1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <acpi/video.h> 28 #include <linux/i2c.h> 29 #include <linux/input.h> 30 #include <linux/intel-iommu.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/dma-resv.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_damage_helper.h> 40 #include <drm/drm_dp_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_fourcc.h> 43 #include <drm/drm_plane_helper.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_rect.h> 46 47 #include "display/intel_audio.h" 48 #include "display/intel_crt.h" 49 #include "display/intel_ddi.h" 50 #include "display/intel_display_debugfs.h" 51 #include "display/intel_dp.h" 52 #include "display/intel_dp_mst.h" 53 #include "display/intel_dpll.h" 54 #include "display/intel_dpll_mgr.h" 55 #include "display/intel_dsi.h" 56 #include "display/intel_dvo.h" 57 #include "display/intel_fb.h" 58 #include "display/intel_gmbus.h" 59 #include "display/intel_hdmi.h" 60 #include "display/intel_lvds.h" 61 #include "display/intel_sdvo.h" 62 #include "display/intel_snps_phy.h" 63 #include "display/intel_tv.h" 64 #include "display/intel_vdsc.h" 65 #include "display/intel_vrr.h" 66 67 #include "gem/i915_gem_lmem.h" 68 #include "gem/i915_gem_object.h" 69 70 #include "gt/intel_rps.h" 71 #include "gt/gen8_ppgtt.h" 72 73 #include "g4x_dp.h" 74 #include "g4x_hdmi.h" 75 #include "i915_drv.h" 76 #include "intel_acpi.h" 77 #include "intel_atomic.h" 78 #include "intel_atomic_plane.h" 79 #include "intel_bw.h" 80 #include "intel_cdclk.h" 81 #include "intel_color.h" 82 #include "intel_crtc.h" 83 #include "intel_de.h" 84 #include "intel_display_types.h" 85 #include "intel_dmc.h" 86 #include "intel_dp_link_training.h" 87 #include "intel_fbc.h" 88 #include "intel_fdi.h" 89 #include "intel_fbdev.h" 90 #include "intel_fifo_underrun.h" 91 #include "intel_frontbuffer.h" 92 #include "intel_hdcp.h" 93 #include "intel_hotplug.h" 94 #include "intel_overlay.h" 95 #include "intel_pipe_crc.h" 96 #include "intel_pm.h" 97 #include "intel_pps.h" 98 #include "intel_psr.h" 99 #include "intel_quirks.h" 100 #include "intel_sideband.h" 101 #include "intel_sprite.h" 102 #include "intel_tc.h" 103 #include "intel_vga.h" 104 #include "i9xx_plane.h" 105 #include "skl_scaler.h" 106 #include "skl_universal_plane.h" 107 108 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 109 struct intel_crtc_state *pipe_config); 110 static void ilk_pch_clock_get(struct intel_crtc *crtc, 111 struct intel_crtc_state *pipe_config); 112 113 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 114 struct drm_i915_gem_object *obj, 115 struct drm_mode_fb_cmd2 *mode_cmd); 116 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); 117 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 118 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 119 const struct intel_link_m_n *m_n, 120 const struct intel_link_m_n *m2_n2); 121 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 122 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 123 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 124 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 125 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 126 static void intel_modeset_setup_hw_state(struct drm_device *dev, 127 struct drm_modeset_acquire_ctx *ctx); 128 129 struct i915_dpt { 130 struct i915_address_space vm; 131 132 struct drm_i915_gem_object *obj; 133 struct i915_vma *vma; 134 void __iomem *iomem; 135 }; 136 137 #define i915_is_dpt(vm) ((vm)->is_dpt) 138 139 static inline struct i915_dpt * 140 i915_vm_to_dpt(struct i915_address_space *vm) 141 { 142 BUILD_BUG_ON(offsetof(struct i915_dpt, vm)); 143 GEM_BUG_ON(!i915_is_dpt(vm)); 144 return container_of(vm, struct i915_dpt, vm); 145 } 146 147 #define dpt_total_entries(dpt) ((dpt)->vm.total >> PAGE_SHIFT) 148 149 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 150 { 151 writeq(pte, addr); 152 } 153 154 static void dpt_insert_page(struct i915_address_space *vm, 155 dma_addr_t addr, 156 u64 offset, 157 enum i915_cache_level level, 158 u32 flags) 159 { 160 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 161 gen8_pte_t __iomem *base = dpt->iomem; 162 163 gen8_set_pte(base + offset / I915_GTT_PAGE_SIZE, 164 vm->pte_encode(addr, level, flags)); 165 } 166 167 static void dpt_insert_entries(struct i915_address_space *vm, 168 struct i915_vma *vma, 169 enum i915_cache_level level, 170 u32 flags) 171 { 172 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 173 gen8_pte_t __iomem *base = dpt->iomem; 174 const gen8_pte_t pte_encode = vm->pte_encode(0, level, flags); 175 struct sgt_iter sgt_iter; 176 dma_addr_t addr; 177 int i; 178 179 /* 180 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 181 * not to allow the user to override access to a read only page. 182 */ 183 184 i = vma->node.start / I915_GTT_PAGE_SIZE; 185 for_each_sgt_daddr(addr, sgt_iter, vma->pages) 186 gen8_set_pte(&base[i++], pte_encode | addr); 187 } 188 189 static void dpt_clear_range(struct i915_address_space *vm, 190 u64 start, u64 length) 191 { 192 } 193 194 static void dpt_bind_vma(struct i915_address_space *vm, 195 struct i915_vm_pt_stash *stash, 196 struct i915_vma *vma, 197 enum i915_cache_level cache_level, 198 u32 flags) 199 { 200 struct drm_i915_gem_object *obj = vma->obj; 201 u32 pte_flags; 202 203 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 204 pte_flags = 0; 205 if (vma->vm->has_read_only && i915_gem_object_is_readonly(obj)) 206 pte_flags |= PTE_READ_ONLY; 207 if (i915_gem_object_is_lmem(obj)) 208 pte_flags |= PTE_LM; 209 210 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 211 212 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 213 214 /* 215 * Without aliasing PPGTT there's no difference between 216 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 217 * upgrade to both bound if we bind either to avoid double-binding. 218 */ 219 atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags); 220 } 221 222 static void dpt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma) 223 { 224 vm->clear_range(vm, vma->node.start, vma->size); 225 } 226 227 static void dpt_cleanup(struct i915_address_space *vm) 228 { 229 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 230 231 i915_gem_object_put(dpt->obj); 232 } 233 234 static struct i915_address_space * 235 intel_dpt_create(struct intel_framebuffer *fb) 236 { 237 struct drm_gem_object *obj = &intel_fb_obj(&fb->base)->base; 238 struct drm_i915_private *i915 = to_i915(obj->dev); 239 struct drm_i915_gem_object *dpt_obj; 240 struct i915_address_space *vm; 241 struct i915_dpt *dpt; 242 size_t size; 243 int ret; 244 245 if (intel_fb_needs_pot_stride_remap(fb)) 246 size = intel_remapped_info_size(&fb->remapped_view.gtt.remapped); 247 else 248 size = DIV_ROUND_UP_ULL(obj->size, I915_GTT_PAGE_SIZE); 249 250 size = round_up(size * sizeof(gen8_pte_t), I915_GTT_PAGE_SIZE); 251 252 if (HAS_LMEM(i915)) 253 dpt_obj = i915_gem_object_create_lmem(i915, size, 0); 254 else 255 dpt_obj = i915_gem_object_create_stolen(i915, size); 256 if (IS_ERR(dpt_obj)) 257 return ERR_CAST(dpt_obj); 258 259 ret = i915_gem_object_set_cache_level(dpt_obj, I915_CACHE_NONE); 260 if (ret) { 261 i915_gem_object_put(dpt_obj); 262 return ERR_PTR(ret); 263 } 264 265 dpt = kzalloc(sizeof(*dpt), GFP_KERNEL); 266 if (!dpt) { 267 i915_gem_object_put(dpt_obj); 268 return ERR_PTR(-ENOMEM); 269 } 270 271 vm = &dpt->vm; 272 273 vm->gt = &i915->gt; 274 vm->i915 = i915; 275 vm->dma = i915->drm.dev; 276 vm->total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 277 vm->is_dpt = true; 278 279 i915_address_space_init(vm, VM_CLASS_DPT); 280 281 vm->insert_page = dpt_insert_page; 282 vm->clear_range = dpt_clear_range; 283 vm->insert_entries = dpt_insert_entries; 284 vm->cleanup = dpt_cleanup; 285 286 vm->vma_ops.bind_vma = dpt_bind_vma; 287 vm->vma_ops.unbind_vma = dpt_unbind_vma; 288 vm->vma_ops.set_pages = ggtt_set_pages; 289 vm->vma_ops.clear_pages = clear_pages; 290 291 vm->pte_encode = gen8_ggtt_pte_encode; 292 293 dpt->obj = dpt_obj; 294 295 return &dpt->vm; 296 } 297 298 static void intel_dpt_destroy(struct i915_address_space *vm) 299 { 300 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 301 302 i915_vm_close(&dpt->vm); 303 } 304 305 /* returns HPLL frequency in kHz */ 306 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 307 { 308 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 309 310 /* Obtain SKU information */ 311 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 312 CCK_FUSE_HPLL_FREQ_MASK; 313 314 return vco_freq[hpll_freq] * 1000; 315 } 316 317 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 318 const char *name, u32 reg, int ref_freq) 319 { 320 u32 val; 321 int divider; 322 323 val = vlv_cck_read(dev_priv, reg); 324 divider = val & CCK_FREQUENCY_VALUES; 325 326 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 327 (divider << CCK_FREQUENCY_STATUS_SHIFT), 328 "%s change in progress\n", name); 329 330 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 331 } 332 333 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 334 const char *name, u32 reg) 335 { 336 int hpll; 337 338 vlv_cck_get(dev_priv); 339 340 if (dev_priv->hpll_freq == 0) 341 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 342 343 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 344 345 vlv_cck_put(dev_priv); 346 347 return hpll; 348 } 349 350 static void intel_update_czclk(struct drm_i915_private *dev_priv) 351 { 352 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 353 return; 354 355 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 356 CCK_CZ_CLOCK_CONTROL); 357 358 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 359 dev_priv->czclk_freq); 360 } 361 362 /* WA Display #0827: Gen9:all */ 363 static void 364 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 365 { 366 if (enable) 367 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 368 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 369 else 370 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 371 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 372 } 373 374 /* Wa_2006604312:icl,ehl */ 375 static void 376 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 377 bool enable) 378 { 379 if (enable) 380 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 381 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 382 else 383 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 384 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 385 } 386 387 static bool 388 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 389 { 390 return crtc_state->master_transcoder != INVALID_TRANSCODER; 391 } 392 393 static bool 394 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 395 { 396 return crtc_state->sync_mode_slaves_mask != 0; 397 } 398 399 bool 400 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 401 { 402 return is_trans_port_sync_master(crtc_state) || 403 is_trans_port_sync_slave(crtc_state); 404 } 405 406 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 407 enum pipe pipe) 408 { 409 i915_reg_t reg = PIPEDSL(pipe); 410 u32 line1, line2; 411 u32 line_mask; 412 413 if (DISPLAY_VER(dev_priv) == 2) 414 line_mask = DSL_LINEMASK_GEN2; 415 else 416 line_mask = DSL_LINEMASK_GEN3; 417 418 line1 = intel_de_read(dev_priv, reg) & line_mask; 419 msleep(5); 420 line2 = intel_de_read(dev_priv, reg) & line_mask; 421 422 return line1 != line2; 423 } 424 425 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 426 { 427 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 428 enum pipe pipe = crtc->pipe; 429 430 /* Wait for the display line to settle/start moving */ 431 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 432 drm_err(&dev_priv->drm, 433 "pipe %c scanline %s wait timed out\n", 434 pipe_name(pipe), onoff(state)); 435 } 436 437 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 438 { 439 wait_for_pipe_scanline_moving(crtc, false); 440 } 441 442 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 443 { 444 wait_for_pipe_scanline_moving(crtc, true); 445 } 446 447 static void 448 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 449 { 450 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 451 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 452 453 if (DISPLAY_VER(dev_priv) >= 4) { 454 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 455 i915_reg_t reg = PIPECONF(cpu_transcoder); 456 457 /* Wait for the Pipe State to go off */ 458 if (intel_de_wait_for_clear(dev_priv, reg, 459 I965_PIPECONF_ACTIVE, 100)) 460 drm_WARN(&dev_priv->drm, 1, 461 "pipe_off wait timed out\n"); 462 } else { 463 intel_wait_for_pipe_scanline_stopped(crtc); 464 } 465 } 466 467 /* Only for pre-ILK configs */ 468 void assert_pll(struct drm_i915_private *dev_priv, 469 enum pipe pipe, bool state) 470 { 471 u32 val; 472 bool cur_state; 473 474 val = intel_de_read(dev_priv, DPLL(pipe)); 475 cur_state = !!(val & DPLL_VCO_ENABLE); 476 I915_STATE_WARN(cur_state != state, 477 "PLL state assertion failure (expected %s, current %s)\n", 478 onoff(state), onoff(cur_state)); 479 } 480 481 /* XXX: the dsi pll is shared between MIPI DSI ports */ 482 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 483 { 484 u32 val; 485 bool cur_state; 486 487 vlv_cck_get(dev_priv); 488 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 489 vlv_cck_put(dev_priv); 490 491 cur_state = val & DSI_PLL_VCO_EN; 492 I915_STATE_WARN(cur_state != state, 493 "DSI PLL state assertion failure (expected %s, current %s)\n", 494 onoff(state), onoff(cur_state)); 495 } 496 497 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 498 enum pipe pipe, bool state) 499 { 500 bool cur_state; 501 502 if (HAS_DDI(dev_priv)) { 503 /* 504 * DDI does not have a specific FDI_TX register. 505 * 506 * FDI is never fed from EDP transcoder 507 * so pipe->transcoder cast is fine here. 508 */ 509 enum transcoder cpu_transcoder = (enum transcoder)pipe; 510 u32 val = intel_de_read(dev_priv, 511 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 512 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 513 } else { 514 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 515 cur_state = !!(val & FDI_TX_ENABLE); 516 } 517 I915_STATE_WARN(cur_state != state, 518 "FDI TX state assertion failure (expected %s, current %s)\n", 519 onoff(state), onoff(cur_state)); 520 } 521 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 522 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 523 524 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 525 enum pipe pipe, bool state) 526 { 527 u32 val; 528 bool cur_state; 529 530 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 531 cur_state = !!(val & FDI_RX_ENABLE); 532 I915_STATE_WARN(cur_state != state, 533 "FDI RX state assertion failure (expected %s, current %s)\n", 534 onoff(state), onoff(cur_state)); 535 } 536 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 537 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 538 539 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 540 enum pipe pipe) 541 { 542 u32 val; 543 544 /* ILK FDI PLL is always enabled */ 545 if (IS_IRONLAKE(dev_priv)) 546 return; 547 548 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 549 if (HAS_DDI(dev_priv)) 550 return; 551 552 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 553 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 554 } 555 556 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 557 enum pipe pipe, bool state) 558 { 559 u32 val; 560 bool cur_state; 561 562 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 563 cur_state = !!(val & FDI_RX_PLL_ENABLE); 564 I915_STATE_WARN(cur_state != state, 565 "FDI RX PLL assertion failure (expected %s, current %s)\n", 566 onoff(state), onoff(cur_state)); 567 } 568 569 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 570 { 571 i915_reg_t pp_reg; 572 u32 val; 573 enum pipe panel_pipe = INVALID_PIPE; 574 bool locked = true; 575 576 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 577 return; 578 579 if (HAS_PCH_SPLIT(dev_priv)) { 580 u32 port_sel; 581 582 pp_reg = PP_CONTROL(0); 583 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 584 585 switch (port_sel) { 586 case PANEL_PORT_SELECT_LVDS: 587 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 588 break; 589 case PANEL_PORT_SELECT_DPA: 590 g4x_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 591 break; 592 case PANEL_PORT_SELECT_DPC: 593 g4x_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 594 break; 595 case PANEL_PORT_SELECT_DPD: 596 g4x_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 597 break; 598 default: 599 MISSING_CASE(port_sel); 600 break; 601 } 602 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 603 /* presumably write lock depends on pipe, not port select */ 604 pp_reg = PP_CONTROL(pipe); 605 panel_pipe = pipe; 606 } else { 607 u32 port_sel; 608 609 pp_reg = PP_CONTROL(0); 610 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 611 612 drm_WARN_ON(&dev_priv->drm, 613 port_sel != PANEL_PORT_SELECT_LVDS); 614 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 615 } 616 617 val = intel_de_read(dev_priv, pp_reg); 618 if (!(val & PANEL_POWER_ON) || 619 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 620 locked = false; 621 622 I915_STATE_WARN(panel_pipe == pipe && locked, 623 "panel assertion failure, pipe %c regs locked\n", 624 pipe_name(pipe)); 625 } 626 627 void assert_pipe(struct drm_i915_private *dev_priv, 628 enum transcoder cpu_transcoder, bool state) 629 { 630 bool cur_state; 631 enum intel_display_power_domain power_domain; 632 intel_wakeref_t wakeref; 633 634 /* we keep both pipes enabled on 830 */ 635 if (IS_I830(dev_priv)) 636 state = true; 637 638 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 639 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 640 if (wakeref) { 641 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 642 cur_state = !!(val & PIPECONF_ENABLE); 643 644 intel_display_power_put(dev_priv, power_domain, wakeref); 645 } else { 646 cur_state = false; 647 } 648 649 I915_STATE_WARN(cur_state != state, 650 "transcoder %s assertion failure (expected %s, current %s)\n", 651 transcoder_name(cpu_transcoder), 652 onoff(state), onoff(cur_state)); 653 } 654 655 static void assert_plane(struct intel_plane *plane, bool state) 656 { 657 enum pipe pipe; 658 bool cur_state; 659 660 cur_state = plane->get_hw_state(plane, &pipe); 661 662 I915_STATE_WARN(cur_state != state, 663 "%s assertion failure (expected %s, current %s)\n", 664 plane->base.name, onoff(state), onoff(cur_state)); 665 } 666 667 #define assert_plane_enabled(p) assert_plane(p, true) 668 #define assert_plane_disabled(p) assert_plane(p, false) 669 670 static void assert_planes_disabled(struct intel_crtc *crtc) 671 { 672 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 673 struct intel_plane *plane; 674 675 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 676 assert_plane_disabled(plane); 677 } 678 679 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 680 enum pipe pipe) 681 { 682 u32 val; 683 bool enabled; 684 685 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 686 enabled = !!(val & TRANS_ENABLE); 687 I915_STATE_WARN(enabled, 688 "transcoder assertion failed, should be off on pipe %c but is still active\n", 689 pipe_name(pipe)); 690 } 691 692 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 693 enum pipe pipe, enum port port, 694 i915_reg_t dp_reg) 695 { 696 enum pipe port_pipe; 697 bool state; 698 699 state = g4x_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 700 701 I915_STATE_WARN(state && port_pipe == pipe, 702 "PCH DP %c enabled on transcoder %c, should be disabled\n", 703 port_name(port), pipe_name(pipe)); 704 705 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 706 "IBX PCH DP %c still using transcoder B\n", 707 port_name(port)); 708 } 709 710 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 711 enum pipe pipe, enum port port, 712 i915_reg_t hdmi_reg) 713 { 714 enum pipe port_pipe; 715 bool state; 716 717 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 718 719 I915_STATE_WARN(state && port_pipe == pipe, 720 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 721 port_name(port), pipe_name(pipe)); 722 723 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 724 "IBX PCH HDMI %c still using transcoder B\n", 725 port_name(port)); 726 } 727 728 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 729 enum pipe pipe) 730 { 731 enum pipe port_pipe; 732 733 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 734 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 735 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 736 737 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 738 port_pipe == pipe, 739 "PCH VGA enabled on transcoder %c, should be disabled\n", 740 pipe_name(pipe)); 741 742 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 743 port_pipe == pipe, 744 "PCH LVDS enabled on transcoder %c, should be disabled\n", 745 pipe_name(pipe)); 746 747 /* PCH SDVOB multiplex with HDMIB */ 748 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 749 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 750 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 751 } 752 753 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 754 struct intel_digital_port *dig_port, 755 unsigned int expected_mask) 756 { 757 u32 port_mask; 758 i915_reg_t dpll_reg; 759 760 switch (dig_port->base.port) { 761 case PORT_B: 762 port_mask = DPLL_PORTB_READY_MASK; 763 dpll_reg = DPLL(0); 764 break; 765 case PORT_C: 766 port_mask = DPLL_PORTC_READY_MASK; 767 dpll_reg = DPLL(0); 768 expected_mask <<= 4; 769 break; 770 case PORT_D: 771 port_mask = DPLL_PORTD_READY_MASK; 772 dpll_reg = DPIO_PHY_STATUS; 773 break; 774 default: 775 BUG(); 776 } 777 778 if (intel_de_wait_for_register(dev_priv, dpll_reg, 779 port_mask, expected_mask, 1000)) 780 drm_WARN(&dev_priv->drm, 1, 781 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 782 dig_port->base.base.base.id, dig_port->base.base.name, 783 intel_de_read(dev_priv, dpll_reg) & port_mask, 784 expected_mask); 785 } 786 787 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 788 { 789 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 790 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 791 enum pipe pipe = crtc->pipe; 792 i915_reg_t reg; 793 u32 val, pipeconf_val; 794 795 /* Make sure PCH DPLL is enabled */ 796 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 797 798 /* FDI must be feeding us bits for PCH ports */ 799 assert_fdi_tx_enabled(dev_priv, pipe); 800 assert_fdi_rx_enabled(dev_priv, pipe); 801 802 if (HAS_PCH_CPT(dev_priv)) { 803 reg = TRANS_CHICKEN2(pipe); 804 val = intel_de_read(dev_priv, reg); 805 /* 806 * Workaround: Set the timing override bit 807 * before enabling the pch transcoder. 808 */ 809 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 810 /* Configure frame start delay to match the CPU */ 811 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 812 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 813 intel_de_write(dev_priv, reg, val); 814 } 815 816 reg = PCH_TRANSCONF(pipe); 817 val = intel_de_read(dev_priv, reg); 818 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 819 820 if (HAS_PCH_IBX(dev_priv)) { 821 /* Configure frame start delay to match the CPU */ 822 val &= ~TRANS_FRAME_START_DELAY_MASK; 823 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 824 825 /* 826 * Make the BPC in transcoder be consistent with 827 * that in pipeconf reg. For HDMI we must use 8bpc 828 * here for both 8bpc and 12bpc. 829 */ 830 val &= ~PIPECONF_BPC_MASK; 831 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 832 val |= PIPECONF_8BPC; 833 else 834 val |= pipeconf_val & PIPECONF_BPC_MASK; 835 } 836 837 val &= ~TRANS_INTERLACE_MASK; 838 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 839 if (HAS_PCH_IBX(dev_priv) && 840 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 841 val |= TRANS_LEGACY_INTERLACED_ILK; 842 else 843 val |= TRANS_INTERLACED; 844 } else { 845 val |= TRANS_PROGRESSIVE; 846 } 847 848 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 849 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 850 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 851 pipe_name(pipe)); 852 } 853 854 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 855 enum transcoder cpu_transcoder) 856 { 857 u32 val, pipeconf_val; 858 859 /* FDI must be feeding us bits for PCH ports */ 860 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 861 assert_fdi_rx_enabled(dev_priv, PIPE_A); 862 863 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 864 /* Workaround: set timing override bit. */ 865 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 866 /* Configure frame start delay to match the CPU */ 867 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 868 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 869 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 870 871 val = TRANS_ENABLE; 872 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 873 874 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 875 PIPECONF_INTERLACED_ILK) 876 val |= TRANS_INTERLACED; 877 else 878 val |= TRANS_PROGRESSIVE; 879 880 intel_de_write(dev_priv, LPT_TRANSCONF, val); 881 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 882 TRANS_STATE_ENABLE, 100)) 883 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 884 } 885 886 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 887 enum pipe pipe) 888 { 889 i915_reg_t reg; 890 u32 val; 891 892 /* FDI relies on the transcoder */ 893 assert_fdi_tx_disabled(dev_priv, pipe); 894 assert_fdi_rx_disabled(dev_priv, pipe); 895 896 /* Ports must be off as well */ 897 assert_pch_ports_disabled(dev_priv, pipe); 898 899 reg = PCH_TRANSCONF(pipe); 900 val = intel_de_read(dev_priv, reg); 901 val &= ~TRANS_ENABLE; 902 intel_de_write(dev_priv, reg, val); 903 /* wait for PCH transcoder off, transcoder state */ 904 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 905 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 906 pipe_name(pipe)); 907 908 if (HAS_PCH_CPT(dev_priv)) { 909 /* Workaround: Clear the timing override chicken bit again. */ 910 reg = TRANS_CHICKEN2(pipe); 911 val = intel_de_read(dev_priv, reg); 912 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 913 intel_de_write(dev_priv, reg, val); 914 } 915 } 916 917 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 918 { 919 u32 val; 920 921 val = intel_de_read(dev_priv, LPT_TRANSCONF); 922 val &= ~TRANS_ENABLE; 923 intel_de_write(dev_priv, LPT_TRANSCONF, val); 924 /* wait for PCH transcoder off, transcoder state */ 925 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 926 TRANS_STATE_ENABLE, 50)) 927 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 928 929 /* Workaround: clear timing override bit. */ 930 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 931 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 932 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 933 } 934 935 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 936 { 937 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 938 939 if (HAS_PCH_LPT(dev_priv)) 940 return PIPE_A; 941 else 942 return crtc->pipe; 943 } 944 945 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 946 { 947 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 948 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 949 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 950 enum pipe pipe = crtc->pipe; 951 i915_reg_t reg; 952 u32 val; 953 954 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 955 956 assert_planes_disabled(crtc); 957 958 /* 959 * A pipe without a PLL won't actually be able to drive bits from 960 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 961 * need the check. 962 */ 963 if (HAS_GMCH(dev_priv)) { 964 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 965 assert_dsi_pll_enabled(dev_priv); 966 else 967 assert_pll_enabled(dev_priv, pipe); 968 } else { 969 if (new_crtc_state->has_pch_encoder) { 970 /* if driving the PCH, we need FDI enabled */ 971 assert_fdi_rx_pll_enabled(dev_priv, 972 intel_crtc_pch_transcoder(crtc)); 973 assert_fdi_tx_pll_enabled(dev_priv, 974 (enum pipe) cpu_transcoder); 975 } 976 /* FIXME: assert CPU port conditions for SNB+ */ 977 } 978 979 /* Wa_22012358565:adl-p */ 980 if (DISPLAY_VER(dev_priv) == 13) 981 intel_de_rmw(dev_priv, PIPE_ARB_CTL(pipe), 982 0, PIPE_ARB_USE_PROG_SLOTS); 983 984 reg = PIPECONF(cpu_transcoder); 985 val = intel_de_read(dev_priv, reg); 986 if (val & PIPECONF_ENABLE) { 987 /* we keep both pipes enabled on 830 */ 988 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 989 return; 990 } 991 992 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 993 intel_de_posting_read(dev_priv, reg); 994 995 /* 996 * Until the pipe starts PIPEDSL reads will return a stale value, 997 * which causes an apparent vblank timestamp jump when PIPEDSL 998 * resets to its proper value. That also messes up the frame count 999 * when it's derived from the timestamps. So let's wait for the 1000 * pipe to start properly before we call drm_crtc_vblank_on() 1001 */ 1002 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1003 intel_wait_for_pipe_scanline_moving(crtc); 1004 } 1005 1006 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1007 { 1008 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1009 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1010 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1011 enum pipe pipe = crtc->pipe; 1012 i915_reg_t reg; 1013 u32 val; 1014 1015 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1016 1017 /* 1018 * Make sure planes won't keep trying to pump pixels to us, 1019 * or we might hang the display. 1020 */ 1021 assert_planes_disabled(crtc); 1022 1023 reg = PIPECONF(cpu_transcoder); 1024 val = intel_de_read(dev_priv, reg); 1025 if ((val & PIPECONF_ENABLE) == 0) 1026 return; 1027 1028 /* 1029 * Double wide has implications for planes 1030 * so best keep it disabled when not needed. 1031 */ 1032 if (old_crtc_state->double_wide) 1033 val &= ~PIPECONF_DOUBLE_WIDE; 1034 1035 /* Don't disable pipe or pipe PLLs if needed */ 1036 if (!IS_I830(dev_priv)) 1037 val &= ~PIPECONF_ENABLE; 1038 1039 if (DISPLAY_VER(dev_priv) >= 12) 1040 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 1041 FECSTALL_DIS_DPTSTREAM_DPTTG, 0); 1042 1043 intel_de_write(dev_priv, reg, val); 1044 if ((val & PIPECONF_ENABLE) == 0) 1045 intel_wait_for_pipe_off(old_crtc_state); 1046 } 1047 1048 bool 1049 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 1050 u64 modifier) 1051 { 1052 return info->is_yuv && 1053 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 1054 } 1055 1056 unsigned int 1057 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 1058 { 1059 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1060 unsigned int cpp = fb->format->cpp[color_plane]; 1061 1062 switch (fb->modifier) { 1063 case DRM_FORMAT_MOD_LINEAR: 1064 return intel_tile_size(dev_priv); 1065 case I915_FORMAT_MOD_X_TILED: 1066 if (DISPLAY_VER(dev_priv) == 2) 1067 return 128; 1068 else 1069 return 512; 1070 case I915_FORMAT_MOD_Y_TILED_CCS: 1071 if (is_ccs_plane(fb, color_plane)) 1072 return 128; 1073 fallthrough; 1074 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1075 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1076 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1077 if (is_ccs_plane(fb, color_plane)) 1078 return 64; 1079 fallthrough; 1080 case I915_FORMAT_MOD_Y_TILED: 1081 if (DISPLAY_VER(dev_priv) == 2 || HAS_128_BYTE_Y_TILING(dev_priv)) 1082 return 128; 1083 else 1084 return 512; 1085 case I915_FORMAT_MOD_Yf_TILED_CCS: 1086 if (is_ccs_plane(fb, color_plane)) 1087 return 128; 1088 fallthrough; 1089 case I915_FORMAT_MOD_Yf_TILED: 1090 switch (cpp) { 1091 case 1: 1092 return 64; 1093 case 2: 1094 case 4: 1095 return 128; 1096 case 8: 1097 case 16: 1098 return 256; 1099 default: 1100 MISSING_CASE(cpp); 1101 return cpp; 1102 } 1103 break; 1104 default: 1105 MISSING_CASE(fb->modifier); 1106 return cpp; 1107 } 1108 } 1109 1110 unsigned int 1111 intel_fb_align_height(const struct drm_framebuffer *fb, 1112 int color_plane, unsigned int height) 1113 { 1114 unsigned int tile_height = intel_tile_height(fb, color_plane); 1115 1116 return ALIGN(height, tile_height); 1117 } 1118 1119 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 1120 { 1121 unsigned int size = 0; 1122 int i; 1123 1124 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 1125 size += rot_info->plane[i].dst_stride * rot_info->plane[i].width; 1126 1127 return size; 1128 } 1129 1130 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 1131 { 1132 unsigned int size = 0; 1133 int i; 1134 1135 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1136 size += rem_info->plane[i].dst_stride * rem_info->plane[i].height; 1137 1138 return size; 1139 } 1140 1141 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 1142 { 1143 if (DISPLAY_VER(dev_priv) >= 9) 1144 return 256 * 1024; 1145 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 1146 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1147 return 128 * 1024; 1148 else if (DISPLAY_VER(dev_priv) >= 4) 1149 return 4 * 1024; 1150 else 1151 return 0; 1152 } 1153 1154 static bool has_async_flips(struct drm_i915_private *i915) 1155 { 1156 return DISPLAY_VER(i915) >= 5; 1157 } 1158 1159 unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 1160 int color_plane) 1161 { 1162 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1163 1164 if (intel_fb_uses_dpt(fb)) 1165 return 512 * 4096; 1166 1167 /* AUX_DIST needs only 4K alignment */ 1168 if (is_ccs_plane(fb, color_plane)) 1169 return 4096; 1170 1171 if (is_semiplanar_uv_plane(fb, color_plane)) { 1172 /* 1173 * TODO: cross-check wrt. the bspec stride in bytes * 64 bytes 1174 * alignment for linear UV planes on all platforms. 1175 */ 1176 if (DISPLAY_VER(dev_priv) >= 12) { 1177 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) 1178 return intel_linear_alignment(dev_priv); 1179 1180 return intel_tile_row_size(fb, color_plane); 1181 } 1182 1183 return 4096; 1184 } 1185 1186 drm_WARN_ON(&dev_priv->drm, color_plane != 0); 1187 1188 switch (fb->modifier) { 1189 case DRM_FORMAT_MOD_LINEAR: 1190 return intel_linear_alignment(dev_priv); 1191 case I915_FORMAT_MOD_X_TILED: 1192 if (has_async_flips(dev_priv)) 1193 return 256 * 1024; 1194 return 0; 1195 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1196 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1197 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1198 return 16 * 1024; 1199 case I915_FORMAT_MOD_Y_TILED_CCS: 1200 case I915_FORMAT_MOD_Yf_TILED_CCS: 1201 case I915_FORMAT_MOD_Y_TILED: 1202 case I915_FORMAT_MOD_Yf_TILED: 1203 return 1 * 1024 * 1024; 1204 default: 1205 MISSING_CASE(fb->modifier); 1206 return 0; 1207 } 1208 } 1209 1210 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 1211 { 1212 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1213 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1214 1215 return DISPLAY_VER(dev_priv) < 4 || 1216 (plane->has_fbc && 1217 plane_state->view.gtt.type == I915_GGTT_VIEW_NORMAL); 1218 } 1219 1220 static struct i915_vma * 1221 intel_pin_fb_obj_dpt(struct drm_framebuffer *fb, 1222 const struct i915_ggtt_view *view, 1223 bool uses_fence, 1224 unsigned long *out_flags, 1225 struct i915_address_space *vm) 1226 { 1227 struct drm_device *dev = fb->dev; 1228 struct drm_i915_private *dev_priv = to_i915(dev); 1229 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1230 struct i915_vma *vma; 1231 u32 alignment; 1232 int ret; 1233 1234 if (WARN_ON(!i915_gem_object_is_framebuffer(obj))) 1235 return ERR_PTR(-EINVAL); 1236 1237 alignment = 4096 * 512; 1238 1239 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1240 1241 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 1242 if (ret) { 1243 vma = ERR_PTR(ret); 1244 goto err; 1245 } 1246 1247 vma = i915_vma_instance(obj, vm, view); 1248 if (IS_ERR(vma)) 1249 goto err; 1250 1251 if (i915_vma_misplaced(vma, 0, alignment, 0)) { 1252 ret = i915_vma_unbind(vma); 1253 if (ret) { 1254 vma = ERR_PTR(ret); 1255 goto err; 1256 } 1257 } 1258 1259 ret = i915_vma_pin(vma, 0, alignment, PIN_GLOBAL); 1260 if (ret) { 1261 vma = ERR_PTR(ret); 1262 goto err; 1263 } 1264 1265 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 1266 1267 i915_gem_object_flush_if_display(obj); 1268 1269 i915_vma_get(vma); 1270 err: 1271 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1272 1273 return vma; 1274 } 1275 1276 struct i915_vma * 1277 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 1278 bool phys_cursor, 1279 const struct i915_ggtt_view *view, 1280 bool uses_fence, 1281 unsigned long *out_flags) 1282 { 1283 struct drm_device *dev = fb->dev; 1284 struct drm_i915_private *dev_priv = to_i915(dev); 1285 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1286 intel_wakeref_t wakeref; 1287 struct i915_gem_ww_ctx ww; 1288 struct i915_vma *vma; 1289 unsigned int pinctl; 1290 u32 alignment; 1291 int ret; 1292 1293 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 1294 return ERR_PTR(-EINVAL); 1295 1296 if (phys_cursor) 1297 alignment = intel_cursor_alignment(dev_priv); 1298 else 1299 alignment = intel_surf_alignment(fb, 0); 1300 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 1301 return ERR_PTR(-EINVAL); 1302 1303 /* Note that the w/a also requires 64 PTE of padding following the 1304 * bo. We currently fill all unused PTE with the shadow page and so 1305 * we should always have valid PTE following the scanout preventing 1306 * the VT-d warning. 1307 */ 1308 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 1309 alignment = 256 * 1024; 1310 1311 /* 1312 * Global gtt pte registers are special registers which actually forward 1313 * writes to a chunk of system memory. Which means that there is no risk 1314 * that the register values disappear as soon as we call 1315 * intel_runtime_pm_put(), so it is correct to wrap only the 1316 * pin/unpin/fence and not more. 1317 */ 1318 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 1319 1320 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1321 1322 /* 1323 * Valleyview is definitely limited to scanning out the first 1324 * 512MiB. Lets presume this behaviour was inherited from the 1325 * g4x display engine and that all earlier gen are similarly 1326 * limited. Testing suggests that it is a little more 1327 * complicated than this. For example, Cherryview appears quite 1328 * happy to scanout from anywhere within its global aperture. 1329 */ 1330 pinctl = 0; 1331 if (HAS_GMCH(dev_priv)) 1332 pinctl |= PIN_MAPPABLE; 1333 1334 i915_gem_ww_ctx_init(&ww, true); 1335 retry: 1336 ret = i915_gem_object_lock(obj, &ww); 1337 if (!ret && phys_cursor) 1338 ret = i915_gem_object_attach_phys(obj, alignment); 1339 else if (!ret && HAS_LMEM(dev_priv)) 1340 ret = i915_gem_object_migrate(obj, &ww, INTEL_REGION_LMEM); 1341 /* TODO: Do we need to sync when migration becomes async? */ 1342 if (!ret) 1343 ret = i915_gem_object_pin_pages(obj); 1344 if (ret) 1345 goto err; 1346 1347 if (!ret) { 1348 vma = i915_gem_object_pin_to_display_plane(obj, &ww, alignment, 1349 view, pinctl); 1350 if (IS_ERR(vma)) { 1351 ret = PTR_ERR(vma); 1352 goto err_unpin; 1353 } 1354 } 1355 1356 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 1357 /* 1358 * Install a fence for tiled scan-out. Pre-i965 always needs a 1359 * fence, whereas 965+ only requires a fence if using 1360 * framebuffer compression. For simplicity, we always, when 1361 * possible, install a fence as the cost is not that onerous. 1362 * 1363 * If we fail to fence the tiled scanout, then either the 1364 * modeset will reject the change (which is highly unlikely as 1365 * the affected systems, all but one, do not have unmappable 1366 * space) or we will not be able to enable full powersaving 1367 * techniques (also likely not to apply due to various limits 1368 * FBC and the like impose on the size of the buffer, which 1369 * presumably we violated anyway with this unmappable buffer). 1370 * Anyway, it is presumably better to stumble onwards with 1371 * something and try to run the system in a "less than optimal" 1372 * mode that matches the user configuration. 1373 */ 1374 ret = i915_vma_pin_fence(vma); 1375 if (ret != 0 && DISPLAY_VER(dev_priv) < 4) { 1376 i915_vma_unpin(vma); 1377 goto err_unpin; 1378 } 1379 ret = 0; 1380 1381 if (vma->fence) 1382 *out_flags |= PLANE_HAS_FENCE; 1383 } 1384 1385 i915_vma_get(vma); 1386 1387 err_unpin: 1388 i915_gem_object_unpin_pages(obj); 1389 err: 1390 if (ret == -EDEADLK) { 1391 ret = i915_gem_ww_ctx_backoff(&ww); 1392 if (!ret) 1393 goto retry; 1394 } 1395 i915_gem_ww_ctx_fini(&ww); 1396 if (ret) 1397 vma = ERR_PTR(ret); 1398 1399 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1400 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 1401 return vma; 1402 } 1403 1404 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 1405 { 1406 if (flags & PLANE_HAS_FENCE) 1407 i915_vma_unpin_fence(vma); 1408 i915_vma_unpin(vma); 1409 i915_vma_put(vma); 1410 } 1411 1412 /* 1413 * Convert the x/y offsets into a linear offset. 1414 * Only valid with 0/180 degree rotation, which is fine since linear 1415 * offset is only used with linear buffers on pre-hsw and tiled buffers 1416 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 1417 */ 1418 u32 intel_fb_xy_to_linear(int x, int y, 1419 const struct intel_plane_state *state, 1420 int color_plane) 1421 { 1422 const struct drm_framebuffer *fb = state->hw.fb; 1423 unsigned int cpp = fb->format->cpp[color_plane]; 1424 unsigned int pitch = state->view.color_plane[color_plane].stride; 1425 1426 return y * pitch + x * cpp; 1427 } 1428 1429 /* 1430 * Add the x/y offsets derived from fb->offsets[] to the user 1431 * specified plane src x/y offsets. The resulting x/y offsets 1432 * specify the start of scanout from the beginning of the gtt mapping. 1433 */ 1434 void intel_add_fb_offsets(int *x, int *y, 1435 const struct intel_plane_state *state, 1436 int color_plane) 1437 1438 { 1439 *x += state->view.color_plane[color_plane].x; 1440 *y += state->view.color_plane[color_plane].y; 1441 } 1442 1443 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 1444 { 1445 switch (fb_modifier) { 1446 case I915_FORMAT_MOD_X_TILED: 1447 return I915_TILING_X; 1448 case I915_FORMAT_MOD_Y_TILED: 1449 case I915_FORMAT_MOD_Y_TILED_CCS: 1450 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1451 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1452 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1453 return I915_TILING_Y; 1454 default: 1455 return I915_TILING_NONE; 1456 } 1457 } 1458 1459 /* 1460 * From the Sky Lake PRM: 1461 * "The Color Control Surface (CCS) contains the compression status of 1462 * the cache-line pairs. The compression state of the cache-line pair 1463 * is specified by 2 bits in the CCS. Each CCS cache-line represents 1464 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 1465 * cache-line-pairs. CCS is always Y tiled." 1466 * 1467 * Since cache line pairs refers to horizontally adjacent cache lines, 1468 * each cache line in the CCS corresponds to an area of 32x16 cache 1469 * lines on the main surface. Since each pixel is 4 bytes, this gives 1470 * us a ratio of one byte in the CCS for each 8x16 pixels in the 1471 * main surface. 1472 */ 1473 static const struct drm_format_info skl_ccs_formats[] = { 1474 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1475 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1476 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1477 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1478 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1479 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1480 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1481 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1482 }; 1483 1484 /* 1485 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 1486 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 1487 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 1488 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 1489 * the main surface. 1490 */ 1491 static const struct drm_format_info gen12_ccs_formats[] = { 1492 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1493 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1494 .hsub = 1, .vsub = 1, }, 1495 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1496 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1497 .hsub = 1, .vsub = 1, }, 1498 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1499 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1500 .hsub = 1, .vsub = 1, .has_alpha = true }, 1501 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1502 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1503 .hsub = 1, .vsub = 1, .has_alpha = true }, 1504 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 1505 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1506 .hsub = 2, .vsub = 1, .is_yuv = true }, 1507 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 1508 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1509 .hsub = 2, .vsub = 1, .is_yuv = true }, 1510 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 1511 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1512 .hsub = 2, .vsub = 1, .is_yuv = true }, 1513 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 1514 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1515 .hsub = 2, .vsub = 1, .is_yuv = true }, 1516 { .format = DRM_FORMAT_XYUV8888, .num_planes = 2, 1517 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1518 .hsub = 1, .vsub = 1, .is_yuv = true }, 1519 { .format = DRM_FORMAT_NV12, .num_planes = 4, 1520 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 1521 .hsub = 2, .vsub = 2, .is_yuv = true }, 1522 { .format = DRM_FORMAT_P010, .num_planes = 4, 1523 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1524 .hsub = 2, .vsub = 2, .is_yuv = true }, 1525 { .format = DRM_FORMAT_P012, .num_planes = 4, 1526 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1527 .hsub = 2, .vsub = 2, .is_yuv = true }, 1528 { .format = DRM_FORMAT_P016, .num_planes = 4, 1529 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1530 .hsub = 2, .vsub = 2, .is_yuv = true }, 1531 }; 1532 1533 /* 1534 * Same as gen12_ccs_formats[] above, but with additional surface used 1535 * to pass Clear Color information in plane 2 with 64 bits of data. 1536 */ 1537 static const struct drm_format_info gen12_ccs_cc_formats[] = { 1538 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 3, 1539 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1540 .hsub = 1, .vsub = 1, }, 1541 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 3, 1542 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1543 .hsub = 1, .vsub = 1, }, 1544 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 3, 1545 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1546 .hsub = 1, .vsub = 1, .has_alpha = true }, 1547 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 3, 1548 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1549 .hsub = 1, .vsub = 1, .has_alpha = true }, 1550 }; 1551 1552 static const struct drm_format_info * 1553 lookup_format_info(const struct drm_format_info formats[], 1554 int num_formats, u32 format) 1555 { 1556 int i; 1557 1558 for (i = 0; i < num_formats; i++) { 1559 if (formats[i].format == format) 1560 return &formats[i]; 1561 } 1562 1563 return NULL; 1564 } 1565 1566 static const struct drm_format_info * 1567 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 1568 { 1569 switch (cmd->modifier[0]) { 1570 case I915_FORMAT_MOD_Y_TILED_CCS: 1571 case I915_FORMAT_MOD_Yf_TILED_CCS: 1572 return lookup_format_info(skl_ccs_formats, 1573 ARRAY_SIZE(skl_ccs_formats), 1574 cmd->pixel_format); 1575 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1576 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1577 return lookup_format_info(gen12_ccs_formats, 1578 ARRAY_SIZE(gen12_ccs_formats), 1579 cmd->pixel_format); 1580 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1581 return lookup_format_info(gen12_ccs_cc_formats, 1582 ARRAY_SIZE(gen12_ccs_cc_formats), 1583 cmd->pixel_format); 1584 default: 1585 return NULL; 1586 } 1587 } 1588 1589 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 1590 { 1591 return DIV_ROUND_UP(fb->pitches[skl_ccs_to_main_plane(fb, ccs_plane)], 1592 512) * 64; 1593 } 1594 1595 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 1596 u32 pixel_format, u64 modifier) 1597 { 1598 struct intel_crtc *crtc; 1599 struct intel_plane *plane; 1600 1601 if (!HAS_DISPLAY(dev_priv)) 1602 return 0; 1603 1604 /* 1605 * We assume the primary plane for pipe A has 1606 * the highest stride limits of them all, 1607 * if in case pipe A is disabled, use the first pipe from pipe_mask. 1608 */ 1609 crtc = intel_get_first_crtc(dev_priv); 1610 if (!crtc) 1611 return 0; 1612 1613 plane = to_intel_plane(crtc->base.primary); 1614 1615 return plane->max_stride(plane, pixel_format, modifier, 1616 DRM_MODE_ROTATE_0); 1617 } 1618 1619 static 1620 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 1621 u32 pixel_format, u64 modifier) 1622 { 1623 /* 1624 * Arbitrary limit for gen4+ chosen to match the 1625 * render engine max stride. 1626 * 1627 * The new CCS hash mode makes remapping impossible 1628 */ 1629 if (DISPLAY_VER(dev_priv) < 4 || is_ccs_modifier(modifier) || 1630 intel_modifier_uses_dpt(dev_priv, modifier)) 1631 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 1632 else if (DISPLAY_VER(dev_priv) >= 7) 1633 return 256 * 1024; 1634 else 1635 return 128 * 1024; 1636 } 1637 1638 static u32 1639 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 1640 { 1641 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1642 u32 tile_width; 1643 1644 if (is_surface_linear(fb, color_plane)) { 1645 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 1646 fb->format->format, 1647 fb->modifier); 1648 1649 /* 1650 * To make remapping with linear generally feasible 1651 * we need the stride to be page aligned. 1652 */ 1653 if (fb->pitches[color_plane] > max_stride && 1654 !is_ccs_modifier(fb->modifier)) 1655 return intel_tile_size(dev_priv); 1656 else 1657 return 64; 1658 } 1659 1660 tile_width = intel_tile_width_bytes(fb, color_plane); 1661 if (is_ccs_modifier(fb->modifier)) { 1662 /* 1663 * Display WA #0531: skl,bxt,kbl,glk 1664 * 1665 * Render decompression and plane width > 3840 1666 * combined with horizontal panning requires the 1667 * plane stride to be a multiple of 4. We'll just 1668 * require the entire fb to accommodate that to avoid 1669 * potential runtime errors at plane configuration time. 1670 */ 1671 if ((DISPLAY_VER(dev_priv) == 9 || IS_GEMINILAKE(dev_priv)) && 1672 color_plane == 0 && fb->width > 3840) 1673 tile_width *= 4; 1674 /* 1675 * The main surface pitch must be padded to a multiple of four 1676 * tile widths. 1677 */ 1678 else if (DISPLAY_VER(dev_priv) >= 12) 1679 tile_width *= 4; 1680 } 1681 return tile_width; 1682 } 1683 1684 static struct i915_vma * 1685 initial_plane_vma(struct drm_i915_private *i915, 1686 struct intel_initial_plane_config *plane_config) 1687 { 1688 struct drm_i915_gem_object *obj; 1689 struct i915_vma *vma; 1690 u32 base, size; 1691 1692 if (plane_config->size == 0) 1693 return NULL; 1694 1695 base = round_down(plane_config->base, 1696 I915_GTT_MIN_ALIGNMENT); 1697 size = round_up(plane_config->base + plane_config->size, 1698 I915_GTT_MIN_ALIGNMENT); 1699 size -= base; 1700 1701 /* 1702 * If the FB is too big, just don't use it since fbdev is not very 1703 * important and we should probably use that space with FBC or other 1704 * features. 1705 */ 1706 if (IS_ENABLED(CONFIG_FRAMEBUFFER_CONSOLE) && 1707 size * 2 > i915->stolen_usable_size) 1708 return NULL; 1709 1710 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 1711 if (IS_ERR(obj)) 1712 return NULL; 1713 1714 /* 1715 * Mark it WT ahead of time to avoid changing the 1716 * cache_level during fbdev initialization. The 1717 * unbind there would get stuck waiting for rcu. 1718 */ 1719 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ? 1720 I915_CACHE_WT : I915_CACHE_NONE); 1721 1722 switch (plane_config->tiling) { 1723 case I915_TILING_NONE: 1724 break; 1725 case I915_TILING_X: 1726 case I915_TILING_Y: 1727 obj->tiling_and_stride = 1728 plane_config->fb->base.pitches[0] | 1729 plane_config->tiling; 1730 break; 1731 default: 1732 MISSING_CASE(plane_config->tiling); 1733 goto err_obj; 1734 } 1735 1736 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 1737 if (IS_ERR(vma)) 1738 goto err_obj; 1739 1740 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 1741 goto err_obj; 1742 1743 if (i915_gem_object_is_tiled(obj) && 1744 !i915_vma_is_map_and_fenceable(vma)) 1745 goto err_obj; 1746 1747 return vma; 1748 1749 err_obj: 1750 i915_gem_object_put(obj); 1751 return NULL; 1752 } 1753 1754 static bool 1755 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 1756 struct intel_initial_plane_config *plane_config) 1757 { 1758 struct drm_device *dev = crtc->base.dev; 1759 struct drm_i915_private *dev_priv = to_i915(dev); 1760 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 1761 struct drm_framebuffer *fb = &plane_config->fb->base; 1762 struct i915_vma *vma; 1763 1764 switch (fb->modifier) { 1765 case DRM_FORMAT_MOD_LINEAR: 1766 case I915_FORMAT_MOD_X_TILED: 1767 case I915_FORMAT_MOD_Y_TILED: 1768 break; 1769 default: 1770 drm_dbg(&dev_priv->drm, 1771 "Unsupported modifier for initial FB: 0x%llx\n", 1772 fb->modifier); 1773 return false; 1774 } 1775 1776 vma = initial_plane_vma(dev_priv, plane_config); 1777 if (!vma) 1778 return false; 1779 1780 mode_cmd.pixel_format = fb->format->format; 1781 mode_cmd.width = fb->width; 1782 mode_cmd.height = fb->height; 1783 mode_cmd.pitches[0] = fb->pitches[0]; 1784 mode_cmd.modifier[0] = fb->modifier; 1785 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 1786 1787 if (intel_framebuffer_init(to_intel_framebuffer(fb), 1788 vma->obj, &mode_cmd)) { 1789 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 1790 goto err_vma; 1791 } 1792 1793 plane_config->vma = vma; 1794 return true; 1795 1796 err_vma: 1797 i915_vma_put(vma); 1798 return false; 1799 } 1800 1801 static void 1802 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 1803 struct intel_plane_state *plane_state, 1804 bool visible) 1805 { 1806 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1807 1808 plane_state->uapi.visible = visible; 1809 1810 if (visible) 1811 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 1812 else 1813 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 1814 } 1815 1816 static void fixup_plane_bitmasks(struct intel_crtc_state *crtc_state) 1817 { 1818 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1819 struct drm_plane *plane; 1820 1821 /* 1822 * Active_planes aliases if multiple "primary" or cursor planes 1823 * have been used on the same (or wrong) pipe. plane_mask uses 1824 * unique ids, hence we can use that to reconstruct active_planes. 1825 */ 1826 crtc_state->enabled_planes = 0; 1827 crtc_state->active_planes = 0; 1828 1829 drm_for_each_plane_mask(plane, &dev_priv->drm, 1830 crtc_state->uapi.plane_mask) { 1831 crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); 1832 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 1833 } 1834 } 1835 1836 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 1837 struct intel_plane *plane) 1838 { 1839 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1840 struct intel_crtc_state *crtc_state = 1841 to_intel_crtc_state(crtc->base.state); 1842 struct intel_plane_state *plane_state = 1843 to_intel_plane_state(plane->base.state); 1844 1845 drm_dbg_kms(&dev_priv->drm, 1846 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 1847 plane->base.base.id, plane->base.name, 1848 crtc->base.base.id, crtc->base.name); 1849 1850 intel_set_plane_visible(crtc_state, plane_state, false); 1851 fixup_plane_bitmasks(crtc_state); 1852 crtc_state->data_rate[plane->id] = 0; 1853 crtc_state->min_cdclk[plane->id] = 0; 1854 1855 if (plane->id == PLANE_PRIMARY) 1856 hsw_disable_ips(crtc_state); 1857 1858 /* 1859 * Vblank time updates from the shadow to live plane control register 1860 * are blocked if the memory self-refresh mode is active at that 1861 * moment. So to make sure the plane gets truly disabled, disable 1862 * first the self-refresh mode. The self-refresh enable bit in turn 1863 * will be checked/applied by the HW only at the next frame start 1864 * event which is after the vblank start event, so we need to have a 1865 * wait-for-vblank between disabling the plane and the pipe. 1866 */ 1867 if (HAS_GMCH(dev_priv) && 1868 intel_set_memory_cxsr(dev_priv, false)) 1869 intel_wait_for_vblank(dev_priv, crtc->pipe); 1870 1871 /* 1872 * Gen2 reports pipe underruns whenever all planes are disabled. 1873 * So disable underrun reporting before all the planes get disabled. 1874 */ 1875 if (DISPLAY_VER(dev_priv) == 2 && !crtc_state->active_planes) 1876 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 1877 1878 intel_disable_plane(plane, crtc_state); 1879 intel_wait_for_vblank(dev_priv, crtc->pipe); 1880 } 1881 1882 static struct i915_vma *intel_dpt_pin(struct i915_address_space *vm) 1883 { 1884 struct drm_i915_private *i915 = vm->i915; 1885 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1886 intel_wakeref_t wakeref; 1887 struct i915_vma *vma; 1888 void __iomem *iomem; 1889 1890 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 1891 atomic_inc(&i915->gpu_error.pending_fb_pin); 1892 1893 vma = i915_gem_object_ggtt_pin(dpt->obj, NULL, 0, 4096, 1894 HAS_LMEM(i915) ? 0 : PIN_MAPPABLE); 1895 if (IS_ERR(vma)) 1896 goto err; 1897 1898 iomem = i915_vma_pin_iomap(vma); 1899 i915_vma_unpin(vma); 1900 if (IS_ERR(iomem)) { 1901 vma = iomem; 1902 goto err; 1903 } 1904 1905 dpt->vma = vma; 1906 dpt->iomem = iomem; 1907 1908 i915_vma_get(vma); 1909 1910 err: 1911 atomic_dec(&i915->gpu_error.pending_fb_pin); 1912 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 1913 1914 return vma; 1915 } 1916 1917 static void intel_dpt_unpin(struct i915_address_space *vm) 1918 { 1919 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1920 1921 i915_vma_unpin_iomap(dpt->vma); 1922 i915_vma_put(dpt->vma); 1923 } 1924 1925 static bool 1926 intel_reuse_initial_plane_obj(struct drm_i915_private *i915, 1927 const struct intel_initial_plane_config *plane_config, 1928 struct drm_framebuffer **fb, 1929 struct i915_vma **vma) 1930 { 1931 struct intel_crtc *crtc; 1932 1933 for_each_intel_crtc(&i915->drm, crtc) { 1934 struct intel_crtc_state *crtc_state = 1935 to_intel_crtc_state(crtc->base.state); 1936 struct intel_plane *plane = 1937 to_intel_plane(crtc->base.primary); 1938 struct intel_plane_state *plane_state = 1939 to_intel_plane_state(plane->base.state); 1940 1941 if (!crtc_state->uapi.active) 1942 continue; 1943 1944 if (!plane_state->ggtt_vma) 1945 continue; 1946 1947 if (intel_plane_ggtt_offset(plane_state) == plane_config->base) { 1948 *fb = plane_state->hw.fb; 1949 *vma = plane_state->ggtt_vma; 1950 return true; 1951 } 1952 } 1953 1954 return false; 1955 } 1956 1957 static void 1958 intel_find_initial_plane_obj(struct intel_crtc *crtc, 1959 struct intel_initial_plane_config *plane_config) 1960 { 1961 struct drm_device *dev = crtc->base.dev; 1962 struct drm_i915_private *dev_priv = to_i915(dev); 1963 struct intel_crtc_state *crtc_state = 1964 to_intel_crtc_state(crtc->base.state); 1965 struct intel_plane *plane = 1966 to_intel_plane(crtc->base.primary); 1967 struct intel_plane_state *plane_state = 1968 to_intel_plane_state(plane->base.state); 1969 struct drm_framebuffer *fb; 1970 struct i915_vma *vma; 1971 1972 /* 1973 * TODO: 1974 * Disable planes if get_initial_plane_config() failed. 1975 * Make sure things work if the surface base is not page aligned. 1976 */ 1977 if (!plane_config->fb) 1978 return; 1979 1980 if (intel_alloc_initial_plane_obj(crtc, plane_config)) { 1981 fb = &plane_config->fb->base; 1982 vma = plane_config->vma; 1983 goto valid_fb; 1984 } 1985 1986 /* 1987 * Failed to alloc the obj, check to see if we should share 1988 * an fb with another CRTC instead 1989 */ 1990 if (intel_reuse_initial_plane_obj(dev_priv, plane_config, &fb, &vma)) 1991 goto valid_fb; 1992 1993 /* 1994 * We've failed to reconstruct the BIOS FB. Current display state 1995 * indicates that the primary plane is visible, but has a NULL FB, 1996 * which will lead to problems later if we don't fix it up. The 1997 * simplest solution is to just disable the primary plane now and 1998 * pretend the BIOS never had it enabled. 1999 */ 2000 intel_plane_disable_noatomic(crtc, plane); 2001 if (crtc_state->bigjoiner) { 2002 struct intel_crtc *slave = 2003 crtc_state->bigjoiner_linked_crtc; 2004 intel_plane_disable_noatomic(slave, to_intel_plane(slave->base.primary)); 2005 } 2006 2007 return; 2008 2009 valid_fb: 2010 plane_state->uapi.rotation = plane_config->rotation; 2011 intel_fb_fill_view(to_intel_framebuffer(fb), 2012 plane_state->uapi.rotation, &plane_state->view); 2013 2014 __i915_vma_pin(vma); 2015 plane_state->ggtt_vma = i915_vma_get(vma); 2016 if (intel_plane_uses_fence(plane_state) && 2017 i915_vma_pin_fence(vma) == 0 && vma->fence) 2018 plane_state->flags |= PLANE_HAS_FENCE; 2019 2020 plane_state->uapi.src_x = 0; 2021 plane_state->uapi.src_y = 0; 2022 plane_state->uapi.src_w = fb->width << 16; 2023 plane_state->uapi.src_h = fb->height << 16; 2024 2025 plane_state->uapi.crtc_x = 0; 2026 plane_state->uapi.crtc_y = 0; 2027 plane_state->uapi.crtc_w = fb->width; 2028 plane_state->uapi.crtc_h = fb->height; 2029 2030 if (plane_config->tiling) 2031 dev_priv->preserve_bios_swizzle = true; 2032 2033 plane_state->uapi.fb = fb; 2034 drm_framebuffer_get(fb); 2035 2036 plane_state->uapi.crtc = &crtc->base; 2037 intel_plane_copy_uapi_to_hw_state(plane_state, plane_state, crtc); 2038 2039 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 2040 2041 atomic_or(plane->frontbuffer_bit, &to_intel_frontbuffer(fb)->bits); 2042 } 2043 2044 unsigned int 2045 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 2046 { 2047 int x = 0, y = 0; 2048 2049 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 2050 plane_state->view.color_plane[0].offset, 0); 2051 2052 return y; 2053 } 2054 2055 static int 2056 __intel_display_resume(struct drm_device *dev, 2057 struct drm_atomic_state *state, 2058 struct drm_modeset_acquire_ctx *ctx) 2059 { 2060 struct drm_crtc_state *crtc_state; 2061 struct drm_crtc *crtc; 2062 int i, ret; 2063 2064 intel_modeset_setup_hw_state(dev, ctx); 2065 intel_vga_redisable(to_i915(dev)); 2066 2067 if (!state) 2068 return 0; 2069 2070 /* 2071 * We've duplicated the state, pointers to the old state are invalid. 2072 * 2073 * Don't attempt to use the old state until we commit the duplicated state. 2074 */ 2075 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 2076 /* 2077 * Force recalculation even if we restore 2078 * current state. With fast modeset this may not result 2079 * in a modeset when the state is compatible. 2080 */ 2081 crtc_state->mode_changed = true; 2082 } 2083 2084 /* ignore any reset values/BIOS leftovers in the WM registers */ 2085 if (!HAS_GMCH(to_i915(dev))) 2086 to_intel_atomic_state(state)->skip_intermediate_wm = true; 2087 2088 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 2089 2090 drm_WARN_ON(dev, ret == -EDEADLK); 2091 return ret; 2092 } 2093 2094 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 2095 { 2096 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 2097 intel_has_gpu_reset(&dev_priv->gt)); 2098 } 2099 2100 void intel_display_prepare_reset(struct drm_i915_private *dev_priv) 2101 { 2102 struct drm_device *dev = &dev_priv->drm; 2103 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2104 struct drm_atomic_state *state; 2105 int ret; 2106 2107 if (!HAS_DISPLAY(dev_priv)) 2108 return; 2109 2110 /* reset doesn't touch the display */ 2111 if (!dev_priv->params.force_reset_modeset_test && 2112 !gpu_reset_clobbers_display(dev_priv)) 2113 return; 2114 2115 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 2116 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2117 smp_mb__after_atomic(); 2118 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 2119 2120 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 2121 drm_dbg_kms(&dev_priv->drm, 2122 "Modeset potentially stuck, unbreaking through wedging\n"); 2123 intel_gt_set_wedged(&dev_priv->gt); 2124 } 2125 2126 /* 2127 * Need mode_config.mutex so that we don't 2128 * trample ongoing ->detect() and whatnot. 2129 */ 2130 mutex_lock(&dev->mode_config.mutex); 2131 drm_modeset_acquire_init(ctx, 0); 2132 while (1) { 2133 ret = drm_modeset_lock_all_ctx(dev, ctx); 2134 if (ret != -EDEADLK) 2135 break; 2136 2137 drm_modeset_backoff(ctx); 2138 } 2139 /* 2140 * Disabling the crtcs gracefully seems nicer. Also the 2141 * g33 docs say we should at least disable all the planes. 2142 */ 2143 state = drm_atomic_helper_duplicate_state(dev, ctx); 2144 if (IS_ERR(state)) { 2145 ret = PTR_ERR(state); 2146 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 2147 ret); 2148 return; 2149 } 2150 2151 ret = drm_atomic_helper_disable_all(dev, ctx); 2152 if (ret) { 2153 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 2154 ret); 2155 drm_atomic_state_put(state); 2156 return; 2157 } 2158 2159 dev_priv->modeset_restore_state = state; 2160 state->acquire_ctx = ctx; 2161 } 2162 2163 void intel_display_finish_reset(struct drm_i915_private *dev_priv) 2164 { 2165 struct drm_device *dev = &dev_priv->drm; 2166 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2167 struct drm_atomic_state *state; 2168 int ret; 2169 2170 if (!HAS_DISPLAY(dev_priv)) 2171 return; 2172 2173 /* reset doesn't touch the display */ 2174 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 2175 return; 2176 2177 state = fetch_and_zero(&dev_priv->modeset_restore_state); 2178 if (!state) 2179 goto unlock; 2180 2181 /* reset doesn't touch the display */ 2182 if (!gpu_reset_clobbers_display(dev_priv)) { 2183 /* for testing only restore the display */ 2184 ret = __intel_display_resume(dev, state, ctx); 2185 if (ret) 2186 drm_err(&dev_priv->drm, 2187 "Restoring old state failed with %i\n", ret); 2188 } else { 2189 /* 2190 * The display has been reset as well, 2191 * so need a full re-initialization. 2192 */ 2193 intel_pps_unlock_regs_wa(dev_priv); 2194 intel_modeset_init_hw(dev_priv); 2195 intel_init_clock_gating(dev_priv); 2196 intel_hpd_init(dev_priv); 2197 2198 ret = __intel_display_resume(dev, state, ctx); 2199 if (ret) 2200 drm_err(&dev_priv->drm, 2201 "Restoring old state failed with %i\n", ret); 2202 2203 intel_hpd_poll_disable(dev_priv); 2204 } 2205 2206 drm_atomic_state_put(state); 2207 unlock: 2208 drm_modeset_drop_locks(ctx); 2209 drm_modeset_acquire_fini(ctx); 2210 mutex_unlock(&dev->mode_config.mutex); 2211 2212 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2213 } 2214 2215 static bool underrun_recovery_supported(const struct intel_crtc_state *crtc_state) 2216 { 2217 if (crtc_state->pch_pfit.enabled && 2218 (crtc_state->pipe_src_w > drm_rect_width(&crtc_state->pch_pfit.dst) || 2219 crtc_state->pipe_src_h > drm_rect_height(&crtc_state->pch_pfit.dst) || 2220 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)) 2221 return false; 2222 2223 if (crtc_state->dsc.compression_enable) 2224 return false; 2225 2226 if (crtc_state->has_psr2) 2227 return false; 2228 2229 if (crtc_state->splitter.enable) 2230 return false; 2231 2232 return true; 2233 } 2234 2235 static void icl_set_pipe_chicken(const struct intel_crtc_state *crtc_state) 2236 { 2237 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2238 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2239 enum pipe pipe = crtc->pipe; 2240 u32 tmp; 2241 2242 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 2243 2244 /* 2245 * Display WA #1153: icl 2246 * enable hardware to bypass the alpha math 2247 * and rounding for per-pixel values 00 and 0xff 2248 */ 2249 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 2250 /* 2251 * Display WA # 1605353570: icl 2252 * Set the pixel rounding bit to 1 for allowing 2253 * passthrough of Frame buffer pixels unmodified 2254 * across pipe 2255 */ 2256 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 2257 2258 if (IS_DG2(dev_priv)) { 2259 /* 2260 * Underrun recovery must always be disabled on DG2. However 2261 * the chicken bit meaning is inverted compared to other 2262 * platforms. 2263 */ 2264 tmp &= ~UNDERRUN_RECOVERY_ENABLE_DG2; 2265 } else if (DISPLAY_VER(dev_priv) >= 13) { 2266 if (underrun_recovery_supported(crtc_state)) 2267 tmp &= ~UNDERRUN_RECOVERY_DISABLE_ADLP; 2268 else 2269 tmp |= UNDERRUN_RECOVERY_DISABLE_ADLP; 2270 } 2271 2272 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 2273 } 2274 2275 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 2276 { 2277 struct drm_crtc *crtc; 2278 bool cleanup_done; 2279 2280 drm_for_each_crtc(crtc, &dev_priv->drm) { 2281 struct drm_crtc_commit *commit; 2282 spin_lock(&crtc->commit_lock); 2283 commit = list_first_entry_or_null(&crtc->commit_list, 2284 struct drm_crtc_commit, commit_entry); 2285 cleanup_done = commit ? 2286 try_wait_for_completion(&commit->cleanup_done) : true; 2287 spin_unlock(&crtc->commit_lock); 2288 2289 if (cleanup_done) 2290 continue; 2291 2292 drm_crtc_wait_one_vblank(crtc); 2293 2294 return true; 2295 } 2296 2297 return false; 2298 } 2299 2300 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 2301 { 2302 u32 temp; 2303 2304 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 2305 2306 mutex_lock(&dev_priv->sb_lock); 2307 2308 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2309 temp |= SBI_SSCCTL_DISABLE; 2310 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2311 2312 mutex_unlock(&dev_priv->sb_lock); 2313 } 2314 2315 /* Program iCLKIP clock to the desired frequency */ 2316 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 2317 { 2318 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2319 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2320 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 2321 u32 divsel, phaseinc, auxdiv, phasedir = 0; 2322 u32 temp; 2323 2324 lpt_disable_iclkip(dev_priv); 2325 2326 /* The iCLK virtual clock root frequency is in MHz, 2327 * but the adjusted_mode->crtc_clock in in KHz. To get the 2328 * divisors, it is necessary to divide one by another, so we 2329 * convert the virtual clock precision to KHz here for higher 2330 * precision. 2331 */ 2332 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 2333 u32 iclk_virtual_root_freq = 172800 * 1000; 2334 u32 iclk_pi_range = 64; 2335 u32 desired_divisor; 2336 2337 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2338 clock << auxdiv); 2339 divsel = (desired_divisor / iclk_pi_range) - 2; 2340 phaseinc = desired_divisor % iclk_pi_range; 2341 2342 /* 2343 * Near 20MHz is a corner case which is 2344 * out of range for the 7-bit divisor 2345 */ 2346 if (divsel <= 0x7f) 2347 break; 2348 } 2349 2350 /* This should not happen with any sane values */ 2351 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 2352 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 2353 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 2354 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 2355 2356 drm_dbg_kms(&dev_priv->drm, 2357 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 2358 clock, auxdiv, divsel, phasedir, phaseinc); 2359 2360 mutex_lock(&dev_priv->sb_lock); 2361 2362 /* Program SSCDIVINTPHASE6 */ 2363 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2364 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 2365 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 2366 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 2367 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 2368 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 2369 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 2370 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 2371 2372 /* Program SSCAUXDIV */ 2373 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2374 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 2375 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 2376 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 2377 2378 /* Enable modulator and associated divider */ 2379 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2380 temp &= ~SBI_SSCCTL_DISABLE; 2381 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2382 2383 mutex_unlock(&dev_priv->sb_lock); 2384 2385 /* Wait for initialization time */ 2386 udelay(24); 2387 2388 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 2389 } 2390 2391 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 2392 { 2393 u32 divsel, phaseinc, auxdiv; 2394 u32 iclk_virtual_root_freq = 172800 * 1000; 2395 u32 iclk_pi_range = 64; 2396 u32 desired_divisor; 2397 u32 temp; 2398 2399 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 2400 return 0; 2401 2402 mutex_lock(&dev_priv->sb_lock); 2403 2404 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2405 if (temp & SBI_SSCCTL_DISABLE) { 2406 mutex_unlock(&dev_priv->sb_lock); 2407 return 0; 2408 } 2409 2410 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2411 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 2412 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 2413 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 2414 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 2415 2416 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2417 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 2418 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 2419 2420 mutex_unlock(&dev_priv->sb_lock); 2421 2422 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 2423 2424 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2425 desired_divisor << auxdiv); 2426 } 2427 2428 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 2429 enum pipe pch_transcoder) 2430 { 2431 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2432 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2433 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2434 2435 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 2436 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 2437 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 2438 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 2439 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 2440 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 2441 2442 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 2443 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 2444 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 2445 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 2446 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 2447 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 2448 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 2449 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 2450 } 2451 2452 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 2453 { 2454 u32 temp; 2455 2456 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 2457 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 2458 return; 2459 2460 drm_WARN_ON(&dev_priv->drm, 2461 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 2462 FDI_RX_ENABLE); 2463 drm_WARN_ON(&dev_priv->drm, 2464 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 2465 FDI_RX_ENABLE); 2466 2467 temp &= ~FDI_BC_BIFURCATION_SELECT; 2468 if (enable) 2469 temp |= FDI_BC_BIFURCATION_SELECT; 2470 2471 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 2472 enable ? "en" : "dis"); 2473 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 2474 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 2475 } 2476 2477 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 2478 { 2479 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2480 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2481 2482 switch (crtc->pipe) { 2483 case PIPE_A: 2484 break; 2485 case PIPE_B: 2486 if (crtc_state->fdi_lanes > 2) 2487 cpt_set_fdi_bc_bifurcation(dev_priv, false); 2488 else 2489 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2490 2491 break; 2492 case PIPE_C: 2493 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2494 2495 break; 2496 default: 2497 BUG(); 2498 } 2499 } 2500 2501 /* 2502 * Finds the encoder associated with the given CRTC. This can only be 2503 * used when we know that the CRTC isn't feeding multiple encoders! 2504 */ 2505 struct intel_encoder * 2506 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 2507 const struct intel_crtc_state *crtc_state) 2508 { 2509 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2510 const struct drm_connector_state *connector_state; 2511 const struct drm_connector *connector; 2512 struct intel_encoder *encoder = NULL; 2513 int num_encoders = 0; 2514 int i; 2515 2516 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 2517 if (connector_state->crtc != &crtc->base) 2518 continue; 2519 2520 encoder = to_intel_encoder(connector_state->best_encoder); 2521 num_encoders++; 2522 } 2523 2524 drm_WARN(encoder->base.dev, num_encoders != 1, 2525 "%d encoders for pipe %c\n", 2526 num_encoders, pipe_name(crtc->pipe)); 2527 2528 return encoder; 2529 } 2530 2531 /* 2532 * Enable PCH resources required for PCH ports: 2533 * - PCH PLLs 2534 * - FDI training & RX/TX 2535 * - update transcoder timings 2536 * - DP transcoding bits 2537 * - transcoder 2538 */ 2539 static void ilk_pch_enable(const struct intel_atomic_state *state, 2540 const struct intel_crtc_state *crtc_state) 2541 { 2542 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2543 struct drm_device *dev = crtc->base.dev; 2544 struct drm_i915_private *dev_priv = to_i915(dev); 2545 enum pipe pipe = crtc->pipe; 2546 u32 temp; 2547 2548 assert_pch_transcoder_disabled(dev_priv, pipe); 2549 2550 if (IS_IVYBRIDGE(dev_priv)) 2551 ivb_update_fdi_bc_bifurcation(crtc_state); 2552 2553 /* Write the TU size bits before fdi link training, so that error 2554 * detection works. */ 2555 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 2556 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 2557 2558 /* For PCH output, training FDI link */ 2559 dev_priv->display.fdi_link_train(crtc, crtc_state); 2560 2561 /* We need to program the right clock selection before writing the pixel 2562 * mutliplier into the DPLL. */ 2563 if (HAS_PCH_CPT(dev_priv)) { 2564 u32 sel; 2565 2566 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 2567 temp |= TRANS_DPLL_ENABLE(pipe); 2568 sel = TRANS_DPLLB_SEL(pipe); 2569 if (crtc_state->shared_dpll == 2570 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 2571 temp |= sel; 2572 else 2573 temp &= ~sel; 2574 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 2575 } 2576 2577 /* XXX: pch pll's can be enabled any time before we enable the PCH 2578 * transcoder, and we actually should do this to not upset any PCH 2579 * transcoder that already use the clock when we share it. 2580 * 2581 * Note that enable_shared_dpll tries to do the right thing, but 2582 * get_shared_dpll unconditionally resets the pll - we need that to have 2583 * the right LVDS enable sequence. */ 2584 intel_enable_shared_dpll(crtc_state); 2585 2586 /* set transcoder timing, panel must allow it */ 2587 assert_panel_unlocked(dev_priv, pipe); 2588 ilk_pch_transcoder_set_timings(crtc_state, pipe); 2589 2590 intel_fdi_normal_train(crtc); 2591 2592 /* For PCH DP, enable TRANS_DP_CTL */ 2593 if (HAS_PCH_CPT(dev_priv) && 2594 intel_crtc_has_dp_encoder(crtc_state)) { 2595 const struct drm_display_mode *adjusted_mode = 2596 &crtc_state->hw.adjusted_mode; 2597 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 2598 i915_reg_t reg = TRANS_DP_CTL(pipe); 2599 enum port port; 2600 2601 temp = intel_de_read(dev_priv, reg); 2602 temp &= ~(TRANS_DP_PORT_SEL_MASK | 2603 TRANS_DP_SYNC_MASK | 2604 TRANS_DP_BPC_MASK); 2605 temp |= TRANS_DP_OUTPUT_ENABLE; 2606 temp |= bpc << 9; /* same format but at 11:9 */ 2607 2608 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2609 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 2610 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2611 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 2612 2613 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 2614 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 2615 temp |= TRANS_DP_PORT_SEL(port); 2616 2617 intel_de_write(dev_priv, reg, temp); 2618 } 2619 2620 ilk_enable_pch_transcoder(crtc_state); 2621 } 2622 2623 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 2624 { 2625 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2626 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2627 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2628 2629 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 2630 2631 lpt_program_iclkip(crtc_state); 2632 2633 /* Set transcoder timing. */ 2634 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 2635 2636 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 2637 } 2638 2639 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 2640 enum pipe pipe) 2641 { 2642 i915_reg_t dslreg = PIPEDSL(pipe); 2643 u32 temp; 2644 2645 temp = intel_de_read(dev_priv, dslreg); 2646 udelay(500); 2647 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 2648 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 2649 drm_err(&dev_priv->drm, 2650 "mode set failed: pipe %c stuck\n", 2651 pipe_name(pipe)); 2652 } 2653 } 2654 2655 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 2656 { 2657 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2658 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2659 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 2660 enum pipe pipe = crtc->pipe; 2661 int width = drm_rect_width(dst); 2662 int height = drm_rect_height(dst); 2663 int x = dst->x1; 2664 int y = dst->y1; 2665 2666 if (!crtc_state->pch_pfit.enabled) 2667 return; 2668 2669 /* Force use of hard-coded filter coefficients 2670 * as some pre-programmed values are broken, 2671 * e.g. x201. 2672 */ 2673 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 2674 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2675 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 2676 else 2677 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2678 PF_FILTER_MED_3x3); 2679 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 2680 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 2681 } 2682 2683 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 2684 { 2685 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2686 struct drm_device *dev = crtc->base.dev; 2687 struct drm_i915_private *dev_priv = to_i915(dev); 2688 2689 if (!crtc_state->ips_enabled) 2690 return; 2691 2692 /* 2693 * We can only enable IPS after we enable a plane and wait for a vblank 2694 * This function is called from post_plane_update, which is run after 2695 * a vblank wait. 2696 */ 2697 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 2698 2699 if (IS_BROADWELL(dev_priv)) { 2700 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 2701 IPS_ENABLE | IPS_PCODE_CONTROL)); 2702 /* Quoting Art Runyan: "its not safe to expect any particular 2703 * value in IPS_CTL bit 31 after enabling IPS through the 2704 * mailbox." Moreover, the mailbox may return a bogus state, 2705 * so we need to just enable it and continue on. 2706 */ 2707 } else { 2708 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 2709 /* The bit only becomes 1 in the next vblank, so this wait here 2710 * is essentially intel_wait_for_vblank. If we don't have this 2711 * and don't wait for vblanks until the end of crtc_enable, then 2712 * the HW state readout code will complain that the expected 2713 * IPS_CTL value is not the one we read. */ 2714 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 2715 drm_err(&dev_priv->drm, 2716 "Timed out waiting for IPS enable\n"); 2717 } 2718 } 2719 2720 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 2721 { 2722 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2723 struct drm_device *dev = crtc->base.dev; 2724 struct drm_i915_private *dev_priv = to_i915(dev); 2725 2726 if (!crtc_state->ips_enabled) 2727 return; 2728 2729 if (IS_BROADWELL(dev_priv)) { 2730 drm_WARN_ON(dev, 2731 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 2732 /* 2733 * Wait for PCODE to finish disabling IPS. The BSpec specified 2734 * 42ms timeout value leads to occasional timeouts so use 100ms 2735 * instead. 2736 */ 2737 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 2738 drm_err(&dev_priv->drm, 2739 "Timed out waiting for IPS disable\n"); 2740 } else { 2741 intel_de_write(dev_priv, IPS_CTL, 0); 2742 intel_de_posting_read(dev_priv, IPS_CTL); 2743 } 2744 2745 /* We need to wait for a vblank before we can disable the plane. */ 2746 intel_wait_for_vblank(dev_priv, crtc->pipe); 2747 } 2748 2749 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *crtc) 2750 { 2751 if (crtc->overlay) 2752 (void) intel_overlay_switch_off(crtc->overlay); 2753 2754 /* Let userspace switch the overlay on again. In most cases userspace 2755 * has to recompute where to put it anyway. 2756 */ 2757 } 2758 2759 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 2760 const struct intel_crtc_state *new_crtc_state) 2761 { 2762 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2763 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2764 2765 if (!old_crtc_state->ips_enabled) 2766 return false; 2767 2768 if (intel_crtc_needs_modeset(new_crtc_state)) 2769 return true; 2770 2771 /* 2772 * Workaround : Do not read or write the pipe palette/gamma data while 2773 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2774 * 2775 * Disable IPS before we program the LUT. 2776 */ 2777 if (IS_HASWELL(dev_priv) && 2778 (new_crtc_state->uapi.color_mgmt_changed || 2779 new_crtc_state->update_pipe) && 2780 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2781 return true; 2782 2783 return !new_crtc_state->ips_enabled; 2784 } 2785 2786 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 2787 const struct intel_crtc_state *new_crtc_state) 2788 { 2789 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2790 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2791 2792 if (!new_crtc_state->ips_enabled) 2793 return false; 2794 2795 if (intel_crtc_needs_modeset(new_crtc_state)) 2796 return true; 2797 2798 /* 2799 * Workaround : Do not read or write the pipe palette/gamma data while 2800 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2801 * 2802 * Re-enable IPS after the LUT has been programmed. 2803 */ 2804 if (IS_HASWELL(dev_priv) && 2805 (new_crtc_state->uapi.color_mgmt_changed || 2806 new_crtc_state->update_pipe) && 2807 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2808 return true; 2809 2810 /* 2811 * We can't read out IPS on broadwell, assume the worst and 2812 * forcibly enable IPS on the first fastset. 2813 */ 2814 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 2815 return true; 2816 2817 return !old_crtc_state->ips_enabled; 2818 } 2819 2820 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 2821 { 2822 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2823 2824 if (!crtc_state->nv12_planes) 2825 return false; 2826 2827 /* WA Display #0827: Gen9:all */ 2828 if (DISPLAY_VER(dev_priv) == 9) 2829 return true; 2830 2831 return false; 2832 } 2833 2834 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 2835 { 2836 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2837 2838 /* Wa_2006604312:icl,ehl */ 2839 if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(dev_priv) == 11) 2840 return true; 2841 2842 return false; 2843 } 2844 2845 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 2846 const struct intel_crtc_state *new_crtc_state) 2847 { 2848 return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) && 2849 new_crtc_state->active_planes; 2850 } 2851 2852 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 2853 const struct intel_crtc_state *new_crtc_state) 2854 { 2855 return old_crtc_state->active_planes && 2856 (!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)); 2857 } 2858 2859 static void intel_post_plane_update(struct intel_atomic_state *state, 2860 struct intel_crtc *crtc) 2861 { 2862 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2863 const struct intel_crtc_state *old_crtc_state = 2864 intel_atomic_get_old_crtc_state(state, crtc); 2865 const struct intel_crtc_state *new_crtc_state = 2866 intel_atomic_get_new_crtc_state(state, crtc); 2867 enum pipe pipe = crtc->pipe; 2868 2869 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 2870 2871 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 2872 intel_update_watermarks(crtc); 2873 2874 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 2875 hsw_enable_ips(new_crtc_state); 2876 2877 intel_fbc_post_update(state, crtc); 2878 2879 if (needs_nv12_wa(old_crtc_state) && 2880 !needs_nv12_wa(new_crtc_state)) 2881 skl_wa_827(dev_priv, pipe, false); 2882 2883 if (needs_scalerclk_wa(old_crtc_state) && 2884 !needs_scalerclk_wa(new_crtc_state)) 2885 icl_wa_scalerclkgating(dev_priv, pipe, false); 2886 } 2887 2888 static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, 2889 struct intel_crtc *crtc) 2890 { 2891 const struct intel_crtc_state *crtc_state = 2892 intel_atomic_get_new_crtc_state(state, crtc); 2893 u8 update_planes = crtc_state->update_planes; 2894 const struct intel_plane_state *plane_state; 2895 struct intel_plane *plane; 2896 int i; 2897 2898 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2899 if (plane->enable_flip_done && 2900 plane->pipe == crtc->pipe && 2901 update_planes & BIT(plane->id)) 2902 plane->enable_flip_done(plane); 2903 } 2904 } 2905 2906 static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, 2907 struct intel_crtc *crtc) 2908 { 2909 const struct intel_crtc_state *crtc_state = 2910 intel_atomic_get_new_crtc_state(state, crtc); 2911 u8 update_planes = crtc_state->update_planes; 2912 const struct intel_plane_state *plane_state; 2913 struct intel_plane *plane; 2914 int i; 2915 2916 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2917 if (plane->disable_flip_done && 2918 plane->pipe == crtc->pipe && 2919 update_planes & BIT(plane->id)) 2920 plane->disable_flip_done(plane); 2921 } 2922 } 2923 2924 static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, 2925 struct intel_crtc *crtc) 2926 { 2927 struct drm_i915_private *i915 = to_i915(state->base.dev); 2928 const struct intel_crtc_state *old_crtc_state = 2929 intel_atomic_get_old_crtc_state(state, crtc); 2930 const struct intel_crtc_state *new_crtc_state = 2931 intel_atomic_get_new_crtc_state(state, crtc); 2932 u8 update_planes = new_crtc_state->update_planes; 2933 const struct intel_plane_state *old_plane_state; 2934 struct intel_plane *plane; 2935 bool need_vbl_wait = false; 2936 int i; 2937 2938 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 2939 if (plane->need_async_flip_disable_wa && 2940 plane->pipe == crtc->pipe && 2941 update_planes & BIT(plane->id)) { 2942 /* 2943 * Apart from the async flip bit we want to 2944 * preserve the old state for the plane. 2945 */ 2946 plane->async_flip(plane, old_crtc_state, 2947 old_plane_state, false); 2948 need_vbl_wait = true; 2949 } 2950 } 2951 2952 if (need_vbl_wait) 2953 intel_wait_for_vblank(i915, crtc->pipe); 2954 } 2955 2956 static void intel_pre_plane_update(struct intel_atomic_state *state, 2957 struct intel_crtc *crtc) 2958 { 2959 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2960 const struct intel_crtc_state *old_crtc_state = 2961 intel_atomic_get_old_crtc_state(state, crtc); 2962 const struct intel_crtc_state *new_crtc_state = 2963 intel_atomic_get_new_crtc_state(state, crtc); 2964 enum pipe pipe = crtc->pipe; 2965 2966 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 2967 hsw_disable_ips(old_crtc_state); 2968 2969 if (intel_fbc_pre_update(state, crtc)) 2970 intel_wait_for_vblank(dev_priv, pipe); 2971 2972 /* Display WA 827 */ 2973 if (!needs_nv12_wa(old_crtc_state) && 2974 needs_nv12_wa(new_crtc_state)) 2975 skl_wa_827(dev_priv, pipe, true); 2976 2977 /* Wa_2006604312:icl,ehl */ 2978 if (!needs_scalerclk_wa(old_crtc_state) && 2979 needs_scalerclk_wa(new_crtc_state)) 2980 icl_wa_scalerclkgating(dev_priv, pipe, true); 2981 2982 /* 2983 * Vblank time updates from the shadow to live plane control register 2984 * are blocked if the memory self-refresh mode is active at that 2985 * moment. So to make sure the plane gets truly disabled, disable 2986 * first the self-refresh mode. The self-refresh enable bit in turn 2987 * will be checked/applied by the HW only at the next frame start 2988 * event which is after the vblank start event, so we need to have a 2989 * wait-for-vblank between disabling the plane and the pipe. 2990 */ 2991 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 2992 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 2993 intel_wait_for_vblank(dev_priv, pipe); 2994 2995 /* 2996 * IVB workaround: must disable low power watermarks for at least 2997 * one frame before enabling scaling. LP watermarks can be re-enabled 2998 * when scaling is disabled. 2999 * 3000 * WaCxSRDisabledForSpriteScaling:ivb 3001 */ 3002 if (old_crtc_state->hw.active && 3003 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 3004 intel_wait_for_vblank(dev_priv, pipe); 3005 3006 /* 3007 * If we're doing a modeset we don't need to do any 3008 * pre-vblank watermark programming here. 3009 */ 3010 if (!intel_crtc_needs_modeset(new_crtc_state)) { 3011 /* 3012 * For platforms that support atomic watermarks, program the 3013 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 3014 * will be the intermediate values that are safe for both pre- and 3015 * post- vblank; when vblank happens, the 'active' values will be set 3016 * to the final 'target' values and we'll do this again to get the 3017 * optimal watermarks. For gen9+ platforms, the values we program here 3018 * will be the final target values which will get automatically latched 3019 * at vblank time; no further programming will be necessary. 3020 * 3021 * If a platform hasn't been transitioned to atomic watermarks yet, 3022 * we'll continue to update watermarks the old way, if flags tell 3023 * us to. 3024 */ 3025 if (dev_priv->display.initial_watermarks) 3026 dev_priv->display.initial_watermarks(state, crtc); 3027 else if (new_crtc_state->update_wm_pre) 3028 intel_update_watermarks(crtc); 3029 } 3030 3031 /* 3032 * Gen2 reports pipe underruns whenever all planes are disabled. 3033 * So disable underrun reporting before all the planes get disabled. 3034 * 3035 * We do this after .initial_watermarks() so that we have a 3036 * chance of catching underruns with the intermediate watermarks 3037 * vs. the old plane configuration. 3038 */ 3039 if (DISPLAY_VER(dev_priv) == 2 && planes_disabling(old_crtc_state, new_crtc_state)) 3040 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3041 3042 /* 3043 * WA for platforms where async address update enable bit 3044 * is double buffered and only latched at start of vblank. 3045 */ 3046 if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip) 3047 intel_crtc_async_flip_disable_wa(state, crtc); 3048 } 3049 3050 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 3051 struct intel_crtc *crtc) 3052 { 3053 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3054 const struct intel_crtc_state *new_crtc_state = 3055 intel_atomic_get_new_crtc_state(state, crtc); 3056 unsigned int update_mask = new_crtc_state->update_planes; 3057 const struct intel_plane_state *old_plane_state; 3058 struct intel_plane *plane; 3059 unsigned fb_bits = 0; 3060 int i; 3061 3062 intel_crtc_dpms_overlay_disable(crtc); 3063 3064 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 3065 if (crtc->pipe != plane->pipe || 3066 !(update_mask & BIT(plane->id))) 3067 continue; 3068 3069 intel_disable_plane(plane, new_crtc_state); 3070 3071 if (old_plane_state->uapi.visible) 3072 fb_bits |= plane->frontbuffer_bit; 3073 } 3074 3075 intel_frontbuffer_flip(dev_priv, fb_bits); 3076 } 3077 3078 /* 3079 * intel_connector_primary_encoder - get the primary encoder for a connector 3080 * @connector: connector for which to return the encoder 3081 * 3082 * Returns the primary encoder for a connector. There is a 1:1 mapping from 3083 * all connectors to their encoder, except for DP-MST connectors which have 3084 * both a virtual and a primary encoder. These DP-MST primary encoders can be 3085 * pointed to by as many DP-MST connectors as there are pipes. 3086 */ 3087 static struct intel_encoder * 3088 intel_connector_primary_encoder(struct intel_connector *connector) 3089 { 3090 struct intel_encoder *encoder; 3091 3092 if (connector->mst_port) 3093 return &dp_to_dig_port(connector->mst_port)->base; 3094 3095 encoder = intel_attached_encoder(connector); 3096 drm_WARN_ON(connector->base.dev, !encoder); 3097 3098 return encoder; 3099 } 3100 3101 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 3102 { 3103 struct drm_connector_state *new_conn_state; 3104 struct drm_connector *connector; 3105 int i; 3106 3107 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3108 i) { 3109 struct intel_connector *intel_connector; 3110 struct intel_encoder *encoder; 3111 struct intel_crtc *crtc; 3112 3113 if (!intel_connector_needs_modeset(state, connector)) 3114 continue; 3115 3116 intel_connector = to_intel_connector(connector); 3117 encoder = intel_connector_primary_encoder(intel_connector); 3118 if (!encoder->update_prepare) 3119 continue; 3120 3121 crtc = new_conn_state->crtc ? 3122 to_intel_crtc(new_conn_state->crtc) : NULL; 3123 encoder->update_prepare(state, encoder, crtc); 3124 } 3125 } 3126 3127 static void intel_encoders_update_complete(struct intel_atomic_state *state) 3128 { 3129 struct drm_connector_state *new_conn_state; 3130 struct drm_connector *connector; 3131 int i; 3132 3133 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3134 i) { 3135 struct intel_connector *intel_connector; 3136 struct intel_encoder *encoder; 3137 struct intel_crtc *crtc; 3138 3139 if (!intel_connector_needs_modeset(state, connector)) 3140 continue; 3141 3142 intel_connector = to_intel_connector(connector); 3143 encoder = intel_connector_primary_encoder(intel_connector); 3144 if (!encoder->update_complete) 3145 continue; 3146 3147 crtc = new_conn_state->crtc ? 3148 to_intel_crtc(new_conn_state->crtc) : NULL; 3149 encoder->update_complete(state, encoder, crtc); 3150 } 3151 } 3152 3153 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 3154 struct intel_crtc *crtc) 3155 { 3156 const struct intel_crtc_state *crtc_state = 3157 intel_atomic_get_new_crtc_state(state, crtc); 3158 const struct drm_connector_state *conn_state; 3159 struct drm_connector *conn; 3160 int i; 3161 3162 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3163 struct intel_encoder *encoder = 3164 to_intel_encoder(conn_state->best_encoder); 3165 3166 if (conn_state->crtc != &crtc->base) 3167 continue; 3168 3169 if (encoder->pre_pll_enable) 3170 encoder->pre_pll_enable(state, encoder, 3171 crtc_state, conn_state); 3172 } 3173 } 3174 3175 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 3176 struct intel_crtc *crtc) 3177 { 3178 const struct intel_crtc_state *crtc_state = 3179 intel_atomic_get_new_crtc_state(state, crtc); 3180 const struct drm_connector_state *conn_state; 3181 struct drm_connector *conn; 3182 int i; 3183 3184 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3185 struct intel_encoder *encoder = 3186 to_intel_encoder(conn_state->best_encoder); 3187 3188 if (conn_state->crtc != &crtc->base) 3189 continue; 3190 3191 if (encoder->pre_enable) 3192 encoder->pre_enable(state, encoder, 3193 crtc_state, conn_state); 3194 } 3195 } 3196 3197 static void intel_encoders_enable(struct intel_atomic_state *state, 3198 struct intel_crtc *crtc) 3199 { 3200 const struct intel_crtc_state *crtc_state = 3201 intel_atomic_get_new_crtc_state(state, crtc); 3202 const struct drm_connector_state *conn_state; 3203 struct drm_connector *conn; 3204 int i; 3205 3206 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3207 struct intel_encoder *encoder = 3208 to_intel_encoder(conn_state->best_encoder); 3209 3210 if (conn_state->crtc != &crtc->base) 3211 continue; 3212 3213 if (encoder->enable) 3214 encoder->enable(state, encoder, 3215 crtc_state, conn_state); 3216 intel_opregion_notify_encoder(encoder, true); 3217 } 3218 } 3219 3220 static void intel_encoders_pre_disable(struct intel_atomic_state *state, 3221 struct intel_crtc *crtc) 3222 { 3223 const struct intel_crtc_state *old_crtc_state = 3224 intel_atomic_get_old_crtc_state(state, crtc); 3225 const struct drm_connector_state *old_conn_state; 3226 struct drm_connector *conn; 3227 int i; 3228 3229 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3230 struct intel_encoder *encoder = 3231 to_intel_encoder(old_conn_state->best_encoder); 3232 3233 if (old_conn_state->crtc != &crtc->base) 3234 continue; 3235 3236 if (encoder->pre_disable) 3237 encoder->pre_disable(state, encoder, old_crtc_state, 3238 old_conn_state); 3239 } 3240 } 3241 3242 static void intel_encoders_disable(struct intel_atomic_state *state, 3243 struct intel_crtc *crtc) 3244 { 3245 const struct intel_crtc_state *old_crtc_state = 3246 intel_atomic_get_old_crtc_state(state, crtc); 3247 const struct drm_connector_state *old_conn_state; 3248 struct drm_connector *conn; 3249 int i; 3250 3251 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3252 struct intel_encoder *encoder = 3253 to_intel_encoder(old_conn_state->best_encoder); 3254 3255 if (old_conn_state->crtc != &crtc->base) 3256 continue; 3257 3258 intel_opregion_notify_encoder(encoder, false); 3259 if (encoder->disable) 3260 encoder->disable(state, encoder, 3261 old_crtc_state, old_conn_state); 3262 } 3263 } 3264 3265 static void intel_encoders_post_disable(struct intel_atomic_state *state, 3266 struct intel_crtc *crtc) 3267 { 3268 const struct intel_crtc_state *old_crtc_state = 3269 intel_atomic_get_old_crtc_state(state, crtc); 3270 const struct drm_connector_state *old_conn_state; 3271 struct drm_connector *conn; 3272 int i; 3273 3274 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3275 struct intel_encoder *encoder = 3276 to_intel_encoder(old_conn_state->best_encoder); 3277 3278 if (old_conn_state->crtc != &crtc->base) 3279 continue; 3280 3281 if (encoder->post_disable) 3282 encoder->post_disable(state, encoder, 3283 old_crtc_state, old_conn_state); 3284 } 3285 } 3286 3287 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 3288 struct intel_crtc *crtc) 3289 { 3290 const struct intel_crtc_state *old_crtc_state = 3291 intel_atomic_get_old_crtc_state(state, crtc); 3292 const struct drm_connector_state *old_conn_state; 3293 struct drm_connector *conn; 3294 int i; 3295 3296 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3297 struct intel_encoder *encoder = 3298 to_intel_encoder(old_conn_state->best_encoder); 3299 3300 if (old_conn_state->crtc != &crtc->base) 3301 continue; 3302 3303 if (encoder->post_pll_disable) 3304 encoder->post_pll_disable(state, encoder, 3305 old_crtc_state, old_conn_state); 3306 } 3307 } 3308 3309 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 3310 struct intel_crtc *crtc) 3311 { 3312 const struct intel_crtc_state *crtc_state = 3313 intel_atomic_get_new_crtc_state(state, crtc); 3314 const struct drm_connector_state *conn_state; 3315 struct drm_connector *conn; 3316 int i; 3317 3318 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3319 struct intel_encoder *encoder = 3320 to_intel_encoder(conn_state->best_encoder); 3321 3322 if (conn_state->crtc != &crtc->base) 3323 continue; 3324 3325 if (encoder->update_pipe) 3326 encoder->update_pipe(state, encoder, 3327 crtc_state, conn_state); 3328 } 3329 } 3330 3331 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 3332 { 3333 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3334 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 3335 3336 plane->disable_plane(plane, crtc_state); 3337 } 3338 3339 static void ilk_crtc_enable(struct intel_atomic_state *state, 3340 struct intel_crtc *crtc) 3341 { 3342 const struct intel_crtc_state *new_crtc_state = 3343 intel_atomic_get_new_crtc_state(state, crtc); 3344 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3345 enum pipe pipe = crtc->pipe; 3346 3347 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3348 return; 3349 3350 /* 3351 * Sometimes spurious CPU pipe underruns happen during FDI 3352 * training, at least with VGA+HDMI cloning. Suppress them. 3353 * 3354 * On ILK we get an occasional spurious CPU pipe underruns 3355 * between eDP port A enable and vdd enable. Also PCH port 3356 * enable seems to result in the occasional CPU pipe underrun. 3357 * 3358 * Spurious PCH underruns also occur during PCH enabling. 3359 */ 3360 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3361 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3362 3363 if (new_crtc_state->has_pch_encoder) 3364 intel_prepare_shared_dpll(new_crtc_state); 3365 3366 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3367 intel_dp_set_m_n(new_crtc_state, M1_N1); 3368 3369 intel_set_transcoder_timings(new_crtc_state); 3370 intel_set_pipe_src_size(new_crtc_state); 3371 3372 if (new_crtc_state->has_pch_encoder) 3373 intel_cpu_transcoder_set_m_n(new_crtc_state, 3374 &new_crtc_state->fdi_m_n, NULL); 3375 3376 ilk_set_pipeconf(new_crtc_state); 3377 3378 crtc->active = true; 3379 3380 intel_encoders_pre_enable(state, crtc); 3381 3382 if (new_crtc_state->has_pch_encoder) { 3383 /* Note: FDI PLL enabling _must_ be done before we enable the 3384 * cpu pipes, hence this is separate from all the other fdi/pch 3385 * enabling. */ 3386 ilk_fdi_pll_enable(new_crtc_state); 3387 } else { 3388 assert_fdi_tx_disabled(dev_priv, pipe); 3389 assert_fdi_rx_disabled(dev_priv, pipe); 3390 } 3391 3392 ilk_pfit_enable(new_crtc_state); 3393 3394 /* 3395 * On ILK+ LUT must be loaded before the pipe is running but with 3396 * clocks enabled 3397 */ 3398 intel_color_load_luts(new_crtc_state); 3399 intel_color_commit(new_crtc_state); 3400 /* update DSPCNTR to configure gamma for pipe bottom color */ 3401 intel_disable_primary_plane(new_crtc_state); 3402 3403 if (dev_priv->display.initial_watermarks) 3404 dev_priv->display.initial_watermarks(state, crtc); 3405 intel_enable_pipe(new_crtc_state); 3406 3407 if (new_crtc_state->has_pch_encoder) 3408 ilk_pch_enable(state, new_crtc_state); 3409 3410 intel_crtc_vblank_on(new_crtc_state); 3411 3412 intel_encoders_enable(state, crtc); 3413 3414 if (HAS_PCH_CPT(dev_priv)) 3415 cpt_verify_modeset(dev_priv, pipe); 3416 3417 /* 3418 * Must wait for vblank to avoid spurious PCH FIFO underruns. 3419 * And a second vblank wait is needed at least on ILK with 3420 * some interlaced HDMI modes. Let's do the double wait always 3421 * in case there are more corner cases we don't know about. 3422 */ 3423 if (new_crtc_state->has_pch_encoder) { 3424 intel_wait_for_vblank(dev_priv, pipe); 3425 intel_wait_for_vblank(dev_priv, pipe); 3426 } 3427 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3428 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3429 } 3430 3431 /* IPS only exists on ULT machines and is tied to pipe A. */ 3432 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 3433 { 3434 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 3435 } 3436 3437 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 3438 enum pipe pipe, bool apply) 3439 { 3440 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 3441 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 3442 3443 if (apply) 3444 val |= mask; 3445 else 3446 val &= ~mask; 3447 3448 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 3449 } 3450 3451 static void icl_pipe_mbus_enable(struct intel_crtc *crtc, bool joined_mbus) 3452 { 3453 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3454 enum pipe pipe = crtc->pipe; 3455 u32 val; 3456 3457 /* Wa_22010947358:adl-p */ 3458 if (IS_ALDERLAKE_P(dev_priv)) 3459 val = joined_mbus ? MBUS_DBOX_A_CREDIT(6) : MBUS_DBOX_A_CREDIT(4); 3460 else 3461 val = MBUS_DBOX_A_CREDIT(2); 3462 3463 if (DISPLAY_VER(dev_priv) >= 12) { 3464 val |= MBUS_DBOX_BW_CREDIT(2); 3465 val |= MBUS_DBOX_B_CREDIT(12); 3466 } else { 3467 val |= MBUS_DBOX_BW_CREDIT(1); 3468 val |= MBUS_DBOX_B_CREDIT(8); 3469 } 3470 3471 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 3472 } 3473 3474 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 3475 { 3476 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3477 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3478 3479 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 3480 HSW_LINETIME(crtc_state->linetime) | 3481 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 3482 } 3483 3484 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 3485 { 3486 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3487 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3488 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 3489 u32 val; 3490 3491 val = intel_de_read(dev_priv, reg); 3492 val &= ~HSW_FRAME_START_DELAY_MASK; 3493 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 3494 intel_de_write(dev_priv, reg, val); 3495 } 3496 3497 static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state, 3498 const struct intel_crtc_state *crtc_state) 3499 { 3500 struct intel_crtc *master = to_intel_crtc(crtc_state->uapi.crtc); 3501 struct drm_i915_private *dev_priv = to_i915(master->base.dev); 3502 struct intel_crtc_state *master_crtc_state; 3503 struct drm_connector_state *conn_state; 3504 struct drm_connector *conn; 3505 struct intel_encoder *encoder = NULL; 3506 int i; 3507 3508 if (crtc_state->bigjoiner_slave) 3509 master = crtc_state->bigjoiner_linked_crtc; 3510 3511 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 3512 3513 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3514 if (conn_state->crtc != &master->base) 3515 continue; 3516 3517 encoder = to_intel_encoder(conn_state->best_encoder); 3518 break; 3519 } 3520 3521 if (!crtc_state->bigjoiner_slave) { 3522 /* need to enable VDSC, which we skipped in pre-enable */ 3523 intel_dsc_enable(encoder, crtc_state); 3524 } else { 3525 /* 3526 * Enable sequence steps 1-7 on bigjoiner master 3527 */ 3528 intel_encoders_pre_pll_enable(state, master); 3529 if (master_crtc_state->shared_dpll) 3530 intel_enable_shared_dpll(master_crtc_state); 3531 intel_encoders_pre_enable(state, master); 3532 3533 /* and DSC on slave */ 3534 intel_dsc_enable(NULL, crtc_state); 3535 } 3536 3537 if (DISPLAY_VER(dev_priv) >= 13) 3538 intel_uncompressed_joiner_enable(crtc_state); 3539 } 3540 3541 static void hsw_crtc_enable(struct intel_atomic_state *state, 3542 struct intel_crtc *crtc) 3543 { 3544 const struct intel_crtc_state *new_crtc_state = 3545 intel_atomic_get_new_crtc_state(state, crtc); 3546 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3547 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 3548 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 3549 bool psl_clkgate_wa; 3550 3551 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3552 return; 3553 3554 if (!new_crtc_state->bigjoiner) { 3555 intel_encoders_pre_pll_enable(state, crtc); 3556 3557 if (new_crtc_state->shared_dpll) 3558 intel_enable_shared_dpll(new_crtc_state); 3559 3560 intel_encoders_pre_enable(state, crtc); 3561 } else { 3562 icl_ddi_bigjoiner_pre_enable(state, new_crtc_state); 3563 } 3564 3565 intel_set_pipe_src_size(new_crtc_state); 3566 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 3567 bdw_set_pipemisc(new_crtc_state); 3568 3569 if (!new_crtc_state->bigjoiner_slave && !transcoder_is_dsi(cpu_transcoder)) { 3570 intel_set_transcoder_timings(new_crtc_state); 3571 3572 if (cpu_transcoder != TRANSCODER_EDP) 3573 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 3574 new_crtc_state->pixel_multiplier - 1); 3575 3576 if (new_crtc_state->has_pch_encoder) 3577 intel_cpu_transcoder_set_m_n(new_crtc_state, 3578 &new_crtc_state->fdi_m_n, NULL); 3579 3580 hsw_set_frame_start_delay(new_crtc_state); 3581 } 3582 3583 if (!transcoder_is_dsi(cpu_transcoder)) 3584 hsw_set_pipeconf(new_crtc_state); 3585 3586 crtc->active = true; 3587 3588 /* Display WA #1180: WaDisableScalarClockGating: glk */ 3589 psl_clkgate_wa = DISPLAY_VER(dev_priv) == 10 && 3590 new_crtc_state->pch_pfit.enabled; 3591 if (psl_clkgate_wa) 3592 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 3593 3594 if (DISPLAY_VER(dev_priv) >= 9) 3595 skl_pfit_enable(new_crtc_state); 3596 else 3597 ilk_pfit_enable(new_crtc_state); 3598 3599 /* 3600 * On ILK+ LUT must be loaded before the pipe is running but with 3601 * clocks enabled 3602 */ 3603 intel_color_load_luts(new_crtc_state); 3604 intel_color_commit(new_crtc_state); 3605 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 3606 if (DISPLAY_VER(dev_priv) < 9) 3607 intel_disable_primary_plane(new_crtc_state); 3608 3609 hsw_set_linetime_wm(new_crtc_state); 3610 3611 if (DISPLAY_VER(dev_priv) >= 11) 3612 icl_set_pipe_chicken(new_crtc_state); 3613 3614 if (dev_priv->display.initial_watermarks) 3615 dev_priv->display.initial_watermarks(state, crtc); 3616 3617 if (DISPLAY_VER(dev_priv) >= 11) { 3618 const struct intel_dbuf_state *dbuf_state = 3619 intel_atomic_get_new_dbuf_state(state); 3620 3621 icl_pipe_mbus_enable(crtc, dbuf_state->joined_mbus); 3622 } 3623 3624 if (new_crtc_state->bigjoiner_slave) 3625 intel_crtc_vblank_on(new_crtc_state); 3626 3627 intel_encoders_enable(state, crtc); 3628 3629 if (psl_clkgate_wa) { 3630 intel_wait_for_vblank(dev_priv, pipe); 3631 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 3632 } 3633 3634 /* If we change the relative order between pipe/planes enabling, we need 3635 * to change the workaround. */ 3636 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 3637 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 3638 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3639 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3640 } 3641 } 3642 3643 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 3644 { 3645 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3646 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3647 enum pipe pipe = crtc->pipe; 3648 3649 /* To avoid upsetting the power well on haswell only disable the pfit if 3650 * it's in use. The hw state code will make sure we get this right. */ 3651 if (!old_crtc_state->pch_pfit.enabled) 3652 return; 3653 3654 intel_de_write(dev_priv, PF_CTL(pipe), 0); 3655 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 3656 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 3657 } 3658 3659 static void ilk_crtc_disable(struct intel_atomic_state *state, 3660 struct intel_crtc *crtc) 3661 { 3662 const struct intel_crtc_state *old_crtc_state = 3663 intel_atomic_get_old_crtc_state(state, crtc); 3664 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3665 enum pipe pipe = crtc->pipe; 3666 3667 /* 3668 * Sometimes spurious CPU pipe underruns happen when the 3669 * pipe is already disabled, but FDI RX/TX is still enabled. 3670 * Happens at least with VGA+HDMI cloning. Suppress them. 3671 */ 3672 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3673 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3674 3675 intel_encoders_disable(state, crtc); 3676 3677 intel_crtc_vblank_off(old_crtc_state); 3678 3679 intel_disable_pipe(old_crtc_state); 3680 3681 ilk_pfit_disable(old_crtc_state); 3682 3683 if (old_crtc_state->has_pch_encoder) 3684 ilk_fdi_disable(crtc); 3685 3686 intel_encoders_post_disable(state, crtc); 3687 3688 if (old_crtc_state->has_pch_encoder) { 3689 ilk_disable_pch_transcoder(dev_priv, pipe); 3690 3691 if (HAS_PCH_CPT(dev_priv)) { 3692 i915_reg_t reg; 3693 u32 temp; 3694 3695 /* disable TRANS_DP_CTL */ 3696 reg = TRANS_DP_CTL(pipe); 3697 temp = intel_de_read(dev_priv, reg); 3698 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 3699 TRANS_DP_PORT_SEL_MASK); 3700 temp |= TRANS_DP_PORT_SEL_NONE; 3701 intel_de_write(dev_priv, reg, temp); 3702 3703 /* disable DPLL_SEL */ 3704 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 3705 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 3706 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 3707 } 3708 3709 ilk_fdi_pll_disable(crtc); 3710 } 3711 3712 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3713 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3714 } 3715 3716 static void hsw_crtc_disable(struct intel_atomic_state *state, 3717 struct intel_crtc *crtc) 3718 { 3719 /* 3720 * FIXME collapse everything to one hook. 3721 * Need care with mst->ddi interactions. 3722 */ 3723 intel_encoders_disable(state, crtc); 3724 intel_encoders_post_disable(state, crtc); 3725 } 3726 3727 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 3728 { 3729 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3730 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3731 3732 if (!crtc_state->gmch_pfit.control) 3733 return; 3734 3735 /* 3736 * The panel fitter should only be adjusted whilst the pipe is disabled, 3737 * according to register description and PRM. 3738 */ 3739 drm_WARN_ON(&dev_priv->drm, 3740 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 3741 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 3742 3743 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 3744 crtc_state->gmch_pfit.pgm_ratios); 3745 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 3746 3747 /* Border color in case we don't scale up to the full screen. Black by 3748 * default, change to something else for debugging. */ 3749 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 3750 } 3751 3752 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 3753 { 3754 if (phy == PHY_NONE) 3755 return false; 3756 else if (IS_DG2(dev_priv)) 3757 /* 3758 * DG2 outputs labelled as "combo PHY" in the bspec use 3759 * SNPS PHYs with completely different programming, 3760 * hence we always return false here. 3761 */ 3762 return false; 3763 else if (IS_ALDERLAKE_S(dev_priv)) 3764 return phy <= PHY_E; 3765 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 3766 return phy <= PHY_D; 3767 else if (IS_JSL_EHL(dev_priv)) 3768 return phy <= PHY_C; 3769 else if (DISPLAY_VER(dev_priv) >= 11) 3770 return phy <= PHY_B; 3771 else 3772 return false; 3773 } 3774 3775 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 3776 { 3777 if (IS_DG2(dev_priv)) 3778 /* DG2's "TC1" output uses a SNPS PHY */ 3779 return false; 3780 else if (IS_ALDERLAKE_P(dev_priv)) 3781 return phy >= PHY_F && phy <= PHY_I; 3782 else if (IS_TIGERLAKE(dev_priv)) 3783 return phy >= PHY_D && phy <= PHY_I; 3784 else if (IS_ICELAKE(dev_priv)) 3785 return phy >= PHY_C && phy <= PHY_F; 3786 else 3787 return false; 3788 } 3789 3790 bool intel_phy_is_snps(struct drm_i915_private *dev_priv, enum phy phy) 3791 { 3792 if (phy == PHY_NONE) 3793 return false; 3794 else if (IS_DG2(dev_priv)) 3795 /* 3796 * All four "combo" ports and the TC1 port (PHY E) use 3797 * Synopsis PHYs. 3798 */ 3799 return phy <= PHY_E; 3800 3801 return false; 3802 } 3803 3804 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 3805 { 3806 if (DISPLAY_VER(i915) >= 13 && port >= PORT_D_XELPD) 3807 return PHY_D + port - PORT_D_XELPD; 3808 else if (DISPLAY_VER(i915) >= 13 && port >= PORT_TC1) 3809 return PHY_F + port - PORT_TC1; 3810 else if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1) 3811 return PHY_B + port - PORT_TC1; 3812 else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1) 3813 return PHY_C + port - PORT_TC1; 3814 else if (IS_JSL_EHL(i915) && port == PORT_D) 3815 return PHY_A; 3816 3817 return PHY_A + port - PORT_A; 3818 } 3819 3820 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 3821 { 3822 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 3823 return TC_PORT_NONE; 3824 3825 if (DISPLAY_VER(dev_priv) >= 12) 3826 return TC_PORT_1 + port - PORT_TC1; 3827 else 3828 return TC_PORT_1 + port - PORT_C; 3829 } 3830 3831 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 3832 { 3833 switch (port) { 3834 case PORT_A: 3835 return POWER_DOMAIN_PORT_DDI_A_LANES; 3836 case PORT_B: 3837 return POWER_DOMAIN_PORT_DDI_B_LANES; 3838 case PORT_C: 3839 return POWER_DOMAIN_PORT_DDI_C_LANES; 3840 case PORT_D: 3841 return POWER_DOMAIN_PORT_DDI_D_LANES; 3842 case PORT_E: 3843 return POWER_DOMAIN_PORT_DDI_E_LANES; 3844 case PORT_F: 3845 return POWER_DOMAIN_PORT_DDI_F_LANES; 3846 case PORT_G: 3847 return POWER_DOMAIN_PORT_DDI_G_LANES; 3848 case PORT_H: 3849 return POWER_DOMAIN_PORT_DDI_H_LANES; 3850 case PORT_I: 3851 return POWER_DOMAIN_PORT_DDI_I_LANES; 3852 default: 3853 MISSING_CASE(port); 3854 return POWER_DOMAIN_PORT_OTHER; 3855 } 3856 } 3857 3858 enum intel_display_power_domain 3859 intel_aux_power_domain(struct intel_digital_port *dig_port) 3860 { 3861 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3862 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 3863 3864 if (intel_phy_is_tc(dev_priv, phy) && 3865 dig_port->tc_mode == TC_PORT_TBT_ALT) { 3866 switch (dig_port->aux_ch) { 3867 case AUX_CH_C: 3868 return POWER_DOMAIN_AUX_C_TBT; 3869 case AUX_CH_D: 3870 return POWER_DOMAIN_AUX_D_TBT; 3871 case AUX_CH_E: 3872 return POWER_DOMAIN_AUX_E_TBT; 3873 case AUX_CH_F: 3874 return POWER_DOMAIN_AUX_F_TBT; 3875 case AUX_CH_G: 3876 return POWER_DOMAIN_AUX_G_TBT; 3877 case AUX_CH_H: 3878 return POWER_DOMAIN_AUX_H_TBT; 3879 case AUX_CH_I: 3880 return POWER_DOMAIN_AUX_I_TBT; 3881 default: 3882 MISSING_CASE(dig_port->aux_ch); 3883 return POWER_DOMAIN_AUX_C_TBT; 3884 } 3885 } 3886 3887 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 3888 } 3889 3890 /* 3891 * Converts aux_ch to power_domain without caring about TBT ports for that use 3892 * intel_aux_power_domain() 3893 */ 3894 enum intel_display_power_domain 3895 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 3896 { 3897 switch (aux_ch) { 3898 case AUX_CH_A: 3899 return POWER_DOMAIN_AUX_A; 3900 case AUX_CH_B: 3901 return POWER_DOMAIN_AUX_B; 3902 case AUX_CH_C: 3903 return POWER_DOMAIN_AUX_C; 3904 case AUX_CH_D: 3905 return POWER_DOMAIN_AUX_D; 3906 case AUX_CH_E: 3907 return POWER_DOMAIN_AUX_E; 3908 case AUX_CH_F: 3909 return POWER_DOMAIN_AUX_F; 3910 case AUX_CH_G: 3911 return POWER_DOMAIN_AUX_G; 3912 case AUX_CH_H: 3913 return POWER_DOMAIN_AUX_H; 3914 case AUX_CH_I: 3915 return POWER_DOMAIN_AUX_I; 3916 default: 3917 MISSING_CASE(aux_ch); 3918 return POWER_DOMAIN_AUX_A; 3919 } 3920 } 3921 3922 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3923 { 3924 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3925 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3926 struct drm_encoder *encoder; 3927 enum pipe pipe = crtc->pipe; 3928 u64 mask; 3929 enum transcoder transcoder = crtc_state->cpu_transcoder; 3930 3931 if (!crtc_state->hw.active) 3932 return 0; 3933 3934 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 3935 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 3936 if (crtc_state->pch_pfit.enabled || 3937 crtc_state->pch_pfit.force_thru) 3938 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 3939 3940 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 3941 crtc_state->uapi.encoder_mask) { 3942 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 3943 3944 mask |= BIT_ULL(intel_encoder->power_domain); 3945 } 3946 3947 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 3948 mask |= BIT_ULL(POWER_DOMAIN_AUDIO_MMIO); 3949 3950 if (crtc_state->shared_dpll) 3951 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 3952 3953 if (crtc_state->dsc.compression_enable) 3954 mask |= BIT_ULL(intel_dsc_power_domain(crtc_state)); 3955 3956 return mask; 3957 } 3958 3959 static u64 3960 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3961 { 3962 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3963 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3964 enum intel_display_power_domain domain; 3965 u64 domains, new_domains, old_domains; 3966 3967 domains = get_crtc_power_domains(crtc_state); 3968 3969 new_domains = domains & ~crtc->enabled_power_domains.mask; 3970 old_domains = crtc->enabled_power_domains.mask & ~domains; 3971 3972 for_each_power_domain(domain, new_domains) 3973 intel_display_power_get_in_set(dev_priv, 3974 &crtc->enabled_power_domains, 3975 domain); 3976 3977 return old_domains; 3978 } 3979 3980 static void modeset_put_crtc_power_domains(struct intel_crtc *crtc, 3981 u64 domains) 3982 { 3983 intel_display_power_put_mask_in_set(to_i915(crtc->base.dev), 3984 &crtc->enabled_power_domains, 3985 domains); 3986 } 3987 3988 static void valleyview_crtc_enable(struct intel_atomic_state *state, 3989 struct intel_crtc *crtc) 3990 { 3991 const struct intel_crtc_state *new_crtc_state = 3992 intel_atomic_get_new_crtc_state(state, crtc); 3993 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3994 enum pipe pipe = crtc->pipe; 3995 3996 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3997 return; 3998 3999 if (intel_crtc_has_dp_encoder(new_crtc_state)) 4000 intel_dp_set_m_n(new_crtc_state, M1_N1); 4001 4002 intel_set_transcoder_timings(new_crtc_state); 4003 intel_set_pipe_src_size(new_crtc_state); 4004 4005 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 4006 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 4007 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 4008 } 4009 4010 i9xx_set_pipeconf(new_crtc_state); 4011 4012 crtc->active = true; 4013 4014 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 4015 4016 intel_encoders_pre_pll_enable(state, crtc); 4017 4018 if (IS_CHERRYVIEW(dev_priv)) { 4019 chv_prepare_pll(crtc, new_crtc_state); 4020 chv_enable_pll(crtc, new_crtc_state); 4021 } else { 4022 vlv_prepare_pll(crtc, new_crtc_state); 4023 vlv_enable_pll(crtc, new_crtc_state); 4024 } 4025 4026 intel_encoders_pre_enable(state, crtc); 4027 4028 i9xx_pfit_enable(new_crtc_state); 4029 4030 intel_color_load_luts(new_crtc_state); 4031 intel_color_commit(new_crtc_state); 4032 /* update DSPCNTR to configure gamma for pipe bottom color */ 4033 intel_disable_primary_plane(new_crtc_state); 4034 4035 dev_priv->display.initial_watermarks(state, crtc); 4036 intel_enable_pipe(new_crtc_state); 4037 4038 intel_crtc_vblank_on(new_crtc_state); 4039 4040 intel_encoders_enable(state, crtc); 4041 } 4042 4043 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 4044 { 4045 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4046 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4047 4048 intel_de_write(dev_priv, FP0(crtc->pipe), 4049 crtc_state->dpll_hw_state.fp0); 4050 intel_de_write(dev_priv, FP1(crtc->pipe), 4051 crtc_state->dpll_hw_state.fp1); 4052 } 4053 4054 static void i9xx_crtc_enable(struct intel_atomic_state *state, 4055 struct intel_crtc *crtc) 4056 { 4057 const struct intel_crtc_state *new_crtc_state = 4058 intel_atomic_get_new_crtc_state(state, crtc); 4059 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4060 enum pipe pipe = crtc->pipe; 4061 4062 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 4063 return; 4064 4065 i9xx_set_pll_dividers(new_crtc_state); 4066 4067 if (intel_crtc_has_dp_encoder(new_crtc_state)) 4068 intel_dp_set_m_n(new_crtc_state, M1_N1); 4069 4070 intel_set_transcoder_timings(new_crtc_state); 4071 intel_set_pipe_src_size(new_crtc_state); 4072 4073 i9xx_set_pipeconf(new_crtc_state); 4074 4075 crtc->active = true; 4076 4077 if (DISPLAY_VER(dev_priv) != 2) 4078 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 4079 4080 intel_encoders_pre_enable(state, crtc); 4081 4082 i9xx_enable_pll(crtc, new_crtc_state); 4083 4084 i9xx_pfit_enable(new_crtc_state); 4085 4086 intel_color_load_luts(new_crtc_state); 4087 intel_color_commit(new_crtc_state); 4088 /* update DSPCNTR to configure gamma for pipe bottom color */ 4089 intel_disable_primary_plane(new_crtc_state); 4090 4091 if (dev_priv->display.initial_watermarks) 4092 dev_priv->display.initial_watermarks(state, crtc); 4093 else 4094 intel_update_watermarks(crtc); 4095 intel_enable_pipe(new_crtc_state); 4096 4097 intel_crtc_vblank_on(new_crtc_state); 4098 4099 intel_encoders_enable(state, crtc); 4100 4101 /* prevents spurious underruns */ 4102 if (DISPLAY_VER(dev_priv) == 2) 4103 intel_wait_for_vblank(dev_priv, pipe); 4104 } 4105 4106 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 4107 { 4108 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4109 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4110 4111 if (!old_crtc_state->gmch_pfit.control) 4112 return; 4113 4114 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 4115 4116 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 4117 intel_de_read(dev_priv, PFIT_CONTROL)); 4118 intel_de_write(dev_priv, PFIT_CONTROL, 0); 4119 } 4120 4121 static void i9xx_crtc_disable(struct intel_atomic_state *state, 4122 struct intel_crtc *crtc) 4123 { 4124 struct intel_crtc_state *old_crtc_state = 4125 intel_atomic_get_old_crtc_state(state, crtc); 4126 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4127 enum pipe pipe = crtc->pipe; 4128 4129 /* 4130 * On gen2 planes are double buffered but the pipe isn't, so we must 4131 * wait for planes to fully turn off before disabling the pipe. 4132 */ 4133 if (DISPLAY_VER(dev_priv) == 2) 4134 intel_wait_for_vblank(dev_priv, pipe); 4135 4136 intel_encoders_disable(state, crtc); 4137 4138 intel_crtc_vblank_off(old_crtc_state); 4139 4140 intel_disable_pipe(old_crtc_state); 4141 4142 i9xx_pfit_disable(old_crtc_state); 4143 4144 intel_encoders_post_disable(state, crtc); 4145 4146 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 4147 if (IS_CHERRYVIEW(dev_priv)) 4148 chv_disable_pll(dev_priv, pipe); 4149 else if (IS_VALLEYVIEW(dev_priv)) 4150 vlv_disable_pll(dev_priv, pipe); 4151 else 4152 i9xx_disable_pll(old_crtc_state); 4153 } 4154 4155 intel_encoders_post_pll_disable(state, crtc); 4156 4157 if (DISPLAY_VER(dev_priv) != 2) 4158 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4159 4160 if (!dev_priv->display.initial_watermarks) 4161 intel_update_watermarks(crtc); 4162 4163 /* clock the pipe down to 640x480@60 to potentially save power */ 4164 if (IS_I830(dev_priv)) 4165 i830_enable_pipe(dev_priv, pipe); 4166 } 4167 4168 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 4169 struct drm_modeset_acquire_ctx *ctx) 4170 { 4171 struct intel_encoder *encoder; 4172 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4173 struct intel_bw_state *bw_state = 4174 to_intel_bw_state(dev_priv->bw_obj.state); 4175 struct intel_cdclk_state *cdclk_state = 4176 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 4177 struct intel_dbuf_state *dbuf_state = 4178 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 4179 struct intel_crtc_state *crtc_state = 4180 to_intel_crtc_state(crtc->base.state); 4181 struct intel_plane *plane; 4182 struct drm_atomic_state *state; 4183 struct intel_crtc_state *temp_crtc_state; 4184 enum pipe pipe = crtc->pipe; 4185 int ret; 4186 4187 if (!crtc_state->hw.active) 4188 return; 4189 4190 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 4191 const struct intel_plane_state *plane_state = 4192 to_intel_plane_state(plane->base.state); 4193 4194 if (plane_state->uapi.visible) 4195 intel_plane_disable_noatomic(crtc, plane); 4196 } 4197 4198 state = drm_atomic_state_alloc(&dev_priv->drm); 4199 if (!state) { 4200 drm_dbg_kms(&dev_priv->drm, 4201 "failed to disable [CRTC:%d:%s], out of memory", 4202 crtc->base.base.id, crtc->base.name); 4203 return; 4204 } 4205 4206 state->acquire_ctx = ctx; 4207 4208 /* Everything's already locked, -EDEADLK can't happen. */ 4209 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 4210 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 4211 4212 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 4213 4214 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 4215 4216 drm_atomic_state_put(state); 4217 4218 drm_dbg_kms(&dev_priv->drm, 4219 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 4220 crtc->base.base.id, crtc->base.name); 4221 4222 crtc->active = false; 4223 crtc->base.enabled = false; 4224 4225 drm_WARN_ON(&dev_priv->drm, 4226 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 4227 crtc_state->uapi.active = false; 4228 crtc_state->uapi.connector_mask = 0; 4229 crtc_state->uapi.encoder_mask = 0; 4230 intel_crtc_free_hw_state(crtc_state); 4231 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 4232 4233 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 4234 encoder->base.crtc = NULL; 4235 4236 intel_fbc_disable(crtc); 4237 intel_update_watermarks(crtc); 4238 intel_disable_shared_dpll(crtc_state); 4239 4240 intel_display_power_put_all_in_set(dev_priv, &crtc->enabled_power_domains); 4241 4242 dev_priv->active_pipes &= ~BIT(pipe); 4243 cdclk_state->min_cdclk[pipe] = 0; 4244 cdclk_state->min_voltage_level[pipe] = 0; 4245 cdclk_state->active_pipes &= ~BIT(pipe); 4246 4247 dbuf_state->active_pipes &= ~BIT(pipe); 4248 4249 bw_state->data_rate[pipe] = 0; 4250 bw_state->num_active_planes[pipe] = 0; 4251 } 4252 4253 /* 4254 * turn all crtc's off, but do not adjust state 4255 * This has to be paired with a call to intel_modeset_setup_hw_state. 4256 */ 4257 int intel_display_suspend(struct drm_device *dev) 4258 { 4259 struct drm_i915_private *dev_priv = to_i915(dev); 4260 struct drm_atomic_state *state; 4261 int ret; 4262 4263 if (!HAS_DISPLAY(dev_priv)) 4264 return 0; 4265 4266 state = drm_atomic_helper_suspend(dev); 4267 ret = PTR_ERR_OR_ZERO(state); 4268 if (ret) 4269 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4270 ret); 4271 else 4272 dev_priv->modeset_restore_state = state; 4273 return ret; 4274 } 4275 4276 void intel_encoder_destroy(struct drm_encoder *encoder) 4277 { 4278 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 4279 4280 drm_encoder_cleanup(encoder); 4281 kfree(intel_encoder); 4282 } 4283 4284 /* Cross check the actual hw state with our own modeset state tracking (and it's 4285 * internal consistency). */ 4286 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 4287 struct drm_connector_state *conn_state) 4288 { 4289 struct intel_connector *connector = to_intel_connector(conn_state->connector); 4290 struct drm_i915_private *i915 = to_i915(connector->base.dev); 4291 4292 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 4293 connector->base.base.id, connector->base.name); 4294 4295 if (connector->get_hw_state(connector)) { 4296 struct intel_encoder *encoder = intel_attached_encoder(connector); 4297 4298 I915_STATE_WARN(!crtc_state, 4299 "connector enabled without attached crtc\n"); 4300 4301 if (!crtc_state) 4302 return; 4303 4304 I915_STATE_WARN(!crtc_state->hw.active, 4305 "connector is active, but attached crtc isn't\n"); 4306 4307 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 4308 return; 4309 4310 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 4311 "atomic encoder doesn't match attached encoder\n"); 4312 4313 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 4314 "attached encoder crtc differs from connector crtc\n"); 4315 } else { 4316 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 4317 "attached crtc is active, but connector isn't\n"); 4318 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 4319 "best encoder set without crtc!\n"); 4320 } 4321 } 4322 4323 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 4324 { 4325 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4326 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4327 4328 /* IPS only exists on ULT machines and is tied to pipe A. */ 4329 if (!hsw_crtc_supports_ips(crtc)) 4330 return false; 4331 4332 if (!dev_priv->params.enable_ips) 4333 return false; 4334 4335 if (crtc_state->pipe_bpp > 24) 4336 return false; 4337 4338 /* 4339 * We compare against max which means we must take 4340 * the increased cdclk requirement into account when 4341 * calculating the new cdclk. 4342 * 4343 * Should measure whether using a lower cdclk w/o IPS 4344 */ 4345 if (IS_BROADWELL(dev_priv) && 4346 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 4347 return false; 4348 4349 return true; 4350 } 4351 4352 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 4353 { 4354 struct drm_i915_private *dev_priv = 4355 to_i915(crtc_state->uapi.crtc->dev); 4356 struct intel_atomic_state *state = 4357 to_intel_atomic_state(crtc_state->uapi.state); 4358 4359 crtc_state->ips_enabled = false; 4360 4361 if (!hsw_crtc_state_ips_capable(crtc_state)) 4362 return 0; 4363 4364 /* 4365 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 4366 * enabled and disabled dynamically based on package C states, 4367 * user space can't make reliable use of the CRCs, so let's just 4368 * completely disable it. 4369 */ 4370 if (crtc_state->crc_enabled) 4371 return 0; 4372 4373 /* IPS should be fine as long as at least one plane is enabled. */ 4374 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 4375 return 0; 4376 4377 if (IS_BROADWELL(dev_priv)) { 4378 const struct intel_cdclk_state *cdclk_state; 4379 4380 cdclk_state = intel_atomic_get_cdclk_state(state); 4381 if (IS_ERR(cdclk_state)) 4382 return PTR_ERR(cdclk_state); 4383 4384 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 4385 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 4386 return 0; 4387 } 4388 4389 crtc_state->ips_enabled = true; 4390 4391 return 0; 4392 } 4393 4394 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 4395 { 4396 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4397 4398 /* GDG double wide on either pipe, otherwise pipe A only */ 4399 return DISPLAY_VER(dev_priv) < 4 && 4400 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 4401 } 4402 4403 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 4404 { 4405 u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; 4406 struct drm_rect src; 4407 4408 /* 4409 * We only use IF-ID interlacing. If we ever use 4410 * PF-ID we'll need to adjust the pixel_rate here. 4411 */ 4412 4413 if (!crtc_state->pch_pfit.enabled) 4414 return pixel_rate; 4415 4416 drm_rect_init(&src, 0, 0, 4417 crtc_state->pipe_src_w << 16, 4418 crtc_state->pipe_src_h << 16); 4419 4420 return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst, 4421 pixel_rate); 4422 } 4423 4424 static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, 4425 const struct drm_display_mode *timings) 4426 { 4427 mode->hdisplay = timings->crtc_hdisplay; 4428 mode->htotal = timings->crtc_htotal; 4429 mode->hsync_start = timings->crtc_hsync_start; 4430 mode->hsync_end = timings->crtc_hsync_end; 4431 4432 mode->vdisplay = timings->crtc_vdisplay; 4433 mode->vtotal = timings->crtc_vtotal; 4434 mode->vsync_start = timings->crtc_vsync_start; 4435 mode->vsync_end = timings->crtc_vsync_end; 4436 4437 mode->flags = timings->flags; 4438 mode->type = DRM_MODE_TYPE_DRIVER; 4439 4440 mode->clock = timings->crtc_clock; 4441 4442 drm_mode_set_name(mode); 4443 } 4444 4445 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 4446 { 4447 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4448 4449 if (HAS_GMCH(dev_priv)) 4450 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 4451 crtc_state->pixel_rate = 4452 crtc_state->hw.pipe_mode.crtc_clock; 4453 else 4454 crtc_state->pixel_rate = 4455 ilk_pipe_pixel_rate(crtc_state); 4456 } 4457 4458 static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) 4459 { 4460 struct drm_display_mode *mode = &crtc_state->hw.mode; 4461 struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 4462 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4463 4464 drm_mode_copy(pipe_mode, adjusted_mode); 4465 4466 if (crtc_state->bigjoiner) { 4467 /* 4468 * transcoder is programmed to the full mode, 4469 * but pipe timings are half of the transcoder mode 4470 */ 4471 pipe_mode->crtc_hdisplay /= 2; 4472 pipe_mode->crtc_hblank_start /= 2; 4473 pipe_mode->crtc_hblank_end /= 2; 4474 pipe_mode->crtc_hsync_start /= 2; 4475 pipe_mode->crtc_hsync_end /= 2; 4476 pipe_mode->crtc_htotal /= 2; 4477 pipe_mode->crtc_clock /= 2; 4478 } 4479 4480 if (crtc_state->splitter.enable) { 4481 int n = crtc_state->splitter.link_count; 4482 int overlap = crtc_state->splitter.pixel_overlap; 4483 4484 /* 4485 * eDP MSO uses segment timings from EDID for transcoder 4486 * timings, but full mode for everything else. 4487 * 4488 * h_full = (h_segment - pixel_overlap) * link_count 4489 */ 4490 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4491 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4492 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4493 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4494 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4495 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4496 pipe_mode->crtc_clock *= n; 4497 4498 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4499 intel_mode_from_crtc_timings(adjusted_mode, pipe_mode); 4500 } else { 4501 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4502 intel_mode_from_crtc_timings(adjusted_mode, adjusted_mode); 4503 } 4504 4505 intel_crtc_compute_pixel_rate(crtc_state); 4506 4507 drm_mode_copy(mode, adjusted_mode); 4508 mode->hdisplay = crtc_state->pipe_src_w << crtc_state->bigjoiner; 4509 mode->vdisplay = crtc_state->pipe_src_h; 4510 } 4511 4512 static void intel_encoder_get_config(struct intel_encoder *encoder, 4513 struct intel_crtc_state *crtc_state) 4514 { 4515 encoder->get_config(encoder, crtc_state); 4516 4517 intel_crtc_readout_derived_state(crtc_state); 4518 } 4519 4520 static int intel_crtc_compute_config(struct intel_crtc *crtc, 4521 struct intel_crtc_state *pipe_config) 4522 { 4523 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4524 struct drm_display_mode *pipe_mode = &pipe_config->hw.pipe_mode; 4525 int clock_limit = dev_priv->max_dotclk_freq; 4526 4527 drm_mode_copy(pipe_mode, &pipe_config->hw.adjusted_mode); 4528 4529 /* Adjust pipe_mode for bigjoiner, with half the horizontal mode */ 4530 if (pipe_config->bigjoiner) { 4531 pipe_mode->crtc_clock /= 2; 4532 pipe_mode->crtc_hdisplay /= 2; 4533 pipe_mode->crtc_hblank_start /= 2; 4534 pipe_mode->crtc_hblank_end /= 2; 4535 pipe_mode->crtc_hsync_start /= 2; 4536 pipe_mode->crtc_hsync_end /= 2; 4537 pipe_mode->crtc_htotal /= 2; 4538 pipe_config->pipe_src_w /= 2; 4539 } 4540 4541 if (pipe_config->splitter.enable) { 4542 int n = pipe_config->splitter.link_count; 4543 int overlap = pipe_config->splitter.pixel_overlap; 4544 4545 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4546 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4547 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4548 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4549 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4550 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4551 pipe_mode->crtc_clock *= n; 4552 } 4553 4554 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4555 4556 if (DISPLAY_VER(dev_priv) < 4) { 4557 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 4558 4559 /* 4560 * Enable double wide mode when the dot clock 4561 * is > 90% of the (display) core speed. 4562 */ 4563 if (intel_crtc_supports_double_wide(crtc) && 4564 pipe_mode->crtc_clock > clock_limit) { 4565 clock_limit = dev_priv->max_dotclk_freq; 4566 pipe_config->double_wide = true; 4567 } 4568 } 4569 4570 if (pipe_mode->crtc_clock > clock_limit) { 4571 drm_dbg_kms(&dev_priv->drm, 4572 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 4573 pipe_mode->crtc_clock, clock_limit, 4574 yesno(pipe_config->double_wide)); 4575 return -EINVAL; 4576 } 4577 4578 /* 4579 * Pipe horizontal size must be even in: 4580 * - DVO ganged mode 4581 * - LVDS dual channel mode 4582 * - Double wide pipe 4583 */ 4584 if (pipe_config->pipe_src_w & 1) { 4585 if (pipe_config->double_wide) { 4586 drm_dbg_kms(&dev_priv->drm, 4587 "Odd pipe source width not supported with double wide pipe\n"); 4588 return -EINVAL; 4589 } 4590 4591 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 4592 intel_is_dual_link_lvds(dev_priv)) { 4593 drm_dbg_kms(&dev_priv->drm, 4594 "Odd pipe source width not supported with dual link LVDS\n"); 4595 return -EINVAL; 4596 } 4597 } 4598 4599 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 4600 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 4601 */ 4602 if ((DISPLAY_VER(dev_priv) > 4 || IS_G4X(dev_priv)) && 4603 pipe_mode->crtc_hsync_start == pipe_mode->crtc_hdisplay) 4604 return -EINVAL; 4605 4606 intel_crtc_compute_pixel_rate(pipe_config); 4607 4608 if (pipe_config->has_pch_encoder) 4609 return ilk_fdi_compute_config(crtc, pipe_config); 4610 4611 return 0; 4612 } 4613 4614 static void 4615 intel_reduce_m_n_ratio(u32 *num, u32 *den) 4616 { 4617 while (*num > DATA_LINK_M_N_MASK || 4618 *den > DATA_LINK_M_N_MASK) { 4619 *num >>= 1; 4620 *den >>= 1; 4621 } 4622 } 4623 4624 static void compute_m_n(unsigned int m, unsigned int n, 4625 u32 *ret_m, u32 *ret_n, 4626 bool constant_n) 4627 { 4628 /* 4629 * Several DP dongles in particular seem to be fussy about 4630 * too large link M/N values. Give N value as 0x8000 that 4631 * should be acceptable by specific devices. 0x8000 is the 4632 * specified fixed N value for asynchronous clock mode, 4633 * which the devices expect also in synchronous clock mode. 4634 */ 4635 if (constant_n) 4636 *ret_n = DP_LINK_CONSTANT_N_VALUE; 4637 else 4638 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 4639 4640 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 4641 intel_reduce_m_n_ratio(ret_m, ret_n); 4642 } 4643 4644 void 4645 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 4646 int pixel_clock, int link_clock, 4647 struct intel_link_m_n *m_n, 4648 bool constant_n, bool fec_enable) 4649 { 4650 u32 data_clock = bits_per_pixel * pixel_clock; 4651 4652 if (fec_enable) 4653 data_clock = intel_dp_mode_to_fec_clock(data_clock); 4654 4655 m_n->tu = 64; 4656 compute_m_n(data_clock, 4657 link_clock * nlanes * 8, 4658 &m_n->gmch_m, &m_n->gmch_n, 4659 constant_n); 4660 4661 compute_m_n(pixel_clock, link_clock, 4662 &m_n->link_m, &m_n->link_n, 4663 constant_n); 4664 } 4665 4666 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 4667 { 4668 /* 4669 * There may be no VBT; and if the BIOS enabled SSC we can 4670 * just keep using it to avoid unnecessary flicker. Whereas if the 4671 * BIOS isn't using it, don't assume it will work even if the VBT 4672 * indicates as much. 4673 */ 4674 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 4675 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 4676 PCH_DREF_CONTROL) & 4677 DREF_SSC1_ENABLE; 4678 4679 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 4680 drm_dbg_kms(&dev_priv->drm, 4681 "SSC %s by BIOS, overriding VBT which says %s\n", 4682 enableddisabled(bios_lvds_use_ssc), 4683 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 4684 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 4685 } 4686 } 4687 } 4688 4689 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4690 const struct intel_link_m_n *m_n) 4691 { 4692 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4693 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4694 enum pipe pipe = crtc->pipe; 4695 4696 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 4697 TU_SIZE(m_n->tu) | m_n->gmch_m); 4698 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 4699 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 4700 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 4701 } 4702 4703 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 4704 enum transcoder transcoder) 4705 { 4706 if (IS_HASWELL(dev_priv)) 4707 return transcoder == TRANSCODER_EDP; 4708 4709 /* 4710 * Strictly speaking some registers are available before 4711 * gen7, but we only support DRRS on gen7+ 4712 */ 4713 return DISPLAY_VER(dev_priv) == 7 || IS_CHERRYVIEW(dev_priv); 4714 } 4715 4716 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4717 const struct intel_link_m_n *m_n, 4718 const struct intel_link_m_n *m2_n2) 4719 { 4720 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4721 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4722 enum pipe pipe = crtc->pipe; 4723 enum transcoder transcoder = crtc_state->cpu_transcoder; 4724 4725 if (DISPLAY_VER(dev_priv) >= 5) { 4726 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 4727 TU_SIZE(m_n->tu) | m_n->gmch_m); 4728 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 4729 m_n->gmch_n); 4730 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 4731 m_n->link_m); 4732 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 4733 m_n->link_n); 4734 /* 4735 * M2_N2 registers are set only if DRRS is supported 4736 * (to make sure the registers are not unnecessarily accessed). 4737 */ 4738 if (m2_n2 && crtc_state->has_drrs && 4739 transcoder_has_m2_n2(dev_priv, transcoder)) { 4740 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 4741 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 4742 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 4743 m2_n2->gmch_n); 4744 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 4745 m2_n2->link_m); 4746 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 4747 m2_n2->link_n); 4748 } 4749 } else { 4750 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 4751 TU_SIZE(m_n->tu) | m_n->gmch_m); 4752 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 4753 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 4754 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 4755 } 4756 } 4757 4758 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 4759 { 4760 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 4761 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 4762 4763 if (m_n == M1_N1) { 4764 dp_m_n = &crtc_state->dp_m_n; 4765 dp_m2_n2 = &crtc_state->dp_m2_n2; 4766 } else if (m_n == M2_N2) { 4767 4768 /* 4769 * M2_N2 registers are not supported. Hence m2_n2 divider value 4770 * needs to be programmed into M1_N1. 4771 */ 4772 dp_m_n = &crtc_state->dp_m2_n2; 4773 } else { 4774 drm_err(&i915->drm, "Unsupported divider value\n"); 4775 return; 4776 } 4777 4778 if (crtc_state->has_pch_encoder) 4779 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 4780 else 4781 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 4782 } 4783 4784 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) 4785 { 4786 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4787 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4788 enum pipe pipe = crtc->pipe; 4789 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4790 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4791 u32 crtc_vtotal, crtc_vblank_end; 4792 int vsyncshift = 0; 4793 4794 /* We need to be careful not to changed the adjusted mode, for otherwise 4795 * the hw state checker will get angry at the mismatch. */ 4796 crtc_vtotal = adjusted_mode->crtc_vtotal; 4797 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 4798 4799 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 4800 /* the chip adds 2 halflines automatically */ 4801 crtc_vtotal -= 1; 4802 crtc_vblank_end -= 1; 4803 4804 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4805 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 4806 else 4807 vsyncshift = adjusted_mode->crtc_hsync_start - 4808 adjusted_mode->crtc_htotal / 2; 4809 if (vsyncshift < 0) 4810 vsyncshift += adjusted_mode->crtc_htotal; 4811 } 4812 4813 if (DISPLAY_VER(dev_priv) > 3) 4814 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 4815 vsyncshift); 4816 4817 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 4818 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 4819 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 4820 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 4821 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 4822 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 4823 4824 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 4825 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 4826 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 4827 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 4828 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 4829 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 4830 4831 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 4832 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 4833 * documented on the DDI_FUNC_CTL register description, EDP Input Select 4834 * bits. */ 4835 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 4836 (pipe == PIPE_B || pipe == PIPE_C)) 4837 intel_de_write(dev_priv, VTOTAL(pipe), 4838 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 4839 4840 } 4841 4842 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 4843 { 4844 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4845 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4846 enum pipe pipe = crtc->pipe; 4847 4848 /* pipesrc controls the size that is scaled from, which should 4849 * always be the user's requested size. 4850 */ 4851 intel_de_write(dev_priv, PIPESRC(pipe), 4852 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 4853 } 4854 4855 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 4856 { 4857 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4858 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4859 4860 if (DISPLAY_VER(dev_priv) == 2) 4861 return false; 4862 4863 if (DISPLAY_VER(dev_priv) >= 9 || 4864 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 4865 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 4866 else 4867 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 4868 } 4869 4870 static void intel_get_transcoder_timings(struct intel_crtc *crtc, 4871 struct intel_crtc_state *pipe_config) 4872 { 4873 struct drm_device *dev = crtc->base.dev; 4874 struct drm_i915_private *dev_priv = to_i915(dev); 4875 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 4876 u32 tmp; 4877 4878 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 4879 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 4880 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 4881 4882 if (!transcoder_is_dsi(cpu_transcoder)) { 4883 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 4884 pipe_config->hw.adjusted_mode.crtc_hblank_start = 4885 (tmp & 0xffff) + 1; 4886 pipe_config->hw.adjusted_mode.crtc_hblank_end = 4887 ((tmp >> 16) & 0xffff) + 1; 4888 } 4889 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 4890 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 4891 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 4892 4893 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 4894 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 4895 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 4896 4897 if (!transcoder_is_dsi(cpu_transcoder)) { 4898 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 4899 pipe_config->hw.adjusted_mode.crtc_vblank_start = 4900 (tmp & 0xffff) + 1; 4901 pipe_config->hw.adjusted_mode.crtc_vblank_end = 4902 ((tmp >> 16) & 0xffff) + 1; 4903 } 4904 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 4905 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 4906 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 4907 4908 if (intel_pipe_is_interlaced(pipe_config)) { 4909 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 4910 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 4911 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 4912 } 4913 } 4914 4915 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 4916 struct intel_crtc_state *pipe_config) 4917 { 4918 struct drm_device *dev = crtc->base.dev; 4919 struct drm_i915_private *dev_priv = to_i915(dev); 4920 u32 tmp; 4921 4922 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 4923 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 4924 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 4925 } 4926 4927 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 4928 { 4929 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4930 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4931 u32 pipeconf; 4932 4933 pipeconf = 0; 4934 4935 /* we keep both pipes enabled on 830 */ 4936 if (IS_I830(dev_priv)) 4937 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 4938 4939 if (crtc_state->double_wide) 4940 pipeconf |= PIPECONF_DOUBLE_WIDE; 4941 4942 /* only g4x and later have fancy bpc/dither controls */ 4943 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 4944 IS_CHERRYVIEW(dev_priv)) { 4945 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 4946 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 4947 pipeconf |= PIPECONF_DITHER_EN | 4948 PIPECONF_DITHER_TYPE_SP; 4949 4950 switch (crtc_state->pipe_bpp) { 4951 case 18: 4952 pipeconf |= PIPECONF_6BPC; 4953 break; 4954 case 24: 4955 pipeconf |= PIPECONF_8BPC; 4956 break; 4957 case 30: 4958 pipeconf |= PIPECONF_10BPC; 4959 break; 4960 default: 4961 /* Case prevented by intel_choose_pipe_bpp_dither. */ 4962 BUG(); 4963 } 4964 } 4965 4966 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 4967 if (DISPLAY_VER(dev_priv) < 4 || 4968 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4969 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 4970 else 4971 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 4972 } else { 4973 pipeconf |= PIPECONF_PROGRESSIVE; 4974 } 4975 4976 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 4977 crtc_state->limited_color_range) 4978 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 4979 4980 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 4981 4982 pipeconf |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 4983 4984 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 4985 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 4986 } 4987 4988 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 4989 { 4990 if (IS_I830(dev_priv)) 4991 return false; 4992 4993 return DISPLAY_VER(dev_priv) >= 4 || 4994 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 4995 } 4996 4997 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 4998 { 4999 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5000 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5001 u32 tmp; 5002 5003 if (!i9xx_has_pfit(dev_priv)) 5004 return; 5005 5006 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 5007 if (!(tmp & PFIT_ENABLE)) 5008 return; 5009 5010 /* Check whether the pfit is attached to our pipe. */ 5011 if (DISPLAY_VER(dev_priv) < 4) { 5012 if (crtc->pipe != PIPE_B) 5013 return; 5014 } else { 5015 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 5016 return; 5017 } 5018 5019 crtc_state->gmch_pfit.control = tmp; 5020 crtc_state->gmch_pfit.pgm_ratios = 5021 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 5022 } 5023 5024 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 5025 struct intel_crtc_state *pipe_config) 5026 { 5027 struct drm_device *dev = crtc->base.dev; 5028 struct drm_i915_private *dev_priv = to_i915(dev); 5029 enum pipe pipe = crtc->pipe; 5030 struct dpll clock; 5031 u32 mdiv; 5032 int refclk = 100000; 5033 5034 /* In case of DSI, DPLL will not be used */ 5035 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 5036 return; 5037 5038 vlv_dpio_get(dev_priv); 5039 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 5040 vlv_dpio_put(dev_priv); 5041 5042 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 5043 clock.m2 = mdiv & DPIO_M2DIV_MASK; 5044 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 5045 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 5046 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 5047 5048 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 5049 } 5050 5051 static void chv_crtc_clock_get(struct intel_crtc *crtc, 5052 struct intel_crtc_state *pipe_config) 5053 { 5054 struct drm_device *dev = crtc->base.dev; 5055 struct drm_i915_private *dev_priv = to_i915(dev); 5056 enum pipe pipe = crtc->pipe; 5057 enum dpio_channel port = vlv_pipe_to_channel(pipe); 5058 struct dpll clock; 5059 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 5060 int refclk = 100000; 5061 5062 /* In case of DSI, DPLL will not be used */ 5063 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 5064 return; 5065 5066 vlv_dpio_get(dev_priv); 5067 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 5068 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 5069 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 5070 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 5071 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 5072 vlv_dpio_put(dev_priv); 5073 5074 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 5075 clock.m2 = (pll_dw0 & 0xff) << 22; 5076 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 5077 clock.m2 |= pll_dw2 & 0x3fffff; 5078 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 5079 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 5080 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 5081 5082 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 5083 } 5084 5085 static enum intel_output_format 5086 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 5087 { 5088 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5089 u32 tmp; 5090 5091 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 5092 5093 if (tmp & PIPEMISC_YUV420_ENABLE) { 5094 /* We support 4:2:0 in full blend mode only */ 5095 drm_WARN_ON(&dev_priv->drm, 5096 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 5097 5098 return INTEL_OUTPUT_FORMAT_YCBCR420; 5099 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 5100 return INTEL_OUTPUT_FORMAT_YCBCR444; 5101 } else { 5102 return INTEL_OUTPUT_FORMAT_RGB; 5103 } 5104 } 5105 5106 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 5107 { 5108 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5109 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 5110 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5111 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 5112 u32 tmp; 5113 5114 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 5115 5116 if (tmp & DISPPLANE_GAMMA_ENABLE) 5117 crtc_state->gamma_enable = true; 5118 5119 if (!HAS_GMCH(dev_priv) && 5120 tmp & DISPPLANE_PIPE_CSC_ENABLE) 5121 crtc_state->csc_enable = true; 5122 } 5123 5124 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 5125 struct intel_crtc_state *pipe_config) 5126 { 5127 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5128 enum intel_display_power_domain power_domain; 5129 intel_wakeref_t wakeref; 5130 u32 tmp; 5131 bool ret; 5132 5133 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 5134 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 5135 if (!wakeref) 5136 return false; 5137 5138 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 5139 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 5140 pipe_config->shared_dpll = NULL; 5141 5142 ret = false; 5143 5144 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 5145 if (!(tmp & PIPECONF_ENABLE)) 5146 goto out; 5147 5148 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 5149 IS_CHERRYVIEW(dev_priv)) { 5150 switch (tmp & PIPECONF_BPC_MASK) { 5151 case PIPECONF_6BPC: 5152 pipe_config->pipe_bpp = 18; 5153 break; 5154 case PIPECONF_8BPC: 5155 pipe_config->pipe_bpp = 24; 5156 break; 5157 case PIPECONF_10BPC: 5158 pipe_config->pipe_bpp = 30; 5159 break; 5160 default: 5161 break; 5162 } 5163 } 5164 5165 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 5166 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 5167 pipe_config->limited_color_range = true; 5168 5169 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 5170 PIPECONF_GAMMA_MODE_SHIFT; 5171 5172 if (IS_CHERRYVIEW(dev_priv)) 5173 pipe_config->cgm_mode = intel_de_read(dev_priv, 5174 CGM_PIPE_MODE(crtc->pipe)); 5175 5176 i9xx_get_pipe_color_config(pipe_config); 5177 intel_color_get_config(pipe_config); 5178 5179 if (DISPLAY_VER(dev_priv) < 4) 5180 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 5181 5182 intel_get_transcoder_timings(crtc, pipe_config); 5183 intel_get_pipe_src_size(crtc, pipe_config); 5184 5185 i9xx_get_pfit_config(pipe_config); 5186 5187 if (DISPLAY_VER(dev_priv) >= 4) { 5188 /* No way to read it out on pipes B and C */ 5189 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 5190 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 5191 else 5192 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 5193 pipe_config->pixel_multiplier = 5194 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 5195 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 5196 pipe_config->dpll_hw_state.dpll_md = tmp; 5197 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 5198 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 5199 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 5200 pipe_config->pixel_multiplier = 5201 ((tmp & SDVO_MULTIPLIER_MASK) 5202 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 5203 } else { 5204 /* Note that on i915G/GM the pixel multiplier is in the sdvo 5205 * port and will be fixed up in the encoder->get_config 5206 * function. */ 5207 pipe_config->pixel_multiplier = 1; 5208 } 5209 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 5210 DPLL(crtc->pipe)); 5211 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 5212 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 5213 FP0(crtc->pipe)); 5214 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 5215 FP1(crtc->pipe)); 5216 } else { 5217 /* Mask out read-only status bits. */ 5218 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 5219 DPLL_PORTC_READY_MASK | 5220 DPLL_PORTB_READY_MASK); 5221 } 5222 5223 if (IS_CHERRYVIEW(dev_priv)) 5224 chv_crtc_clock_get(crtc, pipe_config); 5225 else if (IS_VALLEYVIEW(dev_priv)) 5226 vlv_crtc_clock_get(crtc, pipe_config); 5227 else 5228 i9xx_crtc_clock_get(crtc, pipe_config); 5229 5230 /* 5231 * Normally the dotclock is filled in by the encoder .get_config() 5232 * but in case the pipe is enabled w/o any ports we need a sane 5233 * default. 5234 */ 5235 pipe_config->hw.adjusted_mode.crtc_clock = 5236 pipe_config->port_clock / pipe_config->pixel_multiplier; 5237 5238 ret = true; 5239 5240 out: 5241 intel_display_power_put(dev_priv, power_domain, wakeref); 5242 5243 return ret; 5244 } 5245 5246 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 5247 { 5248 struct intel_encoder *encoder; 5249 int i; 5250 u32 val, final; 5251 bool has_lvds = false; 5252 bool has_cpu_edp = false; 5253 bool has_panel = false; 5254 bool has_ck505 = false; 5255 bool can_ssc = false; 5256 bool using_ssc_source = false; 5257 5258 /* We need to take the global config into account */ 5259 for_each_intel_encoder(&dev_priv->drm, encoder) { 5260 switch (encoder->type) { 5261 case INTEL_OUTPUT_LVDS: 5262 has_panel = true; 5263 has_lvds = true; 5264 break; 5265 case INTEL_OUTPUT_EDP: 5266 has_panel = true; 5267 if (encoder->port == PORT_A) 5268 has_cpu_edp = true; 5269 break; 5270 default: 5271 break; 5272 } 5273 } 5274 5275 if (HAS_PCH_IBX(dev_priv)) { 5276 has_ck505 = dev_priv->vbt.display_clock_mode; 5277 can_ssc = has_ck505; 5278 } else { 5279 has_ck505 = false; 5280 can_ssc = true; 5281 } 5282 5283 /* Check if any DPLLs are using the SSC source */ 5284 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 5285 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 5286 5287 if (!(temp & DPLL_VCO_ENABLE)) 5288 continue; 5289 5290 if ((temp & PLL_REF_INPUT_MASK) == 5291 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 5292 using_ssc_source = true; 5293 break; 5294 } 5295 } 5296 5297 drm_dbg_kms(&dev_priv->drm, 5298 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 5299 has_panel, has_lvds, has_ck505, using_ssc_source); 5300 5301 /* Ironlake: try to setup display ref clock before DPLL 5302 * enabling. This is only under driver's control after 5303 * PCH B stepping, previous chipset stepping should be 5304 * ignoring this setting. 5305 */ 5306 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 5307 5308 /* As we must carefully and slowly disable/enable each source in turn, 5309 * compute the final state we want first and check if we need to 5310 * make any changes at all. 5311 */ 5312 final = val; 5313 final &= ~DREF_NONSPREAD_SOURCE_MASK; 5314 if (has_ck505) 5315 final |= DREF_NONSPREAD_CK505_ENABLE; 5316 else 5317 final |= DREF_NONSPREAD_SOURCE_ENABLE; 5318 5319 final &= ~DREF_SSC_SOURCE_MASK; 5320 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5321 final &= ~DREF_SSC1_ENABLE; 5322 5323 if (has_panel) { 5324 final |= DREF_SSC_SOURCE_ENABLE; 5325 5326 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5327 final |= DREF_SSC1_ENABLE; 5328 5329 if (has_cpu_edp) { 5330 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5331 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5332 else 5333 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5334 } else 5335 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5336 } else if (using_ssc_source) { 5337 final |= DREF_SSC_SOURCE_ENABLE; 5338 final |= DREF_SSC1_ENABLE; 5339 } 5340 5341 if (final == val) 5342 return; 5343 5344 /* Always enable nonspread source */ 5345 val &= ~DREF_NONSPREAD_SOURCE_MASK; 5346 5347 if (has_ck505) 5348 val |= DREF_NONSPREAD_CK505_ENABLE; 5349 else 5350 val |= DREF_NONSPREAD_SOURCE_ENABLE; 5351 5352 if (has_panel) { 5353 val &= ~DREF_SSC_SOURCE_MASK; 5354 val |= DREF_SSC_SOURCE_ENABLE; 5355 5356 /* SSC must be turned on before enabling the CPU output */ 5357 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5358 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 5359 val |= DREF_SSC1_ENABLE; 5360 } else 5361 val &= ~DREF_SSC1_ENABLE; 5362 5363 /* Get SSC going before enabling the outputs */ 5364 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5365 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5366 udelay(200); 5367 5368 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5369 5370 /* Enable CPU source on CPU attached eDP */ 5371 if (has_cpu_edp) { 5372 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5373 drm_dbg_kms(&dev_priv->drm, 5374 "Using SSC on eDP\n"); 5375 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5376 } else 5377 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5378 } else 5379 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5380 5381 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5382 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5383 udelay(200); 5384 } else { 5385 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 5386 5387 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5388 5389 /* Turn off CPU output */ 5390 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5391 5392 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5393 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5394 udelay(200); 5395 5396 if (!using_ssc_source) { 5397 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 5398 5399 /* Turn off the SSC source */ 5400 val &= ~DREF_SSC_SOURCE_MASK; 5401 val |= DREF_SSC_SOURCE_DISABLE; 5402 5403 /* Turn off SSC1 */ 5404 val &= ~DREF_SSC1_ENABLE; 5405 5406 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5407 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5408 udelay(200); 5409 } 5410 } 5411 5412 BUG_ON(val != final); 5413 } 5414 5415 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 5416 { 5417 u32 tmp; 5418 5419 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5420 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 5421 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5422 5423 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5424 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 5425 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 5426 5427 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5428 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 5429 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5430 5431 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5432 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 5433 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 5434 } 5435 5436 /* WaMPhyProgramming:hsw */ 5437 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 5438 { 5439 u32 tmp; 5440 5441 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 5442 tmp &= ~(0xFF << 24); 5443 tmp |= (0x12 << 24); 5444 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 5445 5446 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 5447 tmp |= (1 << 11); 5448 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 5449 5450 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 5451 tmp |= (1 << 11); 5452 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 5453 5454 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 5455 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5456 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 5457 5458 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 5459 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5460 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 5461 5462 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 5463 tmp &= ~(7 << 13); 5464 tmp |= (5 << 13); 5465 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 5466 5467 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 5468 tmp &= ~(7 << 13); 5469 tmp |= (5 << 13); 5470 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 5471 5472 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 5473 tmp &= ~0xFF; 5474 tmp |= 0x1C; 5475 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 5476 5477 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 5478 tmp &= ~0xFF; 5479 tmp |= 0x1C; 5480 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 5481 5482 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 5483 tmp &= ~(0xFF << 16); 5484 tmp |= (0x1C << 16); 5485 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 5486 5487 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 5488 tmp &= ~(0xFF << 16); 5489 tmp |= (0x1C << 16); 5490 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 5491 5492 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 5493 tmp |= (1 << 27); 5494 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 5495 5496 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 5497 tmp |= (1 << 27); 5498 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 5499 5500 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 5501 tmp &= ~(0xF << 28); 5502 tmp |= (4 << 28); 5503 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 5504 5505 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 5506 tmp &= ~(0xF << 28); 5507 tmp |= (4 << 28); 5508 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 5509 } 5510 5511 /* Implements 3 different sequences from BSpec chapter "Display iCLK 5512 * Programming" based on the parameters passed: 5513 * - Sequence to enable CLKOUT_DP 5514 * - Sequence to enable CLKOUT_DP without spread 5515 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 5516 */ 5517 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 5518 bool with_spread, bool with_fdi) 5519 { 5520 u32 reg, tmp; 5521 5522 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 5523 "FDI requires downspread\n")) 5524 with_spread = true; 5525 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 5526 with_fdi, "LP PCH doesn't have FDI\n")) 5527 with_fdi = false; 5528 5529 mutex_lock(&dev_priv->sb_lock); 5530 5531 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5532 tmp &= ~SBI_SSCCTL_DISABLE; 5533 tmp |= SBI_SSCCTL_PATHALT; 5534 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5535 5536 udelay(24); 5537 5538 if (with_spread) { 5539 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5540 tmp &= ~SBI_SSCCTL_PATHALT; 5541 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5542 5543 if (with_fdi) { 5544 lpt_reset_fdi_mphy(dev_priv); 5545 lpt_program_fdi_mphy(dev_priv); 5546 } 5547 } 5548 5549 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5550 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5551 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5552 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5553 5554 mutex_unlock(&dev_priv->sb_lock); 5555 } 5556 5557 /* Sequence to disable CLKOUT_DP */ 5558 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 5559 { 5560 u32 reg, tmp; 5561 5562 mutex_lock(&dev_priv->sb_lock); 5563 5564 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5565 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5566 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5567 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5568 5569 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5570 if (!(tmp & SBI_SSCCTL_DISABLE)) { 5571 if (!(tmp & SBI_SSCCTL_PATHALT)) { 5572 tmp |= SBI_SSCCTL_PATHALT; 5573 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5574 udelay(32); 5575 } 5576 tmp |= SBI_SSCCTL_DISABLE; 5577 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5578 } 5579 5580 mutex_unlock(&dev_priv->sb_lock); 5581 } 5582 5583 #define BEND_IDX(steps) ((50 + (steps)) / 5) 5584 5585 static const u16 sscdivintphase[] = { 5586 [BEND_IDX( 50)] = 0x3B23, 5587 [BEND_IDX( 45)] = 0x3B23, 5588 [BEND_IDX( 40)] = 0x3C23, 5589 [BEND_IDX( 35)] = 0x3C23, 5590 [BEND_IDX( 30)] = 0x3D23, 5591 [BEND_IDX( 25)] = 0x3D23, 5592 [BEND_IDX( 20)] = 0x3E23, 5593 [BEND_IDX( 15)] = 0x3E23, 5594 [BEND_IDX( 10)] = 0x3F23, 5595 [BEND_IDX( 5)] = 0x3F23, 5596 [BEND_IDX( 0)] = 0x0025, 5597 [BEND_IDX( -5)] = 0x0025, 5598 [BEND_IDX(-10)] = 0x0125, 5599 [BEND_IDX(-15)] = 0x0125, 5600 [BEND_IDX(-20)] = 0x0225, 5601 [BEND_IDX(-25)] = 0x0225, 5602 [BEND_IDX(-30)] = 0x0325, 5603 [BEND_IDX(-35)] = 0x0325, 5604 [BEND_IDX(-40)] = 0x0425, 5605 [BEND_IDX(-45)] = 0x0425, 5606 [BEND_IDX(-50)] = 0x0525, 5607 }; 5608 5609 /* 5610 * Bend CLKOUT_DP 5611 * steps -50 to 50 inclusive, in steps of 5 5612 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 5613 * change in clock period = -(steps / 10) * 5.787 ps 5614 */ 5615 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 5616 { 5617 u32 tmp; 5618 int idx = BEND_IDX(steps); 5619 5620 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 5621 return; 5622 5623 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 5624 return; 5625 5626 mutex_lock(&dev_priv->sb_lock); 5627 5628 if (steps % 10 != 0) 5629 tmp = 0xAAAAAAAB; 5630 else 5631 tmp = 0x00000000; 5632 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 5633 5634 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 5635 tmp &= 0xffff0000; 5636 tmp |= sscdivintphase[idx]; 5637 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 5638 5639 mutex_unlock(&dev_priv->sb_lock); 5640 } 5641 5642 #undef BEND_IDX 5643 5644 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 5645 { 5646 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5647 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 5648 5649 if ((ctl & SPLL_PLL_ENABLE) == 0) 5650 return false; 5651 5652 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 5653 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5654 return true; 5655 5656 if (IS_BROADWELL(dev_priv) && 5657 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 5658 return true; 5659 5660 return false; 5661 } 5662 5663 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 5664 enum intel_dpll_id id) 5665 { 5666 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5667 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 5668 5669 if ((ctl & WRPLL_PLL_ENABLE) == 0) 5670 return false; 5671 5672 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 5673 return true; 5674 5675 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 5676 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 5677 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5678 return true; 5679 5680 return false; 5681 } 5682 5683 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 5684 { 5685 struct intel_encoder *encoder; 5686 bool has_fdi = false; 5687 5688 for_each_intel_encoder(&dev_priv->drm, encoder) { 5689 switch (encoder->type) { 5690 case INTEL_OUTPUT_ANALOG: 5691 has_fdi = true; 5692 break; 5693 default: 5694 break; 5695 } 5696 } 5697 5698 /* 5699 * The BIOS may have decided to use the PCH SSC 5700 * reference so we must not disable it until the 5701 * relevant PLLs have stopped relying on it. We'll 5702 * just leave the PCH SSC reference enabled in case 5703 * any active PLL is using it. It will get disabled 5704 * after runtime suspend if we don't have FDI. 5705 * 5706 * TODO: Move the whole reference clock handling 5707 * to the modeset sequence proper so that we can 5708 * actually enable/disable/reconfigure these things 5709 * safely. To do that we need to introduce a real 5710 * clock hierarchy. That would also allow us to do 5711 * clock bending finally. 5712 */ 5713 dev_priv->pch_ssc_use = 0; 5714 5715 if (spll_uses_pch_ssc(dev_priv)) { 5716 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 5717 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 5718 } 5719 5720 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 5721 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 5722 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 5723 } 5724 5725 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 5726 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 5727 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 5728 } 5729 5730 if (dev_priv->pch_ssc_use) 5731 return; 5732 5733 if (has_fdi) { 5734 lpt_bend_clkout_dp(dev_priv, 0); 5735 lpt_enable_clkout_dp(dev_priv, true, true); 5736 } else { 5737 lpt_disable_clkout_dp(dev_priv); 5738 } 5739 } 5740 5741 /* 5742 * Initialize reference clocks when the driver loads 5743 */ 5744 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 5745 { 5746 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 5747 ilk_init_pch_refclk(dev_priv); 5748 else if (HAS_PCH_LPT(dev_priv)) 5749 lpt_init_pch_refclk(dev_priv); 5750 } 5751 5752 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 5753 { 5754 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5755 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5756 enum pipe pipe = crtc->pipe; 5757 u32 val; 5758 5759 val = 0; 5760 5761 switch (crtc_state->pipe_bpp) { 5762 case 18: 5763 val |= PIPECONF_6BPC; 5764 break; 5765 case 24: 5766 val |= PIPECONF_8BPC; 5767 break; 5768 case 30: 5769 val |= PIPECONF_10BPC; 5770 break; 5771 case 36: 5772 val |= PIPECONF_12BPC; 5773 break; 5774 default: 5775 /* Case prevented by intel_choose_pipe_bpp_dither. */ 5776 BUG(); 5777 } 5778 5779 if (crtc_state->dither) 5780 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5781 5782 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5783 val |= PIPECONF_INTERLACED_ILK; 5784 else 5785 val |= PIPECONF_PROGRESSIVE; 5786 5787 /* 5788 * This would end up with an odd purple hue over 5789 * the entire display. Make sure we don't do it. 5790 */ 5791 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 5792 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 5793 5794 if (crtc_state->limited_color_range && 5795 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 5796 val |= PIPECONF_COLOR_RANGE_SELECT; 5797 5798 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5799 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 5800 5801 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 5802 5803 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 5804 5805 intel_de_write(dev_priv, PIPECONF(pipe), val); 5806 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 5807 } 5808 5809 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 5810 { 5811 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5812 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5813 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5814 u32 val = 0; 5815 5816 if (IS_HASWELL(dev_priv) && crtc_state->dither) 5817 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5818 5819 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5820 val |= PIPECONF_INTERLACED_ILK; 5821 else 5822 val |= PIPECONF_PROGRESSIVE; 5823 5824 if (IS_HASWELL(dev_priv) && 5825 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5826 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 5827 5828 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 5829 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 5830 } 5831 5832 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 5833 { 5834 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5835 const struct intel_crtc_scaler_state *scaler_state = 5836 &crtc_state->scaler_state; 5837 5838 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5839 u32 val = 0; 5840 int i; 5841 5842 switch (crtc_state->pipe_bpp) { 5843 case 18: 5844 val |= PIPEMISC_DITHER_6_BPC; 5845 break; 5846 case 24: 5847 val |= PIPEMISC_DITHER_8_BPC; 5848 break; 5849 case 30: 5850 val |= PIPEMISC_DITHER_10_BPC; 5851 break; 5852 case 36: 5853 val |= PIPEMISC_DITHER_12_BPC; 5854 break; 5855 default: 5856 MISSING_CASE(crtc_state->pipe_bpp); 5857 break; 5858 } 5859 5860 if (crtc_state->dither) 5861 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 5862 5863 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 5864 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 5865 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 5866 5867 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 5868 val |= PIPEMISC_YUV420_ENABLE | 5869 PIPEMISC_YUV420_MODE_FULL_BLEND; 5870 5871 if (DISPLAY_VER(dev_priv) >= 11 && 5872 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 5873 BIT(PLANE_CURSOR))) == 0) 5874 val |= PIPEMISC_HDR_MODE_PRECISION; 5875 5876 if (DISPLAY_VER(dev_priv) >= 12) 5877 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 5878 5879 if (IS_ALDERLAKE_P(dev_priv)) { 5880 bool scaler_in_use = false; 5881 5882 for (i = 0; i < crtc->num_scalers; i++) { 5883 if (!scaler_state->scalers[i].in_use) 5884 continue; 5885 5886 scaler_in_use = true; 5887 break; 5888 } 5889 5890 intel_de_rmw(dev_priv, PIPE_MISC2(crtc->pipe), 5891 PIPE_MISC2_UNDERRUN_BUBBLE_COUNTER_MASK, 5892 scaler_in_use ? PIPE_MISC2_BUBBLE_COUNTER_SCALER_EN : 5893 PIPE_MISC2_BUBBLE_COUNTER_SCALER_DIS); 5894 } 5895 5896 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 5897 } 5898 5899 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 5900 { 5901 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5902 u32 tmp; 5903 5904 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 5905 5906 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 5907 case PIPEMISC_DITHER_6_BPC: 5908 return 18; 5909 case PIPEMISC_DITHER_8_BPC: 5910 return 24; 5911 case PIPEMISC_DITHER_10_BPC: 5912 return 30; 5913 case PIPEMISC_DITHER_12_BPC: 5914 return 36; 5915 default: 5916 MISSING_CASE(tmp); 5917 return 0; 5918 } 5919 } 5920 5921 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 5922 { 5923 /* 5924 * Account for spread spectrum to avoid 5925 * oversubscribing the link. Max center spread 5926 * is 2.5%; use 5% for safety's sake. 5927 */ 5928 u32 bps = target_clock * bpp * 21 / 20; 5929 return DIV_ROUND_UP(bps, link_bw * 8); 5930 } 5931 5932 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 5933 struct intel_link_m_n *m_n) 5934 { 5935 struct drm_device *dev = crtc->base.dev; 5936 struct drm_i915_private *dev_priv = to_i915(dev); 5937 enum pipe pipe = crtc->pipe; 5938 5939 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 5940 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 5941 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5942 & ~TU_SIZE_MASK; 5943 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 5944 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5945 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5946 } 5947 5948 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 5949 enum transcoder transcoder, 5950 struct intel_link_m_n *m_n, 5951 struct intel_link_m_n *m2_n2) 5952 { 5953 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5954 enum pipe pipe = crtc->pipe; 5955 5956 if (DISPLAY_VER(dev_priv) >= 5) { 5957 m_n->link_m = intel_de_read(dev_priv, 5958 PIPE_LINK_M1(transcoder)); 5959 m_n->link_n = intel_de_read(dev_priv, 5960 PIPE_LINK_N1(transcoder)); 5961 m_n->gmch_m = intel_de_read(dev_priv, 5962 PIPE_DATA_M1(transcoder)) 5963 & ~TU_SIZE_MASK; 5964 m_n->gmch_n = intel_de_read(dev_priv, 5965 PIPE_DATA_N1(transcoder)); 5966 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 5967 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5968 5969 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 5970 m2_n2->link_m = intel_de_read(dev_priv, 5971 PIPE_LINK_M2(transcoder)); 5972 m2_n2->link_n = intel_de_read(dev_priv, 5973 PIPE_LINK_N2(transcoder)); 5974 m2_n2->gmch_m = intel_de_read(dev_priv, 5975 PIPE_DATA_M2(transcoder)) 5976 & ~TU_SIZE_MASK; 5977 m2_n2->gmch_n = intel_de_read(dev_priv, 5978 PIPE_DATA_N2(transcoder)); 5979 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 5980 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5981 } 5982 } else { 5983 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 5984 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 5985 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5986 & ~TU_SIZE_MASK; 5987 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 5988 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5989 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5990 } 5991 } 5992 5993 void intel_dp_get_m_n(struct intel_crtc *crtc, 5994 struct intel_crtc_state *pipe_config) 5995 { 5996 if (pipe_config->has_pch_encoder) 5997 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 5998 else 5999 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 6000 &pipe_config->dp_m_n, 6001 &pipe_config->dp_m2_n2); 6002 } 6003 6004 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 6005 struct intel_crtc_state *pipe_config) 6006 { 6007 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 6008 &pipe_config->fdi_m_n, NULL); 6009 } 6010 6011 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 6012 u32 pos, u32 size) 6013 { 6014 drm_rect_init(&crtc_state->pch_pfit.dst, 6015 pos >> 16, pos & 0xffff, 6016 size >> 16, size & 0xffff); 6017 } 6018 6019 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 6020 { 6021 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6022 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6023 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 6024 int id = -1; 6025 int i; 6026 6027 /* find scaler attached to this pipe */ 6028 for (i = 0; i < crtc->num_scalers; i++) { 6029 u32 ctl, pos, size; 6030 6031 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 6032 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 6033 continue; 6034 6035 id = i; 6036 crtc_state->pch_pfit.enabled = true; 6037 6038 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 6039 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 6040 6041 ilk_get_pfit_pos_size(crtc_state, pos, size); 6042 6043 scaler_state->scalers[i].in_use = true; 6044 break; 6045 } 6046 6047 scaler_state->scaler_id = id; 6048 if (id >= 0) 6049 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 6050 else 6051 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 6052 } 6053 6054 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 6055 { 6056 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6057 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6058 u32 ctl, pos, size; 6059 6060 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 6061 if ((ctl & PF_ENABLE) == 0) 6062 return; 6063 6064 crtc_state->pch_pfit.enabled = true; 6065 6066 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 6067 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 6068 6069 ilk_get_pfit_pos_size(crtc_state, pos, size); 6070 6071 /* 6072 * We currently do not free assignements of panel fitters on 6073 * ivb/hsw (since we don't use the higher upscaling modes which 6074 * differentiates them) so just WARN about this case for now. 6075 */ 6076 drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) == 7 && 6077 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 6078 } 6079 6080 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 6081 struct intel_crtc_state *pipe_config) 6082 { 6083 struct drm_device *dev = crtc->base.dev; 6084 struct drm_i915_private *dev_priv = to_i915(dev); 6085 enum intel_display_power_domain power_domain; 6086 intel_wakeref_t wakeref; 6087 u32 tmp; 6088 bool ret; 6089 6090 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 6091 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 6092 if (!wakeref) 6093 return false; 6094 6095 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6096 pipe_config->shared_dpll = NULL; 6097 6098 ret = false; 6099 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 6100 if (!(tmp & PIPECONF_ENABLE)) 6101 goto out; 6102 6103 switch (tmp & PIPECONF_BPC_MASK) { 6104 case PIPECONF_6BPC: 6105 pipe_config->pipe_bpp = 18; 6106 break; 6107 case PIPECONF_8BPC: 6108 pipe_config->pipe_bpp = 24; 6109 break; 6110 case PIPECONF_10BPC: 6111 pipe_config->pipe_bpp = 30; 6112 break; 6113 case PIPECONF_12BPC: 6114 pipe_config->pipe_bpp = 36; 6115 break; 6116 default: 6117 break; 6118 } 6119 6120 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 6121 pipe_config->limited_color_range = true; 6122 6123 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 6124 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 6125 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 6126 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6127 break; 6128 default: 6129 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6130 break; 6131 } 6132 6133 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 6134 PIPECONF_GAMMA_MODE_SHIFT; 6135 6136 pipe_config->csc_mode = intel_de_read(dev_priv, 6137 PIPE_CSC_MODE(crtc->pipe)); 6138 6139 i9xx_get_pipe_color_config(pipe_config); 6140 intel_color_get_config(pipe_config); 6141 6142 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 6143 struct intel_shared_dpll *pll; 6144 enum intel_dpll_id pll_id; 6145 bool pll_active; 6146 6147 pipe_config->has_pch_encoder = true; 6148 6149 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 6150 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6151 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6152 6153 ilk_get_fdi_m_n_config(crtc, pipe_config); 6154 6155 if (HAS_PCH_IBX(dev_priv)) { 6156 /* 6157 * The pipe->pch transcoder and pch transcoder->pll 6158 * mapping is fixed. 6159 */ 6160 pll_id = (enum intel_dpll_id) crtc->pipe; 6161 } else { 6162 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 6163 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 6164 pll_id = DPLL_ID_PCH_PLL_B; 6165 else 6166 pll_id= DPLL_ID_PCH_PLL_A; 6167 } 6168 6169 pipe_config->shared_dpll = 6170 intel_get_shared_dpll_by_id(dev_priv, pll_id); 6171 pll = pipe_config->shared_dpll; 6172 6173 pll_active = intel_dpll_get_hw_state(dev_priv, pll, 6174 &pipe_config->dpll_hw_state); 6175 drm_WARN_ON(dev, !pll_active); 6176 6177 tmp = pipe_config->dpll_hw_state.dpll; 6178 pipe_config->pixel_multiplier = 6179 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 6180 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 6181 6182 ilk_pch_clock_get(crtc, pipe_config); 6183 } else { 6184 pipe_config->pixel_multiplier = 1; 6185 } 6186 6187 intel_get_transcoder_timings(crtc, pipe_config); 6188 intel_get_pipe_src_size(crtc, pipe_config); 6189 6190 ilk_get_pfit_config(pipe_config); 6191 6192 ret = true; 6193 6194 out: 6195 intel_display_power_put(dev_priv, power_domain, wakeref); 6196 6197 return ret; 6198 } 6199 6200 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 6201 struct intel_crtc_state *pipe_config, 6202 struct intel_display_power_domain_set *power_domain_set) 6203 { 6204 struct drm_device *dev = crtc->base.dev; 6205 struct drm_i915_private *dev_priv = to_i915(dev); 6206 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 6207 unsigned long enabled_panel_transcoders = 0; 6208 enum transcoder panel_transcoder; 6209 u32 tmp; 6210 6211 if (DISPLAY_VER(dev_priv) >= 11) 6212 panel_transcoder_mask |= 6213 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 6214 6215 /* 6216 * The pipe->transcoder mapping is fixed with the exception of the eDP 6217 * and DSI transcoders handled below. 6218 */ 6219 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6220 6221 /* 6222 * XXX: Do intel_display_power_get_if_enabled before reading this (for 6223 * consistency and less surprising code; it's in always on power). 6224 */ 6225 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 6226 panel_transcoder_mask) { 6227 bool force_thru = false; 6228 enum pipe trans_pipe; 6229 6230 tmp = intel_de_read(dev_priv, 6231 TRANS_DDI_FUNC_CTL(panel_transcoder)); 6232 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6233 continue; 6234 6235 /* 6236 * Log all enabled ones, only use the first one. 6237 * 6238 * FIXME: This won't work for two separate DSI displays. 6239 */ 6240 enabled_panel_transcoders |= BIT(panel_transcoder); 6241 if (enabled_panel_transcoders != BIT(panel_transcoder)) 6242 continue; 6243 6244 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 6245 default: 6246 drm_WARN(dev, 1, 6247 "unknown pipe linked to transcoder %s\n", 6248 transcoder_name(panel_transcoder)); 6249 fallthrough; 6250 case TRANS_DDI_EDP_INPUT_A_ONOFF: 6251 force_thru = true; 6252 fallthrough; 6253 case TRANS_DDI_EDP_INPUT_A_ON: 6254 trans_pipe = PIPE_A; 6255 break; 6256 case TRANS_DDI_EDP_INPUT_B_ONOFF: 6257 trans_pipe = PIPE_B; 6258 break; 6259 case TRANS_DDI_EDP_INPUT_C_ONOFF: 6260 trans_pipe = PIPE_C; 6261 break; 6262 case TRANS_DDI_EDP_INPUT_D_ONOFF: 6263 trans_pipe = PIPE_D; 6264 break; 6265 } 6266 6267 if (trans_pipe == crtc->pipe) { 6268 pipe_config->cpu_transcoder = panel_transcoder; 6269 pipe_config->pch_pfit.force_thru = force_thru; 6270 } 6271 } 6272 6273 /* 6274 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 6275 */ 6276 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 6277 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 6278 6279 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6280 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) 6281 return false; 6282 6283 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 6284 6285 return tmp & PIPECONF_ENABLE; 6286 } 6287 6288 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 6289 struct intel_crtc_state *pipe_config, 6290 struct intel_display_power_domain_set *power_domain_set) 6291 { 6292 struct drm_device *dev = crtc->base.dev; 6293 struct drm_i915_private *dev_priv = to_i915(dev); 6294 enum transcoder cpu_transcoder; 6295 enum port port; 6296 u32 tmp; 6297 6298 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 6299 if (port == PORT_A) 6300 cpu_transcoder = TRANSCODER_DSI_A; 6301 else 6302 cpu_transcoder = TRANSCODER_DSI_C; 6303 6304 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6305 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) 6306 continue; 6307 6308 /* 6309 * The PLL needs to be enabled with a valid divider 6310 * configuration, otherwise accessing DSI registers will hang 6311 * the machine. See BSpec North Display Engine 6312 * registers/MIPI[BXT]. We can break out here early, since we 6313 * need the same DSI PLL to be enabled for both DSI ports. 6314 */ 6315 if (!bxt_dsi_pll_is_enabled(dev_priv)) 6316 break; 6317 6318 /* XXX: this works for video mode only */ 6319 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 6320 if (!(tmp & DPI_ENABLE)) 6321 continue; 6322 6323 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 6324 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 6325 continue; 6326 6327 pipe_config->cpu_transcoder = cpu_transcoder; 6328 break; 6329 } 6330 6331 return transcoder_is_dsi(pipe_config->cpu_transcoder); 6332 } 6333 6334 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 6335 struct intel_crtc_state *pipe_config) 6336 { 6337 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6338 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 6339 enum port port; 6340 u32 tmp; 6341 6342 if (transcoder_is_dsi(cpu_transcoder)) { 6343 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 6344 PORT_A : PORT_B; 6345 } else { 6346 tmp = intel_de_read(dev_priv, 6347 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 6348 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6349 return; 6350 if (DISPLAY_VER(dev_priv) >= 12) 6351 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6352 else 6353 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6354 } 6355 6356 /* 6357 * Haswell has only FDI/PCH transcoder A. It is which is connected to 6358 * DDI E. So just check whether this pipe is wired to DDI E and whether 6359 * the PCH transcoder is on. 6360 */ 6361 if (DISPLAY_VER(dev_priv) < 9 && 6362 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 6363 pipe_config->has_pch_encoder = true; 6364 6365 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 6366 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6367 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6368 6369 ilk_get_fdi_m_n_config(crtc, pipe_config); 6370 } 6371 } 6372 6373 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 6374 struct intel_crtc_state *pipe_config) 6375 { 6376 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6377 struct intel_display_power_domain_set power_domain_set = { }; 6378 bool active; 6379 u32 tmp; 6380 6381 if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6382 POWER_DOMAIN_PIPE(crtc->pipe))) 6383 return false; 6384 6385 pipe_config->shared_dpll = NULL; 6386 6387 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set); 6388 6389 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 6390 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) { 6391 drm_WARN_ON(&dev_priv->drm, active); 6392 active = true; 6393 } 6394 6395 intel_dsc_get_config(pipe_config); 6396 if (DISPLAY_VER(dev_priv) >= 13 && !pipe_config->dsc.compression_enable) 6397 intel_uncompressed_joiner_get_config(pipe_config); 6398 6399 if (!active) { 6400 /* bigjoiner slave doesn't enable transcoder */ 6401 if (!pipe_config->bigjoiner_slave) 6402 goto out; 6403 6404 active = true; 6405 pipe_config->pixel_multiplier = 1; 6406 6407 /* we cannot read out most state, so don't bother.. */ 6408 pipe_config->quirks |= PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE; 6409 } else if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 6410 DISPLAY_VER(dev_priv) >= 11) { 6411 hsw_get_ddi_port_state(crtc, pipe_config); 6412 intel_get_transcoder_timings(crtc, pipe_config); 6413 } 6414 6415 if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder)) 6416 intel_vrr_get_config(crtc, pipe_config); 6417 6418 intel_get_pipe_src_size(crtc, pipe_config); 6419 6420 if (IS_HASWELL(dev_priv)) { 6421 u32 tmp = intel_de_read(dev_priv, 6422 PIPECONF(pipe_config->cpu_transcoder)); 6423 6424 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 6425 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6426 else 6427 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6428 } else { 6429 pipe_config->output_format = 6430 bdw_get_pipemisc_output_format(crtc); 6431 } 6432 6433 pipe_config->gamma_mode = intel_de_read(dev_priv, 6434 GAMMA_MODE(crtc->pipe)); 6435 6436 pipe_config->csc_mode = intel_de_read(dev_priv, 6437 PIPE_CSC_MODE(crtc->pipe)); 6438 6439 if (DISPLAY_VER(dev_priv) >= 9) { 6440 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 6441 6442 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 6443 pipe_config->gamma_enable = true; 6444 6445 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 6446 pipe_config->csc_enable = true; 6447 } else { 6448 i9xx_get_pipe_color_config(pipe_config); 6449 } 6450 6451 intel_color_get_config(pipe_config); 6452 6453 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 6454 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 6455 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 6456 pipe_config->ips_linetime = 6457 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 6458 6459 if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6460 POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { 6461 if (DISPLAY_VER(dev_priv) >= 9) 6462 skl_get_pfit_config(pipe_config); 6463 else 6464 ilk_get_pfit_config(pipe_config); 6465 } 6466 6467 if (hsw_crtc_supports_ips(crtc)) { 6468 if (IS_HASWELL(dev_priv)) 6469 pipe_config->ips_enabled = intel_de_read(dev_priv, 6470 IPS_CTL) & IPS_ENABLE; 6471 else { 6472 /* 6473 * We cannot readout IPS state on broadwell, set to 6474 * true so we can set it to a defined state on first 6475 * commit. 6476 */ 6477 pipe_config->ips_enabled = true; 6478 } 6479 } 6480 6481 if (pipe_config->bigjoiner_slave) { 6482 /* Cannot be read out as a slave, set to 0. */ 6483 pipe_config->pixel_multiplier = 0; 6484 } else if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 6485 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 6486 pipe_config->pixel_multiplier = 6487 intel_de_read(dev_priv, 6488 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 6489 } else { 6490 pipe_config->pixel_multiplier = 1; 6491 } 6492 6493 out: 6494 intel_display_power_put_all_in_set(dev_priv, &power_domain_set); 6495 6496 return active; 6497 } 6498 6499 static bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) 6500 { 6501 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6502 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 6503 6504 if (!i915->display.get_pipe_config(crtc, crtc_state)) 6505 return false; 6506 6507 crtc_state->hw.active = true; 6508 6509 intel_crtc_readout_derived_state(crtc_state); 6510 6511 return true; 6512 } 6513 6514 /* VESA 640x480x72Hz mode to set on the pipe */ 6515 static const struct drm_display_mode load_detect_mode = { 6516 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 6517 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 6518 }; 6519 6520 struct drm_framebuffer * 6521 intel_framebuffer_create(struct drm_i915_gem_object *obj, 6522 struct drm_mode_fb_cmd2 *mode_cmd) 6523 { 6524 struct intel_framebuffer *intel_fb; 6525 int ret; 6526 6527 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 6528 if (!intel_fb) 6529 return ERR_PTR(-ENOMEM); 6530 6531 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 6532 if (ret) 6533 goto err; 6534 6535 return &intel_fb->base; 6536 6537 err: 6538 kfree(intel_fb); 6539 return ERR_PTR(ret); 6540 } 6541 6542 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 6543 struct drm_crtc *crtc) 6544 { 6545 struct drm_plane *plane; 6546 struct drm_plane_state *plane_state; 6547 int ret, i; 6548 6549 ret = drm_atomic_add_affected_planes(state, crtc); 6550 if (ret) 6551 return ret; 6552 6553 for_each_new_plane_in_state(state, plane, plane_state, i) { 6554 if (plane_state->crtc != crtc) 6555 continue; 6556 6557 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 6558 if (ret) 6559 return ret; 6560 6561 drm_atomic_set_fb_for_plane(plane_state, NULL); 6562 } 6563 6564 return 0; 6565 } 6566 6567 int intel_get_load_detect_pipe(struct drm_connector *connector, 6568 struct intel_load_detect_pipe *old, 6569 struct drm_modeset_acquire_ctx *ctx) 6570 { 6571 struct intel_encoder *encoder = 6572 intel_attached_encoder(to_intel_connector(connector)); 6573 struct intel_crtc *possible_crtc; 6574 struct intel_crtc *crtc = NULL; 6575 struct drm_device *dev = encoder->base.dev; 6576 struct drm_i915_private *dev_priv = to_i915(dev); 6577 struct drm_mode_config *config = &dev->mode_config; 6578 struct drm_atomic_state *state = NULL, *restore_state = NULL; 6579 struct drm_connector_state *connector_state; 6580 struct intel_crtc_state *crtc_state; 6581 int ret; 6582 6583 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6584 connector->base.id, connector->name, 6585 encoder->base.base.id, encoder->base.name); 6586 6587 old->restore_state = NULL; 6588 6589 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 6590 6591 /* 6592 * Algorithm gets a little messy: 6593 * 6594 * - if the connector already has an assigned crtc, use it (but make 6595 * sure it's on first) 6596 * 6597 * - try to find the first unused crtc that can drive this connector, 6598 * and use that if we find one 6599 */ 6600 6601 /* See if we already have a CRTC for this connector */ 6602 if (connector->state->crtc) { 6603 crtc = to_intel_crtc(connector->state->crtc); 6604 6605 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 6606 if (ret) 6607 goto fail; 6608 6609 /* Make sure the crtc and connector are running */ 6610 goto found; 6611 } 6612 6613 /* Find an unused one (if possible) */ 6614 for_each_intel_crtc(dev, possible_crtc) { 6615 if (!(encoder->base.possible_crtcs & 6616 drm_crtc_mask(&possible_crtc->base))) 6617 continue; 6618 6619 ret = drm_modeset_lock(&possible_crtc->base.mutex, ctx); 6620 if (ret) 6621 goto fail; 6622 6623 if (possible_crtc->base.state->enable) { 6624 drm_modeset_unlock(&possible_crtc->base.mutex); 6625 continue; 6626 } 6627 6628 crtc = possible_crtc; 6629 break; 6630 } 6631 6632 /* 6633 * If we didn't find an unused CRTC, don't use any. 6634 */ 6635 if (!crtc) { 6636 drm_dbg_kms(&dev_priv->drm, 6637 "no pipe available for load-detect\n"); 6638 ret = -ENODEV; 6639 goto fail; 6640 } 6641 6642 found: 6643 state = drm_atomic_state_alloc(dev); 6644 restore_state = drm_atomic_state_alloc(dev); 6645 if (!state || !restore_state) { 6646 ret = -ENOMEM; 6647 goto fail; 6648 } 6649 6650 state->acquire_ctx = ctx; 6651 restore_state->acquire_ctx = ctx; 6652 6653 connector_state = drm_atomic_get_connector_state(state, connector); 6654 if (IS_ERR(connector_state)) { 6655 ret = PTR_ERR(connector_state); 6656 goto fail; 6657 } 6658 6659 ret = drm_atomic_set_crtc_for_connector(connector_state, &crtc->base); 6660 if (ret) 6661 goto fail; 6662 6663 crtc_state = intel_atomic_get_crtc_state(state, crtc); 6664 if (IS_ERR(crtc_state)) { 6665 ret = PTR_ERR(crtc_state); 6666 goto fail; 6667 } 6668 6669 crtc_state->uapi.active = true; 6670 6671 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 6672 &load_detect_mode); 6673 if (ret) 6674 goto fail; 6675 6676 ret = intel_modeset_disable_planes(state, &crtc->base); 6677 if (ret) 6678 goto fail; 6679 6680 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 6681 if (!ret) 6682 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, &crtc->base)); 6683 if (!ret) 6684 ret = drm_atomic_add_affected_planes(restore_state, &crtc->base); 6685 if (ret) { 6686 drm_dbg_kms(&dev_priv->drm, 6687 "Failed to create a copy of old state to restore: %i\n", 6688 ret); 6689 goto fail; 6690 } 6691 6692 ret = drm_atomic_commit(state); 6693 if (ret) { 6694 drm_dbg_kms(&dev_priv->drm, 6695 "failed to set mode on load-detect pipe\n"); 6696 goto fail; 6697 } 6698 6699 old->restore_state = restore_state; 6700 drm_atomic_state_put(state); 6701 6702 /* let the connector get through one full cycle before testing */ 6703 intel_wait_for_vblank(dev_priv, crtc->pipe); 6704 return true; 6705 6706 fail: 6707 if (state) { 6708 drm_atomic_state_put(state); 6709 state = NULL; 6710 } 6711 if (restore_state) { 6712 drm_atomic_state_put(restore_state); 6713 restore_state = NULL; 6714 } 6715 6716 if (ret == -EDEADLK) 6717 return ret; 6718 6719 return false; 6720 } 6721 6722 void intel_release_load_detect_pipe(struct drm_connector *connector, 6723 struct intel_load_detect_pipe *old, 6724 struct drm_modeset_acquire_ctx *ctx) 6725 { 6726 struct intel_encoder *intel_encoder = 6727 intel_attached_encoder(to_intel_connector(connector)); 6728 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 6729 struct drm_encoder *encoder = &intel_encoder->base; 6730 struct drm_atomic_state *state = old->restore_state; 6731 int ret; 6732 6733 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6734 connector->base.id, connector->name, 6735 encoder->base.id, encoder->name); 6736 6737 if (!state) 6738 return; 6739 6740 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 6741 if (ret) 6742 drm_dbg_kms(&i915->drm, 6743 "Couldn't release load detect pipe: %i\n", ret); 6744 drm_atomic_state_put(state); 6745 } 6746 6747 static int i9xx_pll_refclk(struct drm_device *dev, 6748 const struct intel_crtc_state *pipe_config) 6749 { 6750 struct drm_i915_private *dev_priv = to_i915(dev); 6751 u32 dpll = pipe_config->dpll_hw_state.dpll; 6752 6753 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 6754 return dev_priv->vbt.lvds_ssc_freq; 6755 else if (HAS_PCH_SPLIT(dev_priv)) 6756 return 120000; 6757 else if (DISPLAY_VER(dev_priv) != 2) 6758 return 96000; 6759 else 6760 return 48000; 6761 } 6762 6763 /* Returns the clock of the currently programmed mode of the given pipe. */ 6764 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 6765 struct intel_crtc_state *pipe_config) 6766 { 6767 struct drm_device *dev = crtc->base.dev; 6768 struct drm_i915_private *dev_priv = to_i915(dev); 6769 enum pipe pipe = crtc->pipe; 6770 u32 dpll = pipe_config->dpll_hw_state.dpll; 6771 u32 fp; 6772 struct dpll clock; 6773 int port_clock; 6774 int refclk = i9xx_pll_refclk(dev, pipe_config); 6775 6776 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 6777 fp = pipe_config->dpll_hw_state.fp0; 6778 else 6779 fp = pipe_config->dpll_hw_state.fp1; 6780 6781 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 6782 if (IS_PINEVIEW(dev_priv)) { 6783 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 6784 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 6785 } else { 6786 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 6787 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 6788 } 6789 6790 if (DISPLAY_VER(dev_priv) != 2) { 6791 if (IS_PINEVIEW(dev_priv)) 6792 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 6793 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 6794 else 6795 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 6796 DPLL_FPA01_P1_POST_DIV_SHIFT); 6797 6798 switch (dpll & DPLL_MODE_MASK) { 6799 case DPLLB_MODE_DAC_SERIAL: 6800 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 6801 5 : 10; 6802 break; 6803 case DPLLB_MODE_LVDS: 6804 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 6805 7 : 14; 6806 break; 6807 default: 6808 drm_dbg_kms(&dev_priv->drm, 6809 "Unknown DPLL mode %08x in programmed " 6810 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 6811 return; 6812 } 6813 6814 if (IS_PINEVIEW(dev_priv)) 6815 port_clock = pnv_calc_dpll_params(refclk, &clock); 6816 else 6817 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6818 } else { 6819 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 6820 LVDS); 6821 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 6822 6823 if (is_lvds) { 6824 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 6825 DPLL_FPA01_P1_POST_DIV_SHIFT); 6826 6827 if (lvds & LVDS_CLKB_POWER_UP) 6828 clock.p2 = 7; 6829 else 6830 clock.p2 = 14; 6831 } else { 6832 if (dpll & PLL_P1_DIVIDE_BY_TWO) 6833 clock.p1 = 2; 6834 else { 6835 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 6836 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 6837 } 6838 if (dpll & PLL_P2_DIVIDE_BY_4) 6839 clock.p2 = 4; 6840 else 6841 clock.p2 = 2; 6842 } 6843 6844 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6845 } 6846 6847 /* 6848 * This value includes pixel_multiplier. We will use 6849 * port_clock to compute adjusted_mode.crtc_clock in the 6850 * encoder's get_config() function. 6851 */ 6852 pipe_config->port_clock = port_clock; 6853 } 6854 6855 int intel_dotclock_calculate(int link_freq, 6856 const struct intel_link_m_n *m_n) 6857 { 6858 /* 6859 * The calculation for the data clock is: 6860 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 6861 * But we want to avoid losing precison if possible, so: 6862 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 6863 * 6864 * and the link clock is simpler: 6865 * link_clock = (m * link_clock) / n 6866 */ 6867 6868 if (!m_n->link_n) 6869 return 0; 6870 6871 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 6872 } 6873 6874 static void ilk_pch_clock_get(struct intel_crtc *crtc, 6875 struct intel_crtc_state *pipe_config) 6876 { 6877 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6878 6879 /* read out port_clock from the DPLL */ 6880 i9xx_crtc_clock_get(crtc, pipe_config); 6881 6882 /* 6883 * In case there is an active pipe without active ports, 6884 * we may need some idea for the dotclock anyway. 6885 * Calculate one based on the FDI configuration. 6886 */ 6887 pipe_config->hw.adjusted_mode.crtc_clock = 6888 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 6889 &pipe_config->fdi_m_n); 6890 } 6891 6892 /* Returns the currently programmed mode of the given encoder. */ 6893 struct drm_display_mode * 6894 intel_encoder_current_mode(struct intel_encoder *encoder) 6895 { 6896 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6897 struct intel_crtc_state *crtc_state; 6898 struct drm_display_mode *mode; 6899 struct intel_crtc *crtc; 6900 enum pipe pipe; 6901 6902 if (!encoder->get_hw_state(encoder, &pipe)) 6903 return NULL; 6904 6905 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 6906 6907 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 6908 if (!mode) 6909 return NULL; 6910 6911 crtc_state = intel_crtc_state_alloc(crtc); 6912 if (!crtc_state) { 6913 kfree(mode); 6914 return NULL; 6915 } 6916 6917 if (!intel_crtc_get_pipe_config(crtc_state)) { 6918 kfree(crtc_state); 6919 kfree(mode); 6920 return NULL; 6921 } 6922 6923 intel_encoder_get_config(encoder, crtc_state); 6924 6925 intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); 6926 6927 kfree(crtc_state); 6928 6929 return mode; 6930 } 6931 6932 /** 6933 * intel_wm_need_update - Check whether watermarks need updating 6934 * @cur: current plane state 6935 * @new: new plane state 6936 * 6937 * Check current plane state versus the new one to determine whether 6938 * watermarks need to be recalculated. 6939 * 6940 * Returns true or false. 6941 */ 6942 static bool intel_wm_need_update(const struct intel_plane_state *cur, 6943 struct intel_plane_state *new) 6944 { 6945 /* Update watermarks on tiling or size changes. */ 6946 if (new->uapi.visible != cur->uapi.visible) 6947 return true; 6948 6949 if (!cur->hw.fb || !new->hw.fb) 6950 return false; 6951 6952 if (cur->hw.fb->modifier != new->hw.fb->modifier || 6953 cur->hw.rotation != new->hw.rotation || 6954 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 6955 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 6956 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 6957 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 6958 return true; 6959 6960 return false; 6961 } 6962 6963 static bool needs_scaling(const struct intel_plane_state *state) 6964 { 6965 int src_w = drm_rect_width(&state->uapi.src) >> 16; 6966 int src_h = drm_rect_height(&state->uapi.src) >> 16; 6967 int dst_w = drm_rect_width(&state->uapi.dst); 6968 int dst_h = drm_rect_height(&state->uapi.dst); 6969 6970 return (src_w != dst_w || src_h != dst_h); 6971 } 6972 6973 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 6974 struct intel_crtc_state *crtc_state, 6975 const struct intel_plane_state *old_plane_state, 6976 struct intel_plane_state *plane_state) 6977 { 6978 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6979 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 6980 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6981 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 6982 bool was_crtc_enabled = old_crtc_state->hw.active; 6983 bool is_crtc_enabled = crtc_state->hw.active; 6984 bool turn_off, turn_on, visible, was_visible; 6985 int ret; 6986 6987 if (DISPLAY_VER(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 6988 ret = skl_update_scaler_plane(crtc_state, plane_state); 6989 if (ret) 6990 return ret; 6991 } 6992 6993 was_visible = old_plane_state->uapi.visible; 6994 visible = plane_state->uapi.visible; 6995 6996 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 6997 was_visible = false; 6998 6999 /* 7000 * Visibility is calculated as if the crtc was on, but 7001 * after scaler setup everything depends on it being off 7002 * when the crtc isn't active. 7003 * 7004 * FIXME this is wrong for watermarks. Watermarks should also 7005 * be computed as if the pipe would be active. Perhaps move 7006 * per-plane wm computation to the .check_plane() hook, and 7007 * only combine the results from all planes in the current place? 7008 */ 7009 if (!is_crtc_enabled) { 7010 intel_plane_set_invisible(crtc_state, plane_state); 7011 visible = false; 7012 } 7013 7014 if (!was_visible && !visible) 7015 return 0; 7016 7017 turn_off = was_visible && (!visible || mode_changed); 7018 turn_on = visible && (!was_visible || mode_changed); 7019 7020 drm_dbg_atomic(&dev_priv->drm, 7021 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 7022 crtc->base.base.id, crtc->base.name, 7023 plane->base.base.id, plane->base.name, 7024 was_visible, visible, 7025 turn_off, turn_on, mode_changed); 7026 7027 if (turn_on) { 7028 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 7029 crtc_state->update_wm_pre = true; 7030 7031 /* must disable cxsr around plane enable/disable */ 7032 if (plane->id != PLANE_CURSOR) 7033 crtc_state->disable_cxsr = true; 7034 } else if (turn_off) { 7035 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 7036 crtc_state->update_wm_post = true; 7037 7038 /* must disable cxsr around plane enable/disable */ 7039 if (plane->id != PLANE_CURSOR) 7040 crtc_state->disable_cxsr = true; 7041 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 7042 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) { 7043 /* FIXME bollocks */ 7044 crtc_state->update_wm_pre = true; 7045 crtc_state->update_wm_post = true; 7046 } 7047 } 7048 7049 if (visible || was_visible) 7050 crtc_state->fb_bits |= plane->frontbuffer_bit; 7051 7052 /* 7053 * ILK/SNB DVSACNTR/Sprite Enable 7054 * IVB SPR_CTL/Sprite Enable 7055 * "When in Self Refresh Big FIFO mode, a write to enable the 7056 * plane will be internally buffered and delayed while Big FIFO 7057 * mode is exiting." 7058 * 7059 * Which means that enabling the sprite can take an extra frame 7060 * when we start in big FIFO mode (LP1+). Thus we need to drop 7061 * down to LP0 and wait for vblank in order to make sure the 7062 * sprite gets enabled on the next vblank after the register write. 7063 * Doing otherwise would risk enabling the sprite one frame after 7064 * we've already signalled flip completion. We can resume LP1+ 7065 * once the sprite has been enabled. 7066 * 7067 * 7068 * WaCxSRDisabledForSpriteScaling:ivb 7069 * IVB SPR_SCALE/Scaling Enable 7070 * "Low Power watermarks must be disabled for at least one 7071 * frame before enabling sprite scaling, and kept disabled 7072 * until sprite scaling is disabled." 7073 * 7074 * ILK/SNB DVSASCALE/Scaling Enable 7075 * "When in Self Refresh Big FIFO mode, scaling enable will be 7076 * masked off while Big FIFO mode is exiting." 7077 * 7078 * Despite the w/a only being listed for IVB we assume that 7079 * the ILK/SNB note has similar ramifications, hence we apply 7080 * the w/a on all three platforms. 7081 * 7082 * With experimental results seems this is needed also for primary 7083 * plane, not only sprite plane. 7084 */ 7085 if (plane->id != PLANE_CURSOR && 7086 (IS_IRONLAKE(dev_priv) || IS_SANDYBRIDGE(dev_priv) || 7087 IS_IVYBRIDGE(dev_priv)) && 7088 (turn_on || (!needs_scaling(old_plane_state) && 7089 needs_scaling(plane_state)))) 7090 crtc_state->disable_lp_wm = true; 7091 7092 return 0; 7093 } 7094 7095 static bool encoders_cloneable(const struct intel_encoder *a, 7096 const struct intel_encoder *b) 7097 { 7098 /* masks could be asymmetric, so check both ways */ 7099 return a == b || (a->cloneable & (1 << b->type) && 7100 b->cloneable & (1 << a->type)); 7101 } 7102 7103 static bool check_single_encoder_cloning(struct intel_atomic_state *state, 7104 struct intel_crtc *crtc, 7105 struct intel_encoder *encoder) 7106 { 7107 struct intel_encoder *source_encoder; 7108 struct drm_connector *connector; 7109 struct drm_connector_state *connector_state; 7110 int i; 7111 7112 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7113 if (connector_state->crtc != &crtc->base) 7114 continue; 7115 7116 source_encoder = 7117 to_intel_encoder(connector_state->best_encoder); 7118 if (!encoders_cloneable(encoder, source_encoder)) 7119 return false; 7120 } 7121 7122 return true; 7123 } 7124 7125 static int icl_add_linked_planes(struct intel_atomic_state *state) 7126 { 7127 struct intel_plane *plane, *linked; 7128 struct intel_plane_state *plane_state, *linked_plane_state; 7129 int i; 7130 7131 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7132 linked = plane_state->planar_linked_plane; 7133 7134 if (!linked) 7135 continue; 7136 7137 linked_plane_state = intel_atomic_get_plane_state(state, linked); 7138 if (IS_ERR(linked_plane_state)) 7139 return PTR_ERR(linked_plane_state); 7140 7141 drm_WARN_ON(state->base.dev, 7142 linked_plane_state->planar_linked_plane != plane); 7143 drm_WARN_ON(state->base.dev, 7144 linked_plane_state->planar_slave == plane_state->planar_slave); 7145 } 7146 7147 return 0; 7148 } 7149 7150 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 7151 { 7152 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7153 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7154 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 7155 struct intel_plane *plane, *linked; 7156 struct intel_plane_state *plane_state; 7157 int i; 7158 7159 if (DISPLAY_VER(dev_priv) < 11) 7160 return 0; 7161 7162 /* 7163 * Destroy all old plane links and make the slave plane invisible 7164 * in the crtc_state->active_planes mask. 7165 */ 7166 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7167 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 7168 continue; 7169 7170 plane_state->planar_linked_plane = NULL; 7171 if (plane_state->planar_slave && !plane_state->uapi.visible) { 7172 crtc_state->enabled_planes &= ~BIT(plane->id); 7173 crtc_state->active_planes &= ~BIT(plane->id); 7174 crtc_state->update_planes |= BIT(plane->id); 7175 } 7176 7177 plane_state->planar_slave = false; 7178 } 7179 7180 if (!crtc_state->nv12_planes) 7181 return 0; 7182 7183 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7184 struct intel_plane_state *linked_state = NULL; 7185 7186 if (plane->pipe != crtc->pipe || 7187 !(crtc_state->nv12_planes & BIT(plane->id))) 7188 continue; 7189 7190 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 7191 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 7192 continue; 7193 7194 if (crtc_state->active_planes & BIT(linked->id)) 7195 continue; 7196 7197 linked_state = intel_atomic_get_plane_state(state, linked); 7198 if (IS_ERR(linked_state)) 7199 return PTR_ERR(linked_state); 7200 7201 break; 7202 } 7203 7204 if (!linked_state) { 7205 drm_dbg_kms(&dev_priv->drm, 7206 "Need %d free Y planes for planar YUV\n", 7207 hweight8(crtc_state->nv12_planes)); 7208 7209 return -EINVAL; 7210 } 7211 7212 plane_state->planar_linked_plane = linked; 7213 7214 linked_state->planar_slave = true; 7215 linked_state->planar_linked_plane = plane; 7216 crtc_state->enabled_planes |= BIT(linked->id); 7217 crtc_state->active_planes |= BIT(linked->id); 7218 crtc_state->update_planes |= BIT(linked->id); 7219 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 7220 linked->base.name, plane->base.name); 7221 7222 /* Copy parameters to slave plane */ 7223 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 7224 linked_state->color_ctl = plane_state->color_ctl; 7225 linked_state->view = plane_state->view; 7226 7227 intel_plane_copy_hw_state(linked_state, plane_state); 7228 linked_state->uapi.src = plane_state->uapi.src; 7229 linked_state->uapi.dst = plane_state->uapi.dst; 7230 7231 if (icl_is_hdr_plane(dev_priv, plane->id)) { 7232 if (linked->id == PLANE_SPRITE5) 7233 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 7234 else if (linked->id == PLANE_SPRITE4) 7235 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 7236 else if (linked->id == PLANE_SPRITE3) 7237 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 7238 else if (linked->id == PLANE_SPRITE2) 7239 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 7240 else 7241 MISSING_CASE(linked->id); 7242 } 7243 } 7244 7245 return 0; 7246 } 7247 7248 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 7249 { 7250 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 7251 struct intel_atomic_state *state = 7252 to_intel_atomic_state(new_crtc_state->uapi.state); 7253 const struct intel_crtc_state *old_crtc_state = 7254 intel_atomic_get_old_crtc_state(state, crtc); 7255 7256 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 7257 } 7258 7259 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 7260 { 7261 const struct drm_display_mode *pipe_mode = 7262 &crtc_state->hw.pipe_mode; 7263 int linetime_wm; 7264 7265 if (!crtc_state->hw.enable) 7266 return 0; 7267 7268 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7269 pipe_mode->crtc_clock); 7270 7271 return min(linetime_wm, 0x1ff); 7272 } 7273 7274 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 7275 const struct intel_cdclk_state *cdclk_state) 7276 { 7277 const struct drm_display_mode *pipe_mode = 7278 &crtc_state->hw.pipe_mode; 7279 int linetime_wm; 7280 7281 if (!crtc_state->hw.enable) 7282 return 0; 7283 7284 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7285 cdclk_state->logical.cdclk); 7286 7287 return min(linetime_wm, 0x1ff); 7288 } 7289 7290 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 7291 { 7292 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7293 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7294 const struct drm_display_mode *pipe_mode = 7295 &crtc_state->hw.pipe_mode; 7296 int linetime_wm; 7297 7298 if (!crtc_state->hw.enable) 7299 return 0; 7300 7301 linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, 7302 crtc_state->pixel_rate); 7303 7304 /* Display WA #1135: BXT:ALL GLK:ALL */ 7305 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 7306 dev_priv->ipc_enabled) 7307 linetime_wm /= 2; 7308 7309 return min(linetime_wm, 0x1ff); 7310 } 7311 7312 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 7313 struct intel_crtc *crtc) 7314 { 7315 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7316 struct intel_crtc_state *crtc_state = 7317 intel_atomic_get_new_crtc_state(state, crtc); 7318 const struct intel_cdclk_state *cdclk_state; 7319 7320 if (DISPLAY_VER(dev_priv) >= 9) 7321 crtc_state->linetime = skl_linetime_wm(crtc_state); 7322 else 7323 crtc_state->linetime = hsw_linetime_wm(crtc_state); 7324 7325 if (!hsw_crtc_supports_ips(crtc)) 7326 return 0; 7327 7328 cdclk_state = intel_atomic_get_cdclk_state(state); 7329 if (IS_ERR(cdclk_state)) 7330 return PTR_ERR(cdclk_state); 7331 7332 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 7333 cdclk_state); 7334 7335 return 0; 7336 } 7337 7338 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 7339 struct intel_crtc *crtc) 7340 { 7341 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7342 struct intel_crtc_state *crtc_state = 7343 intel_atomic_get_new_crtc_state(state, crtc); 7344 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 7345 int ret; 7346 7347 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv) && 7348 mode_changed && !crtc_state->hw.active) 7349 crtc_state->update_wm_post = true; 7350 7351 if (mode_changed && crtc_state->hw.enable && 7352 dev_priv->display.crtc_compute_clock && 7353 !crtc_state->bigjoiner_slave && 7354 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 7355 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 7356 if (ret) 7357 return ret; 7358 } 7359 7360 /* 7361 * May need to update pipe gamma enable bits 7362 * when C8 planes are getting enabled/disabled. 7363 */ 7364 if (c8_planes_changed(crtc_state)) 7365 crtc_state->uapi.color_mgmt_changed = true; 7366 7367 if (mode_changed || crtc_state->update_pipe || 7368 crtc_state->uapi.color_mgmt_changed) { 7369 ret = intel_color_check(crtc_state); 7370 if (ret) 7371 return ret; 7372 } 7373 7374 if (dev_priv->display.compute_pipe_wm) { 7375 ret = dev_priv->display.compute_pipe_wm(state, crtc); 7376 if (ret) { 7377 drm_dbg_kms(&dev_priv->drm, 7378 "Target pipe watermarks are invalid\n"); 7379 return ret; 7380 } 7381 7382 } 7383 7384 if (dev_priv->display.compute_intermediate_wm) { 7385 if (drm_WARN_ON(&dev_priv->drm, 7386 !dev_priv->display.compute_pipe_wm)) 7387 return 0; 7388 7389 /* 7390 * Calculate 'intermediate' watermarks that satisfy both the 7391 * old state and the new state. We can program these 7392 * immediately. 7393 */ 7394 ret = dev_priv->display.compute_intermediate_wm(state, crtc); 7395 if (ret) { 7396 drm_dbg_kms(&dev_priv->drm, 7397 "No valid intermediate pipe watermarks are possible\n"); 7398 return ret; 7399 } 7400 } 7401 7402 if (DISPLAY_VER(dev_priv) >= 9) { 7403 if (mode_changed || crtc_state->update_pipe) { 7404 ret = skl_update_scaler_crtc(crtc_state); 7405 if (ret) 7406 return ret; 7407 } 7408 7409 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 7410 if (ret) 7411 return ret; 7412 } 7413 7414 if (HAS_IPS(dev_priv)) { 7415 ret = hsw_compute_ips_config(crtc_state); 7416 if (ret) 7417 return ret; 7418 } 7419 7420 if (DISPLAY_VER(dev_priv) >= 9 || 7421 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 7422 ret = hsw_compute_linetime_wm(state, crtc); 7423 if (ret) 7424 return ret; 7425 7426 } 7427 7428 if (!mode_changed) { 7429 ret = intel_psr2_sel_fetch_update(state, crtc); 7430 if (ret) 7431 return ret; 7432 } 7433 7434 return 0; 7435 } 7436 7437 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 7438 { 7439 struct intel_connector *connector; 7440 struct drm_connector_list_iter conn_iter; 7441 7442 drm_connector_list_iter_begin(dev, &conn_iter); 7443 for_each_intel_connector_iter(connector, &conn_iter) { 7444 struct drm_connector_state *conn_state = connector->base.state; 7445 struct intel_encoder *encoder = 7446 to_intel_encoder(connector->base.encoder); 7447 7448 if (conn_state->crtc) 7449 drm_connector_put(&connector->base); 7450 7451 if (encoder) { 7452 struct intel_crtc *crtc = 7453 to_intel_crtc(encoder->base.crtc); 7454 const struct intel_crtc_state *crtc_state = 7455 to_intel_crtc_state(crtc->base.state); 7456 7457 conn_state->best_encoder = &encoder->base; 7458 conn_state->crtc = &crtc->base; 7459 conn_state->max_bpc = (crtc_state->pipe_bpp ?: 24) / 3; 7460 7461 drm_connector_get(&connector->base); 7462 } else { 7463 conn_state->best_encoder = NULL; 7464 conn_state->crtc = NULL; 7465 } 7466 } 7467 drm_connector_list_iter_end(&conn_iter); 7468 } 7469 7470 static int 7471 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 7472 struct intel_crtc_state *pipe_config) 7473 { 7474 struct drm_connector *connector = conn_state->connector; 7475 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7476 const struct drm_display_info *info = &connector->display_info; 7477 int bpp; 7478 7479 switch (conn_state->max_bpc) { 7480 case 6 ... 7: 7481 bpp = 6 * 3; 7482 break; 7483 case 8 ... 9: 7484 bpp = 8 * 3; 7485 break; 7486 case 10 ... 11: 7487 bpp = 10 * 3; 7488 break; 7489 case 12 ... 16: 7490 bpp = 12 * 3; 7491 break; 7492 default: 7493 MISSING_CASE(conn_state->max_bpc); 7494 return -EINVAL; 7495 } 7496 7497 if (bpp < pipe_config->pipe_bpp) { 7498 drm_dbg_kms(&i915->drm, 7499 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 7500 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 7501 connector->base.id, connector->name, 7502 bpp, 3 * info->bpc, 7503 3 * conn_state->max_requested_bpc, 7504 pipe_config->pipe_bpp); 7505 7506 pipe_config->pipe_bpp = bpp; 7507 } 7508 7509 return 0; 7510 } 7511 7512 static int 7513 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 7514 struct intel_crtc_state *pipe_config) 7515 { 7516 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7517 struct drm_atomic_state *state = pipe_config->uapi.state; 7518 struct drm_connector *connector; 7519 struct drm_connector_state *connector_state; 7520 int bpp, i; 7521 7522 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 7523 IS_CHERRYVIEW(dev_priv))) 7524 bpp = 10*3; 7525 else if (DISPLAY_VER(dev_priv) >= 5) 7526 bpp = 12*3; 7527 else 7528 bpp = 8*3; 7529 7530 pipe_config->pipe_bpp = bpp; 7531 7532 /* Clamp display bpp to connector max bpp */ 7533 for_each_new_connector_in_state(state, connector, connector_state, i) { 7534 int ret; 7535 7536 if (connector_state->crtc != &crtc->base) 7537 continue; 7538 7539 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 7540 if (ret) 7541 return ret; 7542 } 7543 7544 return 0; 7545 } 7546 7547 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 7548 const struct drm_display_mode *mode) 7549 { 7550 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 7551 "type: 0x%x flags: 0x%x\n", 7552 mode->crtc_clock, 7553 mode->crtc_hdisplay, mode->crtc_hsync_start, 7554 mode->crtc_hsync_end, mode->crtc_htotal, 7555 mode->crtc_vdisplay, mode->crtc_vsync_start, 7556 mode->crtc_vsync_end, mode->crtc_vtotal, 7557 mode->type, mode->flags); 7558 } 7559 7560 static void 7561 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 7562 const char *id, unsigned int lane_count, 7563 const struct intel_link_m_n *m_n) 7564 { 7565 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7566 7567 drm_dbg_kms(&i915->drm, 7568 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 7569 id, lane_count, 7570 m_n->gmch_m, m_n->gmch_n, 7571 m_n->link_m, m_n->link_n, m_n->tu); 7572 } 7573 7574 static void 7575 intel_dump_infoframe(struct drm_i915_private *dev_priv, 7576 const union hdmi_infoframe *frame) 7577 { 7578 if (!drm_debug_enabled(DRM_UT_KMS)) 7579 return; 7580 7581 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 7582 } 7583 7584 static void 7585 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 7586 const struct drm_dp_vsc_sdp *vsc) 7587 { 7588 if (!drm_debug_enabled(DRM_UT_KMS)) 7589 return; 7590 7591 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 7592 } 7593 7594 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 7595 7596 static const char * const output_type_str[] = { 7597 OUTPUT_TYPE(UNUSED), 7598 OUTPUT_TYPE(ANALOG), 7599 OUTPUT_TYPE(DVO), 7600 OUTPUT_TYPE(SDVO), 7601 OUTPUT_TYPE(LVDS), 7602 OUTPUT_TYPE(TVOUT), 7603 OUTPUT_TYPE(HDMI), 7604 OUTPUT_TYPE(DP), 7605 OUTPUT_TYPE(EDP), 7606 OUTPUT_TYPE(DSI), 7607 OUTPUT_TYPE(DDI), 7608 OUTPUT_TYPE(DP_MST), 7609 }; 7610 7611 #undef OUTPUT_TYPE 7612 7613 static void snprintf_output_types(char *buf, size_t len, 7614 unsigned int output_types) 7615 { 7616 char *str = buf; 7617 int i; 7618 7619 str[0] = '\0'; 7620 7621 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 7622 int r; 7623 7624 if ((output_types & BIT(i)) == 0) 7625 continue; 7626 7627 r = snprintf(str, len, "%s%s", 7628 str != buf ? "," : "", output_type_str[i]); 7629 if (r >= len) 7630 break; 7631 str += r; 7632 len -= r; 7633 7634 output_types &= ~BIT(i); 7635 } 7636 7637 WARN_ON_ONCE(output_types != 0); 7638 } 7639 7640 static const char * const output_format_str[] = { 7641 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 7642 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 7643 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 7644 }; 7645 7646 static const char *output_formats(enum intel_output_format format) 7647 { 7648 if (format >= ARRAY_SIZE(output_format_str)) 7649 return "invalid"; 7650 return output_format_str[format]; 7651 } 7652 7653 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 7654 { 7655 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 7656 struct drm_i915_private *i915 = to_i915(plane->base.dev); 7657 const struct drm_framebuffer *fb = plane_state->hw.fb; 7658 7659 if (!fb) { 7660 drm_dbg_kms(&i915->drm, 7661 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 7662 plane->base.base.id, plane->base.name, 7663 yesno(plane_state->uapi.visible)); 7664 return; 7665 } 7666 7667 drm_dbg_kms(&i915->drm, 7668 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %p4cc modifier = 0x%llx, visible: %s\n", 7669 plane->base.base.id, plane->base.name, 7670 fb->base.id, fb->width, fb->height, &fb->format->format, 7671 fb->modifier, yesno(plane_state->uapi.visible)); 7672 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 7673 plane_state->hw.rotation, plane_state->scaler_id); 7674 if (plane_state->uapi.visible) 7675 drm_dbg_kms(&i915->drm, 7676 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 7677 DRM_RECT_FP_ARG(&plane_state->uapi.src), 7678 DRM_RECT_ARG(&plane_state->uapi.dst)); 7679 } 7680 7681 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 7682 struct intel_atomic_state *state, 7683 const char *context) 7684 { 7685 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 7686 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7687 const struct intel_plane_state *plane_state; 7688 struct intel_plane *plane; 7689 char buf[64]; 7690 int i; 7691 7692 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 7693 crtc->base.base.id, crtc->base.name, 7694 yesno(pipe_config->hw.enable), context); 7695 7696 if (!pipe_config->hw.enable) 7697 goto dump_planes; 7698 7699 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 7700 drm_dbg_kms(&dev_priv->drm, 7701 "active: %s, output_types: %s (0x%x), output format: %s\n", 7702 yesno(pipe_config->hw.active), 7703 buf, pipe_config->output_types, 7704 output_formats(pipe_config->output_format)); 7705 7706 drm_dbg_kms(&dev_priv->drm, 7707 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 7708 transcoder_name(pipe_config->cpu_transcoder), 7709 pipe_config->pipe_bpp, pipe_config->dither); 7710 7711 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 7712 transcoder_name(pipe_config->mst_master_transcoder)); 7713 7714 drm_dbg_kms(&dev_priv->drm, 7715 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 7716 transcoder_name(pipe_config->master_transcoder), 7717 pipe_config->sync_mode_slaves_mask); 7718 7719 drm_dbg_kms(&dev_priv->drm, "bigjoiner: %s\n", 7720 pipe_config->bigjoiner_slave ? "slave" : 7721 pipe_config->bigjoiner ? "master" : "no"); 7722 7723 drm_dbg_kms(&dev_priv->drm, "splitter: %s, link count %d, overlap %d\n", 7724 enableddisabled(pipe_config->splitter.enable), 7725 pipe_config->splitter.link_count, 7726 pipe_config->splitter.pixel_overlap); 7727 7728 if (pipe_config->has_pch_encoder) 7729 intel_dump_m_n_config(pipe_config, "fdi", 7730 pipe_config->fdi_lanes, 7731 &pipe_config->fdi_m_n); 7732 7733 if (intel_crtc_has_dp_encoder(pipe_config)) { 7734 intel_dump_m_n_config(pipe_config, "dp m_n", 7735 pipe_config->lane_count, &pipe_config->dp_m_n); 7736 if (pipe_config->has_drrs) 7737 intel_dump_m_n_config(pipe_config, "dp m2_n2", 7738 pipe_config->lane_count, 7739 &pipe_config->dp_m2_n2); 7740 } 7741 7742 drm_dbg_kms(&dev_priv->drm, 7743 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 7744 pipe_config->has_audio, pipe_config->has_infoframe, 7745 pipe_config->infoframes.enable); 7746 7747 if (pipe_config->infoframes.enable & 7748 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 7749 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 7750 pipe_config->infoframes.gcp); 7751 if (pipe_config->infoframes.enable & 7752 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 7753 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 7754 if (pipe_config->infoframes.enable & 7755 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 7756 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 7757 if (pipe_config->infoframes.enable & 7758 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 7759 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 7760 if (pipe_config->infoframes.enable & 7761 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 7762 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7763 if (pipe_config->infoframes.enable & 7764 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 7765 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7766 if (pipe_config->infoframes.enable & 7767 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 7768 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 7769 7770 drm_dbg_kms(&dev_priv->drm, "vrr: %s, vmin: %d, vmax: %d, pipeline full: %d, guardband: %d flipline: %d, vmin vblank: %d, vmax vblank: %d\n", 7771 yesno(pipe_config->vrr.enable), 7772 pipe_config->vrr.vmin, pipe_config->vrr.vmax, 7773 pipe_config->vrr.pipeline_full, pipe_config->vrr.guardband, 7774 pipe_config->vrr.flipline, 7775 intel_vrr_vmin_vblank_start(pipe_config), 7776 intel_vrr_vmax_vblank_start(pipe_config)); 7777 7778 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 7779 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 7780 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 7781 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 7782 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 7783 drm_dbg_kms(&dev_priv->drm, "pipe mode:\n"); 7784 drm_mode_debug_printmodeline(&pipe_config->hw.pipe_mode); 7785 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.pipe_mode); 7786 drm_dbg_kms(&dev_priv->drm, 7787 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 7788 pipe_config->port_clock, 7789 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 7790 pipe_config->pixel_rate); 7791 7792 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 7793 pipe_config->linetime, pipe_config->ips_linetime); 7794 7795 if (DISPLAY_VER(dev_priv) >= 9) 7796 drm_dbg_kms(&dev_priv->drm, 7797 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 7798 crtc->num_scalers, 7799 pipe_config->scaler_state.scaler_users, 7800 pipe_config->scaler_state.scaler_id); 7801 7802 if (HAS_GMCH(dev_priv)) 7803 drm_dbg_kms(&dev_priv->drm, 7804 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 7805 pipe_config->gmch_pfit.control, 7806 pipe_config->gmch_pfit.pgm_ratios, 7807 pipe_config->gmch_pfit.lvds_border_bits); 7808 else 7809 drm_dbg_kms(&dev_priv->drm, 7810 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 7811 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 7812 enableddisabled(pipe_config->pch_pfit.enabled), 7813 yesno(pipe_config->pch_pfit.force_thru)); 7814 7815 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 7816 pipe_config->ips_enabled, pipe_config->double_wide); 7817 7818 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 7819 7820 if (IS_CHERRYVIEW(dev_priv)) 7821 drm_dbg_kms(&dev_priv->drm, 7822 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7823 pipe_config->cgm_mode, pipe_config->gamma_mode, 7824 pipe_config->gamma_enable, pipe_config->csc_enable); 7825 else 7826 drm_dbg_kms(&dev_priv->drm, 7827 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7828 pipe_config->csc_mode, pipe_config->gamma_mode, 7829 pipe_config->gamma_enable, pipe_config->csc_enable); 7830 7831 drm_dbg_kms(&dev_priv->drm, "degamma lut: %d entries, gamma lut: %d entries\n", 7832 pipe_config->hw.degamma_lut ? 7833 drm_color_lut_size(pipe_config->hw.degamma_lut) : 0, 7834 pipe_config->hw.gamma_lut ? 7835 drm_color_lut_size(pipe_config->hw.gamma_lut) : 0); 7836 7837 dump_planes: 7838 if (!state) 7839 return; 7840 7841 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7842 if (plane->pipe == crtc->pipe) 7843 intel_dump_plane_state(plane_state); 7844 } 7845 } 7846 7847 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 7848 { 7849 struct drm_device *dev = state->base.dev; 7850 struct drm_connector *connector; 7851 struct drm_connector_list_iter conn_iter; 7852 unsigned int used_ports = 0; 7853 unsigned int used_mst_ports = 0; 7854 bool ret = true; 7855 7856 /* 7857 * We're going to peek into connector->state, 7858 * hence connection_mutex must be held. 7859 */ 7860 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 7861 7862 /* 7863 * Walk the connector list instead of the encoder 7864 * list to detect the problem on ddi platforms 7865 * where there's just one encoder per digital port. 7866 */ 7867 drm_connector_list_iter_begin(dev, &conn_iter); 7868 drm_for_each_connector_iter(connector, &conn_iter) { 7869 struct drm_connector_state *connector_state; 7870 struct intel_encoder *encoder; 7871 7872 connector_state = 7873 drm_atomic_get_new_connector_state(&state->base, 7874 connector); 7875 if (!connector_state) 7876 connector_state = connector->state; 7877 7878 if (!connector_state->best_encoder) 7879 continue; 7880 7881 encoder = to_intel_encoder(connector_state->best_encoder); 7882 7883 drm_WARN_ON(dev, !connector_state->crtc); 7884 7885 switch (encoder->type) { 7886 case INTEL_OUTPUT_DDI: 7887 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 7888 break; 7889 fallthrough; 7890 case INTEL_OUTPUT_DP: 7891 case INTEL_OUTPUT_HDMI: 7892 case INTEL_OUTPUT_EDP: 7893 /* the same port mustn't appear more than once */ 7894 if (used_ports & BIT(encoder->port)) 7895 ret = false; 7896 7897 used_ports |= BIT(encoder->port); 7898 break; 7899 case INTEL_OUTPUT_DP_MST: 7900 used_mst_ports |= 7901 1 << encoder->port; 7902 break; 7903 default: 7904 break; 7905 } 7906 } 7907 drm_connector_list_iter_end(&conn_iter); 7908 7909 /* can't mix MST and SST/HDMI on the same port */ 7910 if (used_ports & used_mst_ports) 7911 return false; 7912 7913 return ret; 7914 } 7915 7916 static void 7917 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, 7918 struct intel_crtc_state *crtc_state) 7919 { 7920 const struct intel_crtc_state *from_crtc_state = crtc_state; 7921 7922 if (crtc_state->bigjoiner_slave) { 7923 from_crtc_state = intel_atomic_get_new_crtc_state(state, 7924 crtc_state->bigjoiner_linked_crtc); 7925 7926 /* No need to copy state if the master state is unchanged */ 7927 if (!from_crtc_state) 7928 return; 7929 } 7930 7931 intel_crtc_copy_color_blobs(crtc_state, from_crtc_state); 7932 } 7933 7934 static void 7935 intel_crtc_copy_uapi_to_hw_state(struct intel_atomic_state *state, 7936 struct intel_crtc_state *crtc_state) 7937 { 7938 crtc_state->hw.enable = crtc_state->uapi.enable; 7939 crtc_state->hw.active = crtc_state->uapi.active; 7940 crtc_state->hw.mode = crtc_state->uapi.mode; 7941 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 7942 crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; 7943 7944 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc_state); 7945 } 7946 7947 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 7948 { 7949 if (crtc_state->bigjoiner_slave) 7950 return; 7951 7952 crtc_state->uapi.enable = crtc_state->hw.enable; 7953 crtc_state->uapi.active = crtc_state->hw.active; 7954 drm_WARN_ON(crtc_state->uapi.crtc->dev, 7955 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 7956 7957 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 7958 crtc_state->uapi.scaling_filter = crtc_state->hw.scaling_filter; 7959 7960 /* copy color blobs to uapi */ 7961 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 7962 crtc_state->hw.degamma_lut); 7963 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 7964 crtc_state->hw.gamma_lut); 7965 drm_property_replace_blob(&crtc_state->uapi.ctm, 7966 crtc_state->hw.ctm); 7967 } 7968 7969 static int 7970 copy_bigjoiner_crtc_state(struct intel_crtc_state *crtc_state, 7971 const struct intel_crtc_state *from_crtc_state) 7972 { 7973 struct intel_crtc_state *saved_state; 7974 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7975 7976 saved_state = kmemdup(from_crtc_state, sizeof(*saved_state), GFP_KERNEL); 7977 if (!saved_state) 7978 return -ENOMEM; 7979 7980 saved_state->uapi = crtc_state->uapi; 7981 saved_state->scaler_state = crtc_state->scaler_state; 7982 saved_state->shared_dpll = crtc_state->shared_dpll; 7983 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7984 saved_state->crc_enabled = crtc_state->crc_enabled; 7985 7986 intel_crtc_free_hw_state(crtc_state); 7987 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7988 kfree(saved_state); 7989 7990 /* Re-init hw state */ 7991 memset(&crtc_state->hw, 0, sizeof(saved_state->hw)); 7992 crtc_state->hw.enable = from_crtc_state->hw.enable; 7993 crtc_state->hw.active = from_crtc_state->hw.active; 7994 crtc_state->hw.pipe_mode = from_crtc_state->hw.pipe_mode; 7995 crtc_state->hw.adjusted_mode = from_crtc_state->hw.adjusted_mode; 7996 7997 /* Some fixups */ 7998 crtc_state->uapi.mode_changed = from_crtc_state->uapi.mode_changed; 7999 crtc_state->uapi.connectors_changed = from_crtc_state->uapi.connectors_changed; 8000 crtc_state->uapi.active_changed = from_crtc_state->uapi.active_changed; 8001 crtc_state->nv12_planes = crtc_state->c8_planes = crtc_state->update_planes = 0; 8002 crtc_state->bigjoiner_linked_crtc = to_intel_crtc(from_crtc_state->uapi.crtc); 8003 crtc_state->bigjoiner_slave = true; 8004 crtc_state->cpu_transcoder = (enum transcoder)crtc->pipe; 8005 crtc_state->has_audio = false; 8006 8007 return 0; 8008 } 8009 8010 static int 8011 intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, 8012 struct intel_crtc_state *crtc_state) 8013 { 8014 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8015 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8016 struct intel_crtc_state *saved_state; 8017 8018 saved_state = intel_crtc_state_alloc(crtc); 8019 if (!saved_state) 8020 return -ENOMEM; 8021 8022 /* free the old crtc_state->hw members */ 8023 intel_crtc_free_hw_state(crtc_state); 8024 8025 /* FIXME: before the switch to atomic started, a new pipe_config was 8026 * kzalloc'd. Code that depends on any field being zero should be 8027 * fixed, so that the crtc_state can be safely duplicated. For now, 8028 * only fields that are know to not cause problems are preserved. */ 8029 8030 saved_state->uapi = crtc_state->uapi; 8031 saved_state->scaler_state = crtc_state->scaler_state; 8032 saved_state->shared_dpll = crtc_state->shared_dpll; 8033 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 8034 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 8035 sizeof(saved_state->icl_port_dplls)); 8036 saved_state->crc_enabled = crtc_state->crc_enabled; 8037 if (IS_G4X(dev_priv) || 8038 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8039 saved_state->wm = crtc_state->wm; 8040 8041 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 8042 kfree(saved_state); 8043 8044 intel_crtc_copy_uapi_to_hw_state(state, crtc_state); 8045 8046 return 0; 8047 } 8048 8049 static int 8050 intel_modeset_pipe_config(struct intel_atomic_state *state, 8051 struct intel_crtc_state *pipe_config) 8052 { 8053 struct drm_crtc *crtc = pipe_config->uapi.crtc; 8054 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 8055 struct drm_connector *connector; 8056 struct drm_connector_state *connector_state; 8057 int base_bpp, ret, i; 8058 bool retry = true; 8059 8060 pipe_config->cpu_transcoder = 8061 (enum transcoder) to_intel_crtc(crtc)->pipe; 8062 8063 /* 8064 * Sanitize sync polarity flags based on requested ones. If neither 8065 * positive or negative polarity is requested, treat this as meaning 8066 * negative polarity. 8067 */ 8068 if (!(pipe_config->hw.adjusted_mode.flags & 8069 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 8070 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 8071 8072 if (!(pipe_config->hw.adjusted_mode.flags & 8073 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 8074 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 8075 8076 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 8077 pipe_config); 8078 if (ret) 8079 return ret; 8080 8081 base_bpp = pipe_config->pipe_bpp; 8082 8083 /* 8084 * Determine the real pipe dimensions. Note that stereo modes can 8085 * increase the actual pipe size due to the frame doubling and 8086 * insertion of additional space for blanks between the frame. This 8087 * is stored in the crtc timings. We use the requested mode to do this 8088 * computation to clearly distinguish it from the adjusted mode, which 8089 * can be changed by the connectors in the below retry loop. 8090 */ 8091 drm_mode_get_hv_timing(&pipe_config->hw.mode, 8092 &pipe_config->pipe_src_w, 8093 &pipe_config->pipe_src_h); 8094 8095 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8096 struct intel_encoder *encoder = 8097 to_intel_encoder(connector_state->best_encoder); 8098 8099 if (connector_state->crtc != crtc) 8100 continue; 8101 8102 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 8103 drm_dbg_kms(&i915->drm, 8104 "rejecting invalid cloning configuration\n"); 8105 return -EINVAL; 8106 } 8107 8108 /* 8109 * Determine output_types before calling the .compute_config() 8110 * hooks so that the hooks can use this information safely. 8111 */ 8112 if (encoder->compute_output_type) 8113 pipe_config->output_types |= 8114 BIT(encoder->compute_output_type(encoder, pipe_config, 8115 connector_state)); 8116 else 8117 pipe_config->output_types |= BIT(encoder->type); 8118 } 8119 8120 encoder_retry: 8121 /* Ensure the port clock defaults are reset when retrying. */ 8122 pipe_config->port_clock = 0; 8123 pipe_config->pixel_multiplier = 1; 8124 8125 /* Fill in default crtc timings, allow encoders to overwrite them. */ 8126 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 8127 CRTC_STEREO_DOUBLE); 8128 8129 /* Pass our mode to the connectors and the CRTC to give them a chance to 8130 * adjust it according to limitations or connector properties, and also 8131 * a chance to reject the mode entirely. 8132 */ 8133 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8134 struct intel_encoder *encoder = 8135 to_intel_encoder(connector_state->best_encoder); 8136 8137 if (connector_state->crtc != crtc) 8138 continue; 8139 8140 ret = encoder->compute_config(encoder, pipe_config, 8141 connector_state); 8142 if (ret < 0) { 8143 if (ret != -EDEADLK) 8144 drm_dbg_kms(&i915->drm, 8145 "Encoder config failure: %d\n", 8146 ret); 8147 return ret; 8148 } 8149 } 8150 8151 /* Set default port clock if not overwritten by the encoder. Needs to be 8152 * done afterwards in case the encoder adjusts the mode. */ 8153 if (!pipe_config->port_clock) 8154 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 8155 * pipe_config->pixel_multiplier; 8156 8157 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 8158 if (ret == -EDEADLK) 8159 return ret; 8160 if (ret < 0) { 8161 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 8162 return ret; 8163 } 8164 8165 if (ret == I915_DISPLAY_CONFIG_RETRY) { 8166 if (drm_WARN(&i915->drm, !retry, 8167 "loop in pipe configuration computation\n")) 8168 return -EINVAL; 8169 8170 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 8171 retry = false; 8172 goto encoder_retry; 8173 } 8174 8175 /* Dithering seems to not pass-through bits correctly when it should, so 8176 * only enable it on 6bpc panels and when its not a compliance 8177 * test requesting 6bpc video pattern. 8178 */ 8179 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 8180 !pipe_config->dither_force_disable; 8181 drm_dbg_kms(&i915->drm, 8182 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 8183 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 8184 8185 return 0; 8186 } 8187 8188 static int 8189 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 8190 { 8191 struct intel_atomic_state *state = 8192 to_intel_atomic_state(crtc_state->uapi.state); 8193 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8194 struct drm_connector_state *conn_state; 8195 struct drm_connector *connector; 8196 int i; 8197 8198 for_each_new_connector_in_state(&state->base, connector, 8199 conn_state, i) { 8200 struct intel_encoder *encoder = 8201 to_intel_encoder(conn_state->best_encoder); 8202 int ret; 8203 8204 if (conn_state->crtc != &crtc->base || 8205 !encoder->compute_config_late) 8206 continue; 8207 8208 ret = encoder->compute_config_late(encoder, crtc_state, 8209 conn_state); 8210 if (ret) 8211 return ret; 8212 } 8213 8214 return 0; 8215 } 8216 8217 bool intel_fuzzy_clock_check(int clock1, int clock2) 8218 { 8219 int diff; 8220 8221 if (clock1 == clock2) 8222 return true; 8223 8224 if (!clock1 || !clock2) 8225 return false; 8226 8227 diff = abs(clock1 - clock2); 8228 8229 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 8230 return true; 8231 8232 return false; 8233 } 8234 8235 static bool 8236 intel_compare_m_n(unsigned int m, unsigned int n, 8237 unsigned int m2, unsigned int n2, 8238 bool exact) 8239 { 8240 if (m == m2 && n == n2) 8241 return true; 8242 8243 if (exact || !m || !n || !m2 || !n2) 8244 return false; 8245 8246 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 8247 8248 if (n > n2) { 8249 while (n > n2) { 8250 m2 <<= 1; 8251 n2 <<= 1; 8252 } 8253 } else if (n < n2) { 8254 while (n < n2) { 8255 m <<= 1; 8256 n <<= 1; 8257 } 8258 } 8259 8260 if (n != n2) 8261 return false; 8262 8263 return intel_fuzzy_clock_check(m, m2); 8264 } 8265 8266 static bool 8267 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 8268 const struct intel_link_m_n *m2_n2, 8269 bool exact) 8270 { 8271 return m_n->tu == m2_n2->tu && 8272 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 8273 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 8274 intel_compare_m_n(m_n->link_m, m_n->link_n, 8275 m2_n2->link_m, m2_n2->link_n, exact); 8276 } 8277 8278 static bool 8279 intel_compare_infoframe(const union hdmi_infoframe *a, 8280 const union hdmi_infoframe *b) 8281 { 8282 return memcmp(a, b, sizeof(*a)) == 0; 8283 } 8284 8285 static bool 8286 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 8287 const struct drm_dp_vsc_sdp *b) 8288 { 8289 return memcmp(a, b, sizeof(*a)) == 0; 8290 } 8291 8292 static void 8293 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 8294 bool fastset, const char *name, 8295 const union hdmi_infoframe *a, 8296 const union hdmi_infoframe *b) 8297 { 8298 if (fastset) { 8299 if (!drm_debug_enabled(DRM_UT_KMS)) 8300 return; 8301 8302 drm_dbg_kms(&dev_priv->drm, 8303 "fastset mismatch in %s infoframe\n", name); 8304 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8305 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 8306 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8307 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 8308 } else { 8309 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 8310 drm_err(&dev_priv->drm, "expected:\n"); 8311 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 8312 drm_err(&dev_priv->drm, "found:\n"); 8313 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 8314 } 8315 } 8316 8317 static void 8318 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 8319 bool fastset, const char *name, 8320 const struct drm_dp_vsc_sdp *a, 8321 const struct drm_dp_vsc_sdp *b) 8322 { 8323 if (fastset) { 8324 if (!drm_debug_enabled(DRM_UT_KMS)) 8325 return; 8326 8327 drm_dbg_kms(&dev_priv->drm, 8328 "fastset mismatch in %s dp sdp\n", name); 8329 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8330 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 8331 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8332 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 8333 } else { 8334 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 8335 drm_err(&dev_priv->drm, "expected:\n"); 8336 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 8337 drm_err(&dev_priv->drm, "found:\n"); 8338 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 8339 } 8340 } 8341 8342 static void __printf(4, 5) 8343 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 8344 const char *name, const char *format, ...) 8345 { 8346 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 8347 struct va_format vaf; 8348 va_list args; 8349 8350 va_start(args, format); 8351 vaf.fmt = format; 8352 vaf.va = &args; 8353 8354 if (fastset) 8355 drm_dbg_kms(&i915->drm, 8356 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 8357 crtc->base.base.id, crtc->base.name, name, &vaf); 8358 else 8359 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 8360 crtc->base.base.id, crtc->base.name, name, &vaf); 8361 8362 va_end(args); 8363 } 8364 8365 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 8366 { 8367 if (dev_priv->params.fastboot != -1) 8368 return dev_priv->params.fastboot; 8369 8370 /* Enable fastboot by default on Skylake and newer */ 8371 if (DISPLAY_VER(dev_priv) >= 9) 8372 return true; 8373 8374 /* Enable fastboot by default on VLV and CHV */ 8375 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8376 return true; 8377 8378 /* Disabled by default on all others */ 8379 return false; 8380 } 8381 8382 static bool 8383 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 8384 const struct intel_crtc_state *pipe_config, 8385 bool fastset) 8386 { 8387 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 8388 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 8389 bool ret = true; 8390 u32 bp_gamma = 0; 8391 bool fixup_inherited = fastset && 8392 current_config->inherited && !pipe_config->inherited; 8393 8394 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 8395 drm_dbg_kms(&dev_priv->drm, 8396 "initial modeset and fastboot not set\n"); 8397 ret = false; 8398 } 8399 8400 #define PIPE_CONF_CHECK_X(name) do { \ 8401 if (current_config->name != pipe_config->name) { \ 8402 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8403 "(expected 0x%08x, found 0x%08x)", \ 8404 current_config->name, \ 8405 pipe_config->name); \ 8406 ret = false; \ 8407 } \ 8408 } while (0) 8409 8410 #define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \ 8411 if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \ 8412 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8413 "(expected 0x%08x, found 0x%08x)", \ 8414 current_config->name & (mask), \ 8415 pipe_config->name & (mask)); \ 8416 ret = false; \ 8417 } \ 8418 } while (0) 8419 8420 #define PIPE_CONF_CHECK_I(name) do { \ 8421 if (current_config->name != pipe_config->name) { \ 8422 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8423 "(expected %i, found %i)", \ 8424 current_config->name, \ 8425 pipe_config->name); \ 8426 ret = false; \ 8427 } \ 8428 } while (0) 8429 8430 #define PIPE_CONF_CHECK_BOOL(name) do { \ 8431 if (current_config->name != pipe_config->name) { \ 8432 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8433 "(expected %s, found %s)", \ 8434 yesno(current_config->name), \ 8435 yesno(pipe_config->name)); \ 8436 ret = false; \ 8437 } \ 8438 } while (0) 8439 8440 /* 8441 * Checks state where we only read out the enabling, but not the entire 8442 * state itself (like full infoframes or ELD for audio). These states 8443 * require a full modeset on bootup to fix up. 8444 */ 8445 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 8446 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 8447 PIPE_CONF_CHECK_BOOL(name); \ 8448 } else { \ 8449 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8450 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 8451 yesno(current_config->name), \ 8452 yesno(pipe_config->name)); \ 8453 ret = false; \ 8454 } \ 8455 } while (0) 8456 8457 #define PIPE_CONF_CHECK_P(name) do { \ 8458 if (current_config->name != pipe_config->name) { \ 8459 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8460 "(expected %p, found %p)", \ 8461 current_config->name, \ 8462 pipe_config->name); \ 8463 ret = false; \ 8464 } \ 8465 } while (0) 8466 8467 #define PIPE_CONF_CHECK_M_N(name) do { \ 8468 if (!intel_compare_link_m_n(¤t_config->name, \ 8469 &pipe_config->name,\ 8470 !fastset)) { \ 8471 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8472 "(expected tu %i gmch %i/%i link %i/%i, " \ 8473 "found tu %i, gmch %i/%i link %i/%i)", \ 8474 current_config->name.tu, \ 8475 current_config->name.gmch_m, \ 8476 current_config->name.gmch_n, \ 8477 current_config->name.link_m, \ 8478 current_config->name.link_n, \ 8479 pipe_config->name.tu, \ 8480 pipe_config->name.gmch_m, \ 8481 pipe_config->name.gmch_n, \ 8482 pipe_config->name.link_m, \ 8483 pipe_config->name.link_n); \ 8484 ret = false; \ 8485 } \ 8486 } while (0) 8487 8488 /* This is required for BDW+ where there is only one set of registers for 8489 * switching between high and low RR. 8490 * This macro can be used whenever a comparison has to be made between one 8491 * hw state and multiple sw state variables. 8492 */ 8493 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 8494 if (!intel_compare_link_m_n(¤t_config->name, \ 8495 &pipe_config->name, !fastset) && \ 8496 !intel_compare_link_m_n(¤t_config->alt_name, \ 8497 &pipe_config->name, !fastset)) { \ 8498 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8499 "(expected tu %i gmch %i/%i link %i/%i, " \ 8500 "or tu %i gmch %i/%i link %i/%i, " \ 8501 "found tu %i, gmch %i/%i link %i/%i)", \ 8502 current_config->name.tu, \ 8503 current_config->name.gmch_m, \ 8504 current_config->name.gmch_n, \ 8505 current_config->name.link_m, \ 8506 current_config->name.link_n, \ 8507 current_config->alt_name.tu, \ 8508 current_config->alt_name.gmch_m, \ 8509 current_config->alt_name.gmch_n, \ 8510 current_config->alt_name.link_m, \ 8511 current_config->alt_name.link_n, \ 8512 pipe_config->name.tu, \ 8513 pipe_config->name.gmch_m, \ 8514 pipe_config->name.gmch_n, \ 8515 pipe_config->name.link_m, \ 8516 pipe_config->name.link_n); \ 8517 ret = false; \ 8518 } \ 8519 } while (0) 8520 8521 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 8522 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 8523 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8524 "(%x) (expected %i, found %i)", \ 8525 (mask), \ 8526 current_config->name & (mask), \ 8527 pipe_config->name & (mask)); \ 8528 ret = false; \ 8529 } \ 8530 } while (0) 8531 8532 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 8533 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 8534 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8535 "(expected %i, found %i)", \ 8536 current_config->name, \ 8537 pipe_config->name); \ 8538 ret = false; \ 8539 } \ 8540 } while (0) 8541 8542 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 8543 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 8544 &pipe_config->infoframes.name)) { \ 8545 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 8546 ¤t_config->infoframes.name, \ 8547 &pipe_config->infoframes.name); \ 8548 ret = false; \ 8549 } \ 8550 } while (0) 8551 8552 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 8553 if (!current_config->has_psr && !pipe_config->has_psr && \ 8554 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 8555 &pipe_config->infoframes.name)) { \ 8556 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 8557 ¤t_config->infoframes.name, \ 8558 &pipe_config->infoframes.name); \ 8559 ret = false; \ 8560 } \ 8561 } while (0) 8562 8563 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 8564 if (current_config->name1 != pipe_config->name1) { \ 8565 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 8566 "(expected %i, found %i, won't compare lut values)", \ 8567 current_config->name1, \ 8568 pipe_config->name1); \ 8569 ret = false;\ 8570 } else { \ 8571 if (!intel_color_lut_equal(current_config->name2, \ 8572 pipe_config->name2, pipe_config->name1, \ 8573 bit_precision)) { \ 8574 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 8575 "hw_state doesn't match sw_state"); \ 8576 ret = false; \ 8577 } \ 8578 } \ 8579 } while (0) 8580 8581 #define PIPE_CONF_QUIRK(quirk) \ 8582 ((current_config->quirks | pipe_config->quirks) & (quirk)) 8583 8584 PIPE_CONF_CHECK_I(cpu_transcoder); 8585 8586 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 8587 PIPE_CONF_CHECK_I(fdi_lanes); 8588 PIPE_CONF_CHECK_M_N(fdi_m_n); 8589 8590 PIPE_CONF_CHECK_I(lane_count); 8591 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 8592 8593 if (DISPLAY_VER(dev_priv) < 8) { 8594 PIPE_CONF_CHECK_M_N(dp_m_n); 8595 8596 if (current_config->has_drrs) 8597 PIPE_CONF_CHECK_M_N(dp_m2_n2); 8598 } else 8599 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 8600 8601 PIPE_CONF_CHECK_X(output_types); 8602 8603 /* FIXME do the readout properly and get rid of this quirk */ 8604 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8605 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hdisplay); 8606 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_htotal); 8607 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_start); 8608 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_end); 8609 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_start); 8610 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_end); 8611 8612 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vdisplay); 8613 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vtotal); 8614 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_start); 8615 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_end); 8616 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_start); 8617 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_end); 8618 8619 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 8620 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 8621 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 8622 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 8623 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 8624 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 8625 8626 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 8627 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 8628 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 8629 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 8630 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 8631 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 8632 8633 PIPE_CONF_CHECK_I(pixel_multiplier); 8634 8635 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8636 DRM_MODE_FLAG_INTERLACE); 8637 8638 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 8639 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8640 DRM_MODE_FLAG_PHSYNC); 8641 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8642 DRM_MODE_FLAG_NHSYNC); 8643 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8644 DRM_MODE_FLAG_PVSYNC); 8645 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8646 DRM_MODE_FLAG_NVSYNC); 8647 } 8648 } 8649 8650 PIPE_CONF_CHECK_I(output_format); 8651 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 8652 if ((DISPLAY_VER(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 8653 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8654 PIPE_CONF_CHECK_BOOL(limited_color_range); 8655 8656 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 8657 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 8658 PIPE_CONF_CHECK_BOOL(has_infoframe); 8659 /* FIXME do the readout properly and get rid of this quirk */ 8660 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8661 PIPE_CONF_CHECK_BOOL(fec_enable); 8662 8663 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 8664 8665 PIPE_CONF_CHECK_X(gmch_pfit.control); 8666 /* pfit ratios are autocomputed by the hw on gen4+ */ 8667 if (DISPLAY_VER(dev_priv) < 4) 8668 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 8669 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 8670 8671 /* 8672 * Changing the EDP transcoder input mux 8673 * (A_ONOFF vs. A_ON) requires a full modeset. 8674 */ 8675 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 8676 8677 if (!fastset) { 8678 PIPE_CONF_CHECK_I(pipe_src_w); 8679 PIPE_CONF_CHECK_I(pipe_src_h); 8680 8681 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 8682 if (current_config->pch_pfit.enabled) { 8683 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 8684 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 8685 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 8686 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 8687 } 8688 8689 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 8690 /* FIXME do the readout properly and get rid of this quirk */ 8691 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8692 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 8693 8694 PIPE_CONF_CHECK_X(gamma_mode); 8695 if (IS_CHERRYVIEW(dev_priv)) 8696 PIPE_CONF_CHECK_X(cgm_mode); 8697 else 8698 PIPE_CONF_CHECK_X(csc_mode); 8699 PIPE_CONF_CHECK_BOOL(gamma_enable); 8700 PIPE_CONF_CHECK_BOOL(csc_enable); 8701 8702 PIPE_CONF_CHECK_I(linetime); 8703 PIPE_CONF_CHECK_I(ips_linetime); 8704 8705 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 8706 if (bp_gamma) 8707 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 8708 8709 PIPE_CONF_CHECK_BOOL(has_psr); 8710 PIPE_CONF_CHECK_BOOL(has_psr2); 8711 PIPE_CONF_CHECK_BOOL(enable_psr2_sel_fetch); 8712 PIPE_CONF_CHECK_I(dc3co_exitline); 8713 } 8714 8715 PIPE_CONF_CHECK_BOOL(double_wide); 8716 8717 if (dev_priv->dpll.mgr) 8718 PIPE_CONF_CHECK_P(shared_dpll); 8719 8720 /* FIXME do the readout properly and get rid of this quirk */ 8721 if (dev_priv->dpll.mgr && !PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8722 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 8723 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 8724 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 8725 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 8726 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 8727 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 8728 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 8729 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 8730 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 8731 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 8732 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 8733 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 8734 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 8735 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 8736 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 8737 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 8738 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 8739 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 8740 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 8741 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 8742 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 8743 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 8744 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 8745 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 8746 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 8747 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 8748 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 8749 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 8750 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 8751 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 8752 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 8753 } 8754 8755 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8756 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 8757 PIPE_CONF_CHECK_X(dsi_pll.div); 8758 8759 if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5) 8760 PIPE_CONF_CHECK_I(pipe_bpp); 8761 8762 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.pipe_mode.crtc_clock); 8763 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 8764 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 8765 8766 PIPE_CONF_CHECK_I(min_voltage_level); 8767 } 8768 8769 if (fastset && (current_config->has_psr || pipe_config->has_psr)) 8770 PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable, 8771 ~intel_hdmi_infoframe_enable(DP_SDP_VSC)); 8772 else 8773 PIPE_CONF_CHECK_X(infoframes.enable); 8774 8775 PIPE_CONF_CHECK_X(infoframes.gcp); 8776 PIPE_CONF_CHECK_INFOFRAME(avi); 8777 PIPE_CONF_CHECK_INFOFRAME(spd); 8778 PIPE_CONF_CHECK_INFOFRAME(hdmi); 8779 PIPE_CONF_CHECK_INFOFRAME(drm); 8780 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 8781 8782 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 8783 PIPE_CONF_CHECK_I(master_transcoder); 8784 PIPE_CONF_CHECK_BOOL(bigjoiner); 8785 PIPE_CONF_CHECK_BOOL(bigjoiner_slave); 8786 PIPE_CONF_CHECK_P(bigjoiner_linked_crtc); 8787 8788 PIPE_CONF_CHECK_I(dsc.compression_enable); 8789 PIPE_CONF_CHECK_I(dsc.dsc_split); 8790 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 8791 8792 PIPE_CONF_CHECK_BOOL(splitter.enable); 8793 PIPE_CONF_CHECK_I(splitter.link_count); 8794 PIPE_CONF_CHECK_I(splitter.pixel_overlap); 8795 8796 PIPE_CONF_CHECK_I(mst_master_transcoder); 8797 8798 PIPE_CONF_CHECK_BOOL(vrr.enable); 8799 PIPE_CONF_CHECK_I(vrr.vmin); 8800 PIPE_CONF_CHECK_I(vrr.vmax); 8801 PIPE_CONF_CHECK_I(vrr.flipline); 8802 PIPE_CONF_CHECK_I(vrr.pipeline_full); 8803 PIPE_CONF_CHECK_I(vrr.guardband); 8804 8805 #undef PIPE_CONF_CHECK_X 8806 #undef PIPE_CONF_CHECK_I 8807 #undef PIPE_CONF_CHECK_BOOL 8808 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 8809 #undef PIPE_CONF_CHECK_P 8810 #undef PIPE_CONF_CHECK_FLAGS 8811 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 8812 #undef PIPE_CONF_CHECK_COLOR_LUT 8813 #undef PIPE_CONF_QUIRK 8814 8815 return ret; 8816 } 8817 8818 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 8819 const struct intel_crtc_state *pipe_config) 8820 { 8821 if (pipe_config->has_pch_encoder) { 8822 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 8823 &pipe_config->fdi_m_n); 8824 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 8825 8826 /* 8827 * FDI already provided one idea for the dotclock. 8828 * Yell if the encoder disagrees. 8829 */ 8830 drm_WARN(&dev_priv->drm, 8831 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 8832 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 8833 fdi_dotclock, dotclock); 8834 } 8835 } 8836 8837 static void verify_wm_state(struct intel_crtc *crtc, 8838 struct intel_crtc_state *new_crtc_state) 8839 { 8840 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8841 struct skl_hw_state { 8842 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 8843 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 8844 struct skl_pipe_wm wm; 8845 } *hw; 8846 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; 8847 int level, max_level = ilk_wm_max_level(dev_priv); 8848 struct intel_plane *plane; 8849 u8 hw_enabled_slices; 8850 8851 if (DISPLAY_VER(dev_priv) < 9 || !new_crtc_state->hw.active) 8852 return; 8853 8854 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 8855 if (!hw) 8856 return; 8857 8858 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 8859 8860 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 8861 8862 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 8863 8864 if (DISPLAY_VER(dev_priv) >= 11 && 8865 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 8866 drm_err(&dev_priv->drm, 8867 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 8868 dev_priv->dbuf.enabled_slices, 8869 hw_enabled_slices); 8870 8871 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 8872 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 8873 const struct skl_wm_level *hw_wm_level, *sw_wm_level; 8874 8875 /* Watermarks */ 8876 for (level = 0; level <= max_level; level++) { 8877 hw_wm_level = &hw->wm.planes[plane->id].wm[level]; 8878 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); 8879 8880 if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) 8881 continue; 8882 8883 drm_err(&dev_priv->drm, 8884 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8885 plane->base.base.id, plane->base.name, level, 8886 sw_wm_level->enable, 8887 sw_wm_level->blocks, 8888 sw_wm_level->lines, 8889 hw_wm_level->enable, 8890 hw_wm_level->blocks, 8891 hw_wm_level->lines); 8892 } 8893 8894 hw_wm_level = &hw->wm.planes[plane->id].trans_wm; 8895 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); 8896 8897 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8898 drm_err(&dev_priv->drm, 8899 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8900 plane->base.base.id, plane->base.name, 8901 sw_wm_level->enable, 8902 sw_wm_level->blocks, 8903 sw_wm_level->lines, 8904 hw_wm_level->enable, 8905 hw_wm_level->blocks, 8906 hw_wm_level->lines); 8907 } 8908 8909 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0; 8910 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0; 8911 8912 if (HAS_HW_SAGV_WM(dev_priv) && 8913 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8914 drm_err(&dev_priv->drm, 8915 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8916 plane->base.base.id, plane->base.name, 8917 sw_wm_level->enable, 8918 sw_wm_level->blocks, 8919 sw_wm_level->lines, 8920 hw_wm_level->enable, 8921 hw_wm_level->blocks, 8922 hw_wm_level->lines); 8923 } 8924 8925 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm; 8926 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm; 8927 8928 if (HAS_HW_SAGV_WM(dev_priv) && 8929 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8930 drm_err(&dev_priv->drm, 8931 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8932 plane->base.base.id, plane->base.name, 8933 sw_wm_level->enable, 8934 sw_wm_level->blocks, 8935 sw_wm_level->lines, 8936 hw_wm_level->enable, 8937 hw_wm_level->blocks, 8938 hw_wm_level->lines); 8939 } 8940 8941 /* DDB */ 8942 hw_ddb_entry = &hw->ddb_y[plane->id]; 8943 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane->id]; 8944 8945 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 8946 drm_err(&dev_priv->drm, 8947 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", 8948 plane->base.base.id, plane->base.name, 8949 sw_ddb_entry->start, sw_ddb_entry->end, 8950 hw_ddb_entry->start, hw_ddb_entry->end); 8951 } 8952 } 8953 8954 kfree(hw); 8955 } 8956 8957 static void 8958 verify_connector_state(struct intel_atomic_state *state, 8959 struct intel_crtc *crtc) 8960 { 8961 struct drm_connector *connector; 8962 struct drm_connector_state *new_conn_state; 8963 int i; 8964 8965 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 8966 struct drm_encoder *encoder = connector->encoder; 8967 struct intel_crtc_state *crtc_state = NULL; 8968 8969 if (new_conn_state->crtc != &crtc->base) 8970 continue; 8971 8972 if (crtc) 8973 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 8974 8975 intel_connector_verify_state(crtc_state, new_conn_state); 8976 8977 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 8978 "connector's atomic encoder doesn't match legacy encoder\n"); 8979 } 8980 } 8981 8982 static void 8983 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 8984 { 8985 struct intel_encoder *encoder; 8986 struct drm_connector *connector; 8987 struct drm_connector_state *old_conn_state, *new_conn_state; 8988 int i; 8989 8990 for_each_intel_encoder(&dev_priv->drm, encoder) { 8991 bool enabled = false, found = false; 8992 enum pipe pipe; 8993 8994 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 8995 encoder->base.base.id, 8996 encoder->base.name); 8997 8998 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 8999 new_conn_state, i) { 9000 if (old_conn_state->best_encoder == &encoder->base) 9001 found = true; 9002 9003 if (new_conn_state->best_encoder != &encoder->base) 9004 continue; 9005 found = enabled = true; 9006 9007 I915_STATE_WARN(new_conn_state->crtc != 9008 encoder->base.crtc, 9009 "connector's crtc doesn't match encoder crtc\n"); 9010 } 9011 9012 if (!found) 9013 continue; 9014 9015 I915_STATE_WARN(!!encoder->base.crtc != enabled, 9016 "encoder's enabled state mismatch " 9017 "(expected %i, found %i)\n", 9018 !!encoder->base.crtc, enabled); 9019 9020 if (!encoder->base.crtc) { 9021 bool active; 9022 9023 active = encoder->get_hw_state(encoder, &pipe); 9024 I915_STATE_WARN(active, 9025 "encoder detached but still enabled on pipe %c.\n", 9026 pipe_name(pipe)); 9027 } 9028 } 9029 } 9030 9031 static void 9032 verify_crtc_state(struct intel_crtc *crtc, 9033 struct intel_crtc_state *old_crtc_state, 9034 struct intel_crtc_state *new_crtc_state) 9035 { 9036 struct drm_device *dev = crtc->base.dev; 9037 struct drm_i915_private *dev_priv = to_i915(dev); 9038 struct intel_encoder *encoder; 9039 struct intel_crtc_state *pipe_config = old_crtc_state; 9040 struct drm_atomic_state *state = old_crtc_state->uapi.state; 9041 struct intel_crtc *master = crtc; 9042 9043 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 9044 intel_crtc_free_hw_state(old_crtc_state); 9045 intel_crtc_state_reset(old_crtc_state, crtc); 9046 old_crtc_state->uapi.state = state; 9047 9048 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 9049 crtc->base.name); 9050 9051 pipe_config->hw.enable = new_crtc_state->hw.enable; 9052 9053 intel_crtc_get_pipe_config(pipe_config); 9054 9055 /* we keep both pipes enabled on 830 */ 9056 if (IS_I830(dev_priv) && pipe_config->hw.active) 9057 pipe_config->hw.active = new_crtc_state->hw.active; 9058 9059 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 9060 "crtc active state doesn't match with hw state " 9061 "(expected %i, found %i)\n", 9062 new_crtc_state->hw.active, pipe_config->hw.active); 9063 9064 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 9065 "transitional active state does not match atomic hw state " 9066 "(expected %i, found %i)\n", 9067 new_crtc_state->hw.active, crtc->active); 9068 9069 if (new_crtc_state->bigjoiner_slave) 9070 master = new_crtc_state->bigjoiner_linked_crtc; 9071 9072 for_each_encoder_on_crtc(dev, &master->base, encoder) { 9073 enum pipe pipe; 9074 bool active; 9075 9076 active = encoder->get_hw_state(encoder, &pipe); 9077 I915_STATE_WARN(active != new_crtc_state->hw.active, 9078 "[ENCODER:%i] active %i with crtc active %i\n", 9079 encoder->base.base.id, active, 9080 new_crtc_state->hw.active); 9081 9082 I915_STATE_WARN(active && master->pipe != pipe, 9083 "Encoder connected to wrong pipe %c\n", 9084 pipe_name(pipe)); 9085 9086 if (active) 9087 intel_encoder_get_config(encoder, pipe_config); 9088 } 9089 9090 if (!new_crtc_state->hw.active) 9091 return; 9092 9093 if (new_crtc_state->bigjoiner_slave) 9094 /* No PLLs set for slave */ 9095 pipe_config->shared_dpll = NULL; 9096 9097 intel_pipe_config_sanity_check(dev_priv, pipe_config); 9098 9099 if (!intel_pipe_config_compare(new_crtc_state, 9100 pipe_config, false)) { 9101 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 9102 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 9103 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 9104 } 9105 } 9106 9107 static void 9108 intel_verify_planes(struct intel_atomic_state *state) 9109 { 9110 struct intel_plane *plane; 9111 const struct intel_plane_state *plane_state; 9112 int i; 9113 9114 for_each_new_intel_plane_in_state(state, plane, 9115 plane_state, i) 9116 assert_plane(plane, plane_state->planar_slave || 9117 plane_state->uapi.visible); 9118 } 9119 9120 static void 9121 verify_single_dpll_state(struct drm_i915_private *dev_priv, 9122 struct intel_shared_dpll *pll, 9123 struct intel_crtc *crtc, 9124 struct intel_crtc_state *new_crtc_state) 9125 { 9126 struct intel_dpll_hw_state dpll_hw_state; 9127 u8 pipe_mask; 9128 bool active; 9129 9130 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 9131 9132 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 9133 9134 active = intel_dpll_get_hw_state(dev_priv, pll, &dpll_hw_state); 9135 9136 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 9137 I915_STATE_WARN(!pll->on && pll->active_mask, 9138 "pll in active use but not on in sw tracking\n"); 9139 I915_STATE_WARN(pll->on && !pll->active_mask, 9140 "pll is on but not used by any active pipe\n"); 9141 I915_STATE_WARN(pll->on != active, 9142 "pll on state mismatch (expected %i, found %i)\n", 9143 pll->on, active); 9144 } 9145 9146 if (!crtc) { 9147 I915_STATE_WARN(pll->active_mask & ~pll->state.pipe_mask, 9148 "more active pll users than references: 0x%x vs 0x%x\n", 9149 pll->active_mask, pll->state.pipe_mask); 9150 9151 return; 9152 } 9153 9154 pipe_mask = BIT(crtc->pipe); 9155 9156 if (new_crtc_state->hw.active) 9157 I915_STATE_WARN(!(pll->active_mask & pipe_mask), 9158 "pll active mismatch (expected pipe %c in active mask 0x%x)\n", 9159 pipe_name(crtc->pipe), pll->active_mask); 9160 else 9161 I915_STATE_WARN(pll->active_mask & pipe_mask, 9162 "pll active mismatch (didn't expect pipe %c in active mask 0x%x)\n", 9163 pipe_name(crtc->pipe), pll->active_mask); 9164 9165 I915_STATE_WARN(!(pll->state.pipe_mask & pipe_mask), 9166 "pll enabled crtcs mismatch (expected 0x%x in 0x%x)\n", 9167 pipe_mask, pll->state.pipe_mask); 9168 9169 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 9170 &dpll_hw_state, 9171 sizeof(dpll_hw_state)), 9172 "pll hw state mismatch\n"); 9173 } 9174 9175 static void 9176 verify_shared_dpll_state(struct intel_crtc *crtc, 9177 struct intel_crtc_state *old_crtc_state, 9178 struct intel_crtc_state *new_crtc_state) 9179 { 9180 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9181 9182 if (new_crtc_state->shared_dpll) 9183 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 9184 9185 if (old_crtc_state->shared_dpll && 9186 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 9187 u8 pipe_mask = BIT(crtc->pipe); 9188 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 9189 9190 I915_STATE_WARN(pll->active_mask & pipe_mask, 9191 "pll active mismatch (didn't expect pipe %c in active mask (0x%x))\n", 9192 pipe_name(crtc->pipe), pll->active_mask); 9193 I915_STATE_WARN(pll->state.pipe_mask & pipe_mask, 9194 "pll enabled crtcs mismatch (found %x in enabled mask (0x%x))\n", 9195 pipe_name(crtc->pipe), pll->state.pipe_mask); 9196 } 9197 } 9198 9199 static void 9200 verify_mpllb_state(struct intel_atomic_state *state, 9201 struct intel_crtc_state *new_crtc_state) 9202 { 9203 struct drm_i915_private *i915 = to_i915(state->base.dev); 9204 struct intel_mpllb_state mpllb_hw_state = { 0 }; 9205 struct intel_mpllb_state *mpllb_sw_state = &new_crtc_state->mpllb_state; 9206 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 9207 struct intel_encoder *encoder; 9208 9209 if (!IS_DG2(i915)) 9210 return; 9211 9212 if (!new_crtc_state->hw.active) 9213 return; 9214 9215 if (new_crtc_state->bigjoiner_slave) 9216 return; 9217 9218 encoder = intel_get_crtc_new_encoder(state, new_crtc_state); 9219 intel_mpllb_readout_hw_state(encoder, &mpllb_hw_state); 9220 9221 #define MPLLB_CHECK(name) do { \ 9222 if (mpllb_sw_state->name != mpllb_hw_state.name) { \ 9223 pipe_config_mismatch(false, crtc, "MPLLB:" __stringify(name), \ 9224 "(expected 0x%08x, found 0x%08x)", \ 9225 mpllb_sw_state->name, \ 9226 mpllb_hw_state.name); \ 9227 } \ 9228 } while (0) 9229 9230 MPLLB_CHECK(mpllb_cp); 9231 MPLLB_CHECK(mpllb_div); 9232 MPLLB_CHECK(mpllb_div2); 9233 MPLLB_CHECK(mpllb_fracn1); 9234 MPLLB_CHECK(mpllb_fracn2); 9235 MPLLB_CHECK(mpllb_sscen); 9236 MPLLB_CHECK(mpllb_sscstep); 9237 9238 /* 9239 * ref_control is handled by the hardware/firemware and never 9240 * programmed by the software, but the proper values are supplied 9241 * in the bspec for verification purposes. 9242 */ 9243 MPLLB_CHECK(ref_control); 9244 9245 #undef MPLLB_CHECK 9246 } 9247 9248 static void 9249 intel_modeset_verify_crtc(struct intel_crtc *crtc, 9250 struct intel_atomic_state *state, 9251 struct intel_crtc_state *old_crtc_state, 9252 struct intel_crtc_state *new_crtc_state) 9253 { 9254 if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 9255 return; 9256 9257 verify_wm_state(crtc, new_crtc_state); 9258 verify_connector_state(state, crtc); 9259 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 9260 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 9261 verify_mpllb_state(state, new_crtc_state); 9262 } 9263 9264 static void 9265 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 9266 { 9267 int i; 9268 9269 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 9270 verify_single_dpll_state(dev_priv, 9271 &dev_priv->dpll.shared_dplls[i], 9272 NULL, NULL); 9273 } 9274 9275 static void 9276 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 9277 struct intel_atomic_state *state) 9278 { 9279 verify_encoder_state(dev_priv, state); 9280 verify_connector_state(state, NULL); 9281 verify_disabled_dpll_state(dev_priv); 9282 } 9283 9284 int intel_modeset_all_pipes(struct intel_atomic_state *state) 9285 { 9286 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9287 struct intel_crtc *crtc; 9288 9289 /* 9290 * Add all pipes to the state, and force 9291 * a modeset on all the active ones. 9292 */ 9293 for_each_intel_crtc(&dev_priv->drm, crtc) { 9294 struct intel_crtc_state *crtc_state; 9295 int ret; 9296 9297 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9298 if (IS_ERR(crtc_state)) 9299 return PTR_ERR(crtc_state); 9300 9301 if (!crtc_state->hw.active || 9302 drm_atomic_crtc_needs_modeset(&crtc_state->uapi)) 9303 continue; 9304 9305 crtc_state->uapi.mode_changed = true; 9306 9307 ret = drm_atomic_add_affected_connectors(&state->base, 9308 &crtc->base); 9309 if (ret) 9310 return ret; 9311 9312 ret = intel_atomic_add_affected_planes(state, crtc); 9313 if (ret) 9314 return ret; 9315 9316 crtc_state->update_planes |= crtc_state->active_planes; 9317 } 9318 9319 return 0; 9320 } 9321 9322 static void 9323 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 9324 { 9325 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9326 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9327 struct drm_display_mode adjusted_mode = 9328 crtc_state->hw.adjusted_mode; 9329 9330 if (crtc_state->vrr.enable) { 9331 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 9332 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 9333 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 9334 crtc->vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 9335 } 9336 9337 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 9338 9339 crtc->mode_flags = crtc_state->mode_flags; 9340 9341 /* 9342 * The scanline counter increments at the leading edge of hsync. 9343 * 9344 * On most platforms it starts counting from vtotal-1 on the 9345 * first active line. That means the scanline counter value is 9346 * always one less than what we would expect. Ie. just after 9347 * start of vblank, which also occurs at start of hsync (on the 9348 * last active line), the scanline counter will read vblank_start-1. 9349 * 9350 * On gen2 the scanline counter starts counting from 1 instead 9351 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 9352 * to keep the value positive), instead of adding one. 9353 * 9354 * On HSW+ the behaviour of the scanline counter depends on the output 9355 * type. For DP ports it behaves like most other platforms, but on HDMI 9356 * there's an extra 1 line difference. So we need to add two instead of 9357 * one to the value. 9358 * 9359 * On VLV/CHV DSI the scanline counter would appear to increment 9360 * approx. 1/3 of a scanline before start of vblank. Unfortunately 9361 * that means we can't tell whether we're in vblank or not while 9362 * we're on that particular line. We must still set scanline_offset 9363 * to 1 so that the vblank timestamps come out correct when we query 9364 * the scanline counter from within the vblank interrupt handler. 9365 * However if queried just before the start of vblank we'll get an 9366 * answer that's slightly in the future. 9367 */ 9368 if (DISPLAY_VER(dev_priv) == 2) { 9369 int vtotal; 9370 9371 vtotal = adjusted_mode.crtc_vtotal; 9372 if (adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9373 vtotal /= 2; 9374 9375 crtc->scanline_offset = vtotal - 1; 9376 } else if (HAS_DDI(dev_priv) && 9377 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 9378 crtc->scanline_offset = 2; 9379 } else { 9380 crtc->scanline_offset = 1; 9381 } 9382 } 9383 9384 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 9385 { 9386 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9387 struct intel_crtc_state *new_crtc_state; 9388 struct intel_crtc *crtc; 9389 int i; 9390 9391 if (!dev_priv->display.crtc_compute_clock) 9392 return; 9393 9394 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9395 if (!intel_crtc_needs_modeset(new_crtc_state)) 9396 continue; 9397 9398 intel_release_shared_dplls(state, crtc); 9399 } 9400 } 9401 9402 /* 9403 * This implements the workaround described in the "notes" section of the mode 9404 * set sequence documentation. When going from no pipes or single pipe to 9405 * multiple pipes, and planes are enabled after the pipe, we need to wait at 9406 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 9407 */ 9408 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 9409 { 9410 struct intel_crtc_state *crtc_state; 9411 struct intel_crtc *crtc; 9412 struct intel_crtc_state *first_crtc_state = NULL; 9413 struct intel_crtc_state *other_crtc_state = NULL; 9414 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 9415 int i; 9416 9417 /* look at all crtc's that are going to be enabled in during modeset */ 9418 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9419 if (!crtc_state->hw.active || 9420 !intel_crtc_needs_modeset(crtc_state)) 9421 continue; 9422 9423 if (first_crtc_state) { 9424 other_crtc_state = crtc_state; 9425 break; 9426 } else { 9427 first_crtc_state = crtc_state; 9428 first_pipe = crtc->pipe; 9429 } 9430 } 9431 9432 /* No workaround needed? */ 9433 if (!first_crtc_state) 9434 return 0; 9435 9436 /* w/a possibly needed, check how many crtc's are already enabled. */ 9437 for_each_intel_crtc(state->base.dev, crtc) { 9438 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9439 if (IS_ERR(crtc_state)) 9440 return PTR_ERR(crtc_state); 9441 9442 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 9443 9444 if (!crtc_state->hw.active || 9445 intel_crtc_needs_modeset(crtc_state)) 9446 continue; 9447 9448 /* 2 or more enabled crtcs means no need for w/a */ 9449 if (enabled_pipe != INVALID_PIPE) 9450 return 0; 9451 9452 enabled_pipe = crtc->pipe; 9453 } 9454 9455 if (enabled_pipe != INVALID_PIPE) 9456 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 9457 else if (other_crtc_state) 9458 other_crtc_state->hsw_workaround_pipe = first_pipe; 9459 9460 return 0; 9461 } 9462 9463 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 9464 u8 active_pipes) 9465 { 9466 const struct intel_crtc_state *crtc_state; 9467 struct intel_crtc *crtc; 9468 int i; 9469 9470 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9471 if (crtc_state->hw.active) 9472 active_pipes |= BIT(crtc->pipe); 9473 else 9474 active_pipes &= ~BIT(crtc->pipe); 9475 } 9476 9477 return active_pipes; 9478 } 9479 9480 static int intel_modeset_checks(struct intel_atomic_state *state) 9481 { 9482 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9483 9484 state->modeset = true; 9485 9486 if (IS_HASWELL(dev_priv)) 9487 return hsw_mode_set_planes_workaround(state); 9488 9489 return 0; 9490 } 9491 9492 /* 9493 * Handle calculation of various watermark data at the end of the atomic check 9494 * phase. The code here should be run after the per-crtc and per-plane 'check' 9495 * handlers to ensure that all derived state has been updated. 9496 */ 9497 static int calc_watermark_data(struct intel_atomic_state *state) 9498 { 9499 struct drm_device *dev = state->base.dev; 9500 struct drm_i915_private *dev_priv = to_i915(dev); 9501 9502 /* Is there platform-specific watermark information to calculate? */ 9503 if (dev_priv->display.compute_global_watermarks) 9504 return dev_priv->display.compute_global_watermarks(state); 9505 9506 return 0; 9507 } 9508 9509 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 9510 struct intel_crtc_state *new_crtc_state) 9511 { 9512 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 9513 return; 9514 9515 new_crtc_state->uapi.mode_changed = false; 9516 new_crtc_state->update_pipe = true; 9517 } 9518 9519 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 9520 struct intel_crtc_state *new_crtc_state) 9521 { 9522 /* 9523 * If we're not doing the full modeset we want to 9524 * keep the current M/N values as they may be 9525 * sufficiently different to the computed values 9526 * to cause problems. 9527 * 9528 * FIXME: should really copy more fuzzy state here 9529 */ 9530 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 9531 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 9532 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 9533 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 9534 } 9535 9536 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 9537 struct intel_crtc *crtc, 9538 u8 plane_ids_mask) 9539 { 9540 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9541 struct intel_plane *plane; 9542 9543 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 9544 struct intel_plane_state *plane_state; 9545 9546 if ((plane_ids_mask & BIT(plane->id)) == 0) 9547 continue; 9548 9549 plane_state = intel_atomic_get_plane_state(state, plane); 9550 if (IS_ERR(plane_state)) 9551 return PTR_ERR(plane_state); 9552 } 9553 9554 return 0; 9555 } 9556 9557 int intel_atomic_add_affected_planes(struct intel_atomic_state *state, 9558 struct intel_crtc *crtc) 9559 { 9560 const struct intel_crtc_state *old_crtc_state = 9561 intel_atomic_get_old_crtc_state(state, crtc); 9562 const struct intel_crtc_state *new_crtc_state = 9563 intel_atomic_get_new_crtc_state(state, crtc); 9564 9565 return intel_crtc_add_planes_to_state(state, crtc, 9566 old_crtc_state->enabled_planes | 9567 new_crtc_state->enabled_planes); 9568 } 9569 9570 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 9571 { 9572 /* See {hsw,vlv,ivb}_plane_ratio() */ 9573 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 9574 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9575 IS_IVYBRIDGE(dev_priv); 9576 } 9577 9578 static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state, 9579 struct intel_crtc *crtc, 9580 struct intel_crtc *other) 9581 { 9582 const struct intel_plane_state *plane_state; 9583 struct intel_plane *plane; 9584 u8 plane_ids = 0; 9585 int i; 9586 9587 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9588 if (plane->pipe == crtc->pipe) 9589 plane_ids |= BIT(plane->id); 9590 } 9591 9592 return intel_crtc_add_planes_to_state(state, other, plane_ids); 9593 } 9594 9595 static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state) 9596 { 9597 const struct intel_crtc_state *crtc_state; 9598 struct intel_crtc *crtc; 9599 int i; 9600 9601 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9602 int ret; 9603 9604 if (!crtc_state->bigjoiner) 9605 continue; 9606 9607 ret = intel_crtc_add_bigjoiner_planes(state, crtc, 9608 crtc_state->bigjoiner_linked_crtc); 9609 if (ret) 9610 return ret; 9611 } 9612 9613 return 0; 9614 } 9615 9616 static int intel_atomic_check_planes(struct intel_atomic_state *state) 9617 { 9618 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9619 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9620 struct intel_plane_state *plane_state; 9621 struct intel_plane *plane; 9622 struct intel_crtc *crtc; 9623 int i, ret; 9624 9625 ret = icl_add_linked_planes(state); 9626 if (ret) 9627 return ret; 9628 9629 ret = intel_bigjoiner_add_affected_planes(state); 9630 if (ret) 9631 return ret; 9632 9633 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9634 ret = intel_plane_atomic_check(state, plane); 9635 if (ret) { 9636 drm_dbg_atomic(&dev_priv->drm, 9637 "[PLANE:%d:%s] atomic driver check failed\n", 9638 plane->base.base.id, plane->base.name); 9639 return ret; 9640 } 9641 } 9642 9643 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9644 new_crtc_state, i) { 9645 u8 old_active_planes, new_active_planes; 9646 9647 ret = icl_check_nv12_planes(new_crtc_state); 9648 if (ret) 9649 return ret; 9650 9651 /* 9652 * On some platforms the number of active planes affects 9653 * the planes' minimum cdclk calculation. Add such planes 9654 * to the state before we compute the minimum cdclk. 9655 */ 9656 if (!active_planes_affects_min_cdclk(dev_priv)) 9657 continue; 9658 9659 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9660 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9661 9662 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 9663 continue; 9664 9665 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 9666 if (ret) 9667 return ret; 9668 } 9669 9670 return 0; 9671 } 9672 9673 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 9674 bool *need_cdclk_calc) 9675 { 9676 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9677 const struct intel_cdclk_state *old_cdclk_state; 9678 const struct intel_cdclk_state *new_cdclk_state; 9679 struct intel_plane_state *plane_state; 9680 struct intel_bw_state *new_bw_state; 9681 struct intel_plane *plane; 9682 int min_cdclk = 0; 9683 enum pipe pipe; 9684 int ret; 9685 int i; 9686 /* 9687 * active_planes bitmask has been updated, and potentially 9688 * affected planes are part of the state. We can now 9689 * compute the minimum cdclk for each plane. 9690 */ 9691 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9692 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 9693 if (ret) 9694 return ret; 9695 } 9696 9697 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 9698 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 9699 9700 if (new_cdclk_state && 9701 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 9702 *need_cdclk_calc = true; 9703 9704 ret = dev_priv->display.bw_calc_min_cdclk(state); 9705 if (ret) 9706 return ret; 9707 9708 new_bw_state = intel_atomic_get_new_bw_state(state); 9709 9710 if (!new_cdclk_state || !new_bw_state) 9711 return 0; 9712 9713 for_each_pipe(dev_priv, pipe) { 9714 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 9715 9716 /* 9717 * Currently do this change only if we need to increase 9718 */ 9719 if (new_bw_state->min_cdclk > min_cdclk) 9720 *need_cdclk_calc = true; 9721 } 9722 9723 return 0; 9724 } 9725 9726 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 9727 { 9728 struct intel_crtc_state *crtc_state; 9729 struct intel_crtc *crtc; 9730 int i; 9731 9732 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9733 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 9734 int ret; 9735 9736 ret = intel_crtc_atomic_check(state, crtc); 9737 if (ret) { 9738 drm_dbg_atomic(&i915->drm, 9739 "[CRTC:%d:%s] atomic driver check failed\n", 9740 crtc->base.base.id, crtc->base.name); 9741 return ret; 9742 } 9743 } 9744 9745 return 0; 9746 } 9747 9748 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 9749 u8 transcoders) 9750 { 9751 const struct intel_crtc_state *new_crtc_state; 9752 struct intel_crtc *crtc; 9753 int i; 9754 9755 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9756 if (new_crtc_state->hw.enable && 9757 transcoders & BIT(new_crtc_state->cpu_transcoder) && 9758 intel_crtc_needs_modeset(new_crtc_state)) 9759 return true; 9760 } 9761 9762 return false; 9763 } 9764 9765 static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state, 9766 struct intel_crtc *crtc, 9767 struct intel_crtc_state *old_crtc_state, 9768 struct intel_crtc_state *new_crtc_state) 9769 { 9770 struct intel_crtc_state *slave_crtc_state, *master_crtc_state; 9771 struct intel_crtc *slave, *master; 9772 9773 /* slave being enabled, is master is still claiming this crtc? */ 9774 if (old_crtc_state->bigjoiner_slave) { 9775 slave = crtc; 9776 master = old_crtc_state->bigjoiner_linked_crtc; 9777 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 9778 if (!master_crtc_state || !intel_crtc_needs_modeset(master_crtc_state)) 9779 goto claimed; 9780 } 9781 9782 if (!new_crtc_state->bigjoiner) 9783 return 0; 9784 9785 slave = intel_dsc_get_bigjoiner_secondary(crtc); 9786 if (!slave) { 9787 DRM_DEBUG_KMS("[CRTC:%d:%s] Big joiner configuration requires " 9788 "CRTC + 1 to be used, doesn't exist\n", 9789 crtc->base.base.id, crtc->base.name); 9790 return -EINVAL; 9791 } 9792 9793 new_crtc_state->bigjoiner_linked_crtc = slave; 9794 slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave); 9795 master = crtc; 9796 if (IS_ERR(slave_crtc_state)) 9797 return PTR_ERR(slave_crtc_state); 9798 9799 /* master being enabled, slave was already configured? */ 9800 if (slave_crtc_state->uapi.enable) 9801 goto claimed; 9802 9803 DRM_DEBUG_KMS("[CRTC:%d:%s] Used as slave for big joiner\n", 9804 slave->base.base.id, slave->base.name); 9805 9806 return copy_bigjoiner_crtc_state(slave_crtc_state, new_crtc_state); 9807 9808 claimed: 9809 DRM_DEBUG_KMS("[CRTC:%d:%s] Slave is enabled as normal CRTC, but " 9810 "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n", 9811 slave->base.base.id, slave->base.name, 9812 master->base.base.id, master->base.name); 9813 return -EINVAL; 9814 } 9815 9816 static void kill_bigjoiner_slave(struct intel_atomic_state *state, 9817 struct intel_crtc_state *master_crtc_state) 9818 { 9819 struct intel_crtc_state *slave_crtc_state = 9820 intel_atomic_get_new_crtc_state(state, master_crtc_state->bigjoiner_linked_crtc); 9821 9822 slave_crtc_state->bigjoiner = master_crtc_state->bigjoiner = false; 9823 slave_crtc_state->bigjoiner_slave = master_crtc_state->bigjoiner_slave = false; 9824 slave_crtc_state->bigjoiner_linked_crtc = master_crtc_state->bigjoiner_linked_crtc = NULL; 9825 intel_crtc_copy_uapi_to_hw_state(state, slave_crtc_state); 9826 } 9827 9828 /** 9829 * DOC: asynchronous flip implementation 9830 * 9831 * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC 9832 * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. 9833 * Correspondingly, support is currently added for primary plane only. 9834 * 9835 * Async flip can only change the plane surface address, so anything else 9836 * changing is rejected from the intel_atomic_check_async() function. 9837 * Once this check is cleared, flip done interrupt is enabled using 9838 * the intel_crtc_enable_flip_done() function. 9839 * 9840 * As soon as the surface address register is written, flip done interrupt is 9841 * generated and the requested events are sent to the usersapce in the interrupt 9842 * handler itself. The timestamp and sequence sent during the flip done event 9843 * correspond to the last vblank and have no relation to the actual time when 9844 * the flip done event was sent. 9845 */ 9846 static int intel_atomic_check_async(struct intel_atomic_state *state) 9847 { 9848 struct drm_i915_private *i915 = to_i915(state->base.dev); 9849 const struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9850 const struct intel_plane_state *new_plane_state, *old_plane_state; 9851 struct intel_crtc *crtc; 9852 struct intel_plane *plane; 9853 int i; 9854 9855 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9856 new_crtc_state, i) { 9857 if (intel_crtc_needs_modeset(new_crtc_state)) { 9858 drm_dbg_kms(&i915->drm, "Modeset Required. Async flip not supported\n"); 9859 return -EINVAL; 9860 } 9861 9862 if (!new_crtc_state->hw.active) { 9863 drm_dbg_kms(&i915->drm, "CRTC inactive\n"); 9864 return -EINVAL; 9865 } 9866 if (old_crtc_state->active_planes != new_crtc_state->active_planes) { 9867 drm_dbg_kms(&i915->drm, 9868 "Active planes cannot be changed during async flip\n"); 9869 return -EINVAL; 9870 } 9871 } 9872 9873 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 9874 new_plane_state, i) { 9875 /* 9876 * TODO: Async flip is only supported through the page flip IOCTL 9877 * as of now. So support currently added for primary plane only. 9878 * Support for other planes on platforms on which supports 9879 * this(vlv/chv and icl+) should be added when async flip is 9880 * enabled in the atomic IOCTL path. 9881 */ 9882 if (!plane->async_flip) 9883 return -EINVAL; 9884 9885 /* 9886 * FIXME: This check is kept generic for all platforms. 9887 * Need to verify this for all gen9 platforms to enable 9888 * this selectively if required. 9889 */ 9890 switch (new_plane_state->hw.fb->modifier) { 9891 case I915_FORMAT_MOD_X_TILED: 9892 case I915_FORMAT_MOD_Y_TILED: 9893 case I915_FORMAT_MOD_Yf_TILED: 9894 break; 9895 default: 9896 drm_dbg_kms(&i915->drm, 9897 "Linear memory/CCS does not support async flips\n"); 9898 return -EINVAL; 9899 } 9900 9901 if (old_plane_state->view.color_plane[0].stride != 9902 new_plane_state->view.color_plane[0].stride) { 9903 drm_dbg_kms(&i915->drm, "Stride cannot be changed in async flip\n"); 9904 return -EINVAL; 9905 } 9906 9907 if (old_plane_state->hw.fb->modifier != 9908 new_plane_state->hw.fb->modifier) { 9909 drm_dbg_kms(&i915->drm, 9910 "Framebuffer modifiers cannot be changed in async flip\n"); 9911 return -EINVAL; 9912 } 9913 9914 if (old_plane_state->hw.fb->format != 9915 new_plane_state->hw.fb->format) { 9916 drm_dbg_kms(&i915->drm, 9917 "Framebuffer format cannot be changed in async flip\n"); 9918 return -EINVAL; 9919 } 9920 9921 if (old_plane_state->hw.rotation != 9922 new_plane_state->hw.rotation) { 9923 drm_dbg_kms(&i915->drm, "Rotation cannot be changed in async flip\n"); 9924 return -EINVAL; 9925 } 9926 9927 if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || 9928 !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { 9929 drm_dbg_kms(&i915->drm, 9930 "Plane size/co-ordinates cannot be changed in async flip\n"); 9931 return -EINVAL; 9932 } 9933 9934 if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { 9935 drm_dbg_kms(&i915->drm, "Alpha value cannot be changed in async flip\n"); 9936 return -EINVAL; 9937 } 9938 9939 if (old_plane_state->hw.pixel_blend_mode != 9940 new_plane_state->hw.pixel_blend_mode) { 9941 drm_dbg_kms(&i915->drm, 9942 "Pixel blend mode cannot be changed in async flip\n"); 9943 return -EINVAL; 9944 } 9945 9946 if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { 9947 drm_dbg_kms(&i915->drm, 9948 "Color encoding cannot be changed in async flip\n"); 9949 return -EINVAL; 9950 } 9951 9952 if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { 9953 drm_dbg_kms(&i915->drm, "Color range cannot be changed in async flip\n"); 9954 return -EINVAL; 9955 } 9956 } 9957 9958 return 0; 9959 } 9960 9961 static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state) 9962 { 9963 struct intel_crtc_state *crtc_state; 9964 struct intel_crtc *crtc; 9965 int i; 9966 9967 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9968 struct intel_crtc_state *linked_crtc_state; 9969 struct intel_crtc *linked_crtc; 9970 int ret; 9971 9972 if (!crtc_state->bigjoiner) 9973 continue; 9974 9975 linked_crtc = crtc_state->bigjoiner_linked_crtc; 9976 linked_crtc_state = intel_atomic_get_crtc_state(&state->base, linked_crtc); 9977 if (IS_ERR(linked_crtc_state)) 9978 return PTR_ERR(linked_crtc_state); 9979 9980 if (!intel_crtc_needs_modeset(crtc_state)) 9981 continue; 9982 9983 linked_crtc_state->uapi.mode_changed = true; 9984 9985 ret = drm_atomic_add_affected_connectors(&state->base, 9986 &linked_crtc->base); 9987 if (ret) 9988 return ret; 9989 9990 ret = intel_atomic_add_affected_planes(state, linked_crtc); 9991 if (ret) 9992 return ret; 9993 } 9994 9995 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9996 /* Kill old bigjoiner link, we may re-establish afterwards */ 9997 if (intel_crtc_needs_modeset(crtc_state) && 9998 crtc_state->bigjoiner && !crtc_state->bigjoiner_slave) 9999 kill_bigjoiner_slave(state, crtc_state); 10000 } 10001 10002 return 0; 10003 } 10004 10005 /** 10006 * intel_atomic_check - validate state object 10007 * @dev: drm device 10008 * @_state: state to validate 10009 */ 10010 static int intel_atomic_check(struct drm_device *dev, 10011 struct drm_atomic_state *_state) 10012 { 10013 struct drm_i915_private *dev_priv = to_i915(dev); 10014 struct intel_atomic_state *state = to_intel_atomic_state(_state); 10015 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10016 struct intel_crtc *crtc; 10017 int ret, i; 10018 bool any_ms = false; 10019 10020 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10021 new_crtc_state, i) { 10022 if (new_crtc_state->inherited != old_crtc_state->inherited) 10023 new_crtc_state->uapi.mode_changed = true; 10024 } 10025 10026 intel_vrr_check_modeset(state); 10027 10028 ret = drm_atomic_helper_check_modeset(dev, &state->base); 10029 if (ret) 10030 goto fail; 10031 10032 ret = intel_bigjoiner_add_affected_crtcs(state); 10033 if (ret) 10034 goto fail; 10035 10036 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10037 new_crtc_state, i) { 10038 if (!intel_crtc_needs_modeset(new_crtc_state)) { 10039 /* Light copy */ 10040 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, new_crtc_state); 10041 10042 continue; 10043 } 10044 10045 if (!new_crtc_state->uapi.enable) { 10046 if (!new_crtc_state->bigjoiner_slave) { 10047 intel_crtc_copy_uapi_to_hw_state(state, new_crtc_state); 10048 any_ms = true; 10049 } 10050 continue; 10051 } 10052 10053 ret = intel_crtc_prepare_cleared_state(state, new_crtc_state); 10054 if (ret) 10055 goto fail; 10056 10057 ret = intel_modeset_pipe_config(state, new_crtc_state); 10058 if (ret) 10059 goto fail; 10060 10061 ret = intel_atomic_check_bigjoiner(state, crtc, old_crtc_state, 10062 new_crtc_state); 10063 if (ret) 10064 goto fail; 10065 } 10066 10067 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10068 new_crtc_state, i) { 10069 if (!intel_crtc_needs_modeset(new_crtc_state)) 10070 continue; 10071 10072 ret = intel_modeset_pipe_config_late(new_crtc_state); 10073 if (ret) 10074 goto fail; 10075 10076 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 10077 } 10078 10079 /** 10080 * Check if fastset is allowed by external dependencies like other 10081 * pipes and transcoders. 10082 * 10083 * Right now it only forces a fullmodeset when the MST master 10084 * transcoder did not changed but the pipe of the master transcoder 10085 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 10086 * in case of port synced crtcs, if one of the synced crtcs 10087 * needs a full modeset, all other synced crtcs should be 10088 * forced a full modeset. 10089 */ 10090 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10091 if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) 10092 continue; 10093 10094 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 10095 enum transcoder master = new_crtc_state->mst_master_transcoder; 10096 10097 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 10098 new_crtc_state->uapi.mode_changed = true; 10099 new_crtc_state->update_pipe = false; 10100 } 10101 } 10102 10103 if (is_trans_port_sync_mode(new_crtc_state)) { 10104 u8 trans = new_crtc_state->sync_mode_slaves_mask; 10105 10106 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 10107 trans |= BIT(new_crtc_state->master_transcoder); 10108 10109 if (intel_cpu_transcoders_need_modeset(state, trans)) { 10110 new_crtc_state->uapi.mode_changed = true; 10111 new_crtc_state->update_pipe = false; 10112 } 10113 } 10114 10115 if (new_crtc_state->bigjoiner) { 10116 struct intel_crtc_state *linked_crtc_state = 10117 intel_atomic_get_new_crtc_state(state, new_crtc_state->bigjoiner_linked_crtc); 10118 10119 if (intel_crtc_needs_modeset(linked_crtc_state)) { 10120 new_crtc_state->uapi.mode_changed = true; 10121 new_crtc_state->update_pipe = false; 10122 } 10123 } 10124 } 10125 10126 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10127 new_crtc_state, i) { 10128 if (intel_crtc_needs_modeset(new_crtc_state)) { 10129 any_ms = true; 10130 continue; 10131 } 10132 10133 if (!new_crtc_state->update_pipe) 10134 continue; 10135 10136 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 10137 } 10138 10139 if (any_ms && !check_digital_port_conflicts(state)) { 10140 drm_dbg_kms(&dev_priv->drm, 10141 "rejecting conflicting digital port configuration\n"); 10142 ret = -EINVAL; 10143 goto fail; 10144 } 10145 10146 ret = drm_dp_mst_atomic_check(&state->base); 10147 if (ret) 10148 goto fail; 10149 10150 ret = intel_atomic_check_planes(state); 10151 if (ret) 10152 goto fail; 10153 10154 intel_fbc_choose_crtc(dev_priv, state); 10155 ret = calc_watermark_data(state); 10156 if (ret) 10157 goto fail; 10158 10159 ret = intel_bw_atomic_check(state); 10160 if (ret) 10161 goto fail; 10162 10163 ret = intel_atomic_check_cdclk(state, &any_ms); 10164 if (ret) 10165 goto fail; 10166 10167 if (intel_any_crtc_needs_modeset(state)) 10168 any_ms = true; 10169 10170 if (any_ms) { 10171 ret = intel_modeset_checks(state); 10172 if (ret) 10173 goto fail; 10174 10175 ret = intel_modeset_calc_cdclk(state); 10176 if (ret) 10177 return ret; 10178 10179 intel_modeset_clear_plls(state); 10180 } 10181 10182 ret = intel_atomic_check_crtcs(state); 10183 if (ret) 10184 goto fail; 10185 10186 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10187 new_crtc_state, i) { 10188 if (new_crtc_state->uapi.async_flip) { 10189 ret = intel_atomic_check_async(state); 10190 if (ret) 10191 goto fail; 10192 } 10193 10194 if (!intel_crtc_needs_modeset(new_crtc_state) && 10195 !new_crtc_state->update_pipe) 10196 continue; 10197 10198 intel_dump_pipe_config(new_crtc_state, state, 10199 intel_crtc_needs_modeset(new_crtc_state) ? 10200 "[modeset]" : "[fastset]"); 10201 } 10202 10203 return 0; 10204 10205 fail: 10206 if (ret == -EDEADLK) 10207 return ret; 10208 10209 /* 10210 * FIXME would probably be nice to know which crtc specifically 10211 * caused the failure, in cases where we can pinpoint it. 10212 */ 10213 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10214 new_crtc_state, i) 10215 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 10216 10217 return ret; 10218 } 10219 10220 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 10221 { 10222 struct intel_crtc_state *crtc_state; 10223 struct intel_crtc *crtc; 10224 int i, ret; 10225 10226 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 10227 if (ret < 0) 10228 return ret; 10229 10230 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 10231 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 10232 10233 if (mode_changed || crtc_state->update_pipe || 10234 crtc_state->uapi.color_mgmt_changed) { 10235 intel_dsb_prepare(crtc_state); 10236 } 10237 } 10238 10239 return 0; 10240 } 10241 10242 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 10243 struct intel_crtc_state *crtc_state) 10244 { 10245 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10246 10247 if (DISPLAY_VER(dev_priv) != 2 || crtc_state->active_planes) 10248 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10249 10250 if (crtc_state->has_pch_encoder) { 10251 enum pipe pch_transcoder = 10252 intel_crtc_pch_transcoder(crtc); 10253 10254 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 10255 } 10256 } 10257 10258 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 10259 const struct intel_crtc_state *new_crtc_state) 10260 { 10261 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 10262 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10263 10264 /* 10265 * Update pipe size and adjust fitter if needed: the reason for this is 10266 * that in compute_mode_changes we check the native mode (not the pfit 10267 * mode) to see if we can flip rather than do a full mode set. In the 10268 * fastboot case, we'll flip, but if we don't update the pipesrc and 10269 * pfit state, we'll end up with a big fb scanned out into the wrong 10270 * sized surface. 10271 */ 10272 intel_set_pipe_src_size(new_crtc_state); 10273 10274 /* on skylake this is done by detaching scalers */ 10275 if (DISPLAY_VER(dev_priv) >= 9) { 10276 if (new_crtc_state->pch_pfit.enabled) 10277 skl_pfit_enable(new_crtc_state); 10278 } else if (HAS_PCH_SPLIT(dev_priv)) { 10279 if (new_crtc_state->pch_pfit.enabled) 10280 ilk_pfit_enable(new_crtc_state); 10281 else if (old_crtc_state->pch_pfit.enabled) 10282 ilk_pfit_disable(old_crtc_state); 10283 } 10284 10285 /* 10286 * The register is supposedly single buffered so perhaps 10287 * not 100% correct to do this here. But SKL+ calculate 10288 * this based on the adjust pixel rate so pfit changes do 10289 * affect it and so it must be updated for fastsets. 10290 * HSW/BDW only really need this here for fastboot, after 10291 * that the value should not change without a full modeset. 10292 */ 10293 if (DISPLAY_VER(dev_priv) >= 9 || 10294 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 10295 hsw_set_linetime_wm(new_crtc_state); 10296 10297 if (DISPLAY_VER(dev_priv) >= 11) 10298 icl_set_pipe_chicken(new_crtc_state); 10299 } 10300 10301 static void commit_pipe_pre_planes(struct intel_atomic_state *state, 10302 struct intel_crtc *crtc) 10303 { 10304 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10305 const struct intel_crtc_state *old_crtc_state = 10306 intel_atomic_get_old_crtc_state(state, crtc); 10307 const struct intel_crtc_state *new_crtc_state = 10308 intel_atomic_get_new_crtc_state(state, crtc); 10309 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10310 10311 /* 10312 * During modesets pipe configuration was programmed as the 10313 * CRTC was enabled. 10314 */ 10315 if (!modeset) { 10316 if (new_crtc_state->uapi.color_mgmt_changed || 10317 new_crtc_state->update_pipe) 10318 intel_color_commit(new_crtc_state); 10319 10320 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 10321 bdw_set_pipemisc(new_crtc_state); 10322 10323 if (new_crtc_state->update_pipe) 10324 intel_pipe_fastset(old_crtc_state, new_crtc_state); 10325 10326 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 10327 } 10328 10329 if (dev_priv->display.atomic_update_watermarks) 10330 dev_priv->display.atomic_update_watermarks(state, crtc); 10331 } 10332 10333 static void commit_pipe_post_planes(struct intel_atomic_state *state, 10334 struct intel_crtc *crtc) 10335 { 10336 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10337 const struct intel_crtc_state *new_crtc_state = 10338 intel_atomic_get_new_crtc_state(state, crtc); 10339 10340 /* 10341 * Disable the scaler(s) after the plane(s) so that we don't 10342 * get a catastrophic underrun even if the two operations 10343 * end up happening in two different frames. 10344 */ 10345 if (DISPLAY_VER(dev_priv) >= 9 && 10346 !intel_crtc_needs_modeset(new_crtc_state)) 10347 skl_detach_scalers(new_crtc_state); 10348 } 10349 10350 static void intel_enable_crtc(struct intel_atomic_state *state, 10351 struct intel_crtc *crtc) 10352 { 10353 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10354 const struct intel_crtc_state *new_crtc_state = 10355 intel_atomic_get_new_crtc_state(state, crtc); 10356 10357 if (!intel_crtc_needs_modeset(new_crtc_state)) 10358 return; 10359 10360 intel_crtc_update_active_timings(new_crtc_state); 10361 10362 dev_priv->display.crtc_enable(state, crtc); 10363 10364 if (new_crtc_state->bigjoiner_slave) 10365 return; 10366 10367 /* vblanks work again, re-enable pipe CRC. */ 10368 intel_crtc_enable_pipe_crc(crtc); 10369 } 10370 10371 static void intel_update_crtc(struct intel_atomic_state *state, 10372 struct intel_crtc *crtc) 10373 { 10374 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10375 const struct intel_crtc_state *old_crtc_state = 10376 intel_atomic_get_old_crtc_state(state, crtc); 10377 struct intel_crtc_state *new_crtc_state = 10378 intel_atomic_get_new_crtc_state(state, crtc); 10379 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10380 10381 if (!modeset) { 10382 if (new_crtc_state->preload_luts && 10383 (new_crtc_state->uapi.color_mgmt_changed || 10384 new_crtc_state->update_pipe)) 10385 intel_color_load_luts(new_crtc_state); 10386 10387 intel_pre_plane_update(state, crtc); 10388 10389 if (new_crtc_state->update_pipe) 10390 intel_encoders_update_pipe(state, crtc); 10391 } 10392 10393 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 10394 intel_fbc_disable(crtc); 10395 else 10396 intel_fbc_enable(state, crtc); 10397 10398 /* Perform vblank evasion around commit operation */ 10399 intel_pipe_update_start(new_crtc_state); 10400 10401 commit_pipe_pre_planes(state, crtc); 10402 10403 if (DISPLAY_VER(dev_priv) >= 9) 10404 skl_update_planes_on_crtc(state, crtc); 10405 else 10406 i9xx_update_planes_on_crtc(state, crtc); 10407 10408 commit_pipe_post_planes(state, crtc); 10409 10410 intel_pipe_update_end(new_crtc_state); 10411 10412 /* 10413 * We usually enable FIFO underrun interrupts as part of the 10414 * CRTC enable sequence during modesets. But when we inherit a 10415 * valid pipe configuration from the BIOS we need to take care 10416 * of enabling them on the CRTC's first fastset. 10417 */ 10418 if (new_crtc_state->update_pipe && !modeset && 10419 old_crtc_state->inherited) 10420 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 10421 } 10422 10423 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 10424 struct intel_crtc_state *old_crtc_state, 10425 struct intel_crtc_state *new_crtc_state, 10426 struct intel_crtc *crtc) 10427 { 10428 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10429 10430 drm_WARN_ON(&dev_priv->drm, old_crtc_state->bigjoiner_slave); 10431 10432 intel_encoders_pre_disable(state, crtc); 10433 10434 intel_crtc_disable_planes(state, crtc); 10435 10436 /* 10437 * We still need special handling for disabling bigjoiner master 10438 * and slaves since for slave we do not have encoder or plls 10439 * so we dont need to disable those. 10440 */ 10441 if (old_crtc_state->bigjoiner) { 10442 intel_crtc_disable_planes(state, 10443 old_crtc_state->bigjoiner_linked_crtc); 10444 old_crtc_state->bigjoiner_linked_crtc->active = false; 10445 } 10446 10447 /* 10448 * We need to disable pipe CRC before disabling the pipe, 10449 * or we race against vblank off. 10450 */ 10451 intel_crtc_disable_pipe_crc(crtc); 10452 10453 dev_priv->display.crtc_disable(state, crtc); 10454 crtc->active = false; 10455 intel_fbc_disable(crtc); 10456 intel_disable_shared_dpll(old_crtc_state); 10457 10458 /* FIXME unify this for all platforms */ 10459 if (!new_crtc_state->hw.active && 10460 !HAS_GMCH(dev_priv) && 10461 dev_priv->display.initial_watermarks) 10462 dev_priv->display.initial_watermarks(state, crtc); 10463 } 10464 10465 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 10466 { 10467 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10468 struct intel_crtc *crtc; 10469 u32 handled = 0; 10470 int i; 10471 10472 /* Only disable port sync and MST slaves */ 10473 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10474 new_crtc_state, i) { 10475 if (!intel_crtc_needs_modeset(new_crtc_state) || old_crtc_state->bigjoiner) 10476 continue; 10477 10478 if (!old_crtc_state->hw.active) 10479 continue; 10480 10481 /* In case of Transcoder port Sync master slave CRTCs can be 10482 * assigned in any order and we need to make sure that 10483 * slave CRTCs are disabled first and then master CRTC since 10484 * Slave vblanks are masked till Master Vblanks. 10485 */ 10486 if (!is_trans_port_sync_slave(old_crtc_state) && 10487 !intel_dp_mst_is_slave_trans(old_crtc_state)) 10488 continue; 10489 10490 intel_pre_plane_update(state, crtc); 10491 intel_old_crtc_state_disables(state, old_crtc_state, 10492 new_crtc_state, crtc); 10493 handled |= BIT(crtc->pipe); 10494 } 10495 10496 /* Disable everything else left on */ 10497 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10498 new_crtc_state, i) { 10499 if (!intel_crtc_needs_modeset(new_crtc_state) || 10500 (handled & BIT(crtc->pipe)) || 10501 old_crtc_state->bigjoiner_slave) 10502 continue; 10503 10504 intel_pre_plane_update(state, crtc); 10505 if (old_crtc_state->bigjoiner) { 10506 struct intel_crtc *slave = 10507 old_crtc_state->bigjoiner_linked_crtc; 10508 10509 intel_pre_plane_update(state, slave); 10510 } 10511 10512 if (old_crtc_state->hw.active) 10513 intel_old_crtc_state_disables(state, old_crtc_state, 10514 new_crtc_state, crtc); 10515 } 10516 } 10517 10518 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 10519 { 10520 struct intel_crtc_state *new_crtc_state; 10521 struct intel_crtc *crtc; 10522 int i; 10523 10524 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10525 if (!new_crtc_state->hw.active) 10526 continue; 10527 10528 intel_enable_crtc(state, crtc); 10529 intel_update_crtc(state, crtc); 10530 } 10531 } 10532 10533 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 10534 { 10535 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10536 struct intel_crtc *crtc; 10537 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10538 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 10539 u8 update_pipes = 0, modeset_pipes = 0; 10540 int i; 10541 10542 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10543 enum pipe pipe = crtc->pipe; 10544 10545 if (!new_crtc_state->hw.active) 10546 continue; 10547 10548 /* ignore allocations for crtc's that have been turned off. */ 10549 if (!intel_crtc_needs_modeset(new_crtc_state)) { 10550 entries[pipe] = old_crtc_state->wm.skl.ddb; 10551 update_pipes |= BIT(pipe); 10552 } else { 10553 modeset_pipes |= BIT(pipe); 10554 } 10555 } 10556 10557 /* 10558 * Whenever the number of active pipes changes, we need to make sure we 10559 * update the pipes in the right order so that their ddb allocations 10560 * never overlap with each other between CRTC updates. Otherwise we'll 10561 * cause pipe underruns and other bad stuff. 10562 * 10563 * So first lets enable all pipes that do not need a fullmodeset as 10564 * those don't have any external dependency. 10565 */ 10566 while (update_pipes) { 10567 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10568 new_crtc_state, i) { 10569 enum pipe pipe = crtc->pipe; 10570 10571 if ((update_pipes & BIT(pipe)) == 0) 10572 continue; 10573 10574 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10575 entries, I915_MAX_PIPES, pipe)) 10576 continue; 10577 10578 entries[pipe] = new_crtc_state->wm.skl.ddb; 10579 update_pipes &= ~BIT(pipe); 10580 10581 intel_update_crtc(state, crtc); 10582 10583 /* 10584 * If this is an already active pipe, it's DDB changed, 10585 * and this isn't the last pipe that needs updating 10586 * then we need to wait for a vblank to pass for the 10587 * new ddb allocation to take effect. 10588 */ 10589 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 10590 &old_crtc_state->wm.skl.ddb) && 10591 (update_pipes | modeset_pipes)) 10592 intel_wait_for_vblank(dev_priv, pipe); 10593 } 10594 } 10595 10596 update_pipes = modeset_pipes; 10597 10598 /* 10599 * Enable all pipes that needs a modeset and do not depends on other 10600 * pipes 10601 */ 10602 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10603 enum pipe pipe = crtc->pipe; 10604 10605 if ((modeset_pipes & BIT(pipe)) == 0) 10606 continue; 10607 10608 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 10609 is_trans_port_sync_master(new_crtc_state) || 10610 (new_crtc_state->bigjoiner && !new_crtc_state->bigjoiner_slave)) 10611 continue; 10612 10613 modeset_pipes &= ~BIT(pipe); 10614 10615 intel_enable_crtc(state, crtc); 10616 } 10617 10618 /* 10619 * Then we enable all remaining pipes that depend on other 10620 * pipes: MST slaves and port sync masters, big joiner master 10621 */ 10622 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10623 enum pipe pipe = crtc->pipe; 10624 10625 if ((modeset_pipes & BIT(pipe)) == 0) 10626 continue; 10627 10628 modeset_pipes &= ~BIT(pipe); 10629 10630 intel_enable_crtc(state, crtc); 10631 } 10632 10633 /* 10634 * Finally we do the plane updates/etc. for all pipes that got enabled. 10635 */ 10636 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10637 enum pipe pipe = crtc->pipe; 10638 10639 if ((update_pipes & BIT(pipe)) == 0) 10640 continue; 10641 10642 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10643 entries, I915_MAX_PIPES, pipe)); 10644 10645 entries[pipe] = new_crtc_state->wm.skl.ddb; 10646 update_pipes &= ~BIT(pipe); 10647 10648 intel_update_crtc(state, crtc); 10649 } 10650 10651 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 10652 drm_WARN_ON(&dev_priv->drm, update_pipes); 10653 } 10654 10655 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 10656 { 10657 struct intel_atomic_state *state, *next; 10658 struct llist_node *freed; 10659 10660 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 10661 llist_for_each_entry_safe(state, next, freed, freed) 10662 drm_atomic_state_put(&state->base); 10663 } 10664 10665 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 10666 { 10667 struct drm_i915_private *dev_priv = 10668 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 10669 10670 intel_atomic_helper_free_state(dev_priv); 10671 } 10672 10673 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 10674 { 10675 struct wait_queue_entry wait_fence, wait_reset; 10676 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 10677 10678 init_wait_entry(&wait_fence, 0); 10679 init_wait_entry(&wait_reset, 0); 10680 for (;;) { 10681 prepare_to_wait(&intel_state->commit_ready.wait, 10682 &wait_fence, TASK_UNINTERRUPTIBLE); 10683 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10684 I915_RESET_MODESET), 10685 &wait_reset, TASK_UNINTERRUPTIBLE); 10686 10687 10688 if (i915_sw_fence_done(&intel_state->commit_ready) || 10689 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 10690 break; 10691 10692 schedule(); 10693 } 10694 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 10695 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10696 I915_RESET_MODESET), 10697 &wait_reset); 10698 } 10699 10700 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 10701 { 10702 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10703 struct intel_crtc *crtc; 10704 int i; 10705 10706 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10707 new_crtc_state, i) 10708 intel_dsb_cleanup(old_crtc_state); 10709 } 10710 10711 static void intel_atomic_cleanup_work(struct work_struct *work) 10712 { 10713 struct intel_atomic_state *state = 10714 container_of(work, struct intel_atomic_state, base.commit_work); 10715 struct drm_i915_private *i915 = to_i915(state->base.dev); 10716 10717 intel_cleanup_dsbs(state); 10718 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 10719 drm_atomic_helper_commit_cleanup_done(&state->base); 10720 drm_atomic_state_put(&state->base); 10721 10722 intel_atomic_helper_free_state(i915); 10723 } 10724 10725 static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) 10726 { 10727 struct drm_i915_private *i915 = to_i915(state->base.dev); 10728 struct intel_plane *plane; 10729 struct intel_plane_state *plane_state; 10730 int i; 10731 10732 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 10733 struct drm_framebuffer *fb = plane_state->hw.fb; 10734 int ret; 10735 10736 if (!fb || 10737 fb->modifier != I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC) 10738 continue; 10739 10740 /* 10741 * The layout of the fast clear color value expected by HW 10742 * (the DRM ABI requiring this value to be located in fb at offset 0 of plane#2): 10743 * - 4 x 4 bytes per-channel value 10744 * (in surface type specific float/int format provided by the fb user) 10745 * - 8 bytes native color value used by the display 10746 * (converted/written by GPU during a fast clear operation using the 10747 * above per-channel values) 10748 * 10749 * The commit's FB prepare hook already ensured that FB obj is pinned and the 10750 * caller made sure that the object is synced wrt. the related color clear value 10751 * GPU write on it. 10752 */ 10753 ret = i915_gem_object_read_from_page(intel_fb_obj(fb), 10754 fb->offsets[2] + 16, 10755 &plane_state->ccval, 10756 sizeof(plane_state->ccval)); 10757 /* The above could only fail if the FB obj has an unexpected backing store type. */ 10758 drm_WARN_ON(&i915->drm, ret); 10759 } 10760 } 10761 10762 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 10763 { 10764 struct drm_device *dev = state->base.dev; 10765 struct drm_i915_private *dev_priv = to_i915(dev); 10766 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10767 struct intel_crtc *crtc; 10768 u64 put_domains[I915_MAX_PIPES] = {}; 10769 intel_wakeref_t wakeref = 0; 10770 int i; 10771 10772 intel_atomic_commit_fence_wait(state); 10773 10774 drm_atomic_helper_wait_for_dependencies(&state->base); 10775 10776 if (state->modeset) 10777 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 10778 10779 intel_atomic_prepare_plane_clear_colors(state); 10780 10781 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10782 new_crtc_state, i) { 10783 if (intel_crtc_needs_modeset(new_crtc_state) || 10784 new_crtc_state->update_pipe) { 10785 10786 put_domains[crtc->pipe] = 10787 modeset_get_crtc_power_domains(new_crtc_state); 10788 } 10789 } 10790 10791 intel_commit_modeset_disables(state); 10792 10793 /* FIXME: Eventually get rid of our crtc->config pointer */ 10794 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10795 crtc->config = new_crtc_state; 10796 10797 if (state->modeset) { 10798 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 10799 10800 intel_set_cdclk_pre_plane_update(state); 10801 10802 intel_modeset_verify_disabled(dev_priv, state); 10803 } 10804 10805 intel_sagv_pre_plane_update(state); 10806 10807 /* Complete the events for pipes that have now been disabled */ 10808 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10809 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10810 10811 /* Complete events for now disable pipes here. */ 10812 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 10813 spin_lock_irq(&dev->event_lock); 10814 drm_crtc_send_vblank_event(&crtc->base, 10815 new_crtc_state->uapi.event); 10816 spin_unlock_irq(&dev->event_lock); 10817 10818 new_crtc_state->uapi.event = NULL; 10819 } 10820 } 10821 10822 if (state->modeset) 10823 intel_encoders_update_prepare(state); 10824 10825 intel_dbuf_pre_plane_update(state); 10826 10827 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10828 if (new_crtc_state->uapi.async_flip) 10829 intel_crtc_enable_flip_done(state, crtc); 10830 } 10831 10832 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 10833 dev_priv->display.commit_modeset_enables(state); 10834 10835 if (state->modeset) { 10836 intel_encoders_update_complete(state); 10837 10838 intel_set_cdclk_post_plane_update(state); 10839 } 10840 10841 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 10842 * already, but still need the state for the delayed optimization. To 10843 * fix this: 10844 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 10845 * - schedule that vblank worker _before_ calling hw_done 10846 * - at the start of commit_tail, cancel it _synchrously 10847 * - switch over to the vblank wait helper in the core after that since 10848 * we don't need out special handling any more. 10849 */ 10850 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 10851 10852 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10853 if (new_crtc_state->uapi.async_flip) 10854 intel_crtc_disable_flip_done(state, crtc); 10855 10856 if (new_crtc_state->hw.active && 10857 !intel_crtc_needs_modeset(new_crtc_state) && 10858 !new_crtc_state->preload_luts && 10859 (new_crtc_state->uapi.color_mgmt_changed || 10860 new_crtc_state->update_pipe)) 10861 intel_color_load_luts(new_crtc_state); 10862 } 10863 10864 /* 10865 * Now that the vblank has passed, we can go ahead and program the 10866 * optimal watermarks on platforms that need two-step watermark 10867 * programming. 10868 * 10869 * TODO: Move this (and other cleanup) to an async worker eventually. 10870 */ 10871 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10872 new_crtc_state, i) { 10873 /* 10874 * Gen2 reports pipe underruns whenever all planes are disabled. 10875 * So re-enable underrun reporting after some planes get enabled. 10876 * 10877 * We do this before .optimize_watermarks() so that we have a 10878 * chance of catching underruns with the intermediate watermarks 10879 * vs. the new plane configuration. 10880 */ 10881 if (DISPLAY_VER(dev_priv) == 2 && planes_enabling(old_crtc_state, new_crtc_state)) 10882 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10883 10884 if (dev_priv->display.optimize_watermarks) 10885 dev_priv->display.optimize_watermarks(state, crtc); 10886 } 10887 10888 intel_dbuf_post_plane_update(state); 10889 10890 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10891 intel_post_plane_update(state, crtc); 10892 10893 modeset_put_crtc_power_domains(crtc, put_domains[crtc->pipe]); 10894 10895 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 10896 10897 /* 10898 * DSB cleanup is done in cleanup_work aligning with framebuffer 10899 * cleanup. So copy and reset the dsb structure to sync with 10900 * commit_done and later do dsb cleanup in cleanup_work. 10901 */ 10902 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 10903 } 10904 10905 /* Underruns don't always raise interrupts, so check manually */ 10906 intel_check_cpu_fifo_underruns(dev_priv); 10907 intel_check_pch_fifo_underruns(dev_priv); 10908 10909 if (state->modeset) 10910 intel_verify_planes(state); 10911 10912 intel_sagv_post_plane_update(state); 10913 10914 drm_atomic_helper_commit_hw_done(&state->base); 10915 10916 if (state->modeset) { 10917 /* As one of the primary mmio accessors, KMS has a high 10918 * likelihood of triggering bugs in unclaimed access. After we 10919 * finish modesetting, see if an error has been flagged, and if 10920 * so enable debugging for the next modeset - and hope we catch 10921 * the culprit. 10922 */ 10923 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 10924 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 10925 } 10926 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10927 10928 /* 10929 * Defer the cleanup of the old state to a separate worker to not 10930 * impede the current task (userspace for blocking modesets) that 10931 * are executed inline. For out-of-line asynchronous modesets/flips, 10932 * deferring to a new worker seems overkill, but we would place a 10933 * schedule point (cond_resched()) here anyway to keep latencies 10934 * down. 10935 */ 10936 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 10937 queue_work(system_highpri_wq, &state->base.commit_work); 10938 } 10939 10940 static void intel_atomic_commit_work(struct work_struct *work) 10941 { 10942 struct intel_atomic_state *state = 10943 container_of(work, struct intel_atomic_state, base.commit_work); 10944 10945 intel_atomic_commit_tail(state); 10946 } 10947 10948 static int __i915_sw_fence_call 10949 intel_atomic_commit_ready(struct i915_sw_fence *fence, 10950 enum i915_sw_fence_notify notify) 10951 { 10952 struct intel_atomic_state *state = 10953 container_of(fence, struct intel_atomic_state, commit_ready); 10954 10955 switch (notify) { 10956 case FENCE_COMPLETE: 10957 /* we do blocking waits in the worker, nothing to do here */ 10958 break; 10959 case FENCE_FREE: 10960 { 10961 struct intel_atomic_helper *helper = 10962 &to_i915(state->base.dev)->atomic_helper; 10963 10964 if (llist_add(&state->freed, &helper->free_list)) 10965 schedule_work(&helper->free_work); 10966 break; 10967 } 10968 } 10969 10970 return NOTIFY_DONE; 10971 } 10972 10973 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 10974 { 10975 struct intel_plane_state *old_plane_state, *new_plane_state; 10976 struct intel_plane *plane; 10977 int i; 10978 10979 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 10980 new_plane_state, i) 10981 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 10982 to_intel_frontbuffer(new_plane_state->hw.fb), 10983 plane->frontbuffer_bit); 10984 } 10985 10986 static int intel_atomic_commit(struct drm_device *dev, 10987 struct drm_atomic_state *_state, 10988 bool nonblock) 10989 { 10990 struct intel_atomic_state *state = to_intel_atomic_state(_state); 10991 struct drm_i915_private *dev_priv = to_i915(dev); 10992 int ret = 0; 10993 10994 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 10995 10996 drm_atomic_state_get(&state->base); 10997 i915_sw_fence_init(&state->commit_ready, 10998 intel_atomic_commit_ready); 10999 11000 /* 11001 * The intel_legacy_cursor_update() fast path takes care 11002 * of avoiding the vblank waits for simple cursor 11003 * movement and flips. For cursor on/off and size changes, 11004 * we want to perform the vblank waits so that watermark 11005 * updates happen during the correct frames. Gen9+ have 11006 * double buffered watermarks and so shouldn't need this. 11007 * 11008 * Unset state->legacy_cursor_update before the call to 11009 * drm_atomic_helper_setup_commit() because otherwise 11010 * drm_atomic_helper_wait_for_flip_done() is a noop and 11011 * we get FIFO underruns because we didn't wait 11012 * for vblank. 11013 * 11014 * FIXME doing watermarks and fb cleanup from a vblank worker 11015 * (assuming we had any) would solve these problems. 11016 */ 11017 if (DISPLAY_VER(dev_priv) < 9 && state->base.legacy_cursor_update) { 11018 struct intel_crtc_state *new_crtc_state; 11019 struct intel_crtc *crtc; 11020 int i; 11021 11022 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 11023 if (new_crtc_state->wm.need_postvbl_update || 11024 new_crtc_state->update_wm_post) 11025 state->base.legacy_cursor_update = false; 11026 } 11027 11028 ret = intel_atomic_prepare_commit(state); 11029 if (ret) { 11030 drm_dbg_atomic(&dev_priv->drm, 11031 "Preparing state failed with %i\n", ret); 11032 i915_sw_fence_commit(&state->commit_ready); 11033 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 11034 return ret; 11035 } 11036 11037 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 11038 if (!ret) 11039 ret = drm_atomic_helper_swap_state(&state->base, true); 11040 if (!ret) 11041 intel_atomic_swap_global_state(state); 11042 11043 if (ret) { 11044 struct intel_crtc_state *new_crtc_state; 11045 struct intel_crtc *crtc; 11046 int i; 11047 11048 i915_sw_fence_commit(&state->commit_ready); 11049 11050 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 11051 intel_dsb_cleanup(new_crtc_state); 11052 11053 drm_atomic_helper_cleanup_planes(dev, &state->base); 11054 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 11055 return ret; 11056 } 11057 intel_shared_dpll_swap_state(state); 11058 intel_atomic_track_fbs(state); 11059 11060 drm_atomic_state_get(&state->base); 11061 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 11062 11063 i915_sw_fence_commit(&state->commit_ready); 11064 if (nonblock && state->modeset) { 11065 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 11066 } else if (nonblock) { 11067 queue_work(dev_priv->flip_wq, &state->base.commit_work); 11068 } else { 11069 if (state->modeset) 11070 flush_workqueue(dev_priv->modeset_wq); 11071 intel_atomic_commit_tail(state); 11072 } 11073 11074 return 0; 11075 } 11076 11077 struct wait_rps_boost { 11078 struct wait_queue_entry wait; 11079 11080 struct drm_crtc *crtc; 11081 struct i915_request *request; 11082 }; 11083 11084 static int do_rps_boost(struct wait_queue_entry *_wait, 11085 unsigned mode, int sync, void *key) 11086 { 11087 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 11088 struct i915_request *rq = wait->request; 11089 11090 /* 11091 * If we missed the vblank, but the request is already running it 11092 * is reasonable to assume that it will complete before the next 11093 * vblank without our intervention, so leave RPS alone. 11094 */ 11095 if (!i915_request_started(rq)) 11096 intel_rps_boost(rq); 11097 i915_request_put(rq); 11098 11099 drm_crtc_vblank_put(wait->crtc); 11100 11101 list_del(&wait->wait.entry); 11102 kfree(wait); 11103 return 1; 11104 } 11105 11106 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 11107 struct dma_fence *fence) 11108 { 11109 struct wait_rps_boost *wait; 11110 11111 if (!dma_fence_is_i915(fence)) 11112 return; 11113 11114 if (DISPLAY_VER(to_i915(crtc->dev)) < 6) 11115 return; 11116 11117 if (drm_crtc_vblank_get(crtc)) 11118 return; 11119 11120 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 11121 if (!wait) { 11122 drm_crtc_vblank_put(crtc); 11123 return; 11124 } 11125 11126 wait->request = to_request(dma_fence_get(fence)); 11127 wait->crtc = crtc; 11128 11129 wait->wait.func = do_rps_boost; 11130 wait->wait.flags = 0; 11131 11132 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 11133 } 11134 11135 int intel_plane_pin_fb(struct intel_plane_state *plane_state) 11136 { 11137 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 11138 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11139 struct drm_framebuffer *fb = plane_state->hw.fb; 11140 struct i915_vma *vma; 11141 bool phys_cursor = 11142 plane->id == PLANE_CURSOR && 11143 INTEL_INFO(dev_priv)->display.cursor_needs_physical; 11144 11145 if (!intel_fb_uses_dpt(fb)) { 11146 vma = intel_pin_and_fence_fb_obj(fb, phys_cursor, 11147 &plane_state->view.gtt, 11148 intel_plane_uses_fence(plane_state), 11149 &plane_state->flags); 11150 if (IS_ERR(vma)) 11151 return PTR_ERR(vma); 11152 11153 plane_state->ggtt_vma = vma; 11154 } else { 11155 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11156 11157 vma = intel_dpt_pin(intel_fb->dpt_vm); 11158 if (IS_ERR(vma)) 11159 return PTR_ERR(vma); 11160 11161 plane_state->ggtt_vma = vma; 11162 11163 vma = intel_pin_fb_obj_dpt(fb, &plane_state->view.gtt, false, 11164 &plane_state->flags, intel_fb->dpt_vm); 11165 if (IS_ERR(vma)) { 11166 intel_dpt_unpin(intel_fb->dpt_vm); 11167 plane_state->ggtt_vma = NULL; 11168 return PTR_ERR(vma); 11169 } 11170 11171 plane_state->dpt_vma = vma; 11172 11173 WARN_ON(plane_state->ggtt_vma == plane_state->dpt_vma); 11174 } 11175 11176 return 0; 11177 } 11178 11179 void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 11180 { 11181 struct drm_framebuffer *fb = old_plane_state->hw.fb; 11182 struct i915_vma *vma; 11183 11184 if (!intel_fb_uses_dpt(fb)) { 11185 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 11186 if (vma) 11187 intel_unpin_fb_vma(vma, old_plane_state->flags); 11188 } else { 11189 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11190 11191 vma = fetch_and_zero(&old_plane_state->dpt_vma); 11192 if (vma) 11193 intel_unpin_fb_vma(vma, old_plane_state->flags); 11194 11195 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 11196 if (vma) 11197 intel_dpt_unpin(intel_fb->dpt_vm); 11198 } 11199 } 11200 11201 /** 11202 * intel_prepare_plane_fb - Prepare fb for usage on plane 11203 * @_plane: drm plane to prepare for 11204 * @_new_plane_state: the plane state being prepared 11205 * 11206 * Prepares a framebuffer for usage on a display plane. Generally this 11207 * involves pinning the underlying object and updating the frontbuffer tracking 11208 * bits. Some older platforms need special physical address handling for 11209 * cursor planes. 11210 * 11211 * Returns 0 on success, negative error code on failure. 11212 */ 11213 int 11214 intel_prepare_plane_fb(struct drm_plane *_plane, 11215 struct drm_plane_state *_new_plane_state) 11216 { 11217 struct i915_sched_attr attr = { .priority = I915_PRIORITY_DISPLAY }; 11218 struct intel_plane *plane = to_intel_plane(_plane); 11219 struct intel_plane_state *new_plane_state = 11220 to_intel_plane_state(_new_plane_state); 11221 struct intel_atomic_state *state = 11222 to_intel_atomic_state(new_plane_state->uapi.state); 11223 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11224 const struct intel_plane_state *old_plane_state = 11225 intel_atomic_get_old_plane_state(state, plane); 11226 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 11227 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 11228 int ret; 11229 11230 if (old_obj) { 11231 const struct intel_crtc_state *crtc_state = 11232 intel_atomic_get_new_crtc_state(state, 11233 to_intel_crtc(old_plane_state->hw.crtc)); 11234 11235 /* Big Hammer, we also need to ensure that any pending 11236 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 11237 * current scanout is retired before unpinning the old 11238 * framebuffer. Note that we rely on userspace rendering 11239 * into the buffer attached to the pipe they are waiting 11240 * on. If not, userspace generates a GPU hang with IPEHR 11241 * point to the MI_WAIT_FOR_EVENT. 11242 * 11243 * This should only fail upon a hung GPU, in which case we 11244 * can safely continue. 11245 */ 11246 if (intel_crtc_needs_modeset(crtc_state)) { 11247 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11248 old_obj->base.resv, NULL, 11249 false, 0, 11250 GFP_KERNEL); 11251 if (ret < 0) 11252 return ret; 11253 } 11254 } 11255 11256 if (new_plane_state->uapi.fence) { /* explicit fencing */ 11257 i915_gem_fence_wait_priority(new_plane_state->uapi.fence, 11258 &attr); 11259 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 11260 new_plane_state->uapi.fence, 11261 i915_fence_timeout(dev_priv), 11262 GFP_KERNEL); 11263 if (ret < 0) 11264 return ret; 11265 } 11266 11267 if (!obj) 11268 return 0; 11269 11270 11271 ret = intel_plane_pin_fb(new_plane_state); 11272 if (ret) 11273 return ret; 11274 11275 i915_gem_object_wait_priority(obj, 0, &attr); 11276 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 11277 11278 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 11279 struct dma_fence *fence; 11280 11281 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11282 obj->base.resv, NULL, 11283 false, 11284 i915_fence_timeout(dev_priv), 11285 GFP_KERNEL); 11286 if (ret < 0) 11287 goto unpin_fb; 11288 11289 fence = dma_resv_get_excl_unlocked(obj->base.resv); 11290 if (fence) { 11291 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11292 fence); 11293 dma_fence_put(fence); 11294 } 11295 } else { 11296 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11297 new_plane_state->uapi.fence); 11298 } 11299 11300 /* 11301 * We declare pageflips to be interactive and so merit a small bias 11302 * towards upclocking to deliver the frame on time. By only changing 11303 * the RPS thresholds to sample more regularly and aim for higher 11304 * clocks we can hopefully deliver low power workloads (like kodi) 11305 * that are not quite steady state without resorting to forcing 11306 * maximum clocks following a vblank miss (see do_rps_boost()). 11307 */ 11308 if (!state->rps_interactive) { 11309 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 11310 state->rps_interactive = true; 11311 } 11312 11313 return 0; 11314 11315 unpin_fb: 11316 intel_plane_unpin_fb(new_plane_state); 11317 11318 return ret; 11319 } 11320 11321 /** 11322 * intel_cleanup_plane_fb - Cleans up an fb after plane use 11323 * @plane: drm plane to clean up for 11324 * @_old_plane_state: the state from the previous modeset 11325 * 11326 * Cleans up a framebuffer that has just been removed from a plane. 11327 */ 11328 void 11329 intel_cleanup_plane_fb(struct drm_plane *plane, 11330 struct drm_plane_state *_old_plane_state) 11331 { 11332 struct intel_plane_state *old_plane_state = 11333 to_intel_plane_state(_old_plane_state); 11334 struct intel_atomic_state *state = 11335 to_intel_atomic_state(old_plane_state->uapi.state); 11336 struct drm_i915_private *dev_priv = to_i915(plane->dev); 11337 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 11338 11339 if (!obj) 11340 return; 11341 11342 if (state->rps_interactive) { 11343 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 11344 state->rps_interactive = false; 11345 } 11346 11347 /* Should only be called after a successful intel_prepare_plane_fb()! */ 11348 intel_plane_unpin_fb(old_plane_state); 11349 } 11350 11351 /** 11352 * intel_plane_destroy - destroy a plane 11353 * @plane: plane to destroy 11354 * 11355 * Common destruction function for all types of planes (primary, cursor, 11356 * sprite). 11357 */ 11358 void intel_plane_destroy(struct drm_plane *plane) 11359 { 11360 drm_plane_cleanup(plane); 11361 kfree(to_intel_plane(plane)); 11362 } 11363 11364 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 11365 { 11366 struct intel_plane *plane; 11367 11368 for_each_intel_plane(&dev_priv->drm, plane) { 11369 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 11370 plane->pipe); 11371 11372 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 11373 } 11374 } 11375 11376 11377 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 11378 struct drm_file *file) 11379 { 11380 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 11381 struct drm_crtc *drmmode_crtc; 11382 struct intel_crtc *crtc; 11383 11384 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 11385 if (!drmmode_crtc) 11386 return -ENOENT; 11387 11388 crtc = to_intel_crtc(drmmode_crtc); 11389 pipe_from_crtc_id->pipe = crtc->pipe; 11390 11391 return 0; 11392 } 11393 11394 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 11395 { 11396 struct drm_device *dev = encoder->base.dev; 11397 struct intel_encoder *source_encoder; 11398 u32 possible_clones = 0; 11399 11400 for_each_intel_encoder(dev, source_encoder) { 11401 if (encoders_cloneable(encoder, source_encoder)) 11402 possible_clones |= drm_encoder_mask(&source_encoder->base); 11403 } 11404 11405 return possible_clones; 11406 } 11407 11408 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 11409 { 11410 struct drm_device *dev = encoder->base.dev; 11411 struct intel_crtc *crtc; 11412 u32 possible_crtcs = 0; 11413 11414 for_each_intel_crtc(dev, crtc) { 11415 if (encoder->pipe_mask & BIT(crtc->pipe)) 11416 possible_crtcs |= drm_crtc_mask(&crtc->base); 11417 } 11418 11419 return possible_crtcs; 11420 } 11421 11422 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 11423 { 11424 if (!IS_MOBILE(dev_priv)) 11425 return false; 11426 11427 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 11428 return false; 11429 11430 if (IS_IRONLAKE(dev_priv) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 11431 return false; 11432 11433 return true; 11434 } 11435 11436 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 11437 { 11438 if (DISPLAY_VER(dev_priv) >= 9) 11439 return false; 11440 11441 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 11442 return false; 11443 11444 if (HAS_PCH_LPT_H(dev_priv) && 11445 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 11446 return false; 11447 11448 /* DDI E can't be used if DDI A requires 4 lanes */ 11449 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 11450 return false; 11451 11452 if (!dev_priv->vbt.int_crt_support) 11453 return false; 11454 11455 return true; 11456 } 11457 11458 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 11459 { 11460 struct intel_encoder *encoder; 11461 bool dpd_is_edp = false; 11462 11463 intel_pps_unlock_regs_wa(dev_priv); 11464 11465 if (!HAS_DISPLAY(dev_priv)) 11466 return; 11467 11468 if (IS_DG2(dev_priv)) { 11469 intel_ddi_init(dev_priv, PORT_A); 11470 intel_ddi_init(dev_priv, PORT_B); 11471 intel_ddi_init(dev_priv, PORT_C); 11472 intel_ddi_init(dev_priv, PORT_D_XELPD); 11473 } else if (IS_ALDERLAKE_P(dev_priv)) { 11474 intel_ddi_init(dev_priv, PORT_A); 11475 intel_ddi_init(dev_priv, PORT_B); 11476 intel_ddi_init(dev_priv, PORT_TC1); 11477 intel_ddi_init(dev_priv, PORT_TC2); 11478 intel_ddi_init(dev_priv, PORT_TC3); 11479 intel_ddi_init(dev_priv, PORT_TC4); 11480 } else if (IS_ALDERLAKE_S(dev_priv)) { 11481 intel_ddi_init(dev_priv, PORT_A); 11482 intel_ddi_init(dev_priv, PORT_TC1); 11483 intel_ddi_init(dev_priv, PORT_TC2); 11484 intel_ddi_init(dev_priv, PORT_TC3); 11485 intel_ddi_init(dev_priv, PORT_TC4); 11486 } else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) { 11487 intel_ddi_init(dev_priv, PORT_A); 11488 intel_ddi_init(dev_priv, PORT_B); 11489 intel_ddi_init(dev_priv, PORT_TC1); 11490 intel_ddi_init(dev_priv, PORT_TC2); 11491 } else if (DISPLAY_VER(dev_priv) >= 12) { 11492 intel_ddi_init(dev_priv, PORT_A); 11493 intel_ddi_init(dev_priv, PORT_B); 11494 intel_ddi_init(dev_priv, PORT_TC1); 11495 intel_ddi_init(dev_priv, PORT_TC2); 11496 intel_ddi_init(dev_priv, PORT_TC3); 11497 intel_ddi_init(dev_priv, PORT_TC4); 11498 intel_ddi_init(dev_priv, PORT_TC5); 11499 intel_ddi_init(dev_priv, PORT_TC6); 11500 icl_dsi_init(dev_priv); 11501 } else if (IS_JSL_EHL(dev_priv)) { 11502 intel_ddi_init(dev_priv, PORT_A); 11503 intel_ddi_init(dev_priv, PORT_B); 11504 intel_ddi_init(dev_priv, PORT_C); 11505 intel_ddi_init(dev_priv, PORT_D); 11506 icl_dsi_init(dev_priv); 11507 } else if (DISPLAY_VER(dev_priv) == 11) { 11508 intel_ddi_init(dev_priv, PORT_A); 11509 intel_ddi_init(dev_priv, PORT_B); 11510 intel_ddi_init(dev_priv, PORT_C); 11511 intel_ddi_init(dev_priv, PORT_D); 11512 intel_ddi_init(dev_priv, PORT_E); 11513 intel_ddi_init(dev_priv, PORT_F); 11514 icl_dsi_init(dev_priv); 11515 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 11516 intel_ddi_init(dev_priv, PORT_A); 11517 intel_ddi_init(dev_priv, PORT_B); 11518 intel_ddi_init(dev_priv, PORT_C); 11519 vlv_dsi_init(dev_priv); 11520 } else if (DISPLAY_VER(dev_priv) >= 9) { 11521 intel_ddi_init(dev_priv, PORT_A); 11522 intel_ddi_init(dev_priv, PORT_B); 11523 intel_ddi_init(dev_priv, PORT_C); 11524 intel_ddi_init(dev_priv, PORT_D); 11525 intel_ddi_init(dev_priv, PORT_E); 11526 } else if (HAS_DDI(dev_priv)) { 11527 u32 found; 11528 11529 if (intel_ddi_crt_present(dev_priv)) 11530 intel_crt_init(dev_priv); 11531 11532 /* Haswell uses DDI functions to detect digital outputs. */ 11533 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 11534 if (found) 11535 intel_ddi_init(dev_priv, PORT_A); 11536 11537 found = intel_de_read(dev_priv, SFUSE_STRAP); 11538 if (found & SFUSE_STRAP_DDIB_DETECTED) 11539 intel_ddi_init(dev_priv, PORT_B); 11540 if (found & SFUSE_STRAP_DDIC_DETECTED) 11541 intel_ddi_init(dev_priv, PORT_C); 11542 if (found & SFUSE_STRAP_DDID_DETECTED) 11543 intel_ddi_init(dev_priv, PORT_D); 11544 if (found & SFUSE_STRAP_DDIF_DETECTED) 11545 intel_ddi_init(dev_priv, PORT_F); 11546 } else if (HAS_PCH_SPLIT(dev_priv)) { 11547 int found; 11548 11549 /* 11550 * intel_edp_init_connector() depends on this completing first, 11551 * to prevent the registration of both eDP and LVDS and the 11552 * incorrect sharing of the PPS. 11553 */ 11554 intel_lvds_init(dev_priv); 11555 intel_crt_init(dev_priv); 11556 11557 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 11558 11559 if (ilk_has_edp_a(dev_priv)) 11560 g4x_dp_init(dev_priv, DP_A, PORT_A); 11561 11562 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 11563 /* PCH SDVOB multiplex with HDMIB */ 11564 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 11565 if (!found) 11566 g4x_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 11567 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 11568 g4x_dp_init(dev_priv, PCH_DP_B, PORT_B); 11569 } 11570 11571 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 11572 g4x_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 11573 11574 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 11575 g4x_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 11576 11577 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 11578 g4x_dp_init(dev_priv, PCH_DP_C, PORT_C); 11579 11580 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 11581 g4x_dp_init(dev_priv, PCH_DP_D, PORT_D); 11582 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 11583 bool has_edp, has_port; 11584 11585 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 11586 intel_crt_init(dev_priv); 11587 11588 /* 11589 * The DP_DETECTED bit is the latched state of the DDC 11590 * SDA pin at boot. However since eDP doesn't require DDC 11591 * (no way to plug in a DP->HDMI dongle) the DDC pins for 11592 * eDP ports may have been muxed to an alternate function. 11593 * Thus we can't rely on the DP_DETECTED bit alone to detect 11594 * eDP ports. Consult the VBT as well as DP_DETECTED to 11595 * detect eDP ports. 11596 * 11597 * Sadly the straps seem to be missing sometimes even for HDMI 11598 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 11599 * and VBT for the presence of the port. Additionally we can't 11600 * trust the port type the VBT declares as we've seen at least 11601 * HDMI ports that the VBT claim are DP or eDP. 11602 */ 11603 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 11604 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 11605 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 11606 has_edp &= g4x_dp_init(dev_priv, VLV_DP_B, PORT_B); 11607 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 11608 g4x_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 11609 11610 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 11611 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 11612 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 11613 has_edp &= g4x_dp_init(dev_priv, VLV_DP_C, PORT_C); 11614 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 11615 g4x_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 11616 11617 if (IS_CHERRYVIEW(dev_priv)) { 11618 /* 11619 * eDP not supported on port D, 11620 * so no need to worry about it 11621 */ 11622 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 11623 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 11624 g4x_dp_init(dev_priv, CHV_DP_D, PORT_D); 11625 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 11626 g4x_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 11627 } 11628 11629 vlv_dsi_init(dev_priv); 11630 } else if (IS_PINEVIEW(dev_priv)) { 11631 intel_lvds_init(dev_priv); 11632 intel_crt_init(dev_priv); 11633 } else if (IS_DISPLAY_VER(dev_priv, 3, 4)) { 11634 bool found = false; 11635 11636 if (IS_MOBILE(dev_priv)) 11637 intel_lvds_init(dev_priv); 11638 11639 intel_crt_init(dev_priv); 11640 11641 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11642 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 11643 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 11644 if (!found && IS_G4X(dev_priv)) { 11645 drm_dbg_kms(&dev_priv->drm, 11646 "probing HDMI on SDVOB\n"); 11647 g4x_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 11648 } 11649 11650 if (!found && IS_G4X(dev_priv)) 11651 g4x_dp_init(dev_priv, DP_B, PORT_B); 11652 } 11653 11654 /* Before G4X SDVOC doesn't have its own detect register */ 11655 11656 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11657 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 11658 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 11659 } 11660 11661 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 11662 11663 if (IS_G4X(dev_priv)) { 11664 drm_dbg_kms(&dev_priv->drm, 11665 "probing HDMI on SDVOC\n"); 11666 g4x_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 11667 } 11668 if (IS_G4X(dev_priv)) 11669 g4x_dp_init(dev_priv, DP_C, PORT_C); 11670 } 11671 11672 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 11673 g4x_dp_init(dev_priv, DP_D, PORT_D); 11674 11675 if (SUPPORTS_TV(dev_priv)) 11676 intel_tv_init(dev_priv); 11677 } else if (DISPLAY_VER(dev_priv) == 2) { 11678 if (IS_I85X(dev_priv)) 11679 intel_lvds_init(dev_priv); 11680 11681 intel_crt_init(dev_priv); 11682 intel_dvo_init(dev_priv); 11683 } 11684 11685 for_each_intel_encoder(&dev_priv->drm, encoder) { 11686 encoder->base.possible_crtcs = 11687 intel_encoder_possible_crtcs(encoder); 11688 encoder->base.possible_clones = 11689 intel_encoder_possible_clones(encoder); 11690 } 11691 11692 intel_init_pch_refclk(dev_priv); 11693 11694 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 11695 } 11696 11697 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 11698 { 11699 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11700 11701 drm_framebuffer_cleanup(fb); 11702 11703 if (intel_fb_uses_dpt(fb)) 11704 intel_dpt_destroy(intel_fb->dpt_vm); 11705 11706 intel_frontbuffer_put(intel_fb->frontbuffer); 11707 11708 kfree(intel_fb); 11709 } 11710 11711 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 11712 struct drm_file *file, 11713 unsigned int *handle) 11714 { 11715 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11716 struct drm_i915_private *i915 = to_i915(obj->base.dev); 11717 11718 if (i915_gem_object_is_userptr(obj)) { 11719 drm_dbg(&i915->drm, 11720 "attempting to use a userptr for a framebuffer, denied\n"); 11721 return -EINVAL; 11722 } 11723 11724 return drm_gem_handle_create(file, &obj->base, handle); 11725 } 11726 11727 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 11728 struct drm_file *file, 11729 unsigned flags, unsigned color, 11730 struct drm_clip_rect *clips, 11731 unsigned num_clips) 11732 { 11733 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11734 11735 i915_gem_object_flush_if_display(obj); 11736 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 11737 11738 return 0; 11739 } 11740 11741 static const struct drm_framebuffer_funcs intel_fb_funcs = { 11742 .destroy = intel_user_framebuffer_destroy, 11743 .create_handle = intel_user_framebuffer_create_handle, 11744 .dirty = intel_user_framebuffer_dirty, 11745 }; 11746 11747 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 11748 struct drm_i915_gem_object *obj, 11749 struct drm_mode_fb_cmd2 *mode_cmd) 11750 { 11751 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 11752 struct drm_framebuffer *fb = &intel_fb->base; 11753 u32 max_stride; 11754 unsigned int tiling, stride; 11755 int ret = -EINVAL; 11756 int i; 11757 11758 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 11759 if (!intel_fb->frontbuffer) 11760 return -ENOMEM; 11761 11762 i915_gem_object_lock(obj, NULL); 11763 tiling = i915_gem_object_get_tiling(obj); 11764 stride = i915_gem_object_get_stride(obj); 11765 i915_gem_object_unlock(obj); 11766 11767 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 11768 /* 11769 * If there's a fence, enforce that 11770 * the fb modifier and tiling mode match. 11771 */ 11772 if (tiling != I915_TILING_NONE && 11773 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11774 drm_dbg_kms(&dev_priv->drm, 11775 "tiling_mode doesn't match fb modifier\n"); 11776 goto err; 11777 } 11778 } else { 11779 if (tiling == I915_TILING_X) { 11780 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 11781 } else if (tiling == I915_TILING_Y) { 11782 drm_dbg_kms(&dev_priv->drm, 11783 "No Y tiling for legacy addfb\n"); 11784 goto err; 11785 } 11786 } 11787 11788 if (!drm_any_plane_has_format(&dev_priv->drm, 11789 mode_cmd->pixel_format, 11790 mode_cmd->modifier[0])) { 11791 drm_dbg_kms(&dev_priv->drm, 11792 "unsupported pixel format %p4cc / modifier 0x%llx\n", 11793 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 11794 goto err; 11795 } 11796 11797 /* 11798 * gen2/3 display engine uses the fence if present, 11799 * so the tiling mode must match the fb modifier exactly. 11800 */ 11801 if (DISPLAY_VER(dev_priv) < 4 && 11802 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11803 drm_dbg_kms(&dev_priv->drm, 11804 "tiling_mode must match fb modifier exactly on gen2/3\n"); 11805 goto err; 11806 } 11807 11808 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 11809 mode_cmd->modifier[0]); 11810 if (mode_cmd->pitches[0] > max_stride) { 11811 drm_dbg_kms(&dev_priv->drm, 11812 "%s pitch (%u) must be at most %d\n", 11813 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 11814 "tiled" : "linear", 11815 mode_cmd->pitches[0], max_stride); 11816 goto err; 11817 } 11818 11819 /* 11820 * If there's a fence, enforce that 11821 * the fb pitch and fence stride match. 11822 */ 11823 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 11824 drm_dbg_kms(&dev_priv->drm, 11825 "pitch (%d) must match tiling stride (%d)\n", 11826 mode_cmd->pitches[0], stride); 11827 goto err; 11828 } 11829 11830 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 11831 if (mode_cmd->offsets[0] != 0) { 11832 drm_dbg_kms(&dev_priv->drm, 11833 "plane 0 offset (0x%08x) must be 0\n", 11834 mode_cmd->offsets[0]); 11835 goto err; 11836 } 11837 11838 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 11839 11840 for (i = 0; i < fb->format->num_planes; i++) { 11841 u32 stride_alignment; 11842 11843 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 11844 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 11845 i); 11846 goto err; 11847 } 11848 11849 stride_alignment = intel_fb_stride_alignment(fb, i); 11850 if (fb->pitches[i] & (stride_alignment - 1)) { 11851 drm_dbg_kms(&dev_priv->drm, 11852 "plane %d pitch (%d) must be at least %u byte aligned\n", 11853 i, fb->pitches[i], stride_alignment); 11854 goto err; 11855 } 11856 11857 if (is_gen12_ccs_plane(fb, i) && !is_gen12_ccs_cc_plane(fb, i)) { 11858 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 11859 11860 if (fb->pitches[i] != ccs_aux_stride) { 11861 drm_dbg_kms(&dev_priv->drm, 11862 "ccs aux plane %d pitch (%d) must be %d\n", 11863 i, 11864 fb->pitches[i], ccs_aux_stride); 11865 goto err; 11866 } 11867 } 11868 11869 /* TODO: Add POT stride remapping support for CCS formats as well. */ 11870 if (IS_ALDERLAKE_P(dev_priv) && 11871 mode_cmd->modifier[i] != DRM_FORMAT_MOD_LINEAR && 11872 !intel_fb_needs_pot_stride_remap(intel_fb) && 11873 !is_power_of_2(mode_cmd->pitches[i])) { 11874 drm_dbg_kms(&dev_priv->drm, 11875 "plane %d pitch (%d) must be power of two for tiled buffers\n", 11876 i, mode_cmd->pitches[i]); 11877 goto err; 11878 } 11879 11880 fb->obj[i] = &obj->base; 11881 } 11882 11883 ret = intel_fill_fb_info(dev_priv, intel_fb); 11884 if (ret) 11885 goto err; 11886 11887 if (intel_fb_uses_dpt(fb)) { 11888 struct i915_address_space *vm; 11889 11890 vm = intel_dpt_create(intel_fb); 11891 if (IS_ERR(vm)) { 11892 ret = PTR_ERR(vm); 11893 goto err; 11894 } 11895 11896 intel_fb->dpt_vm = vm; 11897 } 11898 11899 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 11900 if (ret) { 11901 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 11902 goto err; 11903 } 11904 11905 return 0; 11906 11907 err: 11908 intel_frontbuffer_put(intel_fb->frontbuffer); 11909 return ret; 11910 } 11911 11912 static struct drm_framebuffer * 11913 intel_user_framebuffer_create(struct drm_device *dev, 11914 struct drm_file *filp, 11915 const struct drm_mode_fb_cmd2 *user_mode_cmd) 11916 { 11917 struct drm_framebuffer *fb; 11918 struct drm_i915_gem_object *obj; 11919 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 11920 struct drm_i915_private *i915; 11921 11922 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 11923 if (!obj) 11924 return ERR_PTR(-ENOENT); 11925 11926 /* object is backed with LMEM for discrete */ 11927 i915 = to_i915(obj->base.dev); 11928 if (HAS_LMEM(i915) && !i915_gem_object_can_migrate(obj, INTEL_REGION_LMEM)) { 11929 /* object is "remote", not in local memory */ 11930 i915_gem_object_put(obj); 11931 return ERR_PTR(-EREMOTE); 11932 } 11933 11934 fb = intel_framebuffer_create(obj, &mode_cmd); 11935 i915_gem_object_put(obj); 11936 11937 return fb; 11938 } 11939 11940 static enum drm_mode_status 11941 intel_mode_valid(struct drm_device *dev, 11942 const struct drm_display_mode *mode) 11943 { 11944 struct drm_i915_private *dev_priv = to_i915(dev); 11945 int hdisplay_max, htotal_max; 11946 int vdisplay_max, vtotal_max; 11947 11948 /* 11949 * Can't reject DBLSCAN here because Xorg ddxen can add piles 11950 * of DBLSCAN modes to the output's mode list when they detect 11951 * the scaling mode property on the connector. And they don't 11952 * ask the kernel to validate those modes in any way until 11953 * modeset time at which point the client gets a protocol error. 11954 * So in order to not upset those clients we silently ignore the 11955 * DBLSCAN flag on such connectors. For other connectors we will 11956 * reject modes with the DBLSCAN flag in encoder->compute_config(). 11957 * And we always reject DBLSCAN modes in connector->mode_valid() 11958 * as we never want such modes on the connector's mode list. 11959 */ 11960 11961 if (mode->vscan > 1) 11962 return MODE_NO_VSCAN; 11963 11964 if (mode->flags & DRM_MODE_FLAG_HSKEW) 11965 return MODE_H_ILLEGAL; 11966 11967 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 11968 DRM_MODE_FLAG_NCSYNC | 11969 DRM_MODE_FLAG_PCSYNC)) 11970 return MODE_HSYNC; 11971 11972 if (mode->flags & (DRM_MODE_FLAG_BCAST | 11973 DRM_MODE_FLAG_PIXMUX | 11974 DRM_MODE_FLAG_CLKDIV2)) 11975 return MODE_BAD; 11976 11977 /* Transcoder timing limits */ 11978 if (DISPLAY_VER(dev_priv) >= 11) { 11979 hdisplay_max = 16384; 11980 vdisplay_max = 8192; 11981 htotal_max = 16384; 11982 vtotal_max = 8192; 11983 } else if (DISPLAY_VER(dev_priv) >= 9 || 11984 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 11985 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 11986 vdisplay_max = 4096; 11987 htotal_max = 8192; 11988 vtotal_max = 8192; 11989 } else if (DISPLAY_VER(dev_priv) >= 3) { 11990 hdisplay_max = 4096; 11991 vdisplay_max = 4096; 11992 htotal_max = 8192; 11993 vtotal_max = 8192; 11994 } else { 11995 hdisplay_max = 2048; 11996 vdisplay_max = 2048; 11997 htotal_max = 4096; 11998 vtotal_max = 4096; 11999 } 12000 12001 if (mode->hdisplay > hdisplay_max || 12002 mode->hsync_start > htotal_max || 12003 mode->hsync_end > htotal_max || 12004 mode->htotal > htotal_max) 12005 return MODE_H_ILLEGAL; 12006 12007 if (mode->vdisplay > vdisplay_max || 12008 mode->vsync_start > vtotal_max || 12009 mode->vsync_end > vtotal_max || 12010 mode->vtotal > vtotal_max) 12011 return MODE_V_ILLEGAL; 12012 12013 if (DISPLAY_VER(dev_priv) >= 5) { 12014 if (mode->hdisplay < 64 || 12015 mode->htotal - mode->hdisplay < 32) 12016 return MODE_H_ILLEGAL; 12017 12018 if (mode->vtotal - mode->vdisplay < 5) 12019 return MODE_V_ILLEGAL; 12020 } else { 12021 if (mode->htotal - mode->hdisplay < 32) 12022 return MODE_H_ILLEGAL; 12023 12024 if (mode->vtotal - mode->vdisplay < 3) 12025 return MODE_V_ILLEGAL; 12026 } 12027 12028 return MODE_OK; 12029 } 12030 12031 enum drm_mode_status 12032 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 12033 const struct drm_display_mode *mode, 12034 bool bigjoiner) 12035 { 12036 int plane_width_max, plane_height_max; 12037 12038 /* 12039 * intel_mode_valid() should be 12040 * sufficient on older platforms. 12041 */ 12042 if (DISPLAY_VER(dev_priv) < 9) 12043 return MODE_OK; 12044 12045 /* 12046 * Most people will probably want a fullscreen 12047 * plane so let's not advertize modes that are 12048 * too big for that. 12049 */ 12050 if (DISPLAY_VER(dev_priv) >= 11) { 12051 plane_width_max = 5120 << bigjoiner; 12052 plane_height_max = 4320; 12053 } else { 12054 plane_width_max = 5120; 12055 plane_height_max = 4096; 12056 } 12057 12058 if (mode->hdisplay > plane_width_max) 12059 return MODE_H_ILLEGAL; 12060 12061 if (mode->vdisplay > plane_height_max) 12062 return MODE_V_ILLEGAL; 12063 12064 return MODE_OK; 12065 } 12066 12067 static const struct drm_mode_config_funcs intel_mode_funcs = { 12068 .fb_create = intel_user_framebuffer_create, 12069 .get_format_info = intel_get_format_info, 12070 .output_poll_changed = intel_fbdev_output_poll_changed, 12071 .mode_valid = intel_mode_valid, 12072 .atomic_check = intel_atomic_check, 12073 .atomic_commit = intel_atomic_commit, 12074 .atomic_state_alloc = intel_atomic_state_alloc, 12075 .atomic_state_clear = intel_atomic_state_clear, 12076 .atomic_state_free = intel_atomic_state_free, 12077 }; 12078 12079 /** 12080 * intel_init_display_hooks - initialize the display modesetting hooks 12081 * @dev_priv: device private 12082 */ 12083 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 12084 { 12085 if (!HAS_DISPLAY(dev_priv)) 12086 return; 12087 12088 intel_init_cdclk_hooks(dev_priv); 12089 intel_init_audio_hooks(dev_priv); 12090 12091 intel_dpll_init_clock_hook(dev_priv); 12092 12093 if (DISPLAY_VER(dev_priv) >= 9) { 12094 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 12095 dev_priv->display.crtc_enable = hsw_crtc_enable; 12096 dev_priv->display.crtc_disable = hsw_crtc_disable; 12097 } else if (HAS_DDI(dev_priv)) { 12098 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 12099 dev_priv->display.crtc_enable = hsw_crtc_enable; 12100 dev_priv->display.crtc_disable = hsw_crtc_disable; 12101 } else if (HAS_PCH_SPLIT(dev_priv)) { 12102 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 12103 dev_priv->display.crtc_enable = ilk_crtc_enable; 12104 dev_priv->display.crtc_disable = ilk_crtc_disable; 12105 } else if (IS_CHERRYVIEW(dev_priv) || 12106 IS_VALLEYVIEW(dev_priv)) { 12107 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 12108 dev_priv->display.crtc_enable = valleyview_crtc_enable; 12109 dev_priv->display.crtc_disable = i9xx_crtc_disable; 12110 } else { 12111 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 12112 dev_priv->display.crtc_enable = i9xx_crtc_enable; 12113 dev_priv->display.crtc_disable = i9xx_crtc_disable; 12114 } 12115 12116 intel_fdi_init_hook(dev_priv); 12117 12118 if (DISPLAY_VER(dev_priv) >= 9) { 12119 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 12120 dev_priv->display.get_initial_plane_config = skl_get_initial_plane_config; 12121 } else { 12122 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 12123 dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; 12124 } 12125 12126 } 12127 12128 void intel_modeset_init_hw(struct drm_i915_private *i915) 12129 { 12130 struct intel_cdclk_state *cdclk_state; 12131 12132 if (!HAS_DISPLAY(i915)) 12133 return; 12134 12135 cdclk_state = to_intel_cdclk_state(i915->cdclk.obj.state); 12136 12137 intel_update_cdclk(i915); 12138 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 12139 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 12140 } 12141 12142 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 12143 { 12144 struct drm_plane *plane; 12145 struct intel_crtc *crtc; 12146 12147 for_each_intel_crtc(state->dev, crtc) { 12148 struct intel_crtc_state *crtc_state; 12149 12150 crtc_state = intel_atomic_get_crtc_state(state, crtc); 12151 if (IS_ERR(crtc_state)) 12152 return PTR_ERR(crtc_state); 12153 12154 if (crtc_state->hw.active) { 12155 /* 12156 * Preserve the inherited flag to avoid 12157 * taking the full modeset path. 12158 */ 12159 crtc_state->inherited = true; 12160 } 12161 } 12162 12163 drm_for_each_plane(plane, state->dev) { 12164 struct drm_plane_state *plane_state; 12165 12166 plane_state = drm_atomic_get_plane_state(state, plane); 12167 if (IS_ERR(plane_state)) 12168 return PTR_ERR(plane_state); 12169 } 12170 12171 return 0; 12172 } 12173 12174 /* 12175 * Calculate what we think the watermarks should be for the state we've read 12176 * out of the hardware and then immediately program those watermarks so that 12177 * we ensure the hardware settings match our internal state. 12178 * 12179 * We can calculate what we think WM's should be by creating a duplicate of the 12180 * current state (which was constructed during hardware readout) and running it 12181 * through the atomic check code to calculate new watermark values in the 12182 * state object. 12183 */ 12184 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 12185 { 12186 struct drm_atomic_state *state; 12187 struct intel_atomic_state *intel_state; 12188 struct intel_crtc *crtc; 12189 struct intel_crtc_state *crtc_state; 12190 struct drm_modeset_acquire_ctx ctx; 12191 int ret; 12192 int i; 12193 12194 /* Only supported on platforms that use atomic watermark design */ 12195 if (!dev_priv->display.optimize_watermarks) 12196 return; 12197 12198 state = drm_atomic_state_alloc(&dev_priv->drm); 12199 if (drm_WARN_ON(&dev_priv->drm, !state)) 12200 return; 12201 12202 intel_state = to_intel_atomic_state(state); 12203 12204 drm_modeset_acquire_init(&ctx, 0); 12205 12206 retry: 12207 state->acquire_ctx = &ctx; 12208 12209 /* 12210 * Hardware readout is the only time we don't want to calculate 12211 * intermediate watermarks (since we don't trust the current 12212 * watermarks). 12213 */ 12214 if (!HAS_GMCH(dev_priv)) 12215 intel_state->skip_intermediate_wm = true; 12216 12217 ret = sanitize_watermarks_add_affected(state); 12218 if (ret) 12219 goto fail; 12220 12221 ret = intel_atomic_check(&dev_priv->drm, state); 12222 if (ret) 12223 goto fail; 12224 12225 /* Write calculated watermark values back */ 12226 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 12227 crtc_state->wm.need_postvbl_update = true; 12228 dev_priv->display.optimize_watermarks(intel_state, crtc); 12229 12230 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 12231 } 12232 12233 fail: 12234 if (ret == -EDEADLK) { 12235 drm_atomic_state_clear(state); 12236 drm_modeset_backoff(&ctx); 12237 goto retry; 12238 } 12239 12240 /* 12241 * If we fail here, it means that the hardware appears to be 12242 * programmed in a way that shouldn't be possible, given our 12243 * understanding of watermark requirements. This might mean a 12244 * mistake in the hardware readout code or a mistake in the 12245 * watermark calculations for a given platform. Raise a WARN 12246 * so that this is noticeable. 12247 * 12248 * If this actually happens, we'll have to just leave the 12249 * BIOS-programmed watermarks untouched and hope for the best. 12250 */ 12251 drm_WARN(&dev_priv->drm, ret, 12252 "Could not determine valid watermarks for inherited state\n"); 12253 12254 drm_atomic_state_put(state); 12255 12256 drm_modeset_drop_locks(&ctx); 12257 drm_modeset_acquire_fini(&ctx); 12258 } 12259 12260 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 12261 { 12262 if (IS_IRONLAKE(dev_priv)) { 12263 u32 fdi_pll_clk = 12264 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 12265 12266 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 12267 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) { 12268 dev_priv->fdi_pll_freq = 270000; 12269 } else { 12270 return; 12271 } 12272 12273 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 12274 } 12275 12276 static int intel_initial_commit(struct drm_device *dev) 12277 { 12278 struct drm_atomic_state *state = NULL; 12279 struct drm_modeset_acquire_ctx ctx; 12280 struct intel_crtc *crtc; 12281 int ret = 0; 12282 12283 state = drm_atomic_state_alloc(dev); 12284 if (!state) 12285 return -ENOMEM; 12286 12287 drm_modeset_acquire_init(&ctx, 0); 12288 12289 retry: 12290 state->acquire_ctx = &ctx; 12291 12292 for_each_intel_crtc(dev, crtc) { 12293 struct intel_crtc_state *crtc_state = 12294 intel_atomic_get_crtc_state(state, crtc); 12295 12296 if (IS_ERR(crtc_state)) { 12297 ret = PTR_ERR(crtc_state); 12298 goto out; 12299 } 12300 12301 if (crtc_state->hw.active) { 12302 struct intel_encoder *encoder; 12303 12304 /* 12305 * We've not yet detected sink capabilities 12306 * (audio,infoframes,etc.) and thus we don't want to 12307 * force a full state recomputation yet. We want that to 12308 * happen only for the first real commit from userspace. 12309 * So preserve the inherited flag for the time being. 12310 */ 12311 crtc_state->inherited = true; 12312 12313 ret = drm_atomic_add_affected_planes(state, &crtc->base); 12314 if (ret) 12315 goto out; 12316 12317 /* 12318 * FIXME hack to force a LUT update to avoid the 12319 * plane update forcing the pipe gamma on without 12320 * having a proper LUT loaded. Remove once we 12321 * have readout for pipe gamma enable. 12322 */ 12323 crtc_state->uapi.color_mgmt_changed = true; 12324 12325 for_each_intel_encoder_mask(dev, encoder, 12326 crtc_state->uapi.encoder_mask) { 12327 if (encoder->initial_fastset_check && 12328 !encoder->initial_fastset_check(encoder, crtc_state)) { 12329 ret = drm_atomic_add_affected_connectors(state, 12330 &crtc->base); 12331 if (ret) 12332 goto out; 12333 } 12334 } 12335 } 12336 } 12337 12338 ret = drm_atomic_commit(state); 12339 12340 out: 12341 if (ret == -EDEADLK) { 12342 drm_atomic_state_clear(state); 12343 drm_modeset_backoff(&ctx); 12344 goto retry; 12345 } 12346 12347 drm_atomic_state_put(state); 12348 12349 drm_modeset_drop_locks(&ctx); 12350 drm_modeset_acquire_fini(&ctx); 12351 12352 return ret; 12353 } 12354 12355 static void intel_mode_config_init(struct drm_i915_private *i915) 12356 { 12357 struct drm_mode_config *mode_config = &i915->drm.mode_config; 12358 12359 drm_mode_config_init(&i915->drm); 12360 INIT_LIST_HEAD(&i915->global_obj_list); 12361 12362 mode_config->min_width = 0; 12363 mode_config->min_height = 0; 12364 12365 mode_config->preferred_depth = 24; 12366 mode_config->prefer_shadow = 1; 12367 12368 mode_config->funcs = &intel_mode_funcs; 12369 12370 mode_config->async_page_flip = has_async_flips(i915); 12371 12372 /* 12373 * Maximum framebuffer dimensions, chosen to match 12374 * the maximum render engine surface size on gen4+. 12375 */ 12376 if (DISPLAY_VER(i915) >= 7) { 12377 mode_config->max_width = 16384; 12378 mode_config->max_height = 16384; 12379 } else if (DISPLAY_VER(i915) >= 4) { 12380 mode_config->max_width = 8192; 12381 mode_config->max_height = 8192; 12382 } else if (DISPLAY_VER(i915) == 3) { 12383 mode_config->max_width = 4096; 12384 mode_config->max_height = 4096; 12385 } else { 12386 mode_config->max_width = 2048; 12387 mode_config->max_height = 2048; 12388 } 12389 12390 if (IS_I845G(i915) || IS_I865G(i915)) { 12391 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 12392 mode_config->cursor_height = 1023; 12393 } else if (IS_I830(i915) || IS_I85X(i915) || 12394 IS_I915G(i915) || IS_I915GM(i915)) { 12395 mode_config->cursor_width = 64; 12396 mode_config->cursor_height = 64; 12397 } else { 12398 mode_config->cursor_width = 256; 12399 mode_config->cursor_height = 256; 12400 } 12401 } 12402 12403 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 12404 { 12405 intel_atomic_global_obj_cleanup(i915); 12406 drm_mode_config_cleanup(&i915->drm); 12407 } 12408 12409 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 12410 { 12411 if (plane_config->fb) { 12412 struct drm_framebuffer *fb = &plane_config->fb->base; 12413 12414 /* We may only have the stub and not a full framebuffer */ 12415 if (drm_framebuffer_read_refcount(fb)) 12416 drm_framebuffer_put(fb); 12417 else 12418 kfree(fb); 12419 } 12420 12421 if (plane_config->vma) 12422 i915_vma_put(plane_config->vma); 12423 } 12424 12425 /* part #1: call before irq install */ 12426 int intel_modeset_init_noirq(struct drm_i915_private *i915) 12427 { 12428 int ret; 12429 12430 if (i915_inject_probe_failure(i915)) 12431 return -ENODEV; 12432 12433 if (HAS_DISPLAY(i915)) { 12434 ret = drm_vblank_init(&i915->drm, 12435 INTEL_NUM_PIPES(i915)); 12436 if (ret) 12437 return ret; 12438 } 12439 12440 intel_bios_init(i915); 12441 12442 ret = intel_vga_register(i915); 12443 if (ret) 12444 goto cleanup_bios; 12445 12446 /* FIXME: completely on the wrong abstraction layer */ 12447 intel_power_domains_init_hw(i915, false); 12448 12449 if (!HAS_DISPLAY(i915)) 12450 return 0; 12451 12452 intel_dmc_ucode_init(i915); 12453 12454 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 12455 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 12456 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 12457 12458 i915->framestart_delay = 1; /* 1-4 */ 12459 12460 i915->window2_delay = 0; /* No DSB so no window2 delay */ 12461 12462 intel_mode_config_init(i915); 12463 12464 ret = intel_cdclk_init(i915); 12465 if (ret) 12466 goto cleanup_vga_client_pw_domain_dmc; 12467 12468 ret = intel_dbuf_init(i915); 12469 if (ret) 12470 goto cleanup_vga_client_pw_domain_dmc; 12471 12472 ret = intel_bw_init(i915); 12473 if (ret) 12474 goto cleanup_vga_client_pw_domain_dmc; 12475 12476 init_llist_head(&i915->atomic_helper.free_list); 12477 INIT_WORK(&i915->atomic_helper.free_work, 12478 intel_atomic_helper_free_state_worker); 12479 12480 intel_init_quirks(i915); 12481 12482 intel_fbc_init(i915); 12483 12484 return 0; 12485 12486 cleanup_vga_client_pw_domain_dmc: 12487 intel_dmc_ucode_fini(i915); 12488 intel_power_domains_driver_remove(i915); 12489 intel_vga_unregister(i915); 12490 cleanup_bios: 12491 intel_bios_driver_remove(i915); 12492 12493 return ret; 12494 } 12495 12496 /* part #2: call after irq install, but before gem init */ 12497 int intel_modeset_init_nogem(struct drm_i915_private *i915) 12498 { 12499 struct drm_device *dev = &i915->drm; 12500 enum pipe pipe; 12501 struct intel_crtc *crtc; 12502 int ret; 12503 12504 if (!HAS_DISPLAY(i915)) 12505 return 0; 12506 12507 intel_init_pm(i915); 12508 12509 intel_panel_sanitize_ssc(i915); 12510 12511 intel_pps_setup(i915); 12512 12513 intel_gmbus_setup(i915); 12514 12515 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 12516 INTEL_NUM_PIPES(i915), 12517 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 12518 12519 for_each_pipe(i915, pipe) { 12520 ret = intel_crtc_init(i915, pipe); 12521 if (ret) { 12522 intel_mode_config_cleanup(i915); 12523 return ret; 12524 } 12525 } 12526 12527 intel_plane_possible_crtcs_init(i915); 12528 intel_shared_dpll_init(dev); 12529 intel_update_fdi_pll_freq(i915); 12530 12531 intel_update_czclk(i915); 12532 intel_modeset_init_hw(i915); 12533 intel_dpll_update_ref_clks(i915); 12534 12535 intel_hdcp_component_init(i915); 12536 12537 if (i915->max_cdclk_freq == 0) 12538 intel_update_max_cdclk(i915); 12539 12540 /* 12541 * If the platform has HTI, we need to find out whether it has reserved 12542 * any display resources before we create our display outputs. 12543 */ 12544 if (INTEL_INFO(i915)->display.has_hti) 12545 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 12546 12547 /* Just disable it once at startup */ 12548 intel_vga_disable(i915); 12549 intel_setup_outputs(i915); 12550 12551 drm_modeset_lock_all(dev); 12552 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 12553 drm_modeset_unlock_all(dev); 12554 12555 for_each_intel_crtc(dev, crtc) { 12556 struct intel_initial_plane_config plane_config = {}; 12557 12558 if (!to_intel_crtc_state(crtc->base.state)->uapi.active) 12559 continue; 12560 12561 /* 12562 * Note that reserving the BIOS fb up front prevents us 12563 * from stuffing other stolen allocations like the ring 12564 * on top. This prevents some ugliness at boot time, and 12565 * can even allow for smooth boot transitions if the BIOS 12566 * fb is large enough for the active pipe configuration. 12567 */ 12568 i915->display.get_initial_plane_config(crtc, &plane_config); 12569 12570 /* 12571 * If the fb is shared between multiple heads, we'll 12572 * just get the first one. 12573 */ 12574 intel_find_initial_plane_obj(crtc, &plane_config); 12575 12576 plane_config_fini(&plane_config); 12577 } 12578 12579 /* 12580 * Make sure hardware watermarks really match the state we read out. 12581 * Note that we need to do this after reconstructing the BIOS fb's 12582 * since the watermark calculation done here will use pstate->fb. 12583 */ 12584 if (!HAS_GMCH(i915)) 12585 sanitize_watermarks(i915); 12586 12587 return 0; 12588 } 12589 12590 /* part #3: call after gem init */ 12591 int intel_modeset_init(struct drm_i915_private *i915) 12592 { 12593 int ret; 12594 12595 if (!HAS_DISPLAY(i915)) 12596 return 0; 12597 12598 /* 12599 * Force all active planes to recompute their states. So that on 12600 * mode_setcrtc after probe, all the intel_plane_state variables 12601 * are already calculated and there is no assert_plane warnings 12602 * during bootup. 12603 */ 12604 ret = intel_initial_commit(&i915->drm); 12605 if (ret) 12606 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); 12607 12608 intel_overlay_setup(i915); 12609 12610 ret = intel_fbdev_init(&i915->drm); 12611 if (ret) 12612 return ret; 12613 12614 /* Only enable hotplug handling once the fbdev is fully set up. */ 12615 intel_hpd_init(i915); 12616 intel_hpd_poll_disable(i915); 12617 12618 intel_init_ipc(i915); 12619 12620 return 0; 12621 } 12622 12623 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12624 { 12625 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12626 /* 640x480@60Hz, ~25175 kHz */ 12627 struct dpll clock = { 12628 .m1 = 18, 12629 .m2 = 7, 12630 .p1 = 13, 12631 .p2 = 4, 12632 .n = 2, 12633 }; 12634 u32 dpll, fp; 12635 int i; 12636 12637 drm_WARN_ON(&dev_priv->drm, 12638 i9xx_calc_dpll_params(48000, &clock) != 25154); 12639 12640 drm_dbg_kms(&dev_priv->drm, 12641 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 12642 pipe_name(pipe), clock.vco, clock.dot); 12643 12644 fp = i9xx_dpll_compute_fp(&clock); 12645 dpll = DPLL_DVO_2X_MODE | 12646 DPLL_VGA_MODE_DIS | 12647 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 12648 PLL_P2_DIVIDE_BY_4 | 12649 PLL_REF_INPUT_DREFCLK | 12650 DPLL_VCO_ENABLE; 12651 12652 intel_de_write(dev_priv, FP0(pipe), fp); 12653 intel_de_write(dev_priv, FP1(pipe), fp); 12654 12655 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 12656 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 12657 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 12658 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 12659 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 12660 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 12661 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 12662 12663 /* 12664 * Apparently we need to have VGA mode enabled prior to changing 12665 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 12666 * dividers, even though the register value does change. 12667 */ 12668 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 12669 intel_de_write(dev_priv, DPLL(pipe), dpll); 12670 12671 /* Wait for the clocks to stabilize. */ 12672 intel_de_posting_read(dev_priv, DPLL(pipe)); 12673 udelay(150); 12674 12675 /* The pixel multiplier can only be updated once the 12676 * DPLL is enabled and the clocks are stable. 12677 * 12678 * So write it again. 12679 */ 12680 intel_de_write(dev_priv, DPLL(pipe), dpll); 12681 12682 /* We do this three times for luck */ 12683 for (i = 0; i < 3 ; i++) { 12684 intel_de_write(dev_priv, DPLL(pipe), dpll); 12685 intel_de_posting_read(dev_priv, DPLL(pipe)); 12686 udelay(150); /* wait for warmup */ 12687 } 12688 12689 intel_de_write(dev_priv, PIPECONF(pipe), 12690 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 12691 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12692 12693 intel_wait_for_pipe_scanline_moving(crtc); 12694 } 12695 12696 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12697 { 12698 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12699 12700 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 12701 pipe_name(pipe)); 12702 12703 drm_WARN_ON(&dev_priv->drm, 12704 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 12705 DISPLAY_PLANE_ENABLE); 12706 drm_WARN_ON(&dev_priv->drm, 12707 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 12708 DISPLAY_PLANE_ENABLE); 12709 drm_WARN_ON(&dev_priv->drm, 12710 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 12711 DISPLAY_PLANE_ENABLE); 12712 drm_WARN_ON(&dev_priv->drm, 12713 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 12714 drm_WARN_ON(&dev_priv->drm, 12715 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 12716 12717 intel_de_write(dev_priv, PIPECONF(pipe), 0); 12718 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12719 12720 intel_wait_for_pipe_scanline_stopped(crtc); 12721 12722 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 12723 intel_de_posting_read(dev_priv, DPLL(pipe)); 12724 } 12725 12726 static void 12727 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 12728 { 12729 struct intel_crtc *crtc; 12730 12731 if (DISPLAY_VER(dev_priv) >= 4) 12732 return; 12733 12734 for_each_intel_crtc(&dev_priv->drm, crtc) { 12735 struct intel_plane *plane = 12736 to_intel_plane(crtc->base.primary); 12737 struct intel_crtc *plane_crtc; 12738 enum pipe pipe; 12739 12740 if (!plane->get_hw_state(plane, &pipe)) 12741 continue; 12742 12743 if (pipe == crtc->pipe) 12744 continue; 12745 12746 drm_dbg_kms(&dev_priv->drm, 12747 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 12748 plane->base.base.id, plane->base.name); 12749 12750 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12751 intel_plane_disable_noatomic(plane_crtc, plane); 12752 } 12753 } 12754 12755 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 12756 { 12757 struct drm_device *dev = crtc->base.dev; 12758 struct intel_encoder *encoder; 12759 12760 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 12761 return true; 12762 12763 return false; 12764 } 12765 12766 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 12767 { 12768 struct drm_device *dev = encoder->base.dev; 12769 struct intel_connector *connector; 12770 12771 for_each_connector_on_encoder(dev, &encoder->base, connector) 12772 return connector; 12773 12774 return NULL; 12775 } 12776 12777 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 12778 enum pipe pch_transcoder) 12779 { 12780 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 12781 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 12782 } 12783 12784 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 12785 { 12786 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12787 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12788 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 12789 12790 if (DISPLAY_VER(dev_priv) >= 9 || 12791 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12792 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 12793 u32 val; 12794 12795 if (transcoder_is_dsi(cpu_transcoder)) 12796 return; 12797 12798 val = intel_de_read(dev_priv, reg); 12799 val &= ~HSW_FRAME_START_DELAY_MASK; 12800 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12801 intel_de_write(dev_priv, reg, val); 12802 } else { 12803 i915_reg_t reg = PIPECONF(cpu_transcoder); 12804 u32 val; 12805 12806 val = intel_de_read(dev_priv, reg); 12807 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 12808 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12809 intel_de_write(dev_priv, reg, val); 12810 } 12811 12812 if (!crtc_state->has_pch_encoder) 12813 return; 12814 12815 if (HAS_PCH_IBX(dev_priv)) { 12816 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 12817 u32 val; 12818 12819 val = intel_de_read(dev_priv, reg); 12820 val &= ~TRANS_FRAME_START_DELAY_MASK; 12821 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12822 intel_de_write(dev_priv, reg, val); 12823 } else { 12824 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 12825 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 12826 u32 val; 12827 12828 val = intel_de_read(dev_priv, reg); 12829 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 12830 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12831 intel_de_write(dev_priv, reg, val); 12832 } 12833 } 12834 12835 static void intel_sanitize_crtc(struct intel_crtc *crtc, 12836 struct drm_modeset_acquire_ctx *ctx) 12837 { 12838 struct drm_device *dev = crtc->base.dev; 12839 struct drm_i915_private *dev_priv = to_i915(dev); 12840 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 12841 12842 if (crtc_state->hw.active) { 12843 struct intel_plane *plane; 12844 12845 /* Clear any frame start delays used for debugging left by the BIOS */ 12846 intel_sanitize_frame_start_delay(crtc_state); 12847 12848 /* Disable everything but the primary plane */ 12849 for_each_intel_plane_on_crtc(dev, crtc, plane) { 12850 const struct intel_plane_state *plane_state = 12851 to_intel_plane_state(plane->base.state); 12852 12853 if (plane_state->uapi.visible && 12854 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 12855 intel_plane_disable_noatomic(crtc, plane); 12856 } 12857 12858 /* 12859 * Disable any background color set by the BIOS, but enable the 12860 * gamma and CSC to match how we program our planes. 12861 */ 12862 if (DISPLAY_VER(dev_priv) >= 9) 12863 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 12864 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 12865 } 12866 12867 /* Adjust the state of the output pipe according to whether we 12868 * have active connectors/encoders. */ 12869 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc) && 12870 !crtc_state->bigjoiner_slave) 12871 intel_crtc_disable_noatomic(crtc, ctx); 12872 12873 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 12874 /* 12875 * We start out with underrun reporting disabled to avoid races. 12876 * For correct bookkeeping mark this on active crtcs. 12877 * 12878 * Also on gmch platforms we dont have any hardware bits to 12879 * disable the underrun reporting. Which means we need to start 12880 * out with underrun reporting disabled also on inactive pipes, 12881 * since otherwise we'll complain about the garbage we read when 12882 * e.g. coming up after runtime pm. 12883 * 12884 * No protection against concurrent access is required - at 12885 * worst a fifo underrun happens which also sets this to false. 12886 */ 12887 crtc->cpu_fifo_underrun_disabled = true; 12888 /* 12889 * We track the PCH trancoder underrun reporting state 12890 * within the crtc. With crtc for pipe A housing the underrun 12891 * reporting state for PCH transcoder A, crtc for pipe B housing 12892 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 12893 * and marking underrun reporting as disabled for the non-existing 12894 * PCH transcoders B and C would prevent enabling the south 12895 * error interrupt (see cpt_can_enable_serr_int()). 12896 */ 12897 if (has_pch_trancoder(dev_priv, crtc->pipe)) 12898 crtc->pch_fifo_underrun_disabled = true; 12899 } 12900 } 12901 12902 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 12903 { 12904 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 12905 12906 /* 12907 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 12908 * the hardware when a high res displays plugged in. DPLL P 12909 * divider is zero, and the pipe timings are bonkers. We'll 12910 * try to disable everything in that case. 12911 * 12912 * FIXME would be nice to be able to sanitize this state 12913 * without several WARNs, but for now let's take the easy 12914 * road. 12915 */ 12916 return IS_SANDYBRIDGE(dev_priv) && 12917 crtc_state->hw.active && 12918 crtc_state->shared_dpll && 12919 crtc_state->port_clock == 0; 12920 } 12921 12922 static void intel_sanitize_encoder(struct intel_encoder *encoder) 12923 { 12924 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12925 struct intel_connector *connector; 12926 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 12927 struct intel_crtc_state *crtc_state = crtc ? 12928 to_intel_crtc_state(crtc->base.state) : NULL; 12929 12930 /* We need to check both for a crtc link (meaning that the 12931 * encoder is active and trying to read from a pipe) and the 12932 * pipe itself being active. */ 12933 bool has_active_crtc = crtc_state && 12934 crtc_state->hw.active; 12935 12936 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 12937 drm_dbg_kms(&dev_priv->drm, 12938 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 12939 pipe_name(crtc->pipe)); 12940 has_active_crtc = false; 12941 } 12942 12943 connector = intel_encoder_find_connector(encoder); 12944 if (connector && !has_active_crtc) { 12945 drm_dbg_kms(&dev_priv->drm, 12946 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 12947 encoder->base.base.id, 12948 encoder->base.name); 12949 12950 /* Connector is active, but has no active pipe. This is 12951 * fallout from our resume register restoring. Disable 12952 * the encoder manually again. */ 12953 if (crtc_state) { 12954 struct drm_encoder *best_encoder; 12955 12956 drm_dbg_kms(&dev_priv->drm, 12957 "[ENCODER:%d:%s] manually disabled\n", 12958 encoder->base.base.id, 12959 encoder->base.name); 12960 12961 /* avoid oopsing in case the hooks consult best_encoder */ 12962 best_encoder = connector->base.state->best_encoder; 12963 connector->base.state->best_encoder = &encoder->base; 12964 12965 /* FIXME NULL atomic state passed! */ 12966 if (encoder->disable) 12967 encoder->disable(NULL, encoder, crtc_state, 12968 connector->base.state); 12969 if (encoder->post_disable) 12970 encoder->post_disable(NULL, encoder, crtc_state, 12971 connector->base.state); 12972 12973 connector->base.state->best_encoder = best_encoder; 12974 } 12975 encoder->base.crtc = NULL; 12976 12977 /* Inconsistent output/port/pipe state happens presumably due to 12978 * a bug in one of the get_hw_state functions. Or someplace else 12979 * in our code, like the register restore mess on resume. Clamp 12980 * things to off as a safer default. */ 12981 12982 connector->base.dpms = DRM_MODE_DPMS_OFF; 12983 connector->base.encoder = NULL; 12984 } 12985 12986 /* notify opregion of the sanitized encoder state */ 12987 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 12988 12989 if (HAS_DDI(dev_priv)) 12990 intel_ddi_sanitize_encoder_pll_mapping(encoder); 12991 } 12992 12993 /* FIXME read out full plane state for all planes */ 12994 static void readout_plane_state(struct drm_i915_private *dev_priv) 12995 { 12996 struct intel_plane *plane; 12997 struct intel_crtc *crtc; 12998 12999 for_each_intel_plane(&dev_priv->drm, plane) { 13000 struct intel_plane_state *plane_state = 13001 to_intel_plane_state(plane->base.state); 13002 struct intel_crtc_state *crtc_state; 13003 enum pipe pipe = PIPE_A; 13004 bool visible; 13005 13006 visible = plane->get_hw_state(plane, &pipe); 13007 13008 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 13009 crtc_state = to_intel_crtc_state(crtc->base.state); 13010 13011 intel_set_plane_visible(crtc_state, plane_state, visible); 13012 13013 drm_dbg_kms(&dev_priv->drm, 13014 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 13015 plane->base.base.id, plane->base.name, 13016 enableddisabled(visible), pipe_name(pipe)); 13017 } 13018 13019 for_each_intel_crtc(&dev_priv->drm, crtc) { 13020 struct intel_crtc_state *crtc_state = 13021 to_intel_crtc_state(crtc->base.state); 13022 13023 fixup_plane_bitmasks(crtc_state); 13024 } 13025 } 13026 13027 static void intel_modeset_readout_hw_state(struct drm_device *dev) 13028 { 13029 struct drm_i915_private *dev_priv = to_i915(dev); 13030 struct intel_cdclk_state *cdclk_state = 13031 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 13032 struct intel_dbuf_state *dbuf_state = 13033 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 13034 enum pipe pipe; 13035 struct intel_crtc *crtc; 13036 struct intel_encoder *encoder; 13037 struct intel_connector *connector; 13038 struct drm_connector_list_iter conn_iter; 13039 u8 active_pipes = 0; 13040 13041 for_each_intel_crtc(dev, crtc) { 13042 struct intel_crtc_state *crtc_state = 13043 to_intel_crtc_state(crtc->base.state); 13044 13045 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 13046 intel_crtc_free_hw_state(crtc_state); 13047 intel_crtc_state_reset(crtc_state, crtc); 13048 13049 intel_crtc_get_pipe_config(crtc_state); 13050 13051 crtc_state->hw.enable = crtc_state->hw.active; 13052 13053 crtc->base.enabled = crtc_state->hw.enable; 13054 crtc->active = crtc_state->hw.active; 13055 13056 if (crtc_state->hw.active) 13057 active_pipes |= BIT(crtc->pipe); 13058 13059 drm_dbg_kms(&dev_priv->drm, 13060 "[CRTC:%d:%s] hw state readout: %s\n", 13061 crtc->base.base.id, crtc->base.name, 13062 enableddisabled(crtc_state->hw.active)); 13063 } 13064 13065 dev_priv->active_pipes = cdclk_state->active_pipes = 13066 dbuf_state->active_pipes = active_pipes; 13067 13068 readout_plane_state(dev_priv); 13069 13070 for_each_intel_encoder(dev, encoder) { 13071 pipe = 0; 13072 13073 if (encoder->get_hw_state(encoder, &pipe)) { 13074 struct intel_crtc_state *crtc_state; 13075 13076 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 13077 crtc_state = to_intel_crtc_state(crtc->base.state); 13078 13079 encoder->base.crtc = &crtc->base; 13080 intel_encoder_get_config(encoder, crtc_state); 13081 if (encoder->sync_state) 13082 encoder->sync_state(encoder, crtc_state); 13083 13084 /* read out to slave crtc as well for bigjoiner */ 13085 if (crtc_state->bigjoiner) { 13086 /* encoder should read be linked to bigjoiner master */ 13087 WARN_ON(crtc_state->bigjoiner_slave); 13088 13089 crtc = crtc_state->bigjoiner_linked_crtc; 13090 crtc_state = to_intel_crtc_state(crtc->base.state); 13091 intel_encoder_get_config(encoder, crtc_state); 13092 } 13093 } else { 13094 encoder->base.crtc = NULL; 13095 } 13096 13097 drm_dbg_kms(&dev_priv->drm, 13098 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 13099 encoder->base.base.id, encoder->base.name, 13100 enableddisabled(encoder->base.crtc), 13101 pipe_name(pipe)); 13102 } 13103 13104 intel_dpll_readout_hw_state(dev_priv); 13105 13106 drm_connector_list_iter_begin(dev, &conn_iter); 13107 for_each_intel_connector_iter(connector, &conn_iter) { 13108 if (connector->get_hw_state(connector)) { 13109 struct intel_crtc_state *crtc_state; 13110 struct intel_crtc *crtc; 13111 13112 connector->base.dpms = DRM_MODE_DPMS_ON; 13113 13114 encoder = intel_attached_encoder(connector); 13115 connector->base.encoder = &encoder->base; 13116 13117 crtc = to_intel_crtc(encoder->base.crtc); 13118 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 13119 13120 if (crtc_state && crtc_state->hw.active) { 13121 /* 13122 * This has to be done during hardware readout 13123 * because anything calling .crtc_disable may 13124 * rely on the connector_mask being accurate. 13125 */ 13126 crtc_state->uapi.connector_mask |= 13127 drm_connector_mask(&connector->base); 13128 crtc_state->uapi.encoder_mask |= 13129 drm_encoder_mask(&encoder->base); 13130 } 13131 } else { 13132 connector->base.dpms = DRM_MODE_DPMS_OFF; 13133 connector->base.encoder = NULL; 13134 } 13135 drm_dbg_kms(&dev_priv->drm, 13136 "[CONNECTOR:%d:%s] hw state readout: %s\n", 13137 connector->base.base.id, connector->base.name, 13138 enableddisabled(connector->base.encoder)); 13139 } 13140 drm_connector_list_iter_end(&conn_iter); 13141 13142 for_each_intel_crtc(dev, crtc) { 13143 struct intel_bw_state *bw_state = 13144 to_intel_bw_state(dev_priv->bw_obj.state); 13145 struct intel_crtc_state *crtc_state = 13146 to_intel_crtc_state(crtc->base.state); 13147 struct intel_plane *plane; 13148 int min_cdclk = 0; 13149 13150 if (crtc_state->bigjoiner_slave) 13151 continue; 13152 13153 if (crtc_state->hw.active) { 13154 /* 13155 * The initial mode needs to be set in order to keep 13156 * the atomic core happy. It wants a valid mode if the 13157 * crtc's enabled, so we do the above call. 13158 * 13159 * But we don't set all the derived state fully, hence 13160 * set a flag to indicate that a full recalculation is 13161 * needed on the next commit. 13162 */ 13163 crtc_state->inherited = true; 13164 13165 intel_crtc_update_active_timings(crtc_state); 13166 13167 intel_crtc_copy_hw_to_uapi_state(crtc_state); 13168 } 13169 13170 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 13171 const struct intel_plane_state *plane_state = 13172 to_intel_plane_state(plane->base.state); 13173 13174 /* 13175 * FIXME don't have the fb yet, so can't 13176 * use intel_plane_data_rate() :( 13177 */ 13178 if (plane_state->uapi.visible) 13179 crtc_state->data_rate[plane->id] = 13180 4 * crtc_state->pixel_rate; 13181 /* 13182 * FIXME don't have the fb yet, so can't 13183 * use plane->min_cdclk() :( 13184 */ 13185 if (plane_state->uapi.visible && plane->min_cdclk) { 13186 if (crtc_state->double_wide || DISPLAY_VER(dev_priv) >= 10) 13187 crtc_state->min_cdclk[plane->id] = 13188 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 13189 else 13190 crtc_state->min_cdclk[plane->id] = 13191 crtc_state->pixel_rate; 13192 } 13193 drm_dbg_kms(&dev_priv->drm, 13194 "[PLANE:%d:%s] min_cdclk %d kHz\n", 13195 plane->base.base.id, plane->base.name, 13196 crtc_state->min_cdclk[plane->id]); 13197 } 13198 13199 if (crtc_state->hw.active) { 13200 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 13201 if (drm_WARN_ON(dev, min_cdclk < 0)) 13202 min_cdclk = 0; 13203 } 13204 13205 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 13206 cdclk_state->min_voltage_level[crtc->pipe] = 13207 crtc_state->min_voltage_level; 13208 13209 intel_bw_crtc_update(bw_state, crtc_state); 13210 13211 intel_pipe_config_sanity_check(dev_priv, crtc_state); 13212 13213 /* discard our incomplete slave state, copy it from master */ 13214 if (crtc_state->bigjoiner && crtc_state->hw.active) { 13215 struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc; 13216 struct intel_crtc_state *slave_crtc_state = 13217 to_intel_crtc_state(slave->base.state); 13218 13219 copy_bigjoiner_crtc_state(slave_crtc_state, crtc_state); 13220 slave->base.mode = crtc->base.mode; 13221 13222 cdclk_state->min_cdclk[slave->pipe] = min_cdclk; 13223 cdclk_state->min_voltage_level[slave->pipe] = 13224 crtc_state->min_voltage_level; 13225 13226 for_each_intel_plane_on_crtc(&dev_priv->drm, slave, plane) { 13227 const struct intel_plane_state *plane_state = 13228 to_intel_plane_state(plane->base.state); 13229 13230 /* 13231 * FIXME don't have the fb yet, so can't 13232 * use intel_plane_data_rate() :( 13233 */ 13234 if (plane_state->uapi.visible) 13235 crtc_state->data_rate[plane->id] = 13236 4 * crtc_state->pixel_rate; 13237 else 13238 crtc_state->data_rate[plane->id] = 0; 13239 } 13240 13241 intel_bw_crtc_update(bw_state, slave_crtc_state); 13242 drm_calc_timestamping_constants(&slave->base, 13243 &slave_crtc_state->hw.adjusted_mode); 13244 } 13245 } 13246 } 13247 13248 static void 13249 get_encoder_power_domains(struct drm_i915_private *dev_priv) 13250 { 13251 struct intel_encoder *encoder; 13252 13253 for_each_intel_encoder(&dev_priv->drm, encoder) { 13254 struct intel_crtc_state *crtc_state; 13255 13256 if (!encoder->get_power_domains) 13257 continue; 13258 13259 /* 13260 * MST-primary and inactive encoders don't have a crtc state 13261 * and neither of these require any power domain references. 13262 */ 13263 if (!encoder->base.crtc) 13264 continue; 13265 13266 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 13267 encoder->get_power_domains(encoder, crtc_state); 13268 } 13269 } 13270 13271 static void intel_early_display_was(struct drm_i915_private *dev_priv) 13272 { 13273 /* 13274 * Display WA #1185 WaDisableDARBFClkGating:glk,icl,ehl,tgl 13275 * Also known as Wa_14010480278. 13276 */ 13277 if (IS_DISPLAY_VER(dev_priv, 10, 12)) 13278 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 13279 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 13280 13281 if (IS_HASWELL(dev_priv)) { 13282 /* 13283 * WaRsPkgCStateDisplayPMReq:hsw 13284 * System hang if this isn't done before disabling all planes! 13285 */ 13286 intel_de_write(dev_priv, CHICKEN_PAR1_1, 13287 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 13288 } 13289 13290 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) { 13291 /* Display WA #1142:kbl,cfl,cml */ 13292 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, 13293 KBL_ARB_FILL_SPARE_22, KBL_ARB_FILL_SPARE_22); 13294 intel_de_rmw(dev_priv, CHICKEN_MISC_2, 13295 KBL_ARB_FILL_SPARE_13 | KBL_ARB_FILL_SPARE_14, 13296 KBL_ARB_FILL_SPARE_14); 13297 } 13298 } 13299 13300 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 13301 enum port port, i915_reg_t hdmi_reg) 13302 { 13303 u32 val = intel_de_read(dev_priv, hdmi_reg); 13304 13305 if (val & SDVO_ENABLE || 13306 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 13307 return; 13308 13309 drm_dbg_kms(&dev_priv->drm, 13310 "Sanitizing transcoder select for HDMI %c\n", 13311 port_name(port)); 13312 13313 val &= ~SDVO_PIPE_SEL_MASK; 13314 val |= SDVO_PIPE_SEL(PIPE_A); 13315 13316 intel_de_write(dev_priv, hdmi_reg, val); 13317 } 13318 13319 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 13320 enum port port, i915_reg_t dp_reg) 13321 { 13322 u32 val = intel_de_read(dev_priv, dp_reg); 13323 13324 if (val & DP_PORT_EN || 13325 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 13326 return; 13327 13328 drm_dbg_kms(&dev_priv->drm, 13329 "Sanitizing transcoder select for DP %c\n", 13330 port_name(port)); 13331 13332 val &= ~DP_PIPE_SEL_MASK; 13333 val |= DP_PIPE_SEL(PIPE_A); 13334 13335 intel_de_write(dev_priv, dp_reg, val); 13336 } 13337 13338 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 13339 { 13340 /* 13341 * The BIOS may select transcoder B on some of the PCH 13342 * ports even it doesn't enable the port. This would trip 13343 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 13344 * Sanitize the transcoder select bits to prevent that. We 13345 * assume that the BIOS never actually enabled the port, 13346 * because if it did we'd actually have to toggle the port 13347 * on and back off to make the transcoder A select stick 13348 * (see. intel_dp_link_down(), intel_disable_hdmi(), 13349 * intel_disable_sdvo()). 13350 */ 13351 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 13352 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 13353 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 13354 13355 /* PCH SDVOB multiplex with HDMIB */ 13356 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 13357 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 13358 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 13359 } 13360 13361 /* Scan out the current hw modeset state, 13362 * and sanitizes it to the current state 13363 */ 13364 static void 13365 intel_modeset_setup_hw_state(struct drm_device *dev, 13366 struct drm_modeset_acquire_ctx *ctx) 13367 { 13368 struct drm_i915_private *dev_priv = to_i915(dev); 13369 struct intel_encoder *encoder; 13370 struct intel_crtc *crtc; 13371 intel_wakeref_t wakeref; 13372 13373 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 13374 13375 intel_early_display_was(dev_priv); 13376 intel_modeset_readout_hw_state(dev); 13377 13378 /* HW state is read out, now we need to sanitize this mess. */ 13379 13380 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 13381 for_each_intel_encoder(dev, encoder) { 13382 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 13383 13384 /* We need to sanitize only the MST primary port. */ 13385 if (encoder->type != INTEL_OUTPUT_DP_MST && 13386 intel_phy_is_tc(dev_priv, phy)) 13387 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 13388 } 13389 13390 get_encoder_power_domains(dev_priv); 13391 13392 if (HAS_PCH_IBX(dev_priv)) 13393 ibx_sanitize_pch_ports(dev_priv); 13394 13395 /* 13396 * intel_sanitize_plane_mapping() may need to do vblank 13397 * waits, so we need vblank interrupts restored beforehand. 13398 */ 13399 for_each_intel_crtc(&dev_priv->drm, crtc) { 13400 struct intel_crtc_state *crtc_state = 13401 to_intel_crtc_state(crtc->base.state); 13402 13403 drm_crtc_vblank_reset(&crtc->base); 13404 13405 if (crtc_state->hw.active) 13406 intel_crtc_vblank_on(crtc_state); 13407 } 13408 13409 intel_sanitize_plane_mapping(dev_priv); 13410 13411 for_each_intel_encoder(dev, encoder) 13412 intel_sanitize_encoder(encoder); 13413 13414 for_each_intel_crtc(&dev_priv->drm, crtc) { 13415 struct intel_crtc_state *crtc_state = 13416 to_intel_crtc_state(crtc->base.state); 13417 13418 intel_sanitize_crtc(crtc, ctx); 13419 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 13420 } 13421 13422 intel_modeset_update_connector_atomic_state(dev); 13423 13424 intel_dpll_sanitize_state(dev_priv); 13425 13426 if (IS_G4X(dev_priv)) { 13427 g4x_wm_get_hw_state(dev_priv); 13428 g4x_wm_sanitize(dev_priv); 13429 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 13430 vlv_wm_get_hw_state(dev_priv); 13431 vlv_wm_sanitize(dev_priv); 13432 } else if (DISPLAY_VER(dev_priv) >= 9) { 13433 skl_wm_get_hw_state(dev_priv); 13434 } else if (HAS_PCH_SPLIT(dev_priv)) { 13435 ilk_wm_get_hw_state(dev_priv); 13436 } 13437 13438 for_each_intel_crtc(dev, crtc) { 13439 struct intel_crtc_state *crtc_state = 13440 to_intel_crtc_state(crtc->base.state); 13441 u64 put_domains; 13442 13443 put_domains = modeset_get_crtc_power_domains(crtc_state); 13444 if (drm_WARN_ON(dev, put_domains)) 13445 modeset_put_crtc_power_domains(crtc, put_domains); 13446 } 13447 13448 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 13449 } 13450 13451 void intel_display_resume(struct drm_device *dev) 13452 { 13453 struct drm_i915_private *dev_priv = to_i915(dev); 13454 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 13455 struct drm_modeset_acquire_ctx ctx; 13456 int ret; 13457 13458 if (!HAS_DISPLAY(dev_priv)) 13459 return; 13460 13461 dev_priv->modeset_restore_state = NULL; 13462 if (state) 13463 state->acquire_ctx = &ctx; 13464 13465 drm_modeset_acquire_init(&ctx, 0); 13466 13467 while (1) { 13468 ret = drm_modeset_lock_all_ctx(dev, &ctx); 13469 if (ret != -EDEADLK) 13470 break; 13471 13472 drm_modeset_backoff(&ctx); 13473 } 13474 13475 if (!ret) 13476 ret = __intel_display_resume(dev, state, &ctx); 13477 13478 intel_enable_ipc(dev_priv); 13479 drm_modeset_drop_locks(&ctx); 13480 drm_modeset_acquire_fini(&ctx); 13481 13482 if (ret) 13483 drm_err(&dev_priv->drm, 13484 "Restoring old state failed with %i\n", ret); 13485 if (state) 13486 drm_atomic_state_put(state); 13487 } 13488 13489 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 13490 { 13491 struct intel_connector *connector; 13492 struct drm_connector_list_iter conn_iter; 13493 13494 /* Kill all the work that may have been queued by hpd. */ 13495 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 13496 for_each_intel_connector_iter(connector, &conn_iter) { 13497 if (connector->modeset_retry_work.func) 13498 cancel_work_sync(&connector->modeset_retry_work); 13499 if (connector->hdcp.shim) { 13500 cancel_delayed_work_sync(&connector->hdcp.check_work); 13501 cancel_work_sync(&connector->hdcp.prop_work); 13502 } 13503 } 13504 drm_connector_list_iter_end(&conn_iter); 13505 } 13506 13507 /* part #1: call before irq uninstall */ 13508 void intel_modeset_driver_remove(struct drm_i915_private *i915) 13509 { 13510 if (!HAS_DISPLAY(i915)) 13511 return; 13512 13513 flush_workqueue(i915->flip_wq); 13514 flush_workqueue(i915->modeset_wq); 13515 13516 flush_work(&i915->atomic_helper.free_work); 13517 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 13518 } 13519 13520 /* part #2: call after irq uninstall */ 13521 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 13522 { 13523 if (!HAS_DISPLAY(i915)) 13524 return; 13525 13526 /* 13527 * Due to the hpd irq storm handling the hotplug work can re-arm the 13528 * poll handlers. Hence disable polling after hpd handling is shut down. 13529 */ 13530 intel_hpd_poll_fini(i915); 13531 13532 /* 13533 * MST topology needs to be suspended so we don't have any calls to 13534 * fbdev after it's finalized. MST will be destroyed later as part of 13535 * drm_mode_config_cleanup() 13536 */ 13537 intel_dp_mst_suspend(i915); 13538 13539 /* poll work can call into fbdev, hence clean that up afterwards */ 13540 intel_fbdev_fini(i915); 13541 13542 intel_unregister_dsm_handler(); 13543 13544 intel_fbc_global_disable(i915); 13545 13546 /* flush any delayed tasks or pending work */ 13547 flush_scheduled_work(); 13548 13549 intel_hdcp_component_fini(i915); 13550 13551 intel_mode_config_cleanup(i915); 13552 13553 intel_overlay_cleanup(i915); 13554 13555 intel_gmbus_teardown(i915); 13556 13557 destroy_workqueue(i915->flip_wq); 13558 destroy_workqueue(i915->modeset_wq); 13559 13560 intel_fbc_cleanup_cfb(i915); 13561 } 13562 13563 /* part #3: call after gem init */ 13564 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 13565 { 13566 intel_dmc_ucode_fini(i915); 13567 13568 intel_power_domains_driver_remove(i915); 13569 13570 intel_vga_unregister(i915); 13571 13572 intel_bios_driver_remove(i915); 13573 } 13574 13575 void intel_display_driver_register(struct drm_i915_private *i915) 13576 { 13577 if (!HAS_DISPLAY(i915)) 13578 return; 13579 13580 intel_display_debugfs_register(i915); 13581 13582 /* Must be done after probing outputs */ 13583 intel_opregion_register(i915); 13584 acpi_video_register(); 13585 13586 intel_audio_init(i915); 13587 13588 /* 13589 * Some ports require correctly set-up hpd registers for 13590 * detection to work properly (leading to ghost connected 13591 * connector status), e.g. VGA on gm45. Hence we can only set 13592 * up the initial fbdev config after hpd irqs are fully 13593 * enabled. We do it last so that the async config cannot run 13594 * before the connectors are registered. 13595 */ 13596 intel_fbdev_initial_config_async(&i915->drm); 13597 13598 /* 13599 * We need to coordinate the hotplugs with the asynchronous 13600 * fbdev configuration, for which we use the 13601 * fbdev->async_cookie. 13602 */ 13603 drm_kms_helper_poll_init(&i915->drm); 13604 } 13605 13606 void intel_display_driver_unregister(struct drm_i915_private *i915) 13607 { 13608 if (!HAS_DISPLAY(i915)) 13609 return; 13610 13611 intel_fbdev_unregister(i915); 13612 intel_audio_deinit(i915); 13613 13614 /* 13615 * After flushing the fbdev (incl. a late async config which 13616 * will have delayed queuing of a hotplug event), then flush 13617 * the hotplug events. 13618 */ 13619 drm_kms_helper_poll_fini(&i915->drm); 13620 drm_atomic_helper_shutdown(&i915->drm); 13621 13622 acpi_video_unregister(); 13623 intel_opregion_unregister(i915); 13624 } 13625