1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_dp_helper.h>
39 #include <drm/drm_edid.h>
40 #include <drm/drm_fourcc.h>
41 #include <drm/drm_plane_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_rect.h>
44 #include <drm/i915_drm.h>
45 
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dp_mst.h"
50 #include "display/intel_dsi.h"
51 #include "display/intel_dvo.h"
52 #include "display/intel_gmbus.h"
53 #include "display/intel_hdmi.h"
54 #include "display/intel_lvds.h"
55 #include "display/intel_sdvo.h"
56 #include "display/intel_tv.h"
57 #include "display/intel_vdsc.h"
58 
59 #include "gt/intel_rps.h"
60 
61 #include "i915_drv.h"
62 #include "i915_trace.h"
63 #include "intel_acpi.h"
64 #include "intel_atomic.h"
65 #include "intel_atomic_plane.h"
66 #include "intel_bw.h"
67 #include "intel_cdclk.h"
68 #include "intel_color.h"
69 #include "intel_display_types.h"
70 #include "intel_dp_link_training.h"
71 #include "intel_fbc.h"
72 #include "intel_fbdev.h"
73 #include "intel_fifo_underrun.h"
74 #include "intel_frontbuffer.h"
75 #include "intel_hdcp.h"
76 #include "intel_hotplug.h"
77 #include "intel_overlay.h"
78 #include "intel_pipe_crc.h"
79 #include "intel_pm.h"
80 #include "intel_psr.h"
81 #include "intel_quirks.h"
82 #include "intel_sideband.h"
83 #include "intel_sprite.h"
84 #include "intel_tc.h"
85 #include "intel_vga.h"
86 
87 /* Primary plane formats for gen <= 3 */
88 static const u32 i8xx_primary_formats[] = {
89 	DRM_FORMAT_C8,
90 	DRM_FORMAT_XRGB1555,
91 	DRM_FORMAT_RGB565,
92 	DRM_FORMAT_XRGB8888,
93 };
94 
95 /* Primary plane formats for ivb (no fp16 due to hw issue) */
96 static const u32 ivb_primary_formats[] = {
97 	DRM_FORMAT_C8,
98 	DRM_FORMAT_RGB565,
99 	DRM_FORMAT_XRGB8888,
100 	DRM_FORMAT_XBGR8888,
101 	DRM_FORMAT_XRGB2101010,
102 	DRM_FORMAT_XBGR2101010,
103 };
104 
105 /* Primary plane formats for gen >= 4, except ivb */
106 static const u32 i965_primary_formats[] = {
107 	DRM_FORMAT_C8,
108 	DRM_FORMAT_RGB565,
109 	DRM_FORMAT_XRGB8888,
110 	DRM_FORMAT_XBGR8888,
111 	DRM_FORMAT_XRGB2101010,
112 	DRM_FORMAT_XBGR2101010,
113 	DRM_FORMAT_XBGR16161616F,
114 };
115 
116 /* Primary plane formats for vlv/chv */
117 static const u32 vlv_primary_formats[] = {
118 	DRM_FORMAT_C8,
119 	DRM_FORMAT_RGB565,
120 	DRM_FORMAT_XRGB8888,
121 	DRM_FORMAT_XBGR8888,
122 	DRM_FORMAT_ARGB8888,
123 	DRM_FORMAT_ABGR8888,
124 	DRM_FORMAT_XRGB2101010,
125 	DRM_FORMAT_XBGR2101010,
126 	DRM_FORMAT_ARGB2101010,
127 	DRM_FORMAT_ABGR2101010,
128 	DRM_FORMAT_XBGR16161616F,
129 };
130 
131 static const u64 i9xx_format_modifiers[] = {
132 	I915_FORMAT_MOD_X_TILED,
133 	DRM_FORMAT_MOD_LINEAR,
134 	DRM_FORMAT_MOD_INVALID
135 };
136 
137 /* Cursor formats */
138 static const u32 intel_cursor_formats[] = {
139 	DRM_FORMAT_ARGB8888,
140 };
141 
142 static const u64 cursor_format_modifiers[] = {
143 	DRM_FORMAT_MOD_LINEAR,
144 	DRM_FORMAT_MOD_INVALID
145 };
146 
147 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
148 				struct intel_crtc_state *pipe_config);
149 static void ilk_pch_clock_get(struct intel_crtc *crtc,
150 			      struct intel_crtc_state *pipe_config);
151 
152 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
153 				  struct drm_i915_gem_object *obj,
154 				  struct drm_mode_fb_cmd2 *mode_cmd);
155 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
156 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
157 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
158 					 const struct intel_link_m_n *m_n,
159 					 const struct intel_link_m_n *m2_n2);
160 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
161 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state);
162 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state);
163 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
164 static void vlv_prepare_pll(struct intel_crtc *crtc,
165 			    const struct intel_crtc_state *pipe_config);
166 static void chv_prepare_pll(struct intel_crtc *crtc,
167 			    const struct intel_crtc_state *pipe_config);
168 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state);
169 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state);
170 static void intel_modeset_setup_hw_state(struct drm_device *dev,
171 					 struct drm_modeset_acquire_ctx *ctx);
172 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc);
173 
174 struct intel_limit {
175 	struct {
176 		int min, max;
177 	} dot, vco, n, m, m1, m2, p, p1;
178 
179 	struct {
180 		int dot_limit;
181 		int p2_slow, p2_fast;
182 	} p2;
183 };
184 
185 /* returns HPLL frequency in kHz */
186 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
187 {
188 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
189 
190 	/* Obtain SKU information */
191 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
192 		CCK_FUSE_HPLL_FREQ_MASK;
193 
194 	return vco_freq[hpll_freq] * 1000;
195 }
196 
197 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
198 		      const char *name, u32 reg, int ref_freq)
199 {
200 	u32 val;
201 	int divider;
202 
203 	val = vlv_cck_read(dev_priv, reg);
204 	divider = val & CCK_FREQUENCY_VALUES;
205 
206 	WARN((val & CCK_FREQUENCY_STATUS) !=
207 	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
208 	     "%s change in progress\n", name);
209 
210 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
211 }
212 
213 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
214 			   const char *name, u32 reg)
215 {
216 	int hpll;
217 
218 	vlv_cck_get(dev_priv);
219 
220 	if (dev_priv->hpll_freq == 0)
221 		dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
222 
223 	hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
224 
225 	vlv_cck_put(dev_priv);
226 
227 	return hpll;
228 }
229 
230 static void intel_update_czclk(struct drm_i915_private *dev_priv)
231 {
232 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
233 		return;
234 
235 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
236 						      CCK_CZ_CLOCK_CONTROL);
237 
238 	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
239 }
240 
241 static inline u32 /* units of 100MHz */
242 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
243 		    const struct intel_crtc_state *pipe_config)
244 {
245 	if (HAS_DDI(dev_priv))
246 		return pipe_config->port_clock; /* SPLL */
247 	else
248 		return dev_priv->fdi_pll_freq;
249 }
250 
251 static const struct intel_limit intel_limits_i8xx_dac = {
252 	.dot = { .min = 25000, .max = 350000 },
253 	.vco = { .min = 908000, .max = 1512000 },
254 	.n = { .min = 2, .max = 16 },
255 	.m = { .min = 96, .max = 140 },
256 	.m1 = { .min = 18, .max = 26 },
257 	.m2 = { .min = 6, .max = 16 },
258 	.p = { .min = 4, .max = 128 },
259 	.p1 = { .min = 2, .max = 33 },
260 	.p2 = { .dot_limit = 165000,
261 		.p2_slow = 4, .p2_fast = 2 },
262 };
263 
264 static const struct intel_limit intel_limits_i8xx_dvo = {
265 	.dot = { .min = 25000, .max = 350000 },
266 	.vco = { .min = 908000, .max = 1512000 },
267 	.n = { .min = 2, .max = 16 },
268 	.m = { .min = 96, .max = 140 },
269 	.m1 = { .min = 18, .max = 26 },
270 	.m2 = { .min = 6, .max = 16 },
271 	.p = { .min = 4, .max = 128 },
272 	.p1 = { .min = 2, .max = 33 },
273 	.p2 = { .dot_limit = 165000,
274 		.p2_slow = 4, .p2_fast = 4 },
275 };
276 
277 static const struct intel_limit intel_limits_i8xx_lvds = {
278 	.dot = { .min = 25000, .max = 350000 },
279 	.vco = { .min = 908000, .max = 1512000 },
280 	.n = { .min = 2, .max = 16 },
281 	.m = { .min = 96, .max = 140 },
282 	.m1 = { .min = 18, .max = 26 },
283 	.m2 = { .min = 6, .max = 16 },
284 	.p = { .min = 4, .max = 128 },
285 	.p1 = { .min = 1, .max = 6 },
286 	.p2 = { .dot_limit = 165000,
287 		.p2_slow = 14, .p2_fast = 7 },
288 };
289 
290 static const struct intel_limit intel_limits_i9xx_sdvo = {
291 	.dot = { .min = 20000, .max = 400000 },
292 	.vco = { .min = 1400000, .max = 2800000 },
293 	.n = { .min = 1, .max = 6 },
294 	.m = { .min = 70, .max = 120 },
295 	.m1 = { .min = 8, .max = 18 },
296 	.m2 = { .min = 3, .max = 7 },
297 	.p = { .min = 5, .max = 80 },
298 	.p1 = { .min = 1, .max = 8 },
299 	.p2 = { .dot_limit = 200000,
300 		.p2_slow = 10, .p2_fast = 5 },
301 };
302 
303 static const struct intel_limit intel_limits_i9xx_lvds = {
304 	.dot = { .min = 20000, .max = 400000 },
305 	.vco = { .min = 1400000, .max = 2800000 },
306 	.n = { .min = 1, .max = 6 },
307 	.m = { .min = 70, .max = 120 },
308 	.m1 = { .min = 8, .max = 18 },
309 	.m2 = { .min = 3, .max = 7 },
310 	.p = { .min = 7, .max = 98 },
311 	.p1 = { .min = 1, .max = 8 },
312 	.p2 = { .dot_limit = 112000,
313 		.p2_slow = 14, .p2_fast = 7 },
314 };
315 
316 
317 static const struct intel_limit intel_limits_g4x_sdvo = {
318 	.dot = { .min = 25000, .max = 270000 },
319 	.vco = { .min = 1750000, .max = 3500000},
320 	.n = { .min = 1, .max = 4 },
321 	.m = { .min = 104, .max = 138 },
322 	.m1 = { .min = 17, .max = 23 },
323 	.m2 = { .min = 5, .max = 11 },
324 	.p = { .min = 10, .max = 30 },
325 	.p1 = { .min = 1, .max = 3},
326 	.p2 = { .dot_limit = 270000,
327 		.p2_slow = 10,
328 		.p2_fast = 10
329 	},
330 };
331 
332 static const struct intel_limit intel_limits_g4x_hdmi = {
333 	.dot = { .min = 22000, .max = 400000 },
334 	.vco = { .min = 1750000, .max = 3500000},
335 	.n = { .min = 1, .max = 4 },
336 	.m = { .min = 104, .max = 138 },
337 	.m1 = { .min = 16, .max = 23 },
338 	.m2 = { .min = 5, .max = 11 },
339 	.p = { .min = 5, .max = 80 },
340 	.p1 = { .min = 1, .max = 8},
341 	.p2 = { .dot_limit = 165000,
342 		.p2_slow = 10, .p2_fast = 5 },
343 };
344 
345 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
346 	.dot = { .min = 20000, .max = 115000 },
347 	.vco = { .min = 1750000, .max = 3500000 },
348 	.n = { .min = 1, .max = 3 },
349 	.m = { .min = 104, .max = 138 },
350 	.m1 = { .min = 17, .max = 23 },
351 	.m2 = { .min = 5, .max = 11 },
352 	.p = { .min = 28, .max = 112 },
353 	.p1 = { .min = 2, .max = 8 },
354 	.p2 = { .dot_limit = 0,
355 		.p2_slow = 14, .p2_fast = 14
356 	},
357 };
358 
359 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
360 	.dot = { .min = 80000, .max = 224000 },
361 	.vco = { .min = 1750000, .max = 3500000 },
362 	.n = { .min = 1, .max = 3 },
363 	.m = { .min = 104, .max = 138 },
364 	.m1 = { .min = 17, .max = 23 },
365 	.m2 = { .min = 5, .max = 11 },
366 	.p = { .min = 14, .max = 42 },
367 	.p1 = { .min = 2, .max = 6 },
368 	.p2 = { .dot_limit = 0,
369 		.p2_slow = 7, .p2_fast = 7
370 	},
371 };
372 
373 static const struct intel_limit pnv_limits_sdvo = {
374 	.dot = { .min = 20000, .max = 400000},
375 	.vco = { .min = 1700000, .max = 3500000 },
376 	/* Pineview's Ncounter is a ring counter */
377 	.n = { .min = 3, .max = 6 },
378 	.m = { .min = 2, .max = 256 },
379 	/* Pineview only has one combined m divider, which we treat as m2. */
380 	.m1 = { .min = 0, .max = 0 },
381 	.m2 = { .min = 0, .max = 254 },
382 	.p = { .min = 5, .max = 80 },
383 	.p1 = { .min = 1, .max = 8 },
384 	.p2 = { .dot_limit = 200000,
385 		.p2_slow = 10, .p2_fast = 5 },
386 };
387 
388 static const struct intel_limit pnv_limits_lvds = {
389 	.dot = { .min = 20000, .max = 400000 },
390 	.vco = { .min = 1700000, .max = 3500000 },
391 	.n = { .min = 3, .max = 6 },
392 	.m = { .min = 2, .max = 256 },
393 	.m1 = { .min = 0, .max = 0 },
394 	.m2 = { .min = 0, .max = 254 },
395 	.p = { .min = 7, .max = 112 },
396 	.p1 = { .min = 1, .max = 8 },
397 	.p2 = { .dot_limit = 112000,
398 		.p2_slow = 14, .p2_fast = 14 },
399 };
400 
401 /* Ironlake / Sandybridge
402  *
403  * We calculate clock using (register_value + 2) for N/M1/M2, so here
404  * the range value for them is (actual_value - 2).
405  */
406 static const struct intel_limit ilk_limits_dac = {
407 	.dot = { .min = 25000, .max = 350000 },
408 	.vco = { .min = 1760000, .max = 3510000 },
409 	.n = { .min = 1, .max = 5 },
410 	.m = { .min = 79, .max = 127 },
411 	.m1 = { .min = 12, .max = 22 },
412 	.m2 = { .min = 5, .max = 9 },
413 	.p = { .min = 5, .max = 80 },
414 	.p1 = { .min = 1, .max = 8 },
415 	.p2 = { .dot_limit = 225000,
416 		.p2_slow = 10, .p2_fast = 5 },
417 };
418 
419 static const struct intel_limit ilk_limits_single_lvds = {
420 	.dot = { .min = 25000, .max = 350000 },
421 	.vco = { .min = 1760000, .max = 3510000 },
422 	.n = { .min = 1, .max = 3 },
423 	.m = { .min = 79, .max = 118 },
424 	.m1 = { .min = 12, .max = 22 },
425 	.m2 = { .min = 5, .max = 9 },
426 	.p = { .min = 28, .max = 112 },
427 	.p1 = { .min = 2, .max = 8 },
428 	.p2 = { .dot_limit = 225000,
429 		.p2_slow = 14, .p2_fast = 14 },
430 };
431 
432 static const struct intel_limit ilk_limits_dual_lvds = {
433 	.dot = { .min = 25000, .max = 350000 },
434 	.vco = { .min = 1760000, .max = 3510000 },
435 	.n = { .min = 1, .max = 3 },
436 	.m = { .min = 79, .max = 127 },
437 	.m1 = { .min = 12, .max = 22 },
438 	.m2 = { .min = 5, .max = 9 },
439 	.p = { .min = 14, .max = 56 },
440 	.p1 = { .min = 2, .max = 8 },
441 	.p2 = { .dot_limit = 225000,
442 		.p2_slow = 7, .p2_fast = 7 },
443 };
444 
445 /* LVDS 100mhz refclk limits. */
446 static const struct intel_limit ilk_limits_single_lvds_100m = {
447 	.dot = { .min = 25000, .max = 350000 },
448 	.vco = { .min = 1760000, .max = 3510000 },
449 	.n = { .min = 1, .max = 2 },
450 	.m = { .min = 79, .max = 126 },
451 	.m1 = { .min = 12, .max = 22 },
452 	.m2 = { .min = 5, .max = 9 },
453 	.p = { .min = 28, .max = 112 },
454 	.p1 = { .min = 2, .max = 8 },
455 	.p2 = { .dot_limit = 225000,
456 		.p2_slow = 14, .p2_fast = 14 },
457 };
458 
459 static const struct intel_limit ilk_limits_dual_lvds_100m = {
460 	.dot = { .min = 25000, .max = 350000 },
461 	.vco = { .min = 1760000, .max = 3510000 },
462 	.n = { .min = 1, .max = 3 },
463 	.m = { .min = 79, .max = 126 },
464 	.m1 = { .min = 12, .max = 22 },
465 	.m2 = { .min = 5, .max = 9 },
466 	.p = { .min = 14, .max = 42 },
467 	.p1 = { .min = 2, .max = 6 },
468 	.p2 = { .dot_limit = 225000,
469 		.p2_slow = 7, .p2_fast = 7 },
470 };
471 
472 static const struct intel_limit intel_limits_vlv = {
473 	 /*
474 	  * These are the data rate limits (measured in fast clocks)
475 	  * since those are the strictest limits we have. The fast
476 	  * clock and actual rate limits are more relaxed, so checking
477 	  * them would make no difference.
478 	  */
479 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
480 	.vco = { .min = 4000000, .max = 6000000 },
481 	.n = { .min = 1, .max = 7 },
482 	.m1 = { .min = 2, .max = 3 },
483 	.m2 = { .min = 11, .max = 156 },
484 	.p1 = { .min = 2, .max = 3 },
485 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
486 };
487 
488 static const struct intel_limit intel_limits_chv = {
489 	/*
490 	 * These are the data rate limits (measured in fast clocks)
491 	 * since those are the strictest limits we have.  The fast
492 	 * clock and actual rate limits are more relaxed, so checking
493 	 * them would make no difference.
494 	 */
495 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
496 	.vco = { .min = 4800000, .max = 6480000 },
497 	.n = { .min = 1, .max = 1 },
498 	.m1 = { .min = 2, .max = 2 },
499 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
500 	.p1 = { .min = 2, .max = 4 },
501 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
502 };
503 
504 static const struct intel_limit intel_limits_bxt = {
505 	/* FIXME: find real dot limits */
506 	.dot = { .min = 0, .max = INT_MAX },
507 	.vco = { .min = 4800000, .max = 6700000 },
508 	.n = { .min = 1, .max = 1 },
509 	.m1 = { .min = 2, .max = 2 },
510 	/* FIXME: find real m2 limits */
511 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
512 	.p1 = { .min = 2, .max = 4 },
513 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
514 };
515 
516 /* WA Display #0827: Gen9:all */
517 static void
518 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
519 {
520 	if (enable)
521 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
522 			   I915_READ(CLKGATE_DIS_PSL(pipe)) |
523 			   DUPS1_GATING_DIS | DUPS2_GATING_DIS);
524 	else
525 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
526 			   I915_READ(CLKGATE_DIS_PSL(pipe)) &
527 			   ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
528 }
529 
530 /* Wa_2006604312:icl */
531 static void
532 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
533 		       bool enable)
534 {
535 	if (enable)
536 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
537 			   I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
538 	else
539 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
540 			   I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
541 }
542 
543 static bool
544 needs_modeset(const struct intel_crtc_state *state)
545 {
546 	return drm_atomic_crtc_needs_modeset(&state->uapi);
547 }
548 
549 bool
550 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
551 {
552 	return (crtc_state->master_transcoder != INVALID_TRANSCODER ||
553 		crtc_state->sync_mode_slaves_mask);
554 }
555 
556 static bool
557 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
558 {
559 	return crtc_state->master_transcoder != INVALID_TRANSCODER;
560 }
561 
562 /*
563  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
564  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
565  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
566  * The helpers' return value is the rate of the clock that is fed to the
567  * display engine's pipe which can be the above fast dot clock rate or a
568  * divided-down version of it.
569  */
570 /* m1 is reserved as 0 in Pineview, n is a ring counter */
571 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
572 {
573 	clock->m = clock->m2 + 2;
574 	clock->p = clock->p1 * clock->p2;
575 	if (WARN_ON(clock->n == 0 || clock->p == 0))
576 		return 0;
577 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
578 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
579 
580 	return clock->dot;
581 }
582 
583 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
584 {
585 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
586 }
587 
588 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
589 {
590 	clock->m = i9xx_dpll_compute_m(clock);
591 	clock->p = clock->p1 * clock->p2;
592 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
593 		return 0;
594 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
595 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
596 
597 	return clock->dot;
598 }
599 
600 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
601 {
602 	clock->m = clock->m1 * clock->m2;
603 	clock->p = clock->p1 * clock->p2;
604 	if (WARN_ON(clock->n == 0 || clock->p == 0))
605 		return 0;
606 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
607 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
608 
609 	return clock->dot / 5;
610 }
611 
612 int chv_calc_dpll_params(int refclk, struct dpll *clock)
613 {
614 	clock->m = clock->m1 * clock->m2;
615 	clock->p = clock->p1 * clock->p2;
616 	if (WARN_ON(clock->n == 0 || clock->p == 0))
617 		return 0;
618 	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
619 					   clock->n << 22);
620 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
621 
622 	return clock->dot / 5;
623 }
624 
625 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
626 
627 /*
628  * Returns whether the given set of divisors are valid for a given refclk with
629  * the given connectors.
630  */
631 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
632 			       const struct intel_limit *limit,
633 			       const struct dpll *clock)
634 {
635 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
636 		INTELPllInvalid("n out of range\n");
637 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
638 		INTELPllInvalid("p1 out of range\n");
639 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
640 		INTELPllInvalid("m2 out of range\n");
641 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
642 		INTELPllInvalid("m1 out of range\n");
643 
644 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
645 	    !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
646 		if (clock->m1 <= clock->m2)
647 			INTELPllInvalid("m1 <= m2\n");
648 
649 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
650 	    !IS_GEN9_LP(dev_priv)) {
651 		if (clock->p < limit->p.min || limit->p.max < clock->p)
652 			INTELPllInvalid("p out of range\n");
653 		if (clock->m < limit->m.min || limit->m.max < clock->m)
654 			INTELPllInvalid("m out of range\n");
655 	}
656 
657 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
658 		INTELPllInvalid("vco out of range\n");
659 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
660 	 * connector, etc., rather than just a single range.
661 	 */
662 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
663 		INTELPllInvalid("dot out of range\n");
664 
665 	return true;
666 }
667 
668 static int
669 i9xx_select_p2_div(const struct intel_limit *limit,
670 		   const struct intel_crtc_state *crtc_state,
671 		   int target)
672 {
673 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
674 
675 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
676 		/*
677 		 * For LVDS just rely on its current settings for dual-channel.
678 		 * We haven't figured out how to reliably set up different
679 		 * single/dual channel state, if we even can.
680 		 */
681 		if (intel_is_dual_link_lvds(dev_priv))
682 			return limit->p2.p2_fast;
683 		else
684 			return limit->p2.p2_slow;
685 	} else {
686 		if (target < limit->p2.dot_limit)
687 			return limit->p2.p2_slow;
688 		else
689 			return limit->p2.p2_fast;
690 	}
691 }
692 
693 /*
694  * Returns a set of divisors for the desired target clock with the given
695  * refclk, or FALSE.  The returned values represent the clock equation:
696  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
697  *
698  * Target and reference clocks are specified in kHz.
699  *
700  * If match_clock is provided, then best_clock P divider must match the P
701  * divider from @match_clock used for LVDS downclocking.
702  */
703 static bool
704 i9xx_find_best_dpll(const struct intel_limit *limit,
705 		    struct intel_crtc_state *crtc_state,
706 		    int target, int refclk, struct dpll *match_clock,
707 		    struct dpll *best_clock)
708 {
709 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
710 	struct dpll clock;
711 	int err = target;
712 
713 	memset(best_clock, 0, sizeof(*best_clock));
714 
715 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
716 
717 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
718 	     clock.m1++) {
719 		for (clock.m2 = limit->m2.min;
720 		     clock.m2 <= limit->m2.max; clock.m2++) {
721 			if (clock.m2 >= clock.m1)
722 				break;
723 			for (clock.n = limit->n.min;
724 			     clock.n <= limit->n.max; clock.n++) {
725 				for (clock.p1 = limit->p1.min;
726 					clock.p1 <= limit->p1.max; clock.p1++) {
727 					int this_err;
728 
729 					i9xx_calc_dpll_params(refclk, &clock);
730 					if (!intel_PLL_is_valid(to_i915(dev),
731 								limit,
732 								&clock))
733 						continue;
734 					if (match_clock &&
735 					    clock.p != match_clock->p)
736 						continue;
737 
738 					this_err = abs(clock.dot - target);
739 					if (this_err < err) {
740 						*best_clock = clock;
741 						err = this_err;
742 					}
743 				}
744 			}
745 		}
746 	}
747 
748 	return (err != target);
749 }
750 
751 /*
752  * Returns a set of divisors for the desired target clock with the given
753  * refclk, or FALSE.  The returned values represent the clock equation:
754  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
755  *
756  * Target and reference clocks are specified in kHz.
757  *
758  * If match_clock is provided, then best_clock P divider must match the P
759  * divider from @match_clock used for LVDS downclocking.
760  */
761 static bool
762 pnv_find_best_dpll(const struct intel_limit *limit,
763 		   struct intel_crtc_state *crtc_state,
764 		   int target, int refclk, struct dpll *match_clock,
765 		   struct dpll *best_clock)
766 {
767 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
768 	struct dpll clock;
769 	int err = target;
770 
771 	memset(best_clock, 0, sizeof(*best_clock));
772 
773 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
774 
775 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
776 	     clock.m1++) {
777 		for (clock.m2 = limit->m2.min;
778 		     clock.m2 <= limit->m2.max; clock.m2++) {
779 			for (clock.n = limit->n.min;
780 			     clock.n <= limit->n.max; clock.n++) {
781 				for (clock.p1 = limit->p1.min;
782 					clock.p1 <= limit->p1.max; clock.p1++) {
783 					int this_err;
784 
785 					pnv_calc_dpll_params(refclk, &clock);
786 					if (!intel_PLL_is_valid(to_i915(dev),
787 								limit,
788 								&clock))
789 						continue;
790 					if (match_clock &&
791 					    clock.p != match_clock->p)
792 						continue;
793 
794 					this_err = abs(clock.dot - target);
795 					if (this_err < err) {
796 						*best_clock = clock;
797 						err = this_err;
798 					}
799 				}
800 			}
801 		}
802 	}
803 
804 	return (err != target);
805 }
806 
807 /*
808  * Returns a set of divisors for the desired target clock with the given
809  * refclk, or FALSE.  The returned values represent the clock equation:
810  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
811  *
812  * Target and reference clocks are specified in kHz.
813  *
814  * If match_clock is provided, then best_clock P divider must match the P
815  * divider from @match_clock used for LVDS downclocking.
816  */
817 static bool
818 g4x_find_best_dpll(const struct intel_limit *limit,
819 		   struct intel_crtc_state *crtc_state,
820 		   int target, int refclk, struct dpll *match_clock,
821 		   struct dpll *best_clock)
822 {
823 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
824 	struct dpll clock;
825 	int max_n;
826 	bool found = false;
827 	/* approximately equals target * 0.00585 */
828 	int err_most = (target >> 8) + (target >> 9);
829 
830 	memset(best_clock, 0, sizeof(*best_clock));
831 
832 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
833 
834 	max_n = limit->n.max;
835 	/* based on hardware requirement, prefer smaller n to precision */
836 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
837 		/* based on hardware requirement, prefere larger m1,m2 */
838 		for (clock.m1 = limit->m1.max;
839 		     clock.m1 >= limit->m1.min; clock.m1--) {
840 			for (clock.m2 = limit->m2.max;
841 			     clock.m2 >= limit->m2.min; clock.m2--) {
842 				for (clock.p1 = limit->p1.max;
843 				     clock.p1 >= limit->p1.min; clock.p1--) {
844 					int this_err;
845 
846 					i9xx_calc_dpll_params(refclk, &clock);
847 					if (!intel_PLL_is_valid(to_i915(dev),
848 								limit,
849 								&clock))
850 						continue;
851 
852 					this_err = abs(clock.dot - target);
853 					if (this_err < err_most) {
854 						*best_clock = clock;
855 						err_most = this_err;
856 						max_n = clock.n;
857 						found = true;
858 					}
859 				}
860 			}
861 		}
862 	}
863 	return found;
864 }
865 
866 /*
867  * Check if the calculated PLL configuration is more optimal compared to the
868  * best configuration and error found so far. Return the calculated error.
869  */
870 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
871 			       const struct dpll *calculated_clock,
872 			       const struct dpll *best_clock,
873 			       unsigned int best_error_ppm,
874 			       unsigned int *error_ppm)
875 {
876 	/*
877 	 * For CHV ignore the error and consider only the P value.
878 	 * Prefer a bigger P value based on HW requirements.
879 	 */
880 	if (IS_CHERRYVIEW(to_i915(dev))) {
881 		*error_ppm = 0;
882 
883 		return calculated_clock->p > best_clock->p;
884 	}
885 
886 	if (WARN_ON_ONCE(!target_freq))
887 		return false;
888 
889 	*error_ppm = div_u64(1000000ULL *
890 				abs(target_freq - calculated_clock->dot),
891 			     target_freq);
892 	/*
893 	 * Prefer a better P value over a better (smaller) error if the error
894 	 * is small. Ensure this preference for future configurations too by
895 	 * setting the error to 0.
896 	 */
897 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
898 		*error_ppm = 0;
899 
900 		return true;
901 	}
902 
903 	return *error_ppm + 10 < best_error_ppm;
904 }
905 
906 /*
907  * Returns a set of divisors for the desired target clock with the given
908  * refclk, or FALSE.  The returned values represent the clock equation:
909  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
910  */
911 static bool
912 vlv_find_best_dpll(const struct intel_limit *limit,
913 		   struct intel_crtc_state *crtc_state,
914 		   int target, int refclk, struct dpll *match_clock,
915 		   struct dpll *best_clock)
916 {
917 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
918 	struct drm_device *dev = crtc->base.dev;
919 	struct dpll clock;
920 	unsigned int bestppm = 1000000;
921 	/* min update 19.2 MHz */
922 	int max_n = min(limit->n.max, refclk / 19200);
923 	bool found = false;
924 
925 	target *= 5; /* fast clock */
926 
927 	memset(best_clock, 0, sizeof(*best_clock));
928 
929 	/* based on hardware requirement, prefer smaller n to precision */
930 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
931 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
932 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
933 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
934 				clock.p = clock.p1 * clock.p2;
935 				/* based on hardware requirement, prefer bigger m1,m2 values */
936 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
937 					unsigned int ppm;
938 
939 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
940 								     refclk * clock.m1);
941 
942 					vlv_calc_dpll_params(refclk, &clock);
943 
944 					if (!intel_PLL_is_valid(to_i915(dev),
945 								limit,
946 								&clock))
947 						continue;
948 
949 					if (!vlv_PLL_is_optimal(dev, target,
950 								&clock,
951 								best_clock,
952 								bestppm, &ppm))
953 						continue;
954 
955 					*best_clock = clock;
956 					bestppm = ppm;
957 					found = true;
958 				}
959 			}
960 		}
961 	}
962 
963 	return found;
964 }
965 
966 /*
967  * Returns a set of divisors for the desired target clock with the given
968  * refclk, or FALSE.  The returned values represent the clock equation:
969  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
970  */
971 static bool
972 chv_find_best_dpll(const struct intel_limit *limit,
973 		   struct intel_crtc_state *crtc_state,
974 		   int target, int refclk, struct dpll *match_clock,
975 		   struct dpll *best_clock)
976 {
977 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
978 	struct drm_device *dev = crtc->base.dev;
979 	unsigned int best_error_ppm;
980 	struct dpll clock;
981 	u64 m2;
982 	int found = false;
983 
984 	memset(best_clock, 0, sizeof(*best_clock));
985 	best_error_ppm = 1000000;
986 
987 	/*
988 	 * Based on hardware doc, the n always set to 1, and m1 always
989 	 * set to 2.  If requires to support 200Mhz refclk, we need to
990 	 * revisit this because n may not 1 anymore.
991 	 */
992 	clock.n = 1, clock.m1 = 2;
993 	target *= 5;	/* fast clock */
994 
995 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
996 		for (clock.p2 = limit->p2.p2_fast;
997 				clock.p2 >= limit->p2.p2_slow;
998 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
999 			unsigned int error_ppm;
1000 
1001 			clock.p = clock.p1 * clock.p2;
1002 
1003 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
1004 						   refclk * clock.m1);
1005 
1006 			if (m2 > INT_MAX/clock.m1)
1007 				continue;
1008 
1009 			clock.m2 = m2;
1010 
1011 			chv_calc_dpll_params(refclk, &clock);
1012 
1013 			if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
1014 				continue;
1015 
1016 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1017 						best_error_ppm, &error_ppm))
1018 				continue;
1019 
1020 			*best_clock = clock;
1021 			best_error_ppm = error_ppm;
1022 			found = true;
1023 		}
1024 	}
1025 
1026 	return found;
1027 }
1028 
1029 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1030 			struct dpll *best_clock)
1031 {
1032 	int refclk = 100000;
1033 	const struct intel_limit *limit = &intel_limits_bxt;
1034 
1035 	return chv_find_best_dpll(limit, crtc_state,
1036 				  crtc_state->port_clock, refclk,
1037 				  NULL, best_clock);
1038 }
1039 
1040 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1041 				    enum pipe pipe)
1042 {
1043 	i915_reg_t reg = PIPEDSL(pipe);
1044 	u32 line1, line2;
1045 	u32 line_mask;
1046 
1047 	if (IS_GEN(dev_priv, 2))
1048 		line_mask = DSL_LINEMASK_GEN2;
1049 	else
1050 		line_mask = DSL_LINEMASK_GEN3;
1051 
1052 	line1 = I915_READ(reg) & line_mask;
1053 	msleep(5);
1054 	line2 = I915_READ(reg) & line_mask;
1055 
1056 	return line1 != line2;
1057 }
1058 
1059 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1060 {
1061 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1062 	enum pipe pipe = crtc->pipe;
1063 
1064 	/* Wait for the display line to settle/start moving */
1065 	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1066 		DRM_ERROR("pipe %c scanline %s wait timed out\n",
1067 			  pipe_name(pipe), onoff(state));
1068 }
1069 
1070 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1071 {
1072 	wait_for_pipe_scanline_moving(crtc, false);
1073 }
1074 
1075 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1076 {
1077 	wait_for_pipe_scanline_moving(crtc, true);
1078 }
1079 
1080 static void
1081 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1082 {
1083 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1084 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1085 
1086 	if (INTEL_GEN(dev_priv) >= 4) {
1087 		enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1088 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1089 
1090 		/* Wait for the Pipe State to go off */
1091 		if (intel_de_wait_for_clear(dev_priv, reg,
1092 					    I965_PIPECONF_ACTIVE, 100))
1093 			WARN(1, "pipe_off wait timed out\n");
1094 	} else {
1095 		intel_wait_for_pipe_scanline_stopped(crtc);
1096 	}
1097 }
1098 
1099 /* Only for pre-ILK configs */
1100 void assert_pll(struct drm_i915_private *dev_priv,
1101 		enum pipe pipe, bool state)
1102 {
1103 	u32 val;
1104 	bool cur_state;
1105 
1106 	val = I915_READ(DPLL(pipe));
1107 	cur_state = !!(val & DPLL_VCO_ENABLE);
1108 	I915_STATE_WARN(cur_state != state,
1109 	     "PLL state assertion failure (expected %s, current %s)\n",
1110 			onoff(state), onoff(cur_state));
1111 }
1112 
1113 /* XXX: the dsi pll is shared between MIPI DSI ports */
1114 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1115 {
1116 	u32 val;
1117 	bool cur_state;
1118 
1119 	vlv_cck_get(dev_priv);
1120 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1121 	vlv_cck_put(dev_priv);
1122 
1123 	cur_state = val & DSI_PLL_VCO_EN;
1124 	I915_STATE_WARN(cur_state != state,
1125 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1126 			onoff(state), onoff(cur_state));
1127 }
1128 
1129 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1130 			  enum pipe pipe, bool state)
1131 {
1132 	bool cur_state;
1133 
1134 	if (HAS_DDI(dev_priv)) {
1135 		/*
1136 		 * DDI does not have a specific FDI_TX register.
1137 		 *
1138 		 * FDI is never fed from EDP transcoder
1139 		 * so pipe->transcoder cast is fine here.
1140 		 */
1141 		enum transcoder cpu_transcoder = (enum transcoder)pipe;
1142 		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1143 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1144 	} else {
1145 		u32 val = I915_READ(FDI_TX_CTL(pipe));
1146 		cur_state = !!(val & FDI_TX_ENABLE);
1147 	}
1148 	I915_STATE_WARN(cur_state != state,
1149 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1150 			onoff(state), onoff(cur_state));
1151 }
1152 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1153 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1154 
1155 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1156 			  enum pipe pipe, bool state)
1157 {
1158 	u32 val;
1159 	bool cur_state;
1160 
1161 	val = I915_READ(FDI_RX_CTL(pipe));
1162 	cur_state = !!(val & FDI_RX_ENABLE);
1163 	I915_STATE_WARN(cur_state != state,
1164 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1165 			onoff(state), onoff(cur_state));
1166 }
1167 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1168 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1169 
1170 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1171 				      enum pipe pipe)
1172 {
1173 	u32 val;
1174 
1175 	/* ILK FDI PLL is always enabled */
1176 	if (IS_GEN(dev_priv, 5))
1177 		return;
1178 
1179 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180 	if (HAS_DDI(dev_priv))
1181 		return;
1182 
1183 	val = I915_READ(FDI_TX_CTL(pipe));
1184 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1185 }
1186 
1187 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1188 		       enum pipe pipe, bool state)
1189 {
1190 	u32 val;
1191 	bool cur_state;
1192 
1193 	val = I915_READ(FDI_RX_CTL(pipe));
1194 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1195 	I915_STATE_WARN(cur_state != state,
1196 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1197 			onoff(state), onoff(cur_state));
1198 }
1199 
1200 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1201 {
1202 	i915_reg_t pp_reg;
1203 	u32 val;
1204 	enum pipe panel_pipe = INVALID_PIPE;
1205 	bool locked = true;
1206 
1207 	if (WARN_ON(HAS_DDI(dev_priv)))
1208 		return;
1209 
1210 	if (HAS_PCH_SPLIT(dev_priv)) {
1211 		u32 port_sel;
1212 
1213 		pp_reg = PP_CONTROL(0);
1214 		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1215 
1216 		switch (port_sel) {
1217 		case PANEL_PORT_SELECT_LVDS:
1218 			intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1219 			break;
1220 		case PANEL_PORT_SELECT_DPA:
1221 			intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1222 			break;
1223 		case PANEL_PORT_SELECT_DPC:
1224 			intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1225 			break;
1226 		case PANEL_PORT_SELECT_DPD:
1227 			intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1228 			break;
1229 		default:
1230 			MISSING_CASE(port_sel);
1231 			break;
1232 		}
1233 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1234 		/* presumably write lock depends on pipe, not port select */
1235 		pp_reg = PP_CONTROL(pipe);
1236 		panel_pipe = pipe;
1237 	} else {
1238 		u32 port_sel;
1239 
1240 		pp_reg = PP_CONTROL(0);
1241 		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1242 
1243 		WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS);
1244 		intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1245 	}
1246 
1247 	val = I915_READ(pp_reg);
1248 	if (!(val & PANEL_POWER_ON) ||
1249 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1250 		locked = false;
1251 
1252 	I915_STATE_WARN(panel_pipe == pipe && locked,
1253 	     "panel assertion failure, pipe %c regs locked\n",
1254 	     pipe_name(pipe));
1255 }
1256 
1257 void assert_pipe(struct drm_i915_private *dev_priv,
1258 		 enum transcoder cpu_transcoder, bool state)
1259 {
1260 	bool cur_state;
1261 	enum intel_display_power_domain power_domain;
1262 	intel_wakeref_t wakeref;
1263 
1264 	/* we keep both pipes enabled on 830 */
1265 	if (IS_I830(dev_priv))
1266 		state = true;
1267 
1268 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1269 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1270 	if (wakeref) {
1271 		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1272 		cur_state = !!(val & PIPECONF_ENABLE);
1273 
1274 		intel_display_power_put(dev_priv, power_domain, wakeref);
1275 	} else {
1276 		cur_state = false;
1277 	}
1278 
1279 	I915_STATE_WARN(cur_state != state,
1280 			"transcoder %s assertion failure (expected %s, current %s)\n",
1281 			transcoder_name(cpu_transcoder),
1282 			onoff(state), onoff(cur_state));
1283 }
1284 
1285 static void assert_plane(struct intel_plane *plane, bool state)
1286 {
1287 	enum pipe pipe;
1288 	bool cur_state;
1289 
1290 	cur_state = plane->get_hw_state(plane, &pipe);
1291 
1292 	I915_STATE_WARN(cur_state != state,
1293 			"%s assertion failure (expected %s, current %s)\n",
1294 			plane->base.name, onoff(state), onoff(cur_state));
1295 }
1296 
1297 #define assert_plane_enabled(p) assert_plane(p, true)
1298 #define assert_plane_disabled(p) assert_plane(p, false)
1299 
1300 static void assert_planes_disabled(struct intel_crtc *crtc)
1301 {
1302 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1303 	struct intel_plane *plane;
1304 
1305 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1306 		assert_plane_disabled(plane);
1307 }
1308 
1309 static void assert_vblank_disabled(struct drm_crtc *crtc)
1310 {
1311 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1312 		drm_crtc_vblank_put(crtc);
1313 }
1314 
1315 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1316 				    enum pipe pipe)
1317 {
1318 	u32 val;
1319 	bool enabled;
1320 
1321 	val = I915_READ(PCH_TRANSCONF(pipe));
1322 	enabled = !!(val & TRANS_ENABLE);
1323 	I915_STATE_WARN(enabled,
1324 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1325 	     pipe_name(pipe));
1326 }
1327 
1328 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1329 				   enum pipe pipe, enum port port,
1330 				   i915_reg_t dp_reg)
1331 {
1332 	enum pipe port_pipe;
1333 	bool state;
1334 
1335 	state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1336 
1337 	I915_STATE_WARN(state && port_pipe == pipe,
1338 			"PCH DP %c enabled on transcoder %c, should be disabled\n",
1339 			port_name(port), pipe_name(pipe));
1340 
1341 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1342 			"IBX PCH DP %c still using transcoder B\n",
1343 			port_name(port));
1344 }
1345 
1346 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1347 				     enum pipe pipe, enum port port,
1348 				     i915_reg_t hdmi_reg)
1349 {
1350 	enum pipe port_pipe;
1351 	bool state;
1352 
1353 	state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1354 
1355 	I915_STATE_WARN(state && port_pipe == pipe,
1356 			"PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1357 			port_name(port), pipe_name(pipe));
1358 
1359 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1360 			"IBX PCH HDMI %c still using transcoder B\n",
1361 			port_name(port));
1362 }
1363 
1364 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1365 				      enum pipe pipe)
1366 {
1367 	enum pipe port_pipe;
1368 
1369 	assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1370 	assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1371 	assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1372 
1373 	I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1374 			port_pipe == pipe,
1375 			"PCH VGA enabled on transcoder %c, should be disabled\n",
1376 			pipe_name(pipe));
1377 
1378 	I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1379 			port_pipe == pipe,
1380 			"PCH LVDS enabled on transcoder %c, should be disabled\n",
1381 			pipe_name(pipe));
1382 
1383 	/* PCH SDVOB multiplex with HDMIB */
1384 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1385 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1386 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1387 }
1388 
1389 static void _vlv_enable_pll(struct intel_crtc *crtc,
1390 			    const struct intel_crtc_state *pipe_config)
1391 {
1392 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1393 	enum pipe pipe = crtc->pipe;
1394 
1395 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1396 	POSTING_READ(DPLL(pipe));
1397 	udelay(150);
1398 
1399 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1400 		DRM_ERROR("DPLL %d failed to lock\n", pipe);
1401 }
1402 
1403 static void vlv_enable_pll(struct intel_crtc *crtc,
1404 			   const struct intel_crtc_state *pipe_config)
1405 {
1406 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1407 	enum pipe pipe = crtc->pipe;
1408 
1409 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1410 
1411 	/* PLL is protected by panel, make sure we can write it */
1412 	assert_panel_unlocked(dev_priv, pipe);
1413 
1414 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1415 		_vlv_enable_pll(crtc, pipe_config);
1416 
1417 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1418 	POSTING_READ(DPLL_MD(pipe));
1419 }
1420 
1421 
1422 static void _chv_enable_pll(struct intel_crtc *crtc,
1423 			    const struct intel_crtc_state *pipe_config)
1424 {
1425 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1426 	enum pipe pipe = crtc->pipe;
1427 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1428 	u32 tmp;
1429 
1430 	vlv_dpio_get(dev_priv);
1431 
1432 	/* Enable back the 10bit clock to display controller */
1433 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1434 	tmp |= DPIO_DCLKP_EN;
1435 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1436 
1437 	vlv_dpio_put(dev_priv);
1438 
1439 	/*
1440 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1441 	 */
1442 	udelay(1);
1443 
1444 	/* Enable PLL */
1445 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1446 
1447 	/* Check PLL is locked */
1448 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1449 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1450 }
1451 
1452 static void chv_enable_pll(struct intel_crtc *crtc,
1453 			   const struct intel_crtc_state *pipe_config)
1454 {
1455 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1456 	enum pipe pipe = crtc->pipe;
1457 
1458 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1459 
1460 	/* PLL is protected by panel, make sure we can write it */
1461 	assert_panel_unlocked(dev_priv, pipe);
1462 
1463 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1464 		_chv_enable_pll(crtc, pipe_config);
1465 
1466 	if (pipe != PIPE_A) {
1467 		/*
1468 		 * WaPixelRepeatModeFixForC0:chv
1469 		 *
1470 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1471 		 * the value from DPLLBMD to either pipe B or C.
1472 		 */
1473 		I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1474 		I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1475 		I915_WRITE(CBR4_VLV, 0);
1476 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1477 
1478 		/*
1479 		 * DPLLB VGA mode also seems to cause problems.
1480 		 * We should always have it disabled.
1481 		 */
1482 		WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1483 	} else {
1484 		I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1485 		POSTING_READ(DPLL_MD(pipe));
1486 	}
1487 }
1488 
1489 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1490 {
1491 	if (IS_I830(dev_priv))
1492 		return false;
1493 
1494 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1495 }
1496 
1497 static void i9xx_enable_pll(struct intel_crtc *crtc,
1498 			    const struct intel_crtc_state *crtc_state)
1499 {
1500 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1501 	i915_reg_t reg = DPLL(crtc->pipe);
1502 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1503 	int i;
1504 
1505 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1506 
1507 	/* PLL is protected by panel, make sure we can write it */
1508 	if (i9xx_has_pps(dev_priv))
1509 		assert_panel_unlocked(dev_priv, crtc->pipe);
1510 
1511 	/*
1512 	 * Apparently we need to have VGA mode enabled prior to changing
1513 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1514 	 * dividers, even though the register value does change.
1515 	 */
1516 	I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS);
1517 	I915_WRITE(reg, dpll);
1518 
1519 	/* Wait for the clocks to stabilize. */
1520 	POSTING_READ(reg);
1521 	udelay(150);
1522 
1523 	if (INTEL_GEN(dev_priv) >= 4) {
1524 		I915_WRITE(DPLL_MD(crtc->pipe),
1525 			   crtc_state->dpll_hw_state.dpll_md);
1526 	} else {
1527 		/* The pixel multiplier can only be updated once the
1528 		 * DPLL is enabled and the clocks are stable.
1529 		 *
1530 		 * So write it again.
1531 		 */
1532 		I915_WRITE(reg, dpll);
1533 	}
1534 
1535 	/* We do this three times for luck */
1536 	for (i = 0; i < 3; i++) {
1537 		I915_WRITE(reg, dpll);
1538 		POSTING_READ(reg);
1539 		udelay(150); /* wait for warmup */
1540 	}
1541 }
1542 
1543 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1544 {
1545 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1546 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1547 	enum pipe pipe = crtc->pipe;
1548 
1549 	/* Don't disable pipe or pipe PLLs if needed */
1550 	if (IS_I830(dev_priv))
1551 		return;
1552 
1553 	/* Make sure the pipe isn't still relying on us */
1554 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1555 
1556 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1557 	POSTING_READ(DPLL(pipe));
1558 }
1559 
1560 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1561 {
1562 	u32 val;
1563 
1564 	/* Make sure the pipe isn't still relying on us */
1565 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1566 
1567 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1568 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1569 	if (pipe != PIPE_A)
1570 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1571 
1572 	I915_WRITE(DPLL(pipe), val);
1573 	POSTING_READ(DPLL(pipe));
1574 }
1575 
1576 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1577 {
1578 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1579 	u32 val;
1580 
1581 	/* Make sure the pipe isn't still relying on us */
1582 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1583 
1584 	val = DPLL_SSC_REF_CLK_CHV |
1585 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1586 	if (pipe != PIPE_A)
1587 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1588 
1589 	I915_WRITE(DPLL(pipe), val);
1590 	POSTING_READ(DPLL(pipe));
1591 
1592 	vlv_dpio_get(dev_priv);
1593 
1594 	/* Disable 10bit clock to display controller */
1595 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1596 	val &= ~DPIO_DCLKP_EN;
1597 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1598 
1599 	vlv_dpio_put(dev_priv);
1600 }
1601 
1602 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1603 			 struct intel_digital_port *dport,
1604 			 unsigned int expected_mask)
1605 {
1606 	u32 port_mask;
1607 	i915_reg_t dpll_reg;
1608 
1609 	switch (dport->base.port) {
1610 	case PORT_B:
1611 		port_mask = DPLL_PORTB_READY_MASK;
1612 		dpll_reg = DPLL(0);
1613 		break;
1614 	case PORT_C:
1615 		port_mask = DPLL_PORTC_READY_MASK;
1616 		dpll_reg = DPLL(0);
1617 		expected_mask <<= 4;
1618 		break;
1619 	case PORT_D:
1620 		port_mask = DPLL_PORTD_READY_MASK;
1621 		dpll_reg = DPIO_PHY_STATUS;
1622 		break;
1623 	default:
1624 		BUG();
1625 	}
1626 
1627 	if (intel_de_wait_for_register(dev_priv, dpll_reg,
1628 				       port_mask, expected_mask, 1000))
1629 		WARN(1, "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1630 		     dport->base.base.base.id, dport->base.base.name,
1631 		     I915_READ(dpll_reg) & port_mask, expected_mask);
1632 }
1633 
1634 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1635 {
1636 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1637 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1638 	enum pipe pipe = crtc->pipe;
1639 	i915_reg_t reg;
1640 	u32 val, pipeconf_val;
1641 
1642 	/* Make sure PCH DPLL is enabled */
1643 	assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1644 
1645 	/* FDI must be feeding us bits for PCH ports */
1646 	assert_fdi_tx_enabled(dev_priv, pipe);
1647 	assert_fdi_rx_enabled(dev_priv, pipe);
1648 
1649 	if (HAS_PCH_CPT(dev_priv)) {
1650 		reg = TRANS_CHICKEN2(pipe);
1651 		val = I915_READ(reg);
1652 		/*
1653 		 * Workaround: Set the timing override bit
1654 		 * before enabling the pch transcoder.
1655 		 */
1656 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1657 		/* Configure frame start delay to match the CPU */
1658 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1659 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1660 		I915_WRITE(reg, val);
1661 	}
1662 
1663 	reg = PCH_TRANSCONF(pipe);
1664 	val = I915_READ(reg);
1665 	pipeconf_val = I915_READ(PIPECONF(pipe));
1666 
1667 	if (HAS_PCH_IBX(dev_priv)) {
1668 		/* Configure frame start delay to match the CPU */
1669 		val &= ~TRANS_FRAME_START_DELAY_MASK;
1670 		val |= TRANS_FRAME_START_DELAY(0);
1671 
1672 		/*
1673 		 * Make the BPC in transcoder be consistent with
1674 		 * that in pipeconf reg. For HDMI we must use 8bpc
1675 		 * here for both 8bpc and 12bpc.
1676 		 */
1677 		val &= ~PIPECONF_BPC_MASK;
1678 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1679 			val |= PIPECONF_8BPC;
1680 		else
1681 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1682 	}
1683 
1684 	val &= ~TRANS_INTERLACE_MASK;
1685 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1686 		if (HAS_PCH_IBX(dev_priv) &&
1687 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1688 			val |= TRANS_LEGACY_INTERLACED_ILK;
1689 		else
1690 			val |= TRANS_INTERLACED;
1691 	} else {
1692 		val |= TRANS_PROGRESSIVE;
1693 	}
1694 
1695 	I915_WRITE(reg, val | TRANS_ENABLE);
1696 	if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1697 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1698 }
1699 
1700 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1701 				      enum transcoder cpu_transcoder)
1702 {
1703 	u32 val, pipeconf_val;
1704 
1705 	/* FDI must be feeding us bits for PCH ports */
1706 	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1707 	assert_fdi_rx_enabled(dev_priv, PIPE_A);
1708 
1709 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1710 	/* Workaround: set timing override bit. */
1711 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1712 	/* Configure frame start delay to match the CPU */
1713 	val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1714 	val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1715 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1716 
1717 	val = TRANS_ENABLE;
1718 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1719 
1720 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1721 	    PIPECONF_INTERLACED_ILK)
1722 		val |= TRANS_INTERLACED;
1723 	else
1724 		val |= TRANS_PROGRESSIVE;
1725 
1726 	I915_WRITE(LPT_TRANSCONF, val);
1727 	if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1728 				  TRANS_STATE_ENABLE, 100))
1729 		DRM_ERROR("Failed to enable PCH transcoder\n");
1730 }
1731 
1732 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1733 				       enum pipe pipe)
1734 {
1735 	i915_reg_t reg;
1736 	u32 val;
1737 
1738 	/* FDI relies on the transcoder */
1739 	assert_fdi_tx_disabled(dev_priv, pipe);
1740 	assert_fdi_rx_disabled(dev_priv, pipe);
1741 
1742 	/* Ports must be off as well */
1743 	assert_pch_ports_disabled(dev_priv, pipe);
1744 
1745 	reg = PCH_TRANSCONF(pipe);
1746 	val = I915_READ(reg);
1747 	val &= ~TRANS_ENABLE;
1748 	I915_WRITE(reg, val);
1749 	/* wait for PCH transcoder off, transcoder state */
1750 	if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1751 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1752 
1753 	if (HAS_PCH_CPT(dev_priv)) {
1754 		/* Workaround: Clear the timing override chicken bit again. */
1755 		reg = TRANS_CHICKEN2(pipe);
1756 		val = I915_READ(reg);
1757 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1758 		I915_WRITE(reg, val);
1759 	}
1760 }
1761 
1762 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1763 {
1764 	u32 val;
1765 
1766 	val = I915_READ(LPT_TRANSCONF);
1767 	val &= ~TRANS_ENABLE;
1768 	I915_WRITE(LPT_TRANSCONF, val);
1769 	/* wait for PCH transcoder off, transcoder state */
1770 	if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1771 				    TRANS_STATE_ENABLE, 50))
1772 		DRM_ERROR("Failed to disable PCH transcoder\n");
1773 
1774 	/* Workaround: clear timing override bit. */
1775 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1776 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1777 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1778 }
1779 
1780 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1781 {
1782 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1783 
1784 	if (HAS_PCH_LPT(dev_priv))
1785 		return PIPE_A;
1786 	else
1787 		return crtc->pipe;
1788 }
1789 
1790 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1791 {
1792 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1793 
1794 	/*
1795 	 * On i965gm the hardware frame counter reads
1796 	 * zero when the TV encoder is enabled :(
1797 	 */
1798 	if (IS_I965GM(dev_priv) &&
1799 	    (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1800 		return 0;
1801 
1802 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1803 		return 0xffffffff; /* full 32 bit counter */
1804 	else if (INTEL_GEN(dev_priv) >= 3)
1805 		return 0xffffff; /* only 24 bits of frame count */
1806 	else
1807 		return 0; /* Gen2 doesn't have a hardware frame counter */
1808 }
1809 
1810 static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1811 {
1812 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1813 
1814 	assert_vblank_disabled(&crtc->base);
1815 	drm_crtc_set_max_vblank_count(&crtc->base,
1816 				      intel_crtc_max_vblank_count(crtc_state));
1817 	drm_crtc_vblank_on(&crtc->base);
1818 }
1819 
1820 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
1821 {
1822 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1823 
1824 	drm_crtc_vblank_off(&crtc->base);
1825 	assert_vblank_disabled(&crtc->base);
1826 }
1827 
1828 static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1829 {
1830 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1831 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1832 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1833 	enum pipe pipe = crtc->pipe;
1834 	i915_reg_t reg;
1835 	u32 val;
1836 
1837 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1838 
1839 	assert_planes_disabled(crtc);
1840 
1841 	/*
1842 	 * A pipe without a PLL won't actually be able to drive bits from
1843 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1844 	 * need the check.
1845 	 */
1846 	if (HAS_GMCH(dev_priv)) {
1847 		if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1848 			assert_dsi_pll_enabled(dev_priv);
1849 		else
1850 			assert_pll_enabled(dev_priv, pipe);
1851 	} else {
1852 		if (new_crtc_state->has_pch_encoder) {
1853 			/* if driving the PCH, we need FDI enabled */
1854 			assert_fdi_rx_pll_enabled(dev_priv,
1855 						  intel_crtc_pch_transcoder(crtc));
1856 			assert_fdi_tx_pll_enabled(dev_priv,
1857 						  (enum pipe) cpu_transcoder);
1858 		}
1859 		/* FIXME: assert CPU port conditions for SNB+ */
1860 	}
1861 
1862 	trace_intel_pipe_enable(crtc);
1863 
1864 	reg = PIPECONF(cpu_transcoder);
1865 	val = I915_READ(reg);
1866 	if (val & PIPECONF_ENABLE) {
1867 		/* we keep both pipes enabled on 830 */
1868 		WARN_ON(!IS_I830(dev_priv));
1869 		return;
1870 	}
1871 
1872 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1873 	POSTING_READ(reg);
1874 
1875 	/*
1876 	 * Until the pipe starts PIPEDSL reads will return a stale value,
1877 	 * which causes an apparent vblank timestamp jump when PIPEDSL
1878 	 * resets to its proper value. That also messes up the frame count
1879 	 * when it's derived from the timestamps. So let's wait for the
1880 	 * pipe to start properly before we call drm_crtc_vblank_on()
1881 	 */
1882 	if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1883 		intel_wait_for_pipe_scanline_moving(crtc);
1884 }
1885 
1886 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1887 {
1888 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1889 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1890 	enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1891 	enum pipe pipe = crtc->pipe;
1892 	i915_reg_t reg;
1893 	u32 val;
1894 
1895 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1896 
1897 	/*
1898 	 * Make sure planes won't keep trying to pump pixels to us,
1899 	 * or we might hang the display.
1900 	 */
1901 	assert_planes_disabled(crtc);
1902 
1903 	trace_intel_pipe_disable(crtc);
1904 
1905 	reg = PIPECONF(cpu_transcoder);
1906 	val = I915_READ(reg);
1907 	if ((val & PIPECONF_ENABLE) == 0)
1908 		return;
1909 
1910 	/*
1911 	 * Double wide has implications for planes
1912 	 * so best keep it disabled when not needed.
1913 	 */
1914 	if (old_crtc_state->double_wide)
1915 		val &= ~PIPECONF_DOUBLE_WIDE;
1916 
1917 	/* Don't disable pipe or pipe PLLs if needed */
1918 	if (!IS_I830(dev_priv))
1919 		val &= ~PIPECONF_ENABLE;
1920 
1921 	I915_WRITE(reg, val);
1922 	if ((val & PIPECONF_ENABLE) == 0)
1923 		intel_wait_for_pipe_off(old_crtc_state);
1924 }
1925 
1926 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1927 {
1928 	return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1929 }
1930 
1931 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane)
1932 {
1933 	if (!is_ccs_modifier(fb->modifier))
1934 		return false;
1935 
1936 	return plane >= fb->format->num_planes / 2;
1937 }
1938 
1939 static bool is_gen12_ccs_modifier(u64 modifier)
1940 {
1941 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
1942 	       modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
1943 
1944 }
1945 
1946 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane)
1947 {
1948 	return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane);
1949 }
1950 
1951 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane)
1952 {
1953 	if (is_ccs_modifier(fb->modifier))
1954 		return is_ccs_plane(fb, plane);
1955 
1956 	return plane == 1;
1957 }
1958 
1959 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane)
1960 {
1961 	WARN_ON(!is_ccs_modifier(fb->modifier) ||
1962 		(main_plane && main_plane >= fb->format->num_planes / 2));
1963 
1964 	return fb->format->num_planes / 2 + main_plane;
1965 }
1966 
1967 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane)
1968 {
1969 	WARN_ON(!is_ccs_modifier(fb->modifier) ||
1970 		ccs_plane < fb->format->num_planes / 2);
1971 
1972 	return ccs_plane - fb->format->num_planes / 2;
1973 }
1974 
1975 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */
1976 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane)
1977 {
1978 	if (is_ccs_modifier(fb->modifier))
1979 		return main_to_ccs_plane(fb, main_plane);
1980 
1981 	return 1;
1982 }
1983 
1984 bool
1985 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info,
1986 				    uint64_t modifier)
1987 {
1988 	return info->is_yuv &&
1989 	       info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2);
1990 }
1991 
1992 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb,
1993 				   int color_plane)
1994 {
1995 	return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
1996 	       color_plane == 1;
1997 }
1998 
1999 static unsigned int
2000 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
2001 {
2002 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2003 	unsigned int cpp = fb->format->cpp[color_plane];
2004 
2005 	switch (fb->modifier) {
2006 	case DRM_FORMAT_MOD_LINEAR:
2007 		return intel_tile_size(dev_priv);
2008 	case I915_FORMAT_MOD_X_TILED:
2009 		if (IS_GEN(dev_priv, 2))
2010 			return 128;
2011 		else
2012 			return 512;
2013 	case I915_FORMAT_MOD_Y_TILED_CCS:
2014 		if (is_ccs_plane(fb, color_plane))
2015 			return 128;
2016 		/* fall through */
2017 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2018 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2019 		if (is_ccs_plane(fb, color_plane))
2020 			return 64;
2021 		/* fall through */
2022 	case I915_FORMAT_MOD_Y_TILED:
2023 		if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
2024 			return 128;
2025 		else
2026 			return 512;
2027 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2028 		if (is_ccs_plane(fb, color_plane))
2029 			return 128;
2030 		/* fall through */
2031 	case I915_FORMAT_MOD_Yf_TILED:
2032 		switch (cpp) {
2033 		case 1:
2034 			return 64;
2035 		case 2:
2036 		case 4:
2037 			return 128;
2038 		case 8:
2039 		case 16:
2040 			return 256;
2041 		default:
2042 			MISSING_CASE(cpp);
2043 			return cpp;
2044 		}
2045 		break;
2046 	default:
2047 		MISSING_CASE(fb->modifier);
2048 		return cpp;
2049 	}
2050 }
2051 
2052 static unsigned int
2053 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
2054 {
2055 	if (is_gen12_ccs_plane(fb, color_plane))
2056 		return 1;
2057 
2058 	return intel_tile_size(to_i915(fb->dev)) /
2059 		intel_tile_width_bytes(fb, color_plane);
2060 }
2061 
2062 /* Return the tile dimensions in pixel units */
2063 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
2064 			    unsigned int *tile_width,
2065 			    unsigned int *tile_height)
2066 {
2067 	unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
2068 	unsigned int cpp = fb->format->cpp[color_plane];
2069 
2070 	*tile_width = tile_width_bytes / cpp;
2071 	*tile_height = intel_tile_height(fb, color_plane);
2072 }
2073 
2074 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb,
2075 					int color_plane)
2076 {
2077 	unsigned int tile_width, tile_height;
2078 
2079 	intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2080 
2081 	return fb->pitches[color_plane] * tile_height;
2082 }
2083 
2084 unsigned int
2085 intel_fb_align_height(const struct drm_framebuffer *fb,
2086 		      int color_plane, unsigned int height)
2087 {
2088 	unsigned int tile_height = intel_tile_height(fb, color_plane);
2089 
2090 	return ALIGN(height, tile_height);
2091 }
2092 
2093 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2094 {
2095 	unsigned int size = 0;
2096 	int i;
2097 
2098 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2099 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2100 
2101 	return size;
2102 }
2103 
2104 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2105 {
2106 	unsigned int size = 0;
2107 	int i;
2108 
2109 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2110 		size += rem_info->plane[i].width * rem_info->plane[i].height;
2111 
2112 	return size;
2113 }
2114 
2115 static void
2116 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2117 			const struct drm_framebuffer *fb,
2118 			unsigned int rotation)
2119 {
2120 	view->type = I915_GGTT_VIEW_NORMAL;
2121 	if (drm_rotation_90_or_270(rotation)) {
2122 		view->type = I915_GGTT_VIEW_ROTATED;
2123 		view->rotated = to_intel_framebuffer(fb)->rot_info;
2124 	}
2125 }
2126 
2127 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2128 {
2129 	if (IS_I830(dev_priv))
2130 		return 16 * 1024;
2131 	else if (IS_I85X(dev_priv))
2132 		return 256;
2133 	else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2134 		return 32;
2135 	else
2136 		return 4 * 1024;
2137 }
2138 
2139 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2140 {
2141 	if (INTEL_GEN(dev_priv) >= 9)
2142 		return 256 * 1024;
2143 	else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2144 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2145 		return 128 * 1024;
2146 	else if (INTEL_GEN(dev_priv) >= 4)
2147 		return 4 * 1024;
2148 	else
2149 		return 0;
2150 }
2151 
2152 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2153 					 int color_plane)
2154 {
2155 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2156 
2157 	/* AUX_DIST needs only 4K alignment */
2158 	if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) ||
2159 	    is_ccs_plane(fb, color_plane))
2160 		return 4096;
2161 
2162 	switch (fb->modifier) {
2163 	case DRM_FORMAT_MOD_LINEAR:
2164 		return intel_linear_alignment(dev_priv);
2165 	case I915_FORMAT_MOD_X_TILED:
2166 		if (INTEL_GEN(dev_priv) >= 9)
2167 			return 256 * 1024;
2168 		return 0;
2169 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2170 		if (is_semiplanar_uv_plane(fb, color_plane))
2171 			return intel_tile_row_size(fb, color_plane);
2172 		/* Fall-through */
2173 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2174 		return 16 * 1024;
2175 	case I915_FORMAT_MOD_Y_TILED_CCS:
2176 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2177 	case I915_FORMAT_MOD_Y_TILED:
2178 		if (INTEL_GEN(dev_priv) >= 12 &&
2179 		    is_semiplanar_uv_plane(fb, color_plane))
2180 			return intel_tile_row_size(fb, color_plane);
2181 		/* Fall-through */
2182 	case I915_FORMAT_MOD_Yf_TILED:
2183 		return 1 * 1024 * 1024;
2184 	default:
2185 		MISSING_CASE(fb->modifier);
2186 		return 0;
2187 	}
2188 }
2189 
2190 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2191 {
2192 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2193 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2194 
2195 	return INTEL_GEN(dev_priv) < 4 ||
2196 		(plane->has_fbc &&
2197 		 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2198 }
2199 
2200 struct i915_vma *
2201 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2202 			   const struct i915_ggtt_view *view,
2203 			   bool uses_fence,
2204 			   unsigned long *out_flags)
2205 {
2206 	struct drm_device *dev = fb->dev;
2207 	struct drm_i915_private *dev_priv = to_i915(dev);
2208 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2209 	intel_wakeref_t wakeref;
2210 	struct i915_vma *vma;
2211 	unsigned int pinctl;
2212 	u32 alignment;
2213 
2214 	if (WARN_ON(!i915_gem_object_is_framebuffer(obj)))
2215 		return ERR_PTR(-EINVAL);
2216 
2217 	alignment = intel_surf_alignment(fb, 0);
2218 	if (WARN_ON(alignment && !is_power_of_2(alignment)))
2219 		return ERR_PTR(-EINVAL);
2220 
2221 	/* Note that the w/a also requires 64 PTE of padding following the
2222 	 * bo. We currently fill all unused PTE with the shadow page and so
2223 	 * we should always have valid PTE following the scanout preventing
2224 	 * the VT-d warning.
2225 	 */
2226 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2227 		alignment = 256 * 1024;
2228 
2229 	/*
2230 	 * Global gtt pte registers are special registers which actually forward
2231 	 * writes to a chunk of system memory. Which means that there is no risk
2232 	 * that the register values disappear as soon as we call
2233 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2234 	 * pin/unpin/fence and not more.
2235 	 */
2236 	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2237 
2238 	atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2239 
2240 	/*
2241 	 * Valleyview is definitely limited to scanning out the first
2242 	 * 512MiB. Lets presume this behaviour was inherited from the
2243 	 * g4x display engine and that all earlier gen are similarly
2244 	 * limited. Testing suggests that it is a little more
2245 	 * complicated than this. For example, Cherryview appears quite
2246 	 * happy to scanout from anywhere within its global aperture.
2247 	 */
2248 	pinctl = 0;
2249 	if (HAS_GMCH(dev_priv))
2250 		pinctl |= PIN_MAPPABLE;
2251 
2252 	vma = i915_gem_object_pin_to_display_plane(obj,
2253 						   alignment, view, pinctl);
2254 	if (IS_ERR(vma))
2255 		goto err;
2256 
2257 	if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2258 		int ret;
2259 
2260 		/*
2261 		 * Install a fence for tiled scan-out. Pre-i965 always needs a
2262 		 * fence, whereas 965+ only requires a fence if using
2263 		 * framebuffer compression.  For simplicity, we always, when
2264 		 * possible, install a fence as the cost is not that onerous.
2265 		 *
2266 		 * If we fail to fence the tiled scanout, then either the
2267 		 * modeset will reject the change (which is highly unlikely as
2268 		 * the affected systems, all but one, do not have unmappable
2269 		 * space) or we will not be able to enable full powersaving
2270 		 * techniques (also likely not to apply due to various limits
2271 		 * FBC and the like impose on the size of the buffer, which
2272 		 * presumably we violated anyway with this unmappable buffer).
2273 		 * Anyway, it is presumably better to stumble onwards with
2274 		 * something and try to run the system in a "less than optimal"
2275 		 * mode that matches the user configuration.
2276 		 */
2277 		ret = i915_vma_pin_fence(vma);
2278 		if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2279 			i915_gem_object_unpin_from_display_plane(vma);
2280 			vma = ERR_PTR(ret);
2281 			goto err;
2282 		}
2283 
2284 		if (ret == 0 && vma->fence)
2285 			*out_flags |= PLANE_HAS_FENCE;
2286 	}
2287 
2288 	i915_vma_get(vma);
2289 err:
2290 	atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2291 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2292 	return vma;
2293 }
2294 
2295 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2296 {
2297 	i915_gem_object_lock(vma->obj);
2298 	if (flags & PLANE_HAS_FENCE)
2299 		i915_vma_unpin_fence(vma);
2300 	i915_gem_object_unpin_from_display_plane(vma);
2301 	i915_gem_object_unlock(vma->obj);
2302 
2303 	i915_vma_put(vma);
2304 }
2305 
2306 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2307 			  unsigned int rotation)
2308 {
2309 	if (drm_rotation_90_or_270(rotation))
2310 		return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2311 	else
2312 		return fb->pitches[color_plane];
2313 }
2314 
2315 /*
2316  * Convert the x/y offsets into a linear offset.
2317  * Only valid with 0/180 degree rotation, which is fine since linear
2318  * offset is only used with linear buffers on pre-hsw and tiled buffers
2319  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2320  */
2321 u32 intel_fb_xy_to_linear(int x, int y,
2322 			  const struct intel_plane_state *state,
2323 			  int color_plane)
2324 {
2325 	const struct drm_framebuffer *fb = state->hw.fb;
2326 	unsigned int cpp = fb->format->cpp[color_plane];
2327 	unsigned int pitch = state->color_plane[color_plane].stride;
2328 
2329 	return y * pitch + x * cpp;
2330 }
2331 
2332 /*
2333  * Add the x/y offsets derived from fb->offsets[] to the user
2334  * specified plane src x/y offsets. The resulting x/y offsets
2335  * specify the start of scanout from the beginning of the gtt mapping.
2336  */
2337 void intel_add_fb_offsets(int *x, int *y,
2338 			  const struct intel_plane_state *state,
2339 			  int color_plane)
2340 
2341 {
2342 	*x += state->color_plane[color_plane].x;
2343 	*y += state->color_plane[color_plane].y;
2344 }
2345 
2346 static u32 intel_adjust_tile_offset(int *x, int *y,
2347 				    unsigned int tile_width,
2348 				    unsigned int tile_height,
2349 				    unsigned int tile_size,
2350 				    unsigned int pitch_tiles,
2351 				    u32 old_offset,
2352 				    u32 new_offset)
2353 {
2354 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2355 	unsigned int tiles;
2356 
2357 	WARN_ON(old_offset & (tile_size - 1));
2358 	WARN_ON(new_offset & (tile_size - 1));
2359 	WARN_ON(new_offset > old_offset);
2360 
2361 	tiles = (old_offset - new_offset) / tile_size;
2362 
2363 	*y += tiles / pitch_tiles * tile_height;
2364 	*x += tiles % pitch_tiles * tile_width;
2365 
2366 	/* minimize x in case it got needlessly big */
2367 	*y += *x / pitch_pixels * tile_height;
2368 	*x %= pitch_pixels;
2369 
2370 	return new_offset;
2371 }
2372 
2373 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane)
2374 {
2375 	return fb->modifier == DRM_FORMAT_MOD_LINEAR ||
2376 	       is_gen12_ccs_plane(fb, color_plane);
2377 }
2378 
2379 static u32 intel_adjust_aligned_offset(int *x, int *y,
2380 				       const struct drm_framebuffer *fb,
2381 				       int color_plane,
2382 				       unsigned int rotation,
2383 				       unsigned int pitch,
2384 				       u32 old_offset, u32 new_offset)
2385 {
2386 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2387 	unsigned int cpp = fb->format->cpp[color_plane];
2388 
2389 	WARN_ON(new_offset > old_offset);
2390 
2391 	if (!is_surface_linear(fb, color_plane)) {
2392 		unsigned int tile_size, tile_width, tile_height;
2393 		unsigned int pitch_tiles;
2394 
2395 		tile_size = intel_tile_size(dev_priv);
2396 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2397 
2398 		if (drm_rotation_90_or_270(rotation)) {
2399 			pitch_tiles = pitch / tile_height;
2400 			swap(tile_width, tile_height);
2401 		} else {
2402 			pitch_tiles = pitch / (tile_width * cpp);
2403 		}
2404 
2405 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2406 					 tile_size, pitch_tiles,
2407 					 old_offset, new_offset);
2408 	} else {
2409 		old_offset += *y * pitch + *x * cpp;
2410 
2411 		*y = (old_offset - new_offset) / pitch;
2412 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2413 	}
2414 
2415 	return new_offset;
2416 }
2417 
2418 /*
2419  * Adjust the tile offset by moving the difference into
2420  * the x/y offsets.
2421  */
2422 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2423 					     const struct intel_plane_state *state,
2424 					     int color_plane,
2425 					     u32 old_offset, u32 new_offset)
2426 {
2427 	return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane,
2428 					   state->hw.rotation,
2429 					   state->color_plane[color_plane].stride,
2430 					   old_offset, new_offset);
2431 }
2432 
2433 /*
2434  * Computes the aligned offset to the base tile and adjusts
2435  * x, y. bytes per pixel is assumed to be a power-of-two.
2436  *
2437  * In the 90/270 rotated case, x and y are assumed
2438  * to be already rotated to match the rotated GTT view, and
2439  * pitch is the tile_height aligned framebuffer height.
2440  *
2441  * This function is used when computing the derived information
2442  * under intel_framebuffer, so using any of that information
2443  * here is not allowed. Anything under drm_framebuffer can be
2444  * used. This is why the user has to pass in the pitch since it
2445  * is specified in the rotated orientation.
2446  */
2447 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2448 					int *x, int *y,
2449 					const struct drm_framebuffer *fb,
2450 					int color_plane,
2451 					unsigned int pitch,
2452 					unsigned int rotation,
2453 					u32 alignment)
2454 {
2455 	unsigned int cpp = fb->format->cpp[color_plane];
2456 	u32 offset, offset_aligned;
2457 
2458 	if (!is_surface_linear(fb, color_plane)) {
2459 		unsigned int tile_size, tile_width, tile_height;
2460 		unsigned int tile_rows, tiles, pitch_tiles;
2461 
2462 		tile_size = intel_tile_size(dev_priv);
2463 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2464 
2465 		if (drm_rotation_90_or_270(rotation)) {
2466 			pitch_tiles = pitch / tile_height;
2467 			swap(tile_width, tile_height);
2468 		} else {
2469 			pitch_tiles = pitch / (tile_width * cpp);
2470 		}
2471 
2472 		tile_rows = *y / tile_height;
2473 		*y %= tile_height;
2474 
2475 		tiles = *x / tile_width;
2476 		*x %= tile_width;
2477 
2478 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2479 
2480 		offset_aligned = offset;
2481 		if (alignment)
2482 			offset_aligned = rounddown(offset_aligned, alignment);
2483 
2484 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2485 					 tile_size, pitch_tiles,
2486 					 offset, offset_aligned);
2487 	} else {
2488 		offset = *y * pitch + *x * cpp;
2489 		offset_aligned = offset;
2490 		if (alignment) {
2491 			offset_aligned = rounddown(offset_aligned, alignment);
2492 			*y = (offset % alignment) / pitch;
2493 			*x = ((offset % alignment) - *y * pitch) / cpp;
2494 		} else {
2495 			*y = *x = 0;
2496 		}
2497 	}
2498 
2499 	return offset_aligned;
2500 }
2501 
2502 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2503 					      const struct intel_plane_state *state,
2504 					      int color_plane)
2505 {
2506 	struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane);
2507 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2508 	const struct drm_framebuffer *fb = state->hw.fb;
2509 	unsigned int rotation = state->hw.rotation;
2510 	int pitch = state->color_plane[color_plane].stride;
2511 	u32 alignment;
2512 
2513 	if (intel_plane->id == PLANE_CURSOR)
2514 		alignment = intel_cursor_alignment(dev_priv);
2515 	else
2516 		alignment = intel_surf_alignment(fb, color_plane);
2517 
2518 	return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2519 					    pitch, rotation, alignment);
2520 }
2521 
2522 /* Convert the fb->offset[] into x/y offsets */
2523 static int intel_fb_offset_to_xy(int *x, int *y,
2524 				 const struct drm_framebuffer *fb,
2525 				 int color_plane)
2526 {
2527 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2528 	unsigned int height;
2529 	u32 alignment;
2530 
2531 	if (INTEL_GEN(dev_priv) >= 12 &&
2532 	    is_semiplanar_uv_plane(fb, color_plane))
2533 		alignment = intel_tile_row_size(fb, color_plane);
2534 	else if (fb->modifier != DRM_FORMAT_MOD_LINEAR)
2535 		alignment = intel_tile_size(dev_priv);
2536 	else
2537 		alignment = 0;
2538 
2539 	if (alignment != 0 && fb->offsets[color_plane] % alignment) {
2540 		DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n",
2541 			      fb->offsets[color_plane], color_plane);
2542 		return -EINVAL;
2543 	}
2544 
2545 	height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2546 	height = ALIGN(height, intel_tile_height(fb, color_plane));
2547 
2548 	/* Catch potential overflows early */
2549 	if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2550 			    fb->offsets[color_plane])) {
2551 		DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n",
2552 			      fb->offsets[color_plane], fb->pitches[color_plane],
2553 			      color_plane);
2554 		return -ERANGE;
2555 	}
2556 
2557 	*x = 0;
2558 	*y = 0;
2559 
2560 	intel_adjust_aligned_offset(x, y,
2561 				    fb, color_plane, DRM_MODE_ROTATE_0,
2562 				    fb->pitches[color_plane],
2563 				    fb->offsets[color_plane], 0);
2564 
2565 	return 0;
2566 }
2567 
2568 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2569 {
2570 	switch (fb_modifier) {
2571 	case I915_FORMAT_MOD_X_TILED:
2572 		return I915_TILING_X;
2573 	case I915_FORMAT_MOD_Y_TILED:
2574 	case I915_FORMAT_MOD_Y_TILED_CCS:
2575 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2576 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2577 		return I915_TILING_Y;
2578 	default:
2579 		return I915_TILING_NONE;
2580 	}
2581 }
2582 
2583 /*
2584  * From the Sky Lake PRM:
2585  * "The Color Control Surface (CCS) contains the compression status of
2586  *  the cache-line pairs. The compression state of the cache-line pair
2587  *  is specified by 2 bits in the CCS. Each CCS cache-line represents
2588  *  an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2589  *  cache-line-pairs. CCS is always Y tiled."
2590  *
2591  * Since cache line pairs refers to horizontally adjacent cache lines,
2592  * each cache line in the CCS corresponds to an area of 32x16 cache
2593  * lines on the main surface. Since each pixel is 4 bytes, this gives
2594  * us a ratio of one byte in the CCS for each 8x16 pixels in the
2595  * main surface.
2596  */
2597 static const struct drm_format_info skl_ccs_formats[] = {
2598 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2599 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2600 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2601 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2602 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2603 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2604 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2605 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2606 };
2607 
2608 /*
2609  * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the
2610  * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles
2611  * in the main surface. With 4 byte pixels and each Y-tile having dimensions of
2612  * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in
2613  * the main surface.
2614  */
2615 static const struct drm_format_info gen12_ccs_formats[] = {
2616 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2617 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2618 	  .hsub = 1, .vsub = 1, },
2619 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2620 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2621 	  .hsub = 1, .vsub = 1, },
2622 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2623 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2624 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2625 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2626 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2627 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2628 	{ .format = DRM_FORMAT_YUYV, .num_planes = 2,
2629 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2630 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2631 	{ .format = DRM_FORMAT_YVYU, .num_planes = 2,
2632 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2633 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2634 	{ .format = DRM_FORMAT_UYVY, .num_planes = 2,
2635 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2636 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2637 	{ .format = DRM_FORMAT_VYUY, .num_planes = 2,
2638 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2639 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2640 	{ .format = DRM_FORMAT_NV12, .num_planes = 4,
2641 	  .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 },
2642 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2643 	{ .format = DRM_FORMAT_P010, .num_planes = 4,
2644 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2645 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2646 	{ .format = DRM_FORMAT_P012, .num_planes = 4,
2647 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2648 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2649 	{ .format = DRM_FORMAT_P016, .num_planes = 4,
2650 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2651 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2652 };
2653 
2654 static const struct drm_format_info *
2655 lookup_format_info(const struct drm_format_info formats[],
2656 		   int num_formats, u32 format)
2657 {
2658 	int i;
2659 
2660 	for (i = 0; i < num_formats; i++) {
2661 		if (formats[i].format == format)
2662 			return &formats[i];
2663 	}
2664 
2665 	return NULL;
2666 }
2667 
2668 static const struct drm_format_info *
2669 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2670 {
2671 	switch (cmd->modifier[0]) {
2672 	case I915_FORMAT_MOD_Y_TILED_CCS:
2673 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2674 		return lookup_format_info(skl_ccs_formats,
2675 					  ARRAY_SIZE(skl_ccs_formats),
2676 					  cmd->pixel_format);
2677 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2678 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2679 		return lookup_format_info(gen12_ccs_formats,
2680 					  ARRAY_SIZE(gen12_ccs_formats),
2681 					  cmd->pixel_format);
2682 	default:
2683 		return NULL;
2684 	}
2685 }
2686 
2687 bool is_ccs_modifier(u64 modifier)
2688 {
2689 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
2690 	       modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
2691 	       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2692 	       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2693 }
2694 
2695 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane)
2696 {
2697 	return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)],
2698 			    512) * 64;
2699 }
2700 
2701 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2702 			      u32 pixel_format, u64 modifier)
2703 {
2704 	struct intel_crtc *crtc;
2705 	struct intel_plane *plane;
2706 
2707 	/*
2708 	 * We assume the primary plane for pipe A has
2709 	 * the highest stride limits of them all.
2710 	 */
2711 	crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A);
2712 	if (!crtc)
2713 		return 0;
2714 
2715 	plane = to_intel_plane(crtc->base.primary);
2716 
2717 	return plane->max_stride(plane, pixel_format, modifier,
2718 				 DRM_MODE_ROTATE_0);
2719 }
2720 
2721 static
2722 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2723 			u32 pixel_format, u64 modifier)
2724 {
2725 	/*
2726 	 * Arbitrary limit for gen4+ chosen to match the
2727 	 * render engine max stride.
2728 	 *
2729 	 * The new CCS hash mode makes remapping impossible
2730 	 */
2731 	if (!is_ccs_modifier(modifier)) {
2732 		if (INTEL_GEN(dev_priv) >= 7)
2733 			return 256*1024;
2734 		else if (INTEL_GEN(dev_priv) >= 4)
2735 			return 128*1024;
2736 	}
2737 
2738 	return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2739 }
2740 
2741 static u32
2742 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2743 {
2744 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2745 	u32 tile_width;
2746 
2747 	if (is_surface_linear(fb, color_plane)) {
2748 		u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2749 							   fb->format->format,
2750 							   fb->modifier);
2751 
2752 		/*
2753 		 * To make remapping with linear generally feasible
2754 		 * we need the stride to be page aligned.
2755 		 */
2756 		if (fb->pitches[color_plane] > max_stride &&
2757 		    !is_ccs_modifier(fb->modifier))
2758 			return intel_tile_size(dev_priv);
2759 		else
2760 			return 64;
2761 	}
2762 
2763 	tile_width = intel_tile_width_bytes(fb, color_plane);
2764 	if (is_ccs_modifier(fb->modifier)) {
2765 		/*
2766 		 * Display WA #0531: skl,bxt,kbl,glk
2767 		 *
2768 		 * Render decompression and plane width > 3840
2769 		 * combined with horizontal panning requires the
2770 		 * plane stride to be a multiple of 4. We'll just
2771 		 * require the entire fb to accommodate that to avoid
2772 		 * potential runtime errors at plane configuration time.
2773 		 */
2774 		if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840)
2775 			tile_width *= 4;
2776 		/*
2777 		 * The main surface pitch must be padded to a multiple of four
2778 		 * tile widths.
2779 		 */
2780 		else if (INTEL_GEN(dev_priv) >= 12)
2781 			tile_width *= 4;
2782 	}
2783 	return tile_width;
2784 }
2785 
2786 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2787 {
2788 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2789 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2790 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2791 	int i;
2792 
2793 	/* We don't want to deal with remapping with cursors */
2794 	if (plane->id == PLANE_CURSOR)
2795 		return false;
2796 
2797 	/*
2798 	 * The display engine limits already match/exceed the
2799 	 * render engine limits, so not much point in remapping.
2800 	 * Would also need to deal with the fence POT alignment
2801 	 * and gen2 2KiB GTT tile size.
2802 	 */
2803 	if (INTEL_GEN(dev_priv) < 4)
2804 		return false;
2805 
2806 	/*
2807 	 * The new CCS hash mode isn't compatible with remapping as
2808 	 * the virtual address of the pages affects the compressed data.
2809 	 */
2810 	if (is_ccs_modifier(fb->modifier))
2811 		return false;
2812 
2813 	/* Linear needs a page aligned stride for remapping */
2814 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2815 		unsigned int alignment = intel_tile_size(dev_priv) - 1;
2816 
2817 		for (i = 0; i < fb->format->num_planes; i++) {
2818 			if (fb->pitches[i] & alignment)
2819 				return false;
2820 		}
2821 	}
2822 
2823 	return true;
2824 }
2825 
2826 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2827 {
2828 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2829 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2830 	unsigned int rotation = plane_state->hw.rotation;
2831 	u32 stride, max_stride;
2832 
2833 	/*
2834 	 * No remapping for invisible planes since we don't have
2835 	 * an actual source viewport to remap.
2836 	 */
2837 	if (!plane_state->uapi.visible)
2838 		return false;
2839 
2840 	if (!intel_plane_can_remap(plane_state))
2841 		return false;
2842 
2843 	/*
2844 	 * FIXME: aux plane limits on gen9+ are
2845 	 * unclear in Bspec, for now no checking.
2846 	 */
2847 	stride = intel_fb_pitch(fb, 0, rotation);
2848 	max_stride = plane->max_stride(plane, fb->format->format,
2849 				       fb->modifier, rotation);
2850 
2851 	return stride > max_stride;
2852 }
2853 
2854 static void
2855 intel_fb_plane_get_subsampling(int *hsub, int *vsub,
2856 			       const struct drm_framebuffer *fb,
2857 			       int color_plane)
2858 {
2859 	int main_plane;
2860 
2861 	if (color_plane == 0) {
2862 		*hsub = 1;
2863 		*vsub = 1;
2864 
2865 		return;
2866 	}
2867 
2868 	/*
2869 	 * TODO: Deduct the subsampling from the char block for all CCS
2870 	 * formats and planes.
2871 	 */
2872 	if (!is_gen12_ccs_plane(fb, color_plane)) {
2873 		*hsub = fb->format->hsub;
2874 		*vsub = fb->format->vsub;
2875 
2876 		return;
2877 	}
2878 
2879 	main_plane = ccs_to_main_plane(fb, color_plane);
2880 	*hsub = drm_format_info_block_width(fb->format, color_plane) /
2881 		drm_format_info_block_width(fb->format, main_plane);
2882 
2883 	/*
2884 	 * The min stride check in the core framebuffer_check() function
2885 	 * assumes that format->hsub applies to every plane except for the
2886 	 * first plane. That's incorrect for the CCS AUX plane of the first
2887 	 * plane, but for the above check to pass we must define the block
2888 	 * width with that subsampling applied to it. Adjust the width here
2889 	 * accordingly, so we can calculate the actual subsampling factor.
2890 	 */
2891 	if (main_plane == 0)
2892 		*hsub *= fb->format->hsub;
2893 
2894 	*vsub = 32;
2895 }
2896 static int
2897 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y)
2898 {
2899 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2900 	int main_plane;
2901 	int hsub, vsub;
2902 	int tile_width, tile_height;
2903 	int ccs_x, ccs_y;
2904 	int main_x, main_y;
2905 
2906 	if (!is_ccs_plane(fb, ccs_plane))
2907 		return 0;
2908 
2909 	intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height);
2910 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
2911 
2912 	tile_width *= hsub;
2913 	tile_height *= vsub;
2914 
2915 	ccs_x = (x * hsub) % tile_width;
2916 	ccs_y = (y * vsub) % tile_height;
2917 
2918 	main_plane = ccs_to_main_plane(fb, ccs_plane);
2919 	main_x = intel_fb->normal[main_plane].x % tile_width;
2920 	main_y = intel_fb->normal[main_plane].y % tile_height;
2921 
2922 	/*
2923 	 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2924 	 * x/y offsets must match between CCS and the main surface.
2925 	 */
2926 	if (main_x != ccs_x || main_y != ccs_y) {
2927 		DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2928 			      main_x, main_y,
2929 			      ccs_x, ccs_y,
2930 			      intel_fb->normal[main_plane].x,
2931 			      intel_fb->normal[main_plane].y,
2932 			      x, y);
2933 		return -EINVAL;
2934 	}
2935 
2936 	return 0;
2937 }
2938 
2939 static void
2940 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane)
2941 {
2942 	int main_plane = is_ccs_plane(fb, color_plane) ?
2943 			 ccs_to_main_plane(fb, color_plane) : 0;
2944 	int main_hsub, main_vsub;
2945 	int hsub, vsub;
2946 
2947 	intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane);
2948 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane);
2949 	*w = fb->width / main_hsub / hsub;
2950 	*h = fb->height / main_vsub / vsub;
2951 }
2952 
2953 /*
2954  * Setup the rotated view for an FB plane and return the size the GTT mapping
2955  * requires for this view.
2956  */
2957 static u32
2958 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info,
2959 		  u32 gtt_offset_rotated, int x, int y,
2960 		  unsigned int width, unsigned int height,
2961 		  unsigned int tile_size,
2962 		  unsigned int tile_width, unsigned int tile_height,
2963 		  struct drm_framebuffer *fb)
2964 {
2965 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2966 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2967 	unsigned int pitch_tiles;
2968 	struct drm_rect r;
2969 
2970 	/* Y or Yf modifiers required for 90/270 rotation */
2971 	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
2972 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
2973 		return 0;
2974 
2975 	if (WARN_ON(plane >= ARRAY_SIZE(rot_info->plane)))
2976 		return 0;
2977 
2978 	rot_info->plane[plane] = *plane_info;
2979 
2980 	intel_fb->rotated[plane].pitch = plane_info->height * tile_height;
2981 
2982 	/* rotate the x/y offsets to match the GTT view */
2983 	drm_rect_init(&r, x, y, width, height);
2984 	drm_rect_rotate(&r,
2985 			plane_info->width * tile_width,
2986 			plane_info->height * tile_height,
2987 			DRM_MODE_ROTATE_270);
2988 	x = r.x1;
2989 	y = r.y1;
2990 
2991 	/* rotate the tile dimensions to match the GTT view */
2992 	pitch_tiles = intel_fb->rotated[plane].pitch / tile_height;
2993 	swap(tile_width, tile_height);
2994 
2995 	/*
2996 	 * We only keep the x/y offsets, so push all of the
2997 	 * gtt offset into the x/y offsets.
2998 	 */
2999 	intel_adjust_tile_offset(&x, &y,
3000 				 tile_width, tile_height,
3001 				 tile_size, pitch_tiles,
3002 				 gtt_offset_rotated * tile_size, 0);
3003 
3004 	/*
3005 	 * First pixel of the framebuffer from
3006 	 * the start of the rotated gtt mapping.
3007 	 */
3008 	intel_fb->rotated[plane].x = x;
3009 	intel_fb->rotated[plane].y = y;
3010 
3011 	return plane_info->width * plane_info->height;
3012 }
3013 
3014 static int
3015 intel_fill_fb_info(struct drm_i915_private *dev_priv,
3016 		   struct drm_framebuffer *fb)
3017 {
3018 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3019 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3020 	u32 gtt_offset_rotated = 0;
3021 	unsigned int max_size = 0;
3022 	int i, num_planes = fb->format->num_planes;
3023 	unsigned int tile_size = intel_tile_size(dev_priv);
3024 
3025 	for (i = 0; i < num_planes; i++) {
3026 		unsigned int width, height;
3027 		unsigned int cpp, size;
3028 		u32 offset;
3029 		int x, y;
3030 		int ret;
3031 
3032 		cpp = fb->format->cpp[i];
3033 		intel_fb_plane_dims(&width, &height, fb, i);
3034 
3035 		ret = intel_fb_offset_to_xy(&x, &y, fb, i);
3036 		if (ret) {
3037 			DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
3038 				      i, fb->offsets[i]);
3039 			return ret;
3040 		}
3041 
3042 		ret = intel_fb_check_ccs_xy(fb, i, x, y);
3043 		if (ret)
3044 			return ret;
3045 
3046 		/*
3047 		 * The fence (if used) is aligned to the start of the object
3048 		 * so having the framebuffer wrap around across the edge of the
3049 		 * fenced region doesn't really work. We have no API to configure
3050 		 * the fence start offset within the object (nor could we probably
3051 		 * on gen2/3). So it's just easier if we just require that the
3052 		 * fb layout agrees with the fence layout. We already check that the
3053 		 * fb stride matches the fence stride elsewhere.
3054 		 */
3055 		if (i == 0 && i915_gem_object_is_tiled(obj) &&
3056 		    (x + width) * cpp > fb->pitches[i]) {
3057 			DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
3058 				      i, fb->offsets[i]);
3059 			return -EINVAL;
3060 		}
3061 
3062 		/*
3063 		 * First pixel of the framebuffer from
3064 		 * the start of the normal gtt mapping.
3065 		 */
3066 		intel_fb->normal[i].x = x;
3067 		intel_fb->normal[i].y = y;
3068 
3069 		offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
3070 						      fb->pitches[i],
3071 						      DRM_MODE_ROTATE_0,
3072 						      tile_size);
3073 		offset /= tile_size;
3074 
3075 		if (!is_surface_linear(fb, i)) {
3076 			struct intel_remapped_plane_info plane_info;
3077 			unsigned int tile_width, tile_height;
3078 
3079 			intel_tile_dims(fb, i, &tile_width, &tile_height);
3080 
3081 			plane_info.offset = offset;
3082 			plane_info.stride = DIV_ROUND_UP(fb->pitches[i],
3083 							 tile_width * cpp);
3084 			plane_info.width = DIV_ROUND_UP(x + width, tile_width);
3085 			plane_info.height = DIV_ROUND_UP(y + height,
3086 							 tile_height);
3087 
3088 			/* how many tiles does this plane need */
3089 			size = plane_info.stride * plane_info.height;
3090 			/*
3091 			 * If the plane isn't horizontally tile aligned,
3092 			 * we need one more tile.
3093 			 */
3094 			if (x != 0)
3095 				size++;
3096 
3097 			gtt_offset_rotated +=
3098 				setup_fb_rotation(i, &plane_info,
3099 						  gtt_offset_rotated,
3100 						  x, y, width, height,
3101 						  tile_size,
3102 						  tile_width, tile_height,
3103 						  fb);
3104 		} else {
3105 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
3106 					    x * cpp, tile_size);
3107 		}
3108 
3109 		/* how many tiles in total needed in the bo */
3110 		max_size = max(max_size, offset + size);
3111 	}
3112 
3113 	if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
3114 		DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n",
3115 			      mul_u32_u32(max_size, tile_size), obj->base.size);
3116 		return -EINVAL;
3117 	}
3118 
3119 	return 0;
3120 }
3121 
3122 static void
3123 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
3124 {
3125 	struct drm_i915_private *dev_priv =
3126 		to_i915(plane_state->uapi.plane->dev);
3127 	struct drm_framebuffer *fb = plane_state->hw.fb;
3128 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3129 	struct intel_rotation_info *info = &plane_state->view.rotated;
3130 	unsigned int rotation = plane_state->hw.rotation;
3131 	int i, num_planes = fb->format->num_planes;
3132 	unsigned int tile_size = intel_tile_size(dev_priv);
3133 	unsigned int src_x, src_y;
3134 	unsigned int src_w, src_h;
3135 	u32 gtt_offset = 0;
3136 
3137 	memset(&plane_state->view, 0, sizeof(plane_state->view));
3138 	plane_state->view.type = drm_rotation_90_or_270(rotation) ?
3139 		I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
3140 
3141 	src_x = plane_state->uapi.src.x1 >> 16;
3142 	src_y = plane_state->uapi.src.y1 >> 16;
3143 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
3144 	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
3145 
3146 	WARN_ON(is_ccs_modifier(fb->modifier));
3147 
3148 	/* Make src coordinates relative to the viewport */
3149 	drm_rect_translate(&plane_state->uapi.src,
3150 			   -(src_x << 16), -(src_y << 16));
3151 
3152 	/* Rotate src coordinates to match rotated GTT view */
3153 	if (drm_rotation_90_or_270(rotation))
3154 		drm_rect_rotate(&plane_state->uapi.src,
3155 				src_w << 16, src_h << 16,
3156 				DRM_MODE_ROTATE_270);
3157 
3158 	for (i = 0; i < num_planes; i++) {
3159 		unsigned int hsub = i ? fb->format->hsub : 1;
3160 		unsigned int vsub = i ? fb->format->vsub : 1;
3161 		unsigned int cpp = fb->format->cpp[i];
3162 		unsigned int tile_width, tile_height;
3163 		unsigned int width, height;
3164 		unsigned int pitch_tiles;
3165 		unsigned int x, y;
3166 		u32 offset;
3167 
3168 		intel_tile_dims(fb, i, &tile_width, &tile_height);
3169 
3170 		x = src_x / hsub;
3171 		y = src_y / vsub;
3172 		width = src_w / hsub;
3173 		height = src_h / vsub;
3174 
3175 		/*
3176 		 * First pixel of the src viewport from the
3177 		 * start of the normal gtt mapping.
3178 		 */
3179 		x += intel_fb->normal[i].x;
3180 		y += intel_fb->normal[i].y;
3181 
3182 		offset = intel_compute_aligned_offset(dev_priv, &x, &y,
3183 						      fb, i, fb->pitches[i],
3184 						      DRM_MODE_ROTATE_0, tile_size);
3185 		offset /= tile_size;
3186 
3187 		WARN_ON(i >= ARRAY_SIZE(info->plane));
3188 		info->plane[i].offset = offset;
3189 		info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
3190 						     tile_width * cpp);
3191 		info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
3192 		info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
3193 
3194 		if (drm_rotation_90_or_270(rotation)) {
3195 			struct drm_rect r;
3196 
3197 			/* rotate the x/y offsets to match the GTT view */
3198 			drm_rect_init(&r, x, y, width, height);
3199 			drm_rect_rotate(&r,
3200 					info->plane[i].width * tile_width,
3201 					info->plane[i].height * tile_height,
3202 					DRM_MODE_ROTATE_270);
3203 			x = r.x1;
3204 			y = r.y1;
3205 
3206 			pitch_tiles = info->plane[i].height;
3207 			plane_state->color_plane[i].stride = pitch_tiles * tile_height;
3208 
3209 			/* rotate the tile dimensions to match the GTT view */
3210 			swap(tile_width, tile_height);
3211 		} else {
3212 			pitch_tiles = info->plane[i].width;
3213 			plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
3214 		}
3215 
3216 		/*
3217 		 * We only keep the x/y offsets, so push all of the
3218 		 * gtt offset into the x/y offsets.
3219 		 */
3220 		intel_adjust_tile_offset(&x, &y,
3221 					 tile_width, tile_height,
3222 					 tile_size, pitch_tiles,
3223 					 gtt_offset * tile_size, 0);
3224 
3225 		gtt_offset += info->plane[i].width * info->plane[i].height;
3226 
3227 		plane_state->color_plane[i].offset = 0;
3228 		plane_state->color_plane[i].x = x;
3229 		plane_state->color_plane[i].y = y;
3230 	}
3231 }
3232 
3233 static int
3234 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
3235 {
3236 	const struct intel_framebuffer *fb =
3237 		to_intel_framebuffer(plane_state->hw.fb);
3238 	unsigned int rotation = plane_state->hw.rotation;
3239 	int i, num_planes;
3240 
3241 	if (!fb)
3242 		return 0;
3243 
3244 	num_planes = fb->base.format->num_planes;
3245 
3246 	if (intel_plane_needs_remap(plane_state)) {
3247 		intel_plane_remap_gtt(plane_state);
3248 
3249 		/*
3250 		 * Sometimes even remapping can't overcome
3251 		 * the stride limitations :( Can happen with
3252 		 * big plane sizes and suitably misaligned
3253 		 * offsets.
3254 		 */
3255 		return intel_plane_check_stride(plane_state);
3256 	}
3257 
3258 	intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
3259 
3260 	for (i = 0; i < num_planes; i++) {
3261 		plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
3262 		plane_state->color_plane[i].offset = 0;
3263 
3264 		if (drm_rotation_90_or_270(rotation)) {
3265 			plane_state->color_plane[i].x = fb->rotated[i].x;
3266 			plane_state->color_plane[i].y = fb->rotated[i].y;
3267 		} else {
3268 			plane_state->color_plane[i].x = fb->normal[i].x;
3269 			plane_state->color_plane[i].y = fb->normal[i].y;
3270 		}
3271 	}
3272 
3273 	/* Rotate src coordinates to match rotated GTT view */
3274 	if (drm_rotation_90_or_270(rotation))
3275 		drm_rect_rotate(&plane_state->uapi.src,
3276 				fb->base.width << 16, fb->base.height << 16,
3277 				DRM_MODE_ROTATE_270);
3278 
3279 	return intel_plane_check_stride(plane_state);
3280 }
3281 
3282 static int i9xx_format_to_fourcc(int format)
3283 {
3284 	switch (format) {
3285 	case DISPPLANE_8BPP:
3286 		return DRM_FORMAT_C8;
3287 	case DISPPLANE_BGRA555:
3288 		return DRM_FORMAT_ARGB1555;
3289 	case DISPPLANE_BGRX555:
3290 		return DRM_FORMAT_XRGB1555;
3291 	case DISPPLANE_BGRX565:
3292 		return DRM_FORMAT_RGB565;
3293 	default:
3294 	case DISPPLANE_BGRX888:
3295 		return DRM_FORMAT_XRGB8888;
3296 	case DISPPLANE_RGBX888:
3297 		return DRM_FORMAT_XBGR8888;
3298 	case DISPPLANE_BGRA888:
3299 		return DRM_FORMAT_ARGB8888;
3300 	case DISPPLANE_RGBA888:
3301 		return DRM_FORMAT_ABGR8888;
3302 	case DISPPLANE_BGRX101010:
3303 		return DRM_FORMAT_XRGB2101010;
3304 	case DISPPLANE_RGBX101010:
3305 		return DRM_FORMAT_XBGR2101010;
3306 	case DISPPLANE_BGRA101010:
3307 		return DRM_FORMAT_ARGB2101010;
3308 	case DISPPLANE_RGBA101010:
3309 		return DRM_FORMAT_ABGR2101010;
3310 	case DISPPLANE_RGBX161616:
3311 		return DRM_FORMAT_XBGR16161616F;
3312 	}
3313 }
3314 
3315 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
3316 {
3317 	switch (format) {
3318 	case PLANE_CTL_FORMAT_RGB_565:
3319 		return DRM_FORMAT_RGB565;
3320 	case PLANE_CTL_FORMAT_NV12:
3321 		return DRM_FORMAT_NV12;
3322 	case PLANE_CTL_FORMAT_P010:
3323 		return DRM_FORMAT_P010;
3324 	case PLANE_CTL_FORMAT_P012:
3325 		return DRM_FORMAT_P012;
3326 	case PLANE_CTL_FORMAT_P016:
3327 		return DRM_FORMAT_P016;
3328 	case PLANE_CTL_FORMAT_Y210:
3329 		return DRM_FORMAT_Y210;
3330 	case PLANE_CTL_FORMAT_Y212:
3331 		return DRM_FORMAT_Y212;
3332 	case PLANE_CTL_FORMAT_Y216:
3333 		return DRM_FORMAT_Y216;
3334 	case PLANE_CTL_FORMAT_Y410:
3335 		return DRM_FORMAT_XVYU2101010;
3336 	case PLANE_CTL_FORMAT_Y412:
3337 		return DRM_FORMAT_XVYU12_16161616;
3338 	case PLANE_CTL_FORMAT_Y416:
3339 		return DRM_FORMAT_XVYU16161616;
3340 	default:
3341 	case PLANE_CTL_FORMAT_XRGB_8888:
3342 		if (rgb_order) {
3343 			if (alpha)
3344 				return DRM_FORMAT_ABGR8888;
3345 			else
3346 				return DRM_FORMAT_XBGR8888;
3347 		} else {
3348 			if (alpha)
3349 				return DRM_FORMAT_ARGB8888;
3350 			else
3351 				return DRM_FORMAT_XRGB8888;
3352 		}
3353 	case PLANE_CTL_FORMAT_XRGB_2101010:
3354 		if (rgb_order) {
3355 			if (alpha)
3356 				return DRM_FORMAT_ABGR2101010;
3357 			else
3358 				return DRM_FORMAT_XBGR2101010;
3359 		} else {
3360 			if (alpha)
3361 				return DRM_FORMAT_ARGB2101010;
3362 			else
3363 				return DRM_FORMAT_XRGB2101010;
3364 		}
3365 	case PLANE_CTL_FORMAT_XRGB_16161616F:
3366 		if (rgb_order) {
3367 			if (alpha)
3368 				return DRM_FORMAT_ABGR16161616F;
3369 			else
3370 				return DRM_FORMAT_XBGR16161616F;
3371 		} else {
3372 			if (alpha)
3373 				return DRM_FORMAT_ARGB16161616F;
3374 			else
3375 				return DRM_FORMAT_XRGB16161616F;
3376 		}
3377 	}
3378 }
3379 
3380 static bool
3381 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3382 			      struct intel_initial_plane_config *plane_config)
3383 {
3384 	struct drm_device *dev = crtc->base.dev;
3385 	struct drm_i915_private *dev_priv = to_i915(dev);
3386 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3387 	struct drm_framebuffer *fb = &plane_config->fb->base;
3388 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
3389 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
3390 				    PAGE_SIZE);
3391 	struct drm_i915_gem_object *obj;
3392 	bool ret = false;
3393 
3394 	size_aligned -= base_aligned;
3395 
3396 	if (plane_config->size == 0)
3397 		return false;
3398 
3399 	/* If the FB is too big, just don't use it since fbdev is not very
3400 	 * important and we should probably use that space with FBC or other
3401 	 * features. */
3402 	if (size_aligned * 2 > dev_priv->stolen_usable_size)
3403 		return false;
3404 
3405 	switch (fb->modifier) {
3406 	case DRM_FORMAT_MOD_LINEAR:
3407 	case I915_FORMAT_MOD_X_TILED:
3408 	case I915_FORMAT_MOD_Y_TILED:
3409 		break;
3410 	default:
3411 		DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n",
3412 				 fb->modifier);
3413 		return false;
3414 	}
3415 
3416 	obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
3417 							     base_aligned,
3418 							     base_aligned,
3419 							     size_aligned);
3420 	if (IS_ERR(obj))
3421 		return false;
3422 
3423 	switch (plane_config->tiling) {
3424 	case I915_TILING_NONE:
3425 		break;
3426 	case I915_TILING_X:
3427 	case I915_TILING_Y:
3428 		obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling;
3429 		break;
3430 	default:
3431 		MISSING_CASE(plane_config->tiling);
3432 		goto out;
3433 	}
3434 
3435 	mode_cmd.pixel_format = fb->format->format;
3436 	mode_cmd.width = fb->width;
3437 	mode_cmd.height = fb->height;
3438 	mode_cmd.pitches[0] = fb->pitches[0];
3439 	mode_cmd.modifier[0] = fb->modifier;
3440 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3441 
3442 	if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
3443 		DRM_DEBUG_KMS("intel fb init failed\n");
3444 		goto out;
3445 	}
3446 
3447 
3448 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
3449 	ret = true;
3450 out:
3451 	i915_gem_object_put(obj);
3452 	return ret;
3453 }
3454 
3455 static void
3456 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3457 			struct intel_plane_state *plane_state,
3458 			bool visible)
3459 {
3460 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3461 
3462 	plane_state->uapi.visible = visible;
3463 
3464 	if (visible)
3465 		crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
3466 	else
3467 		crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
3468 }
3469 
3470 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3471 {
3472 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3473 	struct drm_plane *plane;
3474 
3475 	/*
3476 	 * Active_planes aliases if multiple "primary" or cursor planes
3477 	 * have been used on the same (or wrong) pipe. plane_mask uses
3478 	 * unique ids, hence we can use that to reconstruct active_planes.
3479 	 */
3480 	crtc_state->active_planes = 0;
3481 
3482 	drm_for_each_plane_mask(plane, &dev_priv->drm,
3483 				crtc_state->uapi.plane_mask)
3484 		crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3485 }
3486 
3487 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3488 					 struct intel_plane *plane)
3489 {
3490 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3491 	struct intel_crtc_state *crtc_state =
3492 		to_intel_crtc_state(crtc->base.state);
3493 	struct intel_plane_state *plane_state =
3494 		to_intel_plane_state(plane->base.state);
3495 
3496 	DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3497 		      plane->base.base.id, plane->base.name,
3498 		      crtc->base.base.id, crtc->base.name);
3499 
3500 	intel_set_plane_visible(crtc_state, plane_state, false);
3501 	fixup_active_planes(crtc_state);
3502 	crtc_state->data_rate[plane->id] = 0;
3503 	crtc_state->min_cdclk[plane->id] = 0;
3504 
3505 	if (plane->id == PLANE_PRIMARY)
3506 		hsw_disable_ips(crtc_state);
3507 
3508 	/*
3509 	 * Vblank time updates from the shadow to live plane control register
3510 	 * are blocked if the memory self-refresh mode is active at that
3511 	 * moment. So to make sure the plane gets truly disabled, disable
3512 	 * first the self-refresh mode. The self-refresh enable bit in turn
3513 	 * will be checked/applied by the HW only at the next frame start
3514 	 * event which is after the vblank start event, so we need to have a
3515 	 * wait-for-vblank between disabling the plane and the pipe.
3516 	 */
3517 	if (HAS_GMCH(dev_priv) &&
3518 	    intel_set_memory_cxsr(dev_priv, false))
3519 		intel_wait_for_vblank(dev_priv, crtc->pipe);
3520 
3521 	/*
3522 	 * Gen2 reports pipe underruns whenever all planes are disabled.
3523 	 * So disable underrun reporting before all the planes get disabled.
3524 	 */
3525 	if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes)
3526 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3527 
3528 	intel_disable_plane(plane, crtc_state);
3529 }
3530 
3531 static struct intel_frontbuffer *
3532 to_intel_frontbuffer(struct drm_framebuffer *fb)
3533 {
3534 	return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3535 }
3536 
3537 static void
3538 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3539 			     struct intel_initial_plane_config *plane_config)
3540 {
3541 	struct drm_device *dev = intel_crtc->base.dev;
3542 	struct drm_i915_private *dev_priv = to_i915(dev);
3543 	struct drm_crtc *c;
3544 	struct drm_plane *primary = intel_crtc->base.primary;
3545 	struct drm_plane_state *plane_state = primary->state;
3546 	struct intel_plane *intel_plane = to_intel_plane(primary);
3547 	struct intel_plane_state *intel_state =
3548 		to_intel_plane_state(plane_state);
3549 	struct drm_framebuffer *fb;
3550 
3551 	if (!plane_config->fb)
3552 		return;
3553 
3554 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3555 		fb = &plane_config->fb->base;
3556 		goto valid_fb;
3557 	}
3558 
3559 	kfree(plane_config->fb);
3560 
3561 	/*
3562 	 * Failed to alloc the obj, check to see if we should share
3563 	 * an fb with another CRTC instead
3564 	 */
3565 	for_each_crtc(dev, c) {
3566 		struct intel_plane_state *state;
3567 
3568 		if (c == &intel_crtc->base)
3569 			continue;
3570 
3571 		if (!to_intel_crtc(c)->active)
3572 			continue;
3573 
3574 		state = to_intel_plane_state(c->primary->state);
3575 		if (!state->vma)
3576 			continue;
3577 
3578 		if (intel_plane_ggtt_offset(state) == plane_config->base) {
3579 			fb = state->hw.fb;
3580 			drm_framebuffer_get(fb);
3581 			goto valid_fb;
3582 		}
3583 	}
3584 
3585 	/*
3586 	 * We've failed to reconstruct the BIOS FB.  Current display state
3587 	 * indicates that the primary plane is visible, but has a NULL FB,
3588 	 * which will lead to problems later if we don't fix it up.  The
3589 	 * simplest solution is to just disable the primary plane now and
3590 	 * pretend the BIOS never had it enabled.
3591 	 */
3592 	intel_plane_disable_noatomic(intel_crtc, intel_plane);
3593 
3594 	return;
3595 
3596 valid_fb:
3597 	intel_state->hw.rotation = plane_config->rotation;
3598 	intel_fill_fb_ggtt_view(&intel_state->view, fb,
3599 				intel_state->hw.rotation);
3600 	intel_state->color_plane[0].stride =
3601 		intel_fb_pitch(fb, 0, intel_state->hw.rotation);
3602 
3603 	intel_state->vma =
3604 		intel_pin_and_fence_fb_obj(fb,
3605 					   &intel_state->view,
3606 					   intel_plane_uses_fence(intel_state),
3607 					   &intel_state->flags);
3608 	if (IS_ERR(intel_state->vma)) {
3609 		DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
3610 			  intel_crtc->pipe, PTR_ERR(intel_state->vma));
3611 
3612 		intel_state->vma = NULL;
3613 		drm_framebuffer_put(fb);
3614 		return;
3615 	}
3616 
3617 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3618 
3619 	plane_state->src_x = 0;
3620 	plane_state->src_y = 0;
3621 	plane_state->src_w = fb->width << 16;
3622 	plane_state->src_h = fb->height << 16;
3623 
3624 	plane_state->crtc_x = 0;
3625 	plane_state->crtc_y = 0;
3626 	plane_state->crtc_w = fb->width;
3627 	plane_state->crtc_h = fb->height;
3628 
3629 	intel_state->uapi.src = drm_plane_state_src(plane_state);
3630 	intel_state->uapi.dst = drm_plane_state_dest(plane_state);
3631 
3632 	if (plane_config->tiling)
3633 		dev_priv->preserve_bios_swizzle = true;
3634 
3635 	plane_state->fb = fb;
3636 	plane_state->crtc = &intel_crtc->base;
3637 	intel_plane_copy_uapi_to_hw_state(intel_state, intel_state);
3638 
3639 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3640 		  &to_intel_frontbuffer(fb)->bits);
3641 }
3642 
3643 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3644 			       int color_plane,
3645 			       unsigned int rotation)
3646 {
3647 	int cpp = fb->format->cpp[color_plane];
3648 
3649 	switch (fb->modifier) {
3650 	case DRM_FORMAT_MOD_LINEAR:
3651 	case I915_FORMAT_MOD_X_TILED:
3652 		/*
3653 		 * Validated limit is 4k, but has 5k should
3654 		 * work apart from the following features:
3655 		 * - Ytile (already limited to 4k)
3656 		 * - FP16 (already limited to 4k)
3657 		 * - render compression (already limited to 4k)
3658 		 * - KVMR sprite and cursor (don't care)
3659 		 * - horizontal panning (TODO verify this)
3660 		 * - pipe and plane scaling (TODO verify this)
3661 		 */
3662 		if (cpp == 8)
3663 			return 4096;
3664 		else
3665 			return 5120;
3666 	case I915_FORMAT_MOD_Y_TILED_CCS:
3667 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3668 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
3669 		/* FIXME AUX plane? */
3670 	case I915_FORMAT_MOD_Y_TILED:
3671 	case I915_FORMAT_MOD_Yf_TILED:
3672 		if (cpp == 8)
3673 			return 2048;
3674 		else
3675 			return 4096;
3676 	default:
3677 		MISSING_CASE(fb->modifier);
3678 		return 2048;
3679 	}
3680 }
3681 
3682 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3683 			       int color_plane,
3684 			       unsigned int rotation)
3685 {
3686 	int cpp = fb->format->cpp[color_plane];
3687 
3688 	switch (fb->modifier) {
3689 	case DRM_FORMAT_MOD_LINEAR:
3690 	case I915_FORMAT_MOD_X_TILED:
3691 		if (cpp == 8)
3692 			return 4096;
3693 		else
3694 			return 5120;
3695 	case I915_FORMAT_MOD_Y_TILED_CCS:
3696 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3697 		/* FIXME AUX plane? */
3698 	case I915_FORMAT_MOD_Y_TILED:
3699 	case I915_FORMAT_MOD_Yf_TILED:
3700 		if (cpp == 8)
3701 			return 2048;
3702 		else
3703 			return 5120;
3704 	default:
3705 		MISSING_CASE(fb->modifier);
3706 		return 2048;
3707 	}
3708 }
3709 
3710 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3711 			       int color_plane,
3712 			       unsigned int rotation)
3713 {
3714 	return 5120;
3715 }
3716 
3717 static int skl_max_plane_height(void)
3718 {
3719 	return 4096;
3720 }
3721 
3722 static int icl_max_plane_height(void)
3723 {
3724 	return 4320;
3725 }
3726 
3727 static bool
3728 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3729 			       int main_x, int main_y, u32 main_offset,
3730 			       int ccs_plane)
3731 {
3732 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3733 	int aux_x = plane_state->color_plane[ccs_plane].x;
3734 	int aux_y = plane_state->color_plane[ccs_plane].y;
3735 	u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3736 	u32 alignment = intel_surf_alignment(fb, ccs_plane);
3737 	int hsub;
3738 	int vsub;
3739 
3740 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3741 	while (aux_offset >= main_offset && aux_y <= main_y) {
3742 		int x, y;
3743 
3744 		if (aux_x == main_x && aux_y == main_y)
3745 			break;
3746 
3747 		if (aux_offset == 0)
3748 			break;
3749 
3750 		x = aux_x / hsub;
3751 		y = aux_y / vsub;
3752 		aux_offset = intel_plane_adjust_aligned_offset(&x, &y,
3753 							       plane_state,
3754 							       ccs_plane,
3755 							       aux_offset,
3756 							       aux_offset -
3757 								alignment);
3758 		aux_x = x * hsub + aux_x % hsub;
3759 		aux_y = y * vsub + aux_y % vsub;
3760 	}
3761 
3762 	if (aux_x != main_x || aux_y != main_y)
3763 		return false;
3764 
3765 	plane_state->color_plane[ccs_plane].offset = aux_offset;
3766 	plane_state->color_plane[ccs_plane].x = aux_x;
3767 	plane_state->color_plane[ccs_plane].y = aux_y;
3768 
3769 	return true;
3770 }
3771 
3772 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3773 {
3774 	struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev);
3775 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3776 	unsigned int rotation = plane_state->hw.rotation;
3777 	int x = plane_state->uapi.src.x1 >> 16;
3778 	int y = plane_state->uapi.src.y1 >> 16;
3779 	int w = drm_rect_width(&plane_state->uapi.src) >> 16;
3780 	int h = drm_rect_height(&plane_state->uapi.src) >> 16;
3781 	int max_width;
3782 	int max_height;
3783 	u32 alignment;
3784 	u32 offset;
3785 	int aux_plane = intel_main_to_aux_plane(fb, 0);
3786 	u32 aux_offset = plane_state->color_plane[aux_plane].offset;
3787 
3788 	if (INTEL_GEN(dev_priv) >= 11)
3789 		max_width = icl_max_plane_width(fb, 0, rotation);
3790 	else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
3791 		max_width = glk_max_plane_width(fb, 0, rotation);
3792 	else
3793 		max_width = skl_max_plane_width(fb, 0, rotation);
3794 
3795 	if (INTEL_GEN(dev_priv) >= 11)
3796 		max_height = icl_max_plane_height();
3797 	else
3798 		max_height = skl_max_plane_height();
3799 
3800 	if (w > max_width || h > max_height) {
3801 		DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
3802 			      w, h, max_width, max_height);
3803 		return -EINVAL;
3804 	}
3805 
3806 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3807 	offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3808 	alignment = intel_surf_alignment(fb, 0);
3809 	if (WARN_ON(alignment && !is_power_of_2(alignment)))
3810 		return -EINVAL;
3811 
3812 	/*
3813 	 * AUX surface offset is specified as the distance from the
3814 	 * main surface offset, and it must be non-negative. Make
3815 	 * sure that is what we will get.
3816 	 */
3817 	if (offset > aux_offset)
3818 		offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3819 							   offset, aux_offset & ~(alignment - 1));
3820 
3821 	/*
3822 	 * When using an X-tiled surface, the plane blows up
3823 	 * if the x offset + width exceed the stride.
3824 	 *
3825 	 * TODO: linear and Y-tiled seem fine, Yf untested,
3826 	 */
3827 	if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3828 		int cpp = fb->format->cpp[0];
3829 
3830 		while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3831 			if (offset == 0) {
3832 				DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
3833 				return -EINVAL;
3834 			}
3835 
3836 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3837 								   offset, offset - alignment);
3838 		}
3839 	}
3840 
3841 	/*
3842 	 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3843 	 * they match with the main surface x/y offsets.
3844 	 */
3845 	if (is_ccs_modifier(fb->modifier)) {
3846 		while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3847 						       offset, aux_plane)) {
3848 			if (offset == 0)
3849 				break;
3850 
3851 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3852 								   offset, offset - alignment);
3853 		}
3854 
3855 		if (x != plane_state->color_plane[aux_plane].x ||
3856 		    y != plane_state->color_plane[aux_plane].y) {
3857 			DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3858 			return -EINVAL;
3859 		}
3860 	}
3861 
3862 	plane_state->color_plane[0].offset = offset;
3863 	plane_state->color_plane[0].x = x;
3864 	plane_state->color_plane[0].y = y;
3865 
3866 	/*
3867 	 * Put the final coordinates back so that the src
3868 	 * coordinate checks will see the right values.
3869 	 */
3870 	drm_rect_translate_to(&plane_state->uapi.src,
3871 			      x << 16, y << 16);
3872 
3873 	return 0;
3874 }
3875 
3876 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3877 {
3878 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3879 	unsigned int rotation = plane_state->hw.rotation;
3880 	int uv_plane = 1;
3881 	int max_width = skl_max_plane_width(fb, uv_plane, rotation);
3882 	int max_height = 4096;
3883 	int x = plane_state->uapi.src.x1 >> 17;
3884 	int y = plane_state->uapi.src.y1 >> 17;
3885 	int w = drm_rect_width(&plane_state->uapi.src) >> 17;
3886 	int h = drm_rect_height(&plane_state->uapi.src) >> 17;
3887 	u32 offset;
3888 
3889 	intel_add_fb_offsets(&x, &y, plane_state, uv_plane);
3890 	offset = intel_plane_compute_aligned_offset(&x, &y,
3891 						    plane_state, uv_plane);
3892 
3893 	/* FIXME not quite sure how/if these apply to the chroma plane */
3894 	if (w > max_width || h > max_height) {
3895 		DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3896 			      w, h, max_width, max_height);
3897 		return -EINVAL;
3898 	}
3899 
3900 	if (is_ccs_modifier(fb->modifier)) {
3901 		int ccs_plane = main_to_ccs_plane(fb, uv_plane);
3902 		int aux_offset = plane_state->color_plane[ccs_plane].offset;
3903 		int alignment = intel_surf_alignment(fb, uv_plane);
3904 
3905 		if (offset > aux_offset)
3906 			offset = intel_plane_adjust_aligned_offset(&x, &y,
3907 								   plane_state,
3908 								   uv_plane,
3909 								   offset,
3910 								   aux_offset & ~(alignment - 1));
3911 
3912 		while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3913 						       offset, ccs_plane)) {
3914 			if (offset == 0)
3915 				break;
3916 
3917 			offset = intel_plane_adjust_aligned_offset(&x, &y,
3918 								   plane_state,
3919 								   uv_plane,
3920 								   offset, offset - alignment);
3921 		}
3922 
3923 		if (x != plane_state->color_plane[ccs_plane].x ||
3924 		    y != plane_state->color_plane[ccs_plane].y) {
3925 			DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3926 			return -EINVAL;
3927 		}
3928 	}
3929 
3930 	plane_state->color_plane[uv_plane].offset = offset;
3931 	plane_state->color_plane[uv_plane].x = x;
3932 	plane_state->color_plane[uv_plane].y = y;
3933 
3934 	return 0;
3935 }
3936 
3937 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3938 {
3939 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3940 	int src_x = plane_state->uapi.src.x1 >> 16;
3941 	int src_y = plane_state->uapi.src.y1 >> 16;
3942 	u32 offset;
3943 	int ccs_plane;
3944 
3945 	for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) {
3946 		int main_hsub, main_vsub;
3947 		int hsub, vsub;
3948 		int x, y;
3949 
3950 		if (!is_ccs_plane(fb, ccs_plane))
3951 			continue;
3952 
3953 		intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb,
3954 					       ccs_to_main_plane(fb, ccs_plane));
3955 		intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3956 
3957 		hsub *= main_hsub;
3958 		vsub *= main_vsub;
3959 		x = src_x / hsub;
3960 		y = src_y / vsub;
3961 
3962 		intel_add_fb_offsets(&x, &y, plane_state, ccs_plane);
3963 
3964 		offset = intel_plane_compute_aligned_offset(&x, &y,
3965 							    plane_state,
3966 							    ccs_plane);
3967 
3968 		plane_state->color_plane[ccs_plane].offset = offset;
3969 		plane_state->color_plane[ccs_plane].x = (x * hsub +
3970 							 src_x % hsub) /
3971 							main_hsub;
3972 		plane_state->color_plane[ccs_plane].y = (y * vsub +
3973 							 src_y % vsub) /
3974 							main_vsub;
3975 	}
3976 
3977 	return 0;
3978 }
3979 
3980 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3981 {
3982 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3983 	int ret;
3984 	bool needs_aux = false;
3985 
3986 	ret = intel_plane_compute_gtt(plane_state);
3987 	if (ret)
3988 		return ret;
3989 
3990 	if (!plane_state->uapi.visible)
3991 		return 0;
3992 
3993 	/*
3994 	 * Handle the AUX surface first since the main surface setup depends on
3995 	 * it.
3996 	 */
3997 	if (is_ccs_modifier(fb->modifier)) {
3998 		needs_aux = true;
3999 		ret = skl_check_ccs_aux_surface(plane_state);
4000 		if (ret)
4001 			return ret;
4002 	}
4003 
4004 	if (intel_format_info_is_yuv_semiplanar(fb->format,
4005 						fb->modifier)) {
4006 		needs_aux = true;
4007 		ret = skl_check_nv12_aux_surface(plane_state);
4008 		if (ret)
4009 			return ret;
4010 	}
4011 
4012 	if (!needs_aux) {
4013 		int i;
4014 
4015 		for (i = 1; i < fb->format->num_planes; i++) {
4016 			plane_state->color_plane[i].offset = ~0xfff;
4017 			plane_state->color_plane[i].x = 0;
4018 			plane_state->color_plane[i].y = 0;
4019 		}
4020 	}
4021 
4022 	ret = skl_check_main_surface(plane_state);
4023 	if (ret)
4024 		return ret;
4025 
4026 	return 0;
4027 }
4028 
4029 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
4030 			     const struct intel_plane_state *plane_state,
4031 			     unsigned int *num, unsigned int *den)
4032 {
4033 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4034 	unsigned int cpp = fb->format->cpp[0];
4035 
4036 	/*
4037 	 * g4x bspec says 64bpp pixel rate can't exceed 80%
4038 	 * of cdclk when the sprite plane is enabled on the
4039 	 * same pipe. ilk/snb bspec says 64bpp pixel rate is
4040 	 * never allowed to exceed 80% of cdclk. Let's just go
4041 	 * with the ilk/snb limit always.
4042 	 */
4043 	if (cpp == 8) {
4044 		*num = 10;
4045 		*den = 8;
4046 	} else {
4047 		*num = 1;
4048 		*den = 1;
4049 	}
4050 }
4051 
4052 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
4053 				const struct intel_plane_state *plane_state)
4054 {
4055 	unsigned int pixel_rate;
4056 	unsigned int num, den;
4057 
4058 	/*
4059 	 * Note that crtc_state->pixel_rate accounts for both
4060 	 * horizontal and vertical panel fitter downscaling factors.
4061 	 * Pre-HSW bspec tells us to only consider the horizontal
4062 	 * downscaling factor here. We ignore that and just consider
4063 	 * both for simplicity.
4064 	 */
4065 	pixel_rate = crtc_state->pixel_rate;
4066 
4067 	i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
4068 
4069 	/* two pixels per clock with double wide pipe */
4070 	if (crtc_state->double_wide)
4071 		den *= 2;
4072 
4073 	return DIV_ROUND_UP(pixel_rate * num, den);
4074 }
4075 
4076 unsigned int
4077 i9xx_plane_max_stride(struct intel_plane *plane,
4078 		      u32 pixel_format, u64 modifier,
4079 		      unsigned int rotation)
4080 {
4081 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4082 
4083 	if (!HAS_GMCH(dev_priv)) {
4084 		return 32*1024;
4085 	} else if (INTEL_GEN(dev_priv) >= 4) {
4086 		if (modifier == I915_FORMAT_MOD_X_TILED)
4087 			return 16*1024;
4088 		else
4089 			return 32*1024;
4090 	} else if (INTEL_GEN(dev_priv) >= 3) {
4091 		if (modifier == I915_FORMAT_MOD_X_TILED)
4092 			return 8*1024;
4093 		else
4094 			return 16*1024;
4095 	} else {
4096 		if (plane->i9xx_plane == PLANE_C)
4097 			return 4*1024;
4098 		else
4099 			return 8*1024;
4100 	}
4101 }
4102 
4103 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4104 {
4105 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4106 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4107 	u32 dspcntr = 0;
4108 
4109 	if (crtc_state->gamma_enable)
4110 		dspcntr |= DISPPLANE_GAMMA_ENABLE;
4111 
4112 	if (crtc_state->csc_enable)
4113 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
4114 
4115 	if (INTEL_GEN(dev_priv) < 5)
4116 		dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
4117 
4118 	return dspcntr;
4119 }
4120 
4121 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
4122 			  const struct intel_plane_state *plane_state)
4123 {
4124 	struct drm_i915_private *dev_priv =
4125 		to_i915(plane_state->uapi.plane->dev);
4126 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4127 	unsigned int rotation = plane_state->hw.rotation;
4128 	u32 dspcntr;
4129 
4130 	dspcntr = DISPLAY_PLANE_ENABLE;
4131 
4132 	if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
4133 	    IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
4134 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
4135 
4136 	switch (fb->format->format) {
4137 	case DRM_FORMAT_C8:
4138 		dspcntr |= DISPPLANE_8BPP;
4139 		break;
4140 	case DRM_FORMAT_XRGB1555:
4141 		dspcntr |= DISPPLANE_BGRX555;
4142 		break;
4143 	case DRM_FORMAT_ARGB1555:
4144 		dspcntr |= DISPPLANE_BGRA555;
4145 		break;
4146 	case DRM_FORMAT_RGB565:
4147 		dspcntr |= DISPPLANE_BGRX565;
4148 		break;
4149 	case DRM_FORMAT_XRGB8888:
4150 		dspcntr |= DISPPLANE_BGRX888;
4151 		break;
4152 	case DRM_FORMAT_XBGR8888:
4153 		dspcntr |= DISPPLANE_RGBX888;
4154 		break;
4155 	case DRM_FORMAT_ARGB8888:
4156 		dspcntr |= DISPPLANE_BGRA888;
4157 		break;
4158 	case DRM_FORMAT_ABGR8888:
4159 		dspcntr |= DISPPLANE_RGBA888;
4160 		break;
4161 	case DRM_FORMAT_XRGB2101010:
4162 		dspcntr |= DISPPLANE_BGRX101010;
4163 		break;
4164 	case DRM_FORMAT_XBGR2101010:
4165 		dspcntr |= DISPPLANE_RGBX101010;
4166 		break;
4167 	case DRM_FORMAT_ARGB2101010:
4168 		dspcntr |= DISPPLANE_BGRA101010;
4169 		break;
4170 	case DRM_FORMAT_ABGR2101010:
4171 		dspcntr |= DISPPLANE_RGBA101010;
4172 		break;
4173 	case DRM_FORMAT_XBGR16161616F:
4174 		dspcntr |= DISPPLANE_RGBX161616;
4175 		break;
4176 	default:
4177 		MISSING_CASE(fb->format->format);
4178 		return 0;
4179 	}
4180 
4181 	if (INTEL_GEN(dev_priv) >= 4 &&
4182 	    fb->modifier == I915_FORMAT_MOD_X_TILED)
4183 		dspcntr |= DISPPLANE_TILED;
4184 
4185 	if (rotation & DRM_MODE_ROTATE_180)
4186 		dspcntr |= DISPPLANE_ROTATE_180;
4187 
4188 	if (rotation & DRM_MODE_REFLECT_X)
4189 		dspcntr |= DISPPLANE_MIRROR;
4190 
4191 	return dspcntr;
4192 }
4193 
4194 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
4195 {
4196 	struct drm_i915_private *dev_priv =
4197 		to_i915(plane_state->uapi.plane->dev);
4198 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4199 	int src_x, src_y, src_w;
4200 	u32 offset;
4201 	int ret;
4202 
4203 	ret = intel_plane_compute_gtt(plane_state);
4204 	if (ret)
4205 		return ret;
4206 
4207 	if (!plane_state->uapi.visible)
4208 		return 0;
4209 
4210 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4211 	src_x = plane_state->uapi.src.x1 >> 16;
4212 	src_y = plane_state->uapi.src.y1 >> 16;
4213 
4214 	/* Undocumented hardware limit on i965/g4x/vlv/chv */
4215 	if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
4216 		return -EINVAL;
4217 
4218 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
4219 
4220 	if (INTEL_GEN(dev_priv) >= 4)
4221 		offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
4222 							    plane_state, 0);
4223 	else
4224 		offset = 0;
4225 
4226 	/*
4227 	 * Put the final coordinates back so that the src
4228 	 * coordinate checks will see the right values.
4229 	 */
4230 	drm_rect_translate_to(&plane_state->uapi.src,
4231 			      src_x << 16, src_y << 16);
4232 
4233 	/* HSW/BDW do this automagically in hardware */
4234 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
4235 		unsigned int rotation = plane_state->hw.rotation;
4236 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4237 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4238 
4239 		if (rotation & DRM_MODE_ROTATE_180) {
4240 			src_x += src_w - 1;
4241 			src_y += src_h - 1;
4242 		} else if (rotation & DRM_MODE_REFLECT_X) {
4243 			src_x += src_w - 1;
4244 		}
4245 	}
4246 
4247 	plane_state->color_plane[0].offset = offset;
4248 	plane_state->color_plane[0].x = src_x;
4249 	plane_state->color_plane[0].y = src_y;
4250 
4251 	return 0;
4252 }
4253 
4254 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
4255 {
4256 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4257 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4258 
4259 	if (IS_CHERRYVIEW(dev_priv))
4260 		return i9xx_plane == PLANE_B;
4261 	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4262 		return false;
4263 	else if (IS_GEN(dev_priv, 4))
4264 		return i9xx_plane == PLANE_C;
4265 	else
4266 		return i9xx_plane == PLANE_B ||
4267 			i9xx_plane == PLANE_C;
4268 }
4269 
4270 static int
4271 i9xx_plane_check(struct intel_crtc_state *crtc_state,
4272 		 struct intel_plane_state *plane_state)
4273 {
4274 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4275 	int ret;
4276 
4277 	ret = chv_plane_check_rotation(plane_state);
4278 	if (ret)
4279 		return ret;
4280 
4281 	ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
4282 						  &crtc_state->uapi,
4283 						  DRM_PLANE_HELPER_NO_SCALING,
4284 						  DRM_PLANE_HELPER_NO_SCALING,
4285 						  i9xx_plane_has_windowing(plane),
4286 						  true);
4287 	if (ret)
4288 		return ret;
4289 
4290 	ret = i9xx_check_plane_surface(plane_state);
4291 	if (ret)
4292 		return ret;
4293 
4294 	if (!plane_state->uapi.visible)
4295 		return 0;
4296 
4297 	ret = intel_plane_check_src_coordinates(plane_state);
4298 	if (ret)
4299 		return ret;
4300 
4301 	plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
4302 
4303 	return 0;
4304 }
4305 
4306 static void i9xx_update_plane(struct intel_plane *plane,
4307 			      const struct intel_crtc_state *crtc_state,
4308 			      const struct intel_plane_state *plane_state)
4309 {
4310 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4311 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4312 	u32 linear_offset;
4313 	int x = plane_state->color_plane[0].x;
4314 	int y = plane_state->color_plane[0].y;
4315 	int crtc_x = plane_state->uapi.dst.x1;
4316 	int crtc_y = plane_state->uapi.dst.y1;
4317 	int crtc_w = drm_rect_width(&plane_state->uapi.dst);
4318 	int crtc_h = drm_rect_height(&plane_state->uapi.dst);
4319 	unsigned long irqflags;
4320 	u32 dspaddr_offset;
4321 	u32 dspcntr;
4322 
4323 	dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
4324 
4325 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
4326 
4327 	if (INTEL_GEN(dev_priv) >= 4)
4328 		dspaddr_offset = plane_state->color_plane[0].offset;
4329 	else
4330 		dspaddr_offset = linear_offset;
4331 
4332 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4333 
4334 	I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride);
4335 
4336 	if (INTEL_GEN(dev_priv) < 4) {
4337 		/*
4338 		 * PLANE_A doesn't actually have a full window
4339 		 * generator but let's assume we still need to
4340 		 * program whatever is there.
4341 		 */
4342 		I915_WRITE_FW(DSPPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
4343 		I915_WRITE_FW(DSPSIZE(i9xx_plane),
4344 			      ((crtc_h - 1) << 16) | (crtc_w - 1));
4345 	} else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
4346 		I915_WRITE_FW(PRIMPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
4347 		I915_WRITE_FW(PRIMSIZE(i9xx_plane),
4348 			      ((crtc_h - 1) << 16) | (crtc_w - 1));
4349 		I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0);
4350 	}
4351 
4352 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
4353 		I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x);
4354 	} else if (INTEL_GEN(dev_priv) >= 4) {
4355 		I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset);
4356 		I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x);
4357 	}
4358 
4359 	/*
4360 	 * The control register self-arms if the plane was previously
4361 	 * disabled. Try to make the plane enable atomic by writing
4362 	 * the control register just before the surface register.
4363 	 */
4364 	I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
4365 	if (INTEL_GEN(dev_priv) >= 4)
4366 		I915_WRITE_FW(DSPSURF(i9xx_plane),
4367 			      intel_plane_ggtt_offset(plane_state) +
4368 			      dspaddr_offset);
4369 	else
4370 		I915_WRITE_FW(DSPADDR(i9xx_plane),
4371 			      intel_plane_ggtt_offset(plane_state) +
4372 			      dspaddr_offset);
4373 
4374 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4375 }
4376 
4377 static void i9xx_disable_plane(struct intel_plane *plane,
4378 			       const struct intel_crtc_state *crtc_state)
4379 {
4380 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4381 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4382 	unsigned long irqflags;
4383 	u32 dspcntr;
4384 
4385 	/*
4386 	 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
4387 	 * enable on ilk+ affect the pipe bottom color as
4388 	 * well, so we must configure them even if the plane
4389 	 * is disabled.
4390 	 *
4391 	 * On pre-g4x there is no way to gamma correct the
4392 	 * pipe bottom color but we'll keep on doing this
4393 	 * anyway so that the crtc state readout works correctly.
4394 	 */
4395 	dspcntr = i9xx_plane_ctl_crtc(crtc_state);
4396 
4397 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4398 
4399 	I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
4400 	if (INTEL_GEN(dev_priv) >= 4)
4401 		I915_WRITE_FW(DSPSURF(i9xx_plane), 0);
4402 	else
4403 		I915_WRITE_FW(DSPADDR(i9xx_plane), 0);
4404 
4405 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4406 }
4407 
4408 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
4409 				    enum pipe *pipe)
4410 {
4411 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4412 	enum intel_display_power_domain power_domain;
4413 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4414 	intel_wakeref_t wakeref;
4415 	bool ret;
4416 	u32 val;
4417 
4418 	/*
4419 	 * Not 100% correct for planes that can move between pipes,
4420 	 * but that's only the case for gen2-4 which don't have any
4421 	 * display power wells.
4422 	 */
4423 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
4424 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4425 	if (!wakeref)
4426 		return false;
4427 
4428 	val = I915_READ(DSPCNTR(i9xx_plane));
4429 
4430 	ret = val & DISPLAY_PLANE_ENABLE;
4431 
4432 	if (INTEL_GEN(dev_priv) >= 5)
4433 		*pipe = plane->pipe;
4434 	else
4435 		*pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
4436 			DISPPLANE_SEL_PIPE_SHIFT;
4437 
4438 	intel_display_power_put(dev_priv, power_domain, wakeref);
4439 
4440 	return ret;
4441 }
4442 
4443 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4444 {
4445 	struct drm_device *dev = intel_crtc->base.dev;
4446 	struct drm_i915_private *dev_priv = to_i915(dev);
4447 
4448 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4449 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4450 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4451 }
4452 
4453 /*
4454  * This function detaches (aka. unbinds) unused scalers in hardware
4455  */
4456 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4457 {
4458 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
4459 	const struct intel_crtc_scaler_state *scaler_state =
4460 		&crtc_state->scaler_state;
4461 	int i;
4462 
4463 	/* loop through and disable scalers that aren't in use */
4464 	for (i = 0; i < intel_crtc->num_scalers; i++) {
4465 		if (!scaler_state->scalers[i].in_use)
4466 			skl_detach_scaler(intel_crtc, i);
4467 	}
4468 }
4469 
4470 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4471 					  int color_plane, unsigned int rotation)
4472 {
4473 	/*
4474 	 * The stride is either expressed as a multiple of 64 bytes chunks for
4475 	 * linear buffers or in number of tiles for tiled buffers.
4476 	 */
4477 	if (is_surface_linear(fb, color_plane))
4478 		return 64;
4479 	else if (drm_rotation_90_or_270(rotation))
4480 		return intel_tile_height(fb, color_plane);
4481 	else
4482 		return intel_tile_width_bytes(fb, color_plane);
4483 }
4484 
4485 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4486 		     int color_plane)
4487 {
4488 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4489 	unsigned int rotation = plane_state->hw.rotation;
4490 	u32 stride = plane_state->color_plane[color_plane].stride;
4491 
4492 	if (color_plane >= fb->format->num_planes)
4493 		return 0;
4494 
4495 	return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4496 }
4497 
4498 static u32 skl_plane_ctl_format(u32 pixel_format)
4499 {
4500 	switch (pixel_format) {
4501 	case DRM_FORMAT_C8:
4502 		return PLANE_CTL_FORMAT_INDEXED;
4503 	case DRM_FORMAT_RGB565:
4504 		return PLANE_CTL_FORMAT_RGB_565;
4505 	case DRM_FORMAT_XBGR8888:
4506 	case DRM_FORMAT_ABGR8888:
4507 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4508 	case DRM_FORMAT_XRGB8888:
4509 	case DRM_FORMAT_ARGB8888:
4510 		return PLANE_CTL_FORMAT_XRGB_8888;
4511 	case DRM_FORMAT_XBGR2101010:
4512 	case DRM_FORMAT_ABGR2101010:
4513 		return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4514 	case DRM_FORMAT_XRGB2101010:
4515 	case DRM_FORMAT_ARGB2101010:
4516 		return PLANE_CTL_FORMAT_XRGB_2101010;
4517 	case DRM_FORMAT_XBGR16161616F:
4518 	case DRM_FORMAT_ABGR16161616F:
4519 		return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4520 	case DRM_FORMAT_XRGB16161616F:
4521 	case DRM_FORMAT_ARGB16161616F:
4522 		return PLANE_CTL_FORMAT_XRGB_16161616F;
4523 	case DRM_FORMAT_YUYV:
4524 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4525 	case DRM_FORMAT_YVYU:
4526 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4527 	case DRM_FORMAT_UYVY:
4528 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4529 	case DRM_FORMAT_VYUY:
4530 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4531 	case DRM_FORMAT_NV12:
4532 		return PLANE_CTL_FORMAT_NV12;
4533 	case DRM_FORMAT_P010:
4534 		return PLANE_CTL_FORMAT_P010;
4535 	case DRM_FORMAT_P012:
4536 		return PLANE_CTL_FORMAT_P012;
4537 	case DRM_FORMAT_P016:
4538 		return PLANE_CTL_FORMAT_P016;
4539 	case DRM_FORMAT_Y210:
4540 		return PLANE_CTL_FORMAT_Y210;
4541 	case DRM_FORMAT_Y212:
4542 		return PLANE_CTL_FORMAT_Y212;
4543 	case DRM_FORMAT_Y216:
4544 		return PLANE_CTL_FORMAT_Y216;
4545 	case DRM_FORMAT_XVYU2101010:
4546 		return PLANE_CTL_FORMAT_Y410;
4547 	case DRM_FORMAT_XVYU12_16161616:
4548 		return PLANE_CTL_FORMAT_Y412;
4549 	case DRM_FORMAT_XVYU16161616:
4550 		return PLANE_CTL_FORMAT_Y416;
4551 	default:
4552 		MISSING_CASE(pixel_format);
4553 	}
4554 
4555 	return 0;
4556 }
4557 
4558 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4559 {
4560 	if (!plane_state->hw.fb->format->has_alpha)
4561 		return PLANE_CTL_ALPHA_DISABLE;
4562 
4563 	switch (plane_state->hw.pixel_blend_mode) {
4564 	case DRM_MODE_BLEND_PIXEL_NONE:
4565 		return PLANE_CTL_ALPHA_DISABLE;
4566 	case DRM_MODE_BLEND_PREMULTI:
4567 		return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4568 	case DRM_MODE_BLEND_COVERAGE:
4569 		return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4570 	default:
4571 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4572 		return PLANE_CTL_ALPHA_DISABLE;
4573 	}
4574 }
4575 
4576 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4577 {
4578 	if (!plane_state->hw.fb->format->has_alpha)
4579 		return PLANE_COLOR_ALPHA_DISABLE;
4580 
4581 	switch (plane_state->hw.pixel_blend_mode) {
4582 	case DRM_MODE_BLEND_PIXEL_NONE:
4583 		return PLANE_COLOR_ALPHA_DISABLE;
4584 	case DRM_MODE_BLEND_PREMULTI:
4585 		return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4586 	case DRM_MODE_BLEND_COVERAGE:
4587 		return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4588 	default:
4589 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4590 		return PLANE_COLOR_ALPHA_DISABLE;
4591 	}
4592 }
4593 
4594 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4595 {
4596 	switch (fb_modifier) {
4597 	case DRM_FORMAT_MOD_LINEAR:
4598 		break;
4599 	case I915_FORMAT_MOD_X_TILED:
4600 		return PLANE_CTL_TILED_X;
4601 	case I915_FORMAT_MOD_Y_TILED:
4602 		return PLANE_CTL_TILED_Y;
4603 	case I915_FORMAT_MOD_Y_TILED_CCS:
4604 		return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4605 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
4606 		return PLANE_CTL_TILED_Y |
4607 		       PLANE_CTL_RENDER_DECOMPRESSION_ENABLE |
4608 		       PLANE_CTL_CLEAR_COLOR_DISABLE;
4609 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
4610 		return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE;
4611 	case I915_FORMAT_MOD_Yf_TILED:
4612 		return PLANE_CTL_TILED_YF;
4613 	case I915_FORMAT_MOD_Yf_TILED_CCS:
4614 		return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4615 	default:
4616 		MISSING_CASE(fb_modifier);
4617 	}
4618 
4619 	return 0;
4620 }
4621 
4622 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4623 {
4624 	switch (rotate) {
4625 	case DRM_MODE_ROTATE_0:
4626 		break;
4627 	/*
4628 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4629 	 * while i915 HW rotation is clockwise, thats why this swapping.
4630 	 */
4631 	case DRM_MODE_ROTATE_90:
4632 		return PLANE_CTL_ROTATE_270;
4633 	case DRM_MODE_ROTATE_180:
4634 		return PLANE_CTL_ROTATE_180;
4635 	case DRM_MODE_ROTATE_270:
4636 		return PLANE_CTL_ROTATE_90;
4637 	default:
4638 		MISSING_CASE(rotate);
4639 	}
4640 
4641 	return 0;
4642 }
4643 
4644 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4645 {
4646 	switch (reflect) {
4647 	case 0:
4648 		break;
4649 	case DRM_MODE_REFLECT_X:
4650 		return PLANE_CTL_FLIP_HORIZONTAL;
4651 	case DRM_MODE_REFLECT_Y:
4652 	default:
4653 		MISSING_CASE(reflect);
4654 	}
4655 
4656 	return 0;
4657 }
4658 
4659 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4660 {
4661 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4662 	u32 plane_ctl = 0;
4663 
4664 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4665 		return plane_ctl;
4666 
4667 	if (crtc_state->gamma_enable)
4668 		plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4669 
4670 	if (crtc_state->csc_enable)
4671 		plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4672 
4673 	return plane_ctl;
4674 }
4675 
4676 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4677 		  const struct intel_plane_state *plane_state)
4678 {
4679 	struct drm_i915_private *dev_priv =
4680 		to_i915(plane_state->uapi.plane->dev);
4681 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4682 	unsigned int rotation = plane_state->hw.rotation;
4683 	const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4684 	u32 plane_ctl;
4685 
4686 	plane_ctl = PLANE_CTL_ENABLE;
4687 
4688 	if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4689 		plane_ctl |= skl_plane_ctl_alpha(plane_state);
4690 		plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4691 
4692 		if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4693 			plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4694 
4695 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4696 			plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4697 	}
4698 
4699 	plane_ctl |= skl_plane_ctl_format(fb->format->format);
4700 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4701 	plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4702 
4703 	if (INTEL_GEN(dev_priv) >= 10)
4704 		plane_ctl |= cnl_plane_ctl_flip(rotation &
4705 						DRM_MODE_REFLECT_MASK);
4706 
4707 	if (key->flags & I915_SET_COLORKEY_DESTINATION)
4708 		plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4709 	else if (key->flags & I915_SET_COLORKEY_SOURCE)
4710 		plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4711 
4712 	return plane_ctl;
4713 }
4714 
4715 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4716 {
4717 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4718 	u32 plane_color_ctl = 0;
4719 
4720 	if (INTEL_GEN(dev_priv) >= 11)
4721 		return plane_color_ctl;
4722 
4723 	if (crtc_state->gamma_enable)
4724 		plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4725 
4726 	if (crtc_state->csc_enable)
4727 		plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4728 
4729 	return plane_color_ctl;
4730 }
4731 
4732 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4733 			const struct intel_plane_state *plane_state)
4734 {
4735 	struct drm_i915_private *dev_priv =
4736 		to_i915(plane_state->uapi.plane->dev);
4737 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4738 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4739 	u32 plane_color_ctl = 0;
4740 
4741 	plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4742 	plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4743 
4744 	if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4745 		if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4746 			plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4747 		else
4748 			plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709;
4749 
4750 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4751 			plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4752 	} else if (fb->format->is_yuv) {
4753 		plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4754 	}
4755 
4756 	return plane_color_ctl;
4757 }
4758 
4759 static int
4760 __intel_display_resume(struct drm_device *dev,
4761 		       struct drm_atomic_state *state,
4762 		       struct drm_modeset_acquire_ctx *ctx)
4763 {
4764 	struct drm_crtc_state *crtc_state;
4765 	struct drm_crtc *crtc;
4766 	int i, ret;
4767 
4768 	intel_modeset_setup_hw_state(dev, ctx);
4769 	intel_vga_redisable(to_i915(dev));
4770 
4771 	if (!state)
4772 		return 0;
4773 
4774 	/*
4775 	 * We've duplicated the state, pointers to the old state are invalid.
4776 	 *
4777 	 * Don't attempt to use the old state until we commit the duplicated state.
4778 	 */
4779 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4780 		/*
4781 		 * Force recalculation even if we restore
4782 		 * current state. With fast modeset this may not result
4783 		 * in a modeset when the state is compatible.
4784 		 */
4785 		crtc_state->mode_changed = true;
4786 	}
4787 
4788 	/* ignore any reset values/BIOS leftovers in the WM registers */
4789 	if (!HAS_GMCH(to_i915(dev)))
4790 		to_intel_atomic_state(state)->skip_intermediate_wm = true;
4791 
4792 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4793 
4794 	WARN_ON(ret == -EDEADLK);
4795 	return ret;
4796 }
4797 
4798 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4799 {
4800 	return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4801 		intel_has_gpu_reset(&dev_priv->gt));
4802 }
4803 
4804 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4805 {
4806 	struct drm_device *dev = &dev_priv->drm;
4807 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4808 	struct drm_atomic_state *state;
4809 	int ret;
4810 
4811 	/* reset doesn't touch the display */
4812 	if (!i915_modparams.force_reset_modeset_test &&
4813 	    !gpu_reset_clobbers_display(dev_priv))
4814 		return;
4815 
4816 	/* We have a modeset vs reset deadlock, defensively unbreak it. */
4817 	set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4818 	smp_mb__after_atomic();
4819 	wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4820 
4821 	if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4822 		DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
4823 		intel_gt_set_wedged(&dev_priv->gt);
4824 	}
4825 
4826 	/*
4827 	 * Need mode_config.mutex so that we don't
4828 	 * trample ongoing ->detect() and whatnot.
4829 	 */
4830 	mutex_lock(&dev->mode_config.mutex);
4831 	drm_modeset_acquire_init(ctx, 0);
4832 	while (1) {
4833 		ret = drm_modeset_lock_all_ctx(dev, ctx);
4834 		if (ret != -EDEADLK)
4835 			break;
4836 
4837 		drm_modeset_backoff(ctx);
4838 	}
4839 	/*
4840 	 * Disabling the crtcs gracefully seems nicer. Also the
4841 	 * g33 docs say we should at least disable all the planes.
4842 	 */
4843 	state = drm_atomic_helper_duplicate_state(dev, ctx);
4844 	if (IS_ERR(state)) {
4845 		ret = PTR_ERR(state);
4846 		DRM_ERROR("Duplicating state failed with %i\n", ret);
4847 		return;
4848 	}
4849 
4850 	ret = drm_atomic_helper_disable_all(dev, ctx);
4851 	if (ret) {
4852 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
4853 		drm_atomic_state_put(state);
4854 		return;
4855 	}
4856 
4857 	dev_priv->modeset_restore_state = state;
4858 	state->acquire_ctx = ctx;
4859 }
4860 
4861 void intel_finish_reset(struct drm_i915_private *dev_priv)
4862 {
4863 	struct drm_device *dev = &dev_priv->drm;
4864 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4865 	struct drm_atomic_state *state;
4866 	int ret;
4867 
4868 	/* reset doesn't touch the display */
4869 	if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
4870 		return;
4871 
4872 	state = fetch_and_zero(&dev_priv->modeset_restore_state);
4873 	if (!state)
4874 		goto unlock;
4875 
4876 	/* reset doesn't touch the display */
4877 	if (!gpu_reset_clobbers_display(dev_priv)) {
4878 		/* for testing only restore the display */
4879 		ret = __intel_display_resume(dev, state, ctx);
4880 		if (ret)
4881 			DRM_ERROR("Restoring old state failed with %i\n", ret);
4882 	} else {
4883 		/*
4884 		 * The display has been reset as well,
4885 		 * so need a full re-initialization.
4886 		 */
4887 		intel_pps_unlock_regs_wa(dev_priv);
4888 		intel_modeset_init_hw(dev_priv);
4889 		intel_init_clock_gating(dev_priv);
4890 
4891 		spin_lock_irq(&dev_priv->irq_lock);
4892 		if (dev_priv->display.hpd_irq_setup)
4893 			dev_priv->display.hpd_irq_setup(dev_priv);
4894 		spin_unlock_irq(&dev_priv->irq_lock);
4895 
4896 		ret = __intel_display_resume(dev, state, ctx);
4897 		if (ret)
4898 			DRM_ERROR("Restoring old state failed with %i\n", ret);
4899 
4900 		intel_hpd_init(dev_priv);
4901 	}
4902 
4903 	drm_atomic_state_put(state);
4904 unlock:
4905 	drm_modeset_drop_locks(ctx);
4906 	drm_modeset_acquire_fini(ctx);
4907 	mutex_unlock(&dev->mode_config.mutex);
4908 
4909 	clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4910 }
4911 
4912 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
4913 {
4914 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4915 	enum pipe pipe = crtc->pipe;
4916 	u32 tmp;
4917 
4918 	tmp = I915_READ(PIPE_CHICKEN(pipe));
4919 
4920 	/*
4921 	 * Display WA #1153: icl
4922 	 * enable hardware to bypass the alpha math
4923 	 * and rounding for per-pixel values 00 and 0xff
4924 	 */
4925 	tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
4926 	/*
4927 	 * Display WA # 1605353570: icl
4928 	 * Set the pixel rounding bit to 1 for allowing
4929 	 * passthrough of Frame buffer pixels unmodified
4930 	 * across pipe
4931 	 */
4932 	tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
4933 	I915_WRITE(PIPE_CHICKEN(pipe), tmp);
4934 }
4935 
4936 static void icl_enable_trans_port_sync(const struct intel_crtc_state *crtc_state)
4937 {
4938 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4939 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4940 	u32 trans_ddi_func_ctl2_val;
4941 	u8 master_select;
4942 
4943 	/*
4944 	 * Configure the master select and enable Transcoder Port Sync for
4945 	 * Slave CRTCs transcoder.
4946 	 */
4947 	if (crtc_state->master_transcoder == INVALID_TRANSCODER)
4948 		return;
4949 
4950 	if (crtc_state->master_transcoder == TRANSCODER_EDP)
4951 		master_select = 0;
4952 	else
4953 		master_select = crtc_state->master_transcoder + 1;
4954 
4955 	/* Set the master select bits for Tranascoder Port Sync */
4956 	trans_ddi_func_ctl2_val = (PORT_SYNC_MODE_MASTER_SELECT(master_select) &
4957 				   PORT_SYNC_MODE_MASTER_SELECT_MASK) <<
4958 		PORT_SYNC_MODE_MASTER_SELECT_SHIFT;
4959 	/* Enable Transcoder Port Sync */
4960 	trans_ddi_func_ctl2_val |= PORT_SYNC_MODE_ENABLE;
4961 
4962 	I915_WRITE(TRANS_DDI_FUNC_CTL2(crtc_state->cpu_transcoder),
4963 		   trans_ddi_func_ctl2_val);
4964 }
4965 
4966 static void intel_fdi_normal_train(struct intel_crtc *crtc)
4967 {
4968 	struct drm_device *dev = crtc->base.dev;
4969 	struct drm_i915_private *dev_priv = to_i915(dev);
4970 	enum pipe pipe = crtc->pipe;
4971 	i915_reg_t reg;
4972 	u32 temp;
4973 
4974 	/* enable normal train */
4975 	reg = FDI_TX_CTL(pipe);
4976 	temp = I915_READ(reg);
4977 	if (IS_IVYBRIDGE(dev_priv)) {
4978 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4979 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
4980 	} else {
4981 		temp &= ~FDI_LINK_TRAIN_NONE;
4982 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
4983 	}
4984 	I915_WRITE(reg, temp);
4985 
4986 	reg = FDI_RX_CTL(pipe);
4987 	temp = I915_READ(reg);
4988 	if (HAS_PCH_CPT(dev_priv)) {
4989 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4990 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
4991 	} else {
4992 		temp &= ~FDI_LINK_TRAIN_NONE;
4993 		temp |= FDI_LINK_TRAIN_NONE;
4994 	}
4995 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
4996 
4997 	/* wait one idle pattern time */
4998 	POSTING_READ(reg);
4999 	udelay(1000);
5000 
5001 	/* IVB wants error correction enabled */
5002 	if (IS_IVYBRIDGE(dev_priv))
5003 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
5004 			   FDI_FE_ERRC_ENABLE);
5005 }
5006 
5007 /* The FDI link training functions for ILK/Ibexpeak. */
5008 static void ilk_fdi_link_train(struct intel_crtc *crtc,
5009 			       const struct intel_crtc_state *crtc_state)
5010 {
5011 	struct drm_device *dev = crtc->base.dev;
5012 	struct drm_i915_private *dev_priv = to_i915(dev);
5013 	enum pipe pipe = crtc->pipe;
5014 	i915_reg_t reg;
5015 	u32 temp, tries;
5016 
5017 	/* FDI needs bits from pipe first */
5018 	assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder);
5019 
5020 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5021 	   for train result */
5022 	reg = FDI_RX_IMR(pipe);
5023 	temp = I915_READ(reg);
5024 	temp &= ~FDI_RX_SYMBOL_LOCK;
5025 	temp &= ~FDI_RX_BIT_LOCK;
5026 	I915_WRITE(reg, temp);
5027 	I915_READ(reg);
5028 	udelay(150);
5029 
5030 	/* enable CPU FDI TX and PCH FDI RX */
5031 	reg = FDI_TX_CTL(pipe);
5032 	temp = I915_READ(reg);
5033 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
5034 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5035 	temp &= ~FDI_LINK_TRAIN_NONE;
5036 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5037 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
5038 
5039 	reg = FDI_RX_CTL(pipe);
5040 	temp = I915_READ(reg);
5041 	temp &= ~FDI_LINK_TRAIN_NONE;
5042 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5043 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
5044 
5045 	POSTING_READ(reg);
5046 	udelay(150);
5047 
5048 	/* Ironlake workaround, enable clock pointer after FDI enable*/
5049 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
5050 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
5051 		   FDI_RX_PHASE_SYNC_POINTER_EN);
5052 
5053 	reg = FDI_RX_IIR(pipe);
5054 	for (tries = 0; tries < 5; tries++) {
5055 		temp = I915_READ(reg);
5056 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5057 
5058 		if ((temp & FDI_RX_BIT_LOCK)) {
5059 			DRM_DEBUG_KMS("FDI train 1 done.\n");
5060 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
5061 			break;
5062 		}
5063 	}
5064 	if (tries == 5)
5065 		DRM_ERROR("FDI train 1 fail!\n");
5066 
5067 	/* Train 2 */
5068 	reg = FDI_TX_CTL(pipe);
5069 	temp = I915_READ(reg);
5070 	temp &= ~FDI_LINK_TRAIN_NONE;
5071 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5072 	I915_WRITE(reg, temp);
5073 
5074 	reg = FDI_RX_CTL(pipe);
5075 	temp = I915_READ(reg);
5076 	temp &= ~FDI_LINK_TRAIN_NONE;
5077 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5078 	I915_WRITE(reg, temp);
5079 
5080 	POSTING_READ(reg);
5081 	udelay(150);
5082 
5083 	reg = FDI_RX_IIR(pipe);
5084 	for (tries = 0; tries < 5; tries++) {
5085 		temp = I915_READ(reg);
5086 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5087 
5088 		if (temp & FDI_RX_SYMBOL_LOCK) {
5089 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
5090 			DRM_DEBUG_KMS("FDI train 2 done.\n");
5091 			break;
5092 		}
5093 	}
5094 	if (tries == 5)
5095 		DRM_ERROR("FDI train 2 fail!\n");
5096 
5097 	DRM_DEBUG_KMS("FDI train done\n");
5098 
5099 }
5100 
5101 static const int snb_b_fdi_train_param[] = {
5102 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
5103 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
5104 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
5105 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
5106 };
5107 
5108 /* The FDI link training functions for SNB/Cougarpoint. */
5109 static void gen6_fdi_link_train(struct intel_crtc *crtc,
5110 				const struct intel_crtc_state *crtc_state)
5111 {
5112 	struct drm_device *dev = crtc->base.dev;
5113 	struct drm_i915_private *dev_priv = to_i915(dev);
5114 	enum pipe pipe = crtc->pipe;
5115 	i915_reg_t reg;
5116 	u32 temp, i, retry;
5117 
5118 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5119 	   for train result */
5120 	reg = FDI_RX_IMR(pipe);
5121 	temp = I915_READ(reg);
5122 	temp &= ~FDI_RX_SYMBOL_LOCK;
5123 	temp &= ~FDI_RX_BIT_LOCK;
5124 	I915_WRITE(reg, temp);
5125 
5126 	POSTING_READ(reg);
5127 	udelay(150);
5128 
5129 	/* enable CPU FDI TX and PCH FDI RX */
5130 	reg = FDI_TX_CTL(pipe);
5131 	temp = I915_READ(reg);
5132 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
5133 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5134 	temp &= ~FDI_LINK_TRAIN_NONE;
5135 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5136 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5137 	/* SNB-B */
5138 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5139 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
5140 
5141 	I915_WRITE(FDI_RX_MISC(pipe),
5142 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5143 
5144 	reg = FDI_RX_CTL(pipe);
5145 	temp = I915_READ(reg);
5146 	if (HAS_PCH_CPT(dev_priv)) {
5147 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5148 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5149 	} else {
5150 		temp &= ~FDI_LINK_TRAIN_NONE;
5151 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5152 	}
5153 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
5154 
5155 	POSTING_READ(reg);
5156 	udelay(150);
5157 
5158 	for (i = 0; i < 4; i++) {
5159 		reg = FDI_TX_CTL(pipe);
5160 		temp = I915_READ(reg);
5161 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5162 		temp |= snb_b_fdi_train_param[i];
5163 		I915_WRITE(reg, temp);
5164 
5165 		POSTING_READ(reg);
5166 		udelay(500);
5167 
5168 		for (retry = 0; retry < 5; retry++) {
5169 			reg = FDI_RX_IIR(pipe);
5170 			temp = I915_READ(reg);
5171 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5172 			if (temp & FDI_RX_BIT_LOCK) {
5173 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
5174 				DRM_DEBUG_KMS("FDI train 1 done.\n");
5175 				break;
5176 			}
5177 			udelay(50);
5178 		}
5179 		if (retry < 5)
5180 			break;
5181 	}
5182 	if (i == 4)
5183 		DRM_ERROR("FDI train 1 fail!\n");
5184 
5185 	/* Train 2 */
5186 	reg = FDI_TX_CTL(pipe);
5187 	temp = I915_READ(reg);
5188 	temp &= ~FDI_LINK_TRAIN_NONE;
5189 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5190 	if (IS_GEN(dev_priv, 6)) {
5191 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5192 		/* SNB-B */
5193 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5194 	}
5195 	I915_WRITE(reg, temp);
5196 
5197 	reg = FDI_RX_CTL(pipe);
5198 	temp = I915_READ(reg);
5199 	if (HAS_PCH_CPT(dev_priv)) {
5200 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5201 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5202 	} else {
5203 		temp &= ~FDI_LINK_TRAIN_NONE;
5204 		temp |= FDI_LINK_TRAIN_PATTERN_2;
5205 	}
5206 	I915_WRITE(reg, temp);
5207 
5208 	POSTING_READ(reg);
5209 	udelay(150);
5210 
5211 	for (i = 0; i < 4; i++) {
5212 		reg = FDI_TX_CTL(pipe);
5213 		temp = I915_READ(reg);
5214 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5215 		temp |= snb_b_fdi_train_param[i];
5216 		I915_WRITE(reg, temp);
5217 
5218 		POSTING_READ(reg);
5219 		udelay(500);
5220 
5221 		for (retry = 0; retry < 5; retry++) {
5222 			reg = FDI_RX_IIR(pipe);
5223 			temp = I915_READ(reg);
5224 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5225 			if (temp & FDI_RX_SYMBOL_LOCK) {
5226 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
5227 				DRM_DEBUG_KMS("FDI train 2 done.\n");
5228 				break;
5229 			}
5230 			udelay(50);
5231 		}
5232 		if (retry < 5)
5233 			break;
5234 	}
5235 	if (i == 4)
5236 		DRM_ERROR("FDI train 2 fail!\n");
5237 
5238 	DRM_DEBUG_KMS("FDI train done.\n");
5239 }
5240 
5241 /* Manual link training for Ivy Bridge A0 parts */
5242 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
5243 				      const struct intel_crtc_state *crtc_state)
5244 {
5245 	struct drm_device *dev = crtc->base.dev;
5246 	struct drm_i915_private *dev_priv = to_i915(dev);
5247 	enum pipe pipe = crtc->pipe;
5248 	i915_reg_t reg;
5249 	u32 temp, i, j;
5250 
5251 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5252 	   for train result */
5253 	reg = FDI_RX_IMR(pipe);
5254 	temp = I915_READ(reg);
5255 	temp &= ~FDI_RX_SYMBOL_LOCK;
5256 	temp &= ~FDI_RX_BIT_LOCK;
5257 	I915_WRITE(reg, temp);
5258 
5259 	POSTING_READ(reg);
5260 	udelay(150);
5261 
5262 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
5263 		      I915_READ(FDI_RX_IIR(pipe)));
5264 
5265 	/* Try each vswing and preemphasis setting twice before moving on */
5266 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
5267 		/* disable first in case we need to retry */
5268 		reg = FDI_TX_CTL(pipe);
5269 		temp = I915_READ(reg);
5270 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
5271 		temp &= ~FDI_TX_ENABLE;
5272 		I915_WRITE(reg, temp);
5273 
5274 		reg = FDI_RX_CTL(pipe);
5275 		temp = I915_READ(reg);
5276 		temp &= ~FDI_LINK_TRAIN_AUTO;
5277 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5278 		temp &= ~FDI_RX_ENABLE;
5279 		I915_WRITE(reg, temp);
5280 
5281 		/* enable CPU FDI TX and PCH FDI RX */
5282 		reg = FDI_TX_CTL(pipe);
5283 		temp = I915_READ(reg);
5284 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
5285 		temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5286 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
5287 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5288 		temp |= snb_b_fdi_train_param[j/2];
5289 		temp |= FDI_COMPOSITE_SYNC;
5290 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
5291 
5292 		I915_WRITE(FDI_RX_MISC(pipe),
5293 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5294 
5295 		reg = FDI_RX_CTL(pipe);
5296 		temp = I915_READ(reg);
5297 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5298 		temp |= FDI_COMPOSITE_SYNC;
5299 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
5300 
5301 		POSTING_READ(reg);
5302 		udelay(1); /* should be 0.5us */
5303 
5304 		for (i = 0; i < 4; i++) {
5305 			reg = FDI_RX_IIR(pipe);
5306 			temp = I915_READ(reg);
5307 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5308 
5309 			if (temp & FDI_RX_BIT_LOCK ||
5310 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
5311 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
5312 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
5313 					      i);
5314 				break;
5315 			}
5316 			udelay(1); /* should be 0.5us */
5317 		}
5318 		if (i == 4) {
5319 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
5320 			continue;
5321 		}
5322 
5323 		/* Train 2 */
5324 		reg = FDI_TX_CTL(pipe);
5325 		temp = I915_READ(reg);
5326 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5327 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
5328 		I915_WRITE(reg, temp);
5329 
5330 		reg = FDI_RX_CTL(pipe);
5331 		temp = I915_READ(reg);
5332 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5333 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5334 		I915_WRITE(reg, temp);
5335 
5336 		POSTING_READ(reg);
5337 		udelay(2); /* should be 1.5us */
5338 
5339 		for (i = 0; i < 4; i++) {
5340 			reg = FDI_RX_IIR(pipe);
5341 			temp = I915_READ(reg);
5342 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5343 
5344 			if (temp & FDI_RX_SYMBOL_LOCK ||
5345 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
5346 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
5347 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
5348 					      i);
5349 				goto train_done;
5350 			}
5351 			udelay(2); /* should be 1.5us */
5352 		}
5353 		if (i == 4)
5354 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
5355 	}
5356 
5357 train_done:
5358 	DRM_DEBUG_KMS("FDI train done.\n");
5359 }
5360 
5361 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
5362 {
5363 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
5364 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5365 	enum pipe pipe = intel_crtc->pipe;
5366 	i915_reg_t reg;
5367 	u32 temp;
5368 
5369 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5370 	reg = FDI_RX_CTL(pipe);
5371 	temp = I915_READ(reg);
5372 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
5373 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5374 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5375 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
5376 
5377 	POSTING_READ(reg);
5378 	udelay(200);
5379 
5380 	/* Switch from Rawclk to PCDclk */
5381 	temp = I915_READ(reg);
5382 	I915_WRITE(reg, temp | FDI_PCDCLK);
5383 
5384 	POSTING_READ(reg);
5385 	udelay(200);
5386 
5387 	/* Enable CPU FDI TX PLL, always on for Ironlake */
5388 	reg = FDI_TX_CTL(pipe);
5389 	temp = I915_READ(reg);
5390 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5391 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5392 
5393 		POSTING_READ(reg);
5394 		udelay(100);
5395 	}
5396 }
5397 
5398 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc)
5399 {
5400 	struct drm_device *dev = intel_crtc->base.dev;
5401 	struct drm_i915_private *dev_priv = to_i915(dev);
5402 	enum pipe pipe = intel_crtc->pipe;
5403 	i915_reg_t reg;
5404 	u32 temp;
5405 
5406 	/* Switch from PCDclk to Rawclk */
5407 	reg = FDI_RX_CTL(pipe);
5408 	temp = I915_READ(reg);
5409 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
5410 
5411 	/* Disable CPU FDI TX PLL */
5412 	reg = FDI_TX_CTL(pipe);
5413 	temp = I915_READ(reg);
5414 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
5415 
5416 	POSTING_READ(reg);
5417 	udelay(100);
5418 
5419 	reg = FDI_RX_CTL(pipe);
5420 	temp = I915_READ(reg);
5421 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
5422 
5423 	/* Wait for the clocks to turn off. */
5424 	POSTING_READ(reg);
5425 	udelay(100);
5426 }
5427 
5428 static void ilk_fdi_disable(struct intel_crtc *crtc)
5429 {
5430 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5431 	enum pipe pipe = crtc->pipe;
5432 	i915_reg_t reg;
5433 	u32 temp;
5434 
5435 	/* disable CPU FDI tx and PCH FDI rx */
5436 	reg = FDI_TX_CTL(pipe);
5437 	temp = I915_READ(reg);
5438 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
5439 	POSTING_READ(reg);
5440 
5441 	reg = FDI_RX_CTL(pipe);
5442 	temp = I915_READ(reg);
5443 	temp &= ~(0x7 << 16);
5444 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5445 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
5446 
5447 	POSTING_READ(reg);
5448 	udelay(100);
5449 
5450 	/* Ironlake workaround, disable clock pointer after downing FDI */
5451 	if (HAS_PCH_IBX(dev_priv))
5452 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
5453 
5454 	/* still set train pattern 1 */
5455 	reg = FDI_TX_CTL(pipe);
5456 	temp = I915_READ(reg);
5457 	temp &= ~FDI_LINK_TRAIN_NONE;
5458 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5459 	I915_WRITE(reg, temp);
5460 
5461 	reg = FDI_RX_CTL(pipe);
5462 	temp = I915_READ(reg);
5463 	if (HAS_PCH_CPT(dev_priv)) {
5464 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5465 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5466 	} else {
5467 		temp &= ~FDI_LINK_TRAIN_NONE;
5468 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5469 	}
5470 	/* BPC in FDI rx is consistent with that in PIPECONF */
5471 	temp &= ~(0x07 << 16);
5472 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5473 	I915_WRITE(reg, temp);
5474 
5475 	POSTING_READ(reg);
5476 	udelay(100);
5477 }
5478 
5479 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5480 {
5481 	struct drm_crtc *crtc;
5482 	bool cleanup_done;
5483 
5484 	drm_for_each_crtc(crtc, &dev_priv->drm) {
5485 		struct drm_crtc_commit *commit;
5486 		spin_lock(&crtc->commit_lock);
5487 		commit = list_first_entry_or_null(&crtc->commit_list,
5488 						  struct drm_crtc_commit, commit_entry);
5489 		cleanup_done = commit ?
5490 			try_wait_for_completion(&commit->cleanup_done) : true;
5491 		spin_unlock(&crtc->commit_lock);
5492 
5493 		if (cleanup_done)
5494 			continue;
5495 
5496 		drm_crtc_wait_one_vblank(crtc);
5497 
5498 		return true;
5499 	}
5500 
5501 	return false;
5502 }
5503 
5504 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5505 {
5506 	u32 temp;
5507 
5508 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
5509 
5510 	mutex_lock(&dev_priv->sb_lock);
5511 
5512 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5513 	temp |= SBI_SSCCTL_DISABLE;
5514 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5515 
5516 	mutex_unlock(&dev_priv->sb_lock);
5517 }
5518 
5519 /* Program iCLKIP clock to the desired frequency */
5520 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5521 {
5522 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5523 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5524 	int clock = crtc_state->hw.adjusted_mode.crtc_clock;
5525 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
5526 	u32 temp;
5527 
5528 	lpt_disable_iclkip(dev_priv);
5529 
5530 	/* The iCLK virtual clock root frequency is in MHz,
5531 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
5532 	 * divisors, it is necessary to divide one by another, so we
5533 	 * convert the virtual clock precision to KHz here for higher
5534 	 * precision.
5535 	 */
5536 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5537 		u32 iclk_virtual_root_freq = 172800 * 1000;
5538 		u32 iclk_pi_range = 64;
5539 		u32 desired_divisor;
5540 
5541 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5542 						    clock << auxdiv);
5543 		divsel = (desired_divisor / iclk_pi_range) - 2;
5544 		phaseinc = desired_divisor % iclk_pi_range;
5545 
5546 		/*
5547 		 * Near 20MHz is a corner case which is
5548 		 * out of range for the 7-bit divisor
5549 		 */
5550 		if (divsel <= 0x7f)
5551 			break;
5552 	}
5553 
5554 	/* This should not happen with any sane values */
5555 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5556 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5557 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
5558 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5559 
5560 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5561 			clock,
5562 			auxdiv,
5563 			divsel,
5564 			phasedir,
5565 			phaseinc);
5566 
5567 	mutex_lock(&dev_priv->sb_lock);
5568 
5569 	/* Program SSCDIVINTPHASE6 */
5570 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5571 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5572 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5573 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5574 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5575 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5576 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5577 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5578 
5579 	/* Program SSCAUXDIV */
5580 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5581 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5582 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5583 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5584 
5585 	/* Enable modulator and associated divider */
5586 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5587 	temp &= ~SBI_SSCCTL_DISABLE;
5588 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5589 
5590 	mutex_unlock(&dev_priv->sb_lock);
5591 
5592 	/* Wait for initialization time */
5593 	udelay(24);
5594 
5595 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5596 }
5597 
5598 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5599 {
5600 	u32 divsel, phaseinc, auxdiv;
5601 	u32 iclk_virtual_root_freq = 172800 * 1000;
5602 	u32 iclk_pi_range = 64;
5603 	u32 desired_divisor;
5604 	u32 temp;
5605 
5606 	if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5607 		return 0;
5608 
5609 	mutex_lock(&dev_priv->sb_lock);
5610 
5611 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5612 	if (temp & SBI_SSCCTL_DISABLE) {
5613 		mutex_unlock(&dev_priv->sb_lock);
5614 		return 0;
5615 	}
5616 
5617 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5618 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5619 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5620 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5621 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5622 
5623 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5624 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5625 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5626 
5627 	mutex_unlock(&dev_priv->sb_lock);
5628 
5629 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5630 
5631 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5632 				 desired_divisor << auxdiv);
5633 }
5634 
5635 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5636 					   enum pipe pch_transcoder)
5637 {
5638 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5639 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5640 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5641 
5642 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
5643 		   I915_READ(HTOTAL(cpu_transcoder)));
5644 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
5645 		   I915_READ(HBLANK(cpu_transcoder)));
5646 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
5647 		   I915_READ(HSYNC(cpu_transcoder)));
5648 
5649 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
5650 		   I915_READ(VTOTAL(cpu_transcoder)));
5651 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
5652 		   I915_READ(VBLANK(cpu_transcoder)));
5653 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
5654 		   I915_READ(VSYNC(cpu_transcoder)));
5655 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5656 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
5657 }
5658 
5659 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5660 {
5661 	u32 temp;
5662 
5663 	temp = I915_READ(SOUTH_CHICKEN1);
5664 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5665 		return;
5666 
5667 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5668 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5669 
5670 	temp &= ~FDI_BC_BIFURCATION_SELECT;
5671 	if (enable)
5672 		temp |= FDI_BC_BIFURCATION_SELECT;
5673 
5674 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
5675 	I915_WRITE(SOUTH_CHICKEN1, temp);
5676 	POSTING_READ(SOUTH_CHICKEN1);
5677 }
5678 
5679 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5680 {
5681 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5682 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5683 
5684 	switch (crtc->pipe) {
5685 	case PIPE_A:
5686 		break;
5687 	case PIPE_B:
5688 		if (crtc_state->fdi_lanes > 2)
5689 			cpt_set_fdi_bc_bifurcation(dev_priv, false);
5690 		else
5691 			cpt_set_fdi_bc_bifurcation(dev_priv, true);
5692 
5693 		break;
5694 	case PIPE_C:
5695 		cpt_set_fdi_bc_bifurcation(dev_priv, true);
5696 
5697 		break;
5698 	default:
5699 		BUG();
5700 	}
5701 }
5702 
5703 /*
5704  * Finds the encoder associated with the given CRTC. This can only be
5705  * used when we know that the CRTC isn't feeding multiple encoders!
5706  */
5707 static struct intel_encoder *
5708 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5709 			   const struct intel_crtc_state *crtc_state)
5710 {
5711 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5712 	const struct drm_connector_state *connector_state;
5713 	const struct drm_connector *connector;
5714 	struct intel_encoder *encoder = NULL;
5715 	int num_encoders = 0;
5716 	int i;
5717 
5718 	for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5719 		if (connector_state->crtc != &crtc->base)
5720 			continue;
5721 
5722 		encoder = to_intel_encoder(connector_state->best_encoder);
5723 		num_encoders++;
5724 	}
5725 
5726 	WARN(num_encoders != 1, "%d encoders for pipe %c\n",
5727 	     num_encoders, pipe_name(crtc->pipe));
5728 
5729 	return encoder;
5730 }
5731 
5732 /*
5733  * Enable PCH resources required for PCH ports:
5734  *   - PCH PLLs
5735  *   - FDI training & RX/TX
5736  *   - update transcoder timings
5737  *   - DP transcoding bits
5738  *   - transcoder
5739  */
5740 static void ilk_pch_enable(const struct intel_atomic_state *state,
5741 			   const struct intel_crtc_state *crtc_state)
5742 {
5743 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5744 	struct drm_device *dev = crtc->base.dev;
5745 	struct drm_i915_private *dev_priv = to_i915(dev);
5746 	enum pipe pipe = crtc->pipe;
5747 	u32 temp;
5748 
5749 	assert_pch_transcoder_disabled(dev_priv, pipe);
5750 
5751 	if (IS_IVYBRIDGE(dev_priv))
5752 		ivb_update_fdi_bc_bifurcation(crtc_state);
5753 
5754 	/* Write the TU size bits before fdi link training, so that error
5755 	 * detection works. */
5756 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
5757 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5758 
5759 	/* For PCH output, training FDI link */
5760 	dev_priv->display.fdi_link_train(crtc, crtc_state);
5761 
5762 	/* We need to program the right clock selection before writing the pixel
5763 	 * mutliplier into the DPLL. */
5764 	if (HAS_PCH_CPT(dev_priv)) {
5765 		u32 sel;
5766 
5767 		temp = I915_READ(PCH_DPLL_SEL);
5768 		temp |= TRANS_DPLL_ENABLE(pipe);
5769 		sel = TRANS_DPLLB_SEL(pipe);
5770 		if (crtc_state->shared_dpll ==
5771 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5772 			temp |= sel;
5773 		else
5774 			temp &= ~sel;
5775 		I915_WRITE(PCH_DPLL_SEL, temp);
5776 	}
5777 
5778 	/* XXX: pch pll's can be enabled any time before we enable the PCH
5779 	 * transcoder, and we actually should do this to not upset any PCH
5780 	 * transcoder that already use the clock when we share it.
5781 	 *
5782 	 * Note that enable_shared_dpll tries to do the right thing, but
5783 	 * get_shared_dpll unconditionally resets the pll - we need that to have
5784 	 * the right LVDS enable sequence. */
5785 	intel_enable_shared_dpll(crtc_state);
5786 
5787 	/* set transcoder timing, panel must allow it */
5788 	assert_panel_unlocked(dev_priv, pipe);
5789 	ilk_pch_transcoder_set_timings(crtc_state, pipe);
5790 
5791 	intel_fdi_normal_train(crtc);
5792 
5793 	/* For PCH DP, enable TRANS_DP_CTL */
5794 	if (HAS_PCH_CPT(dev_priv) &&
5795 	    intel_crtc_has_dp_encoder(crtc_state)) {
5796 		const struct drm_display_mode *adjusted_mode =
5797 			&crtc_state->hw.adjusted_mode;
5798 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5799 		i915_reg_t reg = TRANS_DP_CTL(pipe);
5800 		enum port port;
5801 
5802 		temp = I915_READ(reg);
5803 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
5804 			  TRANS_DP_SYNC_MASK |
5805 			  TRANS_DP_BPC_MASK);
5806 		temp |= TRANS_DP_OUTPUT_ENABLE;
5807 		temp |= bpc << 9; /* same format but at 11:9 */
5808 
5809 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5810 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5811 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5812 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5813 
5814 		port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5815 		WARN_ON(port < PORT_B || port > PORT_D);
5816 		temp |= TRANS_DP_PORT_SEL(port);
5817 
5818 		I915_WRITE(reg, temp);
5819 	}
5820 
5821 	ilk_enable_pch_transcoder(crtc_state);
5822 }
5823 
5824 static void lpt_pch_enable(const struct intel_atomic_state *state,
5825 			   const struct intel_crtc_state *crtc_state)
5826 {
5827 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5828 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5829 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5830 
5831 	assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5832 
5833 	lpt_program_iclkip(crtc_state);
5834 
5835 	/* Set transcoder timing. */
5836 	ilk_pch_transcoder_set_timings(crtc_state, PIPE_A);
5837 
5838 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5839 }
5840 
5841 static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
5842 			       enum pipe pipe)
5843 {
5844 	i915_reg_t dslreg = PIPEDSL(pipe);
5845 	u32 temp;
5846 
5847 	temp = I915_READ(dslreg);
5848 	udelay(500);
5849 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
5850 		if (wait_for(I915_READ(dslreg) != temp, 5))
5851 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
5852 	}
5853 }
5854 
5855 /*
5856  * The hardware phase 0.0 refers to the center of the pixel.
5857  * We want to start from the top/left edge which is phase
5858  * -0.5. That matches how the hardware calculates the scaling
5859  * factors (from top-left of the first pixel to bottom-right
5860  * of the last pixel, as opposed to the pixel centers).
5861  *
5862  * For 4:2:0 subsampled chroma planes we obviously have to
5863  * adjust that so that the chroma sample position lands in
5864  * the right spot.
5865  *
5866  * Note that for packed YCbCr 4:2:2 formats there is no way to
5867  * control chroma siting. The hardware simply replicates the
5868  * chroma samples for both of the luma samples, and thus we don't
5869  * actually get the expected MPEG2 chroma siting convention :(
5870  * The same behaviour is observed on pre-SKL platforms as well.
5871  *
5872  * Theory behind the formula (note that we ignore sub-pixel
5873  * source coordinates):
5874  * s = source sample position
5875  * d = destination sample position
5876  *
5877  * Downscaling 4:1:
5878  * -0.5
5879  * | 0.0
5880  * | |     1.5 (initial phase)
5881  * | |     |
5882  * v v     v
5883  * | s | s | s | s |
5884  * |       d       |
5885  *
5886  * Upscaling 1:4:
5887  * -0.5
5888  * | -0.375 (initial phase)
5889  * | |     0.0
5890  * | |     |
5891  * v v     v
5892  * |       s       |
5893  * | d | d | d | d |
5894  */
5895 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
5896 {
5897 	int phase = -0x8000;
5898 	u16 trip = 0;
5899 
5900 	if (chroma_cosited)
5901 		phase += (sub - 1) * 0x8000 / sub;
5902 
5903 	phase += scale / (2 * sub);
5904 
5905 	/*
5906 	 * Hardware initial phase limited to [-0.5:1.5].
5907 	 * Since the max hardware scale factor is 3.0, we
5908 	 * should never actually excdeed 1.0 here.
5909 	 */
5910 	WARN_ON(phase < -0x8000 || phase > 0x18000);
5911 
5912 	if (phase < 0)
5913 		phase = 0x10000 + phase;
5914 	else
5915 		trip = PS_PHASE_TRIP;
5916 
5917 	return ((phase >> 2) & PS_PHASE_MASK) | trip;
5918 }
5919 
5920 #define SKL_MIN_SRC_W 8
5921 #define SKL_MAX_SRC_W 4096
5922 #define SKL_MIN_SRC_H 8
5923 #define SKL_MAX_SRC_H 4096
5924 #define SKL_MIN_DST_W 8
5925 #define SKL_MAX_DST_W 4096
5926 #define SKL_MIN_DST_H 8
5927 #define SKL_MAX_DST_H 4096
5928 #define ICL_MAX_SRC_W 5120
5929 #define ICL_MAX_SRC_H 4096
5930 #define ICL_MAX_DST_W 5120
5931 #define ICL_MAX_DST_H 4096
5932 #define SKL_MIN_YUV_420_SRC_W 16
5933 #define SKL_MIN_YUV_420_SRC_H 16
5934 
5935 static int
5936 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
5937 		  unsigned int scaler_user, int *scaler_id,
5938 		  int src_w, int src_h, int dst_w, int dst_h,
5939 		  const struct drm_format_info *format,
5940 		  u64 modifier, bool need_scaler)
5941 {
5942 	struct intel_crtc_scaler_state *scaler_state =
5943 		&crtc_state->scaler_state;
5944 	struct intel_crtc *intel_crtc =
5945 		to_intel_crtc(crtc_state->uapi.crtc);
5946 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5947 	const struct drm_display_mode *adjusted_mode =
5948 		&crtc_state->hw.adjusted_mode;
5949 
5950 	/*
5951 	 * Src coordinates are already rotated by 270 degrees for
5952 	 * the 90/270 degree plane rotation cases (to match the
5953 	 * GTT mapping), hence no need to account for rotation here.
5954 	 */
5955 	if (src_w != dst_w || src_h != dst_h)
5956 		need_scaler = true;
5957 
5958 	/*
5959 	 * Scaling/fitting not supported in IF-ID mode in GEN9+
5960 	 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
5961 	 * Once NV12 is enabled, handle it here while allocating scaler
5962 	 * for NV12.
5963 	 */
5964 	if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable &&
5965 	    need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5966 		DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
5967 		return -EINVAL;
5968 	}
5969 
5970 	/*
5971 	 * if plane is being disabled or scaler is no more required or force detach
5972 	 *  - free scaler binded to this plane/crtc
5973 	 *  - in order to do this, update crtc->scaler_usage
5974 	 *
5975 	 * Here scaler state in crtc_state is set free so that
5976 	 * scaler can be assigned to other user. Actual register
5977 	 * update to free the scaler is done in plane/panel-fit programming.
5978 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
5979 	 */
5980 	if (force_detach || !need_scaler) {
5981 		if (*scaler_id >= 0) {
5982 			scaler_state->scaler_users &= ~(1 << scaler_user);
5983 			scaler_state->scalers[*scaler_id].in_use = 0;
5984 
5985 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
5986 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
5987 				intel_crtc->pipe, scaler_user, *scaler_id,
5988 				scaler_state->scaler_users);
5989 			*scaler_id = -1;
5990 		}
5991 		return 0;
5992 	}
5993 
5994 	if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
5995 	    (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
5996 		DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n");
5997 		return -EINVAL;
5998 	}
5999 
6000 	/* range checks */
6001 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
6002 	    dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
6003 	    (INTEL_GEN(dev_priv) >= 11 &&
6004 	     (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
6005 	      dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
6006 	    (INTEL_GEN(dev_priv) < 11 &&
6007 	     (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
6008 	      dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H)))	{
6009 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
6010 			"size is out of scaler range\n",
6011 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
6012 		return -EINVAL;
6013 	}
6014 
6015 	/* mark this plane as a scaler user in crtc_state */
6016 	scaler_state->scaler_users |= (1 << scaler_user);
6017 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
6018 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
6019 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
6020 		scaler_state->scaler_users);
6021 
6022 	return 0;
6023 }
6024 
6025 /**
6026  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
6027  *
6028  * @state: crtc's scaler state
6029  *
6030  * Return
6031  *     0 - scaler_usage updated successfully
6032  *    error - requested scaling cannot be supported or other error condition
6033  */
6034 int skl_update_scaler_crtc(struct intel_crtc_state *state)
6035 {
6036 	const struct drm_display_mode *adjusted_mode = &state->hw.adjusted_mode;
6037 	bool need_scaler = false;
6038 
6039 	if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
6040 		need_scaler = true;
6041 
6042 	return skl_update_scaler(state, !state->hw.active, SKL_CRTC_INDEX,
6043 				 &state->scaler_state.scaler_id,
6044 				 state->pipe_src_w, state->pipe_src_h,
6045 				 adjusted_mode->crtc_hdisplay,
6046 				 adjusted_mode->crtc_vdisplay, NULL, 0,
6047 				 need_scaler);
6048 }
6049 
6050 /**
6051  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
6052  * @crtc_state: crtc's scaler state
6053  * @plane_state: atomic plane state to update
6054  *
6055  * Return
6056  *     0 - scaler_usage updated successfully
6057  *    error - requested scaling cannot be supported or other error condition
6058  */
6059 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
6060 				   struct intel_plane_state *plane_state)
6061 {
6062 	struct intel_plane *intel_plane =
6063 		to_intel_plane(plane_state->uapi.plane);
6064 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
6065 	struct drm_framebuffer *fb = plane_state->hw.fb;
6066 	int ret;
6067 	bool force_detach = !fb || !plane_state->uapi.visible;
6068 	bool need_scaler = false;
6069 
6070 	/* Pre-gen11 and SDR planes always need a scaler for planar formats. */
6071 	if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
6072 	    fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
6073 		need_scaler = true;
6074 
6075 	ret = skl_update_scaler(crtc_state, force_detach,
6076 				drm_plane_index(&intel_plane->base),
6077 				&plane_state->scaler_id,
6078 				drm_rect_width(&plane_state->uapi.src) >> 16,
6079 				drm_rect_height(&plane_state->uapi.src) >> 16,
6080 				drm_rect_width(&plane_state->uapi.dst),
6081 				drm_rect_height(&plane_state->uapi.dst),
6082 				fb ? fb->format : NULL,
6083 				fb ? fb->modifier : 0,
6084 				need_scaler);
6085 
6086 	if (ret || plane_state->scaler_id < 0)
6087 		return ret;
6088 
6089 	/* check colorkey */
6090 	if (plane_state->ckey.flags) {
6091 		DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
6092 			      intel_plane->base.base.id,
6093 			      intel_plane->base.name);
6094 		return -EINVAL;
6095 	}
6096 
6097 	/* Check src format */
6098 	switch (fb->format->format) {
6099 	case DRM_FORMAT_RGB565:
6100 	case DRM_FORMAT_XBGR8888:
6101 	case DRM_FORMAT_XRGB8888:
6102 	case DRM_FORMAT_ABGR8888:
6103 	case DRM_FORMAT_ARGB8888:
6104 	case DRM_FORMAT_XRGB2101010:
6105 	case DRM_FORMAT_XBGR2101010:
6106 	case DRM_FORMAT_ARGB2101010:
6107 	case DRM_FORMAT_ABGR2101010:
6108 	case DRM_FORMAT_YUYV:
6109 	case DRM_FORMAT_YVYU:
6110 	case DRM_FORMAT_UYVY:
6111 	case DRM_FORMAT_VYUY:
6112 	case DRM_FORMAT_NV12:
6113 	case DRM_FORMAT_P010:
6114 	case DRM_FORMAT_P012:
6115 	case DRM_FORMAT_P016:
6116 	case DRM_FORMAT_Y210:
6117 	case DRM_FORMAT_Y212:
6118 	case DRM_FORMAT_Y216:
6119 	case DRM_FORMAT_XVYU2101010:
6120 	case DRM_FORMAT_XVYU12_16161616:
6121 	case DRM_FORMAT_XVYU16161616:
6122 		break;
6123 	case DRM_FORMAT_XBGR16161616F:
6124 	case DRM_FORMAT_ABGR16161616F:
6125 	case DRM_FORMAT_XRGB16161616F:
6126 	case DRM_FORMAT_ARGB16161616F:
6127 		if (INTEL_GEN(dev_priv) >= 11)
6128 			break;
6129 		/* fall through */
6130 	default:
6131 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
6132 			      intel_plane->base.base.id, intel_plane->base.name,
6133 			      fb->base.id, fb->format->format);
6134 		return -EINVAL;
6135 	}
6136 
6137 	return 0;
6138 }
6139 
6140 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
6141 {
6142 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6143 	int i;
6144 
6145 	for (i = 0; i < crtc->num_scalers; i++)
6146 		skl_detach_scaler(crtc, i);
6147 }
6148 
6149 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
6150 {
6151 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6152 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6153 	enum pipe pipe = crtc->pipe;
6154 	const struct intel_crtc_scaler_state *scaler_state =
6155 		&crtc_state->scaler_state;
6156 
6157 	if (crtc_state->pch_pfit.enabled) {
6158 		u16 uv_rgb_hphase, uv_rgb_vphase;
6159 		int pfit_w, pfit_h, hscale, vscale;
6160 		int id;
6161 
6162 		if (WARN_ON(crtc_state->scaler_state.scaler_id < 0))
6163 			return;
6164 
6165 		pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF;
6166 		pfit_h = crtc_state->pch_pfit.size & 0xFFFF;
6167 
6168 		hscale = (crtc_state->pipe_src_w << 16) / pfit_w;
6169 		vscale = (crtc_state->pipe_src_h << 16) / pfit_h;
6170 
6171 		uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
6172 		uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
6173 
6174 		id = scaler_state->scaler_id;
6175 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
6176 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
6177 		I915_WRITE_FW(SKL_PS_VPHASE(pipe, id),
6178 			      PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
6179 		I915_WRITE_FW(SKL_PS_HPHASE(pipe, id),
6180 			      PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
6181 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos);
6182 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size);
6183 	}
6184 }
6185 
6186 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
6187 {
6188 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6189 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6190 	enum pipe pipe = crtc->pipe;
6191 
6192 	if (crtc_state->pch_pfit.enabled) {
6193 		/* Force use of hard-coded filter coefficients
6194 		 * as some pre-programmed values are broken,
6195 		 * e.g. x201.
6196 		 */
6197 		if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
6198 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
6199 						 PF_PIPE_SEL_IVB(pipe));
6200 		else
6201 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6202 		I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos);
6203 		I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size);
6204 	}
6205 }
6206 
6207 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
6208 {
6209 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6210 	struct drm_device *dev = crtc->base.dev;
6211 	struct drm_i915_private *dev_priv = to_i915(dev);
6212 
6213 	if (!crtc_state->ips_enabled)
6214 		return;
6215 
6216 	/*
6217 	 * We can only enable IPS after we enable a plane and wait for a vblank
6218 	 * This function is called from post_plane_update, which is run after
6219 	 * a vblank wait.
6220 	 */
6221 	WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
6222 
6223 	if (IS_BROADWELL(dev_priv)) {
6224 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
6225 						IPS_ENABLE | IPS_PCODE_CONTROL));
6226 		/* Quoting Art Runyan: "its not safe to expect any particular
6227 		 * value in IPS_CTL bit 31 after enabling IPS through the
6228 		 * mailbox." Moreover, the mailbox may return a bogus state,
6229 		 * so we need to just enable it and continue on.
6230 		 */
6231 	} else {
6232 		I915_WRITE(IPS_CTL, IPS_ENABLE);
6233 		/* The bit only becomes 1 in the next vblank, so this wait here
6234 		 * is essentially intel_wait_for_vblank. If we don't have this
6235 		 * and don't wait for vblanks until the end of crtc_enable, then
6236 		 * the HW state readout code will complain that the expected
6237 		 * IPS_CTL value is not the one we read. */
6238 		if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
6239 			DRM_ERROR("Timed out waiting for IPS enable\n");
6240 	}
6241 }
6242 
6243 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
6244 {
6245 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6246 	struct drm_device *dev = crtc->base.dev;
6247 	struct drm_i915_private *dev_priv = to_i915(dev);
6248 
6249 	if (!crtc_state->ips_enabled)
6250 		return;
6251 
6252 	if (IS_BROADWELL(dev_priv)) {
6253 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
6254 		/*
6255 		 * Wait for PCODE to finish disabling IPS. The BSpec specified
6256 		 * 42ms timeout value leads to occasional timeouts so use 100ms
6257 		 * instead.
6258 		 */
6259 		if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
6260 			DRM_ERROR("Timed out waiting for IPS disable\n");
6261 	} else {
6262 		I915_WRITE(IPS_CTL, 0);
6263 		POSTING_READ(IPS_CTL);
6264 	}
6265 
6266 	/* We need to wait for a vblank before we can disable the plane. */
6267 	intel_wait_for_vblank(dev_priv, crtc->pipe);
6268 }
6269 
6270 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
6271 {
6272 	if (intel_crtc->overlay)
6273 		(void) intel_overlay_switch_off(intel_crtc->overlay);
6274 
6275 	/* Let userspace switch the overlay on again. In most cases userspace
6276 	 * has to recompute where to put it anyway.
6277 	 */
6278 }
6279 
6280 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
6281 				       const struct intel_crtc_state *new_crtc_state)
6282 {
6283 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6284 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6285 
6286 	if (!old_crtc_state->ips_enabled)
6287 		return false;
6288 
6289 	if (needs_modeset(new_crtc_state))
6290 		return true;
6291 
6292 	/*
6293 	 * Workaround : Do not read or write the pipe palette/gamma data while
6294 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6295 	 *
6296 	 * Disable IPS before we program the LUT.
6297 	 */
6298 	if (IS_HASWELL(dev_priv) &&
6299 	    (new_crtc_state->uapi.color_mgmt_changed ||
6300 	     new_crtc_state->update_pipe) &&
6301 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6302 		return true;
6303 
6304 	return !new_crtc_state->ips_enabled;
6305 }
6306 
6307 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
6308 				       const struct intel_crtc_state *new_crtc_state)
6309 {
6310 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6311 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6312 
6313 	if (!new_crtc_state->ips_enabled)
6314 		return false;
6315 
6316 	if (needs_modeset(new_crtc_state))
6317 		return true;
6318 
6319 	/*
6320 	 * Workaround : Do not read or write the pipe palette/gamma data while
6321 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6322 	 *
6323 	 * Re-enable IPS after the LUT has been programmed.
6324 	 */
6325 	if (IS_HASWELL(dev_priv) &&
6326 	    (new_crtc_state->uapi.color_mgmt_changed ||
6327 	     new_crtc_state->update_pipe) &&
6328 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6329 		return true;
6330 
6331 	/*
6332 	 * We can't read out IPS on broadwell, assume the worst and
6333 	 * forcibly enable IPS on the first fastset.
6334 	 */
6335 	if (new_crtc_state->update_pipe &&
6336 	    old_crtc_state->hw.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED)
6337 		return true;
6338 
6339 	return !old_crtc_state->ips_enabled;
6340 }
6341 
6342 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
6343 {
6344 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6345 
6346 	if (!crtc_state->nv12_planes)
6347 		return false;
6348 
6349 	/* WA Display #0827: Gen9:all */
6350 	if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
6351 		return true;
6352 
6353 	return false;
6354 }
6355 
6356 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
6357 {
6358 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6359 
6360 	/* Wa_2006604312:icl */
6361 	if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv))
6362 		return true;
6363 
6364 	return false;
6365 }
6366 
6367 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
6368 			    const struct intel_crtc_state *new_crtc_state)
6369 {
6370 	return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) &&
6371 		new_crtc_state->active_planes;
6372 }
6373 
6374 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
6375 			     const struct intel_crtc_state *new_crtc_state)
6376 {
6377 	return old_crtc_state->active_planes &&
6378 		(!new_crtc_state->active_planes || needs_modeset(new_crtc_state));
6379 }
6380 
6381 static void intel_post_plane_update(struct intel_atomic_state *state,
6382 				    struct intel_crtc *crtc)
6383 {
6384 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6385 	struct intel_plane *primary = to_intel_plane(crtc->base.primary);
6386 	const struct intel_crtc_state *old_crtc_state =
6387 		intel_atomic_get_old_crtc_state(state, crtc);
6388 	const struct intel_crtc_state *new_crtc_state =
6389 		intel_atomic_get_new_crtc_state(state, crtc);
6390 	const struct intel_plane_state *new_primary_state =
6391 		intel_atomic_get_new_plane_state(state, primary);
6392 	enum pipe pipe = crtc->pipe;
6393 
6394 	intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
6395 
6396 	if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
6397 		intel_update_watermarks(crtc);
6398 
6399 	if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state))
6400 		hsw_enable_ips(new_crtc_state);
6401 
6402 	if (new_primary_state)
6403 		intel_fbc_post_update(crtc);
6404 
6405 	if (needs_nv12_wa(old_crtc_state) &&
6406 	    !needs_nv12_wa(new_crtc_state))
6407 		skl_wa_827(dev_priv, pipe, false);
6408 
6409 	if (needs_scalerclk_wa(old_crtc_state) &&
6410 	    !needs_scalerclk_wa(new_crtc_state))
6411 		icl_wa_scalerclkgating(dev_priv, pipe, false);
6412 }
6413 
6414 static void intel_pre_plane_update(struct intel_atomic_state *state,
6415 				   struct intel_crtc *crtc)
6416 {
6417 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6418 	struct intel_plane *primary = to_intel_plane(crtc->base.primary);
6419 	const struct intel_crtc_state *old_crtc_state =
6420 		intel_atomic_get_old_crtc_state(state, crtc);
6421 	const struct intel_crtc_state *new_crtc_state =
6422 		intel_atomic_get_new_crtc_state(state, crtc);
6423 	const struct intel_plane_state *new_primary_state =
6424 		intel_atomic_get_new_plane_state(state, primary);
6425 	enum pipe pipe = crtc->pipe;
6426 
6427 	if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state))
6428 		hsw_disable_ips(old_crtc_state);
6429 
6430 	if (new_primary_state &&
6431 	    intel_fbc_pre_update(crtc, new_crtc_state, new_primary_state))
6432 		intel_wait_for_vblank(dev_priv, pipe);
6433 
6434 	/* Display WA 827 */
6435 	if (!needs_nv12_wa(old_crtc_state) &&
6436 	    needs_nv12_wa(new_crtc_state))
6437 		skl_wa_827(dev_priv, pipe, true);
6438 
6439 	/* Wa_2006604312:icl */
6440 	if (!needs_scalerclk_wa(old_crtc_state) &&
6441 	    needs_scalerclk_wa(new_crtc_state))
6442 		icl_wa_scalerclkgating(dev_priv, pipe, true);
6443 
6444 	/*
6445 	 * Vblank time updates from the shadow to live plane control register
6446 	 * are blocked if the memory self-refresh mode is active at that
6447 	 * moment. So to make sure the plane gets truly disabled, disable
6448 	 * first the self-refresh mode. The self-refresh enable bit in turn
6449 	 * will be checked/applied by the HW only at the next frame start
6450 	 * event which is after the vblank start event, so we need to have a
6451 	 * wait-for-vblank between disabling the plane and the pipe.
6452 	 */
6453 	if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
6454 	    new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6455 		intel_wait_for_vblank(dev_priv, pipe);
6456 
6457 	/*
6458 	 * IVB workaround: must disable low power watermarks for at least
6459 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
6460 	 * when scaling is disabled.
6461 	 *
6462 	 * WaCxSRDisabledForSpriteScaling:ivb
6463 	 */
6464 	if (old_crtc_state->hw.active &&
6465 	    new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
6466 		intel_wait_for_vblank(dev_priv, pipe);
6467 
6468 	/*
6469 	 * If we're doing a modeset we don't need to do any
6470 	 * pre-vblank watermark programming here.
6471 	 */
6472 	if (!needs_modeset(new_crtc_state)) {
6473 		/*
6474 		 * For platforms that support atomic watermarks, program the
6475 		 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
6476 		 * will be the intermediate values that are safe for both pre- and
6477 		 * post- vblank; when vblank happens, the 'active' values will be set
6478 		 * to the final 'target' values and we'll do this again to get the
6479 		 * optimal watermarks.  For gen9+ platforms, the values we program here
6480 		 * will be the final target values which will get automatically latched
6481 		 * at vblank time; no further programming will be necessary.
6482 		 *
6483 		 * If a platform hasn't been transitioned to atomic watermarks yet,
6484 		 * we'll continue to update watermarks the old way, if flags tell
6485 		 * us to.
6486 		 */
6487 		if (dev_priv->display.initial_watermarks)
6488 			dev_priv->display.initial_watermarks(state, crtc);
6489 		else if (new_crtc_state->update_wm_pre)
6490 			intel_update_watermarks(crtc);
6491 	}
6492 
6493 	/*
6494 	 * Gen2 reports pipe underruns whenever all planes are disabled.
6495 	 * So disable underrun reporting before all the planes get disabled.
6496 	 *
6497 	 * We do this after .initial_watermarks() so that we have a
6498 	 * chance of catching underruns with the intermediate watermarks
6499 	 * vs. the old plane configuration.
6500 	 */
6501 	if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state))
6502 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6503 }
6504 
6505 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6506 				      struct intel_crtc *crtc)
6507 {
6508 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6509 	const struct intel_crtc_state *new_crtc_state =
6510 		intel_atomic_get_new_crtc_state(state, crtc);
6511 	unsigned int update_mask = new_crtc_state->update_planes;
6512 	const struct intel_plane_state *old_plane_state;
6513 	struct intel_plane *plane;
6514 	unsigned fb_bits = 0;
6515 	int i;
6516 
6517 	intel_crtc_dpms_overlay_disable(crtc);
6518 
6519 	for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6520 		if (crtc->pipe != plane->pipe ||
6521 		    !(update_mask & BIT(plane->id)))
6522 			continue;
6523 
6524 		intel_disable_plane(plane, new_crtc_state);
6525 
6526 		if (old_plane_state->uapi.visible)
6527 			fb_bits |= plane->frontbuffer_bit;
6528 	}
6529 
6530 	intel_frontbuffer_flip(dev_priv, fb_bits);
6531 }
6532 
6533 /*
6534  * intel_connector_primary_encoder - get the primary encoder for a connector
6535  * @connector: connector for which to return the encoder
6536  *
6537  * Returns the primary encoder for a connector. There is a 1:1 mapping from
6538  * all connectors to their encoder, except for DP-MST connectors which have
6539  * both a virtual and a primary encoder. These DP-MST primary encoders can be
6540  * pointed to by as many DP-MST connectors as there are pipes.
6541  */
6542 static struct intel_encoder *
6543 intel_connector_primary_encoder(struct intel_connector *connector)
6544 {
6545 	struct intel_encoder *encoder;
6546 
6547 	if (connector->mst_port)
6548 		return &dp_to_dig_port(connector->mst_port)->base;
6549 
6550 	encoder = intel_attached_encoder(connector);
6551 	WARN_ON(!encoder);
6552 
6553 	return encoder;
6554 }
6555 
6556 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6557 {
6558 	struct drm_connector_state *new_conn_state;
6559 	struct drm_connector *connector;
6560 	int i;
6561 
6562 	for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6563 					i) {
6564 		struct intel_connector *intel_connector;
6565 		struct intel_encoder *encoder;
6566 		struct intel_crtc *crtc;
6567 
6568 		if (!intel_connector_needs_modeset(state, connector))
6569 			continue;
6570 
6571 		intel_connector = to_intel_connector(connector);
6572 		encoder = intel_connector_primary_encoder(intel_connector);
6573 		if (!encoder->update_prepare)
6574 			continue;
6575 
6576 		crtc = new_conn_state->crtc ?
6577 			to_intel_crtc(new_conn_state->crtc) : NULL;
6578 		encoder->update_prepare(state, encoder, crtc);
6579 	}
6580 }
6581 
6582 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6583 {
6584 	struct drm_connector_state *new_conn_state;
6585 	struct drm_connector *connector;
6586 	int i;
6587 
6588 	for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6589 					i) {
6590 		struct intel_connector *intel_connector;
6591 		struct intel_encoder *encoder;
6592 		struct intel_crtc *crtc;
6593 
6594 		if (!intel_connector_needs_modeset(state, connector))
6595 			continue;
6596 
6597 		intel_connector = to_intel_connector(connector);
6598 		encoder = intel_connector_primary_encoder(intel_connector);
6599 		if (!encoder->update_complete)
6600 			continue;
6601 
6602 		crtc = new_conn_state->crtc ?
6603 			to_intel_crtc(new_conn_state->crtc) : NULL;
6604 		encoder->update_complete(state, encoder, crtc);
6605 	}
6606 }
6607 
6608 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
6609 					  struct intel_crtc *crtc)
6610 {
6611 	const struct intel_crtc_state *crtc_state =
6612 		intel_atomic_get_new_crtc_state(state, crtc);
6613 	const struct drm_connector_state *conn_state;
6614 	struct drm_connector *conn;
6615 	int i;
6616 
6617 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6618 		struct intel_encoder *encoder =
6619 			to_intel_encoder(conn_state->best_encoder);
6620 
6621 		if (conn_state->crtc != &crtc->base)
6622 			continue;
6623 
6624 		if (encoder->pre_pll_enable)
6625 			encoder->pre_pll_enable(encoder, crtc_state, conn_state);
6626 	}
6627 }
6628 
6629 static void intel_encoders_pre_enable(struct intel_atomic_state *state,
6630 				      struct intel_crtc *crtc)
6631 {
6632 	const struct intel_crtc_state *crtc_state =
6633 		intel_atomic_get_new_crtc_state(state, crtc);
6634 	const struct drm_connector_state *conn_state;
6635 	struct drm_connector *conn;
6636 	int i;
6637 
6638 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6639 		struct intel_encoder *encoder =
6640 			to_intel_encoder(conn_state->best_encoder);
6641 
6642 		if (conn_state->crtc != &crtc->base)
6643 			continue;
6644 
6645 		if (encoder->pre_enable)
6646 			encoder->pre_enable(encoder, crtc_state, conn_state);
6647 	}
6648 }
6649 
6650 static void intel_encoders_enable(struct intel_atomic_state *state,
6651 				  struct intel_crtc *crtc)
6652 {
6653 	const struct intel_crtc_state *crtc_state =
6654 		intel_atomic_get_new_crtc_state(state, crtc);
6655 	const struct drm_connector_state *conn_state;
6656 	struct drm_connector *conn;
6657 	int i;
6658 
6659 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6660 		struct intel_encoder *encoder =
6661 			to_intel_encoder(conn_state->best_encoder);
6662 
6663 		if (conn_state->crtc != &crtc->base)
6664 			continue;
6665 
6666 		if (encoder->enable)
6667 			encoder->enable(encoder, crtc_state, conn_state);
6668 		intel_opregion_notify_encoder(encoder, true);
6669 	}
6670 }
6671 
6672 static void intel_encoders_disable(struct intel_atomic_state *state,
6673 				   struct intel_crtc *crtc)
6674 {
6675 	const struct intel_crtc_state *old_crtc_state =
6676 		intel_atomic_get_old_crtc_state(state, crtc);
6677 	const struct drm_connector_state *old_conn_state;
6678 	struct drm_connector *conn;
6679 	int i;
6680 
6681 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6682 		struct intel_encoder *encoder =
6683 			to_intel_encoder(old_conn_state->best_encoder);
6684 
6685 		if (old_conn_state->crtc != &crtc->base)
6686 			continue;
6687 
6688 		intel_opregion_notify_encoder(encoder, false);
6689 		if (encoder->disable)
6690 			encoder->disable(encoder, old_crtc_state, old_conn_state);
6691 	}
6692 }
6693 
6694 static void intel_encoders_post_disable(struct intel_atomic_state *state,
6695 					struct intel_crtc *crtc)
6696 {
6697 	const struct intel_crtc_state *old_crtc_state =
6698 		intel_atomic_get_old_crtc_state(state, crtc);
6699 	const struct drm_connector_state *old_conn_state;
6700 	struct drm_connector *conn;
6701 	int i;
6702 
6703 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6704 		struct intel_encoder *encoder =
6705 			to_intel_encoder(old_conn_state->best_encoder);
6706 
6707 		if (old_conn_state->crtc != &crtc->base)
6708 			continue;
6709 
6710 		if (encoder->post_disable)
6711 			encoder->post_disable(encoder, old_crtc_state, old_conn_state);
6712 	}
6713 }
6714 
6715 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
6716 					    struct intel_crtc *crtc)
6717 {
6718 	const struct intel_crtc_state *old_crtc_state =
6719 		intel_atomic_get_old_crtc_state(state, crtc);
6720 	const struct drm_connector_state *old_conn_state;
6721 	struct drm_connector *conn;
6722 	int i;
6723 
6724 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6725 		struct intel_encoder *encoder =
6726 			to_intel_encoder(old_conn_state->best_encoder);
6727 
6728 		if (old_conn_state->crtc != &crtc->base)
6729 			continue;
6730 
6731 		if (encoder->post_pll_disable)
6732 			encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
6733 	}
6734 }
6735 
6736 static void intel_encoders_update_pipe(struct intel_atomic_state *state,
6737 				       struct intel_crtc *crtc)
6738 {
6739 	const struct intel_crtc_state *crtc_state =
6740 		intel_atomic_get_new_crtc_state(state, crtc);
6741 	const struct drm_connector_state *conn_state;
6742 	struct drm_connector *conn;
6743 	int i;
6744 
6745 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6746 		struct intel_encoder *encoder =
6747 			to_intel_encoder(conn_state->best_encoder);
6748 
6749 		if (conn_state->crtc != &crtc->base)
6750 			continue;
6751 
6752 		if (encoder->update_pipe)
6753 			encoder->update_pipe(encoder, crtc_state, conn_state);
6754 	}
6755 }
6756 
6757 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6758 {
6759 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6760 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6761 
6762 	plane->disable_plane(plane, crtc_state);
6763 }
6764 
6765 static void ilk_crtc_enable(struct intel_atomic_state *state,
6766 			    struct intel_crtc *crtc)
6767 {
6768 	const struct intel_crtc_state *new_crtc_state =
6769 		intel_atomic_get_new_crtc_state(state, crtc);
6770 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6771 	enum pipe pipe = crtc->pipe;
6772 
6773 	if (WARN_ON(crtc->active))
6774 		return;
6775 
6776 	/*
6777 	 * Sometimes spurious CPU pipe underruns happen during FDI
6778 	 * training, at least with VGA+HDMI cloning. Suppress them.
6779 	 *
6780 	 * On ILK we get an occasional spurious CPU pipe underruns
6781 	 * between eDP port A enable and vdd enable. Also PCH port
6782 	 * enable seems to result in the occasional CPU pipe underrun.
6783 	 *
6784 	 * Spurious PCH underruns also occur during PCH enabling.
6785 	 */
6786 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6787 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6788 
6789 	if (new_crtc_state->has_pch_encoder)
6790 		intel_prepare_shared_dpll(new_crtc_state);
6791 
6792 	if (intel_crtc_has_dp_encoder(new_crtc_state))
6793 		intel_dp_set_m_n(new_crtc_state, M1_N1);
6794 
6795 	intel_set_pipe_timings(new_crtc_state);
6796 	intel_set_pipe_src_size(new_crtc_state);
6797 
6798 	if (new_crtc_state->has_pch_encoder)
6799 		intel_cpu_transcoder_set_m_n(new_crtc_state,
6800 					     &new_crtc_state->fdi_m_n, NULL);
6801 
6802 	ilk_set_pipeconf(new_crtc_state);
6803 
6804 	crtc->active = true;
6805 
6806 	intel_encoders_pre_enable(state, crtc);
6807 
6808 	if (new_crtc_state->has_pch_encoder) {
6809 		/* Note: FDI PLL enabling _must_ be done before we enable the
6810 		 * cpu pipes, hence this is separate from all the other fdi/pch
6811 		 * enabling. */
6812 		ilk_fdi_pll_enable(new_crtc_state);
6813 	} else {
6814 		assert_fdi_tx_disabled(dev_priv, pipe);
6815 		assert_fdi_rx_disabled(dev_priv, pipe);
6816 	}
6817 
6818 	ilk_pfit_enable(new_crtc_state);
6819 
6820 	/*
6821 	 * On ILK+ LUT must be loaded before the pipe is running but with
6822 	 * clocks enabled
6823 	 */
6824 	intel_color_load_luts(new_crtc_state);
6825 	intel_color_commit(new_crtc_state);
6826 	/* update DSPCNTR to configure gamma for pipe bottom color */
6827 	intel_disable_primary_plane(new_crtc_state);
6828 
6829 	if (dev_priv->display.initial_watermarks)
6830 		dev_priv->display.initial_watermarks(state, crtc);
6831 	intel_enable_pipe(new_crtc_state);
6832 
6833 	if (new_crtc_state->has_pch_encoder)
6834 		ilk_pch_enable(state, new_crtc_state);
6835 
6836 	intel_crtc_vblank_on(new_crtc_state);
6837 
6838 	intel_encoders_enable(state, crtc);
6839 
6840 	if (HAS_PCH_CPT(dev_priv))
6841 		cpt_verify_modeset(dev_priv, pipe);
6842 
6843 	/*
6844 	 * Must wait for vblank to avoid spurious PCH FIFO underruns.
6845 	 * And a second vblank wait is needed at least on ILK with
6846 	 * some interlaced HDMI modes. Let's do the double wait always
6847 	 * in case there are more corner cases we don't know about.
6848 	 */
6849 	if (new_crtc_state->has_pch_encoder) {
6850 		intel_wait_for_vblank(dev_priv, pipe);
6851 		intel_wait_for_vblank(dev_priv, pipe);
6852 	}
6853 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6854 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6855 }
6856 
6857 /* IPS only exists on ULT machines and is tied to pipe A. */
6858 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
6859 {
6860 	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
6861 }
6862 
6863 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
6864 					    enum pipe pipe, bool apply)
6865 {
6866 	u32 val = I915_READ(CLKGATE_DIS_PSL(pipe));
6867 	u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
6868 
6869 	if (apply)
6870 		val |= mask;
6871 	else
6872 		val &= ~mask;
6873 
6874 	I915_WRITE(CLKGATE_DIS_PSL(pipe), val);
6875 }
6876 
6877 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
6878 {
6879 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6880 	enum pipe pipe = crtc->pipe;
6881 	u32 val;
6882 
6883 	val = MBUS_DBOX_A_CREDIT(2);
6884 
6885 	if (INTEL_GEN(dev_priv) >= 12) {
6886 		val |= MBUS_DBOX_BW_CREDIT(2);
6887 		val |= MBUS_DBOX_B_CREDIT(12);
6888 	} else {
6889 		val |= MBUS_DBOX_BW_CREDIT(1);
6890 		val |= MBUS_DBOX_B_CREDIT(8);
6891 	}
6892 
6893 	I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val);
6894 }
6895 
6896 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
6897 {
6898 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6899 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6900 	i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
6901 	u32 val;
6902 
6903 	val = I915_READ(reg);
6904 	val &= ~HSW_FRAME_START_DELAY_MASK;
6905 	val |= HSW_FRAME_START_DELAY(0);
6906 	I915_WRITE(reg, val);
6907 }
6908 
6909 static void hsw_crtc_enable(struct intel_atomic_state *state,
6910 			    struct intel_crtc *crtc)
6911 {
6912 	const struct intel_crtc_state *new_crtc_state =
6913 		intel_atomic_get_new_crtc_state(state, crtc);
6914 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6915 	enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
6916 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
6917 	bool psl_clkgate_wa;
6918 
6919 	if (WARN_ON(crtc->active))
6920 		return;
6921 
6922 	intel_encoders_pre_pll_enable(state, crtc);
6923 
6924 	if (new_crtc_state->shared_dpll)
6925 		intel_enable_shared_dpll(new_crtc_state);
6926 
6927 	intel_encoders_pre_enable(state, crtc);
6928 
6929 	if (intel_crtc_has_dp_encoder(new_crtc_state))
6930 		intel_dp_set_m_n(new_crtc_state, M1_N1);
6931 
6932 	if (!transcoder_is_dsi(cpu_transcoder))
6933 		intel_set_pipe_timings(new_crtc_state);
6934 
6935 	if (INTEL_GEN(dev_priv) >= 11)
6936 		icl_enable_trans_port_sync(new_crtc_state);
6937 
6938 	intel_set_pipe_src_size(new_crtc_state);
6939 
6940 	if (cpu_transcoder != TRANSCODER_EDP &&
6941 	    !transcoder_is_dsi(cpu_transcoder))
6942 		I915_WRITE(PIPE_MULT(cpu_transcoder),
6943 			   new_crtc_state->pixel_multiplier - 1);
6944 
6945 	if (new_crtc_state->has_pch_encoder)
6946 		intel_cpu_transcoder_set_m_n(new_crtc_state,
6947 					     &new_crtc_state->fdi_m_n, NULL);
6948 
6949 	if (!transcoder_is_dsi(cpu_transcoder)) {
6950 		hsw_set_frame_start_delay(new_crtc_state);
6951 		hsw_set_pipeconf(new_crtc_state);
6952 	}
6953 
6954 	if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
6955 		bdw_set_pipemisc(new_crtc_state);
6956 
6957 	crtc->active = true;
6958 
6959 	/* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
6960 	psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
6961 		new_crtc_state->pch_pfit.enabled;
6962 	if (psl_clkgate_wa)
6963 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
6964 
6965 	if (INTEL_GEN(dev_priv) >= 9)
6966 		skl_pfit_enable(new_crtc_state);
6967 	else
6968 		ilk_pfit_enable(new_crtc_state);
6969 
6970 	/*
6971 	 * On ILK+ LUT must be loaded before the pipe is running but with
6972 	 * clocks enabled
6973 	 */
6974 	intel_color_load_luts(new_crtc_state);
6975 	intel_color_commit(new_crtc_state);
6976 	/* update DSPCNTR to configure gamma/csc for pipe bottom color */
6977 	if (INTEL_GEN(dev_priv) < 9)
6978 		intel_disable_primary_plane(new_crtc_state);
6979 
6980 	if (INTEL_GEN(dev_priv) >= 11)
6981 		icl_set_pipe_chicken(crtc);
6982 
6983 	if (!transcoder_is_dsi(cpu_transcoder))
6984 		intel_ddi_enable_transcoder_func(new_crtc_state);
6985 
6986 	if (dev_priv->display.initial_watermarks)
6987 		dev_priv->display.initial_watermarks(state, crtc);
6988 
6989 	if (INTEL_GEN(dev_priv) >= 11)
6990 		icl_pipe_mbus_enable(crtc);
6991 
6992 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
6993 	if (!transcoder_is_dsi(cpu_transcoder))
6994 		intel_enable_pipe(new_crtc_state);
6995 
6996 	if (new_crtc_state->has_pch_encoder)
6997 		lpt_pch_enable(state, new_crtc_state);
6998 
6999 	intel_crtc_vblank_on(new_crtc_state);
7000 
7001 	intel_encoders_enable(state, crtc);
7002 
7003 	if (psl_clkgate_wa) {
7004 		intel_wait_for_vblank(dev_priv, pipe);
7005 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
7006 	}
7007 
7008 	/* If we change the relative order between pipe/planes enabling, we need
7009 	 * to change the workaround. */
7010 	hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
7011 	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
7012 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7013 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7014 	}
7015 }
7016 
7017 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7018 {
7019 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7020 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7021 	enum pipe pipe = crtc->pipe;
7022 
7023 	/* To avoid upsetting the power well on haswell only disable the pfit if
7024 	 * it's in use. The hw state code will make sure we get this right. */
7025 	if (old_crtc_state->pch_pfit.enabled) {
7026 		I915_WRITE(PF_CTL(pipe), 0);
7027 		I915_WRITE(PF_WIN_POS(pipe), 0);
7028 		I915_WRITE(PF_WIN_SZ(pipe), 0);
7029 	}
7030 }
7031 
7032 static void ilk_crtc_disable(struct intel_atomic_state *state,
7033 			     struct intel_crtc *crtc)
7034 {
7035 	const struct intel_crtc_state *old_crtc_state =
7036 		intel_atomic_get_old_crtc_state(state, crtc);
7037 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7038 	enum pipe pipe = crtc->pipe;
7039 
7040 	/*
7041 	 * Sometimes spurious CPU pipe underruns happen when the
7042 	 * pipe is already disabled, but FDI RX/TX is still enabled.
7043 	 * Happens at least with VGA+HDMI cloning. Suppress them.
7044 	 */
7045 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7046 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
7047 
7048 	intel_encoders_disable(state, crtc);
7049 
7050 	intel_crtc_vblank_off(old_crtc_state);
7051 
7052 	intel_disable_pipe(old_crtc_state);
7053 
7054 	ilk_pfit_disable(old_crtc_state);
7055 
7056 	if (old_crtc_state->has_pch_encoder)
7057 		ilk_fdi_disable(crtc);
7058 
7059 	intel_encoders_post_disable(state, crtc);
7060 
7061 	if (old_crtc_state->has_pch_encoder) {
7062 		ilk_disable_pch_transcoder(dev_priv, pipe);
7063 
7064 		if (HAS_PCH_CPT(dev_priv)) {
7065 			i915_reg_t reg;
7066 			u32 temp;
7067 
7068 			/* disable TRANS_DP_CTL */
7069 			reg = TRANS_DP_CTL(pipe);
7070 			temp = I915_READ(reg);
7071 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
7072 				  TRANS_DP_PORT_SEL_MASK);
7073 			temp |= TRANS_DP_PORT_SEL_NONE;
7074 			I915_WRITE(reg, temp);
7075 
7076 			/* disable DPLL_SEL */
7077 			temp = I915_READ(PCH_DPLL_SEL);
7078 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
7079 			I915_WRITE(PCH_DPLL_SEL, temp);
7080 		}
7081 
7082 		ilk_fdi_pll_disable(crtc);
7083 	}
7084 
7085 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7086 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7087 }
7088 
7089 static void hsw_crtc_disable(struct intel_atomic_state *state,
7090 			     struct intel_crtc *crtc)
7091 {
7092 	/*
7093 	 * FIXME collapse everything to one hook.
7094 	 * Need care with mst->ddi interactions.
7095 	 */
7096 	intel_encoders_disable(state, crtc);
7097 	intel_encoders_post_disable(state, crtc);
7098 }
7099 
7100 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
7101 {
7102 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7103 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7104 
7105 	if (!crtc_state->gmch_pfit.control)
7106 		return;
7107 
7108 	/*
7109 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
7110 	 * according to register description and PRM.
7111 	 */
7112 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
7113 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
7114 
7115 	I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios);
7116 	I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control);
7117 
7118 	/* Border color in case we don't scale up to the full screen. Black by
7119 	 * default, change to something else for debugging. */
7120 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
7121 }
7122 
7123 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
7124 {
7125 	if (phy == PHY_NONE)
7126 		return false;
7127 
7128 	if (IS_ELKHARTLAKE(dev_priv))
7129 		return phy <= PHY_C;
7130 
7131 	if (INTEL_GEN(dev_priv) >= 11)
7132 		return phy <= PHY_B;
7133 
7134 	return false;
7135 }
7136 
7137 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
7138 {
7139 	if (INTEL_GEN(dev_priv) >= 12)
7140 		return phy >= PHY_D && phy <= PHY_I;
7141 
7142 	if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
7143 		return phy >= PHY_C && phy <= PHY_F;
7144 
7145 	return false;
7146 }
7147 
7148 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
7149 {
7150 	if (IS_ELKHARTLAKE(i915) && port == PORT_D)
7151 		return PHY_A;
7152 
7153 	return (enum phy)port;
7154 }
7155 
7156 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
7157 {
7158 	if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
7159 		return PORT_TC_NONE;
7160 
7161 	if (INTEL_GEN(dev_priv) >= 12)
7162 		return port - PORT_D;
7163 
7164 	return port - PORT_C;
7165 }
7166 
7167 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
7168 {
7169 	switch (port) {
7170 	case PORT_A:
7171 		return POWER_DOMAIN_PORT_DDI_A_LANES;
7172 	case PORT_B:
7173 		return POWER_DOMAIN_PORT_DDI_B_LANES;
7174 	case PORT_C:
7175 		return POWER_DOMAIN_PORT_DDI_C_LANES;
7176 	case PORT_D:
7177 		return POWER_DOMAIN_PORT_DDI_D_LANES;
7178 	case PORT_E:
7179 		return POWER_DOMAIN_PORT_DDI_E_LANES;
7180 	case PORT_F:
7181 		return POWER_DOMAIN_PORT_DDI_F_LANES;
7182 	case PORT_G:
7183 		return POWER_DOMAIN_PORT_DDI_G_LANES;
7184 	default:
7185 		MISSING_CASE(port);
7186 		return POWER_DOMAIN_PORT_OTHER;
7187 	}
7188 }
7189 
7190 enum intel_display_power_domain
7191 intel_aux_power_domain(struct intel_digital_port *dig_port)
7192 {
7193 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
7194 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
7195 
7196 	if (intel_phy_is_tc(dev_priv, phy) &&
7197 	    dig_port->tc_mode == TC_PORT_TBT_ALT) {
7198 		switch (dig_port->aux_ch) {
7199 		case AUX_CH_C:
7200 			return POWER_DOMAIN_AUX_C_TBT;
7201 		case AUX_CH_D:
7202 			return POWER_DOMAIN_AUX_D_TBT;
7203 		case AUX_CH_E:
7204 			return POWER_DOMAIN_AUX_E_TBT;
7205 		case AUX_CH_F:
7206 			return POWER_DOMAIN_AUX_F_TBT;
7207 		case AUX_CH_G:
7208 			return POWER_DOMAIN_AUX_G_TBT;
7209 		default:
7210 			MISSING_CASE(dig_port->aux_ch);
7211 			return POWER_DOMAIN_AUX_C_TBT;
7212 		}
7213 	}
7214 
7215 	switch (dig_port->aux_ch) {
7216 	case AUX_CH_A:
7217 		return POWER_DOMAIN_AUX_A;
7218 	case AUX_CH_B:
7219 		return POWER_DOMAIN_AUX_B;
7220 	case AUX_CH_C:
7221 		return POWER_DOMAIN_AUX_C;
7222 	case AUX_CH_D:
7223 		return POWER_DOMAIN_AUX_D;
7224 	case AUX_CH_E:
7225 		return POWER_DOMAIN_AUX_E;
7226 	case AUX_CH_F:
7227 		return POWER_DOMAIN_AUX_F;
7228 	case AUX_CH_G:
7229 		return POWER_DOMAIN_AUX_G;
7230 	default:
7231 		MISSING_CASE(dig_port->aux_ch);
7232 		return POWER_DOMAIN_AUX_A;
7233 	}
7234 }
7235 
7236 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7237 {
7238 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7239 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7240 	struct drm_encoder *encoder;
7241 	enum pipe pipe = crtc->pipe;
7242 	u64 mask;
7243 	enum transcoder transcoder = crtc_state->cpu_transcoder;
7244 
7245 	if (!crtc_state->hw.active)
7246 		return 0;
7247 
7248 	mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
7249 	mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
7250 	if (crtc_state->pch_pfit.enabled ||
7251 	    crtc_state->pch_pfit.force_thru)
7252 		mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
7253 
7254 	drm_for_each_encoder_mask(encoder, &dev_priv->drm,
7255 				  crtc_state->uapi.encoder_mask) {
7256 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7257 
7258 		mask |= BIT_ULL(intel_encoder->power_domain);
7259 	}
7260 
7261 	if (HAS_DDI(dev_priv) && crtc_state->has_audio)
7262 		mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
7263 
7264 	if (crtc_state->shared_dpll)
7265 		mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
7266 
7267 	return mask;
7268 }
7269 
7270 static u64
7271 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7272 {
7273 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7274 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7275 	enum intel_display_power_domain domain;
7276 	u64 domains, new_domains, old_domains;
7277 
7278 	old_domains = crtc->enabled_power_domains;
7279 	crtc->enabled_power_domains = new_domains =
7280 		get_crtc_power_domains(crtc_state);
7281 
7282 	domains = new_domains & ~old_domains;
7283 
7284 	for_each_power_domain(domain, domains)
7285 		intel_display_power_get(dev_priv, domain);
7286 
7287 	return old_domains & ~new_domains;
7288 }
7289 
7290 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
7291 				      u64 domains)
7292 {
7293 	enum intel_display_power_domain domain;
7294 
7295 	for_each_power_domain(domain, domains)
7296 		intel_display_power_put_unchecked(dev_priv, domain);
7297 }
7298 
7299 static void valleyview_crtc_enable(struct intel_atomic_state *state,
7300 				   struct intel_crtc *crtc)
7301 {
7302 	const struct intel_crtc_state *new_crtc_state =
7303 		intel_atomic_get_new_crtc_state(state, crtc);
7304 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7305 	enum pipe pipe = crtc->pipe;
7306 
7307 	if (WARN_ON(crtc->active))
7308 		return;
7309 
7310 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7311 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7312 
7313 	intel_set_pipe_timings(new_crtc_state);
7314 	intel_set_pipe_src_size(new_crtc_state);
7315 
7316 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
7317 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
7318 		I915_WRITE(CHV_CANVAS(pipe), 0);
7319 	}
7320 
7321 	i9xx_set_pipeconf(new_crtc_state);
7322 
7323 	crtc->active = true;
7324 
7325 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7326 
7327 	intel_encoders_pre_pll_enable(state, crtc);
7328 
7329 	if (IS_CHERRYVIEW(dev_priv)) {
7330 		chv_prepare_pll(crtc, new_crtc_state);
7331 		chv_enable_pll(crtc, new_crtc_state);
7332 	} else {
7333 		vlv_prepare_pll(crtc, new_crtc_state);
7334 		vlv_enable_pll(crtc, new_crtc_state);
7335 	}
7336 
7337 	intel_encoders_pre_enable(state, crtc);
7338 
7339 	i9xx_pfit_enable(new_crtc_state);
7340 
7341 	intel_color_load_luts(new_crtc_state);
7342 	intel_color_commit(new_crtc_state);
7343 	/* update DSPCNTR to configure gamma for pipe bottom color */
7344 	intel_disable_primary_plane(new_crtc_state);
7345 
7346 	dev_priv->display.initial_watermarks(state, crtc);
7347 	intel_enable_pipe(new_crtc_state);
7348 
7349 	intel_crtc_vblank_on(new_crtc_state);
7350 
7351 	intel_encoders_enable(state, crtc);
7352 }
7353 
7354 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7355 {
7356 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7357 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7358 
7359 	I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0);
7360 	I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1);
7361 }
7362 
7363 static void i9xx_crtc_enable(struct intel_atomic_state *state,
7364 			     struct intel_crtc *crtc)
7365 {
7366 	const struct intel_crtc_state *new_crtc_state =
7367 		intel_atomic_get_new_crtc_state(state, crtc);
7368 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7369 	enum pipe pipe = crtc->pipe;
7370 
7371 	if (WARN_ON(crtc->active))
7372 		return;
7373 
7374 	i9xx_set_pll_dividers(new_crtc_state);
7375 
7376 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7377 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7378 
7379 	intel_set_pipe_timings(new_crtc_state);
7380 	intel_set_pipe_src_size(new_crtc_state);
7381 
7382 	i9xx_set_pipeconf(new_crtc_state);
7383 
7384 	crtc->active = true;
7385 
7386 	if (!IS_GEN(dev_priv, 2))
7387 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7388 
7389 	intel_encoders_pre_enable(state, crtc);
7390 
7391 	i9xx_enable_pll(crtc, new_crtc_state);
7392 
7393 	i9xx_pfit_enable(new_crtc_state);
7394 
7395 	intel_color_load_luts(new_crtc_state);
7396 	intel_color_commit(new_crtc_state);
7397 	/* update DSPCNTR to configure gamma for pipe bottom color */
7398 	intel_disable_primary_plane(new_crtc_state);
7399 
7400 	if (dev_priv->display.initial_watermarks)
7401 		dev_priv->display.initial_watermarks(state, crtc);
7402 	else
7403 		intel_update_watermarks(crtc);
7404 	intel_enable_pipe(new_crtc_state);
7405 
7406 	intel_crtc_vblank_on(new_crtc_state);
7407 
7408 	intel_encoders_enable(state, crtc);
7409 }
7410 
7411 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7412 {
7413 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7414 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7415 
7416 	if (!old_crtc_state->gmch_pfit.control)
7417 		return;
7418 
7419 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
7420 
7421 	DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n",
7422 		      I915_READ(PFIT_CONTROL));
7423 	I915_WRITE(PFIT_CONTROL, 0);
7424 }
7425 
7426 static void i9xx_crtc_disable(struct intel_atomic_state *state,
7427 			      struct intel_crtc *crtc)
7428 {
7429 	struct intel_crtc_state *old_crtc_state =
7430 		intel_atomic_get_old_crtc_state(state, crtc);
7431 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7432 	enum pipe pipe = crtc->pipe;
7433 
7434 	/*
7435 	 * On gen2 planes are double buffered but the pipe isn't, so we must
7436 	 * wait for planes to fully turn off before disabling the pipe.
7437 	 */
7438 	if (IS_GEN(dev_priv, 2))
7439 		intel_wait_for_vblank(dev_priv, pipe);
7440 
7441 	intel_encoders_disable(state, crtc);
7442 
7443 	intel_crtc_vblank_off(old_crtc_state);
7444 
7445 	intel_disable_pipe(old_crtc_state);
7446 
7447 	i9xx_pfit_disable(old_crtc_state);
7448 
7449 	intel_encoders_post_disable(state, crtc);
7450 
7451 	if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7452 		if (IS_CHERRYVIEW(dev_priv))
7453 			chv_disable_pll(dev_priv, pipe);
7454 		else if (IS_VALLEYVIEW(dev_priv))
7455 			vlv_disable_pll(dev_priv, pipe);
7456 		else
7457 			i9xx_disable_pll(old_crtc_state);
7458 	}
7459 
7460 	intel_encoders_post_pll_disable(state, crtc);
7461 
7462 	if (!IS_GEN(dev_priv, 2))
7463 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7464 
7465 	if (!dev_priv->display.initial_watermarks)
7466 		intel_update_watermarks(crtc);
7467 
7468 	/* clock the pipe down to 640x480@60 to potentially save power */
7469 	if (IS_I830(dev_priv))
7470 		i830_enable_pipe(dev_priv, pipe);
7471 }
7472 
7473 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc,
7474 					struct drm_modeset_acquire_ctx *ctx)
7475 {
7476 	struct intel_encoder *encoder;
7477 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7478 	struct intel_bw_state *bw_state =
7479 		to_intel_bw_state(dev_priv->bw_obj.state);
7480 	struct intel_crtc_state *crtc_state =
7481 		to_intel_crtc_state(crtc->base.state);
7482 	enum intel_display_power_domain domain;
7483 	struct intel_plane *plane;
7484 	struct drm_atomic_state *state;
7485 	struct intel_crtc_state *temp_crtc_state;
7486 	enum pipe pipe = crtc->pipe;
7487 	u64 domains;
7488 	int ret;
7489 
7490 	if (!crtc_state->hw.active)
7491 		return;
7492 
7493 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
7494 		const struct intel_plane_state *plane_state =
7495 			to_intel_plane_state(plane->base.state);
7496 
7497 		if (plane_state->uapi.visible)
7498 			intel_plane_disable_noatomic(crtc, plane);
7499 	}
7500 
7501 	state = drm_atomic_state_alloc(&dev_priv->drm);
7502 	if (!state) {
7503 		DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
7504 			      crtc->base.base.id, crtc->base.name);
7505 		return;
7506 	}
7507 
7508 	state->acquire_ctx = ctx;
7509 
7510 	/* Everything's already locked, -EDEADLK can't happen. */
7511 	temp_crtc_state = intel_atomic_get_crtc_state(state, crtc);
7512 	ret = drm_atomic_add_affected_connectors(state, &crtc->base);
7513 
7514 	WARN_ON(IS_ERR(temp_crtc_state) || ret);
7515 
7516 	dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc);
7517 
7518 	drm_atomic_state_put(state);
7519 
7520 	DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7521 		      crtc->base.base.id, crtc->base.name);
7522 
7523 	crtc->active = false;
7524 	crtc->base.enabled = false;
7525 
7526 	WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0);
7527 	crtc_state->uapi.active = false;
7528 	crtc_state->uapi.connector_mask = 0;
7529 	crtc_state->uapi.encoder_mask = 0;
7530 	intel_crtc_free_hw_state(crtc_state);
7531 	memset(&crtc_state->hw, 0, sizeof(crtc_state->hw));
7532 
7533 	for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder)
7534 		encoder->base.crtc = NULL;
7535 
7536 	intel_fbc_disable(crtc);
7537 	intel_update_watermarks(crtc);
7538 	intel_disable_shared_dpll(crtc_state);
7539 
7540 	domains = crtc->enabled_power_domains;
7541 	for_each_power_domain(domain, domains)
7542 		intel_display_power_put_unchecked(dev_priv, domain);
7543 	crtc->enabled_power_domains = 0;
7544 
7545 	dev_priv->active_pipes &= ~BIT(pipe);
7546 	dev_priv->min_cdclk[pipe] = 0;
7547 	dev_priv->min_voltage_level[pipe] = 0;
7548 
7549 	bw_state->data_rate[pipe] = 0;
7550 	bw_state->num_active_planes[pipe] = 0;
7551 }
7552 
7553 /*
7554  * turn all crtc's off, but do not adjust state
7555  * This has to be paired with a call to intel_modeset_setup_hw_state.
7556  */
7557 int intel_display_suspend(struct drm_device *dev)
7558 {
7559 	struct drm_i915_private *dev_priv = to_i915(dev);
7560 	struct drm_atomic_state *state;
7561 	int ret;
7562 
7563 	state = drm_atomic_helper_suspend(dev);
7564 	ret = PTR_ERR_OR_ZERO(state);
7565 	if (ret)
7566 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
7567 	else
7568 		dev_priv->modeset_restore_state = state;
7569 	return ret;
7570 }
7571 
7572 void intel_encoder_destroy(struct drm_encoder *encoder)
7573 {
7574 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7575 
7576 	drm_encoder_cleanup(encoder);
7577 	kfree(intel_encoder);
7578 }
7579 
7580 /* Cross check the actual hw state with our own modeset state tracking (and it's
7581  * internal consistency). */
7582 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7583 					 struct drm_connector_state *conn_state)
7584 {
7585 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
7586 
7587 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
7588 		      connector->base.base.id,
7589 		      connector->base.name);
7590 
7591 	if (connector->get_hw_state(connector)) {
7592 		struct intel_encoder *encoder = connector->encoder;
7593 
7594 		I915_STATE_WARN(!crtc_state,
7595 			 "connector enabled without attached crtc\n");
7596 
7597 		if (!crtc_state)
7598 			return;
7599 
7600 		I915_STATE_WARN(!crtc_state->hw.active,
7601 				"connector is active, but attached crtc isn't\n");
7602 
7603 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7604 			return;
7605 
7606 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7607 			"atomic encoder doesn't match attached encoder\n");
7608 
7609 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7610 			"attached encoder crtc differs from connector crtc\n");
7611 	} else {
7612 		I915_STATE_WARN(crtc_state && crtc_state->hw.active,
7613 				"attached crtc is active, but connector isn't\n");
7614 		I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7615 			"best encoder set without crtc!\n");
7616 	}
7617 }
7618 
7619 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7620 {
7621 	if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
7622 		return crtc_state->fdi_lanes;
7623 
7624 	return 0;
7625 }
7626 
7627 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7628 			       struct intel_crtc_state *pipe_config)
7629 {
7630 	struct drm_i915_private *dev_priv = to_i915(dev);
7631 	struct drm_atomic_state *state = pipe_config->uapi.state;
7632 	struct intel_crtc *other_crtc;
7633 	struct intel_crtc_state *other_crtc_state;
7634 
7635 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7636 		      pipe_name(pipe), pipe_config->fdi_lanes);
7637 	if (pipe_config->fdi_lanes > 4) {
7638 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7639 			      pipe_name(pipe), pipe_config->fdi_lanes);
7640 		return -EINVAL;
7641 	}
7642 
7643 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7644 		if (pipe_config->fdi_lanes > 2) {
7645 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7646 				      pipe_config->fdi_lanes);
7647 			return -EINVAL;
7648 		} else {
7649 			return 0;
7650 		}
7651 	}
7652 
7653 	if (INTEL_NUM_PIPES(dev_priv) == 2)
7654 		return 0;
7655 
7656 	/* Ivybridge 3 pipe is really complicated */
7657 	switch (pipe) {
7658 	case PIPE_A:
7659 		return 0;
7660 	case PIPE_B:
7661 		if (pipe_config->fdi_lanes <= 2)
7662 			return 0;
7663 
7664 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7665 		other_crtc_state =
7666 			intel_atomic_get_crtc_state(state, other_crtc);
7667 		if (IS_ERR(other_crtc_state))
7668 			return PTR_ERR(other_crtc_state);
7669 
7670 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7671 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7672 				      pipe_name(pipe), pipe_config->fdi_lanes);
7673 			return -EINVAL;
7674 		}
7675 		return 0;
7676 	case PIPE_C:
7677 		if (pipe_config->fdi_lanes > 2) {
7678 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7679 				      pipe_name(pipe), pipe_config->fdi_lanes);
7680 			return -EINVAL;
7681 		}
7682 
7683 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7684 		other_crtc_state =
7685 			intel_atomic_get_crtc_state(state, other_crtc);
7686 		if (IS_ERR(other_crtc_state))
7687 			return PTR_ERR(other_crtc_state);
7688 
7689 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7690 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7691 			return -EINVAL;
7692 		}
7693 		return 0;
7694 	default:
7695 		BUG();
7696 	}
7697 }
7698 
7699 #define RETRY 1
7700 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc,
7701 				  struct intel_crtc_state *pipe_config)
7702 {
7703 	struct drm_device *dev = intel_crtc->base.dev;
7704 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7705 	int lane, link_bw, fdi_dotclock, ret;
7706 	bool needs_recompute = false;
7707 
7708 retry:
7709 	/* FDI is a binary signal running at ~2.7GHz, encoding
7710 	 * each output octet as 10 bits. The actual frequency
7711 	 * is stored as a divider into a 100MHz clock, and the
7712 	 * mode pixel clock is stored in units of 1KHz.
7713 	 * Hence the bw of each lane in terms of the mode signal
7714 	 * is:
7715 	 */
7716 	link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7717 
7718 	fdi_dotclock = adjusted_mode->crtc_clock;
7719 
7720 	lane = ilk_get_lanes_required(fdi_dotclock, link_bw,
7721 				      pipe_config->pipe_bpp);
7722 
7723 	pipe_config->fdi_lanes = lane;
7724 
7725 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7726 			       link_bw, &pipe_config->fdi_m_n, false, false);
7727 
7728 	ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7729 	if (ret == -EDEADLK)
7730 		return ret;
7731 
7732 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7733 		pipe_config->pipe_bpp -= 2*3;
7734 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7735 			      pipe_config->pipe_bpp);
7736 		needs_recompute = true;
7737 		pipe_config->bw_constrained = true;
7738 
7739 		goto retry;
7740 	}
7741 
7742 	if (needs_recompute)
7743 		return RETRY;
7744 
7745 	return ret;
7746 }
7747 
7748 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7749 {
7750 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7751 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7752 
7753 	/* IPS only exists on ULT machines and is tied to pipe A. */
7754 	if (!hsw_crtc_supports_ips(crtc))
7755 		return false;
7756 
7757 	if (!i915_modparams.enable_ips)
7758 		return false;
7759 
7760 	if (crtc_state->pipe_bpp > 24)
7761 		return false;
7762 
7763 	/*
7764 	 * We compare against max which means we must take
7765 	 * the increased cdclk requirement into account when
7766 	 * calculating the new cdclk.
7767 	 *
7768 	 * Should measure whether using a lower cdclk w/o IPS
7769 	 */
7770 	if (IS_BROADWELL(dev_priv) &&
7771 	    crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7772 		return false;
7773 
7774 	return true;
7775 }
7776 
7777 static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7778 {
7779 	struct drm_i915_private *dev_priv =
7780 		to_i915(crtc_state->uapi.crtc->dev);
7781 	struct intel_atomic_state *intel_state =
7782 		to_intel_atomic_state(crtc_state->uapi.state);
7783 
7784 	if (!hsw_crtc_state_ips_capable(crtc_state))
7785 		return false;
7786 
7787 	/*
7788 	 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7789 	 * enabled and disabled dynamically based on package C states,
7790 	 * user space can't make reliable use of the CRCs, so let's just
7791 	 * completely disable it.
7792 	 */
7793 	if (crtc_state->crc_enabled)
7794 		return false;
7795 
7796 	/* IPS should be fine as long as at least one plane is enabled. */
7797 	if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7798 		return false;
7799 
7800 	/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
7801 	if (IS_BROADWELL(dev_priv) &&
7802 	    crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100)
7803 		return false;
7804 
7805 	return true;
7806 }
7807 
7808 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7809 {
7810 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7811 
7812 	/* GDG double wide on either pipe, otherwise pipe A only */
7813 	return INTEL_GEN(dev_priv) < 4 &&
7814 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7815 }
7816 
7817 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
7818 {
7819 	u32 pixel_rate;
7820 
7821 	pixel_rate = pipe_config->hw.adjusted_mode.crtc_clock;
7822 
7823 	/*
7824 	 * We only use IF-ID interlacing. If we ever use
7825 	 * PF-ID we'll need to adjust the pixel_rate here.
7826 	 */
7827 
7828 	if (pipe_config->pch_pfit.enabled) {
7829 		u64 pipe_w, pipe_h, pfit_w, pfit_h;
7830 		u32 pfit_size = pipe_config->pch_pfit.size;
7831 
7832 		pipe_w = pipe_config->pipe_src_w;
7833 		pipe_h = pipe_config->pipe_src_h;
7834 
7835 		pfit_w = (pfit_size >> 16) & 0xFFFF;
7836 		pfit_h = pfit_size & 0xFFFF;
7837 		if (pipe_w < pfit_w)
7838 			pipe_w = pfit_w;
7839 		if (pipe_h < pfit_h)
7840 			pipe_h = pfit_h;
7841 
7842 		if (WARN_ON(!pfit_w || !pfit_h))
7843 			return pixel_rate;
7844 
7845 		pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
7846 				     pfit_w * pfit_h);
7847 	}
7848 
7849 	return pixel_rate;
7850 }
7851 
7852 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
7853 {
7854 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
7855 
7856 	if (HAS_GMCH(dev_priv))
7857 		/* FIXME calculate proper pipe pixel rate for GMCH pfit */
7858 		crtc_state->pixel_rate =
7859 			crtc_state->hw.adjusted_mode.crtc_clock;
7860 	else
7861 		crtc_state->pixel_rate =
7862 			ilk_pipe_pixel_rate(crtc_state);
7863 }
7864 
7865 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7866 				     struct intel_crtc_state *pipe_config)
7867 {
7868 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7869 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7870 	int clock_limit = dev_priv->max_dotclk_freq;
7871 
7872 	if (INTEL_GEN(dev_priv) < 4) {
7873 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7874 
7875 		/*
7876 		 * Enable double wide mode when the dot clock
7877 		 * is > 90% of the (display) core speed.
7878 		 */
7879 		if (intel_crtc_supports_double_wide(crtc) &&
7880 		    adjusted_mode->crtc_clock > clock_limit) {
7881 			clock_limit = dev_priv->max_dotclk_freq;
7882 			pipe_config->double_wide = true;
7883 		}
7884 	}
7885 
7886 	if (adjusted_mode->crtc_clock > clock_limit) {
7887 		DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7888 			      adjusted_mode->crtc_clock, clock_limit,
7889 			      yesno(pipe_config->double_wide));
7890 		return -EINVAL;
7891 	}
7892 
7893 	if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
7894 	     pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
7895 	     pipe_config->hw.ctm) {
7896 		/*
7897 		 * There is only one pipe CSC unit per pipe, and we need that
7898 		 * for output conversion from RGB->YCBCR. So if CTM is already
7899 		 * applied we can't support YCBCR420 output.
7900 		 */
7901 		DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
7902 		return -EINVAL;
7903 	}
7904 
7905 	/*
7906 	 * Pipe horizontal size must be even in:
7907 	 * - DVO ganged mode
7908 	 * - LVDS dual channel mode
7909 	 * - Double wide pipe
7910 	 */
7911 	if (pipe_config->pipe_src_w & 1) {
7912 		if (pipe_config->double_wide) {
7913 			DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n");
7914 			return -EINVAL;
7915 		}
7916 
7917 		if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7918 		    intel_is_dual_link_lvds(dev_priv)) {
7919 			DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n");
7920 			return -EINVAL;
7921 		}
7922 	}
7923 
7924 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
7925 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7926 	 */
7927 	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7928 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7929 		return -EINVAL;
7930 
7931 	intel_crtc_compute_pixel_rate(pipe_config);
7932 
7933 	if (pipe_config->has_pch_encoder)
7934 		return ilk_fdi_compute_config(crtc, pipe_config);
7935 
7936 	return 0;
7937 }
7938 
7939 static void
7940 intel_reduce_m_n_ratio(u32 *num, u32 *den)
7941 {
7942 	while (*num > DATA_LINK_M_N_MASK ||
7943 	       *den > DATA_LINK_M_N_MASK) {
7944 		*num >>= 1;
7945 		*den >>= 1;
7946 	}
7947 }
7948 
7949 static void compute_m_n(unsigned int m, unsigned int n,
7950 			u32 *ret_m, u32 *ret_n,
7951 			bool constant_n)
7952 {
7953 	/*
7954 	 * Several DP dongles in particular seem to be fussy about
7955 	 * too large link M/N values. Give N value as 0x8000 that
7956 	 * should be acceptable by specific devices. 0x8000 is the
7957 	 * specified fixed N value for asynchronous clock mode,
7958 	 * which the devices expect also in synchronous clock mode.
7959 	 */
7960 	if (constant_n)
7961 		*ret_n = 0x8000;
7962 	else
7963 		*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7964 
7965 	*ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
7966 	intel_reduce_m_n_ratio(ret_m, ret_n);
7967 }
7968 
7969 void
7970 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
7971 		       int pixel_clock, int link_clock,
7972 		       struct intel_link_m_n *m_n,
7973 		       bool constant_n, bool fec_enable)
7974 {
7975 	u32 data_clock = bits_per_pixel * pixel_clock;
7976 
7977 	if (fec_enable)
7978 		data_clock = intel_dp_mode_to_fec_clock(data_clock);
7979 
7980 	m_n->tu = 64;
7981 	compute_m_n(data_clock,
7982 		    link_clock * nlanes * 8,
7983 		    &m_n->gmch_m, &m_n->gmch_n,
7984 		    constant_n);
7985 
7986 	compute_m_n(pixel_clock, link_clock,
7987 		    &m_n->link_m, &m_n->link_n,
7988 		    constant_n);
7989 }
7990 
7991 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
7992 {
7993 	/*
7994 	 * There may be no VBT; and if the BIOS enabled SSC we can
7995 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
7996 	 * BIOS isn't using it, don't assume it will work even if the VBT
7997 	 * indicates as much.
7998 	 */
7999 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
8000 		bool bios_lvds_use_ssc = I915_READ(PCH_DREF_CONTROL) &
8001 			DREF_SSC1_ENABLE;
8002 
8003 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
8004 			DRM_DEBUG_KMS("SSC %s by BIOS, overriding VBT which says %s\n",
8005 				      enableddisabled(bios_lvds_use_ssc),
8006 				      enableddisabled(dev_priv->vbt.lvds_use_ssc));
8007 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
8008 		}
8009 	}
8010 }
8011 
8012 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
8013 {
8014 	if (i915_modparams.panel_use_ssc >= 0)
8015 		return i915_modparams.panel_use_ssc != 0;
8016 	return dev_priv->vbt.lvds_use_ssc
8017 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
8018 }
8019 
8020 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
8021 {
8022 	return (1 << dpll->n) << 16 | dpll->m2;
8023 }
8024 
8025 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
8026 {
8027 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
8028 }
8029 
8030 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
8031 				     struct intel_crtc_state *crtc_state,
8032 				     struct dpll *reduced_clock)
8033 {
8034 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8035 	u32 fp, fp2 = 0;
8036 
8037 	if (IS_PINEVIEW(dev_priv)) {
8038 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
8039 		if (reduced_clock)
8040 			fp2 = pnv_dpll_compute_fp(reduced_clock);
8041 	} else {
8042 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8043 		if (reduced_clock)
8044 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
8045 	}
8046 
8047 	crtc_state->dpll_hw_state.fp0 = fp;
8048 
8049 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8050 	    reduced_clock) {
8051 		crtc_state->dpll_hw_state.fp1 = fp2;
8052 	} else {
8053 		crtc_state->dpll_hw_state.fp1 = fp;
8054 	}
8055 }
8056 
8057 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
8058 		pipe)
8059 {
8060 	u32 reg_val;
8061 
8062 	/*
8063 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
8064 	 * and set it to a reasonable value instead.
8065 	 */
8066 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8067 	reg_val &= 0xffffff00;
8068 	reg_val |= 0x00000030;
8069 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8070 
8071 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8072 	reg_val &= 0x00ffffff;
8073 	reg_val |= 0x8c000000;
8074 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8075 
8076 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8077 	reg_val &= 0xffffff00;
8078 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8079 
8080 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8081 	reg_val &= 0x00ffffff;
8082 	reg_val |= 0xb0000000;
8083 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8084 }
8085 
8086 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8087 					 const struct intel_link_m_n *m_n)
8088 {
8089 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8090 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8091 	enum pipe pipe = crtc->pipe;
8092 
8093 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
8094 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
8095 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
8096 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
8097 }
8098 
8099 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
8100 				 enum transcoder transcoder)
8101 {
8102 	if (IS_HASWELL(dev_priv))
8103 		return transcoder == TRANSCODER_EDP;
8104 
8105 	/*
8106 	 * Strictly speaking some registers are available before
8107 	 * gen7, but we only support DRRS on gen7+
8108 	 */
8109 	return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
8110 }
8111 
8112 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8113 					 const struct intel_link_m_n *m_n,
8114 					 const struct intel_link_m_n *m2_n2)
8115 {
8116 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8117 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8118 	enum pipe pipe = crtc->pipe;
8119 	enum transcoder transcoder = crtc_state->cpu_transcoder;
8120 
8121 	if (INTEL_GEN(dev_priv) >= 5) {
8122 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
8123 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
8124 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
8125 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
8126 		/*
8127 		 *  M2_N2 registers are set only if DRRS is supported
8128 		 * (to make sure the registers are not unnecessarily accessed).
8129 		 */
8130 		if (m2_n2 && crtc_state->has_drrs &&
8131 		    transcoder_has_m2_n2(dev_priv, transcoder)) {
8132 			I915_WRITE(PIPE_DATA_M2(transcoder),
8133 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
8134 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
8135 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
8136 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
8137 		}
8138 	} else {
8139 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
8140 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
8141 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
8142 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
8143 	}
8144 }
8145 
8146 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
8147 {
8148 	const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
8149 
8150 	if (m_n == M1_N1) {
8151 		dp_m_n = &crtc_state->dp_m_n;
8152 		dp_m2_n2 = &crtc_state->dp_m2_n2;
8153 	} else if (m_n == M2_N2) {
8154 
8155 		/*
8156 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
8157 		 * needs to be programmed into M1_N1.
8158 		 */
8159 		dp_m_n = &crtc_state->dp_m2_n2;
8160 	} else {
8161 		DRM_ERROR("Unsupported divider value\n");
8162 		return;
8163 	}
8164 
8165 	if (crtc_state->has_pch_encoder)
8166 		intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
8167 	else
8168 		intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
8169 }
8170 
8171 static void vlv_compute_dpll(struct intel_crtc *crtc,
8172 			     struct intel_crtc_state *pipe_config)
8173 {
8174 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
8175 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8176 	if (crtc->pipe != PIPE_A)
8177 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8178 
8179 	/* DPLL not used with DSI, but still need the rest set up */
8180 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8181 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
8182 			DPLL_EXT_BUFFER_ENABLE_VLV;
8183 
8184 	pipe_config->dpll_hw_state.dpll_md =
8185 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8186 }
8187 
8188 static void chv_compute_dpll(struct intel_crtc *crtc,
8189 			     struct intel_crtc_state *pipe_config)
8190 {
8191 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
8192 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8193 	if (crtc->pipe != PIPE_A)
8194 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8195 
8196 	/* DPLL not used with DSI, but still need the rest set up */
8197 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8198 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
8199 
8200 	pipe_config->dpll_hw_state.dpll_md =
8201 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8202 }
8203 
8204 static void vlv_prepare_pll(struct intel_crtc *crtc,
8205 			    const struct intel_crtc_state *pipe_config)
8206 {
8207 	struct drm_device *dev = crtc->base.dev;
8208 	struct drm_i915_private *dev_priv = to_i915(dev);
8209 	enum pipe pipe = crtc->pipe;
8210 	u32 mdiv;
8211 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
8212 	u32 coreclk, reg_val;
8213 
8214 	/* Enable Refclk */
8215 	I915_WRITE(DPLL(pipe),
8216 		   pipe_config->dpll_hw_state.dpll &
8217 		   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
8218 
8219 	/* No need to actually set up the DPLL with DSI */
8220 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8221 		return;
8222 
8223 	vlv_dpio_get(dev_priv);
8224 
8225 	bestn = pipe_config->dpll.n;
8226 	bestm1 = pipe_config->dpll.m1;
8227 	bestm2 = pipe_config->dpll.m2;
8228 	bestp1 = pipe_config->dpll.p1;
8229 	bestp2 = pipe_config->dpll.p2;
8230 
8231 	/* See eDP HDMI DPIO driver vbios notes doc */
8232 
8233 	/* PLL B needs special handling */
8234 	if (pipe == PIPE_B)
8235 		vlv_pllb_recal_opamp(dev_priv, pipe);
8236 
8237 	/* Set up Tx target for periodic Rcomp update */
8238 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
8239 
8240 	/* Disable target IRef on PLL */
8241 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
8242 	reg_val &= 0x00ffffff;
8243 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
8244 
8245 	/* Disable fast lock */
8246 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
8247 
8248 	/* Set idtafcrecal before PLL is enabled */
8249 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
8250 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
8251 	mdiv |= ((bestn << DPIO_N_SHIFT));
8252 	mdiv |= (1 << DPIO_K_SHIFT);
8253 
8254 	/*
8255 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
8256 	 * but we don't support that).
8257 	 * Note: don't use the DAC post divider as it seems unstable.
8258 	 */
8259 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
8260 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8261 
8262 	mdiv |= DPIO_ENABLE_CALIBRATION;
8263 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8264 
8265 	/* Set HBR and RBR LPF coefficients */
8266 	if (pipe_config->port_clock == 162000 ||
8267 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
8268 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
8269 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8270 				 0x009f0003);
8271 	else
8272 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8273 				 0x00d0000f);
8274 
8275 	if (intel_crtc_has_dp_encoder(pipe_config)) {
8276 		/* Use SSC source */
8277 		if (pipe == PIPE_A)
8278 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8279 					 0x0df40000);
8280 		else
8281 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8282 					 0x0df70000);
8283 	} else { /* HDMI or VGA */
8284 		/* Use bend source */
8285 		if (pipe == PIPE_A)
8286 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8287 					 0x0df70000);
8288 		else
8289 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8290 					 0x0df40000);
8291 	}
8292 
8293 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
8294 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
8295 	if (intel_crtc_has_dp_encoder(pipe_config))
8296 		coreclk |= 0x01000000;
8297 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
8298 
8299 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
8300 
8301 	vlv_dpio_put(dev_priv);
8302 }
8303 
8304 static void chv_prepare_pll(struct intel_crtc *crtc,
8305 			    const struct intel_crtc_state *pipe_config)
8306 {
8307 	struct drm_device *dev = crtc->base.dev;
8308 	struct drm_i915_private *dev_priv = to_i915(dev);
8309 	enum pipe pipe = crtc->pipe;
8310 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8311 	u32 loopfilter, tribuf_calcntr;
8312 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8313 	u32 dpio_val;
8314 	int vco;
8315 
8316 	/* Enable Refclk and SSC */
8317 	I915_WRITE(DPLL(pipe),
8318 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8319 
8320 	/* No need to actually set up the DPLL with DSI */
8321 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8322 		return;
8323 
8324 	bestn = pipe_config->dpll.n;
8325 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8326 	bestm1 = pipe_config->dpll.m1;
8327 	bestm2 = pipe_config->dpll.m2 >> 22;
8328 	bestp1 = pipe_config->dpll.p1;
8329 	bestp2 = pipe_config->dpll.p2;
8330 	vco = pipe_config->dpll.vco;
8331 	dpio_val = 0;
8332 	loopfilter = 0;
8333 
8334 	vlv_dpio_get(dev_priv);
8335 
8336 	/* p1 and p2 divider */
8337 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8338 			5 << DPIO_CHV_S1_DIV_SHIFT |
8339 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8340 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8341 			1 << DPIO_CHV_K_DIV_SHIFT);
8342 
8343 	/* Feedback post-divider - m2 */
8344 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8345 
8346 	/* Feedback refclk divider - n and m1 */
8347 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8348 			DPIO_CHV_M1_DIV_BY_2 |
8349 			1 << DPIO_CHV_N_DIV_SHIFT);
8350 
8351 	/* M2 fraction division */
8352 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8353 
8354 	/* M2 fraction division enable */
8355 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8356 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8357 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8358 	if (bestm2_frac)
8359 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8360 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8361 
8362 	/* Program digital lock detect threshold */
8363 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8364 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8365 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8366 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8367 	if (!bestm2_frac)
8368 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8369 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8370 
8371 	/* Loop filter */
8372 	if (vco == 5400000) {
8373 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8374 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8375 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8376 		tribuf_calcntr = 0x9;
8377 	} else if (vco <= 6200000) {
8378 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8379 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8380 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8381 		tribuf_calcntr = 0x9;
8382 	} else if (vco <= 6480000) {
8383 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8384 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8385 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8386 		tribuf_calcntr = 0x8;
8387 	} else {
8388 		/* Not supported. Apply the same limits as in the max case */
8389 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8390 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8391 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8392 		tribuf_calcntr = 0;
8393 	}
8394 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8395 
8396 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8397 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8398 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8399 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8400 
8401 	/* AFC Recal */
8402 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8403 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8404 			DPIO_AFC_RECAL);
8405 
8406 	vlv_dpio_put(dev_priv);
8407 }
8408 
8409 /**
8410  * vlv_force_pll_on - forcibly enable just the PLL
8411  * @dev_priv: i915 private structure
8412  * @pipe: pipe PLL to enable
8413  * @dpll: PLL configuration
8414  *
8415  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8416  * in cases where we need the PLL enabled even when @pipe is not going to
8417  * be enabled.
8418  */
8419 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8420 		     const struct dpll *dpll)
8421 {
8422 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8423 	struct intel_crtc_state *pipe_config;
8424 
8425 	pipe_config = intel_crtc_state_alloc(crtc);
8426 	if (!pipe_config)
8427 		return -ENOMEM;
8428 
8429 	pipe_config->cpu_transcoder = (enum transcoder)pipe;
8430 	pipe_config->pixel_multiplier = 1;
8431 	pipe_config->dpll = *dpll;
8432 
8433 	if (IS_CHERRYVIEW(dev_priv)) {
8434 		chv_compute_dpll(crtc, pipe_config);
8435 		chv_prepare_pll(crtc, pipe_config);
8436 		chv_enable_pll(crtc, pipe_config);
8437 	} else {
8438 		vlv_compute_dpll(crtc, pipe_config);
8439 		vlv_prepare_pll(crtc, pipe_config);
8440 		vlv_enable_pll(crtc, pipe_config);
8441 	}
8442 
8443 	kfree(pipe_config);
8444 
8445 	return 0;
8446 }
8447 
8448 /**
8449  * vlv_force_pll_off - forcibly disable just the PLL
8450  * @dev_priv: i915 private structure
8451  * @pipe: pipe PLL to disable
8452  *
8453  * Disable the PLL for @pipe. To be used in cases where we need
8454  * the PLL enabled even when @pipe is not going to be enabled.
8455  */
8456 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8457 {
8458 	if (IS_CHERRYVIEW(dev_priv))
8459 		chv_disable_pll(dev_priv, pipe);
8460 	else
8461 		vlv_disable_pll(dev_priv, pipe);
8462 }
8463 
8464 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8465 			      struct intel_crtc_state *crtc_state,
8466 			      struct dpll *reduced_clock)
8467 {
8468 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8469 	u32 dpll;
8470 	struct dpll *clock = &crtc_state->dpll;
8471 
8472 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8473 
8474 	dpll = DPLL_VGA_MODE_DIS;
8475 
8476 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8477 		dpll |= DPLLB_MODE_LVDS;
8478 	else
8479 		dpll |= DPLLB_MODE_DAC_SERIAL;
8480 
8481 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8482 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8483 		dpll |= (crtc_state->pixel_multiplier - 1)
8484 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
8485 	}
8486 
8487 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8488 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8489 		dpll |= DPLL_SDVO_HIGH_SPEED;
8490 
8491 	if (intel_crtc_has_dp_encoder(crtc_state))
8492 		dpll |= DPLL_SDVO_HIGH_SPEED;
8493 
8494 	/* compute bitmask from p1 value */
8495 	if (IS_PINEVIEW(dev_priv))
8496 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8497 	else {
8498 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8499 		if (IS_G4X(dev_priv) && reduced_clock)
8500 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8501 	}
8502 	switch (clock->p2) {
8503 	case 5:
8504 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8505 		break;
8506 	case 7:
8507 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8508 		break;
8509 	case 10:
8510 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8511 		break;
8512 	case 14:
8513 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8514 		break;
8515 	}
8516 	if (INTEL_GEN(dev_priv) >= 4)
8517 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8518 
8519 	if (crtc_state->sdvo_tv_clock)
8520 		dpll |= PLL_REF_INPUT_TVCLKINBC;
8521 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8522 		 intel_panel_use_ssc(dev_priv))
8523 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8524 	else
8525 		dpll |= PLL_REF_INPUT_DREFCLK;
8526 
8527 	dpll |= DPLL_VCO_ENABLE;
8528 	crtc_state->dpll_hw_state.dpll = dpll;
8529 
8530 	if (INTEL_GEN(dev_priv) >= 4) {
8531 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8532 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
8533 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
8534 	}
8535 }
8536 
8537 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8538 			      struct intel_crtc_state *crtc_state,
8539 			      struct dpll *reduced_clock)
8540 {
8541 	struct drm_device *dev = crtc->base.dev;
8542 	struct drm_i915_private *dev_priv = to_i915(dev);
8543 	u32 dpll;
8544 	struct dpll *clock = &crtc_state->dpll;
8545 
8546 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8547 
8548 	dpll = DPLL_VGA_MODE_DIS;
8549 
8550 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8551 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8552 	} else {
8553 		if (clock->p1 == 2)
8554 			dpll |= PLL_P1_DIVIDE_BY_TWO;
8555 		else
8556 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8557 		if (clock->p2 == 4)
8558 			dpll |= PLL_P2_DIVIDE_BY_4;
8559 	}
8560 
8561 	/*
8562 	 * Bspec:
8563 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
8564 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8565 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8566 	 *  Enable) must be set to “1” in both the DPLL A Control Register
8567 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8568 	 *
8569 	 * For simplicity We simply keep both bits always enabled in
8570 	 * both DPLLS. The spec says we should disable the DVO 2X clock
8571 	 * when not needed, but this seems to work fine in practice.
8572 	 */
8573 	if (IS_I830(dev_priv) ||
8574 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8575 		dpll |= DPLL_DVO_2X_MODE;
8576 
8577 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8578 	    intel_panel_use_ssc(dev_priv))
8579 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8580 	else
8581 		dpll |= PLL_REF_INPUT_DREFCLK;
8582 
8583 	dpll |= DPLL_VCO_ENABLE;
8584 	crtc_state->dpll_hw_state.dpll = dpll;
8585 }
8586 
8587 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8588 {
8589 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8590 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8591 	enum pipe pipe = crtc->pipe;
8592 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8593 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
8594 	u32 crtc_vtotal, crtc_vblank_end;
8595 	int vsyncshift = 0;
8596 
8597 	/* We need to be careful not to changed the adjusted mode, for otherwise
8598 	 * the hw state checker will get angry at the mismatch. */
8599 	crtc_vtotal = adjusted_mode->crtc_vtotal;
8600 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8601 
8602 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8603 		/* the chip adds 2 halflines automatically */
8604 		crtc_vtotal -= 1;
8605 		crtc_vblank_end -= 1;
8606 
8607 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8608 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8609 		else
8610 			vsyncshift = adjusted_mode->crtc_hsync_start -
8611 				adjusted_mode->crtc_htotal / 2;
8612 		if (vsyncshift < 0)
8613 			vsyncshift += adjusted_mode->crtc_htotal;
8614 	}
8615 
8616 	if (INTEL_GEN(dev_priv) > 3)
8617 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8618 
8619 	I915_WRITE(HTOTAL(cpu_transcoder),
8620 		   (adjusted_mode->crtc_hdisplay - 1) |
8621 		   ((adjusted_mode->crtc_htotal - 1) << 16));
8622 	I915_WRITE(HBLANK(cpu_transcoder),
8623 		   (adjusted_mode->crtc_hblank_start - 1) |
8624 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
8625 	I915_WRITE(HSYNC(cpu_transcoder),
8626 		   (adjusted_mode->crtc_hsync_start - 1) |
8627 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
8628 
8629 	I915_WRITE(VTOTAL(cpu_transcoder),
8630 		   (adjusted_mode->crtc_vdisplay - 1) |
8631 		   ((crtc_vtotal - 1) << 16));
8632 	I915_WRITE(VBLANK(cpu_transcoder),
8633 		   (adjusted_mode->crtc_vblank_start - 1) |
8634 		   ((crtc_vblank_end - 1) << 16));
8635 	I915_WRITE(VSYNC(cpu_transcoder),
8636 		   (adjusted_mode->crtc_vsync_start - 1) |
8637 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
8638 
8639 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8640 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8641 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8642 	 * bits. */
8643 	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8644 	    (pipe == PIPE_B || pipe == PIPE_C))
8645 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8646 
8647 }
8648 
8649 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8650 {
8651 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8652 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8653 	enum pipe pipe = crtc->pipe;
8654 
8655 	/* pipesrc controls the size that is scaled from, which should
8656 	 * always be the user's requested size.
8657 	 */
8658 	I915_WRITE(PIPESRC(pipe),
8659 		   ((crtc_state->pipe_src_w - 1) << 16) |
8660 		   (crtc_state->pipe_src_h - 1));
8661 }
8662 
8663 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8664 {
8665 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8666 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8667 
8668 	if (IS_GEN(dev_priv, 2))
8669 		return false;
8670 
8671 	if (INTEL_GEN(dev_priv) >= 9 ||
8672 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8673 		return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8674 	else
8675 		return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8676 }
8677 
8678 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8679 				   struct intel_crtc_state *pipe_config)
8680 {
8681 	struct drm_device *dev = crtc->base.dev;
8682 	struct drm_i915_private *dev_priv = to_i915(dev);
8683 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8684 	u32 tmp;
8685 
8686 	tmp = I915_READ(HTOTAL(cpu_transcoder));
8687 	pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8688 	pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8689 
8690 	if (!transcoder_is_dsi(cpu_transcoder)) {
8691 		tmp = I915_READ(HBLANK(cpu_transcoder));
8692 		pipe_config->hw.adjusted_mode.crtc_hblank_start =
8693 							(tmp & 0xffff) + 1;
8694 		pipe_config->hw.adjusted_mode.crtc_hblank_end =
8695 						((tmp >> 16) & 0xffff) + 1;
8696 	}
8697 	tmp = I915_READ(HSYNC(cpu_transcoder));
8698 	pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8699 	pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8700 
8701 	tmp = I915_READ(VTOTAL(cpu_transcoder));
8702 	pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8703 	pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8704 
8705 	if (!transcoder_is_dsi(cpu_transcoder)) {
8706 		tmp = I915_READ(VBLANK(cpu_transcoder));
8707 		pipe_config->hw.adjusted_mode.crtc_vblank_start =
8708 							(tmp & 0xffff) + 1;
8709 		pipe_config->hw.adjusted_mode.crtc_vblank_end =
8710 						((tmp >> 16) & 0xffff) + 1;
8711 	}
8712 	tmp = I915_READ(VSYNC(cpu_transcoder));
8713 	pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8714 	pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8715 
8716 	if (intel_pipe_is_interlaced(pipe_config)) {
8717 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8718 		pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
8719 		pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
8720 	}
8721 }
8722 
8723 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8724 				    struct intel_crtc_state *pipe_config)
8725 {
8726 	struct drm_device *dev = crtc->base.dev;
8727 	struct drm_i915_private *dev_priv = to_i915(dev);
8728 	u32 tmp;
8729 
8730 	tmp = I915_READ(PIPESRC(crtc->pipe));
8731 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8732 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8733 
8734 	pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h;
8735 	pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w;
8736 }
8737 
8738 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8739 				 struct intel_crtc_state *pipe_config)
8740 {
8741 	mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay;
8742 	mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal;
8743 	mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start;
8744 	mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end;
8745 
8746 	mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay;
8747 	mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal;
8748 	mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start;
8749 	mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end;
8750 
8751 	mode->flags = pipe_config->hw.adjusted_mode.flags;
8752 	mode->type = DRM_MODE_TYPE_DRIVER;
8753 
8754 	mode->clock = pipe_config->hw.adjusted_mode.crtc_clock;
8755 
8756 	mode->hsync = drm_mode_hsync(mode);
8757 	mode->vrefresh = drm_mode_vrefresh(mode);
8758 	drm_mode_set_name(mode);
8759 }
8760 
8761 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8762 {
8763 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8764 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8765 	u32 pipeconf;
8766 
8767 	pipeconf = 0;
8768 
8769 	/* we keep both pipes enabled on 830 */
8770 	if (IS_I830(dev_priv))
8771 		pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8772 
8773 	if (crtc_state->double_wide)
8774 		pipeconf |= PIPECONF_DOUBLE_WIDE;
8775 
8776 	/* only g4x and later have fancy bpc/dither controls */
8777 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8778 	    IS_CHERRYVIEW(dev_priv)) {
8779 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
8780 		if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8781 			pipeconf |= PIPECONF_DITHER_EN |
8782 				    PIPECONF_DITHER_TYPE_SP;
8783 
8784 		switch (crtc_state->pipe_bpp) {
8785 		case 18:
8786 			pipeconf |= PIPECONF_6BPC;
8787 			break;
8788 		case 24:
8789 			pipeconf |= PIPECONF_8BPC;
8790 			break;
8791 		case 30:
8792 			pipeconf |= PIPECONF_10BPC;
8793 			break;
8794 		default:
8795 			/* Case prevented by intel_choose_pipe_bpp_dither. */
8796 			BUG();
8797 		}
8798 	}
8799 
8800 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8801 		if (INTEL_GEN(dev_priv) < 4 ||
8802 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8803 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8804 		else
8805 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8806 	} else {
8807 		pipeconf |= PIPECONF_PROGRESSIVE;
8808 	}
8809 
8810 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8811 	     crtc_state->limited_color_range)
8812 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8813 
8814 	pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
8815 
8816 	pipeconf |= PIPECONF_FRAME_START_DELAY(0);
8817 
8818 	I915_WRITE(PIPECONF(crtc->pipe), pipeconf);
8819 	POSTING_READ(PIPECONF(crtc->pipe));
8820 }
8821 
8822 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8823 				   struct intel_crtc_state *crtc_state)
8824 {
8825 	struct drm_device *dev = crtc->base.dev;
8826 	struct drm_i915_private *dev_priv = to_i915(dev);
8827 	const struct intel_limit *limit;
8828 	int refclk = 48000;
8829 
8830 	memset(&crtc_state->dpll_hw_state, 0,
8831 	       sizeof(crtc_state->dpll_hw_state));
8832 
8833 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8834 		if (intel_panel_use_ssc(dev_priv)) {
8835 			refclk = dev_priv->vbt.lvds_ssc_freq;
8836 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8837 		}
8838 
8839 		limit = &intel_limits_i8xx_lvds;
8840 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8841 		limit = &intel_limits_i8xx_dvo;
8842 	} else {
8843 		limit = &intel_limits_i8xx_dac;
8844 	}
8845 
8846 	if (!crtc_state->clock_set &&
8847 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8848 				 refclk, NULL, &crtc_state->dpll)) {
8849 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8850 		return -EINVAL;
8851 	}
8852 
8853 	i8xx_compute_dpll(crtc, crtc_state, NULL);
8854 
8855 	return 0;
8856 }
8857 
8858 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8859 				  struct intel_crtc_state *crtc_state)
8860 {
8861 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8862 	const struct intel_limit *limit;
8863 	int refclk = 96000;
8864 
8865 	memset(&crtc_state->dpll_hw_state, 0,
8866 	       sizeof(crtc_state->dpll_hw_state));
8867 
8868 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8869 		if (intel_panel_use_ssc(dev_priv)) {
8870 			refclk = dev_priv->vbt.lvds_ssc_freq;
8871 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8872 		}
8873 
8874 		if (intel_is_dual_link_lvds(dev_priv))
8875 			limit = &intel_limits_g4x_dual_channel_lvds;
8876 		else
8877 			limit = &intel_limits_g4x_single_channel_lvds;
8878 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8879 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8880 		limit = &intel_limits_g4x_hdmi;
8881 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8882 		limit = &intel_limits_g4x_sdvo;
8883 	} else {
8884 		/* The option is for other outputs */
8885 		limit = &intel_limits_i9xx_sdvo;
8886 	}
8887 
8888 	if (!crtc_state->clock_set &&
8889 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8890 				refclk, NULL, &crtc_state->dpll)) {
8891 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8892 		return -EINVAL;
8893 	}
8894 
8895 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8896 
8897 	return 0;
8898 }
8899 
8900 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8901 				  struct intel_crtc_state *crtc_state)
8902 {
8903 	struct drm_device *dev = crtc->base.dev;
8904 	struct drm_i915_private *dev_priv = to_i915(dev);
8905 	const struct intel_limit *limit;
8906 	int refclk = 96000;
8907 
8908 	memset(&crtc_state->dpll_hw_state, 0,
8909 	       sizeof(crtc_state->dpll_hw_state));
8910 
8911 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8912 		if (intel_panel_use_ssc(dev_priv)) {
8913 			refclk = dev_priv->vbt.lvds_ssc_freq;
8914 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8915 		}
8916 
8917 		limit = &pnv_limits_lvds;
8918 	} else {
8919 		limit = &pnv_limits_sdvo;
8920 	}
8921 
8922 	if (!crtc_state->clock_set &&
8923 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8924 				refclk, NULL, &crtc_state->dpll)) {
8925 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8926 		return -EINVAL;
8927 	}
8928 
8929 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8930 
8931 	return 0;
8932 }
8933 
8934 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8935 				   struct intel_crtc_state *crtc_state)
8936 {
8937 	struct drm_device *dev = crtc->base.dev;
8938 	struct drm_i915_private *dev_priv = to_i915(dev);
8939 	const struct intel_limit *limit;
8940 	int refclk = 96000;
8941 
8942 	memset(&crtc_state->dpll_hw_state, 0,
8943 	       sizeof(crtc_state->dpll_hw_state));
8944 
8945 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8946 		if (intel_panel_use_ssc(dev_priv)) {
8947 			refclk = dev_priv->vbt.lvds_ssc_freq;
8948 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8949 		}
8950 
8951 		limit = &intel_limits_i9xx_lvds;
8952 	} else {
8953 		limit = &intel_limits_i9xx_sdvo;
8954 	}
8955 
8956 	if (!crtc_state->clock_set &&
8957 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8958 				 refclk, NULL, &crtc_state->dpll)) {
8959 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8960 		return -EINVAL;
8961 	}
8962 
8963 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8964 
8965 	return 0;
8966 }
8967 
8968 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8969 				  struct intel_crtc_state *crtc_state)
8970 {
8971 	int refclk = 100000;
8972 	const struct intel_limit *limit = &intel_limits_chv;
8973 
8974 	memset(&crtc_state->dpll_hw_state, 0,
8975 	       sizeof(crtc_state->dpll_hw_state));
8976 
8977 	if (!crtc_state->clock_set &&
8978 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8979 				refclk, NULL, &crtc_state->dpll)) {
8980 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8981 		return -EINVAL;
8982 	}
8983 
8984 	chv_compute_dpll(crtc, crtc_state);
8985 
8986 	return 0;
8987 }
8988 
8989 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8990 				  struct intel_crtc_state *crtc_state)
8991 {
8992 	int refclk = 100000;
8993 	const struct intel_limit *limit = &intel_limits_vlv;
8994 
8995 	memset(&crtc_state->dpll_hw_state, 0,
8996 	       sizeof(crtc_state->dpll_hw_state));
8997 
8998 	if (!crtc_state->clock_set &&
8999 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9000 				refclk, NULL, &crtc_state->dpll)) {
9001 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
9002 		return -EINVAL;
9003 	}
9004 
9005 	vlv_compute_dpll(crtc, crtc_state);
9006 
9007 	return 0;
9008 }
9009 
9010 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
9011 {
9012 	if (IS_I830(dev_priv))
9013 		return false;
9014 
9015 	return INTEL_GEN(dev_priv) >= 4 ||
9016 		IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
9017 }
9018 
9019 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
9020 				 struct intel_crtc_state *pipe_config)
9021 {
9022 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9023 	u32 tmp;
9024 
9025 	if (!i9xx_has_pfit(dev_priv))
9026 		return;
9027 
9028 	tmp = I915_READ(PFIT_CONTROL);
9029 	if (!(tmp & PFIT_ENABLE))
9030 		return;
9031 
9032 	/* Check whether the pfit is attached to our pipe. */
9033 	if (INTEL_GEN(dev_priv) < 4) {
9034 		if (crtc->pipe != PIPE_B)
9035 			return;
9036 	} else {
9037 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
9038 			return;
9039 	}
9040 
9041 	pipe_config->gmch_pfit.control = tmp;
9042 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
9043 }
9044 
9045 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
9046 			       struct intel_crtc_state *pipe_config)
9047 {
9048 	struct drm_device *dev = crtc->base.dev;
9049 	struct drm_i915_private *dev_priv = to_i915(dev);
9050 	enum pipe pipe = crtc->pipe;
9051 	struct dpll clock;
9052 	u32 mdiv;
9053 	int refclk = 100000;
9054 
9055 	/* In case of DSI, DPLL will not be used */
9056 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9057 		return;
9058 
9059 	vlv_dpio_get(dev_priv);
9060 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
9061 	vlv_dpio_put(dev_priv);
9062 
9063 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
9064 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
9065 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
9066 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
9067 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
9068 
9069 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
9070 }
9071 
9072 static void
9073 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
9074 			      struct intel_initial_plane_config *plane_config)
9075 {
9076 	struct drm_device *dev = crtc->base.dev;
9077 	struct drm_i915_private *dev_priv = to_i915(dev);
9078 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9079 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9080 	enum pipe pipe;
9081 	u32 val, base, offset;
9082 	int fourcc, pixel_format;
9083 	unsigned int aligned_height;
9084 	struct drm_framebuffer *fb;
9085 	struct intel_framebuffer *intel_fb;
9086 
9087 	if (!plane->get_hw_state(plane, &pipe))
9088 		return;
9089 
9090 	WARN_ON(pipe != crtc->pipe);
9091 
9092 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9093 	if (!intel_fb) {
9094 		DRM_DEBUG_KMS("failed to alloc fb\n");
9095 		return;
9096 	}
9097 
9098 	fb = &intel_fb->base;
9099 
9100 	fb->dev = dev;
9101 
9102 	val = I915_READ(DSPCNTR(i9xx_plane));
9103 
9104 	if (INTEL_GEN(dev_priv) >= 4) {
9105 		if (val & DISPPLANE_TILED) {
9106 			plane_config->tiling = I915_TILING_X;
9107 			fb->modifier = I915_FORMAT_MOD_X_TILED;
9108 		}
9109 
9110 		if (val & DISPPLANE_ROTATE_180)
9111 			plane_config->rotation = DRM_MODE_ROTATE_180;
9112 	}
9113 
9114 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
9115 	    val & DISPPLANE_MIRROR)
9116 		plane_config->rotation |= DRM_MODE_REFLECT_X;
9117 
9118 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9119 	fourcc = i9xx_format_to_fourcc(pixel_format);
9120 	fb->format = drm_format_info(fourcc);
9121 
9122 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9123 		offset = I915_READ(DSPOFFSET(i9xx_plane));
9124 		base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
9125 	} else if (INTEL_GEN(dev_priv) >= 4) {
9126 		if (plane_config->tiling)
9127 			offset = I915_READ(DSPTILEOFF(i9xx_plane));
9128 		else
9129 			offset = I915_READ(DSPLINOFF(i9xx_plane));
9130 		base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
9131 	} else {
9132 		base = I915_READ(DSPADDR(i9xx_plane));
9133 	}
9134 	plane_config->base = base;
9135 
9136 	val = I915_READ(PIPESRC(pipe));
9137 	fb->width = ((val >> 16) & 0xfff) + 1;
9138 	fb->height = ((val >> 0) & 0xfff) + 1;
9139 
9140 	val = I915_READ(DSPSTRIDE(i9xx_plane));
9141 	fb->pitches[0] = val & 0xffffffc0;
9142 
9143 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
9144 
9145 	plane_config->size = fb->pitches[0] * aligned_height;
9146 
9147 	DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9148 		      crtc->base.name, plane->base.name, fb->width, fb->height,
9149 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
9150 		      plane_config->size);
9151 
9152 	plane_config->fb = intel_fb;
9153 }
9154 
9155 static void chv_crtc_clock_get(struct intel_crtc *crtc,
9156 			       struct intel_crtc_state *pipe_config)
9157 {
9158 	struct drm_device *dev = crtc->base.dev;
9159 	struct drm_i915_private *dev_priv = to_i915(dev);
9160 	enum pipe pipe = crtc->pipe;
9161 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
9162 	struct dpll clock;
9163 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
9164 	int refclk = 100000;
9165 
9166 	/* In case of DSI, DPLL will not be used */
9167 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9168 		return;
9169 
9170 	vlv_dpio_get(dev_priv);
9171 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
9172 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
9173 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
9174 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
9175 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
9176 	vlv_dpio_put(dev_priv);
9177 
9178 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
9179 	clock.m2 = (pll_dw0 & 0xff) << 22;
9180 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
9181 		clock.m2 |= pll_dw2 & 0x3fffff;
9182 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
9183 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
9184 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
9185 
9186 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
9187 }
9188 
9189 static enum intel_output_format
9190 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
9191 {
9192 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9193 	u32 tmp;
9194 
9195 	tmp = I915_READ(PIPEMISC(crtc->pipe));
9196 
9197 	if (tmp & PIPEMISC_YUV420_ENABLE) {
9198 		/* We support 4:2:0 in full blend mode only */
9199 		WARN_ON((tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
9200 
9201 		return INTEL_OUTPUT_FORMAT_YCBCR420;
9202 	} else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
9203 		return INTEL_OUTPUT_FORMAT_YCBCR444;
9204 	} else {
9205 		return INTEL_OUTPUT_FORMAT_RGB;
9206 	}
9207 }
9208 
9209 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
9210 {
9211 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9212 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9213 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9214 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9215 	u32 tmp;
9216 
9217 	tmp = I915_READ(DSPCNTR(i9xx_plane));
9218 
9219 	if (tmp & DISPPLANE_GAMMA_ENABLE)
9220 		crtc_state->gamma_enable = true;
9221 
9222 	if (!HAS_GMCH(dev_priv) &&
9223 	    tmp & DISPPLANE_PIPE_CSC_ENABLE)
9224 		crtc_state->csc_enable = true;
9225 }
9226 
9227 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
9228 				 struct intel_crtc_state *pipe_config)
9229 {
9230 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9231 	enum intel_display_power_domain power_domain;
9232 	intel_wakeref_t wakeref;
9233 	u32 tmp;
9234 	bool ret;
9235 
9236 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9237 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9238 	if (!wakeref)
9239 		return false;
9240 
9241 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9242 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9243 	pipe_config->shared_dpll = NULL;
9244 	pipe_config->master_transcoder = INVALID_TRANSCODER;
9245 
9246 	ret = false;
9247 
9248 	tmp = I915_READ(PIPECONF(crtc->pipe));
9249 	if (!(tmp & PIPECONF_ENABLE))
9250 		goto out;
9251 
9252 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9253 	    IS_CHERRYVIEW(dev_priv)) {
9254 		switch (tmp & PIPECONF_BPC_MASK) {
9255 		case PIPECONF_6BPC:
9256 			pipe_config->pipe_bpp = 18;
9257 			break;
9258 		case PIPECONF_8BPC:
9259 			pipe_config->pipe_bpp = 24;
9260 			break;
9261 		case PIPECONF_10BPC:
9262 			pipe_config->pipe_bpp = 30;
9263 			break;
9264 		default:
9265 			break;
9266 		}
9267 	}
9268 
9269 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9270 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
9271 		pipe_config->limited_color_range = true;
9272 
9273 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
9274 		PIPECONF_GAMMA_MODE_SHIFT;
9275 
9276 	if (IS_CHERRYVIEW(dev_priv))
9277 		pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe));
9278 
9279 	i9xx_get_pipe_color_config(pipe_config);
9280 	intel_color_get_config(pipe_config);
9281 
9282 	if (INTEL_GEN(dev_priv) < 4)
9283 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
9284 
9285 	intel_get_pipe_timings(crtc, pipe_config);
9286 	intel_get_pipe_src_size(crtc, pipe_config);
9287 
9288 	i9xx_get_pfit_config(crtc, pipe_config);
9289 
9290 	if (INTEL_GEN(dev_priv) >= 4) {
9291 		/* No way to read it out on pipes B and C */
9292 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
9293 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
9294 		else
9295 			tmp = I915_READ(DPLL_MD(crtc->pipe));
9296 		pipe_config->pixel_multiplier =
9297 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
9298 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
9299 		pipe_config->dpll_hw_state.dpll_md = tmp;
9300 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
9301 		   IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
9302 		tmp = I915_READ(DPLL(crtc->pipe));
9303 		pipe_config->pixel_multiplier =
9304 			((tmp & SDVO_MULTIPLIER_MASK)
9305 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
9306 	} else {
9307 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
9308 		 * port and will be fixed up in the encoder->get_config
9309 		 * function. */
9310 		pipe_config->pixel_multiplier = 1;
9311 	}
9312 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
9313 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
9314 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
9315 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
9316 	} else {
9317 		/* Mask out read-only status bits. */
9318 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
9319 						     DPLL_PORTC_READY_MASK |
9320 						     DPLL_PORTB_READY_MASK);
9321 	}
9322 
9323 	if (IS_CHERRYVIEW(dev_priv))
9324 		chv_crtc_clock_get(crtc, pipe_config);
9325 	else if (IS_VALLEYVIEW(dev_priv))
9326 		vlv_crtc_clock_get(crtc, pipe_config);
9327 	else
9328 		i9xx_crtc_clock_get(crtc, pipe_config);
9329 
9330 	/*
9331 	 * Normally the dotclock is filled in by the encoder .get_config()
9332 	 * but in case the pipe is enabled w/o any ports we need a sane
9333 	 * default.
9334 	 */
9335 	pipe_config->hw.adjusted_mode.crtc_clock =
9336 		pipe_config->port_clock / pipe_config->pixel_multiplier;
9337 
9338 	ret = true;
9339 
9340 out:
9341 	intel_display_power_put(dev_priv, power_domain, wakeref);
9342 
9343 	return ret;
9344 }
9345 
9346 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv)
9347 {
9348 	struct intel_encoder *encoder;
9349 	int i;
9350 	u32 val, final;
9351 	bool has_lvds = false;
9352 	bool has_cpu_edp = false;
9353 	bool has_panel = false;
9354 	bool has_ck505 = false;
9355 	bool can_ssc = false;
9356 	bool using_ssc_source = false;
9357 
9358 	/* We need to take the global config into account */
9359 	for_each_intel_encoder(&dev_priv->drm, encoder) {
9360 		switch (encoder->type) {
9361 		case INTEL_OUTPUT_LVDS:
9362 			has_panel = true;
9363 			has_lvds = true;
9364 			break;
9365 		case INTEL_OUTPUT_EDP:
9366 			has_panel = true;
9367 			if (encoder->port == PORT_A)
9368 				has_cpu_edp = true;
9369 			break;
9370 		default:
9371 			break;
9372 		}
9373 	}
9374 
9375 	if (HAS_PCH_IBX(dev_priv)) {
9376 		has_ck505 = dev_priv->vbt.display_clock_mode;
9377 		can_ssc = has_ck505;
9378 	} else {
9379 		has_ck505 = false;
9380 		can_ssc = true;
9381 	}
9382 
9383 	/* Check if any DPLLs are using the SSC source */
9384 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9385 		u32 temp = I915_READ(PCH_DPLL(i));
9386 
9387 		if (!(temp & DPLL_VCO_ENABLE))
9388 			continue;
9389 
9390 		if ((temp & PLL_REF_INPUT_MASK) ==
9391 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9392 			using_ssc_source = true;
9393 			break;
9394 		}
9395 	}
9396 
9397 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9398 		      has_panel, has_lvds, has_ck505, using_ssc_source);
9399 
9400 	/* Ironlake: try to setup display ref clock before DPLL
9401 	 * enabling. This is only under driver's control after
9402 	 * PCH B stepping, previous chipset stepping should be
9403 	 * ignoring this setting.
9404 	 */
9405 	val = I915_READ(PCH_DREF_CONTROL);
9406 
9407 	/* As we must carefully and slowly disable/enable each source in turn,
9408 	 * compute the final state we want first and check if we need to
9409 	 * make any changes at all.
9410 	 */
9411 	final = val;
9412 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
9413 	if (has_ck505)
9414 		final |= DREF_NONSPREAD_CK505_ENABLE;
9415 	else
9416 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
9417 
9418 	final &= ~DREF_SSC_SOURCE_MASK;
9419 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9420 	final &= ~DREF_SSC1_ENABLE;
9421 
9422 	if (has_panel) {
9423 		final |= DREF_SSC_SOURCE_ENABLE;
9424 
9425 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
9426 			final |= DREF_SSC1_ENABLE;
9427 
9428 		if (has_cpu_edp) {
9429 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
9430 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9431 			else
9432 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9433 		} else
9434 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9435 	} else if (using_ssc_source) {
9436 		final |= DREF_SSC_SOURCE_ENABLE;
9437 		final |= DREF_SSC1_ENABLE;
9438 	}
9439 
9440 	if (final == val)
9441 		return;
9442 
9443 	/* Always enable nonspread source */
9444 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
9445 
9446 	if (has_ck505)
9447 		val |= DREF_NONSPREAD_CK505_ENABLE;
9448 	else
9449 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
9450 
9451 	if (has_panel) {
9452 		val &= ~DREF_SSC_SOURCE_MASK;
9453 		val |= DREF_SSC_SOURCE_ENABLE;
9454 
9455 		/* SSC must be turned on before enabling the CPU output  */
9456 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9457 			DRM_DEBUG_KMS("Using SSC on panel\n");
9458 			val |= DREF_SSC1_ENABLE;
9459 		} else
9460 			val &= ~DREF_SSC1_ENABLE;
9461 
9462 		/* Get SSC going before enabling the outputs */
9463 		I915_WRITE(PCH_DREF_CONTROL, val);
9464 		POSTING_READ(PCH_DREF_CONTROL);
9465 		udelay(200);
9466 
9467 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9468 
9469 		/* Enable CPU source on CPU attached eDP */
9470 		if (has_cpu_edp) {
9471 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9472 				DRM_DEBUG_KMS("Using SSC on eDP\n");
9473 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9474 			} else
9475 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9476 		} else
9477 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9478 
9479 		I915_WRITE(PCH_DREF_CONTROL, val);
9480 		POSTING_READ(PCH_DREF_CONTROL);
9481 		udelay(200);
9482 	} else {
9483 		DRM_DEBUG_KMS("Disabling CPU source output\n");
9484 
9485 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9486 
9487 		/* Turn off CPU output */
9488 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9489 
9490 		I915_WRITE(PCH_DREF_CONTROL, val);
9491 		POSTING_READ(PCH_DREF_CONTROL);
9492 		udelay(200);
9493 
9494 		if (!using_ssc_source) {
9495 			DRM_DEBUG_KMS("Disabling SSC source\n");
9496 
9497 			/* Turn off the SSC source */
9498 			val &= ~DREF_SSC_SOURCE_MASK;
9499 			val |= DREF_SSC_SOURCE_DISABLE;
9500 
9501 			/* Turn off SSC1 */
9502 			val &= ~DREF_SSC1_ENABLE;
9503 
9504 			I915_WRITE(PCH_DREF_CONTROL, val);
9505 			POSTING_READ(PCH_DREF_CONTROL);
9506 			udelay(200);
9507 		}
9508 	}
9509 
9510 	BUG_ON(val != final);
9511 }
9512 
9513 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9514 {
9515 	u32 tmp;
9516 
9517 	tmp = I915_READ(SOUTH_CHICKEN2);
9518 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9519 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9520 
9521 	if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9522 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9523 		DRM_ERROR("FDI mPHY reset assert timeout\n");
9524 
9525 	tmp = I915_READ(SOUTH_CHICKEN2);
9526 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9527 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9528 
9529 	if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9530 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9531 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9532 }
9533 
9534 /* WaMPhyProgramming:hsw */
9535 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9536 {
9537 	u32 tmp;
9538 
9539 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9540 	tmp &= ~(0xFF << 24);
9541 	tmp |= (0x12 << 24);
9542 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9543 
9544 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9545 	tmp |= (1 << 11);
9546 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9547 
9548 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9549 	tmp |= (1 << 11);
9550 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9551 
9552 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9553 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9554 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9555 
9556 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9557 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9558 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9559 
9560 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9561 	tmp &= ~(7 << 13);
9562 	tmp |= (5 << 13);
9563 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9564 
9565 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9566 	tmp &= ~(7 << 13);
9567 	tmp |= (5 << 13);
9568 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9569 
9570 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9571 	tmp &= ~0xFF;
9572 	tmp |= 0x1C;
9573 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9574 
9575 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9576 	tmp &= ~0xFF;
9577 	tmp |= 0x1C;
9578 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9579 
9580 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9581 	tmp &= ~(0xFF << 16);
9582 	tmp |= (0x1C << 16);
9583 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9584 
9585 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9586 	tmp &= ~(0xFF << 16);
9587 	tmp |= (0x1C << 16);
9588 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9589 
9590 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9591 	tmp |= (1 << 27);
9592 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9593 
9594 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9595 	tmp |= (1 << 27);
9596 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9597 
9598 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9599 	tmp &= ~(0xF << 28);
9600 	tmp |= (4 << 28);
9601 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9602 
9603 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9604 	tmp &= ~(0xF << 28);
9605 	tmp |= (4 << 28);
9606 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9607 }
9608 
9609 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9610  * Programming" based on the parameters passed:
9611  * - Sequence to enable CLKOUT_DP
9612  * - Sequence to enable CLKOUT_DP without spread
9613  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9614  */
9615 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9616 				 bool with_spread, bool with_fdi)
9617 {
9618 	u32 reg, tmp;
9619 
9620 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9621 		with_spread = true;
9622 	if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9623 	    with_fdi, "LP PCH doesn't have FDI\n"))
9624 		with_fdi = false;
9625 
9626 	mutex_lock(&dev_priv->sb_lock);
9627 
9628 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9629 	tmp &= ~SBI_SSCCTL_DISABLE;
9630 	tmp |= SBI_SSCCTL_PATHALT;
9631 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9632 
9633 	udelay(24);
9634 
9635 	if (with_spread) {
9636 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9637 		tmp &= ~SBI_SSCCTL_PATHALT;
9638 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9639 
9640 		if (with_fdi) {
9641 			lpt_reset_fdi_mphy(dev_priv);
9642 			lpt_program_fdi_mphy(dev_priv);
9643 		}
9644 	}
9645 
9646 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9647 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9648 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9649 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9650 
9651 	mutex_unlock(&dev_priv->sb_lock);
9652 }
9653 
9654 /* Sequence to disable CLKOUT_DP */
9655 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9656 {
9657 	u32 reg, tmp;
9658 
9659 	mutex_lock(&dev_priv->sb_lock);
9660 
9661 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9662 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9663 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9664 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9665 
9666 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9667 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
9668 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
9669 			tmp |= SBI_SSCCTL_PATHALT;
9670 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9671 			udelay(32);
9672 		}
9673 		tmp |= SBI_SSCCTL_DISABLE;
9674 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9675 	}
9676 
9677 	mutex_unlock(&dev_priv->sb_lock);
9678 }
9679 
9680 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9681 
9682 static const u16 sscdivintphase[] = {
9683 	[BEND_IDX( 50)] = 0x3B23,
9684 	[BEND_IDX( 45)] = 0x3B23,
9685 	[BEND_IDX( 40)] = 0x3C23,
9686 	[BEND_IDX( 35)] = 0x3C23,
9687 	[BEND_IDX( 30)] = 0x3D23,
9688 	[BEND_IDX( 25)] = 0x3D23,
9689 	[BEND_IDX( 20)] = 0x3E23,
9690 	[BEND_IDX( 15)] = 0x3E23,
9691 	[BEND_IDX( 10)] = 0x3F23,
9692 	[BEND_IDX(  5)] = 0x3F23,
9693 	[BEND_IDX(  0)] = 0x0025,
9694 	[BEND_IDX( -5)] = 0x0025,
9695 	[BEND_IDX(-10)] = 0x0125,
9696 	[BEND_IDX(-15)] = 0x0125,
9697 	[BEND_IDX(-20)] = 0x0225,
9698 	[BEND_IDX(-25)] = 0x0225,
9699 	[BEND_IDX(-30)] = 0x0325,
9700 	[BEND_IDX(-35)] = 0x0325,
9701 	[BEND_IDX(-40)] = 0x0425,
9702 	[BEND_IDX(-45)] = 0x0425,
9703 	[BEND_IDX(-50)] = 0x0525,
9704 };
9705 
9706 /*
9707  * Bend CLKOUT_DP
9708  * steps -50 to 50 inclusive, in steps of 5
9709  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9710  * change in clock period = -(steps / 10) * 5.787 ps
9711  */
9712 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9713 {
9714 	u32 tmp;
9715 	int idx = BEND_IDX(steps);
9716 
9717 	if (WARN_ON(steps % 5 != 0))
9718 		return;
9719 
9720 	if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9721 		return;
9722 
9723 	mutex_lock(&dev_priv->sb_lock);
9724 
9725 	if (steps % 10 != 0)
9726 		tmp = 0xAAAAAAAB;
9727 	else
9728 		tmp = 0x00000000;
9729 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9730 
9731 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9732 	tmp &= 0xffff0000;
9733 	tmp |= sscdivintphase[idx];
9734 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9735 
9736 	mutex_unlock(&dev_priv->sb_lock);
9737 }
9738 
9739 #undef BEND_IDX
9740 
9741 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9742 {
9743 	u32 fuse_strap = I915_READ(FUSE_STRAP);
9744 	u32 ctl = I915_READ(SPLL_CTL);
9745 
9746 	if ((ctl & SPLL_PLL_ENABLE) == 0)
9747 		return false;
9748 
9749 	if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9750 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9751 		return true;
9752 
9753 	if (IS_BROADWELL(dev_priv) &&
9754 	    (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9755 		return true;
9756 
9757 	return false;
9758 }
9759 
9760 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
9761 			       enum intel_dpll_id id)
9762 {
9763 	u32 fuse_strap = I915_READ(FUSE_STRAP);
9764 	u32 ctl = I915_READ(WRPLL_CTL(id));
9765 
9766 	if ((ctl & WRPLL_PLL_ENABLE) == 0)
9767 		return false;
9768 
9769 	if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
9770 		return true;
9771 
9772 	if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
9773 	    (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
9774 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9775 		return true;
9776 
9777 	return false;
9778 }
9779 
9780 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9781 {
9782 	struct intel_encoder *encoder;
9783 	bool has_fdi = false;
9784 
9785 	for_each_intel_encoder(&dev_priv->drm, encoder) {
9786 		switch (encoder->type) {
9787 		case INTEL_OUTPUT_ANALOG:
9788 			has_fdi = true;
9789 			break;
9790 		default:
9791 			break;
9792 		}
9793 	}
9794 
9795 	/*
9796 	 * The BIOS may have decided to use the PCH SSC
9797 	 * reference so we must not disable it until the
9798 	 * relevant PLLs have stopped relying on it. We'll
9799 	 * just leave the PCH SSC reference enabled in case
9800 	 * any active PLL is using it. It will get disabled
9801 	 * after runtime suspend if we don't have FDI.
9802 	 *
9803 	 * TODO: Move the whole reference clock handling
9804 	 * to the modeset sequence proper so that we can
9805 	 * actually enable/disable/reconfigure these things
9806 	 * safely. To do that we need to introduce a real
9807 	 * clock hierarchy. That would also allow us to do
9808 	 * clock bending finally.
9809 	 */
9810 	dev_priv->pch_ssc_use = 0;
9811 
9812 	if (spll_uses_pch_ssc(dev_priv)) {
9813 		DRM_DEBUG_KMS("SPLL using PCH SSC\n");
9814 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
9815 	}
9816 
9817 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
9818 		DRM_DEBUG_KMS("WRPLL1 using PCH SSC\n");
9819 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
9820 	}
9821 
9822 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
9823 		DRM_DEBUG_KMS("WRPLL2 using PCH SSC\n");
9824 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
9825 	}
9826 
9827 	if (dev_priv->pch_ssc_use)
9828 		return;
9829 
9830 	if (has_fdi) {
9831 		lpt_bend_clkout_dp(dev_priv, 0);
9832 		lpt_enable_clkout_dp(dev_priv, true, true);
9833 	} else {
9834 		lpt_disable_clkout_dp(dev_priv);
9835 	}
9836 }
9837 
9838 /*
9839  * Initialize reference clocks when the driver loads
9840  */
9841 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
9842 {
9843 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9844 		ilk_init_pch_refclk(dev_priv);
9845 	else if (HAS_PCH_LPT(dev_priv))
9846 		lpt_init_pch_refclk(dev_priv);
9847 }
9848 
9849 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
9850 {
9851 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9852 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9853 	enum pipe pipe = crtc->pipe;
9854 	u32 val;
9855 
9856 	val = 0;
9857 
9858 	switch (crtc_state->pipe_bpp) {
9859 	case 18:
9860 		val |= PIPECONF_6BPC;
9861 		break;
9862 	case 24:
9863 		val |= PIPECONF_8BPC;
9864 		break;
9865 	case 30:
9866 		val |= PIPECONF_10BPC;
9867 		break;
9868 	case 36:
9869 		val |= PIPECONF_12BPC;
9870 		break;
9871 	default:
9872 		/* Case prevented by intel_choose_pipe_bpp_dither. */
9873 		BUG();
9874 	}
9875 
9876 	if (crtc_state->dither)
9877 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9878 
9879 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9880 		val |= PIPECONF_INTERLACED_ILK;
9881 	else
9882 		val |= PIPECONF_PROGRESSIVE;
9883 
9884 	/*
9885 	 * This would end up with an odd purple hue over
9886 	 * the entire display. Make sure we don't do it.
9887 	 */
9888 	WARN_ON(crtc_state->limited_color_range &&
9889 		crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
9890 
9891 	if (crtc_state->limited_color_range)
9892 		val |= PIPECONF_COLOR_RANGE_SELECT;
9893 
9894 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
9895 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
9896 
9897 	val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9898 
9899 	val |= PIPECONF_FRAME_START_DELAY(0);
9900 
9901 	I915_WRITE(PIPECONF(pipe), val);
9902 	POSTING_READ(PIPECONF(pipe));
9903 }
9904 
9905 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state)
9906 {
9907 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9908 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9909 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
9910 	u32 val = 0;
9911 
9912 	if (IS_HASWELL(dev_priv) && crtc_state->dither)
9913 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9914 
9915 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9916 		val |= PIPECONF_INTERLACED_ILK;
9917 	else
9918 		val |= PIPECONF_PROGRESSIVE;
9919 
9920 	if (IS_HASWELL(dev_priv) &&
9921 	    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
9922 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
9923 
9924 	I915_WRITE(PIPECONF(cpu_transcoder), val);
9925 	POSTING_READ(PIPECONF(cpu_transcoder));
9926 }
9927 
9928 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
9929 {
9930 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9931 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9932 	u32 val = 0;
9933 
9934 	switch (crtc_state->pipe_bpp) {
9935 	case 18:
9936 		val |= PIPEMISC_DITHER_6_BPC;
9937 		break;
9938 	case 24:
9939 		val |= PIPEMISC_DITHER_8_BPC;
9940 		break;
9941 	case 30:
9942 		val |= PIPEMISC_DITHER_10_BPC;
9943 		break;
9944 	case 36:
9945 		val |= PIPEMISC_DITHER_12_BPC;
9946 		break;
9947 	default:
9948 		MISSING_CASE(crtc_state->pipe_bpp);
9949 		break;
9950 	}
9951 
9952 	if (crtc_state->dither)
9953 		val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9954 
9955 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
9956 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
9957 		val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
9958 
9959 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
9960 		val |= PIPEMISC_YUV420_ENABLE |
9961 			PIPEMISC_YUV420_MODE_FULL_BLEND;
9962 
9963 	if (INTEL_GEN(dev_priv) >= 11 &&
9964 	    (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
9965 					   BIT(PLANE_CURSOR))) == 0)
9966 		val |= PIPEMISC_HDR_MODE_PRECISION;
9967 
9968 	I915_WRITE(PIPEMISC(crtc->pipe), val);
9969 }
9970 
9971 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
9972 {
9973 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9974 	u32 tmp;
9975 
9976 	tmp = I915_READ(PIPEMISC(crtc->pipe));
9977 
9978 	switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
9979 	case PIPEMISC_DITHER_6_BPC:
9980 		return 18;
9981 	case PIPEMISC_DITHER_8_BPC:
9982 		return 24;
9983 	case PIPEMISC_DITHER_10_BPC:
9984 		return 30;
9985 	case PIPEMISC_DITHER_12_BPC:
9986 		return 36;
9987 	default:
9988 		MISSING_CASE(tmp);
9989 		return 0;
9990 	}
9991 }
9992 
9993 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
9994 {
9995 	/*
9996 	 * Account for spread spectrum to avoid
9997 	 * oversubscribing the link. Max center spread
9998 	 * is 2.5%; use 5% for safety's sake.
9999 	 */
10000 	u32 bps = target_clock * bpp * 21 / 20;
10001 	return DIV_ROUND_UP(bps, link_bw * 8);
10002 }
10003 
10004 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
10005 {
10006 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
10007 }
10008 
10009 static void ilk_compute_dpll(struct intel_crtc *crtc,
10010 			     struct intel_crtc_state *crtc_state,
10011 			     struct dpll *reduced_clock)
10012 {
10013 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10014 	u32 dpll, fp, fp2;
10015 	int factor;
10016 
10017 	/* Enable autotuning of the PLL clock (if permissible) */
10018 	factor = 21;
10019 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10020 		if ((intel_panel_use_ssc(dev_priv) &&
10021 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
10022 		    (HAS_PCH_IBX(dev_priv) &&
10023 		     intel_is_dual_link_lvds(dev_priv)))
10024 			factor = 25;
10025 	} else if (crtc_state->sdvo_tv_clock) {
10026 		factor = 20;
10027 	}
10028 
10029 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
10030 
10031 	if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
10032 		fp |= FP_CB_TUNE;
10033 
10034 	if (reduced_clock) {
10035 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
10036 
10037 		if (reduced_clock->m < factor * reduced_clock->n)
10038 			fp2 |= FP_CB_TUNE;
10039 	} else {
10040 		fp2 = fp;
10041 	}
10042 
10043 	dpll = 0;
10044 
10045 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
10046 		dpll |= DPLLB_MODE_LVDS;
10047 	else
10048 		dpll |= DPLLB_MODE_DAC_SERIAL;
10049 
10050 	dpll |= (crtc_state->pixel_multiplier - 1)
10051 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
10052 
10053 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
10054 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
10055 		dpll |= DPLL_SDVO_HIGH_SPEED;
10056 
10057 	if (intel_crtc_has_dp_encoder(crtc_state))
10058 		dpll |= DPLL_SDVO_HIGH_SPEED;
10059 
10060 	/*
10061 	 * The high speed IO clock is only really required for
10062 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
10063 	 * possible to share the DPLL between CRT and HDMI. Enabling
10064 	 * the clock needlessly does no real harm, except use up a
10065 	 * bit of power potentially.
10066 	 *
10067 	 * We'll limit this to IVB with 3 pipes, since it has only two
10068 	 * DPLLs and so DPLL sharing is the only way to get three pipes
10069 	 * driving PCH ports at the same time. On SNB we could do this,
10070 	 * and potentially avoid enabling the second DPLL, but it's not
10071 	 * clear if it''s a win or loss power wise. No point in doing
10072 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
10073 	 */
10074 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
10075 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
10076 		dpll |= DPLL_SDVO_HIGH_SPEED;
10077 
10078 	/* compute bitmask from p1 value */
10079 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
10080 	/* also FPA1 */
10081 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
10082 
10083 	switch (crtc_state->dpll.p2) {
10084 	case 5:
10085 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
10086 		break;
10087 	case 7:
10088 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
10089 		break;
10090 	case 10:
10091 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
10092 		break;
10093 	case 14:
10094 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
10095 		break;
10096 	}
10097 
10098 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
10099 	    intel_panel_use_ssc(dev_priv))
10100 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
10101 	else
10102 		dpll |= PLL_REF_INPUT_DREFCLK;
10103 
10104 	dpll |= DPLL_VCO_ENABLE;
10105 
10106 	crtc_state->dpll_hw_state.dpll = dpll;
10107 	crtc_state->dpll_hw_state.fp0 = fp;
10108 	crtc_state->dpll_hw_state.fp1 = fp2;
10109 }
10110 
10111 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
10112 				  struct intel_crtc_state *crtc_state)
10113 {
10114 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10115 	struct intel_atomic_state *state =
10116 		to_intel_atomic_state(crtc_state->uapi.state);
10117 	const struct intel_limit *limit;
10118 	int refclk = 120000;
10119 
10120 	memset(&crtc_state->dpll_hw_state, 0,
10121 	       sizeof(crtc_state->dpll_hw_state));
10122 
10123 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
10124 	if (!crtc_state->has_pch_encoder)
10125 		return 0;
10126 
10127 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10128 		if (intel_panel_use_ssc(dev_priv)) {
10129 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
10130 				      dev_priv->vbt.lvds_ssc_freq);
10131 			refclk = dev_priv->vbt.lvds_ssc_freq;
10132 		}
10133 
10134 		if (intel_is_dual_link_lvds(dev_priv)) {
10135 			if (refclk == 100000)
10136 				limit = &ilk_limits_dual_lvds_100m;
10137 			else
10138 				limit = &ilk_limits_dual_lvds;
10139 		} else {
10140 			if (refclk == 100000)
10141 				limit = &ilk_limits_single_lvds_100m;
10142 			else
10143 				limit = &ilk_limits_single_lvds;
10144 		}
10145 	} else {
10146 		limit = &ilk_limits_dac;
10147 	}
10148 
10149 	if (!crtc_state->clock_set &&
10150 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
10151 				refclk, NULL, &crtc_state->dpll)) {
10152 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
10153 		return -EINVAL;
10154 	}
10155 
10156 	ilk_compute_dpll(crtc, crtc_state, NULL);
10157 
10158 	if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
10159 		DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
10160 			      pipe_name(crtc->pipe));
10161 		return -EINVAL;
10162 	}
10163 
10164 	return 0;
10165 }
10166 
10167 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
10168 					 struct intel_link_m_n *m_n)
10169 {
10170 	struct drm_device *dev = crtc->base.dev;
10171 	struct drm_i915_private *dev_priv = to_i915(dev);
10172 	enum pipe pipe = crtc->pipe;
10173 
10174 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
10175 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
10176 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
10177 		& ~TU_SIZE_MASK;
10178 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
10179 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
10180 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10181 }
10182 
10183 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
10184 					 enum transcoder transcoder,
10185 					 struct intel_link_m_n *m_n,
10186 					 struct intel_link_m_n *m2_n2)
10187 {
10188 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10189 	enum pipe pipe = crtc->pipe;
10190 
10191 	if (INTEL_GEN(dev_priv) >= 5) {
10192 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
10193 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
10194 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
10195 			& ~TU_SIZE_MASK;
10196 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
10197 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
10198 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10199 
10200 		if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
10201 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
10202 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
10203 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
10204 					& ~TU_SIZE_MASK;
10205 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
10206 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
10207 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10208 		}
10209 	} else {
10210 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
10211 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
10212 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
10213 			& ~TU_SIZE_MASK;
10214 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
10215 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
10216 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10217 	}
10218 }
10219 
10220 void intel_dp_get_m_n(struct intel_crtc *crtc,
10221 		      struct intel_crtc_state *pipe_config)
10222 {
10223 	if (pipe_config->has_pch_encoder)
10224 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
10225 	else
10226 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10227 					     &pipe_config->dp_m_n,
10228 					     &pipe_config->dp_m2_n2);
10229 }
10230 
10231 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc,
10232 				   struct intel_crtc_state *pipe_config)
10233 {
10234 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10235 				     &pipe_config->fdi_m_n, NULL);
10236 }
10237 
10238 static void skl_get_pfit_config(struct intel_crtc *crtc,
10239 				struct intel_crtc_state *pipe_config)
10240 {
10241 	struct drm_device *dev = crtc->base.dev;
10242 	struct drm_i915_private *dev_priv = to_i915(dev);
10243 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
10244 	u32 ps_ctrl = 0;
10245 	int id = -1;
10246 	int i;
10247 
10248 	/* find scaler attached to this pipe */
10249 	for (i = 0; i < crtc->num_scalers; i++) {
10250 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
10251 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
10252 			id = i;
10253 			pipe_config->pch_pfit.enabled = true;
10254 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
10255 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
10256 			scaler_state->scalers[i].in_use = true;
10257 			break;
10258 		}
10259 	}
10260 
10261 	scaler_state->scaler_id = id;
10262 	if (id >= 0) {
10263 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
10264 	} else {
10265 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
10266 	}
10267 }
10268 
10269 static void
10270 skl_get_initial_plane_config(struct intel_crtc *crtc,
10271 			     struct intel_initial_plane_config *plane_config)
10272 {
10273 	struct drm_device *dev = crtc->base.dev;
10274 	struct drm_i915_private *dev_priv = to_i915(dev);
10275 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
10276 	enum plane_id plane_id = plane->id;
10277 	enum pipe pipe;
10278 	u32 val, base, offset, stride_mult, tiling, alpha;
10279 	int fourcc, pixel_format;
10280 	unsigned int aligned_height;
10281 	struct drm_framebuffer *fb;
10282 	struct intel_framebuffer *intel_fb;
10283 
10284 	if (!plane->get_hw_state(plane, &pipe))
10285 		return;
10286 
10287 	WARN_ON(pipe != crtc->pipe);
10288 
10289 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10290 	if (!intel_fb) {
10291 		DRM_DEBUG_KMS("failed to alloc fb\n");
10292 		return;
10293 	}
10294 
10295 	fb = &intel_fb->base;
10296 
10297 	fb->dev = dev;
10298 
10299 	val = I915_READ(PLANE_CTL(pipe, plane_id));
10300 
10301 	if (INTEL_GEN(dev_priv) >= 11)
10302 		pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
10303 	else
10304 		pixel_format = val & PLANE_CTL_FORMAT_MASK;
10305 
10306 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
10307 		alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id));
10308 		alpha &= PLANE_COLOR_ALPHA_MASK;
10309 	} else {
10310 		alpha = val & PLANE_CTL_ALPHA_MASK;
10311 	}
10312 
10313 	fourcc = skl_format_to_fourcc(pixel_format,
10314 				      val & PLANE_CTL_ORDER_RGBX, alpha);
10315 	fb->format = drm_format_info(fourcc);
10316 
10317 	tiling = val & PLANE_CTL_TILED_MASK;
10318 	switch (tiling) {
10319 	case PLANE_CTL_TILED_LINEAR:
10320 		fb->modifier = DRM_FORMAT_MOD_LINEAR;
10321 		break;
10322 	case PLANE_CTL_TILED_X:
10323 		plane_config->tiling = I915_TILING_X;
10324 		fb->modifier = I915_FORMAT_MOD_X_TILED;
10325 		break;
10326 	case PLANE_CTL_TILED_Y:
10327 		plane_config->tiling = I915_TILING_Y;
10328 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10329 			fb->modifier = INTEL_GEN(dev_priv) >= 12 ?
10330 				I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS :
10331 				I915_FORMAT_MOD_Y_TILED_CCS;
10332 		else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE)
10333 			fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
10334 		else
10335 			fb->modifier = I915_FORMAT_MOD_Y_TILED;
10336 		break;
10337 	case PLANE_CTL_TILED_YF:
10338 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10339 			fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
10340 		else
10341 			fb->modifier = I915_FORMAT_MOD_Yf_TILED;
10342 		break;
10343 	default:
10344 		MISSING_CASE(tiling);
10345 		goto error;
10346 	}
10347 
10348 	/*
10349 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10350 	 * while i915 HW rotation is clockwise, thats why this swapping.
10351 	 */
10352 	switch (val & PLANE_CTL_ROTATE_MASK) {
10353 	case PLANE_CTL_ROTATE_0:
10354 		plane_config->rotation = DRM_MODE_ROTATE_0;
10355 		break;
10356 	case PLANE_CTL_ROTATE_90:
10357 		plane_config->rotation = DRM_MODE_ROTATE_270;
10358 		break;
10359 	case PLANE_CTL_ROTATE_180:
10360 		plane_config->rotation = DRM_MODE_ROTATE_180;
10361 		break;
10362 	case PLANE_CTL_ROTATE_270:
10363 		plane_config->rotation = DRM_MODE_ROTATE_90;
10364 		break;
10365 	}
10366 
10367 	if (INTEL_GEN(dev_priv) >= 10 &&
10368 	    val & PLANE_CTL_FLIP_HORIZONTAL)
10369 		plane_config->rotation |= DRM_MODE_REFLECT_X;
10370 
10371 	base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10372 	plane_config->base = base;
10373 
10374 	offset = I915_READ(PLANE_OFFSET(pipe, plane_id));
10375 
10376 	val = I915_READ(PLANE_SIZE(pipe, plane_id));
10377 	fb->height = ((val >> 16) & 0xffff) + 1;
10378 	fb->width = ((val >> 0) & 0xffff) + 1;
10379 
10380 	val = I915_READ(PLANE_STRIDE(pipe, plane_id));
10381 	stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10382 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
10383 
10384 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
10385 
10386 	plane_config->size = fb->pitches[0] * aligned_height;
10387 
10388 	DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10389 		      crtc->base.name, plane->base.name, fb->width, fb->height,
10390 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
10391 		      plane_config->size);
10392 
10393 	plane_config->fb = intel_fb;
10394 	return;
10395 
10396 error:
10397 	kfree(intel_fb);
10398 }
10399 
10400 static void ilk_get_pfit_config(struct intel_crtc *crtc,
10401 				struct intel_crtc_state *pipe_config)
10402 {
10403 	struct drm_device *dev = crtc->base.dev;
10404 	struct drm_i915_private *dev_priv = to_i915(dev);
10405 	u32 tmp;
10406 
10407 	tmp = I915_READ(PF_CTL(crtc->pipe));
10408 
10409 	if (tmp & PF_ENABLE) {
10410 		pipe_config->pch_pfit.enabled = true;
10411 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
10412 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
10413 
10414 		/* We currently do not free assignements of panel fitters on
10415 		 * ivb/hsw (since we don't use the higher upscaling modes which
10416 		 * differentiates them) so just WARN about this case for now. */
10417 		if (IS_GEN(dev_priv, 7)) {
10418 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
10419 				PF_PIPE_SEL_IVB(crtc->pipe));
10420 		}
10421 	}
10422 }
10423 
10424 static bool ilk_get_pipe_config(struct intel_crtc *crtc,
10425 				struct intel_crtc_state *pipe_config)
10426 {
10427 	struct drm_device *dev = crtc->base.dev;
10428 	struct drm_i915_private *dev_priv = to_i915(dev);
10429 	enum intel_display_power_domain power_domain;
10430 	intel_wakeref_t wakeref;
10431 	u32 tmp;
10432 	bool ret;
10433 
10434 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10435 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10436 	if (!wakeref)
10437 		return false;
10438 
10439 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10440 	pipe_config->shared_dpll = NULL;
10441 	pipe_config->master_transcoder = INVALID_TRANSCODER;
10442 
10443 	ret = false;
10444 	tmp = I915_READ(PIPECONF(crtc->pipe));
10445 	if (!(tmp & PIPECONF_ENABLE))
10446 		goto out;
10447 
10448 	switch (tmp & PIPECONF_BPC_MASK) {
10449 	case PIPECONF_6BPC:
10450 		pipe_config->pipe_bpp = 18;
10451 		break;
10452 	case PIPECONF_8BPC:
10453 		pipe_config->pipe_bpp = 24;
10454 		break;
10455 	case PIPECONF_10BPC:
10456 		pipe_config->pipe_bpp = 30;
10457 		break;
10458 	case PIPECONF_12BPC:
10459 		pipe_config->pipe_bpp = 36;
10460 		break;
10461 	default:
10462 		break;
10463 	}
10464 
10465 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10466 		pipe_config->limited_color_range = true;
10467 
10468 	switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10469 	case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10470 	case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10471 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10472 		break;
10473 	default:
10474 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10475 		break;
10476 	}
10477 
10478 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10479 		PIPECONF_GAMMA_MODE_SHIFT;
10480 
10481 	pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
10482 
10483 	i9xx_get_pipe_color_config(pipe_config);
10484 	intel_color_get_config(pipe_config);
10485 
10486 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10487 		struct intel_shared_dpll *pll;
10488 		enum intel_dpll_id pll_id;
10489 
10490 		pipe_config->has_pch_encoder = true;
10491 
10492 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
10493 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10494 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10495 
10496 		ilk_get_fdi_m_n_config(crtc, pipe_config);
10497 
10498 		if (HAS_PCH_IBX(dev_priv)) {
10499 			/*
10500 			 * The pipe->pch transcoder and pch transcoder->pll
10501 			 * mapping is fixed.
10502 			 */
10503 			pll_id = (enum intel_dpll_id) crtc->pipe;
10504 		} else {
10505 			tmp = I915_READ(PCH_DPLL_SEL);
10506 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10507 				pll_id = DPLL_ID_PCH_PLL_B;
10508 			else
10509 				pll_id= DPLL_ID_PCH_PLL_A;
10510 		}
10511 
10512 		pipe_config->shared_dpll =
10513 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
10514 		pll = pipe_config->shared_dpll;
10515 
10516 		WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10517 						&pipe_config->dpll_hw_state));
10518 
10519 		tmp = pipe_config->dpll_hw_state.dpll;
10520 		pipe_config->pixel_multiplier =
10521 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10522 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10523 
10524 		ilk_pch_clock_get(crtc, pipe_config);
10525 	} else {
10526 		pipe_config->pixel_multiplier = 1;
10527 	}
10528 
10529 	intel_get_pipe_timings(crtc, pipe_config);
10530 	intel_get_pipe_src_size(crtc, pipe_config);
10531 
10532 	ilk_get_pfit_config(crtc, pipe_config);
10533 
10534 	ret = true;
10535 
10536 out:
10537 	intel_display_power_put(dev_priv, power_domain, wakeref);
10538 
10539 	return ret;
10540 }
10541 
10542 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
10543 				  struct intel_crtc_state *crtc_state)
10544 {
10545 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10546 	struct intel_atomic_state *state =
10547 		to_intel_atomic_state(crtc_state->uapi.state);
10548 
10549 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10550 	    INTEL_GEN(dev_priv) >= 11) {
10551 		struct intel_encoder *encoder =
10552 			intel_get_crtc_new_encoder(state, crtc_state);
10553 
10554 		if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10555 			DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
10556 				      pipe_name(crtc->pipe));
10557 			return -EINVAL;
10558 		}
10559 	}
10560 
10561 	return 0;
10562 }
10563 
10564 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10565 			    struct intel_crtc_state *pipe_config)
10566 {
10567 	enum intel_dpll_id id;
10568 	u32 temp;
10569 
10570 	temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10571 	id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10572 
10573 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
10574 		return;
10575 
10576 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10577 }
10578 
10579 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10580 			    struct intel_crtc_state *pipe_config)
10581 {
10582 	enum phy phy = intel_port_to_phy(dev_priv, port);
10583 	enum icl_port_dpll_id port_dpll_id;
10584 	enum intel_dpll_id id;
10585 	u32 temp;
10586 
10587 	if (intel_phy_is_combo(dev_priv, phy)) {
10588 		temp = I915_READ(ICL_DPCLKA_CFGCR0) &
10589 			ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10590 		id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10591 		port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10592 	} else if (intel_phy_is_tc(dev_priv, phy)) {
10593 		u32 clk_sel = I915_READ(DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10594 
10595 		if (clk_sel == DDI_CLK_SEL_MG) {
10596 			id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10597 								    port));
10598 			port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10599 		} else {
10600 			WARN_ON(clk_sel < DDI_CLK_SEL_TBT_162);
10601 			id = DPLL_ID_ICL_TBTPLL;
10602 			port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10603 		}
10604 	} else {
10605 		WARN(1, "Invalid port %x\n", port);
10606 		return;
10607 	}
10608 
10609 	pipe_config->icl_port_dplls[port_dpll_id].pll =
10610 		intel_get_shared_dpll_by_id(dev_priv, id);
10611 
10612 	icl_set_active_port_dpll(pipe_config, port_dpll_id);
10613 }
10614 
10615 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10616 				enum port port,
10617 				struct intel_crtc_state *pipe_config)
10618 {
10619 	enum intel_dpll_id id;
10620 
10621 	switch (port) {
10622 	case PORT_A:
10623 		id = DPLL_ID_SKL_DPLL0;
10624 		break;
10625 	case PORT_B:
10626 		id = DPLL_ID_SKL_DPLL1;
10627 		break;
10628 	case PORT_C:
10629 		id = DPLL_ID_SKL_DPLL2;
10630 		break;
10631 	default:
10632 		DRM_ERROR("Incorrect port type\n");
10633 		return;
10634 	}
10635 
10636 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10637 }
10638 
10639 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10640 			    struct intel_crtc_state *pipe_config)
10641 {
10642 	enum intel_dpll_id id;
10643 	u32 temp;
10644 
10645 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10646 	id = temp >> (port * 3 + 1);
10647 
10648 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10649 		return;
10650 
10651 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10652 }
10653 
10654 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10655 			    struct intel_crtc_state *pipe_config)
10656 {
10657 	enum intel_dpll_id id;
10658 	u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10659 
10660 	switch (ddi_pll_sel) {
10661 	case PORT_CLK_SEL_WRPLL1:
10662 		id = DPLL_ID_WRPLL1;
10663 		break;
10664 	case PORT_CLK_SEL_WRPLL2:
10665 		id = DPLL_ID_WRPLL2;
10666 		break;
10667 	case PORT_CLK_SEL_SPLL:
10668 		id = DPLL_ID_SPLL;
10669 		break;
10670 	case PORT_CLK_SEL_LCPLL_810:
10671 		id = DPLL_ID_LCPLL_810;
10672 		break;
10673 	case PORT_CLK_SEL_LCPLL_1350:
10674 		id = DPLL_ID_LCPLL_1350;
10675 		break;
10676 	case PORT_CLK_SEL_LCPLL_2700:
10677 		id = DPLL_ID_LCPLL_2700;
10678 		break;
10679 	default:
10680 		MISSING_CASE(ddi_pll_sel);
10681 		/* fall through */
10682 	case PORT_CLK_SEL_NONE:
10683 		return;
10684 	}
10685 
10686 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10687 }
10688 
10689 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10690 				     struct intel_crtc_state *pipe_config,
10691 				     u64 *power_domain_mask,
10692 				     intel_wakeref_t *wakerefs)
10693 {
10694 	struct drm_device *dev = crtc->base.dev;
10695 	struct drm_i915_private *dev_priv = to_i915(dev);
10696 	enum intel_display_power_domain power_domain;
10697 	unsigned long panel_transcoder_mask = 0;
10698 	unsigned long enabled_panel_transcoders = 0;
10699 	enum transcoder panel_transcoder;
10700 	intel_wakeref_t wf;
10701 	u32 tmp;
10702 
10703 	if (INTEL_GEN(dev_priv) >= 11)
10704 		panel_transcoder_mask |=
10705 			BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10706 
10707 	if (HAS_TRANSCODER_EDP(dev_priv))
10708 		panel_transcoder_mask |= BIT(TRANSCODER_EDP);
10709 
10710 	/*
10711 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
10712 	 * and DSI transcoders handled below.
10713 	 */
10714 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10715 
10716 	/*
10717 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10718 	 * consistency and less surprising code; it's in always on power).
10719 	 */
10720 	for_each_set_bit(panel_transcoder,
10721 			 &panel_transcoder_mask,
10722 			 ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) {
10723 		bool force_thru = false;
10724 		enum pipe trans_pipe;
10725 
10726 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder));
10727 		if (!(tmp & TRANS_DDI_FUNC_ENABLE))
10728 			continue;
10729 
10730 		/*
10731 		 * Log all enabled ones, only use the first one.
10732 		 *
10733 		 * FIXME: This won't work for two separate DSI displays.
10734 		 */
10735 		enabled_panel_transcoders |= BIT(panel_transcoder);
10736 		if (enabled_panel_transcoders != BIT(panel_transcoder))
10737 			continue;
10738 
10739 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10740 		default:
10741 			WARN(1, "unknown pipe linked to transcoder %s\n",
10742 			     transcoder_name(panel_transcoder));
10743 			/* fall through */
10744 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
10745 			force_thru = true;
10746 			/* fall through */
10747 		case TRANS_DDI_EDP_INPUT_A_ON:
10748 			trans_pipe = PIPE_A;
10749 			break;
10750 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
10751 			trans_pipe = PIPE_B;
10752 			break;
10753 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
10754 			trans_pipe = PIPE_C;
10755 			break;
10756 		case TRANS_DDI_EDP_INPUT_D_ONOFF:
10757 			trans_pipe = PIPE_D;
10758 			break;
10759 		}
10760 
10761 		if (trans_pipe == crtc->pipe) {
10762 			pipe_config->cpu_transcoder = panel_transcoder;
10763 			pipe_config->pch_pfit.force_thru = force_thru;
10764 		}
10765 	}
10766 
10767 	/*
10768 	 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
10769 	 */
10770 	WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
10771 		enabled_panel_transcoders != BIT(TRANSCODER_EDP));
10772 
10773 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10774 	WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10775 
10776 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10777 	if (!wf)
10778 		return false;
10779 
10780 	wakerefs[power_domain] = wf;
10781 	*power_domain_mask |= BIT_ULL(power_domain);
10782 
10783 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10784 
10785 	return tmp & PIPECONF_ENABLE;
10786 }
10787 
10788 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10789 					 struct intel_crtc_state *pipe_config,
10790 					 u64 *power_domain_mask,
10791 					 intel_wakeref_t *wakerefs)
10792 {
10793 	struct drm_device *dev = crtc->base.dev;
10794 	struct drm_i915_private *dev_priv = to_i915(dev);
10795 	enum intel_display_power_domain power_domain;
10796 	enum transcoder cpu_transcoder;
10797 	intel_wakeref_t wf;
10798 	enum port port;
10799 	u32 tmp;
10800 
10801 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10802 		if (port == PORT_A)
10803 			cpu_transcoder = TRANSCODER_DSI_A;
10804 		else
10805 			cpu_transcoder = TRANSCODER_DSI_C;
10806 
10807 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10808 		WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10809 
10810 		wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10811 		if (!wf)
10812 			continue;
10813 
10814 		wakerefs[power_domain] = wf;
10815 		*power_domain_mask |= BIT_ULL(power_domain);
10816 
10817 		/*
10818 		 * The PLL needs to be enabled with a valid divider
10819 		 * configuration, otherwise accessing DSI registers will hang
10820 		 * the machine. See BSpec North Display Engine
10821 		 * registers/MIPI[BXT]. We can break out here early, since we
10822 		 * need the same DSI PLL to be enabled for both DSI ports.
10823 		 */
10824 		if (!bxt_dsi_pll_is_enabled(dev_priv))
10825 			break;
10826 
10827 		/* XXX: this works for video mode only */
10828 		tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10829 		if (!(tmp & DPI_ENABLE))
10830 			continue;
10831 
10832 		tmp = I915_READ(MIPI_CTRL(port));
10833 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10834 			continue;
10835 
10836 		pipe_config->cpu_transcoder = cpu_transcoder;
10837 		break;
10838 	}
10839 
10840 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
10841 }
10842 
10843 static void hsw_get_ddi_port_state(struct intel_crtc *crtc,
10844 				   struct intel_crtc_state *pipe_config)
10845 {
10846 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10847 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
10848 	struct intel_shared_dpll *pll;
10849 	enum port port;
10850 	u32 tmp;
10851 
10852 	if (transcoder_is_dsi(cpu_transcoder)) {
10853 		port = (cpu_transcoder == TRANSCODER_DSI_A) ?
10854 						PORT_A : PORT_B;
10855 	} else {
10856 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
10857 		if (INTEL_GEN(dev_priv) >= 12)
10858 			port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10859 		else
10860 			port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10861 	}
10862 
10863 	if (INTEL_GEN(dev_priv) >= 11)
10864 		icl_get_ddi_pll(dev_priv, port, pipe_config);
10865 	else if (IS_CANNONLAKE(dev_priv))
10866 		cnl_get_ddi_pll(dev_priv, port, pipe_config);
10867 	else if (IS_GEN9_BC(dev_priv))
10868 		skl_get_ddi_pll(dev_priv, port, pipe_config);
10869 	else if (IS_GEN9_LP(dev_priv))
10870 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
10871 	else
10872 		hsw_get_ddi_pll(dev_priv, port, pipe_config);
10873 
10874 	pll = pipe_config->shared_dpll;
10875 	if (pll) {
10876 		WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10877 						&pipe_config->dpll_hw_state));
10878 	}
10879 
10880 	/*
10881 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10882 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
10883 	 * the PCH transcoder is on.
10884 	 */
10885 	if (INTEL_GEN(dev_priv) < 9 &&
10886 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10887 		pipe_config->has_pch_encoder = true;
10888 
10889 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10890 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10891 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10892 
10893 		ilk_get_fdi_m_n_config(crtc, pipe_config);
10894 	}
10895 }
10896 
10897 static enum transcoder transcoder_master_readout(struct drm_i915_private *dev_priv,
10898 						 enum transcoder cpu_transcoder)
10899 {
10900 	u32 trans_port_sync, master_select;
10901 
10902 	trans_port_sync = I915_READ(TRANS_DDI_FUNC_CTL2(cpu_transcoder));
10903 
10904 	if ((trans_port_sync & PORT_SYNC_MODE_ENABLE) == 0)
10905 		return INVALID_TRANSCODER;
10906 
10907 	master_select = trans_port_sync &
10908 			PORT_SYNC_MODE_MASTER_SELECT_MASK;
10909 	if (master_select == 0)
10910 		return TRANSCODER_EDP;
10911 	else
10912 		return master_select - 1;
10913 }
10914 
10915 static void icl_get_trans_port_sync_config(struct intel_crtc_state *crtc_state)
10916 {
10917 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
10918 	u32 transcoders;
10919 	enum transcoder cpu_transcoder;
10920 
10921 	crtc_state->master_transcoder = transcoder_master_readout(dev_priv,
10922 								  crtc_state->cpu_transcoder);
10923 
10924 	transcoders = BIT(TRANSCODER_A) |
10925 		BIT(TRANSCODER_B) |
10926 		BIT(TRANSCODER_C) |
10927 		BIT(TRANSCODER_D);
10928 	for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
10929 		enum intel_display_power_domain power_domain;
10930 		intel_wakeref_t trans_wakeref;
10931 
10932 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10933 		trans_wakeref = intel_display_power_get_if_enabled(dev_priv,
10934 								   power_domain);
10935 
10936 		if (!trans_wakeref)
10937 			continue;
10938 
10939 		if (transcoder_master_readout(dev_priv, cpu_transcoder) ==
10940 		    crtc_state->cpu_transcoder)
10941 			crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder);
10942 
10943 		intel_display_power_put(dev_priv, power_domain, trans_wakeref);
10944 	}
10945 
10946 	WARN_ON(crtc_state->master_transcoder != INVALID_TRANSCODER &&
10947 		crtc_state->sync_mode_slaves_mask);
10948 }
10949 
10950 static bool hsw_get_pipe_config(struct intel_crtc *crtc,
10951 				struct intel_crtc_state *pipe_config)
10952 {
10953 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10954 	intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
10955 	enum intel_display_power_domain power_domain;
10956 	u64 power_domain_mask;
10957 	bool active;
10958 
10959 	pipe_config->master_transcoder = INVALID_TRANSCODER;
10960 
10961 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10962 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10963 	if (!wf)
10964 		return false;
10965 
10966 	wakerefs[power_domain] = wf;
10967 	power_domain_mask = BIT_ULL(power_domain);
10968 
10969 	pipe_config->shared_dpll = NULL;
10970 
10971 	active = hsw_get_transcoder_state(crtc, pipe_config,
10972 					  &power_domain_mask, wakerefs);
10973 
10974 	if (IS_GEN9_LP(dev_priv) &&
10975 	    bxt_get_dsi_transcoder_state(crtc, pipe_config,
10976 					 &power_domain_mask, wakerefs)) {
10977 		WARN_ON(active);
10978 		active = true;
10979 	}
10980 
10981 	if (!active)
10982 		goto out;
10983 
10984 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
10985 	    INTEL_GEN(dev_priv) >= 11) {
10986 		hsw_get_ddi_port_state(crtc, pipe_config);
10987 		intel_get_pipe_timings(crtc, pipe_config);
10988 	}
10989 
10990 	intel_get_pipe_src_size(crtc, pipe_config);
10991 
10992 	if (IS_HASWELL(dev_priv)) {
10993 		u32 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10994 
10995 		if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
10996 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10997 		else
10998 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10999 	} else {
11000 		pipe_config->output_format =
11001 			bdw_get_pipemisc_output_format(crtc);
11002 
11003 		/*
11004 		 * Currently there is no interface defined to
11005 		 * check user preference between RGB/YCBCR444
11006 		 * or YCBCR420. So the only possible case for
11007 		 * YCBCR444 usage is driving YCBCR420 output
11008 		 * with LSPCON, when pipe is configured for
11009 		 * YCBCR444 output and LSPCON takes care of
11010 		 * downsampling it.
11011 		 */
11012 		pipe_config->lspcon_downsampling =
11013 			pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
11014 	}
11015 
11016 	pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe));
11017 
11018 	pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
11019 
11020 	if (INTEL_GEN(dev_priv) >= 9) {
11021 		u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe));
11022 
11023 		if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
11024 			pipe_config->gamma_enable = true;
11025 
11026 		if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
11027 			pipe_config->csc_enable = true;
11028 	} else {
11029 		i9xx_get_pipe_color_config(pipe_config);
11030 	}
11031 
11032 	intel_color_get_config(pipe_config);
11033 
11034 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
11035 	WARN_ON(power_domain_mask & BIT_ULL(power_domain));
11036 
11037 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11038 	if (wf) {
11039 		wakerefs[power_domain] = wf;
11040 		power_domain_mask |= BIT_ULL(power_domain);
11041 
11042 		if (INTEL_GEN(dev_priv) >= 9)
11043 			skl_get_pfit_config(crtc, pipe_config);
11044 		else
11045 			ilk_get_pfit_config(crtc, pipe_config);
11046 	}
11047 
11048 	if (hsw_crtc_supports_ips(crtc)) {
11049 		if (IS_HASWELL(dev_priv))
11050 			pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE;
11051 		else {
11052 			/*
11053 			 * We cannot readout IPS state on broadwell, set to
11054 			 * true so we can set it to a defined state on first
11055 			 * commit.
11056 			 */
11057 			pipe_config->ips_enabled = true;
11058 		}
11059 	}
11060 
11061 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
11062 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
11063 		pipe_config->pixel_multiplier =
11064 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
11065 	} else {
11066 		pipe_config->pixel_multiplier = 1;
11067 	}
11068 
11069 	if (INTEL_GEN(dev_priv) >= 11 &&
11070 	    !transcoder_is_dsi(pipe_config->cpu_transcoder))
11071 		icl_get_trans_port_sync_config(pipe_config);
11072 
11073 out:
11074 	for_each_power_domain(power_domain, power_domain_mask)
11075 		intel_display_power_put(dev_priv,
11076 					power_domain, wakerefs[power_domain]);
11077 
11078 	return active;
11079 }
11080 
11081 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
11082 {
11083 	struct drm_i915_private *dev_priv =
11084 		to_i915(plane_state->uapi.plane->dev);
11085 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11086 	const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11087 	u32 base;
11088 
11089 	if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
11090 		base = obj->phys_handle->busaddr;
11091 	else
11092 		base = intel_plane_ggtt_offset(plane_state);
11093 
11094 	return base + plane_state->color_plane[0].offset;
11095 }
11096 
11097 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
11098 {
11099 	int x = plane_state->uapi.dst.x1;
11100 	int y = plane_state->uapi.dst.y1;
11101 	u32 pos = 0;
11102 
11103 	if (x < 0) {
11104 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
11105 		x = -x;
11106 	}
11107 	pos |= x << CURSOR_X_SHIFT;
11108 
11109 	if (y < 0) {
11110 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
11111 		y = -y;
11112 	}
11113 	pos |= y << CURSOR_Y_SHIFT;
11114 
11115 	return pos;
11116 }
11117 
11118 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
11119 {
11120 	const struct drm_mode_config *config =
11121 		&plane_state->uapi.plane->dev->mode_config;
11122 	int width = drm_rect_width(&plane_state->uapi.dst);
11123 	int height = drm_rect_height(&plane_state->uapi.dst);
11124 
11125 	return width > 0 && width <= config->cursor_width &&
11126 		height > 0 && height <= config->cursor_height;
11127 }
11128 
11129 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
11130 {
11131 	struct drm_i915_private *dev_priv =
11132 		to_i915(plane_state->uapi.plane->dev);
11133 	unsigned int rotation = plane_state->hw.rotation;
11134 	int src_x, src_y;
11135 	u32 offset;
11136 	int ret;
11137 
11138 	ret = intel_plane_compute_gtt(plane_state);
11139 	if (ret)
11140 		return ret;
11141 
11142 	if (!plane_state->uapi.visible)
11143 		return 0;
11144 
11145 	src_x = plane_state->uapi.src.x1 >> 16;
11146 	src_y = plane_state->uapi.src.y1 >> 16;
11147 
11148 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
11149 	offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
11150 						    plane_state, 0);
11151 
11152 	if (src_x != 0 || src_y != 0) {
11153 		DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
11154 		return -EINVAL;
11155 	}
11156 
11157 	/*
11158 	 * Put the final coordinates back so that the src
11159 	 * coordinate checks will see the right values.
11160 	 */
11161 	drm_rect_translate_to(&plane_state->uapi.src,
11162 			      src_x << 16, src_y << 16);
11163 
11164 	/* ILK+ do this automagically in hardware */
11165 	if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
11166 		const struct drm_framebuffer *fb = plane_state->hw.fb;
11167 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
11168 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
11169 
11170 		offset += (src_h * src_w - 1) * fb->format->cpp[0];
11171 	}
11172 
11173 	plane_state->color_plane[0].offset = offset;
11174 	plane_state->color_plane[0].x = src_x;
11175 	plane_state->color_plane[0].y = src_y;
11176 
11177 	return 0;
11178 }
11179 
11180 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
11181 			      struct intel_plane_state *plane_state)
11182 {
11183 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11184 	int ret;
11185 
11186 	if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
11187 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
11188 		return -EINVAL;
11189 	}
11190 
11191 	ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
11192 						  &crtc_state->uapi,
11193 						  DRM_PLANE_HELPER_NO_SCALING,
11194 						  DRM_PLANE_HELPER_NO_SCALING,
11195 						  true, true);
11196 	if (ret)
11197 		return ret;
11198 
11199 	/* Use the unclipped src/dst rectangles, which we program to hw */
11200 	plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi);
11201 	plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi);
11202 
11203 	ret = intel_cursor_check_surface(plane_state);
11204 	if (ret)
11205 		return ret;
11206 
11207 	if (!plane_state->uapi.visible)
11208 		return 0;
11209 
11210 	ret = intel_plane_check_src_coordinates(plane_state);
11211 	if (ret)
11212 		return ret;
11213 
11214 	return 0;
11215 }
11216 
11217 static unsigned int
11218 i845_cursor_max_stride(struct intel_plane *plane,
11219 		       u32 pixel_format, u64 modifier,
11220 		       unsigned int rotation)
11221 {
11222 	return 2048;
11223 }
11224 
11225 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11226 {
11227 	u32 cntl = 0;
11228 
11229 	if (crtc_state->gamma_enable)
11230 		cntl |= CURSOR_GAMMA_ENABLE;
11231 
11232 	return cntl;
11233 }
11234 
11235 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
11236 			   const struct intel_plane_state *plane_state)
11237 {
11238 	return CURSOR_ENABLE |
11239 		CURSOR_FORMAT_ARGB |
11240 		CURSOR_STRIDE(plane_state->color_plane[0].stride);
11241 }
11242 
11243 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
11244 {
11245 	int width = drm_rect_width(&plane_state->uapi.dst);
11246 
11247 	/*
11248 	 * 845g/865g are only limited by the width of their cursors,
11249 	 * the height is arbitrary up to the precision of the register.
11250 	 */
11251 	return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
11252 }
11253 
11254 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
11255 			     struct intel_plane_state *plane_state)
11256 {
11257 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11258 	int ret;
11259 
11260 	ret = intel_check_cursor(crtc_state, plane_state);
11261 	if (ret)
11262 		return ret;
11263 
11264 	/* if we want to turn off the cursor ignore width and height */
11265 	if (!fb)
11266 		return 0;
11267 
11268 	/* Check for which cursor types we support */
11269 	if (!i845_cursor_size_ok(plane_state)) {
11270 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
11271 			  drm_rect_width(&plane_state->uapi.dst),
11272 			  drm_rect_height(&plane_state->uapi.dst));
11273 		return -EINVAL;
11274 	}
11275 
11276 	WARN_ON(plane_state->uapi.visible &&
11277 		plane_state->color_plane[0].stride != fb->pitches[0]);
11278 
11279 	switch (fb->pitches[0]) {
11280 	case 256:
11281 	case 512:
11282 	case 1024:
11283 	case 2048:
11284 		break;
11285 	default:
11286 		DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
11287 			      fb->pitches[0]);
11288 		return -EINVAL;
11289 	}
11290 
11291 	plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
11292 
11293 	return 0;
11294 }
11295 
11296 static void i845_update_cursor(struct intel_plane *plane,
11297 			       const struct intel_crtc_state *crtc_state,
11298 			       const struct intel_plane_state *plane_state)
11299 {
11300 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11301 	u32 cntl = 0, base = 0, pos = 0, size = 0;
11302 	unsigned long irqflags;
11303 
11304 	if (plane_state && plane_state->uapi.visible) {
11305 		unsigned int width = drm_rect_width(&plane_state->uapi.dst);
11306 		unsigned int height = drm_rect_height(&plane_state->uapi.dst);
11307 
11308 		cntl = plane_state->ctl |
11309 			i845_cursor_ctl_crtc(crtc_state);
11310 
11311 		size = (height << 12) | width;
11312 
11313 		base = intel_cursor_base(plane_state);
11314 		pos = intel_cursor_position(plane_state);
11315 	}
11316 
11317 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11318 
11319 	/* On these chipsets we can only modify the base/size/stride
11320 	 * whilst the cursor is disabled.
11321 	 */
11322 	if (plane->cursor.base != base ||
11323 	    plane->cursor.size != size ||
11324 	    plane->cursor.cntl != cntl) {
11325 		I915_WRITE_FW(CURCNTR(PIPE_A), 0);
11326 		I915_WRITE_FW(CURBASE(PIPE_A), base);
11327 		I915_WRITE_FW(CURSIZE, size);
11328 		I915_WRITE_FW(CURPOS(PIPE_A), pos);
11329 		I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
11330 
11331 		plane->cursor.base = base;
11332 		plane->cursor.size = size;
11333 		plane->cursor.cntl = cntl;
11334 	} else {
11335 		I915_WRITE_FW(CURPOS(PIPE_A), pos);
11336 	}
11337 
11338 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11339 }
11340 
11341 static void i845_disable_cursor(struct intel_plane *plane,
11342 				const struct intel_crtc_state *crtc_state)
11343 {
11344 	i845_update_cursor(plane, crtc_state, NULL);
11345 }
11346 
11347 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
11348 				     enum pipe *pipe)
11349 {
11350 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11351 	enum intel_display_power_domain power_domain;
11352 	intel_wakeref_t wakeref;
11353 	bool ret;
11354 
11355 	power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11356 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11357 	if (!wakeref)
11358 		return false;
11359 
11360 	ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11361 
11362 	*pipe = PIPE_A;
11363 
11364 	intel_display_power_put(dev_priv, power_domain, wakeref);
11365 
11366 	return ret;
11367 }
11368 
11369 static unsigned int
11370 i9xx_cursor_max_stride(struct intel_plane *plane,
11371 		       u32 pixel_format, u64 modifier,
11372 		       unsigned int rotation)
11373 {
11374 	return plane->base.dev->mode_config.cursor_width * 4;
11375 }
11376 
11377 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11378 {
11379 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11380 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11381 	u32 cntl = 0;
11382 
11383 	if (INTEL_GEN(dev_priv) >= 11)
11384 		return cntl;
11385 
11386 	if (crtc_state->gamma_enable)
11387 		cntl = MCURSOR_GAMMA_ENABLE;
11388 
11389 	if (crtc_state->csc_enable)
11390 		cntl |= MCURSOR_PIPE_CSC_ENABLE;
11391 
11392 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11393 		cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11394 
11395 	return cntl;
11396 }
11397 
11398 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11399 			   const struct intel_plane_state *plane_state)
11400 {
11401 	struct drm_i915_private *dev_priv =
11402 		to_i915(plane_state->uapi.plane->dev);
11403 	u32 cntl = 0;
11404 
11405 	if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11406 		cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11407 
11408 	switch (drm_rect_width(&plane_state->uapi.dst)) {
11409 	case 64:
11410 		cntl |= MCURSOR_MODE_64_ARGB_AX;
11411 		break;
11412 	case 128:
11413 		cntl |= MCURSOR_MODE_128_ARGB_AX;
11414 		break;
11415 	case 256:
11416 		cntl |= MCURSOR_MODE_256_ARGB_AX;
11417 		break;
11418 	default:
11419 		MISSING_CASE(drm_rect_width(&plane_state->uapi.dst));
11420 		return 0;
11421 	}
11422 
11423 	if (plane_state->hw.rotation & DRM_MODE_ROTATE_180)
11424 		cntl |= MCURSOR_ROTATE_180;
11425 
11426 	return cntl;
11427 }
11428 
11429 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11430 {
11431 	struct drm_i915_private *dev_priv =
11432 		to_i915(plane_state->uapi.plane->dev);
11433 	int width = drm_rect_width(&plane_state->uapi.dst);
11434 	int height = drm_rect_height(&plane_state->uapi.dst);
11435 
11436 	if (!intel_cursor_size_ok(plane_state))
11437 		return false;
11438 
11439 	/* Cursor width is limited to a few power-of-two sizes */
11440 	switch (width) {
11441 	case 256:
11442 	case 128:
11443 	case 64:
11444 		break;
11445 	default:
11446 		return false;
11447 	}
11448 
11449 	/*
11450 	 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11451 	 * height from 8 lines up to the cursor width, when the
11452 	 * cursor is not rotated. Everything else requires square
11453 	 * cursors.
11454 	 */
11455 	if (HAS_CUR_FBC(dev_priv) &&
11456 	    plane_state->hw.rotation & DRM_MODE_ROTATE_0) {
11457 		if (height < 8 || height > width)
11458 			return false;
11459 	} else {
11460 		if (height != width)
11461 			return false;
11462 	}
11463 
11464 	return true;
11465 }
11466 
11467 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11468 			     struct intel_plane_state *plane_state)
11469 {
11470 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
11471 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11472 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11473 	enum pipe pipe = plane->pipe;
11474 	int ret;
11475 
11476 	ret = intel_check_cursor(crtc_state, plane_state);
11477 	if (ret)
11478 		return ret;
11479 
11480 	/* if we want to turn off the cursor ignore width and height */
11481 	if (!fb)
11482 		return 0;
11483 
11484 	/* Check for which cursor types we support */
11485 	if (!i9xx_cursor_size_ok(plane_state)) {
11486 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
11487 			  drm_rect_width(&plane_state->uapi.dst),
11488 			  drm_rect_height(&plane_state->uapi.dst));
11489 		return -EINVAL;
11490 	}
11491 
11492 	WARN_ON(plane_state->uapi.visible &&
11493 		plane_state->color_plane[0].stride != fb->pitches[0]);
11494 
11495 	if (fb->pitches[0] !=
11496 	    drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) {
11497 		DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
11498 			      fb->pitches[0],
11499 			      drm_rect_width(&plane_state->uapi.dst));
11500 		return -EINVAL;
11501 	}
11502 
11503 	/*
11504 	 * There's something wrong with the cursor on CHV pipe C.
11505 	 * If it straddles the left edge of the screen then
11506 	 * moving it away from the edge or disabling it often
11507 	 * results in a pipe underrun, and often that can lead to
11508 	 * dead pipe (constant underrun reported, and it scans
11509 	 * out just a solid color). To recover from that, the
11510 	 * display power well must be turned off and on again.
11511 	 * Refuse the put the cursor into that compromised position.
11512 	 */
11513 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11514 	    plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) {
11515 		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
11516 		return -EINVAL;
11517 	}
11518 
11519 	plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11520 
11521 	return 0;
11522 }
11523 
11524 static void i9xx_update_cursor(struct intel_plane *plane,
11525 			       const struct intel_crtc_state *crtc_state,
11526 			       const struct intel_plane_state *plane_state)
11527 {
11528 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11529 	enum pipe pipe = plane->pipe;
11530 	u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11531 	unsigned long irqflags;
11532 
11533 	if (plane_state && plane_state->uapi.visible) {
11534 		unsigned width = drm_rect_width(&plane_state->uapi.dst);
11535 		unsigned height = drm_rect_height(&plane_state->uapi.dst);
11536 
11537 		cntl = plane_state->ctl |
11538 			i9xx_cursor_ctl_crtc(crtc_state);
11539 
11540 		if (width != height)
11541 			fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11542 
11543 		base = intel_cursor_base(plane_state);
11544 		pos = intel_cursor_position(plane_state);
11545 	}
11546 
11547 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11548 
11549 	/*
11550 	 * On some platforms writing CURCNTR first will also
11551 	 * cause CURPOS to be armed by the CURBASE write.
11552 	 * Without the CURCNTR write the CURPOS write would
11553 	 * arm itself. Thus we always update CURCNTR before
11554 	 * CURPOS.
11555 	 *
11556 	 * On other platforms CURPOS always requires the
11557 	 * CURBASE write to arm the update. Additonally
11558 	 * a write to any of the cursor register will cancel
11559 	 * an already armed cursor update. Thus leaving out
11560 	 * the CURBASE write after CURPOS could lead to a
11561 	 * cursor that doesn't appear to move, or even change
11562 	 * shape. Thus we always write CURBASE.
11563 	 *
11564 	 * The other registers are armed by by the CURBASE write
11565 	 * except when the plane is getting enabled at which time
11566 	 * the CURCNTR write arms the update.
11567 	 */
11568 
11569 	if (INTEL_GEN(dev_priv) >= 9)
11570 		skl_write_cursor_wm(plane, crtc_state);
11571 
11572 	if (plane->cursor.base != base ||
11573 	    plane->cursor.size != fbc_ctl ||
11574 	    plane->cursor.cntl != cntl) {
11575 		if (HAS_CUR_FBC(dev_priv))
11576 			I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
11577 		I915_WRITE_FW(CURCNTR(pipe), cntl);
11578 		I915_WRITE_FW(CURPOS(pipe), pos);
11579 		I915_WRITE_FW(CURBASE(pipe), base);
11580 
11581 		plane->cursor.base = base;
11582 		plane->cursor.size = fbc_ctl;
11583 		plane->cursor.cntl = cntl;
11584 	} else {
11585 		I915_WRITE_FW(CURPOS(pipe), pos);
11586 		I915_WRITE_FW(CURBASE(pipe), base);
11587 	}
11588 
11589 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11590 }
11591 
11592 static void i9xx_disable_cursor(struct intel_plane *plane,
11593 				const struct intel_crtc_state *crtc_state)
11594 {
11595 	i9xx_update_cursor(plane, crtc_state, NULL);
11596 }
11597 
11598 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11599 				     enum pipe *pipe)
11600 {
11601 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11602 	enum intel_display_power_domain power_domain;
11603 	intel_wakeref_t wakeref;
11604 	bool ret;
11605 	u32 val;
11606 
11607 	/*
11608 	 * Not 100% correct for planes that can move between pipes,
11609 	 * but that's only the case for gen2-3 which don't have any
11610 	 * display power wells.
11611 	 */
11612 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11613 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11614 	if (!wakeref)
11615 		return false;
11616 
11617 	val = I915_READ(CURCNTR(plane->pipe));
11618 
11619 	ret = val & MCURSOR_MODE;
11620 
11621 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11622 		*pipe = plane->pipe;
11623 	else
11624 		*pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11625 			MCURSOR_PIPE_SELECT_SHIFT;
11626 
11627 	intel_display_power_put(dev_priv, power_domain, wakeref);
11628 
11629 	return ret;
11630 }
11631 
11632 /* VESA 640x480x72Hz mode to set on the pipe */
11633 static const struct drm_display_mode load_detect_mode = {
11634 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11635 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11636 };
11637 
11638 struct drm_framebuffer *
11639 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11640 			 struct drm_mode_fb_cmd2 *mode_cmd)
11641 {
11642 	struct intel_framebuffer *intel_fb;
11643 	int ret;
11644 
11645 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11646 	if (!intel_fb)
11647 		return ERR_PTR(-ENOMEM);
11648 
11649 	ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11650 	if (ret)
11651 		goto err;
11652 
11653 	return &intel_fb->base;
11654 
11655 err:
11656 	kfree(intel_fb);
11657 	return ERR_PTR(ret);
11658 }
11659 
11660 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11661 					struct drm_crtc *crtc)
11662 {
11663 	struct drm_plane *plane;
11664 	struct drm_plane_state *plane_state;
11665 	int ret, i;
11666 
11667 	ret = drm_atomic_add_affected_planes(state, crtc);
11668 	if (ret)
11669 		return ret;
11670 
11671 	for_each_new_plane_in_state(state, plane, plane_state, i) {
11672 		if (plane_state->crtc != crtc)
11673 			continue;
11674 
11675 		ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11676 		if (ret)
11677 			return ret;
11678 
11679 		drm_atomic_set_fb_for_plane(plane_state, NULL);
11680 	}
11681 
11682 	return 0;
11683 }
11684 
11685 int intel_get_load_detect_pipe(struct drm_connector *connector,
11686 			       struct intel_load_detect_pipe *old,
11687 			       struct drm_modeset_acquire_ctx *ctx)
11688 {
11689 	struct intel_crtc *intel_crtc;
11690 	struct intel_encoder *intel_encoder =
11691 		intel_attached_encoder(to_intel_connector(connector));
11692 	struct drm_crtc *possible_crtc;
11693 	struct drm_encoder *encoder = &intel_encoder->base;
11694 	struct drm_crtc *crtc = NULL;
11695 	struct drm_device *dev = encoder->dev;
11696 	struct drm_i915_private *dev_priv = to_i915(dev);
11697 	struct drm_mode_config *config = &dev->mode_config;
11698 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
11699 	struct drm_connector_state *connector_state;
11700 	struct intel_crtc_state *crtc_state;
11701 	int ret, i = -1;
11702 
11703 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11704 		      connector->base.id, connector->name,
11705 		      encoder->base.id, encoder->name);
11706 
11707 	old->restore_state = NULL;
11708 
11709 	WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
11710 
11711 	/*
11712 	 * Algorithm gets a little messy:
11713 	 *
11714 	 *   - if the connector already has an assigned crtc, use it (but make
11715 	 *     sure it's on first)
11716 	 *
11717 	 *   - try to find the first unused crtc that can drive this connector,
11718 	 *     and use that if we find one
11719 	 */
11720 
11721 	/* See if we already have a CRTC for this connector */
11722 	if (connector->state->crtc) {
11723 		crtc = connector->state->crtc;
11724 
11725 		ret = drm_modeset_lock(&crtc->mutex, ctx);
11726 		if (ret)
11727 			goto fail;
11728 
11729 		/* Make sure the crtc and connector are running */
11730 		goto found;
11731 	}
11732 
11733 	/* Find an unused one (if possible) */
11734 	for_each_crtc(dev, possible_crtc) {
11735 		i++;
11736 		if (!(encoder->possible_crtcs & (1 << i)))
11737 			continue;
11738 
11739 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11740 		if (ret)
11741 			goto fail;
11742 
11743 		if (possible_crtc->state->enable) {
11744 			drm_modeset_unlock(&possible_crtc->mutex);
11745 			continue;
11746 		}
11747 
11748 		crtc = possible_crtc;
11749 		break;
11750 	}
11751 
11752 	/*
11753 	 * If we didn't find an unused CRTC, don't use any.
11754 	 */
11755 	if (!crtc) {
11756 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
11757 		ret = -ENODEV;
11758 		goto fail;
11759 	}
11760 
11761 found:
11762 	intel_crtc = to_intel_crtc(crtc);
11763 
11764 	state = drm_atomic_state_alloc(dev);
11765 	restore_state = drm_atomic_state_alloc(dev);
11766 	if (!state || !restore_state) {
11767 		ret = -ENOMEM;
11768 		goto fail;
11769 	}
11770 
11771 	state->acquire_ctx = ctx;
11772 	restore_state->acquire_ctx = ctx;
11773 
11774 	connector_state = drm_atomic_get_connector_state(state, connector);
11775 	if (IS_ERR(connector_state)) {
11776 		ret = PTR_ERR(connector_state);
11777 		goto fail;
11778 	}
11779 
11780 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11781 	if (ret)
11782 		goto fail;
11783 
11784 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11785 	if (IS_ERR(crtc_state)) {
11786 		ret = PTR_ERR(crtc_state);
11787 		goto fail;
11788 	}
11789 
11790 	crtc_state->uapi.active = true;
11791 
11792 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
11793 					   &load_detect_mode);
11794 	if (ret)
11795 		goto fail;
11796 
11797 	ret = intel_modeset_disable_planes(state, crtc);
11798 	if (ret)
11799 		goto fail;
11800 
11801 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11802 	if (!ret)
11803 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11804 	if (!ret)
11805 		ret = drm_atomic_add_affected_planes(restore_state, crtc);
11806 	if (ret) {
11807 		DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11808 		goto fail;
11809 	}
11810 
11811 	ret = drm_atomic_commit(state);
11812 	if (ret) {
11813 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11814 		goto fail;
11815 	}
11816 
11817 	old->restore_state = restore_state;
11818 	drm_atomic_state_put(state);
11819 
11820 	/* let the connector get through one full cycle before testing */
11821 	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11822 	return true;
11823 
11824 fail:
11825 	if (state) {
11826 		drm_atomic_state_put(state);
11827 		state = NULL;
11828 	}
11829 	if (restore_state) {
11830 		drm_atomic_state_put(restore_state);
11831 		restore_state = NULL;
11832 	}
11833 
11834 	if (ret == -EDEADLK)
11835 		return ret;
11836 
11837 	return false;
11838 }
11839 
11840 void intel_release_load_detect_pipe(struct drm_connector *connector,
11841 				    struct intel_load_detect_pipe *old,
11842 				    struct drm_modeset_acquire_ctx *ctx)
11843 {
11844 	struct intel_encoder *intel_encoder =
11845 		intel_attached_encoder(to_intel_connector(connector));
11846 	struct drm_encoder *encoder = &intel_encoder->base;
11847 	struct drm_atomic_state *state = old->restore_state;
11848 	int ret;
11849 
11850 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11851 		      connector->base.id, connector->name,
11852 		      encoder->base.id, encoder->name);
11853 
11854 	if (!state)
11855 		return;
11856 
11857 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
11858 	if (ret)
11859 		DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11860 	drm_atomic_state_put(state);
11861 }
11862 
11863 static int i9xx_pll_refclk(struct drm_device *dev,
11864 			   const struct intel_crtc_state *pipe_config)
11865 {
11866 	struct drm_i915_private *dev_priv = to_i915(dev);
11867 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11868 
11869 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11870 		return dev_priv->vbt.lvds_ssc_freq;
11871 	else if (HAS_PCH_SPLIT(dev_priv))
11872 		return 120000;
11873 	else if (!IS_GEN(dev_priv, 2))
11874 		return 96000;
11875 	else
11876 		return 48000;
11877 }
11878 
11879 /* Returns the clock of the currently programmed mode of the given pipe. */
11880 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11881 				struct intel_crtc_state *pipe_config)
11882 {
11883 	struct drm_device *dev = crtc->base.dev;
11884 	struct drm_i915_private *dev_priv = to_i915(dev);
11885 	enum pipe pipe = crtc->pipe;
11886 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11887 	u32 fp;
11888 	struct dpll clock;
11889 	int port_clock;
11890 	int refclk = i9xx_pll_refclk(dev, pipe_config);
11891 
11892 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11893 		fp = pipe_config->dpll_hw_state.fp0;
11894 	else
11895 		fp = pipe_config->dpll_hw_state.fp1;
11896 
11897 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11898 	if (IS_PINEVIEW(dev_priv)) {
11899 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11900 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11901 	} else {
11902 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11903 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11904 	}
11905 
11906 	if (!IS_GEN(dev_priv, 2)) {
11907 		if (IS_PINEVIEW(dev_priv))
11908 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11909 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11910 		else
11911 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11912 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
11913 
11914 		switch (dpll & DPLL_MODE_MASK) {
11915 		case DPLLB_MODE_DAC_SERIAL:
11916 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11917 				5 : 10;
11918 			break;
11919 		case DPLLB_MODE_LVDS:
11920 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11921 				7 : 14;
11922 			break;
11923 		default:
11924 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11925 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
11926 			return;
11927 		}
11928 
11929 		if (IS_PINEVIEW(dev_priv))
11930 			port_clock = pnv_calc_dpll_params(refclk, &clock);
11931 		else
11932 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
11933 	} else {
11934 		u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11935 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11936 
11937 		if (is_lvds) {
11938 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11939 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
11940 
11941 			if (lvds & LVDS_CLKB_POWER_UP)
11942 				clock.p2 = 7;
11943 			else
11944 				clock.p2 = 14;
11945 		} else {
11946 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
11947 				clock.p1 = 2;
11948 			else {
11949 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11950 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11951 			}
11952 			if (dpll & PLL_P2_DIVIDE_BY_4)
11953 				clock.p2 = 4;
11954 			else
11955 				clock.p2 = 2;
11956 		}
11957 
11958 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
11959 	}
11960 
11961 	/*
11962 	 * This value includes pixel_multiplier. We will use
11963 	 * port_clock to compute adjusted_mode.crtc_clock in the
11964 	 * encoder's get_config() function.
11965 	 */
11966 	pipe_config->port_clock = port_clock;
11967 }
11968 
11969 int intel_dotclock_calculate(int link_freq,
11970 			     const struct intel_link_m_n *m_n)
11971 {
11972 	/*
11973 	 * The calculation for the data clock is:
11974 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11975 	 * But we want to avoid losing precison if possible, so:
11976 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11977 	 *
11978 	 * and the link clock is simpler:
11979 	 * link_clock = (m * link_clock) / n
11980 	 */
11981 
11982 	if (!m_n->link_n)
11983 		return 0;
11984 
11985 	return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
11986 }
11987 
11988 static void ilk_pch_clock_get(struct intel_crtc *crtc,
11989 			      struct intel_crtc_state *pipe_config)
11990 {
11991 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11992 
11993 	/* read out port_clock from the DPLL */
11994 	i9xx_crtc_clock_get(crtc, pipe_config);
11995 
11996 	/*
11997 	 * In case there is an active pipe without active ports,
11998 	 * we may need some idea for the dotclock anyway.
11999 	 * Calculate one based on the FDI configuration.
12000 	 */
12001 	pipe_config->hw.adjusted_mode.crtc_clock =
12002 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12003 					 &pipe_config->fdi_m_n);
12004 }
12005 
12006 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
12007 				   struct intel_crtc *crtc)
12008 {
12009 	memset(crtc_state, 0, sizeof(*crtc_state));
12010 
12011 	__drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
12012 
12013 	crtc_state->cpu_transcoder = INVALID_TRANSCODER;
12014 	crtc_state->master_transcoder = INVALID_TRANSCODER;
12015 	crtc_state->hsw_workaround_pipe = INVALID_PIPE;
12016 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID;
12017 	crtc_state->scaler_state.scaler_id = -1;
12018 	crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
12019 }
12020 
12021 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
12022 {
12023 	struct intel_crtc_state *crtc_state;
12024 
12025 	crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
12026 
12027 	if (crtc_state)
12028 		intel_crtc_state_reset(crtc_state, crtc);
12029 
12030 	return crtc_state;
12031 }
12032 
12033 /* Returns the currently programmed mode of the given encoder. */
12034 struct drm_display_mode *
12035 intel_encoder_current_mode(struct intel_encoder *encoder)
12036 {
12037 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
12038 	struct intel_crtc_state *crtc_state;
12039 	struct drm_display_mode *mode;
12040 	struct intel_crtc *crtc;
12041 	enum pipe pipe;
12042 
12043 	if (!encoder->get_hw_state(encoder, &pipe))
12044 		return NULL;
12045 
12046 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12047 
12048 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
12049 	if (!mode)
12050 		return NULL;
12051 
12052 	crtc_state = intel_crtc_state_alloc(crtc);
12053 	if (!crtc_state) {
12054 		kfree(mode);
12055 		return NULL;
12056 	}
12057 
12058 	if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
12059 		kfree(crtc_state);
12060 		kfree(mode);
12061 		return NULL;
12062 	}
12063 
12064 	encoder->get_config(encoder, crtc_state);
12065 
12066 	intel_mode_from_pipe_config(mode, crtc_state);
12067 
12068 	kfree(crtc_state);
12069 
12070 	return mode;
12071 }
12072 
12073 static void intel_crtc_destroy(struct drm_crtc *crtc)
12074 {
12075 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12076 
12077 	drm_crtc_cleanup(crtc);
12078 	kfree(intel_crtc);
12079 }
12080 
12081 /**
12082  * intel_wm_need_update - Check whether watermarks need updating
12083  * @cur: current plane state
12084  * @new: new plane state
12085  *
12086  * Check current plane state versus the new one to determine whether
12087  * watermarks need to be recalculated.
12088  *
12089  * Returns true or false.
12090  */
12091 static bool intel_wm_need_update(const struct intel_plane_state *cur,
12092 				 struct intel_plane_state *new)
12093 {
12094 	/* Update watermarks on tiling or size changes. */
12095 	if (new->uapi.visible != cur->uapi.visible)
12096 		return true;
12097 
12098 	if (!cur->hw.fb || !new->hw.fb)
12099 		return false;
12100 
12101 	if (cur->hw.fb->modifier != new->hw.fb->modifier ||
12102 	    cur->hw.rotation != new->hw.rotation ||
12103 	    drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) ||
12104 	    drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) ||
12105 	    drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) ||
12106 	    drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst))
12107 		return true;
12108 
12109 	return false;
12110 }
12111 
12112 static bool needs_scaling(const struct intel_plane_state *state)
12113 {
12114 	int src_w = drm_rect_width(&state->uapi.src) >> 16;
12115 	int src_h = drm_rect_height(&state->uapi.src) >> 16;
12116 	int dst_w = drm_rect_width(&state->uapi.dst);
12117 	int dst_h = drm_rect_height(&state->uapi.dst);
12118 
12119 	return (src_w != dst_w || src_h != dst_h);
12120 }
12121 
12122 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
12123 				    struct intel_crtc_state *crtc_state,
12124 				    const struct intel_plane_state *old_plane_state,
12125 				    struct intel_plane_state *plane_state)
12126 {
12127 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12128 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12129 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12130 	bool mode_changed = needs_modeset(crtc_state);
12131 	bool was_crtc_enabled = old_crtc_state->hw.active;
12132 	bool is_crtc_enabled = crtc_state->hw.active;
12133 	bool turn_off, turn_on, visible, was_visible;
12134 	int ret;
12135 
12136 	if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
12137 		ret = skl_update_scaler_plane(crtc_state, plane_state);
12138 		if (ret)
12139 			return ret;
12140 	}
12141 
12142 	was_visible = old_plane_state->uapi.visible;
12143 	visible = plane_state->uapi.visible;
12144 
12145 	if (!was_crtc_enabled && WARN_ON(was_visible))
12146 		was_visible = false;
12147 
12148 	/*
12149 	 * Visibility is calculated as if the crtc was on, but
12150 	 * after scaler setup everything depends on it being off
12151 	 * when the crtc isn't active.
12152 	 *
12153 	 * FIXME this is wrong for watermarks. Watermarks should also
12154 	 * be computed as if the pipe would be active. Perhaps move
12155 	 * per-plane wm computation to the .check_plane() hook, and
12156 	 * only combine the results from all planes in the current place?
12157 	 */
12158 	if (!is_crtc_enabled) {
12159 		plane_state->uapi.visible = visible = false;
12160 		crtc_state->active_planes &= ~BIT(plane->id);
12161 		crtc_state->data_rate[plane->id] = 0;
12162 		crtc_state->min_cdclk[plane->id] = 0;
12163 	}
12164 
12165 	if (!was_visible && !visible)
12166 		return 0;
12167 
12168 	turn_off = was_visible && (!visible || mode_changed);
12169 	turn_on = visible && (!was_visible || mode_changed);
12170 
12171 	DRM_DEBUG_ATOMIC("[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12172 			 crtc->base.base.id, crtc->base.name,
12173 			 plane->base.base.id, plane->base.name,
12174 			 was_visible, visible,
12175 			 turn_off, turn_on, mode_changed);
12176 
12177 	if (turn_on) {
12178 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12179 			crtc_state->update_wm_pre = true;
12180 
12181 		/* must disable cxsr around plane enable/disable */
12182 		if (plane->id != PLANE_CURSOR)
12183 			crtc_state->disable_cxsr = true;
12184 	} else if (turn_off) {
12185 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12186 			crtc_state->update_wm_post = true;
12187 
12188 		/* must disable cxsr around plane enable/disable */
12189 		if (plane->id != PLANE_CURSOR)
12190 			crtc_state->disable_cxsr = true;
12191 	} else if (intel_wm_need_update(old_plane_state, plane_state)) {
12192 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
12193 			/* FIXME bollocks */
12194 			crtc_state->update_wm_pre = true;
12195 			crtc_state->update_wm_post = true;
12196 		}
12197 	}
12198 
12199 	if (visible || was_visible)
12200 		crtc_state->fb_bits |= plane->frontbuffer_bit;
12201 
12202 	/*
12203 	 * ILK/SNB DVSACNTR/Sprite Enable
12204 	 * IVB SPR_CTL/Sprite Enable
12205 	 * "When in Self Refresh Big FIFO mode, a write to enable the
12206 	 *  plane will be internally buffered and delayed while Big FIFO
12207 	 *  mode is exiting."
12208 	 *
12209 	 * Which means that enabling the sprite can take an extra frame
12210 	 * when we start in big FIFO mode (LP1+). Thus we need to drop
12211 	 * down to LP0 and wait for vblank in order to make sure the
12212 	 * sprite gets enabled on the next vblank after the register write.
12213 	 * Doing otherwise would risk enabling the sprite one frame after
12214 	 * we've already signalled flip completion. We can resume LP1+
12215 	 * once the sprite has been enabled.
12216 	 *
12217 	 *
12218 	 * WaCxSRDisabledForSpriteScaling:ivb
12219 	 * IVB SPR_SCALE/Scaling Enable
12220 	 * "Low Power watermarks must be disabled for at least one
12221 	 *  frame before enabling sprite scaling, and kept disabled
12222 	 *  until sprite scaling is disabled."
12223 	 *
12224 	 * ILK/SNB DVSASCALE/Scaling Enable
12225 	 * "When in Self Refresh Big FIFO mode, scaling enable will be
12226 	 *  masked off while Big FIFO mode is exiting."
12227 	 *
12228 	 * Despite the w/a only being listed for IVB we assume that
12229 	 * the ILK/SNB note has similar ramifications, hence we apply
12230 	 * the w/a on all three platforms.
12231 	 *
12232 	 * With experimental results seems this is needed also for primary
12233 	 * plane, not only sprite plane.
12234 	 */
12235 	if (plane->id != PLANE_CURSOR &&
12236 	    (IS_GEN_RANGE(dev_priv, 5, 6) ||
12237 	     IS_IVYBRIDGE(dev_priv)) &&
12238 	    (turn_on || (!needs_scaling(old_plane_state) &&
12239 			 needs_scaling(plane_state))))
12240 		crtc_state->disable_lp_wm = true;
12241 
12242 	return 0;
12243 }
12244 
12245 static bool encoders_cloneable(const struct intel_encoder *a,
12246 			       const struct intel_encoder *b)
12247 {
12248 	/* masks could be asymmetric, so check both ways */
12249 	return a == b || (a->cloneable & (1 << b->type) &&
12250 			  b->cloneable & (1 << a->type));
12251 }
12252 
12253 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12254 					 struct intel_crtc *crtc,
12255 					 struct intel_encoder *encoder)
12256 {
12257 	struct intel_encoder *source_encoder;
12258 	struct drm_connector *connector;
12259 	struct drm_connector_state *connector_state;
12260 	int i;
12261 
12262 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12263 		if (connector_state->crtc != &crtc->base)
12264 			continue;
12265 
12266 		source_encoder =
12267 			to_intel_encoder(connector_state->best_encoder);
12268 		if (!encoders_cloneable(encoder, source_encoder))
12269 			return false;
12270 	}
12271 
12272 	return true;
12273 }
12274 
12275 static int icl_add_linked_planes(struct intel_atomic_state *state)
12276 {
12277 	struct intel_plane *plane, *linked;
12278 	struct intel_plane_state *plane_state, *linked_plane_state;
12279 	int i;
12280 
12281 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12282 		linked = plane_state->planar_linked_plane;
12283 
12284 		if (!linked)
12285 			continue;
12286 
12287 		linked_plane_state = intel_atomic_get_plane_state(state, linked);
12288 		if (IS_ERR(linked_plane_state))
12289 			return PTR_ERR(linked_plane_state);
12290 
12291 		WARN_ON(linked_plane_state->planar_linked_plane != plane);
12292 		WARN_ON(linked_plane_state->planar_slave == plane_state->planar_slave);
12293 	}
12294 
12295 	return 0;
12296 }
12297 
12298 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
12299 {
12300 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12301 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12302 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12303 	struct intel_plane *plane, *linked;
12304 	struct intel_plane_state *plane_state;
12305 	int i;
12306 
12307 	if (INTEL_GEN(dev_priv) < 11)
12308 		return 0;
12309 
12310 	/*
12311 	 * Destroy all old plane links and make the slave plane invisible
12312 	 * in the crtc_state->active_planes mask.
12313 	 */
12314 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12315 		if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
12316 			continue;
12317 
12318 		plane_state->planar_linked_plane = NULL;
12319 		if (plane_state->planar_slave && !plane_state->uapi.visible) {
12320 			crtc_state->active_planes &= ~BIT(plane->id);
12321 			crtc_state->update_planes |= BIT(plane->id);
12322 		}
12323 
12324 		plane_state->planar_slave = false;
12325 	}
12326 
12327 	if (!crtc_state->nv12_planes)
12328 		return 0;
12329 
12330 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12331 		struct intel_plane_state *linked_state = NULL;
12332 
12333 		if (plane->pipe != crtc->pipe ||
12334 		    !(crtc_state->nv12_planes & BIT(plane->id)))
12335 			continue;
12336 
12337 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
12338 			if (!icl_is_nv12_y_plane(linked->id))
12339 				continue;
12340 
12341 			if (crtc_state->active_planes & BIT(linked->id))
12342 				continue;
12343 
12344 			linked_state = intel_atomic_get_plane_state(state, linked);
12345 			if (IS_ERR(linked_state))
12346 				return PTR_ERR(linked_state);
12347 
12348 			break;
12349 		}
12350 
12351 		if (!linked_state) {
12352 			DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n",
12353 				      hweight8(crtc_state->nv12_planes));
12354 
12355 			return -EINVAL;
12356 		}
12357 
12358 		plane_state->planar_linked_plane = linked;
12359 
12360 		linked_state->planar_slave = true;
12361 		linked_state->planar_linked_plane = plane;
12362 		crtc_state->active_planes |= BIT(linked->id);
12363 		crtc_state->update_planes |= BIT(linked->id);
12364 		DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name);
12365 
12366 		/* Copy parameters to slave plane */
12367 		linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
12368 		linked_state->color_ctl = plane_state->color_ctl;
12369 		memcpy(linked_state->color_plane, plane_state->color_plane,
12370 		       sizeof(linked_state->color_plane));
12371 
12372 		intel_plane_copy_uapi_to_hw_state(linked_state, plane_state);
12373 		linked_state->uapi.src = plane_state->uapi.src;
12374 		linked_state->uapi.dst = plane_state->uapi.dst;
12375 
12376 		if (icl_is_hdr_plane(dev_priv, plane->id)) {
12377 			if (linked->id == PLANE_SPRITE5)
12378 				plane_state->cus_ctl |= PLANE_CUS_PLANE_7;
12379 			else if (linked->id == PLANE_SPRITE4)
12380 				plane_state->cus_ctl |= PLANE_CUS_PLANE_6;
12381 			else
12382 				MISSING_CASE(linked->id);
12383 		}
12384 	}
12385 
12386 	return 0;
12387 }
12388 
12389 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
12390 {
12391 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
12392 	struct intel_atomic_state *state =
12393 		to_intel_atomic_state(new_crtc_state->uapi.state);
12394 	const struct intel_crtc_state *old_crtc_state =
12395 		intel_atomic_get_old_crtc_state(state, crtc);
12396 
12397 	return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12398 }
12399 
12400 static bool
12401 intel_atomic_is_master_connector(struct intel_crtc_state *crtc_state)
12402 {
12403 	struct drm_crtc *crtc = crtc_state->uapi.crtc;
12404 	struct drm_atomic_state *state = crtc_state->uapi.state;
12405 	struct drm_connector *connector;
12406 	struct drm_connector_state *connector_state;
12407 	int i;
12408 
12409 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12410 		if (connector_state->crtc != crtc)
12411 			continue;
12412 		if (connector->has_tile &&
12413 		    connector->tile_h_loc == connector->num_h_tile - 1 &&
12414 		    connector->tile_v_loc == connector->num_v_tile - 1)
12415 			return true;
12416 	}
12417 
12418 	return false;
12419 }
12420 
12421 static void reset_port_sync_mode_state(struct intel_crtc_state *crtc_state)
12422 {
12423 	crtc_state->master_transcoder = INVALID_TRANSCODER;
12424 	crtc_state->sync_mode_slaves_mask = 0;
12425 }
12426 
12427 static int icl_compute_port_sync_crtc_state(struct drm_connector *connector,
12428 					    struct intel_crtc_state *crtc_state,
12429 					    int num_tiled_conns)
12430 {
12431 	struct drm_crtc *crtc = crtc_state->uapi.crtc;
12432 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12433 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
12434 	struct drm_connector *master_connector;
12435 	struct drm_connector_list_iter conn_iter;
12436 	struct drm_crtc *master_crtc = NULL;
12437 	struct drm_crtc_state *master_crtc_state;
12438 	struct intel_crtc_state *master_pipe_config;
12439 
12440 	if (INTEL_GEN(dev_priv) < 11)
12441 		return 0;
12442 
12443 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP))
12444 		return 0;
12445 
12446 	/*
12447 	 * In case of tiled displays there could be one or more slaves but there is
12448 	 * only one master. Lets make the CRTC used by the connector corresponding
12449 	 * to the last horizonal and last vertical tile a master/genlock CRTC.
12450 	 * All the other CRTCs corresponding to other tiles of the same Tile group
12451 	 * are the slave CRTCs and hold a pointer to their genlock CRTC.
12452 	 * If all tiles not present do not make master slave assignments.
12453 	 */
12454 	if (!connector->has_tile ||
12455 	    crtc_state->hw.mode.hdisplay != connector->tile_h_size ||
12456 	    crtc_state->hw.mode.vdisplay != connector->tile_v_size ||
12457 	    num_tiled_conns < connector->num_h_tile * connector->num_v_tile) {
12458 		reset_port_sync_mode_state(crtc_state);
12459 		return 0;
12460 	}
12461 	/* Last Horizontal and last vertical tile connector is a master
12462 	 * Master's crtc state is already populated in slave for port sync
12463 	 */
12464 	if (connector->tile_h_loc == connector->num_h_tile - 1 &&
12465 	    connector->tile_v_loc == connector->num_v_tile - 1)
12466 		return 0;
12467 
12468 	/* Loop through all connectors and configure the Slave crtc_state
12469 	 * to point to the correct master.
12470 	 */
12471 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
12472 	drm_for_each_connector_iter(master_connector, &conn_iter) {
12473 		struct drm_connector_state *master_conn_state = NULL;
12474 
12475 		if (!(master_connector->has_tile &&
12476 		      master_connector->tile_group->id == connector->tile_group->id))
12477 			continue;
12478 		if (master_connector->tile_h_loc != master_connector->num_h_tile - 1 ||
12479 		    master_connector->tile_v_loc != master_connector->num_v_tile - 1)
12480 			continue;
12481 
12482 		master_conn_state = drm_atomic_get_connector_state(&state->base,
12483 								   master_connector);
12484 		if (IS_ERR(master_conn_state)) {
12485 			drm_connector_list_iter_end(&conn_iter);
12486 			return PTR_ERR(master_conn_state);
12487 		}
12488 		if (master_conn_state->crtc) {
12489 			master_crtc = master_conn_state->crtc;
12490 			break;
12491 		}
12492 	}
12493 	drm_connector_list_iter_end(&conn_iter);
12494 
12495 	if (!master_crtc) {
12496 		DRM_DEBUG_KMS("Could not find Master CRTC for Slave CRTC %d\n",
12497 			      crtc->base.id);
12498 		return -EINVAL;
12499 	}
12500 
12501 	master_crtc_state = drm_atomic_get_crtc_state(&state->base,
12502 						      master_crtc);
12503 	if (IS_ERR(master_crtc_state))
12504 		return PTR_ERR(master_crtc_state);
12505 
12506 	master_pipe_config = to_intel_crtc_state(master_crtc_state);
12507 	crtc_state->master_transcoder = master_pipe_config->cpu_transcoder;
12508 	master_pipe_config->sync_mode_slaves_mask |=
12509 		BIT(crtc_state->cpu_transcoder);
12510 	DRM_DEBUG_KMS("Master Transcoder = %s added for Slave CRTC = %d, slave transcoder bitmask = %d\n",
12511 		      transcoder_name(crtc_state->master_transcoder),
12512 		      crtc->base.id,
12513 		      master_pipe_config->sync_mode_slaves_mask);
12514 
12515 	return 0;
12516 }
12517 
12518 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12519 				   struct intel_crtc *crtc)
12520 {
12521 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12522 	struct intel_crtc_state *crtc_state =
12523 		intel_atomic_get_new_crtc_state(state, crtc);
12524 	bool mode_changed = needs_modeset(crtc_state);
12525 	int ret;
12526 
12527 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12528 	    mode_changed && !crtc_state->hw.active)
12529 		crtc_state->update_wm_post = true;
12530 
12531 	if (mode_changed && crtc_state->hw.enable &&
12532 	    dev_priv->display.crtc_compute_clock &&
12533 	    !WARN_ON(crtc_state->shared_dpll)) {
12534 		ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12535 		if (ret)
12536 			return ret;
12537 	}
12538 
12539 	/*
12540 	 * May need to update pipe gamma enable bits
12541 	 * when C8 planes are getting enabled/disabled.
12542 	 */
12543 	if (c8_planes_changed(crtc_state))
12544 		crtc_state->uapi.color_mgmt_changed = true;
12545 
12546 	if (mode_changed || crtc_state->update_pipe ||
12547 	    crtc_state->uapi.color_mgmt_changed) {
12548 		ret = intel_color_check(crtc_state);
12549 		if (ret)
12550 			return ret;
12551 	}
12552 
12553 	ret = 0;
12554 	if (dev_priv->display.compute_pipe_wm) {
12555 		ret = dev_priv->display.compute_pipe_wm(crtc_state);
12556 		if (ret) {
12557 			DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12558 			return ret;
12559 		}
12560 	}
12561 
12562 	if (dev_priv->display.compute_intermediate_wm) {
12563 		if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12564 			return 0;
12565 
12566 		/*
12567 		 * Calculate 'intermediate' watermarks that satisfy both the
12568 		 * old state and the new state.  We can program these
12569 		 * immediately.
12570 		 */
12571 		ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12572 		if (ret) {
12573 			DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12574 			return ret;
12575 		}
12576 	}
12577 
12578 	if (INTEL_GEN(dev_priv) >= 9) {
12579 		if (mode_changed || crtc_state->update_pipe)
12580 			ret = skl_update_scaler_crtc(crtc_state);
12581 		if (!ret)
12582 			ret = intel_atomic_setup_scalers(dev_priv, crtc,
12583 							 crtc_state);
12584 	}
12585 
12586 	if (HAS_IPS(dev_priv))
12587 		crtc_state->ips_enabled = hsw_compute_ips_config(crtc_state);
12588 
12589 	return ret;
12590 }
12591 
12592 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12593 {
12594 	struct intel_connector *connector;
12595 	struct drm_connector_list_iter conn_iter;
12596 
12597 	drm_connector_list_iter_begin(dev, &conn_iter);
12598 	for_each_intel_connector_iter(connector, &conn_iter) {
12599 		if (connector->base.state->crtc)
12600 			drm_connector_put(&connector->base);
12601 
12602 		if (connector->base.encoder) {
12603 			connector->base.state->best_encoder =
12604 				connector->base.encoder;
12605 			connector->base.state->crtc =
12606 				connector->base.encoder->crtc;
12607 
12608 			drm_connector_get(&connector->base);
12609 		} else {
12610 			connector->base.state->best_encoder = NULL;
12611 			connector->base.state->crtc = NULL;
12612 		}
12613 	}
12614 	drm_connector_list_iter_end(&conn_iter);
12615 }
12616 
12617 static int
12618 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12619 		      struct intel_crtc_state *pipe_config)
12620 {
12621 	struct drm_connector *connector = conn_state->connector;
12622 	const struct drm_display_info *info = &connector->display_info;
12623 	int bpp;
12624 
12625 	switch (conn_state->max_bpc) {
12626 	case 6 ... 7:
12627 		bpp = 6 * 3;
12628 		break;
12629 	case 8 ... 9:
12630 		bpp = 8 * 3;
12631 		break;
12632 	case 10 ... 11:
12633 		bpp = 10 * 3;
12634 		break;
12635 	case 12:
12636 		bpp = 12 * 3;
12637 		break;
12638 	default:
12639 		return -EINVAL;
12640 	}
12641 
12642 	if (bpp < pipe_config->pipe_bpp) {
12643 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12644 			      "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12645 			      connector->base.id, connector->name,
12646 			      bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc,
12647 			      pipe_config->pipe_bpp);
12648 
12649 		pipe_config->pipe_bpp = bpp;
12650 	}
12651 
12652 	return 0;
12653 }
12654 
12655 static int
12656 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12657 			  struct intel_crtc_state *pipe_config)
12658 {
12659 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12660 	struct drm_atomic_state *state = pipe_config->uapi.state;
12661 	struct drm_connector *connector;
12662 	struct drm_connector_state *connector_state;
12663 	int bpp, i;
12664 
12665 	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12666 	    IS_CHERRYVIEW(dev_priv)))
12667 		bpp = 10*3;
12668 	else if (INTEL_GEN(dev_priv) >= 5)
12669 		bpp = 12*3;
12670 	else
12671 		bpp = 8*3;
12672 
12673 	pipe_config->pipe_bpp = bpp;
12674 
12675 	/* Clamp display bpp to connector max bpp */
12676 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12677 		int ret;
12678 
12679 		if (connector_state->crtc != &crtc->base)
12680 			continue;
12681 
12682 		ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12683 		if (ret)
12684 			return ret;
12685 	}
12686 
12687 	return 0;
12688 }
12689 
12690 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12691 {
12692 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12693 		      "type: 0x%x flags: 0x%x\n",
12694 		      mode->crtc_clock,
12695 		      mode->crtc_hdisplay, mode->crtc_hsync_start,
12696 		      mode->crtc_hsync_end, mode->crtc_htotal,
12697 		      mode->crtc_vdisplay, mode->crtc_vsync_start,
12698 		      mode->crtc_vsync_end, mode->crtc_vtotal,
12699 		      mode->type, mode->flags);
12700 }
12701 
12702 static inline void
12703 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12704 		      const char *id, unsigned int lane_count,
12705 		      const struct intel_link_m_n *m_n)
12706 {
12707 	DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12708 		      id, lane_count,
12709 		      m_n->gmch_m, m_n->gmch_n,
12710 		      m_n->link_m, m_n->link_n, m_n->tu);
12711 }
12712 
12713 static void
12714 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12715 		     const union hdmi_infoframe *frame)
12716 {
12717 	if (!drm_debug_enabled(DRM_UT_KMS))
12718 		return;
12719 
12720 	hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12721 }
12722 
12723 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12724 
12725 static const char * const output_type_str[] = {
12726 	OUTPUT_TYPE(UNUSED),
12727 	OUTPUT_TYPE(ANALOG),
12728 	OUTPUT_TYPE(DVO),
12729 	OUTPUT_TYPE(SDVO),
12730 	OUTPUT_TYPE(LVDS),
12731 	OUTPUT_TYPE(TVOUT),
12732 	OUTPUT_TYPE(HDMI),
12733 	OUTPUT_TYPE(DP),
12734 	OUTPUT_TYPE(EDP),
12735 	OUTPUT_TYPE(DSI),
12736 	OUTPUT_TYPE(DDI),
12737 	OUTPUT_TYPE(DP_MST),
12738 };
12739 
12740 #undef OUTPUT_TYPE
12741 
12742 static void snprintf_output_types(char *buf, size_t len,
12743 				  unsigned int output_types)
12744 {
12745 	char *str = buf;
12746 	int i;
12747 
12748 	str[0] = '\0';
12749 
12750 	for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
12751 		int r;
12752 
12753 		if ((output_types & BIT(i)) == 0)
12754 			continue;
12755 
12756 		r = snprintf(str, len, "%s%s",
12757 			     str != buf ? "," : "", output_type_str[i]);
12758 		if (r >= len)
12759 			break;
12760 		str += r;
12761 		len -= r;
12762 
12763 		output_types &= ~BIT(i);
12764 	}
12765 
12766 	WARN_ON_ONCE(output_types != 0);
12767 }
12768 
12769 static const char * const output_format_str[] = {
12770 	[INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
12771 	[INTEL_OUTPUT_FORMAT_RGB] = "RGB",
12772 	[INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
12773 	[INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
12774 };
12775 
12776 static const char *output_formats(enum intel_output_format format)
12777 {
12778 	if (format >= ARRAY_SIZE(output_format_str))
12779 		format = INTEL_OUTPUT_FORMAT_INVALID;
12780 	return output_format_str[format];
12781 }
12782 
12783 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
12784 {
12785 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12786 	const struct drm_framebuffer *fb = plane_state->hw.fb;
12787 	struct drm_format_name_buf format_name;
12788 
12789 	if (!fb) {
12790 		DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
12791 			      plane->base.base.id, plane->base.name,
12792 			      yesno(plane_state->uapi.visible));
12793 		return;
12794 	}
12795 
12796 	DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
12797 		      plane->base.base.id, plane->base.name,
12798 		      fb->base.id, fb->width, fb->height,
12799 		      drm_get_format_name(fb->format->format, &format_name),
12800 		      yesno(plane_state->uapi.visible));
12801 	DRM_DEBUG_KMS("\trotation: 0x%x, scaler: %d\n",
12802 		      plane_state->hw.rotation, plane_state->scaler_id);
12803 	if (plane_state->uapi.visible)
12804 		DRM_DEBUG_KMS("\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
12805 			      DRM_RECT_FP_ARG(&plane_state->uapi.src),
12806 			      DRM_RECT_ARG(&plane_state->uapi.dst));
12807 }
12808 
12809 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
12810 				   struct intel_atomic_state *state,
12811 				   const char *context)
12812 {
12813 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
12814 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12815 	const struct intel_plane_state *plane_state;
12816 	struct intel_plane *plane;
12817 	char buf[64];
12818 	int i;
12819 
12820 	DRM_DEBUG_KMS("[CRTC:%d:%s] enable: %s %s\n",
12821 		      crtc->base.base.id, crtc->base.name,
12822 		      yesno(pipe_config->hw.enable), context);
12823 
12824 	if (!pipe_config->hw.enable)
12825 		goto dump_planes;
12826 
12827 	snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
12828 	DRM_DEBUG_KMS("active: %s, output_types: %s (0x%x), output format: %s\n",
12829 		      yesno(pipe_config->hw.active),
12830 		      buf, pipe_config->output_types,
12831 		      output_formats(pipe_config->output_format));
12832 
12833 	DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12834 		      transcoder_name(pipe_config->cpu_transcoder),
12835 		      pipe_config->pipe_bpp, pipe_config->dither);
12836 
12837 	if (pipe_config->has_pch_encoder)
12838 		intel_dump_m_n_config(pipe_config, "fdi",
12839 				      pipe_config->fdi_lanes,
12840 				      &pipe_config->fdi_m_n);
12841 
12842 	if (intel_crtc_has_dp_encoder(pipe_config)) {
12843 		intel_dump_m_n_config(pipe_config, "dp m_n",
12844 				pipe_config->lane_count, &pipe_config->dp_m_n);
12845 		if (pipe_config->has_drrs)
12846 			intel_dump_m_n_config(pipe_config, "dp m2_n2",
12847 					      pipe_config->lane_count,
12848 					      &pipe_config->dp_m2_n2);
12849 	}
12850 
12851 	DRM_DEBUG_KMS("audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
12852 		      pipe_config->has_audio, pipe_config->has_infoframe,
12853 		      pipe_config->infoframes.enable);
12854 
12855 	if (pipe_config->infoframes.enable &
12856 	    intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
12857 		DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp);
12858 	if (pipe_config->infoframes.enable &
12859 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
12860 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
12861 	if (pipe_config->infoframes.enable &
12862 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
12863 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
12864 	if (pipe_config->infoframes.enable &
12865 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
12866 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
12867 
12868 	DRM_DEBUG_KMS("requested mode:\n");
12869 	drm_mode_debug_printmodeline(&pipe_config->hw.mode);
12870 	DRM_DEBUG_KMS("adjusted mode:\n");
12871 	drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode);
12872 	intel_dump_crtc_timings(&pipe_config->hw.adjusted_mode);
12873 	DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
12874 		      pipe_config->port_clock,
12875 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h,
12876 		      pipe_config->pixel_rate);
12877 
12878 	if (INTEL_GEN(dev_priv) >= 9)
12879 		DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12880 			      crtc->num_scalers,
12881 			      pipe_config->scaler_state.scaler_users,
12882 		              pipe_config->scaler_state.scaler_id);
12883 
12884 	if (HAS_GMCH(dev_priv))
12885 		DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12886 			      pipe_config->gmch_pfit.control,
12887 			      pipe_config->gmch_pfit.pgm_ratios,
12888 			      pipe_config->gmch_pfit.lvds_border_bits);
12889 	else
12890 		DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n",
12891 			      pipe_config->pch_pfit.pos,
12892 			      pipe_config->pch_pfit.size,
12893 			      enableddisabled(pipe_config->pch_pfit.enabled),
12894 			      yesno(pipe_config->pch_pfit.force_thru));
12895 
12896 	DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12897 		      pipe_config->ips_enabled, pipe_config->double_wide);
12898 
12899 	intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
12900 
12901 	if (IS_CHERRYVIEW(dev_priv))
12902 		DRM_DEBUG_KMS("cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
12903 			      pipe_config->cgm_mode, pipe_config->gamma_mode,
12904 			      pipe_config->gamma_enable, pipe_config->csc_enable);
12905 	else
12906 		DRM_DEBUG_KMS("csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
12907 			      pipe_config->csc_mode, pipe_config->gamma_mode,
12908 			      pipe_config->gamma_enable, pipe_config->csc_enable);
12909 
12910 	DRM_DEBUG_KMS("MST master transcoder: %s\n",
12911 		      transcoder_name(pipe_config->mst_master_transcoder));
12912 
12913 dump_planes:
12914 	if (!state)
12915 		return;
12916 
12917 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12918 		if (plane->pipe == crtc->pipe)
12919 			intel_dump_plane_state(plane_state);
12920 	}
12921 }
12922 
12923 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
12924 {
12925 	struct drm_device *dev = state->base.dev;
12926 	struct drm_connector *connector;
12927 	struct drm_connector_list_iter conn_iter;
12928 	unsigned int used_ports = 0;
12929 	unsigned int used_mst_ports = 0;
12930 	bool ret = true;
12931 
12932 	/*
12933 	 * We're going to peek into connector->state,
12934 	 * hence connection_mutex must be held.
12935 	 */
12936 	drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
12937 
12938 	/*
12939 	 * Walk the connector list instead of the encoder
12940 	 * list to detect the problem on ddi platforms
12941 	 * where there's just one encoder per digital port.
12942 	 */
12943 	drm_connector_list_iter_begin(dev, &conn_iter);
12944 	drm_for_each_connector_iter(connector, &conn_iter) {
12945 		struct drm_connector_state *connector_state;
12946 		struct intel_encoder *encoder;
12947 
12948 		connector_state =
12949 			drm_atomic_get_new_connector_state(&state->base,
12950 							   connector);
12951 		if (!connector_state)
12952 			connector_state = connector->state;
12953 
12954 		if (!connector_state->best_encoder)
12955 			continue;
12956 
12957 		encoder = to_intel_encoder(connector_state->best_encoder);
12958 
12959 		WARN_ON(!connector_state->crtc);
12960 
12961 		switch (encoder->type) {
12962 			unsigned int port_mask;
12963 		case INTEL_OUTPUT_DDI:
12964 			if (WARN_ON(!HAS_DDI(to_i915(dev))))
12965 				break;
12966 			/* else, fall through */
12967 		case INTEL_OUTPUT_DP:
12968 		case INTEL_OUTPUT_HDMI:
12969 		case INTEL_OUTPUT_EDP:
12970 			port_mask = 1 << encoder->port;
12971 
12972 			/* the same port mustn't appear more than once */
12973 			if (used_ports & port_mask)
12974 				ret = false;
12975 
12976 			used_ports |= port_mask;
12977 			break;
12978 		case INTEL_OUTPUT_DP_MST:
12979 			used_mst_ports |=
12980 				1 << encoder->port;
12981 			break;
12982 		default:
12983 			break;
12984 		}
12985 	}
12986 	drm_connector_list_iter_end(&conn_iter);
12987 
12988 	/* can't mix MST and SST/HDMI on the same port */
12989 	if (used_ports & used_mst_ports)
12990 		return false;
12991 
12992 	return ret;
12993 }
12994 
12995 static void
12996 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state)
12997 {
12998 	intel_crtc_copy_color_blobs(crtc_state);
12999 }
13000 
13001 static void
13002 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state)
13003 {
13004 	crtc_state->hw.enable = crtc_state->uapi.enable;
13005 	crtc_state->hw.active = crtc_state->uapi.active;
13006 	crtc_state->hw.mode = crtc_state->uapi.mode;
13007 	crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode;
13008 	intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state);
13009 }
13010 
13011 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state)
13012 {
13013 	crtc_state->uapi.enable = crtc_state->hw.enable;
13014 	crtc_state->uapi.active = crtc_state->hw.active;
13015 	WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0);
13016 
13017 	crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode;
13018 
13019 	/* copy color blobs to uapi */
13020 	drm_property_replace_blob(&crtc_state->uapi.degamma_lut,
13021 				  crtc_state->hw.degamma_lut);
13022 	drm_property_replace_blob(&crtc_state->uapi.gamma_lut,
13023 				  crtc_state->hw.gamma_lut);
13024 	drm_property_replace_blob(&crtc_state->uapi.ctm,
13025 				  crtc_state->hw.ctm);
13026 }
13027 
13028 static int
13029 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state)
13030 {
13031 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13032 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13033 	struct intel_crtc_state *saved_state;
13034 
13035 	saved_state = intel_crtc_state_alloc(crtc);
13036 	if (!saved_state)
13037 		return -ENOMEM;
13038 
13039 	/* free the old crtc_state->hw members */
13040 	intel_crtc_free_hw_state(crtc_state);
13041 
13042 	/* FIXME: before the switch to atomic started, a new pipe_config was
13043 	 * kzalloc'd. Code that depends on any field being zero should be
13044 	 * fixed, so that the crtc_state can be safely duplicated. For now,
13045 	 * only fields that are know to not cause problems are preserved. */
13046 
13047 	saved_state->uapi = crtc_state->uapi;
13048 	saved_state->scaler_state = crtc_state->scaler_state;
13049 	saved_state->shared_dpll = crtc_state->shared_dpll;
13050 	saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
13051 	memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
13052 	       sizeof(saved_state->icl_port_dplls));
13053 	saved_state->crc_enabled = crtc_state->crc_enabled;
13054 	if (IS_G4X(dev_priv) ||
13055 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13056 		saved_state->wm = crtc_state->wm;
13057 	/*
13058 	 * Save the slave bitmask which gets filled for master crtc state during
13059 	 * slave atomic check call. For all other CRTCs reset the port sync variables
13060 	 * crtc_state->master_transcoder needs to be set to INVALID
13061 	 */
13062 	reset_port_sync_mode_state(saved_state);
13063 	if (intel_atomic_is_master_connector(crtc_state))
13064 		saved_state->sync_mode_slaves_mask =
13065 			crtc_state->sync_mode_slaves_mask;
13066 
13067 	memcpy(crtc_state, saved_state, sizeof(*crtc_state));
13068 	kfree(saved_state);
13069 
13070 	intel_crtc_copy_uapi_to_hw_state(crtc_state);
13071 
13072 	return 0;
13073 }
13074 
13075 static int
13076 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
13077 {
13078 	struct drm_crtc *crtc = pipe_config->uapi.crtc;
13079 	struct drm_atomic_state *state = pipe_config->uapi.state;
13080 	struct intel_encoder *encoder;
13081 	struct drm_connector *connector;
13082 	struct drm_connector_state *connector_state;
13083 	int base_bpp, ret;
13084 	int i, tile_group_id = -1, num_tiled_conns = 0;
13085 	bool retry = true;
13086 
13087 	pipe_config->cpu_transcoder =
13088 		(enum transcoder) to_intel_crtc(crtc)->pipe;
13089 
13090 	/*
13091 	 * Sanitize sync polarity flags based on requested ones. If neither
13092 	 * positive or negative polarity is requested, treat this as meaning
13093 	 * negative polarity.
13094 	 */
13095 	if (!(pipe_config->hw.adjusted_mode.flags &
13096 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13097 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13098 
13099 	if (!(pipe_config->hw.adjusted_mode.flags &
13100 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13101 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13102 
13103 	ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13104 					pipe_config);
13105 	if (ret)
13106 		return ret;
13107 
13108 	base_bpp = pipe_config->pipe_bpp;
13109 
13110 	/*
13111 	 * Determine the real pipe dimensions. Note that stereo modes can
13112 	 * increase the actual pipe size due to the frame doubling and
13113 	 * insertion of additional space for blanks between the frame. This
13114 	 * is stored in the crtc timings. We use the requested mode to do this
13115 	 * computation to clearly distinguish it from the adjusted mode, which
13116 	 * can be changed by the connectors in the below retry loop.
13117 	 */
13118 	drm_mode_get_hv_timing(&pipe_config->hw.mode,
13119 			       &pipe_config->pipe_src_w,
13120 			       &pipe_config->pipe_src_h);
13121 
13122 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13123 		if (connector_state->crtc != crtc)
13124 			continue;
13125 
13126 		encoder = to_intel_encoder(connector_state->best_encoder);
13127 
13128 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13129 			DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13130 			return -EINVAL;
13131 		}
13132 
13133 		/*
13134 		 * Determine output_types before calling the .compute_config()
13135 		 * hooks so that the hooks can use this information safely.
13136 		 */
13137 		if (encoder->compute_output_type)
13138 			pipe_config->output_types |=
13139 				BIT(encoder->compute_output_type(encoder, pipe_config,
13140 								 connector_state));
13141 		else
13142 			pipe_config->output_types |= BIT(encoder->type);
13143 	}
13144 
13145 encoder_retry:
13146 	/* Ensure the port clock defaults are reset when retrying. */
13147 	pipe_config->port_clock = 0;
13148 	pipe_config->pixel_multiplier = 1;
13149 
13150 	/* Fill in default crtc timings, allow encoders to overwrite them. */
13151 	drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode,
13152 			      CRTC_STEREO_DOUBLE);
13153 
13154 	/* Get tile_group_id of tiled connector */
13155 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13156 		if (connector_state->crtc == crtc &&
13157 		    connector->has_tile) {
13158 			tile_group_id = connector->tile_group->id;
13159 			break;
13160 		}
13161 	}
13162 
13163 	/* Get total number of tiled connectors in state that belong to
13164 	 * this tile group.
13165 	 */
13166 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13167 		if (connector->has_tile &&
13168 		    connector->tile_group->id == tile_group_id)
13169 			num_tiled_conns++;
13170 	}
13171 
13172 	/* Pass our mode to the connectors and the CRTC to give them a chance to
13173 	 * adjust it according to limitations or connector properties, and also
13174 	 * a chance to reject the mode entirely.
13175 	 */
13176 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13177 		if (connector_state->crtc != crtc)
13178 			continue;
13179 
13180 		ret = icl_compute_port_sync_crtc_state(connector, pipe_config,
13181 						       num_tiled_conns);
13182 		if (ret) {
13183 			DRM_DEBUG_KMS("Cannot assign Sync Mode CRTCs: %d\n",
13184 				      ret);
13185 			return ret;
13186 		}
13187 
13188 		encoder = to_intel_encoder(connector_state->best_encoder);
13189 		ret = encoder->compute_config(encoder, pipe_config,
13190 					      connector_state);
13191 		if (ret < 0) {
13192 			if (ret != -EDEADLK)
13193 				DRM_DEBUG_KMS("Encoder config failure: %d\n",
13194 					      ret);
13195 			return ret;
13196 		}
13197 	}
13198 
13199 	/* Set default port clock if not overwritten by the encoder. Needs to be
13200 	 * done afterwards in case the encoder adjusts the mode. */
13201 	if (!pipe_config->port_clock)
13202 		pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock
13203 			* pipe_config->pixel_multiplier;
13204 
13205 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13206 	if (ret == -EDEADLK)
13207 		return ret;
13208 	if (ret < 0) {
13209 		DRM_DEBUG_KMS("CRTC fixup failed\n");
13210 		return ret;
13211 	}
13212 
13213 	if (ret == RETRY) {
13214 		if (WARN(!retry, "loop in pipe configuration computation\n"))
13215 			return -EINVAL;
13216 
13217 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13218 		retry = false;
13219 		goto encoder_retry;
13220 	}
13221 
13222 	/* Dithering seems to not pass-through bits correctly when it should, so
13223 	 * only enable it on 6bpc panels and when its not a compliance
13224 	 * test requesting 6bpc video pattern.
13225 	 */
13226 	pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
13227 		!pipe_config->dither_force_disable;
13228 	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13229 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13230 
13231 	/*
13232 	 * Make drm_calc_timestamping_constants in
13233 	 * drm_atomic_helper_update_legacy_modeset_state() happy
13234 	 */
13235 	pipe_config->uapi.adjusted_mode = pipe_config->hw.adjusted_mode;
13236 
13237 	return 0;
13238 }
13239 
13240 bool intel_fuzzy_clock_check(int clock1, int clock2)
13241 {
13242 	int diff;
13243 
13244 	if (clock1 == clock2)
13245 		return true;
13246 
13247 	if (!clock1 || !clock2)
13248 		return false;
13249 
13250 	diff = abs(clock1 - clock2);
13251 
13252 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13253 		return true;
13254 
13255 	return false;
13256 }
13257 
13258 static bool
13259 intel_compare_m_n(unsigned int m, unsigned int n,
13260 		  unsigned int m2, unsigned int n2,
13261 		  bool exact)
13262 {
13263 	if (m == m2 && n == n2)
13264 		return true;
13265 
13266 	if (exact || !m || !n || !m2 || !n2)
13267 		return false;
13268 
13269 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13270 
13271 	if (n > n2) {
13272 		while (n > n2) {
13273 			m2 <<= 1;
13274 			n2 <<= 1;
13275 		}
13276 	} else if (n < n2) {
13277 		while (n < n2) {
13278 			m <<= 1;
13279 			n <<= 1;
13280 		}
13281 	}
13282 
13283 	if (n != n2)
13284 		return false;
13285 
13286 	return intel_fuzzy_clock_check(m, m2);
13287 }
13288 
13289 static bool
13290 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13291 		       const struct intel_link_m_n *m2_n2,
13292 		       bool exact)
13293 {
13294 	return m_n->tu == m2_n2->tu &&
13295 		intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13296 				  m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
13297 		intel_compare_m_n(m_n->link_m, m_n->link_n,
13298 				  m2_n2->link_m, m2_n2->link_n, exact);
13299 }
13300 
13301 static bool
13302 intel_compare_infoframe(const union hdmi_infoframe *a,
13303 			const union hdmi_infoframe *b)
13304 {
13305 	return memcmp(a, b, sizeof(*a)) == 0;
13306 }
13307 
13308 static void
13309 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
13310 			       bool fastset, const char *name,
13311 			       const union hdmi_infoframe *a,
13312 			       const union hdmi_infoframe *b)
13313 {
13314 	if (fastset) {
13315 		if (!drm_debug_enabled(DRM_UT_KMS))
13316 			return;
13317 
13318 		DRM_DEBUG_KMS("fastset mismatch in %s infoframe\n", name);
13319 		DRM_DEBUG_KMS("expected:\n");
13320 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
13321 		DRM_DEBUG_KMS("found:\n");
13322 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
13323 	} else {
13324 		DRM_ERROR("mismatch in %s infoframe\n", name);
13325 		DRM_ERROR("expected:\n");
13326 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
13327 		DRM_ERROR("found:\n");
13328 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
13329 	}
13330 }
13331 
13332 static void __printf(4, 5)
13333 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
13334 		     const char *name, const char *format, ...)
13335 {
13336 	struct va_format vaf;
13337 	va_list args;
13338 
13339 	va_start(args, format);
13340 	vaf.fmt = format;
13341 	vaf.va = &args;
13342 
13343 	if (fastset)
13344 		DRM_DEBUG_KMS("[CRTC:%d:%s] fastset mismatch in %s %pV\n",
13345 			      crtc->base.base.id, crtc->base.name, name, &vaf);
13346 	else
13347 		DRM_ERROR("[CRTC:%d:%s] mismatch in %s %pV\n",
13348 			  crtc->base.base.id, crtc->base.name, name, &vaf);
13349 
13350 	va_end(args);
13351 }
13352 
13353 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
13354 {
13355 	if (i915_modparams.fastboot != -1)
13356 		return i915_modparams.fastboot;
13357 
13358 	/* Enable fastboot by default on Skylake and newer */
13359 	if (INTEL_GEN(dev_priv) >= 9)
13360 		return true;
13361 
13362 	/* Enable fastboot by default on VLV and CHV */
13363 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13364 		return true;
13365 
13366 	/* Disabled by default on all others */
13367 	return false;
13368 }
13369 
13370 static bool
13371 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
13372 			  const struct intel_crtc_state *pipe_config,
13373 			  bool fastset)
13374 {
13375 	struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
13376 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13377 	bool ret = true;
13378 	u32 bp_gamma = 0;
13379 	bool fixup_inherited = fastset &&
13380 		(current_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) &&
13381 		!(pipe_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED);
13382 
13383 	if (fixup_inherited && !fastboot_enabled(dev_priv)) {
13384 		DRM_DEBUG_KMS("initial modeset and fastboot not set\n");
13385 		ret = false;
13386 	}
13387 
13388 #define PIPE_CONF_CHECK_X(name) do { \
13389 	if (current_config->name != pipe_config->name) { \
13390 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13391 				     "(expected 0x%08x, found 0x%08x)", \
13392 				     current_config->name, \
13393 				     pipe_config->name); \
13394 		ret = false; \
13395 	} \
13396 } while (0)
13397 
13398 #define PIPE_CONF_CHECK_I(name) do { \
13399 	if (current_config->name != pipe_config->name) { \
13400 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13401 				     "(expected %i, found %i)", \
13402 				     current_config->name, \
13403 				     pipe_config->name); \
13404 		ret = false; \
13405 	} \
13406 } while (0)
13407 
13408 #define PIPE_CONF_CHECK_BOOL(name) do { \
13409 	if (current_config->name != pipe_config->name) { \
13410 		pipe_config_mismatch(fastset, crtc,  __stringify(name), \
13411 				     "(expected %s, found %s)", \
13412 				     yesno(current_config->name), \
13413 				     yesno(pipe_config->name)); \
13414 		ret = false; \
13415 	} \
13416 } while (0)
13417 
13418 /*
13419  * Checks state where we only read out the enabling, but not the entire
13420  * state itself (like full infoframes or ELD for audio). These states
13421  * require a full modeset on bootup to fix up.
13422  */
13423 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
13424 	if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
13425 		PIPE_CONF_CHECK_BOOL(name); \
13426 	} else { \
13427 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13428 				     "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
13429 				     yesno(current_config->name), \
13430 				     yesno(pipe_config->name)); \
13431 		ret = false; \
13432 	} \
13433 } while (0)
13434 
13435 #define PIPE_CONF_CHECK_P(name) do { \
13436 	if (current_config->name != pipe_config->name) { \
13437 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13438 				     "(expected %p, found %p)", \
13439 				     current_config->name, \
13440 				     pipe_config->name); \
13441 		ret = false; \
13442 	} \
13443 } while (0)
13444 
13445 #define PIPE_CONF_CHECK_M_N(name) do { \
13446 	if (!intel_compare_link_m_n(&current_config->name, \
13447 				    &pipe_config->name,\
13448 				    !fastset)) { \
13449 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13450 				     "(expected tu %i gmch %i/%i link %i/%i, " \
13451 				     "found tu %i, gmch %i/%i link %i/%i)", \
13452 				     current_config->name.tu, \
13453 				     current_config->name.gmch_m, \
13454 				     current_config->name.gmch_n, \
13455 				     current_config->name.link_m, \
13456 				     current_config->name.link_n, \
13457 				     pipe_config->name.tu, \
13458 				     pipe_config->name.gmch_m, \
13459 				     pipe_config->name.gmch_n, \
13460 				     pipe_config->name.link_m, \
13461 				     pipe_config->name.link_n); \
13462 		ret = false; \
13463 	} \
13464 } while (0)
13465 
13466 /* This is required for BDW+ where there is only one set of registers for
13467  * switching between high and low RR.
13468  * This macro can be used whenever a comparison has to be made between one
13469  * hw state and multiple sw state variables.
13470  */
13471 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
13472 	if (!intel_compare_link_m_n(&current_config->name, \
13473 				    &pipe_config->name, !fastset) && \
13474 	    !intel_compare_link_m_n(&current_config->alt_name, \
13475 				    &pipe_config->name, !fastset)) { \
13476 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13477 				     "(expected tu %i gmch %i/%i link %i/%i, " \
13478 				     "or tu %i gmch %i/%i link %i/%i, " \
13479 				     "found tu %i, gmch %i/%i link %i/%i)", \
13480 				     current_config->name.tu, \
13481 				     current_config->name.gmch_m, \
13482 				     current_config->name.gmch_n, \
13483 				     current_config->name.link_m, \
13484 				     current_config->name.link_n, \
13485 				     current_config->alt_name.tu, \
13486 				     current_config->alt_name.gmch_m, \
13487 				     current_config->alt_name.gmch_n, \
13488 				     current_config->alt_name.link_m, \
13489 				     current_config->alt_name.link_n, \
13490 				     pipe_config->name.tu, \
13491 				     pipe_config->name.gmch_m, \
13492 				     pipe_config->name.gmch_n, \
13493 				     pipe_config->name.link_m, \
13494 				     pipe_config->name.link_n); \
13495 		ret = false; \
13496 	} \
13497 } while (0)
13498 
13499 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13500 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
13501 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13502 				     "(%x) (expected %i, found %i)", \
13503 				     (mask), \
13504 				     current_config->name & (mask), \
13505 				     pipe_config->name & (mask)); \
13506 		ret = false; \
13507 	} \
13508 } while (0)
13509 
13510 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13511 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13512 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13513 				     "(expected %i, found %i)", \
13514 				     current_config->name, \
13515 				     pipe_config->name); \
13516 		ret = false; \
13517 	} \
13518 } while (0)
13519 
13520 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13521 	if (!intel_compare_infoframe(&current_config->infoframes.name, \
13522 				     &pipe_config->infoframes.name)) { \
13523 		pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13524 					       &current_config->infoframes.name, \
13525 					       &pipe_config->infoframes.name); \
13526 		ret = false; \
13527 	} \
13528 } while (0)
13529 
13530 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13531 	if (current_config->name1 != pipe_config->name1) { \
13532 		pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13533 				"(expected %i, found %i, won't compare lut values)", \
13534 				current_config->name1, \
13535 				pipe_config->name1); \
13536 		ret = false;\
13537 	} else { \
13538 		if (!intel_color_lut_equal(current_config->name2, \
13539 					pipe_config->name2, pipe_config->name1, \
13540 					bit_precision)) { \
13541 			pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13542 					"hw_state doesn't match sw_state"); \
13543 			ret = false; \
13544 		} \
13545 	} \
13546 } while (0)
13547 
13548 #define PIPE_CONF_QUIRK(quirk) \
13549 	((current_config->quirks | pipe_config->quirks) & (quirk))
13550 
13551 	PIPE_CONF_CHECK_I(cpu_transcoder);
13552 
13553 	PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13554 	PIPE_CONF_CHECK_I(fdi_lanes);
13555 	PIPE_CONF_CHECK_M_N(fdi_m_n);
13556 
13557 	PIPE_CONF_CHECK_I(lane_count);
13558 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13559 
13560 	if (INTEL_GEN(dev_priv) < 8) {
13561 		PIPE_CONF_CHECK_M_N(dp_m_n);
13562 
13563 		if (current_config->has_drrs)
13564 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
13565 	} else
13566 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13567 
13568 	PIPE_CONF_CHECK_X(output_types);
13569 
13570 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay);
13571 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal);
13572 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start);
13573 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end);
13574 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start);
13575 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end);
13576 
13577 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay);
13578 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal);
13579 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start);
13580 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end);
13581 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start);
13582 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end);
13583 
13584 	PIPE_CONF_CHECK_I(pixel_multiplier);
13585 	PIPE_CONF_CHECK_I(output_format);
13586 	PIPE_CONF_CHECK_I(dc3co_exitline);
13587 	PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13588 	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13589 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13590 		PIPE_CONF_CHECK_BOOL(limited_color_range);
13591 
13592 	PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13593 	PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13594 	PIPE_CONF_CHECK_BOOL(has_infoframe);
13595 	PIPE_CONF_CHECK_BOOL(fec_enable);
13596 
13597 	PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13598 
13599 	PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13600 			      DRM_MODE_FLAG_INTERLACE);
13601 
13602 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13603 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13604 				      DRM_MODE_FLAG_PHSYNC);
13605 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13606 				      DRM_MODE_FLAG_NHSYNC);
13607 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13608 				      DRM_MODE_FLAG_PVSYNC);
13609 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13610 				      DRM_MODE_FLAG_NVSYNC);
13611 	}
13612 
13613 	PIPE_CONF_CHECK_X(gmch_pfit.control);
13614 	/* pfit ratios are autocomputed by the hw on gen4+ */
13615 	if (INTEL_GEN(dev_priv) < 4)
13616 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13617 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13618 
13619 	/*
13620 	 * Changing the EDP transcoder input mux
13621 	 * (A_ONOFF vs. A_ON) requires a full modeset.
13622 	 */
13623 	PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13624 
13625 	if (!fastset) {
13626 		PIPE_CONF_CHECK_I(pipe_src_w);
13627 		PIPE_CONF_CHECK_I(pipe_src_h);
13628 
13629 		PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13630 		if (current_config->pch_pfit.enabled) {
13631 			PIPE_CONF_CHECK_X(pch_pfit.pos);
13632 			PIPE_CONF_CHECK_X(pch_pfit.size);
13633 		}
13634 
13635 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13636 		PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13637 
13638 		PIPE_CONF_CHECK_X(gamma_mode);
13639 		if (IS_CHERRYVIEW(dev_priv))
13640 			PIPE_CONF_CHECK_X(cgm_mode);
13641 		else
13642 			PIPE_CONF_CHECK_X(csc_mode);
13643 		PIPE_CONF_CHECK_BOOL(gamma_enable);
13644 		PIPE_CONF_CHECK_BOOL(csc_enable);
13645 
13646 		bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13647 		if (bp_gamma)
13648 			PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
13649 
13650 	}
13651 
13652 	PIPE_CONF_CHECK_BOOL(double_wide);
13653 
13654 	PIPE_CONF_CHECK_P(shared_dpll);
13655 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13656 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13657 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13658 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13659 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13660 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13661 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13662 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13663 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13664 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13665 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
13666 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
13667 	PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
13668 	PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
13669 	PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
13670 	PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
13671 	PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
13672 	PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
13673 	PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
13674 	PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
13675 	PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
13676 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
13677 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
13678 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
13679 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
13680 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
13681 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
13682 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
13683 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
13684 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
13685 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
13686 
13687 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13688 	PIPE_CONF_CHECK_X(dsi_pll.div);
13689 
13690 	if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13691 		PIPE_CONF_CHECK_I(pipe_bpp);
13692 
13693 	PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock);
13694 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13695 
13696 	PIPE_CONF_CHECK_I(min_voltage_level);
13697 
13698 	PIPE_CONF_CHECK_X(infoframes.enable);
13699 	PIPE_CONF_CHECK_X(infoframes.gcp);
13700 	PIPE_CONF_CHECK_INFOFRAME(avi);
13701 	PIPE_CONF_CHECK_INFOFRAME(spd);
13702 	PIPE_CONF_CHECK_INFOFRAME(hdmi);
13703 	PIPE_CONF_CHECK_INFOFRAME(drm);
13704 
13705 	PIPE_CONF_CHECK_I(sync_mode_slaves_mask);
13706 	PIPE_CONF_CHECK_I(master_transcoder);
13707 
13708 	PIPE_CONF_CHECK_I(dsc.compression_enable);
13709 	PIPE_CONF_CHECK_I(dsc.dsc_split);
13710 	PIPE_CONF_CHECK_I(dsc.compressed_bpp);
13711 
13712 	PIPE_CONF_CHECK_I(mst_master_transcoder);
13713 
13714 #undef PIPE_CONF_CHECK_X
13715 #undef PIPE_CONF_CHECK_I
13716 #undef PIPE_CONF_CHECK_BOOL
13717 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
13718 #undef PIPE_CONF_CHECK_P
13719 #undef PIPE_CONF_CHECK_FLAGS
13720 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13721 #undef PIPE_CONF_CHECK_COLOR_LUT
13722 #undef PIPE_CONF_QUIRK
13723 
13724 	return ret;
13725 }
13726 
13727 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13728 					   const struct intel_crtc_state *pipe_config)
13729 {
13730 	if (pipe_config->has_pch_encoder) {
13731 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13732 							    &pipe_config->fdi_m_n);
13733 		int dotclock = pipe_config->hw.adjusted_mode.crtc_clock;
13734 
13735 		/*
13736 		 * FDI already provided one idea for the dotclock.
13737 		 * Yell if the encoder disagrees.
13738 		 */
13739 		WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13740 		     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13741 		     fdi_dotclock, dotclock);
13742 	}
13743 }
13744 
13745 static void verify_wm_state(struct intel_crtc *crtc,
13746 			    struct intel_crtc_state *new_crtc_state)
13747 {
13748 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13749 	struct skl_hw_state {
13750 		struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
13751 		struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
13752 		struct skl_ddb_allocation ddb;
13753 		struct skl_pipe_wm wm;
13754 	} *hw;
13755 	struct skl_ddb_allocation *sw_ddb;
13756 	struct skl_pipe_wm *sw_wm;
13757 	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13758 	const enum pipe pipe = crtc->pipe;
13759 	int plane, level, max_level = ilk_wm_max_level(dev_priv);
13760 
13761 	if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active)
13762 		return;
13763 
13764 	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
13765 	if (!hw)
13766 		return;
13767 
13768 	skl_pipe_wm_get_hw_state(crtc, &hw->wm);
13769 	sw_wm = &new_crtc_state->wm.skl.optimal;
13770 
13771 	skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
13772 
13773 	skl_ddb_get_hw_state(dev_priv, &hw->ddb);
13774 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
13775 
13776 	if (INTEL_GEN(dev_priv) >= 11 &&
13777 	    hw->ddb.enabled_slices != sw_ddb->enabled_slices)
13778 		DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n",
13779 			  sw_ddb->enabled_slices,
13780 			  hw->ddb.enabled_slices);
13781 
13782 	/* planes */
13783 	for_each_universal_plane(dev_priv, pipe, plane) {
13784 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13785 
13786 		hw_plane_wm = &hw->wm.planes[plane];
13787 		sw_plane_wm = &sw_wm->planes[plane];
13788 
13789 		/* Watermarks */
13790 		for (level = 0; level <= max_level; level++) {
13791 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13792 						&sw_plane_wm->wm[level]))
13793 				continue;
13794 
13795 			DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13796 				  pipe_name(pipe), plane + 1, level,
13797 				  sw_plane_wm->wm[level].plane_en,
13798 				  sw_plane_wm->wm[level].plane_res_b,
13799 				  sw_plane_wm->wm[level].plane_res_l,
13800 				  hw_plane_wm->wm[level].plane_en,
13801 				  hw_plane_wm->wm[level].plane_res_b,
13802 				  hw_plane_wm->wm[level].plane_res_l);
13803 		}
13804 
13805 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13806 					 &sw_plane_wm->trans_wm)) {
13807 			DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13808 				  pipe_name(pipe), plane + 1,
13809 				  sw_plane_wm->trans_wm.plane_en,
13810 				  sw_plane_wm->trans_wm.plane_res_b,
13811 				  sw_plane_wm->trans_wm.plane_res_l,
13812 				  hw_plane_wm->trans_wm.plane_en,
13813 				  hw_plane_wm->trans_wm.plane_res_b,
13814 				  hw_plane_wm->trans_wm.plane_res_l);
13815 		}
13816 
13817 		/* DDB */
13818 		hw_ddb_entry = &hw->ddb_y[plane];
13819 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
13820 
13821 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13822 			DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13823 				  pipe_name(pipe), plane + 1,
13824 				  sw_ddb_entry->start, sw_ddb_entry->end,
13825 				  hw_ddb_entry->start, hw_ddb_entry->end);
13826 		}
13827 	}
13828 
13829 	/*
13830 	 * cursor
13831 	 * If the cursor plane isn't active, we may not have updated it's ddb
13832 	 * allocation. In that case since the ddb allocation will be updated
13833 	 * once the plane becomes visible, we can skip this check
13834 	 */
13835 	if (1) {
13836 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13837 
13838 		hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
13839 		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13840 
13841 		/* Watermarks */
13842 		for (level = 0; level <= max_level; level++) {
13843 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13844 						&sw_plane_wm->wm[level]))
13845 				continue;
13846 
13847 			DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13848 				  pipe_name(pipe), level,
13849 				  sw_plane_wm->wm[level].plane_en,
13850 				  sw_plane_wm->wm[level].plane_res_b,
13851 				  sw_plane_wm->wm[level].plane_res_l,
13852 				  hw_plane_wm->wm[level].plane_en,
13853 				  hw_plane_wm->wm[level].plane_res_b,
13854 				  hw_plane_wm->wm[level].plane_res_l);
13855 		}
13856 
13857 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13858 					 &sw_plane_wm->trans_wm)) {
13859 			DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13860 				  pipe_name(pipe),
13861 				  sw_plane_wm->trans_wm.plane_en,
13862 				  sw_plane_wm->trans_wm.plane_res_b,
13863 				  sw_plane_wm->trans_wm.plane_res_l,
13864 				  hw_plane_wm->trans_wm.plane_en,
13865 				  hw_plane_wm->trans_wm.plane_res_b,
13866 				  hw_plane_wm->trans_wm.plane_res_l);
13867 		}
13868 
13869 		/* DDB */
13870 		hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
13871 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
13872 
13873 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13874 			DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13875 				  pipe_name(pipe),
13876 				  sw_ddb_entry->start, sw_ddb_entry->end,
13877 				  hw_ddb_entry->start, hw_ddb_entry->end);
13878 		}
13879 	}
13880 
13881 	kfree(hw);
13882 }
13883 
13884 static void
13885 verify_connector_state(struct intel_atomic_state *state,
13886 		       struct intel_crtc *crtc)
13887 {
13888 	struct drm_connector *connector;
13889 	struct drm_connector_state *new_conn_state;
13890 	int i;
13891 
13892 	for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
13893 		struct drm_encoder *encoder = connector->encoder;
13894 		struct intel_crtc_state *crtc_state = NULL;
13895 
13896 		if (new_conn_state->crtc != &crtc->base)
13897 			continue;
13898 
13899 		if (crtc)
13900 			crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
13901 
13902 		intel_connector_verify_state(crtc_state, new_conn_state);
13903 
13904 		I915_STATE_WARN(new_conn_state->best_encoder != encoder,
13905 		     "connector's atomic encoder doesn't match legacy encoder\n");
13906 	}
13907 }
13908 
13909 static void
13910 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
13911 {
13912 	struct intel_encoder *encoder;
13913 	struct drm_connector *connector;
13914 	struct drm_connector_state *old_conn_state, *new_conn_state;
13915 	int i;
13916 
13917 	for_each_intel_encoder(&dev_priv->drm, encoder) {
13918 		bool enabled = false, found = false;
13919 		enum pipe pipe;
13920 
13921 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13922 			      encoder->base.base.id,
13923 			      encoder->base.name);
13924 
13925 		for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
13926 						   new_conn_state, i) {
13927 			if (old_conn_state->best_encoder == &encoder->base)
13928 				found = true;
13929 
13930 			if (new_conn_state->best_encoder != &encoder->base)
13931 				continue;
13932 			found = enabled = true;
13933 
13934 			I915_STATE_WARN(new_conn_state->crtc !=
13935 					encoder->base.crtc,
13936 			     "connector's crtc doesn't match encoder crtc\n");
13937 		}
13938 
13939 		if (!found)
13940 			continue;
13941 
13942 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
13943 		     "encoder's enabled state mismatch "
13944 		     "(expected %i, found %i)\n",
13945 		     !!encoder->base.crtc, enabled);
13946 
13947 		if (!encoder->base.crtc) {
13948 			bool active;
13949 
13950 			active = encoder->get_hw_state(encoder, &pipe);
13951 			I915_STATE_WARN(active,
13952 			     "encoder detached but still enabled on pipe %c.\n",
13953 			     pipe_name(pipe));
13954 		}
13955 	}
13956 }
13957 
13958 static void
13959 verify_crtc_state(struct intel_crtc *crtc,
13960 		  struct intel_crtc_state *old_crtc_state,
13961 		  struct intel_crtc_state *new_crtc_state)
13962 {
13963 	struct drm_device *dev = crtc->base.dev;
13964 	struct drm_i915_private *dev_priv = to_i915(dev);
13965 	struct intel_encoder *encoder;
13966 	struct intel_crtc_state *pipe_config = old_crtc_state;
13967 	struct drm_atomic_state *state = old_crtc_state->uapi.state;
13968 	bool active;
13969 
13970 	__drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi);
13971 	intel_crtc_free_hw_state(old_crtc_state);
13972 	intel_crtc_state_reset(old_crtc_state, crtc);
13973 	old_crtc_state->uapi.state = state;
13974 
13975 	DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.base.id, crtc->base.name);
13976 
13977 	active = dev_priv->display.get_pipe_config(crtc, pipe_config);
13978 
13979 	/* we keep both pipes enabled on 830 */
13980 	if (IS_I830(dev_priv))
13981 		active = new_crtc_state->hw.active;
13982 
13983 	I915_STATE_WARN(new_crtc_state->hw.active != active,
13984 			"crtc active state doesn't match with hw state "
13985 			"(expected %i, found %i)\n",
13986 			new_crtc_state->hw.active, active);
13987 
13988 	I915_STATE_WARN(crtc->active != new_crtc_state->hw.active,
13989 			"transitional active state does not match atomic hw state "
13990 			"(expected %i, found %i)\n",
13991 			new_crtc_state->hw.active, crtc->active);
13992 
13993 	for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13994 		enum pipe pipe;
13995 
13996 		active = encoder->get_hw_state(encoder, &pipe);
13997 		I915_STATE_WARN(active != new_crtc_state->hw.active,
13998 				"[ENCODER:%i] active %i with crtc active %i\n",
13999 				encoder->base.base.id, active,
14000 				new_crtc_state->hw.active);
14001 
14002 		I915_STATE_WARN(active && crtc->pipe != pipe,
14003 				"Encoder connected to wrong pipe %c\n",
14004 				pipe_name(pipe));
14005 
14006 		if (active)
14007 			encoder->get_config(encoder, pipe_config);
14008 	}
14009 
14010 	intel_crtc_compute_pixel_rate(pipe_config);
14011 
14012 	if (!new_crtc_state->hw.active)
14013 		return;
14014 
14015 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
14016 
14017 	if (!intel_pipe_config_compare(new_crtc_state,
14018 				       pipe_config, false)) {
14019 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
14020 		intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
14021 		intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
14022 	}
14023 }
14024 
14025 static void
14026 intel_verify_planes(struct intel_atomic_state *state)
14027 {
14028 	struct intel_plane *plane;
14029 	const struct intel_plane_state *plane_state;
14030 	int i;
14031 
14032 	for_each_new_intel_plane_in_state(state, plane,
14033 					  plane_state, i)
14034 		assert_plane(plane, plane_state->planar_slave ||
14035 			     plane_state->uapi.visible);
14036 }
14037 
14038 static void
14039 verify_single_dpll_state(struct drm_i915_private *dev_priv,
14040 			 struct intel_shared_dpll *pll,
14041 			 struct intel_crtc *crtc,
14042 			 struct intel_crtc_state *new_crtc_state)
14043 {
14044 	struct intel_dpll_hw_state dpll_hw_state;
14045 	unsigned int crtc_mask;
14046 	bool active;
14047 
14048 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
14049 
14050 	DRM_DEBUG_KMS("%s\n", pll->info->name);
14051 
14052 	active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
14053 
14054 	if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
14055 		I915_STATE_WARN(!pll->on && pll->active_mask,
14056 		     "pll in active use but not on in sw tracking\n");
14057 		I915_STATE_WARN(pll->on && !pll->active_mask,
14058 		     "pll is on but not used by any active crtc\n");
14059 		I915_STATE_WARN(pll->on != active,
14060 		     "pll on state mismatch (expected %i, found %i)\n",
14061 		     pll->on, active);
14062 	}
14063 
14064 	if (!crtc) {
14065 		I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
14066 				"more active pll users than references: %x vs %x\n",
14067 				pll->active_mask, pll->state.crtc_mask);
14068 
14069 		return;
14070 	}
14071 
14072 	crtc_mask = drm_crtc_mask(&crtc->base);
14073 
14074 	if (new_crtc_state->hw.active)
14075 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
14076 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
14077 				pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
14078 	else
14079 		I915_STATE_WARN(pll->active_mask & crtc_mask,
14080 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
14081 				pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
14082 
14083 	I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
14084 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
14085 			crtc_mask, pll->state.crtc_mask);
14086 
14087 	I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
14088 					  &dpll_hw_state,
14089 					  sizeof(dpll_hw_state)),
14090 			"pll hw state mismatch\n");
14091 }
14092 
14093 static void
14094 verify_shared_dpll_state(struct intel_crtc *crtc,
14095 			 struct intel_crtc_state *old_crtc_state,
14096 			 struct intel_crtc_state *new_crtc_state)
14097 {
14098 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14099 
14100 	if (new_crtc_state->shared_dpll)
14101 		verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
14102 
14103 	if (old_crtc_state->shared_dpll &&
14104 	    old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
14105 		unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
14106 		struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
14107 
14108 		I915_STATE_WARN(pll->active_mask & crtc_mask,
14109 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
14110 				pipe_name(drm_crtc_index(&crtc->base)));
14111 		I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
14112 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
14113 				pipe_name(drm_crtc_index(&crtc->base)));
14114 	}
14115 }
14116 
14117 static void
14118 intel_modeset_verify_crtc(struct intel_crtc *crtc,
14119 			  struct intel_atomic_state *state,
14120 			  struct intel_crtc_state *old_crtc_state,
14121 			  struct intel_crtc_state *new_crtc_state)
14122 {
14123 	if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
14124 		return;
14125 
14126 	verify_wm_state(crtc, new_crtc_state);
14127 	verify_connector_state(state, crtc);
14128 	verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
14129 	verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
14130 }
14131 
14132 static void
14133 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
14134 {
14135 	int i;
14136 
14137 	for (i = 0; i < dev_priv->num_shared_dpll; i++)
14138 		verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
14139 }
14140 
14141 static void
14142 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
14143 			      struct intel_atomic_state *state)
14144 {
14145 	verify_encoder_state(dev_priv, state);
14146 	verify_connector_state(state, NULL);
14147 	verify_disabled_dpll_state(dev_priv);
14148 }
14149 
14150 static void
14151 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
14152 {
14153 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
14154 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14155 	const struct drm_display_mode *adjusted_mode =
14156 		&crtc_state->hw.adjusted_mode;
14157 
14158 	drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
14159 
14160 	/*
14161 	 * The scanline counter increments at the leading edge of hsync.
14162 	 *
14163 	 * On most platforms it starts counting from vtotal-1 on the
14164 	 * first active line. That means the scanline counter value is
14165 	 * always one less than what we would expect. Ie. just after
14166 	 * start of vblank, which also occurs at start of hsync (on the
14167 	 * last active line), the scanline counter will read vblank_start-1.
14168 	 *
14169 	 * On gen2 the scanline counter starts counting from 1 instead
14170 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
14171 	 * to keep the value positive), instead of adding one.
14172 	 *
14173 	 * On HSW+ the behaviour of the scanline counter depends on the output
14174 	 * type. For DP ports it behaves like most other platforms, but on HDMI
14175 	 * there's an extra 1 line difference. So we need to add two instead of
14176 	 * one to the value.
14177 	 *
14178 	 * On VLV/CHV DSI the scanline counter would appear to increment
14179 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
14180 	 * that means we can't tell whether we're in vblank or not while
14181 	 * we're on that particular line. We must still set scanline_offset
14182 	 * to 1 so that the vblank timestamps come out correct when we query
14183 	 * the scanline counter from within the vblank interrupt handler.
14184 	 * However if queried just before the start of vblank we'll get an
14185 	 * answer that's slightly in the future.
14186 	 */
14187 	if (IS_GEN(dev_priv, 2)) {
14188 		int vtotal;
14189 
14190 		vtotal = adjusted_mode->crtc_vtotal;
14191 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
14192 			vtotal /= 2;
14193 
14194 		crtc->scanline_offset = vtotal - 1;
14195 	} else if (HAS_DDI(dev_priv) &&
14196 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
14197 		crtc->scanline_offset = 2;
14198 	} else {
14199 		crtc->scanline_offset = 1;
14200 	}
14201 }
14202 
14203 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
14204 {
14205 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14206 	struct intel_crtc_state *new_crtc_state;
14207 	struct intel_crtc *crtc;
14208 	int i;
14209 
14210 	if (!dev_priv->display.crtc_compute_clock)
14211 		return;
14212 
14213 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14214 		if (!needs_modeset(new_crtc_state))
14215 			continue;
14216 
14217 		intel_release_shared_dplls(state, crtc);
14218 	}
14219 }
14220 
14221 /*
14222  * This implements the workaround described in the "notes" section of the mode
14223  * set sequence documentation. When going from no pipes or single pipe to
14224  * multiple pipes, and planes are enabled after the pipe, we need to wait at
14225  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
14226  */
14227 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
14228 {
14229 	struct intel_crtc_state *crtc_state;
14230 	struct intel_crtc *crtc;
14231 	struct intel_crtc_state *first_crtc_state = NULL;
14232 	struct intel_crtc_state *other_crtc_state = NULL;
14233 	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
14234 	int i;
14235 
14236 	/* look at all crtc's that are going to be enabled in during modeset */
14237 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14238 		if (!crtc_state->hw.active ||
14239 		    !needs_modeset(crtc_state))
14240 			continue;
14241 
14242 		if (first_crtc_state) {
14243 			other_crtc_state = crtc_state;
14244 			break;
14245 		} else {
14246 			first_crtc_state = crtc_state;
14247 			first_pipe = crtc->pipe;
14248 		}
14249 	}
14250 
14251 	/* No workaround needed? */
14252 	if (!first_crtc_state)
14253 		return 0;
14254 
14255 	/* w/a possibly needed, check how many crtc's are already enabled. */
14256 	for_each_intel_crtc(state->base.dev, crtc) {
14257 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
14258 		if (IS_ERR(crtc_state))
14259 			return PTR_ERR(crtc_state);
14260 
14261 		crtc_state->hsw_workaround_pipe = INVALID_PIPE;
14262 
14263 		if (!crtc_state->hw.active ||
14264 		    needs_modeset(crtc_state))
14265 			continue;
14266 
14267 		/* 2 or more enabled crtcs means no need for w/a */
14268 		if (enabled_pipe != INVALID_PIPE)
14269 			return 0;
14270 
14271 		enabled_pipe = crtc->pipe;
14272 	}
14273 
14274 	if (enabled_pipe != INVALID_PIPE)
14275 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
14276 	else if (other_crtc_state)
14277 		other_crtc_state->hsw_workaround_pipe = first_pipe;
14278 
14279 	return 0;
14280 }
14281 
14282 static int intel_modeset_checks(struct intel_atomic_state *state)
14283 {
14284 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14285 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14286 	struct intel_crtc *crtc;
14287 	int ret, i;
14288 
14289 	/* keep the current setting */
14290 	if (!state->cdclk.force_min_cdclk_changed)
14291 		state->cdclk.force_min_cdclk = dev_priv->cdclk.force_min_cdclk;
14292 
14293 	state->modeset = true;
14294 	state->active_pipes = dev_priv->active_pipes;
14295 	state->cdclk.logical = dev_priv->cdclk.logical;
14296 	state->cdclk.actual = dev_priv->cdclk.actual;
14297 
14298 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14299 					    new_crtc_state, i) {
14300 		if (new_crtc_state->hw.active)
14301 			state->active_pipes |= BIT(crtc->pipe);
14302 		else
14303 			state->active_pipes &= ~BIT(crtc->pipe);
14304 
14305 		if (old_crtc_state->hw.active != new_crtc_state->hw.active)
14306 			state->active_pipe_changes |= BIT(crtc->pipe);
14307 	}
14308 
14309 	if (state->active_pipe_changes) {
14310 		ret = intel_atomic_lock_global_state(state);
14311 		if (ret)
14312 			return ret;
14313 	}
14314 
14315 	ret = intel_modeset_calc_cdclk(state);
14316 	if (ret)
14317 		return ret;
14318 
14319 	intel_modeset_clear_plls(state);
14320 
14321 	if (IS_HASWELL(dev_priv))
14322 		return hsw_mode_set_planes_workaround(state);
14323 
14324 	return 0;
14325 }
14326 
14327 /*
14328  * Handle calculation of various watermark data at the end of the atomic check
14329  * phase.  The code here should be run after the per-crtc and per-plane 'check'
14330  * handlers to ensure that all derived state has been updated.
14331  */
14332 static int calc_watermark_data(struct intel_atomic_state *state)
14333 {
14334 	struct drm_device *dev = state->base.dev;
14335 	struct drm_i915_private *dev_priv = to_i915(dev);
14336 
14337 	/* Is there platform-specific watermark information to calculate? */
14338 	if (dev_priv->display.compute_global_watermarks)
14339 		return dev_priv->display.compute_global_watermarks(state);
14340 
14341 	return 0;
14342 }
14343 
14344 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
14345 				     struct intel_crtc_state *new_crtc_state)
14346 {
14347 	if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
14348 		return;
14349 
14350 	new_crtc_state->uapi.mode_changed = false;
14351 	new_crtc_state->update_pipe = true;
14352 }
14353 
14354 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state,
14355 				    struct intel_crtc_state *new_crtc_state)
14356 {
14357 	/*
14358 	 * If we're not doing the full modeset we want to
14359 	 * keep the current M/N values as they may be
14360 	 * sufficiently different to the computed values
14361 	 * to cause problems.
14362 	 *
14363 	 * FIXME: should really copy more fuzzy state here
14364 	 */
14365 	new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
14366 	new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
14367 	new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
14368 	new_crtc_state->has_drrs = old_crtc_state->has_drrs;
14369 }
14370 
14371 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
14372 					  struct intel_crtc *crtc,
14373 					  u8 plane_ids_mask)
14374 {
14375 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14376 	struct intel_plane *plane;
14377 
14378 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14379 		struct intel_plane_state *plane_state;
14380 
14381 		if ((plane_ids_mask & BIT(plane->id)) == 0)
14382 			continue;
14383 
14384 		plane_state = intel_atomic_get_plane_state(state, plane);
14385 		if (IS_ERR(plane_state))
14386 			return PTR_ERR(plane_state);
14387 	}
14388 
14389 	return 0;
14390 }
14391 
14392 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
14393 {
14394 	/* See {hsw,vlv,ivb}_plane_ratio() */
14395 	return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
14396 		IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
14397 		IS_IVYBRIDGE(dev_priv);
14398 }
14399 
14400 static int intel_atomic_check_planes(struct intel_atomic_state *state,
14401 				     bool *need_modeset)
14402 {
14403 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14404 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14405 	struct intel_plane_state *plane_state;
14406 	struct intel_plane *plane;
14407 	struct intel_crtc *crtc;
14408 	int i, ret;
14409 
14410 	ret = icl_add_linked_planes(state);
14411 	if (ret)
14412 		return ret;
14413 
14414 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14415 		ret = intel_plane_atomic_check(state, plane);
14416 		if (ret) {
14417 			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] atomic driver check failed\n",
14418 					 plane->base.base.id, plane->base.name);
14419 			return ret;
14420 		}
14421 	}
14422 
14423 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14424 					    new_crtc_state, i) {
14425 		u8 old_active_planes, new_active_planes;
14426 
14427 		ret = icl_check_nv12_planes(new_crtc_state);
14428 		if (ret)
14429 			return ret;
14430 
14431 		/*
14432 		 * On some platforms the number of active planes affects
14433 		 * the planes' minimum cdclk calculation. Add such planes
14434 		 * to the state before we compute the minimum cdclk.
14435 		 */
14436 		if (!active_planes_affects_min_cdclk(dev_priv))
14437 			continue;
14438 
14439 		old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14440 		new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14441 
14442 		if (hweight8(old_active_planes) == hweight8(new_active_planes))
14443 			continue;
14444 
14445 		ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
14446 		if (ret)
14447 			return ret;
14448 	}
14449 
14450 	/*
14451 	 * active_planes bitmask has been updated, and potentially
14452 	 * affected planes are part of the state. We can now
14453 	 * compute the minimum cdclk for each plane.
14454 	 */
14455 	for_each_new_intel_plane_in_state(state, plane, plane_state, i)
14456 		*need_modeset |= intel_plane_calc_min_cdclk(state, plane);
14457 
14458 	return 0;
14459 }
14460 
14461 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
14462 {
14463 	struct intel_crtc_state *crtc_state;
14464 	struct intel_crtc *crtc;
14465 	int i;
14466 
14467 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14468 		int ret = intel_crtc_atomic_check(state, crtc);
14469 		if (ret) {
14470 			DRM_DEBUG_ATOMIC("[CRTC:%d:%s] atomic driver check failed\n",
14471 					 crtc->base.base.id, crtc->base.name);
14472 			return ret;
14473 		}
14474 	}
14475 
14476 	return 0;
14477 }
14478 
14479 static bool intel_cpu_transcoder_needs_modeset(struct intel_atomic_state *state,
14480 					       enum transcoder transcoder)
14481 {
14482 	struct intel_crtc_state *new_crtc_state;
14483 	struct intel_crtc *crtc;
14484 	int i;
14485 
14486 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
14487 		if (new_crtc_state->cpu_transcoder == transcoder)
14488 			return needs_modeset(new_crtc_state);
14489 
14490 	return false;
14491 }
14492 
14493 static void
14494 intel_modeset_synced_crtcs(struct intel_atomic_state *state,
14495 			   u8 transcoders)
14496 {
14497 	struct intel_crtc_state *new_crtc_state;
14498 	struct intel_crtc *crtc;
14499 	int i;
14500 
14501 	for_each_new_intel_crtc_in_state(state, crtc,
14502 					 new_crtc_state, i) {
14503 		if (transcoders & BIT(new_crtc_state->cpu_transcoder)) {
14504 			new_crtc_state->uapi.mode_changed = true;
14505 			new_crtc_state->update_pipe = false;
14506 		}
14507 	}
14508 }
14509 
14510 static int
14511 intel_modeset_all_tiles(struct intel_atomic_state *state, int tile_grp_id)
14512 {
14513 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14514 	struct drm_connector *connector;
14515 	struct drm_connector_list_iter conn_iter;
14516 	int ret = 0;
14517 
14518 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
14519 	drm_for_each_connector_iter(connector, &conn_iter) {
14520 		struct drm_connector_state *conn_state;
14521 		struct drm_crtc_state *crtc_state;
14522 
14523 		if (!connector->has_tile ||
14524 		    connector->tile_group->id != tile_grp_id)
14525 			continue;
14526 		conn_state = drm_atomic_get_connector_state(&state->base,
14527 							    connector);
14528 		if (IS_ERR(conn_state)) {
14529 			ret =  PTR_ERR(conn_state);
14530 			break;
14531 		}
14532 
14533 		if (!conn_state->crtc)
14534 			continue;
14535 
14536 		crtc_state = drm_atomic_get_crtc_state(&state->base,
14537 						       conn_state->crtc);
14538 		if (IS_ERR(crtc_state)) {
14539 			ret = PTR_ERR(crtc_state);
14540 			break;
14541 		}
14542 		crtc_state->mode_changed = true;
14543 		ret = drm_atomic_add_affected_connectors(&state->base,
14544 							 conn_state->crtc);
14545 		if (ret)
14546 			break;
14547 	}
14548 	drm_connector_list_iter_end(&conn_iter);
14549 
14550 	return ret;
14551 }
14552 
14553 static int
14554 intel_atomic_check_tiled_conns(struct intel_atomic_state *state)
14555 {
14556 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14557 	struct drm_connector *connector;
14558 	struct drm_connector_state *old_conn_state, *new_conn_state;
14559 	int i, ret;
14560 
14561 	if (INTEL_GEN(dev_priv) < 11)
14562 		return 0;
14563 
14564 	/* Is tiled, mark all other tiled CRTCs as needing a modeset */
14565 	for_each_oldnew_connector_in_state(&state->base, connector,
14566 					   old_conn_state, new_conn_state, i) {
14567 		if (!connector->has_tile)
14568 			continue;
14569 		if (!intel_connector_needs_modeset(state, connector))
14570 			continue;
14571 
14572 		ret = intel_modeset_all_tiles(state, connector->tile_group->id);
14573 		if (ret)
14574 			return ret;
14575 	}
14576 
14577 	return 0;
14578 }
14579 
14580 /**
14581  * intel_atomic_check - validate state object
14582  * @dev: drm device
14583  * @_state: state to validate
14584  */
14585 static int intel_atomic_check(struct drm_device *dev,
14586 			      struct drm_atomic_state *_state)
14587 {
14588 	struct drm_i915_private *dev_priv = to_i915(dev);
14589 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
14590 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14591 	struct intel_crtc *crtc;
14592 	int ret, i;
14593 	bool any_ms = false;
14594 
14595 	/* Catch I915_MODE_FLAG_INHERITED */
14596 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14597 					    new_crtc_state, i) {
14598 		if (new_crtc_state->hw.mode.private_flags !=
14599 		    old_crtc_state->hw.mode.private_flags)
14600 			new_crtc_state->uapi.mode_changed = true;
14601 	}
14602 
14603 	ret = drm_atomic_helper_check_modeset(dev, &state->base);
14604 	if (ret)
14605 		goto fail;
14606 
14607 	/**
14608 	 * This check adds all the connectors in current state that belong to
14609 	 * the same tile group to a full modeset.
14610 	 * This function directly sets the mode_changed to true and we also call
14611 	 * drm_atomic_add_affected_connectors(). Hence we are not explicitly
14612 	 * calling drm_atomic_helper_check_modeset() after this.
14613 	 *
14614 	 * Fixme: Handle some corner cases where one of the
14615 	 * tiled connectors gets disconnected and tile info is lost but since it
14616 	 * was previously synced to other conn, we need to add that to the modeset.
14617 	 */
14618 	ret = intel_atomic_check_tiled_conns(state);
14619 	if (ret)
14620 		goto fail;
14621 
14622 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14623 					    new_crtc_state, i) {
14624 		if (!needs_modeset(new_crtc_state)) {
14625 			/* Light copy */
14626 			intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state);
14627 
14628 			continue;
14629 		}
14630 
14631 		if (!new_crtc_state->uapi.enable) {
14632 			intel_crtc_copy_uapi_to_hw_state(new_crtc_state);
14633 			continue;
14634 		}
14635 
14636 		ret = intel_crtc_prepare_cleared_state(new_crtc_state);
14637 		if (ret)
14638 			goto fail;
14639 
14640 		ret = intel_modeset_pipe_config(new_crtc_state);
14641 		if (ret)
14642 			goto fail;
14643 
14644 		intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14645 	}
14646 
14647 	/**
14648 	 * Check if fastset is allowed by external dependencies like other
14649 	 * pipes and transcoders.
14650 	 *
14651 	 * Right now it only forces a fullmodeset when the MST master
14652 	 * transcoder did not changed but the pipe of the master transcoder
14653 	 * needs a fullmodeset so all slaves also needs to do a fullmodeset or
14654 	 * in case of port synced crtcs, if one of the synced crtcs
14655 	 * needs a full modeset, all other synced crtcs should be
14656 	 * forced a full modeset.
14657 	 */
14658 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14659 		if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state))
14660 			continue;
14661 
14662 		if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
14663 			enum transcoder master = new_crtc_state->mst_master_transcoder;
14664 
14665 			if (intel_cpu_transcoder_needs_modeset(state, master)) {
14666 				new_crtc_state->uapi.mode_changed = true;
14667 				new_crtc_state->update_pipe = false;
14668 			}
14669 		} else if (is_trans_port_sync_mode(new_crtc_state)) {
14670 			u8 trans = new_crtc_state->sync_mode_slaves_mask |
14671 				   BIT(new_crtc_state->master_transcoder);
14672 
14673 			intel_modeset_synced_crtcs(state, trans);
14674 		}
14675 	}
14676 
14677 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14678 					    new_crtc_state, i) {
14679 		if (needs_modeset(new_crtc_state)) {
14680 			any_ms = true;
14681 			continue;
14682 		}
14683 
14684 		if (!new_crtc_state->update_pipe)
14685 			continue;
14686 
14687 		intel_crtc_copy_fastset(old_crtc_state, new_crtc_state);
14688 	}
14689 
14690 	if (any_ms && !check_digital_port_conflicts(state)) {
14691 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
14692 		ret = EINVAL;
14693 		goto fail;
14694 	}
14695 
14696 	ret = drm_dp_mst_atomic_check(&state->base);
14697 	if (ret)
14698 		goto fail;
14699 
14700 	any_ms |= state->cdclk.force_min_cdclk_changed;
14701 
14702 	ret = intel_atomic_check_planes(state, &any_ms);
14703 	if (ret)
14704 		goto fail;
14705 
14706 	if (any_ms) {
14707 		ret = intel_modeset_checks(state);
14708 		if (ret)
14709 			goto fail;
14710 	} else {
14711 		state->cdclk.logical = dev_priv->cdclk.logical;
14712 	}
14713 
14714 	ret = intel_atomic_check_crtcs(state);
14715 	if (ret)
14716 		goto fail;
14717 
14718 	intel_fbc_choose_crtc(dev_priv, state);
14719 	ret = calc_watermark_data(state);
14720 	if (ret)
14721 		goto fail;
14722 
14723 	ret = intel_bw_atomic_check(state);
14724 	if (ret)
14725 		goto fail;
14726 
14727 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14728 					    new_crtc_state, i) {
14729 		if (!needs_modeset(new_crtc_state) &&
14730 		    !new_crtc_state->update_pipe)
14731 			continue;
14732 
14733 		intel_dump_pipe_config(new_crtc_state, state,
14734 				       needs_modeset(new_crtc_state) ?
14735 				       "[modeset]" : "[fastset]");
14736 	}
14737 
14738 	return 0;
14739 
14740  fail:
14741 	if (ret == -EDEADLK)
14742 		return ret;
14743 
14744 	/*
14745 	 * FIXME would probably be nice to know which crtc specifically
14746 	 * caused the failure, in cases where we can pinpoint it.
14747 	 */
14748 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14749 					    new_crtc_state, i)
14750 		intel_dump_pipe_config(new_crtc_state, state, "[failed]");
14751 
14752 	return ret;
14753 }
14754 
14755 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
14756 {
14757 	return drm_atomic_helper_prepare_planes(state->base.dev,
14758 						&state->base);
14759 }
14760 
14761 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14762 {
14763 	struct drm_device *dev = crtc->base.dev;
14764 	struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
14765 
14766 	if (!vblank->max_vblank_count)
14767 		return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
14768 
14769 	return crtc->base.funcs->get_vblank_counter(&crtc->base);
14770 }
14771 
14772 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
14773 				  struct intel_crtc_state *crtc_state)
14774 {
14775 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14776 
14777 	if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes)
14778 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
14779 
14780 	if (crtc_state->has_pch_encoder) {
14781 		enum pipe pch_transcoder =
14782 			intel_crtc_pch_transcoder(crtc);
14783 
14784 		intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
14785 	}
14786 }
14787 
14788 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
14789 			       const struct intel_crtc_state *new_crtc_state)
14790 {
14791 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
14792 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14793 
14794 	/*
14795 	 * Update pipe size and adjust fitter if needed: the reason for this is
14796 	 * that in compute_mode_changes we check the native mode (not the pfit
14797 	 * mode) to see if we can flip rather than do a full mode set. In the
14798 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
14799 	 * pfit state, we'll end up with a big fb scanned out into the wrong
14800 	 * sized surface.
14801 	 */
14802 	intel_set_pipe_src_size(new_crtc_state);
14803 
14804 	/* on skylake this is done by detaching scalers */
14805 	if (INTEL_GEN(dev_priv) >= 9) {
14806 		skl_detach_scalers(new_crtc_state);
14807 
14808 		if (new_crtc_state->pch_pfit.enabled)
14809 			skl_pfit_enable(new_crtc_state);
14810 	} else if (HAS_PCH_SPLIT(dev_priv)) {
14811 		if (new_crtc_state->pch_pfit.enabled)
14812 			ilk_pfit_enable(new_crtc_state);
14813 		else if (old_crtc_state->pch_pfit.enabled)
14814 			ilk_pfit_disable(old_crtc_state);
14815 	}
14816 
14817 	if (INTEL_GEN(dev_priv) >= 11)
14818 		icl_set_pipe_chicken(crtc);
14819 }
14820 
14821 static void commit_pipe_config(struct intel_atomic_state *state,
14822 			       struct intel_crtc_state *old_crtc_state,
14823 			       struct intel_crtc_state *new_crtc_state)
14824 {
14825 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
14826 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14827 	bool modeset = needs_modeset(new_crtc_state);
14828 
14829 	/*
14830 	 * During modesets pipe configuration was programmed as the
14831 	 * CRTC was enabled.
14832 	 */
14833 	if (!modeset) {
14834 		if (new_crtc_state->uapi.color_mgmt_changed ||
14835 		    new_crtc_state->update_pipe)
14836 			intel_color_commit(new_crtc_state);
14837 
14838 		if (INTEL_GEN(dev_priv) >= 9)
14839 			skl_detach_scalers(new_crtc_state);
14840 
14841 		if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
14842 			bdw_set_pipemisc(new_crtc_state);
14843 
14844 		if (new_crtc_state->update_pipe)
14845 			intel_pipe_fastset(old_crtc_state, new_crtc_state);
14846 	}
14847 
14848 	if (dev_priv->display.atomic_update_watermarks)
14849 		dev_priv->display.atomic_update_watermarks(state, crtc);
14850 }
14851 
14852 static void intel_update_crtc(struct intel_crtc *crtc,
14853 			      struct intel_atomic_state *state,
14854 			      struct intel_crtc_state *old_crtc_state,
14855 			      struct intel_crtc_state *new_crtc_state)
14856 {
14857 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14858 	bool modeset = needs_modeset(new_crtc_state);
14859 	struct intel_plane_state *new_plane_state =
14860 		intel_atomic_get_new_plane_state(state,
14861 						 to_intel_plane(crtc->base.primary));
14862 
14863 	if (modeset) {
14864 		intel_crtc_update_active_timings(new_crtc_state);
14865 
14866 		dev_priv->display.crtc_enable(state, crtc);
14867 
14868 		/* vblanks work again, re-enable pipe CRC. */
14869 		intel_crtc_enable_pipe_crc(crtc);
14870 	} else {
14871 		if (new_crtc_state->preload_luts &&
14872 		    (new_crtc_state->uapi.color_mgmt_changed ||
14873 		     new_crtc_state->update_pipe))
14874 			intel_color_load_luts(new_crtc_state);
14875 
14876 		intel_pre_plane_update(state, crtc);
14877 
14878 		if (new_crtc_state->update_pipe)
14879 			intel_encoders_update_pipe(state, crtc);
14880 	}
14881 
14882 	if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
14883 		intel_fbc_disable(crtc);
14884 	else if (new_plane_state)
14885 		intel_fbc_enable(crtc, new_crtc_state, new_plane_state);
14886 
14887 	/* Perform vblank evasion around commit operation */
14888 	intel_pipe_update_start(new_crtc_state);
14889 
14890 	commit_pipe_config(state, old_crtc_state, new_crtc_state);
14891 
14892 	if (INTEL_GEN(dev_priv) >= 9)
14893 		skl_update_planes_on_crtc(state, crtc);
14894 	else
14895 		i9xx_update_planes_on_crtc(state, crtc);
14896 
14897 	intel_pipe_update_end(new_crtc_state);
14898 
14899 	/*
14900 	 * We usually enable FIFO underrun interrupts as part of the
14901 	 * CRTC enable sequence during modesets.  But when we inherit a
14902 	 * valid pipe configuration from the BIOS we need to take care
14903 	 * of enabling them on the CRTC's first fastset.
14904 	 */
14905 	if (new_crtc_state->update_pipe && !modeset &&
14906 	    old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED)
14907 		intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
14908 }
14909 
14910 static struct intel_crtc *intel_get_slave_crtc(const struct intel_crtc_state *new_crtc_state)
14911 {
14912 	struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev);
14913 	enum transcoder slave_transcoder;
14914 
14915 	WARN_ON(!is_power_of_2(new_crtc_state->sync_mode_slaves_mask));
14916 
14917 	slave_transcoder = ffs(new_crtc_state->sync_mode_slaves_mask) - 1;
14918 	return intel_get_crtc_for_pipe(dev_priv,
14919 				       (enum pipe)slave_transcoder);
14920 }
14921 
14922 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
14923 					  struct intel_crtc_state *old_crtc_state,
14924 					  struct intel_crtc_state *new_crtc_state,
14925 					  struct intel_crtc *crtc)
14926 {
14927 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14928 
14929 	intel_crtc_disable_planes(state, crtc);
14930 
14931 	/*
14932 	 * We need to disable pipe CRC before disabling the pipe,
14933 	 * or we race against vblank off.
14934 	 */
14935 	intel_crtc_disable_pipe_crc(crtc);
14936 
14937 	dev_priv->display.crtc_disable(state, crtc);
14938 	crtc->active = false;
14939 	intel_fbc_disable(crtc);
14940 	intel_disable_shared_dpll(old_crtc_state);
14941 
14942 	/* FIXME unify this for all platforms */
14943 	if (!new_crtc_state->hw.active &&
14944 	    !HAS_GMCH(dev_priv) &&
14945 	    dev_priv->display.initial_watermarks)
14946 		dev_priv->display.initial_watermarks(state, crtc);
14947 }
14948 
14949 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
14950 {
14951 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
14952 	struct intel_crtc *crtc;
14953 	u32 handled = 0;
14954 	int i;
14955 
14956 	/* Only disable port sync and MST slaves */
14957 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14958 					    new_crtc_state, i) {
14959 		if (!needs_modeset(new_crtc_state))
14960 			continue;
14961 
14962 		if (!old_crtc_state->hw.active)
14963 			continue;
14964 
14965 		/* In case of Transcoder port Sync master slave CRTCs can be
14966 		 * assigned in any order and we need to make sure that
14967 		 * slave CRTCs are disabled first and then master CRTC since
14968 		 * Slave vblanks are masked till Master Vblanks.
14969 		 */
14970 		if (!is_trans_port_sync_slave(old_crtc_state) &&
14971 		    !intel_dp_mst_is_slave_trans(old_crtc_state))
14972 			continue;
14973 
14974 		intel_pre_plane_update(state, crtc);
14975 		intel_old_crtc_state_disables(state, old_crtc_state,
14976 					      new_crtc_state, crtc);
14977 		handled |= BIT(crtc->pipe);
14978 	}
14979 
14980 	/* Disable everything else left on */
14981 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14982 					    new_crtc_state, i) {
14983 		if (!needs_modeset(new_crtc_state) ||
14984 		    (handled & BIT(crtc->pipe)))
14985 			continue;
14986 
14987 		intel_pre_plane_update(state, crtc);
14988 		if (old_crtc_state->hw.active)
14989 			intel_old_crtc_state_disables(state, old_crtc_state,
14990 						      new_crtc_state, crtc);
14991 	}
14992 }
14993 
14994 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
14995 {
14996 	struct intel_crtc *crtc;
14997 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14998 	int i;
14999 
15000 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15001 		if (!new_crtc_state->hw.active)
15002 			continue;
15003 
15004 		intel_update_crtc(crtc, state, old_crtc_state,
15005 				  new_crtc_state);
15006 	}
15007 }
15008 
15009 static void intel_crtc_enable_trans_port_sync(struct intel_crtc *crtc,
15010 					      struct intel_atomic_state *state,
15011 					      struct intel_crtc_state *new_crtc_state)
15012 {
15013 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15014 
15015 	intel_crtc_update_active_timings(new_crtc_state);
15016 	dev_priv->display.crtc_enable(state, crtc);
15017 	intel_crtc_enable_pipe_crc(crtc);
15018 }
15019 
15020 static void intel_set_dp_tp_ctl_normal(struct intel_crtc *crtc,
15021 				       struct intel_atomic_state *state)
15022 {
15023 	struct drm_connector *uninitialized_var(conn);
15024 	struct drm_connector_state *conn_state;
15025 	struct intel_dp *intel_dp;
15026 	int i;
15027 
15028 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
15029 		if (conn_state->crtc == &crtc->base)
15030 			break;
15031 	}
15032 	intel_dp = enc_to_intel_dp(intel_attached_encoder(to_intel_connector(conn)));
15033 	intel_dp_stop_link_train(intel_dp);
15034 }
15035 
15036 /*
15037  * TODO: This is only called from port sync and it is identical to what will be
15038  * executed again in intel_update_crtc() over port sync pipes
15039  */
15040 static void intel_post_crtc_enable_updates(struct intel_crtc *crtc,
15041 					   struct intel_atomic_state *state)
15042 {
15043 	struct intel_crtc_state *new_crtc_state =
15044 		intel_atomic_get_new_crtc_state(state, crtc);
15045 	struct intel_crtc_state *old_crtc_state =
15046 		intel_atomic_get_old_crtc_state(state, crtc);
15047 	struct intel_plane_state *new_plane_state =
15048 		intel_atomic_get_new_plane_state(state,
15049 						 to_intel_plane(crtc->base.primary));
15050 	bool modeset = needs_modeset(new_crtc_state);
15051 
15052 	if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
15053 		intel_fbc_disable(crtc);
15054 	else if (new_plane_state)
15055 		intel_fbc_enable(crtc, new_crtc_state, new_plane_state);
15056 
15057 	/* Perform vblank evasion around commit operation */
15058 	intel_pipe_update_start(new_crtc_state);
15059 	commit_pipe_config(state, old_crtc_state, new_crtc_state);
15060 	skl_update_planes_on_crtc(state, crtc);
15061 	intel_pipe_update_end(new_crtc_state);
15062 
15063 	/*
15064 	 * We usually enable FIFO underrun interrupts as part of the
15065 	 * CRTC enable sequence during modesets.  But when we inherit a
15066 	 * valid pipe configuration from the BIOS we need to take care
15067 	 * of enabling them on the CRTC's first fastset.
15068 	 */
15069 	if (new_crtc_state->update_pipe && !modeset &&
15070 	    old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED)
15071 		intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
15072 }
15073 
15074 static void intel_update_trans_port_sync_crtcs(struct intel_crtc *crtc,
15075 					       struct intel_atomic_state *state,
15076 					       struct intel_crtc_state *old_crtc_state,
15077 					       struct intel_crtc_state *new_crtc_state)
15078 {
15079 	struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state);
15080 	struct intel_crtc_state *new_slave_crtc_state =
15081 		intel_atomic_get_new_crtc_state(state, slave_crtc);
15082 	struct intel_crtc_state *old_slave_crtc_state =
15083 		intel_atomic_get_old_crtc_state(state, slave_crtc);
15084 
15085 	WARN_ON(!slave_crtc || !new_slave_crtc_state ||
15086 		!old_slave_crtc_state);
15087 
15088 	DRM_DEBUG_KMS("Updating Transcoder Port Sync Master CRTC = %d %s and Slave CRTC %d %s\n",
15089 		      crtc->base.base.id, crtc->base.name, slave_crtc->base.base.id,
15090 		      slave_crtc->base.name);
15091 
15092 	/* Enable seq for slave with with DP_TP_CTL left Idle until the
15093 	 * master is ready
15094 	 */
15095 	intel_crtc_enable_trans_port_sync(slave_crtc,
15096 					  state,
15097 					  new_slave_crtc_state);
15098 
15099 	/* Enable seq for master with with DP_TP_CTL left Idle */
15100 	intel_crtc_enable_trans_port_sync(crtc,
15101 					  state,
15102 					  new_crtc_state);
15103 
15104 	/* Set Slave's DP_TP_CTL to Normal */
15105 	intel_set_dp_tp_ctl_normal(slave_crtc,
15106 				   state);
15107 
15108 	/* Set Master's DP_TP_CTL To Normal */
15109 	usleep_range(200, 400);
15110 	intel_set_dp_tp_ctl_normal(crtc,
15111 				   state);
15112 
15113 	/* Now do the post crtc enable for all master and slaves */
15114 	intel_post_crtc_enable_updates(slave_crtc,
15115 				       state);
15116 	intel_post_crtc_enable_updates(crtc,
15117 				       state);
15118 }
15119 
15120 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
15121 {
15122 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15123 	struct intel_crtc *crtc;
15124 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15125 	u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices;
15126 	u8 required_slices = state->wm_results.ddb.enabled_slices;
15127 	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
15128 	const u8 num_pipes = INTEL_NUM_PIPES(dev_priv);
15129 	u8 update_pipes = 0, modeset_pipes = 0;
15130 	int i;
15131 
15132 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15133 		if (!new_crtc_state->hw.active)
15134 			continue;
15135 
15136 		/* ignore allocations for crtc's that have been turned off. */
15137 		if (!needs_modeset(new_crtc_state)) {
15138 			entries[i] = old_crtc_state->wm.skl.ddb;
15139 			update_pipes |= BIT(crtc->pipe);
15140 		} else {
15141 			modeset_pipes |= BIT(crtc->pipe);
15142 		}
15143 	}
15144 
15145 	/* If 2nd DBuf slice required, enable it here */
15146 	if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices)
15147 		icl_dbuf_slices_update(dev_priv, required_slices);
15148 
15149 	/*
15150 	 * Whenever the number of active pipes changes, we need to make sure we
15151 	 * update the pipes in the right order so that their ddb allocations
15152 	 * never overlap with each other between CRTC updates. Otherwise we'll
15153 	 * cause pipe underruns and other bad stuff.
15154 	 *
15155 	 * So first lets enable all pipes that do not need a fullmodeset as
15156 	 * those don't have any external dependency.
15157 	 */
15158 	while (update_pipes) {
15159 		for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15160 						    new_crtc_state, i) {
15161 			enum pipe pipe = crtc->pipe;
15162 
15163 			if ((update_pipes & BIT(pipe)) == 0)
15164 				continue;
15165 
15166 			if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15167 							entries, num_pipes, i))
15168 				continue;
15169 
15170 			entries[i] = new_crtc_state->wm.skl.ddb;
15171 			update_pipes &= ~BIT(pipe);
15172 
15173 			intel_update_crtc(crtc, state, old_crtc_state,
15174 					  new_crtc_state);
15175 
15176 			/*
15177 			 * If this is an already active pipe, it's DDB changed,
15178 			 * and this isn't the last pipe that needs updating
15179 			 * then we need to wait for a vblank to pass for the
15180 			 * new ddb allocation to take effect.
15181 			 */
15182 			if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
15183 						 &old_crtc_state->wm.skl.ddb) &&
15184 			    (update_pipes | modeset_pipes))
15185 				intel_wait_for_vblank(dev_priv, pipe);
15186 		}
15187 	}
15188 
15189 	/*
15190 	 * Enable all pipes that needs a modeset and do not depends on other
15191 	 * pipes
15192 	 */
15193 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15194 					    new_crtc_state, i) {
15195 		enum pipe pipe = crtc->pipe;
15196 
15197 		if ((modeset_pipes & BIT(pipe)) == 0)
15198 			continue;
15199 
15200 		if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
15201 		    is_trans_port_sync_slave(new_crtc_state))
15202 			continue;
15203 
15204 		WARN_ON(skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15205 						    entries, num_pipes, i));
15206 
15207 		entries[i] = new_crtc_state->wm.skl.ddb;
15208 		modeset_pipes &= ~BIT(pipe);
15209 
15210 		if (is_trans_port_sync_mode(new_crtc_state)) {
15211 			struct intel_crtc *slave_crtc;
15212 
15213 			intel_update_trans_port_sync_crtcs(crtc, state,
15214 							   old_crtc_state,
15215 							   new_crtc_state);
15216 
15217 			slave_crtc = intel_get_slave_crtc(new_crtc_state);
15218 			/* TODO: update entries[] of slave */
15219 			modeset_pipes &= ~BIT(slave_crtc->pipe);
15220 
15221 		} else {
15222 			intel_update_crtc(crtc, state, old_crtc_state,
15223 					  new_crtc_state);
15224 		}
15225 	}
15226 
15227 	/*
15228 	 * Finally enable all pipes that needs a modeset and depends on
15229 	 * other pipes, right now it is only MST slaves as both port sync slave
15230 	 * and master are enabled together
15231 	 */
15232 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15233 					    new_crtc_state, i) {
15234 		enum pipe pipe = crtc->pipe;
15235 
15236 		if ((modeset_pipes & BIT(pipe)) == 0)
15237 			continue;
15238 
15239 		WARN_ON(skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15240 						    entries, num_pipes, i));
15241 
15242 		entries[i] = new_crtc_state->wm.skl.ddb;
15243 		modeset_pipes &= ~BIT(pipe);
15244 
15245 		intel_update_crtc(crtc, state, old_crtc_state, new_crtc_state);
15246 	}
15247 
15248 	WARN_ON(modeset_pipes);
15249 
15250 	/* If 2nd DBuf slice is no more required disable it */
15251 	if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices)
15252 		icl_dbuf_slices_update(dev_priv, required_slices);
15253 }
15254 
15255 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
15256 {
15257 	struct intel_atomic_state *state, *next;
15258 	struct llist_node *freed;
15259 
15260 	freed = llist_del_all(&dev_priv->atomic_helper.free_list);
15261 	llist_for_each_entry_safe(state, next, freed, freed)
15262 		drm_atomic_state_put(&state->base);
15263 }
15264 
15265 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
15266 {
15267 	struct drm_i915_private *dev_priv =
15268 		container_of(work, typeof(*dev_priv), atomic_helper.free_work);
15269 
15270 	intel_atomic_helper_free_state(dev_priv);
15271 }
15272 
15273 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
15274 {
15275 	struct wait_queue_entry wait_fence, wait_reset;
15276 	struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
15277 
15278 	init_wait_entry(&wait_fence, 0);
15279 	init_wait_entry(&wait_reset, 0);
15280 	for (;;) {
15281 		prepare_to_wait(&intel_state->commit_ready.wait,
15282 				&wait_fence, TASK_UNINTERRUPTIBLE);
15283 		prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15284 					      I915_RESET_MODESET),
15285 				&wait_reset, TASK_UNINTERRUPTIBLE);
15286 
15287 
15288 		if (i915_sw_fence_done(&intel_state->commit_ready) ||
15289 		    test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
15290 			break;
15291 
15292 		schedule();
15293 	}
15294 	finish_wait(&intel_state->commit_ready.wait, &wait_fence);
15295 	finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15296 				  I915_RESET_MODESET),
15297 		    &wait_reset);
15298 }
15299 
15300 static void intel_atomic_cleanup_work(struct work_struct *work)
15301 {
15302 	struct drm_atomic_state *state =
15303 		container_of(work, struct drm_atomic_state, commit_work);
15304 	struct drm_i915_private *i915 = to_i915(state->dev);
15305 
15306 	drm_atomic_helper_cleanup_planes(&i915->drm, state);
15307 	drm_atomic_helper_commit_cleanup_done(state);
15308 	drm_atomic_state_put(state);
15309 
15310 	intel_atomic_helper_free_state(i915);
15311 }
15312 
15313 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
15314 {
15315 	struct drm_device *dev = state->base.dev;
15316 	struct drm_i915_private *dev_priv = to_i915(dev);
15317 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15318 	struct intel_crtc *crtc;
15319 	u64 put_domains[I915_MAX_PIPES] = {};
15320 	intel_wakeref_t wakeref = 0;
15321 	int i;
15322 
15323 	intel_atomic_commit_fence_wait(state);
15324 
15325 	drm_atomic_helper_wait_for_dependencies(&state->base);
15326 
15327 	if (state->modeset)
15328 		wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
15329 
15330 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15331 					    new_crtc_state, i) {
15332 		if (needs_modeset(new_crtc_state) ||
15333 		    new_crtc_state->update_pipe) {
15334 
15335 			put_domains[crtc->pipe] =
15336 				modeset_get_crtc_power_domains(new_crtc_state);
15337 		}
15338 	}
15339 
15340 	intel_commit_modeset_disables(state);
15341 
15342 	/* FIXME: Eventually get rid of our crtc->config pointer */
15343 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15344 		crtc->config = new_crtc_state;
15345 
15346 	if (state->modeset) {
15347 		drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
15348 
15349 		intel_set_cdclk_pre_plane_update(dev_priv,
15350 						 &state->cdclk.actual,
15351 						 &dev_priv->cdclk.actual,
15352 						 state->cdclk.pipe);
15353 
15354 		/*
15355 		 * SKL workaround: bspec recommends we disable the SAGV when we
15356 		 * have more then one pipe enabled
15357 		 */
15358 		if (!intel_can_enable_sagv(state))
15359 			intel_disable_sagv(dev_priv);
15360 
15361 		intel_modeset_verify_disabled(dev_priv, state);
15362 	}
15363 
15364 	/* Complete the events for pipes that have now been disabled */
15365 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15366 		bool modeset = needs_modeset(new_crtc_state);
15367 
15368 		/* Complete events for now disable pipes here. */
15369 		if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
15370 			spin_lock_irq(&dev->event_lock);
15371 			drm_crtc_send_vblank_event(&crtc->base,
15372 						   new_crtc_state->uapi.event);
15373 			spin_unlock_irq(&dev->event_lock);
15374 
15375 			new_crtc_state->uapi.event = NULL;
15376 		}
15377 	}
15378 
15379 	if (state->modeset)
15380 		intel_encoders_update_prepare(state);
15381 
15382 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
15383 	dev_priv->display.commit_modeset_enables(state);
15384 
15385 	if (state->modeset) {
15386 		intel_encoders_update_complete(state);
15387 
15388 		intel_set_cdclk_post_plane_update(dev_priv,
15389 						  &state->cdclk.actual,
15390 						  &dev_priv->cdclk.actual,
15391 						  state->cdclk.pipe);
15392 	}
15393 
15394 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
15395 	 * already, but still need the state for the delayed optimization. To
15396 	 * fix this:
15397 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
15398 	 * - schedule that vblank worker _before_ calling hw_done
15399 	 * - at the start of commit_tail, cancel it _synchrously
15400 	 * - switch over to the vblank wait helper in the core after that since
15401 	 *   we don't need out special handling any more.
15402 	 */
15403 	drm_atomic_helper_wait_for_flip_done(dev, &state->base);
15404 
15405 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15406 		if (new_crtc_state->hw.active &&
15407 		    !needs_modeset(new_crtc_state) &&
15408 		    !new_crtc_state->preload_luts &&
15409 		    (new_crtc_state->uapi.color_mgmt_changed ||
15410 		     new_crtc_state->update_pipe))
15411 			intel_color_load_luts(new_crtc_state);
15412 	}
15413 
15414 	/*
15415 	 * Now that the vblank has passed, we can go ahead and program the
15416 	 * optimal watermarks on platforms that need two-step watermark
15417 	 * programming.
15418 	 *
15419 	 * TODO: Move this (and other cleanup) to an async worker eventually.
15420 	 */
15421 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15422 					    new_crtc_state, i) {
15423 		/*
15424 		 * Gen2 reports pipe underruns whenever all planes are disabled.
15425 		 * So re-enable underrun reporting after some planes get enabled.
15426 		 *
15427 		 * We do this before .optimize_watermarks() so that we have a
15428 		 * chance of catching underruns with the intermediate watermarks
15429 		 * vs. the new plane configuration.
15430 		 */
15431 		if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state))
15432 			intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15433 
15434 		if (dev_priv->display.optimize_watermarks)
15435 			dev_priv->display.optimize_watermarks(state, crtc);
15436 	}
15437 
15438 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15439 		intel_post_plane_update(state, crtc);
15440 
15441 		if (put_domains[i])
15442 			modeset_put_power_domains(dev_priv, put_domains[i]);
15443 
15444 		intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
15445 	}
15446 
15447 	/* Underruns don't always raise interrupts, so check manually */
15448 	intel_check_cpu_fifo_underruns(dev_priv);
15449 	intel_check_pch_fifo_underruns(dev_priv);
15450 
15451 	if (state->modeset)
15452 		intel_verify_planes(state);
15453 
15454 	if (state->modeset && intel_can_enable_sagv(state))
15455 		intel_enable_sagv(dev_priv);
15456 
15457 	drm_atomic_helper_commit_hw_done(&state->base);
15458 
15459 	if (state->modeset) {
15460 		/* As one of the primary mmio accessors, KMS has a high
15461 		 * likelihood of triggering bugs in unclaimed access. After we
15462 		 * finish modesetting, see if an error has been flagged, and if
15463 		 * so enable debugging for the next modeset - and hope we catch
15464 		 * the culprit.
15465 		 */
15466 		intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
15467 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
15468 	}
15469 	intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15470 
15471 	/*
15472 	 * Defer the cleanup of the old state to a separate worker to not
15473 	 * impede the current task (userspace for blocking modesets) that
15474 	 * are executed inline. For out-of-line asynchronous modesets/flips,
15475 	 * deferring to a new worker seems overkill, but we would place a
15476 	 * schedule point (cond_resched()) here anyway to keep latencies
15477 	 * down.
15478 	 */
15479 	INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
15480 	queue_work(system_highpri_wq, &state->base.commit_work);
15481 }
15482 
15483 static void intel_atomic_commit_work(struct work_struct *work)
15484 {
15485 	struct intel_atomic_state *state =
15486 		container_of(work, struct intel_atomic_state, base.commit_work);
15487 
15488 	intel_atomic_commit_tail(state);
15489 }
15490 
15491 static int __i915_sw_fence_call
15492 intel_atomic_commit_ready(struct i915_sw_fence *fence,
15493 			  enum i915_sw_fence_notify notify)
15494 {
15495 	struct intel_atomic_state *state =
15496 		container_of(fence, struct intel_atomic_state, commit_ready);
15497 
15498 	switch (notify) {
15499 	case FENCE_COMPLETE:
15500 		/* we do blocking waits in the worker, nothing to do here */
15501 		break;
15502 	case FENCE_FREE:
15503 		{
15504 			struct intel_atomic_helper *helper =
15505 				&to_i915(state->base.dev)->atomic_helper;
15506 
15507 			if (llist_add(&state->freed, &helper->free_list))
15508 				schedule_work(&helper->free_work);
15509 			break;
15510 		}
15511 	}
15512 
15513 	return NOTIFY_DONE;
15514 }
15515 
15516 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
15517 {
15518 	struct intel_plane_state *old_plane_state, *new_plane_state;
15519 	struct intel_plane *plane;
15520 	int i;
15521 
15522 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
15523 					     new_plane_state, i)
15524 		intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
15525 					to_intel_frontbuffer(new_plane_state->hw.fb),
15526 					plane->frontbuffer_bit);
15527 }
15528 
15529 static void assert_global_state_locked(struct drm_i915_private *dev_priv)
15530 {
15531 	struct intel_crtc *crtc;
15532 
15533 	for_each_intel_crtc(&dev_priv->drm, crtc)
15534 		drm_modeset_lock_assert_held(&crtc->base.mutex);
15535 }
15536 
15537 static int intel_atomic_commit(struct drm_device *dev,
15538 			       struct drm_atomic_state *_state,
15539 			       bool nonblock)
15540 {
15541 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
15542 	struct drm_i915_private *dev_priv = to_i915(dev);
15543 	int ret = 0;
15544 
15545 	state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
15546 
15547 	drm_atomic_state_get(&state->base);
15548 	i915_sw_fence_init(&state->commit_ready,
15549 			   intel_atomic_commit_ready);
15550 
15551 	/*
15552 	 * The intel_legacy_cursor_update() fast path takes care
15553 	 * of avoiding the vblank waits for simple cursor
15554 	 * movement and flips. For cursor on/off and size changes,
15555 	 * we want to perform the vblank waits so that watermark
15556 	 * updates happen during the correct frames. Gen9+ have
15557 	 * double buffered watermarks and so shouldn't need this.
15558 	 *
15559 	 * Unset state->legacy_cursor_update before the call to
15560 	 * drm_atomic_helper_setup_commit() because otherwise
15561 	 * drm_atomic_helper_wait_for_flip_done() is a noop and
15562 	 * we get FIFO underruns because we didn't wait
15563 	 * for vblank.
15564 	 *
15565 	 * FIXME doing watermarks and fb cleanup from a vblank worker
15566 	 * (assuming we had any) would solve these problems.
15567 	 */
15568 	if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
15569 		struct intel_crtc_state *new_crtc_state;
15570 		struct intel_crtc *crtc;
15571 		int i;
15572 
15573 		for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15574 			if (new_crtc_state->wm.need_postvbl_update ||
15575 			    new_crtc_state->update_wm_post)
15576 				state->base.legacy_cursor_update = false;
15577 	}
15578 
15579 	ret = intel_atomic_prepare_commit(state);
15580 	if (ret) {
15581 		DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
15582 		i915_sw_fence_commit(&state->commit_ready);
15583 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15584 		return ret;
15585 	}
15586 
15587 	ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
15588 	if (!ret)
15589 		ret = drm_atomic_helper_swap_state(&state->base, true);
15590 
15591 	if (ret) {
15592 		i915_sw_fence_commit(&state->commit_ready);
15593 
15594 		drm_atomic_helper_cleanup_planes(dev, &state->base);
15595 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15596 		return ret;
15597 	}
15598 	dev_priv->wm.distrust_bios_wm = false;
15599 	intel_shared_dpll_swap_state(state);
15600 	intel_atomic_track_fbs(state);
15601 
15602 	if (state->global_state_changed) {
15603 		assert_global_state_locked(dev_priv);
15604 
15605 		memcpy(dev_priv->min_cdclk, state->min_cdclk,
15606 		       sizeof(state->min_cdclk));
15607 		memcpy(dev_priv->min_voltage_level, state->min_voltage_level,
15608 		       sizeof(state->min_voltage_level));
15609 		dev_priv->active_pipes = state->active_pipes;
15610 		dev_priv->cdclk.force_min_cdclk = state->cdclk.force_min_cdclk;
15611 
15612 		intel_cdclk_swap_state(state);
15613 	}
15614 
15615 	drm_atomic_state_get(&state->base);
15616 	INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
15617 
15618 	i915_sw_fence_commit(&state->commit_ready);
15619 	if (nonblock && state->modeset) {
15620 		queue_work(dev_priv->modeset_wq, &state->base.commit_work);
15621 	} else if (nonblock) {
15622 		queue_work(dev_priv->flip_wq, &state->base.commit_work);
15623 	} else {
15624 		if (state->modeset)
15625 			flush_workqueue(dev_priv->modeset_wq);
15626 		intel_atomic_commit_tail(state);
15627 	}
15628 
15629 	return 0;
15630 }
15631 
15632 struct wait_rps_boost {
15633 	struct wait_queue_entry wait;
15634 
15635 	struct drm_crtc *crtc;
15636 	struct i915_request *request;
15637 };
15638 
15639 static int do_rps_boost(struct wait_queue_entry *_wait,
15640 			unsigned mode, int sync, void *key)
15641 {
15642 	struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
15643 	struct i915_request *rq = wait->request;
15644 
15645 	/*
15646 	 * If we missed the vblank, but the request is already running it
15647 	 * is reasonable to assume that it will complete before the next
15648 	 * vblank without our intervention, so leave RPS alone.
15649 	 */
15650 	if (!i915_request_started(rq))
15651 		intel_rps_boost(rq);
15652 	i915_request_put(rq);
15653 
15654 	drm_crtc_vblank_put(wait->crtc);
15655 
15656 	list_del(&wait->wait.entry);
15657 	kfree(wait);
15658 	return 1;
15659 }
15660 
15661 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
15662 				       struct dma_fence *fence)
15663 {
15664 	struct wait_rps_boost *wait;
15665 
15666 	if (!dma_fence_is_i915(fence))
15667 		return;
15668 
15669 	if (INTEL_GEN(to_i915(crtc->dev)) < 6)
15670 		return;
15671 
15672 	if (drm_crtc_vblank_get(crtc))
15673 		return;
15674 
15675 	wait = kmalloc(sizeof(*wait), GFP_KERNEL);
15676 	if (!wait) {
15677 		drm_crtc_vblank_put(crtc);
15678 		return;
15679 	}
15680 
15681 	wait->request = to_request(dma_fence_get(fence));
15682 	wait->crtc = crtc;
15683 
15684 	wait->wait.func = do_rps_boost;
15685 	wait->wait.flags = 0;
15686 
15687 	add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
15688 }
15689 
15690 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
15691 {
15692 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
15693 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15694 	struct drm_framebuffer *fb = plane_state->hw.fb;
15695 	struct i915_vma *vma;
15696 
15697 	if (plane->id == PLANE_CURSOR &&
15698 	    INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
15699 		struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15700 		const int align = intel_cursor_alignment(dev_priv);
15701 		int err;
15702 
15703 		err = i915_gem_object_attach_phys(obj, align);
15704 		if (err)
15705 			return err;
15706 	}
15707 
15708 	vma = intel_pin_and_fence_fb_obj(fb,
15709 					 &plane_state->view,
15710 					 intel_plane_uses_fence(plane_state),
15711 					 &plane_state->flags);
15712 	if (IS_ERR(vma))
15713 		return PTR_ERR(vma);
15714 
15715 	plane_state->vma = vma;
15716 
15717 	return 0;
15718 }
15719 
15720 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15721 {
15722 	struct i915_vma *vma;
15723 
15724 	vma = fetch_and_zero(&old_plane_state->vma);
15725 	if (vma)
15726 		intel_unpin_fb_vma(vma, old_plane_state->flags);
15727 }
15728 
15729 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15730 {
15731 	struct i915_sched_attr attr = {
15732 		.priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15733 	};
15734 
15735 	i915_gem_object_wait_priority(obj, 0, &attr);
15736 }
15737 
15738 /**
15739  * intel_prepare_plane_fb - Prepare fb for usage on plane
15740  * @plane: drm plane to prepare for
15741  * @_new_plane_state: the plane state being prepared
15742  *
15743  * Prepares a framebuffer for usage on a display plane.  Generally this
15744  * involves pinning the underlying object and updating the frontbuffer tracking
15745  * bits.  Some older platforms need special physical address handling for
15746  * cursor planes.
15747  *
15748  * Returns 0 on success, negative error code on failure.
15749  */
15750 int
15751 intel_prepare_plane_fb(struct drm_plane *plane,
15752 		       struct drm_plane_state *_new_plane_state)
15753 {
15754 	struct intel_plane_state *new_plane_state =
15755 		to_intel_plane_state(_new_plane_state);
15756 	struct intel_atomic_state *intel_state =
15757 		to_intel_atomic_state(new_plane_state->uapi.state);
15758 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
15759 	struct drm_framebuffer *fb = new_plane_state->hw.fb;
15760 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15761 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
15762 	int ret;
15763 
15764 	if (old_obj) {
15765 		struct intel_crtc_state *crtc_state =
15766 			intel_atomic_get_new_crtc_state(intel_state,
15767 							to_intel_crtc(plane->state->crtc));
15768 
15769 		/* Big Hammer, we also need to ensure that any pending
15770 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
15771 		 * current scanout is retired before unpinning the old
15772 		 * framebuffer. Note that we rely on userspace rendering
15773 		 * into the buffer attached to the pipe they are waiting
15774 		 * on. If not, userspace generates a GPU hang with IPEHR
15775 		 * point to the MI_WAIT_FOR_EVENT.
15776 		 *
15777 		 * This should only fail upon a hung GPU, in which case we
15778 		 * can safely continue.
15779 		 */
15780 		if (needs_modeset(crtc_state)) {
15781 			ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
15782 							      old_obj->base.resv, NULL,
15783 							      false, 0,
15784 							      GFP_KERNEL);
15785 			if (ret < 0)
15786 				return ret;
15787 		}
15788 	}
15789 
15790 	if (new_plane_state->uapi.fence) { /* explicit fencing */
15791 		ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
15792 						    new_plane_state->uapi.fence,
15793 						    I915_FENCE_TIMEOUT,
15794 						    GFP_KERNEL);
15795 		if (ret < 0)
15796 			return ret;
15797 	}
15798 
15799 	if (!obj)
15800 		return 0;
15801 
15802 	ret = i915_gem_object_pin_pages(obj);
15803 	if (ret)
15804 		return ret;
15805 
15806 	ret = intel_plane_pin_fb(new_plane_state);
15807 
15808 	i915_gem_object_unpin_pages(obj);
15809 	if (ret)
15810 		return ret;
15811 
15812 	fb_obj_bump_render_priority(obj);
15813 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB);
15814 
15815 	if (!new_plane_state->uapi.fence) { /* implicit fencing */
15816 		struct dma_fence *fence;
15817 
15818 		ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
15819 						      obj->base.resv, NULL,
15820 						      false, I915_FENCE_TIMEOUT,
15821 						      GFP_KERNEL);
15822 		if (ret < 0)
15823 			return ret;
15824 
15825 		fence = dma_resv_get_excl_rcu(obj->base.resv);
15826 		if (fence) {
15827 			add_rps_boost_after_vblank(new_plane_state->hw.crtc,
15828 						   fence);
15829 			dma_fence_put(fence);
15830 		}
15831 	} else {
15832 		add_rps_boost_after_vblank(new_plane_state->hw.crtc,
15833 					   new_plane_state->uapi.fence);
15834 	}
15835 
15836 	/*
15837 	 * We declare pageflips to be interactive and so merit a small bias
15838 	 * towards upclocking to deliver the frame on time. By only changing
15839 	 * the RPS thresholds to sample more regularly and aim for higher
15840 	 * clocks we can hopefully deliver low power workloads (like kodi)
15841 	 * that are not quite steady state without resorting to forcing
15842 	 * maximum clocks following a vblank miss (see do_rps_boost()).
15843 	 */
15844 	if (!intel_state->rps_interactive) {
15845 		intel_rps_mark_interactive(&dev_priv->gt.rps, true);
15846 		intel_state->rps_interactive = true;
15847 	}
15848 
15849 	return 0;
15850 }
15851 
15852 /**
15853  * intel_cleanup_plane_fb - Cleans up an fb after plane use
15854  * @plane: drm plane to clean up for
15855  * @_old_plane_state: the state from the previous modeset
15856  *
15857  * Cleans up a framebuffer that has just been removed from a plane.
15858  */
15859 void
15860 intel_cleanup_plane_fb(struct drm_plane *plane,
15861 		       struct drm_plane_state *_old_plane_state)
15862 {
15863 	struct intel_plane_state *old_plane_state =
15864 		to_intel_plane_state(_old_plane_state);
15865 	struct intel_atomic_state *intel_state =
15866 		to_intel_atomic_state(old_plane_state->uapi.state);
15867 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
15868 
15869 	if (intel_state->rps_interactive) {
15870 		intel_rps_mark_interactive(&dev_priv->gt.rps, false);
15871 		intel_state->rps_interactive = false;
15872 	}
15873 
15874 	/* Should only be called after a successful intel_prepare_plane_fb()! */
15875 	intel_plane_unpin_fb(old_plane_state);
15876 }
15877 
15878 /**
15879  * intel_plane_destroy - destroy a plane
15880  * @plane: plane to destroy
15881  *
15882  * Common destruction function for all types of planes (primary, cursor,
15883  * sprite).
15884  */
15885 void intel_plane_destroy(struct drm_plane *plane)
15886 {
15887 	drm_plane_cleanup(plane);
15888 	kfree(to_intel_plane(plane));
15889 }
15890 
15891 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
15892 					    u32 format, u64 modifier)
15893 {
15894 	switch (modifier) {
15895 	case DRM_FORMAT_MOD_LINEAR:
15896 	case I915_FORMAT_MOD_X_TILED:
15897 		break;
15898 	default:
15899 		return false;
15900 	}
15901 
15902 	switch (format) {
15903 	case DRM_FORMAT_C8:
15904 	case DRM_FORMAT_RGB565:
15905 	case DRM_FORMAT_XRGB1555:
15906 	case DRM_FORMAT_XRGB8888:
15907 		return modifier == DRM_FORMAT_MOD_LINEAR ||
15908 			modifier == I915_FORMAT_MOD_X_TILED;
15909 	default:
15910 		return false;
15911 	}
15912 }
15913 
15914 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
15915 					    u32 format, u64 modifier)
15916 {
15917 	switch (modifier) {
15918 	case DRM_FORMAT_MOD_LINEAR:
15919 	case I915_FORMAT_MOD_X_TILED:
15920 		break;
15921 	default:
15922 		return false;
15923 	}
15924 
15925 	switch (format) {
15926 	case DRM_FORMAT_C8:
15927 	case DRM_FORMAT_RGB565:
15928 	case DRM_FORMAT_XRGB8888:
15929 	case DRM_FORMAT_XBGR8888:
15930 	case DRM_FORMAT_ARGB8888:
15931 	case DRM_FORMAT_ABGR8888:
15932 	case DRM_FORMAT_XRGB2101010:
15933 	case DRM_FORMAT_XBGR2101010:
15934 	case DRM_FORMAT_ARGB2101010:
15935 	case DRM_FORMAT_ABGR2101010:
15936 	case DRM_FORMAT_XBGR16161616F:
15937 		return modifier == DRM_FORMAT_MOD_LINEAR ||
15938 			modifier == I915_FORMAT_MOD_X_TILED;
15939 	default:
15940 		return false;
15941 	}
15942 }
15943 
15944 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
15945 					      u32 format, u64 modifier)
15946 {
15947 	return modifier == DRM_FORMAT_MOD_LINEAR &&
15948 		format == DRM_FORMAT_ARGB8888;
15949 }
15950 
15951 static const struct drm_plane_funcs i965_plane_funcs = {
15952 	.update_plane = drm_atomic_helper_update_plane,
15953 	.disable_plane = drm_atomic_helper_disable_plane,
15954 	.destroy = intel_plane_destroy,
15955 	.atomic_duplicate_state = intel_plane_duplicate_state,
15956 	.atomic_destroy_state = intel_plane_destroy_state,
15957 	.format_mod_supported = i965_plane_format_mod_supported,
15958 };
15959 
15960 static const struct drm_plane_funcs i8xx_plane_funcs = {
15961 	.update_plane = drm_atomic_helper_update_plane,
15962 	.disable_plane = drm_atomic_helper_disable_plane,
15963 	.destroy = intel_plane_destroy,
15964 	.atomic_duplicate_state = intel_plane_duplicate_state,
15965 	.atomic_destroy_state = intel_plane_destroy_state,
15966 	.format_mod_supported = i8xx_plane_format_mod_supported,
15967 };
15968 
15969 static int
15970 intel_legacy_cursor_update(struct drm_plane *_plane,
15971 			   struct drm_crtc *_crtc,
15972 			   struct drm_framebuffer *fb,
15973 			   int crtc_x, int crtc_y,
15974 			   unsigned int crtc_w, unsigned int crtc_h,
15975 			   u32 src_x, u32 src_y,
15976 			   u32 src_w, u32 src_h,
15977 			   struct drm_modeset_acquire_ctx *ctx)
15978 {
15979 	struct intel_plane *plane = to_intel_plane(_plane);
15980 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
15981 	struct intel_plane_state *old_plane_state =
15982 		to_intel_plane_state(plane->base.state);
15983 	struct intel_plane_state *new_plane_state;
15984 	struct intel_crtc_state *crtc_state =
15985 		to_intel_crtc_state(crtc->base.state);
15986 	struct intel_crtc_state *new_crtc_state;
15987 	int ret;
15988 
15989 	/*
15990 	 * When crtc is inactive or there is a modeset pending,
15991 	 * wait for it to complete in the slowpath
15992 	 */
15993 	if (!crtc_state->hw.active || needs_modeset(crtc_state) ||
15994 	    crtc_state->update_pipe)
15995 		goto slow;
15996 
15997 	/*
15998 	 * Don't do an async update if there is an outstanding commit modifying
15999 	 * the plane.  This prevents our async update's changes from getting
16000 	 * overridden by a previous synchronous update's state.
16001 	 */
16002 	if (old_plane_state->uapi.commit &&
16003 	    !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done))
16004 		goto slow;
16005 
16006 	/*
16007 	 * If any parameters change that may affect watermarks,
16008 	 * take the slowpath. Only changing fb or position should be
16009 	 * in the fastpath.
16010 	 */
16011 	if (old_plane_state->uapi.crtc != &crtc->base ||
16012 	    old_plane_state->uapi.src_w != src_w ||
16013 	    old_plane_state->uapi.src_h != src_h ||
16014 	    old_plane_state->uapi.crtc_w != crtc_w ||
16015 	    old_plane_state->uapi.crtc_h != crtc_h ||
16016 	    !old_plane_state->uapi.fb != !fb)
16017 		goto slow;
16018 
16019 	new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
16020 	if (!new_plane_state)
16021 		return -ENOMEM;
16022 
16023 	new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
16024 	if (!new_crtc_state) {
16025 		ret = -ENOMEM;
16026 		goto out_free;
16027 	}
16028 
16029 	drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb);
16030 
16031 	new_plane_state->uapi.src_x = src_x;
16032 	new_plane_state->uapi.src_y = src_y;
16033 	new_plane_state->uapi.src_w = src_w;
16034 	new_plane_state->uapi.src_h = src_h;
16035 	new_plane_state->uapi.crtc_x = crtc_x;
16036 	new_plane_state->uapi.crtc_y = crtc_y;
16037 	new_plane_state->uapi.crtc_w = crtc_w;
16038 	new_plane_state->uapi.crtc_h = crtc_h;
16039 
16040 	ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
16041 						  old_plane_state, new_plane_state);
16042 	if (ret)
16043 		goto out_free;
16044 
16045 	ret = intel_plane_pin_fb(new_plane_state);
16046 	if (ret)
16047 		goto out_free;
16048 
16049 	intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb),
16050 				ORIGIN_FLIP);
16051 	intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
16052 				to_intel_frontbuffer(new_plane_state->hw.fb),
16053 				plane->frontbuffer_bit);
16054 
16055 	/* Swap plane state */
16056 	plane->base.state = &new_plane_state->uapi;
16057 
16058 	/*
16059 	 * We cannot swap crtc_state as it may be in use by an atomic commit or
16060 	 * page flip that's running simultaneously. If we swap crtc_state and
16061 	 * destroy the old state, we will cause a use-after-free there.
16062 	 *
16063 	 * Only update active_planes, which is needed for our internal
16064 	 * bookkeeping. Either value will do the right thing when updating
16065 	 * planes atomically. If the cursor was part of the atomic update then
16066 	 * we would have taken the slowpath.
16067 	 */
16068 	crtc_state->active_planes = new_crtc_state->active_planes;
16069 
16070 	if (new_plane_state->uapi.visible)
16071 		intel_update_plane(plane, crtc_state, new_plane_state);
16072 	else
16073 		intel_disable_plane(plane, crtc_state);
16074 
16075 	intel_plane_unpin_fb(old_plane_state);
16076 
16077 out_free:
16078 	if (new_crtc_state)
16079 		intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi);
16080 	if (ret)
16081 		intel_plane_destroy_state(&plane->base, &new_plane_state->uapi);
16082 	else
16083 		intel_plane_destroy_state(&plane->base, &old_plane_state->uapi);
16084 	return ret;
16085 
16086 slow:
16087 	return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
16088 					      crtc_x, crtc_y, crtc_w, crtc_h,
16089 					      src_x, src_y, src_w, src_h, ctx);
16090 }
16091 
16092 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
16093 	.update_plane = intel_legacy_cursor_update,
16094 	.disable_plane = drm_atomic_helper_disable_plane,
16095 	.destroy = intel_plane_destroy,
16096 	.atomic_duplicate_state = intel_plane_duplicate_state,
16097 	.atomic_destroy_state = intel_plane_destroy_state,
16098 	.format_mod_supported = intel_cursor_format_mod_supported,
16099 };
16100 
16101 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
16102 			       enum i9xx_plane_id i9xx_plane)
16103 {
16104 	if (!HAS_FBC(dev_priv))
16105 		return false;
16106 
16107 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16108 		return i9xx_plane == PLANE_A; /* tied to pipe A */
16109 	else if (IS_IVYBRIDGE(dev_priv))
16110 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
16111 			i9xx_plane == PLANE_C;
16112 	else if (INTEL_GEN(dev_priv) >= 4)
16113 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
16114 	else
16115 		return i9xx_plane == PLANE_A;
16116 }
16117 
16118 static struct intel_plane *
16119 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
16120 {
16121 	struct intel_plane *plane;
16122 	const struct drm_plane_funcs *plane_funcs;
16123 	unsigned int supported_rotations;
16124 	unsigned int possible_crtcs;
16125 	const u32 *formats;
16126 	int num_formats;
16127 	int ret, zpos;
16128 
16129 	if (INTEL_GEN(dev_priv) >= 9)
16130 		return skl_universal_plane_create(dev_priv, pipe,
16131 						  PLANE_PRIMARY);
16132 
16133 	plane = intel_plane_alloc();
16134 	if (IS_ERR(plane))
16135 		return plane;
16136 
16137 	plane->pipe = pipe;
16138 	/*
16139 	 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
16140 	 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
16141 	 */
16142 	if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
16143 		plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
16144 	else
16145 		plane->i9xx_plane = (enum i9xx_plane_id) pipe;
16146 	plane->id = PLANE_PRIMARY;
16147 	plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
16148 
16149 	plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
16150 	if (plane->has_fbc) {
16151 		struct intel_fbc *fbc = &dev_priv->fbc;
16152 
16153 		fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
16154 	}
16155 
16156 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16157 		formats = vlv_primary_formats;
16158 		num_formats = ARRAY_SIZE(vlv_primary_formats);
16159 	} else if (INTEL_GEN(dev_priv) >= 4) {
16160 		/*
16161 		 * WaFP16GammaEnabling:ivb
16162 		 * "Workaround : When using the 64-bit format, the plane
16163 		 *  output on each color channel has one quarter amplitude.
16164 		 *  It can be brought up to full amplitude by using pipe
16165 		 *  gamma correction or pipe color space conversion to
16166 		 *  multiply the plane output by four."
16167 		 *
16168 		 * There is no dedicated plane gamma for the primary plane,
16169 		 * and using the pipe gamma/csc could conflict with other
16170 		 * planes, so we choose not to expose fp16 on IVB primary
16171 		 * planes. HSW primary planes no longer have this problem.
16172 		 */
16173 		if (IS_IVYBRIDGE(dev_priv)) {
16174 			formats = ivb_primary_formats;
16175 			num_formats = ARRAY_SIZE(ivb_primary_formats);
16176 		} else {
16177 			formats = i965_primary_formats;
16178 			num_formats = ARRAY_SIZE(i965_primary_formats);
16179 		}
16180 	} else {
16181 		formats = i8xx_primary_formats;
16182 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
16183 	}
16184 
16185 	if (INTEL_GEN(dev_priv) >= 4)
16186 		plane_funcs = &i965_plane_funcs;
16187 	else
16188 		plane_funcs = &i8xx_plane_funcs;
16189 
16190 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16191 		plane->min_cdclk = vlv_plane_min_cdclk;
16192 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16193 		plane->min_cdclk = hsw_plane_min_cdclk;
16194 	else if (IS_IVYBRIDGE(dev_priv))
16195 		plane->min_cdclk = ivb_plane_min_cdclk;
16196 	else
16197 		plane->min_cdclk = i9xx_plane_min_cdclk;
16198 
16199 	plane->max_stride = i9xx_plane_max_stride;
16200 	plane->update_plane = i9xx_update_plane;
16201 	plane->disable_plane = i9xx_disable_plane;
16202 	plane->get_hw_state = i9xx_plane_get_hw_state;
16203 	plane->check_plane = i9xx_plane_check;
16204 
16205 	possible_crtcs = BIT(pipe);
16206 
16207 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
16208 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16209 					       possible_crtcs, plane_funcs,
16210 					       formats, num_formats,
16211 					       i9xx_format_modifiers,
16212 					       DRM_PLANE_TYPE_PRIMARY,
16213 					       "primary %c", pipe_name(pipe));
16214 	else
16215 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16216 					       possible_crtcs, plane_funcs,
16217 					       formats, num_formats,
16218 					       i9xx_format_modifiers,
16219 					       DRM_PLANE_TYPE_PRIMARY,
16220 					       "plane %c",
16221 					       plane_name(plane->i9xx_plane));
16222 	if (ret)
16223 		goto fail;
16224 
16225 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
16226 		supported_rotations =
16227 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
16228 			DRM_MODE_REFLECT_X;
16229 	} else if (INTEL_GEN(dev_priv) >= 4) {
16230 		supported_rotations =
16231 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
16232 	} else {
16233 		supported_rotations = DRM_MODE_ROTATE_0;
16234 	}
16235 
16236 	if (INTEL_GEN(dev_priv) >= 4)
16237 		drm_plane_create_rotation_property(&plane->base,
16238 						   DRM_MODE_ROTATE_0,
16239 						   supported_rotations);
16240 
16241 	zpos = 0;
16242 	drm_plane_create_zpos_immutable_property(&plane->base, zpos);
16243 
16244 	drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
16245 
16246 	return plane;
16247 
16248 fail:
16249 	intel_plane_free(plane);
16250 
16251 	return ERR_PTR(ret);
16252 }
16253 
16254 static struct intel_plane *
16255 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
16256 			  enum pipe pipe)
16257 {
16258 	unsigned int possible_crtcs;
16259 	struct intel_plane *cursor;
16260 	int ret, zpos;
16261 
16262 	cursor = intel_plane_alloc();
16263 	if (IS_ERR(cursor))
16264 		return cursor;
16265 
16266 	cursor->pipe = pipe;
16267 	cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
16268 	cursor->id = PLANE_CURSOR;
16269 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
16270 
16271 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16272 		cursor->max_stride = i845_cursor_max_stride;
16273 		cursor->update_plane = i845_update_cursor;
16274 		cursor->disable_plane = i845_disable_cursor;
16275 		cursor->get_hw_state = i845_cursor_get_hw_state;
16276 		cursor->check_plane = i845_check_cursor;
16277 	} else {
16278 		cursor->max_stride = i9xx_cursor_max_stride;
16279 		cursor->update_plane = i9xx_update_cursor;
16280 		cursor->disable_plane = i9xx_disable_cursor;
16281 		cursor->get_hw_state = i9xx_cursor_get_hw_state;
16282 		cursor->check_plane = i9xx_check_cursor;
16283 	}
16284 
16285 	cursor->cursor.base = ~0;
16286 	cursor->cursor.cntl = ~0;
16287 
16288 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
16289 		cursor->cursor.size = ~0;
16290 
16291 	possible_crtcs = BIT(pipe);
16292 
16293 	ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
16294 				       possible_crtcs, &intel_cursor_plane_funcs,
16295 				       intel_cursor_formats,
16296 				       ARRAY_SIZE(intel_cursor_formats),
16297 				       cursor_format_modifiers,
16298 				       DRM_PLANE_TYPE_CURSOR,
16299 				       "cursor %c", pipe_name(pipe));
16300 	if (ret)
16301 		goto fail;
16302 
16303 	if (INTEL_GEN(dev_priv) >= 4)
16304 		drm_plane_create_rotation_property(&cursor->base,
16305 						   DRM_MODE_ROTATE_0,
16306 						   DRM_MODE_ROTATE_0 |
16307 						   DRM_MODE_ROTATE_180);
16308 
16309 	zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
16310 	drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
16311 
16312 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
16313 
16314 	return cursor;
16315 
16316 fail:
16317 	intel_plane_free(cursor);
16318 
16319 	return ERR_PTR(ret);
16320 }
16321 
16322 #define INTEL_CRTC_FUNCS \
16323 	.gamma_set = drm_atomic_helper_legacy_gamma_set, \
16324 	.set_config = drm_atomic_helper_set_config, \
16325 	.destroy = intel_crtc_destroy, \
16326 	.page_flip = drm_atomic_helper_page_flip, \
16327 	.atomic_duplicate_state = intel_crtc_duplicate_state, \
16328 	.atomic_destroy_state = intel_crtc_destroy_state, \
16329 	.set_crc_source = intel_crtc_set_crc_source, \
16330 	.verify_crc_source = intel_crtc_verify_crc_source, \
16331 	.get_crc_sources = intel_crtc_get_crc_sources
16332 
16333 static const struct drm_crtc_funcs bdw_crtc_funcs = {
16334 	INTEL_CRTC_FUNCS,
16335 
16336 	.get_vblank_counter = g4x_get_vblank_counter,
16337 	.enable_vblank = bdw_enable_vblank,
16338 	.disable_vblank = bdw_disable_vblank,
16339 };
16340 
16341 static const struct drm_crtc_funcs ilk_crtc_funcs = {
16342 	INTEL_CRTC_FUNCS,
16343 
16344 	.get_vblank_counter = g4x_get_vblank_counter,
16345 	.enable_vblank = ilk_enable_vblank,
16346 	.disable_vblank = ilk_disable_vblank,
16347 };
16348 
16349 static const struct drm_crtc_funcs g4x_crtc_funcs = {
16350 	INTEL_CRTC_FUNCS,
16351 
16352 	.get_vblank_counter = g4x_get_vblank_counter,
16353 	.enable_vblank = i965_enable_vblank,
16354 	.disable_vblank = i965_disable_vblank,
16355 };
16356 
16357 static const struct drm_crtc_funcs i965_crtc_funcs = {
16358 	INTEL_CRTC_FUNCS,
16359 
16360 	.get_vblank_counter = i915_get_vblank_counter,
16361 	.enable_vblank = i965_enable_vblank,
16362 	.disable_vblank = i965_disable_vblank,
16363 };
16364 
16365 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
16366 	INTEL_CRTC_FUNCS,
16367 
16368 	.get_vblank_counter = i915_get_vblank_counter,
16369 	.enable_vblank = i915gm_enable_vblank,
16370 	.disable_vblank = i915gm_disable_vblank,
16371 };
16372 
16373 static const struct drm_crtc_funcs i915_crtc_funcs = {
16374 	INTEL_CRTC_FUNCS,
16375 
16376 	.get_vblank_counter = i915_get_vblank_counter,
16377 	.enable_vblank = i8xx_enable_vblank,
16378 	.disable_vblank = i8xx_disable_vblank,
16379 };
16380 
16381 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
16382 	INTEL_CRTC_FUNCS,
16383 
16384 	/* no hw vblank counter */
16385 	.enable_vblank = i8xx_enable_vblank,
16386 	.disable_vblank = i8xx_disable_vblank,
16387 };
16388 
16389 static struct intel_crtc *intel_crtc_alloc(void)
16390 {
16391 	struct intel_crtc_state *crtc_state;
16392 	struct intel_crtc *crtc;
16393 
16394 	crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
16395 	if (!crtc)
16396 		return ERR_PTR(-ENOMEM);
16397 
16398 	crtc_state = intel_crtc_state_alloc(crtc);
16399 	if (!crtc_state) {
16400 		kfree(crtc);
16401 		return ERR_PTR(-ENOMEM);
16402 	}
16403 
16404 	crtc->base.state = &crtc_state->uapi;
16405 	crtc->config = crtc_state;
16406 
16407 	return crtc;
16408 }
16409 
16410 static void intel_crtc_free(struct intel_crtc *crtc)
16411 {
16412 	intel_crtc_destroy_state(&crtc->base, crtc->base.state);
16413 	kfree(crtc);
16414 }
16415 
16416 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
16417 {
16418 	struct intel_plane *primary, *cursor;
16419 	const struct drm_crtc_funcs *funcs;
16420 	struct intel_crtc *crtc;
16421 	int sprite, ret;
16422 
16423 	crtc = intel_crtc_alloc();
16424 	if (IS_ERR(crtc))
16425 		return PTR_ERR(crtc);
16426 
16427 	crtc->pipe = pipe;
16428 	crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
16429 
16430 	primary = intel_primary_plane_create(dev_priv, pipe);
16431 	if (IS_ERR(primary)) {
16432 		ret = PTR_ERR(primary);
16433 		goto fail;
16434 	}
16435 	crtc->plane_ids_mask |= BIT(primary->id);
16436 
16437 	for_each_sprite(dev_priv, pipe, sprite) {
16438 		struct intel_plane *plane;
16439 
16440 		plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
16441 		if (IS_ERR(plane)) {
16442 			ret = PTR_ERR(plane);
16443 			goto fail;
16444 		}
16445 		crtc->plane_ids_mask |= BIT(plane->id);
16446 	}
16447 
16448 	cursor = intel_cursor_plane_create(dev_priv, pipe);
16449 	if (IS_ERR(cursor)) {
16450 		ret = PTR_ERR(cursor);
16451 		goto fail;
16452 	}
16453 	crtc->plane_ids_mask |= BIT(cursor->id);
16454 
16455 	if (HAS_GMCH(dev_priv)) {
16456 		if (IS_CHERRYVIEW(dev_priv) ||
16457 		    IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
16458 			funcs = &g4x_crtc_funcs;
16459 		else if (IS_GEN(dev_priv, 4))
16460 			funcs = &i965_crtc_funcs;
16461 		else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
16462 			funcs = &i915gm_crtc_funcs;
16463 		else if (IS_GEN(dev_priv, 3))
16464 			funcs = &i915_crtc_funcs;
16465 		else
16466 			funcs = &i8xx_crtc_funcs;
16467 	} else {
16468 		if (INTEL_GEN(dev_priv) >= 8)
16469 			funcs = &bdw_crtc_funcs;
16470 		else
16471 			funcs = &ilk_crtc_funcs;
16472 	}
16473 
16474 	ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
16475 					&primary->base, &cursor->base,
16476 					funcs, "pipe %c", pipe_name(pipe));
16477 	if (ret)
16478 		goto fail;
16479 
16480 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
16481 	       dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
16482 	dev_priv->pipe_to_crtc_mapping[pipe] = crtc;
16483 
16484 	if (INTEL_GEN(dev_priv) < 9) {
16485 		enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
16486 
16487 		BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
16488 		       dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
16489 		dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc;
16490 	}
16491 
16492 	intel_color_init(crtc);
16493 
16494 	WARN_ON(drm_crtc_index(&crtc->base) != crtc->pipe);
16495 
16496 	return 0;
16497 
16498 fail:
16499 	intel_crtc_free(crtc);
16500 
16501 	return ret;
16502 }
16503 
16504 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
16505 				      struct drm_file *file)
16506 {
16507 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
16508 	struct drm_crtc *drmmode_crtc;
16509 	struct intel_crtc *crtc;
16510 
16511 	drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
16512 	if (!drmmode_crtc)
16513 		return -ENOENT;
16514 
16515 	crtc = to_intel_crtc(drmmode_crtc);
16516 	pipe_from_crtc_id->pipe = crtc->pipe;
16517 
16518 	return 0;
16519 }
16520 
16521 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
16522 {
16523 	struct drm_device *dev = encoder->base.dev;
16524 	struct intel_encoder *source_encoder;
16525 	u32 possible_clones = 0;
16526 
16527 	for_each_intel_encoder(dev, source_encoder) {
16528 		if (encoders_cloneable(encoder, source_encoder))
16529 			possible_clones |= drm_encoder_mask(&source_encoder->base);
16530 	}
16531 
16532 	return possible_clones;
16533 }
16534 
16535 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
16536 {
16537 	struct drm_device *dev = encoder->base.dev;
16538 	struct intel_crtc *crtc;
16539 	u32 possible_crtcs = 0;
16540 
16541 	for_each_intel_crtc(dev, crtc) {
16542 		if (encoder->pipe_mask & BIT(crtc->pipe))
16543 			possible_crtcs |= drm_crtc_mask(&crtc->base);
16544 	}
16545 
16546 	return possible_crtcs;
16547 }
16548 
16549 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
16550 {
16551 	if (!IS_MOBILE(dev_priv))
16552 		return false;
16553 
16554 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
16555 		return false;
16556 
16557 	if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
16558 		return false;
16559 
16560 	return true;
16561 }
16562 
16563 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
16564 {
16565 	if (INTEL_GEN(dev_priv) >= 9)
16566 		return false;
16567 
16568 	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
16569 		return false;
16570 
16571 	if (HAS_PCH_LPT_H(dev_priv) &&
16572 	    I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
16573 		return false;
16574 
16575 	/* DDI E can't be used if DDI A requires 4 lanes */
16576 	if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
16577 		return false;
16578 
16579 	if (!dev_priv->vbt.int_crt_support)
16580 		return false;
16581 
16582 	return true;
16583 }
16584 
16585 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
16586 {
16587 	int pps_num;
16588 	int pps_idx;
16589 
16590 	if (HAS_DDI(dev_priv))
16591 		return;
16592 	/*
16593 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
16594 	 * everywhere where registers can be write protected.
16595 	 */
16596 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16597 		pps_num = 2;
16598 	else
16599 		pps_num = 1;
16600 
16601 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
16602 		u32 val = I915_READ(PP_CONTROL(pps_idx));
16603 
16604 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
16605 		I915_WRITE(PP_CONTROL(pps_idx), val);
16606 	}
16607 }
16608 
16609 static void intel_pps_init(struct drm_i915_private *dev_priv)
16610 {
16611 	if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
16612 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
16613 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16614 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
16615 	else
16616 		dev_priv->pps_mmio_base = PPS_BASE;
16617 
16618 	intel_pps_unlock_regs_wa(dev_priv);
16619 }
16620 
16621 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
16622 {
16623 	struct intel_encoder *encoder;
16624 	bool dpd_is_edp = false;
16625 
16626 	intel_pps_init(dev_priv);
16627 
16628 	if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
16629 		return;
16630 
16631 	if (INTEL_GEN(dev_priv) >= 12) {
16632 		intel_ddi_init(dev_priv, PORT_A);
16633 		intel_ddi_init(dev_priv, PORT_B);
16634 		intel_ddi_init(dev_priv, PORT_D);
16635 		intel_ddi_init(dev_priv, PORT_E);
16636 		intel_ddi_init(dev_priv, PORT_F);
16637 		intel_ddi_init(dev_priv, PORT_G);
16638 		intel_ddi_init(dev_priv, PORT_H);
16639 		intel_ddi_init(dev_priv, PORT_I);
16640 		icl_dsi_init(dev_priv);
16641 	} else if (IS_ELKHARTLAKE(dev_priv)) {
16642 		intel_ddi_init(dev_priv, PORT_A);
16643 		intel_ddi_init(dev_priv, PORT_B);
16644 		intel_ddi_init(dev_priv, PORT_C);
16645 		intel_ddi_init(dev_priv, PORT_D);
16646 		icl_dsi_init(dev_priv);
16647 	} else if (IS_GEN(dev_priv, 11)) {
16648 		intel_ddi_init(dev_priv, PORT_A);
16649 		intel_ddi_init(dev_priv, PORT_B);
16650 		intel_ddi_init(dev_priv, PORT_C);
16651 		intel_ddi_init(dev_priv, PORT_D);
16652 		intel_ddi_init(dev_priv, PORT_E);
16653 		/*
16654 		 * On some ICL SKUs port F is not present. No strap bits for
16655 		 * this, so rely on VBT.
16656 		 * Work around broken VBTs on SKUs known to have no port F.
16657 		 */
16658 		if (IS_ICL_WITH_PORT_F(dev_priv) &&
16659 		    intel_bios_is_port_present(dev_priv, PORT_F))
16660 			intel_ddi_init(dev_priv, PORT_F);
16661 
16662 		icl_dsi_init(dev_priv);
16663 	} else if (IS_GEN9_LP(dev_priv)) {
16664 		/*
16665 		 * FIXME: Broxton doesn't support port detection via the
16666 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
16667 		 * detect the ports.
16668 		 */
16669 		intel_ddi_init(dev_priv, PORT_A);
16670 		intel_ddi_init(dev_priv, PORT_B);
16671 		intel_ddi_init(dev_priv, PORT_C);
16672 
16673 		vlv_dsi_init(dev_priv);
16674 	} else if (HAS_DDI(dev_priv)) {
16675 		int found;
16676 
16677 		if (intel_ddi_crt_present(dev_priv))
16678 			intel_crt_init(dev_priv);
16679 
16680 		/*
16681 		 * Haswell uses DDI functions to detect digital outputs.
16682 		 * On SKL pre-D0 the strap isn't connected, so we assume
16683 		 * it's there.
16684 		 */
16685 		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
16686 		/* WaIgnoreDDIAStrap: skl */
16687 		if (found || IS_GEN9_BC(dev_priv))
16688 			intel_ddi_init(dev_priv, PORT_A);
16689 
16690 		/* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16691 		 * register */
16692 		found = I915_READ(SFUSE_STRAP);
16693 
16694 		if (found & SFUSE_STRAP_DDIB_DETECTED)
16695 			intel_ddi_init(dev_priv, PORT_B);
16696 		if (found & SFUSE_STRAP_DDIC_DETECTED)
16697 			intel_ddi_init(dev_priv, PORT_C);
16698 		if (found & SFUSE_STRAP_DDID_DETECTED)
16699 			intel_ddi_init(dev_priv, PORT_D);
16700 		if (found & SFUSE_STRAP_DDIF_DETECTED)
16701 			intel_ddi_init(dev_priv, PORT_F);
16702 		/*
16703 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16704 		 */
16705 		if (IS_GEN9_BC(dev_priv) &&
16706 		    intel_bios_is_port_present(dev_priv, PORT_E))
16707 			intel_ddi_init(dev_priv, PORT_E);
16708 
16709 	} else if (HAS_PCH_SPLIT(dev_priv)) {
16710 		int found;
16711 
16712 		/*
16713 		 * intel_edp_init_connector() depends on this completing first,
16714 		 * to prevent the registration of both eDP and LVDS and the
16715 		 * incorrect sharing of the PPS.
16716 		 */
16717 		intel_lvds_init(dev_priv);
16718 		intel_crt_init(dev_priv);
16719 
16720 		dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16721 
16722 		if (ilk_has_edp_a(dev_priv))
16723 			intel_dp_init(dev_priv, DP_A, PORT_A);
16724 
16725 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
16726 			/* PCH SDVOB multiplex with HDMIB */
16727 			found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16728 			if (!found)
16729 				intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16730 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
16731 				intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
16732 		}
16733 
16734 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
16735 			intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
16736 
16737 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
16738 			intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
16739 
16740 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
16741 			intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
16742 
16743 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
16744 			intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
16745 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16746 		bool has_edp, has_port;
16747 
16748 		if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
16749 			intel_crt_init(dev_priv);
16750 
16751 		/*
16752 		 * The DP_DETECTED bit is the latched state of the DDC
16753 		 * SDA pin at boot. However since eDP doesn't require DDC
16754 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
16755 		 * eDP ports may have been muxed to an alternate function.
16756 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
16757 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
16758 		 * detect eDP ports.
16759 		 *
16760 		 * Sadly the straps seem to be missing sometimes even for HDMI
16761 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
16762 		 * and VBT for the presence of the port. Additionally we can't
16763 		 * trust the port type the VBT declares as we've seen at least
16764 		 * HDMI ports that the VBT claim are DP or eDP.
16765 		 */
16766 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
16767 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
16768 		if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
16769 			has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
16770 		if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
16771 			intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
16772 
16773 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
16774 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
16775 		if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
16776 			has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
16777 		if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
16778 			intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
16779 
16780 		if (IS_CHERRYVIEW(dev_priv)) {
16781 			/*
16782 			 * eDP not supported on port D,
16783 			 * so no need to worry about it
16784 			 */
16785 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
16786 			if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
16787 				intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
16788 			if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
16789 				intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
16790 		}
16791 
16792 		vlv_dsi_init(dev_priv);
16793 	} else if (IS_PINEVIEW(dev_priv)) {
16794 		intel_lvds_init(dev_priv);
16795 		intel_crt_init(dev_priv);
16796 	} else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
16797 		bool found = false;
16798 
16799 		if (IS_MOBILE(dev_priv))
16800 			intel_lvds_init(dev_priv);
16801 
16802 		intel_crt_init(dev_priv);
16803 
16804 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
16805 			DRM_DEBUG_KMS("probing SDVOB\n");
16806 			found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
16807 			if (!found && IS_G4X(dev_priv)) {
16808 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
16809 				intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
16810 			}
16811 
16812 			if (!found && IS_G4X(dev_priv))
16813 				intel_dp_init(dev_priv, DP_B, PORT_B);
16814 		}
16815 
16816 		/* Before G4X SDVOC doesn't have its own detect register */
16817 
16818 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
16819 			DRM_DEBUG_KMS("probing SDVOC\n");
16820 			found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
16821 		}
16822 
16823 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
16824 
16825 			if (IS_G4X(dev_priv)) {
16826 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
16827 				intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
16828 			}
16829 			if (IS_G4X(dev_priv))
16830 				intel_dp_init(dev_priv, DP_C, PORT_C);
16831 		}
16832 
16833 		if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
16834 			intel_dp_init(dev_priv, DP_D, PORT_D);
16835 
16836 		if (SUPPORTS_TV(dev_priv))
16837 			intel_tv_init(dev_priv);
16838 	} else if (IS_GEN(dev_priv, 2)) {
16839 		if (IS_I85X(dev_priv))
16840 			intel_lvds_init(dev_priv);
16841 
16842 		intel_crt_init(dev_priv);
16843 		intel_dvo_init(dev_priv);
16844 	}
16845 
16846 	intel_psr_init(dev_priv);
16847 
16848 	for_each_intel_encoder(&dev_priv->drm, encoder) {
16849 		encoder->base.possible_crtcs =
16850 			intel_encoder_possible_crtcs(encoder);
16851 		encoder->base.possible_clones =
16852 			intel_encoder_possible_clones(encoder);
16853 	}
16854 
16855 	intel_init_pch_refclk(dev_priv);
16856 
16857 	drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
16858 }
16859 
16860 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
16861 {
16862 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
16863 
16864 	drm_framebuffer_cleanup(fb);
16865 	intel_frontbuffer_put(intel_fb->frontbuffer);
16866 
16867 	kfree(intel_fb);
16868 }
16869 
16870 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
16871 						struct drm_file *file,
16872 						unsigned int *handle)
16873 {
16874 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
16875 
16876 	if (obj->userptr.mm) {
16877 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
16878 		return -EINVAL;
16879 	}
16880 
16881 	return drm_gem_handle_create(file, &obj->base, handle);
16882 }
16883 
16884 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
16885 					struct drm_file *file,
16886 					unsigned flags, unsigned color,
16887 					struct drm_clip_rect *clips,
16888 					unsigned num_clips)
16889 {
16890 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
16891 
16892 	i915_gem_object_flush_if_display(obj);
16893 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
16894 
16895 	return 0;
16896 }
16897 
16898 static const struct drm_framebuffer_funcs intel_fb_funcs = {
16899 	.destroy = intel_user_framebuffer_destroy,
16900 	.create_handle = intel_user_framebuffer_create_handle,
16901 	.dirty = intel_user_framebuffer_dirty,
16902 };
16903 
16904 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
16905 				  struct drm_i915_gem_object *obj,
16906 				  struct drm_mode_fb_cmd2 *mode_cmd)
16907 {
16908 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
16909 	struct drm_framebuffer *fb = &intel_fb->base;
16910 	u32 max_stride;
16911 	unsigned int tiling, stride;
16912 	int ret = -EINVAL;
16913 	int i;
16914 
16915 	intel_fb->frontbuffer = intel_frontbuffer_get(obj);
16916 	if (!intel_fb->frontbuffer)
16917 		return -ENOMEM;
16918 
16919 	i915_gem_object_lock(obj);
16920 	tiling = i915_gem_object_get_tiling(obj);
16921 	stride = i915_gem_object_get_stride(obj);
16922 	i915_gem_object_unlock(obj);
16923 
16924 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
16925 		/*
16926 		 * If there's a fence, enforce that
16927 		 * the fb modifier and tiling mode match.
16928 		 */
16929 		if (tiling != I915_TILING_NONE &&
16930 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
16931 			DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
16932 			goto err;
16933 		}
16934 	} else {
16935 		if (tiling == I915_TILING_X) {
16936 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
16937 		} else if (tiling == I915_TILING_Y) {
16938 			DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
16939 			goto err;
16940 		}
16941 	}
16942 
16943 	if (!drm_any_plane_has_format(&dev_priv->drm,
16944 				      mode_cmd->pixel_format,
16945 				      mode_cmd->modifier[0])) {
16946 		struct drm_format_name_buf format_name;
16947 
16948 		DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n",
16949 			      drm_get_format_name(mode_cmd->pixel_format,
16950 						  &format_name),
16951 			      mode_cmd->modifier[0]);
16952 		goto err;
16953 	}
16954 
16955 	/*
16956 	 * gen2/3 display engine uses the fence if present,
16957 	 * so the tiling mode must match the fb modifier exactly.
16958 	 */
16959 	if (INTEL_GEN(dev_priv) < 4 &&
16960 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
16961 		DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
16962 		goto err;
16963 	}
16964 
16965 	max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
16966 					 mode_cmd->modifier[0]);
16967 	if (mode_cmd->pitches[0] > max_stride) {
16968 		DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
16969 			      mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
16970 			      "tiled" : "linear",
16971 			      mode_cmd->pitches[0], max_stride);
16972 		goto err;
16973 	}
16974 
16975 	/*
16976 	 * If there's a fence, enforce that
16977 	 * the fb pitch and fence stride match.
16978 	 */
16979 	if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
16980 		DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
16981 			      mode_cmd->pitches[0], stride);
16982 		goto err;
16983 	}
16984 
16985 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
16986 	if (mode_cmd->offsets[0] != 0) {
16987 		DRM_DEBUG_KMS("plane 0 offset (0x%08x) must be 0\n",
16988 			      mode_cmd->offsets[0]);
16989 		goto err;
16990 	}
16991 
16992 	drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
16993 
16994 	for (i = 0; i < fb->format->num_planes; i++) {
16995 		u32 stride_alignment;
16996 
16997 		if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
16998 			DRM_DEBUG_KMS("bad plane %d handle\n", i);
16999 			goto err;
17000 		}
17001 
17002 		stride_alignment = intel_fb_stride_alignment(fb, i);
17003 		if (fb->pitches[i] & (stride_alignment - 1)) {
17004 			DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
17005 				      i, fb->pitches[i], stride_alignment);
17006 			goto err;
17007 		}
17008 
17009 		if (is_gen12_ccs_plane(fb, i)) {
17010 			int ccs_aux_stride = gen12_ccs_aux_stride(fb, i);
17011 
17012 			if (fb->pitches[i] != ccs_aux_stride) {
17013 				DRM_DEBUG_KMS("ccs aux plane %d pitch (%d) must be %d\n",
17014 					      i,
17015 					      fb->pitches[i], ccs_aux_stride);
17016 				goto err;
17017 			}
17018 		}
17019 
17020 		fb->obj[i] = &obj->base;
17021 	}
17022 
17023 	ret = intel_fill_fb_info(dev_priv, fb);
17024 	if (ret)
17025 		goto err;
17026 
17027 	ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
17028 	if (ret) {
17029 		DRM_ERROR("framebuffer init failed %d\n", ret);
17030 		goto err;
17031 	}
17032 
17033 	return 0;
17034 
17035 err:
17036 	intel_frontbuffer_put(intel_fb->frontbuffer);
17037 	return ret;
17038 }
17039 
17040 static struct drm_framebuffer *
17041 intel_user_framebuffer_create(struct drm_device *dev,
17042 			      struct drm_file *filp,
17043 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
17044 {
17045 	struct drm_framebuffer *fb;
17046 	struct drm_i915_gem_object *obj;
17047 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
17048 
17049 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
17050 	if (!obj)
17051 		return ERR_PTR(-ENOENT);
17052 
17053 	fb = intel_framebuffer_create(obj, &mode_cmd);
17054 	i915_gem_object_put(obj);
17055 
17056 	return fb;
17057 }
17058 
17059 static void intel_atomic_state_free(struct drm_atomic_state *state)
17060 {
17061 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
17062 
17063 	drm_atomic_state_default_release(state);
17064 
17065 	i915_sw_fence_fini(&intel_state->commit_ready);
17066 
17067 	kfree(state);
17068 }
17069 
17070 static enum drm_mode_status
17071 intel_mode_valid(struct drm_device *dev,
17072 		 const struct drm_display_mode *mode)
17073 {
17074 	struct drm_i915_private *dev_priv = to_i915(dev);
17075 	int hdisplay_max, htotal_max;
17076 	int vdisplay_max, vtotal_max;
17077 
17078 	/*
17079 	 * Can't reject DBLSCAN here because Xorg ddxen can add piles
17080 	 * of DBLSCAN modes to the output's mode list when they detect
17081 	 * the scaling mode property on the connector. And they don't
17082 	 * ask the kernel to validate those modes in any way until
17083 	 * modeset time at which point the client gets a protocol error.
17084 	 * So in order to not upset those clients we silently ignore the
17085 	 * DBLSCAN flag on such connectors. For other connectors we will
17086 	 * reject modes with the DBLSCAN flag in encoder->compute_config().
17087 	 * And we always reject DBLSCAN modes in connector->mode_valid()
17088 	 * as we never want such modes on the connector's mode list.
17089 	 */
17090 
17091 	if (mode->vscan > 1)
17092 		return MODE_NO_VSCAN;
17093 
17094 	if (mode->flags & DRM_MODE_FLAG_HSKEW)
17095 		return MODE_H_ILLEGAL;
17096 
17097 	if (mode->flags & (DRM_MODE_FLAG_CSYNC |
17098 			   DRM_MODE_FLAG_NCSYNC |
17099 			   DRM_MODE_FLAG_PCSYNC))
17100 		return MODE_HSYNC;
17101 
17102 	if (mode->flags & (DRM_MODE_FLAG_BCAST |
17103 			   DRM_MODE_FLAG_PIXMUX |
17104 			   DRM_MODE_FLAG_CLKDIV2))
17105 		return MODE_BAD;
17106 
17107 	/* Transcoder timing limits */
17108 	if (INTEL_GEN(dev_priv) >= 11) {
17109 		hdisplay_max = 16384;
17110 		vdisplay_max = 8192;
17111 		htotal_max = 16384;
17112 		vtotal_max = 8192;
17113 	} else if (INTEL_GEN(dev_priv) >= 9 ||
17114 		   IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17115 		hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
17116 		vdisplay_max = 4096;
17117 		htotal_max = 8192;
17118 		vtotal_max = 8192;
17119 	} else if (INTEL_GEN(dev_priv) >= 3) {
17120 		hdisplay_max = 4096;
17121 		vdisplay_max = 4096;
17122 		htotal_max = 8192;
17123 		vtotal_max = 8192;
17124 	} else {
17125 		hdisplay_max = 2048;
17126 		vdisplay_max = 2048;
17127 		htotal_max = 4096;
17128 		vtotal_max = 4096;
17129 	}
17130 
17131 	if (mode->hdisplay > hdisplay_max ||
17132 	    mode->hsync_start > htotal_max ||
17133 	    mode->hsync_end > htotal_max ||
17134 	    mode->htotal > htotal_max)
17135 		return MODE_H_ILLEGAL;
17136 
17137 	if (mode->vdisplay > vdisplay_max ||
17138 	    mode->vsync_start > vtotal_max ||
17139 	    mode->vsync_end > vtotal_max ||
17140 	    mode->vtotal > vtotal_max)
17141 		return MODE_V_ILLEGAL;
17142 
17143 	if (INTEL_GEN(dev_priv) >= 5) {
17144 		if (mode->hdisplay < 64 ||
17145 		    mode->htotal - mode->hdisplay < 32)
17146 			return MODE_H_ILLEGAL;
17147 
17148 		if (mode->vtotal - mode->vdisplay < 5)
17149 			return MODE_V_ILLEGAL;
17150 	} else {
17151 		if (mode->htotal - mode->hdisplay < 32)
17152 			return MODE_H_ILLEGAL;
17153 
17154 		if (mode->vtotal - mode->vdisplay < 3)
17155 			return MODE_V_ILLEGAL;
17156 	}
17157 
17158 	return MODE_OK;
17159 }
17160 
17161 enum drm_mode_status
17162 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
17163 				const struct drm_display_mode *mode)
17164 {
17165 	int plane_width_max, plane_height_max;
17166 
17167 	/*
17168 	 * intel_mode_valid() should be
17169 	 * sufficient on older platforms.
17170 	 */
17171 	if (INTEL_GEN(dev_priv) < 9)
17172 		return MODE_OK;
17173 
17174 	/*
17175 	 * Most people will probably want a fullscreen
17176 	 * plane so let's not advertize modes that are
17177 	 * too big for that.
17178 	 */
17179 	if (INTEL_GEN(dev_priv) >= 11) {
17180 		plane_width_max = 5120;
17181 		plane_height_max = 4320;
17182 	} else {
17183 		plane_width_max = 5120;
17184 		plane_height_max = 4096;
17185 	}
17186 
17187 	if (mode->hdisplay > plane_width_max)
17188 		return MODE_H_ILLEGAL;
17189 
17190 	if (mode->vdisplay > plane_height_max)
17191 		return MODE_V_ILLEGAL;
17192 
17193 	return MODE_OK;
17194 }
17195 
17196 static const struct drm_mode_config_funcs intel_mode_funcs = {
17197 	.fb_create = intel_user_framebuffer_create,
17198 	.get_format_info = intel_get_format_info,
17199 	.output_poll_changed = intel_fbdev_output_poll_changed,
17200 	.mode_valid = intel_mode_valid,
17201 	.atomic_check = intel_atomic_check,
17202 	.atomic_commit = intel_atomic_commit,
17203 	.atomic_state_alloc = intel_atomic_state_alloc,
17204 	.atomic_state_clear = intel_atomic_state_clear,
17205 	.atomic_state_free = intel_atomic_state_free,
17206 };
17207 
17208 /**
17209  * intel_init_display_hooks - initialize the display modesetting hooks
17210  * @dev_priv: device private
17211  */
17212 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
17213 {
17214 	intel_init_cdclk_hooks(dev_priv);
17215 
17216 	if (INTEL_GEN(dev_priv) >= 9) {
17217 		dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17218 		dev_priv->display.get_initial_plane_config =
17219 			skl_get_initial_plane_config;
17220 		dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
17221 		dev_priv->display.crtc_enable = hsw_crtc_enable;
17222 		dev_priv->display.crtc_disable = hsw_crtc_disable;
17223 	} else if (HAS_DDI(dev_priv)) {
17224 		dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17225 		dev_priv->display.get_initial_plane_config =
17226 			i9xx_get_initial_plane_config;
17227 		dev_priv->display.crtc_compute_clock =
17228 			hsw_crtc_compute_clock;
17229 		dev_priv->display.crtc_enable = hsw_crtc_enable;
17230 		dev_priv->display.crtc_disable = hsw_crtc_disable;
17231 	} else if (HAS_PCH_SPLIT(dev_priv)) {
17232 		dev_priv->display.get_pipe_config = ilk_get_pipe_config;
17233 		dev_priv->display.get_initial_plane_config =
17234 			i9xx_get_initial_plane_config;
17235 		dev_priv->display.crtc_compute_clock =
17236 			ilk_crtc_compute_clock;
17237 		dev_priv->display.crtc_enable = ilk_crtc_enable;
17238 		dev_priv->display.crtc_disable = ilk_crtc_disable;
17239 	} else if (IS_CHERRYVIEW(dev_priv)) {
17240 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17241 		dev_priv->display.get_initial_plane_config =
17242 			i9xx_get_initial_plane_config;
17243 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
17244 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
17245 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17246 	} else if (IS_VALLEYVIEW(dev_priv)) {
17247 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17248 		dev_priv->display.get_initial_plane_config =
17249 			i9xx_get_initial_plane_config;
17250 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
17251 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
17252 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17253 	} else if (IS_G4X(dev_priv)) {
17254 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17255 		dev_priv->display.get_initial_plane_config =
17256 			i9xx_get_initial_plane_config;
17257 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
17258 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17259 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17260 	} else if (IS_PINEVIEW(dev_priv)) {
17261 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17262 		dev_priv->display.get_initial_plane_config =
17263 			i9xx_get_initial_plane_config;
17264 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
17265 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17266 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17267 	} else if (!IS_GEN(dev_priv, 2)) {
17268 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17269 		dev_priv->display.get_initial_plane_config =
17270 			i9xx_get_initial_plane_config;
17271 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
17272 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17273 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17274 	} else {
17275 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17276 		dev_priv->display.get_initial_plane_config =
17277 			i9xx_get_initial_plane_config;
17278 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
17279 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17280 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17281 	}
17282 
17283 	if (IS_GEN(dev_priv, 5)) {
17284 		dev_priv->display.fdi_link_train = ilk_fdi_link_train;
17285 	} else if (IS_GEN(dev_priv, 6)) {
17286 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
17287 	} else if (IS_IVYBRIDGE(dev_priv)) {
17288 		/* FIXME: detect B0+ stepping and use auto training */
17289 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
17290 	}
17291 
17292 	if (INTEL_GEN(dev_priv) >= 9)
17293 		dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
17294 	else
17295 		dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
17296 
17297 }
17298 
17299 void intel_modeset_init_hw(struct drm_i915_private *i915)
17300 {
17301 	intel_update_cdclk(i915);
17302 	intel_dump_cdclk_state(&i915->cdclk.hw, "Current CDCLK");
17303 	i915->cdclk.logical = i915->cdclk.actual = i915->cdclk.hw;
17304 }
17305 
17306 /*
17307  * Calculate what we think the watermarks should be for the state we've read
17308  * out of the hardware and then immediately program those watermarks so that
17309  * we ensure the hardware settings match our internal state.
17310  *
17311  * We can calculate what we think WM's should be by creating a duplicate of the
17312  * current state (which was constructed during hardware readout) and running it
17313  * through the atomic check code to calculate new watermark values in the
17314  * state object.
17315  */
17316 static void sanitize_watermarks(struct drm_device *dev)
17317 {
17318 	struct drm_i915_private *dev_priv = to_i915(dev);
17319 	struct drm_atomic_state *state;
17320 	struct intel_atomic_state *intel_state;
17321 	struct intel_crtc *crtc;
17322 	struct intel_crtc_state *crtc_state;
17323 	struct drm_modeset_acquire_ctx ctx;
17324 	int ret;
17325 	int i;
17326 
17327 	/* Only supported on platforms that use atomic watermark design */
17328 	if (!dev_priv->display.optimize_watermarks)
17329 		return;
17330 
17331 	/*
17332 	 * We need to hold connection_mutex before calling duplicate_state so
17333 	 * that the connector loop is protected.
17334 	 */
17335 	drm_modeset_acquire_init(&ctx, 0);
17336 retry:
17337 	ret = drm_modeset_lock_all_ctx(dev, &ctx);
17338 	if (ret == -EDEADLK) {
17339 		drm_modeset_backoff(&ctx);
17340 		goto retry;
17341 	} else if (WARN_ON(ret)) {
17342 		goto fail;
17343 	}
17344 
17345 	state = drm_atomic_helper_duplicate_state(dev, &ctx);
17346 	if (WARN_ON(IS_ERR(state)))
17347 		goto fail;
17348 
17349 	intel_state = to_intel_atomic_state(state);
17350 
17351 	/*
17352 	 * Hardware readout is the only time we don't want to calculate
17353 	 * intermediate watermarks (since we don't trust the current
17354 	 * watermarks).
17355 	 */
17356 	if (!HAS_GMCH(dev_priv))
17357 		intel_state->skip_intermediate_wm = true;
17358 
17359 	ret = intel_atomic_check(dev, state);
17360 	if (ret) {
17361 		/*
17362 		 * If we fail here, it means that the hardware appears to be
17363 		 * programmed in a way that shouldn't be possible, given our
17364 		 * understanding of watermark requirements.  This might mean a
17365 		 * mistake in the hardware readout code or a mistake in the
17366 		 * watermark calculations for a given platform.  Raise a WARN
17367 		 * so that this is noticeable.
17368 		 *
17369 		 * If this actually happens, we'll have to just leave the
17370 		 * BIOS-programmed watermarks untouched and hope for the best.
17371 		 */
17372 		WARN(true, "Could not determine valid watermarks for inherited state\n");
17373 		goto put_state;
17374 	}
17375 
17376 	/* Write calculated watermark values back */
17377 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
17378 		crtc_state->wm.need_postvbl_update = true;
17379 		dev_priv->display.optimize_watermarks(intel_state, crtc);
17380 
17381 		to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
17382 	}
17383 
17384 put_state:
17385 	drm_atomic_state_put(state);
17386 fail:
17387 	drm_modeset_drop_locks(&ctx);
17388 	drm_modeset_acquire_fini(&ctx);
17389 }
17390 
17391 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
17392 {
17393 	if (IS_GEN(dev_priv, 5)) {
17394 		u32 fdi_pll_clk =
17395 			I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
17396 
17397 		dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
17398 	} else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
17399 		dev_priv->fdi_pll_freq = 270000;
17400 	} else {
17401 		return;
17402 	}
17403 
17404 	DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
17405 }
17406 
17407 static int intel_initial_commit(struct drm_device *dev)
17408 {
17409 	struct drm_atomic_state *state = NULL;
17410 	struct drm_modeset_acquire_ctx ctx;
17411 	struct intel_crtc *crtc;
17412 	int ret = 0;
17413 
17414 	state = drm_atomic_state_alloc(dev);
17415 	if (!state)
17416 		return -ENOMEM;
17417 
17418 	drm_modeset_acquire_init(&ctx, 0);
17419 
17420 retry:
17421 	state->acquire_ctx = &ctx;
17422 
17423 	for_each_intel_crtc(dev, crtc) {
17424 		struct intel_crtc_state *crtc_state =
17425 			intel_atomic_get_crtc_state(state, crtc);
17426 
17427 		if (IS_ERR(crtc_state)) {
17428 			ret = PTR_ERR(crtc_state);
17429 			goto out;
17430 		}
17431 
17432 		if (crtc_state->hw.active) {
17433 			ret = drm_atomic_add_affected_planes(state, &crtc->base);
17434 			if (ret)
17435 				goto out;
17436 
17437 			/*
17438 			 * FIXME hack to force a LUT update to avoid the
17439 			 * plane update forcing the pipe gamma on without
17440 			 * having a proper LUT loaded. Remove once we
17441 			 * have readout for pipe gamma enable.
17442 			 */
17443 			crtc_state->uapi.color_mgmt_changed = true;
17444 		}
17445 	}
17446 
17447 	ret = drm_atomic_commit(state);
17448 
17449 out:
17450 	if (ret == -EDEADLK) {
17451 		drm_atomic_state_clear(state);
17452 		drm_modeset_backoff(&ctx);
17453 		goto retry;
17454 	}
17455 
17456 	drm_atomic_state_put(state);
17457 
17458 	drm_modeset_drop_locks(&ctx);
17459 	drm_modeset_acquire_fini(&ctx);
17460 
17461 	return ret;
17462 }
17463 
17464 static void intel_mode_config_init(struct drm_i915_private *i915)
17465 {
17466 	struct drm_mode_config *mode_config = &i915->drm.mode_config;
17467 
17468 	drm_mode_config_init(&i915->drm);
17469 
17470 	mode_config->min_width = 0;
17471 	mode_config->min_height = 0;
17472 
17473 	mode_config->preferred_depth = 24;
17474 	mode_config->prefer_shadow = 1;
17475 
17476 	mode_config->allow_fb_modifiers = true;
17477 
17478 	mode_config->funcs = &intel_mode_funcs;
17479 
17480 	/*
17481 	 * Maximum framebuffer dimensions, chosen to match
17482 	 * the maximum render engine surface size on gen4+.
17483 	 */
17484 	if (INTEL_GEN(i915) >= 7) {
17485 		mode_config->max_width = 16384;
17486 		mode_config->max_height = 16384;
17487 	} else if (INTEL_GEN(i915) >= 4) {
17488 		mode_config->max_width = 8192;
17489 		mode_config->max_height = 8192;
17490 	} else if (IS_GEN(i915, 3)) {
17491 		mode_config->max_width = 4096;
17492 		mode_config->max_height = 4096;
17493 	} else {
17494 		mode_config->max_width = 2048;
17495 		mode_config->max_height = 2048;
17496 	}
17497 
17498 	if (IS_I845G(i915) || IS_I865G(i915)) {
17499 		mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
17500 		mode_config->cursor_height = 1023;
17501 	} else if (IS_GEN(i915, 2)) {
17502 		mode_config->cursor_width = 64;
17503 		mode_config->cursor_height = 64;
17504 	} else {
17505 		mode_config->cursor_width = 256;
17506 		mode_config->cursor_height = 256;
17507 	}
17508 }
17509 
17510 int intel_modeset_init(struct drm_i915_private *i915)
17511 {
17512 	struct drm_device *dev = &i915->drm;
17513 	enum pipe pipe;
17514 	struct intel_crtc *crtc;
17515 	int ret;
17516 
17517 	i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
17518 	i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
17519 					WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
17520 
17521 	intel_mode_config_init(i915);
17522 
17523 	ret = intel_bw_init(i915);
17524 	if (ret)
17525 		return ret;
17526 
17527 	init_llist_head(&i915->atomic_helper.free_list);
17528 	INIT_WORK(&i915->atomic_helper.free_work,
17529 		  intel_atomic_helper_free_state_worker);
17530 
17531 	intel_init_quirks(i915);
17532 
17533 	intel_fbc_init(i915);
17534 
17535 	intel_init_pm(i915);
17536 
17537 	intel_panel_sanitize_ssc(i915);
17538 
17539 	intel_gmbus_setup(i915);
17540 
17541 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
17542 		      INTEL_NUM_PIPES(i915),
17543 		      INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
17544 
17545 	if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
17546 		for_each_pipe(i915, pipe) {
17547 			ret = intel_crtc_init(i915, pipe);
17548 			if (ret) {
17549 				drm_mode_config_cleanup(dev);
17550 				return ret;
17551 			}
17552 		}
17553 	}
17554 
17555 	intel_shared_dpll_init(dev);
17556 	intel_update_fdi_pll_freq(i915);
17557 
17558 	intel_update_czclk(i915);
17559 	intel_modeset_init_hw(i915);
17560 
17561 	intel_hdcp_component_init(i915);
17562 
17563 	if (i915->max_cdclk_freq == 0)
17564 		intel_update_max_cdclk(i915);
17565 
17566 	/* Just disable it once at startup */
17567 	intel_vga_disable(i915);
17568 	intel_setup_outputs(i915);
17569 
17570 	drm_modeset_lock_all(dev);
17571 	intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
17572 	drm_modeset_unlock_all(dev);
17573 
17574 	for_each_intel_crtc(dev, crtc) {
17575 		struct intel_initial_plane_config plane_config = {};
17576 
17577 		if (!crtc->active)
17578 			continue;
17579 
17580 		/*
17581 		 * Note that reserving the BIOS fb up front prevents us
17582 		 * from stuffing other stolen allocations like the ring
17583 		 * on top.  This prevents some ugliness at boot time, and
17584 		 * can even allow for smooth boot transitions if the BIOS
17585 		 * fb is large enough for the active pipe configuration.
17586 		 */
17587 		i915->display.get_initial_plane_config(crtc, &plane_config);
17588 
17589 		/*
17590 		 * If the fb is shared between multiple heads, we'll
17591 		 * just get the first one.
17592 		 */
17593 		intel_find_initial_plane_obj(crtc, &plane_config);
17594 	}
17595 
17596 	/*
17597 	 * Make sure hardware watermarks really match the state we read out.
17598 	 * Note that we need to do this after reconstructing the BIOS fb's
17599 	 * since the watermark calculation done here will use pstate->fb.
17600 	 */
17601 	if (!HAS_GMCH(i915))
17602 		sanitize_watermarks(dev);
17603 
17604 	/*
17605 	 * Force all active planes to recompute their states. So that on
17606 	 * mode_setcrtc after probe, all the intel_plane_state variables
17607 	 * are already calculated and there is no assert_plane warnings
17608 	 * during bootup.
17609 	 */
17610 	ret = intel_initial_commit(dev);
17611 	if (ret)
17612 		DRM_DEBUG_KMS("Initial commit in probe failed.\n");
17613 
17614 	return 0;
17615 }
17616 
17617 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
17618 {
17619 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17620 	/* 640x480@60Hz, ~25175 kHz */
17621 	struct dpll clock = {
17622 		.m1 = 18,
17623 		.m2 = 7,
17624 		.p1 = 13,
17625 		.p2 = 4,
17626 		.n = 2,
17627 	};
17628 	u32 dpll, fp;
17629 	int i;
17630 
17631 	WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
17632 
17633 	DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
17634 		      pipe_name(pipe), clock.vco, clock.dot);
17635 
17636 	fp = i9xx_dpll_compute_fp(&clock);
17637 	dpll = DPLL_DVO_2X_MODE |
17638 		DPLL_VGA_MODE_DIS |
17639 		((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
17640 		PLL_P2_DIVIDE_BY_4 |
17641 		PLL_REF_INPUT_DREFCLK |
17642 		DPLL_VCO_ENABLE;
17643 
17644 	I915_WRITE(FP0(pipe), fp);
17645 	I915_WRITE(FP1(pipe), fp);
17646 
17647 	I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
17648 	I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
17649 	I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
17650 	I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
17651 	I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
17652 	I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
17653 	I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
17654 
17655 	/*
17656 	 * Apparently we need to have VGA mode enabled prior to changing
17657 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
17658 	 * dividers, even though the register value does change.
17659 	 */
17660 	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
17661 	I915_WRITE(DPLL(pipe), dpll);
17662 
17663 	/* Wait for the clocks to stabilize. */
17664 	POSTING_READ(DPLL(pipe));
17665 	udelay(150);
17666 
17667 	/* The pixel multiplier can only be updated once the
17668 	 * DPLL is enabled and the clocks are stable.
17669 	 *
17670 	 * So write it again.
17671 	 */
17672 	I915_WRITE(DPLL(pipe), dpll);
17673 
17674 	/* We do this three times for luck */
17675 	for (i = 0; i < 3 ; i++) {
17676 		I915_WRITE(DPLL(pipe), dpll);
17677 		POSTING_READ(DPLL(pipe));
17678 		udelay(150); /* wait for warmup */
17679 	}
17680 
17681 	I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
17682 	POSTING_READ(PIPECONF(pipe));
17683 
17684 	intel_wait_for_pipe_scanline_moving(crtc);
17685 }
17686 
17687 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
17688 {
17689 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17690 
17691 	DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
17692 		      pipe_name(pipe));
17693 
17694 	WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
17695 	WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
17696 	WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
17697 	WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE);
17698 	WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE);
17699 
17700 	I915_WRITE(PIPECONF(pipe), 0);
17701 	POSTING_READ(PIPECONF(pipe));
17702 
17703 	intel_wait_for_pipe_scanline_stopped(crtc);
17704 
17705 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
17706 	POSTING_READ(DPLL(pipe));
17707 }
17708 
17709 static void
17710 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
17711 {
17712 	struct intel_crtc *crtc;
17713 
17714 	if (INTEL_GEN(dev_priv) >= 4)
17715 		return;
17716 
17717 	for_each_intel_crtc(&dev_priv->drm, crtc) {
17718 		struct intel_plane *plane =
17719 			to_intel_plane(crtc->base.primary);
17720 		struct intel_crtc *plane_crtc;
17721 		enum pipe pipe;
17722 
17723 		if (!plane->get_hw_state(plane, &pipe))
17724 			continue;
17725 
17726 		if (pipe == crtc->pipe)
17727 			continue;
17728 
17729 		DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
17730 			      plane->base.base.id, plane->base.name);
17731 
17732 		plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17733 		intel_plane_disable_noatomic(plane_crtc, plane);
17734 	}
17735 }
17736 
17737 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
17738 {
17739 	struct drm_device *dev = crtc->base.dev;
17740 	struct intel_encoder *encoder;
17741 
17742 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
17743 		return true;
17744 
17745 	return false;
17746 }
17747 
17748 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
17749 {
17750 	struct drm_device *dev = encoder->base.dev;
17751 	struct intel_connector *connector;
17752 
17753 	for_each_connector_on_encoder(dev, &encoder->base, connector)
17754 		return connector;
17755 
17756 	return NULL;
17757 }
17758 
17759 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
17760 			      enum pipe pch_transcoder)
17761 {
17762 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
17763 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
17764 }
17765 
17766 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state)
17767 {
17768 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
17769 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
17770 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
17771 
17772 	if (INTEL_GEN(dev_priv) >= 9 ||
17773 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17774 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
17775 		u32 val;
17776 
17777 		if (transcoder_is_dsi(cpu_transcoder))
17778 			return;
17779 
17780 		val = I915_READ(reg);
17781 		val &= ~HSW_FRAME_START_DELAY_MASK;
17782 		val |= HSW_FRAME_START_DELAY(0);
17783 		I915_WRITE(reg, val);
17784 	} else {
17785 		i915_reg_t reg = PIPECONF(cpu_transcoder);
17786 		u32 val;
17787 
17788 		val = I915_READ(reg);
17789 		val &= ~PIPECONF_FRAME_START_DELAY_MASK;
17790 		val |= PIPECONF_FRAME_START_DELAY(0);
17791 		I915_WRITE(reg, val);
17792 	}
17793 
17794 	if (!crtc_state->has_pch_encoder)
17795 		return;
17796 
17797 	if (HAS_PCH_IBX(dev_priv)) {
17798 		i915_reg_t reg = PCH_TRANSCONF(crtc->pipe);
17799 		u32 val;
17800 
17801 		val = I915_READ(reg);
17802 		val &= ~TRANS_FRAME_START_DELAY_MASK;
17803 		val |= TRANS_FRAME_START_DELAY(0);
17804 		I915_WRITE(reg, val);
17805 	} else {
17806 		enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc);
17807 		i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder);
17808 		u32 val;
17809 
17810 		val = I915_READ(reg);
17811 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
17812 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
17813 		I915_WRITE(reg, val);
17814 	}
17815 }
17816 
17817 static void intel_sanitize_crtc(struct intel_crtc *crtc,
17818 				struct drm_modeset_acquire_ctx *ctx)
17819 {
17820 	struct drm_device *dev = crtc->base.dev;
17821 	struct drm_i915_private *dev_priv = to_i915(dev);
17822 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
17823 
17824 	if (crtc_state->hw.active) {
17825 		struct intel_plane *plane;
17826 
17827 		/* Clear any frame start delays used for debugging left by the BIOS */
17828 		intel_sanitize_frame_start_delay(crtc_state);
17829 
17830 		/* Disable everything but the primary plane */
17831 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
17832 			const struct intel_plane_state *plane_state =
17833 				to_intel_plane_state(plane->base.state);
17834 
17835 			if (plane_state->uapi.visible &&
17836 			    plane->base.type != DRM_PLANE_TYPE_PRIMARY)
17837 				intel_plane_disable_noatomic(crtc, plane);
17838 		}
17839 
17840 		/*
17841 		 * Disable any background color set by the BIOS, but enable the
17842 		 * gamma and CSC to match how we program our planes.
17843 		 */
17844 		if (INTEL_GEN(dev_priv) >= 9)
17845 			I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe),
17846 				   SKL_BOTTOM_COLOR_GAMMA_ENABLE |
17847 				   SKL_BOTTOM_COLOR_CSC_ENABLE);
17848 	}
17849 
17850 	/* Adjust the state of the output pipe according to whether we
17851 	 * have active connectors/encoders. */
17852 	if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc))
17853 		intel_crtc_disable_noatomic(crtc, ctx);
17854 
17855 	if (crtc_state->hw.active || HAS_GMCH(dev_priv)) {
17856 		/*
17857 		 * We start out with underrun reporting disabled to avoid races.
17858 		 * For correct bookkeeping mark this on active crtcs.
17859 		 *
17860 		 * Also on gmch platforms we dont have any hardware bits to
17861 		 * disable the underrun reporting. Which means we need to start
17862 		 * out with underrun reporting disabled also on inactive pipes,
17863 		 * since otherwise we'll complain about the garbage we read when
17864 		 * e.g. coming up after runtime pm.
17865 		 *
17866 		 * No protection against concurrent access is required - at
17867 		 * worst a fifo underrun happens which also sets this to false.
17868 		 */
17869 		crtc->cpu_fifo_underrun_disabled = true;
17870 		/*
17871 		 * We track the PCH trancoder underrun reporting state
17872 		 * within the crtc. With crtc for pipe A housing the underrun
17873 		 * reporting state for PCH transcoder A, crtc for pipe B housing
17874 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
17875 		 * and marking underrun reporting as disabled for the non-existing
17876 		 * PCH transcoders B and C would prevent enabling the south
17877 		 * error interrupt (see cpt_can_enable_serr_int()).
17878 		 */
17879 		if (has_pch_trancoder(dev_priv, crtc->pipe))
17880 			crtc->pch_fifo_underrun_disabled = true;
17881 	}
17882 }
17883 
17884 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
17885 {
17886 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
17887 
17888 	/*
17889 	 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
17890 	 * the hardware when a high res displays plugged in. DPLL P
17891 	 * divider is zero, and the pipe timings are bonkers. We'll
17892 	 * try to disable everything in that case.
17893 	 *
17894 	 * FIXME would be nice to be able to sanitize this state
17895 	 * without several WARNs, but for now let's take the easy
17896 	 * road.
17897 	 */
17898 	return IS_GEN(dev_priv, 6) &&
17899 		crtc_state->hw.active &&
17900 		crtc_state->shared_dpll &&
17901 		crtc_state->port_clock == 0;
17902 }
17903 
17904 static void intel_sanitize_encoder(struct intel_encoder *encoder)
17905 {
17906 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
17907 	struct intel_connector *connector;
17908 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
17909 	struct intel_crtc_state *crtc_state = crtc ?
17910 		to_intel_crtc_state(crtc->base.state) : NULL;
17911 
17912 	/* We need to check both for a crtc link (meaning that the
17913 	 * encoder is active and trying to read from a pipe) and the
17914 	 * pipe itself being active. */
17915 	bool has_active_crtc = crtc_state &&
17916 		crtc_state->hw.active;
17917 
17918 	if (crtc_state && has_bogus_dpll_config(crtc_state)) {
17919 		DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n",
17920 			      pipe_name(crtc->pipe));
17921 		has_active_crtc = false;
17922 	}
17923 
17924 	connector = intel_encoder_find_connector(encoder);
17925 	if (connector && !has_active_crtc) {
17926 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
17927 			      encoder->base.base.id,
17928 			      encoder->base.name);
17929 
17930 		/* Connector is active, but has no active pipe. This is
17931 		 * fallout from our resume register restoring. Disable
17932 		 * the encoder manually again. */
17933 		if (crtc_state) {
17934 			struct drm_encoder *best_encoder;
17935 
17936 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
17937 				      encoder->base.base.id,
17938 				      encoder->base.name);
17939 
17940 			/* avoid oopsing in case the hooks consult best_encoder */
17941 			best_encoder = connector->base.state->best_encoder;
17942 			connector->base.state->best_encoder = &encoder->base;
17943 
17944 			if (encoder->disable)
17945 				encoder->disable(encoder, crtc_state,
17946 						 connector->base.state);
17947 			if (encoder->post_disable)
17948 				encoder->post_disable(encoder, crtc_state,
17949 						      connector->base.state);
17950 
17951 			connector->base.state->best_encoder = best_encoder;
17952 		}
17953 		encoder->base.crtc = NULL;
17954 
17955 		/* Inconsistent output/port/pipe state happens presumably due to
17956 		 * a bug in one of the get_hw_state functions. Or someplace else
17957 		 * in our code, like the register restore mess on resume. Clamp
17958 		 * things to off as a safer default. */
17959 
17960 		connector->base.dpms = DRM_MODE_DPMS_OFF;
17961 		connector->base.encoder = NULL;
17962 	}
17963 
17964 	/* notify opregion of the sanitized encoder state */
17965 	intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
17966 
17967 	if (INTEL_GEN(dev_priv) >= 11)
17968 		icl_sanitize_encoder_pll_mapping(encoder);
17969 }
17970 
17971 /* FIXME read out full plane state for all planes */
17972 static void readout_plane_state(struct drm_i915_private *dev_priv)
17973 {
17974 	struct intel_plane *plane;
17975 	struct intel_crtc *crtc;
17976 
17977 	for_each_intel_plane(&dev_priv->drm, plane) {
17978 		struct intel_plane_state *plane_state =
17979 			to_intel_plane_state(plane->base.state);
17980 		struct intel_crtc_state *crtc_state;
17981 		enum pipe pipe = PIPE_A;
17982 		bool visible;
17983 
17984 		visible = plane->get_hw_state(plane, &pipe);
17985 
17986 		crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17987 		crtc_state = to_intel_crtc_state(crtc->base.state);
17988 
17989 		intel_set_plane_visible(crtc_state, plane_state, visible);
17990 
17991 		DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
17992 			      plane->base.base.id, plane->base.name,
17993 			      enableddisabled(visible), pipe_name(pipe));
17994 	}
17995 
17996 	for_each_intel_crtc(&dev_priv->drm, crtc) {
17997 		struct intel_crtc_state *crtc_state =
17998 			to_intel_crtc_state(crtc->base.state);
17999 
18000 		fixup_active_planes(crtc_state);
18001 	}
18002 }
18003 
18004 static void intel_modeset_readout_hw_state(struct drm_device *dev)
18005 {
18006 	struct drm_i915_private *dev_priv = to_i915(dev);
18007 	enum pipe pipe;
18008 	struct intel_crtc *crtc;
18009 	struct intel_encoder *encoder;
18010 	struct intel_connector *connector;
18011 	struct drm_connector_list_iter conn_iter;
18012 	int i;
18013 
18014 	dev_priv->active_pipes = 0;
18015 
18016 	for_each_intel_crtc(dev, crtc) {
18017 		struct intel_crtc_state *crtc_state =
18018 			to_intel_crtc_state(crtc->base.state);
18019 
18020 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi);
18021 		intel_crtc_free_hw_state(crtc_state);
18022 		intel_crtc_state_reset(crtc_state, crtc);
18023 
18024 		crtc_state->hw.active = crtc_state->hw.enable =
18025 			dev_priv->display.get_pipe_config(crtc, crtc_state);
18026 
18027 		crtc->base.enabled = crtc_state->hw.enable;
18028 		crtc->active = crtc_state->hw.active;
18029 
18030 		if (crtc_state->hw.active)
18031 			dev_priv->active_pipes |= BIT(crtc->pipe);
18032 
18033 		DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
18034 			      crtc->base.base.id, crtc->base.name,
18035 			      enableddisabled(crtc_state->hw.active));
18036 	}
18037 
18038 	readout_plane_state(dev_priv);
18039 
18040 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
18041 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
18042 
18043 		pll->on = pll->info->funcs->get_hw_state(dev_priv, pll,
18044 							&pll->state.hw_state);
18045 
18046 		if (IS_ELKHARTLAKE(dev_priv) && pll->on &&
18047 		    pll->info->id == DPLL_ID_EHL_DPLL4) {
18048 			pll->wakeref = intel_display_power_get(dev_priv,
18049 							       POWER_DOMAIN_DPLL_DC_OFF);
18050 		}
18051 
18052 		pll->state.crtc_mask = 0;
18053 		for_each_intel_crtc(dev, crtc) {
18054 			struct intel_crtc_state *crtc_state =
18055 				to_intel_crtc_state(crtc->base.state);
18056 
18057 			if (crtc_state->hw.active &&
18058 			    crtc_state->shared_dpll == pll)
18059 				pll->state.crtc_mask |= 1 << crtc->pipe;
18060 		}
18061 		pll->active_mask = pll->state.crtc_mask;
18062 
18063 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
18064 			      pll->info->name, pll->state.crtc_mask, pll->on);
18065 	}
18066 
18067 	for_each_intel_encoder(dev, encoder) {
18068 		pipe = 0;
18069 
18070 		if (encoder->get_hw_state(encoder, &pipe)) {
18071 			struct intel_crtc_state *crtc_state;
18072 
18073 			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18074 			crtc_state = to_intel_crtc_state(crtc->base.state);
18075 
18076 			encoder->base.crtc = &crtc->base;
18077 			encoder->get_config(encoder, crtc_state);
18078 		} else {
18079 			encoder->base.crtc = NULL;
18080 		}
18081 
18082 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
18083 			      encoder->base.base.id, encoder->base.name,
18084 			      enableddisabled(encoder->base.crtc),
18085 			      pipe_name(pipe));
18086 	}
18087 
18088 	drm_connector_list_iter_begin(dev, &conn_iter);
18089 	for_each_intel_connector_iter(connector, &conn_iter) {
18090 		if (connector->get_hw_state(connector)) {
18091 			struct intel_crtc_state *crtc_state;
18092 			struct intel_crtc *crtc;
18093 
18094 			connector->base.dpms = DRM_MODE_DPMS_ON;
18095 
18096 			encoder = connector->encoder;
18097 			connector->base.encoder = &encoder->base;
18098 
18099 			crtc = to_intel_crtc(encoder->base.crtc);
18100 			crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
18101 
18102 			if (crtc_state && crtc_state->hw.active) {
18103 				/*
18104 				 * This has to be done during hardware readout
18105 				 * because anything calling .crtc_disable may
18106 				 * rely on the connector_mask being accurate.
18107 				 */
18108 				crtc_state->uapi.connector_mask |=
18109 					drm_connector_mask(&connector->base);
18110 				crtc_state->uapi.encoder_mask |=
18111 					drm_encoder_mask(&encoder->base);
18112 			}
18113 		} else {
18114 			connector->base.dpms = DRM_MODE_DPMS_OFF;
18115 			connector->base.encoder = NULL;
18116 		}
18117 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
18118 			      connector->base.base.id, connector->base.name,
18119 			      enableddisabled(connector->base.encoder));
18120 	}
18121 	drm_connector_list_iter_end(&conn_iter);
18122 
18123 	for_each_intel_crtc(dev, crtc) {
18124 		struct intel_bw_state *bw_state =
18125 			to_intel_bw_state(dev_priv->bw_obj.state);
18126 		struct intel_crtc_state *crtc_state =
18127 			to_intel_crtc_state(crtc->base.state);
18128 		struct intel_plane *plane;
18129 		int min_cdclk = 0;
18130 
18131 		if (crtc_state->hw.active) {
18132 			struct drm_display_mode *mode = &crtc_state->hw.mode;
18133 
18134 			intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode,
18135 						    crtc_state);
18136 
18137 			*mode = crtc_state->hw.adjusted_mode;
18138 			mode->hdisplay = crtc_state->pipe_src_w;
18139 			mode->vdisplay = crtc_state->pipe_src_h;
18140 
18141 			/*
18142 			 * The initial mode needs to be set in order to keep
18143 			 * the atomic core happy. It wants a valid mode if the
18144 			 * crtc's enabled, so we do the above call.
18145 			 *
18146 			 * But we don't set all the derived state fully, hence
18147 			 * set a flag to indicate that a full recalculation is
18148 			 * needed on the next commit.
18149 			 */
18150 			mode->private_flags = I915_MODE_FLAG_INHERITED;
18151 
18152 			intel_crtc_compute_pixel_rate(crtc_state);
18153 
18154 			intel_crtc_update_active_timings(crtc_state);
18155 
18156 			intel_crtc_copy_hw_to_uapi_state(crtc_state);
18157 		}
18158 
18159 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
18160 			const struct intel_plane_state *plane_state =
18161 				to_intel_plane_state(plane->base.state);
18162 
18163 			/*
18164 			 * FIXME don't have the fb yet, so can't
18165 			 * use intel_plane_data_rate() :(
18166 			 */
18167 			if (plane_state->uapi.visible)
18168 				crtc_state->data_rate[plane->id] =
18169 					4 * crtc_state->pixel_rate;
18170 			/*
18171 			 * FIXME don't have the fb yet, so can't
18172 			 * use plane->min_cdclk() :(
18173 			 */
18174 			if (plane_state->uapi.visible && plane->min_cdclk) {
18175 				if (crtc_state->double_wide ||
18176 				    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
18177 					crtc_state->min_cdclk[plane->id] =
18178 						DIV_ROUND_UP(crtc_state->pixel_rate, 2);
18179 				else
18180 					crtc_state->min_cdclk[plane->id] =
18181 						crtc_state->pixel_rate;
18182 			}
18183 			DRM_DEBUG_KMS("[PLANE:%d:%s] min_cdclk %d kHz\n",
18184 				      plane->base.base.id, plane->base.name,
18185 				      crtc_state->min_cdclk[plane->id]);
18186 		}
18187 
18188 		if (crtc_state->hw.active) {
18189 			min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
18190 			if (WARN_ON(min_cdclk < 0))
18191 				min_cdclk = 0;
18192 		}
18193 
18194 		dev_priv->min_cdclk[crtc->pipe] = min_cdclk;
18195 		dev_priv->min_voltage_level[crtc->pipe] =
18196 			crtc_state->min_voltage_level;
18197 
18198 		intel_bw_crtc_update(bw_state, crtc_state);
18199 
18200 		intel_pipe_config_sanity_check(dev_priv, crtc_state);
18201 	}
18202 }
18203 
18204 static void
18205 get_encoder_power_domains(struct drm_i915_private *dev_priv)
18206 {
18207 	struct intel_encoder *encoder;
18208 
18209 	for_each_intel_encoder(&dev_priv->drm, encoder) {
18210 		struct intel_crtc_state *crtc_state;
18211 
18212 		if (!encoder->get_power_domains)
18213 			continue;
18214 
18215 		/*
18216 		 * MST-primary and inactive encoders don't have a crtc state
18217 		 * and neither of these require any power domain references.
18218 		 */
18219 		if (!encoder->base.crtc)
18220 			continue;
18221 
18222 		crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
18223 		encoder->get_power_domains(encoder, crtc_state);
18224 	}
18225 }
18226 
18227 static void intel_early_display_was(struct drm_i915_private *dev_priv)
18228 {
18229 	/*
18230 	 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl
18231 	 * Also known as Wa_14010480278.
18232 	 */
18233 	if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv))
18234 		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
18235 			   DARBF_GATING_DIS);
18236 
18237 	if (IS_HASWELL(dev_priv)) {
18238 		/*
18239 		 * WaRsPkgCStateDisplayPMReq:hsw
18240 		 * System hang if this isn't done before disabling all planes!
18241 		 */
18242 		I915_WRITE(CHICKEN_PAR1_1,
18243 			   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
18244 	}
18245 }
18246 
18247 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
18248 				       enum port port, i915_reg_t hdmi_reg)
18249 {
18250 	u32 val = I915_READ(hdmi_reg);
18251 
18252 	if (val & SDVO_ENABLE ||
18253 	    (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
18254 		return;
18255 
18256 	DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n",
18257 		      port_name(port));
18258 
18259 	val &= ~SDVO_PIPE_SEL_MASK;
18260 	val |= SDVO_PIPE_SEL(PIPE_A);
18261 
18262 	I915_WRITE(hdmi_reg, val);
18263 }
18264 
18265 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
18266 				     enum port port, i915_reg_t dp_reg)
18267 {
18268 	u32 val = I915_READ(dp_reg);
18269 
18270 	if (val & DP_PORT_EN ||
18271 	    (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
18272 		return;
18273 
18274 	DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n",
18275 		      port_name(port));
18276 
18277 	val &= ~DP_PIPE_SEL_MASK;
18278 	val |= DP_PIPE_SEL(PIPE_A);
18279 
18280 	I915_WRITE(dp_reg, val);
18281 }
18282 
18283 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
18284 {
18285 	/*
18286 	 * The BIOS may select transcoder B on some of the PCH
18287 	 * ports even it doesn't enable the port. This would trip
18288 	 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
18289 	 * Sanitize the transcoder select bits to prevent that. We
18290 	 * assume that the BIOS never actually enabled the port,
18291 	 * because if it did we'd actually have to toggle the port
18292 	 * on and back off to make the transcoder A select stick
18293 	 * (see. intel_dp_link_down(), intel_disable_hdmi(),
18294 	 * intel_disable_sdvo()).
18295 	 */
18296 	ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
18297 	ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
18298 	ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
18299 
18300 	/* PCH SDVOB multiplex with HDMIB */
18301 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
18302 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
18303 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
18304 }
18305 
18306 /* Scan out the current hw modeset state,
18307  * and sanitizes it to the current state
18308  */
18309 static void
18310 intel_modeset_setup_hw_state(struct drm_device *dev,
18311 			     struct drm_modeset_acquire_ctx *ctx)
18312 {
18313 	struct drm_i915_private *dev_priv = to_i915(dev);
18314 	struct intel_encoder *encoder;
18315 	struct intel_crtc *crtc;
18316 	intel_wakeref_t wakeref;
18317 	int i;
18318 
18319 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
18320 
18321 	intel_early_display_was(dev_priv);
18322 	intel_modeset_readout_hw_state(dev);
18323 
18324 	/* HW state is read out, now we need to sanitize this mess. */
18325 
18326 	/* Sanitize the TypeC port mode upfront, encoders depend on this */
18327 	for_each_intel_encoder(dev, encoder) {
18328 		enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
18329 
18330 		/* We need to sanitize only the MST primary port. */
18331 		if (encoder->type != INTEL_OUTPUT_DP_MST &&
18332 		    intel_phy_is_tc(dev_priv, phy))
18333 			intel_tc_port_sanitize(enc_to_dig_port(encoder));
18334 	}
18335 
18336 	get_encoder_power_domains(dev_priv);
18337 
18338 	if (HAS_PCH_IBX(dev_priv))
18339 		ibx_sanitize_pch_ports(dev_priv);
18340 
18341 	/*
18342 	 * intel_sanitize_plane_mapping() may need to do vblank
18343 	 * waits, so we need vblank interrupts restored beforehand.
18344 	 */
18345 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18346 		struct intel_crtc_state *crtc_state =
18347 			to_intel_crtc_state(crtc->base.state);
18348 
18349 		drm_crtc_vblank_reset(&crtc->base);
18350 
18351 		if (crtc_state->hw.active)
18352 			intel_crtc_vblank_on(crtc_state);
18353 	}
18354 
18355 	intel_sanitize_plane_mapping(dev_priv);
18356 
18357 	for_each_intel_encoder(dev, encoder)
18358 		intel_sanitize_encoder(encoder);
18359 
18360 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18361 		struct intel_crtc_state *crtc_state =
18362 			to_intel_crtc_state(crtc->base.state);
18363 
18364 		intel_sanitize_crtc(crtc, ctx);
18365 		intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
18366 	}
18367 
18368 	intel_modeset_update_connector_atomic_state(dev);
18369 
18370 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
18371 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
18372 
18373 		if (!pll->on || pll->active_mask)
18374 			continue;
18375 
18376 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n",
18377 			      pll->info->name);
18378 
18379 		pll->info->funcs->disable(dev_priv, pll);
18380 		pll->on = false;
18381 	}
18382 
18383 	if (IS_G4X(dev_priv)) {
18384 		g4x_wm_get_hw_state(dev_priv);
18385 		g4x_wm_sanitize(dev_priv);
18386 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
18387 		vlv_wm_get_hw_state(dev_priv);
18388 		vlv_wm_sanitize(dev_priv);
18389 	} else if (INTEL_GEN(dev_priv) >= 9) {
18390 		skl_wm_get_hw_state(dev_priv);
18391 	} else if (HAS_PCH_SPLIT(dev_priv)) {
18392 		ilk_wm_get_hw_state(dev_priv);
18393 	}
18394 
18395 	for_each_intel_crtc(dev, crtc) {
18396 		struct intel_crtc_state *crtc_state =
18397 			to_intel_crtc_state(crtc->base.state);
18398 		u64 put_domains;
18399 
18400 		put_domains = modeset_get_crtc_power_domains(crtc_state);
18401 		if (WARN_ON(put_domains))
18402 			modeset_put_power_domains(dev_priv, put_domains);
18403 	}
18404 
18405 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
18406 }
18407 
18408 void intel_display_resume(struct drm_device *dev)
18409 {
18410 	struct drm_i915_private *dev_priv = to_i915(dev);
18411 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
18412 	struct drm_modeset_acquire_ctx ctx;
18413 	int ret;
18414 
18415 	dev_priv->modeset_restore_state = NULL;
18416 	if (state)
18417 		state->acquire_ctx = &ctx;
18418 
18419 	drm_modeset_acquire_init(&ctx, 0);
18420 
18421 	while (1) {
18422 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
18423 		if (ret != -EDEADLK)
18424 			break;
18425 
18426 		drm_modeset_backoff(&ctx);
18427 	}
18428 
18429 	if (!ret)
18430 		ret = __intel_display_resume(dev, state, &ctx);
18431 
18432 	intel_enable_ipc(dev_priv);
18433 	drm_modeset_drop_locks(&ctx);
18434 	drm_modeset_acquire_fini(&ctx);
18435 
18436 	if (ret)
18437 		DRM_ERROR("Restoring old state failed with %i\n", ret);
18438 	if (state)
18439 		drm_atomic_state_put(state);
18440 }
18441 
18442 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
18443 {
18444 	struct intel_connector *connector;
18445 	struct drm_connector_list_iter conn_iter;
18446 
18447 	/* Kill all the work that may have been queued by hpd. */
18448 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
18449 	for_each_intel_connector_iter(connector, &conn_iter) {
18450 		if (connector->modeset_retry_work.func)
18451 			cancel_work_sync(&connector->modeset_retry_work);
18452 		if (connector->hdcp.shim) {
18453 			cancel_delayed_work_sync(&connector->hdcp.check_work);
18454 			cancel_work_sync(&connector->hdcp.prop_work);
18455 		}
18456 	}
18457 	drm_connector_list_iter_end(&conn_iter);
18458 }
18459 
18460 void intel_modeset_driver_remove(struct drm_i915_private *i915)
18461 {
18462 	flush_workqueue(i915->flip_wq);
18463 	flush_workqueue(i915->modeset_wq);
18464 
18465 	flush_work(&i915->atomic_helper.free_work);
18466 	WARN_ON(!llist_empty(&i915->atomic_helper.free_list));
18467 
18468 	/*
18469 	 * Interrupts and polling as the first thing to avoid creating havoc.
18470 	 * Too much stuff here (turning of connectors, ...) would
18471 	 * experience fancy races otherwise.
18472 	 */
18473 	intel_irq_uninstall(i915);
18474 
18475 	/*
18476 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
18477 	 * poll handlers. Hence disable polling after hpd handling is shut down.
18478 	 */
18479 	intel_hpd_poll_fini(i915);
18480 
18481 	/*
18482 	 * MST topology needs to be suspended so we don't have any calls to
18483 	 * fbdev after it's finalized. MST will be destroyed later as part of
18484 	 * drm_mode_config_cleanup()
18485 	 */
18486 	intel_dp_mst_suspend(i915);
18487 
18488 	/* poll work can call into fbdev, hence clean that up afterwards */
18489 	intel_fbdev_fini(i915);
18490 
18491 	intel_unregister_dsm_handler();
18492 
18493 	intel_fbc_global_disable(i915);
18494 
18495 	/* flush any delayed tasks or pending work */
18496 	flush_scheduled_work();
18497 
18498 	intel_hdcp_component_fini(i915);
18499 
18500 	drm_mode_config_cleanup(&i915->drm);
18501 
18502 	intel_overlay_cleanup(i915);
18503 
18504 	intel_gmbus_teardown(i915);
18505 
18506 	intel_bw_cleanup(i915);
18507 
18508 	destroy_workqueue(i915->flip_wq);
18509 	destroy_workqueue(i915->modeset_wq);
18510 
18511 	intel_fbc_cleanup_cfb(i915);
18512 }
18513 
18514 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
18515 
18516 struct intel_display_error_state {
18517 
18518 	u32 power_well_driver;
18519 
18520 	struct intel_cursor_error_state {
18521 		u32 control;
18522 		u32 position;
18523 		u32 base;
18524 		u32 size;
18525 	} cursor[I915_MAX_PIPES];
18526 
18527 	struct intel_pipe_error_state {
18528 		bool power_domain_on;
18529 		u32 source;
18530 		u32 stat;
18531 	} pipe[I915_MAX_PIPES];
18532 
18533 	struct intel_plane_error_state {
18534 		u32 control;
18535 		u32 stride;
18536 		u32 size;
18537 		u32 pos;
18538 		u32 addr;
18539 		u32 surface;
18540 		u32 tile_offset;
18541 	} plane[I915_MAX_PIPES];
18542 
18543 	struct intel_transcoder_error_state {
18544 		bool available;
18545 		bool power_domain_on;
18546 		enum transcoder cpu_transcoder;
18547 
18548 		u32 conf;
18549 
18550 		u32 htotal;
18551 		u32 hblank;
18552 		u32 hsync;
18553 		u32 vtotal;
18554 		u32 vblank;
18555 		u32 vsync;
18556 	} transcoder[5];
18557 };
18558 
18559 struct intel_display_error_state *
18560 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
18561 {
18562 	struct intel_display_error_state *error;
18563 	int transcoders[] = {
18564 		TRANSCODER_A,
18565 		TRANSCODER_B,
18566 		TRANSCODER_C,
18567 		TRANSCODER_D,
18568 		TRANSCODER_EDP,
18569 	};
18570 	int i;
18571 
18572 	BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
18573 
18574 	if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
18575 		return NULL;
18576 
18577 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
18578 	if (error == NULL)
18579 		return NULL;
18580 
18581 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
18582 		error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2);
18583 
18584 	for_each_pipe(dev_priv, i) {
18585 		error->pipe[i].power_domain_on =
18586 			__intel_display_power_is_enabled(dev_priv,
18587 							 POWER_DOMAIN_PIPE(i));
18588 		if (!error->pipe[i].power_domain_on)
18589 			continue;
18590 
18591 		error->cursor[i].control = I915_READ(CURCNTR(i));
18592 		error->cursor[i].position = I915_READ(CURPOS(i));
18593 		error->cursor[i].base = I915_READ(CURBASE(i));
18594 
18595 		error->plane[i].control = I915_READ(DSPCNTR(i));
18596 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
18597 		if (INTEL_GEN(dev_priv) <= 3) {
18598 			error->plane[i].size = I915_READ(DSPSIZE(i));
18599 			error->plane[i].pos = I915_READ(DSPPOS(i));
18600 		}
18601 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
18602 			error->plane[i].addr = I915_READ(DSPADDR(i));
18603 		if (INTEL_GEN(dev_priv) >= 4) {
18604 			error->plane[i].surface = I915_READ(DSPSURF(i));
18605 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
18606 		}
18607 
18608 		error->pipe[i].source = I915_READ(PIPESRC(i));
18609 
18610 		if (HAS_GMCH(dev_priv))
18611 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
18612 	}
18613 
18614 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
18615 		enum transcoder cpu_transcoder = transcoders[i];
18616 
18617 		if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder])
18618 			continue;
18619 
18620 		error->transcoder[i].available = true;
18621 		error->transcoder[i].power_domain_on =
18622 			__intel_display_power_is_enabled(dev_priv,
18623 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
18624 		if (!error->transcoder[i].power_domain_on)
18625 			continue;
18626 
18627 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
18628 
18629 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
18630 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
18631 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
18632 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
18633 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
18634 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
18635 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
18636 	}
18637 
18638 	return error;
18639 }
18640 
18641 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
18642 
18643 void
18644 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
18645 				struct intel_display_error_state *error)
18646 {
18647 	struct drm_i915_private *dev_priv = m->i915;
18648 	int i;
18649 
18650 	if (!error)
18651 		return;
18652 
18653 	err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
18654 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
18655 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
18656 			   error->power_well_driver);
18657 	for_each_pipe(dev_priv, i) {
18658 		err_printf(m, "Pipe [%d]:\n", i);
18659 		err_printf(m, "  Power: %s\n",
18660 			   onoff(error->pipe[i].power_domain_on));
18661 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
18662 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
18663 
18664 		err_printf(m, "Plane [%d]:\n", i);
18665 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
18666 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
18667 		if (INTEL_GEN(dev_priv) <= 3) {
18668 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
18669 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
18670 		}
18671 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
18672 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
18673 		if (INTEL_GEN(dev_priv) >= 4) {
18674 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
18675 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
18676 		}
18677 
18678 		err_printf(m, "Cursor [%d]:\n", i);
18679 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
18680 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
18681 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
18682 	}
18683 
18684 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
18685 		if (!error->transcoder[i].available)
18686 			continue;
18687 
18688 		err_printf(m, "CPU transcoder: %s\n",
18689 			   transcoder_name(error->transcoder[i].cpu_transcoder));
18690 		err_printf(m, "  Power: %s\n",
18691 			   onoff(error->transcoder[i].power_domain_on));
18692 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
18693 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
18694 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
18695 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
18696 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
18697 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
18698 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
18699 	}
18700 }
18701 
18702 #endif
18703