1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <acpi/video.h> 28 #include <linux/i2c.h> 29 #include <linux/input.h> 30 #include <linux/intel-iommu.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/dma-resv.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_damage_helper.h> 40 #include <drm/drm_dp_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_fourcc.h> 43 #include <drm/drm_plane_helper.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_rect.h> 46 47 #include "display/intel_audio.h" 48 #include "display/intel_crt.h" 49 #include "display/intel_ddi.h" 50 #include "display/intel_display_debugfs.h" 51 #include "display/intel_dp.h" 52 #include "display/intel_dp_mst.h" 53 #include "display/intel_dpll.h" 54 #include "display/intel_dpll_mgr.h" 55 #include "display/intel_dsi.h" 56 #include "display/intel_dvo.h" 57 #include "display/intel_fb.h" 58 #include "display/intel_gmbus.h" 59 #include "display/intel_hdmi.h" 60 #include "display/intel_lvds.h" 61 #include "display/intel_sdvo.h" 62 #include "display/intel_tv.h" 63 #include "display/intel_vdsc.h" 64 #include "display/intel_vrr.h" 65 66 #include "gem/i915_gem_lmem.h" 67 #include "gem/i915_gem_object.h" 68 69 #include "gt/intel_rps.h" 70 #include "gt/gen8_ppgtt.h" 71 72 #include "g4x_dp.h" 73 #include "g4x_hdmi.h" 74 #include "i915_drv.h" 75 #include "intel_acpi.h" 76 #include "intel_atomic.h" 77 #include "intel_atomic_plane.h" 78 #include "intel_bw.h" 79 #include "intel_cdclk.h" 80 #include "intel_color.h" 81 #include "intel_crtc.h" 82 #include "intel_de.h" 83 #include "intel_display_types.h" 84 #include "intel_dmc.h" 85 #include "intel_dp_link_training.h" 86 #include "intel_fbc.h" 87 #include "intel_fdi.h" 88 #include "intel_fbdev.h" 89 #include "intel_fifo_underrun.h" 90 #include "intel_frontbuffer.h" 91 #include "intel_hdcp.h" 92 #include "intel_hotplug.h" 93 #include "intel_overlay.h" 94 #include "intel_pipe_crc.h" 95 #include "intel_pm.h" 96 #include "intel_pps.h" 97 #include "intel_psr.h" 98 #include "intel_quirks.h" 99 #include "intel_sideband.h" 100 #include "intel_sprite.h" 101 #include "intel_tc.h" 102 #include "intel_vga.h" 103 #include "i9xx_plane.h" 104 #include "skl_scaler.h" 105 #include "skl_universal_plane.h" 106 107 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 108 struct intel_crtc_state *pipe_config); 109 static void ilk_pch_clock_get(struct intel_crtc *crtc, 110 struct intel_crtc_state *pipe_config); 111 112 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 113 struct drm_i915_gem_object *obj, 114 struct drm_mode_fb_cmd2 *mode_cmd); 115 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); 116 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 117 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 118 const struct intel_link_m_n *m_n, 119 const struct intel_link_m_n *m2_n2); 120 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 121 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 122 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 123 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 124 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 125 static void intel_modeset_setup_hw_state(struct drm_device *dev, 126 struct drm_modeset_acquire_ctx *ctx); 127 128 struct i915_dpt { 129 struct i915_address_space vm; 130 131 struct drm_i915_gem_object *obj; 132 struct i915_vma *vma; 133 void __iomem *iomem; 134 }; 135 136 #define i915_is_dpt(vm) ((vm)->is_dpt) 137 138 static inline struct i915_dpt * 139 i915_vm_to_dpt(struct i915_address_space *vm) 140 { 141 BUILD_BUG_ON(offsetof(struct i915_dpt, vm)); 142 GEM_BUG_ON(!i915_is_dpt(vm)); 143 return container_of(vm, struct i915_dpt, vm); 144 } 145 146 #define dpt_total_entries(dpt) ((dpt)->vm.total >> PAGE_SHIFT) 147 148 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 149 { 150 writeq(pte, addr); 151 } 152 153 static void dpt_insert_page(struct i915_address_space *vm, 154 dma_addr_t addr, 155 u64 offset, 156 enum i915_cache_level level, 157 u32 flags) 158 { 159 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 160 gen8_pte_t __iomem *base = dpt->iomem; 161 162 gen8_set_pte(base + offset / I915_GTT_PAGE_SIZE, 163 vm->pte_encode(addr, level, flags)); 164 } 165 166 static void dpt_insert_entries(struct i915_address_space *vm, 167 struct i915_vma *vma, 168 enum i915_cache_level level, 169 u32 flags) 170 { 171 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 172 gen8_pte_t __iomem *base = dpt->iomem; 173 const gen8_pte_t pte_encode = vm->pte_encode(0, level, flags); 174 struct sgt_iter sgt_iter; 175 dma_addr_t addr; 176 int i; 177 178 /* 179 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 180 * not to allow the user to override access to a read only page. 181 */ 182 183 i = vma->node.start / I915_GTT_PAGE_SIZE; 184 for_each_sgt_daddr(addr, sgt_iter, vma->pages) 185 gen8_set_pte(&base[i++], pte_encode | addr); 186 } 187 188 static void dpt_clear_range(struct i915_address_space *vm, 189 u64 start, u64 length) 190 { 191 } 192 193 static void dpt_bind_vma(struct i915_address_space *vm, 194 struct i915_vm_pt_stash *stash, 195 struct i915_vma *vma, 196 enum i915_cache_level cache_level, 197 u32 flags) 198 { 199 struct drm_i915_gem_object *obj = vma->obj; 200 u32 pte_flags; 201 202 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 203 pte_flags = 0; 204 if (vma->vm->has_read_only && i915_gem_object_is_readonly(obj)) 205 pte_flags |= PTE_READ_ONLY; 206 if (i915_gem_object_is_lmem(obj)) 207 pte_flags |= PTE_LM; 208 209 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 210 211 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 212 213 /* 214 * Without aliasing PPGTT there's no difference between 215 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 216 * upgrade to both bound if we bind either to avoid double-binding. 217 */ 218 atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags); 219 } 220 221 static void dpt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma) 222 { 223 vm->clear_range(vm, vma->node.start, vma->size); 224 } 225 226 static void dpt_cleanup(struct i915_address_space *vm) 227 { 228 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 229 230 i915_gem_object_put(dpt->obj); 231 } 232 233 static struct i915_address_space * 234 intel_dpt_create(struct intel_framebuffer *fb) 235 { 236 struct drm_gem_object *obj = &intel_fb_obj(&fb->base)->base; 237 struct drm_i915_private *i915 = to_i915(obj->dev); 238 struct drm_i915_gem_object *dpt_obj; 239 struct i915_address_space *vm; 240 struct i915_dpt *dpt; 241 size_t size; 242 int ret; 243 244 if (intel_fb_needs_pot_stride_remap(fb)) 245 size = intel_remapped_info_size(&fb->remapped_view.gtt.remapped); 246 else 247 size = DIV_ROUND_UP_ULL(obj->size, I915_GTT_PAGE_SIZE); 248 249 size = round_up(size * sizeof(gen8_pte_t), I915_GTT_PAGE_SIZE); 250 251 if (HAS_LMEM(i915)) 252 dpt_obj = i915_gem_object_create_lmem(i915, size, 0); 253 else 254 dpt_obj = i915_gem_object_create_stolen(i915, size); 255 if (IS_ERR(dpt_obj)) 256 return ERR_CAST(dpt_obj); 257 258 ret = i915_gem_object_set_cache_level(dpt_obj, I915_CACHE_NONE); 259 if (ret) { 260 i915_gem_object_put(dpt_obj); 261 return ERR_PTR(ret); 262 } 263 264 dpt = kzalloc(sizeof(*dpt), GFP_KERNEL); 265 if (!dpt) { 266 i915_gem_object_put(dpt_obj); 267 return ERR_PTR(-ENOMEM); 268 } 269 270 vm = &dpt->vm; 271 272 vm->gt = &i915->gt; 273 vm->i915 = i915; 274 vm->dma = i915->drm.dev; 275 vm->total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 276 vm->is_dpt = true; 277 278 i915_address_space_init(vm, VM_CLASS_DPT); 279 280 vm->insert_page = dpt_insert_page; 281 vm->clear_range = dpt_clear_range; 282 vm->insert_entries = dpt_insert_entries; 283 vm->cleanup = dpt_cleanup; 284 285 vm->vma_ops.bind_vma = dpt_bind_vma; 286 vm->vma_ops.unbind_vma = dpt_unbind_vma; 287 vm->vma_ops.set_pages = ggtt_set_pages; 288 vm->vma_ops.clear_pages = clear_pages; 289 290 vm->pte_encode = gen8_ggtt_pte_encode; 291 292 dpt->obj = dpt_obj; 293 294 return &dpt->vm; 295 } 296 297 static void intel_dpt_destroy(struct i915_address_space *vm) 298 { 299 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 300 301 i915_vm_close(&dpt->vm); 302 } 303 304 /* returns HPLL frequency in kHz */ 305 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 306 { 307 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 308 309 /* Obtain SKU information */ 310 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 311 CCK_FUSE_HPLL_FREQ_MASK; 312 313 return vco_freq[hpll_freq] * 1000; 314 } 315 316 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 317 const char *name, u32 reg, int ref_freq) 318 { 319 u32 val; 320 int divider; 321 322 val = vlv_cck_read(dev_priv, reg); 323 divider = val & CCK_FREQUENCY_VALUES; 324 325 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 326 (divider << CCK_FREQUENCY_STATUS_SHIFT), 327 "%s change in progress\n", name); 328 329 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 330 } 331 332 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 333 const char *name, u32 reg) 334 { 335 int hpll; 336 337 vlv_cck_get(dev_priv); 338 339 if (dev_priv->hpll_freq == 0) 340 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 341 342 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 343 344 vlv_cck_put(dev_priv); 345 346 return hpll; 347 } 348 349 static void intel_update_czclk(struct drm_i915_private *dev_priv) 350 { 351 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 352 return; 353 354 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 355 CCK_CZ_CLOCK_CONTROL); 356 357 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 358 dev_priv->czclk_freq); 359 } 360 361 /* WA Display #0827: Gen9:all */ 362 static void 363 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 364 { 365 if (enable) 366 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 367 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 368 else 369 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 370 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 371 } 372 373 /* Wa_2006604312:icl,ehl */ 374 static void 375 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 376 bool enable) 377 { 378 if (enable) 379 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 380 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 381 else 382 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 383 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 384 } 385 386 static bool 387 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 388 { 389 return crtc_state->master_transcoder != INVALID_TRANSCODER; 390 } 391 392 static bool 393 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 394 { 395 return crtc_state->sync_mode_slaves_mask != 0; 396 } 397 398 bool 399 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 400 { 401 return is_trans_port_sync_master(crtc_state) || 402 is_trans_port_sync_slave(crtc_state); 403 } 404 405 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 406 enum pipe pipe) 407 { 408 i915_reg_t reg = PIPEDSL(pipe); 409 u32 line1, line2; 410 u32 line_mask; 411 412 if (DISPLAY_VER(dev_priv) == 2) 413 line_mask = DSL_LINEMASK_GEN2; 414 else 415 line_mask = DSL_LINEMASK_GEN3; 416 417 line1 = intel_de_read(dev_priv, reg) & line_mask; 418 msleep(5); 419 line2 = intel_de_read(dev_priv, reg) & line_mask; 420 421 return line1 != line2; 422 } 423 424 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 425 { 426 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 427 enum pipe pipe = crtc->pipe; 428 429 /* Wait for the display line to settle/start moving */ 430 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 431 drm_err(&dev_priv->drm, 432 "pipe %c scanline %s wait timed out\n", 433 pipe_name(pipe), onoff(state)); 434 } 435 436 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 437 { 438 wait_for_pipe_scanline_moving(crtc, false); 439 } 440 441 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 442 { 443 wait_for_pipe_scanline_moving(crtc, true); 444 } 445 446 static void 447 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 448 { 449 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 450 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 451 452 if (DISPLAY_VER(dev_priv) >= 4) { 453 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 454 i915_reg_t reg = PIPECONF(cpu_transcoder); 455 456 /* Wait for the Pipe State to go off */ 457 if (intel_de_wait_for_clear(dev_priv, reg, 458 I965_PIPECONF_ACTIVE, 100)) 459 drm_WARN(&dev_priv->drm, 1, 460 "pipe_off wait timed out\n"); 461 } else { 462 intel_wait_for_pipe_scanline_stopped(crtc); 463 } 464 } 465 466 /* Only for pre-ILK configs */ 467 void assert_pll(struct drm_i915_private *dev_priv, 468 enum pipe pipe, bool state) 469 { 470 u32 val; 471 bool cur_state; 472 473 val = intel_de_read(dev_priv, DPLL(pipe)); 474 cur_state = !!(val & DPLL_VCO_ENABLE); 475 I915_STATE_WARN(cur_state != state, 476 "PLL state assertion failure (expected %s, current %s)\n", 477 onoff(state), onoff(cur_state)); 478 } 479 480 /* XXX: the dsi pll is shared between MIPI DSI ports */ 481 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 482 { 483 u32 val; 484 bool cur_state; 485 486 vlv_cck_get(dev_priv); 487 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 488 vlv_cck_put(dev_priv); 489 490 cur_state = val & DSI_PLL_VCO_EN; 491 I915_STATE_WARN(cur_state != state, 492 "DSI PLL state assertion failure (expected %s, current %s)\n", 493 onoff(state), onoff(cur_state)); 494 } 495 496 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 497 enum pipe pipe, bool state) 498 { 499 bool cur_state; 500 501 if (HAS_DDI(dev_priv)) { 502 /* 503 * DDI does not have a specific FDI_TX register. 504 * 505 * FDI is never fed from EDP transcoder 506 * so pipe->transcoder cast is fine here. 507 */ 508 enum transcoder cpu_transcoder = (enum transcoder)pipe; 509 u32 val = intel_de_read(dev_priv, 510 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 511 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 512 } else { 513 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 514 cur_state = !!(val & FDI_TX_ENABLE); 515 } 516 I915_STATE_WARN(cur_state != state, 517 "FDI TX state assertion failure (expected %s, current %s)\n", 518 onoff(state), onoff(cur_state)); 519 } 520 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 521 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 522 523 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 524 enum pipe pipe, bool state) 525 { 526 u32 val; 527 bool cur_state; 528 529 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 530 cur_state = !!(val & FDI_RX_ENABLE); 531 I915_STATE_WARN(cur_state != state, 532 "FDI RX state assertion failure (expected %s, current %s)\n", 533 onoff(state), onoff(cur_state)); 534 } 535 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 536 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 537 538 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 539 enum pipe pipe) 540 { 541 u32 val; 542 543 /* ILK FDI PLL is always enabled */ 544 if (IS_IRONLAKE(dev_priv)) 545 return; 546 547 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 548 if (HAS_DDI(dev_priv)) 549 return; 550 551 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 552 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 553 } 554 555 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 556 enum pipe pipe, bool state) 557 { 558 u32 val; 559 bool cur_state; 560 561 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 562 cur_state = !!(val & FDI_RX_PLL_ENABLE); 563 I915_STATE_WARN(cur_state != state, 564 "FDI RX PLL assertion failure (expected %s, current %s)\n", 565 onoff(state), onoff(cur_state)); 566 } 567 568 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 569 { 570 i915_reg_t pp_reg; 571 u32 val; 572 enum pipe panel_pipe = INVALID_PIPE; 573 bool locked = true; 574 575 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 576 return; 577 578 if (HAS_PCH_SPLIT(dev_priv)) { 579 u32 port_sel; 580 581 pp_reg = PP_CONTROL(0); 582 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 583 584 switch (port_sel) { 585 case PANEL_PORT_SELECT_LVDS: 586 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 587 break; 588 case PANEL_PORT_SELECT_DPA: 589 g4x_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 590 break; 591 case PANEL_PORT_SELECT_DPC: 592 g4x_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 593 break; 594 case PANEL_PORT_SELECT_DPD: 595 g4x_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 596 break; 597 default: 598 MISSING_CASE(port_sel); 599 break; 600 } 601 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 602 /* presumably write lock depends on pipe, not port select */ 603 pp_reg = PP_CONTROL(pipe); 604 panel_pipe = pipe; 605 } else { 606 u32 port_sel; 607 608 pp_reg = PP_CONTROL(0); 609 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 610 611 drm_WARN_ON(&dev_priv->drm, 612 port_sel != PANEL_PORT_SELECT_LVDS); 613 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 614 } 615 616 val = intel_de_read(dev_priv, pp_reg); 617 if (!(val & PANEL_POWER_ON) || 618 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 619 locked = false; 620 621 I915_STATE_WARN(panel_pipe == pipe && locked, 622 "panel assertion failure, pipe %c regs locked\n", 623 pipe_name(pipe)); 624 } 625 626 void assert_pipe(struct drm_i915_private *dev_priv, 627 enum transcoder cpu_transcoder, bool state) 628 { 629 bool cur_state; 630 enum intel_display_power_domain power_domain; 631 intel_wakeref_t wakeref; 632 633 /* we keep both pipes enabled on 830 */ 634 if (IS_I830(dev_priv)) 635 state = true; 636 637 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 638 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 639 if (wakeref) { 640 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 641 cur_state = !!(val & PIPECONF_ENABLE); 642 643 intel_display_power_put(dev_priv, power_domain, wakeref); 644 } else { 645 cur_state = false; 646 } 647 648 I915_STATE_WARN(cur_state != state, 649 "transcoder %s assertion failure (expected %s, current %s)\n", 650 transcoder_name(cpu_transcoder), 651 onoff(state), onoff(cur_state)); 652 } 653 654 static void assert_plane(struct intel_plane *plane, bool state) 655 { 656 enum pipe pipe; 657 bool cur_state; 658 659 cur_state = plane->get_hw_state(plane, &pipe); 660 661 I915_STATE_WARN(cur_state != state, 662 "%s assertion failure (expected %s, current %s)\n", 663 plane->base.name, onoff(state), onoff(cur_state)); 664 } 665 666 #define assert_plane_enabled(p) assert_plane(p, true) 667 #define assert_plane_disabled(p) assert_plane(p, false) 668 669 static void assert_planes_disabled(struct intel_crtc *crtc) 670 { 671 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 672 struct intel_plane *plane; 673 674 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 675 assert_plane_disabled(plane); 676 } 677 678 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 679 enum pipe pipe) 680 { 681 u32 val; 682 bool enabled; 683 684 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 685 enabled = !!(val & TRANS_ENABLE); 686 I915_STATE_WARN(enabled, 687 "transcoder assertion failed, should be off on pipe %c but is still active\n", 688 pipe_name(pipe)); 689 } 690 691 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 692 enum pipe pipe, enum port port, 693 i915_reg_t dp_reg) 694 { 695 enum pipe port_pipe; 696 bool state; 697 698 state = g4x_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 699 700 I915_STATE_WARN(state && port_pipe == pipe, 701 "PCH DP %c enabled on transcoder %c, should be disabled\n", 702 port_name(port), pipe_name(pipe)); 703 704 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 705 "IBX PCH DP %c still using transcoder B\n", 706 port_name(port)); 707 } 708 709 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 710 enum pipe pipe, enum port port, 711 i915_reg_t hdmi_reg) 712 { 713 enum pipe port_pipe; 714 bool state; 715 716 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 717 718 I915_STATE_WARN(state && port_pipe == pipe, 719 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 720 port_name(port), pipe_name(pipe)); 721 722 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 723 "IBX PCH HDMI %c still using transcoder B\n", 724 port_name(port)); 725 } 726 727 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 728 enum pipe pipe) 729 { 730 enum pipe port_pipe; 731 732 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 733 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 734 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 735 736 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 737 port_pipe == pipe, 738 "PCH VGA enabled on transcoder %c, should be disabled\n", 739 pipe_name(pipe)); 740 741 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 742 port_pipe == pipe, 743 "PCH LVDS enabled on transcoder %c, should be disabled\n", 744 pipe_name(pipe)); 745 746 /* PCH SDVOB multiplex with HDMIB */ 747 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 748 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 749 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 750 } 751 752 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 753 struct intel_digital_port *dig_port, 754 unsigned int expected_mask) 755 { 756 u32 port_mask; 757 i915_reg_t dpll_reg; 758 759 switch (dig_port->base.port) { 760 case PORT_B: 761 port_mask = DPLL_PORTB_READY_MASK; 762 dpll_reg = DPLL(0); 763 break; 764 case PORT_C: 765 port_mask = DPLL_PORTC_READY_MASK; 766 dpll_reg = DPLL(0); 767 expected_mask <<= 4; 768 break; 769 case PORT_D: 770 port_mask = DPLL_PORTD_READY_MASK; 771 dpll_reg = DPIO_PHY_STATUS; 772 break; 773 default: 774 BUG(); 775 } 776 777 if (intel_de_wait_for_register(dev_priv, dpll_reg, 778 port_mask, expected_mask, 1000)) 779 drm_WARN(&dev_priv->drm, 1, 780 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 781 dig_port->base.base.base.id, dig_port->base.base.name, 782 intel_de_read(dev_priv, dpll_reg) & port_mask, 783 expected_mask); 784 } 785 786 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 787 { 788 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 789 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 790 enum pipe pipe = crtc->pipe; 791 i915_reg_t reg; 792 u32 val, pipeconf_val; 793 794 /* Make sure PCH DPLL is enabled */ 795 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 796 797 /* FDI must be feeding us bits for PCH ports */ 798 assert_fdi_tx_enabled(dev_priv, pipe); 799 assert_fdi_rx_enabled(dev_priv, pipe); 800 801 if (HAS_PCH_CPT(dev_priv)) { 802 reg = TRANS_CHICKEN2(pipe); 803 val = intel_de_read(dev_priv, reg); 804 /* 805 * Workaround: Set the timing override bit 806 * before enabling the pch transcoder. 807 */ 808 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 809 /* Configure frame start delay to match the CPU */ 810 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 811 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 812 intel_de_write(dev_priv, reg, val); 813 } 814 815 reg = PCH_TRANSCONF(pipe); 816 val = intel_de_read(dev_priv, reg); 817 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 818 819 if (HAS_PCH_IBX(dev_priv)) { 820 /* Configure frame start delay to match the CPU */ 821 val &= ~TRANS_FRAME_START_DELAY_MASK; 822 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 823 824 /* 825 * Make the BPC in transcoder be consistent with 826 * that in pipeconf reg. For HDMI we must use 8bpc 827 * here for both 8bpc and 12bpc. 828 */ 829 val &= ~PIPECONF_BPC_MASK; 830 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 831 val |= PIPECONF_8BPC; 832 else 833 val |= pipeconf_val & PIPECONF_BPC_MASK; 834 } 835 836 val &= ~TRANS_INTERLACE_MASK; 837 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 838 if (HAS_PCH_IBX(dev_priv) && 839 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 840 val |= TRANS_LEGACY_INTERLACED_ILK; 841 else 842 val |= TRANS_INTERLACED; 843 } else { 844 val |= TRANS_PROGRESSIVE; 845 } 846 847 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 848 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 849 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 850 pipe_name(pipe)); 851 } 852 853 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 854 enum transcoder cpu_transcoder) 855 { 856 u32 val, pipeconf_val; 857 858 /* FDI must be feeding us bits for PCH ports */ 859 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 860 assert_fdi_rx_enabled(dev_priv, PIPE_A); 861 862 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 863 /* Workaround: set timing override bit. */ 864 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 865 /* Configure frame start delay to match the CPU */ 866 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 867 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 868 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 869 870 val = TRANS_ENABLE; 871 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 872 873 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 874 PIPECONF_INTERLACED_ILK) 875 val |= TRANS_INTERLACED; 876 else 877 val |= TRANS_PROGRESSIVE; 878 879 intel_de_write(dev_priv, LPT_TRANSCONF, val); 880 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 881 TRANS_STATE_ENABLE, 100)) 882 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 883 } 884 885 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 886 enum pipe pipe) 887 { 888 i915_reg_t reg; 889 u32 val; 890 891 /* FDI relies on the transcoder */ 892 assert_fdi_tx_disabled(dev_priv, pipe); 893 assert_fdi_rx_disabled(dev_priv, pipe); 894 895 /* Ports must be off as well */ 896 assert_pch_ports_disabled(dev_priv, pipe); 897 898 reg = PCH_TRANSCONF(pipe); 899 val = intel_de_read(dev_priv, reg); 900 val &= ~TRANS_ENABLE; 901 intel_de_write(dev_priv, reg, val); 902 /* wait for PCH transcoder off, transcoder state */ 903 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 904 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 905 pipe_name(pipe)); 906 907 if (HAS_PCH_CPT(dev_priv)) { 908 /* Workaround: Clear the timing override chicken bit again. */ 909 reg = TRANS_CHICKEN2(pipe); 910 val = intel_de_read(dev_priv, reg); 911 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 912 intel_de_write(dev_priv, reg, val); 913 } 914 } 915 916 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 917 { 918 u32 val; 919 920 val = intel_de_read(dev_priv, LPT_TRANSCONF); 921 val &= ~TRANS_ENABLE; 922 intel_de_write(dev_priv, LPT_TRANSCONF, val); 923 /* wait for PCH transcoder off, transcoder state */ 924 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 925 TRANS_STATE_ENABLE, 50)) 926 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 927 928 /* Workaround: clear timing override bit. */ 929 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 930 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 931 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 932 } 933 934 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 935 { 936 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 937 938 if (HAS_PCH_LPT(dev_priv)) 939 return PIPE_A; 940 else 941 return crtc->pipe; 942 } 943 944 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 945 { 946 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 947 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 948 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 949 enum pipe pipe = crtc->pipe; 950 i915_reg_t reg; 951 u32 val; 952 953 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 954 955 assert_planes_disabled(crtc); 956 957 /* 958 * A pipe without a PLL won't actually be able to drive bits from 959 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 960 * need the check. 961 */ 962 if (HAS_GMCH(dev_priv)) { 963 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 964 assert_dsi_pll_enabled(dev_priv); 965 else 966 assert_pll_enabled(dev_priv, pipe); 967 } else { 968 if (new_crtc_state->has_pch_encoder) { 969 /* if driving the PCH, we need FDI enabled */ 970 assert_fdi_rx_pll_enabled(dev_priv, 971 intel_crtc_pch_transcoder(crtc)); 972 assert_fdi_tx_pll_enabled(dev_priv, 973 (enum pipe) cpu_transcoder); 974 } 975 /* FIXME: assert CPU port conditions for SNB+ */ 976 } 977 978 /* Wa_22012358565:adlp */ 979 if (DISPLAY_VER(dev_priv) == 13) 980 intel_de_rmw(dev_priv, PIPE_ARB_CTL(pipe), 981 0, PIPE_ARB_USE_PROG_SLOTS); 982 983 reg = PIPECONF(cpu_transcoder); 984 val = intel_de_read(dev_priv, reg); 985 if (val & PIPECONF_ENABLE) { 986 /* we keep both pipes enabled on 830 */ 987 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 988 return; 989 } 990 991 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 992 intel_de_posting_read(dev_priv, reg); 993 994 /* 995 * Until the pipe starts PIPEDSL reads will return a stale value, 996 * which causes an apparent vblank timestamp jump when PIPEDSL 997 * resets to its proper value. That also messes up the frame count 998 * when it's derived from the timestamps. So let's wait for the 999 * pipe to start properly before we call drm_crtc_vblank_on() 1000 */ 1001 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1002 intel_wait_for_pipe_scanline_moving(crtc); 1003 } 1004 1005 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1006 { 1007 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1009 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1010 enum pipe pipe = crtc->pipe; 1011 i915_reg_t reg; 1012 u32 val; 1013 1014 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1015 1016 /* 1017 * Make sure planes won't keep trying to pump pixels to us, 1018 * or we might hang the display. 1019 */ 1020 assert_planes_disabled(crtc); 1021 1022 reg = PIPECONF(cpu_transcoder); 1023 val = intel_de_read(dev_priv, reg); 1024 if ((val & PIPECONF_ENABLE) == 0) 1025 return; 1026 1027 /* 1028 * Double wide has implications for planes 1029 * so best keep it disabled when not needed. 1030 */ 1031 if (old_crtc_state->double_wide) 1032 val &= ~PIPECONF_DOUBLE_WIDE; 1033 1034 /* Don't disable pipe or pipe PLLs if needed */ 1035 if (!IS_I830(dev_priv)) 1036 val &= ~PIPECONF_ENABLE; 1037 1038 intel_de_write(dev_priv, reg, val); 1039 if ((val & PIPECONF_ENABLE) == 0) 1040 intel_wait_for_pipe_off(old_crtc_state); 1041 } 1042 1043 bool 1044 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 1045 u64 modifier) 1046 { 1047 return info->is_yuv && 1048 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 1049 } 1050 1051 unsigned int 1052 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 1053 { 1054 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1055 unsigned int cpp = fb->format->cpp[color_plane]; 1056 1057 switch (fb->modifier) { 1058 case DRM_FORMAT_MOD_LINEAR: 1059 return intel_tile_size(dev_priv); 1060 case I915_FORMAT_MOD_X_TILED: 1061 if (DISPLAY_VER(dev_priv) == 2) 1062 return 128; 1063 else 1064 return 512; 1065 case I915_FORMAT_MOD_Y_TILED_CCS: 1066 if (is_ccs_plane(fb, color_plane)) 1067 return 128; 1068 fallthrough; 1069 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1070 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1071 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1072 if (is_ccs_plane(fb, color_plane)) 1073 return 64; 1074 fallthrough; 1075 case I915_FORMAT_MOD_Y_TILED: 1076 if (DISPLAY_VER(dev_priv) == 2 || HAS_128_BYTE_Y_TILING(dev_priv)) 1077 return 128; 1078 else 1079 return 512; 1080 case I915_FORMAT_MOD_Yf_TILED_CCS: 1081 if (is_ccs_plane(fb, color_plane)) 1082 return 128; 1083 fallthrough; 1084 case I915_FORMAT_MOD_Yf_TILED: 1085 switch (cpp) { 1086 case 1: 1087 return 64; 1088 case 2: 1089 case 4: 1090 return 128; 1091 case 8: 1092 case 16: 1093 return 256; 1094 default: 1095 MISSING_CASE(cpp); 1096 return cpp; 1097 } 1098 break; 1099 default: 1100 MISSING_CASE(fb->modifier); 1101 return cpp; 1102 } 1103 } 1104 1105 unsigned int 1106 intel_fb_align_height(const struct drm_framebuffer *fb, 1107 int color_plane, unsigned int height) 1108 { 1109 unsigned int tile_height = intel_tile_height(fb, color_plane); 1110 1111 return ALIGN(height, tile_height); 1112 } 1113 1114 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 1115 { 1116 unsigned int size = 0; 1117 int i; 1118 1119 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 1120 size += rot_info->plane[i].dst_stride * rot_info->plane[i].width; 1121 1122 return size; 1123 } 1124 1125 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 1126 { 1127 unsigned int size = 0; 1128 int i; 1129 1130 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1131 size += rem_info->plane[i].dst_stride * rem_info->plane[i].height; 1132 1133 return size; 1134 } 1135 1136 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 1137 { 1138 if (DISPLAY_VER(dev_priv) >= 9) 1139 return 256 * 1024; 1140 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 1141 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1142 return 128 * 1024; 1143 else if (DISPLAY_VER(dev_priv) >= 4) 1144 return 4 * 1024; 1145 else 1146 return 0; 1147 } 1148 1149 static bool has_async_flips(struct drm_i915_private *i915) 1150 { 1151 return DISPLAY_VER(i915) >= 5; 1152 } 1153 1154 unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 1155 int color_plane) 1156 { 1157 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1158 1159 if (intel_fb_uses_dpt(fb)) 1160 return 512 * 4096; 1161 1162 /* AUX_DIST needs only 4K alignment */ 1163 if (is_ccs_plane(fb, color_plane)) 1164 return 4096; 1165 1166 if (is_semiplanar_uv_plane(fb, color_plane)) { 1167 /* 1168 * TODO: cross-check wrt. the bspec stride in bytes * 64 bytes 1169 * alignment for linear UV planes on all platforms. 1170 */ 1171 if (DISPLAY_VER(dev_priv) >= 12) { 1172 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) 1173 return intel_linear_alignment(dev_priv); 1174 1175 return intel_tile_row_size(fb, color_plane); 1176 } 1177 1178 return 4096; 1179 } 1180 1181 drm_WARN_ON(&dev_priv->drm, color_plane != 0); 1182 1183 switch (fb->modifier) { 1184 case DRM_FORMAT_MOD_LINEAR: 1185 return intel_linear_alignment(dev_priv); 1186 case I915_FORMAT_MOD_X_TILED: 1187 if (has_async_flips(dev_priv)) 1188 return 256 * 1024; 1189 return 0; 1190 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1191 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1192 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1193 return 16 * 1024; 1194 case I915_FORMAT_MOD_Y_TILED_CCS: 1195 case I915_FORMAT_MOD_Yf_TILED_CCS: 1196 case I915_FORMAT_MOD_Y_TILED: 1197 case I915_FORMAT_MOD_Yf_TILED: 1198 return 1 * 1024 * 1024; 1199 default: 1200 MISSING_CASE(fb->modifier); 1201 return 0; 1202 } 1203 } 1204 1205 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 1206 { 1207 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1208 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1209 1210 return DISPLAY_VER(dev_priv) < 4 || 1211 (plane->has_fbc && 1212 plane_state->view.gtt.type == I915_GGTT_VIEW_NORMAL); 1213 } 1214 1215 static struct i915_vma * 1216 intel_pin_fb_obj_dpt(struct drm_framebuffer *fb, 1217 const struct i915_ggtt_view *view, 1218 bool uses_fence, 1219 unsigned long *out_flags, 1220 struct i915_address_space *vm) 1221 { 1222 struct drm_device *dev = fb->dev; 1223 struct drm_i915_private *dev_priv = to_i915(dev); 1224 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1225 struct i915_vma *vma; 1226 u32 alignment; 1227 int ret; 1228 1229 if (WARN_ON(!i915_gem_object_is_framebuffer(obj))) 1230 return ERR_PTR(-EINVAL); 1231 1232 alignment = 4096 * 512; 1233 1234 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1235 1236 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 1237 if (ret) { 1238 vma = ERR_PTR(ret); 1239 goto err; 1240 } 1241 1242 vma = i915_vma_instance(obj, vm, view); 1243 if (IS_ERR(vma)) 1244 goto err; 1245 1246 if (i915_vma_misplaced(vma, 0, alignment, 0)) { 1247 ret = i915_vma_unbind(vma); 1248 if (ret) { 1249 vma = ERR_PTR(ret); 1250 goto err; 1251 } 1252 } 1253 1254 ret = i915_vma_pin(vma, 0, alignment, PIN_GLOBAL); 1255 if (ret) { 1256 vma = ERR_PTR(ret); 1257 goto err; 1258 } 1259 1260 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 1261 1262 i915_gem_object_flush_if_display(obj); 1263 1264 i915_vma_get(vma); 1265 err: 1266 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1267 1268 return vma; 1269 } 1270 1271 struct i915_vma * 1272 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 1273 bool phys_cursor, 1274 const struct i915_ggtt_view *view, 1275 bool uses_fence, 1276 unsigned long *out_flags) 1277 { 1278 struct drm_device *dev = fb->dev; 1279 struct drm_i915_private *dev_priv = to_i915(dev); 1280 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1281 intel_wakeref_t wakeref; 1282 struct i915_gem_ww_ctx ww; 1283 struct i915_vma *vma; 1284 unsigned int pinctl; 1285 u32 alignment; 1286 int ret; 1287 1288 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 1289 return ERR_PTR(-EINVAL); 1290 1291 if (phys_cursor) 1292 alignment = intel_cursor_alignment(dev_priv); 1293 else 1294 alignment = intel_surf_alignment(fb, 0); 1295 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 1296 return ERR_PTR(-EINVAL); 1297 1298 /* Note that the w/a also requires 64 PTE of padding following the 1299 * bo. We currently fill all unused PTE with the shadow page and so 1300 * we should always have valid PTE following the scanout preventing 1301 * the VT-d warning. 1302 */ 1303 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 1304 alignment = 256 * 1024; 1305 1306 /* 1307 * Global gtt pte registers are special registers which actually forward 1308 * writes to a chunk of system memory. Which means that there is no risk 1309 * that the register values disappear as soon as we call 1310 * intel_runtime_pm_put(), so it is correct to wrap only the 1311 * pin/unpin/fence and not more. 1312 */ 1313 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 1314 1315 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1316 1317 /* 1318 * Valleyview is definitely limited to scanning out the first 1319 * 512MiB. Lets presume this behaviour was inherited from the 1320 * g4x display engine and that all earlier gen are similarly 1321 * limited. Testing suggests that it is a little more 1322 * complicated than this. For example, Cherryview appears quite 1323 * happy to scanout from anywhere within its global aperture. 1324 */ 1325 pinctl = 0; 1326 if (HAS_GMCH(dev_priv)) 1327 pinctl |= PIN_MAPPABLE; 1328 1329 i915_gem_ww_ctx_init(&ww, true); 1330 retry: 1331 ret = i915_gem_object_lock(obj, &ww); 1332 if (!ret && phys_cursor) 1333 ret = i915_gem_object_attach_phys(obj, alignment); 1334 if (!ret) 1335 ret = i915_gem_object_pin_pages(obj); 1336 if (ret) 1337 goto err; 1338 1339 if (!ret) { 1340 vma = i915_gem_object_pin_to_display_plane(obj, &ww, alignment, 1341 view, pinctl); 1342 if (IS_ERR(vma)) { 1343 ret = PTR_ERR(vma); 1344 goto err_unpin; 1345 } 1346 } 1347 1348 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 1349 /* 1350 * Install a fence for tiled scan-out. Pre-i965 always needs a 1351 * fence, whereas 965+ only requires a fence if using 1352 * framebuffer compression. For simplicity, we always, when 1353 * possible, install a fence as the cost is not that onerous. 1354 * 1355 * If we fail to fence the tiled scanout, then either the 1356 * modeset will reject the change (which is highly unlikely as 1357 * the affected systems, all but one, do not have unmappable 1358 * space) or we will not be able to enable full powersaving 1359 * techniques (also likely not to apply due to various limits 1360 * FBC and the like impose on the size of the buffer, which 1361 * presumably we violated anyway with this unmappable buffer). 1362 * Anyway, it is presumably better to stumble onwards with 1363 * something and try to run the system in a "less than optimal" 1364 * mode that matches the user configuration. 1365 */ 1366 ret = i915_vma_pin_fence(vma); 1367 if (ret != 0 && DISPLAY_VER(dev_priv) < 4) { 1368 i915_vma_unpin(vma); 1369 goto err_unpin; 1370 } 1371 ret = 0; 1372 1373 if (vma->fence) 1374 *out_flags |= PLANE_HAS_FENCE; 1375 } 1376 1377 i915_vma_get(vma); 1378 1379 err_unpin: 1380 i915_gem_object_unpin_pages(obj); 1381 err: 1382 if (ret == -EDEADLK) { 1383 ret = i915_gem_ww_ctx_backoff(&ww); 1384 if (!ret) 1385 goto retry; 1386 } 1387 i915_gem_ww_ctx_fini(&ww); 1388 if (ret) 1389 vma = ERR_PTR(ret); 1390 1391 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1392 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 1393 return vma; 1394 } 1395 1396 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 1397 { 1398 if (flags & PLANE_HAS_FENCE) 1399 i915_vma_unpin_fence(vma); 1400 i915_vma_unpin(vma); 1401 i915_vma_put(vma); 1402 } 1403 1404 /* 1405 * Convert the x/y offsets into a linear offset. 1406 * Only valid with 0/180 degree rotation, which is fine since linear 1407 * offset is only used with linear buffers on pre-hsw and tiled buffers 1408 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 1409 */ 1410 u32 intel_fb_xy_to_linear(int x, int y, 1411 const struct intel_plane_state *state, 1412 int color_plane) 1413 { 1414 const struct drm_framebuffer *fb = state->hw.fb; 1415 unsigned int cpp = fb->format->cpp[color_plane]; 1416 unsigned int pitch = state->view.color_plane[color_plane].stride; 1417 1418 return y * pitch + x * cpp; 1419 } 1420 1421 /* 1422 * Add the x/y offsets derived from fb->offsets[] to the user 1423 * specified plane src x/y offsets. The resulting x/y offsets 1424 * specify the start of scanout from the beginning of the gtt mapping. 1425 */ 1426 void intel_add_fb_offsets(int *x, int *y, 1427 const struct intel_plane_state *state, 1428 int color_plane) 1429 1430 { 1431 *x += state->view.color_plane[color_plane].x; 1432 *y += state->view.color_plane[color_plane].y; 1433 } 1434 1435 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 1436 { 1437 switch (fb_modifier) { 1438 case I915_FORMAT_MOD_X_TILED: 1439 return I915_TILING_X; 1440 case I915_FORMAT_MOD_Y_TILED: 1441 case I915_FORMAT_MOD_Y_TILED_CCS: 1442 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1443 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1444 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1445 return I915_TILING_Y; 1446 default: 1447 return I915_TILING_NONE; 1448 } 1449 } 1450 1451 /* 1452 * From the Sky Lake PRM: 1453 * "The Color Control Surface (CCS) contains the compression status of 1454 * the cache-line pairs. The compression state of the cache-line pair 1455 * is specified by 2 bits in the CCS. Each CCS cache-line represents 1456 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 1457 * cache-line-pairs. CCS is always Y tiled." 1458 * 1459 * Since cache line pairs refers to horizontally adjacent cache lines, 1460 * each cache line in the CCS corresponds to an area of 32x16 cache 1461 * lines on the main surface. Since each pixel is 4 bytes, this gives 1462 * us a ratio of one byte in the CCS for each 8x16 pixels in the 1463 * main surface. 1464 */ 1465 static const struct drm_format_info skl_ccs_formats[] = { 1466 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1467 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1468 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1469 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1470 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1471 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1472 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1473 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1474 }; 1475 1476 /* 1477 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 1478 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 1479 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 1480 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 1481 * the main surface. 1482 */ 1483 static const struct drm_format_info gen12_ccs_formats[] = { 1484 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1485 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1486 .hsub = 1, .vsub = 1, }, 1487 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1488 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1489 .hsub = 1, .vsub = 1, }, 1490 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1491 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1492 .hsub = 1, .vsub = 1, .has_alpha = true }, 1493 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1494 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1495 .hsub = 1, .vsub = 1, .has_alpha = true }, 1496 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 1497 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1498 .hsub = 2, .vsub = 1, .is_yuv = true }, 1499 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 1500 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1501 .hsub = 2, .vsub = 1, .is_yuv = true }, 1502 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 1503 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1504 .hsub = 2, .vsub = 1, .is_yuv = true }, 1505 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 1506 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1507 .hsub = 2, .vsub = 1, .is_yuv = true }, 1508 { .format = DRM_FORMAT_XYUV8888, .num_planes = 2, 1509 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1510 .hsub = 1, .vsub = 1, .is_yuv = true }, 1511 { .format = DRM_FORMAT_NV12, .num_planes = 4, 1512 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 1513 .hsub = 2, .vsub = 2, .is_yuv = true }, 1514 { .format = DRM_FORMAT_P010, .num_planes = 4, 1515 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1516 .hsub = 2, .vsub = 2, .is_yuv = true }, 1517 { .format = DRM_FORMAT_P012, .num_planes = 4, 1518 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1519 .hsub = 2, .vsub = 2, .is_yuv = true }, 1520 { .format = DRM_FORMAT_P016, .num_planes = 4, 1521 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1522 .hsub = 2, .vsub = 2, .is_yuv = true }, 1523 }; 1524 1525 /* 1526 * Same as gen12_ccs_formats[] above, but with additional surface used 1527 * to pass Clear Color information in plane 2 with 64 bits of data. 1528 */ 1529 static const struct drm_format_info gen12_ccs_cc_formats[] = { 1530 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 3, 1531 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1532 .hsub = 1, .vsub = 1, }, 1533 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 3, 1534 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1535 .hsub = 1, .vsub = 1, }, 1536 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 3, 1537 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1538 .hsub = 1, .vsub = 1, .has_alpha = true }, 1539 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 3, 1540 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1541 .hsub = 1, .vsub = 1, .has_alpha = true }, 1542 }; 1543 1544 static const struct drm_format_info * 1545 lookup_format_info(const struct drm_format_info formats[], 1546 int num_formats, u32 format) 1547 { 1548 int i; 1549 1550 for (i = 0; i < num_formats; i++) { 1551 if (formats[i].format == format) 1552 return &formats[i]; 1553 } 1554 1555 return NULL; 1556 } 1557 1558 static const struct drm_format_info * 1559 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 1560 { 1561 switch (cmd->modifier[0]) { 1562 case I915_FORMAT_MOD_Y_TILED_CCS: 1563 case I915_FORMAT_MOD_Yf_TILED_CCS: 1564 return lookup_format_info(skl_ccs_formats, 1565 ARRAY_SIZE(skl_ccs_formats), 1566 cmd->pixel_format); 1567 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1568 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1569 return lookup_format_info(gen12_ccs_formats, 1570 ARRAY_SIZE(gen12_ccs_formats), 1571 cmd->pixel_format); 1572 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1573 return lookup_format_info(gen12_ccs_cc_formats, 1574 ARRAY_SIZE(gen12_ccs_cc_formats), 1575 cmd->pixel_format); 1576 default: 1577 return NULL; 1578 } 1579 } 1580 1581 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 1582 { 1583 return DIV_ROUND_UP(fb->pitches[skl_ccs_to_main_plane(fb, ccs_plane)], 1584 512) * 64; 1585 } 1586 1587 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 1588 u32 pixel_format, u64 modifier) 1589 { 1590 struct intel_crtc *crtc; 1591 struct intel_plane *plane; 1592 1593 if (!HAS_DISPLAY(dev_priv)) 1594 return 0; 1595 1596 /* 1597 * We assume the primary plane for pipe A has 1598 * the highest stride limits of them all, 1599 * if in case pipe A is disabled, use the first pipe from pipe_mask. 1600 */ 1601 crtc = intel_get_first_crtc(dev_priv); 1602 if (!crtc) 1603 return 0; 1604 1605 plane = to_intel_plane(crtc->base.primary); 1606 1607 return plane->max_stride(plane, pixel_format, modifier, 1608 DRM_MODE_ROTATE_0); 1609 } 1610 1611 static 1612 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 1613 u32 pixel_format, u64 modifier) 1614 { 1615 /* 1616 * Arbitrary limit for gen4+ chosen to match the 1617 * render engine max stride. 1618 * 1619 * The new CCS hash mode makes remapping impossible 1620 */ 1621 if (DISPLAY_VER(dev_priv) < 4 || is_ccs_modifier(modifier) || 1622 intel_modifier_uses_dpt(dev_priv, modifier)) 1623 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 1624 else if (DISPLAY_VER(dev_priv) >= 7) 1625 return 256 * 1024; 1626 else 1627 return 128 * 1024; 1628 } 1629 1630 static u32 1631 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 1632 { 1633 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1634 u32 tile_width; 1635 1636 if (is_surface_linear(fb, color_plane)) { 1637 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 1638 fb->format->format, 1639 fb->modifier); 1640 1641 /* 1642 * To make remapping with linear generally feasible 1643 * we need the stride to be page aligned. 1644 */ 1645 if (fb->pitches[color_plane] > max_stride && 1646 !is_ccs_modifier(fb->modifier)) 1647 return intel_tile_size(dev_priv); 1648 else 1649 return 64; 1650 } 1651 1652 tile_width = intel_tile_width_bytes(fb, color_plane); 1653 if (is_ccs_modifier(fb->modifier)) { 1654 /* 1655 * Display WA #0531: skl,bxt,kbl,glk 1656 * 1657 * Render decompression and plane width > 3840 1658 * combined with horizontal panning requires the 1659 * plane stride to be a multiple of 4. We'll just 1660 * require the entire fb to accommodate that to avoid 1661 * potential runtime errors at plane configuration time. 1662 */ 1663 if ((DISPLAY_VER(dev_priv) == 9 || IS_GEMINILAKE(dev_priv)) && 1664 color_plane == 0 && fb->width > 3840) 1665 tile_width *= 4; 1666 /* 1667 * The main surface pitch must be padded to a multiple of four 1668 * tile widths. 1669 */ 1670 else if (DISPLAY_VER(dev_priv) >= 12) 1671 tile_width *= 4; 1672 } 1673 return tile_width; 1674 } 1675 1676 static struct i915_vma * 1677 initial_plane_vma(struct drm_i915_private *i915, 1678 struct intel_initial_plane_config *plane_config) 1679 { 1680 struct drm_i915_gem_object *obj; 1681 struct i915_vma *vma; 1682 u32 base, size; 1683 1684 if (plane_config->size == 0) 1685 return NULL; 1686 1687 base = round_down(plane_config->base, 1688 I915_GTT_MIN_ALIGNMENT); 1689 size = round_up(plane_config->base + plane_config->size, 1690 I915_GTT_MIN_ALIGNMENT); 1691 size -= base; 1692 1693 /* 1694 * If the FB is too big, just don't use it since fbdev is not very 1695 * important and we should probably use that space with FBC or other 1696 * features. 1697 */ 1698 if (IS_ENABLED(CONFIG_FRAMEBUFFER_CONSOLE) && 1699 size * 2 > i915->stolen_usable_size) 1700 return NULL; 1701 1702 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 1703 if (IS_ERR(obj)) 1704 return NULL; 1705 1706 /* 1707 * Mark it WT ahead of time to avoid changing the 1708 * cache_level during fbdev initialization. The 1709 * unbind there would get stuck waiting for rcu. 1710 */ 1711 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ? 1712 I915_CACHE_WT : I915_CACHE_NONE); 1713 1714 switch (plane_config->tiling) { 1715 case I915_TILING_NONE: 1716 break; 1717 case I915_TILING_X: 1718 case I915_TILING_Y: 1719 obj->tiling_and_stride = 1720 plane_config->fb->base.pitches[0] | 1721 plane_config->tiling; 1722 break; 1723 default: 1724 MISSING_CASE(plane_config->tiling); 1725 goto err_obj; 1726 } 1727 1728 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 1729 if (IS_ERR(vma)) 1730 goto err_obj; 1731 1732 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 1733 goto err_obj; 1734 1735 if (i915_gem_object_is_tiled(obj) && 1736 !i915_vma_is_map_and_fenceable(vma)) 1737 goto err_obj; 1738 1739 return vma; 1740 1741 err_obj: 1742 i915_gem_object_put(obj); 1743 return NULL; 1744 } 1745 1746 static bool 1747 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 1748 struct intel_initial_plane_config *plane_config) 1749 { 1750 struct drm_device *dev = crtc->base.dev; 1751 struct drm_i915_private *dev_priv = to_i915(dev); 1752 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 1753 struct drm_framebuffer *fb = &plane_config->fb->base; 1754 struct i915_vma *vma; 1755 1756 switch (fb->modifier) { 1757 case DRM_FORMAT_MOD_LINEAR: 1758 case I915_FORMAT_MOD_X_TILED: 1759 case I915_FORMAT_MOD_Y_TILED: 1760 break; 1761 default: 1762 drm_dbg(&dev_priv->drm, 1763 "Unsupported modifier for initial FB: 0x%llx\n", 1764 fb->modifier); 1765 return false; 1766 } 1767 1768 vma = initial_plane_vma(dev_priv, plane_config); 1769 if (!vma) 1770 return false; 1771 1772 mode_cmd.pixel_format = fb->format->format; 1773 mode_cmd.width = fb->width; 1774 mode_cmd.height = fb->height; 1775 mode_cmd.pitches[0] = fb->pitches[0]; 1776 mode_cmd.modifier[0] = fb->modifier; 1777 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 1778 1779 if (intel_framebuffer_init(to_intel_framebuffer(fb), 1780 vma->obj, &mode_cmd)) { 1781 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 1782 goto err_vma; 1783 } 1784 1785 plane_config->vma = vma; 1786 return true; 1787 1788 err_vma: 1789 i915_vma_put(vma); 1790 return false; 1791 } 1792 1793 static void 1794 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 1795 struct intel_plane_state *plane_state, 1796 bool visible) 1797 { 1798 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1799 1800 plane_state->uapi.visible = visible; 1801 1802 if (visible) 1803 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 1804 else 1805 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 1806 } 1807 1808 static void fixup_plane_bitmasks(struct intel_crtc_state *crtc_state) 1809 { 1810 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1811 struct drm_plane *plane; 1812 1813 /* 1814 * Active_planes aliases if multiple "primary" or cursor planes 1815 * have been used on the same (or wrong) pipe. plane_mask uses 1816 * unique ids, hence we can use that to reconstruct active_planes. 1817 */ 1818 crtc_state->enabled_planes = 0; 1819 crtc_state->active_planes = 0; 1820 1821 drm_for_each_plane_mask(plane, &dev_priv->drm, 1822 crtc_state->uapi.plane_mask) { 1823 crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); 1824 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 1825 } 1826 } 1827 1828 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 1829 struct intel_plane *plane) 1830 { 1831 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1832 struct intel_crtc_state *crtc_state = 1833 to_intel_crtc_state(crtc->base.state); 1834 struct intel_plane_state *plane_state = 1835 to_intel_plane_state(plane->base.state); 1836 1837 drm_dbg_kms(&dev_priv->drm, 1838 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 1839 plane->base.base.id, plane->base.name, 1840 crtc->base.base.id, crtc->base.name); 1841 1842 intel_set_plane_visible(crtc_state, plane_state, false); 1843 fixup_plane_bitmasks(crtc_state); 1844 crtc_state->data_rate[plane->id] = 0; 1845 crtc_state->min_cdclk[plane->id] = 0; 1846 1847 if (plane->id == PLANE_PRIMARY) 1848 hsw_disable_ips(crtc_state); 1849 1850 /* 1851 * Vblank time updates from the shadow to live plane control register 1852 * are blocked if the memory self-refresh mode is active at that 1853 * moment. So to make sure the plane gets truly disabled, disable 1854 * first the self-refresh mode. The self-refresh enable bit in turn 1855 * will be checked/applied by the HW only at the next frame start 1856 * event which is after the vblank start event, so we need to have a 1857 * wait-for-vblank between disabling the plane and the pipe. 1858 */ 1859 if (HAS_GMCH(dev_priv) && 1860 intel_set_memory_cxsr(dev_priv, false)) 1861 intel_wait_for_vblank(dev_priv, crtc->pipe); 1862 1863 /* 1864 * Gen2 reports pipe underruns whenever all planes are disabled. 1865 * So disable underrun reporting before all the planes get disabled. 1866 */ 1867 if (DISPLAY_VER(dev_priv) == 2 && !crtc_state->active_planes) 1868 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 1869 1870 intel_disable_plane(plane, crtc_state); 1871 intel_wait_for_vblank(dev_priv, crtc->pipe); 1872 } 1873 1874 static struct i915_vma *intel_dpt_pin(struct i915_address_space *vm) 1875 { 1876 struct drm_i915_private *i915 = vm->i915; 1877 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1878 intel_wakeref_t wakeref; 1879 struct i915_vma *vma; 1880 void __iomem *iomem; 1881 1882 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 1883 atomic_inc(&i915->gpu_error.pending_fb_pin); 1884 1885 vma = i915_gem_object_ggtt_pin(dpt->obj, NULL, 0, 4096, 1886 HAS_LMEM(i915) ? 0 : PIN_MAPPABLE); 1887 if (IS_ERR(vma)) 1888 goto err; 1889 1890 iomem = i915_vma_pin_iomap(vma); 1891 i915_vma_unpin(vma); 1892 if (IS_ERR(iomem)) { 1893 vma = iomem; 1894 goto err; 1895 } 1896 1897 dpt->vma = vma; 1898 dpt->iomem = iomem; 1899 1900 i915_vma_get(vma); 1901 1902 err: 1903 atomic_dec(&i915->gpu_error.pending_fb_pin); 1904 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 1905 1906 return vma; 1907 } 1908 1909 static void intel_dpt_unpin(struct i915_address_space *vm) 1910 { 1911 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1912 1913 i915_vma_unpin_iomap(dpt->vma); 1914 i915_vma_put(dpt->vma); 1915 } 1916 1917 static bool 1918 intel_reuse_initial_plane_obj(struct drm_i915_private *i915, 1919 const struct intel_initial_plane_config *plane_config, 1920 struct drm_framebuffer **fb, 1921 struct i915_vma **vma) 1922 { 1923 struct intel_crtc *crtc; 1924 1925 for_each_intel_crtc(&i915->drm, crtc) { 1926 struct intel_crtc_state *crtc_state = 1927 to_intel_crtc_state(crtc->base.state); 1928 struct intel_plane *plane = 1929 to_intel_plane(crtc->base.primary); 1930 struct intel_plane_state *plane_state = 1931 to_intel_plane_state(plane->base.state); 1932 1933 if (!crtc_state->uapi.active) 1934 continue; 1935 1936 if (!plane_state->ggtt_vma) 1937 continue; 1938 1939 if (intel_plane_ggtt_offset(plane_state) == plane_config->base) { 1940 *fb = plane_state->hw.fb; 1941 *vma = plane_state->ggtt_vma; 1942 return true; 1943 } 1944 } 1945 1946 return false; 1947 } 1948 1949 static void 1950 intel_find_initial_plane_obj(struct intel_crtc *crtc, 1951 struct intel_initial_plane_config *plane_config) 1952 { 1953 struct drm_device *dev = crtc->base.dev; 1954 struct drm_i915_private *dev_priv = to_i915(dev); 1955 struct intel_crtc_state *crtc_state = 1956 to_intel_crtc_state(crtc->base.state); 1957 struct intel_plane *plane = 1958 to_intel_plane(crtc->base.primary); 1959 struct intel_plane_state *plane_state = 1960 to_intel_plane_state(plane->base.state); 1961 struct drm_framebuffer *fb; 1962 struct i915_vma *vma; 1963 1964 /* 1965 * TODO: 1966 * Disable planes if get_initial_plane_config() failed. 1967 * Make sure things work if the surface base is not page aligned. 1968 */ 1969 if (!plane_config->fb) 1970 return; 1971 1972 if (intel_alloc_initial_plane_obj(crtc, plane_config)) { 1973 fb = &plane_config->fb->base; 1974 vma = plane_config->vma; 1975 goto valid_fb; 1976 } 1977 1978 /* 1979 * Failed to alloc the obj, check to see if we should share 1980 * an fb with another CRTC instead 1981 */ 1982 if (intel_reuse_initial_plane_obj(dev_priv, plane_config, &fb, &vma)) 1983 goto valid_fb; 1984 1985 /* 1986 * We've failed to reconstruct the BIOS FB. Current display state 1987 * indicates that the primary plane is visible, but has a NULL FB, 1988 * which will lead to problems later if we don't fix it up. The 1989 * simplest solution is to just disable the primary plane now and 1990 * pretend the BIOS never had it enabled. 1991 */ 1992 intel_plane_disable_noatomic(crtc, plane); 1993 if (crtc_state->bigjoiner) { 1994 struct intel_crtc *slave = 1995 crtc_state->bigjoiner_linked_crtc; 1996 intel_plane_disable_noatomic(slave, to_intel_plane(slave->base.primary)); 1997 } 1998 1999 return; 2000 2001 valid_fb: 2002 plane_state->uapi.rotation = plane_config->rotation; 2003 intel_fb_fill_view(to_intel_framebuffer(fb), 2004 plane_state->uapi.rotation, &plane_state->view); 2005 2006 __i915_vma_pin(vma); 2007 plane_state->ggtt_vma = i915_vma_get(vma); 2008 if (intel_plane_uses_fence(plane_state) && 2009 i915_vma_pin_fence(vma) == 0 && vma->fence) 2010 plane_state->flags |= PLANE_HAS_FENCE; 2011 2012 plane_state->uapi.src_x = 0; 2013 plane_state->uapi.src_y = 0; 2014 plane_state->uapi.src_w = fb->width << 16; 2015 plane_state->uapi.src_h = fb->height << 16; 2016 2017 plane_state->uapi.crtc_x = 0; 2018 plane_state->uapi.crtc_y = 0; 2019 plane_state->uapi.crtc_w = fb->width; 2020 plane_state->uapi.crtc_h = fb->height; 2021 2022 if (plane_config->tiling) 2023 dev_priv->preserve_bios_swizzle = true; 2024 2025 plane_state->uapi.fb = fb; 2026 drm_framebuffer_get(fb); 2027 2028 plane_state->uapi.crtc = &crtc->base; 2029 intel_plane_copy_uapi_to_hw_state(plane_state, plane_state, crtc); 2030 2031 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 2032 2033 atomic_or(plane->frontbuffer_bit, &to_intel_frontbuffer(fb)->bits); 2034 } 2035 2036 unsigned int 2037 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 2038 { 2039 int x = 0, y = 0; 2040 2041 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 2042 plane_state->view.color_plane[0].offset, 0); 2043 2044 return y; 2045 } 2046 2047 static int 2048 __intel_display_resume(struct drm_device *dev, 2049 struct drm_atomic_state *state, 2050 struct drm_modeset_acquire_ctx *ctx) 2051 { 2052 struct drm_crtc_state *crtc_state; 2053 struct drm_crtc *crtc; 2054 int i, ret; 2055 2056 intel_modeset_setup_hw_state(dev, ctx); 2057 intel_vga_redisable(to_i915(dev)); 2058 2059 if (!state) 2060 return 0; 2061 2062 /* 2063 * We've duplicated the state, pointers to the old state are invalid. 2064 * 2065 * Don't attempt to use the old state until we commit the duplicated state. 2066 */ 2067 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 2068 /* 2069 * Force recalculation even if we restore 2070 * current state. With fast modeset this may not result 2071 * in a modeset when the state is compatible. 2072 */ 2073 crtc_state->mode_changed = true; 2074 } 2075 2076 /* ignore any reset values/BIOS leftovers in the WM registers */ 2077 if (!HAS_GMCH(to_i915(dev))) 2078 to_intel_atomic_state(state)->skip_intermediate_wm = true; 2079 2080 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 2081 2082 drm_WARN_ON(dev, ret == -EDEADLK); 2083 return ret; 2084 } 2085 2086 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 2087 { 2088 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 2089 intel_has_gpu_reset(&dev_priv->gt)); 2090 } 2091 2092 void intel_display_prepare_reset(struct drm_i915_private *dev_priv) 2093 { 2094 struct drm_device *dev = &dev_priv->drm; 2095 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2096 struct drm_atomic_state *state; 2097 int ret; 2098 2099 if (!HAS_DISPLAY(dev_priv)) 2100 return; 2101 2102 /* reset doesn't touch the display */ 2103 if (!dev_priv->params.force_reset_modeset_test && 2104 !gpu_reset_clobbers_display(dev_priv)) 2105 return; 2106 2107 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 2108 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2109 smp_mb__after_atomic(); 2110 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 2111 2112 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 2113 drm_dbg_kms(&dev_priv->drm, 2114 "Modeset potentially stuck, unbreaking through wedging\n"); 2115 intel_gt_set_wedged(&dev_priv->gt); 2116 } 2117 2118 /* 2119 * Need mode_config.mutex so that we don't 2120 * trample ongoing ->detect() and whatnot. 2121 */ 2122 mutex_lock(&dev->mode_config.mutex); 2123 drm_modeset_acquire_init(ctx, 0); 2124 while (1) { 2125 ret = drm_modeset_lock_all_ctx(dev, ctx); 2126 if (ret != -EDEADLK) 2127 break; 2128 2129 drm_modeset_backoff(ctx); 2130 } 2131 /* 2132 * Disabling the crtcs gracefully seems nicer. Also the 2133 * g33 docs say we should at least disable all the planes. 2134 */ 2135 state = drm_atomic_helper_duplicate_state(dev, ctx); 2136 if (IS_ERR(state)) { 2137 ret = PTR_ERR(state); 2138 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 2139 ret); 2140 return; 2141 } 2142 2143 ret = drm_atomic_helper_disable_all(dev, ctx); 2144 if (ret) { 2145 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 2146 ret); 2147 drm_atomic_state_put(state); 2148 return; 2149 } 2150 2151 dev_priv->modeset_restore_state = state; 2152 state->acquire_ctx = ctx; 2153 } 2154 2155 void intel_display_finish_reset(struct drm_i915_private *dev_priv) 2156 { 2157 struct drm_device *dev = &dev_priv->drm; 2158 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2159 struct drm_atomic_state *state; 2160 int ret; 2161 2162 if (!HAS_DISPLAY(dev_priv)) 2163 return; 2164 2165 /* reset doesn't touch the display */ 2166 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 2167 return; 2168 2169 state = fetch_and_zero(&dev_priv->modeset_restore_state); 2170 if (!state) 2171 goto unlock; 2172 2173 /* reset doesn't touch the display */ 2174 if (!gpu_reset_clobbers_display(dev_priv)) { 2175 /* for testing only restore the display */ 2176 ret = __intel_display_resume(dev, state, ctx); 2177 if (ret) 2178 drm_err(&dev_priv->drm, 2179 "Restoring old state failed with %i\n", ret); 2180 } else { 2181 /* 2182 * The display has been reset as well, 2183 * so need a full re-initialization. 2184 */ 2185 intel_pps_unlock_regs_wa(dev_priv); 2186 intel_modeset_init_hw(dev_priv); 2187 intel_init_clock_gating(dev_priv); 2188 intel_hpd_init(dev_priv); 2189 2190 ret = __intel_display_resume(dev, state, ctx); 2191 if (ret) 2192 drm_err(&dev_priv->drm, 2193 "Restoring old state failed with %i\n", ret); 2194 2195 intel_hpd_poll_disable(dev_priv); 2196 } 2197 2198 drm_atomic_state_put(state); 2199 unlock: 2200 drm_modeset_drop_locks(ctx); 2201 drm_modeset_acquire_fini(ctx); 2202 mutex_unlock(&dev->mode_config.mutex); 2203 2204 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2205 } 2206 2207 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 2208 { 2209 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2210 enum pipe pipe = crtc->pipe; 2211 u32 tmp; 2212 2213 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 2214 2215 /* 2216 * Display WA #1153: icl 2217 * enable hardware to bypass the alpha math 2218 * and rounding for per-pixel values 00 and 0xff 2219 */ 2220 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 2221 /* 2222 * Display WA # 1605353570: icl 2223 * Set the pixel rounding bit to 1 for allowing 2224 * passthrough of Frame buffer pixels unmodified 2225 * across pipe 2226 */ 2227 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 2228 2229 /* 2230 * "The underrun recovery mechanism should be disabled 2231 * when the following is enabled for this pipe: 2232 * WiDi 2233 * Downscaling (this includes YUV420 fullblend) 2234 * COG 2235 * DSC 2236 * PSR2" 2237 * 2238 * FIXME: enable whenever possible... 2239 */ 2240 if (IS_ALDERLAKE_P(dev_priv)) 2241 tmp |= UNDERRUN_RECOVERY_DISABLE; 2242 2243 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 2244 } 2245 2246 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 2247 { 2248 struct drm_crtc *crtc; 2249 bool cleanup_done; 2250 2251 drm_for_each_crtc(crtc, &dev_priv->drm) { 2252 struct drm_crtc_commit *commit; 2253 spin_lock(&crtc->commit_lock); 2254 commit = list_first_entry_or_null(&crtc->commit_list, 2255 struct drm_crtc_commit, commit_entry); 2256 cleanup_done = commit ? 2257 try_wait_for_completion(&commit->cleanup_done) : true; 2258 spin_unlock(&crtc->commit_lock); 2259 2260 if (cleanup_done) 2261 continue; 2262 2263 drm_crtc_wait_one_vblank(crtc); 2264 2265 return true; 2266 } 2267 2268 return false; 2269 } 2270 2271 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 2272 { 2273 u32 temp; 2274 2275 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 2276 2277 mutex_lock(&dev_priv->sb_lock); 2278 2279 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2280 temp |= SBI_SSCCTL_DISABLE; 2281 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2282 2283 mutex_unlock(&dev_priv->sb_lock); 2284 } 2285 2286 /* Program iCLKIP clock to the desired frequency */ 2287 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 2288 { 2289 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2290 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2291 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 2292 u32 divsel, phaseinc, auxdiv, phasedir = 0; 2293 u32 temp; 2294 2295 lpt_disable_iclkip(dev_priv); 2296 2297 /* The iCLK virtual clock root frequency is in MHz, 2298 * but the adjusted_mode->crtc_clock in in KHz. To get the 2299 * divisors, it is necessary to divide one by another, so we 2300 * convert the virtual clock precision to KHz here for higher 2301 * precision. 2302 */ 2303 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 2304 u32 iclk_virtual_root_freq = 172800 * 1000; 2305 u32 iclk_pi_range = 64; 2306 u32 desired_divisor; 2307 2308 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2309 clock << auxdiv); 2310 divsel = (desired_divisor / iclk_pi_range) - 2; 2311 phaseinc = desired_divisor % iclk_pi_range; 2312 2313 /* 2314 * Near 20MHz is a corner case which is 2315 * out of range for the 7-bit divisor 2316 */ 2317 if (divsel <= 0x7f) 2318 break; 2319 } 2320 2321 /* This should not happen with any sane values */ 2322 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 2323 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 2324 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 2325 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 2326 2327 drm_dbg_kms(&dev_priv->drm, 2328 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 2329 clock, auxdiv, divsel, phasedir, phaseinc); 2330 2331 mutex_lock(&dev_priv->sb_lock); 2332 2333 /* Program SSCDIVINTPHASE6 */ 2334 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2335 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 2336 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 2337 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 2338 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 2339 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 2340 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 2341 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 2342 2343 /* Program SSCAUXDIV */ 2344 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2345 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 2346 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 2347 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 2348 2349 /* Enable modulator and associated divider */ 2350 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2351 temp &= ~SBI_SSCCTL_DISABLE; 2352 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2353 2354 mutex_unlock(&dev_priv->sb_lock); 2355 2356 /* Wait for initialization time */ 2357 udelay(24); 2358 2359 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 2360 } 2361 2362 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 2363 { 2364 u32 divsel, phaseinc, auxdiv; 2365 u32 iclk_virtual_root_freq = 172800 * 1000; 2366 u32 iclk_pi_range = 64; 2367 u32 desired_divisor; 2368 u32 temp; 2369 2370 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 2371 return 0; 2372 2373 mutex_lock(&dev_priv->sb_lock); 2374 2375 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2376 if (temp & SBI_SSCCTL_DISABLE) { 2377 mutex_unlock(&dev_priv->sb_lock); 2378 return 0; 2379 } 2380 2381 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2382 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 2383 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 2384 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 2385 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 2386 2387 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2388 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 2389 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 2390 2391 mutex_unlock(&dev_priv->sb_lock); 2392 2393 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 2394 2395 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2396 desired_divisor << auxdiv); 2397 } 2398 2399 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 2400 enum pipe pch_transcoder) 2401 { 2402 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2403 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2404 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2405 2406 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 2407 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 2408 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 2409 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 2410 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 2411 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 2412 2413 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 2414 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 2415 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 2416 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 2417 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 2418 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 2419 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 2420 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 2421 } 2422 2423 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 2424 { 2425 u32 temp; 2426 2427 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 2428 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 2429 return; 2430 2431 drm_WARN_ON(&dev_priv->drm, 2432 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 2433 FDI_RX_ENABLE); 2434 drm_WARN_ON(&dev_priv->drm, 2435 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 2436 FDI_RX_ENABLE); 2437 2438 temp &= ~FDI_BC_BIFURCATION_SELECT; 2439 if (enable) 2440 temp |= FDI_BC_BIFURCATION_SELECT; 2441 2442 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 2443 enable ? "en" : "dis"); 2444 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 2445 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 2446 } 2447 2448 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 2449 { 2450 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2451 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2452 2453 switch (crtc->pipe) { 2454 case PIPE_A: 2455 break; 2456 case PIPE_B: 2457 if (crtc_state->fdi_lanes > 2) 2458 cpt_set_fdi_bc_bifurcation(dev_priv, false); 2459 else 2460 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2461 2462 break; 2463 case PIPE_C: 2464 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2465 2466 break; 2467 default: 2468 BUG(); 2469 } 2470 } 2471 2472 /* 2473 * Finds the encoder associated with the given CRTC. This can only be 2474 * used when we know that the CRTC isn't feeding multiple encoders! 2475 */ 2476 struct intel_encoder * 2477 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 2478 const struct intel_crtc_state *crtc_state) 2479 { 2480 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2481 const struct drm_connector_state *connector_state; 2482 const struct drm_connector *connector; 2483 struct intel_encoder *encoder = NULL; 2484 int num_encoders = 0; 2485 int i; 2486 2487 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 2488 if (connector_state->crtc != &crtc->base) 2489 continue; 2490 2491 encoder = to_intel_encoder(connector_state->best_encoder); 2492 num_encoders++; 2493 } 2494 2495 drm_WARN(encoder->base.dev, num_encoders != 1, 2496 "%d encoders for pipe %c\n", 2497 num_encoders, pipe_name(crtc->pipe)); 2498 2499 return encoder; 2500 } 2501 2502 /* 2503 * Enable PCH resources required for PCH ports: 2504 * - PCH PLLs 2505 * - FDI training & RX/TX 2506 * - update transcoder timings 2507 * - DP transcoding bits 2508 * - transcoder 2509 */ 2510 static void ilk_pch_enable(const struct intel_atomic_state *state, 2511 const struct intel_crtc_state *crtc_state) 2512 { 2513 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2514 struct drm_device *dev = crtc->base.dev; 2515 struct drm_i915_private *dev_priv = to_i915(dev); 2516 enum pipe pipe = crtc->pipe; 2517 u32 temp; 2518 2519 assert_pch_transcoder_disabled(dev_priv, pipe); 2520 2521 if (IS_IVYBRIDGE(dev_priv)) 2522 ivb_update_fdi_bc_bifurcation(crtc_state); 2523 2524 /* Write the TU size bits before fdi link training, so that error 2525 * detection works. */ 2526 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 2527 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 2528 2529 /* For PCH output, training FDI link */ 2530 dev_priv->display.fdi_link_train(crtc, crtc_state); 2531 2532 /* We need to program the right clock selection before writing the pixel 2533 * mutliplier into the DPLL. */ 2534 if (HAS_PCH_CPT(dev_priv)) { 2535 u32 sel; 2536 2537 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 2538 temp |= TRANS_DPLL_ENABLE(pipe); 2539 sel = TRANS_DPLLB_SEL(pipe); 2540 if (crtc_state->shared_dpll == 2541 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 2542 temp |= sel; 2543 else 2544 temp &= ~sel; 2545 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 2546 } 2547 2548 /* XXX: pch pll's can be enabled any time before we enable the PCH 2549 * transcoder, and we actually should do this to not upset any PCH 2550 * transcoder that already use the clock when we share it. 2551 * 2552 * Note that enable_shared_dpll tries to do the right thing, but 2553 * get_shared_dpll unconditionally resets the pll - we need that to have 2554 * the right LVDS enable sequence. */ 2555 intel_enable_shared_dpll(crtc_state); 2556 2557 /* set transcoder timing, panel must allow it */ 2558 assert_panel_unlocked(dev_priv, pipe); 2559 ilk_pch_transcoder_set_timings(crtc_state, pipe); 2560 2561 intel_fdi_normal_train(crtc); 2562 2563 /* For PCH DP, enable TRANS_DP_CTL */ 2564 if (HAS_PCH_CPT(dev_priv) && 2565 intel_crtc_has_dp_encoder(crtc_state)) { 2566 const struct drm_display_mode *adjusted_mode = 2567 &crtc_state->hw.adjusted_mode; 2568 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 2569 i915_reg_t reg = TRANS_DP_CTL(pipe); 2570 enum port port; 2571 2572 temp = intel_de_read(dev_priv, reg); 2573 temp &= ~(TRANS_DP_PORT_SEL_MASK | 2574 TRANS_DP_SYNC_MASK | 2575 TRANS_DP_BPC_MASK); 2576 temp |= TRANS_DP_OUTPUT_ENABLE; 2577 temp |= bpc << 9; /* same format but at 11:9 */ 2578 2579 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2580 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 2581 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2582 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 2583 2584 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 2585 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 2586 temp |= TRANS_DP_PORT_SEL(port); 2587 2588 intel_de_write(dev_priv, reg, temp); 2589 } 2590 2591 ilk_enable_pch_transcoder(crtc_state); 2592 } 2593 2594 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 2595 { 2596 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2597 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2598 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2599 2600 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 2601 2602 lpt_program_iclkip(crtc_state); 2603 2604 /* Set transcoder timing. */ 2605 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 2606 2607 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 2608 } 2609 2610 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 2611 enum pipe pipe) 2612 { 2613 i915_reg_t dslreg = PIPEDSL(pipe); 2614 u32 temp; 2615 2616 temp = intel_de_read(dev_priv, dslreg); 2617 udelay(500); 2618 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 2619 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 2620 drm_err(&dev_priv->drm, 2621 "mode set failed: pipe %c stuck\n", 2622 pipe_name(pipe)); 2623 } 2624 } 2625 2626 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 2627 { 2628 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2629 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2630 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 2631 enum pipe pipe = crtc->pipe; 2632 int width = drm_rect_width(dst); 2633 int height = drm_rect_height(dst); 2634 int x = dst->x1; 2635 int y = dst->y1; 2636 2637 if (!crtc_state->pch_pfit.enabled) 2638 return; 2639 2640 /* Force use of hard-coded filter coefficients 2641 * as some pre-programmed values are broken, 2642 * e.g. x201. 2643 */ 2644 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 2645 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2646 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 2647 else 2648 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2649 PF_FILTER_MED_3x3); 2650 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 2651 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 2652 } 2653 2654 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 2655 { 2656 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2657 struct drm_device *dev = crtc->base.dev; 2658 struct drm_i915_private *dev_priv = to_i915(dev); 2659 2660 if (!crtc_state->ips_enabled) 2661 return; 2662 2663 /* 2664 * We can only enable IPS after we enable a plane and wait for a vblank 2665 * This function is called from post_plane_update, which is run after 2666 * a vblank wait. 2667 */ 2668 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 2669 2670 if (IS_BROADWELL(dev_priv)) { 2671 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 2672 IPS_ENABLE | IPS_PCODE_CONTROL)); 2673 /* Quoting Art Runyan: "its not safe to expect any particular 2674 * value in IPS_CTL bit 31 after enabling IPS through the 2675 * mailbox." Moreover, the mailbox may return a bogus state, 2676 * so we need to just enable it and continue on. 2677 */ 2678 } else { 2679 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 2680 /* The bit only becomes 1 in the next vblank, so this wait here 2681 * is essentially intel_wait_for_vblank. If we don't have this 2682 * and don't wait for vblanks until the end of crtc_enable, then 2683 * the HW state readout code will complain that the expected 2684 * IPS_CTL value is not the one we read. */ 2685 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 2686 drm_err(&dev_priv->drm, 2687 "Timed out waiting for IPS enable\n"); 2688 } 2689 } 2690 2691 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 2692 { 2693 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2694 struct drm_device *dev = crtc->base.dev; 2695 struct drm_i915_private *dev_priv = to_i915(dev); 2696 2697 if (!crtc_state->ips_enabled) 2698 return; 2699 2700 if (IS_BROADWELL(dev_priv)) { 2701 drm_WARN_ON(dev, 2702 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 2703 /* 2704 * Wait for PCODE to finish disabling IPS. The BSpec specified 2705 * 42ms timeout value leads to occasional timeouts so use 100ms 2706 * instead. 2707 */ 2708 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 2709 drm_err(&dev_priv->drm, 2710 "Timed out waiting for IPS disable\n"); 2711 } else { 2712 intel_de_write(dev_priv, IPS_CTL, 0); 2713 intel_de_posting_read(dev_priv, IPS_CTL); 2714 } 2715 2716 /* We need to wait for a vblank before we can disable the plane. */ 2717 intel_wait_for_vblank(dev_priv, crtc->pipe); 2718 } 2719 2720 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *crtc) 2721 { 2722 if (crtc->overlay) 2723 (void) intel_overlay_switch_off(crtc->overlay); 2724 2725 /* Let userspace switch the overlay on again. In most cases userspace 2726 * has to recompute where to put it anyway. 2727 */ 2728 } 2729 2730 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 2731 const struct intel_crtc_state *new_crtc_state) 2732 { 2733 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2734 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2735 2736 if (!old_crtc_state->ips_enabled) 2737 return false; 2738 2739 if (intel_crtc_needs_modeset(new_crtc_state)) 2740 return true; 2741 2742 /* 2743 * Workaround : Do not read or write the pipe palette/gamma data while 2744 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2745 * 2746 * Disable IPS before we program the LUT. 2747 */ 2748 if (IS_HASWELL(dev_priv) && 2749 (new_crtc_state->uapi.color_mgmt_changed || 2750 new_crtc_state->update_pipe) && 2751 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2752 return true; 2753 2754 return !new_crtc_state->ips_enabled; 2755 } 2756 2757 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 2758 const struct intel_crtc_state *new_crtc_state) 2759 { 2760 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2761 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2762 2763 if (!new_crtc_state->ips_enabled) 2764 return false; 2765 2766 if (intel_crtc_needs_modeset(new_crtc_state)) 2767 return true; 2768 2769 /* 2770 * Workaround : Do not read or write the pipe palette/gamma data while 2771 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2772 * 2773 * Re-enable IPS after the LUT has been programmed. 2774 */ 2775 if (IS_HASWELL(dev_priv) && 2776 (new_crtc_state->uapi.color_mgmt_changed || 2777 new_crtc_state->update_pipe) && 2778 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2779 return true; 2780 2781 /* 2782 * We can't read out IPS on broadwell, assume the worst and 2783 * forcibly enable IPS on the first fastset. 2784 */ 2785 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 2786 return true; 2787 2788 return !old_crtc_state->ips_enabled; 2789 } 2790 2791 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 2792 { 2793 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2794 2795 if (!crtc_state->nv12_planes) 2796 return false; 2797 2798 /* WA Display #0827: Gen9:all */ 2799 if (DISPLAY_VER(dev_priv) == 9) 2800 return true; 2801 2802 return false; 2803 } 2804 2805 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 2806 { 2807 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2808 2809 /* Wa_2006604312:icl,ehl */ 2810 if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(dev_priv) == 11) 2811 return true; 2812 2813 return false; 2814 } 2815 2816 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 2817 const struct intel_crtc_state *new_crtc_state) 2818 { 2819 return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) && 2820 new_crtc_state->active_planes; 2821 } 2822 2823 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 2824 const struct intel_crtc_state *new_crtc_state) 2825 { 2826 return old_crtc_state->active_planes && 2827 (!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)); 2828 } 2829 2830 static void intel_post_plane_update(struct intel_atomic_state *state, 2831 struct intel_crtc *crtc) 2832 { 2833 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2834 const struct intel_crtc_state *old_crtc_state = 2835 intel_atomic_get_old_crtc_state(state, crtc); 2836 const struct intel_crtc_state *new_crtc_state = 2837 intel_atomic_get_new_crtc_state(state, crtc); 2838 enum pipe pipe = crtc->pipe; 2839 2840 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 2841 2842 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 2843 intel_update_watermarks(crtc); 2844 2845 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 2846 hsw_enable_ips(new_crtc_state); 2847 2848 intel_fbc_post_update(state, crtc); 2849 2850 if (needs_nv12_wa(old_crtc_state) && 2851 !needs_nv12_wa(new_crtc_state)) 2852 skl_wa_827(dev_priv, pipe, false); 2853 2854 if (needs_scalerclk_wa(old_crtc_state) && 2855 !needs_scalerclk_wa(new_crtc_state)) 2856 icl_wa_scalerclkgating(dev_priv, pipe, false); 2857 } 2858 2859 static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, 2860 struct intel_crtc *crtc) 2861 { 2862 const struct intel_crtc_state *crtc_state = 2863 intel_atomic_get_new_crtc_state(state, crtc); 2864 u8 update_planes = crtc_state->update_planes; 2865 const struct intel_plane_state *plane_state; 2866 struct intel_plane *plane; 2867 int i; 2868 2869 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2870 if (plane->enable_flip_done && 2871 plane->pipe == crtc->pipe && 2872 update_planes & BIT(plane->id)) 2873 plane->enable_flip_done(plane); 2874 } 2875 } 2876 2877 static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, 2878 struct intel_crtc *crtc) 2879 { 2880 const struct intel_crtc_state *crtc_state = 2881 intel_atomic_get_new_crtc_state(state, crtc); 2882 u8 update_planes = crtc_state->update_planes; 2883 const struct intel_plane_state *plane_state; 2884 struct intel_plane *plane; 2885 int i; 2886 2887 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2888 if (plane->disable_flip_done && 2889 plane->pipe == crtc->pipe && 2890 update_planes & BIT(plane->id)) 2891 plane->disable_flip_done(plane); 2892 } 2893 } 2894 2895 static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, 2896 struct intel_crtc *crtc) 2897 { 2898 struct drm_i915_private *i915 = to_i915(state->base.dev); 2899 const struct intel_crtc_state *old_crtc_state = 2900 intel_atomic_get_old_crtc_state(state, crtc); 2901 const struct intel_crtc_state *new_crtc_state = 2902 intel_atomic_get_new_crtc_state(state, crtc); 2903 u8 update_planes = new_crtc_state->update_planes; 2904 const struct intel_plane_state *old_plane_state; 2905 struct intel_plane *plane; 2906 bool need_vbl_wait = false; 2907 int i; 2908 2909 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 2910 if (plane->need_async_flip_disable_wa && 2911 plane->pipe == crtc->pipe && 2912 update_planes & BIT(plane->id)) { 2913 /* 2914 * Apart from the async flip bit we want to 2915 * preserve the old state for the plane. 2916 */ 2917 plane->async_flip(plane, old_crtc_state, 2918 old_plane_state, false); 2919 need_vbl_wait = true; 2920 } 2921 } 2922 2923 if (need_vbl_wait) 2924 intel_wait_for_vblank(i915, crtc->pipe); 2925 } 2926 2927 static void intel_pre_plane_update(struct intel_atomic_state *state, 2928 struct intel_crtc *crtc) 2929 { 2930 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2931 const struct intel_crtc_state *old_crtc_state = 2932 intel_atomic_get_old_crtc_state(state, crtc); 2933 const struct intel_crtc_state *new_crtc_state = 2934 intel_atomic_get_new_crtc_state(state, crtc); 2935 enum pipe pipe = crtc->pipe; 2936 2937 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 2938 hsw_disable_ips(old_crtc_state); 2939 2940 if (intel_fbc_pre_update(state, crtc)) 2941 intel_wait_for_vblank(dev_priv, pipe); 2942 2943 /* Display WA 827 */ 2944 if (!needs_nv12_wa(old_crtc_state) && 2945 needs_nv12_wa(new_crtc_state)) 2946 skl_wa_827(dev_priv, pipe, true); 2947 2948 /* Wa_2006604312:icl,ehl */ 2949 if (!needs_scalerclk_wa(old_crtc_state) && 2950 needs_scalerclk_wa(new_crtc_state)) 2951 icl_wa_scalerclkgating(dev_priv, pipe, true); 2952 2953 /* 2954 * Vblank time updates from the shadow to live plane control register 2955 * are blocked if the memory self-refresh mode is active at that 2956 * moment. So to make sure the plane gets truly disabled, disable 2957 * first the self-refresh mode. The self-refresh enable bit in turn 2958 * will be checked/applied by the HW only at the next frame start 2959 * event which is after the vblank start event, so we need to have a 2960 * wait-for-vblank between disabling the plane and the pipe. 2961 */ 2962 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 2963 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 2964 intel_wait_for_vblank(dev_priv, pipe); 2965 2966 /* 2967 * IVB workaround: must disable low power watermarks for at least 2968 * one frame before enabling scaling. LP watermarks can be re-enabled 2969 * when scaling is disabled. 2970 * 2971 * WaCxSRDisabledForSpriteScaling:ivb 2972 */ 2973 if (old_crtc_state->hw.active && 2974 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 2975 intel_wait_for_vblank(dev_priv, pipe); 2976 2977 /* 2978 * If we're doing a modeset we don't need to do any 2979 * pre-vblank watermark programming here. 2980 */ 2981 if (!intel_crtc_needs_modeset(new_crtc_state)) { 2982 /* 2983 * For platforms that support atomic watermarks, program the 2984 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 2985 * will be the intermediate values that are safe for both pre- and 2986 * post- vblank; when vblank happens, the 'active' values will be set 2987 * to the final 'target' values and we'll do this again to get the 2988 * optimal watermarks. For gen9+ platforms, the values we program here 2989 * will be the final target values which will get automatically latched 2990 * at vblank time; no further programming will be necessary. 2991 * 2992 * If a platform hasn't been transitioned to atomic watermarks yet, 2993 * we'll continue to update watermarks the old way, if flags tell 2994 * us to. 2995 */ 2996 if (dev_priv->display.initial_watermarks) 2997 dev_priv->display.initial_watermarks(state, crtc); 2998 else if (new_crtc_state->update_wm_pre) 2999 intel_update_watermarks(crtc); 3000 } 3001 3002 /* 3003 * Gen2 reports pipe underruns whenever all planes are disabled. 3004 * So disable underrun reporting before all the planes get disabled. 3005 * 3006 * We do this after .initial_watermarks() so that we have a 3007 * chance of catching underruns with the intermediate watermarks 3008 * vs. the old plane configuration. 3009 */ 3010 if (DISPLAY_VER(dev_priv) == 2 && planes_disabling(old_crtc_state, new_crtc_state)) 3011 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3012 3013 /* 3014 * WA for platforms where async address update enable bit 3015 * is double buffered and only latched at start of vblank. 3016 */ 3017 if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip) 3018 intel_crtc_async_flip_disable_wa(state, crtc); 3019 } 3020 3021 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 3022 struct intel_crtc *crtc) 3023 { 3024 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3025 const struct intel_crtc_state *new_crtc_state = 3026 intel_atomic_get_new_crtc_state(state, crtc); 3027 unsigned int update_mask = new_crtc_state->update_planes; 3028 const struct intel_plane_state *old_plane_state; 3029 struct intel_plane *plane; 3030 unsigned fb_bits = 0; 3031 int i; 3032 3033 intel_crtc_dpms_overlay_disable(crtc); 3034 3035 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 3036 if (crtc->pipe != plane->pipe || 3037 !(update_mask & BIT(plane->id))) 3038 continue; 3039 3040 intel_disable_plane(plane, new_crtc_state); 3041 3042 if (old_plane_state->uapi.visible) 3043 fb_bits |= plane->frontbuffer_bit; 3044 } 3045 3046 intel_frontbuffer_flip(dev_priv, fb_bits); 3047 } 3048 3049 /* 3050 * intel_connector_primary_encoder - get the primary encoder for a connector 3051 * @connector: connector for which to return the encoder 3052 * 3053 * Returns the primary encoder for a connector. There is a 1:1 mapping from 3054 * all connectors to their encoder, except for DP-MST connectors which have 3055 * both a virtual and a primary encoder. These DP-MST primary encoders can be 3056 * pointed to by as many DP-MST connectors as there are pipes. 3057 */ 3058 static struct intel_encoder * 3059 intel_connector_primary_encoder(struct intel_connector *connector) 3060 { 3061 struct intel_encoder *encoder; 3062 3063 if (connector->mst_port) 3064 return &dp_to_dig_port(connector->mst_port)->base; 3065 3066 encoder = intel_attached_encoder(connector); 3067 drm_WARN_ON(connector->base.dev, !encoder); 3068 3069 return encoder; 3070 } 3071 3072 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 3073 { 3074 struct drm_connector_state *new_conn_state; 3075 struct drm_connector *connector; 3076 int i; 3077 3078 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3079 i) { 3080 struct intel_connector *intel_connector; 3081 struct intel_encoder *encoder; 3082 struct intel_crtc *crtc; 3083 3084 if (!intel_connector_needs_modeset(state, connector)) 3085 continue; 3086 3087 intel_connector = to_intel_connector(connector); 3088 encoder = intel_connector_primary_encoder(intel_connector); 3089 if (!encoder->update_prepare) 3090 continue; 3091 3092 crtc = new_conn_state->crtc ? 3093 to_intel_crtc(new_conn_state->crtc) : NULL; 3094 encoder->update_prepare(state, encoder, crtc); 3095 } 3096 } 3097 3098 static void intel_encoders_update_complete(struct intel_atomic_state *state) 3099 { 3100 struct drm_connector_state *new_conn_state; 3101 struct drm_connector *connector; 3102 int i; 3103 3104 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3105 i) { 3106 struct intel_connector *intel_connector; 3107 struct intel_encoder *encoder; 3108 struct intel_crtc *crtc; 3109 3110 if (!intel_connector_needs_modeset(state, connector)) 3111 continue; 3112 3113 intel_connector = to_intel_connector(connector); 3114 encoder = intel_connector_primary_encoder(intel_connector); 3115 if (!encoder->update_complete) 3116 continue; 3117 3118 crtc = new_conn_state->crtc ? 3119 to_intel_crtc(new_conn_state->crtc) : NULL; 3120 encoder->update_complete(state, encoder, crtc); 3121 } 3122 } 3123 3124 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 3125 struct intel_crtc *crtc) 3126 { 3127 const struct intel_crtc_state *crtc_state = 3128 intel_atomic_get_new_crtc_state(state, crtc); 3129 const struct drm_connector_state *conn_state; 3130 struct drm_connector *conn; 3131 int i; 3132 3133 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3134 struct intel_encoder *encoder = 3135 to_intel_encoder(conn_state->best_encoder); 3136 3137 if (conn_state->crtc != &crtc->base) 3138 continue; 3139 3140 if (encoder->pre_pll_enable) 3141 encoder->pre_pll_enable(state, encoder, 3142 crtc_state, conn_state); 3143 } 3144 } 3145 3146 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 3147 struct intel_crtc *crtc) 3148 { 3149 const struct intel_crtc_state *crtc_state = 3150 intel_atomic_get_new_crtc_state(state, crtc); 3151 const struct drm_connector_state *conn_state; 3152 struct drm_connector *conn; 3153 int i; 3154 3155 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3156 struct intel_encoder *encoder = 3157 to_intel_encoder(conn_state->best_encoder); 3158 3159 if (conn_state->crtc != &crtc->base) 3160 continue; 3161 3162 if (encoder->pre_enable) 3163 encoder->pre_enable(state, encoder, 3164 crtc_state, conn_state); 3165 } 3166 } 3167 3168 static void intel_encoders_enable(struct intel_atomic_state *state, 3169 struct intel_crtc *crtc) 3170 { 3171 const struct intel_crtc_state *crtc_state = 3172 intel_atomic_get_new_crtc_state(state, crtc); 3173 const struct drm_connector_state *conn_state; 3174 struct drm_connector *conn; 3175 int i; 3176 3177 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3178 struct intel_encoder *encoder = 3179 to_intel_encoder(conn_state->best_encoder); 3180 3181 if (conn_state->crtc != &crtc->base) 3182 continue; 3183 3184 if (encoder->enable) 3185 encoder->enable(state, encoder, 3186 crtc_state, conn_state); 3187 intel_opregion_notify_encoder(encoder, true); 3188 } 3189 } 3190 3191 static void intel_encoders_disable(struct intel_atomic_state *state, 3192 struct intel_crtc *crtc) 3193 { 3194 const struct intel_crtc_state *old_crtc_state = 3195 intel_atomic_get_old_crtc_state(state, crtc); 3196 const struct drm_connector_state *old_conn_state; 3197 struct drm_connector *conn; 3198 int i; 3199 3200 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3201 struct intel_encoder *encoder = 3202 to_intel_encoder(old_conn_state->best_encoder); 3203 3204 if (old_conn_state->crtc != &crtc->base) 3205 continue; 3206 3207 intel_opregion_notify_encoder(encoder, false); 3208 if (encoder->disable) 3209 encoder->disable(state, encoder, 3210 old_crtc_state, old_conn_state); 3211 } 3212 } 3213 3214 static void intel_encoders_post_disable(struct intel_atomic_state *state, 3215 struct intel_crtc *crtc) 3216 { 3217 const struct intel_crtc_state *old_crtc_state = 3218 intel_atomic_get_old_crtc_state(state, crtc); 3219 const struct drm_connector_state *old_conn_state; 3220 struct drm_connector *conn; 3221 int i; 3222 3223 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3224 struct intel_encoder *encoder = 3225 to_intel_encoder(old_conn_state->best_encoder); 3226 3227 if (old_conn_state->crtc != &crtc->base) 3228 continue; 3229 3230 if (encoder->post_disable) 3231 encoder->post_disable(state, encoder, 3232 old_crtc_state, old_conn_state); 3233 } 3234 } 3235 3236 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 3237 struct intel_crtc *crtc) 3238 { 3239 const struct intel_crtc_state *old_crtc_state = 3240 intel_atomic_get_old_crtc_state(state, crtc); 3241 const struct drm_connector_state *old_conn_state; 3242 struct drm_connector *conn; 3243 int i; 3244 3245 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3246 struct intel_encoder *encoder = 3247 to_intel_encoder(old_conn_state->best_encoder); 3248 3249 if (old_conn_state->crtc != &crtc->base) 3250 continue; 3251 3252 if (encoder->post_pll_disable) 3253 encoder->post_pll_disable(state, encoder, 3254 old_crtc_state, old_conn_state); 3255 } 3256 } 3257 3258 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 3259 struct intel_crtc *crtc) 3260 { 3261 const struct intel_crtc_state *crtc_state = 3262 intel_atomic_get_new_crtc_state(state, crtc); 3263 const struct drm_connector_state *conn_state; 3264 struct drm_connector *conn; 3265 int i; 3266 3267 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3268 struct intel_encoder *encoder = 3269 to_intel_encoder(conn_state->best_encoder); 3270 3271 if (conn_state->crtc != &crtc->base) 3272 continue; 3273 3274 if (encoder->update_pipe) 3275 encoder->update_pipe(state, encoder, 3276 crtc_state, conn_state); 3277 } 3278 } 3279 3280 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 3281 { 3282 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3283 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 3284 3285 plane->disable_plane(plane, crtc_state); 3286 } 3287 3288 static void ilk_crtc_enable(struct intel_atomic_state *state, 3289 struct intel_crtc *crtc) 3290 { 3291 const struct intel_crtc_state *new_crtc_state = 3292 intel_atomic_get_new_crtc_state(state, crtc); 3293 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3294 enum pipe pipe = crtc->pipe; 3295 3296 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3297 return; 3298 3299 /* 3300 * Sometimes spurious CPU pipe underruns happen during FDI 3301 * training, at least with VGA+HDMI cloning. Suppress them. 3302 * 3303 * On ILK we get an occasional spurious CPU pipe underruns 3304 * between eDP port A enable and vdd enable. Also PCH port 3305 * enable seems to result in the occasional CPU pipe underrun. 3306 * 3307 * Spurious PCH underruns also occur during PCH enabling. 3308 */ 3309 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3310 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3311 3312 if (new_crtc_state->has_pch_encoder) 3313 intel_prepare_shared_dpll(new_crtc_state); 3314 3315 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3316 intel_dp_set_m_n(new_crtc_state, M1_N1); 3317 3318 intel_set_transcoder_timings(new_crtc_state); 3319 intel_set_pipe_src_size(new_crtc_state); 3320 3321 if (new_crtc_state->has_pch_encoder) 3322 intel_cpu_transcoder_set_m_n(new_crtc_state, 3323 &new_crtc_state->fdi_m_n, NULL); 3324 3325 ilk_set_pipeconf(new_crtc_state); 3326 3327 crtc->active = true; 3328 3329 intel_encoders_pre_enable(state, crtc); 3330 3331 if (new_crtc_state->has_pch_encoder) { 3332 /* Note: FDI PLL enabling _must_ be done before we enable the 3333 * cpu pipes, hence this is separate from all the other fdi/pch 3334 * enabling. */ 3335 ilk_fdi_pll_enable(new_crtc_state); 3336 } else { 3337 assert_fdi_tx_disabled(dev_priv, pipe); 3338 assert_fdi_rx_disabled(dev_priv, pipe); 3339 } 3340 3341 ilk_pfit_enable(new_crtc_state); 3342 3343 /* 3344 * On ILK+ LUT must be loaded before the pipe is running but with 3345 * clocks enabled 3346 */ 3347 intel_color_load_luts(new_crtc_state); 3348 intel_color_commit(new_crtc_state); 3349 /* update DSPCNTR to configure gamma for pipe bottom color */ 3350 intel_disable_primary_plane(new_crtc_state); 3351 3352 if (dev_priv->display.initial_watermarks) 3353 dev_priv->display.initial_watermarks(state, crtc); 3354 intel_enable_pipe(new_crtc_state); 3355 3356 if (new_crtc_state->has_pch_encoder) 3357 ilk_pch_enable(state, new_crtc_state); 3358 3359 intel_crtc_vblank_on(new_crtc_state); 3360 3361 intel_encoders_enable(state, crtc); 3362 3363 if (HAS_PCH_CPT(dev_priv)) 3364 cpt_verify_modeset(dev_priv, pipe); 3365 3366 /* 3367 * Must wait for vblank to avoid spurious PCH FIFO underruns. 3368 * And a second vblank wait is needed at least on ILK with 3369 * some interlaced HDMI modes. Let's do the double wait always 3370 * in case there are more corner cases we don't know about. 3371 */ 3372 if (new_crtc_state->has_pch_encoder) { 3373 intel_wait_for_vblank(dev_priv, pipe); 3374 intel_wait_for_vblank(dev_priv, pipe); 3375 } 3376 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3377 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3378 } 3379 3380 /* IPS only exists on ULT machines and is tied to pipe A. */ 3381 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 3382 { 3383 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 3384 } 3385 3386 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 3387 enum pipe pipe, bool apply) 3388 { 3389 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 3390 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 3391 3392 if (apply) 3393 val |= mask; 3394 else 3395 val &= ~mask; 3396 3397 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 3398 } 3399 3400 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 3401 { 3402 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3403 enum pipe pipe = crtc->pipe; 3404 u32 val; 3405 3406 val = MBUS_DBOX_A_CREDIT(2); 3407 3408 if (DISPLAY_VER(dev_priv) >= 12) { 3409 val |= MBUS_DBOX_BW_CREDIT(2); 3410 val |= MBUS_DBOX_B_CREDIT(12); 3411 } else { 3412 val |= MBUS_DBOX_BW_CREDIT(1); 3413 val |= MBUS_DBOX_B_CREDIT(8); 3414 } 3415 3416 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 3417 } 3418 3419 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 3420 { 3421 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3422 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3423 3424 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 3425 HSW_LINETIME(crtc_state->linetime) | 3426 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 3427 } 3428 3429 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 3430 { 3431 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3432 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3433 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 3434 u32 val; 3435 3436 val = intel_de_read(dev_priv, reg); 3437 val &= ~HSW_FRAME_START_DELAY_MASK; 3438 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 3439 intel_de_write(dev_priv, reg, val); 3440 } 3441 3442 static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state, 3443 const struct intel_crtc_state *crtc_state) 3444 { 3445 struct intel_crtc *master = to_intel_crtc(crtc_state->uapi.crtc); 3446 struct drm_i915_private *dev_priv = to_i915(master->base.dev); 3447 struct intel_crtc_state *master_crtc_state; 3448 struct drm_connector_state *conn_state; 3449 struct drm_connector *conn; 3450 struct intel_encoder *encoder = NULL; 3451 int i; 3452 3453 if (crtc_state->bigjoiner_slave) 3454 master = crtc_state->bigjoiner_linked_crtc; 3455 3456 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 3457 3458 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3459 if (conn_state->crtc != &master->base) 3460 continue; 3461 3462 encoder = to_intel_encoder(conn_state->best_encoder); 3463 break; 3464 } 3465 3466 if (!crtc_state->bigjoiner_slave) { 3467 /* need to enable VDSC, which we skipped in pre-enable */ 3468 intel_dsc_enable(encoder, crtc_state); 3469 } else { 3470 /* 3471 * Enable sequence steps 1-7 on bigjoiner master 3472 */ 3473 intel_encoders_pre_pll_enable(state, master); 3474 intel_enable_shared_dpll(master_crtc_state); 3475 intel_encoders_pre_enable(state, master); 3476 3477 /* and DSC on slave */ 3478 intel_dsc_enable(NULL, crtc_state); 3479 } 3480 3481 if (DISPLAY_VER(dev_priv) >= 13) 3482 intel_uncompressed_joiner_enable(crtc_state); 3483 } 3484 3485 static void hsw_crtc_enable(struct intel_atomic_state *state, 3486 struct intel_crtc *crtc) 3487 { 3488 const struct intel_crtc_state *new_crtc_state = 3489 intel_atomic_get_new_crtc_state(state, crtc); 3490 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3491 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 3492 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 3493 bool psl_clkgate_wa; 3494 3495 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3496 return; 3497 3498 if (!new_crtc_state->bigjoiner) { 3499 intel_encoders_pre_pll_enable(state, crtc); 3500 3501 if (new_crtc_state->shared_dpll) 3502 intel_enable_shared_dpll(new_crtc_state); 3503 3504 intel_encoders_pre_enable(state, crtc); 3505 } else { 3506 icl_ddi_bigjoiner_pre_enable(state, new_crtc_state); 3507 } 3508 3509 intel_set_pipe_src_size(new_crtc_state); 3510 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 3511 bdw_set_pipemisc(new_crtc_state); 3512 3513 if (!new_crtc_state->bigjoiner_slave && !transcoder_is_dsi(cpu_transcoder)) { 3514 intel_set_transcoder_timings(new_crtc_state); 3515 3516 if (cpu_transcoder != TRANSCODER_EDP) 3517 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 3518 new_crtc_state->pixel_multiplier - 1); 3519 3520 if (new_crtc_state->has_pch_encoder) 3521 intel_cpu_transcoder_set_m_n(new_crtc_state, 3522 &new_crtc_state->fdi_m_n, NULL); 3523 3524 hsw_set_frame_start_delay(new_crtc_state); 3525 } 3526 3527 if (!transcoder_is_dsi(cpu_transcoder)) 3528 hsw_set_pipeconf(new_crtc_state); 3529 3530 crtc->active = true; 3531 3532 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 3533 psl_clkgate_wa = DISPLAY_VER(dev_priv) == 10 && 3534 new_crtc_state->pch_pfit.enabled; 3535 if (psl_clkgate_wa) 3536 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 3537 3538 if (DISPLAY_VER(dev_priv) >= 9) 3539 skl_pfit_enable(new_crtc_state); 3540 else 3541 ilk_pfit_enable(new_crtc_state); 3542 3543 /* 3544 * On ILK+ LUT must be loaded before the pipe is running but with 3545 * clocks enabled 3546 */ 3547 intel_color_load_luts(new_crtc_state); 3548 intel_color_commit(new_crtc_state); 3549 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 3550 if (DISPLAY_VER(dev_priv) < 9) 3551 intel_disable_primary_plane(new_crtc_state); 3552 3553 hsw_set_linetime_wm(new_crtc_state); 3554 3555 if (DISPLAY_VER(dev_priv) >= 11) 3556 icl_set_pipe_chicken(crtc); 3557 3558 if (dev_priv->display.initial_watermarks) 3559 dev_priv->display.initial_watermarks(state, crtc); 3560 3561 if (DISPLAY_VER(dev_priv) >= 11) 3562 icl_pipe_mbus_enable(crtc); 3563 3564 if (new_crtc_state->bigjoiner_slave) 3565 intel_crtc_vblank_on(new_crtc_state); 3566 3567 intel_encoders_enable(state, crtc); 3568 3569 if (psl_clkgate_wa) { 3570 intel_wait_for_vblank(dev_priv, pipe); 3571 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 3572 } 3573 3574 /* If we change the relative order between pipe/planes enabling, we need 3575 * to change the workaround. */ 3576 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 3577 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 3578 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3579 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3580 } 3581 } 3582 3583 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 3584 { 3585 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3586 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3587 enum pipe pipe = crtc->pipe; 3588 3589 /* To avoid upsetting the power well on haswell only disable the pfit if 3590 * it's in use. The hw state code will make sure we get this right. */ 3591 if (!old_crtc_state->pch_pfit.enabled) 3592 return; 3593 3594 intel_de_write(dev_priv, PF_CTL(pipe), 0); 3595 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 3596 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 3597 } 3598 3599 static void ilk_crtc_disable(struct intel_atomic_state *state, 3600 struct intel_crtc *crtc) 3601 { 3602 const struct intel_crtc_state *old_crtc_state = 3603 intel_atomic_get_old_crtc_state(state, crtc); 3604 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3605 enum pipe pipe = crtc->pipe; 3606 3607 /* 3608 * Sometimes spurious CPU pipe underruns happen when the 3609 * pipe is already disabled, but FDI RX/TX is still enabled. 3610 * Happens at least with VGA+HDMI cloning. Suppress them. 3611 */ 3612 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3613 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3614 3615 intel_encoders_disable(state, crtc); 3616 3617 intel_crtc_vblank_off(old_crtc_state); 3618 3619 intel_disable_pipe(old_crtc_state); 3620 3621 ilk_pfit_disable(old_crtc_state); 3622 3623 if (old_crtc_state->has_pch_encoder) 3624 ilk_fdi_disable(crtc); 3625 3626 intel_encoders_post_disable(state, crtc); 3627 3628 if (old_crtc_state->has_pch_encoder) { 3629 ilk_disable_pch_transcoder(dev_priv, pipe); 3630 3631 if (HAS_PCH_CPT(dev_priv)) { 3632 i915_reg_t reg; 3633 u32 temp; 3634 3635 /* disable TRANS_DP_CTL */ 3636 reg = TRANS_DP_CTL(pipe); 3637 temp = intel_de_read(dev_priv, reg); 3638 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 3639 TRANS_DP_PORT_SEL_MASK); 3640 temp |= TRANS_DP_PORT_SEL_NONE; 3641 intel_de_write(dev_priv, reg, temp); 3642 3643 /* disable DPLL_SEL */ 3644 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 3645 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 3646 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 3647 } 3648 3649 ilk_fdi_pll_disable(crtc); 3650 } 3651 3652 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3653 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3654 } 3655 3656 static void hsw_crtc_disable(struct intel_atomic_state *state, 3657 struct intel_crtc *crtc) 3658 { 3659 /* 3660 * FIXME collapse everything to one hook. 3661 * Need care with mst->ddi interactions. 3662 */ 3663 intel_encoders_disable(state, crtc); 3664 intel_encoders_post_disable(state, crtc); 3665 } 3666 3667 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 3668 { 3669 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3670 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3671 3672 if (!crtc_state->gmch_pfit.control) 3673 return; 3674 3675 /* 3676 * The panel fitter should only be adjusted whilst the pipe is disabled, 3677 * according to register description and PRM. 3678 */ 3679 drm_WARN_ON(&dev_priv->drm, 3680 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 3681 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 3682 3683 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 3684 crtc_state->gmch_pfit.pgm_ratios); 3685 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 3686 3687 /* Border color in case we don't scale up to the full screen. Black by 3688 * default, change to something else for debugging. */ 3689 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 3690 } 3691 3692 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 3693 { 3694 if (phy == PHY_NONE) 3695 return false; 3696 else if (IS_ALDERLAKE_S(dev_priv)) 3697 return phy <= PHY_E; 3698 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 3699 return phy <= PHY_D; 3700 else if (IS_JSL_EHL(dev_priv)) 3701 return phy <= PHY_C; 3702 else if (DISPLAY_VER(dev_priv) >= 11) 3703 return phy <= PHY_B; 3704 else 3705 return false; 3706 } 3707 3708 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 3709 { 3710 if (IS_ALDERLAKE_P(dev_priv)) 3711 return phy >= PHY_F && phy <= PHY_I; 3712 else if (IS_TIGERLAKE(dev_priv)) 3713 return phy >= PHY_D && phy <= PHY_I; 3714 else if (IS_ICELAKE(dev_priv)) 3715 return phy >= PHY_C && phy <= PHY_F; 3716 else 3717 return false; 3718 } 3719 3720 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 3721 { 3722 if (DISPLAY_VER(i915) >= 13 && port >= PORT_D_XELPD) 3723 return PHY_D + port - PORT_D_XELPD; 3724 else if (DISPLAY_VER(i915) >= 13 && port >= PORT_TC1) 3725 return PHY_F + port - PORT_TC1; 3726 else if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1) 3727 return PHY_B + port - PORT_TC1; 3728 else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1) 3729 return PHY_C + port - PORT_TC1; 3730 else if (IS_JSL_EHL(i915) && port == PORT_D) 3731 return PHY_A; 3732 3733 return PHY_A + port - PORT_A; 3734 } 3735 3736 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 3737 { 3738 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 3739 return TC_PORT_NONE; 3740 3741 if (DISPLAY_VER(dev_priv) >= 12) 3742 return TC_PORT_1 + port - PORT_TC1; 3743 else 3744 return TC_PORT_1 + port - PORT_C; 3745 } 3746 3747 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 3748 { 3749 switch (port) { 3750 case PORT_A: 3751 return POWER_DOMAIN_PORT_DDI_A_LANES; 3752 case PORT_B: 3753 return POWER_DOMAIN_PORT_DDI_B_LANES; 3754 case PORT_C: 3755 return POWER_DOMAIN_PORT_DDI_C_LANES; 3756 case PORT_D: 3757 return POWER_DOMAIN_PORT_DDI_D_LANES; 3758 case PORT_E: 3759 return POWER_DOMAIN_PORT_DDI_E_LANES; 3760 case PORT_F: 3761 return POWER_DOMAIN_PORT_DDI_F_LANES; 3762 case PORT_G: 3763 return POWER_DOMAIN_PORT_DDI_G_LANES; 3764 case PORT_H: 3765 return POWER_DOMAIN_PORT_DDI_H_LANES; 3766 case PORT_I: 3767 return POWER_DOMAIN_PORT_DDI_I_LANES; 3768 default: 3769 MISSING_CASE(port); 3770 return POWER_DOMAIN_PORT_OTHER; 3771 } 3772 } 3773 3774 enum intel_display_power_domain 3775 intel_aux_power_domain(struct intel_digital_port *dig_port) 3776 { 3777 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3778 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 3779 3780 if (intel_phy_is_tc(dev_priv, phy) && 3781 dig_port->tc_mode == TC_PORT_TBT_ALT) { 3782 switch (dig_port->aux_ch) { 3783 case AUX_CH_C: 3784 return POWER_DOMAIN_AUX_C_TBT; 3785 case AUX_CH_D: 3786 return POWER_DOMAIN_AUX_D_TBT; 3787 case AUX_CH_E: 3788 return POWER_DOMAIN_AUX_E_TBT; 3789 case AUX_CH_F: 3790 return POWER_DOMAIN_AUX_F_TBT; 3791 case AUX_CH_G: 3792 return POWER_DOMAIN_AUX_G_TBT; 3793 case AUX_CH_H: 3794 return POWER_DOMAIN_AUX_H_TBT; 3795 case AUX_CH_I: 3796 return POWER_DOMAIN_AUX_I_TBT; 3797 default: 3798 MISSING_CASE(dig_port->aux_ch); 3799 return POWER_DOMAIN_AUX_C_TBT; 3800 } 3801 } 3802 3803 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 3804 } 3805 3806 /* 3807 * Converts aux_ch to power_domain without caring about TBT ports for that use 3808 * intel_aux_power_domain() 3809 */ 3810 enum intel_display_power_domain 3811 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 3812 { 3813 switch (aux_ch) { 3814 case AUX_CH_A: 3815 return POWER_DOMAIN_AUX_A; 3816 case AUX_CH_B: 3817 return POWER_DOMAIN_AUX_B; 3818 case AUX_CH_C: 3819 return POWER_DOMAIN_AUX_C; 3820 case AUX_CH_D: 3821 return POWER_DOMAIN_AUX_D; 3822 case AUX_CH_E: 3823 return POWER_DOMAIN_AUX_E; 3824 case AUX_CH_F: 3825 return POWER_DOMAIN_AUX_F; 3826 case AUX_CH_G: 3827 return POWER_DOMAIN_AUX_G; 3828 case AUX_CH_H: 3829 return POWER_DOMAIN_AUX_H; 3830 case AUX_CH_I: 3831 return POWER_DOMAIN_AUX_I; 3832 default: 3833 MISSING_CASE(aux_ch); 3834 return POWER_DOMAIN_AUX_A; 3835 } 3836 } 3837 3838 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3839 { 3840 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3841 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3842 struct drm_encoder *encoder; 3843 enum pipe pipe = crtc->pipe; 3844 u64 mask; 3845 enum transcoder transcoder = crtc_state->cpu_transcoder; 3846 3847 if (!crtc_state->hw.active) 3848 return 0; 3849 3850 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 3851 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 3852 if (crtc_state->pch_pfit.enabled || 3853 crtc_state->pch_pfit.force_thru) 3854 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 3855 3856 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 3857 crtc_state->uapi.encoder_mask) { 3858 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 3859 3860 mask |= BIT_ULL(intel_encoder->power_domain); 3861 } 3862 3863 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 3864 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 3865 3866 if (crtc_state->shared_dpll) 3867 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 3868 3869 if (crtc_state->dsc.compression_enable) 3870 mask |= BIT_ULL(intel_dsc_power_domain(crtc_state)); 3871 3872 return mask; 3873 } 3874 3875 static u64 3876 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3877 { 3878 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3879 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3880 enum intel_display_power_domain domain; 3881 u64 domains, new_domains, old_domains; 3882 3883 domains = get_crtc_power_domains(crtc_state); 3884 3885 new_domains = domains & ~crtc->enabled_power_domains.mask; 3886 old_domains = crtc->enabled_power_domains.mask & ~domains; 3887 3888 for_each_power_domain(domain, new_domains) 3889 intel_display_power_get_in_set(dev_priv, 3890 &crtc->enabled_power_domains, 3891 domain); 3892 3893 return old_domains; 3894 } 3895 3896 static void modeset_put_crtc_power_domains(struct intel_crtc *crtc, 3897 u64 domains) 3898 { 3899 intel_display_power_put_mask_in_set(to_i915(crtc->base.dev), 3900 &crtc->enabled_power_domains, 3901 domains); 3902 } 3903 3904 static void valleyview_crtc_enable(struct intel_atomic_state *state, 3905 struct intel_crtc *crtc) 3906 { 3907 const struct intel_crtc_state *new_crtc_state = 3908 intel_atomic_get_new_crtc_state(state, crtc); 3909 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3910 enum pipe pipe = crtc->pipe; 3911 3912 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3913 return; 3914 3915 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3916 intel_dp_set_m_n(new_crtc_state, M1_N1); 3917 3918 intel_set_transcoder_timings(new_crtc_state); 3919 intel_set_pipe_src_size(new_crtc_state); 3920 3921 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 3922 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 3923 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 3924 } 3925 3926 i9xx_set_pipeconf(new_crtc_state); 3927 3928 crtc->active = true; 3929 3930 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3931 3932 intel_encoders_pre_pll_enable(state, crtc); 3933 3934 if (IS_CHERRYVIEW(dev_priv)) { 3935 chv_prepare_pll(crtc, new_crtc_state); 3936 chv_enable_pll(crtc, new_crtc_state); 3937 } else { 3938 vlv_prepare_pll(crtc, new_crtc_state); 3939 vlv_enable_pll(crtc, new_crtc_state); 3940 } 3941 3942 intel_encoders_pre_enable(state, crtc); 3943 3944 i9xx_pfit_enable(new_crtc_state); 3945 3946 intel_color_load_luts(new_crtc_state); 3947 intel_color_commit(new_crtc_state); 3948 /* update DSPCNTR to configure gamma for pipe bottom color */ 3949 intel_disable_primary_plane(new_crtc_state); 3950 3951 dev_priv->display.initial_watermarks(state, crtc); 3952 intel_enable_pipe(new_crtc_state); 3953 3954 intel_crtc_vblank_on(new_crtc_state); 3955 3956 intel_encoders_enable(state, crtc); 3957 } 3958 3959 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 3960 { 3961 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3962 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3963 3964 intel_de_write(dev_priv, FP0(crtc->pipe), 3965 crtc_state->dpll_hw_state.fp0); 3966 intel_de_write(dev_priv, FP1(crtc->pipe), 3967 crtc_state->dpll_hw_state.fp1); 3968 } 3969 3970 static void i9xx_crtc_enable(struct intel_atomic_state *state, 3971 struct intel_crtc *crtc) 3972 { 3973 const struct intel_crtc_state *new_crtc_state = 3974 intel_atomic_get_new_crtc_state(state, crtc); 3975 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3976 enum pipe pipe = crtc->pipe; 3977 3978 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3979 return; 3980 3981 i9xx_set_pll_dividers(new_crtc_state); 3982 3983 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3984 intel_dp_set_m_n(new_crtc_state, M1_N1); 3985 3986 intel_set_transcoder_timings(new_crtc_state); 3987 intel_set_pipe_src_size(new_crtc_state); 3988 3989 i9xx_set_pipeconf(new_crtc_state); 3990 3991 crtc->active = true; 3992 3993 if (DISPLAY_VER(dev_priv) != 2) 3994 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3995 3996 intel_encoders_pre_enable(state, crtc); 3997 3998 i9xx_enable_pll(crtc, new_crtc_state); 3999 4000 i9xx_pfit_enable(new_crtc_state); 4001 4002 intel_color_load_luts(new_crtc_state); 4003 intel_color_commit(new_crtc_state); 4004 /* update DSPCNTR to configure gamma for pipe bottom color */ 4005 intel_disable_primary_plane(new_crtc_state); 4006 4007 if (dev_priv->display.initial_watermarks) 4008 dev_priv->display.initial_watermarks(state, crtc); 4009 else 4010 intel_update_watermarks(crtc); 4011 intel_enable_pipe(new_crtc_state); 4012 4013 intel_crtc_vblank_on(new_crtc_state); 4014 4015 intel_encoders_enable(state, crtc); 4016 4017 /* prevents spurious underruns */ 4018 if (DISPLAY_VER(dev_priv) == 2) 4019 intel_wait_for_vblank(dev_priv, pipe); 4020 } 4021 4022 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 4023 { 4024 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4025 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4026 4027 if (!old_crtc_state->gmch_pfit.control) 4028 return; 4029 4030 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 4031 4032 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 4033 intel_de_read(dev_priv, PFIT_CONTROL)); 4034 intel_de_write(dev_priv, PFIT_CONTROL, 0); 4035 } 4036 4037 static void i9xx_crtc_disable(struct intel_atomic_state *state, 4038 struct intel_crtc *crtc) 4039 { 4040 struct intel_crtc_state *old_crtc_state = 4041 intel_atomic_get_old_crtc_state(state, crtc); 4042 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4043 enum pipe pipe = crtc->pipe; 4044 4045 /* 4046 * On gen2 planes are double buffered but the pipe isn't, so we must 4047 * wait for planes to fully turn off before disabling the pipe. 4048 */ 4049 if (DISPLAY_VER(dev_priv) == 2) 4050 intel_wait_for_vblank(dev_priv, pipe); 4051 4052 intel_encoders_disable(state, crtc); 4053 4054 intel_crtc_vblank_off(old_crtc_state); 4055 4056 intel_disable_pipe(old_crtc_state); 4057 4058 i9xx_pfit_disable(old_crtc_state); 4059 4060 intel_encoders_post_disable(state, crtc); 4061 4062 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 4063 if (IS_CHERRYVIEW(dev_priv)) 4064 chv_disable_pll(dev_priv, pipe); 4065 else if (IS_VALLEYVIEW(dev_priv)) 4066 vlv_disable_pll(dev_priv, pipe); 4067 else 4068 i9xx_disable_pll(old_crtc_state); 4069 } 4070 4071 intel_encoders_post_pll_disable(state, crtc); 4072 4073 if (DISPLAY_VER(dev_priv) != 2) 4074 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4075 4076 if (!dev_priv->display.initial_watermarks) 4077 intel_update_watermarks(crtc); 4078 4079 /* clock the pipe down to 640x480@60 to potentially save power */ 4080 if (IS_I830(dev_priv)) 4081 i830_enable_pipe(dev_priv, pipe); 4082 } 4083 4084 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 4085 struct drm_modeset_acquire_ctx *ctx) 4086 { 4087 struct intel_encoder *encoder; 4088 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4089 struct intel_bw_state *bw_state = 4090 to_intel_bw_state(dev_priv->bw_obj.state); 4091 struct intel_cdclk_state *cdclk_state = 4092 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 4093 struct intel_dbuf_state *dbuf_state = 4094 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 4095 struct intel_crtc_state *crtc_state = 4096 to_intel_crtc_state(crtc->base.state); 4097 struct intel_plane *plane; 4098 struct drm_atomic_state *state; 4099 struct intel_crtc_state *temp_crtc_state; 4100 enum pipe pipe = crtc->pipe; 4101 int ret; 4102 4103 if (!crtc_state->hw.active) 4104 return; 4105 4106 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 4107 const struct intel_plane_state *plane_state = 4108 to_intel_plane_state(plane->base.state); 4109 4110 if (plane_state->uapi.visible) 4111 intel_plane_disable_noatomic(crtc, plane); 4112 } 4113 4114 state = drm_atomic_state_alloc(&dev_priv->drm); 4115 if (!state) { 4116 drm_dbg_kms(&dev_priv->drm, 4117 "failed to disable [CRTC:%d:%s], out of memory", 4118 crtc->base.base.id, crtc->base.name); 4119 return; 4120 } 4121 4122 state->acquire_ctx = ctx; 4123 4124 /* Everything's already locked, -EDEADLK can't happen. */ 4125 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 4126 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 4127 4128 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 4129 4130 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 4131 4132 drm_atomic_state_put(state); 4133 4134 drm_dbg_kms(&dev_priv->drm, 4135 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 4136 crtc->base.base.id, crtc->base.name); 4137 4138 crtc->active = false; 4139 crtc->base.enabled = false; 4140 4141 drm_WARN_ON(&dev_priv->drm, 4142 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 4143 crtc_state->uapi.active = false; 4144 crtc_state->uapi.connector_mask = 0; 4145 crtc_state->uapi.encoder_mask = 0; 4146 intel_crtc_free_hw_state(crtc_state); 4147 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 4148 4149 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 4150 encoder->base.crtc = NULL; 4151 4152 intel_fbc_disable(crtc); 4153 intel_update_watermarks(crtc); 4154 intel_disable_shared_dpll(crtc_state); 4155 4156 intel_display_power_put_all_in_set(dev_priv, &crtc->enabled_power_domains); 4157 4158 dev_priv->active_pipes &= ~BIT(pipe); 4159 cdclk_state->min_cdclk[pipe] = 0; 4160 cdclk_state->min_voltage_level[pipe] = 0; 4161 cdclk_state->active_pipes &= ~BIT(pipe); 4162 4163 dbuf_state->active_pipes &= ~BIT(pipe); 4164 4165 bw_state->data_rate[pipe] = 0; 4166 bw_state->num_active_planes[pipe] = 0; 4167 } 4168 4169 /* 4170 * turn all crtc's off, but do not adjust state 4171 * This has to be paired with a call to intel_modeset_setup_hw_state. 4172 */ 4173 int intel_display_suspend(struct drm_device *dev) 4174 { 4175 struct drm_i915_private *dev_priv = to_i915(dev); 4176 struct drm_atomic_state *state; 4177 int ret; 4178 4179 if (!HAS_DISPLAY(dev_priv)) 4180 return 0; 4181 4182 state = drm_atomic_helper_suspend(dev); 4183 ret = PTR_ERR_OR_ZERO(state); 4184 if (ret) 4185 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4186 ret); 4187 else 4188 dev_priv->modeset_restore_state = state; 4189 return ret; 4190 } 4191 4192 void intel_encoder_destroy(struct drm_encoder *encoder) 4193 { 4194 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 4195 4196 drm_encoder_cleanup(encoder); 4197 kfree(intel_encoder); 4198 } 4199 4200 /* Cross check the actual hw state with our own modeset state tracking (and it's 4201 * internal consistency). */ 4202 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 4203 struct drm_connector_state *conn_state) 4204 { 4205 struct intel_connector *connector = to_intel_connector(conn_state->connector); 4206 struct drm_i915_private *i915 = to_i915(connector->base.dev); 4207 4208 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 4209 connector->base.base.id, connector->base.name); 4210 4211 if (connector->get_hw_state(connector)) { 4212 struct intel_encoder *encoder = intel_attached_encoder(connector); 4213 4214 I915_STATE_WARN(!crtc_state, 4215 "connector enabled without attached crtc\n"); 4216 4217 if (!crtc_state) 4218 return; 4219 4220 I915_STATE_WARN(!crtc_state->hw.active, 4221 "connector is active, but attached crtc isn't\n"); 4222 4223 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 4224 return; 4225 4226 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 4227 "atomic encoder doesn't match attached encoder\n"); 4228 4229 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 4230 "attached encoder crtc differs from connector crtc\n"); 4231 } else { 4232 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 4233 "attached crtc is active, but connector isn't\n"); 4234 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 4235 "best encoder set without crtc!\n"); 4236 } 4237 } 4238 4239 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 4240 { 4241 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4242 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4243 4244 /* IPS only exists on ULT machines and is tied to pipe A. */ 4245 if (!hsw_crtc_supports_ips(crtc)) 4246 return false; 4247 4248 if (!dev_priv->params.enable_ips) 4249 return false; 4250 4251 if (crtc_state->pipe_bpp > 24) 4252 return false; 4253 4254 /* 4255 * We compare against max which means we must take 4256 * the increased cdclk requirement into account when 4257 * calculating the new cdclk. 4258 * 4259 * Should measure whether using a lower cdclk w/o IPS 4260 */ 4261 if (IS_BROADWELL(dev_priv) && 4262 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 4263 return false; 4264 4265 return true; 4266 } 4267 4268 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 4269 { 4270 struct drm_i915_private *dev_priv = 4271 to_i915(crtc_state->uapi.crtc->dev); 4272 struct intel_atomic_state *state = 4273 to_intel_atomic_state(crtc_state->uapi.state); 4274 4275 crtc_state->ips_enabled = false; 4276 4277 if (!hsw_crtc_state_ips_capable(crtc_state)) 4278 return 0; 4279 4280 /* 4281 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 4282 * enabled and disabled dynamically based on package C states, 4283 * user space can't make reliable use of the CRCs, so let's just 4284 * completely disable it. 4285 */ 4286 if (crtc_state->crc_enabled) 4287 return 0; 4288 4289 /* IPS should be fine as long as at least one plane is enabled. */ 4290 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 4291 return 0; 4292 4293 if (IS_BROADWELL(dev_priv)) { 4294 const struct intel_cdclk_state *cdclk_state; 4295 4296 cdclk_state = intel_atomic_get_cdclk_state(state); 4297 if (IS_ERR(cdclk_state)) 4298 return PTR_ERR(cdclk_state); 4299 4300 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 4301 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 4302 return 0; 4303 } 4304 4305 crtc_state->ips_enabled = true; 4306 4307 return 0; 4308 } 4309 4310 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 4311 { 4312 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4313 4314 /* GDG double wide on either pipe, otherwise pipe A only */ 4315 return DISPLAY_VER(dev_priv) < 4 && 4316 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 4317 } 4318 4319 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 4320 { 4321 u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; 4322 struct drm_rect src; 4323 4324 /* 4325 * We only use IF-ID interlacing. If we ever use 4326 * PF-ID we'll need to adjust the pixel_rate here. 4327 */ 4328 4329 if (!crtc_state->pch_pfit.enabled) 4330 return pixel_rate; 4331 4332 drm_rect_init(&src, 0, 0, 4333 crtc_state->pipe_src_w << 16, 4334 crtc_state->pipe_src_h << 16); 4335 4336 return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst, 4337 pixel_rate); 4338 } 4339 4340 static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, 4341 const struct drm_display_mode *timings) 4342 { 4343 mode->hdisplay = timings->crtc_hdisplay; 4344 mode->htotal = timings->crtc_htotal; 4345 mode->hsync_start = timings->crtc_hsync_start; 4346 mode->hsync_end = timings->crtc_hsync_end; 4347 4348 mode->vdisplay = timings->crtc_vdisplay; 4349 mode->vtotal = timings->crtc_vtotal; 4350 mode->vsync_start = timings->crtc_vsync_start; 4351 mode->vsync_end = timings->crtc_vsync_end; 4352 4353 mode->flags = timings->flags; 4354 mode->type = DRM_MODE_TYPE_DRIVER; 4355 4356 mode->clock = timings->crtc_clock; 4357 4358 drm_mode_set_name(mode); 4359 } 4360 4361 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 4362 { 4363 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4364 4365 if (HAS_GMCH(dev_priv)) 4366 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 4367 crtc_state->pixel_rate = 4368 crtc_state->hw.pipe_mode.crtc_clock; 4369 else 4370 crtc_state->pixel_rate = 4371 ilk_pipe_pixel_rate(crtc_state); 4372 } 4373 4374 static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) 4375 { 4376 struct drm_display_mode *mode = &crtc_state->hw.mode; 4377 struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 4378 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4379 4380 drm_mode_copy(pipe_mode, adjusted_mode); 4381 4382 if (crtc_state->bigjoiner) { 4383 /* 4384 * transcoder is programmed to the full mode, 4385 * but pipe timings are half of the transcoder mode 4386 */ 4387 pipe_mode->crtc_hdisplay /= 2; 4388 pipe_mode->crtc_hblank_start /= 2; 4389 pipe_mode->crtc_hblank_end /= 2; 4390 pipe_mode->crtc_hsync_start /= 2; 4391 pipe_mode->crtc_hsync_end /= 2; 4392 pipe_mode->crtc_htotal /= 2; 4393 pipe_mode->crtc_clock /= 2; 4394 } 4395 4396 if (crtc_state->splitter.enable) { 4397 int n = crtc_state->splitter.link_count; 4398 int overlap = crtc_state->splitter.pixel_overlap; 4399 4400 /* 4401 * eDP MSO uses segment timings from EDID for transcoder 4402 * timings, but full mode for everything else. 4403 * 4404 * h_full = (h_segment - pixel_overlap) * link_count 4405 */ 4406 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4407 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4408 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4409 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4410 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4411 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4412 pipe_mode->crtc_clock *= n; 4413 4414 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4415 intel_mode_from_crtc_timings(adjusted_mode, pipe_mode); 4416 } else { 4417 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4418 intel_mode_from_crtc_timings(adjusted_mode, adjusted_mode); 4419 } 4420 4421 intel_crtc_compute_pixel_rate(crtc_state); 4422 4423 drm_mode_copy(mode, adjusted_mode); 4424 mode->hdisplay = crtc_state->pipe_src_w << crtc_state->bigjoiner; 4425 mode->vdisplay = crtc_state->pipe_src_h; 4426 } 4427 4428 static void intel_encoder_get_config(struct intel_encoder *encoder, 4429 struct intel_crtc_state *crtc_state) 4430 { 4431 encoder->get_config(encoder, crtc_state); 4432 4433 intel_crtc_readout_derived_state(crtc_state); 4434 } 4435 4436 static int intel_crtc_compute_config(struct intel_crtc *crtc, 4437 struct intel_crtc_state *pipe_config) 4438 { 4439 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4440 struct drm_display_mode *pipe_mode = &pipe_config->hw.pipe_mode; 4441 int clock_limit = dev_priv->max_dotclk_freq; 4442 4443 drm_mode_copy(pipe_mode, &pipe_config->hw.adjusted_mode); 4444 4445 /* Adjust pipe_mode for bigjoiner, with half the horizontal mode */ 4446 if (pipe_config->bigjoiner) { 4447 pipe_mode->crtc_clock /= 2; 4448 pipe_mode->crtc_hdisplay /= 2; 4449 pipe_mode->crtc_hblank_start /= 2; 4450 pipe_mode->crtc_hblank_end /= 2; 4451 pipe_mode->crtc_hsync_start /= 2; 4452 pipe_mode->crtc_hsync_end /= 2; 4453 pipe_mode->crtc_htotal /= 2; 4454 pipe_config->pipe_src_w /= 2; 4455 } 4456 4457 if (pipe_config->splitter.enable) { 4458 int n = pipe_config->splitter.link_count; 4459 int overlap = pipe_config->splitter.pixel_overlap; 4460 4461 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4462 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4463 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4464 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4465 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4466 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4467 pipe_mode->crtc_clock *= n; 4468 } 4469 4470 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4471 4472 if (DISPLAY_VER(dev_priv) < 4) { 4473 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 4474 4475 /* 4476 * Enable double wide mode when the dot clock 4477 * is > 90% of the (display) core speed. 4478 */ 4479 if (intel_crtc_supports_double_wide(crtc) && 4480 pipe_mode->crtc_clock > clock_limit) { 4481 clock_limit = dev_priv->max_dotclk_freq; 4482 pipe_config->double_wide = true; 4483 } 4484 } 4485 4486 if (pipe_mode->crtc_clock > clock_limit) { 4487 drm_dbg_kms(&dev_priv->drm, 4488 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 4489 pipe_mode->crtc_clock, clock_limit, 4490 yesno(pipe_config->double_wide)); 4491 return -EINVAL; 4492 } 4493 4494 /* 4495 * Pipe horizontal size must be even in: 4496 * - DVO ganged mode 4497 * - LVDS dual channel mode 4498 * - Double wide pipe 4499 */ 4500 if (pipe_config->pipe_src_w & 1) { 4501 if (pipe_config->double_wide) { 4502 drm_dbg_kms(&dev_priv->drm, 4503 "Odd pipe source width not supported with double wide pipe\n"); 4504 return -EINVAL; 4505 } 4506 4507 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 4508 intel_is_dual_link_lvds(dev_priv)) { 4509 drm_dbg_kms(&dev_priv->drm, 4510 "Odd pipe source width not supported with dual link LVDS\n"); 4511 return -EINVAL; 4512 } 4513 } 4514 4515 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 4516 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 4517 */ 4518 if ((DISPLAY_VER(dev_priv) > 4 || IS_G4X(dev_priv)) && 4519 pipe_mode->crtc_hsync_start == pipe_mode->crtc_hdisplay) 4520 return -EINVAL; 4521 4522 intel_crtc_compute_pixel_rate(pipe_config); 4523 4524 if (pipe_config->has_pch_encoder) 4525 return ilk_fdi_compute_config(crtc, pipe_config); 4526 4527 return 0; 4528 } 4529 4530 static void 4531 intel_reduce_m_n_ratio(u32 *num, u32 *den) 4532 { 4533 while (*num > DATA_LINK_M_N_MASK || 4534 *den > DATA_LINK_M_N_MASK) { 4535 *num >>= 1; 4536 *den >>= 1; 4537 } 4538 } 4539 4540 static void compute_m_n(unsigned int m, unsigned int n, 4541 u32 *ret_m, u32 *ret_n, 4542 bool constant_n) 4543 { 4544 /* 4545 * Several DP dongles in particular seem to be fussy about 4546 * too large link M/N values. Give N value as 0x8000 that 4547 * should be acceptable by specific devices. 0x8000 is the 4548 * specified fixed N value for asynchronous clock mode, 4549 * which the devices expect also in synchronous clock mode. 4550 */ 4551 if (constant_n) 4552 *ret_n = DP_LINK_CONSTANT_N_VALUE; 4553 else 4554 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 4555 4556 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 4557 intel_reduce_m_n_ratio(ret_m, ret_n); 4558 } 4559 4560 void 4561 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 4562 int pixel_clock, int link_clock, 4563 struct intel_link_m_n *m_n, 4564 bool constant_n, bool fec_enable) 4565 { 4566 u32 data_clock = bits_per_pixel * pixel_clock; 4567 4568 if (fec_enable) 4569 data_clock = intel_dp_mode_to_fec_clock(data_clock); 4570 4571 m_n->tu = 64; 4572 compute_m_n(data_clock, 4573 link_clock * nlanes * 8, 4574 &m_n->gmch_m, &m_n->gmch_n, 4575 constant_n); 4576 4577 compute_m_n(pixel_clock, link_clock, 4578 &m_n->link_m, &m_n->link_n, 4579 constant_n); 4580 } 4581 4582 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 4583 { 4584 /* 4585 * There may be no VBT; and if the BIOS enabled SSC we can 4586 * just keep using it to avoid unnecessary flicker. Whereas if the 4587 * BIOS isn't using it, don't assume it will work even if the VBT 4588 * indicates as much. 4589 */ 4590 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 4591 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 4592 PCH_DREF_CONTROL) & 4593 DREF_SSC1_ENABLE; 4594 4595 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 4596 drm_dbg_kms(&dev_priv->drm, 4597 "SSC %s by BIOS, overriding VBT which says %s\n", 4598 enableddisabled(bios_lvds_use_ssc), 4599 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 4600 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 4601 } 4602 } 4603 } 4604 4605 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4606 const struct intel_link_m_n *m_n) 4607 { 4608 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4609 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4610 enum pipe pipe = crtc->pipe; 4611 4612 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 4613 TU_SIZE(m_n->tu) | m_n->gmch_m); 4614 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 4615 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 4616 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 4617 } 4618 4619 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 4620 enum transcoder transcoder) 4621 { 4622 if (IS_HASWELL(dev_priv)) 4623 return transcoder == TRANSCODER_EDP; 4624 4625 /* 4626 * Strictly speaking some registers are available before 4627 * gen7, but we only support DRRS on gen7+ 4628 */ 4629 return DISPLAY_VER(dev_priv) == 7 || IS_CHERRYVIEW(dev_priv); 4630 } 4631 4632 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4633 const struct intel_link_m_n *m_n, 4634 const struct intel_link_m_n *m2_n2) 4635 { 4636 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4637 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4638 enum pipe pipe = crtc->pipe; 4639 enum transcoder transcoder = crtc_state->cpu_transcoder; 4640 4641 if (DISPLAY_VER(dev_priv) >= 5) { 4642 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 4643 TU_SIZE(m_n->tu) | m_n->gmch_m); 4644 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 4645 m_n->gmch_n); 4646 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 4647 m_n->link_m); 4648 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 4649 m_n->link_n); 4650 /* 4651 * M2_N2 registers are set only if DRRS is supported 4652 * (to make sure the registers are not unnecessarily accessed). 4653 */ 4654 if (m2_n2 && crtc_state->has_drrs && 4655 transcoder_has_m2_n2(dev_priv, transcoder)) { 4656 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 4657 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 4658 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 4659 m2_n2->gmch_n); 4660 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 4661 m2_n2->link_m); 4662 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 4663 m2_n2->link_n); 4664 } 4665 } else { 4666 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 4667 TU_SIZE(m_n->tu) | m_n->gmch_m); 4668 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 4669 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 4670 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 4671 } 4672 } 4673 4674 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 4675 { 4676 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 4677 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 4678 4679 if (m_n == M1_N1) { 4680 dp_m_n = &crtc_state->dp_m_n; 4681 dp_m2_n2 = &crtc_state->dp_m2_n2; 4682 } else if (m_n == M2_N2) { 4683 4684 /* 4685 * M2_N2 registers are not supported. Hence m2_n2 divider value 4686 * needs to be programmed into M1_N1. 4687 */ 4688 dp_m_n = &crtc_state->dp_m2_n2; 4689 } else { 4690 drm_err(&i915->drm, "Unsupported divider value\n"); 4691 return; 4692 } 4693 4694 if (crtc_state->has_pch_encoder) 4695 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 4696 else 4697 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 4698 } 4699 4700 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) 4701 { 4702 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4703 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4704 enum pipe pipe = crtc->pipe; 4705 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4706 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4707 u32 crtc_vtotal, crtc_vblank_end; 4708 int vsyncshift = 0; 4709 4710 /* We need to be careful not to changed the adjusted mode, for otherwise 4711 * the hw state checker will get angry at the mismatch. */ 4712 crtc_vtotal = adjusted_mode->crtc_vtotal; 4713 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 4714 4715 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 4716 /* the chip adds 2 halflines automatically */ 4717 crtc_vtotal -= 1; 4718 crtc_vblank_end -= 1; 4719 4720 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4721 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 4722 else 4723 vsyncshift = adjusted_mode->crtc_hsync_start - 4724 adjusted_mode->crtc_htotal / 2; 4725 if (vsyncshift < 0) 4726 vsyncshift += adjusted_mode->crtc_htotal; 4727 } 4728 4729 if (DISPLAY_VER(dev_priv) > 3) 4730 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 4731 vsyncshift); 4732 4733 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 4734 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 4735 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 4736 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 4737 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 4738 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 4739 4740 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 4741 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 4742 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 4743 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 4744 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 4745 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 4746 4747 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 4748 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 4749 * documented on the DDI_FUNC_CTL register description, EDP Input Select 4750 * bits. */ 4751 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 4752 (pipe == PIPE_B || pipe == PIPE_C)) 4753 intel_de_write(dev_priv, VTOTAL(pipe), 4754 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 4755 4756 } 4757 4758 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 4759 { 4760 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4761 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4762 enum pipe pipe = crtc->pipe; 4763 4764 /* pipesrc controls the size that is scaled from, which should 4765 * always be the user's requested size. 4766 */ 4767 intel_de_write(dev_priv, PIPESRC(pipe), 4768 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 4769 } 4770 4771 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 4772 { 4773 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4774 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4775 4776 if (DISPLAY_VER(dev_priv) == 2) 4777 return false; 4778 4779 if (DISPLAY_VER(dev_priv) >= 9 || 4780 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 4781 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 4782 else 4783 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 4784 } 4785 4786 static void intel_get_transcoder_timings(struct intel_crtc *crtc, 4787 struct intel_crtc_state *pipe_config) 4788 { 4789 struct drm_device *dev = crtc->base.dev; 4790 struct drm_i915_private *dev_priv = to_i915(dev); 4791 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 4792 u32 tmp; 4793 4794 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 4795 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 4796 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 4797 4798 if (!transcoder_is_dsi(cpu_transcoder)) { 4799 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 4800 pipe_config->hw.adjusted_mode.crtc_hblank_start = 4801 (tmp & 0xffff) + 1; 4802 pipe_config->hw.adjusted_mode.crtc_hblank_end = 4803 ((tmp >> 16) & 0xffff) + 1; 4804 } 4805 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 4806 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 4807 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 4808 4809 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 4810 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 4811 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 4812 4813 if (!transcoder_is_dsi(cpu_transcoder)) { 4814 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 4815 pipe_config->hw.adjusted_mode.crtc_vblank_start = 4816 (tmp & 0xffff) + 1; 4817 pipe_config->hw.adjusted_mode.crtc_vblank_end = 4818 ((tmp >> 16) & 0xffff) + 1; 4819 } 4820 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 4821 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 4822 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 4823 4824 if (intel_pipe_is_interlaced(pipe_config)) { 4825 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 4826 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 4827 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 4828 } 4829 } 4830 4831 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 4832 struct intel_crtc_state *pipe_config) 4833 { 4834 struct drm_device *dev = crtc->base.dev; 4835 struct drm_i915_private *dev_priv = to_i915(dev); 4836 u32 tmp; 4837 4838 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 4839 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 4840 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 4841 } 4842 4843 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 4844 { 4845 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4846 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4847 u32 pipeconf; 4848 4849 pipeconf = 0; 4850 4851 /* we keep both pipes enabled on 830 */ 4852 if (IS_I830(dev_priv)) 4853 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 4854 4855 if (crtc_state->double_wide) 4856 pipeconf |= PIPECONF_DOUBLE_WIDE; 4857 4858 /* only g4x and later have fancy bpc/dither controls */ 4859 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 4860 IS_CHERRYVIEW(dev_priv)) { 4861 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 4862 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 4863 pipeconf |= PIPECONF_DITHER_EN | 4864 PIPECONF_DITHER_TYPE_SP; 4865 4866 switch (crtc_state->pipe_bpp) { 4867 case 18: 4868 pipeconf |= PIPECONF_6BPC; 4869 break; 4870 case 24: 4871 pipeconf |= PIPECONF_8BPC; 4872 break; 4873 case 30: 4874 pipeconf |= PIPECONF_10BPC; 4875 break; 4876 default: 4877 /* Case prevented by intel_choose_pipe_bpp_dither. */ 4878 BUG(); 4879 } 4880 } 4881 4882 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 4883 if (DISPLAY_VER(dev_priv) < 4 || 4884 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4885 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 4886 else 4887 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 4888 } else { 4889 pipeconf |= PIPECONF_PROGRESSIVE; 4890 } 4891 4892 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 4893 crtc_state->limited_color_range) 4894 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 4895 4896 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 4897 4898 pipeconf |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 4899 4900 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 4901 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 4902 } 4903 4904 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 4905 { 4906 if (IS_I830(dev_priv)) 4907 return false; 4908 4909 return DISPLAY_VER(dev_priv) >= 4 || 4910 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 4911 } 4912 4913 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 4914 { 4915 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4916 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4917 u32 tmp; 4918 4919 if (!i9xx_has_pfit(dev_priv)) 4920 return; 4921 4922 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 4923 if (!(tmp & PFIT_ENABLE)) 4924 return; 4925 4926 /* Check whether the pfit is attached to our pipe. */ 4927 if (DISPLAY_VER(dev_priv) < 4) { 4928 if (crtc->pipe != PIPE_B) 4929 return; 4930 } else { 4931 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 4932 return; 4933 } 4934 4935 crtc_state->gmch_pfit.control = tmp; 4936 crtc_state->gmch_pfit.pgm_ratios = 4937 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 4938 } 4939 4940 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 4941 struct intel_crtc_state *pipe_config) 4942 { 4943 struct drm_device *dev = crtc->base.dev; 4944 struct drm_i915_private *dev_priv = to_i915(dev); 4945 enum pipe pipe = crtc->pipe; 4946 struct dpll clock; 4947 u32 mdiv; 4948 int refclk = 100000; 4949 4950 /* In case of DSI, DPLL will not be used */ 4951 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4952 return; 4953 4954 vlv_dpio_get(dev_priv); 4955 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 4956 vlv_dpio_put(dev_priv); 4957 4958 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 4959 clock.m2 = mdiv & DPIO_M2DIV_MASK; 4960 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 4961 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 4962 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 4963 4964 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 4965 } 4966 4967 static void chv_crtc_clock_get(struct intel_crtc *crtc, 4968 struct intel_crtc_state *pipe_config) 4969 { 4970 struct drm_device *dev = crtc->base.dev; 4971 struct drm_i915_private *dev_priv = to_i915(dev); 4972 enum pipe pipe = crtc->pipe; 4973 enum dpio_channel port = vlv_pipe_to_channel(pipe); 4974 struct dpll clock; 4975 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 4976 int refclk = 100000; 4977 4978 /* In case of DSI, DPLL will not be used */ 4979 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4980 return; 4981 4982 vlv_dpio_get(dev_priv); 4983 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 4984 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 4985 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 4986 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 4987 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 4988 vlv_dpio_put(dev_priv); 4989 4990 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 4991 clock.m2 = (pll_dw0 & 0xff) << 22; 4992 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 4993 clock.m2 |= pll_dw2 & 0x3fffff; 4994 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 4995 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 4996 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 4997 4998 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 4999 } 5000 5001 static enum intel_output_format 5002 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 5003 { 5004 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5005 u32 tmp; 5006 5007 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 5008 5009 if (tmp & PIPEMISC_YUV420_ENABLE) { 5010 /* We support 4:2:0 in full blend mode only */ 5011 drm_WARN_ON(&dev_priv->drm, 5012 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 5013 5014 return INTEL_OUTPUT_FORMAT_YCBCR420; 5015 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 5016 return INTEL_OUTPUT_FORMAT_YCBCR444; 5017 } else { 5018 return INTEL_OUTPUT_FORMAT_RGB; 5019 } 5020 } 5021 5022 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 5023 { 5024 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5025 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 5026 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5027 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 5028 u32 tmp; 5029 5030 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 5031 5032 if (tmp & DISPPLANE_GAMMA_ENABLE) 5033 crtc_state->gamma_enable = true; 5034 5035 if (!HAS_GMCH(dev_priv) && 5036 tmp & DISPPLANE_PIPE_CSC_ENABLE) 5037 crtc_state->csc_enable = true; 5038 } 5039 5040 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 5041 struct intel_crtc_state *pipe_config) 5042 { 5043 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5044 enum intel_display_power_domain power_domain; 5045 intel_wakeref_t wakeref; 5046 u32 tmp; 5047 bool ret; 5048 5049 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 5050 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 5051 if (!wakeref) 5052 return false; 5053 5054 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 5055 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 5056 pipe_config->shared_dpll = NULL; 5057 5058 ret = false; 5059 5060 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 5061 if (!(tmp & PIPECONF_ENABLE)) 5062 goto out; 5063 5064 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 5065 IS_CHERRYVIEW(dev_priv)) { 5066 switch (tmp & PIPECONF_BPC_MASK) { 5067 case PIPECONF_6BPC: 5068 pipe_config->pipe_bpp = 18; 5069 break; 5070 case PIPECONF_8BPC: 5071 pipe_config->pipe_bpp = 24; 5072 break; 5073 case PIPECONF_10BPC: 5074 pipe_config->pipe_bpp = 30; 5075 break; 5076 default: 5077 break; 5078 } 5079 } 5080 5081 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 5082 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 5083 pipe_config->limited_color_range = true; 5084 5085 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 5086 PIPECONF_GAMMA_MODE_SHIFT; 5087 5088 if (IS_CHERRYVIEW(dev_priv)) 5089 pipe_config->cgm_mode = intel_de_read(dev_priv, 5090 CGM_PIPE_MODE(crtc->pipe)); 5091 5092 i9xx_get_pipe_color_config(pipe_config); 5093 intel_color_get_config(pipe_config); 5094 5095 if (DISPLAY_VER(dev_priv) < 4) 5096 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 5097 5098 intel_get_transcoder_timings(crtc, pipe_config); 5099 intel_get_pipe_src_size(crtc, pipe_config); 5100 5101 i9xx_get_pfit_config(pipe_config); 5102 5103 if (DISPLAY_VER(dev_priv) >= 4) { 5104 /* No way to read it out on pipes B and C */ 5105 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 5106 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 5107 else 5108 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 5109 pipe_config->pixel_multiplier = 5110 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 5111 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 5112 pipe_config->dpll_hw_state.dpll_md = tmp; 5113 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 5114 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 5115 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 5116 pipe_config->pixel_multiplier = 5117 ((tmp & SDVO_MULTIPLIER_MASK) 5118 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 5119 } else { 5120 /* Note that on i915G/GM the pixel multiplier is in the sdvo 5121 * port and will be fixed up in the encoder->get_config 5122 * function. */ 5123 pipe_config->pixel_multiplier = 1; 5124 } 5125 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 5126 DPLL(crtc->pipe)); 5127 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 5128 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 5129 FP0(crtc->pipe)); 5130 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 5131 FP1(crtc->pipe)); 5132 } else { 5133 /* Mask out read-only status bits. */ 5134 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 5135 DPLL_PORTC_READY_MASK | 5136 DPLL_PORTB_READY_MASK); 5137 } 5138 5139 if (IS_CHERRYVIEW(dev_priv)) 5140 chv_crtc_clock_get(crtc, pipe_config); 5141 else if (IS_VALLEYVIEW(dev_priv)) 5142 vlv_crtc_clock_get(crtc, pipe_config); 5143 else 5144 i9xx_crtc_clock_get(crtc, pipe_config); 5145 5146 /* 5147 * Normally the dotclock is filled in by the encoder .get_config() 5148 * but in case the pipe is enabled w/o any ports we need a sane 5149 * default. 5150 */ 5151 pipe_config->hw.adjusted_mode.crtc_clock = 5152 pipe_config->port_clock / pipe_config->pixel_multiplier; 5153 5154 ret = true; 5155 5156 out: 5157 intel_display_power_put(dev_priv, power_domain, wakeref); 5158 5159 return ret; 5160 } 5161 5162 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 5163 { 5164 struct intel_encoder *encoder; 5165 int i; 5166 u32 val, final; 5167 bool has_lvds = false; 5168 bool has_cpu_edp = false; 5169 bool has_panel = false; 5170 bool has_ck505 = false; 5171 bool can_ssc = false; 5172 bool using_ssc_source = false; 5173 5174 /* We need to take the global config into account */ 5175 for_each_intel_encoder(&dev_priv->drm, encoder) { 5176 switch (encoder->type) { 5177 case INTEL_OUTPUT_LVDS: 5178 has_panel = true; 5179 has_lvds = true; 5180 break; 5181 case INTEL_OUTPUT_EDP: 5182 has_panel = true; 5183 if (encoder->port == PORT_A) 5184 has_cpu_edp = true; 5185 break; 5186 default: 5187 break; 5188 } 5189 } 5190 5191 if (HAS_PCH_IBX(dev_priv)) { 5192 has_ck505 = dev_priv->vbt.display_clock_mode; 5193 can_ssc = has_ck505; 5194 } else { 5195 has_ck505 = false; 5196 can_ssc = true; 5197 } 5198 5199 /* Check if any DPLLs are using the SSC source */ 5200 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 5201 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 5202 5203 if (!(temp & DPLL_VCO_ENABLE)) 5204 continue; 5205 5206 if ((temp & PLL_REF_INPUT_MASK) == 5207 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 5208 using_ssc_source = true; 5209 break; 5210 } 5211 } 5212 5213 drm_dbg_kms(&dev_priv->drm, 5214 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 5215 has_panel, has_lvds, has_ck505, using_ssc_source); 5216 5217 /* Ironlake: try to setup display ref clock before DPLL 5218 * enabling. This is only under driver's control after 5219 * PCH B stepping, previous chipset stepping should be 5220 * ignoring this setting. 5221 */ 5222 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 5223 5224 /* As we must carefully and slowly disable/enable each source in turn, 5225 * compute the final state we want first and check if we need to 5226 * make any changes at all. 5227 */ 5228 final = val; 5229 final &= ~DREF_NONSPREAD_SOURCE_MASK; 5230 if (has_ck505) 5231 final |= DREF_NONSPREAD_CK505_ENABLE; 5232 else 5233 final |= DREF_NONSPREAD_SOURCE_ENABLE; 5234 5235 final &= ~DREF_SSC_SOURCE_MASK; 5236 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5237 final &= ~DREF_SSC1_ENABLE; 5238 5239 if (has_panel) { 5240 final |= DREF_SSC_SOURCE_ENABLE; 5241 5242 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5243 final |= DREF_SSC1_ENABLE; 5244 5245 if (has_cpu_edp) { 5246 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5247 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5248 else 5249 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5250 } else 5251 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5252 } else if (using_ssc_source) { 5253 final |= DREF_SSC_SOURCE_ENABLE; 5254 final |= DREF_SSC1_ENABLE; 5255 } 5256 5257 if (final == val) 5258 return; 5259 5260 /* Always enable nonspread source */ 5261 val &= ~DREF_NONSPREAD_SOURCE_MASK; 5262 5263 if (has_ck505) 5264 val |= DREF_NONSPREAD_CK505_ENABLE; 5265 else 5266 val |= DREF_NONSPREAD_SOURCE_ENABLE; 5267 5268 if (has_panel) { 5269 val &= ~DREF_SSC_SOURCE_MASK; 5270 val |= DREF_SSC_SOURCE_ENABLE; 5271 5272 /* SSC must be turned on before enabling the CPU output */ 5273 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5274 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 5275 val |= DREF_SSC1_ENABLE; 5276 } else 5277 val &= ~DREF_SSC1_ENABLE; 5278 5279 /* Get SSC going before enabling the outputs */ 5280 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5281 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5282 udelay(200); 5283 5284 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5285 5286 /* Enable CPU source on CPU attached eDP */ 5287 if (has_cpu_edp) { 5288 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5289 drm_dbg_kms(&dev_priv->drm, 5290 "Using SSC on eDP\n"); 5291 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5292 } else 5293 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5294 } else 5295 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5296 5297 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5298 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5299 udelay(200); 5300 } else { 5301 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 5302 5303 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5304 5305 /* Turn off CPU output */ 5306 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5307 5308 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5309 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5310 udelay(200); 5311 5312 if (!using_ssc_source) { 5313 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 5314 5315 /* Turn off the SSC source */ 5316 val &= ~DREF_SSC_SOURCE_MASK; 5317 val |= DREF_SSC_SOURCE_DISABLE; 5318 5319 /* Turn off SSC1 */ 5320 val &= ~DREF_SSC1_ENABLE; 5321 5322 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5323 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5324 udelay(200); 5325 } 5326 } 5327 5328 BUG_ON(val != final); 5329 } 5330 5331 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 5332 { 5333 u32 tmp; 5334 5335 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5336 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 5337 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5338 5339 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5340 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 5341 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 5342 5343 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5344 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 5345 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5346 5347 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5348 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 5349 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 5350 } 5351 5352 /* WaMPhyProgramming:hsw */ 5353 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 5354 { 5355 u32 tmp; 5356 5357 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 5358 tmp &= ~(0xFF << 24); 5359 tmp |= (0x12 << 24); 5360 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 5361 5362 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 5363 tmp |= (1 << 11); 5364 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 5365 5366 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 5367 tmp |= (1 << 11); 5368 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 5369 5370 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 5371 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5372 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 5373 5374 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 5375 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5376 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 5377 5378 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 5379 tmp &= ~(7 << 13); 5380 tmp |= (5 << 13); 5381 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 5382 5383 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 5384 tmp &= ~(7 << 13); 5385 tmp |= (5 << 13); 5386 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 5387 5388 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 5389 tmp &= ~0xFF; 5390 tmp |= 0x1C; 5391 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 5392 5393 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 5394 tmp &= ~0xFF; 5395 tmp |= 0x1C; 5396 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 5397 5398 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 5399 tmp &= ~(0xFF << 16); 5400 tmp |= (0x1C << 16); 5401 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 5402 5403 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 5404 tmp &= ~(0xFF << 16); 5405 tmp |= (0x1C << 16); 5406 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 5407 5408 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 5409 tmp |= (1 << 27); 5410 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 5411 5412 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 5413 tmp |= (1 << 27); 5414 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 5415 5416 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 5417 tmp &= ~(0xF << 28); 5418 tmp |= (4 << 28); 5419 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 5420 5421 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 5422 tmp &= ~(0xF << 28); 5423 tmp |= (4 << 28); 5424 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 5425 } 5426 5427 /* Implements 3 different sequences from BSpec chapter "Display iCLK 5428 * Programming" based on the parameters passed: 5429 * - Sequence to enable CLKOUT_DP 5430 * - Sequence to enable CLKOUT_DP without spread 5431 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 5432 */ 5433 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 5434 bool with_spread, bool with_fdi) 5435 { 5436 u32 reg, tmp; 5437 5438 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 5439 "FDI requires downspread\n")) 5440 with_spread = true; 5441 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 5442 with_fdi, "LP PCH doesn't have FDI\n")) 5443 with_fdi = false; 5444 5445 mutex_lock(&dev_priv->sb_lock); 5446 5447 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5448 tmp &= ~SBI_SSCCTL_DISABLE; 5449 tmp |= SBI_SSCCTL_PATHALT; 5450 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5451 5452 udelay(24); 5453 5454 if (with_spread) { 5455 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5456 tmp &= ~SBI_SSCCTL_PATHALT; 5457 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5458 5459 if (with_fdi) { 5460 lpt_reset_fdi_mphy(dev_priv); 5461 lpt_program_fdi_mphy(dev_priv); 5462 } 5463 } 5464 5465 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5466 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5467 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5468 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5469 5470 mutex_unlock(&dev_priv->sb_lock); 5471 } 5472 5473 /* Sequence to disable CLKOUT_DP */ 5474 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 5475 { 5476 u32 reg, tmp; 5477 5478 mutex_lock(&dev_priv->sb_lock); 5479 5480 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5481 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5482 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5483 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5484 5485 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5486 if (!(tmp & SBI_SSCCTL_DISABLE)) { 5487 if (!(tmp & SBI_SSCCTL_PATHALT)) { 5488 tmp |= SBI_SSCCTL_PATHALT; 5489 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5490 udelay(32); 5491 } 5492 tmp |= SBI_SSCCTL_DISABLE; 5493 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5494 } 5495 5496 mutex_unlock(&dev_priv->sb_lock); 5497 } 5498 5499 #define BEND_IDX(steps) ((50 + (steps)) / 5) 5500 5501 static const u16 sscdivintphase[] = { 5502 [BEND_IDX( 50)] = 0x3B23, 5503 [BEND_IDX( 45)] = 0x3B23, 5504 [BEND_IDX( 40)] = 0x3C23, 5505 [BEND_IDX( 35)] = 0x3C23, 5506 [BEND_IDX( 30)] = 0x3D23, 5507 [BEND_IDX( 25)] = 0x3D23, 5508 [BEND_IDX( 20)] = 0x3E23, 5509 [BEND_IDX( 15)] = 0x3E23, 5510 [BEND_IDX( 10)] = 0x3F23, 5511 [BEND_IDX( 5)] = 0x3F23, 5512 [BEND_IDX( 0)] = 0x0025, 5513 [BEND_IDX( -5)] = 0x0025, 5514 [BEND_IDX(-10)] = 0x0125, 5515 [BEND_IDX(-15)] = 0x0125, 5516 [BEND_IDX(-20)] = 0x0225, 5517 [BEND_IDX(-25)] = 0x0225, 5518 [BEND_IDX(-30)] = 0x0325, 5519 [BEND_IDX(-35)] = 0x0325, 5520 [BEND_IDX(-40)] = 0x0425, 5521 [BEND_IDX(-45)] = 0x0425, 5522 [BEND_IDX(-50)] = 0x0525, 5523 }; 5524 5525 /* 5526 * Bend CLKOUT_DP 5527 * steps -50 to 50 inclusive, in steps of 5 5528 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 5529 * change in clock period = -(steps / 10) * 5.787 ps 5530 */ 5531 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 5532 { 5533 u32 tmp; 5534 int idx = BEND_IDX(steps); 5535 5536 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 5537 return; 5538 5539 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 5540 return; 5541 5542 mutex_lock(&dev_priv->sb_lock); 5543 5544 if (steps % 10 != 0) 5545 tmp = 0xAAAAAAAB; 5546 else 5547 tmp = 0x00000000; 5548 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 5549 5550 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 5551 tmp &= 0xffff0000; 5552 tmp |= sscdivintphase[idx]; 5553 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 5554 5555 mutex_unlock(&dev_priv->sb_lock); 5556 } 5557 5558 #undef BEND_IDX 5559 5560 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 5561 { 5562 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5563 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 5564 5565 if ((ctl & SPLL_PLL_ENABLE) == 0) 5566 return false; 5567 5568 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 5569 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5570 return true; 5571 5572 if (IS_BROADWELL(dev_priv) && 5573 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 5574 return true; 5575 5576 return false; 5577 } 5578 5579 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 5580 enum intel_dpll_id id) 5581 { 5582 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5583 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 5584 5585 if ((ctl & WRPLL_PLL_ENABLE) == 0) 5586 return false; 5587 5588 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 5589 return true; 5590 5591 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 5592 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 5593 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5594 return true; 5595 5596 return false; 5597 } 5598 5599 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 5600 { 5601 struct intel_encoder *encoder; 5602 bool has_fdi = false; 5603 5604 for_each_intel_encoder(&dev_priv->drm, encoder) { 5605 switch (encoder->type) { 5606 case INTEL_OUTPUT_ANALOG: 5607 has_fdi = true; 5608 break; 5609 default: 5610 break; 5611 } 5612 } 5613 5614 /* 5615 * The BIOS may have decided to use the PCH SSC 5616 * reference so we must not disable it until the 5617 * relevant PLLs have stopped relying on it. We'll 5618 * just leave the PCH SSC reference enabled in case 5619 * any active PLL is using it. It will get disabled 5620 * after runtime suspend if we don't have FDI. 5621 * 5622 * TODO: Move the whole reference clock handling 5623 * to the modeset sequence proper so that we can 5624 * actually enable/disable/reconfigure these things 5625 * safely. To do that we need to introduce a real 5626 * clock hierarchy. That would also allow us to do 5627 * clock bending finally. 5628 */ 5629 dev_priv->pch_ssc_use = 0; 5630 5631 if (spll_uses_pch_ssc(dev_priv)) { 5632 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 5633 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 5634 } 5635 5636 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 5637 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 5638 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 5639 } 5640 5641 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 5642 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 5643 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 5644 } 5645 5646 if (dev_priv->pch_ssc_use) 5647 return; 5648 5649 if (has_fdi) { 5650 lpt_bend_clkout_dp(dev_priv, 0); 5651 lpt_enable_clkout_dp(dev_priv, true, true); 5652 } else { 5653 lpt_disable_clkout_dp(dev_priv); 5654 } 5655 } 5656 5657 /* 5658 * Initialize reference clocks when the driver loads 5659 */ 5660 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 5661 { 5662 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 5663 ilk_init_pch_refclk(dev_priv); 5664 else if (HAS_PCH_LPT(dev_priv)) 5665 lpt_init_pch_refclk(dev_priv); 5666 } 5667 5668 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 5669 { 5670 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5671 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5672 enum pipe pipe = crtc->pipe; 5673 u32 val; 5674 5675 val = 0; 5676 5677 switch (crtc_state->pipe_bpp) { 5678 case 18: 5679 val |= PIPECONF_6BPC; 5680 break; 5681 case 24: 5682 val |= PIPECONF_8BPC; 5683 break; 5684 case 30: 5685 val |= PIPECONF_10BPC; 5686 break; 5687 case 36: 5688 val |= PIPECONF_12BPC; 5689 break; 5690 default: 5691 /* Case prevented by intel_choose_pipe_bpp_dither. */ 5692 BUG(); 5693 } 5694 5695 if (crtc_state->dither) 5696 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5697 5698 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5699 val |= PIPECONF_INTERLACED_ILK; 5700 else 5701 val |= PIPECONF_PROGRESSIVE; 5702 5703 /* 5704 * This would end up with an odd purple hue over 5705 * the entire display. Make sure we don't do it. 5706 */ 5707 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 5708 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 5709 5710 if (crtc_state->limited_color_range && 5711 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 5712 val |= PIPECONF_COLOR_RANGE_SELECT; 5713 5714 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5715 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 5716 5717 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 5718 5719 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 5720 5721 intel_de_write(dev_priv, PIPECONF(pipe), val); 5722 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 5723 } 5724 5725 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 5726 { 5727 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5728 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5729 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5730 u32 val = 0; 5731 5732 if (IS_HASWELL(dev_priv) && crtc_state->dither) 5733 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5734 5735 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5736 val |= PIPECONF_INTERLACED_ILK; 5737 else 5738 val |= PIPECONF_PROGRESSIVE; 5739 5740 if (IS_HASWELL(dev_priv) && 5741 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5742 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 5743 5744 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 5745 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 5746 } 5747 5748 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 5749 { 5750 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5751 const struct intel_crtc_scaler_state *scaler_state = 5752 &crtc_state->scaler_state; 5753 5754 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5755 u32 val = 0; 5756 int i; 5757 5758 switch (crtc_state->pipe_bpp) { 5759 case 18: 5760 val |= PIPEMISC_DITHER_6_BPC; 5761 break; 5762 case 24: 5763 val |= PIPEMISC_DITHER_8_BPC; 5764 break; 5765 case 30: 5766 val |= PIPEMISC_DITHER_10_BPC; 5767 break; 5768 case 36: 5769 val |= PIPEMISC_DITHER_12_BPC; 5770 break; 5771 default: 5772 MISSING_CASE(crtc_state->pipe_bpp); 5773 break; 5774 } 5775 5776 if (crtc_state->dither) 5777 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 5778 5779 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 5780 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 5781 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 5782 5783 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 5784 val |= PIPEMISC_YUV420_ENABLE | 5785 PIPEMISC_YUV420_MODE_FULL_BLEND; 5786 5787 if (DISPLAY_VER(dev_priv) >= 11 && 5788 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 5789 BIT(PLANE_CURSOR))) == 0) 5790 val |= PIPEMISC_HDR_MODE_PRECISION; 5791 5792 if (DISPLAY_VER(dev_priv) >= 12) 5793 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 5794 5795 if (IS_ALDERLAKE_P(dev_priv)) { 5796 bool scaler_in_use = false; 5797 5798 for (i = 0; i < crtc->num_scalers; i++) { 5799 if (!scaler_state->scalers[i].in_use) 5800 continue; 5801 5802 scaler_in_use = true; 5803 break; 5804 } 5805 5806 intel_de_rmw(dev_priv, PIPE_MISC2(crtc->pipe), 5807 PIPE_MISC2_UNDERRUN_BUBBLE_COUNTER_MASK, 5808 scaler_in_use ? PIPE_MISC2_BUBBLE_COUNTER_SCALER_EN : 5809 PIPE_MISC2_BUBBLE_COUNTER_SCALER_DIS); 5810 } 5811 5812 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 5813 } 5814 5815 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 5816 { 5817 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5818 u32 tmp; 5819 5820 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 5821 5822 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 5823 case PIPEMISC_DITHER_6_BPC: 5824 return 18; 5825 case PIPEMISC_DITHER_8_BPC: 5826 return 24; 5827 case PIPEMISC_DITHER_10_BPC: 5828 return 30; 5829 case PIPEMISC_DITHER_12_BPC: 5830 return 36; 5831 default: 5832 MISSING_CASE(tmp); 5833 return 0; 5834 } 5835 } 5836 5837 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 5838 { 5839 /* 5840 * Account for spread spectrum to avoid 5841 * oversubscribing the link. Max center spread 5842 * is 2.5%; use 5% for safety's sake. 5843 */ 5844 u32 bps = target_clock * bpp * 21 / 20; 5845 return DIV_ROUND_UP(bps, link_bw * 8); 5846 } 5847 5848 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 5849 struct intel_link_m_n *m_n) 5850 { 5851 struct drm_device *dev = crtc->base.dev; 5852 struct drm_i915_private *dev_priv = to_i915(dev); 5853 enum pipe pipe = crtc->pipe; 5854 5855 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 5856 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 5857 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5858 & ~TU_SIZE_MASK; 5859 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 5860 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5861 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5862 } 5863 5864 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 5865 enum transcoder transcoder, 5866 struct intel_link_m_n *m_n, 5867 struct intel_link_m_n *m2_n2) 5868 { 5869 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5870 enum pipe pipe = crtc->pipe; 5871 5872 if (DISPLAY_VER(dev_priv) >= 5) { 5873 m_n->link_m = intel_de_read(dev_priv, 5874 PIPE_LINK_M1(transcoder)); 5875 m_n->link_n = intel_de_read(dev_priv, 5876 PIPE_LINK_N1(transcoder)); 5877 m_n->gmch_m = intel_de_read(dev_priv, 5878 PIPE_DATA_M1(transcoder)) 5879 & ~TU_SIZE_MASK; 5880 m_n->gmch_n = intel_de_read(dev_priv, 5881 PIPE_DATA_N1(transcoder)); 5882 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 5883 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5884 5885 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 5886 m2_n2->link_m = intel_de_read(dev_priv, 5887 PIPE_LINK_M2(transcoder)); 5888 m2_n2->link_n = intel_de_read(dev_priv, 5889 PIPE_LINK_N2(transcoder)); 5890 m2_n2->gmch_m = intel_de_read(dev_priv, 5891 PIPE_DATA_M2(transcoder)) 5892 & ~TU_SIZE_MASK; 5893 m2_n2->gmch_n = intel_de_read(dev_priv, 5894 PIPE_DATA_N2(transcoder)); 5895 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 5896 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5897 } 5898 } else { 5899 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 5900 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 5901 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5902 & ~TU_SIZE_MASK; 5903 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 5904 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5905 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5906 } 5907 } 5908 5909 void intel_dp_get_m_n(struct intel_crtc *crtc, 5910 struct intel_crtc_state *pipe_config) 5911 { 5912 if (pipe_config->has_pch_encoder) 5913 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 5914 else 5915 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 5916 &pipe_config->dp_m_n, 5917 &pipe_config->dp_m2_n2); 5918 } 5919 5920 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 5921 struct intel_crtc_state *pipe_config) 5922 { 5923 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 5924 &pipe_config->fdi_m_n, NULL); 5925 } 5926 5927 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 5928 u32 pos, u32 size) 5929 { 5930 drm_rect_init(&crtc_state->pch_pfit.dst, 5931 pos >> 16, pos & 0xffff, 5932 size >> 16, size & 0xffff); 5933 } 5934 5935 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 5936 { 5937 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5938 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5939 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 5940 int id = -1; 5941 int i; 5942 5943 /* find scaler attached to this pipe */ 5944 for (i = 0; i < crtc->num_scalers; i++) { 5945 u32 ctl, pos, size; 5946 5947 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 5948 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 5949 continue; 5950 5951 id = i; 5952 crtc_state->pch_pfit.enabled = true; 5953 5954 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 5955 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 5956 5957 ilk_get_pfit_pos_size(crtc_state, pos, size); 5958 5959 scaler_state->scalers[i].in_use = true; 5960 break; 5961 } 5962 5963 scaler_state->scaler_id = id; 5964 if (id >= 0) 5965 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 5966 else 5967 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 5968 } 5969 5970 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 5971 { 5972 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5973 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5974 u32 ctl, pos, size; 5975 5976 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 5977 if ((ctl & PF_ENABLE) == 0) 5978 return; 5979 5980 crtc_state->pch_pfit.enabled = true; 5981 5982 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 5983 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 5984 5985 ilk_get_pfit_pos_size(crtc_state, pos, size); 5986 5987 /* 5988 * We currently do not free assignements of panel fitters on 5989 * ivb/hsw (since we don't use the higher upscaling modes which 5990 * differentiates them) so just WARN about this case for now. 5991 */ 5992 drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) == 7 && 5993 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 5994 } 5995 5996 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 5997 struct intel_crtc_state *pipe_config) 5998 { 5999 struct drm_device *dev = crtc->base.dev; 6000 struct drm_i915_private *dev_priv = to_i915(dev); 6001 enum intel_display_power_domain power_domain; 6002 intel_wakeref_t wakeref; 6003 u32 tmp; 6004 bool ret; 6005 6006 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 6007 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 6008 if (!wakeref) 6009 return false; 6010 6011 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6012 pipe_config->shared_dpll = NULL; 6013 6014 ret = false; 6015 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 6016 if (!(tmp & PIPECONF_ENABLE)) 6017 goto out; 6018 6019 switch (tmp & PIPECONF_BPC_MASK) { 6020 case PIPECONF_6BPC: 6021 pipe_config->pipe_bpp = 18; 6022 break; 6023 case PIPECONF_8BPC: 6024 pipe_config->pipe_bpp = 24; 6025 break; 6026 case PIPECONF_10BPC: 6027 pipe_config->pipe_bpp = 30; 6028 break; 6029 case PIPECONF_12BPC: 6030 pipe_config->pipe_bpp = 36; 6031 break; 6032 default: 6033 break; 6034 } 6035 6036 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 6037 pipe_config->limited_color_range = true; 6038 6039 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 6040 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 6041 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 6042 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6043 break; 6044 default: 6045 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6046 break; 6047 } 6048 6049 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 6050 PIPECONF_GAMMA_MODE_SHIFT; 6051 6052 pipe_config->csc_mode = intel_de_read(dev_priv, 6053 PIPE_CSC_MODE(crtc->pipe)); 6054 6055 i9xx_get_pipe_color_config(pipe_config); 6056 intel_color_get_config(pipe_config); 6057 6058 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 6059 struct intel_shared_dpll *pll; 6060 enum intel_dpll_id pll_id; 6061 bool pll_active; 6062 6063 pipe_config->has_pch_encoder = true; 6064 6065 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 6066 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6067 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6068 6069 ilk_get_fdi_m_n_config(crtc, pipe_config); 6070 6071 if (HAS_PCH_IBX(dev_priv)) { 6072 /* 6073 * The pipe->pch transcoder and pch transcoder->pll 6074 * mapping is fixed. 6075 */ 6076 pll_id = (enum intel_dpll_id) crtc->pipe; 6077 } else { 6078 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 6079 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 6080 pll_id = DPLL_ID_PCH_PLL_B; 6081 else 6082 pll_id= DPLL_ID_PCH_PLL_A; 6083 } 6084 6085 pipe_config->shared_dpll = 6086 intel_get_shared_dpll_by_id(dev_priv, pll_id); 6087 pll = pipe_config->shared_dpll; 6088 6089 pll_active = intel_dpll_get_hw_state(dev_priv, pll, 6090 &pipe_config->dpll_hw_state); 6091 drm_WARN_ON(dev, !pll_active); 6092 6093 tmp = pipe_config->dpll_hw_state.dpll; 6094 pipe_config->pixel_multiplier = 6095 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 6096 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 6097 6098 ilk_pch_clock_get(crtc, pipe_config); 6099 } else { 6100 pipe_config->pixel_multiplier = 1; 6101 } 6102 6103 intel_get_transcoder_timings(crtc, pipe_config); 6104 intel_get_pipe_src_size(crtc, pipe_config); 6105 6106 ilk_get_pfit_config(pipe_config); 6107 6108 ret = true; 6109 6110 out: 6111 intel_display_power_put(dev_priv, power_domain, wakeref); 6112 6113 return ret; 6114 } 6115 6116 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 6117 struct intel_crtc_state *pipe_config, 6118 struct intel_display_power_domain_set *power_domain_set) 6119 { 6120 struct drm_device *dev = crtc->base.dev; 6121 struct drm_i915_private *dev_priv = to_i915(dev); 6122 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 6123 unsigned long enabled_panel_transcoders = 0; 6124 enum transcoder panel_transcoder; 6125 u32 tmp; 6126 6127 if (DISPLAY_VER(dev_priv) >= 11) 6128 panel_transcoder_mask |= 6129 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 6130 6131 /* 6132 * The pipe->transcoder mapping is fixed with the exception of the eDP 6133 * and DSI transcoders handled below. 6134 */ 6135 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6136 6137 /* 6138 * XXX: Do intel_display_power_get_if_enabled before reading this (for 6139 * consistency and less surprising code; it's in always on power). 6140 */ 6141 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 6142 panel_transcoder_mask) { 6143 bool force_thru = false; 6144 enum pipe trans_pipe; 6145 6146 tmp = intel_de_read(dev_priv, 6147 TRANS_DDI_FUNC_CTL(panel_transcoder)); 6148 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6149 continue; 6150 6151 /* 6152 * Log all enabled ones, only use the first one. 6153 * 6154 * FIXME: This won't work for two separate DSI displays. 6155 */ 6156 enabled_panel_transcoders |= BIT(panel_transcoder); 6157 if (enabled_panel_transcoders != BIT(panel_transcoder)) 6158 continue; 6159 6160 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 6161 default: 6162 drm_WARN(dev, 1, 6163 "unknown pipe linked to transcoder %s\n", 6164 transcoder_name(panel_transcoder)); 6165 fallthrough; 6166 case TRANS_DDI_EDP_INPUT_A_ONOFF: 6167 force_thru = true; 6168 fallthrough; 6169 case TRANS_DDI_EDP_INPUT_A_ON: 6170 trans_pipe = PIPE_A; 6171 break; 6172 case TRANS_DDI_EDP_INPUT_B_ONOFF: 6173 trans_pipe = PIPE_B; 6174 break; 6175 case TRANS_DDI_EDP_INPUT_C_ONOFF: 6176 trans_pipe = PIPE_C; 6177 break; 6178 case TRANS_DDI_EDP_INPUT_D_ONOFF: 6179 trans_pipe = PIPE_D; 6180 break; 6181 } 6182 6183 if (trans_pipe == crtc->pipe) { 6184 pipe_config->cpu_transcoder = panel_transcoder; 6185 pipe_config->pch_pfit.force_thru = force_thru; 6186 } 6187 } 6188 6189 /* 6190 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 6191 */ 6192 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 6193 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 6194 6195 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6196 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) 6197 return false; 6198 6199 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 6200 6201 return tmp & PIPECONF_ENABLE; 6202 } 6203 6204 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 6205 struct intel_crtc_state *pipe_config, 6206 struct intel_display_power_domain_set *power_domain_set) 6207 { 6208 struct drm_device *dev = crtc->base.dev; 6209 struct drm_i915_private *dev_priv = to_i915(dev); 6210 enum transcoder cpu_transcoder; 6211 enum port port; 6212 u32 tmp; 6213 6214 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 6215 if (port == PORT_A) 6216 cpu_transcoder = TRANSCODER_DSI_A; 6217 else 6218 cpu_transcoder = TRANSCODER_DSI_C; 6219 6220 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6221 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) 6222 continue; 6223 6224 /* 6225 * The PLL needs to be enabled with a valid divider 6226 * configuration, otherwise accessing DSI registers will hang 6227 * the machine. See BSpec North Display Engine 6228 * registers/MIPI[BXT]. We can break out here early, since we 6229 * need the same DSI PLL to be enabled for both DSI ports. 6230 */ 6231 if (!bxt_dsi_pll_is_enabled(dev_priv)) 6232 break; 6233 6234 /* XXX: this works for video mode only */ 6235 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 6236 if (!(tmp & DPI_ENABLE)) 6237 continue; 6238 6239 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 6240 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 6241 continue; 6242 6243 pipe_config->cpu_transcoder = cpu_transcoder; 6244 break; 6245 } 6246 6247 return transcoder_is_dsi(pipe_config->cpu_transcoder); 6248 } 6249 6250 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 6251 struct intel_crtc_state *pipe_config) 6252 { 6253 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6254 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 6255 enum port port; 6256 u32 tmp; 6257 6258 if (transcoder_is_dsi(cpu_transcoder)) { 6259 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 6260 PORT_A : PORT_B; 6261 } else { 6262 tmp = intel_de_read(dev_priv, 6263 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 6264 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6265 return; 6266 if (DISPLAY_VER(dev_priv) >= 12) 6267 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6268 else 6269 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6270 } 6271 6272 /* 6273 * Haswell has only FDI/PCH transcoder A. It is which is connected to 6274 * DDI E. So just check whether this pipe is wired to DDI E and whether 6275 * the PCH transcoder is on. 6276 */ 6277 if (DISPLAY_VER(dev_priv) < 9 && 6278 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 6279 pipe_config->has_pch_encoder = true; 6280 6281 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 6282 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6283 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6284 6285 ilk_get_fdi_m_n_config(crtc, pipe_config); 6286 } 6287 } 6288 6289 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 6290 struct intel_crtc_state *pipe_config) 6291 { 6292 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6293 struct intel_display_power_domain_set power_domain_set = { }; 6294 bool active; 6295 u32 tmp; 6296 6297 if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6298 POWER_DOMAIN_PIPE(crtc->pipe))) 6299 return false; 6300 6301 pipe_config->shared_dpll = NULL; 6302 6303 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set); 6304 6305 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 6306 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) { 6307 drm_WARN_ON(&dev_priv->drm, active); 6308 active = true; 6309 } 6310 6311 intel_dsc_get_config(pipe_config); 6312 if (DISPLAY_VER(dev_priv) >= 13 && !pipe_config->dsc.compression_enable) 6313 intel_uncompressed_joiner_get_config(pipe_config); 6314 6315 if (!active) { 6316 /* bigjoiner slave doesn't enable transcoder */ 6317 if (!pipe_config->bigjoiner_slave) 6318 goto out; 6319 6320 active = true; 6321 pipe_config->pixel_multiplier = 1; 6322 6323 /* we cannot read out most state, so don't bother.. */ 6324 pipe_config->quirks |= PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE; 6325 } else if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 6326 DISPLAY_VER(dev_priv) >= 11) { 6327 hsw_get_ddi_port_state(crtc, pipe_config); 6328 intel_get_transcoder_timings(crtc, pipe_config); 6329 } 6330 6331 if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder)) 6332 intel_vrr_get_config(crtc, pipe_config); 6333 6334 intel_get_pipe_src_size(crtc, pipe_config); 6335 6336 if (IS_HASWELL(dev_priv)) { 6337 u32 tmp = intel_de_read(dev_priv, 6338 PIPECONF(pipe_config->cpu_transcoder)); 6339 6340 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 6341 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6342 else 6343 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6344 } else { 6345 pipe_config->output_format = 6346 bdw_get_pipemisc_output_format(crtc); 6347 } 6348 6349 pipe_config->gamma_mode = intel_de_read(dev_priv, 6350 GAMMA_MODE(crtc->pipe)); 6351 6352 pipe_config->csc_mode = intel_de_read(dev_priv, 6353 PIPE_CSC_MODE(crtc->pipe)); 6354 6355 if (DISPLAY_VER(dev_priv) >= 9) { 6356 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 6357 6358 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 6359 pipe_config->gamma_enable = true; 6360 6361 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 6362 pipe_config->csc_enable = true; 6363 } else { 6364 i9xx_get_pipe_color_config(pipe_config); 6365 } 6366 6367 intel_color_get_config(pipe_config); 6368 6369 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 6370 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 6371 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 6372 pipe_config->ips_linetime = 6373 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 6374 6375 if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6376 POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { 6377 if (DISPLAY_VER(dev_priv) >= 9) 6378 skl_get_pfit_config(pipe_config); 6379 else 6380 ilk_get_pfit_config(pipe_config); 6381 } 6382 6383 if (hsw_crtc_supports_ips(crtc)) { 6384 if (IS_HASWELL(dev_priv)) 6385 pipe_config->ips_enabled = intel_de_read(dev_priv, 6386 IPS_CTL) & IPS_ENABLE; 6387 else { 6388 /* 6389 * We cannot readout IPS state on broadwell, set to 6390 * true so we can set it to a defined state on first 6391 * commit. 6392 */ 6393 pipe_config->ips_enabled = true; 6394 } 6395 } 6396 6397 if (pipe_config->bigjoiner_slave) { 6398 /* Cannot be read out as a slave, set to 0. */ 6399 pipe_config->pixel_multiplier = 0; 6400 } else if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 6401 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 6402 pipe_config->pixel_multiplier = 6403 intel_de_read(dev_priv, 6404 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 6405 } else { 6406 pipe_config->pixel_multiplier = 1; 6407 } 6408 6409 out: 6410 intel_display_power_put_all_in_set(dev_priv, &power_domain_set); 6411 6412 return active; 6413 } 6414 6415 static bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) 6416 { 6417 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6418 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 6419 6420 if (!i915->display.get_pipe_config(crtc, crtc_state)) 6421 return false; 6422 6423 crtc_state->hw.active = true; 6424 6425 intel_crtc_readout_derived_state(crtc_state); 6426 6427 return true; 6428 } 6429 6430 /* VESA 640x480x72Hz mode to set on the pipe */ 6431 static const struct drm_display_mode load_detect_mode = { 6432 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 6433 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 6434 }; 6435 6436 struct drm_framebuffer * 6437 intel_framebuffer_create(struct drm_i915_gem_object *obj, 6438 struct drm_mode_fb_cmd2 *mode_cmd) 6439 { 6440 struct intel_framebuffer *intel_fb; 6441 int ret; 6442 6443 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 6444 if (!intel_fb) 6445 return ERR_PTR(-ENOMEM); 6446 6447 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 6448 if (ret) 6449 goto err; 6450 6451 return &intel_fb->base; 6452 6453 err: 6454 kfree(intel_fb); 6455 return ERR_PTR(ret); 6456 } 6457 6458 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 6459 struct drm_crtc *crtc) 6460 { 6461 struct drm_plane *plane; 6462 struct drm_plane_state *plane_state; 6463 int ret, i; 6464 6465 ret = drm_atomic_add_affected_planes(state, crtc); 6466 if (ret) 6467 return ret; 6468 6469 for_each_new_plane_in_state(state, plane, plane_state, i) { 6470 if (plane_state->crtc != crtc) 6471 continue; 6472 6473 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 6474 if (ret) 6475 return ret; 6476 6477 drm_atomic_set_fb_for_plane(plane_state, NULL); 6478 } 6479 6480 return 0; 6481 } 6482 6483 int intel_get_load_detect_pipe(struct drm_connector *connector, 6484 struct intel_load_detect_pipe *old, 6485 struct drm_modeset_acquire_ctx *ctx) 6486 { 6487 struct intel_encoder *encoder = 6488 intel_attached_encoder(to_intel_connector(connector)); 6489 struct intel_crtc *possible_crtc; 6490 struct intel_crtc *crtc = NULL; 6491 struct drm_device *dev = encoder->base.dev; 6492 struct drm_i915_private *dev_priv = to_i915(dev); 6493 struct drm_mode_config *config = &dev->mode_config; 6494 struct drm_atomic_state *state = NULL, *restore_state = NULL; 6495 struct drm_connector_state *connector_state; 6496 struct intel_crtc_state *crtc_state; 6497 int ret; 6498 6499 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6500 connector->base.id, connector->name, 6501 encoder->base.base.id, encoder->base.name); 6502 6503 old->restore_state = NULL; 6504 6505 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 6506 6507 /* 6508 * Algorithm gets a little messy: 6509 * 6510 * - if the connector already has an assigned crtc, use it (but make 6511 * sure it's on first) 6512 * 6513 * - try to find the first unused crtc that can drive this connector, 6514 * and use that if we find one 6515 */ 6516 6517 /* See if we already have a CRTC for this connector */ 6518 if (connector->state->crtc) { 6519 crtc = to_intel_crtc(connector->state->crtc); 6520 6521 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 6522 if (ret) 6523 goto fail; 6524 6525 /* Make sure the crtc and connector are running */ 6526 goto found; 6527 } 6528 6529 /* Find an unused one (if possible) */ 6530 for_each_intel_crtc(dev, possible_crtc) { 6531 if (!(encoder->base.possible_crtcs & 6532 drm_crtc_mask(&possible_crtc->base))) 6533 continue; 6534 6535 ret = drm_modeset_lock(&possible_crtc->base.mutex, ctx); 6536 if (ret) 6537 goto fail; 6538 6539 if (possible_crtc->base.state->enable) { 6540 drm_modeset_unlock(&possible_crtc->base.mutex); 6541 continue; 6542 } 6543 6544 crtc = possible_crtc; 6545 break; 6546 } 6547 6548 /* 6549 * If we didn't find an unused CRTC, don't use any. 6550 */ 6551 if (!crtc) { 6552 drm_dbg_kms(&dev_priv->drm, 6553 "no pipe available for load-detect\n"); 6554 ret = -ENODEV; 6555 goto fail; 6556 } 6557 6558 found: 6559 state = drm_atomic_state_alloc(dev); 6560 restore_state = drm_atomic_state_alloc(dev); 6561 if (!state || !restore_state) { 6562 ret = -ENOMEM; 6563 goto fail; 6564 } 6565 6566 state->acquire_ctx = ctx; 6567 restore_state->acquire_ctx = ctx; 6568 6569 connector_state = drm_atomic_get_connector_state(state, connector); 6570 if (IS_ERR(connector_state)) { 6571 ret = PTR_ERR(connector_state); 6572 goto fail; 6573 } 6574 6575 ret = drm_atomic_set_crtc_for_connector(connector_state, &crtc->base); 6576 if (ret) 6577 goto fail; 6578 6579 crtc_state = intel_atomic_get_crtc_state(state, crtc); 6580 if (IS_ERR(crtc_state)) { 6581 ret = PTR_ERR(crtc_state); 6582 goto fail; 6583 } 6584 6585 crtc_state->uapi.active = true; 6586 6587 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 6588 &load_detect_mode); 6589 if (ret) 6590 goto fail; 6591 6592 ret = intel_modeset_disable_planes(state, &crtc->base); 6593 if (ret) 6594 goto fail; 6595 6596 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 6597 if (!ret) 6598 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, &crtc->base)); 6599 if (!ret) 6600 ret = drm_atomic_add_affected_planes(restore_state, &crtc->base); 6601 if (ret) { 6602 drm_dbg_kms(&dev_priv->drm, 6603 "Failed to create a copy of old state to restore: %i\n", 6604 ret); 6605 goto fail; 6606 } 6607 6608 ret = drm_atomic_commit(state); 6609 if (ret) { 6610 drm_dbg_kms(&dev_priv->drm, 6611 "failed to set mode on load-detect pipe\n"); 6612 goto fail; 6613 } 6614 6615 old->restore_state = restore_state; 6616 drm_atomic_state_put(state); 6617 6618 /* let the connector get through one full cycle before testing */ 6619 intel_wait_for_vblank(dev_priv, crtc->pipe); 6620 return true; 6621 6622 fail: 6623 if (state) { 6624 drm_atomic_state_put(state); 6625 state = NULL; 6626 } 6627 if (restore_state) { 6628 drm_atomic_state_put(restore_state); 6629 restore_state = NULL; 6630 } 6631 6632 if (ret == -EDEADLK) 6633 return ret; 6634 6635 return false; 6636 } 6637 6638 void intel_release_load_detect_pipe(struct drm_connector *connector, 6639 struct intel_load_detect_pipe *old, 6640 struct drm_modeset_acquire_ctx *ctx) 6641 { 6642 struct intel_encoder *intel_encoder = 6643 intel_attached_encoder(to_intel_connector(connector)); 6644 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 6645 struct drm_encoder *encoder = &intel_encoder->base; 6646 struct drm_atomic_state *state = old->restore_state; 6647 int ret; 6648 6649 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6650 connector->base.id, connector->name, 6651 encoder->base.id, encoder->name); 6652 6653 if (!state) 6654 return; 6655 6656 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 6657 if (ret) 6658 drm_dbg_kms(&i915->drm, 6659 "Couldn't release load detect pipe: %i\n", ret); 6660 drm_atomic_state_put(state); 6661 } 6662 6663 static int i9xx_pll_refclk(struct drm_device *dev, 6664 const struct intel_crtc_state *pipe_config) 6665 { 6666 struct drm_i915_private *dev_priv = to_i915(dev); 6667 u32 dpll = pipe_config->dpll_hw_state.dpll; 6668 6669 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 6670 return dev_priv->vbt.lvds_ssc_freq; 6671 else if (HAS_PCH_SPLIT(dev_priv)) 6672 return 120000; 6673 else if (DISPLAY_VER(dev_priv) != 2) 6674 return 96000; 6675 else 6676 return 48000; 6677 } 6678 6679 /* Returns the clock of the currently programmed mode of the given pipe. */ 6680 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 6681 struct intel_crtc_state *pipe_config) 6682 { 6683 struct drm_device *dev = crtc->base.dev; 6684 struct drm_i915_private *dev_priv = to_i915(dev); 6685 enum pipe pipe = crtc->pipe; 6686 u32 dpll = pipe_config->dpll_hw_state.dpll; 6687 u32 fp; 6688 struct dpll clock; 6689 int port_clock; 6690 int refclk = i9xx_pll_refclk(dev, pipe_config); 6691 6692 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 6693 fp = pipe_config->dpll_hw_state.fp0; 6694 else 6695 fp = pipe_config->dpll_hw_state.fp1; 6696 6697 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 6698 if (IS_PINEVIEW(dev_priv)) { 6699 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 6700 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 6701 } else { 6702 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 6703 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 6704 } 6705 6706 if (DISPLAY_VER(dev_priv) != 2) { 6707 if (IS_PINEVIEW(dev_priv)) 6708 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 6709 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 6710 else 6711 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 6712 DPLL_FPA01_P1_POST_DIV_SHIFT); 6713 6714 switch (dpll & DPLL_MODE_MASK) { 6715 case DPLLB_MODE_DAC_SERIAL: 6716 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 6717 5 : 10; 6718 break; 6719 case DPLLB_MODE_LVDS: 6720 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 6721 7 : 14; 6722 break; 6723 default: 6724 drm_dbg_kms(&dev_priv->drm, 6725 "Unknown DPLL mode %08x in programmed " 6726 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 6727 return; 6728 } 6729 6730 if (IS_PINEVIEW(dev_priv)) 6731 port_clock = pnv_calc_dpll_params(refclk, &clock); 6732 else 6733 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6734 } else { 6735 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 6736 LVDS); 6737 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 6738 6739 if (is_lvds) { 6740 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 6741 DPLL_FPA01_P1_POST_DIV_SHIFT); 6742 6743 if (lvds & LVDS_CLKB_POWER_UP) 6744 clock.p2 = 7; 6745 else 6746 clock.p2 = 14; 6747 } else { 6748 if (dpll & PLL_P1_DIVIDE_BY_TWO) 6749 clock.p1 = 2; 6750 else { 6751 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 6752 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 6753 } 6754 if (dpll & PLL_P2_DIVIDE_BY_4) 6755 clock.p2 = 4; 6756 else 6757 clock.p2 = 2; 6758 } 6759 6760 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6761 } 6762 6763 /* 6764 * This value includes pixel_multiplier. We will use 6765 * port_clock to compute adjusted_mode.crtc_clock in the 6766 * encoder's get_config() function. 6767 */ 6768 pipe_config->port_clock = port_clock; 6769 } 6770 6771 int intel_dotclock_calculate(int link_freq, 6772 const struct intel_link_m_n *m_n) 6773 { 6774 /* 6775 * The calculation for the data clock is: 6776 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 6777 * But we want to avoid losing precison if possible, so: 6778 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 6779 * 6780 * and the link clock is simpler: 6781 * link_clock = (m * link_clock) / n 6782 */ 6783 6784 if (!m_n->link_n) 6785 return 0; 6786 6787 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 6788 } 6789 6790 static void ilk_pch_clock_get(struct intel_crtc *crtc, 6791 struct intel_crtc_state *pipe_config) 6792 { 6793 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6794 6795 /* read out port_clock from the DPLL */ 6796 i9xx_crtc_clock_get(crtc, pipe_config); 6797 6798 /* 6799 * In case there is an active pipe without active ports, 6800 * we may need some idea for the dotclock anyway. 6801 * Calculate one based on the FDI configuration. 6802 */ 6803 pipe_config->hw.adjusted_mode.crtc_clock = 6804 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 6805 &pipe_config->fdi_m_n); 6806 } 6807 6808 /* Returns the currently programmed mode of the given encoder. */ 6809 struct drm_display_mode * 6810 intel_encoder_current_mode(struct intel_encoder *encoder) 6811 { 6812 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6813 struct intel_crtc_state *crtc_state; 6814 struct drm_display_mode *mode; 6815 struct intel_crtc *crtc; 6816 enum pipe pipe; 6817 6818 if (!encoder->get_hw_state(encoder, &pipe)) 6819 return NULL; 6820 6821 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 6822 6823 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 6824 if (!mode) 6825 return NULL; 6826 6827 crtc_state = intel_crtc_state_alloc(crtc); 6828 if (!crtc_state) { 6829 kfree(mode); 6830 return NULL; 6831 } 6832 6833 if (!intel_crtc_get_pipe_config(crtc_state)) { 6834 kfree(crtc_state); 6835 kfree(mode); 6836 return NULL; 6837 } 6838 6839 intel_encoder_get_config(encoder, crtc_state); 6840 6841 intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); 6842 6843 kfree(crtc_state); 6844 6845 return mode; 6846 } 6847 6848 /** 6849 * intel_wm_need_update - Check whether watermarks need updating 6850 * @cur: current plane state 6851 * @new: new plane state 6852 * 6853 * Check current plane state versus the new one to determine whether 6854 * watermarks need to be recalculated. 6855 * 6856 * Returns true or false. 6857 */ 6858 static bool intel_wm_need_update(const struct intel_plane_state *cur, 6859 struct intel_plane_state *new) 6860 { 6861 /* Update watermarks on tiling or size changes. */ 6862 if (new->uapi.visible != cur->uapi.visible) 6863 return true; 6864 6865 if (!cur->hw.fb || !new->hw.fb) 6866 return false; 6867 6868 if (cur->hw.fb->modifier != new->hw.fb->modifier || 6869 cur->hw.rotation != new->hw.rotation || 6870 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 6871 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 6872 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 6873 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 6874 return true; 6875 6876 return false; 6877 } 6878 6879 static bool needs_scaling(const struct intel_plane_state *state) 6880 { 6881 int src_w = drm_rect_width(&state->uapi.src) >> 16; 6882 int src_h = drm_rect_height(&state->uapi.src) >> 16; 6883 int dst_w = drm_rect_width(&state->uapi.dst); 6884 int dst_h = drm_rect_height(&state->uapi.dst); 6885 6886 return (src_w != dst_w || src_h != dst_h); 6887 } 6888 6889 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 6890 struct intel_crtc_state *crtc_state, 6891 const struct intel_plane_state *old_plane_state, 6892 struct intel_plane_state *plane_state) 6893 { 6894 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6895 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 6896 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6897 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 6898 bool was_crtc_enabled = old_crtc_state->hw.active; 6899 bool is_crtc_enabled = crtc_state->hw.active; 6900 bool turn_off, turn_on, visible, was_visible; 6901 int ret; 6902 6903 if (DISPLAY_VER(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 6904 ret = skl_update_scaler_plane(crtc_state, plane_state); 6905 if (ret) 6906 return ret; 6907 } 6908 6909 was_visible = old_plane_state->uapi.visible; 6910 visible = plane_state->uapi.visible; 6911 6912 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 6913 was_visible = false; 6914 6915 /* 6916 * Visibility is calculated as if the crtc was on, but 6917 * after scaler setup everything depends on it being off 6918 * when the crtc isn't active. 6919 * 6920 * FIXME this is wrong for watermarks. Watermarks should also 6921 * be computed as if the pipe would be active. Perhaps move 6922 * per-plane wm computation to the .check_plane() hook, and 6923 * only combine the results from all planes in the current place? 6924 */ 6925 if (!is_crtc_enabled) { 6926 intel_plane_set_invisible(crtc_state, plane_state); 6927 visible = false; 6928 } 6929 6930 if (!was_visible && !visible) 6931 return 0; 6932 6933 turn_off = was_visible && (!visible || mode_changed); 6934 turn_on = visible && (!was_visible || mode_changed); 6935 6936 drm_dbg_atomic(&dev_priv->drm, 6937 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 6938 crtc->base.base.id, crtc->base.name, 6939 plane->base.base.id, plane->base.name, 6940 was_visible, visible, 6941 turn_off, turn_on, mode_changed); 6942 6943 if (turn_on) { 6944 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6945 crtc_state->update_wm_pre = true; 6946 6947 /* must disable cxsr around plane enable/disable */ 6948 if (plane->id != PLANE_CURSOR) 6949 crtc_state->disable_cxsr = true; 6950 } else if (turn_off) { 6951 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6952 crtc_state->update_wm_post = true; 6953 6954 /* must disable cxsr around plane enable/disable */ 6955 if (plane->id != PLANE_CURSOR) 6956 crtc_state->disable_cxsr = true; 6957 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 6958 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) { 6959 /* FIXME bollocks */ 6960 crtc_state->update_wm_pre = true; 6961 crtc_state->update_wm_post = true; 6962 } 6963 } 6964 6965 if (visible || was_visible) 6966 crtc_state->fb_bits |= plane->frontbuffer_bit; 6967 6968 /* 6969 * ILK/SNB DVSACNTR/Sprite Enable 6970 * IVB SPR_CTL/Sprite Enable 6971 * "When in Self Refresh Big FIFO mode, a write to enable the 6972 * plane will be internally buffered and delayed while Big FIFO 6973 * mode is exiting." 6974 * 6975 * Which means that enabling the sprite can take an extra frame 6976 * when we start in big FIFO mode (LP1+). Thus we need to drop 6977 * down to LP0 and wait for vblank in order to make sure the 6978 * sprite gets enabled on the next vblank after the register write. 6979 * Doing otherwise would risk enabling the sprite one frame after 6980 * we've already signalled flip completion. We can resume LP1+ 6981 * once the sprite has been enabled. 6982 * 6983 * 6984 * WaCxSRDisabledForSpriteScaling:ivb 6985 * IVB SPR_SCALE/Scaling Enable 6986 * "Low Power watermarks must be disabled for at least one 6987 * frame before enabling sprite scaling, and kept disabled 6988 * until sprite scaling is disabled." 6989 * 6990 * ILK/SNB DVSASCALE/Scaling Enable 6991 * "When in Self Refresh Big FIFO mode, scaling enable will be 6992 * masked off while Big FIFO mode is exiting." 6993 * 6994 * Despite the w/a only being listed for IVB we assume that 6995 * the ILK/SNB note has similar ramifications, hence we apply 6996 * the w/a on all three platforms. 6997 * 6998 * With experimental results seems this is needed also for primary 6999 * plane, not only sprite plane. 7000 */ 7001 if (plane->id != PLANE_CURSOR && 7002 (IS_IRONLAKE(dev_priv) || IS_SANDYBRIDGE(dev_priv) || 7003 IS_IVYBRIDGE(dev_priv)) && 7004 (turn_on || (!needs_scaling(old_plane_state) && 7005 needs_scaling(plane_state)))) 7006 crtc_state->disable_lp_wm = true; 7007 7008 return 0; 7009 } 7010 7011 static bool encoders_cloneable(const struct intel_encoder *a, 7012 const struct intel_encoder *b) 7013 { 7014 /* masks could be asymmetric, so check both ways */ 7015 return a == b || (a->cloneable & (1 << b->type) && 7016 b->cloneable & (1 << a->type)); 7017 } 7018 7019 static bool check_single_encoder_cloning(struct intel_atomic_state *state, 7020 struct intel_crtc *crtc, 7021 struct intel_encoder *encoder) 7022 { 7023 struct intel_encoder *source_encoder; 7024 struct drm_connector *connector; 7025 struct drm_connector_state *connector_state; 7026 int i; 7027 7028 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7029 if (connector_state->crtc != &crtc->base) 7030 continue; 7031 7032 source_encoder = 7033 to_intel_encoder(connector_state->best_encoder); 7034 if (!encoders_cloneable(encoder, source_encoder)) 7035 return false; 7036 } 7037 7038 return true; 7039 } 7040 7041 static int icl_add_linked_planes(struct intel_atomic_state *state) 7042 { 7043 struct intel_plane *plane, *linked; 7044 struct intel_plane_state *plane_state, *linked_plane_state; 7045 int i; 7046 7047 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7048 linked = plane_state->planar_linked_plane; 7049 7050 if (!linked) 7051 continue; 7052 7053 linked_plane_state = intel_atomic_get_plane_state(state, linked); 7054 if (IS_ERR(linked_plane_state)) 7055 return PTR_ERR(linked_plane_state); 7056 7057 drm_WARN_ON(state->base.dev, 7058 linked_plane_state->planar_linked_plane != plane); 7059 drm_WARN_ON(state->base.dev, 7060 linked_plane_state->planar_slave == plane_state->planar_slave); 7061 } 7062 7063 return 0; 7064 } 7065 7066 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 7067 { 7068 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7069 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7070 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 7071 struct intel_plane *plane, *linked; 7072 struct intel_plane_state *plane_state; 7073 int i; 7074 7075 if (DISPLAY_VER(dev_priv) < 11) 7076 return 0; 7077 7078 /* 7079 * Destroy all old plane links and make the slave plane invisible 7080 * in the crtc_state->active_planes mask. 7081 */ 7082 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7083 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 7084 continue; 7085 7086 plane_state->planar_linked_plane = NULL; 7087 if (plane_state->planar_slave && !plane_state->uapi.visible) { 7088 crtc_state->enabled_planes &= ~BIT(plane->id); 7089 crtc_state->active_planes &= ~BIT(plane->id); 7090 crtc_state->update_planes |= BIT(plane->id); 7091 } 7092 7093 plane_state->planar_slave = false; 7094 } 7095 7096 if (!crtc_state->nv12_planes) 7097 return 0; 7098 7099 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7100 struct intel_plane_state *linked_state = NULL; 7101 7102 if (plane->pipe != crtc->pipe || 7103 !(crtc_state->nv12_planes & BIT(plane->id))) 7104 continue; 7105 7106 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 7107 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 7108 continue; 7109 7110 if (crtc_state->active_planes & BIT(linked->id)) 7111 continue; 7112 7113 linked_state = intel_atomic_get_plane_state(state, linked); 7114 if (IS_ERR(linked_state)) 7115 return PTR_ERR(linked_state); 7116 7117 break; 7118 } 7119 7120 if (!linked_state) { 7121 drm_dbg_kms(&dev_priv->drm, 7122 "Need %d free Y planes for planar YUV\n", 7123 hweight8(crtc_state->nv12_planes)); 7124 7125 return -EINVAL; 7126 } 7127 7128 plane_state->planar_linked_plane = linked; 7129 7130 linked_state->planar_slave = true; 7131 linked_state->planar_linked_plane = plane; 7132 crtc_state->enabled_planes |= BIT(linked->id); 7133 crtc_state->active_planes |= BIT(linked->id); 7134 crtc_state->update_planes |= BIT(linked->id); 7135 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 7136 linked->base.name, plane->base.name); 7137 7138 /* Copy parameters to slave plane */ 7139 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 7140 linked_state->color_ctl = plane_state->color_ctl; 7141 linked_state->view = plane_state->view; 7142 7143 intel_plane_copy_hw_state(linked_state, plane_state); 7144 linked_state->uapi.src = plane_state->uapi.src; 7145 linked_state->uapi.dst = plane_state->uapi.dst; 7146 7147 if (icl_is_hdr_plane(dev_priv, plane->id)) { 7148 if (linked->id == PLANE_SPRITE5) 7149 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 7150 else if (linked->id == PLANE_SPRITE4) 7151 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 7152 else if (linked->id == PLANE_SPRITE3) 7153 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 7154 else if (linked->id == PLANE_SPRITE2) 7155 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 7156 else 7157 MISSING_CASE(linked->id); 7158 } 7159 } 7160 7161 return 0; 7162 } 7163 7164 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 7165 { 7166 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 7167 struct intel_atomic_state *state = 7168 to_intel_atomic_state(new_crtc_state->uapi.state); 7169 const struct intel_crtc_state *old_crtc_state = 7170 intel_atomic_get_old_crtc_state(state, crtc); 7171 7172 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 7173 } 7174 7175 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 7176 { 7177 const struct drm_display_mode *pipe_mode = 7178 &crtc_state->hw.pipe_mode; 7179 int linetime_wm; 7180 7181 if (!crtc_state->hw.enable) 7182 return 0; 7183 7184 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7185 pipe_mode->crtc_clock); 7186 7187 return min(linetime_wm, 0x1ff); 7188 } 7189 7190 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 7191 const struct intel_cdclk_state *cdclk_state) 7192 { 7193 const struct drm_display_mode *pipe_mode = 7194 &crtc_state->hw.pipe_mode; 7195 int linetime_wm; 7196 7197 if (!crtc_state->hw.enable) 7198 return 0; 7199 7200 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7201 cdclk_state->logical.cdclk); 7202 7203 return min(linetime_wm, 0x1ff); 7204 } 7205 7206 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 7207 { 7208 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7209 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7210 const struct drm_display_mode *pipe_mode = 7211 &crtc_state->hw.pipe_mode; 7212 int linetime_wm; 7213 7214 if (!crtc_state->hw.enable) 7215 return 0; 7216 7217 linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, 7218 crtc_state->pixel_rate); 7219 7220 /* Display WA #1135: BXT:ALL GLK:ALL */ 7221 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 7222 dev_priv->ipc_enabled) 7223 linetime_wm /= 2; 7224 7225 return min(linetime_wm, 0x1ff); 7226 } 7227 7228 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 7229 struct intel_crtc *crtc) 7230 { 7231 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7232 struct intel_crtc_state *crtc_state = 7233 intel_atomic_get_new_crtc_state(state, crtc); 7234 const struct intel_cdclk_state *cdclk_state; 7235 7236 if (DISPLAY_VER(dev_priv) >= 9) 7237 crtc_state->linetime = skl_linetime_wm(crtc_state); 7238 else 7239 crtc_state->linetime = hsw_linetime_wm(crtc_state); 7240 7241 if (!hsw_crtc_supports_ips(crtc)) 7242 return 0; 7243 7244 cdclk_state = intel_atomic_get_cdclk_state(state); 7245 if (IS_ERR(cdclk_state)) 7246 return PTR_ERR(cdclk_state); 7247 7248 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 7249 cdclk_state); 7250 7251 return 0; 7252 } 7253 7254 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 7255 struct intel_crtc *crtc) 7256 { 7257 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7258 struct intel_crtc_state *crtc_state = 7259 intel_atomic_get_new_crtc_state(state, crtc); 7260 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 7261 int ret; 7262 7263 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv) && 7264 mode_changed && !crtc_state->hw.active) 7265 crtc_state->update_wm_post = true; 7266 7267 if (mode_changed && crtc_state->hw.enable && 7268 dev_priv->display.crtc_compute_clock && 7269 !crtc_state->bigjoiner_slave && 7270 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 7271 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 7272 if (ret) 7273 return ret; 7274 } 7275 7276 /* 7277 * May need to update pipe gamma enable bits 7278 * when C8 planes are getting enabled/disabled. 7279 */ 7280 if (c8_planes_changed(crtc_state)) 7281 crtc_state->uapi.color_mgmt_changed = true; 7282 7283 if (mode_changed || crtc_state->update_pipe || 7284 crtc_state->uapi.color_mgmt_changed) { 7285 ret = intel_color_check(crtc_state); 7286 if (ret) 7287 return ret; 7288 } 7289 7290 if (dev_priv->display.compute_pipe_wm) { 7291 ret = dev_priv->display.compute_pipe_wm(state, crtc); 7292 if (ret) { 7293 drm_dbg_kms(&dev_priv->drm, 7294 "Target pipe watermarks are invalid\n"); 7295 return ret; 7296 } 7297 7298 } 7299 7300 if (dev_priv->display.compute_intermediate_wm) { 7301 if (drm_WARN_ON(&dev_priv->drm, 7302 !dev_priv->display.compute_pipe_wm)) 7303 return 0; 7304 7305 /* 7306 * Calculate 'intermediate' watermarks that satisfy both the 7307 * old state and the new state. We can program these 7308 * immediately. 7309 */ 7310 ret = dev_priv->display.compute_intermediate_wm(state, crtc); 7311 if (ret) { 7312 drm_dbg_kms(&dev_priv->drm, 7313 "No valid intermediate pipe watermarks are possible\n"); 7314 return ret; 7315 } 7316 } 7317 7318 if (DISPLAY_VER(dev_priv) >= 9) { 7319 if (mode_changed || crtc_state->update_pipe) { 7320 ret = skl_update_scaler_crtc(crtc_state); 7321 if (ret) 7322 return ret; 7323 } 7324 7325 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 7326 if (ret) 7327 return ret; 7328 } 7329 7330 if (HAS_IPS(dev_priv)) { 7331 ret = hsw_compute_ips_config(crtc_state); 7332 if (ret) 7333 return ret; 7334 } 7335 7336 if (DISPLAY_VER(dev_priv) >= 9 || 7337 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 7338 ret = hsw_compute_linetime_wm(state, crtc); 7339 if (ret) 7340 return ret; 7341 7342 } 7343 7344 if (!mode_changed) { 7345 ret = intel_psr2_sel_fetch_update(state, crtc); 7346 if (ret) 7347 return ret; 7348 } 7349 7350 return 0; 7351 } 7352 7353 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 7354 { 7355 struct intel_connector *connector; 7356 struct drm_connector_list_iter conn_iter; 7357 7358 drm_connector_list_iter_begin(dev, &conn_iter); 7359 for_each_intel_connector_iter(connector, &conn_iter) { 7360 struct drm_connector_state *conn_state = connector->base.state; 7361 struct intel_encoder *encoder = 7362 to_intel_encoder(connector->base.encoder); 7363 7364 if (conn_state->crtc) 7365 drm_connector_put(&connector->base); 7366 7367 if (encoder) { 7368 struct intel_crtc *crtc = 7369 to_intel_crtc(encoder->base.crtc); 7370 const struct intel_crtc_state *crtc_state = 7371 to_intel_crtc_state(crtc->base.state); 7372 7373 conn_state->best_encoder = &encoder->base; 7374 conn_state->crtc = &crtc->base; 7375 conn_state->max_bpc = (crtc_state->pipe_bpp ?: 24) / 3; 7376 7377 drm_connector_get(&connector->base); 7378 } else { 7379 conn_state->best_encoder = NULL; 7380 conn_state->crtc = NULL; 7381 } 7382 } 7383 drm_connector_list_iter_end(&conn_iter); 7384 } 7385 7386 static int 7387 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 7388 struct intel_crtc_state *pipe_config) 7389 { 7390 struct drm_connector *connector = conn_state->connector; 7391 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7392 const struct drm_display_info *info = &connector->display_info; 7393 int bpp; 7394 7395 switch (conn_state->max_bpc) { 7396 case 6 ... 7: 7397 bpp = 6 * 3; 7398 break; 7399 case 8 ... 9: 7400 bpp = 8 * 3; 7401 break; 7402 case 10 ... 11: 7403 bpp = 10 * 3; 7404 break; 7405 case 12 ... 16: 7406 bpp = 12 * 3; 7407 break; 7408 default: 7409 MISSING_CASE(conn_state->max_bpc); 7410 return -EINVAL; 7411 } 7412 7413 if (bpp < pipe_config->pipe_bpp) { 7414 drm_dbg_kms(&i915->drm, 7415 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 7416 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 7417 connector->base.id, connector->name, 7418 bpp, 3 * info->bpc, 7419 3 * conn_state->max_requested_bpc, 7420 pipe_config->pipe_bpp); 7421 7422 pipe_config->pipe_bpp = bpp; 7423 } 7424 7425 return 0; 7426 } 7427 7428 static int 7429 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 7430 struct intel_crtc_state *pipe_config) 7431 { 7432 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7433 struct drm_atomic_state *state = pipe_config->uapi.state; 7434 struct drm_connector *connector; 7435 struct drm_connector_state *connector_state; 7436 int bpp, i; 7437 7438 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 7439 IS_CHERRYVIEW(dev_priv))) 7440 bpp = 10*3; 7441 else if (DISPLAY_VER(dev_priv) >= 5) 7442 bpp = 12*3; 7443 else 7444 bpp = 8*3; 7445 7446 pipe_config->pipe_bpp = bpp; 7447 7448 /* Clamp display bpp to connector max bpp */ 7449 for_each_new_connector_in_state(state, connector, connector_state, i) { 7450 int ret; 7451 7452 if (connector_state->crtc != &crtc->base) 7453 continue; 7454 7455 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 7456 if (ret) 7457 return ret; 7458 } 7459 7460 return 0; 7461 } 7462 7463 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 7464 const struct drm_display_mode *mode) 7465 { 7466 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 7467 "type: 0x%x flags: 0x%x\n", 7468 mode->crtc_clock, 7469 mode->crtc_hdisplay, mode->crtc_hsync_start, 7470 mode->crtc_hsync_end, mode->crtc_htotal, 7471 mode->crtc_vdisplay, mode->crtc_vsync_start, 7472 mode->crtc_vsync_end, mode->crtc_vtotal, 7473 mode->type, mode->flags); 7474 } 7475 7476 static void 7477 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 7478 const char *id, unsigned int lane_count, 7479 const struct intel_link_m_n *m_n) 7480 { 7481 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7482 7483 drm_dbg_kms(&i915->drm, 7484 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 7485 id, lane_count, 7486 m_n->gmch_m, m_n->gmch_n, 7487 m_n->link_m, m_n->link_n, m_n->tu); 7488 } 7489 7490 static void 7491 intel_dump_infoframe(struct drm_i915_private *dev_priv, 7492 const union hdmi_infoframe *frame) 7493 { 7494 if (!drm_debug_enabled(DRM_UT_KMS)) 7495 return; 7496 7497 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 7498 } 7499 7500 static void 7501 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 7502 const struct drm_dp_vsc_sdp *vsc) 7503 { 7504 if (!drm_debug_enabled(DRM_UT_KMS)) 7505 return; 7506 7507 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 7508 } 7509 7510 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 7511 7512 static const char * const output_type_str[] = { 7513 OUTPUT_TYPE(UNUSED), 7514 OUTPUT_TYPE(ANALOG), 7515 OUTPUT_TYPE(DVO), 7516 OUTPUT_TYPE(SDVO), 7517 OUTPUT_TYPE(LVDS), 7518 OUTPUT_TYPE(TVOUT), 7519 OUTPUT_TYPE(HDMI), 7520 OUTPUT_TYPE(DP), 7521 OUTPUT_TYPE(EDP), 7522 OUTPUT_TYPE(DSI), 7523 OUTPUT_TYPE(DDI), 7524 OUTPUT_TYPE(DP_MST), 7525 }; 7526 7527 #undef OUTPUT_TYPE 7528 7529 static void snprintf_output_types(char *buf, size_t len, 7530 unsigned int output_types) 7531 { 7532 char *str = buf; 7533 int i; 7534 7535 str[0] = '\0'; 7536 7537 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 7538 int r; 7539 7540 if ((output_types & BIT(i)) == 0) 7541 continue; 7542 7543 r = snprintf(str, len, "%s%s", 7544 str != buf ? "," : "", output_type_str[i]); 7545 if (r >= len) 7546 break; 7547 str += r; 7548 len -= r; 7549 7550 output_types &= ~BIT(i); 7551 } 7552 7553 WARN_ON_ONCE(output_types != 0); 7554 } 7555 7556 static const char * const output_format_str[] = { 7557 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 7558 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 7559 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 7560 }; 7561 7562 static const char *output_formats(enum intel_output_format format) 7563 { 7564 if (format >= ARRAY_SIZE(output_format_str)) 7565 return "invalid"; 7566 return output_format_str[format]; 7567 } 7568 7569 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 7570 { 7571 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 7572 struct drm_i915_private *i915 = to_i915(plane->base.dev); 7573 const struct drm_framebuffer *fb = plane_state->hw.fb; 7574 7575 if (!fb) { 7576 drm_dbg_kms(&i915->drm, 7577 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 7578 plane->base.base.id, plane->base.name, 7579 yesno(plane_state->uapi.visible)); 7580 return; 7581 } 7582 7583 drm_dbg_kms(&i915->drm, 7584 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %p4cc modifier = 0x%llx, visible: %s\n", 7585 plane->base.base.id, plane->base.name, 7586 fb->base.id, fb->width, fb->height, &fb->format->format, 7587 fb->modifier, yesno(plane_state->uapi.visible)); 7588 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 7589 plane_state->hw.rotation, plane_state->scaler_id); 7590 if (plane_state->uapi.visible) 7591 drm_dbg_kms(&i915->drm, 7592 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 7593 DRM_RECT_FP_ARG(&plane_state->uapi.src), 7594 DRM_RECT_ARG(&plane_state->uapi.dst)); 7595 } 7596 7597 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 7598 struct intel_atomic_state *state, 7599 const char *context) 7600 { 7601 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 7602 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7603 const struct intel_plane_state *plane_state; 7604 struct intel_plane *plane; 7605 char buf[64]; 7606 int i; 7607 7608 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 7609 crtc->base.base.id, crtc->base.name, 7610 yesno(pipe_config->hw.enable), context); 7611 7612 if (!pipe_config->hw.enable) 7613 goto dump_planes; 7614 7615 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 7616 drm_dbg_kms(&dev_priv->drm, 7617 "active: %s, output_types: %s (0x%x), output format: %s\n", 7618 yesno(pipe_config->hw.active), 7619 buf, pipe_config->output_types, 7620 output_formats(pipe_config->output_format)); 7621 7622 drm_dbg_kms(&dev_priv->drm, 7623 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 7624 transcoder_name(pipe_config->cpu_transcoder), 7625 pipe_config->pipe_bpp, pipe_config->dither); 7626 7627 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 7628 transcoder_name(pipe_config->mst_master_transcoder)); 7629 7630 drm_dbg_kms(&dev_priv->drm, 7631 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 7632 transcoder_name(pipe_config->master_transcoder), 7633 pipe_config->sync_mode_slaves_mask); 7634 7635 drm_dbg_kms(&dev_priv->drm, "bigjoiner: %s\n", 7636 pipe_config->bigjoiner_slave ? "slave" : 7637 pipe_config->bigjoiner ? "master" : "no"); 7638 7639 drm_dbg_kms(&dev_priv->drm, "splitter: %s, link count %d, overlap %d\n", 7640 enableddisabled(pipe_config->splitter.enable), 7641 pipe_config->splitter.link_count, 7642 pipe_config->splitter.pixel_overlap); 7643 7644 if (pipe_config->has_pch_encoder) 7645 intel_dump_m_n_config(pipe_config, "fdi", 7646 pipe_config->fdi_lanes, 7647 &pipe_config->fdi_m_n); 7648 7649 if (intel_crtc_has_dp_encoder(pipe_config)) { 7650 intel_dump_m_n_config(pipe_config, "dp m_n", 7651 pipe_config->lane_count, &pipe_config->dp_m_n); 7652 if (pipe_config->has_drrs) 7653 intel_dump_m_n_config(pipe_config, "dp m2_n2", 7654 pipe_config->lane_count, 7655 &pipe_config->dp_m2_n2); 7656 } 7657 7658 drm_dbg_kms(&dev_priv->drm, 7659 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 7660 pipe_config->has_audio, pipe_config->has_infoframe, 7661 pipe_config->infoframes.enable); 7662 7663 if (pipe_config->infoframes.enable & 7664 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 7665 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 7666 pipe_config->infoframes.gcp); 7667 if (pipe_config->infoframes.enable & 7668 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 7669 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 7670 if (pipe_config->infoframes.enable & 7671 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 7672 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 7673 if (pipe_config->infoframes.enable & 7674 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 7675 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 7676 if (pipe_config->infoframes.enable & 7677 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 7678 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7679 if (pipe_config->infoframes.enable & 7680 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 7681 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7682 if (pipe_config->infoframes.enable & 7683 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 7684 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 7685 7686 drm_dbg_kms(&dev_priv->drm, "vrr: %s, vmin: %d, vmax: %d, pipeline full: %d, guardband: %d flipline: %d, vmin vblank: %d, vmax vblank: %d\n", 7687 yesno(pipe_config->vrr.enable), 7688 pipe_config->vrr.vmin, pipe_config->vrr.vmax, 7689 pipe_config->vrr.pipeline_full, pipe_config->vrr.guardband, 7690 pipe_config->vrr.flipline, 7691 intel_vrr_vmin_vblank_start(pipe_config), 7692 intel_vrr_vmax_vblank_start(pipe_config)); 7693 7694 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 7695 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 7696 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 7697 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 7698 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 7699 drm_dbg_kms(&dev_priv->drm, "pipe mode:\n"); 7700 drm_mode_debug_printmodeline(&pipe_config->hw.pipe_mode); 7701 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.pipe_mode); 7702 drm_dbg_kms(&dev_priv->drm, 7703 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 7704 pipe_config->port_clock, 7705 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 7706 pipe_config->pixel_rate); 7707 7708 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 7709 pipe_config->linetime, pipe_config->ips_linetime); 7710 7711 if (DISPLAY_VER(dev_priv) >= 9) 7712 drm_dbg_kms(&dev_priv->drm, 7713 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 7714 crtc->num_scalers, 7715 pipe_config->scaler_state.scaler_users, 7716 pipe_config->scaler_state.scaler_id); 7717 7718 if (HAS_GMCH(dev_priv)) 7719 drm_dbg_kms(&dev_priv->drm, 7720 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 7721 pipe_config->gmch_pfit.control, 7722 pipe_config->gmch_pfit.pgm_ratios, 7723 pipe_config->gmch_pfit.lvds_border_bits); 7724 else 7725 drm_dbg_kms(&dev_priv->drm, 7726 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 7727 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 7728 enableddisabled(pipe_config->pch_pfit.enabled), 7729 yesno(pipe_config->pch_pfit.force_thru)); 7730 7731 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 7732 pipe_config->ips_enabled, pipe_config->double_wide); 7733 7734 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 7735 7736 if (IS_CHERRYVIEW(dev_priv)) 7737 drm_dbg_kms(&dev_priv->drm, 7738 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7739 pipe_config->cgm_mode, pipe_config->gamma_mode, 7740 pipe_config->gamma_enable, pipe_config->csc_enable); 7741 else 7742 drm_dbg_kms(&dev_priv->drm, 7743 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7744 pipe_config->csc_mode, pipe_config->gamma_mode, 7745 pipe_config->gamma_enable, pipe_config->csc_enable); 7746 7747 drm_dbg_kms(&dev_priv->drm, "degamma lut: %d entries, gamma lut: %d entries\n", 7748 pipe_config->hw.degamma_lut ? 7749 drm_color_lut_size(pipe_config->hw.degamma_lut) : 0, 7750 pipe_config->hw.gamma_lut ? 7751 drm_color_lut_size(pipe_config->hw.gamma_lut) : 0); 7752 7753 dump_planes: 7754 if (!state) 7755 return; 7756 7757 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7758 if (plane->pipe == crtc->pipe) 7759 intel_dump_plane_state(plane_state); 7760 } 7761 } 7762 7763 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 7764 { 7765 struct drm_device *dev = state->base.dev; 7766 struct drm_connector *connector; 7767 struct drm_connector_list_iter conn_iter; 7768 unsigned int used_ports = 0; 7769 unsigned int used_mst_ports = 0; 7770 bool ret = true; 7771 7772 /* 7773 * We're going to peek into connector->state, 7774 * hence connection_mutex must be held. 7775 */ 7776 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 7777 7778 /* 7779 * Walk the connector list instead of the encoder 7780 * list to detect the problem on ddi platforms 7781 * where there's just one encoder per digital port. 7782 */ 7783 drm_connector_list_iter_begin(dev, &conn_iter); 7784 drm_for_each_connector_iter(connector, &conn_iter) { 7785 struct drm_connector_state *connector_state; 7786 struct intel_encoder *encoder; 7787 7788 connector_state = 7789 drm_atomic_get_new_connector_state(&state->base, 7790 connector); 7791 if (!connector_state) 7792 connector_state = connector->state; 7793 7794 if (!connector_state->best_encoder) 7795 continue; 7796 7797 encoder = to_intel_encoder(connector_state->best_encoder); 7798 7799 drm_WARN_ON(dev, !connector_state->crtc); 7800 7801 switch (encoder->type) { 7802 case INTEL_OUTPUT_DDI: 7803 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 7804 break; 7805 fallthrough; 7806 case INTEL_OUTPUT_DP: 7807 case INTEL_OUTPUT_HDMI: 7808 case INTEL_OUTPUT_EDP: 7809 /* the same port mustn't appear more than once */ 7810 if (used_ports & BIT(encoder->port)) 7811 ret = false; 7812 7813 used_ports |= BIT(encoder->port); 7814 break; 7815 case INTEL_OUTPUT_DP_MST: 7816 used_mst_ports |= 7817 1 << encoder->port; 7818 break; 7819 default: 7820 break; 7821 } 7822 } 7823 drm_connector_list_iter_end(&conn_iter); 7824 7825 /* can't mix MST and SST/HDMI on the same port */ 7826 if (used_ports & used_mst_ports) 7827 return false; 7828 7829 return ret; 7830 } 7831 7832 static void 7833 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, 7834 struct intel_crtc_state *crtc_state) 7835 { 7836 const struct intel_crtc_state *from_crtc_state = crtc_state; 7837 7838 if (crtc_state->bigjoiner_slave) { 7839 from_crtc_state = intel_atomic_get_new_crtc_state(state, 7840 crtc_state->bigjoiner_linked_crtc); 7841 7842 /* No need to copy state if the master state is unchanged */ 7843 if (!from_crtc_state) 7844 return; 7845 } 7846 7847 intel_crtc_copy_color_blobs(crtc_state, from_crtc_state); 7848 } 7849 7850 static void 7851 intel_crtc_copy_uapi_to_hw_state(struct intel_atomic_state *state, 7852 struct intel_crtc_state *crtc_state) 7853 { 7854 crtc_state->hw.enable = crtc_state->uapi.enable; 7855 crtc_state->hw.active = crtc_state->uapi.active; 7856 crtc_state->hw.mode = crtc_state->uapi.mode; 7857 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 7858 crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; 7859 7860 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc_state); 7861 } 7862 7863 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 7864 { 7865 if (crtc_state->bigjoiner_slave) 7866 return; 7867 7868 crtc_state->uapi.enable = crtc_state->hw.enable; 7869 crtc_state->uapi.active = crtc_state->hw.active; 7870 drm_WARN_ON(crtc_state->uapi.crtc->dev, 7871 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 7872 7873 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 7874 crtc_state->uapi.scaling_filter = crtc_state->hw.scaling_filter; 7875 7876 /* copy color blobs to uapi */ 7877 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 7878 crtc_state->hw.degamma_lut); 7879 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 7880 crtc_state->hw.gamma_lut); 7881 drm_property_replace_blob(&crtc_state->uapi.ctm, 7882 crtc_state->hw.ctm); 7883 } 7884 7885 static int 7886 copy_bigjoiner_crtc_state(struct intel_crtc_state *crtc_state, 7887 const struct intel_crtc_state *from_crtc_state) 7888 { 7889 struct intel_crtc_state *saved_state; 7890 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7891 7892 saved_state = kmemdup(from_crtc_state, sizeof(*saved_state), GFP_KERNEL); 7893 if (!saved_state) 7894 return -ENOMEM; 7895 7896 saved_state->uapi = crtc_state->uapi; 7897 saved_state->scaler_state = crtc_state->scaler_state; 7898 saved_state->shared_dpll = crtc_state->shared_dpll; 7899 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7900 saved_state->crc_enabled = crtc_state->crc_enabled; 7901 7902 intel_crtc_free_hw_state(crtc_state); 7903 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7904 kfree(saved_state); 7905 7906 /* Re-init hw state */ 7907 memset(&crtc_state->hw, 0, sizeof(saved_state->hw)); 7908 crtc_state->hw.enable = from_crtc_state->hw.enable; 7909 crtc_state->hw.active = from_crtc_state->hw.active; 7910 crtc_state->hw.pipe_mode = from_crtc_state->hw.pipe_mode; 7911 crtc_state->hw.adjusted_mode = from_crtc_state->hw.adjusted_mode; 7912 7913 /* Some fixups */ 7914 crtc_state->uapi.mode_changed = from_crtc_state->uapi.mode_changed; 7915 crtc_state->uapi.connectors_changed = from_crtc_state->uapi.connectors_changed; 7916 crtc_state->uapi.active_changed = from_crtc_state->uapi.active_changed; 7917 crtc_state->nv12_planes = crtc_state->c8_planes = crtc_state->update_planes = 0; 7918 crtc_state->bigjoiner_linked_crtc = to_intel_crtc(from_crtc_state->uapi.crtc); 7919 crtc_state->bigjoiner_slave = true; 7920 crtc_state->cpu_transcoder = (enum transcoder)crtc->pipe; 7921 crtc_state->has_audio = false; 7922 7923 return 0; 7924 } 7925 7926 static int 7927 intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, 7928 struct intel_crtc_state *crtc_state) 7929 { 7930 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7931 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7932 struct intel_crtc_state *saved_state; 7933 7934 saved_state = intel_crtc_state_alloc(crtc); 7935 if (!saved_state) 7936 return -ENOMEM; 7937 7938 /* free the old crtc_state->hw members */ 7939 intel_crtc_free_hw_state(crtc_state); 7940 7941 /* FIXME: before the switch to atomic started, a new pipe_config was 7942 * kzalloc'd. Code that depends on any field being zero should be 7943 * fixed, so that the crtc_state can be safely duplicated. For now, 7944 * only fields that are know to not cause problems are preserved. */ 7945 7946 saved_state->uapi = crtc_state->uapi; 7947 saved_state->scaler_state = crtc_state->scaler_state; 7948 saved_state->shared_dpll = crtc_state->shared_dpll; 7949 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7950 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 7951 sizeof(saved_state->icl_port_dplls)); 7952 saved_state->crc_enabled = crtc_state->crc_enabled; 7953 if (IS_G4X(dev_priv) || 7954 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7955 saved_state->wm = crtc_state->wm; 7956 7957 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7958 kfree(saved_state); 7959 7960 intel_crtc_copy_uapi_to_hw_state(state, crtc_state); 7961 7962 return 0; 7963 } 7964 7965 static int 7966 intel_modeset_pipe_config(struct intel_atomic_state *state, 7967 struct intel_crtc_state *pipe_config) 7968 { 7969 struct drm_crtc *crtc = pipe_config->uapi.crtc; 7970 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7971 struct drm_connector *connector; 7972 struct drm_connector_state *connector_state; 7973 int base_bpp, ret, i; 7974 bool retry = true; 7975 7976 pipe_config->cpu_transcoder = 7977 (enum transcoder) to_intel_crtc(crtc)->pipe; 7978 7979 /* 7980 * Sanitize sync polarity flags based on requested ones. If neither 7981 * positive or negative polarity is requested, treat this as meaning 7982 * negative polarity. 7983 */ 7984 if (!(pipe_config->hw.adjusted_mode.flags & 7985 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 7986 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 7987 7988 if (!(pipe_config->hw.adjusted_mode.flags & 7989 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 7990 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 7991 7992 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 7993 pipe_config); 7994 if (ret) 7995 return ret; 7996 7997 base_bpp = pipe_config->pipe_bpp; 7998 7999 /* 8000 * Determine the real pipe dimensions. Note that stereo modes can 8001 * increase the actual pipe size due to the frame doubling and 8002 * insertion of additional space for blanks between the frame. This 8003 * is stored in the crtc timings. We use the requested mode to do this 8004 * computation to clearly distinguish it from the adjusted mode, which 8005 * can be changed by the connectors in the below retry loop. 8006 */ 8007 drm_mode_get_hv_timing(&pipe_config->hw.mode, 8008 &pipe_config->pipe_src_w, 8009 &pipe_config->pipe_src_h); 8010 8011 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8012 struct intel_encoder *encoder = 8013 to_intel_encoder(connector_state->best_encoder); 8014 8015 if (connector_state->crtc != crtc) 8016 continue; 8017 8018 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 8019 drm_dbg_kms(&i915->drm, 8020 "rejecting invalid cloning configuration\n"); 8021 return -EINVAL; 8022 } 8023 8024 /* 8025 * Determine output_types before calling the .compute_config() 8026 * hooks so that the hooks can use this information safely. 8027 */ 8028 if (encoder->compute_output_type) 8029 pipe_config->output_types |= 8030 BIT(encoder->compute_output_type(encoder, pipe_config, 8031 connector_state)); 8032 else 8033 pipe_config->output_types |= BIT(encoder->type); 8034 } 8035 8036 encoder_retry: 8037 /* Ensure the port clock defaults are reset when retrying. */ 8038 pipe_config->port_clock = 0; 8039 pipe_config->pixel_multiplier = 1; 8040 8041 /* Fill in default crtc timings, allow encoders to overwrite them. */ 8042 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 8043 CRTC_STEREO_DOUBLE); 8044 8045 /* Pass our mode to the connectors and the CRTC to give them a chance to 8046 * adjust it according to limitations or connector properties, and also 8047 * a chance to reject the mode entirely. 8048 */ 8049 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8050 struct intel_encoder *encoder = 8051 to_intel_encoder(connector_state->best_encoder); 8052 8053 if (connector_state->crtc != crtc) 8054 continue; 8055 8056 ret = encoder->compute_config(encoder, pipe_config, 8057 connector_state); 8058 if (ret < 0) { 8059 if (ret != -EDEADLK) 8060 drm_dbg_kms(&i915->drm, 8061 "Encoder config failure: %d\n", 8062 ret); 8063 return ret; 8064 } 8065 } 8066 8067 /* Set default port clock if not overwritten by the encoder. Needs to be 8068 * done afterwards in case the encoder adjusts the mode. */ 8069 if (!pipe_config->port_clock) 8070 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 8071 * pipe_config->pixel_multiplier; 8072 8073 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 8074 if (ret == -EDEADLK) 8075 return ret; 8076 if (ret < 0) { 8077 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 8078 return ret; 8079 } 8080 8081 if (ret == I915_DISPLAY_CONFIG_RETRY) { 8082 if (drm_WARN(&i915->drm, !retry, 8083 "loop in pipe configuration computation\n")) 8084 return -EINVAL; 8085 8086 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 8087 retry = false; 8088 goto encoder_retry; 8089 } 8090 8091 /* Dithering seems to not pass-through bits correctly when it should, so 8092 * only enable it on 6bpc panels and when its not a compliance 8093 * test requesting 6bpc video pattern. 8094 */ 8095 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 8096 !pipe_config->dither_force_disable; 8097 drm_dbg_kms(&i915->drm, 8098 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 8099 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 8100 8101 return 0; 8102 } 8103 8104 static int 8105 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 8106 { 8107 struct intel_atomic_state *state = 8108 to_intel_atomic_state(crtc_state->uapi.state); 8109 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8110 struct drm_connector_state *conn_state; 8111 struct drm_connector *connector; 8112 int i; 8113 8114 for_each_new_connector_in_state(&state->base, connector, 8115 conn_state, i) { 8116 struct intel_encoder *encoder = 8117 to_intel_encoder(conn_state->best_encoder); 8118 int ret; 8119 8120 if (conn_state->crtc != &crtc->base || 8121 !encoder->compute_config_late) 8122 continue; 8123 8124 ret = encoder->compute_config_late(encoder, crtc_state, 8125 conn_state); 8126 if (ret) 8127 return ret; 8128 } 8129 8130 return 0; 8131 } 8132 8133 bool intel_fuzzy_clock_check(int clock1, int clock2) 8134 { 8135 int diff; 8136 8137 if (clock1 == clock2) 8138 return true; 8139 8140 if (!clock1 || !clock2) 8141 return false; 8142 8143 diff = abs(clock1 - clock2); 8144 8145 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 8146 return true; 8147 8148 return false; 8149 } 8150 8151 static bool 8152 intel_compare_m_n(unsigned int m, unsigned int n, 8153 unsigned int m2, unsigned int n2, 8154 bool exact) 8155 { 8156 if (m == m2 && n == n2) 8157 return true; 8158 8159 if (exact || !m || !n || !m2 || !n2) 8160 return false; 8161 8162 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 8163 8164 if (n > n2) { 8165 while (n > n2) { 8166 m2 <<= 1; 8167 n2 <<= 1; 8168 } 8169 } else if (n < n2) { 8170 while (n < n2) { 8171 m <<= 1; 8172 n <<= 1; 8173 } 8174 } 8175 8176 if (n != n2) 8177 return false; 8178 8179 return intel_fuzzy_clock_check(m, m2); 8180 } 8181 8182 static bool 8183 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 8184 const struct intel_link_m_n *m2_n2, 8185 bool exact) 8186 { 8187 return m_n->tu == m2_n2->tu && 8188 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 8189 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 8190 intel_compare_m_n(m_n->link_m, m_n->link_n, 8191 m2_n2->link_m, m2_n2->link_n, exact); 8192 } 8193 8194 static bool 8195 intel_compare_infoframe(const union hdmi_infoframe *a, 8196 const union hdmi_infoframe *b) 8197 { 8198 return memcmp(a, b, sizeof(*a)) == 0; 8199 } 8200 8201 static bool 8202 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 8203 const struct drm_dp_vsc_sdp *b) 8204 { 8205 return memcmp(a, b, sizeof(*a)) == 0; 8206 } 8207 8208 static void 8209 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 8210 bool fastset, const char *name, 8211 const union hdmi_infoframe *a, 8212 const union hdmi_infoframe *b) 8213 { 8214 if (fastset) { 8215 if (!drm_debug_enabled(DRM_UT_KMS)) 8216 return; 8217 8218 drm_dbg_kms(&dev_priv->drm, 8219 "fastset mismatch in %s infoframe\n", name); 8220 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8221 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 8222 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8223 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 8224 } else { 8225 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 8226 drm_err(&dev_priv->drm, "expected:\n"); 8227 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 8228 drm_err(&dev_priv->drm, "found:\n"); 8229 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 8230 } 8231 } 8232 8233 static void 8234 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 8235 bool fastset, const char *name, 8236 const struct drm_dp_vsc_sdp *a, 8237 const struct drm_dp_vsc_sdp *b) 8238 { 8239 if (fastset) { 8240 if (!drm_debug_enabled(DRM_UT_KMS)) 8241 return; 8242 8243 drm_dbg_kms(&dev_priv->drm, 8244 "fastset mismatch in %s dp sdp\n", name); 8245 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8246 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 8247 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8248 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 8249 } else { 8250 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 8251 drm_err(&dev_priv->drm, "expected:\n"); 8252 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 8253 drm_err(&dev_priv->drm, "found:\n"); 8254 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 8255 } 8256 } 8257 8258 static void __printf(4, 5) 8259 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 8260 const char *name, const char *format, ...) 8261 { 8262 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 8263 struct va_format vaf; 8264 va_list args; 8265 8266 va_start(args, format); 8267 vaf.fmt = format; 8268 vaf.va = &args; 8269 8270 if (fastset) 8271 drm_dbg_kms(&i915->drm, 8272 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 8273 crtc->base.base.id, crtc->base.name, name, &vaf); 8274 else 8275 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 8276 crtc->base.base.id, crtc->base.name, name, &vaf); 8277 8278 va_end(args); 8279 } 8280 8281 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 8282 { 8283 if (dev_priv->params.fastboot != -1) 8284 return dev_priv->params.fastboot; 8285 8286 /* Enable fastboot by default on Skylake and newer */ 8287 if (DISPLAY_VER(dev_priv) >= 9) 8288 return true; 8289 8290 /* Enable fastboot by default on VLV and CHV */ 8291 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8292 return true; 8293 8294 /* Disabled by default on all others */ 8295 return false; 8296 } 8297 8298 static bool 8299 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 8300 const struct intel_crtc_state *pipe_config, 8301 bool fastset) 8302 { 8303 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 8304 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 8305 bool ret = true; 8306 u32 bp_gamma = 0; 8307 bool fixup_inherited = fastset && 8308 current_config->inherited && !pipe_config->inherited; 8309 8310 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 8311 drm_dbg_kms(&dev_priv->drm, 8312 "initial modeset and fastboot not set\n"); 8313 ret = false; 8314 } 8315 8316 #define PIPE_CONF_CHECK_X(name) do { \ 8317 if (current_config->name != pipe_config->name) { \ 8318 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8319 "(expected 0x%08x, found 0x%08x)", \ 8320 current_config->name, \ 8321 pipe_config->name); \ 8322 ret = false; \ 8323 } \ 8324 } while (0) 8325 8326 #define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \ 8327 if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \ 8328 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8329 "(expected 0x%08x, found 0x%08x)", \ 8330 current_config->name & (mask), \ 8331 pipe_config->name & (mask)); \ 8332 ret = false; \ 8333 } \ 8334 } while (0) 8335 8336 #define PIPE_CONF_CHECK_I(name) do { \ 8337 if (current_config->name != pipe_config->name) { \ 8338 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8339 "(expected %i, found %i)", \ 8340 current_config->name, \ 8341 pipe_config->name); \ 8342 ret = false; \ 8343 } \ 8344 } while (0) 8345 8346 #define PIPE_CONF_CHECK_BOOL(name) do { \ 8347 if (current_config->name != pipe_config->name) { \ 8348 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8349 "(expected %s, found %s)", \ 8350 yesno(current_config->name), \ 8351 yesno(pipe_config->name)); \ 8352 ret = false; \ 8353 } \ 8354 } while (0) 8355 8356 /* 8357 * Checks state where we only read out the enabling, but not the entire 8358 * state itself (like full infoframes or ELD for audio). These states 8359 * require a full modeset on bootup to fix up. 8360 */ 8361 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 8362 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 8363 PIPE_CONF_CHECK_BOOL(name); \ 8364 } else { \ 8365 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8366 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 8367 yesno(current_config->name), \ 8368 yesno(pipe_config->name)); \ 8369 ret = false; \ 8370 } \ 8371 } while (0) 8372 8373 #define PIPE_CONF_CHECK_P(name) do { \ 8374 if (current_config->name != pipe_config->name) { \ 8375 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8376 "(expected %p, found %p)", \ 8377 current_config->name, \ 8378 pipe_config->name); \ 8379 ret = false; \ 8380 } \ 8381 } while (0) 8382 8383 #define PIPE_CONF_CHECK_M_N(name) do { \ 8384 if (!intel_compare_link_m_n(¤t_config->name, \ 8385 &pipe_config->name,\ 8386 !fastset)) { \ 8387 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8388 "(expected tu %i gmch %i/%i link %i/%i, " \ 8389 "found tu %i, gmch %i/%i link %i/%i)", \ 8390 current_config->name.tu, \ 8391 current_config->name.gmch_m, \ 8392 current_config->name.gmch_n, \ 8393 current_config->name.link_m, \ 8394 current_config->name.link_n, \ 8395 pipe_config->name.tu, \ 8396 pipe_config->name.gmch_m, \ 8397 pipe_config->name.gmch_n, \ 8398 pipe_config->name.link_m, \ 8399 pipe_config->name.link_n); \ 8400 ret = false; \ 8401 } \ 8402 } while (0) 8403 8404 /* This is required for BDW+ where there is only one set of registers for 8405 * switching between high and low RR. 8406 * This macro can be used whenever a comparison has to be made between one 8407 * hw state and multiple sw state variables. 8408 */ 8409 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 8410 if (!intel_compare_link_m_n(¤t_config->name, \ 8411 &pipe_config->name, !fastset) && \ 8412 !intel_compare_link_m_n(¤t_config->alt_name, \ 8413 &pipe_config->name, !fastset)) { \ 8414 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8415 "(expected tu %i gmch %i/%i link %i/%i, " \ 8416 "or tu %i gmch %i/%i link %i/%i, " \ 8417 "found tu %i, gmch %i/%i link %i/%i)", \ 8418 current_config->name.tu, \ 8419 current_config->name.gmch_m, \ 8420 current_config->name.gmch_n, \ 8421 current_config->name.link_m, \ 8422 current_config->name.link_n, \ 8423 current_config->alt_name.tu, \ 8424 current_config->alt_name.gmch_m, \ 8425 current_config->alt_name.gmch_n, \ 8426 current_config->alt_name.link_m, \ 8427 current_config->alt_name.link_n, \ 8428 pipe_config->name.tu, \ 8429 pipe_config->name.gmch_m, \ 8430 pipe_config->name.gmch_n, \ 8431 pipe_config->name.link_m, \ 8432 pipe_config->name.link_n); \ 8433 ret = false; \ 8434 } \ 8435 } while (0) 8436 8437 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 8438 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 8439 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8440 "(%x) (expected %i, found %i)", \ 8441 (mask), \ 8442 current_config->name & (mask), \ 8443 pipe_config->name & (mask)); \ 8444 ret = false; \ 8445 } \ 8446 } while (0) 8447 8448 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 8449 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 8450 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8451 "(expected %i, found %i)", \ 8452 current_config->name, \ 8453 pipe_config->name); \ 8454 ret = false; \ 8455 } \ 8456 } while (0) 8457 8458 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 8459 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 8460 &pipe_config->infoframes.name)) { \ 8461 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 8462 ¤t_config->infoframes.name, \ 8463 &pipe_config->infoframes.name); \ 8464 ret = false; \ 8465 } \ 8466 } while (0) 8467 8468 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 8469 if (!current_config->has_psr && !pipe_config->has_psr && \ 8470 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 8471 &pipe_config->infoframes.name)) { \ 8472 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 8473 ¤t_config->infoframes.name, \ 8474 &pipe_config->infoframes.name); \ 8475 ret = false; \ 8476 } \ 8477 } while (0) 8478 8479 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 8480 if (current_config->name1 != pipe_config->name1) { \ 8481 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 8482 "(expected %i, found %i, won't compare lut values)", \ 8483 current_config->name1, \ 8484 pipe_config->name1); \ 8485 ret = false;\ 8486 } else { \ 8487 if (!intel_color_lut_equal(current_config->name2, \ 8488 pipe_config->name2, pipe_config->name1, \ 8489 bit_precision)) { \ 8490 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 8491 "hw_state doesn't match sw_state"); \ 8492 ret = false; \ 8493 } \ 8494 } \ 8495 } while (0) 8496 8497 #define PIPE_CONF_QUIRK(quirk) \ 8498 ((current_config->quirks | pipe_config->quirks) & (quirk)) 8499 8500 PIPE_CONF_CHECK_I(cpu_transcoder); 8501 8502 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 8503 PIPE_CONF_CHECK_I(fdi_lanes); 8504 PIPE_CONF_CHECK_M_N(fdi_m_n); 8505 8506 PIPE_CONF_CHECK_I(lane_count); 8507 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 8508 8509 if (DISPLAY_VER(dev_priv) < 8) { 8510 PIPE_CONF_CHECK_M_N(dp_m_n); 8511 8512 if (current_config->has_drrs) 8513 PIPE_CONF_CHECK_M_N(dp_m2_n2); 8514 } else 8515 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 8516 8517 PIPE_CONF_CHECK_X(output_types); 8518 8519 /* FIXME do the readout properly and get rid of this quirk */ 8520 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8521 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hdisplay); 8522 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_htotal); 8523 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_start); 8524 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_end); 8525 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_start); 8526 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_end); 8527 8528 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vdisplay); 8529 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vtotal); 8530 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_start); 8531 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_end); 8532 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_start); 8533 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_end); 8534 8535 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 8536 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 8537 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 8538 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 8539 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 8540 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 8541 8542 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 8543 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 8544 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 8545 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 8546 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 8547 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 8548 8549 PIPE_CONF_CHECK_I(pixel_multiplier); 8550 8551 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8552 DRM_MODE_FLAG_INTERLACE); 8553 8554 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 8555 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8556 DRM_MODE_FLAG_PHSYNC); 8557 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8558 DRM_MODE_FLAG_NHSYNC); 8559 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8560 DRM_MODE_FLAG_PVSYNC); 8561 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8562 DRM_MODE_FLAG_NVSYNC); 8563 } 8564 } 8565 8566 PIPE_CONF_CHECK_I(output_format); 8567 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 8568 if ((DISPLAY_VER(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 8569 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8570 PIPE_CONF_CHECK_BOOL(limited_color_range); 8571 8572 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 8573 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 8574 PIPE_CONF_CHECK_BOOL(has_infoframe); 8575 /* FIXME do the readout properly and get rid of this quirk */ 8576 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8577 PIPE_CONF_CHECK_BOOL(fec_enable); 8578 8579 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 8580 8581 PIPE_CONF_CHECK_X(gmch_pfit.control); 8582 /* pfit ratios are autocomputed by the hw on gen4+ */ 8583 if (DISPLAY_VER(dev_priv) < 4) 8584 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 8585 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 8586 8587 /* 8588 * Changing the EDP transcoder input mux 8589 * (A_ONOFF vs. A_ON) requires a full modeset. 8590 */ 8591 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 8592 8593 if (!fastset) { 8594 PIPE_CONF_CHECK_I(pipe_src_w); 8595 PIPE_CONF_CHECK_I(pipe_src_h); 8596 8597 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 8598 if (current_config->pch_pfit.enabled) { 8599 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 8600 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 8601 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 8602 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 8603 } 8604 8605 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 8606 /* FIXME do the readout properly and get rid of this quirk */ 8607 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8608 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 8609 8610 PIPE_CONF_CHECK_X(gamma_mode); 8611 if (IS_CHERRYVIEW(dev_priv)) 8612 PIPE_CONF_CHECK_X(cgm_mode); 8613 else 8614 PIPE_CONF_CHECK_X(csc_mode); 8615 PIPE_CONF_CHECK_BOOL(gamma_enable); 8616 PIPE_CONF_CHECK_BOOL(csc_enable); 8617 8618 PIPE_CONF_CHECK_I(linetime); 8619 PIPE_CONF_CHECK_I(ips_linetime); 8620 8621 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 8622 if (bp_gamma) 8623 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 8624 8625 PIPE_CONF_CHECK_BOOL(has_psr); 8626 PIPE_CONF_CHECK_BOOL(has_psr2); 8627 PIPE_CONF_CHECK_BOOL(enable_psr2_sel_fetch); 8628 PIPE_CONF_CHECK_I(dc3co_exitline); 8629 } 8630 8631 PIPE_CONF_CHECK_BOOL(double_wide); 8632 8633 PIPE_CONF_CHECK_P(shared_dpll); 8634 8635 /* FIXME do the readout properly and get rid of this quirk */ 8636 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8637 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 8638 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 8639 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 8640 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 8641 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 8642 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 8643 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 8644 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 8645 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 8646 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 8647 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 8648 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 8649 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 8650 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 8651 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 8652 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 8653 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 8654 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 8655 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 8656 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 8657 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 8658 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 8659 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 8660 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 8661 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 8662 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 8663 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 8664 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 8665 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 8666 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 8667 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 8668 8669 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 8670 PIPE_CONF_CHECK_X(dsi_pll.div); 8671 8672 if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5) 8673 PIPE_CONF_CHECK_I(pipe_bpp); 8674 8675 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.pipe_mode.crtc_clock); 8676 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 8677 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 8678 8679 PIPE_CONF_CHECK_I(min_voltage_level); 8680 } 8681 8682 if (fastset && (current_config->has_psr || pipe_config->has_psr)) 8683 PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable, 8684 ~intel_hdmi_infoframe_enable(DP_SDP_VSC)); 8685 else 8686 PIPE_CONF_CHECK_X(infoframes.enable); 8687 8688 PIPE_CONF_CHECK_X(infoframes.gcp); 8689 PIPE_CONF_CHECK_INFOFRAME(avi); 8690 PIPE_CONF_CHECK_INFOFRAME(spd); 8691 PIPE_CONF_CHECK_INFOFRAME(hdmi); 8692 PIPE_CONF_CHECK_INFOFRAME(drm); 8693 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 8694 8695 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 8696 PIPE_CONF_CHECK_I(master_transcoder); 8697 PIPE_CONF_CHECK_BOOL(bigjoiner); 8698 PIPE_CONF_CHECK_BOOL(bigjoiner_slave); 8699 PIPE_CONF_CHECK_P(bigjoiner_linked_crtc); 8700 8701 PIPE_CONF_CHECK_I(dsc.compression_enable); 8702 PIPE_CONF_CHECK_I(dsc.dsc_split); 8703 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 8704 8705 PIPE_CONF_CHECK_BOOL(splitter.enable); 8706 PIPE_CONF_CHECK_I(splitter.link_count); 8707 PIPE_CONF_CHECK_I(splitter.pixel_overlap); 8708 8709 PIPE_CONF_CHECK_I(mst_master_transcoder); 8710 8711 PIPE_CONF_CHECK_BOOL(vrr.enable); 8712 PIPE_CONF_CHECK_I(vrr.vmin); 8713 PIPE_CONF_CHECK_I(vrr.vmax); 8714 PIPE_CONF_CHECK_I(vrr.flipline); 8715 PIPE_CONF_CHECK_I(vrr.pipeline_full); 8716 PIPE_CONF_CHECK_I(vrr.guardband); 8717 8718 #undef PIPE_CONF_CHECK_X 8719 #undef PIPE_CONF_CHECK_I 8720 #undef PIPE_CONF_CHECK_BOOL 8721 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 8722 #undef PIPE_CONF_CHECK_P 8723 #undef PIPE_CONF_CHECK_FLAGS 8724 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 8725 #undef PIPE_CONF_CHECK_COLOR_LUT 8726 #undef PIPE_CONF_QUIRK 8727 8728 return ret; 8729 } 8730 8731 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 8732 const struct intel_crtc_state *pipe_config) 8733 { 8734 if (pipe_config->has_pch_encoder) { 8735 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 8736 &pipe_config->fdi_m_n); 8737 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 8738 8739 /* 8740 * FDI already provided one idea for the dotclock. 8741 * Yell if the encoder disagrees. 8742 */ 8743 drm_WARN(&dev_priv->drm, 8744 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 8745 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 8746 fdi_dotclock, dotclock); 8747 } 8748 } 8749 8750 static void verify_wm_state(struct intel_crtc *crtc, 8751 struct intel_crtc_state *new_crtc_state) 8752 { 8753 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8754 struct skl_hw_state { 8755 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 8756 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 8757 struct skl_pipe_wm wm; 8758 } *hw; 8759 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; 8760 int level, max_level = ilk_wm_max_level(dev_priv); 8761 struct intel_plane *plane; 8762 u8 hw_enabled_slices; 8763 8764 if (DISPLAY_VER(dev_priv) < 9 || !new_crtc_state->hw.active) 8765 return; 8766 8767 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 8768 if (!hw) 8769 return; 8770 8771 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 8772 8773 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 8774 8775 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 8776 8777 if (DISPLAY_VER(dev_priv) >= 11 && 8778 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 8779 drm_err(&dev_priv->drm, 8780 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 8781 dev_priv->dbuf.enabled_slices, 8782 hw_enabled_slices); 8783 8784 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 8785 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 8786 const struct skl_wm_level *hw_wm_level, *sw_wm_level; 8787 8788 /* Watermarks */ 8789 for (level = 0; level <= max_level; level++) { 8790 hw_wm_level = &hw->wm.planes[plane->id].wm[level]; 8791 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); 8792 8793 if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) 8794 continue; 8795 8796 drm_err(&dev_priv->drm, 8797 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8798 plane->base.base.id, plane->base.name, level, 8799 sw_wm_level->enable, 8800 sw_wm_level->blocks, 8801 sw_wm_level->lines, 8802 hw_wm_level->enable, 8803 hw_wm_level->blocks, 8804 hw_wm_level->lines); 8805 } 8806 8807 hw_wm_level = &hw->wm.planes[plane->id].trans_wm; 8808 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); 8809 8810 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8811 drm_err(&dev_priv->drm, 8812 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8813 plane->base.base.id, plane->base.name, 8814 sw_wm_level->enable, 8815 sw_wm_level->blocks, 8816 sw_wm_level->lines, 8817 hw_wm_level->enable, 8818 hw_wm_level->blocks, 8819 hw_wm_level->lines); 8820 } 8821 8822 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0; 8823 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0; 8824 8825 if (HAS_HW_SAGV_WM(dev_priv) && 8826 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8827 drm_err(&dev_priv->drm, 8828 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8829 plane->base.base.id, plane->base.name, 8830 sw_wm_level->enable, 8831 sw_wm_level->blocks, 8832 sw_wm_level->lines, 8833 hw_wm_level->enable, 8834 hw_wm_level->blocks, 8835 hw_wm_level->lines); 8836 } 8837 8838 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm; 8839 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm; 8840 8841 if (HAS_HW_SAGV_WM(dev_priv) && 8842 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8843 drm_err(&dev_priv->drm, 8844 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8845 plane->base.base.id, plane->base.name, 8846 sw_wm_level->enable, 8847 sw_wm_level->blocks, 8848 sw_wm_level->lines, 8849 hw_wm_level->enable, 8850 hw_wm_level->blocks, 8851 hw_wm_level->lines); 8852 } 8853 8854 /* DDB */ 8855 hw_ddb_entry = &hw->ddb_y[plane->id]; 8856 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane->id]; 8857 8858 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 8859 drm_err(&dev_priv->drm, 8860 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", 8861 plane->base.base.id, plane->base.name, 8862 sw_ddb_entry->start, sw_ddb_entry->end, 8863 hw_ddb_entry->start, hw_ddb_entry->end); 8864 } 8865 } 8866 8867 kfree(hw); 8868 } 8869 8870 static void 8871 verify_connector_state(struct intel_atomic_state *state, 8872 struct intel_crtc *crtc) 8873 { 8874 struct drm_connector *connector; 8875 struct drm_connector_state *new_conn_state; 8876 int i; 8877 8878 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 8879 struct drm_encoder *encoder = connector->encoder; 8880 struct intel_crtc_state *crtc_state = NULL; 8881 8882 if (new_conn_state->crtc != &crtc->base) 8883 continue; 8884 8885 if (crtc) 8886 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 8887 8888 intel_connector_verify_state(crtc_state, new_conn_state); 8889 8890 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 8891 "connector's atomic encoder doesn't match legacy encoder\n"); 8892 } 8893 } 8894 8895 static void 8896 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 8897 { 8898 struct intel_encoder *encoder; 8899 struct drm_connector *connector; 8900 struct drm_connector_state *old_conn_state, *new_conn_state; 8901 int i; 8902 8903 for_each_intel_encoder(&dev_priv->drm, encoder) { 8904 bool enabled = false, found = false; 8905 enum pipe pipe; 8906 8907 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 8908 encoder->base.base.id, 8909 encoder->base.name); 8910 8911 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 8912 new_conn_state, i) { 8913 if (old_conn_state->best_encoder == &encoder->base) 8914 found = true; 8915 8916 if (new_conn_state->best_encoder != &encoder->base) 8917 continue; 8918 found = enabled = true; 8919 8920 I915_STATE_WARN(new_conn_state->crtc != 8921 encoder->base.crtc, 8922 "connector's crtc doesn't match encoder crtc\n"); 8923 } 8924 8925 if (!found) 8926 continue; 8927 8928 I915_STATE_WARN(!!encoder->base.crtc != enabled, 8929 "encoder's enabled state mismatch " 8930 "(expected %i, found %i)\n", 8931 !!encoder->base.crtc, enabled); 8932 8933 if (!encoder->base.crtc) { 8934 bool active; 8935 8936 active = encoder->get_hw_state(encoder, &pipe); 8937 I915_STATE_WARN(active, 8938 "encoder detached but still enabled on pipe %c.\n", 8939 pipe_name(pipe)); 8940 } 8941 } 8942 } 8943 8944 static void 8945 verify_crtc_state(struct intel_crtc *crtc, 8946 struct intel_crtc_state *old_crtc_state, 8947 struct intel_crtc_state *new_crtc_state) 8948 { 8949 struct drm_device *dev = crtc->base.dev; 8950 struct drm_i915_private *dev_priv = to_i915(dev); 8951 struct intel_encoder *encoder; 8952 struct intel_crtc_state *pipe_config = old_crtc_state; 8953 struct drm_atomic_state *state = old_crtc_state->uapi.state; 8954 struct intel_crtc *master = crtc; 8955 8956 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 8957 intel_crtc_free_hw_state(old_crtc_state); 8958 intel_crtc_state_reset(old_crtc_state, crtc); 8959 old_crtc_state->uapi.state = state; 8960 8961 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 8962 crtc->base.name); 8963 8964 pipe_config->hw.enable = new_crtc_state->hw.enable; 8965 8966 intel_crtc_get_pipe_config(pipe_config); 8967 8968 /* we keep both pipes enabled on 830 */ 8969 if (IS_I830(dev_priv) && pipe_config->hw.active) 8970 pipe_config->hw.active = new_crtc_state->hw.active; 8971 8972 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 8973 "crtc active state doesn't match with hw state " 8974 "(expected %i, found %i)\n", 8975 new_crtc_state->hw.active, pipe_config->hw.active); 8976 8977 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 8978 "transitional active state does not match atomic hw state " 8979 "(expected %i, found %i)\n", 8980 new_crtc_state->hw.active, crtc->active); 8981 8982 if (new_crtc_state->bigjoiner_slave) 8983 master = new_crtc_state->bigjoiner_linked_crtc; 8984 8985 for_each_encoder_on_crtc(dev, &master->base, encoder) { 8986 enum pipe pipe; 8987 bool active; 8988 8989 active = encoder->get_hw_state(encoder, &pipe); 8990 I915_STATE_WARN(active != new_crtc_state->hw.active, 8991 "[ENCODER:%i] active %i with crtc active %i\n", 8992 encoder->base.base.id, active, 8993 new_crtc_state->hw.active); 8994 8995 I915_STATE_WARN(active && master->pipe != pipe, 8996 "Encoder connected to wrong pipe %c\n", 8997 pipe_name(pipe)); 8998 8999 if (active) 9000 intel_encoder_get_config(encoder, pipe_config); 9001 } 9002 9003 if (!new_crtc_state->hw.active) 9004 return; 9005 9006 intel_pipe_config_sanity_check(dev_priv, pipe_config); 9007 9008 if (!intel_pipe_config_compare(new_crtc_state, 9009 pipe_config, false)) { 9010 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 9011 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 9012 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 9013 } 9014 } 9015 9016 static void 9017 intel_verify_planes(struct intel_atomic_state *state) 9018 { 9019 struct intel_plane *plane; 9020 const struct intel_plane_state *plane_state; 9021 int i; 9022 9023 for_each_new_intel_plane_in_state(state, plane, 9024 plane_state, i) 9025 assert_plane(plane, plane_state->planar_slave || 9026 plane_state->uapi.visible); 9027 } 9028 9029 static void 9030 verify_single_dpll_state(struct drm_i915_private *dev_priv, 9031 struct intel_shared_dpll *pll, 9032 struct intel_crtc *crtc, 9033 struct intel_crtc_state *new_crtc_state) 9034 { 9035 struct intel_dpll_hw_state dpll_hw_state; 9036 u8 pipe_mask; 9037 bool active; 9038 9039 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 9040 9041 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 9042 9043 active = intel_dpll_get_hw_state(dev_priv, pll, &dpll_hw_state); 9044 9045 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 9046 I915_STATE_WARN(!pll->on && pll->active_mask, 9047 "pll in active use but not on in sw tracking\n"); 9048 I915_STATE_WARN(pll->on && !pll->active_mask, 9049 "pll is on but not used by any active pipe\n"); 9050 I915_STATE_WARN(pll->on != active, 9051 "pll on state mismatch (expected %i, found %i)\n", 9052 pll->on, active); 9053 } 9054 9055 if (!crtc) { 9056 I915_STATE_WARN(pll->active_mask & ~pll->state.pipe_mask, 9057 "more active pll users than references: 0x%x vs 0x%x\n", 9058 pll->active_mask, pll->state.pipe_mask); 9059 9060 return; 9061 } 9062 9063 pipe_mask = BIT(crtc->pipe); 9064 9065 if (new_crtc_state->hw.active) 9066 I915_STATE_WARN(!(pll->active_mask & pipe_mask), 9067 "pll active mismatch (expected pipe %c in active mask 0x%x)\n", 9068 pipe_name(crtc->pipe), pll->active_mask); 9069 else 9070 I915_STATE_WARN(pll->active_mask & pipe_mask, 9071 "pll active mismatch (didn't expect pipe %c in active mask 0x%x)\n", 9072 pipe_name(crtc->pipe), pll->active_mask); 9073 9074 I915_STATE_WARN(!(pll->state.pipe_mask & pipe_mask), 9075 "pll enabled crtcs mismatch (expected 0x%x in 0x%x)\n", 9076 pipe_mask, pll->state.pipe_mask); 9077 9078 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 9079 &dpll_hw_state, 9080 sizeof(dpll_hw_state)), 9081 "pll hw state mismatch\n"); 9082 } 9083 9084 static void 9085 verify_shared_dpll_state(struct intel_crtc *crtc, 9086 struct intel_crtc_state *old_crtc_state, 9087 struct intel_crtc_state *new_crtc_state) 9088 { 9089 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9090 9091 if (new_crtc_state->shared_dpll) 9092 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 9093 9094 if (old_crtc_state->shared_dpll && 9095 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 9096 u8 pipe_mask = BIT(crtc->pipe); 9097 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 9098 9099 I915_STATE_WARN(pll->active_mask & pipe_mask, 9100 "pll active mismatch (didn't expect pipe %c in active mask (0x%x))\n", 9101 pipe_name(crtc->pipe), pll->active_mask); 9102 I915_STATE_WARN(pll->state.pipe_mask & pipe_mask, 9103 "pll enabled crtcs mismatch (found %x in enabled mask (0x%x))\n", 9104 pipe_name(crtc->pipe), pll->state.pipe_mask); 9105 } 9106 } 9107 9108 static void 9109 intel_modeset_verify_crtc(struct intel_crtc *crtc, 9110 struct intel_atomic_state *state, 9111 struct intel_crtc_state *old_crtc_state, 9112 struct intel_crtc_state *new_crtc_state) 9113 { 9114 if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 9115 return; 9116 9117 verify_wm_state(crtc, new_crtc_state); 9118 verify_connector_state(state, crtc); 9119 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 9120 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 9121 } 9122 9123 static void 9124 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 9125 { 9126 int i; 9127 9128 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 9129 verify_single_dpll_state(dev_priv, 9130 &dev_priv->dpll.shared_dplls[i], 9131 NULL, NULL); 9132 } 9133 9134 static void 9135 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 9136 struct intel_atomic_state *state) 9137 { 9138 verify_encoder_state(dev_priv, state); 9139 verify_connector_state(state, NULL); 9140 verify_disabled_dpll_state(dev_priv); 9141 } 9142 9143 int intel_modeset_all_pipes(struct intel_atomic_state *state) 9144 { 9145 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9146 struct intel_crtc *crtc; 9147 9148 /* 9149 * Add all pipes to the state, and force 9150 * a modeset on all the active ones. 9151 */ 9152 for_each_intel_crtc(&dev_priv->drm, crtc) { 9153 struct intel_crtc_state *crtc_state; 9154 int ret; 9155 9156 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9157 if (IS_ERR(crtc_state)) 9158 return PTR_ERR(crtc_state); 9159 9160 if (!crtc_state->hw.active || 9161 drm_atomic_crtc_needs_modeset(&crtc_state->uapi)) 9162 continue; 9163 9164 crtc_state->uapi.mode_changed = true; 9165 9166 ret = drm_atomic_add_affected_connectors(&state->base, 9167 &crtc->base); 9168 if (ret) 9169 return ret; 9170 9171 ret = intel_atomic_add_affected_planes(state, crtc); 9172 if (ret) 9173 return ret; 9174 9175 crtc_state->update_planes |= crtc_state->active_planes; 9176 } 9177 9178 return 0; 9179 } 9180 9181 static void 9182 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 9183 { 9184 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9185 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9186 struct drm_display_mode adjusted_mode = 9187 crtc_state->hw.adjusted_mode; 9188 9189 if (crtc_state->vrr.enable) { 9190 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 9191 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 9192 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 9193 crtc->vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 9194 } 9195 9196 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 9197 9198 crtc->mode_flags = crtc_state->mode_flags; 9199 9200 /* 9201 * The scanline counter increments at the leading edge of hsync. 9202 * 9203 * On most platforms it starts counting from vtotal-1 on the 9204 * first active line. That means the scanline counter value is 9205 * always one less than what we would expect. Ie. just after 9206 * start of vblank, which also occurs at start of hsync (on the 9207 * last active line), the scanline counter will read vblank_start-1. 9208 * 9209 * On gen2 the scanline counter starts counting from 1 instead 9210 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 9211 * to keep the value positive), instead of adding one. 9212 * 9213 * On HSW+ the behaviour of the scanline counter depends on the output 9214 * type. For DP ports it behaves like most other platforms, but on HDMI 9215 * there's an extra 1 line difference. So we need to add two instead of 9216 * one to the value. 9217 * 9218 * On VLV/CHV DSI the scanline counter would appear to increment 9219 * approx. 1/3 of a scanline before start of vblank. Unfortunately 9220 * that means we can't tell whether we're in vblank or not while 9221 * we're on that particular line. We must still set scanline_offset 9222 * to 1 so that the vblank timestamps come out correct when we query 9223 * the scanline counter from within the vblank interrupt handler. 9224 * However if queried just before the start of vblank we'll get an 9225 * answer that's slightly in the future. 9226 */ 9227 if (DISPLAY_VER(dev_priv) == 2) { 9228 int vtotal; 9229 9230 vtotal = adjusted_mode.crtc_vtotal; 9231 if (adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9232 vtotal /= 2; 9233 9234 crtc->scanline_offset = vtotal - 1; 9235 } else if (HAS_DDI(dev_priv) && 9236 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 9237 crtc->scanline_offset = 2; 9238 } else { 9239 crtc->scanline_offset = 1; 9240 } 9241 } 9242 9243 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 9244 { 9245 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9246 struct intel_crtc_state *new_crtc_state; 9247 struct intel_crtc *crtc; 9248 int i; 9249 9250 if (!dev_priv->display.crtc_compute_clock) 9251 return; 9252 9253 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9254 if (!intel_crtc_needs_modeset(new_crtc_state)) 9255 continue; 9256 9257 intel_release_shared_dplls(state, crtc); 9258 } 9259 } 9260 9261 /* 9262 * This implements the workaround described in the "notes" section of the mode 9263 * set sequence documentation. When going from no pipes or single pipe to 9264 * multiple pipes, and planes are enabled after the pipe, we need to wait at 9265 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 9266 */ 9267 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 9268 { 9269 struct intel_crtc_state *crtc_state; 9270 struct intel_crtc *crtc; 9271 struct intel_crtc_state *first_crtc_state = NULL; 9272 struct intel_crtc_state *other_crtc_state = NULL; 9273 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 9274 int i; 9275 9276 /* look at all crtc's that are going to be enabled in during modeset */ 9277 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9278 if (!crtc_state->hw.active || 9279 !intel_crtc_needs_modeset(crtc_state)) 9280 continue; 9281 9282 if (first_crtc_state) { 9283 other_crtc_state = crtc_state; 9284 break; 9285 } else { 9286 first_crtc_state = crtc_state; 9287 first_pipe = crtc->pipe; 9288 } 9289 } 9290 9291 /* No workaround needed? */ 9292 if (!first_crtc_state) 9293 return 0; 9294 9295 /* w/a possibly needed, check how many crtc's are already enabled. */ 9296 for_each_intel_crtc(state->base.dev, crtc) { 9297 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9298 if (IS_ERR(crtc_state)) 9299 return PTR_ERR(crtc_state); 9300 9301 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 9302 9303 if (!crtc_state->hw.active || 9304 intel_crtc_needs_modeset(crtc_state)) 9305 continue; 9306 9307 /* 2 or more enabled crtcs means no need for w/a */ 9308 if (enabled_pipe != INVALID_PIPE) 9309 return 0; 9310 9311 enabled_pipe = crtc->pipe; 9312 } 9313 9314 if (enabled_pipe != INVALID_PIPE) 9315 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 9316 else if (other_crtc_state) 9317 other_crtc_state->hsw_workaround_pipe = first_pipe; 9318 9319 return 0; 9320 } 9321 9322 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 9323 u8 active_pipes) 9324 { 9325 const struct intel_crtc_state *crtc_state; 9326 struct intel_crtc *crtc; 9327 int i; 9328 9329 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9330 if (crtc_state->hw.active) 9331 active_pipes |= BIT(crtc->pipe); 9332 else 9333 active_pipes &= ~BIT(crtc->pipe); 9334 } 9335 9336 return active_pipes; 9337 } 9338 9339 static int intel_modeset_checks(struct intel_atomic_state *state) 9340 { 9341 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9342 9343 state->modeset = true; 9344 9345 if (IS_HASWELL(dev_priv)) 9346 return hsw_mode_set_planes_workaround(state); 9347 9348 return 0; 9349 } 9350 9351 /* 9352 * Handle calculation of various watermark data at the end of the atomic check 9353 * phase. The code here should be run after the per-crtc and per-plane 'check' 9354 * handlers to ensure that all derived state has been updated. 9355 */ 9356 static int calc_watermark_data(struct intel_atomic_state *state) 9357 { 9358 struct drm_device *dev = state->base.dev; 9359 struct drm_i915_private *dev_priv = to_i915(dev); 9360 9361 /* Is there platform-specific watermark information to calculate? */ 9362 if (dev_priv->display.compute_global_watermarks) 9363 return dev_priv->display.compute_global_watermarks(state); 9364 9365 return 0; 9366 } 9367 9368 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 9369 struct intel_crtc_state *new_crtc_state) 9370 { 9371 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 9372 return; 9373 9374 new_crtc_state->uapi.mode_changed = false; 9375 new_crtc_state->update_pipe = true; 9376 } 9377 9378 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 9379 struct intel_crtc_state *new_crtc_state) 9380 { 9381 /* 9382 * If we're not doing the full modeset we want to 9383 * keep the current M/N values as they may be 9384 * sufficiently different to the computed values 9385 * to cause problems. 9386 * 9387 * FIXME: should really copy more fuzzy state here 9388 */ 9389 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 9390 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 9391 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 9392 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 9393 } 9394 9395 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 9396 struct intel_crtc *crtc, 9397 u8 plane_ids_mask) 9398 { 9399 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9400 struct intel_plane *plane; 9401 9402 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 9403 struct intel_plane_state *plane_state; 9404 9405 if ((plane_ids_mask & BIT(plane->id)) == 0) 9406 continue; 9407 9408 plane_state = intel_atomic_get_plane_state(state, plane); 9409 if (IS_ERR(plane_state)) 9410 return PTR_ERR(plane_state); 9411 } 9412 9413 return 0; 9414 } 9415 9416 int intel_atomic_add_affected_planes(struct intel_atomic_state *state, 9417 struct intel_crtc *crtc) 9418 { 9419 const struct intel_crtc_state *old_crtc_state = 9420 intel_atomic_get_old_crtc_state(state, crtc); 9421 const struct intel_crtc_state *new_crtc_state = 9422 intel_atomic_get_new_crtc_state(state, crtc); 9423 9424 return intel_crtc_add_planes_to_state(state, crtc, 9425 old_crtc_state->enabled_planes | 9426 new_crtc_state->enabled_planes); 9427 } 9428 9429 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 9430 { 9431 /* See {hsw,vlv,ivb}_plane_ratio() */ 9432 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 9433 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9434 IS_IVYBRIDGE(dev_priv); 9435 } 9436 9437 static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state, 9438 struct intel_crtc *crtc, 9439 struct intel_crtc *other) 9440 { 9441 const struct intel_plane_state *plane_state; 9442 struct intel_plane *plane; 9443 u8 plane_ids = 0; 9444 int i; 9445 9446 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9447 if (plane->pipe == crtc->pipe) 9448 plane_ids |= BIT(plane->id); 9449 } 9450 9451 return intel_crtc_add_planes_to_state(state, other, plane_ids); 9452 } 9453 9454 static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state) 9455 { 9456 const struct intel_crtc_state *crtc_state; 9457 struct intel_crtc *crtc; 9458 int i; 9459 9460 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9461 int ret; 9462 9463 if (!crtc_state->bigjoiner) 9464 continue; 9465 9466 ret = intel_crtc_add_bigjoiner_planes(state, crtc, 9467 crtc_state->bigjoiner_linked_crtc); 9468 if (ret) 9469 return ret; 9470 } 9471 9472 return 0; 9473 } 9474 9475 static int intel_atomic_check_planes(struct intel_atomic_state *state) 9476 { 9477 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9478 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9479 struct intel_plane_state *plane_state; 9480 struct intel_plane *plane; 9481 struct intel_crtc *crtc; 9482 int i, ret; 9483 9484 ret = icl_add_linked_planes(state); 9485 if (ret) 9486 return ret; 9487 9488 ret = intel_bigjoiner_add_affected_planes(state); 9489 if (ret) 9490 return ret; 9491 9492 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9493 ret = intel_plane_atomic_check(state, plane); 9494 if (ret) { 9495 drm_dbg_atomic(&dev_priv->drm, 9496 "[PLANE:%d:%s] atomic driver check failed\n", 9497 plane->base.base.id, plane->base.name); 9498 return ret; 9499 } 9500 } 9501 9502 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9503 new_crtc_state, i) { 9504 u8 old_active_planes, new_active_planes; 9505 9506 ret = icl_check_nv12_planes(new_crtc_state); 9507 if (ret) 9508 return ret; 9509 9510 /* 9511 * On some platforms the number of active planes affects 9512 * the planes' minimum cdclk calculation. Add such planes 9513 * to the state before we compute the minimum cdclk. 9514 */ 9515 if (!active_planes_affects_min_cdclk(dev_priv)) 9516 continue; 9517 9518 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9519 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9520 9521 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 9522 continue; 9523 9524 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 9525 if (ret) 9526 return ret; 9527 } 9528 9529 return 0; 9530 } 9531 9532 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 9533 bool *need_cdclk_calc) 9534 { 9535 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9536 const struct intel_cdclk_state *old_cdclk_state; 9537 const struct intel_cdclk_state *new_cdclk_state; 9538 struct intel_plane_state *plane_state; 9539 struct intel_bw_state *new_bw_state; 9540 struct intel_plane *plane; 9541 int min_cdclk = 0; 9542 enum pipe pipe; 9543 int ret; 9544 int i; 9545 /* 9546 * active_planes bitmask has been updated, and potentially 9547 * affected planes are part of the state. We can now 9548 * compute the minimum cdclk for each plane. 9549 */ 9550 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9551 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 9552 if (ret) 9553 return ret; 9554 } 9555 9556 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 9557 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 9558 9559 if (new_cdclk_state && 9560 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 9561 *need_cdclk_calc = true; 9562 9563 ret = dev_priv->display.bw_calc_min_cdclk(state); 9564 if (ret) 9565 return ret; 9566 9567 new_bw_state = intel_atomic_get_new_bw_state(state); 9568 9569 if (!new_cdclk_state || !new_bw_state) 9570 return 0; 9571 9572 for_each_pipe(dev_priv, pipe) { 9573 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 9574 9575 /* 9576 * Currently do this change only if we need to increase 9577 */ 9578 if (new_bw_state->min_cdclk > min_cdclk) 9579 *need_cdclk_calc = true; 9580 } 9581 9582 return 0; 9583 } 9584 9585 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 9586 { 9587 struct intel_crtc_state *crtc_state; 9588 struct intel_crtc *crtc; 9589 int i; 9590 9591 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9592 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 9593 int ret; 9594 9595 ret = intel_crtc_atomic_check(state, crtc); 9596 if (ret) { 9597 drm_dbg_atomic(&i915->drm, 9598 "[CRTC:%d:%s] atomic driver check failed\n", 9599 crtc->base.base.id, crtc->base.name); 9600 return ret; 9601 } 9602 } 9603 9604 return 0; 9605 } 9606 9607 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 9608 u8 transcoders) 9609 { 9610 const struct intel_crtc_state *new_crtc_state; 9611 struct intel_crtc *crtc; 9612 int i; 9613 9614 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9615 if (new_crtc_state->hw.enable && 9616 transcoders & BIT(new_crtc_state->cpu_transcoder) && 9617 intel_crtc_needs_modeset(new_crtc_state)) 9618 return true; 9619 } 9620 9621 return false; 9622 } 9623 9624 static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state, 9625 struct intel_crtc *crtc, 9626 struct intel_crtc_state *old_crtc_state, 9627 struct intel_crtc_state *new_crtc_state) 9628 { 9629 struct intel_crtc_state *slave_crtc_state, *master_crtc_state; 9630 struct intel_crtc *slave, *master; 9631 9632 /* slave being enabled, is master is still claiming this crtc? */ 9633 if (old_crtc_state->bigjoiner_slave) { 9634 slave = crtc; 9635 master = old_crtc_state->bigjoiner_linked_crtc; 9636 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 9637 if (!master_crtc_state || !intel_crtc_needs_modeset(master_crtc_state)) 9638 goto claimed; 9639 } 9640 9641 if (!new_crtc_state->bigjoiner) 9642 return 0; 9643 9644 slave = intel_dsc_get_bigjoiner_secondary(crtc); 9645 if (!slave) { 9646 DRM_DEBUG_KMS("[CRTC:%d:%s] Big joiner configuration requires " 9647 "CRTC + 1 to be used, doesn't exist\n", 9648 crtc->base.base.id, crtc->base.name); 9649 return -EINVAL; 9650 } 9651 9652 new_crtc_state->bigjoiner_linked_crtc = slave; 9653 slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave); 9654 master = crtc; 9655 if (IS_ERR(slave_crtc_state)) 9656 return PTR_ERR(slave_crtc_state); 9657 9658 /* master being enabled, slave was already configured? */ 9659 if (slave_crtc_state->uapi.enable) 9660 goto claimed; 9661 9662 DRM_DEBUG_KMS("[CRTC:%d:%s] Used as slave for big joiner\n", 9663 slave->base.base.id, slave->base.name); 9664 9665 return copy_bigjoiner_crtc_state(slave_crtc_state, new_crtc_state); 9666 9667 claimed: 9668 DRM_DEBUG_KMS("[CRTC:%d:%s] Slave is enabled as normal CRTC, but " 9669 "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n", 9670 slave->base.base.id, slave->base.name, 9671 master->base.base.id, master->base.name); 9672 return -EINVAL; 9673 } 9674 9675 static void kill_bigjoiner_slave(struct intel_atomic_state *state, 9676 struct intel_crtc_state *master_crtc_state) 9677 { 9678 struct intel_crtc_state *slave_crtc_state = 9679 intel_atomic_get_new_crtc_state(state, master_crtc_state->bigjoiner_linked_crtc); 9680 9681 slave_crtc_state->bigjoiner = master_crtc_state->bigjoiner = false; 9682 slave_crtc_state->bigjoiner_slave = master_crtc_state->bigjoiner_slave = false; 9683 slave_crtc_state->bigjoiner_linked_crtc = master_crtc_state->bigjoiner_linked_crtc = NULL; 9684 intel_crtc_copy_uapi_to_hw_state(state, slave_crtc_state); 9685 } 9686 9687 /** 9688 * DOC: asynchronous flip implementation 9689 * 9690 * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC 9691 * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. 9692 * Correspondingly, support is currently added for primary plane only. 9693 * 9694 * Async flip can only change the plane surface address, so anything else 9695 * changing is rejected from the intel_atomic_check_async() function. 9696 * Once this check is cleared, flip done interrupt is enabled using 9697 * the intel_crtc_enable_flip_done() function. 9698 * 9699 * As soon as the surface address register is written, flip done interrupt is 9700 * generated and the requested events are sent to the usersapce in the interrupt 9701 * handler itself. The timestamp and sequence sent during the flip done event 9702 * correspond to the last vblank and have no relation to the actual time when 9703 * the flip done event was sent. 9704 */ 9705 static int intel_atomic_check_async(struct intel_atomic_state *state) 9706 { 9707 struct drm_i915_private *i915 = to_i915(state->base.dev); 9708 const struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9709 const struct intel_plane_state *new_plane_state, *old_plane_state; 9710 struct intel_crtc *crtc; 9711 struct intel_plane *plane; 9712 int i; 9713 9714 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9715 new_crtc_state, i) { 9716 if (intel_crtc_needs_modeset(new_crtc_state)) { 9717 drm_dbg_kms(&i915->drm, "Modeset Required. Async flip not supported\n"); 9718 return -EINVAL; 9719 } 9720 9721 if (!new_crtc_state->hw.active) { 9722 drm_dbg_kms(&i915->drm, "CRTC inactive\n"); 9723 return -EINVAL; 9724 } 9725 if (old_crtc_state->active_planes != new_crtc_state->active_planes) { 9726 drm_dbg_kms(&i915->drm, 9727 "Active planes cannot be changed during async flip\n"); 9728 return -EINVAL; 9729 } 9730 } 9731 9732 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 9733 new_plane_state, i) { 9734 /* 9735 * TODO: Async flip is only supported through the page flip IOCTL 9736 * as of now. So support currently added for primary plane only. 9737 * Support for other planes on platforms on which supports 9738 * this(vlv/chv and icl+) should be added when async flip is 9739 * enabled in the atomic IOCTL path. 9740 */ 9741 if (!plane->async_flip) 9742 return -EINVAL; 9743 9744 /* 9745 * FIXME: This check is kept generic for all platforms. 9746 * Need to verify this for all gen9 and gen10 platforms to enable 9747 * this selectively if required. 9748 */ 9749 switch (new_plane_state->hw.fb->modifier) { 9750 case I915_FORMAT_MOD_X_TILED: 9751 case I915_FORMAT_MOD_Y_TILED: 9752 case I915_FORMAT_MOD_Yf_TILED: 9753 break; 9754 default: 9755 drm_dbg_kms(&i915->drm, 9756 "Linear memory/CCS does not support async flips\n"); 9757 return -EINVAL; 9758 } 9759 9760 if (old_plane_state->view.color_plane[0].stride != 9761 new_plane_state->view.color_plane[0].stride) { 9762 drm_dbg_kms(&i915->drm, "Stride cannot be changed in async flip\n"); 9763 return -EINVAL; 9764 } 9765 9766 if (old_plane_state->hw.fb->modifier != 9767 new_plane_state->hw.fb->modifier) { 9768 drm_dbg_kms(&i915->drm, 9769 "Framebuffer modifiers cannot be changed in async flip\n"); 9770 return -EINVAL; 9771 } 9772 9773 if (old_plane_state->hw.fb->format != 9774 new_plane_state->hw.fb->format) { 9775 drm_dbg_kms(&i915->drm, 9776 "Framebuffer format cannot be changed in async flip\n"); 9777 return -EINVAL; 9778 } 9779 9780 if (old_plane_state->hw.rotation != 9781 new_plane_state->hw.rotation) { 9782 drm_dbg_kms(&i915->drm, "Rotation cannot be changed in async flip\n"); 9783 return -EINVAL; 9784 } 9785 9786 if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || 9787 !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { 9788 drm_dbg_kms(&i915->drm, 9789 "Plane size/co-ordinates cannot be changed in async flip\n"); 9790 return -EINVAL; 9791 } 9792 9793 if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { 9794 drm_dbg_kms(&i915->drm, "Alpha value cannot be changed in async flip\n"); 9795 return -EINVAL; 9796 } 9797 9798 if (old_plane_state->hw.pixel_blend_mode != 9799 new_plane_state->hw.pixel_blend_mode) { 9800 drm_dbg_kms(&i915->drm, 9801 "Pixel blend mode cannot be changed in async flip\n"); 9802 return -EINVAL; 9803 } 9804 9805 if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { 9806 drm_dbg_kms(&i915->drm, 9807 "Color encoding cannot be changed in async flip\n"); 9808 return -EINVAL; 9809 } 9810 9811 if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { 9812 drm_dbg_kms(&i915->drm, "Color range cannot be changed in async flip\n"); 9813 return -EINVAL; 9814 } 9815 } 9816 9817 return 0; 9818 } 9819 9820 static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state) 9821 { 9822 struct intel_crtc_state *crtc_state; 9823 struct intel_crtc *crtc; 9824 int i; 9825 9826 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9827 struct intel_crtc_state *linked_crtc_state; 9828 struct intel_crtc *linked_crtc; 9829 int ret; 9830 9831 if (!crtc_state->bigjoiner) 9832 continue; 9833 9834 linked_crtc = crtc_state->bigjoiner_linked_crtc; 9835 linked_crtc_state = intel_atomic_get_crtc_state(&state->base, linked_crtc); 9836 if (IS_ERR(linked_crtc_state)) 9837 return PTR_ERR(linked_crtc_state); 9838 9839 if (!intel_crtc_needs_modeset(crtc_state)) 9840 continue; 9841 9842 linked_crtc_state->uapi.mode_changed = true; 9843 9844 ret = drm_atomic_add_affected_connectors(&state->base, 9845 &linked_crtc->base); 9846 if (ret) 9847 return ret; 9848 9849 ret = intel_atomic_add_affected_planes(state, linked_crtc); 9850 if (ret) 9851 return ret; 9852 } 9853 9854 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9855 /* Kill old bigjoiner link, we may re-establish afterwards */ 9856 if (intel_crtc_needs_modeset(crtc_state) && 9857 crtc_state->bigjoiner && !crtc_state->bigjoiner_slave) 9858 kill_bigjoiner_slave(state, crtc_state); 9859 } 9860 9861 return 0; 9862 } 9863 9864 /** 9865 * intel_atomic_check - validate state object 9866 * @dev: drm device 9867 * @_state: state to validate 9868 */ 9869 static int intel_atomic_check(struct drm_device *dev, 9870 struct drm_atomic_state *_state) 9871 { 9872 struct drm_i915_private *dev_priv = to_i915(dev); 9873 struct intel_atomic_state *state = to_intel_atomic_state(_state); 9874 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9875 struct intel_crtc *crtc; 9876 int ret, i; 9877 bool any_ms = false; 9878 9879 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9880 new_crtc_state, i) { 9881 if (new_crtc_state->inherited != old_crtc_state->inherited) 9882 new_crtc_state->uapi.mode_changed = true; 9883 } 9884 9885 intel_vrr_check_modeset(state); 9886 9887 ret = drm_atomic_helper_check_modeset(dev, &state->base); 9888 if (ret) 9889 goto fail; 9890 9891 ret = intel_bigjoiner_add_affected_crtcs(state); 9892 if (ret) 9893 goto fail; 9894 9895 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9896 new_crtc_state, i) { 9897 if (!intel_crtc_needs_modeset(new_crtc_state)) { 9898 /* Light copy */ 9899 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, new_crtc_state); 9900 9901 continue; 9902 } 9903 9904 if (!new_crtc_state->uapi.enable) { 9905 if (!new_crtc_state->bigjoiner_slave) { 9906 intel_crtc_copy_uapi_to_hw_state(state, new_crtc_state); 9907 any_ms = true; 9908 } 9909 continue; 9910 } 9911 9912 ret = intel_crtc_prepare_cleared_state(state, new_crtc_state); 9913 if (ret) 9914 goto fail; 9915 9916 ret = intel_modeset_pipe_config(state, new_crtc_state); 9917 if (ret) 9918 goto fail; 9919 9920 ret = intel_atomic_check_bigjoiner(state, crtc, old_crtc_state, 9921 new_crtc_state); 9922 if (ret) 9923 goto fail; 9924 } 9925 9926 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9927 new_crtc_state, i) { 9928 if (!intel_crtc_needs_modeset(new_crtc_state)) 9929 continue; 9930 9931 ret = intel_modeset_pipe_config_late(new_crtc_state); 9932 if (ret) 9933 goto fail; 9934 9935 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 9936 } 9937 9938 /** 9939 * Check if fastset is allowed by external dependencies like other 9940 * pipes and transcoders. 9941 * 9942 * Right now it only forces a fullmodeset when the MST master 9943 * transcoder did not changed but the pipe of the master transcoder 9944 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 9945 * in case of port synced crtcs, if one of the synced crtcs 9946 * needs a full modeset, all other synced crtcs should be 9947 * forced a full modeset. 9948 */ 9949 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9950 if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) 9951 continue; 9952 9953 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 9954 enum transcoder master = new_crtc_state->mst_master_transcoder; 9955 9956 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 9957 new_crtc_state->uapi.mode_changed = true; 9958 new_crtc_state->update_pipe = false; 9959 } 9960 } 9961 9962 if (is_trans_port_sync_mode(new_crtc_state)) { 9963 u8 trans = new_crtc_state->sync_mode_slaves_mask; 9964 9965 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 9966 trans |= BIT(new_crtc_state->master_transcoder); 9967 9968 if (intel_cpu_transcoders_need_modeset(state, trans)) { 9969 new_crtc_state->uapi.mode_changed = true; 9970 new_crtc_state->update_pipe = false; 9971 } 9972 } 9973 9974 if (new_crtc_state->bigjoiner) { 9975 struct intel_crtc_state *linked_crtc_state = 9976 intel_atomic_get_new_crtc_state(state, new_crtc_state->bigjoiner_linked_crtc); 9977 9978 if (intel_crtc_needs_modeset(linked_crtc_state)) { 9979 new_crtc_state->uapi.mode_changed = true; 9980 new_crtc_state->update_pipe = false; 9981 } 9982 } 9983 } 9984 9985 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9986 new_crtc_state, i) { 9987 if (intel_crtc_needs_modeset(new_crtc_state)) { 9988 any_ms = true; 9989 continue; 9990 } 9991 9992 if (!new_crtc_state->update_pipe) 9993 continue; 9994 9995 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 9996 } 9997 9998 if (any_ms && !check_digital_port_conflicts(state)) { 9999 drm_dbg_kms(&dev_priv->drm, 10000 "rejecting conflicting digital port configuration\n"); 10001 ret = -EINVAL; 10002 goto fail; 10003 } 10004 10005 ret = drm_dp_mst_atomic_check(&state->base); 10006 if (ret) 10007 goto fail; 10008 10009 ret = intel_atomic_check_planes(state); 10010 if (ret) 10011 goto fail; 10012 10013 intel_fbc_choose_crtc(dev_priv, state); 10014 ret = calc_watermark_data(state); 10015 if (ret) 10016 goto fail; 10017 10018 ret = intel_bw_atomic_check(state); 10019 if (ret) 10020 goto fail; 10021 10022 ret = intel_atomic_check_cdclk(state, &any_ms); 10023 if (ret) 10024 goto fail; 10025 10026 if (intel_any_crtc_needs_modeset(state)) 10027 any_ms = true; 10028 10029 if (any_ms) { 10030 ret = intel_modeset_checks(state); 10031 if (ret) 10032 goto fail; 10033 10034 ret = intel_modeset_calc_cdclk(state); 10035 if (ret) 10036 return ret; 10037 10038 intel_modeset_clear_plls(state); 10039 } 10040 10041 ret = intel_atomic_check_crtcs(state); 10042 if (ret) 10043 goto fail; 10044 10045 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10046 new_crtc_state, i) { 10047 if (new_crtc_state->uapi.async_flip) { 10048 ret = intel_atomic_check_async(state); 10049 if (ret) 10050 goto fail; 10051 } 10052 10053 if (!intel_crtc_needs_modeset(new_crtc_state) && 10054 !new_crtc_state->update_pipe) 10055 continue; 10056 10057 intel_dump_pipe_config(new_crtc_state, state, 10058 intel_crtc_needs_modeset(new_crtc_state) ? 10059 "[modeset]" : "[fastset]"); 10060 } 10061 10062 return 0; 10063 10064 fail: 10065 if (ret == -EDEADLK) 10066 return ret; 10067 10068 /* 10069 * FIXME would probably be nice to know which crtc specifically 10070 * caused the failure, in cases where we can pinpoint it. 10071 */ 10072 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10073 new_crtc_state, i) 10074 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 10075 10076 return ret; 10077 } 10078 10079 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 10080 { 10081 struct intel_crtc_state *crtc_state; 10082 struct intel_crtc *crtc; 10083 int i, ret; 10084 10085 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 10086 if (ret < 0) 10087 return ret; 10088 10089 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 10090 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 10091 10092 if (mode_changed || crtc_state->update_pipe || 10093 crtc_state->uapi.color_mgmt_changed) { 10094 intel_dsb_prepare(crtc_state); 10095 } 10096 } 10097 10098 return 0; 10099 } 10100 10101 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 10102 struct intel_crtc_state *crtc_state) 10103 { 10104 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10105 10106 if (DISPLAY_VER(dev_priv) != 2 || crtc_state->active_planes) 10107 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10108 10109 if (crtc_state->has_pch_encoder) { 10110 enum pipe pch_transcoder = 10111 intel_crtc_pch_transcoder(crtc); 10112 10113 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 10114 } 10115 } 10116 10117 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 10118 const struct intel_crtc_state *new_crtc_state) 10119 { 10120 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 10121 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10122 10123 /* 10124 * Update pipe size and adjust fitter if needed: the reason for this is 10125 * that in compute_mode_changes we check the native mode (not the pfit 10126 * mode) to see if we can flip rather than do a full mode set. In the 10127 * fastboot case, we'll flip, but if we don't update the pipesrc and 10128 * pfit state, we'll end up with a big fb scanned out into the wrong 10129 * sized surface. 10130 */ 10131 intel_set_pipe_src_size(new_crtc_state); 10132 10133 /* on skylake this is done by detaching scalers */ 10134 if (DISPLAY_VER(dev_priv) >= 9) { 10135 if (new_crtc_state->pch_pfit.enabled) 10136 skl_pfit_enable(new_crtc_state); 10137 } else if (HAS_PCH_SPLIT(dev_priv)) { 10138 if (new_crtc_state->pch_pfit.enabled) 10139 ilk_pfit_enable(new_crtc_state); 10140 else if (old_crtc_state->pch_pfit.enabled) 10141 ilk_pfit_disable(old_crtc_state); 10142 } 10143 10144 /* 10145 * The register is supposedly single buffered so perhaps 10146 * not 100% correct to do this here. But SKL+ calculate 10147 * this based on the adjust pixel rate so pfit changes do 10148 * affect it and so it must be updated for fastsets. 10149 * HSW/BDW only really need this here for fastboot, after 10150 * that the value should not change without a full modeset. 10151 */ 10152 if (DISPLAY_VER(dev_priv) >= 9 || 10153 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 10154 hsw_set_linetime_wm(new_crtc_state); 10155 10156 if (DISPLAY_VER(dev_priv) >= 11) 10157 icl_set_pipe_chicken(crtc); 10158 } 10159 10160 static void commit_pipe_pre_planes(struct intel_atomic_state *state, 10161 struct intel_crtc *crtc) 10162 { 10163 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10164 const struct intel_crtc_state *old_crtc_state = 10165 intel_atomic_get_old_crtc_state(state, crtc); 10166 const struct intel_crtc_state *new_crtc_state = 10167 intel_atomic_get_new_crtc_state(state, crtc); 10168 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10169 10170 /* 10171 * During modesets pipe configuration was programmed as the 10172 * CRTC was enabled. 10173 */ 10174 if (!modeset) { 10175 if (new_crtc_state->uapi.color_mgmt_changed || 10176 new_crtc_state->update_pipe) 10177 intel_color_commit(new_crtc_state); 10178 10179 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 10180 bdw_set_pipemisc(new_crtc_state); 10181 10182 if (new_crtc_state->update_pipe) 10183 intel_pipe_fastset(old_crtc_state, new_crtc_state); 10184 10185 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 10186 } 10187 10188 if (dev_priv->display.atomic_update_watermarks) 10189 dev_priv->display.atomic_update_watermarks(state, crtc); 10190 } 10191 10192 static void commit_pipe_post_planes(struct intel_atomic_state *state, 10193 struct intel_crtc *crtc) 10194 { 10195 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10196 const struct intel_crtc_state *new_crtc_state = 10197 intel_atomic_get_new_crtc_state(state, crtc); 10198 10199 /* 10200 * Disable the scaler(s) after the plane(s) so that we don't 10201 * get a catastrophic underrun even if the two operations 10202 * end up happening in two different frames. 10203 */ 10204 if (DISPLAY_VER(dev_priv) >= 9 && 10205 !intel_crtc_needs_modeset(new_crtc_state)) 10206 skl_detach_scalers(new_crtc_state); 10207 } 10208 10209 static void intel_enable_crtc(struct intel_atomic_state *state, 10210 struct intel_crtc *crtc) 10211 { 10212 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10213 const struct intel_crtc_state *new_crtc_state = 10214 intel_atomic_get_new_crtc_state(state, crtc); 10215 10216 if (!intel_crtc_needs_modeset(new_crtc_state)) 10217 return; 10218 10219 intel_crtc_update_active_timings(new_crtc_state); 10220 10221 dev_priv->display.crtc_enable(state, crtc); 10222 10223 if (new_crtc_state->bigjoiner_slave) 10224 return; 10225 10226 /* vblanks work again, re-enable pipe CRC. */ 10227 intel_crtc_enable_pipe_crc(crtc); 10228 } 10229 10230 static void intel_update_crtc(struct intel_atomic_state *state, 10231 struct intel_crtc *crtc) 10232 { 10233 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10234 const struct intel_crtc_state *old_crtc_state = 10235 intel_atomic_get_old_crtc_state(state, crtc); 10236 struct intel_crtc_state *new_crtc_state = 10237 intel_atomic_get_new_crtc_state(state, crtc); 10238 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10239 10240 if (!modeset) { 10241 if (new_crtc_state->preload_luts && 10242 (new_crtc_state->uapi.color_mgmt_changed || 10243 new_crtc_state->update_pipe)) 10244 intel_color_load_luts(new_crtc_state); 10245 10246 intel_pre_plane_update(state, crtc); 10247 10248 if (new_crtc_state->update_pipe) 10249 intel_encoders_update_pipe(state, crtc); 10250 } 10251 10252 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 10253 intel_fbc_disable(crtc); 10254 else 10255 intel_fbc_enable(state, crtc); 10256 10257 /* Perform vblank evasion around commit operation */ 10258 intel_pipe_update_start(new_crtc_state); 10259 10260 commit_pipe_pre_planes(state, crtc); 10261 10262 if (DISPLAY_VER(dev_priv) >= 9) 10263 skl_update_planes_on_crtc(state, crtc); 10264 else 10265 i9xx_update_planes_on_crtc(state, crtc); 10266 10267 commit_pipe_post_planes(state, crtc); 10268 10269 intel_pipe_update_end(new_crtc_state); 10270 10271 /* 10272 * We usually enable FIFO underrun interrupts as part of the 10273 * CRTC enable sequence during modesets. But when we inherit a 10274 * valid pipe configuration from the BIOS we need to take care 10275 * of enabling them on the CRTC's first fastset. 10276 */ 10277 if (new_crtc_state->update_pipe && !modeset && 10278 old_crtc_state->inherited) 10279 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 10280 } 10281 10282 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 10283 struct intel_crtc_state *old_crtc_state, 10284 struct intel_crtc_state *new_crtc_state, 10285 struct intel_crtc *crtc) 10286 { 10287 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10288 10289 drm_WARN_ON(&dev_priv->drm, old_crtc_state->bigjoiner_slave); 10290 10291 intel_crtc_disable_planes(state, crtc); 10292 10293 /* 10294 * We still need special handling for disabling bigjoiner master 10295 * and slaves since for slave we do not have encoder or plls 10296 * so we dont need to disable those. 10297 */ 10298 if (old_crtc_state->bigjoiner) { 10299 intel_crtc_disable_planes(state, 10300 old_crtc_state->bigjoiner_linked_crtc); 10301 old_crtc_state->bigjoiner_linked_crtc->active = false; 10302 } 10303 10304 /* 10305 * We need to disable pipe CRC before disabling the pipe, 10306 * or we race against vblank off. 10307 */ 10308 intel_crtc_disable_pipe_crc(crtc); 10309 10310 dev_priv->display.crtc_disable(state, crtc); 10311 crtc->active = false; 10312 intel_fbc_disable(crtc); 10313 intel_disable_shared_dpll(old_crtc_state); 10314 10315 /* FIXME unify this for all platforms */ 10316 if (!new_crtc_state->hw.active && 10317 !HAS_GMCH(dev_priv) && 10318 dev_priv->display.initial_watermarks) 10319 dev_priv->display.initial_watermarks(state, crtc); 10320 } 10321 10322 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 10323 { 10324 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10325 struct intel_crtc *crtc; 10326 u32 handled = 0; 10327 int i; 10328 10329 /* Only disable port sync and MST slaves */ 10330 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10331 new_crtc_state, i) { 10332 if (!intel_crtc_needs_modeset(new_crtc_state) || old_crtc_state->bigjoiner) 10333 continue; 10334 10335 if (!old_crtc_state->hw.active) 10336 continue; 10337 10338 /* In case of Transcoder port Sync master slave CRTCs can be 10339 * assigned in any order and we need to make sure that 10340 * slave CRTCs are disabled first and then master CRTC since 10341 * Slave vblanks are masked till Master Vblanks. 10342 */ 10343 if (!is_trans_port_sync_slave(old_crtc_state) && 10344 !intel_dp_mst_is_slave_trans(old_crtc_state)) 10345 continue; 10346 10347 intel_pre_plane_update(state, crtc); 10348 intel_old_crtc_state_disables(state, old_crtc_state, 10349 new_crtc_state, crtc); 10350 handled |= BIT(crtc->pipe); 10351 } 10352 10353 /* Disable everything else left on */ 10354 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10355 new_crtc_state, i) { 10356 if (!intel_crtc_needs_modeset(new_crtc_state) || 10357 (handled & BIT(crtc->pipe)) || 10358 old_crtc_state->bigjoiner_slave) 10359 continue; 10360 10361 intel_pre_plane_update(state, crtc); 10362 if (old_crtc_state->bigjoiner) { 10363 struct intel_crtc *slave = 10364 old_crtc_state->bigjoiner_linked_crtc; 10365 10366 intel_pre_plane_update(state, slave); 10367 } 10368 10369 if (old_crtc_state->hw.active) 10370 intel_old_crtc_state_disables(state, old_crtc_state, 10371 new_crtc_state, crtc); 10372 } 10373 } 10374 10375 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 10376 { 10377 struct intel_crtc_state *new_crtc_state; 10378 struct intel_crtc *crtc; 10379 int i; 10380 10381 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10382 if (!new_crtc_state->hw.active) 10383 continue; 10384 10385 intel_enable_crtc(state, crtc); 10386 intel_update_crtc(state, crtc); 10387 } 10388 } 10389 10390 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 10391 { 10392 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10393 struct intel_crtc *crtc; 10394 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10395 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 10396 u8 update_pipes = 0, modeset_pipes = 0; 10397 int i; 10398 10399 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10400 enum pipe pipe = crtc->pipe; 10401 10402 if (!new_crtc_state->hw.active) 10403 continue; 10404 10405 /* ignore allocations for crtc's that have been turned off. */ 10406 if (!intel_crtc_needs_modeset(new_crtc_state)) { 10407 entries[pipe] = old_crtc_state->wm.skl.ddb; 10408 update_pipes |= BIT(pipe); 10409 } else { 10410 modeset_pipes |= BIT(pipe); 10411 } 10412 } 10413 10414 /* 10415 * Whenever the number of active pipes changes, we need to make sure we 10416 * update the pipes in the right order so that their ddb allocations 10417 * never overlap with each other between CRTC updates. Otherwise we'll 10418 * cause pipe underruns and other bad stuff. 10419 * 10420 * So first lets enable all pipes that do not need a fullmodeset as 10421 * those don't have any external dependency. 10422 */ 10423 while (update_pipes) { 10424 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10425 new_crtc_state, i) { 10426 enum pipe pipe = crtc->pipe; 10427 10428 if ((update_pipes & BIT(pipe)) == 0) 10429 continue; 10430 10431 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10432 entries, I915_MAX_PIPES, pipe)) 10433 continue; 10434 10435 entries[pipe] = new_crtc_state->wm.skl.ddb; 10436 update_pipes &= ~BIT(pipe); 10437 10438 intel_update_crtc(state, crtc); 10439 10440 /* 10441 * If this is an already active pipe, it's DDB changed, 10442 * and this isn't the last pipe that needs updating 10443 * then we need to wait for a vblank to pass for the 10444 * new ddb allocation to take effect. 10445 */ 10446 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 10447 &old_crtc_state->wm.skl.ddb) && 10448 (update_pipes | modeset_pipes)) 10449 intel_wait_for_vblank(dev_priv, pipe); 10450 } 10451 } 10452 10453 update_pipes = modeset_pipes; 10454 10455 /* 10456 * Enable all pipes that needs a modeset and do not depends on other 10457 * pipes 10458 */ 10459 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10460 enum pipe pipe = crtc->pipe; 10461 10462 if ((modeset_pipes & BIT(pipe)) == 0) 10463 continue; 10464 10465 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 10466 is_trans_port_sync_master(new_crtc_state) || 10467 (new_crtc_state->bigjoiner && !new_crtc_state->bigjoiner_slave)) 10468 continue; 10469 10470 modeset_pipes &= ~BIT(pipe); 10471 10472 intel_enable_crtc(state, crtc); 10473 } 10474 10475 /* 10476 * Then we enable all remaining pipes that depend on other 10477 * pipes: MST slaves and port sync masters, big joiner master 10478 */ 10479 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10480 enum pipe pipe = crtc->pipe; 10481 10482 if ((modeset_pipes & BIT(pipe)) == 0) 10483 continue; 10484 10485 modeset_pipes &= ~BIT(pipe); 10486 10487 intel_enable_crtc(state, crtc); 10488 } 10489 10490 /* 10491 * Finally we do the plane updates/etc. for all pipes that got enabled. 10492 */ 10493 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10494 enum pipe pipe = crtc->pipe; 10495 10496 if ((update_pipes & BIT(pipe)) == 0) 10497 continue; 10498 10499 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10500 entries, I915_MAX_PIPES, pipe)); 10501 10502 entries[pipe] = new_crtc_state->wm.skl.ddb; 10503 update_pipes &= ~BIT(pipe); 10504 10505 intel_update_crtc(state, crtc); 10506 } 10507 10508 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 10509 drm_WARN_ON(&dev_priv->drm, update_pipes); 10510 } 10511 10512 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 10513 { 10514 struct intel_atomic_state *state, *next; 10515 struct llist_node *freed; 10516 10517 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 10518 llist_for_each_entry_safe(state, next, freed, freed) 10519 drm_atomic_state_put(&state->base); 10520 } 10521 10522 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 10523 { 10524 struct drm_i915_private *dev_priv = 10525 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 10526 10527 intel_atomic_helper_free_state(dev_priv); 10528 } 10529 10530 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 10531 { 10532 struct wait_queue_entry wait_fence, wait_reset; 10533 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 10534 10535 init_wait_entry(&wait_fence, 0); 10536 init_wait_entry(&wait_reset, 0); 10537 for (;;) { 10538 prepare_to_wait(&intel_state->commit_ready.wait, 10539 &wait_fence, TASK_UNINTERRUPTIBLE); 10540 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10541 I915_RESET_MODESET), 10542 &wait_reset, TASK_UNINTERRUPTIBLE); 10543 10544 10545 if (i915_sw_fence_done(&intel_state->commit_ready) || 10546 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 10547 break; 10548 10549 schedule(); 10550 } 10551 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 10552 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10553 I915_RESET_MODESET), 10554 &wait_reset); 10555 } 10556 10557 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 10558 { 10559 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10560 struct intel_crtc *crtc; 10561 int i; 10562 10563 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10564 new_crtc_state, i) 10565 intel_dsb_cleanup(old_crtc_state); 10566 } 10567 10568 static void intel_atomic_cleanup_work(struct work_struct *work) 10569 { 10570 struct intel_atomic_state *state = 10571 container_of(work, struct intel_atomic_state, base.commit_work); 10572 struct drm_i915_private *i915 = to_i915(state->base.dev); 10573 10574 intel_cleanup_dsbs(state); 10575 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 10576 drm_atomic_helper_commit_cleanup_done(&state->base); 10577 drm_atomic_state_put(&state->base); 10578 10579 intel_atomic_helper_free_state(i915); 10580 } 10581 10582 static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) 10583 { 10584 struct drm_i915_private *i915 = to_i915(state->base.dev); 10585 struct intel_plane *plane; 10586 struct intel_plane_state *plane_state; 10587 int i; 10588 10589 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 10590 struct drm_framebuffer *fb = plane_state->hw.fb; 10591 int ret; 10592 10593 if (!fb || 10594 fb->modifier != I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC) 10595 continue; 10596 10597 /* 10598 * The layout of the fast clear color value expected by HW 10599 * (the DRM ABI requiring this value to be located in fb at offset 0 of plane#2): 10600 * - 4 x 4 bytes per-channel value 10601 * (in surface type specific float/int format provided by the fb user) 10602 * - 8 bytes native color value used by the display 10603 * (converted/written by GPU during a fast clear operation using the 10604 * above per-channel values) 10605 * 10606 * The commit's FB prepare hook already ensured that FB obj is pinned and the 10607 * caller made sure that the object is synced wrt. the related color clear value 10608 * GPU write on it. 10609 */ 10610 ret = i915_gem_object_read_from_page(intel_fb_obj(fb), 10611 fb->offsets[2] + 16, 10612 &plane_state->ccval, 10613 sizeof(plane_state->ccval)); 10614 /* The above could only fail if the FB obj has an unexpected backing store type. */ 10615 drm_WARN_ON(&i915->drm, ret); 10616 } 10617 } 10618 10619 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 10620 { 10621 struct drm_device *dev = state->base.dev; 10622 struct drm_i915_private *dev_priv = to_i915(dev); 10623 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10624 struct intel_crtc *crtc; 10625 u64 put_domains[I915_MAX_PIPES] = {}; 10626 intel_wakeref_t wakeref = 0; 10627 int i; 10628 10629 intel_atomic_commit_fence_wait(state); 10630 10631 drm_atomic_helper_wait_for_dependencies(&state->base); 10632 10633 if (state->modeset) 10634 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 10635 10636 intel_atomic_prepare_plane_clear_colors(state); 10637 10638 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10639 new_crtc_state, i) { 10640 if (intel_crtc_needs_modeset(new_crtc_state) || 10641 new_crtc_state->update_pipe) { 10642 10643 put_domains[crtc->pipe] = 10644 modeset_get_crtc_power_domains(new_crtc_state); 10645 } 10646 } 10647 10648 intel_commit_modeset_disables(state); 10649 10650 /* FIXME: Eventually get rid of our crtc->config pointer */ 10651 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10652 crtc->config = new_crtc_state; 10653 10654 if (state->modeset) { 10655 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 10656 10657 intel_set_cdclk_pre_plane_update(state); 10658 10659 intel_modeset_verify_disabled(dev_priv, state); 10660 } 10661 10662 intel_sagv_pre_plane_update(state); 10663 10664 /* Complete the events for pipes that have now been disabled */ 10665 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10666 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10667 10668 /* Complete events for now disable pipes here. */ 10669 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 10670 spin_lock_irq(&dev->event_lock); 10671 drm_crtc_send_vblank_event(&crtc->base, 10672 new_crtc_state->uapi.event); 10673 spin_unlock_irq(&dev->event_lock); 10674 10675 new_crtc_state->uapi.event = NULL; 10676 } 10677 } 10678 10679 if (state->modeset) 10680 intel_encoders_update_prepare(state); 10681 10682 intel_dbuf_pre_plane_update(state); 10683 10684 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10685 if (new_crtc_state->uapi.async_flip) 10686 intel_crtc_enable_flip_done(state, crtc); 10687 } 10688 10689 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 10690 dev_priv->display.commit_modeset_enables(state); 10691 10692 if (state->modeset) { 10693 intel_encoders_update_complete(state); 10694 10695 intel_set_cdclk_post_plane_update(state); 10696 } 10697 10698 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 10699 * already, but still need the state for the delayed optimization. To 10700 * fix this: 10701 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 10702 * - schedule that vblank worker _before_ calling hw_done 10703 * - at the start of commit_tail, cancel it _synchrously 10704 * - switch over to the vblank wait helper in the core after that since 10705 * we don't need out special handling any more. 10706 */ 10707 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 10708 10709 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10710 if (new_crtc_state->uapi.async_flip) 10711 intel_crtc_disable_flip_done(state, crtc); 10712 10713 if (new_crtc_state->hw.active && 10714 !intel_crtc_needs_modeset(new_crtc_state) && 10715 !new_crtc_state->preload_luts && 10716 (new_crtc_state->uapi.color_mgmt_changed || 10717 new_crtc_state->update_pipe)) 10718 intel_color_load_luts(new_crtc_state); 10719 } 10720 10721 /* 10722 * Now that the vblank has passed, we can go ahead and program the 10723 * optimal watermarks on platforms that need two-step watermark 10724 * programming. 10725 * 10726 * TODO: Move this (and other cleanup) to an async worker eventually. 10727 */ 10728 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10729 new_crtc_state, i) { 10730 /* 10731 * Gen2 reports pipe underruns whenever all planes are disabled. 10732 * So re-enable underrun reporting after some planes get enabled. 10733 * 10734 * We do this before .optimize_watermarks() so that we have a 10735 * chance of catching underruns with the intermediate watermarks 10736 * vs. the new plane configuration. 10737 */ 10738 if (DISPLAY_VER(dev_priv) == 2 && planes_enabling(old_crtc_state, new_crtc_state)) 10739 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10740 10741 if (dev_priv->display.optimize_watermarks) 10742 dev_priv->display.optimize_watermarks(state, crtc); 10743 } 10744 10745 intel_dbuf_post_plane_update(state); 10746 10747 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10748 intel_post_plane_update(state, crtc); 10749 10750 modeset_put_crtc_power_domains(crtc, put_domains[crtc->pipe]); 10751 10752 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 10753 10754 /* 10755 * DSB cleanup is done in cleanup_work aligning with framebuffer 10756 * cleanup. So copy and reset the dsb structure to sync with 10757 * commit_done and later do dsb cleanup in cleanup_work. 10758 */ 10759 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 10760 } 10761 10762 /* Underruns don't always raise interrupts, so check manually */ 10763 intel_check_cpu_fifo_underruns(dev_priv); 10764 intel_check_pch_fifo_underruns(dev_priv); 10765 10766 if (state->modeset) 10767 intel_verify_planes(state); 10768 10769 intel_sagv_post_plane_update(state); 10770 10771 drm_atomic_helper_commit_hw_done(&state->base); 10772 10773 if (state->modeset) { 10774 /* As one of the primary mmio accessors, KMS has a high 10775 * likelihood of triggering bugs in unclaimed access. After we 10776 * finish modesetting, see if an error has been flagged, and if 10777 * so enable debugging for the next modeset - and hope we catch 10778 * the culprit. 10779 */ 10780 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 10781 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 10782 } 10783 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10784 10785 /* 10786 * Defer the cleanup of the old state to a separate worker to not 10787 * impede the current task (userspace for blocking modesets) that 10788 * are executed inline. For out-of-line asynchronous modesets/flips, 10789 * deferring to a new worker seems overkill, but we would place a 10790 * schedule point (cond_resched()) here anyway to keep latencies 10791 * down. 10792 */ 10793 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 10794 queue_work(system_highpri_wq, &state->base.commit_work); 10795 } 10796 10797 static void intel_atomic_commit_work(struct work_struct *work) 10798 { 10799 struct intel_atomic_state *state = 10800 container_of(work, struct intel_atomic_state, base.commit_work); 10801 10802 intel_atomic_commit_tail(state); 10803 } 10804 10805 static int __i915_sw_fence_call 10806 intel_atomic_commit_ready(struct i915_sw_fence *fence, 10807 enum i915_sw_fence_notify notify) 10808 { 10809 struct intel_atomic_state *state = 10810 container_of(fence, struct intel_atomic_state, commit_ready); 10811 10812 switch (notify) { 10813 case FENCE_COMPLETE: 10814 /* we do blocking waits in the worker, nothing to do here */ 10815 break; 10816 case FENCE_FREE: 10817 { 10818 struct intel_atomic_helper *helper = 10819 &to_i915(state->base.dev)->atomic_helper; 10820 10821 if (llist_add(&state->freed, &helper->free_list)) 10822 schedule_work(&helper->free_work); 10823 break; 10824 } 10825 } 10826 10827 return NOTIFY_DONE; 10828 } 10829 10830 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 10831 { 10832 struct intel_plane_state *old_plane_state, *new_plane_state; 10833 struct intel_plane *plane; 10834 int i; 10835 10836 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 10837 new_plane_state, i) 10838 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 10839 to_intel_frontbuffer(new_plane_state->hw.fb), 10840 plane->frontbuffer_bit); 10841 } 10842 10843 static int intel_atomic_commit(struct drm_device *dev, 10844 struct drm_atomic_state *_state, 10845 bool nonblock) 10846 { 10847 struct intel_atomic_state *state = to_intel_atomic_state(_state); 10848 struct drm_i915_private *dev_priv = to_i915(dev); 10849 int ret = 0; 10850 10851 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 10852 10853 drm_atomic_state_get(&state->base); 10854 i915_sw_fence_init(&state->commit_ready, 10855 intel_atomic_commit_ready); 10856 10857 /* 10858 * The intel_legacy_cursor_update() fast path takes care 10859 * of avoiding the vblank waits for simple cursor 10860 * movement and flips. For cursor on/off and size changes, 10861 * we want to perform the vblank waits so that watermark 10862 * updates happen during the correct frames. Gen9+ have 10863 * double buffered watermarks and so shouldn't need this. 10864 * 10865 * Unset state->legacy_cursor_update before the call to 10866 * drm_atomic_helper_setup_commit() because otherwise 10867 * drm_atomic_helper_wait_for_flip_done() is a noop and 10868 * we get FIFO underruns because we didn't wait 10869 * for vblank. 10870 * 10871 * FIXME doing watermarks and fb cleanup from a vblank worker 10872 * (assuming we had any) would solve these problems. 10873 */ 10874 if (DISPLAY_VER(dev_priv) < 9 && state->base.legacy_cursor_update) { 10875 struct intel_crtc_state *new_crtc_state; 10876 struct intel_crtc *crtc; 10877 int i; 10878 10879 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10880 if (new_crtc_state->wm.need_postvbl_update || 10881 new_crtc_state->update_wm_post) 10882 state->base.legacy_cursor_update = false; 10883 } 10884 10885 ret = intel_atomic_prepare_commit(state); 10886 if (ret) { 10887 drm_dbg_atomic(&dev_priv->drm, 10888 "Preparing state failed with %i\n", ret); 10889 i915_sw_fence_commit(&state->commit_ready); 10890 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10891 return ret; 10892 } 10893 10894 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 10895 if (!ret) 10896 ret = drm_atomic_helper_swap_state(&state->base, true); 10897 if (!ret) 10898 intel_atomic_swap_global_state(state); 10899 10900 if (ret) { 10901 struct intel_crtc_state *new_crtc_state; 10902 struct intel_crtc *crtc; 10903 int i; 10904 10905 i915_sw_fence_commit(&state->commit_ready); 10906 10907 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10908 intel_dsb_cleanup(new_crtc_state); 10909 10910 drm_atomic_helper_cleanup_planes(dev, &state->base); 10911 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10912 return ret; 10913 } 10914 intel_shared_dpll_swap_state(state); 10915 intel_atomic_track_fbs(state); 10916 10917 drm_atomic_state_get(&state->base); 10918 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 10919 10920 i915_sw_fence_commit(&state->commit_ready); 10921 if (nonblock && state->modeset) { 10922 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 10923 } else if (nonblock) { 10924 queue_work(dev_priv->flip_wq, &state->base.commit_work); 10925 } else { 10926 if (state->modeset) 10927 flush_workqueue(dev_priv->modeset_wq); 10928 intel_atomic_commit_tail(state); 10929 } 10930 10931 return 0; 10932 } 10933 10934 struct wait_rps_boost { 10935 struct wait_queue_entry wait; 10936 10937 struct drm_crtc *crtc; 10938 struct i915_request *request; 10939 }; 10940 10941 static int do_rps_boost(struct wait_queue_entry *_wait, 10942 unsigned mode, int sync, void *key) 10943 { 10944 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 10945 struct i915_request *rq = wait->request; 10946 10947 /* 10948 * If we missed the vblank, but the request is already running it 10949 * is reasonable to assume that it will complete before the next 10950 * vblank without our intervention, so leave RPS alone. 10951 */ 10952 if (!i915_request_started(rq)) 10953 intel_rps_boost(rq); 10954 i915_request_put(rq); 10955 10956 drm_crtc_vblank_put(wait->crtc); 10957 10958 list_del(&wait->wait.entry); 10959 kfree(wait); 10960 return 1; 10961 } 10962 10963 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 10964 struct dma_fence *fence) 10965 { 10966 struct wait_rps_boost *wait; 10967 10968 if (!dma_fence_is_i915(fence)) 10969 return; 10970 10971 if (DISPLAY_VER(to_i915(crtc->dev)) < 6) 10972 return; 10973 10974 if (drm_crtc_vblank_get(crtc)) 10975 return; 10976 10977 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 10978 if (!wait) { 10979 drm_crtc_vblank_put(crtc); 10980 return; 10981 } 10982 10983 wait->request = to_request(dma_fence_get(fence)); 10984 wait->crtc = crtc; 10985 10986 wait->wait.func = do_rps_boost; 10987 wait->wait.flags = 0; 10988 10989 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 10990 } 10991 10992 int intel_plane_pin_fb(struct intel_plane_state *plane_state) 10993 { 10994 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 10995 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10996 struct drm_framebuffer *fb = plane_state->hw.fb; 10997 struct i915_vma *vma; 10998 bool phys_cursor = 10999 plane->id == PLANE_CURSOR && 11000 INTEL_INFO(dev_priv)->display.cursor_needs_physical; 11001 11002 if (!intel_fb_uses_dpt(fb)) { 11003 vma = intel_pin_and_fence_fb_obj(fb, phys_cursor, 11004 &plane_state->view.gtt, 11005 intel_plane_uses_fence(plane_state), 11006 &plane_state->flags); 11007 if (IS_ERR(vma)) 11008 return PTR_ERR(vma); 11009 11010 plane_state->ggtt_vma = vma; 11011 } else { 11012 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11013 11014 vma = intel_dpt_pin(intel_fb->dpt_vm); 11015 if (IS_ERR(vma)) 11016 return PTR_ERR(vma); 11017 11018 plane_state->ggtt_vma = vma; 11019 11020 vma = intel_pin_fb_obj_dpt(fb, &plane_state->view.gtt, false, 11021 &plane_state->flags, intel_fb->dpt_vm); 11022 if (IS_ERR(vma)) { 11023 intel_dpt_unpin(intel_fb->dpt_vm); 11024 plane_state->ggtt_vma = NULL; 11025 return PTR_ERR(vma); 11026 } 11027 11028 plane_state->dpt_vma = vma; 11029 11030 WARN_ON(plane_state->ggtt_vma == plane_state->dpt_vma); 11031 } 11032 11033 return 0; 11034 } 11035 11036 void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 11037 { 11038 struct drm_framebuffer *fb = old_plane_state->hw.fb; 11039 struct i915_vma *vma; 11040 11041 if (!intel_fb_uses_dpt(fb)) { 11042 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 11043 if (vma) 11044 intel_unpin_fb_vma(vma, old_plane_state->flags); 11045 } else { 11046 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11047 11048 vma = fetch_and_zero(&old_plane_state->dpt_vma); 11049 if (vma) 11050 intel_unpin_fb_vma(vma, old_plane_state->flags); 11051 11052 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 11053 if (vma) 11054 intel_dpt_unpin(intel_fb->dpt_vm); 11055 } 11056 } 11057 11058 /** 11059 * intel_prepare_plane_fb - Prepare fb for usage on plane 11060 * @_plane: drm plane to prepare for 11061 * @_new_plane_state: the plane state being prepared 11062 * 11063 * Prepares a framebuffer for usage on a display plane. Generally this 11064 * involves pinning the underlying object and updating the frontbuffer tracking 11065 * bits. Some older platforms need special physical address handling for 11066 * cursor planes. 11067 * 11068 * Returns 0 on success, negative error code on failure. 11069 */ 11070 int 11071 intel_prepare_plane_fb(struct drm_plane *_plane, 11072 struct drm_plane_state *_new_plane_state) 11073 { 11074 struct i915_sched_attr attr = { .priority = I915_PRIORITY_DISPLAY }; 11075 struct intel_plane *plane = to_intel_plane(_plane); 11076 struct intel_plane_state *new_plane_state = 11077 to_intel_plane_state(_new_plane_state); 11078 struct intel_atomic_state *state = 11079 to_intel_atomic_state(new_plane_state->uapi.state); 11080 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11081 const struct intel_plane_state *old_plane_state = 11082 intel_atomic_get_old_plane_state(state, plane); 11083 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 11084 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 11085 int ret; 11086 11087 if (old_obj) { 11088 const struct intel_crtc_state *crtc_state = 11089 intel_atomic_get_new_crtc_state(state, 11090 to_intel_crtc(old_plane_state->hw.crtc)); 11091 11092 /* Big Hammer, we also need to ensure that any pending 11093 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 11094 * current scanout is retired before unpinning the old 11095 * framebuffer. Note that we rely on userspace rendering 11096 * into the buffer attached to the pipe they are waiting 11097 * on. If not, userspace generates a GPU hang with IPEHR 11098 * point to the MI_WAIT_FOR_EVENT. 11099 * 11100 * This should only fail upon a hung GPU, in which case we 11101 * can safely continue. 11102 */ 11103 if (intel_crtc_needs_modeset(crtc_state)) { 11104 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11105 old_obj->base.resv, NULL, 11106 false, 0, 11107 GFP_KERNEL); 11108 if (ret < 0) 11109 return ret; 11110 } 11111 } 11112 11113 if (new_plane_state->uapi.fence) { /* explicit fencing */ 11114 i915_gem_fence_wait_priority(new_plane_state->uapi.fence, 11115 &attr); 11116 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 11117 new_plane_state->uapi.fence, 11118 i915_fence_timeout(dev_priv), 11119 GFP_KERNEL); 11120 if (ret < 0) 11121 return ret; 11122 } 11123 11124 if (!obj) 11125 return 0; 11126 11127 11128 ret = intel_plane_pin_fb(new_plane_state); 11129 if (ret) 11130 return ret; 11131 11132 i915_gem_object_wait_priority(obj, 0, &attr); 11133 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 11134 11135 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 11136 struct dma_fence *fence; 11137 11138 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11139 obj->base.resv, NULL, 11140 false, 11141 i915_fence_timeout(dev_priv), 11142 GFP_KERNEL); 11143 if (ret < 0) 11144 goto unpin_fb; 11145 11146 fence = dma_resv_get_excl_unlocked(obj->base.resv); 11147 if (fence) { 11148 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11149 fence); 11150 dma_fence_put(fence); 11151 } 11152 } else { 11153 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11154 new_plane_state->uapi.fence); 11155 } 11156 11157 /* 11158 * We declare pageflips to be interactive and so merit a small bias 11159 * towards upclocking to deliver the frame on time. By only changing 11160 * the RPS thresholds to sample more regularly and aim for higher 11161 * clocks we can hopefully deliver low power workloads (like kodi) 11162 * that are not quite steady state without resorting to forcing 11163 * maximum clocks following a vblank miss (see do_rps_boost()). 11164 */ 11165 if (!state->rps_interactive) { 11166 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 11167 state->rps_interactive = true; 11168 } 11169 11170 return 0; 11171 11172 unpin_fb: 11173 intel_plane_unpin_fb(new_plane_state); 11174 11175 return ret; 11176 } 11177 11178 /** 11179 * intel_cleanup_plane_fb - Cleans up an fb after plane use 11180 * @plane: drm plane to clean up for 11181 * @_old_plane_state: the state from the previous modeset 11182 * 11183 * Cleans up a framebuffer that has just been removed from a plane. 11184 */ 11185 void 11186 intel_cleanup_plane_fb(struct drm_plane *plane, 11187 struct drm_plane_state *_old_plane_state) 11188 { 11189 struct intel_plane_state *old_plane_state = 11190 to_intel_plane_state(_old_plane_state); 11191 struct intel_atomic_state *state = 11192 to_intel_atomic_state(old_plane_state->uapi.state); 11193 struct drm_i915_private *dev_priv = to_i915(plane->dev); 11194 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 11195 11196 if (!obj) 11197 return; 11198 11199 if (state->rps_interactive) { 11200 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 11201 state->rps_interactive = false; 11202 } 11203 11204 /* Should only be called after a successful intel_prepare_plane_fb()! */ 11205 intel_plane_unpin_fb(old_plane_state); 11206 } 11207 11208 /** 11209 * intel_plane_destroy - destroy a plane 11210 * @plane: plane to destroy 11211 * 11212 * Common destruction function for all types of planes (primary, cursor, 11213 * sprite). 11214 */ 11215 void intel_plane_destroy(struct drm_plane *plane) 11216 { 11217 drm_plane_cleanup(plane); 11218 kfree(to_intel_plane(plane)); 11219 } 11220 11221 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 11222 { 11223 struct intel_plane *plane; 11224 11225 for_each_intel_plane(&dev_priv->drm, plane) { 11226 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 11227 plane->pipe); 11228 11229 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 11230 } 11231 } 11232 11233 11234 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 11235 struct drm_file *file) 11236 { 11237 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 11238 struct drm_crtc *drmmode_crtc; 11239 struct intel_crtc *crtc; 11240 11241 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 11242 if (!drmmode_crtc) 11243 return -ENOENT; 11244 11245 crtc = to_intel_crtc(drmmode_crtc); 11246 pipe_from_crtc_id->pipe = crtc->pipe; 11247 11248 return 0; 11249 } 11250 11251 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 11252 { 11253 struct drm_device *dev = encoder->base.dev; 11254 struct intel_encoder *source_encoder; 11255 u32 possible_clones = 0; 11256 11257 for_each_intel_encoder(dev, source_encoder) { 11258 if (encoders_cloneable(encoder, source_encoder)) 11259 possible_clones |= drm_encoder_mask(&source_encoder->base); 11260 } 11261 11262 return possible_clones; 11263 } 11264 11265 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 11266 { 11267 struct drm_device *dev = encoder->base.dev; 11268 struct intel_crtc *crtc; 11269 u32 possible_crtcs = 0; 11270 11271 for_each_intel_crtc(dev, crtc) { 11272 if (encoder->pipe_mask & BIT(crtc->pipe)) 11273 possible_crtcs |= drm_crtc_mask(&crtc->base); 11274 } 11275 11276 return possible_crtcs; 11277 } 11278 11279 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 11280 { 11281 if (!IS_MOBILE(dev_priv)) 11282 return false; 11283 11284 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 11285 return false; 11286 11287 if (IS_IRONLAKE(dev_priv) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 11288 return false; 11289 11290 return true; 11291 } 11292 11293 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 11294 { 11295 if (DISPLAY_VER(dev_priv) >= 9) 11296 return false; 11297 11298 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 11299 return false; 11300 11301 if (HAS_PCH_LPT_H(dev_priv) && 11302 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 11303 return false; 11304 11305 /* DDI E can't be used if DDI A requires 4 lanes */ 11306 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 11307 return false; 11308 11309 if (!dev_priv->vbt.int_crt_support) 11310 return false; 11311 11312 return true; 11313 } 11314 11315 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 11316 { 11317 struct intel_encoder *encoder; 11318 bool dpd_is_edp = false; 11319 11320 intel_pps_unlock_regs_wa(dev_priv); 11321 11322 if (!HAS_DISPLAY(dev_priv)) 11323 return; 11324 11325 if (IS_ALDERLAKE_P(dev_priv)) { 11326 intel_ddi_init(dev_priv, PORT_A); 11327 intel_ddi_init(dev_priv, PORT_B); 11328 intel_ddi_init(dev_priv, PORT_TC1); 11329 intel_ddi_init(dev_priv, PORT_TC2); 11330 intel_ddi_init(dev_priv, PORT_TC3); 11331 intel_ddi_init(dev_priv, PORT_TC4); 11332 } else if (IS_ALDERLAKE_S(dev_priv)) { 11333 intel_ddi_init(dev_priv, PORT_A); 11334 intel_ddi_init(dev_priv, PORT_TC1); 11335 intel_ddi_init(dev_priv, PORT_TC2); 11336 intel_ddi_init(dev_priv, PORT_TC3); 11337 intel_ddi_init(dev_priv, PORT_TC4); 11338 } else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) { 11339 intel_ddi_init(dev_priv, PORT_A); 11340 intel_ddi_init(dev_priv, PORT_B); 11341 intel_ddi_init(dev_priv, PORT_TC1); 11342 intel_ddi_init(dev_priv, PORT_TC2); 11343 } else if (DISPLAY_VER(dev_priv) >= 12) { 11344 intel_ddi_init(dev_priv, PORT_A); 11345 intel_ddi_init(dev_priv, PORT_B); 11346 intel_ddi_init(dev_priv, PORT_TC1); 11347 intel_ddi_init(dev_priv, PORT_TC2); 11348 intel_ddi_init(dev_priv, PORT_TC3); 11349 intel_ddi_init(dev_priv, PORT_TC4); 11350 intel_ddi_init(dev_priv, PORT_TC5); 11351 intel_ddi_init(dev_priv, PORT_TC6); 11352 icl_dsi_init(dev_priv); 11353 } else if (IS_JSL_EHL(dev_priv)) { 11354 intel_ddi_init(dev_priv, PORT_A); 11355 intel_ddi_init(dev_priv, PORT_B); 11356 intel_ddi_init(dev_priv, PORT_C); 11357 intel_ddi_init(dev_priv, PORT_D); 11358 icl_dsi_init(dev_priv); 11359 } else if (DISPLAY_VER(dev_priv) == 11) { 11360 intel_ddi_init(dev_priv, PORT_A); 11361 intel_ddi_init(dev_priv, PORT_B); 11362 intel_ddi_init(dev_priv, PORT_C); 11363 intel_ddi_init(dev_priv, PORT_D); 11364 intel_ddi_init(dev_priv, PORT_E); 11365 intel_ddi_init(dev_priv, PORT_F); 11366 icl_dsi_init(dev_priv); 11367 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 11368 intel_ddi_init(dev_priv, PORT_A); 11369 intel_ddi_init(dev_priv, PORT_B); 11370 intel_ddi_init(dev_priv, PORT_C); 11371 vlv_dsi_init(dev_priv); 11372 } else if (DISPLAY_VER(dev_priv) >= 9) { 11373 intel_ddi_init(dev_priv, PORT_A); 11374 intel_ddi_init(dev_priv, PORT_B); 11375 intel_ddi_init(dev_priv, PORT_C); 11376 intel_ddi_init(dev_priv, PORT_D); 11377 intel_ddi_init(dev_priv, PORT_E); 11378 intel_ddi_init(dev_priv, PORT_F); 11379 } else if (HAS_DDI(dev_priv)) { 11380 u32 found; 11381 11382 if (intel_ddi_crt_present(dev_priv)) 11383 intel_crt_init(dev_priv); 11384 11385 /* Haswell uses DDI functions to detect digital outputs. */ 11386 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 11387 if (found) 11388 intel_ddi_init(dev_priv, PORT_A); 11389 11390 found = intel_de_read(dev_priv, SFUSE_STRAP); 11391 if (found & SFUSE_STRAP_DDIB_DETECTED) 11392 intel_ddi_init(dev_priv, PORT_B); 11393 if (found & SFUSE_STRAP_DDIC_DETECTED) 11394 intel_ddi_init(dev_priv, PORT_C); 11395 if (found & SFUSE_STRAP_DDID_DETECTED) 11396 intel_ddi_init(dev_priv, PORT_D); 11397 if (found & SFUSE_STRAP_DDIF_DETECTED) 11398 intel_ddi_init(dev_priv, PORT_F); 11399 } else if (HAS_PCH_SPLIT(dev_priv)) { 11400 int found; 11401 11402 /* 11403 * intel_edp_init_connector() depends on this completing first, 11404 * to prevent the registration of both eDP and LVDS and the 11405 * incorrect sharing of the PPS. 11406 */ 11407 intel_lvds_init(dev_priv); 11408 intel_crt_init(dev_priv); 11409 11410 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 11411 11412 if (ilk_has_edp_a(dev_priv)) 11413 g4x_dp_init(dev_priv, DP_A, PORT_A); 11414 11415 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 11416 /* PCH SDVOB multiplex with HDMIB */ 11417 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 11418 if (!found) 11419 g4x_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 11420 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 11421 g4x_dp_init(dev_priv, PCH_DP_B, PORT_B); 11422 } 11423 11424 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 11425 g4x_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 11426 11427 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 11428 g4x_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 11429 11430 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 11431 g4x_dp_init(dev_priv, PCH_DP_C, PORT_C); 11432 11433 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 11434 g4x_dp_init(dev_priv, PCH_DP_D, PORT_D); 11435 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 11436 bool has_edp, has_port; 11437 11438 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 11439 intel_crt_init(dev_priv); 11440 11441 /* 11442 * The DP_DETECTED bit is the latched state of the DDC 11443 * SDA pin at boot. However since eDP doesn't require DDC 11444 * (no way to plug in a DP->HDMI dongle) the DDC pins for 11445 * eDP ports may have been muxed to an alternate function. 11446 * Thus we can't rely on the DP_DETECTED bit alone to detect 11447 * eDP ports. Consult the VBT as well as DP_DETECTED to 11448 * detect eDP ports. 11449 * 11450 * Sadly the straps seem to be missing sometimes even for HDMI 11451 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 11452 * and VBT for the presence of the port. Additionally we can't 11453 * trust the port type the VBT declares as we've seen at least 11454 * HDMI ports that the VBT claim are DP or eDP. 11455 */ 11456 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 11457 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 11458 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 11459 has_edp &= g4x_dp_init(dev_priv, VLV_DP_B, PORT_B); 11460 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 11461 g4x_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 11462 11463 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 11464 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 11465 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 11466 has_edp &= g4x_dp_init(dev_priv, VLV_DP_C, PORT_C); 11467 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 11468 g4x_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 11469 11470 if (IS_CHERRYVIEW(dev_priv)) { 11471 /* 11472 * eDP not supported on port D, 11473 * so no need to worry about it 11474 */ 11475 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 11476 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 11477 g4x_dp_init(dev_priv, CHV_DP_D, PORT_D); 11478 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 11479 g4x_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 11480 } 11481 11482 vlv_dsi_init(dev_priv); 11483 } else if (IS_PINEVIEW(dev_priv)) { 11484 intel_lvds_init(dev_priv); 11485 intel_crt_init(dev_priv); 11486 } else if (IS_DISPLAY_VER(dev_priv, 3, 4)) { 11487 bool found = false; 11488 11489 if (IS_MOBILE(dev_priv)) 11490 intel_lvds_init(dev_priv); 11491 11492 intel_crt_init(dev_priv); 11493 11494 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11495 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 11496 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 11497 if (!found && IS_G4X(dev_priv)) { 11498 drm_dbg_kms(&dev_priv->drm, 11499 "probing HDMI on SDVOB\n"); 11500 g4x_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 11501 } 11502 11503 if (!found && IS_G4X(dev_priv)) 11504 g4x_dp_init(dev_priv, DP_B, PORT_B); 11505 } 11506 11507 /* Before G4X SDVOC doesn't have its own detect register */ 11508 11509 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11510 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 11511 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 11512 } 11513 11514 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 11515 11516 if (IS_G4X(dev_priv)) { 11517 drm_dbg_kms(&dev_priv->drm, 11518 "probing HDMI on SDVOC\n"); 11519 g4x_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 11520 } 11521 if (IS_G4X(dev_priv)) 11522 g4x_dp_init(dev_priv, DP_C, PORT_C); 11523 } 11524 11525 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 11526 g4x_dp_init(dev_priv, DP_D, PORT_D); 11527 11528 if (SUPPORTS_TV(dev_priv)) 11529 intel_tv_init(dev_priv); 11530 } else if (DISPLAY_VER(dev_priv) == 2) { 11531 if (IS_I85X(dev_priv)) 11532 intel_lvds_init(dev_priv); 11533 11534 intel_crt_init(dev_priv); 11535 intel_dvo_init(dev_priv); 11536 } 11537 11538 for_each_intel_encoder(&dev_priv->drm, encoder) { 11539 encoder->base.possible_crtcs = 11540 intel_encoder_possible_crtcs(encoder); 11541 encoder->base.possible_clones = 11542 intel_encoder_possible_clones(encoder); 11543 } 11544 11545 intel_init_pch_refclk(dev_priv); 11546 11547 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 11548 } 11549 11550 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 11551 { 11552 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11553 11554 drm_framebuffer_cleanup(fb); 11555 11556 if (intel_fb_uses_dpt(fb)) 11557 intel_dpt_destroy(intel_fb->dpt_vm); 11558 11559 intel_frontbuffer_put(intel_fb->frontbuffer); 11560 11561 kfree(intel_fb); 11562 } 11563 11564 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 11565 struct drm_file *file, 11566 unsigned int *handle) 11567 { 11568 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11569 struct drm_i915_private *i915 = to_i915(obj->base.dev); 11570 11571 if (i915_gem_object_is_userptr(obj)) { 11572 drm_dbg(&i915->drm, 11573 "attempting to use a userptr for a framebuffer, denied\n"); 11574 return -EINVAL; 11575 } 11576 11577 return drm_gem_handle_create(file, &obj->base, handle); 11578 } 11579 11580 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 11581 struct drm_file *file, 11582 unsigned flags, unsigned color, 11583 struct drm_clip_rect *clips, 11584 unsigned num_clips) 11585 { 11586 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11587 11588 i915_gem_object_flush_if_display(obj); 11589 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 11590 11591 return 0; 11592 } 11593 11594 static const struct drm_framebuffer_funcs intel_fb_funcs = { 11595 .destroy = intel_user_framebuffer_destroy, 11596 .create_handle = intel_user_framebuffer_create_handle, 11597 .dirty = intel_user_framebuffer_dirty, 11598 }; 11599 11600 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 11601 struct drm_i915_gem_object *obj, 11602 struct drm_mode_fb_cmd2 *mode_cmd) 11603 { 11604 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 11605 struct drm_framebuffer *fb = &intel_fb->base; 11606 u32 max_stride; 11607 unsigned int tiling, stride; 11608 int ret = -EINVAL; 11609 int i; 11610 11611 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 11612 if (!intel_fb->frontbuffer) 11613 return -ENOMEM; 11614 11615 i915_gem_object_lock(obj, NULL); 11616 tiling = i915_gem_object_get_tiling(obj); 11617 stride = i915_gem_object_get_stride(obj); 11618 i915_gem_object_unlock(obj); 11619 11620 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 11621 /* 11622 * If there's a fence, enforce that 11623 * the fb modifier and tiling mode match. 11624 */ 11625 if (tiling != I915_TILING_NONE && 11626 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11627 drm_dbg_kms(&dev_priv->drm, 11628 "tiling_mode doesn't match fb modifier\n"); 11629 goto err; 11630 } 11631 } else { 11632 if (tiling == I915_TILING_X) { 11633 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 11634 } else if (tiling == I915_TILING_Y) { 11635 drm_dbg_kms(&dev_priv->drm, 11636 "No Y tiling for legacy addfb\n"); 11637 goto err; 11638 } 11639 } 11640 11641 if (!drm_any_plane_has_format(&dev_priv->drm, 11642 mode_cmd->pixel_format, 11643 mode_cmd->modifier[0])) { 11644 drm_dbg_kms(&dev_priv->drm, 11645 "unsupported pixel format %p4cc / modifier 0x%llx\n", 11646 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 11647 goto err; 11648 } 11649 11650 /* 11651 * gen2/3 display engine uses the fence if present, 11652 * so the tiling mode must match the fb modifier exactly. 11653 */ 11654 if (DISPLAY_VER(dev_priv) < 4 && 11655 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11656 drm_dbg_kms(&dev_priv->drm, 11657 "tiling_mode must match fb modifier exactly on gen2/3\n"); 11658 goto err; 11659 } 11660 11661 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 11662 mode_cmd->modifier[0]); 11663 if (mode_cmd->pitches[0] > max_stride) { 11664 drm_dbg_kms(&dev_priv->drm, 11665 "%s pitch (%u) must be at most %d\n", 11666 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 11667 "tiled" : "linear", 11668 mode_cmd->pitches[0], max_stride); 11669 goto err; 11670 } 11671 11672 /* 11673 * If there's a fence, enforce that 11674 * the fb pitch and fence stride match. 11675 */ 11676 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 11677 drm_dbg_kms(&dev_priv->drm, 11678 "pitch (%d) must match tiling stride (%d)\n", 11679 mode_cmd->pitches[0], stride); 11680 goto err; 11681 } 11682 11683 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 11684 if (mode_cmd->offsets[0] != 0) { 11685 drm_dbg_kms(&dev_priv->drm, 11686 "plane 0 offset (0x%08x) must be 0\n", 11687 mode_cmd->offsets[0]); 11688 goto err; 11689 } 11690 11691 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 11692 11693 for (i = 0; i < fb->format->num_planes; i++) { 11694 u32 stride_alignment; 11695 11696 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 11697 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 11698 i); 11699 goto err; 11700 } 11701 11702 stride_alignment = intel_fb_stride_alignment(fb, i); 11703 if (fb->pitches[i] & (stride_alignment - 1)) { 11704 drm_dbg_kms(&dev_priv->drm, 11705 "plane %d pitch (%d) must be at least %u byte aligned\n", 11706 i, fb->pitches[i], stride_alignment); 11707 goto err; 11708 } 11709 11710 if (is_gen12_ccs_plane(fb, i) && !is_gen12_ccs_cc_plane(fb, i)) { 11711 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 11712 11713 if (fb->pitches[i] != ccs_aux_stride) { 11714 drm_dbg_kms(&dev_priv->drm, 11715 "ccs aux plane %d pitch (%d) must be %d\n", 11716 i, 11717 fb->pitches[i], ccs_aux_stride); 11718 goto err; 11719 } 11720 } 11721 11722 /* TODO: Add POT stride remapping support for CCS formats as well. */ 11723 if (IS_ALDERLAKE_P(dev_priv) && 11724 mode_cmd->modifier[i] != DRM_FORMAT_MOD_LINEAR && 11725 !intel_fb_needs_pot_stride_remap(intel_fb) && 11726 !is_power_of_2(mode_cmd->pitches[i])) { 11727 drm_dbg_kms(&dev_priv->drm, 11728 "plane %d pitch (%d) must be power of two for tiled buffers\n", 11729 i, mode_cmd->pitches[i]); 11730 goto err; 11731 } 11732 11733 fb->obj[i] = &obj->base; 11734 } 11735 11736 ret = intel_fill_fb_info(dev_priv, intel_fb); 11737 if (ret) 11738 goto err; 11739 11740 if (intel_fb_uses_dpt(fb)) { 11741 struct i915_address_space *vm; 11742 11743 vm = intel_dpt_create(intel_fb); 11744 if (IS_ERR(vm)) { 11745 ret = PTR_ERR(vm); 11746 goto err; 11747 } 11748 11749 intel_fb->dpt_vm = vm; 11750 } 11751 11752 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 11753 if (ret) { 11754 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 11755 goto err; 11756 } 11757 11758 return 0; 11759 11760 err: 11761 intel_frontbuffer_put(intel_fb->frontbuffer); 11762 return ret; 11763 } 11764 11765 static struct drm_framebuffer * 11766 intel_user_framebuffer_create(struct drm_device *dev, 11767 struct drm_file *filp, 11768 const struct drm_mode_fb_cmd2 *user_mode_cmd) 11769 { 11770 struct drm_framebuffer *fb; 11771 struct drm_i915_gem_object *obj; 11772 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 11773 struct drm_i915_private *i915; 11774 11775 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 11776 if (!obj) 11777 return ERR_PTR(-ENOENT); 11778 11779 /* object is backed with LMEM for discrete */ 11780 i915 = to_i915(obj->base.dev); 11781 if (HAS_LMEM(i915) && !i915_gem_object_validates_to_lmem(obj)) { 11782 /* object is "remote", not in local memory */ 11783 i915_gem_object_put(obj); 11784 return ERR_PTR(-EREMOTE); 11785 } 11786 11787 fb = intel_framebuffer_create(obj, &mode_cmd); 11788 i915_gem_object_put(obj); 11789 11790 return fb; 11791 } 11792 11793 static enum drm_mode_status 11794 intel_mode_valid(struct drm_device *dev, 11795 const struct drm_display_mode *mode) 11796 { 11797 struct drm_i915_private *dev_priv = to_i915(dev); 11798 int hdisplay_max, htotal_max; 11799 int vdisplay_max, vtotal_max; 11800 11801 /* 11802 * Can't reject DBLSCAN here because Xorg ddxen can add piles 11803 * of DBLSCAN modes to the output's mode list when they detect 11804 * the scaling mode property on the connector. And they don't 11805 * ask the kernel to validate those modes in any way until 11806 * modeset time at which point the client gets a protocol error. 11807 * So in order to not upset those clients we silently ignore the 11808 * DBLSCAN flag on such connectors. For other connectors we will 11809 * reject modes with the DBLSCAN flag in encoder->compute_config(). 11810 * And we always reject DBLSCAN modes in connector->mode_valid() 11811 * as we never want such modes on the connector's mode list. 11812 */ 11813 11814 if (mode->vscan > 1) 11815 return MODE_NO_VSCAN; 11816 11817 if (mode->flags & DRM_MODE_FLAG_HSKEW) 11818 return MODE_H_ILLEGAL; 11819 11820 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 11821 DRM_MODE_FLAG_NCSYNC | 11822 DRM_MODE_FLAG_PCSYNC)) 11823 return MODE_HSYNC; 11824 11825 if (mode->flags & (DRM_MODE_FLAG_BCAST | 11826 DRM_MODE_FLAG_PIXMUX | 11827 DRM_MODE_FLAG_CLKDIV2)) 11828 return MODE_BAD; 11829 11830 /* Transcoder timing limits */ 11831 if (DISPLAY_VER(dev_priv) >= 11) { 11832 hdisplay_max = 16384; 11833 vdisplay_max = 8192; 11834 htotal_max = 16384; 11835 vtotal_max = 8192; 11836 } else if (DISPLAY_VER(dev_priv) >= 9 || 11837 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 11838 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 11839 vdisplay_max = 4096; 11840 htotal_max = 8192; 11841 vtotal_max = 8192; 11842 } else if (DISPLAY_VER(dev_priv) >= 3) { 11843 hdisplay_max = 4096; 11844 vdisplay_max = 4096; 11845 htotal_max = 8192; 11846 vtotal_max = 8192; 11847 } else { 11848 hdisplay_max = 2048; 11849 vdisplay_max = 2048; 11850 htotal_max = 4096; 11851 vtotal_max = 4096; 11852 } 11853 11854 if (mode->hdisplay > hdisplay_max || 11855 mode->hsync_start > htotal_max || 11856 mode->hsync_end > htotal_max || 11857 mode->htotal > htotal_max) 11858 return MODE_H_ILLEGAL; 11859 11860 if (mode->vdisplay > vdisplay_max || 11861 mode->vsync_start > vtotal_max || 11862 mode->vsync_end > vtotal_max || 11863 mode->vtotal > vtotal_max) 11864 return MODE_V_ILLEGAL; 11865 11866 if (DISPLAY_VER(dev_priv) >= 5) { 11867 if (mode->hdisplay < 64 || 11868 mode->htotal - mode->hdisplay < 32) 11869 return MODE_H_ILLEGAL; 11870 11871 if (mode->vtotal - mode->vdisplay < 5) 11872 return MODE_V_ILLEGAL; 11873 } else { 11874 if (mode->htotal - mode->hdisplay < 32) 11875 return MODE_H_ILLEGAL; 11876 11877 if (mode->vtotal - mode->vdisplay < 3) 11878 return MODE_V_ILLEGAL; 11879 } 11880 11881 return MODE_OK; 11882 } 11883 11884 enum drm_mode_status 11885 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 11886 const struct drm_display_mode *mode, 11887 bool bigjoiner) 11888 { 11889 int plane_width_max, plane_height_max; 11890 11891 /* 11892 * intel_mode_valid() should be 11893 * sufficient on older platforms. 11894 */ 11895 if (DISPLAY_VER(dev_priv) < 9) 11896 return MODE_OK; 11897 11898 /* 11899 * Most people will probably want a fullscreen 11900 * plane so let's not advertize modes that are 11901 * too big for that. 11902 */ 11903 if (DISPLAY_VER(dev_priv) >= 11) { 11904 plane_width_max = 5120 << bigjoiner; 11905 plane_height_max = 4320; 11906 } else { 11907 plane_width_max = 5120; 11908 plane_height_max = 4096; 11909 } 11910 11911 if (mode->hdisplay > plane_width_max) 11912 return MODE_H_ILLEGAL; 11913 11914 if (mode->vdisplay > plane_height_max) 11915 return MODE_V_ILLEGAL; 11916 11917 return MODE_OK; 11918 } 11919 11920 static const struct drm_mode_config_funcs intel_mode_funcs = { 11921 .fb_create = intel_user_framebuffer_create, 11922 .get_format_info = intel_get_format_info, 11923 .output_poll_changed = intel_fbdev_output_poll_changed, 11924 .mode_valid = intel_mode_valid, 11925 .atomic_check = intel_atomic_check, 11926 .atomic_commit = intel_atomic_commit, 11927 .atomic_state_alloc = intel_atomic_state_alloc, 11928 .atomic_state_clear = intel_atomic_state_clear, 11929 .atomic_state_free = intel_atomic_state_free, 11930 }; 11931 11932 /** 11933 * intel_init_display_hooks - initialize the display modesetting hooks 11934 * @dev_priv: device private 11935 */ 11936 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 11937 { 11938 if (!HAS_DISPLAY(dev_priv)) 11939 return; 11940 11941 intel_init_cdclk_hooks(dev_priv); 11942 intel_init_audio_hooks(dev_priv); 11943 11944 intel_dpll_init_clock_hook(dev_priv); 11945 11946 if (DISPLAY_VER(dev_priv) >= 9) { 11947 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 11948 dev_priv->display.crtc_enable = hsw_crtc_enable; 11949 dev_priv->display.crtc_disable = hsw_crtc_disable; 11950 } else if (HAS_DDI(dev_priv)) { 11951 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 11952 dev_priv->display.crtc_enable = hsw_crtc_enable; 11953 dev_priv->display.crtc_disable = hsw_crtc_disable; 11954 } else if (HAS_PCH_SPLIT(dev_priv)) { 11955 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 11956 dev_priv->display.crtc_enable = ilk_crtc_enable; 11957 dev_priv->display.crtc_disable = ilk_crtc_disable; 11958 } else if (IS_CHERRYVIEW(dev_priv) || 11959 IS_VALLEYVIEW(dev_priv)) { 11960 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 11961 dev_priv->display.crtc_enable = valleyview_crtc_enable; 11962 dev_priv->display.crtc_disable = i9xx_crtc_disable; 11963 } else { 11964 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 11965 dev_priv->display.crtc_enable = i9xx_crtc_enable; 11966 dev_priv->display.crtc_disable = i9xx_crtc_disable; 11967 } 11968 11969 intel_fdi_init_hook(dev_priv); 11970 11971 if (DISPLAY_VER(dev_priv) >= 9) { 11972 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 11973 dev_priv->display.get_initial_plane_config = skl_get_initial_plane_config; 11974 } else { 11975 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 11976 dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; 11977 } 11978 11979 } 11980 11981 void intel_modeset_init_hw(struct drm_i915_private *i915) 11982 { 11983 struct intel_cdclk_state *cdclk_state; 11984 11985 if (!HAS_DISPLAY(i915)) 11986 return; 11987 11988 cdclk_state = to_intel_cdclk_state(i915->cdclk.obj.state); 11989 11990 intel_update_cdclk(i915); 11991 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 11992 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 11993 } 11994 11995 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 11996 { 11997 struct drm_plane *plane; 11998 struct intel_crtc *crtc; 11999 12000 for_each_intel_crtc(state->dev, crtc) { 12001 struct intel_crtc_state *crtc_state; 12002 12003 crtc_state = intel_atomic_get_crtc_state(state, crtc); 12004 if (IS_ERR(crtc_state)) 12005 return PTR_ERR(crtc_state); 12006 12007 if (crtc_state->hw.active) { 12008 /* 12009 * Preserve the inherited flag to avoid 12010 * taking the full modeset path. 12011 */ 12012 crtc_state->inherited = true; 12013 } 12014 } 12015 12016 drm_for_each_plane(plane, state->dev) { 12017 struct drm_plane_state *plane_state; 12018 12019 plane_state = drm_atomic_get_plane_state(state, plane); 12020 if (IS_ERR(plane_state)) 12021 return PTR_ERR(plane_state); 12022 } 12023 12024 return 0; 12025 } 12026 12027 /* 12028 * Calculate what we think the watermarks should be for the state we've read 12029 * out of the hardware and then immediately program those watermarks so that 12030 * we ensure the hardware settings match our internal state. 12031 * 12032 * We can calculate what we think WM's should be by creating a duplicate of the 12033 * current state (which was constructed during hardware readout) and running it 12034 * through the atomic check code to calculate new watermark values in the 12035 * state object. 12036 */ 12037 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 12038 { 12039 struct drm_atomic_state *state; 12040 struct intel_atomic_state *intel_state; 12041 struct intel_crtc *crtc; 12042 struct intel_crtc_state *crtc_state; 12043 struct drm_modeset_acquire_ctx ctx; 12044 int ret; 12045 int i; 12046 12047 /* Only supported on platforms that use atomic watermark design */ 12048 if (!dev_priv->display.optimize_watermarks) 12049 return; 12050 12051 state = drm_atomic_state_alloc(&dev_priv->drm); 12052 if (drm_WARN_ON(&dev_priv->drm, !state)) 12053 return; 12054 12055 intel_state = to_intel_atomic_state(state); 12056 12057 drm_modeset_acquire_init(&ctx, 0); 12058 12059 retry: 12060 state->acquire_ctx = &ctx; 12061 12062 /* 12063 * Hardware readout is the only time we don't want to calculate 12064 * intermediate watermarks (since we don't trust the current 12065 * watermarks). 12066 */ 12067 if (!HAS_GMCH(dev_priv)) 12068 intel_state->skip_intermediate_wm = true; 12069 12070 ret = sanitize_watermarks_add_affected(state); 12071 if (ret) 12072 goto fail; 12073 12074 ret = intel_atomic_check(&dev_priv->drm, state); 12075 if (ret) 12076 goto fail; 12077 12078 /* Write calculated watermark values back */ 12079 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 12080 crtc_state->wm.need_postvbl_update = true; 12081 dev_priv->display.optimize_watermarks(intel_state, crtc); 12082 12083 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 12084 } 12085 12086 fail: 12087 if (ret == -EDEADLK) { 12088 drm_atomic_state_clear(state); 12089 drm_modeset_backoff(&ctx); 12090 goto retry; 12091 } 12092 12093 /* 12094 * If we fail here, it means that the hardware appears to be 12095 * programmed in a way that shouldn't be possible, given our 12096 * understanding of watermark requirements. This might mean a 12097 * mistake in the hardware readout code or a mistake in the 12098 * watermark calculations for a given platform. Raise a WARN 12099 * so that this is noticeable. 12100 * 12101 * If this actually happens, we'll have to just leave the 12102 * BIOS-programmed watermarks untouched and hope for the best. 12103 */ 12104 drm_WARN(&dev_priv->drm, ret, 12105 "Could not determine valid watermarks for inherited state\n"); 12106 12107 drm_atomic_state_put(state); 12108 12109 drm_modeset_drop_locks(&ctx); 12110 drm_modeset_acquire_fini(&ctx); 12111 } 12112 12113 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 12114 { 12115 if (IS_IRONLAKE(dev_priv)) { 12116 u32 fdi_pll_clk = 12117 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 12118 12119 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 12120 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) { 12121 dev_priv->fdi_pll_freq = 270000; 12122 } else { 12123 return; 12124 } 12125 12126 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 12127 } 12128 12129 static int intel_initial_commit(struct drm_device *dev) 12130 { 12131 struct drm_atomic_state *state = NULL; 12132 struct drm_modeset_acquire_ctx ctx; 12133 struct intel_crtc *crtc; 12134 int ret = 0; 12135 12136 state = drm_atomic_state_alloc(dev); 12137 if (!state) 12138 return -ENOMEM; 12139 12140 drm_modeset_acquire_init(&ctx, 0); 12141 12142 retry: 12143 state->acquire_ctx = &ctx; 12144 12145 for_each_intel_crtc(dev, crtc) { 12146 struct intel_crtc_state *crtc_state = 12147 intel_atomic_get_crtc_state(state, crtc); 12148 12149 if (IS_ERR(crtc_state)) { 12150 ret = PTR_ERR(crtc_state); 12151 goto out; 12152 } 12153 12154 if (crtc_state->hw.active) { 12155 struct intel_encoder *encoder; 12156 12157 /* 12158 * We've not yet detected sink capabilities 12159 * (audio,infoframes,etc.) and thus we don't want to 12160 * force a full state recomputation yet. We want that to 12161 * happen only for the first real commit from userspace. 12162 * So preserve the inherited flag for the time being. 12163 */ 12164 crtc_state->inherited = true; 12165 12166 ret = drm_atomic_add_affected_planes(state, &crtc->base); 12167 if (ret) 12168 goto out; 12169 12170 /* 12171 * FIXME hack to force a LUT update to avoid the 12172 * plane update forcing the pipe gamma on without 12173 * having a proper LUT loaded. Remove once we 12174 * have readout for pipe gamma enable. 12175 */ 12176 crtc_state->uapi.color_mgmt_changed = true; 12177 12178 for_each_intel_encoder_mask(dev, encoder, 12179 crtc_state->uapi.encoder_mask) { 12180 if (encoder->initial_fastset_check && 12181 !encoder->initial_fastset_check(encoder, crtc_state)) { 12182 ret = drm_atomic_add_affected_connectors(state, 12183 &crtc->base); 12184 if (ret) 12185 goto out; 12186 } 12187 } 12188 } 12189 } 12190 12191 ret = drm_atomic_commit(state); 12192 12193 out: 12194 if (ret == -EDEADLK) { 12195 drm_atomic_state_clear(state); 12196 drm_modeset_backoff(&ctx); 12197 goto retry; 12198 } 12199 12200 drm_atomic_state_put(state); 12201 12202 drm_modeset_drop_locks(&ctx); 12203 drm_modeset_acquire_fini(&ctx); 12204 12205 return ret; 12206 } 12207 12208 static void intel_mode_config_init(struct drm_i915_private *i915) 12209 { 12210 struct drm_mode_config *mode_config = &i915->drm.mode_config; 12211 12212 drm_mode_config_init(&i915->drm); 12213 INIT_LIST_HEAD(&i915->global_obj_list); 12214 12215 mode_config->min_width = 0; 12216 mode_config->min_height = 0; 12217 12218 mode_config->preferred_depth = 24; 12219 mode_config->prefer_shadow = 1; 12220 12221 mode_config->funcs = &intel_mode_funcs; 12222 12223 mode_config->async_page_flip = has_async_flips(i915); 12224 12225 /* 12226 * Maximum framebuffer dimensions, chosen to match 12227 * the maximum render engine surface size on gen4+. 12228 */ 12229 if (DISPLAY_VER(i915) >= 7) { 12230 mode_config->max_width = 16384; 12231 mode_config->max_height = 16384; 12232 } else if (DISPLAY_VER(i915) >= 4) { 12233 mode_config->max_width = 8192; 12234 mode_config->max_height = 8192; 12235 } else if (DISPLAY_VER(i915) == 3) { 12236 mode_config->max_width = 4096; 12237 mode_config->max_height = 4096; 12238 } else { 12239 mode_config->max_width = 2048; 12240 mode_config->max_height = 2048; 12241 } 12242 12243 if (IS_I845G(i915) || IS_I865G(i915)) { 12244 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 12245 mode_config->cursor_height = 1023; 12246 } else if (IS_I830(i915) || IS_I85X(i915) || 12247 IS_I915G(i915) || IS_I915GM(i915)) { 12248 mode_config->cursor_width = 64; 12249 mode_config->cursor_height = 64; 12250 } else { 12251 mode_config->cursor_width = 256; 12252 mode_config->cursor_height = 256; 12253 } 12254 } 12255 12256 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 12257 { 12258 intel_atomic_global_obj_cleanup(i915); 12259 drm_mode_config_cleanup(&i915->drm); 12260 } 12261 12262 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 12263 { 12264 if (plane_config->fb) { 12265 struct drm_framebuffer *fb = &plane_config->fb->base; 12266 12267 /* We may only have the stub and not a full framebuffer */ 12268 if (drm_framebuffer_read_refcount(fb)) 12269 drm_framebuffer_put(fb); 12270 else 12271 kfree(fb); 12272 } 12273 12274 if (plane_config->vma) 12275 i915_vma_put(plane_config->vma); 12276 } 12277 12278 /* part #1: call before irq install */ 12279 int intel_modeset_init_noirq(struct drm_i915_private *i915) 12280 { 12281 int ret; 12282 12283 if (i915_inject_probe_failure(i915)) 12284 return -ENODEV; 12285 12286 if (HAS_DISPLAY(i915)) { 12287 ret = drm_vblank_init(&i915->drm, 12288 INTEL_NUM_PIPES(i915)); 12289 if (ret) 12290 return ret; 12291 } 12292 12293 intel_bios_init(i915); 12294 12295 ret = intel_vga_register(i915); 12296 if (ret) 12297 goto cleanup_bios; 12298 12299 /* FIXME: completely on the wrong abstraction layer */ 12300 intel_power_domains_init_hw(i915, false); 12301 12302 if (!HAS_DISPLAY(i915)) 12303 return 0; 12304 12305 intel_dmc_ucode_init(i915); 12306 12307 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 12308 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 12309 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 12310 12311 i915->framestart_delay = 1; /* 1-4 */ 12312 12313 i915->window2_delay = 0; /* No DSB so no window2 delay */ 12314 12315 intel_mode_config_init(i915); 12316 12317 ret = intel_cdclk_init(i915); 12318 if (ret) 12319 goto cleanup_vga_client_pw_domain_dmc; 12320 12321 ret = intel_dbuf_init(i915); 12322 if (ret) 12323 goto cleanup_vga_client_pw_domain_dmc; 12324 12325 ret = intel_bw_init(i915); 12326 if (ret) 12327 goto cleanup_vga_client_pw_domain_dmc; 12328 12329 init_llist_head(&i915->atomic_helper.free_list); 12330 INIT_WORK(&i915->atomic_helper.free_work, 12331 intel_atomic_helper_free_state_worker); 12332 12333 intel_init_quirks(i915); 12334 12335 intel_fbc_init(i915); 12336 12337 return 0; 12338 12339 cleanup_vga_client_pw_domain_dmc: 12340 intel_dmc_ucode_fini(i915); 12341 intel_power_domains_driver_remove(i915); 12342 intel_vga_unregister(i915); 12343 cleanup_bios: 12344 intel_bios_driver_remove(i915); 12345 12346 return ret; 12347 } 12348 12349 /* part #2: call after irq install, but before gem init */ 12350 int intel_modeset_init_nogem(struct drm_i915_private *i915) 12351 { 12352 struct drm_device *dev = &i915->drm; 12353 enum pipe pipe; 12354 struct intel_crtc *crtc; 12355 int ret; 12356 12357 if (!HAS_DISPLAY(i915)) 12358 return 0; 12359 12360 intel_init_pm(i915); 12361 12362 intel_panel_sanitize_ssc(i915); 12363 12364 intel_pps_setup(i915); 12365 12366 intel_gmbus_setup(i915); 12367 12368 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 12369 INTEL_NUM_PIPES(i915), 12370 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 12371 12372 for_each_pipe(i915, pipe) { 12373 ret = intel_crtc_init(i915, pipe); 12374 if (ret) { 12375 intel_mode_config_cleanup(i915); 12376 return ret; 12377 } 12378 } 12379 12380 intel_plane_possible_crtcs_init(i915); 12381 intel_shared_dpll_init(dev); 12382 intel_update_fdi_pll_freq(i915); 12383 12384 intel_update_czclk(i915); 12385 intel_modeset_init_hw(i915); 12386 intel_dpll_update_ref_clks(i915); 12387 12388 intel_hdcp_component_init(i915); 12389 12390 if (i915->max_cdclk_freq == 0) 12391 intel_update_max_cdclk(i915); 12392 12393 /* 12394 * If the platform has HTI, we need to find out whether it has reserved 12395 * any display resources before we create our display outputs. 12396 */ 12397 if (INTEL_INFO(i915)->display.has_hti) 12398 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 12399 12400 /* Just disable it once at startup */ 12401 intel_vga_disable(i915); 12402 intel_setup_outputs(i915); 12403 12404 drm_modeset_lock_all(dev); 12405 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 12406 drm_modeset_unlock_all(dev); 12407 12408 for_each_intel_crtc(dev, crtc) { 12409 struct intel_initial_plane_config plane_config = {}; 12410 12411 if (!to_intel_crtc_state(crtc->base.state)->uapi.active) 12412 continue; 12413 12414 /* 12415 * Note that reserving the BIOS fb up front prevents us 12416 * from stuffing other stolen allocations like the ring 12417 * on top. This prevents some ugliness at boot time, and 12418 * can even allow for smooth boot transitions if the BIOS 12419 * fb is large enough for the active pipe configuration. 12420 */ 12421 i915->display.get_initial_plane_config(crtc, &plane_config); 12422 12423 /* 12424 * If the fb is shared between multiple heads, we'll 12425 * just get the first one. 12426 */ 12427 intel_find_initial_plane_obj(crtc, &plane_config); 12428 12429 plane_config_fini(&plane_config); 12430 } 12431 12432 /* 12433 * Make sure hardware watermarks really match the state we read out. 12434 * Note that we need to do this after reconstructing the BIOS fb's 12435 * since the watermark calculation done here will use pstate->fb. 12436 */ 12437 if (!HAS_GMCH(i915)) 12438 sanitize_watermarks(i915); 12439 12440 return 0; 12441 } 12442 12443 /* part #3: call after gem init */ 12444 int intel_modeset_init(struct drm_i915_private *i915) 12445 { 12446 int ret; 12447 12448 if (!HAS_DISPLAY(i915)) 12449 return 0; 12450 12451 /* 12452 * Force all active planes to recompute their states. So that on 12453 * mode_setcrtc after probe, all the intel_plane_state variables 12454 * are already calculated and there is no assert_plane warnings 12455 * during bootup. 12456 */ 12457 ret = intel_initial_commit(&i915->drm); 12458 if (ret) 12459 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); 12460 12461 intel_overlay_setup(i915); 12462 12463 ret = intel_fbdev_init(&i915->drm); 12464 if (ret) 12465 return ret; 12466 12467 /* Only enable hotplug handling once the fbdev is fully set up. */ 12468 intel_hpd_init(i915); 12469 intel_hpd_poll_disable(i915); 12470 12471 intel_init_ipc(i915); 12472 12473 return 0; 12474 } 12475 12476 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12477 { 12478 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12479 /* 640x480@60Hz, ~25175 kHz */ 12480 struct dpll clock = { 12481 .m1 = 18, 12482 .m2 = 7, 12483 .p1 = 13, 12484 .p2 = 4, 12485 .n = 2, 12486 }; 12487 u32 dpll, fp; 12488 int i; 12489 12490 drm_WARN_ON(&dev_priv->drm, 12491 i9xx_calc_dpll_params(48000, &clock) != 25154); 12492 12493 drm_dbg_kms(&dev_priv->drm, 12494 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 12495 pipe_name(pipe), clock.vco, clock.dot); 12496 12497 fp = i9xx_dpll_compute_fp(&clock); 12498 dpll = DPLL_DVO_2X_MODE | 12499 DPLL_VGA_MODE_DIS | 12500 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 12501 PLL_P2_DIVIDE_BY_4 | 12502 PLL_REF_INPUT_DREFCLK | 12503 DPLL_VCO_ENABLE; 12504 12505 intel_de_write(dev_priv, FP0(pipe), fp); 12506 intel_de_write(dev_priv, FP1(pipe), fp); 12507 12508 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 12509 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 12510 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 12511 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 12512 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 12513 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 12514 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 12515 12516 /* 12517 * Apparently we need to have VGA mode enabled prior to changing 12518 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 12519 * dividers, even though the register value does change. 12520 */ 12521 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 12522 intel_de_write(dev_priv, DPLL(pipe), dpll); 12523 12524 /* Wait for the clocks to stabilize. */ 12525 intel_de_posting_read(dev_priv, DPLL(pipe)); 12526 udelay(150); 12527 12528 /* The pixel multiplier can only be updated once the 12529 * DPLL is enabled and the clocks are stable. 12530 * 12531 * So write it again. 12532 */ 12533 intel_de_write(dev_priv, DPLL(pipe), dpll); 12534 12535 /* We do this three times for luck */ 12536 for (i = 0; i < 3 ; i++) { 12537 intel_de_write(dev_priv, DPLL(pipe), dpll); 12538 intel_de_posting_read(dev_priv, DPLL(pipe)); 12539 udelay(150); /* wait for warmup */ 12540 } 12541 12542 intel_de_write(dev_priv, PIPECONF(pipe), 12543 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 12544 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12545 12546 intel_wait_for_pipe_scanline_moving(crtc); 12547 } 12548 12549 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12550 { 12551 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12552 12553 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 12554 pipe_name(pipe)); 12555 12556 drm_WARN_ON(&dev_priv->drm, 12557 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 12558 DISPLAY_PLANE_ENABLE); 12559 drm_WARN_ON(&dev_priv->drm, 12560 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 12561 DISPLAY_PLANE_ENABLE); 12562 drm_WARN_ON(&dev_priv->drm, 12563 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 12564 DISPLAY_PLANE_ENABLE); 12565 drm_WARN_ON(&dev_priv->drm, 12566 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 12567 drm_WARN_ON(&dev_priv->drm, 12568 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 12569 12570 intel_de_write(dev_priv, PIPECONF(pipe), 0); 12571 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12572 12573 intel_wait_for_pipe_scanline_stopped(crtc); 12574 12575 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 12576 intel_de_posting_read(dev_priv, DPLL(pipe)); 12577 } 12578 12579 static void 12580 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 12581 { 12582 struct intel_crtc *crtc; 12583 12584 if (DISPLAY_VER(dev_priv) >= 4) 12585 return; 12586 12587 for_each_intel_crtc(&dev_priv->drm, crtc) { 12588 struct intel_plane *plane = 12589 to_intel_plane(crtc->base.primary); 12590 struct intel_crtc *plane_crtc; 12591 enum pipe pipe; 12592 12593 if (!plane->get_hw_state(plane, &pipe)) 12594 continue; 12595 12596 if (pipe == crtc->pipe) 12597 continue; 12598 12599 drm_dbg_kms(&dev_priv->drm, 12600 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 12601 plane->base.base.id, plane->base.name); 12602 12603 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12604 intel_plane_disable_noatomic(plane_crtc, plane); 12605 } 12606 } 12607 12608 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 12609 { 12610 struct drm_device *dev = crtc->base.dev; 12611 struct intel_encoder *encoder; 12612 12613 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 12614 return true; 12615 12616 return false; 12617 } 12618 12619 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 12620 { 12621 struct drm_device *dev = encoder->base.dev; 12622 struct intel_connector *connector; 12623 12624 for_each_connector_on_encoder(dev, &encoder->base, connector) 12625 return connector; 12626 12627 return NULL; 12628 } 12629 12630 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 12631 enum pipe pch_transcoder) 12632 { 12633 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 12634 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 12635 } 12636 12637 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 12638 { 12639 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12640 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12641 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 12642 12643 if (DISPLAY_VER(dev_priv) >= 9 || 12644 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12645 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 12646 u32 val; 12647 12648 if (transcoder_is_dsi(cpu_transcoder)) 12649 return; 12650 12651 val = intel_de_read(dev_priv, reg); 12652 val &= ~HSW_FRAME_START_DELAY_MASK; 12653 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12654 intel_de_write(dev_priv, reg, val); 12655 } else { 12656 i915_reg_t reg = PIPECONF(cpu_transcoder); 12657 u32 val; 12658 12659 val = intel_de_read(dev_priv, reg); 12660 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 12661 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12662 intel_de_write(dev_priv, reg, val); 12663 } 12664 12665 if (!crtc_state->has_pch_encoder) 12666 return; 12667 12668 if (HAS_PCH_IBX(dev_priv)) { 12669 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 12670 u32 val; 12671 12672 val = intel_de_read(dev_priv, reg); 12673 val &= ~TRANS_FRAME_START_DELAY_MASK; 12674 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12675 intel_de_write(dev_priv, reg, val); 12676 } else { 12677 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 12678 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 12679 u32 val; 12680 12681 val = intel_de_read(dev_priv, reg); 12682 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 12683 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12684 intel_de_write(dev_priv, reg, val); 12685 } 12686 } 12687 12688 static void intel_sanitize_crtc(struct intel_crtc *crtc, 12689 struct drm_modeset_acquire_ctx *ctx) 12690 { 12691 struct drm_device *dev = crtc->base.dev; 12692 struct drm_i915_private *dev_priv = to_i915(dev); 12693 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 12694 12695 if (crtc_state->hw.active) { 12696 struct intel_plane *plane; 12697 12698 /* Clear any frame start delays used for debugging left by the BIOS */ 12699 intel_sanitize_frame_start_delay(crtc_state); 12700 12701 /* Disable everything but the primary plane */ 12702 for_each_intel_plane_on_crtc(dev, crtc, plane) { 12703 const struct intel_plane_state *plane_state = 12704 to_intel_plane_state(plane->base.state); 12705 12706 if (plane_state->uapi.visible && 12707 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 12708 intel_plane_disable_noatomic(crtc, plane); 12709 } 12710 12711 /* 12712 * Disable any background color set by the BIOS, but enable the 12713 * gamma and CSC to match how we program our planes. 12714 */ 12715 if (DISPLAY_VER(dev_priv) >= 9) 12716 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 12717 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 12718 } 12719 12720 /* Adjust the state of the output pipe according to whether we 12721 * have active connectors/encoders. */ 12722 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc) && 12723 !crtc_state->bigjoiner_slave) 12724 intel_crtc_disable_noatomic(crtc, ctx); 12725 12726 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 12727 /* 12728 * We start out with underrun reporting disabled to avoid races. 12729 * For correct bookkeeping mark this on active crtcs. 12730 * 12731 * Also on gmch platforms we dont have any hardware bits to 12732 * disable the underrun reporting. Which means we need to start 12733 * out with underrun reporting disabled also on inactive pipes, 12734 * since otherwise we'll complain about the garbage we read when 12735 * e.g. coming up after runtime pm. 12736 * 12737 * No protection against concurrent access is required - at 12738 * worst a fifo underrun happens which also sets this to false. 12739 */ 12740 crtc->cpu_fifo_underrun_disabled = true; 12741 /* 12742 * We track the PCH trancoder underrun reporting state 12743 * within the crtc. With crtc for pipe A housing the underrun 12744 * reporting state for PCH transcoder A, crtc for pipe B housing 12745 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 12746 * and marking underrun reporting as disabled for the non-existing 12747 * PCH transcoders B and C would prevent enabling the south 12748 * error interrupt (see cpt_can_enable_serr_int()). 12749 */ 12750 if (has_pch_trancoder(dev_priv, crtc->pipe)) 12751 crtc->pch_fifo_underrun_disabled = true; 12752 } 12753 } 12754 12755 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 12756 { 12757 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 12758 12759 /* 12760 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 12761 * the hardware when a high res displays plugged in. DPLL P 12762 * divider is zero, and the pipe timings are bonkers. We'll 12763 * try to disable everything in that case. 12764 * 12765 * FIXME would be nice to be able to sanitize this state 12766 * without several WARNs, but for now let's take the easy 12767 * road. 12768 */ 12769 return IS_SANDYBRIDGE(dev_priv) && 12770 crtc_state->hw.active && 12771 crtc_state->shared_dpll && 12772 crtc_state->port_clock == 0; 12773 } 12774 12775 static void intel_sanitize_encoder(struct intel_encoder *encoder) 12776 { 12777 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12778 struct intel_connector *connector; 12779 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 12780 struct intel_crtc_state *crtc_state = crtc ? 12781 to_intel_crtc_state(crtc->base.state) : NULL; 12782 12783 /* We need to check both for a crtc link (meaning that the 12784 * encoder is active and trying to read from a pipe) and the 12785 * pipe itself being active. */ 12786 bool has_active_crtc = crtc_state && 12787 crtc_state->hw.active; 12788 12789 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 12790 drm_dbg_kms(&dev_priv->drm, 12791 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 12792 pipe_name(crtc->pipe)); 12793 has_active_crtc = false; 12794 } 12795 12796 connector = intel_encoder_find_connector(encoder); 12797 if (connector && !has_active_crtc) { 12798 drm_dbg_kms(&dev_priv->drm, 12799 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 12800 encoder->base.base.id, 12801 encoder->base.name); 12802 12803 /* Connector is active, but has no active pipe. This is 12804 * fallout from our resume register restoring. Disable 12805 * the encoder manually again. */ 12806 if (crtc_state) { 12807 struct drm_encoder *best_encoder; 12808 12809 drm_dbg_kms(&dev_priv->drm, 12810 "[ENCODER:%d:%s] manually disabled\n", 12811 encoder->base.base.id, 12812 encoder->base.name); 12813 12814 /* avoid oopsing in case the hooks consult best_encoder */ 12815 best_encoder = connector->base.state->best_encoder; 12816 connector->base.state->best_encoder = &encoder->base; 12817 12818 /* FIXME NULL atomic state passed! */ 12819 if (encoder->disable) 12820 encoder->disable(NULL, encoder, crtc_state, 12821 connector->base.state); 12822 if (encoder->post_disable) 12823 encoder->post_disable(NULL, encoder, crtc_state, 12824 connector->base.state); 12825 12826 connector->base.state->best_encoder = best_encoder; 12827 } 12828 encoder->base.crtc = NULL; 12829 12830 /* Inconsistent output/port/pipe state happens presumably due to 12831 * a bug in one of the get_hw_state functions. Or someplace else 12832 * in our code, like the register restore mess on resume. Clamp 12833 * things to off as a safer default. */ 12834 12835 connector->base.dpms = DRM_MODE_DPMS_OFF; 12836 connector->base.encoder = NULL; 12837 } 12838 12839 /* notify opregion of the sanitized encoder state */ 12840 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 12841 12842 if (HAS_DDI(dev_priv)) 12843 intel_ddi_sanitize_encoder_pll_mapping(encoder); 12844 } 12845 12846 /* FIXME read out full plane state for all planes */ 12847 static void readout_plane_state(struct drm_i915_private *dev_priv) 12848 { 12849 struct intel_plane *plane; 12850 struct intel_crtc *crtc; 12851 12852 for_each_intel_plane(&dev_priv->drm, plane) { 12853 struct intel_plane_state *plane_state = 12854 to_intel_plane_state(plane->base.state); 12855 struct intel_crtc_state *crtc_state; 12856 enum pipe pipe = PIPE_A; 12857 bool visible; 12858 12859 visible = plane->get_hw_state(plane, &pipe); 12860 12861 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12862 crtc_state = to_intel_crtc_state(crtc->base.state); 12863 12864 intel_set_plane_visible(crtc_state, plane_state, visible); 12865 12866 drm_dbg_kms(&dev_priv->drm, 12867 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 12868 plane->base.base.id, plane->base.name, 12869 enableddisabled(visible), pipe_name(pipe)); 12870 } 12871 12872 for_each_intel_crtc(&dev_priv->drm, crtc) { 12873 struct intel_crtc_state *crtc_state = 12874 to_intel_crtc_state(crtc->base.state); 12875 12876 fixup_plane_bitmasks(crtc_state); 12877 } 12878 } 12879 12880 static void intel_modeset_readout_hw_state(struct drm_device *dev) 12881 { 12882 struct drm_i915_private *dev_priv = to_i915(dev); 12883 struct intel_cdclk_state *cdclk_state = 12884 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 12885 struct intel_dbuf_state *dbuf_state = 12886 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 12887 enum pipe pipe; 12888 struct intel_crtc *crtc; 12889 struct intel_encoder *encoder; 12890 struct intel_connector *connector; 12891 struct drm_connector_list_iter conn_iter; 12892 u8 active_pipes = 0; 12893 12894 for_each_intel_crtc(dev, crtc) { 12895 struct intel_crtc_state *crtc_state = 12896 to_intel_crtc_state(crtc->base.state); 12897 12898 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 12899 intel_crtc_free_hw_state(crtc_state); 12900 intel_crtc_state_reset(crtc_state, crtc); 12901 12902 intel_crtc_get_pipe_config(crtc_state); 12903 12904 crtc_state->hw.enable = crtc_state->hw.active; 12905 12906 crtc->base.enabled = crtc_state->hw.enable; 12907 crtc->active = crtc_state->hw.active; 12908 12909 if (crtc_state->hw.active) 12910 active_pipes |= BIT(crtc->pipe); 12911 12912 drm_dbg_kms(&dev_priv->drm, 12913 "[CRTC:%d:%s] hw state readout: %s\n", 12914 crtc->base.base.id, crtc->base.name, 12915 enableddisabled(crtc_state->hw.active)); 12916 } 12917 12918 dev_priv->active_pipes = cdclk_state->active_pipes = 12919 dbuf_state->active_pipes = active_pipes; 12920 12921 readout_plane_state(dev_priv); 12922 12923 for_each_intel_encoder(dev, encoder) { 12924 pipe = 0; 12925 12926 if (encoder->get_hw_state(encoder, &pipe)) { 12927 struct intel_crtc_state *crtc_state; 12928 12929 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12930 crtc_state = to_intel_crtc_state(crtc->base.state); 12931 12932 encoder->base.crtc = &crtc->base; 12933 intel_encoder_get_config(encoder, crtc_state); 12934 if (encoder->sync_state) 12935 encoder->sync_state(encoder, crtc_state); 12936 12937 /* read out to slave crtc as well for bigjoiner */ 12938 if (crtc_state->bigjoiner) { 12939 /* encoder should read be linked to bigjoiner master */ 12940 WARN_ON(crtc_state->bigjoiner_slave); 12941 12942 crtc = crtc_state->bigjoiner_linked_crtc; 12943 crtc_state = to_intel_crtc_state(crtc->base.state); 12944 intel_encoder_get_config(encoder, crtc_state); 12945 } 12946 } else { 12947 encoder->base.crtc = NULL; 12948 } 12949 12950 drm_dbg_kms(&dev_priv->drm, 12951 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 12952 encoder->base.base.id, encoder->base.name, 12953 enableddisabled(encoder->base.crtc), 12954 pipe_name(pipe)); 12955 } 12956 12957 intel_dpll_readout_hw_state(dev_priv); 12958 12959 drm_connector_list_iter_begin(dev, &conn_iter); 12960 for_each_intel_connector_iter(connector, &conn_iter) { 12961 if (connector->get_hw_state(connector)) { 12962 struct intel_crtc_state *crtc_state; 12963 struct intel_crtc *crtc; 12964 12965 connector->base.dpms = DRM_MODE_DPMS_ON; 12966 12967 encoder = intel_attached_encoder(connector); 12968 connector->base.encoder = &encoder->base; 12969 12970 crtc = to_intel_crtc(encoder->base.crtc); 12971 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 12972 12973 if (crtc_state && crtc_state->hw.active) { 12974 /* 12975 * This has to be done during hardware readout 12976 * because anything calling .crtc_disable may 12977 * rely on the connector_mask being accurate. 12978 */ 12979 crtc_state->uapi.connector_mask |= 12980 drm_connector_mask(&connector->base); 12981 crtc_state->uapi.encoder_mask |= 12982 drm_encoder_mask(&encoder->base); 12983 } 12984 } else { 12985 connector->base.dpms = DRM_MODE_DPMS_OFF; 12986 connector->base.encoder = NULL; 12987 } 12988 drm_dbg_kms(&dev_priv->drm, 12989 "[CONNECTOR:%d:%s] hw state readout: %s\n", 12990 connector->base.base.id, connector->base.name, 12991 enableddisabled(connector->base.encoder)); 12992 } 12993 drm_connector_list_iter_end(&conn_iter); 12994 12995 for_each_intel_crtc(dev, crtc) { 12996 struct intel_bw_state *bw_state = 12997 to_intel_bw_state(dev_priv->bw_obj.state); 12998 struct intel_crtc_state *crtc_state = 12999 to_intel_crtc_state(crtc->base.state); 13000 struct intel_plane *plane; 13001 int min_cdclk = 0; 13002 13003 if (crtc_state->bigjoiner_slave) 13004 continue; 13005 13006 if (crtc_state->hw.active) { 13007 /* 13008 * The initial mode needs to be set in order to keep 13009 * the atomic core happy. It wants a valid mode if the 13010 * crtc's enabled, so we do the above call. 13011 * 13012 * But we don't set all the derived state fully, hence 13013 * set a flag to indicate that a full recalculation is 13014 * needed on the next commit. 13015 */ 13016 crtc_state->inherited = true; 13017 13018 intel_crtc_update_active_timings(crtc_state); 13019 13020 intel_crtc_copy_hw_to_uapi_state(crtc_state); 13021 } 13022 13023 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 13024 const struct intel_plane_state *plane_state = 13025 to_intel_plane_state(plane->base.state); 13026 13027 /* 13028 * FIXME don't have the fb yet, so can't 13029 * use intel_plane_data_rate() :( 13030 */ 13031 if (plane_state->uapi.visible) 13032 crtc_state->data_rate[plane->id] = 13033 4 * crtc_state->pixel_rate; 13034 /* 13035 * FIXME don't have the fb yet, so can't 13036 * use plane->min_cdclk() :( 13037 */ 13038 if (plane_state->uapi.visible && plane->min_cdclk) { 13039 if (crtc_state->double_wide || DISPLAY_VER(dev_priv) >= 10) 13040 crtc_state->min_cdclk[plane->id] = 13041 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 13042 else 13043 crtc_state->min_cdclk[plane->id] = 13044 crtc_state->pixel_rate; 13045 } 13046 drm_dbg_kms(&dev_priv->drm, 13047 "[PLANE:%d:%s] min_cdclk %d kHz\n", 13048 plane->base.base.id, plane->base.name, 13049 crtc_state->min_cdclk[plane->id]); 13050 } 13051 13052 if (crtc_state->hw.active) { 13053 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 13054 if (drm_WARN_ON(dev, min_cdclk < 0)) 13055 min_cdclk = 0; 13056 } 13057 13058 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 13059 cdclk_state->min_voltage_level[crtc->pipe] = 13060 crtc_state->min_voltage_level; 13061 13062 intel_bw_crtc_update(bw_state, crtc_state); 13063 13064 intel_pipe_config_sanity_check(dev_priv, crtc_state); 13065 13066 /* discard our incomplete slave state, copy it from master */ 13067 if (crtc_state->bigjoiner && crtc_state->hw.active) { 13068 struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc; 13069 struct intel_crtc_state *slave_crtc_state = 13070 to_intel_crtc_state(slave->base.state); 13071 13072 copy_bigjoiner_crtc_state(slave_crtc_state, crtc_state); 13073 slave->base.mode = crtc->base.mode; 13074 13075 cdclk_state->min_cdclk[slave->pipe] = min_cdclk; 13076 cdclk_state->min_voltage_level[slave->pipe] = 13077 crtc_state->min_voltage_level; 13078 13079 for_each_intel_plane_on_crtc(&dev_priv->drm, slave, plane) { 13080 const struct intel_plane_state *plane_state = 13081 to_intel_plane_state(plane->base.state); 13082 13083 /* 13084 * FIXME don't have the fb yet, so can't 13085 * use intel_plane_data_rate() :( 13086 */ 13087 if (plane_state->uapi.visible) 13088 crtc_state->data_rate[plane->id] = 13089 4 * crtc_state->pixel_rate; 13090 else 13091 crtc_state->data_rate[plane->id] = 0; 13092 } 13093 13094 intel_bw_crtc_update(bw_state, slave_crtc_state); 13095 drm_calc_timestamping_constants(&slave->base, 13096 &slave_crtc_state->hw.adjusted_mode); 13097 } 13098 } 13099 } 13100 13101 static void 13102 get_encoder_power_domains(struct drm_i915_private *dev_priv) 13103 { 13104 struct intel_encoder *encoder; 13105 13106 for_each_intel_encoder(&dev_priv->drm, encoder) { 13107 struct intel_crtc_state *crtc_state; 13108 13109 if (!encoder->get_power_domains) 13110 continue; 13111 13112 /* 13113 * MST-primary and inactive encoders don't have a crtc state 13114 * and neither of these require any power domain references. 13115 */ 13116 if (!encoder->base.crtc) 13117 continue; 13118 13119 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 13120 encoder->get_power_domains(encoder, crtc_state); 13121 } 13122 } 13123 13124 static void intel_early_display_was(struct drm_i915_private *dev_priv) 13125 { 13126 /* 13127 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 13128 * Also known as Wa_14010480278. 13129 */ 13130 if (IS_DISPLAY_VER(dev_priv, 10, 12)) 13131 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 13132 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 13133 13134 if (IS_HASWELL(dev_priv)) { 13135 /* 13136 * WaRsPkgCStateDisplayPMReq:hsw 13137 * System hang if this isn't done before disabling all planes! 13138 */ 13139 intel_de_write(dev_priv, CHICKEN_PAR1_1, 13140 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 13141 } 13142 13143 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) { 13144 /* Display WA #1142:kbl,cfl,cml */ 13145 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, 13146 KBL_ARB_FILL_SPARE_22, KBL_ARB_FILL_SPARE_22); 13147 intel_de_rmw(dev_priv, CHICKEN_MISC_2, 13148 KBL_ARB_FILL_SPARE_13 | KBL_ARB_FILL_SPARE_14, 13149 KBL_ARB_FILL_SPARE_14); 13150 } 13151 } 13152 13153 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 13154 enum port port, i915_reg_t hdmi_reg) 13155 { 13156 u32 val = intel_de_read(dev_priv, hdmi_reg); 13157 13158 if (val & SDVO_ENABLE || 13159 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 13160 return; 13161 13162 drm_dbg_kms(&dev_priv->drm, 13163 "Sanitizing transcoder select for HDMI %c\n", 13164 port_name(port)); 13165 13166 val &= ~SDVO_PIPE_SEL_MASK; 13167 val |= SDVO_PIPE_SEL(PIPE_A); 13168 13169 intel_de_write(dev_priv, hdmi_reg, val); 13170 } 13171 13172 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 13173 enum port port, i915_reg_t dp_reg) 13174 { 13175 u32 val = intel_de_read(dev_priv, dp_reg); 13176 13177 if (val & DP_PORT_EN || 13178 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 13179 return; 13180 13181 drm_dbg_kms(&dev_priv->drm, 13182 "Sanitizing transcoder select for DP %c\n", 13183 port_name(port)); 13184 13185 val &= ~DP_PIPE_SEL_MASK; 13186 val |= DP_PIPE_SEL(PIPE_A); 13187 13188 intel_de_write(dev_priv, dp_reg, val); 13189 } 13190 13191 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 13192 { 13193 /* 13194 * The BIOS may select transcoder B on some of the PCH 13195 * ports even it doesn't enable the port. This would trip 13196 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 13197 * Sanitize the transcoder select bits to prevent that. We 13198 * assume that the BIOS never actually enabled the port, 13199 * because if it did we'd actually have to toggle the port 13200 * on and back off to make the transcoder A select stick 13201 * (see. intel_dp_link_down(), intel_disable_hdmi(), 13202 * intel_disable_sdvo()). 13203 */ 13204 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 13205 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 13206 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 13207 13208 /* PCH SDVOB multiplex with HDMIB */ 13209 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 13210 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 13211 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 13212 } 13213 13214 /* Scan out the current hw modeset state, 13215 * and sanitizes it to the current state 13216 */ 13217 static void 13218 intel_modeset_setup_hw_state(struct drm_device *dev, 13219 struct drm_modeset_acquire_ctx *ctx) 13220 { 13221 struct drm_i915_private *dev_priv = to_i915(dev); 13222 struct intel_encoder *encoder; 13223 struct intel_crtc *crtc; 13224 intel_wakeref_t wakeref; 13225 13226 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 13227 13228 intel_early_display_was(dev_priv); 13229 intel_modeset_readout_hw_state(dev); 13230 13231 /* HW state is read out, now we need to sanitize this mess. */ 13232 13233 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 13234 for_each_intel_encoder(dev, encoder) { 13235 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 13236 13237 /* We need to sanitize only the MST primary port. */ 13238 if (encoder->type != INTEL_OUTPUT_DP_MST && 13239 intel_phy_is_tc(dev_priv, phy)) 13240 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 13241 } 13242 13243 get_encoder_power_domains(dev_priv); 13244 13245 if (HAS_PCH_IBX(dev_priv)) 13246 ibx_sanitize_pch_ports(dev_priv); 13247 13248 /* 13249 * intel_sanitize_plane_mapping() may need to do vblank 13250 * waits, so we need vblank interrupts restored beforehand. 13251 */ 13252 for_each_intel_crtc(&dev_priv->drm, crtc) { 13253 struct intel_crtc_state *crtc_state = 13254 to_intel_crtc_state(crtc->base.state); 13255 13256 drm_crtc_vblank_reset(&crtc->base); 13257 13258 if (crtc_state->hw.active) 13259 intel_crtc_vblank_on(crtc_state); 13260 } 13261 13262 intel_sanitize_plane_mapping(dev_priv); 13263 13264 for_each_intel_encoder(dev, encoder) 13265 intel_sanitize_encoder(encoder); 13266 13267 for_each_intel_crtc(&dev_priv->drm, crtc) { 13268 struct intel_crtc_state *crtc_state = 13269 to_intel_crtc_state(crtc->base.state); 13270 13271 intel_sanitize_crtc(crtc, ctx); 13272 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 13273 } 13274 13275 intel_modeset_update_connector_atomic_state(dev); 13276 13277 intel_dpll_sanitize_state(dev_priv); 13278 13279 if (IS_G4X(dev_priv)) { 13280 g4x_wm_get_hw_state(dev_priv); 13281 g4x_wm_sanitize(dev_priv); 13282 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 13283 vlv_wm_get_hw_state(dev_priv); 13284 vlv_wm_sanitize(dev_priv); 13285 } else if (DISPLAY_VER(dev_priv) >= 9) { 13286 skl_wm_get_hw_state(dev_priv); 13287 } else if (HAS_PCH_SPLIT(dev_priv)) { 13288 ilk_wm_get_hw_state(dev_priv); 13289 } 13290 13291 for_each_intel_crtc(dev, crtc) { 13292 struct intel_crtc_state *crtc_state = 13293 to_intel_crtc_state(crtc->base.state); 13294 u64 put_domains; 13295 13296 put_domains = modeset_get_crtc_power_domains(crtc_state); 13297 if (drm_WARN_ON(dev, put_domains)) 13298 modeset_put_crtc_power_domains(crtc, put_domains); 13299 } 13300 13301 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 13302 } 13303 13304 void intel_display_resume(struct drm_device *dev) 13305 { 13306 struct drm_i915_private *dev_priv = to_i915(dev); 13307 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 13308 struct drm_modeset_acquire_ctx ctx; 13309 int ret; 13310 13311 if (!HAS_DISPLAY(dev_priv)) 13312 return; 13313 13314 dev_priv->modeset_restore_state = NULL; 13315 if (state) 13316 state->acquire_ctx = &ctx; 13317 13318 drm_modeset_acquire_init(&ctx, 0); 13319 13320 while (1) { 13321 ret = drm_modeset_lock_all_ctx(dev, &ctx); 13322 if (ret != -EDEADLK) 13323 break; 13324 13325 drm_modeset_backoff(&ctx); 13326 } 13327 13328 if (!ret) 13329 ret = __intel_display_resume(dev, state, &ctx); 13330 13331 intel_enable_ipc(dev_priv); 13332 drm_modeset_drop_locks(&ctx); 13333 drm_modeset_acquire_fini(&ctx); 13334 13335 if (ret) 13336 drm_err(&dev_priv->drm, 13337 "Restoring old state failed with %i\n", ret); 13338 if (state) 13339 drm_atomic_state_put(state); 13340 } 13341 13342 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 13343 { 13344 struct intel_connector *connector; 13345 struct drm_connector_list_iter conn_iter; 13346 13347 /* Kill all the work that may have been queued by hpd. */ 13348 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 13349 for_each_intel_connector_iter(connector, &conn_iter) { 13350 if (connector->modeset_retry_work.func) 13351 cancel_work_sync(&connector->modeset_retry_work); 13352 if (connector->hdcp.shim) { 13353 cancel_delayed_work_sync(&connector->hdcp.check_work); 13354 cancel_work_sync(&connector->hdcp.prop_work); 13355 } 13356 } 13357 drm_connector_list_iter_end(&conn_iter); 13358 } 13359 13360 /* part #1: call before irq uninstall */ 13361 void intel_modeset_driver_remove(struct drm_i915_private *i915) 13362 { 13363 if (!HAS_DISPLAY(i915)) 13364 return; 13365 13366 flush_workqueue(i915->flip_wq); 13367 flush_workqueue(i915->modeset_wq); 13368 13369 flush_work(&i915->atomic_helper.free_work); 13370 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 13371 } 13372 13373 /* part #2: call after irq uninstall */ 13374 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 13375 { 13376 if (!HAS_DISPLAY(i915)) 13377 return; 13378 13379 /* 13380 * Due to the hpd irq storm handling the hotplug work can re-arm the 13381 * poll handlers. Hence disable polling after hpd handling is shut down. 13382 */ 13383 intel_hpd_poll_fini(i915); 13384 13385 /* 13386 * MST topology needs to be suspended so we don't have any calls to 13387 * fbdev after it's finalized. MST will be destroyed later as part of 13388 * drm_mode_config_cleanup() 13389 */ 13390 intel_dp_mst_suspend(i915); 13391 13392 /* poll work can call into fbdev, hence clean that up afterwards */ 13393 intel_fbdev_fini(i915); 13394 13395 intel_unregister_dsm_handler(); 13396 13397 intel_fbc_global_disable(i915); 13398 13399 /* flush any delayed tasks or pending work */ 13400 flush_scheduled_work(); 13401 13402 intel_hdcp_component_fini(i915); 13403 13404 intel_mode_config_cleanup(i915); 13405 13406 intel_overlay_cleanup(i915); 13407 13408 intel_gmbus_teardown(i915); 13409 13410 destroy_workqueue(i915->flip_wq); 13411 destroy_workqueue(i915->modeset_wq); 13412 13413 intel_fbc_cleanup_cfb(i915); 13414 } 13415 13416 /* part #3: call after gem init */ 13417 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 13418 { 13419 intel_dmc_ucode_fini(i915); 13420 13421 intel_power_domains_driver_remove(i915); 13422 13423 intel_vga_unregister(i915); 13424 13425 intel_bios_driver_remove(i915); 13426 } 13427 13428 void intel_display_driver_register(struct drm_i915_private *i915) 13429 { 13430 if (!HAS_DISPLAY(i915)) 13431 return; 13432 13433 intel_display_debugfs_register(i915); 13434 13435 /* Must be done after probing outputs */ 13436 intel_opregion_register(i915); 13437 acpi_video_register(); 13438 13439 intel_audio_init(i915); 13440 13441 /* 13442 * Some ports require correctly set-up hpd registers for 13443 * detection to work properly (leading to ghost connected 13444 * connector status), e.g. VGA on gm45. Hence we can only set 13445 * up the initial fbdev config after hpd irqs are fully 13446 * enabled. We do it last so that the async config cannot run 13447 * before the connectors are registered. 13448 */ 13449 intel_fbdev_initial_config_async(&i915->drm); 13450 13451 /* 13452 * We need to coordinate the hotplugs with the asynchronous 13453 * fbdev configuration, for which we use the 13454 * fbdev->async_cookie. 13455 */ 13456 drm_kms_helper_poll_init(&i915->drm); 13457 } 13458 13459 void intel_display_driver_unregister(struct drm_i915_private *i915) 13460 { 13461 if (!HAS_DISPLAY(i915)) 13462 return; 13463 13464 intel_fbdev_unregister(i915); 13465 intel_audio_deinit(i915); 13466 13467 /* 13468 * After flushing the fbdev (incl. a late async config which 13469 * will have delayed queuing of a hotplug event), then flush 13470 * the hotplug events. 13471 */ 13472 drm_kms_helper_poll_fini(&i915->drm); 13473 drm_atomic_helper_shutdown(&i915->drm); 13474 13475 acpi_video_unregister(); 13476 intel_opregion_unregister(i915); 13477 } 13478