcs = &g4x_crtc_funcs; 15757 else if (IS_GEN(dev_priv, 4)) 15758 funcs = &i965_crtc_funcs; 15759 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 15760 funcs = &i915gm_crtc_funcs; 15761 else if (IS_GEN(dev_priv, 3)) 15762 funcs = &i915_crtc_funcs; 15763 else 15764 funcs = &i8xx_crtc_funcs; 15765 } else { 15766 if (INTEL_GEN(dev_priv) >= 8) 15767 funcs = &bdw_crtc_funcs; 15768 else 15769 funcs = &ilk_crtc_funcs; 15770 } 15771 15772 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base, 15773 &primary->base, &cursor->base, 15774 funcs, "pipe %c", pipe_name(pipe)); 15775 if (ret) 15776 goto fail; 15777 15778 intel_crtc->pipe = pipe; 15779 15780 /* initialize shared scalers */ 15781 intel_crtc_init_scalers(intel_crtc, crtc_state); 15782 15783 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) || 15784 dev_priv->pipe_to_crtc_mapping[pipe] != NULL); 15785 dev_priv->pipe_to_crtc_mapping[pipe] = intel_crtc; 15786 15787 if (INTEL_GEN(dev_priv) < 9) { 15788 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane; 15789 15790 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 15791 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL); 15792 dev_priv->plane_to_crtc_mapping[i9xx_plane] = intel_crtc; 15793 } 15794 15795 intel_color_init(intel_crtc); 15796 15797 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe); 15798 15799 return 0; 15800 15801 fail: 15802 /* 15803 * drm_mode_config_cleanup() will free up any 15804 * crtcs/planes already initialized. 15805 */ 15806 kfree(crtc_state); 15807 kfree(intel_crtc); 15808 15809 return ret; 15810 } 15811 15812 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 15813 struct drm_file *file) 15814 { 15815 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 15816 struct drm_crtc *drmmode_crtc; 15817 struct intel_crtc *crtc; 15818 15819 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 15820 if (!drmmode_crtc) 15821 return -ENOENT; 15822 15823 crtc = to_intel_crtc(drmmode_crtc); 15824 pipe_from_crtc_id->pipe = crtc->pipe; 15825 15826 return 0; 15827 } 15828 15829 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 15830 { 15831 struct drm_device *dev = encoder->base.dev; 15832 struct intel_encoder *source_encoder; 15833 u32 possible_clones = 0; 15834 15835 for_each_intel_encoder(dev, source_encoder) { 15836 if (encoders_cloneable(encoder, source_encoder)) 15837 possible_clones |= drm_encoder_mask(&source_encoder->base); 15838 } 15839 15840 return possible_clones; 15841 } 15842 15843 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 15844 { 15845 struct drm_device *dev = encoder->base.dev; 15846 struct intel_crtc *crtc; 15847 u32 possible_crtcs = 0; 15848 15849 for_each_intel_crtc(dev, crtc) { 15850 if (encoder->pipe_mask & BIT(crtc->pipe)) 15851 possible_crtcs |= drm_crtc_mask(&crtc->base); 15852 } 15853 15854 return possible_crtcs; 15855 } 15856 15857 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 15858 { 15859 if (!IS_MOBILE(dev_priv)) 15860 return false; 15861 15862 if ((I915_READ(DP_A) & DP_DETECTED) == 0) 15863 return false; 15864 15865 if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE)) 15866 return false; 15867 15868 return true; 15869 } 15870 15871 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 15872 { 15873 if (INTEL_GEN(dev_priv) >= 9) 15874 return false; 15875 15876 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 15877 return false; 15878 15879 if (HAS_PCH_LPT_H(dev_priv) && 15880 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 15881 return false; 15882 15883 /* DDI E can't be used if DDI A requires 4 lanes */ 15884 if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 15885 return false; 15886 15887 if (!dev_priv->vbt.int_crt_support) 15888 return false; 15889 15890 return true; 15891 } 15892 15893 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) 15894 { 15895 int pps_num; 15896 int pps_idx; 15897 15898 if (HAS_DDI(dev_priv)) 15899 return; 15900 /* 15901 * This w/a is needed at least on CPT/PPT, but to be sure apply it 15902 * everywhere where registers can be write protected. 15903 */ 15904 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 15905 pps_num = 2; 15906 else 15907 pps_num = 1; 15908 15909 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { 15910 u32 val = I915_READ(PP_CONTROL(pps_idx)); 15911 15912 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; 15913 I915_WRITE(PP_CONTROL(pps_idx), val); 15914 } 15915 } 15916 15917 static void intel_pps_init(struct drm_i915_private *dev_priv) 15918 { 15919 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv)) 15920 dev_priv->pps_mmio_base = PCH_PPS_BASE; 15921 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 15922 dev_priv->pps_mmio_base = VLV_PPS_BASE; 15923 else 15924 dev_priv->pps_mmio_base = PPS_BASE; 15925 15926 intel_pps_unlock_regs_wa(dev_priv); 15927 } 15928 15929 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 15930 { 15931 struct intel_encoder *encoder; 15932 bool dpd_is_edp = false; 15933 15934 intel_pps_init(dev_priv); 15935 15936 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 15937 return; 15938 15939 if (INTEL_GEN(dev_priv) >= 12) { 15940 intel_ddi_init(dev_priv, PORT_A); 15941 intel_ddi_init(dev_priv, PORT_B); 15942 intel_ddi_init(dev_priv, PORT_D); 15943 intel_ddi_init(dev_priv, PORT_E); 15944 intel_ddi_init(dev_priv, PORT_F); 15945 intel_ddi_init(dev_priv, PORT_G); 15946 intel_ddi_init(dev_priv, PORT_H); 15947 intel_ddi_init(dev_priv, PORT_I); 15948 icl_dsi_init(dev_priv); 15949 } else if (IS_ELKHARTLAKE(dev_priv)) { 15950 intel_ddi_init(dev_priv, PORT_A); 15951 intel_ddi_init(dev_priv, PORT_B); 15952 intel_ddi_init(dev_priv, PORT_C); 15953 intel_ddi_init(dev_priv, PORT_D); 15954 icl_dsi_init(dev_priv); 15955 } else if (IS_GEN(dev_priv, 11)) { 15956 intel_ddi_init(dev_priv, PORT_A); 15957 intel_ddi_init(dev_priv, PORT_B); 15958 intel_ddi_init(dev_priv, PORT_C); 15959 intel_ddi_init(dev_priv, PORT_D); 15960 intel_ddi_init(dev_priv, PORT_E); 15961 /* 15962 * On some ICL SKUs port F is not present. No strap bits for 15963 * this, so rely on VBT. 15964 * Work around broken VBTs on SKUs known to have no port F. 15965 */ 15966 if (IS_ICL_WITH_PORT_F(dev_priv) && 15967 intel_bios_is_port_present(dev_priv, PORT_F)) 15968 intel_ddi_init(dev_priv, PORT_F); 15969 15970 icl_dsi_init(dev_priv); 15971 } else if (IS_GEN9_LP(dev_priv)) { 15972 /* 15973 * FIXME: Broxton doesn't support port detection via the 15974 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 15975 * detect the ports. 15976 */ 15977 intel_ddi_init(dev_priv, PORT_A); 15978 intel_ddi_init(dev_priv, PORT_B); 15979 intel_ddi_init(dev_priv, PORT_C); 15980 15981 vlv_dsi_init(dev_priv); 15982 } else if (HAS_DDI(dev_priv)) { 15983 int found; 15984 15985 if (intel_ddi_crt_present(dev_priv)) 15986 intel_crt_init(dev_priv); 15987 15988 /* 15989 * Haswell uses DDI functions to detect digital outputs. 15990 * On SKL pre-D0 the strap isn't connected, so we assume 15991 * it's there. 15992 */ 15993 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 15994 /* WaIgnoreDDIAStrap: skl */ 15995 if (found || IS_GEN9_BC(dev_priv)) 15996 intel_ddi_init(dev_priv, PORT_A); 15997 15998 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP 15999 * register */ 16000 found = I915_READ(SFUSE_STRAP); 16001 16002 if (found & SFUSE_STRAP_DDIB_DETECTED) 16003 intel_ddi_init(dev_priv, PORT_B); 16004 if (found & SFUSE_STRAP_DDIC_DETECTED) 16005 intel_ddi_init(dev_priv, PORT_C); 16006 if (found & SFUSE_STRAP_DDID_DETECTED) 16007 intel_ddi_init(dev_priv, PORT_D); 16008 if (found & SFUSE_STRAP_DDIF_DETECTED) 16009 intel_ddi_init(dev_priv, PORT_F); 16010 /* 16011 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 16012 */ 16013 if (IS_GEN9_BC(dev_priv) && 16014 intel_bios_is_port_present(dev_priv, PORT_E)) 16015 intel_ddi_init(dev_priv, PORT_E); 16016 16017 } else if (HAS_PCH_SPLIT(dev_priv)) { 16018 int found; 16019 16020 /* 16021 * intel_edp_init_connector() depends on this completing first, 16022 * to prevent the registration of both eDP and LVDS and the 16023 * incorrect sharing of the PPS. 16024 */ 16025 intel_lvds_init(dev_priv); 16026 intel_crt_init(dev_priv); 16027 16028 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 16029 16030 if (ilk_has_edp_a(dev_priv)) 16031 intel_dp_init(dev_priv, DP_A, PORT_A); 16032 16033 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) { 16034 /* PCH SDVOB multiplex with HDMIB */ 16035 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 16036 if (!found) 16037 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 16038 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) 16039 intel_dp_init(dev_priv, PCH_DP_B, PORT_B); 16040 } 16041 16042 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED) 16043 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 16044 16045 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED) 16046 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 16047 16048 if (I915_READ(PCH_DP_C) & DP_DETECTED) 16049 intel_dp_init(dev_priv, PCH_DP_C, PORT_C); 16050 16051 if (I915_READ(PCH_DP_D) & DP_DETECTED) 16052 intel_dp_init(dev_priv, PCH_DP_D, PORT_D); 16053 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16054 bool has_edp, has_port; 16055 16056 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 16057 intel_crt_init(dev_priv); 16058 16059 /* 16060 * The DP_DETECTED bit is the latched state of the DDC 16061 * SDA pin at boot. However since eDP doesn't require DDC 16062 * (no way to plug in a DP->HDMI dongle) the DDC pins for 16063 * eDP ports may have been muxed to an alternate function. 16064 * Thus we can't rely on the DP_DETECTED bit alone to detect 16065 * eDP ports. Consult the VBT as well as DP_DETECTED to 16066 * detect eDP ports. 16067 * 16068 * Sadly the straps seem to be missing sometimes even for HDMI 16069 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 16070 * and VBT for the presence of the port. Additionally we can't 16071 * trust the port type the VBT declares as we've seen at least 16072 * HDMI ports that the VBT claim are DP or eDP. 16073 */ 16074 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 16075 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 16076 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port) 16077 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); 16078 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 16079 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 16080 16081 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 16082 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 16083 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port) 16084 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); 16085 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 16086 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 16087 16088 if (IS_CHERRYVIEW(dev_priv)) { 16089 /* 16090 * eDP not supported on port D, 16091 * so no need to worry about it 16092 */ 16093 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 16094 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port) 16095 intel_dp_init(dev_priv, CHV_DP_D, PORT_D); 16096 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port) 16097 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 16098 } 16099 16100 vlv_dsi_init(dev_priv); 16101 } else if (IS_PINEVIEW(dev_priv)) { 16102 intel_lvds_init(dev_priv); 16103 intel_crt_init(dev_priv); 16104 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { 16105 bool found = false; 16106 16107 if (IS_MOBILE(dev_priv)) 16108 intel_lvds_init(dev_priv); 16109 16110 intel_crt_init(dev_priv); 16111 16112 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { 16113 DRM_DEBUG_KMS("probing SDVOB\n"); 16114 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 16115 if (!found && IS_G4X(dev_priv)) { 16116 DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); 16117 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 16118 } 16119 16120 if (!found && IS_G4X(dev_priv)) 16121 intel_dp_init(dev_priv, DP_B, PORT_B); 16122 } 16123 16124 /* Before G4X SDVOC doesn't have its own detect register */ 16125 16126 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { 16127 DRM_DEBUG_KMS("probing SDVOC\n"); 16128 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 16129 } 16130 16131 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) { 16132 16133 if (IS_G4X(dev_priv)) { 16134 DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); 16135 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 16136 } 16137 if (IS_G4X(dev_priv)) 16138 intel_dp_init(dev_priv, DP_C, PORT_C); 16139 } 16140 16141 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED)) 16142 intel_dp_init(dev_priv, DP_D, PORT_D); 16143 16144 if (SUPPORTS_TV(dev_priv)) 16145 intel_tv_init(dev_priv); 16146 } else if (IS_GEN(dev_priv, 2)) { 16147 if (IS_I85X(dev_priv)) 16148 intel_lvds_init(dev_priv); 16149 16150 intel_crt_init(dev_priv); 16151 intel_dvo_init(dev_priv); 16152 } 16153 16154 intel_psr_init(dev_priv); 16155 16156 for_each_intel_encoder(&dev_priv->drm, encoder) { 16157 encoder->base.possible_crtcs = 16158 intel_encoder_possible_crtcs(encoder); 16159 encoder->base.possible_clones = 16160 intel_encoder_possible_clones(encoder); 16161 } 16162 16163 intel_init_pch_refclk(dev_priv); 16164 16165 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 16166 } 16167 16168 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 16169 { 16170 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 16171 16172 drm_framebuffer_cleanup(fb); 16173 intel_frontbuffer_put(intel_fb->frontbuffer); 16174 16175 kfree(intel_fb); 16176 } 16177 16178 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 16179 struct drm_file *file, 16180 unsigned int *handle) 16181 { 16182 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 16183 16184 if (obj->userptr.mm) { 16185 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n"); 16186 return -EINVAL; 16187 } 16188 16189 return drm_gem_handle_create(file, &obj->base, handle); 16190 } 16191 16192 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 16193 struct drm_file *file, 16194 unsigned flags, unsigned color, 16195 struct drm_clip_rect *clips, 16196 unsigned num_clips) 16197 { 16198 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 16199 16200 i915_gem_object_flush_if_display(obj); 16201 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 16202 16203 return 0; 16204 } 16205 16206 static const struct drm_framebuffer_funcs intel_fb_funcs = { 16207 .destroy = intel_user_framebuffer_destroy, 16208 .create_handle = intel_user_framebuffer_create_handle, 16209 .dirty = intel_user_framebuffer_dirty, 16210 }; 16211 16212 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 16213 struct drm_i915_gem_object *obj, 16214 struct drm_mode_fb_cmd2 *mode_cmd) 16215 { 16216 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 16217 struct drm_framebuffer *fb = &intel_fb->base; 16218 u32 max_stride; 16219 unsigned int tiling, stride; 16220 int ret = -EINVAL; 16221 int i; 16222 16223 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 16224 if (!intel_fb->frontbuffer) 16225 return -ENOMEM; 16226 16227 i915_gem_object_lock(obj); 16228 tiling = i915_gem_object_get_tiling(obj); 16229 stride = i915_gem_object_get_stride(obj); 16230 i915_gem_object_unlock(obj); 16231 16232 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 16233 /* 16234 * If there's a fence, enforce that 16235 * the fb modifier and tiling mode match. 16236 */ 16237 if (tiling != I915_TILING_NONE && 16238 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 16239 DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n"); 16240 goto err; 16241 } 16242 } else { 16243 if (tiling == I915_TILING_X) { 16244 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 16245 } else if (tiling == I915_TILING_Y) { 16246 DRM_DEBUG_KMS("No Y tiling for legacy addfb\n"); 16247 goto err; 16248 } 16249 } 16250 16251 if (!drm_any_plane_has_format(&dev_priv->drm, 16252 mode_cmd->pixel_format, 16253 mode_cmd->modifier[0])) { 16254 struct drm_format_name_buf format_name; 16255 16256 DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n", 16257 drm_get_format_name(mode_cmd->pixel_format, 16258 &format_name), 16259 mode_cmd->modifier[0]); 16260 goto err; 16261 } 16262 16263 /* 16264 * gen2/3 display engine uses the fence if present, 16265 * so the tiling mode must match the fb modifier exactly. 16266 */ 16267 if (INTEL_GEN(dev_priv) < 4 && 16268 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 16269 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n"); 16270 goto err; 16271 } 16272 16273 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 16274 mode_cmd->modifier[0]); 16275 if (mode_cmd->pitches[0] > max_stride) { 16276 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n", 16277 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 16278 "tiled" : "linear", 16279 mode_cmd->pitches[0], max_stride); 16280 goto err; 16281 } 16282 16283 /* 16284 * If there's a fence, enforce that 16285 * the fb pitch and fence stride match. 16286 */ 16287 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 16288 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n", 16289 mode_cmd->pitches[0], stride); 16290 goto err; 16291 } 16292 16293 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 16294 if (mode_cmd->offsets[0] != 0) 16295 goto err; 16296 16297 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 16298 16299 for (i = 0; i < fb->format->num_planes; i++) { 16300 u32 stride_alignment; 16301 16302 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 16303 DRM_DEBUG_KMS("bad plane %d handle\n", i); 16304 goto err; 16305 } 16306 16307 stride_alignment = intel_fb_stride_alignment(fb, i); 16308 16309 /* 16310 * Display WA #0531: skl,bxt,kbl,glk 16311 * 16312 * Render decompression and plane width > 3840 16313 * combined with horizontal panning requires the 16314 * plane stride to be a multiple of 4. We'll just 16315 * require the entire fb to accommodate that to avoid 16316 * potential runtime errors at plane configuration time. 16317 */ 16318 if (IS_GEN(dev_priv, 9) && i == 0 && fb->width > 3840 && 16319 is_ccs_modifier(fb->modifier)) 16320 stride_alignment *= 4; 16321 16322 if (fb->pitches[i] & (stride_alignment - 1)) { 16323 DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n", 16324 i, fb->pitches[i], stride_alignment); 16325 goto err; 16326 } 16327 16328 fb->obj[i] = &obj->base; 16329 } 16330 16331 ret = intel_fill_fb_info(dev_priv, fb); 16332 if (ret) 16333 goto err; 16334 16335 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 16336 if (ret) { 16337 DRM_ERROR("framebuffer init failed %d\n", ret); 16338 goto err; 16339 } 16340 16341 return 0; 16342 16343 err: 16344 intel_frontbuffer_put(intel_fb->frontbuffer); 16345 return ret; 16346 } 16347 16348 static struct drm_framebuffer * 16349 intel_user_framebuffer_create(struct drm_device *dev, 16350 struct drm_file *filp, 16351 const struct drm_mode_fb_cmd2 *user_mode_cmd) 16352 { 16353 struct drm_framebuffer *fb; 16354 struct drm_i915_gem_object *obj; 16355 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 16356 16357 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 16358 if (!obj) 16359 return ERR_PTR(-ENOENT); 16360 16361 fb = intel_framebuffer_create(obj, &mode_cmd); 16362 i915_gem_object_put(obj); 16363 16364 return fb; 16365 } 16366 16367 static void intel_atomic_state_free(struct drm_atomic_state *state) 16368 { 16369 struct intel_atomic_state *intel_state = to_intel_atomic_state(state); 16370 16371 drm_atomic_state_default_release(state); 16372 16373 i915_sw_fence_fini(&intel_state->commit_ready); 16374 16375 kfree(state); 16376 } 16377 16378 static enum drm_mode_status 16379 intel_mode_valid(struct drm_device *dev, 16380 const struct drm_display_mode *mode) 16381 { 16382 struct drm_i915_private *dev_priv = to_i915(dev); 16383 int hdisplay_max, htotal_max; 16384 int vdisplay_max, vtotal_max; 16385 16386 /* 16387 * Can't reject DBLSCAN here because Xorg ddxen can add piles 16388 * of DBLSCAN modes to the output's mode list when they detect 16389 * the scaling mode property on the connector. And they don't 16390 * ask the kernel to validate those modes in any way until 16391 * modeset time at which point the client gets a protocol error. 16392 * So in order to not upset those clients we silently ignore the 16393 * DBLSCAN flag on such connectors. For other connectors we will 16394 * reject modes with the DBLSCAN flag in encoder->compute_config(). 16395 * And we always reject DBLSCAN modes in connector->mode_valid() 16396 * as we never want such modes on the connector's mode list. 16397 */ 16398 16399 if (mode->vscan > 1) 16400 return MODE_NO_VSCAN; 16401 16402 if (mode->flags & DRM_MODE_FLAG_HSKEW) 16403 return MODE_H_ILLEGAL; 16404 16405 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 16406 DRM_MODE_FLAG_NCSYNC | 16407 DRM_MODE_FLAG_PCSYNC)) 16408 return MODE_HSYNC; 16409 16410 if (mode->flags & (DRM_MODE_FLAG_BCAST | 16411 DRM_MODE_FLAG_PIXMUX | 16412 DRM_MODE_FLAG_CLKDIV2)) 16413 return MODE_BAD; 16414 16415 /* Transcoder timing limits */ 16416 if (INTEL_GEN(dev_priv) >= 11) { 16417 hdisplay_max = 16384; 16418 vdisplay_max = 8192; 16419 htotal_max = 16384; 16420 vtotal_max = 8192; 16421 } else if (INTEL_GEN(dev_priv) >= 9 || 16422 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 16423 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 16424 vdisplay_max = 4096; 16425 htotal_max = 8192; 16426 vtotal_max = 8192; 16427 } else if (INTEL_GEN(dev_priv) >= 3) { 16428 hdisplay_max = 4096; 16429 vdisplay_max = 4096; 16430 htotal_max = 8192; 16431 vtotal_max = 8192; 16432 } else { 16433 hdisplay_max = 2048; 16434 vdisplay_max = 2048; 16435 htotal_max = 4096; 16436 vtotal_max = 4096; 16437 } 16438 16439 if (mode->hdisplay > hdisplay_max || 16440 mode->hsync_start > htotal_max || 16441 mode->hsync_end > htotal_max || 16442 mode->htotal > htotal_max) 16443 return MODE_H_ILLEGAL; 16444 16445 if (mode->vdisplay > vdisplay_max || 16446 mode->vsync_start > vtotal_max || 16447 mode->vsync_end > vtotal_max || 16448 mode->vtotal > vtotal_max) 16449 return MODE_V_ILLEGAL; 16450 16451 if (INTEL_GEN(dev_priv) >= 5) { 16452 if (mode->hdisplay < 64 || 16453 mode->htotal - mode->hdisplay < 32) 16454 return MODE_H_ILLEGAL; 16455 16456 if (mode->vtotal - mode->vdisplay < 5) 16457 return MODE_V_ILLEGAL; 16458 } else { 16459 if (mode->htotal - mode->hdisplay < 32) 16460 return MODE_H_ILLEGAL; 16461 16462 if (mode->vtotal - mode->vdisplay < 3) 16463 return MODE_V_ILLEGAL; 16464 } 16465 16466 return MODE_OK; 16467 } 16468 16469 enum drm_mode_status 16470 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 16471 const struct drm_display_mode *mode) 16472 { 16473 int plane_width_max, plane_height_max; 16474 16475 /* 16476 * intel_mode_valid() should be 16477 * sufficient on older platforms. 16478 */ 16479 if (INTEL_GEN(dev_priv) < 9) 16480 return MODE_OK; 16481 16482 /* 16483 * Most people will probably want a fullscreen 16484 * plane so let's not advertize modes that are 16485 * too big for that. 16486 */ 16487 if (INTEL_GEN(dev_priv) >= 11) { 16488 plane_width_max = 5120; 16489 plane_height_max = 4320; 16490 } else { 16491 plane_width_max = 5120; 16492 plane_height_max = 4096; 16493 } 16494 16495 if (mode->hdisplay > plane_width_max) 16496 return MODE_H_ILLEGAL; 16497 16498 if (mode->vdisplay > plane_height_max) 16499 return MODE_V_ILLEGAL; 16500 16501 return MODE_OK; 16502 } 16503 16504 static const struct drm_mode_config_funcs intel_mode_funcs = { 16505 .fb_create = intel_user_framebuffer_create, 16506 .get_format_info = intel_get_format_info, 16507 .output_poll_changed = intel_fbdev_output_poll_changed, 16508 .mode_valid = intel_mode_valid, 16509 .atomic_check = intel_atomic_check, 16510 .atomic_commit = intel_atomic_commit, 16511 .atomic_state_alloc = intel_atomic_state_alloc, 16512 .atomic_state_clear = intel_atomic_state_clear, 16513 .atomic_state_free = intel_atomic_state_free, 16514 }; 16515 16516 /** 16517 * intel_init_display_hooks - initialize the display modesetting hooks 16518 * @dev_priv: device private 16519 */ 16520 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 16521 { 16522 intel_init_cdclk_hooks(dev_priv); 16523 16524 if (INTEL_GEN(dev_priv) >= 9) { 16525 dev_priv->display.get_pipe_config = haswell_get_pipe_config; 16526 dev_priv->display.get_initial_plane_config = 16527 skylake_get_initial_plane_config; 16528 dev_priv->display.crtc_compute_clock = 16529 haswell_crtc_compute_clock; 16530 dev_priv->display.crtc_enable = haswell_crtc_enable; 16531 dev_priv->display.crtc_disable = haswell_crtc_disable; 16532 } else if (HAS_DDI(dev_priv)) { 16533 dev_priv->display.get_pipe_config = haswell_get_pipe_config; 16534 dev_priv->display.get_initial_plane_config = 16535 i9xx_get_initial_plane_config; 16536 dev_priv->display.crtc_compute_clock = 16537 haswell_crtc_compute_clock; 16538 dev_priv->display.crtc_enable = haswell_crtc_enable; 16539 dev_priv->display.crtc_disable = haswell_crtc_disable; 16540 } else if (HAS_PCH_SPLIT(dev_priv)) { 16541 dev_priv->display.get_pipe_config = ironlake_get_pipe_config; 16542 dev_priv->display.get_initial_plane_config = 16543 i9xx_get_initial_plane_config; 16544 dev_priv->display.crtc_compute_clock = 16545 ironlake_crtc_compute_clock; 16546 dev_priv->display.crtc_enable = ironlake_crtc_enable; 16547 dev_priv->display.crtc_disable = ironlake_crtc_disable; 16548 } else if (IS_CHERRYVIEW(dev_priv)) { 16549 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16550 dev_priv->display.get_initial_plane_config = 16551 i9xx_get_initial_plane_config; 16552 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; 16553 dev_priv->display.crtc_enable = valleyview_crtc_enable; 16554 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16555 } else if (IS_VALLEYVIEW(dev_priv)) { 16556 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16557 dev_priv->display.get_initial_plane_config = 16558 i9xx_get_initial_plane_config; 16559 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; 16560 dev_priv->display.crtc_enable = valleyview_crtc_enable; 16561 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16562 } else if (IS_G4X(dev_priv)) { 16563 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16564 dev_priv->display.get_initial_plane_config = 16565 i9xx_get_initial_plane_config; 16566 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; 16567 dev_priv->display.crtc_enable = i9xx_crtc_enable; 16568 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16569 } else if (IS_PINEVIEW(dev_priv)) { 16570 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16571 dev_priv->display.get_initial_plane_config = 16572 i9xx_get_initial_plane_config; 16573 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; 16574 dev_priv->display.crtc_enable = i9xx_crtc_enable; 16575 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16576 } else if (!IS_GEN(dev_priv, 2)) { 16577 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16578 dev_priv->display.get_initial_plane_config = 16579 i9xx_get_initial_plane_config; 16580 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; 16581 dev_priv->display.crtc_enable = i9xx_crtc_enable; 16582 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16583 } else { 16584 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16585 dev_priv->display.get_initial_plane_config = 16586 i9xx_get_initial_plane_config; 16587 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; 16588 dev_priv->display.crtc_enable = i9xx_crtc_enable; 16589 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16590 } 16591 16592 if (IS_GEN(dev_priv, 5)) { 16593 dev_priv->display.fdi_link_train = ironlake_fdi_link_train; 16594 } else if (IS_GEN(dev_priv, 6)) { 16595 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 16596 } else if (IS_IVYBRIDGE(dev_priv)) { 16597 /* FIXME: detect B0+ stepping and use auto training */ 16598 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 16599 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 16600 dev_priv->display.fdi_link_train = hsw_fdi_link_train; 16601 } 16602 16603 if (INTEL_GEN(dev_priv) >= 9) 16604 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 16605 else 16606 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 16607 16608 } 16609 16610 void intel_modeset_init_hw(struct drm_i915_private *i915) 16611 { 16612 intel_update_cdclk(i915); 16613 intel_dump_cdclk_state(&i915->cdclk.hw, "Current CDCLK"); 16614 i915->cdclk.logical = i915->cdclk.actual = i915->cdclk.hw; 16615 } 16616 16617 /* 16618 * Calculate what we think the watermarks should be for the state we've read 16619 * out of the hardware and then immediately program those watermarks so that 16620 * we ensure the hardware settings match our internal state. 16621 * 16622 * We can calculate what we think WM's should be by creating a duplicate of the 16623 * current state (which was constructed during hardware readout) and running it 16624 * through the atomic check code to calculate new watermark values in the 16625 * state object. 16626 */ 16627 static void sanitize_watermarks(struct drm_device *dev) 16628 { 16629 struct drm_i915_private *dev_priv = to_i915(dev); 16630 struct drm_atomic_state *state; 16631 struct intel_atomic_state *intel_state; 16632 struct intel_crtc *crtc; 16633 struct intel_crtc_state *crtc_state; 16634 struct drm_modeset_acquire_ctx ctx; 16635 int ret; 16636 int i; 16637 16638 /* Only supported on platforms that use atomic watermark design */ 16639 if (!dev_priv->display.optimize_watermarks) 16640 return; 16641 16642 /* 16643 * We need to hold connection_mutex before calling duplicate_state so 16644 * that the connector loop is protected. 16645 */ 16646 drm_modeset_acquire_init(&ctx, 0); 16647 retry: 16648 ret = drm_modeset_lock_all_ctx(dev, &ctx); 16649 if (ret == -EDEADLK) { 16650 drm_modeset_backoff(&ctx); 16651 goto retry; 16652 } else if (WARN_ON(ret)) { 16653 goto fail; 16654 } 16655 16656 state = drm_atomic_helper_duplicate_state(dev, &ctx); 16657 if (WARN_ON(IS_ERR(state))) 16658 goto fail; 16659 16660 intel_state = to_intel_atomic_state(state); 16661 16662 /* 16663 * Hardware readout is the only time we don't want to calculate 16664 * intermediate watermarks (since we don't trust the current 16665 * watermarks). 16666 */ 16667 if (!HAS_GMCH(dev_priv)) 16668 intel_state->skip_intermediate_wm = true; 16669 16670 ret = intel_atomic_check(dev, state); 16671 if (ret) { 16672 /* 16673 * If we fail here, it means that the hardware appears to be 16674 * programmed in a way that shouldn't be possible, given our 16675 * understanding of watermark requirements. This might mean a 16676 * mistake in the hardware readout code or a mistake in the 16677 * watermark calculations for a given platform. Raise a WARN 16678 * so that this is noticeable. 16679 * 16680 * If this actually happens, we'll have to just leave the 16681 * BIOS-programmed watermarks untouched and hope for the best. 16682 */ 16683 WARN(true, "Could not determine valid watermarks for inherited state\n"); 16684 goto put_state; 16685 } 16686 16687 /* Write calculated watermark values back */ 16688 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 16689 crtc_state->wm.need_postvbl_update = true; 16690 dev_priv->display.optimize_watermarks(intel_state, crtc_state); 16691 16692 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 16693 } 16694 16695 put_state: 16696 drm_atomic_state_put(state); 16697 fail: 16698 drm_modeset_drop_locks(&ctx); 16699 drm_modeset_acquire_fini(&ctx); 16700 } 16701 16702 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 16703 { 16704 if (IS_GEN(dev_priv, 5)) { 16705 u32 fdi_pll_clk = 16706 I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 16707 16708 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 16709 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { 16710 dev_priv->fdi_pll_freq = 270000; 16711 } else { 16712 return; 16713 } 16714 16715 DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 16716 } 16717 16718 static int intel_initial_commit(struct drm_device *dev) 16719 { 16720 struct drm_atomic_state *state = NULL; 16721 struct drm_modeset_acquire_ctx ctx; 16722 struct drm_crtc *crtc; 16723 struct drm_crtc_state *crtc_state; 16724 int ret = 0; 16725 16726 state = drm_atomic_state_alloc(dev); 16727 if (!state) 16728 return -ENOMEM; 16729 16730 drm_modeset_acquire_init(&ctx, 0); 16731 16732 retry: 16733 state->acquire_ctx = &ctx; 16734 16735 drm_for_each_crtc(crtc, dev) { 16736 crtc_state = drm_atomic_get_crtc_state(state, crtc); 16737 if (IS_ERR(crtc_state)) { 16738 ret = PTR_ERR(crtc_state); 16739 goto out; 16740 } 16741 16742 if (crtc_state->active) { 16743 ret = drm_atomic_add_affected_planes(state, crtc); 16744 if (ret) 16745 goto out; 16746 16747 /* 16748 * FIXME hack to force a LUT update to avoid the 16749 * plane update forcing the pipe gamma on without 16750 * having a proper LUT loaded. Remove once we 16751 * have readout for pipe gamma enable. 16752 */ 16753 crtc_state->color_mgmt_changed = true; 16754 } 16755 } 16756 16757 ret = drm_atomic_commit(state); 16758 16759 out: 16760 if (ret == -EDEADLK) { 16761 drm_atomic_state_clear(state); 16762 drm_modeset_backoff(&ctx); 16763 goto retry; 16764 } 16765 16766 drm_atomic_state_put(state); 16767 16768 drm_modeset_drop_locks(&ctx); 16769 drm_modeset_acquire_fini(&ctx); 16770 16771 return ret; 16772 } 16773 16774 static void intel_mode_config_init(struct drm_i915_private *i915) 16775 { 16776 struct drm_mode_config *mode_config = &i915->drm.mode_config; 16777 16778 drm_mode_config_init(&i915->drm); 16779 16780 mode_config->min_width = 0; 16781 mode_config->min_height = 0; 16782 16783 mode_config->preferred_depth = 24; 16784 mode_config->prefer_shadow = 1; 16785 16786 mode_config->allow_fb_modifiers = true; 16787 16788 mode_config->funcs = &intel_mode_funcs; 16789 16790 /* 16791 * Maximum framebuffer dimensions, chosen to match 16792 * the maximum render engine surface size on gen4+. 16793 */ 16794 if (INTEL_GEN(i915) >= 7) { 16795 mode_config->max_width = 16384; 16796 mode_config->max_height = 16384; 16797 } else if (INTEL_GEN(i915) >= 4) { 16798 mode_config->max_width = 8192; 16799 mode_config->max_height = 8192; 16800 } else if (IS_GEN(i915, 3)) { 16801 mode_config->max_width = 4096; 16802 mode_config->max_height = 4096; 16803 } else { 16804 mode_config->max_width = 2048; 16805 mode_config->max_height = 2048; 16806 } 16807 16808 if (IS_I845G(i915) || IS_I865G(i915)) { 16809 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 16810 mode_config->cursor_height = 1023; 16811 } else if (IS_GEN(i915, 2)) { 16812 mode_config->cursor_width = 64; 16813 mode_config->cursor_height = 64; 16814 } else { 16815 mode_config->cursor_width = 256; 16816 mode_config->cursor_height = 256; 16817 } 16818 } 16819 16820 int intel_modeset_init(struct drm_i915_private *i915) 16821 { 16822 struct drm_device *dev = &i915->drm; 16823 enum pipe pipe; 16824 struct intel_crtc *crtc; 16825 int ret; 16826 16827 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 16828 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 16829 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 16830 16831 intel_mode_config_init(i915); 16832 16833 ret = intel_bw_init(i915); 16834 if (ret) 16835 return ret; 16836 16837 init_llist_head(&i915->atomic_helper.free_list); 16838 INIT_WORK(&i915->atomic_helper.free_work, 16839 intel_atomic_helper_free_state_worker); 16840 16841 intel_init_quirks(i915); 16842 16843 intel_fbc_init(i915); 16844 16845 intel_init_pm(i915); 16846 16847 intel_panel_sanitize_ssc(i915); 16848 16849 intel_gmbus_setup(i915); 16850 16851 DRM_DEBUG_KMS("%d display pipe%s available.\n", 16852 INTEL_NUM_PIPES(i915), 16853 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 16854 16855 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) { 16856 for_each_pipe(i915, pipe) { 16857 ret = intel_crtc_init(i915, pipe); 16858 if (ret) { 16859 drm_mode_config_cleanup(dev); 16860 return ret; 16861 } 16862 } 16863 } 16864 16865 intel_shared_dpll_init(dev); 16866 intel_update_fdi_pll_freq(i915); 16867 16868 intel_update_czclk(i915); 16869 intel_modeset_init_hw(i915); 16870 16871 intel_hdcp_component_init(i915); 16872 16873 if (i915->max_cdclk_freq == 0) 16874 intel_update_max_cdclk(i915); 16875 16876 /* Just disable it once at startup */ 16877 intel_vga_disable(i915); 16878 intel_setup_outputs(i915); 16879 16880 drm_modeset_lock_all(dev); 16881 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 16882 drm_modeset_unlock_all(dev); 16883 16884 for_each_intel_crtc(dev, crtc) { 16885 struct intel_initial_plane_config plane_config = {}; 16886 16887 if (!crtc->active) 16888 continue; 16889 16890 /* 16891 * Note that reserving the BIOS fb up front prevents us 16892 * from stuffing other stolen allocations like the ring 16893 * on top. This prevents some ugliness at boot time, and 16894 * can even allow for smooth boot transitions if the BIOS 16895 * fb is large enough for the active pipe configuration. 16896 */ 16897 i915->display.get_initial_plane_config(crtc, &plane_config); 16898 16899 /* 16900 * If the fb is shared between multiple heads, we'll 16901 * just get the first one. 16902 */ 16903 intel_find_initial_plane_obj(crtc, &plane_config); 16904 } 16905 16906 /* 16907 * Make sure hardware watermarks really match the state we read out. 16908 * Note that we need to do this after reconstructing the BIOS fb's 16909 * since the watermark calculation done here will use pstate->fb. 16910 */ 16911 if (!HAS_GMCH(i915)) 16912 sanitize_watermarks(dev); 16913 16914 /* 16915 * Force all active planes to recompute their states. So that on 16916 * mode_setcrtc after probe, all the intel_plane_state variables 16917 * are already calculated and there is no assert_plane warnings 16918 * during bootup. 16919 */ 16920 ret = intel_initial_commit(dev); 16921 if (ret) 16922 DRM_DEBUG_KMS("Initial commit in probe failed.\n"); 16923 16924 return 0; 16925 } 16926 16927 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 16928 { 16929 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 16930 /* 640x480@60Hz, ~25175 kHz */ 16931 struct dpll clock = { 16932 .m1 = 18, 16933 .m2 = 7, 16934 .p1 = 13, 16935 .p2 = 4, 16936 .n = 2, 16937 }; 16938 u32 dpll, fp; 16939 int i; 16940 16941 WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154); 16942 16943 DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 16944 pipe_name(pipe), clock.vco, clock.dot); 16945 16946 fp = i9xx_dpll_compute_fp(&clock); 16947 dpll = DPLL_DVO_2X_MODE | 16948 DPLL_VGA_MODE_DIS | 16949 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 16950 PLL_P2_DIVIDE_BY_4 | 16951 PLL_REF_INPUT_DREFCLK | 16952 DPLL_VCO_ENABLE; 16953 16954 I915_WRITE(FP0(pipe), fp); 16955 I915_WRITE(FP1(pipe), fp); 16956 16957 I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 16958 I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 16959 I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 16960 I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 16961 I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 16962 I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 16963 I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 16964 16965 /* 16966 * Apparently we need to have VGA mode enabled prior to changing 16967 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 16968 * dividers, even though the register value does change. 16969 */ 16970 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 16971 I915_WRITE(DPLL(pipe), dpll); 16972 16973 /* Wait for the clocks to stabilize. */ 16974 POSTING_READ(DPLL(pipe)); 16975 udelay(150); 16976 16977 /* The pixel multiplier can only be updated once the 16978 * DPLL is enabled and the clocks are stable. 16979 * 16980 * So write it again. 16981 */ 16982 I915_WRITE(DPLL(pipe), dpll); 16983 16984 /* We do this three times for luck */ 16985 for (i = 0; i < 3 ; i++) { 16986 I915_WRITE(DPLL(pipe), dpll); 16987 POSTING_READ(DPLL(pipe)); 16988 udelay(150); /* wait for warmup */ 16989 } 16990 16991 I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 16992 POSTING_READ(PIPECONF(pipe)); 16993 16994 intel_wait_for_pipe_scanline_moving(crtc); 16995 } 16996 16997 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 16998 { 16999 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17000 17001 DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n", 17002 pipe_name(pipe)); 17003 17004 WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE); 17005 WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE); 17006 WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE); 17007 WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE); 17008 WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE); 17009 17010 I915_WRITE(PIPECONF(pipe), 0); 17011 POSTING_READ(PIPECONF(pipe)); 17012 17013 intel_wait_for_pipe_scanline_stopped(crtc); 17014 17015 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS); 17016 POSTING_READ(DPLL(pipe)); 17017 } 17018 17019 static void 17020 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 17021 { 17022 struct intel_crtc *crtc; 17023 17024 if (INTEL_GEN(dev_priv) >= 4) 17025 return; 17026 17027 for_each_intel_crtc(&dev_priv->drm, crtc) { 17028 struct intel_plane *plane = 17029 to_intel_plane(crtc->base.primary); 17030 struct intel_crtc *plane_crtc; 17031 enum pipe pipe; 17032 17033 if (!plane->get_hw_state(plane, &pipe)) 17034 continue; 17035 17036 if (pipe == crtc->pipe) 17037 continue; 17038 17039 DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 17040 plane->base.base.id, plane->base.name); 17041 17042 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17043 intel_plane_disable_noatomic(plane_crtc, plane); 17044 } 17045 } 17046 17047 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 17048 { 17049 struct drm_device *dev = crtc->base.dev; 17050 struct intel_encoder *encoder; 17051 17052 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 17053 return true; 17054 17055 return false; 17056 } 17057 17058 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 17059 { 17060 struct drm_device *dev = encoder->base.dev; 17061 struct intel_connector *connector; 17062 17063 for_each_connector_on_encoder(dev, &encoder->base, connector) 17064 return connector; 17065 17066 return NULL; 17067 } 17068 17069 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 17070 enum pipe pch_transcoder) 17071 { 17072 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 17073 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 17074 } 17075 17076 static void intel_sanitize_crtc(struct intel_crtc *crtc, 17077 struct drm_modeset_acquire_ctx *ctx) 17078 { 17079 struct drm_device *dev = crtc->base.dev; 17080 struct drm_i915_private *dev_priv = to_i915(dev); 17081 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 17082 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 17083 17084 /* Clear any frame start delays used for debugging left by the BIOS */ 17085 if (crtc->active && !transcoder_is_dsi(cpu_transcoder)) { 17086 i915_reg_t reg = PIPECONF(cpu_transcoder); 17087 17088 I915_WRITE(reg, 17089 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); 17090 } 17091 17092 if (crtc_state->base.active) { 17093 struct intel_plane *plane; 17094 17095 /* Disable everything but the primary plane */ 17096 for_each_intel_plane_on_crtc(dev, crtc, plane) { 17097 const struct intel_plane_state *plane_state = 17098 to_intel_plane_state(plane->base.state); 17099 17100 if (plane_state->base.visible && 17101 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 17102 intel_plane_disable_noatomic(crtc, plane); 17103 } 17104 17105 /* 17106 * Disable any background color set by the BIOS, but enable the 17107 * gamma and CSC to match how we program our planes. 17108 */ 17109 if (INTEL_GEN(dev_priv) >= 9) 17110 I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe), 17111 SKL_BOTTOM_COLOR_GAMMA_ENABLE | 17112 SKL_BOTTOM_COLOR_CSC_ENABLE); 17113 } 17114 17115 /* Adjust the state of the output pipe according to whether we 17116 * have active connectors/encoders. */ 17117 if (crtc_state->base.active && !intel_crtc_has_encoders(crtc)) 17118 intel_crtc_disable_noatomic(&crtc->base, ctx); 17119 17120 if (crtc_state->base.active || HAS_GMCH(dev_priv)) { 17121 /* 17122 * We start out with underrun reporting disabled to avoid races. 17123 * For correct bookkeeping mark this on active crtcs. 17124 * 17125 * Also on gmch platforms we dont have any hardware bits to 17126 * disable the underrun reporting. Which means we need to start 17127 * out with underrun reporting disabled also on inactive pipes, 17128 * since otherwise we'll complain about the garbage we read when 17129 * e.g. coming up after runtime pm. 17130 * 17131 * No protection against concurrent access is required - at 17132 * worst a fifo underrun happens which also sets this to false. 17133 */ 17134 crtc->cpu_fifo_underrun_disabled = true; 17135 /* 17136 * We track the PCH trancoder underrun reporting state 17137 * within the crtc. With crtc for pipe A housing the underrun 17138 * reporting state for PCH transcoder A, crtc for pipe B housing 17139 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 17140 * and marking underrun reporting as disabled for the non-existing 17141 * PCH transcoders B and C would prevent enabling the south 17142 * error interrupt (see cpt_can_enable_serr_int()). 17143 */ 17144 if (has_pch_trancoder(dev_priv, crtc->pipe)) 17145 crtc->pch_fifo_underrun_disabled = true; 17146 } 17147 } 17148 17149 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 17150 { 17151 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 17152 17153 /* 17154 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 17155 * the hardware when a high res displays plugged in. DPLL P 17156 * divider is zero, and the pipe timings are bonkers. We'll 17157 * try to disable everything in that case. 17158 * 17159 * FIXME would be nice to be able to sanitize this state 17160 * without several WARNs, but for now let's take the easy 17161 * road. 17162 */ 17163 return IS_GEN(dev_priv, 6) && 17164 crtc_state->base.active && 17165 crtc_state->shared_dpll && 17166 crtc_state->port_clock == 0; 17167 } 17168 17169 static void intel_sanitize_encoder(struct intel_encoder *encoder) 17170 { 17171 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 17172 struct intel_connector *connector; 17173 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 17174 struct intel_crtc_state *crtc_state = crtc ? 17175 to_intel_crtc_state(crtc->base.state) : NULL; 17176 17177 /* We need to check both for a crtc link (meaning that the 17178 * encoder is active and trying to read from a pipe) and the 17179 * pipe itself being active. */ 17180 bool has_active_crtc = crtc_state && 17181 crtc_state->base.active; 17182 17183 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 17184 DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n", 17185 pipe_name(crtc->pipe)); 17186 has_active_crtc = false; 17187 } 17188 17189 connector = intel_encoder_find_connector(encoder); 17190 if (connector && !has_active_crtc) { 17191 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", 17192 encoder->base.base.id, 17193 encoder->base.name); 17194 17195 /* Connector is active, but has no active pipe. This is 17196 * fallout from our resume register restoring. Disable 17197 * the encoder manually again. */ 17198 if (crtc_state) { 17199 struct drm_encoder *best_encoder; 17200 17201 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", 17202 encoder->base.base.id, 17203 encoder->base.name); 17204 17205 /* avoid oopsing in case the hooks consult best_encoder */ 17206 best_encoder = connector->base.state->best_encoder; 17207 connector->base.state->best_encoder = &encoder->base; 17208 17209 if (encoder->disable) 17210 encoder->disable(encoder, crtc_state, 17211 connector->base.state); 17212 if (encoder->post_disable) 17213 encoder->post_disable(encoder, crtc_state, 17214 connector->base.state); 17215 17216 connector->base.state->best_encoder = best_encoder; 17217 } 17218 encoder->base.crtc = NULL; 17219 17220 /* Inconsistent output/port/pipe state happens presumably due to 17221 * a bug in one of the get_hw_state functions. Or someplace else 17222 * in our code, like the register restore mess on resume. Clamp 17223 * things to off as a safer default. */ 17224 17225 connector->base.dpms = DRM_MODE_DPMS_OFF; 17226 connector->base.encoder = NULL; 17227 } 17228 17229 /* notify opregion of the sanitized encoder state */ 17230 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 17231 17232 if (INTEL_GEN(dev_priv) >= 11) 17233 icl_sanitize_encoder_pll_mapping(encoder); 17234 } 17235 17236 /* FIXME read out full plane state for all planes */ 17237 static void readout_plane_state(struct drm_i915_private *dev_priv) 17238 { 17239 struct intel_plane *plane; 17240 struct intel_crtc *crtc; 17241 17242 for_each_intel_plane(&dev_priv->drm, plane) { 17243 struct intel_plane_state *plane_state = 17244 to_intel_plane_state(plane->base.state); 17245 struct intel_crtc_state *crtc_state; 17246 enum pipe pipe = PIPE_A; 17247 bool visible; 17248 17249 visible = plane->get_hw_state(plane, &pipe); 17250 17251 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17252 crtc_state = to_intel_crtc_state(crtc->base.state); 17253 17254 intel_set_plane_visible(crtc_state, plane_state, visible); 17255 17256 DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 17257 plane->base.base.id, plane->base.name, 17258 enableddisabled(visible), pipe_name(pipe)); 17259 } 17260 17261 for_each_intel_crtc(&dev_priv->drm, crtc) { 17262 struct intel_crtc_state *crtc_state = 17263 to_intel_crtc_state(crtc->base.state); 17264 17265 fixup_active_planes(crtc_state); 17266 } 17267 } 17268 17269 static void intel_modeset_readout_hw_state(struct drm_device *dev) 17270 { 17271 struct drm_i915_private *dev_priv = to_i915(dev); 17272 enum pipe pipe; 17273 struct intel_crtc *crtc; 17274 struct intel_encoder *encoder; 17275 struct intel_connector *connector; 17276 struct drm_connector_list_iter conn_iter; 17277 int i; 17278 17279 dev_priv->active_pipes = 0; 17280 17281 for_each_intel_crtc(dev, crtc) { 17282 struct intel_crtc_state *crtc_state = 17283 to_intel_crtc_state(crtc->base.state); 17284 17285 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base); 17286 memset(crtc_state, 0, sizeof(*crtc_state)); 17287 __drm_atomic_helper_crtc_reset(&crtc->base, &crtc_state->base); 17288 17289 crtc_state->base.active = crtc_state->base.enable = 17290 dev_priv->display.get_pipe_config(crtc, crtc_state); 17291 17292 crtc->base.enabled = crtc_state->base.enable; 17293 crtc->active = crtc_state->base.active; 17294 17295 if (crtc_state->base.active) 17296 dev_priv->active_pipes |= BIT(crtc->pipe); 17297 17298 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n", 17299 crtc->base.base.id, crtc->base.name, 17300 enableddisabled(crtc_state->base.active)); 17301 } 17302 17303 readout_plane_state(dev_priv); 17304 17305 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 17306 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 17307 17308 pll->on = pll->info->funcs->get_hw_state(dev_priv, pll, 17309 &pll->state.hw_state); 17310 17311 if (IS_ELKHARTLAKE(dev_priv) && pll->on && 17312 pll->info->id == DPLL_ID_EHL_DPLL4) { 17313 pll->wakeref = intel_display_power_get(dev_priv, 17314 POWER_DOMAIN_DPLL_DC_OFF); 17315 } 17316 17317 pll->state.crtc_mask = 0; 17318 for_each_intel_crtc(dev, crtc) { 17319 struct intel_crtc_state *crtc_state = 17320 to_intel_crtc_state(crtc->base.state); 17321 17322 if (crtc_state->base.active && 17323 crtc_state->shared_dpll == pll) 17324 pll->state.crtc_mask |= 1 << crtc->pipe; 17325 } 17326 pll->active_mask = pll->state.crtc_mask; 17327 17328 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n", 17329 pll->info->name, pll->state.crtc_mask, pll->on); 17330 } 17331 17332 for_each_intel_encoder(dev, encoder) { 17333 pipe = 0; 17334 17335 if (encoder->get_hw_state(encoder, &pipe)) { 17336 struct intel_crtc_state *crtc_state; 17337 17338 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17339 crtc_state = to_intel_crtc_state(crtc->base.state); 17340 17341 encoder->base.crtc = &crtc->base; 17342 encoder->get_config(encoder, crtc_state); 17343 } else { 17344 encoder->base.crtc = NULL; 17345 } 17346 17347 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 17348 encoder->base.base.id, encoder->base.name, 17349 enableddisabled(encoder->base.crtc), 17350 pipe_name(pipe)); 17351 } 17352 17353 drm_connector_list_iter_begin(dev, &conn_iter); 17354 for_each_intel_connector_iter(connector, &conn_iter) { 17355 if (connector->get_hw_state(connector)) { 17356 struct intel_crtc_state *crtc_state; 17357 struct intel_crtc *crtc; 17358 17359 connector->base.dpms = DRM_MODE_DPMS_ON; 17360 17361 encoder = connector->encoder; 17362 connector->base.encoder = &encoder->base; 17363 17364 crtc = to_intel_crtc(encoder->base.crtc); 17365 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 17366 17367 if (crtc_state && crtc_state->base.active) { 17368 /* 17369 * This has to be done during hardware readout 17370 * because anything calling .crtc_disable may 17371 * rely on the connector_mask being accurate. 17372 */ 17373 crtc_state->base.connector_mask |= 17374 drm_connector_mask(&connector->base); 17375 crtc_state->base.encoder_mask |= 17376 drm_encoder_mask(&encoder->base); 17377 } 17378 } else { 17379 connector->base.dpms = DRM_MODE_DPMS_OFF; 17380 connector->base.encoder = NULL; 17381 } 17382 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", 17383 connector->base.base.id, connector->base.name, 17384 enableddisabled(connector->base.encoder)); 17385 } 17386 drm_connector_list_iter_end(&conn_iter); 17387 17388 for_each_intel_crtc(dev, crtc) { 17389 struct intel_bw_state *bw_state = 17390 to_intel_bw_state(dev_priv->bw_obj.state); 17391 struct intel_crtc_state *crtc_state = 17392 to_intel_crtc_state(crtc->base.state); 17393 struct intel_plane *plane; 17394 int min_cdclk = 0; 17395 17396 if (crtc_state->base.active) { 17397 struct drm_display_mode mode; 17398 17399 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, 17400 crtc_state); 17401 17402 mode = crtc_state->base.adjusted_mode; 17403 mode.hdisplay = crtc_state->pipe_src_w; 17404 mode.vdisplay = crtc_state->pipe_src_h; 17405 WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->base, &mode)); 17406 17407 /* 17408 * The initial mode needs to be set in order to keep 17409 * the atomic core happy. It wants a valid mode if the 17410 * crtc's enabled, so we do the above call. 17411 * 17412 * But we don't set all the derived state fully, hence 17413 * set a flag to indicate that a full recalculation is 17414 * needed on the next commit. 17415 */ 17416 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED; 17417 17418 intel_crtc_compute_pixel_rate(crtc_state); 17419 17420 intel_crtc_update_active_timings(crtc_state); 17421 } 17422 17423 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 17424 const struct intel_plane_state *plane_state = 17425 to_intel_plane_state(plane->base.state); 17426 17427 /* 17428 * FIXME don't have the fb yet, so can't 17429 * use intel_plane_data_rate() :( 17430 */ 17431 if (plane_state->base.visible) 17432 crtc_state->data_rate[plane->id] = 17433 4 * crtc_state->pixel_rate; 17434 /* 17435 * FIXME don't have the fb yet, so can't 17436 * use plane->min_cdclk() :( 17437 */ 17438 if (plane_state->base.visible && plane->min_cdclk) { 17439 if (crtc_state->double_wide || 17440 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 17441 crtc_state->min_cdclk[plane->id] = 17442 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 17443 else 17444 crtc_state->min_cdclk[plane->id] = 17445 crtc_state->pixel_rate; 17446 } 17447 DRM_DEBUG_KMS("[PLANE:%d:%s] min_cdclk %d kHz\n", 17448 plane->base.base.id, plane->base.name, 17449 crtc_state->min_cdclk[plane->id]); 17450 } 17451 17452 if (crtc_state->base.active) { 17453 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 17454 if (WARN_ON(min_cdclk < 0)) 17455 min_cdclk = 0; 17456 } 17457 17458 dev_priv->min_cdclk[crtc->pipe] = min_cdclk; 17459 dev_priv->min_voltage_level[crtc->pipe] = 17460 crtc_state->min_voltage_level; 17461 17462 intel_bw_crtc_update(bw_state, crtc_state); 17463 17464 intel_pipe_config_sanity_check(dev_priv, crtc_state); 17465 } 17466 } 17467 17468 static void 17469 get_encoder_power_domains(struct drm_i915_private *dev_priv) 17470 { 17471 struct intel_encoder *encoder; 17472 17473 for_each_intel_encoder(&dev_priv->drm, encoder) { 17474 struct intel_crtc_state *crtc_state; 17475 17476 if (!encoder->get_power_domains) 17477 continue; 17478 17479 /* 17480 * MST-primary and inactive encoders don't have a crtc state 17481 * and neither of these require any power domain references. 17482 */ 17483 if (!encoder->base.crtc) 17484 continue; 17485 17486 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 17487 encoder->get_power_domains(encoder, crtc_state); 17488 } 17489 } 17490 17491 static void intel_early_display_was(struct drm_i915_private *dev_priv) 17492 { 17493 /* Display WA #1185 WaDisableDARBFClkGating:cnl,glk */ 17494 if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) 17495 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | 17496 DARBF_GATING_DIS); 17497 17498 if (IS_HASWELL(dev_priv)) { 17499 /* 17500 * WaRsPkgCStateDisplayPMReq:hsw 17501 * System hang if this isn't done before disabling all planes! 17502 */ 17503 I915_WRITE(CHICKEN_PAR1_1, 17504 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 17505 } 17506 } 17507 17508 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 17509 enum port port, i915_reg_t hdmi_reg) 17510 { 17511 u32 val = I915_READ(hdmi_reg); 17512 17513 if (val & SDVO_ENABLE || 17514 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 17515 return; 17516 17517 DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n", 17518 port_name(port)); 17519 17520 val &= ~SDVO_PIPE_SEL_MASK; 17521 val |= SDVO_PIPE_SEL(PIPE_A); 17522 17523 I915_WRITE(hdmi_reg, val); 17524 } 17525 17526 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 17527 enum port port, i915_reg_t dp_reg) 17528 { 17529 u32 val = I915_READ(dp_reg); 17530 17531 if (val & DP_PORT_EN || 17532 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 17533 return; 17534 17535 DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n", 17536 port_name(port)); 17537 17538 val &= ~DP_PIPE_SEL_MASK; 17539 val |= DP_PIPE_SEL(PIPE_A); 17540 17541 I915_WRITE(dp_reg, val); 17542 } 17543 17544 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 17545 { 17546 /* 17547 * The BIOS may select transcoder B on some of the PCH 17548 * ports even it doesn't enable the port. This would trip 17549 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 17550 * Sanitize the transcoder select bits to prevent that. We 17551 * assume that the BIOS never actually enabled the port, 17552 * because if it did we'd actually have to toggle the port 17553 * on and back off to make the transcoder A select stick 17554 * (see. intel_dp_link_down(), intel_disable_hdmi(), 17555 * intel_disable_sdvo()). 17556 */ 17557 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 17558 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 17559 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 17560 17561 /* PCH SDVOB multiplex with HDMIB */ 17562 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 17563 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 17564 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 17565 } 17566 17567 /* Scan out the current hw modeset state, 17568 * and sanitizes it to the current state 17569 */ 17570 static void 17571 intel_modeset_setup_hw_state(struct drm_device *dev, 17572 struct drm_modeset_acquire_ctx *ctx) 17573 { 17574 struct drm_i915_private *dev_priv = to_i915(dev); 17575 struct intel_crtc_state *crtc_state; 17576 struct intel_encoder *encoder; 17577 struct intel_crtc *crtc; 17578 intel_wakeref_t wakeref; 17579 int i; 17580 17581 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 17582 17583 intel_early_display_was(dev_priv); 17584 intel_modeset_readout_hw_state(dev); 17585 17586 /* HW state is read out, now we need to sanitize this mess. */ 17587 17588 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 17589 for_each_intel_encoder(dev, encoder) { 17590 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 17591 17592 /* We need to sanitize only the MST primary port. */ 17593 if (encoder->type != INTEL_OUTPUT_DP_MST && 17594 intel_phy_is_tc(dev_priv, phy)) 17595 intel_tc_port_sanitize(enc_to_dig_port(&encoder->base)); 17596 } 17597 17598 get_encoder_power_domains(dev_priv); 17599 17600 if (HAS_PCH_IBX(dev_priv)) 17601 ibx_sanitize_pch_ports(dev_priv); 17602 17603 /* 17604 * intel_sanitize_plane_mapping() may need to do vblank 17605 * waits, so we need vblank interrupts restored beforehand. 17606 */ 17607 for_each_intel_crtc(&dev_priv->drm, crtc) { 17608 crtc_state = to_intel_crtc_state(crtc->base.state); 17609 17610 drm_crtc_vblank_reset(&crtc->base); 17611 17612 if (crtc_state->base.active) 17613 intel_crtc_vblank_on(crtc_state); 17614 } 17615 17616 intel_sanitize_plane_mapping(dev_priv); 17617 17618 for_each_intel_encoder(dev, encoder) 17619 intel_sanitize_encoder(encoder); 17620 17621 for_each_intel_crtc(&dev_priv->drm, crtc) { 17622 crtc_state = to_intel_crtc_state(crtc->base.state); 17623 intel_sanitize_crtc(crtc, ctx); 17624 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 17625 } 17626 17627 intel_modeset_update_connector_atomic_state(dev); 17628 17629 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 17630 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 17631 17632 if (!pll->on || pll->active_mask) 17633 continue; 17634 17635 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", 17636 pll->info->name); 17637 17638 pll->info->funcs->disable(dev_priv, pll); 17639 pll->on = false; 17640 } 17641 17642 if (IS_G4X(dev_priv)) { 17643 g4x_wm_get_hw_state(dev_priv); 17644 g4x_wm_sanitize(dev_priv); 17645 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 17646 vlv_wm_get_hw_state(dev_priv); 17647 vlv_wm_sanitize(dev_priv); 17648 } else if (INTEL_GEN(dev_priv) >= 9) { 17649 skl_wm_get_hw_state(dev_priv); 17650 } else if (HAS_PCH_SPLIT(dev_priv)) { 17651 ilk_wm_get_hw_state(dev_priv); 17652 } 17653 17654 for_each_intel_crtc(dev, crtc) { 17655 u64 put_domains; 17656 17657 crtc_state = to_intel_crtc_state(crtc->base.state); 17658 put_domains = modeset_get_crtc_power_domains(crtc_state); 17659 if (WARN_ON(put_domains)) 17660 modeset_put_power_domains(dev_priv, put_domains); 17661 } 17662 17663 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 17664 17665 intel_fbc_init_pipe_state(dev_priv); 17666 } 17667 17668 void intel_display_resume(struct drm_device *dev) 17669 { 17670 struct drm_i915_private *dev_priv = to_i915(dev); 17671 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 17672 struct drm_modeset_acquire_ctx ctx; 17673 int ret; 17674 17675 dev_priv->modeset_restore_state = NULL; 17676 if (state) 17677 state->acquire_ctx = &ctx; 17678 17679 drm_modeset_acquire_init(&ctx, 0); 17680 17681 while (1) { 17682 ret = drm_modeset_lock_all_ctx(dev, &ctx); 17683 if (ret != -EDEADLK) 17684 break; 17685 17686 drm_modeset_backoff(&ctx); 17687 } 17688 17689 if (!ret) 17690 ret = __intel_display_resume(dev, state, &ctx); 17691 17692 intel_enable_ipc(dev_priv); 17693 drm_modeset_drop_locks(&ctx); 17694 drm_modeset_acquire_fini(&ctx); 17695 17696 if (ret) 17697 DRM_ERROR("Restoring old state failed with %i\n", ret); 17698 if (state) 17699 drm_atomic_state_put(state); 17700 } 17701 17702 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 17703 { 17704 struct intel_connector *connector; 17705 struct drm_connector_list_iter conn_iter; 17706 17707 /* Kill all the work that may have been queued by hpd. */ 17708 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 17709 for_each_intel_connector_iter(connector, &conn_iter) { 17710 if (connector->modeset_retry_work.func) 17711 cancel_work_sync(&connector->modeset_retry_work); 17712 if (connector->hdcp.shim) { 17713 cancel_delayed_work_sync(&connector->hdcp.check_work); 17714 cancel_work_sync(&connector->hdcp.prop_work); 17715 } 17716 } 17717 drm_connector_list_iter_end(&conn_iter); 17718 } 17719 17720 void intel_modeset_driver_remove(struct drm_i915_private *i915) 17721 { 17722 flush_workqueue(i915->flip_wq); 17723 flush_workqueue(i915->modeset_wq); 17724 17725 flush_work(&i915->atomic_helper.free_work); 17726 WARN_ON(!llist_empty(&i915->atomic_helper.free_list)); 17727 17728 /* 17729 * Interrupts and polling as the first thing to avoid creating havoc. 17730 * Too much stuff here (turning of connectors, ...) would 17731 * experience fancy races otherwise. 17732 */ 17733 intel_irq_uninstall(i915); 17734 17735 /* 17736 * Due to the hpd irq storm handling the hotplug work can re-arm the 17737 * poll handlers. Hence disable polling after hpd handling is shut down. 17738 */ 17739 intel_hpd_poll_fini(i915); 17740 17741 /* poll work can call into fbdev, hence clean that up afterwards */ 17742 intel_fbdev_fini(i915); 17743 17744 intel_unregister_dsm_handler(); 17745 17746 intel_fbc_global_disable(i915); 17747 17748 /* flush any delayed tasks or pending work */ 17749 flush_scheduled_work(); 17750 17751 intel_hdcp_component_fini(i915); 17752 17753 drm_mode_config_cleanup(&i915->drm); 17754 17755 intel_overlay_cleanup(i915); 17756 17757 intel_gmbus_teardown(i915); 17758 17759 destroy_workqueue(i915->flip_wq); 17760 destroy_workqueue(i915->modeset_wq); 17761 17762 intel_fbc_cleanup_cfb(i915); 17763 } 17764 17765 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 17766 17767 struct intel_display_error_state { 17768 17769 u32 power_well_driver; 17770 17771 struct intel_cursor_error_state { 17772 u32 control; 17773 u32 position; 17774 u32 base; 17775 u32 size; 17776 } cursor[I915_MAX_PIPES]; 17777 17778 struct intel_pipe_error_state { 17779 bool power_domain_on; 17780 u32 source; 17781 u32 stat; 17782 } pipe[I915_MAX_PIPES]; 17783 17784 struct intel_plane_error_state { 17785 u32 control; 17786 u32 stride; 17787 u32 size; 17788 u32 pos; 17789 u32 addr; 17790 u32 surface; 17791 u32 tile_offset; 17792 } plane[I915_MAX_PIPES]; 17793 17794 struct intel_transcoder_error_state { 17795 bool available; 17796 bool power_domain_on; 17797 enum transcoder cpu_transcoder; 17798 17799 u32 conf; 17800 17801 u32 htotal; 17802 u32 hblank; 17803 u32 hsync; 17804 u32 vtotal; 17805 u32 vblank; 17806 u32 vsync; 17807 } transcoder[5]; 17808 }; 17809 17810 struct intel_display_error_state * 17811 intel_display_capture_error_state(struct drm_i915_private *dev_priv) 17812 { 17813 struct intel_display_error_state *error; 17814 int transcoders[] = { 17815 TRANSCODER_A, 17816 TRANSCODER_B, 17817 TRANSCODER_C, 17818 TRANSCODER_D, 17819 TRANSCODER_EDP, 17820 }; 17821 int i; 17822 17823 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); 17824 17825 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 17826 return NULL; 17827 17828 error = kzalloc(sizeof(*error), GFP_ATOMIC); 17829 if (error == NULL) 17830 return NULL; 17831 17832 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 17833 error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2); 17834 17835 for_each_pipe(dev_priv, i) { 17836 error->pipe[i].power_domain_on = 17837 __intel_display_power_is_enabled(dev_priv, 17838 POWER_DOMAIN_PIPE(i)); 17839 if (!error->pipe[i].power_domain_on) 17840 continue; 17841 17842 error->cursor[i].control = I915_READ(CURCNTR(i)); 17843 error->cursor[i].position = I915_READ(CURPOS(i)); 17844 error->cursor[i].base = I915_READ(CURBASE(i)); 17845 17846 error->plane[i].control = I915_READ(DSPCNTR(i)); 17847 error->plane[i].stride = I915_READ(DSPSTRIDE(i)); 17848 if (INTEL_GEN(dev_priv) <= 3) { 17849 error->plane[i].size = I915_READ(DSPSIZE(i)); 17850 error->plane[i].pos = I915_READ(DSPPOS(i)); 17851 } 17852 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 17853 error->plane[i].addr = I915_READ(DSPADDR(i)); 17854 if (INTEL_GEN(dev_priv) >= 4) { 17855 error->plane[i].surface = I915_READ(DSPSURF(i)); 17856 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); 17857 } 17858 17859 error->pipe[i].source = I915_READ(PIPESRC(i)); 17860 17861 if (HAS_GMCH(dev_priv)) 17862 error->pipe[i].stat = I915_READ(PIPESTAT(i)); 17863 } 17864 17865 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 17866 enum transcoder cpu_transcoder = transcoders[i]; 17867 17868 if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder]) 17869 continue; 17870 17871 error->transcoder[i].available = true; 17872 error->transcoder[i].power_domain_on = 17873 __intel_display_power_is_enabled(dev_priv, 17874 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 17875 if (!error->transcoder[i].power_domain_on) 17876 continue; 17877 17878 error->transcoder[i].cpu_transcoder = cpu_transcoder; 17879 17880 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder)); 17881 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); 17882 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder)); 17883 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder)); 17884 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); 17885 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder)); 17886 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder)); 17887 } 17888 17889 return error; 17890 } 17891 17892 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 17893 17894 void 17895 intel_display_print_error_state(struct drm_i915_error_state_buf *m, 17896 struct intel_display_error_state *error) 17897 { 17898 struct drm_i915_private *dev_priv = m->i915; 17899 int i; 17900 17901 if (!error) 17902 return; 17903 17904 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv)); 17905 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 17906 err_printf(m, "PWR_WELL_CTL2: %08x\n", 17907 error->power_well_driver); 17908 for_each_pipe(dev_priv, i) { 17909 err_printf(m, "Pipe [%d]:\n", i); 17910 err_printf(m, " Power: %s\n", 17911 onoff(error->pipe[i].power_domain_on)); 17912 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 17913 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 17914 17915 err_printf(m, "Plane [%d]:\n", i); 17916 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 17917 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 17918 if (INTEL_GEN(dev_priv) <= 3) { 17919 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 17920 err_printf(m, " POS: %08x\n", error->plane[i].pos); 17921 } 17922 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 17923 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 17924 if (INTEL_GEN(dev_priv) >= 4) { 17925 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 17926 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 17927 } 17928 17929 err_printf(m, "Cursor [%d]:\n", i); 17930 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 17931 err_printf(m, " POS: %08x\n", error->cursor[i].position); 17932 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 17933 } 17934 17935 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 17936 if (!error->transcoder[i].available) 17937 continue; 17938 17939 err_printf(m, "CPU transcoder: %s\n", 17940 transcoder_name(error->transcoder[i].cpu_transcoder)); 17941 err_printf(m, " Power: %s\n", 17942 onoff(error->transcoder[i].power_domain_on)); 17943 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 17944 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 17945 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 17946 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 17947 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 17948 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 17949 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 17950 } 17951 } 17952 17953 #endif 17954